ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
48
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
13
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
78
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
93
203
Commit Hash
stringclasses
13 values
4f18d1c7-9e2a-451b-b785-37047394c51e
cpp
tensorflow/tensorflow
inputstream_interface
third_party/xla/xla/tsl/lib/io/inputstream_interface.cc
third_party/xla/xla/tsl/lib/io/inputstream_interface_test.cc
#include "xla/tsl/lib/io/inputstream_interface.h" #include "tsl/platform/errors.h" namespace tsl { namespace io { static constexpr int64_t kMaxSkipSize = 8 * 1024 * 1024; absl::Status InputStreamInterface::SkipNBytes(int64_t bytes_to_skip) { if (bytes_to_skip < 0) { return errors::InvalidArgument("Can't skip a negative number of bytes"); } tstring unused; while (bytes_to_skip > 0) { int64_t bytes_to_read = std::min<int64_t>(kMaxSkipSize, bytes_to_skip); TF_RETURN_IF_ERROR(ReadNBytes(bytes_to_read, &unused)); bytes_to_skip -= bytes_to_read; } return absl::OkStatus(); } } }
#include "xla/tsl/lib/io/inputstream_interface.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/test.h" namespace tsl { namespace io { namespace { class TestStringStream : public InputStreamInterface { public: explicit TestStringStream(const string& content) : content_(content) {} absl::Status ReadNBytes(int64_t bytes_to_read, tstring* result) override { result->clear(); if (pos_ + bytes_to_read > content_.size()) { return errors::OutOfRange("limit reached"); } *result = content_.substr(pos_, bytes_to_read); pos_ += bytes_to_read; return absl::OkStatus(); } int64_t Tell() const override { return pos_; } absl::Status Reset() override { pos_ = 0; return absl::OkStatus(); } private: string content_; int64_t pos_ = 0; }; TEST(InputStreamInterface, Basic) { TestStringStream ss("This is a test string"); tstring res; TF_ASSERT_OK(ss.ReadNBytes(4, &res)); EXPECT_EQ("This", res); TF_ASSERT_OK(ss.SkipNBytes(6)); TF_ASSERT_OK(ss.ReadNBytes(11, &res)); EXPECT_EQ("test string", res); EXPECT_TRUE(errors::IsOutOfRange(ss.SkipNBytes(1))); TF_ASSERT_OK(ss.Reset()); TF_ASSERT_OK(ss.ReadNBytes(4, &res)); EXPECT_EQ("This", res); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/io/inputstream_interface.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/io/inputstream_interface_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a8e264be-afcc-4991-9b90-65765527a036
cpp
tensorflow/tensorflow
random_inputstream
third_party/xla/xla/tsl/lib/io/random_inputstream.cc
third_party/xla/xla/tsl/lib/io/random_inputstream_test.cc
#include "xla/tsl/lib/io/random_inputstream.h" #include <memory> namespace tsl { namespace io { RandomAccessInputStream::RandomAccessInputStream(RandomAccessFile* file, bool owns_file) : file_(file), owns_file_(owns_file) {} RandomAccessInputStream::~RandomAccessInputStream() { if (owns_file_) { delete file_; } } absl::Status RandomAccessInputStream::ReadNBytes(int64_t bytes_to_read, tstring* result) { if (bytes_to_read < 0) { return errors::InvalidArgument("Cannot read negative number of bytes"); } result->clear(); result->resize_uninitialized(bytes_to_read); char* result_buffer = &(*result)[0]; absl::string_view data; absl::Status s = file_->Read(pos_, bytes_to_read, &data, result_buffer); if (data.data() != result_buffer) { memmove(result_buffer, data.data(), data.size()); } result->resize(data.size()); if (s.ok() || errors::IsOutOfRange(s)) { pos_ += data.size(); } return s; } #if defined(TF_CORD_SUPPORT) absl::Status RandomAccessInputStream::ReadNBytes(int64_t bytes_to_read, absl::Cord* result) { if (bytes_to_read < 0) { return errors::InvalidArgument("Cannot read negative number of bytes"); } int64_t current_size = result->size(); absl::Status s = file_->Read(pos_, bytes_to_read, result); if (s.ok() || errors::IsOutOfRange(s)) { pos_ += result->size() - current_size; } return s; } #endif static constexpr int64_t kMaxSkipSize = 8 * 1024 * 1024; absl::Status RandomAccessInputStream::SkipNBytes(int64_t bytes_to_skip) { if (bytes_to_skip < 0) { return errors::InvalidArgument("Can't skip a negative number of bytes"); } std::unique_ptr<char[]> scratch(new char[kMaxSkipSize]); if (bytes_to_skip > 0) { absl::string_view data; absl::Status s = file_->Read(pos_ + bytes_to_skip - 1, 1, &data, scratch.get()); if ((s.ok() || errors::IsOutOfRange(s)) && data.size() == 1) { pos_ += bytes_to_skip; return absl::OkStatus(); } } while (bytes_to_skip > 0) { int64_t bytes_to_read = std::min<int64_t>(kMaxSkipSize, bytes_to_skip); absl::string_view data; absl::Status s = file_->Read(pos_, bytes_to_read, &data, scratch.get()); if (s.ok() || errors::IsOutOfRange(s)) { pos_ += data.size(); } else { return s; } if (data.size() < static_cast<size_t>(bytes_to_read)) { return errors::OutOfRange("reached end of file"); } bytes_to_skip -= bytes_to_read; } return absl::OkStatus(); } int64_t RandomAccessInputStream::Tell() const { return pos_; } } }
#include "xla/tsl/lib/io/random_inputstream.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" namespace tsl { namespace io { namespace { TEST(RandomInputStream, ReadNBytes) { Env* env = Env::Default(); string fname = testing::TmpDir() + "/random_inputbuffer_test"; TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); tstring read; RandomAccessInputStream in(file.get()); TF_ASSERT_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "012"); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, ""); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(5, &read)); EXPECT_EQ(read, "34567"); EXPECT_EQ(8, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, ""); EXPECT_EQ(8, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(20, &read))); EXPECT_EQ(read, "89"); EXPECT_EQ(10, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, ""); EXPECT_EQ(10, in.Tell()); } #if defined(TF_CORD_SUPPORT) TEST(RandomInputStream, ReadNBytesWithCords) { Env* env = Env::Default(); string fname = testing::TmpDir() + "/random_inputbuffer_test"; TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); absl::Cord read; RandomAccessInputStream in(file.get()); TF_ASSERT_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "012"); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, "012"); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(5, &read)); EXPECT_EQ(read, "01234567"); EXPECT_EQ(8, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, "01234567"); EXPECT_EQ(8, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(20, &read))); EXPECT_EQ(read, "0123456789"); EXPECT_EQ(10, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, "0123456789"); EXPECT_EQ(10, in.Tell()); } #endif TEST(RandomInputStream, SkipNBytes) { Env* env = Env::Default(); string fname = testing::TmpDir() + "/random_inputbuffer_test"; TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); tstring read; RandomAccessInputStream in(file.get()); TF_ASSERT_OK(in.SkipNBytes(3)); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, ""); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(4, &read)); EXPECT_EQ(read, "3456"); EXPECT_EQ(7, in.Tell()); TF_ASSERT_OK(in.SkipNBytes(0)); EXPECT_EQ(7, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(2, &read)); EXPECT_EQ(read, "78"); EXPECT_EQ(9, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.SkipNBytes(20))); EXPECT_EQ(10, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(5, &read))); EXPECT_EQ(read, ""); EXPECT_EQ(10, in.Tell()); } TEST(RandomInputStream, Seek) { Env* env = Env::Default(); string fname = testing::TmpDir() + "/random_inputbuffer_seek_test"; TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); tstring read; RandomAccessInputStream in(file.get()); TF_ASSERT_OK(in.Seek(3)); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(4, &read)); EXPECT_EQ(read, "3456"); EXPECT_EQ(7, in.Tell()); TF_ASSERT_OK(in.Seek(1)); TF_ASSERT_OK(in.ReadNBytes(4, &read)); EXPECT_EQ(read, "1234"); EXPECT_EQ(5, in.Tell()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/io/random_inputstream.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/io/random_inputstream_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
728c532d-716d-43c9-8ea2-fe54b64e4765
cpp
tensorflow/tensorflow
buffered_inputstream
third_party/xla/xla/tsl/lib/io/buffered_inputstream.cc
third_party/xla/xla/tsl/lib/io/buffered_inputstream_test.cc
#include "xla/tsl/lib/io/buffered_inputstream.h" #include "absl/status/status.h" #include "xla/tsl/lib/io/random_inputstream.h" namespace tsl { namespace io { BufferedInputStream::BufferedInputStream(InputStreamInterface* input_stream, size_t buffer_bytes, bool owns_input_stream) : input_stream_(input_stream), size_(buffer_bytes), owns_input_stream_(owns_input_stream) { buf_.reserve(size_); } BufferedInputStream::BufferedInputStream(RandomAccessFile* file, size_t buffer_bytes) : BufferedInputStream(new RandomAccessInputStream(file), buffer_bytes, true) {} BufferedInputStream::~BufferedInputStream() { if (owns_input_stream_) { delete input_stream_; } } absl::Status BufferedInputStream::FillBuffer() { if (!file_status_.ok()) { pos_ = 0; limit_ = 0; return file_status_; } absl::Status s = input_stream_->ReadNBytes(size_, &buf_); pos_ = 0; limit_ = buf_.size(); if (!s.ok()) { file_status_ = s; } return s; } template <typename StringType> absl::Status BufferedInputStream::ReadLineHelper(StringType* result, bool include_eol) { result->clear(); absl::Status s; size_t start_pos = pos_; while (true) { if (pos_ == limit_) { result->append(buf_.data() + start_pos, pos_ - start_pos); s = FillBuffer(); if (limit_ == 0) { break; } start_pos = pos_; } char c = buf_[pos_]; if (c == '\n') { result->append(buf_.data() + start_pos, pos_ - start_pos); if (include_eol) { result->append(1, c); } pos_++; return absl::OkStatus(); } if (c == '\r') { result->append(buf_.data() + start_pos, pos_ - start_pos); start_pos = pos_ + 1; } pos_++; } if (absl::IsOutOfRange(s) && !result->empty()) { return absl::OkStatus(); } return s; } absl::Status BufferedInputStream::ReadNBytes(int64_t bytes_to_read, tstring* result) { if (bytes_to_read < 0) { return errors::InvalidArgument("Can't read a negative number of bytes: ", bytes_to_read); } result->clear(); if (pos_ == limit_ && !file_status_.ok() && bytes_to_read > 0) { return file_status_; } result->reserve(bytes_to_read); absl::Status s; while (result->size() < static_cast<size_t>(bytes_to_read)) { if (pos_ == limit_) { s = FillBuffer(); if (limit_ == 0) { DCHECK(!s.ok()); file_status_ = s; break; } } const int64_t bytes_to_copy = std::min<int64_t>(limit_ - pos_, bytes_to_read - result->size()); result->insert(result->size(), buf_, pos_, bytes_to_copy); pos_ += bytes_to_copy; } if (absl::IsOutOfRange(s) && (result->size() == static_cast<size_t>(bytes_to_read))) { return absl::OkStatus(); } return s; } absl::Status BufferedInputStream::SkipNBytes(int64_t bytes_to_skip) { if (bytes_to_skip < 0) { return errors::InvalidArgument("Can only skip forward, not ", bytes_to_skip); } if (pos_ + bytes_to_skip < limit_) { pos_ += bytes_to_skip; } else { absl::Status s = input_stream_->SkipNBytes(bytes_to_skip - (limit_ - pos_)); pos_ = 0; limit_ = 0; if (absl::IsOutOfRange(s)) { file_status_ = s; } return s; } return absl::OkStatus(); } int64_t BufferedInputStream::Tell() const { return input_stream_->Tell() - (limit_ - pos_); } absl::Status BufferedInputStream::Seek(int64_t position) { if (position < 0) { return errors::InvalidArgument("Seeking to a negative position: ", position); } const int64_t buf_lower_limit = input_stream_->Tell() - limit_; if (position < buf_lower_limit) { TF_RETURN_IF_ERROR(Reset()); return SkipNBytes(position); } if (position < Tell()) { pos_ -= Tell() - position; return absl::OkStatus(); } return SkipNBytes(position - Tell()); } template <typename T> absl::Status BufferedInputStream::ReadAll(T* result) { result->clear(); absl::Status status; while (status.ok()) { status = FillBuffer(); if (limit_ == 0) { break; } result->append(buf_); pos_ = limit_; } if (absl::IsOutOfRange(status)) { file_status_ = status; return absl::OkStatus(); } return status; } template Status BufferedInputStream::ReadAll<std::string>(std::string* result); template Status BufferedInputStream::ReadAll<tstring>(tstring* result); absl::Status BufferedInputStream::Reset() { TF_RETURN_IF_ERROR(input_stream_->Reset()); pos_ = 0; limit_ = 0; file_status_ = absl::OkStatus(); return absl::OkStatus(); } absl::Status BufferedInputStream::ReadLine(std::string* result) { return ReadLineHelper(result, false); } absl::Status BufferedInputStream::ReadLine(tstring* result) { return ReadLineHelper(result, false); } std::string BufferedInputStream::ReadLineAsString() { std::string result; ReadLineHelper(&result, true).IgnoreError(); return result; } absl::Status BufferedInputStream::SkipLine() { absl::Status s; bool skipped = false; while (true) { if (pos_ == limit_) { s = FillBuffer(); if (limit_ == 0) { break; } } char c = buf_[pos_++]; skipped = true; if (c == '\n') { return absl::OkStatus(); } } if (absl::IsOutOfRange(s) && skipped) { return absl::OkStatus(); } return s; } } }
#include "xla/tsl/lib/io/buffered_inputstream.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/lib/io/random_inputstream.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace tsl { namespace io { namespace { static std::vector<int> BufferSizes() { return {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 65536}; } class ReadOnceInputStream : public InputStreamInterface { public: ReadOnceInputStream() : start_(true) {} virtual absl::Status ReadNBytes(int64_t bytes_to_read, tstring* result) { if (bytes_to_read < 11) { return errors::InvalidArgument("Not reading all bytes: ", bytes_to_read); } if (start_) { *result = "0123456789"; start_ = false; return errors::OutOfRange("Out of range."); } return errors::InvalidArgument( "Redudant call to ReadNBytes after an OutOfRange error."); } int64_t Tell() const override { return start_ ? 0 : 10; } absl::Status Reset() override { start_ = true; return absl::OkStatus(); } private: bool start_; }; TEST(BufferedInputStream, ReadLine_Empty) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessInputStream> input_stream( new RandomAccessInputStream(file.get())); BufferedInputStream in(input_stream.get(), buf_size); string line; EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); } } TEST(BufferedInputStream, ReadLine1) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK( WriteStringToFile(env, fname, "line one\nline two\nline three\n")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessInputStream> input_stream( new RandomAccessInputStream(file.get())); BufferedInputStream in(input_stream.get(), buf_size); string line; TF_ASSERT_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line one"); TF_ASSERT_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line two"); TF_ASSERT_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line three"); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); } } TEST(BufferedInputStream, ReadLine_NoTrailingNewLine) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "line one\nline two\nline three")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessInputStream> input_stream( new RandomAccessInputStream(file.get())); BufferedInputStream in(input_stream.get(), buf_size); string line; TF_ASSERT_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line one"); TF_ASSERT_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line two"); TF_ASSERT_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line three"); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); } } TEST(BufferedInputStream, ReadLine_EmptyLines) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK( WriteStringToFile(env, fname, "line one\n\n\nline two\nline three")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessInputStream> input_stream( new RandomAccessInputStream(file.get())); BufferedInputStream in(input_stream.get(), buf_size); string line; TF_ASSERT_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line one"); TF_ASSERT_OK(in.ReadLine(&line)); EXPECT_EQ(line, ""); TF_ASSERT_OK(in.ReadLine(&line)); EXPECT_EQ(line, ""); TF_ASSERT_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line two"); TF_ASSERT_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line three"); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); } } TEST(BufferedInputStream, ReadLine_CRLF) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "line one\r\n\r\n\r\nline two\r\nline three")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessInputStream> input_stream( new RandomAccessInputStream(file.get())); BufferedInputStream in(input_stream.get(), buf_size); string line; TF_ASSERT_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line one"); TF_ASSERT_OK(in.ReadLine(&line)); EXPECT_EQ(line, ""); TF_ASSERT_OK(in.ReadLine(&line)); EXPECT_EQ(line, ""); TF_ASSERT_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line two"); TF_ASSERT_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line three"); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); } } TEST(BufferedInputStream, SkipLine1) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK( WriteStringToFile(env, fname, "line one\nline two\nline three\n")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessInputStream> input_stream( new RandomAccessInputStream(file.get())); BufferedInputStream in(input_stream.get(), buf_size); string line; TF_ASSERT_OK(in.SkipLine()); TF_ASSERT_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line two"); TF_ASSERT_OK(in.SkipLine()); EXPECT_TRUE(errors::IsOutOfRange(in.SkipLine())); EXPECT_TRUE(errors::IsOutOfRange(in.SkipLine())); } } TEST(BufferedInputStream, SkipLine_NoTrailingNewLine) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "line one\nline two\nline three")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessInputStream> input_stream( new RandomAccessInputStream(file.get())); BufferedInputStream in(input_stream.get(), buf_size); string line; TF_ASSERT_OK(in.SkipLine()); TF_ASSERT_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line two"); TF_ASSERT_OK(in.SkipLine()); EXPECT_TRUE(errors::IsOutOfRange(in.SkipLine())); EXPECT_TRUE(errors::IsOutOfRange(in.SkipLine())); } } TEST(BufferedInputStream, SkipLine_EmptyLines) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "line one\n\n\nline two")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessInputStream> input_stream( new RandomAccessInputStream(file.get())); BufferedInputStream in(input_stream.get(), buf_size); string line; TF_ASSERT_OK(in.SkipLine()); TF_ASSERT_OK(in.ReadLine(&line)); EXPECT_EQ(line, ""); TF_ASSERT_OK(in.SkipLine()); TF_ASSERT_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line two"); } } TEST(BufferedInputStream, ReadNBytes) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessInputStream> input_stream( new RandomAccessInputStream(file.get())); tstring read; BufferedInputStream in(input_stream.get(), buf_size); EXPECT_EQ(0, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "012"); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, ""); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(4, &read)); EXPECT_EQ(read, "3456"); EXPECT_EQ(7, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, ""); EXPECT_EQ(7, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(5, &read))); EXPECT_EQ(read, "789"); EXPECT_EQ(10, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(5, &read))); EXPECT_EQ(read, ""); EXPECT_EQ(10, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, ""); EXPECT_EQ(10, in.Tell()); } } TEST(BufferedInputStream, OutOfRangeCache) { for (auto buf_size : BufferSizes()) { if (buf_size < 11) { continue; } ReadOnceInputStream input_stream; tstring read; BufferedInputStream in(&input_stream, buf_size); EXPECT_EQ(0, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "012"); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK((in.ReadNBytes(7, &read))); EXPECT_EQ(read, "3456789"); EXPECT_EQ(10, in.Tell()); absl::Status s = in.ReadNBytes(5, &read); EXPECT_EQ(error::OUT_OF_RANGE, s.code()) << s; EXPECT_EQ(read, ""); TF_ASSERT_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, ""); } } TEST(BufferedInputStream, SkipNBytes) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessInputStream> input_stream( new RandomAccessInputStream(file.get())); tstring read; BufferedInputStream in(input_stream.get(), buf_size); EXPECT_EQ(0, in.Tell()); TF_ASSERT_OK(in.SkipNBytes(3)); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.SkipNBytes(0)); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(2, &read)); EXPECT_EQ(read, "34"); EXPECT_EQ(5, in.Tell()); TF_ASSERT_OK(in.SkipNBytes(0)); EXPECT_EQ(5, in.Tell()); TF_ASSERT_OK(in.SkipNBytes(2)); EXPECT_EQ(7, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(1, &read)); EXPECT_EQ(read, "7"); EXPECT_EQ(8, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.SkipNBytes(5))); EXPECT_EQ(10, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.SkipNBytes(5))); EXPECT_EQ(10, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(5, &read))); EXPECT_EQ(read, ""); EXPECT_EQ(10, in.Tell()); } } TEST(BufferedInputStream, ReadNBytesRandomAccessFile) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); for (auto buf_size : BufferSizes()) { tstring read; BufferedInputStream in(file.get(), buf_size); EXPECT_EQ(0, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "012"); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, ""); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(4, &read)); EXPECT_EQ(read, "3456"); EXPECT_EQ(7, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, ""); EXPECT_EQ(7, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(5, &read))); EXPECT_EQ(read, "789"); EXPECT_EQ(10, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(5, &read))); EXPECT_EQ(read, ""); EXPECT_EQ(10, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, ""); EXPECT_EQ(10, in.Tell()); } } TEST(BufferedInputStream, SkipNBytesRandomAccessFile) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); for (auto buf_size : BufferSizes()) { tstring read; BufferedInputStream in(file.get(), buf_size); EXPECT_EQ(0, in.Tell()); TF_ASSERT_OK(in.SkipNBytes(3)); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.SkipNBytes(0)); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(2, &read)); EXPECT_EQ(read, "34"); EXPECT_EQ(5, in.Tell()); TF_ASSERT_OK(in.SkipNBytes(0)); EXPECT_EQ(5, in.Tell()); TF_ASSERT_OK(in.SkipNBytes(2)); EXPECT_EQ(7, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(1, &read)); EXPECT_EQ(read, "7"); EXPECT_EQ(8, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.SkipNBytes(5))); EXPECT_EQ(10, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.SkipNBytes(5))); EXPECT_EQ(10, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(5, &read))); EXPECT_EQ(read, ""); EXPECT_EQ(10, in.Tell()); } } TEST(BufferedInputStream, Seek) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessInputStream> input_stream( new RandomAccessInputStream(file.get())); tstring read; BufferedInputStream in(input_stream.get(), buf_size); TF_ASSERT_OK(in.Seek(3)); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(4, &read)); EXPECT_EQ(read, "3456"); EXPECT_EQ(7, in.Tell()); TF_ASSERT_OK(in.Seek(1)); TF_ASSERT_OK(in.ReadNBytes(4, &read)); EXPECT_EQ(read, "1234"); EXPECT_EQ(5, in.Tell()); } } TEST(BufferedInputStream, Seek_NotReset) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); std::unique_ptr<RandomAccessInputStream> input_stream( new RandomAccessInputStream(file.get())); tstring read; BufferedInputStream in(input_stream.get(), 3); TF_ASSERT_OK(in.ReadNBytes(4, &read)); int before_tell = input_stream.get()->Tell(); EXPECT_EQ(before_tell, 6); TF_ASSERT_OK(in.Seek(3)); int after_tell = input_stream.get()->Tell(); EXPECT_EQ(before_tell, after_tell); } TEST(BufferedInputStream, ReadAll_Empty) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); const string expected = ""; TF_ASSERT_OK(WriteStringToFile(env, fname, expected)); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); for (auto buf_size : BufferSizes()) { RandomAccessInputStream input_stream(file.get()); BufferedInputStream in(&input_stream, buf_size); string contents; TF_ASSERT_OK(in.ReadAll(&contents)); EXPECT_EQ(expected, contents); } } TEST(BufferedInputStream, ReadAll_Text) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); const string expected = "line one\nline two\nline three"; TF_ASSERT_OK(WriteStringToFile(env, fname, expected)); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); for (auto buf_size : BufferSizes()) { RandomAccessInputStream input_stream(file.get()); BufferedInputStream in(&input_stream, buf_size); string contents; TF_ASSERT_OK(in.ReadAll(&contents)); EXPECT_EQ(expected, contents); } } void BM_BufferedReaderSmallReads(::testing::benchmark::State& state) { const int buff_size = state.range(0); const int file_size = state.range(1); Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); const string file_elem = "0123456789"; std::unique_ptr<WritableFile> write_file; TF_ASSERT_OK(env->NewWritableFile(fname, &write_file)); for (int i = 0; i < file_size; ++i) { TF_ASSERT_OK(write_file->Append(file_elem)); } TF_ASSERT_OK(write_file->Close()); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); tstring result; int itr = 0; for (auto s : state) { BufferedInputStream in(file.get(), buff_size); for (int64_t i = 0; i < 10 * file_size; ++i) { TF_ASSERT_OK(in.ReadNBytes(1, &result)) << "i: " << i << " itr: " << itr << " buff_size: " << buff_size << " file size: " << file_size; } ++itr; } } BENCHMARK(BM_BufferedReaderSmallReads) ->ArgPair(1, 5) ->ArgPair(1, 1024) ->ArgPair(10, 5) ->ArgPair(10, 1024) ->ArgPair(1024, 1024) ->ArgPair(1024 * 1024, 1024) ->ArgPair(1024 * 1024, 1024 * 1024) ->ArgPair(256 * 1024 * 1024, 1024); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/io/buffered_inputstream.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/io/buffered_inputstream_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
974b7765-e143-439c-bdc2-2ea618027569
cpp
tensorflow/tensorflow
cache
third_party/xla/xla/tsl/lib/io/cache.cc
third_party/xla/xla/tsl/lib/io/cache_test.cc
#include "xla/tsl/lib/io/cache.h" #include <assert.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include "tsl/platform/mutex.h" #include "tsl/platform/raw_coding.h" namespace tsl { namespace table { Cache::~Cache() {} namespace { struct LRUHandle { void* value; void (*deleter)(const Slice&, void* value); LRUHandle* next_hash; LRUHandle* next; LRUHandle* prev; size_t charge; size_t key_length; bool in_cache; uint32_t refs; uint32_t hash; char key_data[1]; Slice key() const { assert(next != this); return Slice(key_data, key_length); } }; class HandleTable { public: HandleTable() : length_(0), elems_(0), list_(nullptr) { Resize(); } ~HandleTable() { delete[] list_; } LRUHandle* Lookup(const Slice& key, uint32_t hash) { return *FindPointer(key, hash); } LRUHandle* Insert(LRUHandle* h) { LRUHandle** ptr = FindPointer(h->key(), h->hash); LRUHandle* old = *ptr; h->next_hash = (old == nullptr ? nullptr : old->next_hash); *ptr = h; if (old == nullptr) { ++elems_; if (elems_ > length_) { Resize(); } } return old; } LRUHandle* Remove(const Slice& key, uint32_t hash) { LRUHandle** ptr = FindPointer(key, hash); LRUHandle* result = *ptr; if (result != nullptr) { *ptr = result->next_hash; --elems_; } return result; } private: uint32_t length_; uint32_t elems_; LRUHandle** list_; LRUHandle** FindPointer(const Slice& key, uint32_t hash) { LRUHandle** ptr = &list_[hash & (length_ - 1)]; while (*ptr != nullptr && ((*ptr)->hash != hash || key != (*ptr)->key())) { ptr = &(*ptr)->next_hash; } return ptr; } void Resize() { uint32_t new_length = 4; while (new_length < elems_) { new_length *= 2; } LRUHandle** new_list = new LRUHandle*[new_length]; memset(new_list, 0, sizeof(new_list[0]) * new_length); uint32_t count = 0; for (uint32_t i = 0; i < length_; i++) { LRUHandle* h = list_[i]; while (h != nullptr) { LRUHandle* next = h->next_hash; uint32_t hash = h->hash; LRUHandle** ptr = &new_list[hash & (new_length - 1)]; h->next_hash = *ptr; *ptr = h; h = next; count++; } } assert(elems_ == count); delete[] list_; list_ = new_list; length_ = new_length; } }; class LRUCache { public: LRUCache(); ~LRUCache(); void SetCapacity(size_t capacity) { capacity_ = capacity; } Cache::Handle* Insert(const Slice& key, uint32_t hash, void* value, size_t charge, void (*deleter)(const Slice& key, void* value)); Cache::Handle* Lookup(const Slice& key, uint32_t hash); void Release(Cache::Handle* handle); void Erase(const Slice& key, uint32_t hash); void Prune(); size_t TotalCharge() const { mutex_lock l(mutex_); return usage_; } private: void LRU_Remove(LRUHandle* e); void LRU_Append(LRUHandle* list, LRUHandle* e); void Ref(LRUHandle* e); void Unref(LRUHandle* e); bool FinishErase(LRUHandle* e) TF_EXCLUSIVE_LOCKS_REQUIRED(mutex_); size_t capacity_; mutable mutex mutex_; size_t usage_ TF_GUARDED_BY(mutex_); LRUHandle lru_ TF_GUARDED_BY(mutex_); LRUHandle in_use_ TF_GUARDED_BY(mutex_); HandleTable table_ TF_GUARDED_BY(mutex_); }; LRUCache::LRUCache() : capacity_(0), usage_(0) { lru_.next = &lru_; lru_.prev = &lru_; in_use_.next = &in_use_; in_use_.prev = &in_use_; } LRUCache::~LRUCache() { assert(in_use_.next == &in_use_); for (LRUHandle* e = lru_.next; e != &lru_;) { LRUHandle* next = e->next; assert(e->in_cache); e->in_cache = false; assert(e->refs == 1); Unref(e); e = next; } } void LRUCache::Ref(LRUHandle* e) { if (e->refs == 1 && e->in_cache) { LRU_Remove(e); LRU_Append(&in_use_, e); } e->refs++; } void LRUCache::Unref(LRUHandle* e) { assert(e->refs > 0); e->refs--; if (e->refs == 0) { assert(!e->in_cache); (*e->deleter)(e->key(), e->value); free(e); } else if (e->in_cache && e->refs == 1) { LRU_Remove(e); LRU_Append(&lru_, e); } } void LRUCache::LRU_Remove(LRUHandle* e) { e->next->prev = e->prev; e->prev->next = e->next; } void LRUCache::LRU_Append(LRUHandle* list, LRUHandle* e) { e->next = list; e->prev = list->prev; e->prev->next = e; e->next->prev = e; } Cache::Handle* LRUCache::Lookup(const Slice& key, uint32_t hash) { mutex_lock l(mutex_); LRUHandle* e = table_.Lookup(key, hash); if (e != nullptr) { Ref(e); } return reinterpret_cast<Cache::Handle*>(e); } void LRUCache::Release(Cache::Handle* handle) { mutex_lock l(mutex_); Unref(reinterpret_cast<LRUHandle*>(handle)); } Cache::Handle* LRUCache::Insert(const Slice& key, uint32_t hash, void* value, size_t charge, void (*deleter)(const Slice& key, void* value)) { mutex_lock l(mutex_); LRUHandle* e = reinterpret_cast<LRUHandle*>(malloc(sizeof(LRUHandle) - 1 + key.size())); e->value = value; e->deleter = deleter; e->charge = charge; e->key_length = key.size(); e->hash = hash; e->in_cache = false; e->refs = 1; memcpy(e->key_data, key.data(), key.size()); if (capacity_ > 0) { e->refs++; e->in_cache = true; LRU_Append(&in_use_, e); usage_ += charge; FinishErase(table_.Insert(e)); } else { e->next = nullptr; } while (usage_ > capacity_ && lru_.next != &lru_) { LRUHandle* old = lru_.next; assert(old->refs == 1); bool erased = FinishErase(table_.Remove(old->key(), old->hash)); if (!erased) { assert(erased); } } return reinterpret_cast<Cache::Handle*>(e); } bool LRUCache::FinishErase(LRUHandle* e) { if (e != nullptr) { assert(e->in_cache); LRU_Remove(e); e->in_cache = false; usage_ -= e->charge; Unref(e); } return e != nullptr; } void LRUCache::Erase(const Slice& key, uint32_t hash) { mutex_lock l(mutex_); FinishErase(table_.Remove(key, hash)); } void LRUCache::Prune() { mutex_lock l(mutex_); while (lru_.next != &lru_) { LRUHandle* e = lru_.next; assert(e->refs == 1); bool erased = FinishErase(table_.Remove(e->key(), e->hash)); if (!erased) { assert(erased); } } } static const int kNumShardBits = 4; static const int kNumShards = 1 << kNumShardBits; class ShardedLRUCache : public Cache { private: LRUCache shard_[kNumShards]; mutex id_mutex_; uint64_t last_id_; static inline uint32_t HashSlice(const Slice& s) { return Hash(s.data(), s.size(), 0); } static uint32_t Shard(uint32_t hash) { return hash >> (32 - kNumShardBits); } public: explicit ShardedLRUCache(size_t capacity) : last_id_(0) { const size_t per_shard = (capacity + (kNumShards - 1)) / kNumShards; for (int s = 0; s < kNumShards; s++) { shard_[s].SetCapacity(per_shard); } } ~ShardedLRUCache() override {} Handle* Insert(const Slice& key, void* value, size_t charge, void (*deleter)(const Slice& key, void* value)) override { const uint32_t hash = HashSlice(key); return shard_[Shard(hash)].Insert(key, hash, value, charge, deleter); } Handle* Lookup(const Slice& key) override { const uint32_t hash = HashSlice(key); return shard_[Shard(hash)].Lookup(key, hash); } void Release(Handle* handle) override { LRUHandle* h = reinterpret_cast<LRUHandle*>(handle); shard_[Shard(h->hash)].Release(handle); } void Erase(const Slice& key) override { const uint32_t hash = HashSlice(key); shard_[Shard(hash)].Erase(key, hash); } void* Value(Handle* handle) override { return reinterpret_cast<LRUHandle*>(handle)->value; } uint64_t NewId() override { mutex_lock l(id_mutex_); return ++(last_id_); } void Prune() override { for (int s = 0; s < kNumShards; s++) { shard_[s].Prune(); } } size_t TotalCharge() const override { size_t total = 0; for (int s = 0; s < kNumShards; s++) { total += shard_[s].TotalCharge(); } return total; } private: static uint32_t Hash(const char* data, size_t n, uint32_t seed) { const uint32_t m = 0xc6a4a793; const uint32_t r = 24; const char* limit = data + n; uint32_t h = seed ^ (n * m); while (data + 4 <= limit) { uint32_t w = core::DecodeFixed32(data); data += 4; h += w; h *= m; h ^= (h >> 16); } switch (limit - data) { case 3: h += static_cast<uint8_t>(data[2]) << 16; ABSL_FALLTHROUGH_INTENDED; case 2: h += static_cast<uint8_t>(data[1]) << 8; ABSL_FALLTHROUGH_INTENDED; case 1: h += static_cast<uint8_t>(data[0]); h *= m; h ^= (h >> r); break; } return h; } }; } Cache* NewLRUCache(size_t capacity) { return new ShardedLRUCache(capacity); } } }
#include "xla/tsl/lib/io/cache.h" #include <string> #include <vector> #include "tsl/platform/coding.h" #include "tsl/platform/raw_coding.h" #include "tsl/platform/test.h" namespace tsl { namespace table { static std::string EncodeKey(int k) { std::string result; core::PutFixed32(&result, k); return result; } static int DecodeKey(const Slice& k) { assert(k.size() == 4); return core::DecodeFixed32(k.data()); } static void* EncodeValue(uintptr_t v) { return reinterpret_cast<void*>(v); } static int DecodeValue(void* v) { return reinterpret_cast<uintptr_t>(v); } class CacheTest : public ::testing::Test { public: static void Deleter(const Slice& key, void* v) { current_->deleted_keys_.push_back(DecodeKey(key)); current_->deleted_values_.push_back(DecodeValue(v)); } static constexpr int kCacheSize = 1000; std::vector<int> deleted_keys_; std::vector<int> deleted_values_; Cache* cache_; CacheTest() : cache_(NewLRUCache(kCacheSize)) { current_ = this; } ~CacheTest() { delete cache_; } int Lookup(int key) { Cache::Handle* handle = cache_->Lookup(EncodeKey(key)); const int r = (handle == nullptr) ? -1 : DecodeValue(cache_->Value(handle)); if (handle != nullptr) { cache_->Release(handle); } return r; } void Insert(int key, int value, int charge = 1) { cache_->Release(cache_->Insert(EncodeKey(key), EncodeValue(value), charge, &CacheTest::Deleter)); } Cache::Handle* InsertAndReturnHandle(int key, int value, int charge = 1) { return cache_->Insert(EncodeKey(key), EncodeValue(value), charge, &CacheTest::Deleter); } void Erase(int key) { cache_->Erase(EncodeKey(key)); } static CacheTest* current_; }; CacheTest* CacheTest::current_; TEST_F(CacheTest, HitAndMiss) { ASSERT_EQ(-1, Lookup(100)); Insert(100, 101); ASSERT_EQ(101, Lookup(100)); ASSERT_EQ(-1, Lookup(200)); ASSERT_EQ(-1, Lookup(300)); Insert(200, 201); ASSERT_EQ(101, Lookup(100)); ASSERT_EQ(201, Lookup(200)); ASSERT_EQ(-1, Lookup(300)); Insert(100, 102); ASSERT_EQ(102, Lookup(100)); ASSERT_EQ(201, Lookup(200)); ASSERT_EQ(-1, Lookup(300)); ASSERT_EQ(1, deleted_keys_.size()); ASSERT_EQ(100, deleted_keys_[0]); ASSERT_EQ(101, deleted_values_[0]); } TEST_F(CacheTest, Erase) { Erase(200); ASSERT_EQ(0, deleted_keys_.size()); Insert(100, 101); Insert(200, 201); Erase(100); ASSERT_EQ(-1, Lookup(100)); ASSERT_EQ(201, Lookup(200)); ASSERT_EQ(1, deleted_keys_.size()); ASSERT_EQ(100, deleted_keys_[0]); ASSERT_EQ(101, deleted_values_[0]); Erase(100); ASSERT_EQ(-1, Lookup(100)); ASSERT_EQ(201, Lookup(200)); ASSERT_EQ(1, deleted_keys_.size()); } TEST_F(CacheTest, EntriesArePinned) { Insert(100, 101); Cache::Handle* h1 = cache_->Lookup(EncodeKey(100)); ASSERT_EQ(101, DecodeValue(cache_->Value(h1))); Insert(100, 102); Cache::Handle* h2 = cache_->Lookup(EncodeKey(100)); ASSERT_EQ(102, DecodeValue(cache_->Value(h2))); ASSERT_EQ(0, deleted_keys_.size()); cache_->Release(h1); ASSERT_EQ(1, deleted_keys_.size()); ASSERT_EQ(100, deleted_keys_[0]); ASSERT_EQ(101, deleted_values_[0]); Erase(100); ASSERT_EQ(-1, Lookup(100)); ASSERT_EQ(1, deleted_keys_.size()); cache_->Release(h2); ASSERT_EQ(2, deleted_keys_.size()); ASSERT_EQ(100, deleted_keys_[1]); ASSERT_EQ(102, deleted_values_[1]); } TEST_F(CacheTest, EvictionPolicy) { Insert(100, 101); Insert(200, 201); Insert(300, 301); Cache::Handle* h = cache_->Lookup(EncodeKey(300)); for (int i = 0; i < kCacheSize + 100; i++) { Insert(1000 + i, 2000 + i); ASSERT_EQ(2000 + i, Lookup(1000 + i)); ASSERT_EQ(101, Lookup(100)); } ASSERT_EQ(101, Lookup(100)); ASSERT_EQ(-1, Lookup(200)); ASSERT_EQ(301, Lookup(300)); cache_->Release(h); } TEST_F(CacheTest, UseExceedsCacheSize) { std::vector<Cache::Handle*> h; for (int i = 0; i < kCacheSize + 100; i++) { h.push_back(InsertAndReturnHandle(1000 + i, 2000 + i)); } for (int i = 0; i < h.size(); i++) { ASSERT_EQ(2000 + i, Lookup(1000 + i)); } for (int i = 0; i < h.size(); i++) { cache_->Release(h[i]); } } TEST_F(CacheTest, HeavyEntries) { const int kLight = 1; const int kHeavy = 10; int added = 0; int index = 0; while (added < 2 * kCacheSize) { const int weight = (index & 1) ? kLight : kHeavy; Insert(index, 1000 + index, weight); added += weight; index++; } int cached_weight = 0; for (int i = 0; i < index; i++) { const int weight = (i & 1 ? kLight : kHeavy); int r = Lookup(i); if (r >= 0) { cached_weight += weight; ASSERT_EQ(1000 + i, r); } } ASSERT_LE(cached_weight, kCacheSize + kCacheSize / 10); } TEST_F(CacheTest, NewId) { uint64_t a = cache_->NewId(); uint64_t b = cache_->NewId(); ASSERT_NE(a, b); } TEST_F(CacheTest, Prune) { Insert(1, 100); Insert(2, 200); Cache::Handle* handle = cache_->Lookup(EncodeKey(1)); ASSERT_TRUE(handle); cache_->Prune(); cache_->Release(handle); ASSERT_EQ(100, Lookup(1)); ASSERT_EQ(-1, Lookup(2)); } TEST_F(CacheTest, ZeroSizeCache) { delete cache_; cache_ = NewLRUCache(0); Insert(1, 100); ASSERT_EQ(-1, Lookup(1)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/io/cache.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/io/cache_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
272d3b74-3a55-4eba-a682-59190d83978f
cpp
tensorflow/tensorflow
distribution_sampler
third_party/xla/xla/tsl/lib/random/distribution_sampler.cc
third_party/xla/xla/tsl/lib/random/distribution_sampler_test.cc
#include "xla/tsl/lib/random/distribution_sampler.h" #include <memory> #include <vector> #include "absl/types/span.h" namespace tsl { namespace random { DistributionSampler::DistributionSampler( const absl::Span<const float> weights) { DCHECK(!weights.empty()); int n = weights.size(); num_ = n; data_.reset(new std::pair<float, int>[n]); std::unique_ptr<double[]> pr(new double[n]); double sum = 0.0; for (int i = 0; i < n; i++) { sum += weights[i]; set_alt(i, -1); } std::vector<int> high; high.reserve(n); std::vector<int> low; low.reserve(n); for (int i = 0; i < n; i++) { double p = (weights[i] * n) / sum; pr[i] = p; if (p < 1.0) { low.push_back(i); } else { high.push_back(i); } } while (!high.empty() && !low.empty()) { int l = low.back(); low.pop_back(); int h = high.back(); high.pop_back(); set_alt(l, h); DCHECK_GE(pr[h], 1.0); double remaining = pr[h] - (1.0 - pr[l]); pr[h] = remaining; if (remaining < 1.0) { low.push_back(h); } else { high.push_back(h); } } for (int i = 0; i < n; i++) { set_prob(i, pr[i]); } for (size_t i = 0; i < high.size(); i++) { int idx = high[i]; set_prob(idx, 1.0); set_alt(idx, idx); } for (size_t i = 0; i < low.size(); i++) { int idx = low[i]; set_prob(idx, 1.0); set_alt(idx, idx); } } } }
#include "xla/tsl/lib/random/distribution_sampler.h" #include <string.h> #include <memory> #include <vector> #include "xla/tsl/lib/random/simple_philox.h" #include "tsl/platform/macros.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" #include "tsl/platform/types.h" namespace tsl { namespace random { class DistributionSamplerTest : public ::testing::Test { protected: float TestWeights(const std::vector<float>& weights, int trials_per_bin) { int iters = weights.size() * trials_per_bin; std::unique_ptr<float[]> counts(new float[weights.size()]); memset(counts.get(), 0, sizeof(float) * weights.size()); DistributionSampler sampler(weights); PhiloxRandom philox(testing::RandomSeed(), 17); SimplePhilox random(&philox); for (int i = 0; i < iters; i++) { int r = sampler.Sample(&random); EXPECT_LT(r, weights.size()); EXPECT_GE(r, 0); counts[r] += 1.0; } float chi2 = 0.0; for (size_t i = 0; i < weights.size(); i++) { counts[i] /= iters; float err = (counts[i] - weights[i]); chi2 += (err * err) / weights[i]; } return chi2; } void TestDistribution(float* arr, int n) { std::vector<float> w; w.reserve(n); for (int i = 0; i < n; i++) { w.push_back(arr[i]); } float var = TestWeights(w, 1000); if (var < 0.001) return; var = TestWeights(w, 100000); if (var < 0.001) return; EXPECT_TRUE(false) << "Chi2 is " << var << " in " << n * 100000 << "iterations"; } }; TEST_F(DistributionSamplerTest, KnownDistribution) { float kEven2[] = {0.5, 0.5}; float kEven3[] = {0.33333333, 0.33333333, 0.33333333}; float kEven4[] = {0.25, 0.25, 0.25, 0.25}; float kDist1[] = {0.8, 0.15, 0.05}; TestDistribution(kEven2, TF_ARRAYSIZE(kEven2)); TestDistribution(kEven3, TF_ARRAYSIZE(kEven3)); TestDistribution(kEven4, TF_ARRAYSIZE(kEven4)); TestDistribution(kDist1, TF_ARRAYSIZE(kDist1)); } static void BM_DistributionSampler(::testing::benchmark::State& state) { const int n = state.range(0); PhiloxRandom philox(173, 371); SimplePhilox rand(&philox); std::vector<float> weights(n, 0); for (int i = 0; i < n; i++) { weights[i] = rand.Uniform(100); } DistributionSampler picker(weights); int r = 0; for (auto s : state) { r |= picker.Sample(&rand); } CHECK_NE(r, kint32max); } BENCHMARK(BM_DistributionSampler)->Arg(10)->Arg(100)->Arg(1000); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/random/distribution_sampler.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/random/distribution_sampler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3e8d7744-e760-4b63-87c0-9027b944dc8f
cpp
tensorflow/tensorflow
weighted_picker
third_party/xla/xla/tsl/lib/random/weighted_picker.cc
third_party/xla/xla/tsl/lib/random/weighted_picker_test.cc
#include "xla/tsl/lib/random/weighted_picker.h" #include <string.h> #include <algorithm> #include "xla/tsl/lib/random/simple_philox.h" namespace tsl { namespace random { WeightedPicker::WeightedPicker(int N) { CHECK_GE(N, 0); N_ = N; num_levels_ = 1; while (LevelSize(num_levels_ - 1) < N) { num_levels_++; } level_ = new int32*[num_levels_]; for (int l = 0; l < num_levels_; l++) { level_[l] = new int32[LevelSize(l)]; } SetAllWeights(1); } WeightedPicker::~WeightedPicker() { for (int l = 0; l < num_levels_; l++) { delete[] level_[l]; } delete[] level_; } static int32 UnbiasedUniform(SimplePhilox* r, int32_t n) { CHECK_LE(0, n); const uint32 range = ~static_cast<uint32>(0); if (n == 0) { return r->Rand32() * n; } else if (0 == (n & (n - 1))) { return r->Rand32() & (n - 1); } else { uint32 rem = (range % n) + 1; uint32 rnd; do { rnd = r->Rand32(); } while (rnd < rem); return rnd % n; } } int WeightedPicker::Pick(SimplePhilox* rnd) const { if (total_weight() == 0) return -1; return PickAt(UnbiasedUniform(rnd, total_weight())); } int WeightedPicker::PickAt(int32_t weight_index) const { if (weight_index < 0 || weight_index >= total_weight()) return -1; int32_t position = weight_index; int index = 0; for (int l = 1; l < num_levels_; l++) { const int32_t left_weight = level_[l][2 * index]; if (position < left_weight) { index = 2 * index; } else { index = 2 * index + 1; position -= left_weight; } } CHECK_GE(index, 0); CHECK_LT(index, N_); CHECK_LE(position, level_[num_levels_ - 1][index]); return index; } void WeightedPicker::set_weight(int index, int32_t weight) { assert(index >= 0); assert(index < N_); const int32_t delta = weight - get_weight(index); for (int l = num_levels_ - 1; l >= 0; l--) { level_[l][index] += delta; index >>= 1; } } void WeightedPicker::SetAllWeights(int32_t weight) { int32* leaves = level_[num_levels_ - 1]; for (int i = 0; i < N_; i++) leaves[i] = weight; for (int i = N_; i < LevelSize(num_levels_ - 1); i++) leaves[i] = 0; RebuildTreeWeights(); } void WeightedPicker::SetWeightsFromArray(int N, const int32* weights) { Resize(N); int32* leaves = level_[num_levels_ - 1]; for (int i = 0; i < N_; i++) leaves[i] = weights[i]; for (int i = N_; i < LevelSize(num_levels_ - 1); i++) leaves[i] = 0; RebuildTreeWeights(); } void WeightedPicker::RebuildTreeWeights() { for (int l = num_levels_ - 2; l >= 0; l--) { int32* level = level_[l]; int32* children = level_[l + 1]; for (int i = 0; i < LevelSize(l); i++) { level[i] = children[2 * i] + children[2 * i + 1]; } } } void WeightedPicker::Append(int32_t weight) { Resize(num_elements() + 1); set_weight(num_elements() - 1, weight); } void WeightedPicker::Resize(int new_size) { CHECK_GE(new_size, 0); if (new_size <= LevelSize(num_levels_ - 1)) { for (int i = new_size; i < N_; i++) { set_weight(i, 0); } N_ = new_size; return; } assert(new_size > N_); WeightedPicker new_picker(new_size); int32* dst = new_picker.level_[new_picker.num_levels_ - 1]; int32* src = this->level_[this->num_levels_ - 1]; memcpy(dst, src, sizeof(dst[0]) * N_); memset(dst + N_, 0, sizeof(dst[0]) * (new_size - N_)); new_picker.RebuildTreeWeights(); std::swap(new_picker.N_, this->N_); std::swap(new_picker.num_levels_, this->num_levels_); std::swap(new_picker.level_, this->level_); assert(this->N_ == new_size); } } }
#include "xla/tsl/lib/random/weighted_picker.h" #include <string.h> #include <vector> #include "xla/tsl/lib/random/simple_philox.h" #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" #include "tsl/platform/types.h" namespace tsl { namespace random { static void TestPicker(SimplePhilox* rnd, int size); static void CheckUniform(SimplePhilox* rnd, WeightedPicker* picker, int trials); static void CheckSkewed(SimplePhilox* rnd, WeightedPicker* picker, int trials); static void TestPickAt(int items, const int32* weights); TEST(WeightedPicker, Simple) { PhiloxRandom philox(testing::RandomSeed(), 17); SimplePhilox rnd(&philox); { VLOG(0) << "======= Zero-length picker"; WeightedPicker picker(0); EXPECT_EQ(picker.Pick(&rnd), -1); } { VLOG(0) << "======= Singleton picker"; WeightedPicker picker(1); EXPECT_EQ(picker.Pick(&rnd), 0); EXPECT_EQ(picker.Pick(&rnd), 0); EXPECT_EQ(picker.Pick(&rnd), 0); } { VLOG(0) << "======= Grown picker"; WeightedPicker picker(0); for (int i = 0; i < 10; i++) { picker.Append(1); } CheckUniform(&rnd, &picker, 100000); } { VLOG(0) << "======= Grown picker with zero weights"; WeightedPicker picker(1); picker.Resize(10); EXPECT_EQ(picker.Pick(&rnd), 0); EXPECT_EQ(picker.Pick(&rnd), 0); EXPECT_EQ(picker.Pick(&rnd), 0); } { VLOG(0) << "======= Shrink picker and check weights"; WeightedPicker picker(1); picker.Resize(10); EXPECT_EQ(picker.Pick(&rnd), 0); EXPECT_EQ(picker.Pick(&rnd), 0); EXPECT_EQ(picker.Pick(&rnd), 0); for (int i = 0; i < 10; i++) { picker.set_weight(i, i); } EXPECT_EQ(picker.total_weight(), 45); picker.Resize(5); EXPECT_EQ(picker.total_weight(), 10); picker.Resize(2); EXPECT_EQ(picker.total_weight(), 1); picker.Resize(1); EXPECT_EQ(picker.total_weight(), 0); } } TEST(WeightedPicker, BigWeights) { PhiloxRandom philox(testing::RandomSeed() + 1, 17); SimplePhilox rnd(&philox); VLOG(0) << "======= Check uniform with big weights"; WeightedPicker picker(2); picker.SetAllWeights(2147483646L / 3); CheckUniform(&rnd, &picker, 100000); } TEST(WeightedPicker, Deterministic) { VLOG(0) << "======= Testing deterministic pick"; static const int32 weights[] = {1, 0, 200, 5, 42}; TestPickAt(TF_ARRAYSIZE(weights), weights); } TEST(WeightedPicker, Randomized) { PhiloxRandom philox(testing::RandomSeed() + 10, 17); SimplePhilox rnd(&philox); TestPicker(&rnd, 1); TestPicker(&rnd, 2); TestPicker(&rnd, 3); TestPicker(&rnd, 4); TestPicker(&rnd, 7); TestPicker(&rnd, 8); TestPicker(&rnd, 9); TestPicker(&rnd, 10); TestPicker(&rnd, 100); } static void TestPicker(SimplePhilox* rnd, int size) { VLOG(0) << "======= Testing size " << size; { WeightedPicker picker(size); picker.SetAllWeights(0); for (int i = 0; i < 100; i++) EXPECT_EQ(picker.Pick(rnd), -1); } std::vector<int32> weights(size); for (int elem = 0; elem < size; elem++) { weights[elem] = 0; } for (int elem = 0; elem < size; elem++) { WeightedPicker picker(size); picker.SetAllWeights(0); picker.set_weight(elem, elem + 1); for (int i = 0; i < 100; i++) EXPECT_EQ(picker.Pick(rnd), elem); weights[elem] = 10; picker.SetWeightsFromArray(size, &weights[0]); for (int i = 0; i < 100; i++) EXPECT_EQ(picker.Pick(rnd), elem); weights[elem] = 0; } { WeightedPicker picker(size); CheckUniform(rnd, &picker, 100000); } if (size / 3 > 0) { WeightedPicker picker(size / 3); while (picker.num_elements() != size) { picker.Append(1); } CheckUniform(rnd, &picker, 100000); } if (size <= 10) { WeightedPicker picker(size); int32_t weight = 1; for (int elem = 0; elem < size; elem++) { picker.set_weight(elem, weight); weights[elem] = weight; weight *= 2; } CheckSkewed(rnd, &picker, 1000000); WeightedPicker array_picker(0); array_picker.SetWeightsFromArray(size, &weights[0]); CheckSkewed(rnd, &array_picker, 1000000); } } static void CheckUniform(SimplePhilox* rnd, WeightedPicker* picker, int trials) { const int size = picker->num_elements(); int* count = new int[size]; memset(count, 0, sizeof(count[0]) * size); for (int i = 0; i < size * trials; i++) { const int elem = picker->Pick(rnd); EXPECT_GE(elem, 0); EXPECT_LT(elem, size); count[elem]++; } const int expected_min = int(0.9 * trials); const int expected_max = int(1.1 * trials); for (int i = 0; i < size; i++) { EXPECT_GE(count[i], expected_min); EXPECT_LE(count[i], expected_max); } delete[] count; } static void CheckSkewed(SimplePhilox* rnd, WeightedPicker* picker, int trials) { const int size = picker->num_elements(); int* count = new int[size]; memset(count, 0, sizeof(count[0]) * size); for (int i = 0; i < size * trials; i++) { const int elem = picker->Pick(rnd); EXPECT_GE(elem, 0); EXPECT_LT(elem, size); count[elem]++; } for (int i = 0; i < size - 1; i++) { LOG(INFO) << i << ": " << count[i]; const float ratio = float(count[i + 1]) / float(count[i]); EXPECT_GE(ratio, 1.6f); EXPECT_LE(ratio, 2.4f); } delete[] count; } static void TestPickAt(int items, const int32* weights) { WeightedPicker picker(items); picker.SetWeightsFromArray(items, weights); int weight_index = 0; for (int i = 0; i < items; ++i) { for (int j = 0; j < weights[i]; ++j) { int pick = picker.PickAt(weight_index); EXPECT_EQ(pick, i); ++weight_index; } } EXPECT_EQ(weight_index, picker.total_weight()); } static void BM_Create(::testing::benchmark::State& state) { int arg = state.range(0); for (auto s : state) { WeightedPicker p(arg); } } BENCHMARK(BM_Create)->Range(1, 1024); static void BM_CreateAndSetWeights(::testing::benchmark::State& state) { int arg = state.range(0); std::vector<int32> weights(arg); for (int i = 0; i < arg; i++) { weights[i] = i * 10; } for (auto s : state) { WeightedPicker p(arg); p.SetWeightsFromArray(arg, &weights[0]); } } BENCHMARK(BM_CreateAndSetWeights)->Range(1, 1024); static void BM_Pick(::testing::benchmark::State& state) { int arg = state.range(0); PhiloxRandom philox(301, 17); SimplePhilox rnd(&philox); WeightedPicker p(arg); int result = 0; for (auto s : state) { result += p.Pick(&rnd); } VLOG(4) << result; } BENCHMARK(BM_Pick)->Range(1, 1024); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/random/weighted_picker.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/random/weighted_picker_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4b58cfbf-7b21-47ea-86db-812d0b5e7490
cpp
tensorflow/tensorflow
simple_philox
third_party/xla/xla/tsl/lib/random/simple_philox.cc
third_party/xla/xla/tsl/lib/random/simple_philox_test.cc
#include "xla/tsl/lib/random/simple_philox.h" #include "xla/tsl/lib/random/exact_uniform_int.h" #include "tsl/platform/logging.h" namespace tsl { namespace random { uint32 SimplePhilox::Uniform(uint32 n) { return ExactUniformInt<uint32>(n, [this]() { return Rand32(); }); } uint64 SimplePhilox::Uniform64(uint64 n) { return ExactUniformInt<uint64>(n, [this]() { return Rand64(); }); } uint32 SimplePhilox::Skewed(int max_log) { CHECK(0 <= max_log && max_log <= 32); const int shift = Rand32() % (max_log + 1); const uint32 mask = shift == 32 ? ~static_cast<uint32>(0) : (1 << shift) - 1; return Rand32() & mask; } } }
#include "xla/tsl/lib/random/simple_philox.h" #include <set> #include <string> #include "tsl/platform/logging.h" #include "tsl/platform/test.h" #include "tsl/platform/types.h" namespace tsl { namespace random { namespace { TEST(SimplePhiloxTest, FloatTest) { PhiloxRandom philox(7, 7); SimplePhilox gen(&philox); static const int kIters = 1000000; for (int i = 0; i < kIters; ++i) { float f = gen.RandFloat(); EXPECT_LE(0.0f, f); EXPECT_GT(1.0f, f); } for (int i = 0; i < kIters; ++i) { double d = gen.RandDouble(); EXPECT_LE(0.0, d); EXPECT_GT(1.0, d); } } static void DifferenceTest(const char *names, SimplePhilox *gen1, SimplePhilox *gen2) { static const int kIters = 100; bool different = false; for (int i = 0; i < kIters; ++i) { if (gen1->Rand32() != gen2->Rand32()) { different = true; break; } } CHECK(different) << "different seeds but same output!"; } TEST(SimplePhiloxTest, DifferenceTest) { PhiloxRandom philox1(1, 1), philox2(17, 17); SimplePhilox gen1(&philox1), gen2(&philox2); DifferenceTest("SimplePhilox: different seeds", &gen1, &gen2); } TEST(SimplePhiloxTest, DifferenceTestCloseSeeds) { PhiloxRandom philox1(1, 1), philox2(2, 1); SimplePhilox gen1(&philox1), gen2(&philox2); DifferenceTest("SimplePhilox: close seeds", &gen1, &gen2); } TEST(SimplePhiloxTest, Regression_CloseSeedsAreDifferent) { const int kCount = 1000; PhiloxRandom philox1(0, 1), philox2(1, 1); SimplePhilox gen1(&philox1), gen2(&philox2); std::set<uint32> first; std::set<uint32> all; for (int i = 0; i < kCount; ++i) { uint32 v = gen1.Rand32(); first.insert(v); all.insert(v); all.insert(gen2.Rand32()); } EXPECT_EQ(kCount, first.size()); EXPECT_EQ(2 * kCount, all.size()); } TEST(SimplePhiloxTest, TestUniform) { PhiloxRandom philox(17, 17); SimplePhilox gen(&philox); uint32 range = 3 * (1L << 29); uint32 threshold = 1L << 30; size_t count = 0; static const int kTrials = 100000; for (int i = 0; i < kTrials; ++i) { uint32 rnd = gen.Uniform(range); if (rnd < threshold) { ++count; } } EXPECT_LT(fabs((threshold + 0.0) / range - (count + 0.0) / kTrials), 0.005); } TEST(SimplePhiloxTest, TestUniform64) { PhiloxRandom philox(17, 17); SimplePhilox gen(&philox); uint64 range = 3 * (1LL << 59); uint64 threshold = 1LL << 60; size_t count = 0; static const int kTrials = 100000; for (int i = 0; i < kTrials; ++i) { uint64 rnd = gen.Uniform64(range); if (rnd < threshold) { ++count; } } EXPECT_LT(fabs((threshold + 0.0) / range - (count + 0.0) / kTrials), 0.005); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/random/simple_philox.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/random/simple_philox_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2246b064-c684-4a2b-b593-8c40c777b2fc
cpp
tensorflow/tensorflow
random_distributions
third_party/xla/xla/tsl/lib/random/random_distributions.cc
third_party/xla/xla/tsl/lib/random/random_distributions_test.cc
#include "xla/tsl/lib/random/distribution_sampler.h" #include "xla/tsl/lib/random/philox_random.h" namespace tsl { namespace random { template <> void SingleSampleAdapter<PhiloxRandom>::SkipFromGenerator(uint64 num_skips) { generator_->Skip(num_skips); } } }
#include "xla/tsl/lib/random/random_distributions.h" #include <algorithm> #include <cmath> #include <functional> #include <numeric> #include <unordered_map> #include <vector> #include "xla/tsl/lib/math/math_util.h" #include "xla/tsl/lib/random/philox_random.h" #include "xla/tsl/lib/random/philox_random_test_utils.h" #include "tsl/platform/logging.h" #include "tsl/platform/random.h" #include "tsl/platform/test.h" namespace tsl { namespace random { namespace { static constexpr float kZLimit = 6.0; static constexpr float kZLimitBfloat16 = 20.0; template <class Distribution> void FillRandomsWithSingles(PhiloxRandom gen, typename Distribution::ResultElementType* p, int64_t size) { int granularity = Distribution::kResultElementCount; CHECK(size % granularity == 0) << " size: " << size << " granularity: " << granularity; SingleSampleAdapter<PhiloxRandom> single_samples(&gen); Distribution dist; for (int i = 0; i < size; i += granularity) { auto sample = dist(&single_samples); std::copy(&sample[0], &sample[0] + granularity, &p[i]); } } template <typename T> bool CheckSamplesMoments(const std::vector<T>& samples, const std::function<double(int)>& theoretical_moments, int max_moments, int stride, T z_limit) { const T* const samples_data = &samples[0]; const int samples_size = samples.size(); std::vector<double> moments(max_moments + 1); double* const moments_data = &moments[0]; std::vector<int> moments_sample_count(max_moments + 1); int* const moments_sample_count_data = &moments_sample_count[0]; for (int k = 0; k < samples_size; ++k) { double moment = 1.; for (int i = 0; i <= max_moments; ++i) { int index = k + i * stride; if (index >= samples_size) { break; } moments_data[i] += moment; ++moments_sample_count_data[i]; moment *= static_cast<double>(samples_data[index]); } } for (int i = 0; i <= max_moments; ++i) { moments[i] /= moments_sample_count[i]; } bool status = true; for (int i = 1; i <= max_moments; ++i) { const double moments_i_mean = (stride == 0) ? theoretical_moments(i) : MathUtil::IPow(theoretical_moments(1), i); const double moments_i_squared = (stride == 0) ? theoretical_moments(2 * i) : MathUtil::IPow(theoretical_moments(2), i); const double moments_i_var = moments_i_squared - moments_i_mean * moments_i_mean; static const double kNumericalError = 1e-6; const double error_per_moment = i * kNumericalError; const double total_variance = moments_i_var / moments_sample_count[i] + error_per_moment; const double z_test = fabs((moments[i] - moments_i_mean) / sqrt(total_variance)); if (z_test > static_cast<double>(z_limit)) { LOG(ERROR) << "failing z_test:" << " moment: " << i << " stride: " << stride << " z_test: " << z_test << " z_limit: " << z_limit << " measured moments: " << moments[i] << " theoretical mean of the moments: " << moments_i_mean << " theoretical var of the moments: " << moments_i_var << " sample count: " << moments_sample_count[i]; status = false; } } return status; } template <typename T> void UniformMomentsTest(int count, int max_moments, const std::vector<int>& strides, T z_limit) { auto uniform_moments = [](int n) -> double { return 1. / (n + 1); }; std::vector<T> v1(count); uint64 seed = GetTestSeed(); PhiloxRandom gen(seed); FillRandoms<UniformDistribution<PhiloxRandom, T> >(gen, &v1[0], v1.size()); for (int stride : strides) { bool status = CheckSamplesMoments(v1, uniform_moments, max_moments, stride, z_limit); ASSERT_TRUE(status) << " UniformMomentsTest failing. seed: " << seed; } } template <typename T> void NormalMomentsTest(int count, int max_moments, const std::vector<int>& strides, T z_limit) { auto normal_moments = [](int n) -> double { if (n % 2 == 1) { return 0.; } else { double v = 1.; for (int i = n - 1; i >= 1; i -= 2) { v *= i; } return v; } }; std::vector<T> v1(count); uint64 seed = GetTestSeed(); PhiloxRandom gen(seed); FillRandoms<NormalDistribution<PhiloxRandom, T> >(gen, &v1[0], v1.size()); for (int stride : strides) { bool status = CheckSamplesMoments(v1, normal_moments, max_moments, stride, z_limit); ASSERT_TRUE(status) << " NormalMomentsTest failing. seed: " << seed; } } class TruncatedNormalMoments { public: double operator()(int n) { if (n == 0) { return 1; } if (n % 2 == 1) { return 0.; } auto iter = cached_results_.find(n); if (iter != cached_results_.end()) { return iter->second; } double bias = 2.0 * MathUtil::IPow(kV, n - 1) * kFV / (2.0 * kPhiV - 1.0); double moment_n_minus_2 = (*this)(n - 2); double moment_n = (n - 1) * moment_n_minus_2 - bias; cached_results_[n] = moment_n; return moment_n; } private: const double kV = 2.0; const double kFV = 1.0 / sqrt(2.0 * M_PI) * exp(-kV * kV / 2.0); const double kPhiV = 0.977249868051821; std::unordered_map<int, double> cached_results_; }; template <typename T> void RandomParametersMomentsTest(int count, int max_moments, const std::vector<int>& strides, T z_limit) { std::vector<T> v1(count); uint64 seed = GetTestSeed(); PhiloxRandom gen(seed); FillRandomsWithSingles< TruncatedNormalDistribution<SingleSampleAdapter<PhiloxRandom>, T> >( gen, &v1[0], v1.size()); for (int stride : strides) { bool status = CheckSamplesMoments(v1, TruncatedNormalMoments(), max_moments, stride, z_limit); ASSERT_TRUE(status) << " NormalMomentsTest failing. seed: " << seed; } } TEST(PhiloxRandomTest, UniformBfloat16MomentsTest) { const std::vector<int> strides = {0, 1, 4, 17}; UniformMomentsTest<bfloat16>(1 << 20, 40, strides, bfloat16(kZLimitBfloat16)); } TEST(PhiloxRandomTest, NormalBfloat16MomentsTest) { const std::vector<int> strides = {0, 1, 4, 17}; NormalMomentsTest<bfloat16>(8 << 20, 25, strides, bfloat16(kZLimitBfloat16)); } TEST(PhiloxRandomTest, RandomParametersBfloat16MomentsTest) { const std::vector<int> strides = {0, 1, 4, 17}; RandomParametersMomentsTest<bfloat16>(1 << 20, 40, strides, bfloat16(kZLimitBfloat16)); } TEST(PhiloxRandomTest, UniformFloatMomentsTest) { const std::vector<int> strides = {0, 1, 4, 17}; UniformMomentsTest<float>(1 << 20, 40, strides, kZLimit); } TEST(PhiloxRandomTest, NormalFloatMomentsTest) { const std::vector<int> strides = {0, 1, 4, 17}; NormalMomentsTest<float>(8 << 20, 25, strides, kZLimit); } TEST(PhiloxRandomTest, RandomParametersFloatMomentsTest) { const std::vector<int> strides = {0, 1, 4, 17}; RandomParametersMomentsTest<float>(1 << 20, 40, strides, kZLimit); } TEST(PhiloxRandomTest, UniformDoubleMomentsTest) { const std::vector<int> strides = {0, 1, 4, 17}; UniformMomentsTest<double>(1 << 20, 40, strides, kZLimit); } TEST(PhiloxRandomTest, NormalDoubleMomentsTest) { const std::vector<int> strides = {0, 1, 4, 17}; NormalMomentsTest<double>(8 << 20, 25, strides, kZLimit); } TEST(PhiloxRandomTest, RandomParametersDoubleMomentsTest) { const std::vector<int> strides = {0, 1, 4, 17}; RandomParametersMomentsTest<double>(1 << 20, 40, strides, kZLimit); } class MockGenerator { public: explicit MockGenerator(uint64 seed) : counter_(seed) {} using ResultType = std::vector<uint32>; using ResultElementType = uint32; static constexpr int kResultElementCount = 1; ResultType operator()() { ResultType result; result.push_back(counter_++); return result; } private: uint32 counter_; }; template <typename T> void SingleSampleAdapterSkipTest() { std::vector<uint64> skips(10); std::vector<uint64> skip_afters(10); std::iota(skips.begin(), skips.end(), 0); std::iota(skip_afters.begin(), skip_afters.end(), 0); uint64 total_samples = 100; uint64 seed = GetTestSeed(); for (uint64 skip : skips) { for (uint64 skip_after : skip_afters) { T parent_gen(seed); SingleSampleAdapter<T> gen(&parent_gen); T parent_gen_to_skip(seed); SingleSampleAdapter<T> gen_to_skip(&parent_gen_to_skip); int cur = 0; for (; cur < skip_after; cur++) { gen(); gen_to_skip(); } for (; cur < skip_after + skip; cur++) { gen(); } gen_to_skip.Skip(skip); for (; cur < total_samples; cur++) { ASSERT_EQ(gen(), gen_to_skip()); } } } } TEST(SingleSampleAdapterTest, PhiloxRandomSkip) { SingleSampleAdapterSkipTest<PhiloxRandom>(); } TEST(SingleSampleAdapterTest, MockGeneratorSkip) { SingleSampleAdapterSkipTest<MockGenerator>(); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/random/random_distributions.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/random/random_distributions_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c0e9b00c-577d-4692-b0de-b284f166c3d1
cpp
tensorflow/tensorflow
sampler
third_party/xla/xla/tsl/lib/monitoring/sampler.cc
tensorflow/core/lib/monitoring/sampler_test.cc
#include "xla/tsl/lib/monitoring/sampler.h" #include "absl/log/check.h" #ifdef IS_MOBILE_PLATFORM #else namespace tsl { namespace monitoring { namespace { class ExplicitBuckets : public Buckets { public: ~ExplicitBuckets() override = default; explicit ExplicitBuckets(std::vector<double> bucket_limits) : bucket_limits_(std::move(bucket_limits)) { CHECK_GT(bucket_limits_.size(), 0); for (size_t i = 1; i < bucket_limits_.size(); i++) { CHECK_GT(bucket_limits_[i], bucket_limits_[i - 1]); } if (bucket_limits_.back() != DBL_MAX) { bucket_limits_.push_back(DBL_MAX); } } const std::vector<double>& explicit_bounds() const override { return bucket_limits_; } private: std::vector<double> bucket_limits_; ExplicitBuckets(const ExplicitBuckets&) = delete; void operator=(const ExplicitBuckets&) = delete; }; class ExponentialBuckets : public Buckets { public: ~ExponentialBuckets() override = default; ExponentialBuckets(double scale, double growth_factor, int bucket_count) : explicit_buckets_( ComputeBucketLimits(scale, growth_factor, bucket_count)) {} const std::vector<double>& explicit_bounds() const override { return explicit_buckets_.explicit_bounds(); } private: static std::vector<double> ComputeBucketLimits(double scale, double growth_factor, int bucket_count) { CHECK_GT(bucket_count, 0); std::vector<double> bucket_limits; double bound = scale; for (int i = 0; i < bucket_count; i++) { bucket_limits.push_back(bound); bound *= growth_factor; } return bucket_limits; } ExplicitBuckets explicit_buckets_; ExponentialBuckets(const ExponentialBuckets&) = delete; void operator=(const ExponentialBuckets&) = delete; }; } std::unique_ptr<Buckets> Buckets::Explicit(std::vector<double> bucket_limits) { return std::unique_ptr<Buckets>( new ExplicitBuckets(std::move(bucket_limits))); } std::unique_ptr<Buckets> Buckets::Explicit( std::initializer_list<double> bucket_limits) { return std::unique_ptr<Buckets>(new ExplicitBuckets(bucket_limits)); } std::unique_ptr<Buckets> Buckets::Exponential(double scale, double growth_factor, int bucket_count) { return std::unique_ptr<Buckets>( new ExponentialBuckets(scale, growth_factor, bucket_count)); } } } #endif
#include "tensorflow/core/lib/monitoring/sampler.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace monitoring { namespace { using histogram::Histogram; void EqHistograms(const Histogram& expected, const HistogramProto& actual_proto) { Histogram actual; ASSERT_TRUE(actual.DecodeFromProto(actual_proto)); EXPECT_EQ(expected.ToString(), actual.ToString()); } auto* sampler_with_labels = Sampler<1>::New({"/tensorflow/test/sampler_with_labels", "Sampler with one label.", "MyLabel"}, Buckets::Explicit({10.0, 20.0})); TEST(LabeledSamplerTest, InitializedEmpty) { Histogram empty; EqHistograms(empty, sampler_with_labels->GetCell("Empty")->value()); } TEST(LabeledSamplerTest, ExplicitBucketBoundaries) { Histogram expected({10.0, 20.0, DBL_MAX}); auto* cell = sampler_with_labels->GetCell("BucketBoundaries"); sampler_with_labels->GetCell("AddedToCheckPreviousCellValidity"); cell->Add(-1.0); expected.Add(-1.0); cell->Add(10.0); expected.Add(10.0); cell->Add(20.0); expected.Add(20.0); cell->Add(31.0); expected.Add(31.0); EqHistograms(expected, cell->value()); } auto* init_sampler_without_labels = Sampler<0>::New({"/tensorflow/test/init_sampler_without_labels", "Sampler without labels initialized as empty."}, Buckets::Explicit(std::vector<double>{1.5, 2.8})); TEST(UnlabeledSamplerTest, InitializedEmpty) { Histogram empty; EqHistograms(empty, init_sampler_without_labels->GetCell()->value()); } auto* sampler_without_labels = Sampler<0>::New({"/tensorflow/test/sampler_without_labels", "Sampler without labels initialized as empty."}, Buckets::Explicit({1.5, 2.8})); TEST(UnlabeledSamplerTest, ExplicitBucketBoundaries) { Histogram expected({1.5, 2.8, DBL_MAX}); auto* cell = sampler_without_labels->GetCell(); cell->Add(-1.0); expected.Add(-1.0); cell->Add(2.0); expected.Add(2.0); cell->Add(31.0); expected.Add(31.0); EqHistograms(expected, cell->value()); } auto* sampler_with_exponential = Sampler<1>::New({"/tensorflow/test/sampler_with_exponential", "Sampler with exponential buckets.", "MyLabel"}, Buckets::Exponential(1, 2, 3)); TEST(ExponentialSamplerTest, ExponentialBucketBoundaries) { Histogram expected({1.0, 2.0, 4.0, DBL_MAX}); auto* cell = sampler_with_exponential->GetCell("BucketBoundaries"); sampler_with_exponential->GetCell("AddedToCheckPreviousCellValidity"); cell->Add(-1.0); expected.Add(-1.0); cell->Add(0.5); expected.Add(0.5); cell->Add(1.001); expected.Add(1.001); cell->Add(3.999); expected.Add(3.999); cell->Add(6.0); expected.Add(6.0); EqHistograms(expected, cell->value()); } TEST(ExplicitSamplerTest, SameName) { auto* same_sampler = Sampler<1>::New({"/tensorflow/test/sampler_with_labels", "Sampler with one label.", "MyLabel"}, Buckets::Explicit({10.0, 20.0})); EXPECT_TRUE(sampler_with_labels->GetStatus().ok()); EXPECT_TRUE(same_sampler->GetStatus().ok()); delete same_sampler; } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/monitoring/sampler.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/monitoring/sampler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7bb6a813-dd1b-4d06-9ea9-8d2c113624c8
cpp
tensorflow/tensorflow
collection_registry
third_party/xla/xla/tsl/lib/monitoring/collection_registry.cc
tensorflow/core/lib/monitoring/collection_registry_test.cc
#include "xla/tsl/lib/monitoring/collection_registry.h" #include "xla/tsl/lib/monitoring/collected_metrics.h" #include "xla/tsl/lib/monitoring/metric_def.h" #include "tsl/platform/env.h" #include "tsl/platform/mutex.h" #include "tsl/platform/stringpiece.h" #include "tsl/platform/types.h" #ifndef IS_MOBILE_PLATFORM #include "tsl/platform/logging.h" namespace tsl { namespace monitoring { namespace internal { void Collector::CollectMetricValues( const CollectionRegistry::CollectionInfo& info) { info.collection_function(MetricCollectorGetter( this, info.metric_def, info.registration_time_millis)); } std::unique_ptr<CollectedMetrics> Collector::ConsumeCollectedMetrics() { mutex_lock l(mu_); return std::move(collected_metrics_); } void Collector::CollectMetricDescriptor( const AbstractMetricDef* const metric_def) { auto* const metric_descriptor = [&]() { mutex_lock l(mu_); return collected_metrics_->metric_descriptor_map .insert(std::make_pair( string(metric_def->name()), std::unique_ptr<MetricDescriptor>(new MetricDescriptor()))) .first->second.get(); }(); metric_descriptor->name = string(metric_def->name()); metric_descriptor->description = string(metric_def->description()); for (const absl::string_view label_name : metric_def->label_descriptions()) { metric_descriptor->label_names.emplace_back(label_name); } metric_descriptor->metric_kind = metric_def->kind(); metric_descriptor->value_type = metric_def->value_type(); } } CollectionRegistry* CollectionRegistry::Default() { static CollectionRegistry* default_registry = new CollectionRegistry(Env::Default()); return default_registry; } CollectionRegistry::CollectionRegistry(Env* const env) : env_(env) {} std::unique_ptr<CollectionRegistry::RegistrationHandle> CollectionRegistry::Register(const AbstractMetricDef* const metric_def, const CollectionFunction& collection_function) { CHECK(collection_function) << "Requires collection_function to contain an implementation."; mutex_lock l(mu_); const auto found_it = registry_.find(metric_def->name()); if (found_it != registry_.end()) { LOG(WARNING) << "Trying to register 2 metrics with the same name: " << metric_def->name() << ". The old value will be erased in order to register a new one. " "Please check if you link the metric more than once, or " "if the name is already used by other metrics."; registry_.erase(found_it); } registry_.insert( {metric_def->name(), {metric_def, collection_function, env_->NowMicros() / 1000}}); return std::unique_ptr<RegistrationHandle>( new RegistrationHandle(this, metric_def)); } void CollectionRegistry::Unregister(const AbstractMetricDef* const metric_def) { mutex_lock l(mu_); registry_.erase(metric_def->name()); } std::unique_ptr<CollectedMetrics> CollectionRegistry::CollectMetrics( const CollectMetricsOptions& options) const { internal::Collector collector(env_->NowMicros() / 1000); mutex_lock l(mu_); for (const auto& registration : registry_) { if (options.collect_metric_descriptors) { collector.CollectMetricDescriptor(registration.second.metric_def); } collector.CollectMetricValues(registration.second ); } return collector.ConsumeCollectedMetrics(); } } } #endif
#include "tensorflow/core/lib/monitoring/collection_registry.h" #include <memory> #include "tensorflow/core/lib/monitoring/counter.h" #include "tensorflow/core/lib/monitoring/gauge.h" #include "tensorflow/core/lib/monitoring/percentile_sampler.h" #include "tensorflow/core/lib/monitoring/sampler.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace monitoring { using histogram::Histogram; namespace test_util { class CollectionRegistryTestAccess { public: static std::unique_ptr<CollectionRegistry> CreateRegistry(Env* const env) { return std::unique_ptr<CollectionRegistry>(new CollectionRegistry(env)); } }; } namespace { void EmptyCollectionFunction(MetricCollectorGetter getter) {} TEST(CollectionRegistryTest, RegistrationUnregistration) { auto* collection_registry = CollectionRegistry::Default(); const MetricDef<MetricKind::kCumulative, int64_t, 0> metric_def0( "/tensorflow/metric0", "An example metric with no labels."); const MetricDef<MetricKind::kGauge, HistogramProto, 1> metric_def1( "/tensorflow/metric1", "An example metric with one label.", "LabelName"); { std::unique_ptr<CollectionRegistry::RegistrationHandle> handle0 = collection_registry->Register(&metric_def0, EmptyCollectionFunction); std::unique_ptr<CollectionRegistry::RegistrationHandle> handle1 = collection_registry->Register(&metric_def1, EmptyCollectionFunction); handle0.reset(); handle0 = collection_registry->Register(&metric_def0, EmptyCollectionFunction); } } TEST(CollectionRegistryDeathTest, DuplicateRegistration) { auto* collection_registry = CollectionRegistry::Default(); const MetricDef<MetricKind::kCumulative, int64_t, 0> metric_def( "/tensorflow/metric", "An example metric with no labels."); auto handle = collection_registry->Register(&metric_def, EmptyCollectionFunction); auto duplicate_handle = collection_registry->Register(&metric_def, EmptyCollectionFunction); EXPECT_NE(duplicate_handle, nullptr); } TEST(CollectMetricsTest, Counter) { auto counter_with_labels = std::unique_ptr<Counter<2>>( Counter<2>::New("/tensorflow/test/counter_with_labels", "Counter with labels.", "MyLabel0", "MyLabel1")); auto counter_without_labels = std::unique_ptr<Counter<0>>(Counter<0>::New( "/tensorflow/test/counter_without_labels", "Counter without labels.")); counter_with_labels->GetCell("Label00", "Label10")->IncrementBy(42); counter_with_labels->GetCell("Label01", "Label11")->IncrementBy(58); counter_without_labels->GetCell()->IncrementBy(7); for (const bool collect_metric_descriptors : {true, false}) { SCOPED_TRACE(strings::StrCat("collect_metric_descriptors: ", collect_metric_descriptors)); auto* collection_registry = CollectionRegistry::Default(); CollectionRegistry::CollectMetricsOptions options; options.collect_metric_descriptors = collect_metric_descriptors; const std::unique_ptr<CollectedMetrics> collected_metrics = collection_registry->CollectMetrics(options); if (collect_metric_descriptors) { ASSERT_GE(collected_metrics->metric_descriptor_map.size(), 2); const MetricDescriptor& ld = *collected_metrics->metric_descriptor_map.at( "/tensorflow/test/counter_with_labels"); EXPECT_EQ("/tensorflow/test/counter_with_labels", ld.name); EXPECT_EQ("Counter with labels.", ld.description); ASSERT_EQ(2, ld.label_names.size()); EXPECT_EQ("MyLabel0", ld.label_names[0]); EXPECT_EQ("MyLabel1", ld.label_names[1]); EXPECT_EQ(MetricKind::kCumulative, ld.metric_kind); EXPECT_EQ(ValueType::kInt64, ld.value_type); const MetricDescriptor& ud = *collected_metrics->metric_descriptor_map.at( "/tensorflow/test/counter_without_labels"); EXPECT_EQ("/tensorflow/test/counter_without_labels", ud.name); EXPECT_EQ("Counter without labels.", ud.description); ASSERT_EQ(0, ud.label_names.size()); EXPECT_EQ(MetricKind::kCumulative, ud.metric_kind); EXPECT_EQ(ValueType::kInt64, ud.value_type); } else { EXPECT_EQ(0, collected_metrics->metric_descriptor_map.size()); } ASSERT_GE(collected_metrics->point_set_map.size(), 2); const PointSet& lps = *collected_metrics->point_set_map.at( "/tensorflow/test/counter_with_labels"); EXPECT_EQ("/tensorflow/test/counter_with_labels", lps.metric_name); ASSERT_EQ(2, lps.points.size()); ASSERT_EQ(2, lps.points[0]->labels.size()); EXPECT_EQ("MyLabel0", lps.points[0]->labels[0].name); EXPECT_EQ("Label00", lps.points[0]->labels[0].value); EXPECT_EQ("MyLabel1", lps.points[0]->labels[1].name); EXPECT_EQ("Label10", lps.points[0]->labels[1].value); EXPECT_EQ(ValueType::kInt64, lps.points[0]->value_type); EXPECT_EQ(42, lps.points[0]->int64_value); EXPECT_LT(0, lps.points[0]->start_timestamp_millis); EXPECT_LT(0, lps.points[0]->end_timestamp_millis); EXPECT_GE(lps.points[0]->end_timestamp_millis, lps.points[0]->start_timestamp_millis); ASSERT_EQ(2, lps.points[1]->labels.size()); EXPECT_EQ("MyLabel0", lps.points[1]->labels[0].name); EXPECT_EQ("Label01", lps.points[1]->labels[0].value); EXPECT_EQ("MyLabel1", lps.points[1]->labels[1].name); EXPECT_EQ("Label11", lps.points[1]->labels[1].value); EXPECT_EQ(ValueType::kInt64, lps.points[1]->value_type); EXPECT_EQ(58, lps.points[1]->int64_value); EXPECT_LT(0, lps.points[1]->start_timestamp_millis); EXPECT_LT(0, lps.points[1]->end_timestamp_millis); EXPECT_GE(lps.points[1]->end_timestamp_millis, lps.points[1]->start_timestamp_millis); const PointSet& ups = *collected_metrics->point_set_map.at( "/tensorflow/test/counter_without_labels"); EXPECT_EQ("/tensorflow/test/counter_without_labels", ups.metric_name); ASSERT_EQ(1, ups.points.size()); EXPECT_EQ(0, ups.points[0]->labels.size()); EXPECT_EQ(ValueType::kInt64, ups.points[0]->value_type); EXPECT_EQ(7, ups.points[0]->int64_value); EXPECT_LT(0, ups.points[0]->start_timestamp_millis); EXPECT_LT(0, ups.points[0]->end_timestamp_millis); EXPECT_GE(ups.points[0]->end_timestamp_millis, ups.points[0]->start_timestamp_millis); } } TEST(CollectMetricsTest, Gauge) { auto string_gauge_with_labels = std::unique_ptr<Gauge<string, 2>>(Gauge<string, 2>::New( "/tensorflow/test/string_gauge_with_labels", "String gauge with labels.", "MyLabel0", "MyLabel1")); auto inteter_gauge_without_labels = std::unique_ptr<Gauge<int64_t, 0>>( Gauge<int64_t, 0>::New("/tensorflow/test/integer_gauge_without_labels", "Integer gauge without labels.")); string_gauge_with_labels->GetCell("Label00", "Label10")->Set("test1"); string_gauge_with_labels->GetCell("Label01", "Label11")->Set("test2"); inteter_gauge_without_labels->GetCell()->Set(7); for (const bool collect_metric_descriptors : {true, false}) { SCOPED_TRACE(strings::StrCat("collect_metric_descriptors: ", collect_metric_descriptors)); auto* collection_registry = CollectionRegistry::Default(); CollectionRegistry::CollectMetricsOptions options; options.collect_metric_descriptors = collect_metric_descriptors; const std::unique_ptr<CollectedMetrics> collected_metrics = collection_registry->CollectMetrics(options); if (collect_metric_descriptors) { ASSERT_GE(collected_metrics->metric_descriptor_map.size(), 2); const MetricDescriptor& ld = *collected_metrics->metric_descriptor_map.at( "/tensorflow/test/string_gauge_with_labels"); EXPECT_EQ("/tensorflow/test/string_gauge_with_labels", ld.name); EXPECT_EQ("String gauge with labels.", ld.description); ASSERT_EQ(2, ld.label_names.size()); EXPECT_EQ("MyLabel0", ld.label_names[0]); EXPECT_EQ("MyLabel1", ld.label_names[1]); EXPECT_EQ(MetricKind::kGauge, ld.metric_kind); EXPECT_EQ(ValueType::kString, ld.value_type); const MetricDescriptor& ud = *collected_metrics->metric_descriptor_map.at( "/tensorflow/test/integer_gauge_without_labels"); EXPECT_EQ("/tensorflow/test/integer_gauge_without_labels", ud.name); EXPECT_EQ("Integer gauge without labels.", ud.description); ASSERT_EQ(0, ud.label_names.size()); EXPECT_EQ(MetricKind::kGauge, ud.metric_kind); EXPECT_EQ(ValueType::kInt64, ud.value_type); } else { EXPECT_EQ(0, collected_metrics->metric_descriptor_map.size()); } ASSERT_GE(collected_metrics->point_set_map.size(), 2); const PointSet& lps = *collected_metrics->point_set_map.at( "/tensorflow/test/string_gauge_with_labels"); EXPECT_EQ("/tensorflow/test/string_gauge_with_labels", lps.metric_name); ASSERT_EQ(2, lps.points.size()); ASSERT_EQ(2, lps.points[0]->labels.size()); EXPECT_EQ("MyLabel0", lps.points[0]->labels[0].name); EXPECT_EQ("Label00", lps.points[0]->labels[0].value); EXPECT_EQ("MyLabel1", lps.points[0]->labels[1].name); EXPECT_EQ("Label10", lps.points[0]->labels[1].value); EXPECT_EQ(ValueType::kString, lps.points[0]->value_type); EXPECT_EQ("test1", lps.points[0]->string_value); EXPECT_LT(0, lps.points[0]->start_timestamp_millis); EXPECT_LT(0, lps.points[0]->end_timestamp_millis); EXPECT_GE(lps.points[0]->end_timestamp_millis, lps.points[0]->start_timestamp_millis); ASSERT_EQ(2, lps.points[1]->labels.size()); EXPECT_EQ("MyLabel0", lps.points[1]->labels[0].name); EXPECT_EQ("Label01", lps.points[1]->labels[0].value); EXPECT_EQ("MyLabel1", lps.points[1]->labels[1].name); EXPECT_EQ("Label11", lps.points[1]->labels[1].value); EXPECT_EQ(ValueType::kString, lps.points[1]->value_type); EXPECT_EQ("test2", lps.points[1]->string_value); EXPECT_LT(0, lps.points[1]->start_timestamp_millis); EXPECT_LT(0, lps.points[1]->end_timestamp_millis); EXPECT_GE(lps.points[1]->end_timestamp_millis, lps.points[1]->start_timestamp_millis); const PointSet& ups = *collected_metrics->point_set_map.at( "/tensorflow/test/integer_gauge_without_labels"); EXPECT_EQ("/tensorflow/test/integer_gauge_without_labels", ups.metric_name); ASSERT_EQ(1, ups.points.size()); EXPECT_EQ(0, ups.points[0]->labels.size()); EXPECT_EQ(ValueType::kInt64, ups.points[0]->value_type); EXPECT_EQ(7, ups.points[0]->int64_value); EXPECT_LT(0, ups.points[0]->start_timestamp_millis); EXPECT_LT(0, ups.points[0]->end_timestamp_millis); EXPECT_GE(ups.points[0]->end_timestamp_millis, ups.points[0]->start_timestamp_millis); } } void EqHistograms(const Histogram& expected, const HistogramProto& actual_proto) { Histogram actual; ASSERT_TRUE(actual.DecodeFromProto(actual_proto)); EXPECT_EQ(expected.ToString(), actual.ToString()); } TEST(CollectMetricsTest, Sampler) { auto sampler_with_labels = std::unique_ptr<Sampler<2>>( Sampler<2>::New({"/tensorflow/test/sampler_with_labels", "Sampler with labels.", "MyLabel0", "MyLabel1"}, Buckets::Explicit({1.0, 2.0}))); auto sampler_without_labels = std::unique_ptr<Sampler<0>>(Sampler<0>::New( {"/tensorflow/test/sampler_without_labels", "Sampler without labels."}, Buckets::Explicit({0.0}))); Histogram with_labels0({1.0, 2.0, DBL_MAX}); sampler_with_labels->GetCell("Label00", "Label10")->Add(0.7); with_labels0.Add(0.7); Histogram with_labels1({1.0, 2.0, DBL_MAX}); sampler_with_labels->GetCell("Label01", "Label11")->Add(1.5); with_labels1.Add(1.5); Histogram without_labels({0.0, DBL_MAX}); sampler_without_labels->GetCell()->Add(0.5); without_labels.Add(0.5); for (const bool collect_metric_descriptors : {true, false}) { SCOPED_TRACE(strings::StrCat("collect_metric_descriptors: ", collect_metric_descriptors)); auto* collection_registry = CollectionRegistry::Default(); CollectionRegistry::CollectMetricsOptions options; options.collect_metric_descriptors = collect_metric_descriptors; const std::unique_ptr<CollectedMetrics> collected_metrics = collection_registry->CollectMetrics(options); if (collect_metric_descriptors) { ASSERT_GE(collected_metrics->metric_descriptor_map.size(), 2); const MetricDescriptor& ld = *collected_metrics->metric_descriptor_map.at( "/tensorflow/test/sampler_with_labels"); EXPECT_EQ("/tensorflow/test/sampler_with_labels", ld.name); EXPECT_EQ("Sampler with labels.", ld.description); ASSERT_EQ(2, ld.label_names.size()); EXPECT_EQ("MyLabel0", ld.label_names[0]); EXPECT_EQ("MyLabel1", ld.label_names[1]); EXPECT_EQ(MetricKind::kCumulative, ld.metric_kind); EXPECT_EQ(ValueType::kHistogram, ld.value_type); const MetricDescriptor& ud = *collected_metrics->metric_descriptor_map.at( "/tensorflow/test/sampler_without_labels"); EXPECT_EQ("/tensorflow/test/sampler_without_labels", ud.name); EXPECT_EQ("Sampler without labels.", ud.description); ASSERT_EQ(0, ud.label_names.size()); EXPECT_EQ(MetricKind::kCumulative, ud.metric_kind); EXPECT_EQ(ValueType::kHistogram, ud.value_type); } else { EXPECT_EQ(0, collected_metrics->metric_descriptor_map.size()); } ASSERT_GE(collected_metrics->point_set_map.size(), 2); const PointSet& lps = *collected_metrics->point_set_map.at( "/tensorflow/test/sampler_with_labels"); EXPECT_EQ("/tensorflow/test/sampler_with_labels", lps.metric_name); ASSERT_EQ(2, lps.points.size()); ASSERT_EQ(2, lps.points[0]->labels.size()); EXPECT_EQ("MyLabel0", lps.points[0]->labels[0].name); EXPECT_EQ("Label00", lps.points[0]->labels[0].value); EXPECT_EQ("MyLabel1", lps.points[0]->labels[1].name); EXPECT_EQ("Label10", lps.points[0]->labels[1].value); EXPECT_EQ(ValueType::kHistogram, lps.points[0]->value_type); EqHistograms(with_labels0, lps.points[0]->histogram_value); EXPECT_LT(0, lps.points[0]->start_timestamp_millis); EXPECT_LT(0, lps.points[0]->end_timestamp_millis); EXPECT_GE(lps.points[0]->end_timestamp_millis, lps.points[0]->start_timestamp_millis); ASSERT_EQ(2, lps.points[1]->labels.size()); EXPECT_EQ("MyLabel0", lps.points[1]->labels[0].name); EXPECT_EQ("Label01", lps.points[1]->labels[0].value); EXPECT_EQ("MyLabel1", lps.points[1]->labels[1].name); EXPECT_EQ("Label11", lps.points[1]->labels[1].value); EXPECT_EQ(ValueType::kHistogram, lps.points[1]->value_type); EqHistograms(with_labels1, lps.points[1]->histogram_value); EXPECT_LT(0, lps.points[1]->start_timestamp_millis); EXPECT_LT(0, lps.points[1]->end_timestamp_millis); EXPECT_GE(lps.points[1]->end_timestamp_millis, lps.points[1]->start_timestamp_millis); const PointSet& ups = *collected_metrics->point_set_map.at( "/tensorflow/test/sampler_without_labels"); EXPECT_EQ("/tensorflow/test/sampler_without_labels", ups.metric_name); ASSERT_EQ(1, ups.points.size()); EXPECT_EQ(0, ups.points[0]->labels.size()); EXPECT_EQ(ValueType::kHistogram, ups.points[0]->value_type); EqHistograms(without_labels, ups.points[0]->histogram_value); EXPECT_LT(0, ups.points[0]->start_timestamp_millis); EXPECT_LT(0, ups.points[0]->end_timestamp_millis); EXPECT_GE(ups.points[0]->end_timestamp_millis, ups.points[0]->start_timestamp_millis); } } TEST(CollectMetricsTest, PercentileSampler) { auto sampler_with_labels = std::unique_ptr<PercentileSampler<2>>(PercentileSampler<2>::New( {"/tensorflow/test/pctsampler_with_labels", "Percentile sampler with labels.", "MyLabel0", "MyLabel1"}, {25.0, 50.0, 75.0}, 1024, UnitOfMeasure::kNumber)); auto sampler_without_labels = std::unique_ptr<PercentileSampler<0>>(PercentileSampler<0>::New( {"/tensorflow/test/pctsampler_without_labels", "Percentile sampler without labels."}, {25.0, 50.0, 75.0}, 1024, UnitOfMeasure::kNumber)); sampler_with_labels->GetCell("Label00", "Label10")->Add(0.7); sampler_with_labels->GetCell("Label01", "Label11")->Add(1.5); sampler_without_labels->GetCell()->Add(0.5); for (const bool collect_metric_descriptors : {true, false}) { SCOPED_TRACE(strings::StrCat("collect_metric_descriptors: ", collect_metric_descriptors)); auto* collection_registry = CollectionRegistry::Default(); CollectionRegistry::CollectMetricsOptions options; options.collect_metric_descriptors = collect_metric_descriptors; const std::unique_ptr<CollectedMetrics> collected_metrics = collection_registry->CollectMetrics(options); if (collect_metric_descriptors) { ASSERT_GE(collected_metrics->metric_descriptor_map.size(), 2); const MetricDescriptor& ld = *collected_metrics->metric_descriptor_map.at( "/tensorflow/test/pctsampler_with_labels"); EXPECT_EQ("/tensorflow/test/pctsampler_with_labels", ld.name); EXPECT_EQ("Percentile sampler with labels.", ld.description); ASSERT_EQ(2, ld.label_names.size()); EXPECT_EQ("MyLabel0", ld.label_names[0]); EXPECT_EQ("MyLabel1", ld.label_names[1]); EXPECT_EQ(MetricKind::kCumulative, ld.metric_kind); EXPECT_EQ(ValueType::kPercentiles, ld.value_type); const MetricDescriptor& ud = *collected_metrics->metric_descriptor_map.at( "/tensorflow/test/pctsampler_without_labels"); EXPECT_EQ("/tensorflow/test/pctsampler_without_labels", ud.name); EXPECT_EQ("Percentile sampler without labels.", ud.description); ASSERT_EQ(0, ud.label_names.size()); EXPECT_EQ(MetricKind::kCumulative, ud.metric_kind); EXPECT_EQ(ValueType::kPercentiles, ud.value_type); } else { EXPECT_EQ(0, collected_metrics->metric_descriptor_map.size()); } ASSERT_GE(collected_metrics->point_set_map.size(), 2); const PointSet& lps = *collected_metrics->point_set_map.at( "/tensorflow/test/pctsampler_with_labels"); EXPECT_EQ("/tensorflow/test/pctsampler_with_labels", lps.metric_name); ASSERT_EQ(2, lps.points.size()); ASSERT_EQ(2, lps.points[0]->labels.size()); EXPECT_EQ("MyLabel0", lps.points[0]->labels[0].name); EXPECT_EQ("Label00", lps.points[0]->labels[0].value); EXPECT_EQ("MyLabel1", lps.points[0]->labels[1].name); EXPECT_EQ("Label10", lps.points[0]->labels[1].value); EXPECT_EQ(ValueType::kPercentiles, lps.points[0]->value_type); EXPECT_LT(0, lps.points[0]->start_timestamp_millis); EXPECT_LT(0, lps.points[0]->end_timestamp_millis); EXPECT_GE(lps.points[0]->end_timestamp_millis, lps.points[0]->start_timestamp_millis); ASSERT_EQ(2, lps.points[1]->labels.size()); EXPECT_EQ("MyLabel0", lps.points[1]->labels[0].name); EXPECT_EQ("Label01", lps.points[1]->labels[0].value); EXPECT_EQ("MyLabel1", lps.points[1]->labels[1].name); EXPECT_EQ("Label11", lps.points[1]->labels[1].value); EXPECT_EQ(ValueType::kPercentiles, lps.points[1]->value_type); EXPECT_LT(0, lps.points[1]->start_timestamp_millis); EXPECT_LT(0, lps.points[1]->end_timestamp_millis); EXPECT_GE(lps.points[1]->end_timestamp_millis, lps.points[1]->start_timestamp_millis); const PointSet& ups = *collected_metrics->point_set_map.at( "/tensorflow/test/pctsampler_without_labels"); EXPECT_EQ("/tensorflow/test/pctsampler_without_labels", ups.metric_name); ASSERT_EQ(1, ups.points.size()); EXPECT_EQ(0, ups.points[0]->labels.size()); EXPECT_EQ(ValueType::kPercentiles, ups.points[0]->value_type); EXPECT_LT(0, ups.points[0]->start_timestamp_millis); EXPECT_LT(0, ups.points[0]->end_timestamp_millis); EXPECT_GE(ups.points[0]->end_timestamp_millis, ups.points[0]->start_timestamp_millis); } } class FakeClockEnv : public EnvWrapper { public: FakeClockEnv() : EnvWrapper(Env::Default()), current_millis_(0) {} void AdvanceByMillis(const uint64 millis) { current_millis_ += millis; } uint64 NowMicros() const override { return current_millis_ * 1000; } private: uint64 current_millis_; }; TEST(CollectionRegistryTest, WriteTimestamps) { FakeClockEnv fake_clock_env; auto collection_registry = test_util::CollectionRegistryTestAccess::CreateRegistry(&fake_clock_env); fake_clock_env.AdvanceByMillis(25); { const MetricDef<MetricKind::kCumulative, int64_t, 0> cumulative_metric( "/tensorflow/cumulative/metric", "An example metric with no labels."); auto handle = collection_registry->Register( &cumulative_metric, [&](MetricCollectorGetter getter) { auto metric_collector = getter.Get(&cumulative_metric); metric_collector.CollectValue({}, 42); }); fake_clock_env.AdvanceByMillis(75); const std::unique_ptr<CollectedMetrics> collected_metrics = collection_registry->CollectMetrics({}); const PointSet& point_set = *collected_metrics->point_set_map.at("/tensorflow/cumulative/metric"); ASSERT_EQ(1, point_set.points.size()); EXPECT_EQ(25, point_set.points[0]->start_timestamp_millis); EXPECT_EQ(100, point_set.points[0]->end_timestamp_millis); } { const MetricDef<MetricKind::kGauge, int64_t, 0> gauge_metric( "/tensorflow/gauge/metric", "An example metric with no labels."); auto handle = collection_registry->Register( &gauge_metric, [&](MetricCollectorGetter getter) { auto metric_collector = getter.Get(&gauge_metric); metric_collector.CollectValue({}, 42); }); fake_clock_env.AdvanceByMillis(75); const std::unique_ptr<CollectedMetrics> collected_metrics = collection_registry->CollectMetrics({}); const PointSet& point_set = *collected_metrics->point_set_map.at("/tensorflow/gauge/metric"); ASSERT_EQ(1, point_set.points.size()); EXPECT_EQ(175, point_set.points[0]->start_timestamp_millis); EXPECT_EQ(175, point_set.points[0]->end_timestamp_millis); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/monitoring/collection_registry.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/monitoring/collection_registry_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5ec888cf-ea02-4ebf-826b-99b1cfef72df
cpp
tensorflow/tensorflow
percentile_sampler
third_party/xla/xla/tsl/lib/monitoring/percentile_sampler.cc
tensorflow/core/lib/monitoring/percentile_sampler_test.cc
#include "xla/tsl/lib/monitoring/percentile_sampler.h" #include <algorithm> #include <cmath> #include <vector> #include "xla/tsl/lib/monitoring/types.h" #include "tsl/platform/env_time.h" #include "tsl/platform/macros.h" #include "tsl/platform/mutex.h" #include "tsl/platform/types.h" #ifdef IS_MOBILE_PLATFORM #else namespace tsl { namespace monitoring { void PercentileSamplerCell::Add(double sample) { uint64 nstime = EnvTime::NowNanos(); mutex_lock l(mu_); samples_[next_position_] = {nstime, sample}; ++next_position_; if (TF_PREDICT_FALSE(next_position_ >= samples_.size())) { next_position_ = 0; } if (TF_PREDICT_FALSE(num_samples_ < samples_.size())) { ++num_samples_; } ++total_samples_; accumulator_ += sample; } Percentiles PercentileSamplerCell::value() const { Percentiles pct_samples; pct_samples.unit_of_measure = unit_of_measure_; size_t total_samples; long double accumulator; std::vector<Sample> samples = GetSamples(&total_samples, &accumulator); if (!samples.empty()) { pct_samples.num_samples = samples.size(); pct_samples.total_samples = total_samples; pct_samples.accumulator = accumulator; pct_samples.start_nstime = samples.front().nstime; pct_samples.end_nstime = samples.back().nstime; long double total = 0.0; for (auto& sample : samples) { total += sample.value; } pct_samples.mean = total / pct_samples.num_samples; long double total_sigma = 0.0; for (auto& sample : samples) { double delta = sample.value - pct_samples.mean; total_sigma += delta * delta; } pct_samples.stddev = std::sqrt(total_sigma / pct_samples.num_samples); std::sort(samples.begin(), samples.end()); pct_samples.min_value = samples.front().value; pct_samples.max_value = samples.back().value; for (auto percentile : percentiles_) { size_t index = std::min<size_t>( static_cast<size_t>(percentile * pct_samples.num_samples / 100.0), pct_samples.num_samples - 1); PercentilePoint pct = {percentile, samples[index].value}; pct_samples.points.push_back(pct); } } return pct_samples; } std::vector<PercentileSamplerCell::Sample> PercentileSamplerCell::GetSamples( size_t* total_samples, long double* accumulator) const { mutex_lock l(mu_); std::vector<Sample> samples; if (num_samples_ == samples_.size()) { samples.insert(samples.end(), samples_.begin() + next_position_, samples_.end()); } samples.insert(samples.end(), samples_.begin(), samples_.begin() + next_position_); *total_samples = total_samples_; *accumulator = accumulator_; return samples; } } } #endif
#include "tensorflow/core/lib/monitoring/percentile_sampler.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace monitoring { namespace { auto* pctsampler_with_labels = PercentileSampler<1>::New( {"/tensorflow/test/percentile_sampler_with_labels", "Percentile sampler with one label.", "MyLabel"}, {25.0, 50.0, 90.0, 99.0}, 1024, UnitOfMeasure::kNumber); auto* pctsampler_without_labels = PercentileSampler<0>::New( {"/tensorflow/test/percentile_sampler_without_labels", "Percentile sampler without labels initialized as empty."}, {25.0, 50.0, 90.0, 99.0}, 1024, UnitOfMeasure::kNumber); TEST(LabeledPercentileSamplerTest, FixedPercentilesValues) { auto* cell = pctsampler_with_labels->GetCell("MyLabel"); cell->Add(10.0); cell->Add(4.0); cell->Add(1.0); cell->Add(0.6); auto value = cell->value(); EXPECT_EQ(value.min_value, 0.6); EXPECT_EQ(value.max_value, 10.0); EXPECT_EQ(value.num_samples, 4); EXPECT_EQ(value.points[0].value, 1.0); EXPECT_EQ(value.points[1].value, 4.0); EXPECT_EQ(value.points[2].value, 10.0); EXPECT_EQ(value.points[3].value, 10.0); } TEST(UnlabeledPercentileSamplerTest, FixedPercentilesValues) { auto* cell = pctsampler_without_labels->GetCell(); cell->Add(10.0); cell->Add(4.0); cell->Add(1.0); cell->Add(0.6); auto value = cell->value(); EXPECT_EQ(value.min_value, 0.6); EXPECT_EQ(value.max_value, 10.0); EXPECT_EQ(value.num_samples, 4); EXPECT_EQ(value.points[0].value, 1.0); EXPECT_EQ(value.points[1].value, 4.0); EXPECT_EQ(value.points[2].value, 10.0); EXPECT_EQ(value.points[3].value, 10.0); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/monitoring/percentile_sampler.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/monitoring/percentile_sampler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6aadb0b1-e600-47f6-ac26-d99cf7ea00cd
cpp
tensorflow/tensorflow
histogram
third_party/xla/xla/tsl/lib/histogram/histogram.cc
third_party/xla/xla/tsl/lib/histogram/histogram_test.cc
#include "xla/tsl/lib/histogram/histogram.h" #include <float.h> #include <math.h> #include <vector> #include "xla/tsl/protobuf/histogram.pb.h" #include "tsl/platform/logging.h" #include "tsl/platform/mutex.h" #include "tsl/platform/types.h" namespace tsl { namespace histogram { static std::vector<double>* InitDefaultBucketsInner() { std::vector<double> buckets; std::vector<double> neg_buckets; double v = 1.0e-12; while (v < 1.0e20) { buckets.push_back(v); neg_buckets.push_back(-v); v *= 1.1; } buckets.push_back(DBL_MAX); neg_buckets.push_back(-DBL_MAX); std::reverse(neg_buckets.begin(), neg_buckets.end()); std::vector<double>* result = new std::vector<double>; result->insert(result->end(), neg_buckets.begin(), neg_buckets.end()); result->push_back(0.0); result->insert(result->end(), buckets.begin(), buckets.end()); return result; } static absl::Span<const double> InitDefaultBuckets() { static std::vector<double>* default_bucket_limits = InitDefaultBucketsInner(); return *default_bucket_limits; } Histogram::Histogram() : bucket_limits_(InitDefaultBuckets()) { Clear(); } Histogram::Histogram(absl::Span<const double> custom_bucket_limits) : custom_bucket_limits_(custom_bucket_limits.begin(), custom_bucket_limits.end()), bucket_limits_(custom_bucket_limits_) { #ifndef NDEBUG DCHECK_GT(bucket_limits_.size(), size_t{0}); for (size_t i = 1; i < bucket_limits_.size(); i++) { DCHECK_GT(bucket_limits_[i], bucket_limits_[i - 1]); } #endif Clear(); } bool Histogram::DecodeFromProto(const HistogramProto& proto) { if ((proto.bucket_size() != proto.bucket_limit_size()) || (proto.bucket_size() == 0)) { return false; } min_ = proto.min(); max_ = proto.max(); num_ = proto.num(); sum_ = proto.sum(); sum_squares_ = proto.sum_squares(); custom_bucket_limits_.clear(); custom_bucket_limits_.insert(custom_bucket_limits_.end(), proto.bucket_limit().begin(), proto.bucket_limit().end()); bucket_limits_ = custom_bucket_limits_; buckets_.clear(); buckets_.insert(buckets_.end(), proto.bucket().begin(), proto.bucket().end()); return true; } void Histogram::Clear() { min_ = bucket_limits_[bucket_limits_.size() - 1]; max_ = -DBL_MAX; num_ = 0; sum_ = 0; sum_squares_ = 0; buckets_.resize(bucket_limits_.size()); for (size_t i = 0; i < bucket_limits_.size(); i++) { buckets_[i] = 0; } } void Histogram::Add(double value) { int b = std::upper_bound(bucket_limits_.begin(), bucket_limits_.end(), value) - bucket_limits_.begin(); buckets_[b] += 1.0; if (min_ > value) min_ = value; if (max_ < value) max_ = value; num_++; sum_ += value; sum_squares_ += (value * value); } double Histogram::Median() const { return Percentile(50.0); } double Histogram::Remap(double x, double x0, double x1, double y0, double y1) const { return y0 + (x - x0) / (x1 - x0) * (y1 - y0); } double Histogram::Percentile(double p) const { if (num_ == 0.0) return 0.0; double threshold = num_ * (p / 100.0); double cumsum_prev = 0; for (size_t i = 0; i < buckets_.size(); i++) { double cumsum = cumsum_prev + buckets_[i]; if (cumsum >= threshold) { if (cumsum == cumsum_prev) { continue; } double lhs = (i == 0 || cumsum_prev == 0) ? min_ : bucket_limits_[i - 1]; lhs = std::max(lhs, min_); double rhs = bucket_limits_[i]; rhs = std::min(rhs, max_); double weight = Remap(threshold, cumsum_prev, cumsum, lhs, rhs); return weight; } cumsum_prev = cumsum; } return max_; } double Histogram::Average() const { if (num_ == 0.0) return 0; return sum_ / num_; } double Histogram::StandardDeviation() const { if (num_ == 0.0) return 0; double variance = (sum_squares_ * num_ - sum_ * sum_) / (num_ * num_); return sqrt(variance); } std::string Histogram::ToString() const { std::string r; char buf[200]; snprintf(buf, sizeof(buf), "Count: %.0f Average: %.4f StdDev: %.2f\n", num_, Average(), StandardDeviation()); r.append(buf); snprintf(buf, sizeof(buf), "Min: %.4f Median: %.4f Max: %.4f\n", (num_ == 0.0 ? 0.0 : min_), Median(), max_); r.append(buf); r.append("------------------------------------------------------\n"); const double mult = num_ > 0 ? 100.0 / num_ : 0.0; double sum = 0; for (size_t b = 0; b < buckets_.size(); b++) { if (buckets_[b] <= 0.0) continue; sum += buckets_[b]; snprintf(buf, sizeof(buf), "[ %10.2g, %10.2g ) %7.0f %7.3f%% %7.3f%% ", ((b == 0) ? -DBL_MAX : bucket_limits_[b - 1]), bucket_limits_[b], buckets_[b], mult * buckets_[b], mult * sum); r.append(buf); int marks = static_cast<int>(20 * (buckets_[b] / num_) + 0.5); r.append(marks, '#'); r.push_back('\n'); } return r; } void Histogram::EncodeToProto(HistogramProto* proto, bool preserve_zero_buckets) const { proto->Clear(); proto->set_min(min_); proto->set_max(max_); proto->set_num(num_); proto->set_sum(sum_); proto->set_sum_squares(sum_squares_); for (size_t i = 0; i < buckets_.size();) { double end = bucket_limits_[i]; double count = buckets_[i]; i++; if (!preserve_zero_buckets && count <= 0.0) { while (i < buckets_.size() && buckets_[i] <= 0.0) { end = bucket_limits_[i]; count = buckets_[i]; i++; } } proto->add_bucket_limit(end); proto->add_bucket(count); } if (proto->bucket_size() == 0.0) { proto->add_bucket_limit(DBL_MAX); proto->add_bucket(0.0); } } bool ThreadSafeHistogram::DecodeFromProto(const HistogramProto& proto) { mutex_lock l(mu_); return histogram_.DecodeFromProto(proto); } void ThreadSafeHistogram::Clear() { mutex_lock l(mu_); histogram_.Clear(); } void ThreadSafeHistogram::Add(double value) { mutex_lock l(mu_); histogram_.Add(value); } void ThreadSafeHistogram::EncodeToProto(HistogramProto* proto, bool preserve_zero_buckets) const { mutex_lock l(mu_); histogram_.EncodeToProto(proto, preserve_zero_buckets); } double ThreadSafeHistogram::Median() const { mutex_lock l(mu_); return histogram_.Median(); } double ThreadSafeHistogram::Percentile(double p) const { mutex_lock l(mu_); return histogram_.Percentile(p); } double ThreadSafeHistogram::Average() const { mutex_lock l(mu_); return histogram_.Average(); } double ThreadSafeHistogram::StandardDeviation() const { mutex_lock l(mu_); return histogram_.StandardDeviation(); } std::string ThreadSafeHistogram::ToString() const { mutex_lock l(mu_); return histogram_.ToString(); } } }
#include "xla/tsl/lib/histogram/histogram.h" #include <float.h> #include "xla/tsl/protobuf/histogram.pb.h" #include "tsl/platform/logging.h" #include "tsl/platform/test.h" namespace tsl { namespace histogram { static void Validate(const Histogram& h) { string s1 = h.ToString(); LOG(ERROR) << s1; HistogramProto proto_with_zeroes; h.EncodeToProto(&proto_with_zeroes, true); Histogram h2; EXPECT_TRUE(h2.DecodeFromProto(proto_with_zeroes)); string s2 = h2.ToString(); LOG(ERROR) << s2; EXPECT_EQ(s1, s2); HistogramProto proto_no_zeroes; h.EncodeToProto(&proto_no_zeroes, false); LOG(ERROR) << proto_no_zeroes.DebugString(); Histogram h3; EXPECT_TRUE(h3.DecodeFromProto(proto_no_zeroes)); string s3 = h3.ToString(); LOG(ERROR) << s3; EXPECT_EQ(s1, s3); } TEST(Histogram, Empty) { Histogram h; Validate(h); } TEST(Histogram, SingleValue) { Histogram h; h.Add(-3.0); Validate(h); } TEST(Histogram, CustomBuckets) { Histogram h({-10, -5, 0, 5, 10, 100, 1000, 10000, DBL_MAX}); h.Add(-3.0); h.Add(4.99); h.Add(5.0); h.Add(1000.0); Validate(h); } TEST(Histogram, Median) { Histogram h({0, 10, 100, DBL_MAX}); h.Add(-2); h.Add(-2); h.Add(0); double median = h.Median(); EXPECT_EQ(median, -0.5); } TEST(Histogram, Percentile) { Histogram h({1, 2, 3, 4}); h.Add(-1.0); h.Add(1.5); h.Add(1.5); h.Add(1.5); h.Add(2.5); h.Add(2.5); h.Add(2.5); h.Add(2.5); h.Add(3.5); h.Add(3.9); EXPECT_EQ(h.Percentile(0), -1.0); EXPECT_EQ(h.Percentile(25), 1.5); EXPECT_EQ(h.Percentile(50), 2.25); EXPECT_EQ(h.Percentile(75), 2.875); EXPECT_EQ(h.Percentile(90), 3.45); EXPECT_EQ(h.Percentile(100), 3.9); } TEST(Histogram, Basic) { Histogram h; for (int i = 0; i < 100; i++) { h.Add(i); } for (int i = 1000; i < 100000; i += 1000) { h.Add(i); } Validate(h); } TEST(ThreadSafeHistogram, Basic) { Histogram h; for (int i = 0; i < 100; i++) { h.Add(i); } ThreadSafeHistogram tsh; for (int i = 0; i < 100; i++) { tsh.Add(i); } for (int i = 0; i < 2; ++i) { bool preserve_zero_buckets = (i == 0); HistogramProto h_proto; h.EncodeToProto(&h_proto, preserve_zero_buckets); HistogramProto tsh_proto; tsh.EncodeToProto(&tsh_proto, preserve_zero_buckets); Histogram h2; EXPECT_TRUE(h2.DecodeFromProto(tsh_proto)); ThreadSafeHistogram tsh2; EXPECT_TRUE(tsh2.DecodeFromProto(h_proto)); EXPECT_EQ(h2.ToString(), tsh2.ToString()); } EXPECT_EQ(h.Median(), tsh.Median()); EXPECT_EQ(h.Percentile(40.0), tsh.Percentile(40.0)); EXPECT_EQ(h.Average(), tsh.Average()); EXPECT_EQ(h.StandardDeviation(), tsh.StandardDeviation()); EXPECT_EQ(h.ToString(), tsh.ToString()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/histogram/histogram.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/histogram/histogram_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ce81a04e-fca4-4ddf-96e3-daf1ae6b533d
cpp
tensorflow/tensorflow
traceme_recorder
third_party/xla/xla/tsl/profiler/backends/cpu/traceme_recorder.cc
third_party/xla/xla/tsl/profiler/backends/cpu/traceme_recorder_test.cc
#include "xla/tsl/profiler/backends/cpu/traceme_recorder.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <atomic> #include <deque> #include <optional> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "xla/tsl/profiler/utils/lock_free_queue.h" #include "xla/tsl/profiler/utils/per_thread.h" #include "tsl/platform/env.h" #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" #include "tsl/platform/types.h" namespace tsl { namespace profiler { namespace internal { #ifdef _WIN32 #define DECL_DLL_EXPORT __declspec(dllexport) #else #define DECL_DLL_EXPORT #endif DECL_DLL_EXPORT std::atomic<int> g_trace_level( TraceMeRecorder::kTracingDisabled); static_assert(ATOMIC_INT_LOCK_FREE == 2, "Assumed atomic<int> was lock free"); } namespace { class SplitEventTracker { public: void AddStart(TraceMeRecorder::Event&& event) { DCHECK(event.IsStart()); start_events_.emplace(event.ActivityId(), std::move(event)); } void AddEnd(TraceMeRecorder::Event* event) { DCHECK(event->IsEnd()); if (!FindStartAndMerge(event)) { end_events_.push_back(event); } } void HandleCrossThreadEvents() { for (auto* event : end_events_) { FindStartAndMerge(event); } } private: bool FindStartAndMerge(TraceMeRecorder::Event* event) { auto iter = start_events_.find(event->ActivityId()); if (iter == start_events_.end()) return false; auto& start_event = iter->second; event->name = std::move(start_event.name); event->start_time = start_event.start_time; start_events_.erase(iter); return true; } absl::flat_hash_map<int64_t, TraceMeRecorder::Event> start_events_; std::vector<TraceMeRecorder::Event*> end_events_; }; class ThreadLocalRecorder { public: ThreadLocalRecorder() { auto* env = Env::Default(); info_.tid = env->GetCurrentThreadId(); env->GetCurrentThreadName(&info_.name); } const TraceMeRecorder::ThreadInfo& Info() const { return info_; } void Record(TraceMeRecorder::Event&& event) { queue_.Push(std::move(event)); } void Clear() { queue_.Clear(); } TF_MUST_USE_RESULT std::deque<TraceMeRecorder::Event> Consume( SplitEventTracker* split_event_tracker) { std::deque<TraceMeRecorder::Event> events; std::optional<TraceMeRecorder::Event> event; while ((event = queue_.Pop())) { if (event->IsStart()) { split_event_tracker->AddStart(*std::move(event)); continue; } events.push_back(*std::move(event)); if (events.back().IsEnd()) { split_event_tracker->AddEnd(&events.back()); } } return events; } private: TraceMeRecorder::ThreadInfo info_; LockFreeQueue<TraceMeRecorder::Event> queue_; }; } void TraceMeRecorder::Clear() { auto recorders = PerThread<ThreadLocalRecorder>::StartRecording(); for (auto& recorder : recorders) { recorder->Clear(); }; } TraceMeRecorder::Events TraceMeRecorder::Consume() { TraceMeRecorder::Events result; SplitEventTracker split_event_tracker; auto recorders = PerThread<ThreadLocalRecorder>::StopRecording(); for (auto& recorder : recorders) { auto events = recorder->Consume(&split_event_tracker); if (!events.empty()) { result.push_back({recorder->Info(), std::move(events)}); } }; split_event_tracker.HandleCrossThreadEvents(); return result; } bool TraceMeRecorder::Start(int level) { level = std::max(0, level); int expected = kTracingDisabled; bool started = internal::g_trace_level.compare_exchange_strong( expected, level, std::memory_order_acq_rel); if (started) { Clear(); } return started; } void TraceMeRecorder::Record(Event&& event) { PerThread<ThreadLocalRecorder>::Get().Record(std::move(event)); } TraceMeRecorder::Events TraceMeRecorder::Stop() { TraceMeRecorder::Events events; if (internal::g_trace_level.exchange( kTracingDisabled, std::memory_order_acq_rel) != kTracingDisabled) { events = Consume(); } return events; } int64_t TraceMeRecorder::NewActivityId() { static std::atomic<int32> thread_counter(1); const thread_local static int32_t thread_id = thread_counter.fetch_add(1, std::memory_order_relaxed); thread_local static uint32 per_thread_activity_id = 0; return static_cast<int64_t>(thread_id) << 32 | per_thread_activity_id++; } } }
#include "xla/tsl/profiler/backends/cpu/traceme_recorder.h" #include <atomic> #include <set> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "xla/tsl/profiler/utils/math_utils.h" #include "xla/tsl/profiler/utils/time_utils.h" #include "tsl/platform/env.h" #include "tsl/platform/logging.h" #include "tsl/platform/notification.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" #include "tsl/platform/types.h" namespace tsl { namespace profiler { namespace { using ::testing::ElementsAre; MATCHER_P(Named, name, "") { return arg.name == name; } TEST(RecorderTest, SingleThreaded) { int64_t start_time = GetCurrentTimeNanos(); int64_t end_time = start_time + UniToNano(1); TraceMeRecorder::Record({"before", start_time, end_time}); TraceMeRecorder::Start(1); TraceMeRecorder::Record({"during1", start_time, end_time}); TraceMeRecorder::Record({"during2", start_time, end_time}); auto results = TraceMeRecorder::Stop(); TraceMeRecorder::Record({"after", start_time, end_time}); ASSERT_EQ(results.size(), 1); EXPECT_THAT(results[0].events, ElementsAre(Named("during1"), Named("during2"))); } TEST(RecorderTest, Multithreaded) { constexpr static int kNumThreads = 4; tsl::Notification start; tsl::Notification stop; thread::ThreadPool pool(tsl::Env::Default(), "testpool", kNumThreads); std::atomic<int> thread_count = {0}; for (int i = 0; i < kNumThreads; i++) { pool.Schedule([&start, &stop, &thread_count] { uint64 j = 0; bool was_active = false; auto record_event = [&j]() { int64_t start_time = GetCurrentTimeNanos(); int64_t end_time = start_time + UniToNano(1); TraceMeRecorder::Record( {absl::StrCat(j++), start_time, end_time}); }; thread_count.fetch_add(1, std::memory_order_relaxed); start.WaitForNotification(); while (!stop.HasBeenNotified()) { if (TraceMeRecorder::Active()) { record_event(); was_active = true; } if (was_active && !TraceMeRecorder::Active()) { record_event(); record_event(); was_active = false; } SpinForNanos(10); } }); } struct ThreadState { bool split_session = false; bool overlapping_sessions = false; std::set<uint64> events; }; absl::flat_hash_map<uint32 , ThreadState> thread_state; auto done = [&thread_state] { for (const auto& id_and_thread : thread_state) { auto& t = id_and_thread.second; if (t.events.size() < 2) return false; } return true; }; while (thread_count.load(std::memory_order_relaxed) < kNumThreads) { LOG(INFO) << "Waiting for all threads to spin up..."; SleepForMillis(1); } start.Notify(); constexpr static int kMaxIters = 100; for (int iters = 0; iters < kMaxIters && !done(); ++iters) { LOG(INFO) << "Looping until convergence, iteration: " << iters; TraceMeRecorder::Start(1); SleepForMillis(100); auto results = TraceMeRecorder::Stop(); for (const auto& thread : results) { if (thread.events.empty()) continue; auto& state = thread_state[thread.thread.tid]; std::set<uint64> session_events; uint64 current = 0; for (const auto& event : thread.events) { uint64 activity_id; ASSERT_TRUE(absl::SimpleAtoi(event.name, &activity_id)); session_events.emplace(activity_id); if (current != 0 && activity_id != current + 1) { state.split_session = true; } current = activity_id; } for (const auto& event : session_events) { auto result = state.events.emplace(event); if (!result.second) { state.overlapping_sessions = true; } } } SleepForMillis(1); } stop.Notify(); for (const auto& id_and_thread : thread_state) { auto& thread = id_and_thread.second; EXPECT_FALSE(thread.split_session) << "Expected contiguous events in a session"; EXPECT_FALSE(thread.overlapping_sessions) << "Expected disjoint sessions"; EXPECT_GT(thread.events.size(), 1) << "Expected gaps in thread events between sessions"; } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/backends/cpu/traceme_recorder.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/backends/cpu/traceme_recorder_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
40a77d2d-ac7a-47c8-aed8-486396bd535b
cpp
tensorflow/tensorflow
device_utils
tensorflow/core/common_runtime/device/device_utils.cc
third_party/xla/xla/tsl/profiler/utils/device_utils_test.cc
#include "tensorflow/core/common_runtime/device/device_utils.h" #include "tensorflow/core/platform/regexp.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/stringpiece.h" namespace tensorflow { namespace device_utils { Status ValidateDeviceType(StringPiece type) { static const LazyRE2 kTfDeviceTypeRegEx = {"[A-Z][A-Z_]*"}; bool matches = RE2::FullMatch(type, *kTfDeviceTypeRegEx); if (!matches) { return Status(absl::StatusCode::kFailedPrecondition, strings::StrCat("Device name/type '", type, "' must match ", kTfDeviceTypeRegEx->pattern(), ".")); } return absl::OkStatus(); } } }
#include "xla/tsl/profiler/utils/device_utils.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "tsl/platform/test.h" namespace tsl { namespace profiler { namespace { tensorflow::profiler::XPlane CreateXPlane(absl::string_view name) { tensorflow::profiler::XPlane plane; plane.set_name(name.data(), name.size()); return plane; } TEST(DeviceUtilsTest, GetDeviceType) { EXPECT_EQ(GetDeviceType(CreateXPlane(kHostThreadsPlaneName)), DeviceType::kCpu); EXPECT_EQ(GetDeviceType(CreateXPlane(absl::StrCat(kTpuPlanePrefix, 0))), DeviceType::kTpu); EXPECT_EQ(GetDeviceType(CreateXPlane(absl::StrCat(kGpuPlanePrefix, 0))), DeviceType::kGpu); EXPECT_EQ(GetDeviceType(CreateXPlane("unknown")), DeviceType::kUnknown); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/device/device_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/device_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0870f6bf-356a-4ba4-973a-d1a6c1553518
cpp
tensorflow/tensorflow
xplane_utils
third_party/xla/xla/tsl/profiler/utils/xplane_utils.cc
third_party/xla/xla/tsl/profiler/utils/xplane_utils_test.cc
#include "xla/tsl/profiler/utils/xplane_utils.h" #include <algorithm> #include <cstdint> #include <limits> #include <optional> #include <set> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "xla/tsl/profiler/utils/math_utils.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "xla/tsl/profiler/utils/timespan.h" #include "xla/tsl/profiler/utils/xplane_builder.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "xla/tsl/profiler/utils/xplane_visitor.h" #include "xla/tsl/util/stats_calculator.h" #include "tsl/platform/fingerprint.h" #include "tsl/platform/types.h" #include "tsl/profiler/lib/context_types.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tsl { namespace profiler { namespace { template <typename T, typename Pred> std::vector<int> FindAll(const protobuf::RepeatedPtrField<T>& array, const Pred& pred) { std::vector<int> indices; for (int i = 0; i < array.size(); ++i) { if (pred(&array.Get(i))) indices.push_back(i); } return indices; } template <typename T, typename Pred> int Find(const protobuf::RepeatedPtrField<T>& array, const Pred& pred) { std::vector<int> indices = FindAll(array, pred); if (indices.size() > 1) { LOG(WARNING) << "Found multiple " << T().GetTypeName() << " when only one was expected."; } return indices.empty() ? -1 : indices.front(); } template <typename T> void RemoveAt(protobuf::RepeatedPtrField<T>* array, const std::vector<int>& indices) { if (indices.empty()) return; if (array->size() == indices.size()) { array->Clear(); return; } auto remove_iter = indices.begin(); int i = *(remove_iter++); for (int j = i + 1; j < array->size(); ++j) { if (remove_iter != indices.end() && *remove_iter == j) { ++remove_iter; } else { array->SwapElements(j, i++); } } array->DeleteSubrange(i, array->size() - i); } template <typename T> void Remove(protobuf::RepeatedPtrField<T>* array, const T* elem) { int i = Find(*array, [elem](const T* e) { return elem == e; }); RemoveAt(array, {i}); } template <typename T, typename Pred> void RemoveIf(protobuf::RepeatedPtrField<T>* array, Pred&& pred) { std::vector<int> indices = FindAll(*array, pred); RemoveAt(array, indices); } void CopyEventMetadata(const XEventMetadata& src_event_metadata, const XPlaneVisitor& src_plane, XEventMetadata& dst_event_metadata, XPlaneBuilder& dst_plane) { if (dst_event_metadata.display_name().empty() && !src_event_metadata.display_name().empty()) { dst_event_metadata.set_display_name(src_event_metadata.display_name()); } if (dst_event_metadata.name().empty() && !src_event_metadata.name().empty()) { dst_event_metadata.set_name(src_event_metadata.name()); } if (dst_event_metadata.metadata().empty() && !src_event_metadata.metadata().empty()) { dst_event_metadata.set_metadata(src_event_metadata.metadata()); } if (dst_event_metadata.stats().empty() && !src_event_metadata.stats().empty()) { XEventMetadataVisitor src_event_metadata_visitor(&src_plane, &src_event_metadata); src_event_metadata_visitor.ForEachStat([&](const XStatVisitor& src_stat) { XStatMetadata& metadata = *dst_plane.GetOrCreateStatMetadata(src_stat.Name()); XStat& dst_stat = *dst_event_metadata.add_stats(); dst_stat = src_stat.RawStat(); if (src_stat.ValueCase() == XStat::kRefValue) { XStatMetadata& value_metadata = *dst_plane.GetOrCreateStatMetadata(src_stat.StrOrRefValue()); dst_stat.set_ref_value(value_metadata.id()); } dst_stat.set_metadata_id(metadata.id()); }); } DCHECK_EQ(src_event_metadata.stats_size(), dst_event_metadata.stats_size()); } void CopyEvent(const XEventVisitor& src_event, const XPlaneVisitor& src, const XPlane& src_plane, int64_t time_offset_ps, XPlaneBuilder& dst_plane, XLineBuilder& dst_line) { XEventMetadata* dst_event_metadata = dst_plane.GetOrCreateEventMetadata(src_event.Name()); CopyEventMetadata(*src_event.metadata(), src, *dst_event_metadata, dst_plane); XEventBuilder dst_event = dst_line.AddEvent(*dst_event_metadata); if (src_event.IsAggregatedEvent()) { dst_event.SetNumOccurrences(src_event.NumOccurrences()); } else { dst_event.SetOffsetPs(src_event.OffsetPs() + time_offset_ps); } dst_event.SetDurationPs(src_event.DurationPs()); src_event.ForEachStat([&](const XStatVisitor& stat) { dst_event.AddStat(*dst_plane.GetOrCreateStatMetadata(stat.Name()), stat.RawStat(), src_plane); }); } bool IsOpLineName(absl::string_view line_name) { return line_name == kXlaOpLineName || line_name == kTensorFlowOpLineName; } } const XPlane* FindPlaneWithName(const XSpace& space, absl::string_view name) { int i = Find(space.planes(), [name](const XPlane* plane) { return plane->name() == name; }); return (i != -1) ? &space.planes(i) : nullptr; } std::vector<const XPlane*> FindPlanesWithNames( const XSpace& space, const std::vector<absl::string_view>& names) { absl::flat_hash_set<absl::string_view> names_set(names.begin(), names.end()); std::vector<int> indices = FindAll(space.planes(), [&names_set](const XPlane* plane) { return names_set.contains(plane->name()); }); std::vector<const XPlane*> planes; planes.reserve(indices.size()); for (int i : indices) { planes.push_back(&space.planes(i)); } return planes; } XPlane* FindMutablePlaneWithName(XSpace* space, absl::string_view name) { int i = Find(space->planes(), [name](const XPlane* plane) { return plane->name() == name; }); return (i != -1) ? space->mutable_planes(i) : nullptr; } XPlane* FindOrAddMutablePlaneWithName(XSpace* space, absl::string_view name) { XPlane* plane = FindMutablePlaneWithName(space, name); if (plane == nullptr) { plane = space->add_planes(); plane->set_name(name.data(), name.size()); } return plane; } std::vector<const XPlane*> FindPlanesWithPrefix(const XSpace& space, absl::string_view prefix) { return FindPlanes(space, [&](const XPlane& plane) { return absl::StartsWith(plane.name(), prefix); }); } std::vector<XPlane*> FindMutablePlanesWithPrefix(XSpace* space, absl::string_view prefix) { return FindMutablePlanes(space, [&](XPlane& plane) { return absl::StartsWith(plane.name(), prefix); }); } const XLine* FindLineWithId(const XPlane& plane, int64_t id) { int i = Find(plane.lines(), [id](const XLine* line) { return line->id() == id; }); return (i != -1) ? &plane.lines(i) : nullptr; } std::vector<const XLine*> FindLinesWithId(const XPlane& plane, int64_t id) { std::vector<int> indices = FindAll( plane.lines(), [id](const XLine* line) { return line->id() == id; }); std::vector<const XLine*> lines; lines.reserve(indices.size()); for (int index : indices) { lines.push_back(&plane.lines(index)); } return lines; } const XLine* FindLineWithName(const XPlane& plane, absl::string_view name) { int i = Find(plane.lines(), [name](const XLine* line) { return line->name() == name; }); return (i != -1) ? &plane.lines(i) : nullptr; } XStat* FindOrAddMutableStat(const XStatMetadata& stat_metadata, XEvent* event) { for (auto& stat : *event->mutable_stats()) { if (stat.metadata_id() == stat_metadata.id()) { return &stat; } } XStat* stat = event->add_stats(); stat->set_metadata_id(stat_metadata.id()); return stat; } void RemovePlane(XSpace* space, const XPlane* plane) { DCHECK(plane != nullptr); Remove(space->mutable_planes(), plane); } void RemovePlanes(XSpace* space, const std::vector<const XPlane*>& planes) { absl::flat_hash_set<const XPlane*> planes_set(planes.begin(), planes.end()); RemoveIf(space->mutable_planes(), [&planes_set](const XPlane* plane) { return planes_set.contains(plane); }); } void RemoveLine(XPlane* plane, const XLine* line) { DCHECK(line != nullptr); Remove(plane->mutable_lines(), line); } void RemoveEvents(XLine* line, const absl::flat_hash_set<const XEvent*>& events) { RemoveIf(line->mutable_events(), [&](const XEvent* event) { return events.contains(event); }); } void RemoveEmptyPlanes(XSpace* space) { RemoveIf(space->mutable_planes(), [&](const XPlane* plane) { return plane->lines().empty(); }); } void RemoveEmptyLines(XPlane* plane) { RemoveIf(plane->mutable_lines(), [&](const XLine* line) { return line->events().empty(); }); } bool XEventsComparator::operator()(const XEvent* a, const XEvent* b) const { return XEventTimespan(*a) < XEventTimespan(*b); } void SortXPlane(XPlane* plane) { for (XLine& line : *plane->mutable_lines()) { auto& events = *line.mutable_events(); std::sort(events.pointer_begin(), events.pointer_end(), XEventsComparator()); } } void SortXSpace(XSpace* space) { for (XPlane& plane : *space->mutable_planes()) SortXPlane(&plane); } void NormalizeTimestamps(XPlane* plane, uint64 start_time_ns) { for (XLine& line : *plane->mutable_lines()) { if (line.timestamp_ns() >= static_cast<int64_t>(start_time_ns)) { line.set_timestamp_ns(line.timestamp_ns() - start_time_ns); } } } void NormalizeTimestamps(XSpace* space, uint64 start_time_ns) { for (XPlane& plane : *space->mutable_planes()) { NormalizeTimestamps(&plane, start_time_ns); } } void MergePlanes(const XPlane& src_plane, XPlane* dst_plane) { RemoveEmptyLines(dst_plane); XPlaneVisitor src(&src_plane); XPlaneBuilder dst(dst_plane); src.ForEachStat([&](const XStatVisitor& stat) { XStatMetadata* stat_metadata = dst.GetOrCreateStatMetadata(stat.Name()); dst.SetOrAddStat(*stat_metadata, stat.RawStat(), src_plane); }); src.ForEachLine([&](const XLineVisitor& line) { XLineBuilder dst_line = dst.GetOrCreateLine(line.Id()); int64_t time_offset_ps = 0LL; if (dst_line.NumEvents() == 0) { dst_line.SetTimestampNs(line.TimestampNs()); dst_line.SetName(line.Name()); dst_line.SetDisplayNameIfEmpty(line.DisplayName()); } else { if (line.TimestampNs() <= dst_line.TimestampNs()) { dst_line.SetTimestampNsAndAdjustEventOffsets(line.TimestampNs()); } else { time_offset_ps = NanoToPico(line.TimestampNs() - dst_line.TimestampNs()); } dst_line.SetNameIfEmpty(line.Name()); } line.ForEachEvent([&](const XEventVisitor& event) { CopyEvent(event, src, src_plane, time_offset_ps, dst, dst_line); }); }); } void MergePlanes(const std::vector<const XPlane*>& src_planes, XPlane* dst_plane) { for (const XPlane* src_plane : src_planes) { MergePlanes(*src_plane, dst_plane); } } int64_t GetStartTimestampNs(const XPlane& plane) { if (plane.lines().empty()) return 0LL; int64_t plane_timestamp = std::numeric_limits<int64_t>::max(); for (const auto& line : plane.lines()) { plane_timestamp = std::min(plane_timestamp, line.timestamp_ns()); } return plane_timestamp; } bool IsEmpty(const XSpace& space) { for (const auto& plane : space.planes()) { for (const auto& line : plane.lines()) { if (!line.events().empty()) { return false; } } } return true; } bool IsXSpaceGrouped(const XSpace& space) { for (const auto& plane : space.planes()) { XPlaneVisitor xplane = tsl::profiler::CreateTfXPlaneVisitor(&plane); const XStatMetadata* group_id_stat = xplane.GetStatMetadataByType(StatType::kGroupId); if (group_id_stat) return true; } return false; } void AddFlowsToXplane(int32_t host_id, bool is_host_plane, bool connect_traceme, XPlane* xplane) { if (!xplane) return; XPlaneBuilder plane(xplane); XStatMetadata* correlation_id_stats_metadata = plane.GetStatMetadata(GetStatTypeStr(StatType::kCorrelationId)); XStatMetadata* producer_type_stats_metadata = plane.GetStatMetadata(GetStatTypeStr(StatType::kProducerType)); XStatMetadata* consumer_type_stats_metadata = plane.GetStatMetadata(GetStatTypeStr(StatType::kConsumerType)); XStatMetadata* producer_id_stats_metadata = plane.GetStatMetadata(GetStatTypeStr(StatType::kProducerId)); XStatMetadata* consumer_id_stats_metadata = plane.GetStatMetadata(GetStatTypeStr(StatType::kConsumerId)); XStatMetadata* flow_stats_metadata = plane.GetOrCreateStatMetadata(GetStatTypeStr(StatType::kFlow)); XFlow::FlowDirection direction = is_host_plane ? XFlow::FlowDirection::kFlowOut : XFlow::FlowDirection::kFlowIn; plane.ForEachLine([&](XLineBuilder line) { line.ForEachEvent([&](XEventBuilder event) { std::optional<uint64_t> correlation_id; std::optional<uint64_t> producer_type; std::optional<uint64_t> consumer_type; std::optional<uint64_t> producer_id; std::optional<uint64_t> consumer_id; event.ForEachStat([&](XStat* stat) { if (correlation_id_stats_metadata && stat->metadata_id() == correlation_id_stats_metadata->id()) { correlation_id = stat->uint64_value(); } else if (connect_traceme) { if (producer_type_stats_metadata && stat->metadata_id() == producer_type_stats_metadata->id()) { producer_type = XStatsBuilder<XPlane>::IntOrUintValue(*stat); } else if (consumer_type_stats_metadata && stat->metadata_id() == consumer_type_stats_metadata->id()) { consumer_type = XStatsBuilder<XPlane>::IntOrUintValue(*stat); } else if (producer_id_stats_metadata && stat->metadata_id() == producer_id_stats_metadata->id()) { producer_id = XStatsBuilder<XPlane>::IntOrUintValue(*stat); } else if (consumer_id_stats_metadata && stat->metadata_id() == consumer_id_stats_metadata->id()) { consumer_id = XStatsBuilder<XPlane>::IntOrUintValue(*stat); } } }); if (correlation_id) { XFlow flow(XFlow::GetFlowId(host_id, *correlation_id), direction, ContextType::kGpuLaunch); event.AddStatValue(*flow_stats_metadata, flow.ToStatValue()); } if (connect_traceme) { if (producer_type && producer_id) { auto context_type = GetSafeContextType(*producer_type); XFlow flow(XFlow::GetFlowId(host_id, *producer_id, context_type), XFlow::FlowDirection::kFlowOut, context_type); event.AddStatValue(*flow_stats_metadata, flow.ToStatValue()); } if (consumer_type && consumer_id) { auto context_type = GetSafeContextType(*consumer_type); XFlow flow(XFlow::GetFlowId(host_id, *consumer_id, context_type), XFlow::FlowDirection::kFlowIn, context_type); event.AddStatValue(*flow_stats_metadata, flow.ToStatValue()); } } }); }); } uint64_t GetDevicePlaneFingerprint(const XPlane& plane) { const XLine* xla_module_line = FindLineWithName(plane, kXlaModuleLineName); if (!xla_module_line) return 0ULL; XPlaneVisitor xplane(&plane); XLineVisitor xline(&xplane, xla_module_line); std::set<uint64_t> ordered_module_fps; xline.ForEachEvent([&](const XEventVisitor& xevent) { ordered_module_fps.insert(Fingerprint64(xevent.Name())); }); if (ordered_module_fps.empty()) return 0ULL; uint64_t output = 0ULL; for (const auto& fp : ordered_module_fps) { output = FingerprintCat64(output, fp); } return output; } std::optional<XEventVisitor> XEventContextTracker::GetContainingEvent( const Timespan& event) { if (!line_) return std::nullopt; if (current_index_ != -1) { XEventVisitor current_event(plane_, line_, &line_->events(current_index_)); if (current_event.GetTimespan().Includes(event)) { return current_event; } } for (int i = current_index_ + 1; i < line_->events_size(); ++i) { XEventVisitor current_event(plane_, line_, &line_->events(i)); if (current_event.TimestampPs() > event.end_ps()) break; if (current_event.EndTimestampPs() < event.begin_ps()) continue; current_index_ = i; if (current_event.GetTimespan().Includes(event)) { return current_event; } break; } return std::nullopt; } std::optional<XEventVisitor> XEventContextTracker::GetOverlappingEvent( const Timespan& event) { if (!line_) return std::nullopt; if (current_index_ != -1) { XEventVisitor current_event(plane_, line_, &line_->events(current_index_)); if (current_event.GetTimespan().Overlaps(event)) { return current_event; } } for (int i = current_index_ + 1; i < line_->events_size(); ++i) { XEventVisitor current_event(plane_, line_, &line_->events(i)); if (current_event.TimestampPs() > event.end_ps()) break; if (current_event.EndTimestampPs() < event.begin_ps()) continue; current_index_ = i; if (current_event.GetTimespan().Overlaps(event)) { return current_event; } break; } return std::nullopt; } void AggregateXPlane(const XPlane& full_trace, XPlane& aggregated_trace) { struct EventStat { tsl::Stat<int64_t> stat; int64_t children_duration; }; using StatByEvent = absl::flat_hash_map<int64_t , EventStat>; using StatByGroup = absl::flat_hash_map<int64_t , StatByEvent>; absl::flat_hash_map<int64_t , StatByGroup> stats; const XPlaneVisitor& plane = CreateTfXPlaneVisitor(&full_trace); XPlaneBuilder aggregated_plane(&aggregated_trace); aggregated_plane.SetName(plane.Name()); uint64_t first_op_start_ps = kint64max; uint64_t last_op_end_ps = 0; plane.ForEachLine([&](const XLineVisitor& line) { if (line.Name() == kStepLineName || line.Name() == kSparseCoreStepLineName) { XLineBuilder aggregated_line = aggregated_plane.GetOrCreateLine(line.Id()); aggregated_line.SetName(kStepLineName); line.ForEachEvent([&](const XEventVisitor& event) { CopyEvent(event, plane, full_trace, 0LL, aggregated_plane, aggregated_line); }); } if (!IsOpLineName(line.Name())) return; XLineBuilder aggregated_line = aggregated_plane.GetOrCreateLine(line.Id()); aggregated_line.SetName(line.Name()); std::vector<XEventVisitor> event_stack; line.ForEachEvent([&](XEventVisitor event) { first_op_start_ps = first_op_start_ps <= event.TimestampPs() ? first_op_start_ps : event.TimestampPs(); last_op_end_ps = last_op_end_ps >= event.EndTimestampPs() ? last_op_end_ps : event.EndTimestampPs(); const auto& group_stat = event.GetStat(StatType::kGroupId); int64_t group_id = group_stat.has_value() ? group_stat->IntOrUintValue() : kint64max; StatByEvent& line_stats = stats[line.Id()][group_id]; line_stats[event.Id()].stat.UpdateStat(event.DurationPs()); DCHECK(event_stack.empty() || !(event < event_stack.back())); while (!event_stack.empty() && !event_stack.back().GetTimespan().Includes(event.GetTimespan())) { event_stack.pop_back(); } if (!event_stack.empty()) { line_stats[event_stack.back().Id()].children_duration += event.DurationPs(); } event_stack.push_back(std::move(event)); }); }); uint64_t total_time_ps = (last_op_end_ps && last_op_end_ps > first_op_start_ps) ? last_op_end_ps - first_op_start_ps : 0; aggregated_plane.AddStatValue( *aggregated_plane.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kTotalProfileDurationPs)), total_time_ps); XStatMetadata* kMinDurationPs = aggregated_plane.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kMinDurationPs)); XStatMetadata* kSelfDurationPs = aggregated_plane.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kSelfDurationPs)); XStatMetadata* kGroupId = aggregated_plane.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kGroupId)); for (const auto& [line_id, stats_by_group] : stats) { XLineBuilder aggregated_line = aggregated_plane.GetOrCreateLine(line_id); for (const auto& [group_id, stat_by_event] : stats_by_group) { for (const auto& [event_id, event_stat] : stat_by_event) { const auto& src_event_metadata = *plane.GetEventMetadata(event_id); XEventMetadata& event_metadata = *aggregated_plane.GetOrCreateEventMetadata( src_event_metadata.name()); CopyEventMetadata(src_event_metadata, plane, event_metadata, aggregated_plane); XEventBuilder aggregated_event = aggregated_line.AddEvent(event_metadata); aggregated_event.SetNumOccurrences(event_stat.stat.count()); aggregated_event.SetDurationPs(event_stat.stat.sum()); if (group_id != kint64max) { aggregated_event.AddStatValue(*kGroupId, group_id); } if (event_stat.stat.count() > 1) { aggregated_event.AddStatValue(*kMinDurationPs, event_stat.stat.min()); } if (event_stat.children_duration != 0) { aggregated_event.AddStatValue( *kSelfDurationPs, event_stat.stat.sum() - event_stat.children_duration); } } } } } bool IsCustomPlane(const XPlane& plane) { constexpr absl::string_view kLegacyCustomPlanePrefix = "/custom:"; return absl::StartsWith(plane.name(), kCustomPlanePrefix) || absl::StartsWith(plane.name(), kLegacyCustomPlanePrefix); } bool IsHostPlane(const XPlane& plane) { return plane.name() == kHostThreadsPlaneName || plane.name() == kHostCpusPlaneName || plane.name() == kTFStreamzPlaneName || plane.name() == kMetadataPlaneName || plane.name() == kSyscallsPlaneName || plane.name() == kPythonTracerPlaneName || plane.name() == kCuptiDriverApiPlaneName; } bool IsDevicePlane(const XPlane& plane) { if (IsHostPlane(plane)) return false; return absl::StartsWith(plane.name(), "/device") || absl::StartsWith(plane.name(), kTpuNonCorePlaneNamePrefix) || IsCustomPlane(plane); } } }
#include "xla/tsl/profiler/utils/xplane_utils.h" #include <cstdint> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "xla/tsl/profiler/utils/math_utils.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "xla/tsl/profiler/utils/xplane_builder.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "xla/tsl/profiler/utils/xplane_visitor.h" #include "tsl/platform/test.h" #include "tsl/platform/types.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tsl { namespace profiler { namespace { using ::testing::Property; using ::testing::SizeIs; using ::testing::UnorderedElementsAre; #if defined(PLATFORM_GOOGLE) using ::testing::EqualsProto; using ::testing::proto::IgnoringFields; using ::testing::proto::IgnoringRepeatedFieldOrdering; using ::testing::proto::Partially; #endif XEvent CreateEvent(int64_t offset_ps, int64_t duration_ps) { XEvent event; event.set_offset_ps(offset_ps); event.set_duration_ps(duration_ps); return event; } TEST(XPlaneUtilsTest, AddAndRemovePlanes) { XSpace space; auto* p1 = FindOrAddMutablePlaneWithName(&space, "p1"); EXPECT_EQ(p1, FindPlaneWithName(space, "p1")); auto* p2 = FindOrAddMutablePlaneWithName(&space, "p2"); EXPECT_EQ(p2, FindPlaneWithName(space, "p2")); auto* p3 = FindOrAddMutablePlaneWithName(&space, "p3"); EXPECT_EQ(p3, FindPlaneWithName(space, "p3")); RemovePlane(&space, p2); EXPECT_EQ(space.planes_size(), 2); EXPECT_EQ(p1, FindPlaneWithName(space, "p1")); EXPECT_EQ(p3, FindPlaneWithName(space, "p3")); RemovePlane(&space, p1); EXPECT_EQ(space.planes_size(), 1); EXPECT_EQ(p3, FindPlaneWithName(space, "p3")); RemovePlane(&space, p3); EXPECT_EQ(space.planes_size(), 0); } TEST(XPlaneUtilsTest, RemoveEmptyPlanes) { XSpace space; RemoveEmptyPlanes(&space); EXPECT_EQ(space.planes_size(), 0); auto* plane1 = space.add_planes(); plane1->set_name("p1"); plane1->add_lines()->set_name("p1l1"); plane1->add_lines()->set_name("p1l2"); auto* plane2 = space.add_planes(); plane2->set_name("p2"); auto* plane3 = space.add_planes(); plane3->set_name("p3"); plane3->add_lines()->set_name("p3l1"); auto* plane4 = space.add_planes(); plane4->set_name("p4"); RemoveEmptyPlanes(&space); ASSERT_EQ(space.planes_size(), 2); EXPECT_EQ(space.planes(0).name(), "p1"); EXPECT_EQ(space.planes(1).name(), "p3"); } TEST(XPlaneUtilsTest, RemoveEmptyLines) { XPlane plane; RemoveEmptyLines(&plane); EXPECT_EQ(plane.lines_size(), 0); auto* line1 = plane.add_lines(); line1->set_name("l1"); line1->add_events(); line1->add_events(); auto* line2 = plane.add_lines(); line2->set_name("l2"); auto* line3 = plane.add_lines(); line3->set_name("l3"); line3->add_events(); auto* line4 = plane.add_lines(); line4->set_name("l4"); RemoveEmptyLines(&plane); ASSERT_EQ(plane.lines_size(), 2); EXPECT_EQ(plane.lines(0).name(), "l1"); EXPECT_EQ(plane.lines(1).name(), "l3"); } TEST(XPlaneUtilsTest, RemoveLine) { XPlane plane; const XLine* line1 = plane.add_lines(); const XLine* line2 = plane.add_lines(); const XLine* line3 = plane.add_lines(); RemoveLine(&plane, line2); ASSERT_EQ(plane.lines_size(), 2); EXPECT_EQ(&plane.lines(0), line1); EXPECT_EQ(&plane.lines(1), line3); } TEST(XPlaneUtilsTest, RemoveEvents) { XLine line; const XEvent* event1 = line.add_events(); const XEvent* event2 = line.add_events(); const XEvent* event3 = line.add_events(); const XEvent* event4 = line.add_events(); RemoveEvents(&line, {event1, event3}); ASSERT_EQ(line.events_size(), 2); EXPECT_EQ(&line.events(0), event2); EXPECT_EQ(&line.events(1), event4); } TEST(XPlaneUtilsTest, SortXPlaneTest) { XPlane plane; XLine* line = plane.add_lines(); *line->add_events() = CreateEvent(200, 100); *line->add_events() = CreateEvent(100, 100); *line->add_events() = CreateEvent(120, 50); *line->add_events() = CreateEvent(120, 30); SortXPlane(&plane); ASSERT_EQ(plane.lines_size(), 1); ASSERT_EQ(plane.lines(0).events_size(), 4); EXPECT_EQ(plane.lines(0).events(0).offset_ps(), 100); EXPECT_EQ(plane.lines(0).events(0).duration_ps(), 100); EXPECT_EQ(plane.lines(0).events(1).offset_ps(), 120); EXPECT_EQ(plane.lines(0).events(1).duration_ps(), 50); EXPECT_EQ(plane.lines(0).events(2).offset_ps(), 120); EXPECT_EQ(plane.lines(0).events(2).duration_ps(), 30); EXPECT_EQ(plane.lines(0).events(3).offset_ps(), 200); EXPECT_EQ(plane.lines(0).events(3).duration_ps(), 100); } namespace { XLineBuilder CreateXLine(XPlaneBuilder* plane, absl::string_view name, absl::string_view display, int64_t id, int64_t timestamp_ns) { XLineBuilder line = plane->GetOrCreateLine(id); line.SetName(name); line.SetTimestampNs(timestamp_ns); line.SetDisplayNameIfEmpty(display); return line; } XEventBuilder CreateXEvent(XPlaneBuilder* plane, XLineBuilder line, absl::string_view event_name, std::optional<absl::string_view> display, int64_t offset_ns, int64_t duration_ns) { XEventMetadata* event_metadata = plane->GetOrCreateEventMetadata(event_name); if (display) event_metadata->set_display_name(std::string(*display)); XEventBuilder event = line.AddEvent(*event_metadata); event.SetOffsetNs(offset_ns); event.SetDurationNs(duration_ns); return event; } template <typename T, typename V> void CreateXStats(XPlaneBuilder* plane, T* stats_owner, absl::string_view stats_name, V stats_value) { stats_owner->AddStatValue(*plane->GetOrCreateStatMetadata(stats_name), stats_value); } void CheckXLine(const XLine& line, absl::string_view name, absl::string_view display, int64_t start_time_ns, int64_t events_size) { EXPECT_EQ(line.name(), name); EXPECT_EQ(line.display_name(), display); EXPECT_EQ(line.timestamp_ns(), start_time_ns); EXPECT_EQ(line.events_size(), events_size); } void CheckXEvent(const XEvent& event, const XPlane& plane, absl::string_view name, absl::string_view display, int64_t offset_ns, int64_t duration_ns, int64_t stats_size) { const XEventMetadata& event_metadata = plane.event_metadata().at(event.metadata_id()); EXPECT_EQ(event_metadata.name(), name); EXPECT_EQ(event_metadata.display_name(), display); EXPECT_EQ(event.offset_ps(), NanoToPico(offset_ns)); EXPECT_EQ(event.duration_ps(), NanoToPico(duration_ns)); EXPECT_EQ(event.stats_size(), stats_size); } } TEST(XPlaneUtilsTest, MergeXPlaneTest) { XPlane src_plane, dst_plane; constexpr int64_t kLineIdOnlyInSrcPlane = 1LL; constexpr int64_t kLineIdOnlyInDstPlane = 2LL; constexpr int64_t kLineIdInBothPlanes = 3LL; constexpr int64_t kLineIdInBothPlanes2 = 4LL; { XPlaneBuilder src(&src_plane); CreateXStats(&src, &src, "plane_stat1", 1); CreateXStats(&src, &src, "plane_stat3", 3.0); auto l1 = CreateXLine(&src, "l1", "d1", kLineIdOnlyInSrcPlane, 100); auto e1 = CreateXEvent(&src, l1, "event1", "display1", 1, 2); CreateXStats(&src, &e1, "event_stat1", 2.0); auto e2 = CreateXEvent(&src, l1, "event2", std::nullopt, 3, 4); CreateXStats(&src, &e2, "event_stat2", 3); auto l2 = CreateXLine(&src, "l2", "d2", kLineIdInBothPlanes, 200); auto e3 = CreateXEvent(&src, l2, "event3", std::nullopt, 5, 7); CreateXStats(&src, &e3, "event_stat3", 2.0); auto e4 = CreateXEvent(&src, l2, "event4", std::nullopt, 6, 8); CreateXStats(&src, &e4, "event_stat4", 3); CreateXStats(&src, &e4, "event_stat5", 3); auto l5 = CreateXLine(&src, "l5", "d5", kLineIdInBothPlanes2, 700); CreateXEvent(&src, l5, "event51", std::nullopt, 9, 10); CreateXEvent(&src, l5, "event52", std::nullopt, 11, 12); } { XPlaneBuilder dst(&dst_plane); CreateXStats(&dst, &dst, "plane_stat2", 2); CreateXStats(&dst, &dst, "plane_stat3", 4); auto l3 = CreateXLine(&dst, "l3", "d3", kLineIdOnlyInDstPlane, 300); auto e5 = CreateXEvent(&dst, l3, "event5", std::nullopt, 11, 2); CreateXStats(&dst, &e5, "event_stat6", 2.0); auto e6 = CreateXEvent(&dst, l3, "event6", std::nullopt, 13, 4); CreateXStats(&dst, &e6, "event_stat7", 3); auto l2 = CreateXLine(&dst, "l4", "d4", kLineIdInBothPlanes, 400); auto e7 = CreateXEvent(&dst, l2, "event7", std::nullopt, 15, 7); CreateXStats(&dst, &e7, "event_stat8", 2.0); auto e8 = CreateXEvent(&dst, l2, "event8", "display8", 16, 8); CreateXStats(&dst, &e8, "event_stat9", 3); auto l6 = CreateXLine(&dst, "l6", "d6", kLineIdInBothPlanes2, 300); CreateXEvent(&dst, l6, "event61", std::nullopt, 21, 10); CreateXEvent(&dst, l6, "event62", std::nullopt, 22, 12); } MergePlanes(src_plane, &dst_plane); XPlaneVisitor plane(&dst_plane); EXPECT_EQ(dst_plane.lines_size(), 4); EXPECT_EQ(dst_plane.stats_size(), 3); absl::flat_hash_map<absl::string_view, absl::string_view> plane_stats; plane.ForEachStat([&](const XStatVisitor& stat) { if (stat.Name() == "plane_stat1") { EXPECT_EQ(stat.IntValue(), 1); } else if (stat.Name() == "plane_stat2") { EXPECT_EQ(stat.IntValue(), 2); } else if (stat.Name() == "plane_stat3") { EXPECT_EQ(stat.DoubleValue(), 3.0); } else { EXPECT_TRUE(false); } }); EXPECT_EQ(dst_plane.stat_metadata_size(), 12); { const XLine& line = dst_plane.lines(0); CheckXLine(line, "l3", "d3", 300, 2); CheckXEvent(line.events(0), dst_plane, "event5", "", 11, 2, 1); CheckXEvent(line.events(1), dst_plane, "event6", "", 13, 4, 1); } { const XLine& line = dst_plane.lines(1); CheckXLine(line, "l4", "d4", 200, 4); CheckXEvent(line.events(0), dst_plane, "event7", "", 215, 7, 1); CheckXEvent(line.events(1), dst_plane, "event8", "display8", 216, 8, 1); CheckXEvent(line.events(2), dst_plane, "event3", "", 5, 7, 1); CheckXEvent(line.events(3), dst_plane, "event4", "", 6, 8, 2); } { const XLine& line = dst_plane.lines(2); CheckXLine(line, "l6", "d6", 300, 4); CheckXEvent(line.events(0), dst_plane, "event61", "", 21, 10, 0); CheckXEvent(line.events(1), dst_plane, "event62", "", 22, 12, 0); CheckXEvent(line.events(2), dst_plane, "event51", "", 409, 10, 0); CheckXEvent(line.events(3), dst_plane, "event52", "", 411, 12, 0); } { const XLine& line = dst_plane.lines(3); CheckXLine(line, "l1", "d1", 100, 2); CheckXEvent(line.events(0), dst_plane, "event1", "display1", 1, 2, 1); CheckXEvent(line.events(1), dst_plane, "event2", "", 3, 4, 1); } } TEST(XPlaneUtilsTest, FindPlanesWithPrefix) { XSpace xspace; FindOrAddMutablePlaneWithName(&xspace, "test-prefix:0"); FindOrAddMutablePlaneWithName(&xspace, "test-prefix:1"); FindOrAddMutablePlaneWithName(&xspace, "test-prefix:2"); FindOrAddMutablePlaneWithName(&xspace, "test-prefix:3"); XPlane* p4 = FindOrAddMutablePlaneWithName(&xspace, "test-do-not-include:0"); std::vector<const XPlane*> xplanes = FindPlanesWithPrefix(xspace, "test-prefix"); ASSERT_EQ(4, xplanes.size()); for (const XPlane* plane : xplanes) { ASSERT_NE(p4, plane); } } TEST(XplaneUtilsTest, FindMutablePlanesWithPrefix) { XSpace xspace; FindOrAddMutablePlaneWithName(&xspace, "test-prefix:0"); FindOrAddMutablePlaneWithName(&xspace, "test-prefix:1"); FindOrAddMutablePlaneWithName(&xspace, "test-prefix:2"); FindOrAddMutablePlaneWithName(&xspace, "test-prefix:3"); XPlane* p4 = FindOrAddMutablePlaneWithName(&xspace, "test-do-not-include:0"); std::vector<XPlane*> xplanes = FindMutablePlanesWithPrefix(&xspace, "test-prefix"); ASSERT_EQ(4, xplanes.size()); for (XPlane* plane : xplanes) { ASSERT_NE(p4, plane); } } TEST(XplaneUtilsTest, FindPlanesWithPredicate) { XSpace xspace; FindOrAddMutablePlaneWithName(&xspace, "test-prefix:0"); XPlane* p1 = FindOrAddMutablePlaneWithName(&xspace, "test-prefix:1"); std::vector<const XPlane*> xplanes = FindPlanes( xspace, [](const XPlane& xplane) { return xplane.name() == "test-prefix:1"; }); ASSERT_EQ(1, xplanes.size()); ASSERT_EQ(p1, xplanes[0]); } TEST(XplaneUtilsTest, FindMutablePlanesWithPredicate) { XSpace xspace; FindOrAddMutablePlaneWithName(&xspace, "test-prefix:0"); XPlane* p1 = FindOrAddMutablePlaneWithName(&xspace, "test-prefix:1"); std::vector<XPlane*> xplanes = FindMutablePlanes( &xspace, [](XPlane& xplane) { return xplane.name() == "test-prefix:1"; }); ASSERT_EQ(1, xplanes.size()); ASSERT_EQ(p1, xplanes[0]); } TEST(XplaneUtilsTest, TestAggregateXPlanes) { XPlane xplane; XPlaneBuilder builder(&xplane); auto& event_metadata1 = *builder.GetOrCreateEventMetadata("EventMetadata1"); auto& event_metadata2 = *builder.GetOrCreateEventMetadata("EventMetadata2"); auto& event_metadata3 = *builder.GetOrCreateEventMetadata("EventMetadata3"); auto& event_metadata4 = *builder.GetOrCreateEventMetadata("EventMetadata4"); auto& step_event_metadata1 = *builder.GetOrCreateEventMetadata("StepEventMetadata1"); auto& step_event_metadata2 = *builder.GetOrCreateEventMetadata("StepEventMetadata2"); XLineBuilder step_line = builder.GetOrCreateLine(1); step_line.SetName(kStepLineName); XEventBuilder step1 = step_line.AddEvent(step_event_metadata1); step1.SetOffsetNs(0); step1.SetDurationNs(10); XEventBuilder step2 = step_line.AddEvent(step_event_metadata2); step2.SetOffsetNs(10); step2.SetDurationNs(10); XLineBuilder line = builder.GetOrCreateLine(2); line.SetName(kTensorFlowOpLineName); XEventBuilder event1 = line.AddEvent(event_metadata1); event1.SetOffsetNs(0); event1.SetDurationNs(5); XEventBuilder event3 = line.AddEvent(event_metadata3); event3.SetOffsetNs(0); event3.SetDurationNs(2); XEventBuilder event2 = line.AddEvent(event_metadata2); event2.SetOffsetNs(5); event2.SetDurationNs(5); XEventBuilder event4 = line.AddEvent(event_metadata2); event4.SetOffsetNs(10); event4.SetDurationNs(5); XEventBuilder event5 = line.AddEvent(event_metadata4); event5.SetOffsetNs(15); event5.SetDurationNs(6); XEventBuilder event6 = line.AddEvent(event_metadata1); event6.SetOffsetNs(15); event6.SetDurationNs(4); XEventBuilder event7 = line.AddEvent(event_metadata3); event7.SetOffsetNs(15); event7.SetDurationNs(3); XPlane aggregated_xplane; AggregateXPlane(xplane, aggregated_xplane); #if defined(PLATFORM_GOOGLE) ASSERT_THAT( aggregated_xplane, IgnoringFields( {"tensorflow.profiler.XEvent.metadata_id", "tensorflow.profiler.XPlane.event_metadata"}, IgnoringRepeatedFieldOrdering(EqualsProto( R"pb(lines { id: 1 name: "Steps" events { metadata_id: 1 offset_ps: 0 duration_ps: 10000 } events { metadata_id: 2 offset_ps: 10000 duration_ps: 10000 } } lines { id: 2 name: "Framework Ops" events { metadata_id: 3 duration_ps: 10000 stats { metadata_id: 2 int64_value: 5000 } num_occurrences: 2 } events { metadata_id: 4 duration_ps: 5000 stats { metadata_id: 2 int64_value: 2000 } num_occurrences: 2 } events { metadata_id: 5 duration_ps: 9000 stats { metadata_id: 2 int64_value: 4000 } stats { metadata_id: 3 int64_value: 4000 } num_occurrences: 2 } events { metadata_id: 6 duration_ps: 6000 stats { metadata_id: 3 int64_value: 2000 } num_occurrences: 1 } } stat_metadata { key: 1 value { id: 1 name: "total_profile_duration_ps" } } stat_metadata { key: 2 value { id: 2 name: "min_duration_ps" } } stat_metadata { key: 3 value { id: 3 name: "self_duration_ps" } } stat_metadata { key: 4 value { id: 4 name: "group_id" } } stats { metadata_id: 1 uint64_value: 21000 } )pb")))); std::vector<std::string> event_metadata_names; for (const auto& [id, event_metadata] : aggregated_xplane.event_metadata()) { event_metadata_names.push_back(event_metadata.name()); } EXPECT_THAT(event_metadata_names, UnorderedElementsAre("EventMetadata1", "EventMetadata2", "EventMetadata3", "EventMetadata4", "StepEventMetadata1", "StepEventMetadata2")); #endif } TEST(XPlanuUtilsTest, TestInstantEventDoesNotFail) { XPlane xplane; XPlaneBuilder xplane_builder(&xplane); XEventMetadata* event_metadata1 = xplane_builder.GetOrCreateEventMetadata(1); XEventMetadata* event_metadata2 = xplane_builder.GetOrCreateEventMetadata(2); XLineBuilder line = xplane_builder.GetOrCreateLine(1); line.SetName(kTensorFlowOpLineName); XEventBuilder event1 = line.AddEvent(*event_metadata1); XEventBuilder event2 = line.AddEvent(*event_metadata2); event1.SetOffsetNs(1); event1.SetDurationNs(0); event2.SetOffsetNs(1); event2.SetDurationNs(0); XPlane aggregated_xplane; AggregateXPlane(xplane, aggregated_xplane); EXPECT_THAT(aggregated_xplane.lines(), UnorderedElementsAre(Property(&XLine::events, SizeIs(2)))); } TEST(XplaneutilsTest, TestEventMetadataStatsAreCopied) { XPlane xplane; XPlaneBuilder xplane_builder(&xplane); XEventMetadata* event_metadata = xplane_builder.GetOrCreateEventMetadata(1); XStatsBuilder<XEventMetadata> stats(event_metadata, &xplane_builder); stats.AddStatValue( *xplane_builder.GetOrCreateStatMetadata(GetStatTypeStr(StatType::kTfOp)), "TestFunction"); XLineBuilder line = xplane_builder.GetOrCreateLine(1); line.SetName(kTensorFlowOpLineName); XEventBuilder event = line.AddEvent(*event_metadata); event.SetDurationNs(0); event.SetOffsetNs(0); XPlane aggregated_xplane; AggregateXPlane(xplane, aggregated_xplane); XPlaneVisitor visitor = CreateTfXPlaneVisitor(&aggregated_xplane); XEventMetadataVisitor metadata_visitor(&visitor, visitor.GetEventMetadata(1)); std::optional<XStatVisitor> stat = metadata_visitor.GetStat(StatType::kTfOp); ASSERT_TRUE(stat.has_value()); EXPECT_EQ(stat->Name(), "tf_op"); EXPECT_EQ(stat->StrOrRefValue(), "TestFunction"); } TEST(XplaneutilsTest, TestEventMetadataStatsAreCopiedForRefValue) { XPlane xplane; XPlaneBuilder xplane_builder(&xplane); XEventMetadata* event_metadata = xplane_builder.GetOrCreateEventMetadata(1); XStatsBuilder<XEventMetadata> stats(event_metadata, &xplane_builder); stats.AddStatValue( *xplane_builder.GetOrCreateStatMetadata(GetStatTypeStr(StatType::kTfOp)), *xplane_builder.GetOrCreateStatMetadata("TestFunction")); XLineBuilder line = xplane_builder.GetOrCreateLine(1); line.SetName(kTensorFlowOpLineName); XEventBuilder event = line.AddEvent(*event_metadata); event.SetDurationNs(0); event.SetOffsetNs(0); XPlane aggregated_xplane; AggregateXPlane(xplane, aggregated_xplane); XPlaneVisitor visitor = CreateTfXPlaneVisitor(&aggregated_xplane); XEventMetadataVisitor metadata_visitor(&visitor, visitor.GetEventMetadata(1)); std::optional<XStatVisitor> stat = metadata_visitor.GetStat(StatType::kTfOp); ASSERT_TRUE(stat.has_value()); EXPECT_EQ(stat->Name(), "tf_op"); EXPECT_EQ(stat->StrOrRefValue(), "TestFunction"); } TEST(XplaneutilsTest, TestIsXSpaceGrouped) { XSpace space; { XPlaneBuilder p1(space.add_planes()); auto l1 = CreateXLine(&p1, "l1", "d1", 1, 100); auto e1 = CreateXEvent(&p1, l1, "event1", "display1", 1, 2); CreateXStats(&p1, &e1, "event_stat1", 2.0); } EXPECT_FALSE(IsXSpaceGrouped(space)); { XPlaneBuilder p2(space.add_planes()); auto l2 = CreateXLine(&p2, "l2", "d2", 1, 100); auto e2 = CreateXEvent(&p2, l2, "event2", "display2", 1, 2); CreateXStats(&p2, &e2, "group_id", 1); } LOG(ERROR) << space.DebugString(); EXPECT_TRUE(IsXSpaceGrouped(space)); } TEST(XplaneutilsTest, TestIsHostPlane) { XSpace xspace; auto xplane_host_thread = FindOrAddMutablePlaneWithName(&xspace, "/host:CPU"); auto xplane_host_cpu = FindOrAddMutablePlaneWithName(&xspace, "Host CPUs"); auto xplane_tfstreamz = FindOrAddMutablePlaneWithName(&xspace, "/host:tfstreamz"); auto xplane_metadata = FindOrAddMutablePlaneWithName(&xspace, "/host:metadata"); auto xplane_syscalls = FindOrAddMutablePlaneWithName(&xspace, "Syscalls"); auto xplane_python_tracer = FindOrAddMutablePlaneWithName(&xspace, "/host:python-tracer"); auto xplane_custom_prefix = FindOrAddMutablePlaneWithName(&xspace, "/device:CUSTOM:123"); auto xplane_legacy_custom = FindOrAddMutablePlaneWithName(&xspace, "/custom:456"); auto xplane_cupti = FindOrAddMutablePlaneWithName(&xspace, "/host:CUPTI"); EXPECT_TRUE(IsHostPlane(*xplane_host_thread)); EXPECT_TRUE(IsHostPlane(*xplane_host_cpu)); EXPECT_TRUE(IsHostPlane(*xplane_tfstreamz)); EXPECT_TRUE(IsHostPlane(*xplane_metadata)); EXPECT_TRUE(IsHostPlane(*xplane_syscalls)); EXPECT_TRUE(IsHostPlane(*xplane_python_tracer)); EXPECT_FALSE(IsHostPlane(*xplane_custom_prefix)); EXPECT_FALSE(IsHostPlane(*xplane_legacy_custom)); EXPECT_TRUE(IsHostPlane(*xplane_cupti)); } TEST(XplaneutilsTest, TestIsDevicePlane) { XSpace xspace; auto xplane_host_thread = FindOrAddMutablePlaneWithName(&xspace, "/host:CPU"); auto xplane_device_thread = FindOrAddMutablePlaneWithName(&xspace, "/device:TPU"); auto xplane_task_env_thread = FindOrAddMutablePlaneWithName(&xspace, "Task Environment"); auto xplane_custom_prefix = FindOrAddMutablePlaneWithName(&xspace, "/device:CUSTOM:123"); auto xplane_legacy_custom = FindOrAddMutablePlaneWithName(&xspace, "/custom:456"); EXPECT_FALSE(IsDevicePlane(*xplane_host_thread)); EXPECT_FALSE(IsDevicePlane(*xplane_task_env_thread)); EXPECT_TRUE(IsDevicePlane(*xplane_device_thread)); EXPECT_TRUE(IsDevicePlane(*xplane_custom_prefix)); EXPECT_TRUE(IsDevicePlane(*xplane_legacy_custom)); } TEST(XplaneUtilsTest, XPlaneGroupingPropagatesStep) { XPlane xplane; XPlaneBuilder builder(&xplane); XStatMetadata* kGroupId = builder.GetOrCreateStatMetadata(GetStatTypeStr(StatType::kGroupId)); XLineBuilder line = builder.GetOrCreateLine(1); line.SetName(kStepLineName); XEventMetadata* event_metadata = builder.GetOrCreateEventMetadata(1); event_metadata->set_name("Step 1"); XEventBuilder event_builder = line.AddEvent(*event_metadata); event_builder.AddStatValue(*kGroupId, 1); event_builder.SetDurationNs(100); event_builder.SetOffsetNs(100); XEventMetadata* event_metadata2 = builder.GetOrCreateEventMetadata(2); event_metadata2->set_name("Step 2"); XEventBuilder event_builder2 = line.AddEvent(*event_metadata2); event_builder2.AddStatValue(*kGroupId, 2); event_builder2.SetDurationNs(100); event_builder2.SetOffsetNs(300); XPlane aggregated_xplane; AggregateXPlane(xplane, aggregated_xplane); #if defined(PLATFORM_GOOGLE) EXPECT_THAT(aggregated_xplane, Partially(EqualsProto(xplane))); #endif } TEST(XplaneUtilsTest, XPlaneGroupingPropagatesGroupId) { XPlane xplane; XPlaneBuilder builder(&xplane); XEventMetadata* event_metadata1 = builder.GetOrCreateEventMetadata(1); event_metadata1->set_name("EventMetadata1"); XStatMetadata* kGroupId = builder.GetOrCreateStatMetadata(GetStatTypeStr(StatType::kGroupId)); XLineBuilder line = builder.GetOrCreateLine(1); line.SetName(kXlaOpLineName); XEventBuilder event_builder = line.AddEvent(*event_metadata1); event_builder.SetDurationNs(100); event_builder.SetOffsetNs(100); event_builder.AddStatValue(*kGroupId, 1); XEventBuilder event_builder2 = line.AddEvent(*event_metadata1); event_builder2.AddStatValue(*kGroupId, 2); event_builder2.SetDurationNs(100); event_builder2.SetOffsetNs(300); XPlane aggregated_xplane; AggregateXPlane(xplane, aggregated_xplane); EXPECT_THAT(aggregated_xplane.lines(), UnorderedElementsAre(Property(&XLine::events, SizeIs(2)))); XPlaneVisitor visitor = CreateTfXPlaneVisitor(&aggregated_xplane); visitor.ForEachLine([&](const XLineVisitor& line) { line.ForEachEvent([&](const XEventVisitor& event) { EXPECT_TRUE(event.GetStat(StatType::kGroupId).has_value()); }); }); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/xplane_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/xplane_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0d905a1f-160e-4f33-a14f-417150c8fc86
cpp
tensorflow/tensorflow
xplane_builder
third_party/xla/xla/tsl/profiler/utils/xplane_builder.cc
third_party/xla/xla/tsl/profiler/utils/xplane_builder_test.cc
#include "xla/tsl/profiler/utils/xplane_builder.h" #include <algorithm> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "xla/tsl/profiler/utils/math_utils.h" #include "xla/tsl/profiler/utils/timespan.h" #include "tsl/platform/types.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tsl { namespace profiler { XPlaneBuilder::XPlaneBuilder(XPlane* plane) : XStatsBuilder<XPlane>(plane, this), plane_(plane) { for (auto& id_and_metadata : *plane->mutable_event_metadata()) { auto& metadata = id_and_metadata.second; last_event_metadata_id_ = std::max<int64_t>(last_event_metadata_id_, metadata.id()); if (!metadata.name().empty()) { event_metadata_by_name_.try_emplace(metadata.name(), &metadata); } } for (auto& id_and_metadata : *plane->mutable_stat_metadata()) { auto& metadata = id_and_metadata.second; last_stat_metadata_id_ = std::max<int64_t>(last_stat_metadata_id_, metadata.id()); if (!metadata.name().empty()) { stat_metadata_by_name_.try_emplace(metadata.name(), &metadata); } } for (XLine& line : *plane->mutable_lines()) { lines_by_id_.try_emplace(line.id(), &line); } } XEventMetadata* XPlaneBuilder::GetOrCreateEventMetadata(int64_t metadata_id) { XEventMetadata& metadata = (*plane_->mutable_event_metadata())[metadata_id]; metadata.set_id(metadata_id); return &metadata; } XEventMetadata* XPlaneBuilder::CreateEventMetadata() { return GetOrCreateEventMetadata(++last_event_metadata_id_); } XEventMetadata* XPlaneBuilder::GetOrCreateEventMetadata( absl::string_view name) { XEventMetadata*& metadata = event_metadata_by_name_[name]; if (metadata == nullptr) { metadata = CreateEventMetadata(); metadata->set_name(std::string(name)); } return metadata; } XEventMetadata* XPlaneBuilder::GetOrCreateEventMetadata(std::string&& name) { XEventMetadata*& metadata = event_metadata_by_name_[name]; if (metadata == nullptr) { metadata = CreateEventMetadata(); metadata->set_name(std::move(name)); } return metadata; } std::vector<XEventMetadata*> XPlaneBuilder::GetOrCreateEventsMetadata( const std::vector<absl::string_view>& names) { std::vector<XEventMetadata*> metadata; metadata.reserve(names.size()); for (absl::string_view name : names) { metadata.push_back(GetOrCreateEventMetadata(name)); } return metadata; } XEventMetadata* XPlaneBuilder::GetEventMetadata(absl::string_view name) const { auto result = event_metadata_by_name_.find(name); if (result == event_metadata_by_name_.end()) return nullptr; return result->second; } XStatMetadata* XPlaneBuilder::GetStatMetadata(absl::string_view name) const { auto result = stat_metadata_by_name_.find(name); if (result == stat_metadata_by_name_.end()) return nullptr; return result->second; } XStatMetadata* XPlaneBuilder::GetOrCreateStatMetadata(int64_t metadata_id) { XStatMetadata& metadata = (*plane_->mutable_stat_metadata())[metadata_id]; metadata.set_id(metadata_id); return &metadata; } const XStatMetadata* XPlaneBuilder::GetStatMetadata(int64_t metadata_id) const { auto result = plane_->stat_metadata().find(metadata_id); if (result == plane_->stat_metadata().end()) return nullptr; return &(result->second); } XStatMetadata* XPlaneBuilder::CreateStatMetadata() { return GetOrCreateStatMetadata(++last_stat_metadata_id_); } XStatMetadata* XPlaneBuilder::GetOrCreateStatMetadata(absl::string_view name) { XStatMetadata*& metadata = stat_metadata_by_name_[name]; if (metadata == nullptr) { metadata = CreateStatMetadata(); metadata->set_name(std::string(name)); } return metadata; } XStatMetadata* XPlaneBuilder::GetOrCreateStatMetadata(std::string&& name) { XStatMetadata*& metadata = stat_metadata_by_name_[name]; if (metadata == nullptr) { metadata = CreateStatMetadata(); metadata->set_name(std::move(name)); } return metadata; } XLineBuilder XPlaneBuilder::GetOrCreateLine(int64_t line_id) { XLine*& line = lines_by_id_[line_id]; if (line == nullptr) { line = plane_->add_lines(); line->set_id(line_id); } return XLineBuilder(line, this); } XEventBuilder XLineBuilder::AddEvent(const Timespan& timespan, const XEventMetadata& metadata) { XEvent* event = line_->add_events(); event->set_metadata_id(metadata.id()); XEventBuilder builder(line_, plane_, event); builder.SetOffsetPs(timespan.begin_ps()); builder.SetDurationPs(timespan.duration_ps()); return builder; } XEventBuilder XLineBuilder::AddEvent(const XEventMetadata& metadata) { XEvent* event = line_->add_events(); event->set_metadata_id(metadata.id()); return XEventBuilder(line_, plane_, event); } XEventBuilder XLineBuilder::AddEvent(const XEvent& event) { XEvent* new_event = line_->add_events(); *new_event = event; return XEventBuilder(line_, plane_, new_event); } void XLineBuilder::SetTimestampNsAndAdjustEventOffsets(int64_t timestamp_ns) { int64_t offset_ps = NanoToPico(line_->timestamp_ns() - timestamp_ns); line_->set_timestamp_ns(timestamp_ns); if (offset_ps) { for (auto& event : *line_->mutable_events()) { event.set_offset_ps(event.offset_ps() + offset_ps); } } } } }
#include "xla/tsl/profiler/utils/xplane_builder.h" #include <string> #include "absl/strings/string_view.h" #include "xla/tsl/profiler/utils/xplane_visitor.h" #include "tsl/platform/test.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tsl { namespace profiler { namespace { TEST(TimespanTests, NonInstantSpanIncludesSingleTimeTests) { XPlane plane; XPlaneBuilder xplane_builder(&plane); XLineBuilder xline_builder = xplane_builder.GetOrCreateLine(0); XEventBuilder event_builder = xline_builder.AddEvent( *xplane_builder.GetOrCreateEventMetadata("1st event")); constexpr auto kBoolStat = true; constexpr auto kInt32Stat = int32_t{1234}; constexpr auto kInt64Stat = int64_t{1234} << 32; constexpr auto kUint32Stat = uint32_t{5678}; constexpr auto kUint64Stat = uint64_t{5678} << 32; constexpr auto kFloatStat = 0.5f; constexpr auto kDoubleStat = 1.0; constexpr auto kStringStat = "abc"; constexpr auto kRefStat = "referenced abc"; event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("bool stat"), kBoolStat); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("int32 stat"), kInt32Stat); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("int64 stat"), kInt64Stat); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("uint32 stat"), kUint32Stat); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("uint64 stat"), kUint64Stat); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("string stat"), kStringStat); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("float stat"), kFloatStat); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("double stat"), kDoubleStat); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("ref stat"), *xplane_builder.GetOrCreateStatMetadata(kRefStat)); XPlaneVisitor xplane_visitor(&plane); EXPECT_EQ(xplane_visitor.NumLines(), 1); int num_stats = 0; xplane_visitor.ForEachLine([&](const XLineVisitor& xline) { xline.ForEachEvent([&](const XEventVisitor& xevent) { EXPECT_EQ(xevent.Name(), "1st event"); xevent.ForEachStat([&](const XStatVisitor& stat) { if (stat.Name() == "bool stat") { EXPECT_EQ(stat.BoolValue(), kBoolStat); num_stats++; } else if (stat.Name() == "int32 stat") { EXPECT_EQ(stat.IntValue(), kInt32Stat); EXPECT_EQ(stat.IntOrUintValue(), kInt32Stat); num_stats++; } else if (stat.Name() == "int64 stat") { EXPECT_EQ(stat.IntValue(), kInt64Stat); EXPECT_EQ(stat.IntOrUintValue(), kInt64Stat); num_stats++; } else if (stat.Name() == "uint32 stat") { EXPECT_EQ(stat.UintValue(), kUint32Stat); EXPECT_EQ(stat.IntOrUintValue(), kUint32Stat); num_stats++; } else if (stat.Name() == "uint64 stat") { EXPECT_EQ(stat.UintValue(), kUint64Stat); EXPECT_EQ(stat.IntOrUintValue(), kUint64Stat); num_stats++; } else if (stat.Name() == "string stat") { EXPECT_EQ(stat.StrOrRefValue(), kStringStat); num_stats++; } else if (stat.Name() == "float stat") { EXPECT_EQ(stat.DoubleValue(), kFloatStat); num_stats++; } else if (stat.Name() == "double stat") { EXPECT_EQ(stat.DoubleValue(), kDoubleStat); num_stats++; } else if (stat.Name() == "ref stat") { EXPECT_EQ(stat.StrOrRefValue(), kRefStat); num_stats++; } }); }); }); EXPECT_EQ(num_stats, 9); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/xplane_builder.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/xplane_builder_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1d8e0070-730d-42fb-a5b6-de175a72d79a
cpp
tensorflow/tensorflow
tf_op_utils
third_party/xla/xla/tsl/profiler/utils/tf_op_utils.cc
third_party/xla/xla/tsl/profiler/utils/tf_op_utils_test.cc
#include "xla/tsl/profiler/utils/tf_op_utils.h" #include <cstdint> #include <optional> #include <string> #include <vector> #include "absl/strings/ascii.h" #include "absl/strings/match.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "tsl/platform/regexp.h" namespace tsl { namespace profiler { namespace { const absl::string_view kIterator = "Iterator"; const absl::string_view kSeparator = "::"; constexpr char kNameScopeSeparator = '/'; constexpr char kOpNameSuffixSeparator = '_'; bool IsInteger(absl::string_view str) { int64_t unused; return absl::SimpleAtoi(str, &unused); } absl::string_view DeriveOpType(absl::string_view full_op_name) { std::vector<absl::string_view> name_scopes_and_op_name = absl::StrSplit(full_op_name, kNameScopeSeparator); absl::string_view op_name = name_scopes_and_op_name.back(); std::vector<absl::string_view> op_type_and_maybe_suffix = absl::StrSplit(op_name, kOpNameSuffixSeparator); absl::string_view maybe_suffix = op_type_and_maybe_suffix.back(); absl::string_view op_type = op_name; if (IsInteger(maybe_suffix)) { op_type = op_name.substr(0, op_name.size() - maybe_suffix.size() - 1); } return op_type; } std::optional<TfOp> GetMemcpyOp(absl::string_view tf_op_fullname) { TfOp tf_op; tf_op.name = tf_op_fullname; if (absl::StartsWithIgnoreCase(tf_op_fullname, "MEMCPYHToD")) { tf_op.category = Category::kMemcpyHToD; tf_op.type = kMemcpyHToDOp; return tf_op; } if (absl::StartsWithIgnoreCase(tf_op_fullname, "MEMCPYDToH")) { tf_op.category = Category::kMemcpyDToH; tf_op.type = kMemcpyDToHOp; return tf_op; } if (absl::StartsWithIgnoreCase(tf_op_fullname, "MEMCPYDToD")) { tf_op.category = Category::kMemcpyDToD; tf_op.type = kMemcpyDToDOp; return tf_op; } else if (absl::StartsWithIgnoreCase(tf_op_fullname, "MEMCPYHToH")) { tf_op.category = Category::kMemcpyHToH; tf_op.type = kMemcpyHToHOp; return tf_op; } return std::nullopt; } } const absl::string_view kUnknownOp = ""; const absl::string_view kDatasetOp = "Dataset"; const absl::string_view kMemcpyHToDOp = "MemcpyHToD"; const absl::string_view kMemcpyDToHOp = "MemcpyDToH"; const absl::string_view kMemcpyDToDOp = "MemcpyDToD"; const absl::string_view kMemcpyHToHOp = "MemcpyHToH"; bool IsTfOpName(absl::string_view op_name) { static const LazyRE2 kTfOpNameRegEx = {"[A-Za-z0-9.][A-Za-z0-9_.\\/>-]*"}; return RE2::FullMatch(op_name, *kTfOpNameRegEx); } bool IsTfOpType(absl::string_view op_type) { static const LazyRE2 kTfOpTypeRegEx = {"[A-Z_][a-zA-Z0-9_]*"}; return RE2::FullMatch(op_type, *kTfOpTypeRegEx); } bool IsJaxOpType(absl::string_view op_type) { static const LazyRE2 kJaxOpTypeRegEx = {"[a-z_][a-z0-9_]*(\\[.*\\])?"}; return RE2::FullMatch(op_type, *kJaxOpTypeRegEx); } bool IsJaxOpNameAndType(absl::string_view op_name, absl::string_view op_type) { if (op_name.empty() || !IsJaxOpType(op_type)) return false; std::vector<absl::string_view> split_result = absl::StrSplit(op_name, kNameScopeSeparator); return absl::StrContains(split_result.back(), op_type); } TfOp ParseTfOpFullname(absl::string_view tf_op_fullname) { TfOp tf_op = {Category::kUnknown, tf_op_fullname, kUnknownOp}; std::vector<absl::string_view> parts = absl::StrSplit(tf_op_fullname, absl::MaxSplits(':', 1)); if (parts.size() != 2) { if (std::optional<TfOp> tfop = GetMemcpyOp(parts[0]); tfop.has_value()) { return *tfop; } return tf_op; } if (parts[0] == kIterator) { tf_op.category = Category::kTfData; tf_op.type = kDatasetOp; return tf_op; } if (IsTfOpName(parts[0]) && IsTfOpType(parts[1])) { tf_op.category = Category::kTensorFlow; tf_op.name = parts[0]; tf_op.type = parts[1]; return tf_op; } absl::string_view op_type = parts[1].empty() ? DeriveOpType(parts[0]) : parts[1]; if (IsJaxOpType(op_type)) { tf_op.category = Category::kJax; tf_op.name = parts[0]; tf_op.type = op_type.substr(0, op_type.find('[')); return tf_op; } if (parts[1].empty()) { tf_op.category = Category::kTensorFlow; tf_op.name = parts[0]; tf_op.type = op_type; return tf_op; } return tf_op; } std::vector<absl::string_view> ParseTfNameScopes(absl::string_view tf_op_name) { std::vector<absl::string_view> name_scopes = absl::StrSplit(tf_op_name, kNameScopeSeparator); if (!name_scopes.empty()) name_scopes.pop_back(); return name_scopes; } std::vector<absl::string_view> ParseTfNameScopes(const TfOp& tf_op) { return ParseTfNameScopes(tf_op.name); } std::string TfOpEventName(const TfOp& tf_op) { std::string event_name; if (tf_op.category == Category::kUnknown) { event_name = std::string(absl::StripTrailingAsciiWhitespace(tf_op.name)); } else if (tf_op.category == Category::kTfData) { event_name = DatasetOpEventName(tf_op.name); } else { event_name = std::string(tf_op.type); } return event_name; } std::string TfOpEventName(absl::string_view tf_op_fullname) { return TfOpEventName(ParseTfOpFullname(tf_op_fullname)); } std::string DatasetOpEventName(absl::string_view full_name) { std::vector<absl::string_view> split_result = absl::StrSplit(full_name, kSeparator); return absl::StrCat(kIterator, kSeparator, split_result.back()); } std::string IteratorName(absl::string_view full_name) { std::vector<absl::string_view> split_result = absl::StrSplit(full_name, kSeparator); return std::string(split_result.back()); } std::vector<absl::string_view> ParseTensorShapes( absl::string_view tensor_shapes) { absl::ConsumePrefix(&tensor_shapes, "("); absl::ConsumeSuffix(&tensor_shapes, ")"); return absl::StrSplit(tensor_shapes, ';'); } } }
#include "xla/tsl/profiler/utils/tf_op_utils.h" #include <vector> #include "absl/strings/string_view.h" #include "tsl/platform/test.h" namespace tsl { namespace profiler { namespace { TEST(TfOpUtilsTest, TfOpTest) { const absl::string_view kName = "OpName:OpType"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kTensorFlow); EXPECT_EQ(tf_op.name, "OpName"); EXPECT_EQ(tf_op.type, "OpType"); EXPECT_EQ(TfOpEventName(kName), "OpType"); } TEST(TfOpUtilsTest, InternalTfOpTest) { const absl::string_view kName = "OpName:_InternalOpType"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kTensorFlow); EXPECT_EQ(tf_op.name, "OpName"); EXPECT_EQ(tf_op.type, "_InternalOpType"); EXPECT_EQ(TfOpEventName(kName), "_InternalOpType"); } TEST(TfOpUtilsTest, TfOpWithPathTest) { const absl::string_view kName = "path/to/name:OpType"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kTensorFlow); EXPECT_EQ(tf_op.name, "path/to/name"); EXPECT_EQ(tf_op.type, "OpType"); EXPECT_EQ(TfOpEventName(kName), "OpType"); } TEST(TfOpUtilsTest, ShortDatasetOpTest) { const absl::string_view kName = "Iterator::Batch"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kTfData); EXPECT_EQ(tf_op.name, kName); EXPECT_EQ(tf_op.type, kDatasetOp); EXPECT_EQ(TfOpEventName(kName), kName); } TEST(TfOpUtilsTest, LongDatasetOpTest) { const absl::string_view kName = "Iterator::Batch::Map::TfRecord"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kTfData); EXPECT_EQ(tf_op.name, kName); EXPECT_EQ(tf_op.type, kDatasetOp); EXPECT_EQ(TfOpEventName(kName), "Iterator::TfRecord"); } TEST(TfOpUtilsTest, TraceMeTest) { const absl::string_view kName = "MyTraceMe"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kUnknown); EXPECT_EQ(tf_op.name, kName); EXPECT_EQ(tf_op.type, kUnknownOp); EXPECT_EQ(TfOpEventName(kName), kName); } TEST(TfOpUtilsTest, TraceMeWithColonTest) { const absl::string_view kName = "RunStep/Server:54635"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kUnknown); EXPECT_EQ(tf_op.name, kName); EXPECT_EQ(tf_op.type, kUnknownOp); EXPECT_EQ(TfOpEventName(kName), kName); } TEST(TfOpUtilsTest, TraceMeWithDoubleColonTest) { const absl::string_view kName = "XLA::StartProgram"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kUnknown); EXPECT_EQ(tf_op.name, kName); EXPECT_EQ(tf_op.type, kUnknownOp); EXPECT_EQ(TfOpEventName(kName), kName); } TEST(TfOpUtilsTest, TraceMeWithTrailingWhitespaceTest) { const absl::string_view kName = "SessionRun "; const absl::string_view kNameTrimmed = "SessionRun"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kUnknown); EXPECT_EQ(tf_op.name, kName); EXPECT_EQ(tf_op.type, kUnknownOp); EXPECT_EQ(TfOpEventName(kName), kNameTrimmed); } TEST(TfOpUtilsTest, InfeedEnqueueTest) { const absl::string_view kName = "input_pipeline_task0/while/body/_1/InfeedQueue/enqueue/" "1:InfeedEnqueueTuple"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kTensorFlow); EXPECT_EQ(tf_op.name, "input_pipeline_task0/while/body/_1/InfeedQueue/enqueue/1"); EXPECT_EQ(tf_op.type, "InfeedEnqueueTuple"); EXPECT_EQ(TfOpEventName(kName), "InfeedEnqueueTuple"); EXPECT_TRUE(IsInfeedEnqueueOp(tf_op.type)); EXPECT_TRUE(IsInfeedEnqueueOp(tf_op)); } TEST(TfOpUtilsTest, MemcpyHToDTest) { const absl::string_view kName = "MemcpyHToD"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kMemcpyHToD); EXPECT_EQ(tf_op.name, kName); EXPECT_EQ(tf_op.type, kMemcpyHToDOp); EXPECT_EQ(TfOpEventName(kName), kName); EXPECT_TRUE(IsMemcpyHToDOp(tf_op.type)); EXPECT_TRUE(IsMemcpyHToDOp(tf_op)); } TEST(TfOpUtilsTest, MemcpyDToHTest) { const absl::string_view kName = "MemcpyDToH"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kMemcpyDToH); EXPECT_EQ(tf_op.name, kName); EXPECT_EQ(tf_op.type, kMemcpyDToHOp); EXPECT_EQ(TfOpEventName(kName), kName); EXPECT_TRUE(IsMemcpyDToHOp(tf_op)); } TEST(TfOpUtilsTest, MemcpyDToDTest) { const absl::string_view kName = "MemcpyDToD"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kMemcpyDToD); EXPECT_EQ(tf_op.name, kName); EXPECT_EQ(tf_op.type, kMemcpyDToDOp); EXPECT_EQ(TfOpEventName(kName), kName); EXPECT_TRUE(IsMemcpyDToDOp(tf_op)); } TEST(TfOpUtilsTest, MemcpyHToHTest) { const absl::string_view kName = "MemcpyHToH"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kMemcpyHToH); EXPECT_EQ(tf_op.name, kName); EXPECT_EQ(tf_op.type, kMemcpyHToHOp); EXPECT_EQ(TfOpEventName(kName), kName); EXPECT_TRUE(IsMemcpyHToHOp(tf_op)); } TEST(TfOpUtilsTest, JaxOpTest) { const absl::string_view kName = "op_name:op_type"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kJax); EXPECT_EQ(tf_op.name, "op_name"); EXPECT_EQ(tf_op.type, "op_type"); EXPECT_EQ(TfOpEventName(kName), "op_type"); } TEST(TfOpUtilsTest, JaxOpWithColonTest) { const absl::string_view kName = "op_name/op_type:"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kJax); EXPECT_EQ(tf_op.name, "op_name/op_type"); EXPECT_EQ(tf_op.type, "op_type"); EXPECT_EQ(TfOpEventName(kName), "op_type"); } TEST(TfOpUtilsTest, JaxOpNameTest) { const absl::string_view kOpName = "namescope/add"; const absl::string_view kOpType = "add"; EXPECT_TRUE(IsJaxOpNameAndType(kOpName, kOpType)); } TEST(TfOpUtilsTest, JaxOpWithBracketTest) { const absl::string_view kName = "op_name:op_type[array=([])]"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kJax); EXPECT_EQ(tf_op.name, "op_name"); EXPECT_EQ(tf_op.type, "op_type"); EXPECT_EQ(TfOpEventName(kName), "op_type"); } TEST(TfOpUtilsTest, JaxOpWithBracketAndTrailingColonTest) { const absl::string_view kName = "op_name/op_type[array=([])]:"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kJax); EXPECT_EQ(tf_op.name, "op_name/op_type[array=([])]"); EXPECT_EQ(tf_op.type, "op_type"); EXPECT_EQ(TfOpEventName(kName), "op_type"); } TEST(TfOpUtilsTest, JaxOpNameWithMetadataTest) { const absl::string_view kOpName = "pmap(<unnamed wrapped function>)/gather[ " "dimension_numbers=GatherDimensionNumbers(offset_dims=(2,), " "collapsed_slice_dims=(0, 1), start_index_map=(0, 1))\n " " slice_sizes=(1, 1, 81) ]:gather"; const absl::string_view kOpType = "gather"; EXPECT_TRUE(IsJaxOpNameAndType(kOpName, kOpType)); } TEST(TfOpUtilsTest, OtherXlaOpTest) { const absl::string_view kName = "namescope.1/namespace__opname2d:namespace__opname2d"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kJax); EXPECT_EQ(tf_op.name, "namescope.1/namespace__opname2d"); EXPECT_EQ(tf_op.type, "namespace__opname2d"); EXPECT_EQ(TfOpEventName(kName), "namespace__opname2d"); } TEST(TfOpUtilsTest, OtherXlaOpNameTest) { const absl::string_view kOpName = "namescope.1/namespace__opname2d"; const absl::string_view kOpType = "namespace__opname2d"; EXPECT_TRUE(IsJaxOpNameAndType(kOpName, kOpType)); } TEST(TfOpUtilsTest, OpWithoutTypeTest) { const absl::string_view kName = "namescope/OpName_1:"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kTensorFlow); EXPECT_EQ(tf_op.name, "namescope/OpName_1"); EXPECT_EQ(tf_op.type, "OpName"); EXPECT_EQ(TfOpEventName(kName), "OpName"); } TEST(TfOpUtilsTest, OpTypeWithUnderstslTest) { const absl::string_view kName = "namescope/OpName_a:"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kTensorFlow); EXPECT_EQ(tf_op.name, "namescope/OpName_a"); EXPECT_EQ(tf_op.type, "OpName_a"); EXPECT_EQ(TfOpEventName(kName), "OpName_a"); } TEST(TfOpUtilsTest, NameScopeTest) { const absl::string_view kName = "scope-1/scope2/OpName:OpType"; TfOp tf_op = ParseTfOpFullname(kName); EXPECT_EQ(tf_op.category, Category::kTensorFlow); EXPECT_EQ(tf_op.name, "scope-1/scope2/OpName"); EXPECT_EQ(tf_op.type, "OpType"); std::vector<absl::string_view> name_scopes = ParseTfNameScopes(tf_op); EXPECT_EQ(name_scopes.size(), 2); EXPECT_EQ(name_scopes[0], "scope-1"); EXPECT_EQ(name_scopes[1], "scope2"); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/tf_op_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/tf_op_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8f8f9e65-c8b2-4926-9c46-bde37faed913
cpp
tensorflow/tensorflow
tpu_xplane_utils
third_party/xla/xla/tsl/profiler/utils/tpu_xplane_utils.cc
third_party/xla/xla/tsl/profiler/utils/tpu_xplane_utils_test.cc
#include "xla/tsl/profiler/utils/tpu_xplane_utils.h" #include <optional> #include <vector> #include "absl/strings/string_view.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "xla/tsl/profiler/utils/xplane_utils.h" #include "tsl/platform/regexp.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tsl { namespace profiler { std::vector<const XPlane*> FindTensorCorePlanes(const XSpace& xspace) { return FindPlanes(xspace, [](const XPlane& xplane) { static const LazyRE2 re = {kTpuPlaneRegex}; return RE2::FullMatch(xplane.name(), *re); }); } std::vector<XPlane*> FindMutableTensorCorePlanes(XSpace* xspace) { return FindMutablePlanes(xspace, [](const XPlane& xplane) { static const LazyRE2 re = {kTpuPlaneRegex}; return RE2::FullMatch(xplane.name(), *re); }); } std::optional<int> GetTensorCoreId(absl::string_view plane_name) { int core_id = -1; if (RE2::FullMatch(plane_name, {kTpuPlaneRegex}, &core_id)) { return core_id; } return std::nullopt; } std::optional<int> GetSparseCoreId(absl::string_view plane_name) { std::optional<int> core_id; RE2::FullMatch(plane_name, {kSparseCorePlaneRegex}, &core_id); return core_id; } } }
#include "xla/tsl/profiler/utils/tpu_xplane_utils.h" #include <vector> #include "absl/strings/str_cat.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "xla/tsl/profiler/utils/xplane_utils.h" #include "xla/tsl/profiler/utils/xplane_visitor.h" #include "tsl/platform/test.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tsl { namespace profiler { namespace { using ::testing::Optional; using ::testing::UnorderedElementsAre; TEST(TpuXPlaneUtilsTest, GetTensorCoreXPlanesFromXSpace) { XSpace xspace; XPlane* p1 = FindOrAddMutablePlaneWithName(&xspace, TpuPlaneName(0)); XPlane* p2 = FindOrAddMutablePlaneWithName(&xspace, TpuPlaneName(1)); FindOrAddMutablePlaneWithName(&xspace, TpuPlaneName(2) + "Postfix"); std::vector<const XPlane*> xplanes = FindTensorCorePlanes(xspace); EXPECT_THAT(xplanes, UnorderedElementsAre(p1, p2)); } TEST(TpuXPlaneUtilsTest, GetMutableTensorCoreXPlanesFromXSpace) { XSpace xspace; XPlane* p1 = FindOrAddMutablePlaneWithName(&xspace, TpuPlaneName(0)); XPlane* p2 = FindOrAddMutablePlaneWithName(&xspace, TpuPlaneName(1)); FindOrAddMutablePlaneWithName(&xspace, TpuPlaneName(2) + "Postfix"); std::vector<XPlane*> xplanes = FindMutableTensorCorePlanes(&xspace); EXPECT_THAT(xplanes, UnorderedElementsAre(p1, p2)); } TEST(TpuXPlaneUtilsTest, GetTensorCoreIdFromPlaneName) { EXPECT_EQ(GetTensorCoreId(TpuPlaneName(0)), 0); } TEST(TpuXPlaneUtilsTest, IsNotTensorCorePlaneName) { EXPECT_FALSE(GetTensorCoreId("/metadata:0").has_value()); } TEST(TpuXPlaneUtilsTest, IsNotTensorCorePlaneNameWithPrefix) { EXPECT_FALSE( GetTensorCoreId(absl::StrCat("/prefix", TpuPlaneName(0))).has_value()); } TEST(TpuXplaneUtilsTest, GetSparseCorePlanesFromXSpace) { XSpace space; XPlane* p1 = FindOrAddMutablePlaneWithName(&space, TpuPlaneName(0)); XPlane* p2 = FindOrAddMutablePlaneWithName(&space, TpuPlaneName(1)); XPlane* p3 = FindOrAddMutablePlaneWithName( &space, absl::StrCat(TpuPlaneName(0), " SparseCore 0")); XPlane* p4 = FindOrAddMutablePlaneWithName( &space, absl::StrCat(TpuPlaneName(0), " SparseCore 1")); EXPECT_THAT(FindTensorCorePlanes(space), UnorderedElementsAre(p1, p2)); EXPECT_THAT(FindPlanesWithPrefix(space, kTpuPlanePrefix), UnorderedElementsAre(p1, p2, p3, p4)); EXPECT_THAT(GetSparseCoreId(p3->name()), Optional(0)); EXPECT_THAT(GetSparseCoreId(p4->name()), Optional(1)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/tpu_xplane_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/tpu_xplane_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2812a750-abac-41e2-8608-97c9f26bc2c8
cpp
tensorflow/tensorflow
group_events
third_party/xla/xla/tsl/profiler/utils/group_events.cc
third_party/xla/xla/tsl/profiler/utils/group_events_test.cc
#include "xla/tsl/profiler/utils/group_events.h" #include <algorithm> #include <cstdint> #include <functional> #include <iterator> #include <map> #include <memory> #include <optional> #include <queue> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/functional/bind_front.h" #include "absl/strings/str_cat.h" #include "xla/tsl/lib/gtl/map_util.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "xla/tsl/profiler/utils/xplane_builder.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "xla/tsl/profiler/utils/xplane_utils.h" #include "xla/tsl/profiler/utils/xplane_visitor.h" #include "tsl/platform/dso_loader.h" #include "tsl/platform/env.h" #include "tsl/platform/types.h" namespace tsl { namespace profiler { void CreateStatMetadata(XPlane* plane) { XPlaneBuilder builder(plane); builder.GetOrCreateStatMetadata(GetStatTypeStr(StatType::kGroupId)); builder.GetOrCreateStatMetadata(GetStatTypeStr(StatType::kStepName)); builder.GetOrCreateStatMetadata(GetStatTypeStr(StatType::kIsEager)); } std::optional<int64_t> GetKernelEventType(bool is_host_plane, const XEventVisitor& event) { if (event.GetStat(StatType::kCorrelationId).has_value()) { return is_host_plane ? HostEventType::kKernelLaunch : HostEventType::kKernelExecute; } return std::nullopt; } int64_t GetEventType(bool is_host_plane, const XEventVisitor& event) { if (std::optional<int64_t> event_type = event.Type()) { return *event_type; } else if (std::optional<int64_t> kernel_event_type = GetKernelEventType(is_host_plane, event)) { return *kernel_event_type; } else { return HostEventType::kUnknownHostEventType; } } bool IsLegacyRootEvent(const XEventVisitor& event) { return event.Type() == HostEventType::kTraceContext; } struct GroupingEventStats { explicit GroupingEventStats(const XEventVisitor& event); std::optional<int> producer_type; std::optional<uint64_t> producer_id; std::optional<int> consumer_type; std::optional<uint64_t> consumer_id; std::optional<int> root_level; bool is_async = false; }; GroupingEventStats::GroupingEventStats(const XEventVisitor& event) { std::optional<int64_t> step_id; event.ForEachStat([&](const XStatVisitor& stat) { if (!stat.Type().has_value()) return; switch (*stat.Type()) { case StatType::kProducerType: producer_type = stat.IntValue(); break; case StatType::kProducerId: producer_id = stat.IntOrUintValue(); break; case StatType::kConsumerType: consumer_type = stat.IntValue(); break; case StatType::kConsumerId: consumer_id = stat.IntOrUintValue(); break; case StatType::kIsRoot: root_level = stat.IntValue(); break; case StatType::kIsAsync: is_async = stat.BoolValue(); break; case StatType::kStepId: step_id = stat.IntValue(); break; default: break; } }); if (!root_level.has_value() && IsLegacyRootEvent(event)) { root_level = 1; } } void SetContextGroup(const GroupingEventStats& stats, EventNode* event, ContextGroupMap* context_groups) { if (stats.producer_type.has_value() && stats.producer_id.has_value()) { ((*context_groups)[*stats.producer_type][*stats.producer_id]) .producers.push_back(event); } if (stats.consumer_type.has_value() && stats.consumer_id.has_value()) { ((*context_groups)[*stats.consumer_type][*stats.consumer_id]) .consumers.push_back(event); } } void ConnectContextGroups(const ContextGroupMap& context_groups) { for (auto& type_id_group : context_groups) { for (auto& id_group : type_id_group.second) { const ContextGroup& group = id_group.second; if (group.producers.size() >= 64 && group.consumers.size() >= 64) { LOG_EVERY_N(WARNING, 1000) << "id:" << id_group.first << " producers:" << group.producers.size() << " : " << group.producers[0]->GetEventVisitor().Name() << " consumers:" << group.consumers.size() << " : " << group.consumers[0]->GetEventVisitor().Name(); continue; } for (EventNode* parent : group.producers) { for (EventNode* child : group.consumers) { parent->AddChild(child); } } } } } bool IsImplicitRootEvent(const XEventVisitor& event) { static const auto* const kImplicitRootEvents = new absl::flat_hash_set<int64_t>{ HostEventType::kFunctionRun, HostEventType::kSessionRun, HostEventType::kRunGraph, HostEventType::kExecutorStateProcess}; return event.Type().has_value() && kImplicitRootEvents->contains(*event.Type()); } void ProcessRootEvent(int64_t group_id, EventNode* root_event, GroupMetadataMap* group_metadata_map) { root_event->PropagateGroupId(group_id, group_metadata_map); std::string group_name = root_event->GetGroupName(); if (!IsImplicitRootEvent(root_event->GetEventVisitor())) { root_event->AddStepName(group_name); } (*group_metadata_map)[group_id].name = std::move(group_name); } using Comparator = std::function<bool(const EventNode*)>; const EventNode* FindParentWithComparator(const Comparator& comparator, const EventNode* node, bool include_self) { std::queue<const EventNode*> nodes; absl::flat_hash_set<const EventNode*> seen = {node}; if (include_self) { nodes.push(node); } else { for (const EventNode* parent : node->GetParents()) { nodes.push(parent); seen.insert(parent); } } while (!nodes.empty()) { const EventNode* node = nodes.front(); nodes.pop(); if (comparator(node)) return node; for (const EventNode* parent : node->GetParents()) { if (seen.contains(parent)) continue; nodes.push(parent); seen.insert(parent); } } return nullptr; } bool IsIteratorEventType(std::optional<int64_t> event_type) { return event_type == HostEventType::kIterator || event_type == HostEventType::kDeviceInputPipelineSecondIterator; } bool CheckLoopOp(const XSpace& space) { for (const XPlane& plane : space.planes()) { for (const auto& event_metadata : plane.event_metadata()) { std::optional<int64_t> event_type = FindHostEventType(event_metadata.second.name()); if (!event_type.has_value()) continue; switch (*event_type) { case HostEventType::kWhileOpEvalCond: case HostEventType::kWhileOpStartBody: case HostEventType::kForOp: case HostEventType::kParallelForOp: case HostEventType::kForeverOp: return true; default: break; } } } return false; } std::optional<XStatVisitor> EventNode::GetContextStat(int64_t stat_type) const { std::queue<const EventNode*> nodes; absl::flat_hash_set<const EventNode*> seen = {this}; nodes.push(this); while (!nodes.empty()) { const EventNode* node = nodes.front(); nodes.pop(); if (std::optional<XStatVisitor> stat = node->visitor_.GetStat(stat_type)) { return stat; } for (const EventNode* parent : node->GetParents()) { if (seen.contains(parent)) continue; nodes.push(parent); seen.insert(parent); } } return std::nullopt; } std::string EventNode::GetGroupName() const { std::string name; if (std::optional<XStatVisitor> stat = GetContextStat(StatType::kGraphType)) { absl::StrAppend(&name, stat->StrOrRefValue(), " "); } else if (!(IsImplicitRootEvent(visitor_))) { absl::StrAppend(&name, GetEventVisitor().Name(), " "); } int64_t step_num = group_id_.value_or(0); if (std::optional<XStatVisitor> stat = GetContextStat(StatType::kIterNum)) { step_num = stat->IntValue(); } else if (std::optional<XStatVisitor> stat = GetContextStat(StatType::kStepNum)) { step_num = stat->IntValue(); } absl::StrAppend(&name, step_num); return name; } XStat* EventNode::FindOrAddStatByType(int64_t stat_type) { const XPlaneVisitor& plane = visitor_.Plane(); const XStatMetadata* stat_metadata = plane.GetStatMetadataByType(stat_type); DCHECK(stat_metadata != nullptr); auto* raw_event = const_cast<XEvent*>(&visitor_.RawEvent()); return FindOrAddMutableStat(*stat_metadata, raw_event); } void EventNode::SetGroupId(int64_t group_id) { group_id_ = group_id; FindOrAddStatByType(StatType::kGroupId)->set_int64_value(group_id); } void EventNode::PropagateGroupId(int64_t group_id, GroupMetadataMap* group_metadata_map) { std::queue<EventNode*> nodes; absl::flat_hash_set<EventNode*> seen = {this}; nodes.push(this); while (!nodes.empty()) { EventNode* node = nodes.front(); nodes.pop(); std::optional<int64_t> node_group_id = node->GetGroupId(); if (node_group_id.has_value()) { if (*node_group_id != group_id) { (*group_metadata_map)[group_id].children.insert(*node_group_id); (*group_metadata_map)[*node_group_id].parents.insert(group_id); } } else { node->SetGroupId(group_id); for (EventNode* child : node->GetChildren()) { if (seen.contains(child)) continue; nodes.push(child); seen.insert(child); } } } } void EventNode::AddStepName(absl::string_view step_name) { FindOrAddStatByType(StatType::kStepName) ->set_str_value(step_name.data(), step_name.size()); } void EventNode::SetIsEager(bool is_eager) { FindOrAddStatByType(StatType::kIsEager)->set_int64_value(is_eager ? 1 : 0); } bool EventNode::IsCompiledFunc() const { auto is_func = visitor_.GetStat(StatType::kIsFunc); return !is_func || is_func->IntValue(); } bool EventNode::IsEager() const { const EventNode* node = FindParent(HostEventType::kEagerKernelExecute); if (node == nullptr) { return false; } return !node->IsCompiledFunc(); } const EventNode* EventNode::FindParent(int64_t event_type) const { return FindParentWithComparator( [event_type](const EventNode* node) { return node->GetEventVisitor().Type() == event_type; }, this, true); } void EventForest::FindEventNodeAndApply( const int64_t event_type, const std::vector<int64_t>& stat_types, const std::function<void(EventNode&, const std::vector<uint64>&)>& cb) { if (auto* event_node_list = gtl::FindOrNull(event_node_map_, event_type)) { for (EventNode& event_node : *event_node_list) { std::vector<uint64> stats; for (const auto stat_type : stat_types) { std::optional<XStatVisitor> stat = event_node.GetEventVisitor().GetStat(stat_type); if (!stat) break; stats.push_back(stat->IntOrUintValue()); } if (stats.size() == stat_types.size()) { cb(event_node, stats); } } } } void EventForest::ConnectIntraThread(XPlane* plane, XPlaneVisitor* visitor, ContextGroupMap* context_groups) { bool is_host_plane = (visitor->Name() == kHostThreadsPlaneName); for (auto& line : *plane->mutable_lines()) { std::vector<EventNode*> parent_nodes; for (auto& event : *line.mutable_events()) { XEventVisitor event_visitor(visitor, &line, &event); int64_t event_type = GetEventType(is_host_plane, event_visitor); EventNode* cur_node = &event_node_map_[event_type].emplace_back(std::move(event_visitor)); GroupingEventStats stats(cur_node->GetEventVisitor()); if (stats.root_level.has_value()) { cur_node->SetRootLevel(*stats.root_level); } SetContextGroup(stats, cur_node, context_groups); if (!stats.is_async) { while (!parent_nodes.empty()) { EventNode* parent_node = parent_nodes.back(); if (parent_node->GetEventVisitor().GetTimespan().Includes( cur_node->GetEventVisitor().GetTimespan())) { parent_node->AddChild(cur_node); break; } else { parent_nodes.pop_back(); } } parent_nodes.push_back(cur_node); } } } } void EventForest::ConnectInterThread( const std::vector<InterThreadConnectInfo>& connect_info_list) { for (const auto& connect_info : connect_info_list) { absl::flat_hash_map<std::vector<uint64>, EventNode*> connect_map; const std::vector<int64_t>& parent_stat_types = connect_info.parent_stat_types; const std::vector<int64_t>* child_stat_types = &connect_info.child_stat_types; if (child_stat_types->empty()) { child_stat_types = &parent_stat_types; } FindEventNodeAndApply(connect_info.parent_event_type, parent_stat_types, [&connect_map](EventNode& event_node, const std::vector<uint64>& stats) { connect_map[stats] = &event_node; }); FindEventNodeAndApply( connect_info.child_event_type, *child_stat_types, [&connect_map](EventNode& event_node, const std::vector<uint64>& stats) { if (auto parent_event_node = gtl::FindPtrOrNull(connect_map, stats)) { parent_event_node->AddChild(&event_node); } }); } } bool RootNeedsGrouping(const EventNode* root) { if (root->GetGroupId().has_value()) return false; const EventNode* root_parent = FindParentWithComparator( [root](const EventNode* parent) { return parent->RootLevel() == root->RootLevel(); }, root, false); return root_parent == nullptr; } void SortRootEventList(EventList* event_list) { absl::c_sort(*event_list, [](const EventNode* e1, const EventNode* e2) { return e1->RootLevel() == e2->RootLevel() ? *e1 < *e2 : e1->RootLevel() > e2->RootLevel(); }); } void EventForest::CreateEventGroups() { int64_t group_id = 0; if (!tf_loop_root_events_.empty()) { for (EventNode* root_event : tf_loop_root_events_) { ProcessRootEvent(group_id++, root_event, &group_metadata_map_); } return; } EventList root_events; for (auto& [event_type, events] : event_node_map_) { for (EventNode& event : events) { if (!event.RootLevel()) continue; std::optional<XStatVisitor> step_id_stat = event.GetEventVisitor().GetStat(StatType::kStepId); if (step_id_stat && tf_data_step_ids_.contains(step_id_stat->IntValue())) continue; root_events.push_back(&event); } } SortRootEventList(&root_events); for (EventNode* root_event : root_events) { if (RootNeedsGrouping(root_event)) { ProcessRootEvent(group_id++, root_event, &group_metadata_map_); } } } void EventForest::MarkEagerlyExecutedGpuKernels() { auto kernel_execute_event_node_list = gtl::FindOrNull(event_node_map_, HostEventType::kKernelExecute); if (!kernel_execute_event_node_list) return; for (EventNode& kernel_execute_event_node : *kernel_execute_event_node_list) { kernel_execute_event_node.SetIsEager(kernel_execute_event_node.IsEager()); } } void EventForest::MarkEagerlyExecutedCpuTfOps() { auto tf_op_run_event_node_list = gtl::FindOrNull(event_node_map_, HostEventType::kTfOpRun); if (!tf_op_run_event_node_list) return; for (EventNode& tf_op_run_event_node : *tf_op_run_event_node_list) { tf_op_run_event_node.SetIsEager(tf_op_run_event_node.IsEager()); } } void EventForest::ProcessTfDataSteps() { const int64_t tf_data_event_types[] = { HostEventType::kTfDataCapturedFunctionRun, HostEventType::kTfDataCapturedFunctionRunAsync, HostEventType::kTfDataCapturedFunctionRunInstantiated, HostEventType::kTfDataCapturedFunctionRunWithBorrowedArgs}; for (const int64_t tf_data_event_type : tf_data_event_types) { auto tf_data_events = gtl::FindOrNull(event_node_map_, tf_data_event_type); if (!tf_data_events) continue; for (const EventNode& tf_data_event : *tf_data_events) { std::optional<XStatVisitor> step_id_stat = tf_data_event.GetEventVisitor().GetStat(StatType::kStepId); if (!step_id_stat) continue; tf_data_step_ids_.insert(step_id_stat->IntValue()); } } } void EventForest::ProcessTensorFlowLoop() { struct TensorFlowLoopIteration { EventNode* first_event = nullptr; std::vector<EventNode*> events; }; using TensorFlowLoop = absl::flat_hash_map<int64_t , TensorFlowLoopIteration>; absl::flat_hash_map<int64_t , TensorFlowLoop> tf_loops; auto executor_event_list = gtl::FindOrNull(event_node_map_, HostEventType::kExecutorStateProcess); if (!executor_event_list) return; for (EventNode& executor_event : *executor_event_list) { std::optional<XStatVisitor> step_id_stat = executor_event.GetEventVisitor().GetStat(StatType::kStepId); std::optional<XStatVisitor> iter_num_stat = executor_event.GetEventVisitor().GetStat(StatType::kIterNum); if (!step_id_stat || !iter_num_stat) continue; int64_t step_id = step_id_stat->IntValue(); if (tf_data_step_ids_.contains(step_id)) continue; TensorFlowLoop& tf_loop = tf_loops[step_id]; TensorFlowLoopIteration& iteration = tf_loop[iter_num_stat->IntValue()]; if (!iteration.first_event || executor_event < *iteration.first_event) { iteration.first_event = &executor_event; } iteration.events.push_back(&executor_event); } std::vector<const TensorFlowLoopIteration*> iters; for (const auto& step_id_and_tf_loop : tf_loops) { const TensorFlowLoop& tf_loop = step_id_and_tf_loop.second; if (tf_loop.size() == 1 && tf_loop.contains(0)) continue; for (const auto& iter_num_and_iter : tf_loop) { iters.push_back(&iter_num_and_iter.second); } } absl::c_sort(iters, [](const auto& iter1, const auto& iter2) { return *iter1->first_event < *iter2->first_event; }); for (const TensorFlowLoopIteration* iter : iters) { EventNode* root_event = iter->first_event; tf_loop_root_events_.push_back(root_event); for (EventNode* event : iter->events) { if (event == root_event) continue; root_event->AddChild(event); } } } void EventForest::AddPlane( const std::function<XPlaneVisitor(const XPlane*)> visitor_factory, XPlane* plane) { CreateStatMetadata(plane); planes_.push_back({plane, visitor_factory(plane)}); } void EventForest::AddSpace( const std::function<XPlaneVisitor(const XPlane*)> visitor_factory, XSpace* space) { for (XPlane& plane : *space->mutable_planes()) { AddPlane(visitor_factory, &plane); } } void EventForest::AddPlanes( const std::function<XPlaneVisitor(const XPlane*)> visitor_factory, const std::vector<XPlane*>& planes) { for (XPlane* plane : planes) { AddPlane(visitor_factory, plane); } } void EventForest::ConnectEvents( const std::vector<InterThreadConnectInfo>& connect_info_list) { ContextGroupMap context_groups; for (auto& plane_visitor : planes_) { ConnectIntraThread(plane_visitor.first, &plane_visitor.second, &context_groups); } ConnectInterThread(connect_info_list); ConnectContextGroups(context_groups); } void EventForest::ConnectTfDataEvents() { absl::flat_hash_map< std::pair<int64_t , int64_t >, std::vector<EventNode*>> produce_iterator_map; uint64 num_producers = 0; for (HostEventType event_type : {HostEventType::kPrefetchProduce, HostEventType::kParallelInterleaveProduce, HostEventType::kParallelMapProduce, HostEventType::kMapAndBatchProduce, HostEventType::kParseExampleProduce, HostEventType::kParallelBatchProduce}) { auto produce_event_list = gtl::FindOrNull(event_node_map_, event_type); if (!produce_event_list) continue; VLOG(1) << produce_event_list->size() << " " << GetHostEventTypeStr(event_type) << " events found."; for (EventNode& produce_event : *produce_event_list) { std::optional<XStatVisitor> element_id = produce_event.GetEventVisitor().GetStat(StatType::kElementId); if (!element_id.has_value()) continue; for (EventNode* produce_iterator : produce_event.GetChildren()) { if (IsIteratorEventType(produce_iterator->GetEventVisitor().Type())) { std::optional<XStatVisitor> iterator_id = produce_iterator->GetEventVisitor().GetStat(StatType::kParentId); if (!iterator_id.has_value()) break; produce_iterator_map[{iterator_id->IntValue(), element_id->IntValue()}] .push_back(produce_iterator); ++num_producers; break; } } } } VLOG(1) << num_producers << " producer iterators found."; uint64 num_matched = 0; for (HostEventType event_type : {HostEventType::kPrefetchConsume, HostEventType::kParallelInterleaveConsume, HostEventType::kParallelMapConsume, HostEventType::kMapAndBatchConsume, HostEventType::kParseExampleConsume, HostEventType::kParallelBatchConsume}) { auto consume_event_list = gtl::FindOrNull(event_node_map_, event_type); if (!consume_event_list) continue; VLOG(1) << consume_event_list->size() << " " << GetHostEventTypeStr(event_type) << " events found."; for (EventNode& consume_event : *consume_event_list) { std::optional<XStatVisitor> element_id = consume_event.GetEventVisitor().GetStat(StatType::kElementId); if (!element_id.has_value()) continue; if (consume_event.GetParents().empty()) continue; EventNode* consume_iterator = consume_event.GetParents().at(0); if (!consume_iterator || !IsIteratorEventType(consume_iterator->GetEventVisitor().Type())) { continue; } std::optional<XStatVisitor> iterator_id = consume_iterator->GetEventVisitor().GetStat(StatType::kStepId); if (!iterator_id.has_value()) continue; if (auto produce_iterators = gtl::FindOrNull( produce_iterator_map, std::make_pair(iterator_id->IntValue(), element_id->IntValue()))) { for (EventNode* produce_iterator : *produce_iterators) { consume_iterator->AddChild(produce_iterator); ++num_matched; } } } } VLOG(1) << num_matched << " consumer iterators matched."; } void EventForest::GroupEvents() { ProcessTfDataSteps(); ProcessTensorFlowLoop(); CreateEventGroups(); MarkEagerlyExecutedGpuKernels(); MarkEagerlyExecutedCpuTfOps(); } std::vector<InterThreadConnectInfo> CreateInterThreadConnectInfoList() { std::vector<InterThreadConnectInfo> connect_info_list = { {HostEventType::kExecutorStateProcess, HostEventType::kIteratorGetNextOp, {StatType::kStepId, StatType::kIterNum}}, {HostEventType::kExecutorStateProcess, HostEventType::kIteratorGetNextAsOptionalOp, {StatType::kStepId, StatType::kIterNum}}, {HostEventType::kKernelLaunch, HostEventType::kKernelExecute, {StatType::kCorrelationId}}}; return connect_info_list; } void GroupTfEvents(XSpace* space, EventForest* event_forest) { if (CheckLoopOp(*space)) { return; } std::vector<InterThreadConnectInfo> connect_info_list = CreateInterThreadConnectInfoList(); event_forest->AddSpace(CreateTfXPlaneVisitor, space); event_forest->ConnectEvents(connect_info_list); event_forest->GroupEvents(); } void GroupTfEvents(XSpace* space) { EventForest event_forest; GroupTfEvents(space, &event_forest); } void AddGroupMetadataToStepEvents(const GroupMetadataMap& group_metadata_map, XLineBuilder& line) { if (group_metadata_map.empty()) return; XPlaneBuilder* plane = line.Plane(); const XStatMetadata* group_id_stat_metadata = plane->GetStatMetadata(GetStatTypeStr(StatType::kGroupId)); if (group_id_stat_metadata == nullptr) return; const XStatMetadata* step_name_stat_metadata = plane->GetOrCreateStatMetadata(GetStatTypeStr(StatType::kStepName)); line.ForEachEvent([&](XEventBuilder event) { const XStat* group_id_stat = event.GetStat(*group_id_stat_metadata); if (group_id_stat != nullptr) { int64_t group_id = group_id_stat->int64_value(); if (const GroupMetadata* group_metadata = gtl::FindOrNull(group_metadata_map, group_id)) { event.AddStatValue(*step_name_stat_metadata, group_metadata->name); } } }); } std::optional<int64_t> GetGroupId(const XEventVisitor& event, const XStatMetadata& group_id_stat_metadata) { if (auto group_id_stat = event.GetStat(StatType::kGroupId, group_id_stat_metadata)) { return group_id_stat->IntValue(); } return std::nullopt; } class GroupQueue { public: GroupQueue(const XPlaneVisitor* plane, const XLine* line, const XStatMetadata* group_id_stat_metadata) : group_queue_(plane, line), group_id_stat_metadata_(group_id_stat_metadata) {} std::optional<int64_t> OverlappingGroupId(Timespan timespan) { if (!group_event_visitor_ || !group_event_visitor_->GetTimespan().Overlaps(timespan)) { group_event_visitor_ = group_queue_.GetOverlappingEvent(timespan); if (group_event_visitor_) { group_id_ = GetGroupId(*group_event_visitor_, *group_id_stat_metadata_); } else { group_id_.reset(); } } return group_id_; } private: XEventContextTracker group_queue_; std::optional<XEventVisitor> group_event_visitor_; std::optional<int64_t> group_id_; const XStatMetadata* group_id_stat_metadata_; }; void MergeHostSteps(const XStatMetadata& group_id_stat_metadata, const XPlaneVisitor& plane_visitor, XPlaneBuilder* plane_builder, XLine* step_line) { std::optional<int64_t> merged_group_id; std::optional<XEventBuilder> merged_step_builder; absl::flat_hash_set<const XEvent*> events_to_remove; for (XEvent& step_event : *step_line->mutable_events()) { XEventVisitor step_visitor(&plane_visitor, step_line, &step_event); auto group_id = GetGroupId(step_visitor, group_id_stat_metadata); if (!group_id) { merged_group_id.reset(); merged_step_builder.reset(); events_to_remove.insert(&step_event); } else if (merged_group_id != group_id) { merged_group_id = group_id; merged_step_builder.emplace(step_line, plane_builder, &step_event); } else { merged_step_builder->SetEndTimestampPs(step_visitor.EndTimestampPs()); events_to_remove.insert(&step_event); } } if (events_to_remove.size() < step_line->events_size()) { RemoveEvents(step_line, events_to_remove); } } void GroupLine(const XStatMetadata& group_id_stat_metadata, const XPlaneVisitor& plane_visitor, const XLine& group_line, XPlaneBuilder* plane_builder, XLine* line) { GroupQueue group_queue(&plane_visitor, &group_line, &group_id_stat_metadata); for (XEvent& event : *line->mutable_events()) { XEventBuilder event_builder(line, plane_builder, &event); if (auto group_id = group_queue.OverlappingGroupId(event_builder.GetTimespan())) { event_builder.AddStatValue(group_id_stat_metadata, *group_id); } } } void GroupHostAndPlanes( tensorflow::profiler::XSpace* space, const std::vector<tensorflow::profiler::XPlane*>& device_traces, EventForest* event_forest) { std::vector<InterThreadConnectInfo> connect_info_list = CreateInterThreadConnectInfoList(); event_forest->AddSpace(CreateTfXPlaneVisitor, space); event_forest->AddPlanes(CreateTfXPlaneVisitor, device_traces); event_forest->ConnectEvents(connect_info_list); event_forest->GroupEvents(); } void GroupXplaneEvents(tensorflow::profiler::XPlane* plane, const GroupMetadataMap& group_metadata_map) { XLine* module_line = nullptr; XLine* step_line = nullptr; std::vector<XLine*> other_lines; for (XLine& line : *plane->mutable_lines()) { if (line.name() == "XLA Modules") { module_line = &line; } else if (line.name() == "Steps") { step_line = &line; } else { other_lines.push_back(&line); } } if (!module_line) return; XPlaneBuilder plane_builder(plane); const XStatMetadata* group_id_stat_metadata = plane_builder.GetOrCreateStatMetadata(GetStatTypeStr(StatType::kGroupId)); XPlaneVisitor plane_visitor = CreateTfXPlaneVisitor(plane); const XLine* group_line = module_line; if (step_line) { bool device_loop = (step_line->events_size() > module_line->events_size()); if (device_loop) { group_line = nullptr; } else { if (group_line) { GroupLine(*group_id_stat_metadata, plane_visitor, *group_line, &plane_builder, step_line); MergeHostSteps(*group_id_stat_metadata, plane_visitor, &plane_builder, step_line); XLineBuilder step_line_builder(step_line, &plane_builder); AddGroupMetadataToStepEvents(group_metadata_map, step_line_builder); } } } if (group_line) { for (XLine* line : other_lines) { GroupLine(*group_id_stat_metadata, plane_visitor, *group_line, &plane_builder, line); } } } void GroupTpuEventsOSS( tensorflow::profiler::XSpace* space, const std::vector<tensorflow::profiler::XPlane*>& device_traces, EventForest* event_forest) { if (CheckLoopOp(*space)) { return; } GroupHostAndPlanes(space, device_traces, event_forest); if (device_traces.empty()) return; const GroupMetadataMap& group_metadata_map = event_forest->GetGroupMetadataMap(); std::vector<std::unique_ptr<Thread>> threads; ThreadOptions thread_options; threads.reserve(device_traces.size()); for (XPlane* plane : device_traces) { threads.emplace_back(Env::Default()->StartThread( thread_options, "group_xplane_events", absl::bind_front(GroupXplaneEvents, plane, std::ref(group_metadata_map)))); } } } }
#include "xla/tsl/profiler/utils/group_events.h" #include <optional> #include "absl/container/flat_hash_map.h" #include "absl/strings/string_view.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "xla/tsl/profiler/utils/xplane_builder.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "xla/tsl/profiler/utils/xplane_test_utils.h" #include "xla/tsl/profiler/utils/xplane_visitor.h" #include "tsl/platform/test.h" #include "tsl/platform/types.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tsl { namespace profiler { namespace { constexpr int64_t kTfExecutor = static_cast<int64_t>(ContextType::kTfExecutor); TEST(GroupEventsTest, GroupGpuTraceLegacyRootTest) { constexpr int64_t kStepNum = 123; constexpr int64_t kStepId = 0; constexpr int64_t kCorrelationId = 100; XSpace space; XPlaneBuilder host_plane_builder(GetOrCreateHostXPlane(&space)); host_plane_builder.ReserveLines(2); auto main_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent( &host_plane_builder, &main_thread, HostEventType::kTraceContext, 0, 100, {{StatType::kGraphType, "train"}, {StatType::kStepNum, kStepNum}}); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kFunctionRun, 10, 90, {{StatType::kStepId, kStepId}, {StatType::kProducerType, kTfExecutor}, {StatType::kProducerId, kStepId}}); auto tf_executor_thread = host_plane_builder.GetOrCreateLine(1); CreateXEvent(&host_plane_builder, &tf_executor_thread, HostEventType::kExecutorStateProcess, 20, 80, {{StatType::kStepId, kStepId}, {StatType::kConsumerType, kTfExecutor}, {StatType::kConsumerId, kStepId}}); CreateXEvent(&host_plane_builder, &tf_executor_thread, "matmul", 30, 70, {{StatType::kCorrelationId, kCorrelationId}}); XPlane* device_plane = space.add_planes(); XPlaneBuilder device_plane_builder(device_plane); device_plane_builder.ReserveLines(1); auto stream = device_plane_builder.GetOrCreateLine(0); CreateXEvent(&device_plane_builder, &stream, "matmul", 200, 300, {{StatType::kCorrelationId, kCorrelationId}}); EventForest event_forest; GroupTfEvents(&space, &event_forest); const GroupMetadataMap& group_metadata_map = event_forest.GetGroupMetadataMap(); XPlaneVisitor device_plane_visitor = CreateTfXPlaneVisitor(device_plane); EXPECT_EQ(device_plane->lines(0).events(0).stats_size(), 3); EXPECT_EQ(device_plane_visitor.GetStatType( device_plane->lines(0).events(0).stats(1).metadata_id()), StatType::kGroupId); EXPECT_EQ(group_metadata_map.size(), 1); EXPECT_EQ(group_metadata_map.at(0).name, "train 123"); } TEST(GroupEventsTest, GroupGpuTraceTest) { constexpr int64_t kStepNum = 123; constexpr int64_t kStepId = 0; constexpr int64_t kCorrelationId = 100; XSpace space; XPlaneBuilder host_plane_builder(GetOrCreateHostXPlane(&space)); host_plane_builder.ReserveLines(2); auto main_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent( &host_plane_builder, &main_thread, "train", 0, 100, {{StatType::kStepNum, kStepNum}, {StatType::kIsRoot, int64_t{1}}}); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kFunctionRun, 10, 90, {{StatType::kStepId, kStepId}, {StatType::kProducerType, kTfExecutor}, {StatType::kProducerId, kStepId}}); auto tf_executor_thread = host_plane_builder.GetOrCreateLine(1); CreateXEvent(&host_plane_builder, &tf_executor_thread, HostEventType::kExecutorStateProcess, 20, 80, {{StatType::kStepId, kStepId}, {StatType::kConsumerType, kTfExecutor}, {StatType::kConsumerId, kStepId}}); CreateXEvent(&host_plane_builder, &tf_executor_thread, "matmul", 30, 70, {{StatType::kCorrelationId, kCorrelationId}}); XPlane* device_plane = space.add_planes(); XPlaneBuilder device_plane_builder(device_plane); device_plane_builder.ReserveLines(1); auto stream = device_plane_builder.GetOrCreateLine(0); CreateXEvent(&device_plane_builder, &stream, "matmul", 200, 300, {{StatType::kCorrelationId, kCorrelationId}}); EventForest event_forest; GroupTfEvents(&space, &event_forest); const GroupMetadataMap& group_metadata_map = event_forest.GetGroupMetadataMap(); XPlaneVisitor device_plane_visitor = CreateTfXPlaneVisitor(device_plane); EXPECT_EQ(device_plane->lines(0).events(0).stats_size(), 3); EXPECT_EQ(device_plane_visitor.GetStatType( device_plane->lines(0).events(0).stats(1).metadata_id()), StatType::kGroupId); EXPECT_EQ(group_metadata_map.size(), 1); EXPECT_EQ(group_metadata_map.at(0).name, "train 123"); } TEST(GroupEventsTest, GroupTensorFlowLoopTest) { constexpr int64_t kStepId = 0; constexpr int64_t kIterNum = 10; constexpr int64_t kCorrelationId = 100; XSpace space; XPlaneBuilder host_plane_builder(GetOrCreateHostXPlane(&space)); host_plane_builder.ReserveLines(1); auto tf_executor_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent(&host_plane_builder, &tf_executor_thread, HostEventType::kExecutorStateProcess, 5, 10, {{StatType::kStepId, kStepId}, {StatType::kIterNum, kIterNum}, {StatType::kConsumerType, kTfExecutor}, {StatType::kConsumerId, kStepId}}); CreateXEvent(&host_plane_builder, &tf_executor_thread, HostEventType::kExecutorStateProcess, 20, 80, {{StatType::kStepId, kStepId}, {StatType::kIterNum, kIterNum}, {StatType::kConsumerType, kTfExecutor}, {StatType::kConsumerId, kStepId}}); CreateXEvent(&host_plane_builder, &tf_executor_thread, "matmul", 30, 70, {{StatType::kCorrelationId, kCorrelationId}}); XPlane* device_plane = space.add_planes(); XPlaneBuilder device_plane_builder(device_plane); device_plane_builder.ReserveLines(1); auto stream = device_plane_builder.GetOrCreateLine(0); CreateXEvent(&device_plane_builder, &stream, "matmul", 200, 300, {{StatType::kCorrelationId, kCorrelationId}}); EventForest event_forest; GroupTfEvents(&space, &event_forest); const GroupMetadataMap& group_metadata_map = event_forest.GetGroupMetadataMap(); XPlaneVisitor device_plane_visitor = CreateTfXPlaneVisitor(device_plane); EXPECT_EQ(device_plane->lines(0).events(0).stats_size(), 3); EXPECT_EQ(device_plane_visitor.GetStatType( device_plane->lines(0).events(0).stats(1).metadata_id()), StatType::kGroupId); EXPECT_EQ(device_plane->lines(0).events(0).stats(1).int64_value(), 0); EXPECT_EQ(group_metadata_map.size(), 1); ASSERT_TRUE(group_metadata_map.contains(0)); EXPECT_EQ(group_metadata_map.at(0).name, "10"); } TEST(GroupEventsTest, GroupMultipleTensorFlowLoopsTest) { constexpr int64_t kFirstStepId = 0; constexpr int64_t kSecondStepId = 1; constexpr int64_t kFirstIterNumStart = 10; constexpr int64_t kSecondIterNumStart = 0; XSpace space; XPlaneBuilder host_plane_builder(GetOrCreateHostXPlane(&space)); host_plane_builder.ReserveLines(2); auto first_tf_executor_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent(&host_plane_builder, &first_tf_executor_thread, HostEventType::kExecutorStateProcess, 220, 80, {{StatType::kStepId, kSecondStepId}, {StatType::kIterNum, kSecondIterNumStart}, {StatType::kConsumerType, kTfExecutor}, {StatType::kConsumerId, kSecondStepId}}); CreateXEvent(&host_plane_builder, &first_tf_executor_thread, HostEventType::kExecutorStateProcess, 320, 80, {{StatType::kStepId, kSecondStepId}, {StatType::kIterNum, kSecondIterNumStart + 1}, {StatType::kConsumerType, kTfExecutor}, {StatType::kConsumerId, kSecondStepId}}); auto second_tf_executor_thread = host_plane_builder.GetOrCreateLine(1); CreateXEvent(&host_plane_builder, &second_tf_executor_thread, HostEventType::kExecutorStateProcess, 20, 80, {{StatType::kStepId, kFirstStepId}, {StatType::kIterNum, kFirstIterNumStart}, {StatType::kConsumerType, kTfExecutor}, {StatType::kConsumerId, kFirstStepId}}); CreateXEvent(&host_plane_builder, &second_tf_executor_thread, HostEventType::kExecutorStateProcess, 120, 80, {{StatType::kStepId, kFirstStepId}, {StatType::kIterNum, kFirstIterNumStart + 1}, {StatType::kConsumerType, kTfExecutor}, {StatType::kConsumerId, kFirstStepId}}); EventForest event_forest; GroupTfEvents(&space, &event_forest); const GroupMetadataMap& group_metadata_map = event_forest.GetGroupMetadataMap(); EXPECT_EQ(group_metadata_map.size(), 4); ASSERT_TRUE(group_metadata_map.contains(0)); EXPECT_EQ(group_metadata_map.at(0).name, "10"); ASSERT_TRUE(group_metadata_map.contains(1)); EXPECT_EQ(group_metadata_map.at(1).name, "11"); ASSERT_TRUE(group_metadata_map.contains(2)); EXPECT_EQ(group_metadata_map.at(2).name, "0"); ASSERT_TRUE(group_metadata_map.contains(3)); EXPECT_EQ(group_metadata_map.at(3).name, "1"); } TEST(GroupEventsTest, EagerOpTest) { XSpace space; XPlane* host_plane = GetOrCreateHostXPlane(&space); XPlaneBuilder host_plane_builder(host_plane); host_plane_builder.ReserveLines(1); auto main_thread = host_plane_builder.GetOrCreateLine(0); XPlane* device_plane = space.add_planes(); XPlaneBuilder device_plane_builder(device_plane); device_plane_builder.ReserveLines(1); auto gpu_stream = device_plane_builder.GetOrCreateLine(0); int64_t correlation_id = 100; const char* kTF1GpuLaunchEvent = "tf1 matmul"; const char* kTF1GpuEvent = "tf1_kernel_matmul"; CreateXEvent(&host_plane_builder, &main_thread, kTF1GpuLaunchEvent, 10, 90, {{StatType::kCorrelationId, correlation_id}}); CreateXEvent(&device_plane_builder, &gpu_stream, kTF1GpuEvent, 200, 300, {{StatType::kCorrelationId, correlation_id}}); ++correlation_id; const char* kLegacyGpuLaunchEvent = "legacy matmul"; const char* kLegacyGpuEvent = "legacy_kernel_matmul"; CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kEagerKernelExecute, 100, 200); CreateXEvent(&host_plane_builder, &main_thread, kLegacyGpuLaunchEvent, 110, 190, {{StatType::kCorrelationId, correlation_id}}); CreateXEvent(&device_plane_builder, &gpu_stream, kLegacyGpuEvent, 300, 400, {{StatType::kCorrelationId, correlation_id}}); ++correlation_id; const char* kEagerOpGpuLaunchEvent = "eager op matmul"; const char* kEagerOpGpuEvent = "eager_op_kernel_matmul"; CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kEagerKernelExecute, 200, 300, {{StatType::kIsFunc, static_cast<int64_t>(0)}}); CreateXEvent(&host_plane_builder, &main_thread, kEagerOpGpuLaunchEvent, 210, 290, {{StatType::kCorrelationId, correlation_id}}); CreateXEvent(&device_plane_builder, &gpu_stream, kEagerOpGpuEvent, 400, 500, {{StatType::kCorrelationId, correlation_id}}); ++correlation_id; const char* kEagerFuncGpuLaunchEvent = "eager func matmul"; const char* kEagerFuncGpuEvent = "eager_func_kernel_matmul"; CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kEagerKernelExecute, 300, 400, {{StatType::kIsFunc, static_cast<int64_t>(1)}}); CreateXEvent(&host_plane_builder, &main_thread, kEagerFuncGpuLaunchEvent, 310, 390, {{StatType::kCorrelationId, correlation_id}}); CreateXEvent(&device_plane_builder, &gpu_stream, kEagerFuncGpuEvent, 500, 600, {{StatType::kCorrelationId, correlation_id}}); ++correlation_id; const char* kEagerOpCpuEvent = "eager_op_cpu_kernel:Matmul"; CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kEagerKernelExecute, 400, 500, {{StatType::kIsFunc, static_cast<int64_t>(0)}}); CreateXEvent(&host_plane_builder, &main_thread, kEagerOpCpuEvent, 410, 490); const char* kEagerFuncCpuEvent = "eager_func_cpu_kernel:Matmul"; CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kEagerKernelExecute, 500, 600, {{StatType::kIsFunc, static_cast<int64_t>(1)}}); CreateXEvent(&host_plane_builder, &main_thread, kEagerFuncCpuEvent, 510, 590); GroupTfEvents(&space); auto is_eager = [](const XEventVisitor& event) { auto eager_stats = event.GetStat(StatType::kIsEager); return eager_stats && eager_stats->IntValue(); }; XPlaneVisitor host_plane_visitor = CreateTfXPlaneVisitor(host_plane); int interested_events_encountered = 0; host_plane_visitor.ForEachLine([&](const XLineVisitor& line) { line.ForEachEvent([&](const XEventVisitor& event) { if (event.Name() == kEagerOpCpuEvent) { interested_events_encountered++; EXPECT_TRUE(is_eager(event)); } else if (event.Name() == kEagerFuncCpuEvent) { interested_events_encountered++; EXPECT_FALSE(is_eager(event)); } }); }); EXPECT_EQ(interested_events_encountered, 2); XPlaneVisitor device_plane_visitor = CreateTfXPlaneVisitor(device_plane); interested_events_encountered = 0; device_plane_visitor.ForEachLine([&](const XLineVisitor& line) { line.ForEachEvent([&](const XEventVisitor& event) { if (event.Name() == kTF1GpuEvent) { interested_events_encountered++; EXPECT_FALSE(is_eager(event)); } else if (event.Name() == kLegacyGpuEvent) { interested_events_encountered++; EXPECT_FALSE(is_eager(event)); } else if (event.Name() == kEagerOpGpuEvent) { interested_events_encountered++; EXPECT_TRUE(is_eager(event)); } else if (event.Name() == kEagerFuncGpuEvent) { interested_events_encountered++; EXPECT_FALSE(is_eager(event)); } }); }); EXPECT_EQ(interested_events_encountered, 4); } TEST(GroupEventsTest, FunctionOpTest) { constexpr int64_t kStepNum = 123; constexpr int64_t kStepId = 0; constexpr int64_t kCorrelationId = 100; XSpace space; XPlane* host_plane = GetOrCreateHostXPlane(&space); XPlaneBuilder host_plane_builder(host_plane); host_plane_builder.ReserveLines(2); auto main_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kTraceContext, 0, 100, {{StatType::kStepNum, kStepNum}}); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kEagerKernelExecute, 10, 90); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kFunctionRun, 10, 90, {{StatType::kStepId, kStepId}, {StatType::kProducerType, kTfExecutor}, {StatType::kProducerId, kStepId}}); auto tf_executor_thread = host_plane_builder.GetOrCreateLine(1); CreateXEvent(&host_plane_builder, &tf_executor_thread, HostEventType::kExecutorStateProcess, 20, 80, {{StatType::kStepId, kStepId}, {StatType::kConsumerType, kTfExecutor}, {StatType::kConsumerId, kStepId}}); CreateXEvent(&host_plane_builder, &tf_executor_thread, "matmul", 30, 30, {{StatType::kCorrelationId, kCorrelationId}}); CreateXEvent(&host_plane_builder, &tf_executor_thread, "add:Add", 70, 20); XPlane* device_plane = space.add_planes(); XPlaneBuilder device_plane_builder(device_plane); device_plane_builder.ReserveLines(1); auto stream = device_plane_builder.GetOrCreateLine(0); CreateXEvent(&device_plane_builder, &stream, "matmul", 200, 300, {{StatType::kCorrelationId, kCorrelationId}}); GroupTfEvents(&space); XPlaneVisitor host_plane_visitor = CreateTfXPlaneVisitor(host_plane); const XEvent& cpu_tf_op = host_plane->lines(1).events(2); EXPECT_EQ(cpu_tf_op.stats_size(), 2); EXPECT_EQ(host_plane_visitor.GetStatType(cpu_tf_op.stats(1).metadata_id()), StatType::kIsEager); EXPECT_EQ(cpu_tf_op.stats(1).int64_value(), 0); XPlaneVisitor device_plane_visitor = CreateTfXPlaneVisitor(device_plane); const XEvent& gpu_kernel = device_plane->lines(0).events(0); EXPECT_EQ(gpu_kernel.stats_size(), 3); EXPECT_EQ(device_plane_visitor.GetStatType(gpu_kernel.stats(2).metadata_id()), StatType::kIsEager); EXPECT_EQ(gpu_kernel.stats(2).int64_value(), 0); } TEST(GroupEventsTest, SemanticArgTest) { constexpr int64_t kIsRoot = 1; constexpr int64_t kStepNum = 100; constexpr int64_t kContextType = 123; constexpr uint64 kContextId = 456; XSpace raw_space; XPlane* raw_plane = raw_space.add_planes(); XPlaneBuilder plane(raw_plane); plane.ReserveLines(2); auto root_producer = plane.GetOrCreateLine(0); CreateXEvent(&plane, &root_producer, HostEventType::kTraceContext, 0, 100, {{StatType::kIsRoot, kIsRoot}, {StatType::kStepNum, kStepNum}}); CreateXEvent(&plane, &root_producer, HostEventType::kFunctionRun, 10, 90, {{StatType::kProducerType, kContextType}, {StatType::kProducerId, kContextId}}); auto consumer = plane.GetOrCreateLine(1); CreateXEvent(&plane, &consumer, HostEventType::kExecutorStateProcess, 20, 80, {{StatType::kConsumerType, kContextType}, {StatType::kConsumerId, kContextId}}); GroupTfEvents(&raw_space); int num_events = 0; CreateTfXPlaneVisitor(raw_plane).ForEachLine([&](const XLineVisitor& line) { num_events += line.NumEvents(); line.ForEachEvent([&](const XEventVisitor& event) { std::optional<int64_t> group_id; if (std::optional<XStatVisitor> stat = event.GetStat(StatType::kGroupId)) { group_id = stat->IntValue(); } EXPECT_TRUE(group_id.has_value()); EXPECT_EQ(*group_id, 0); }); }); EXPECT_EQ(num_events, 3); } TEST(GroupEventsTest, SemanticIntArgNoMatchTest) { constexpr int64_t kIsRoot = 1; constexpr int64_t kStepNum = 100; constexpr int64_t kContextType = 123; constexpr uint64 kProducerId = 456; constexpr uint64 kConsumerId = 789; XSpace raw_space; XPlane* raw_plane = raw_space.add_planes(); XPlaneBuilder plane(raw_plane); plane.ReserveLines(2); auto root_producer = plane.GetOrCreateLine(0); CreateXEvent(&plane, &root_producer, HostEventType::kTraceContext, 0, 100, {{StatType::kIsRoot, kIsRoot}, {StatType::kStepNum, kStepNum}}); CreateXEvent(&plane, &root_producer, HostEventType::kFunctionRun, 10, 90, {{StatType::kProducerType, kContextType}, {StatType::kProducerId, kProducerId}}); auto consumer = plane.GetOrCreateLine(1); CreateXEvent(&plane, &consumer, HostEventType::kExecutorStateProcess, 20, 80, {{StatType::kConsumerType, kContextType}, {StatType::kConsumerId, kConsumerId}}); GroupTfEvents(&raw_space); int num_events = 0; CreateTfXPlaneVisitor(raw_plane).ForEachLine([&](const XLineVisitor& line) { num_events += line.NumEvents(); line.ForEachEvent([&](const XEventVisitor& event) { std::optional<int64_t> group_id; if (std::optional<XStatVisitor> stat = event.GetStat(StatType::kGroupId)) { group_id = stat->IntValue(); } if (event.Type() == HostEventType::kExecutorStateProcess) { EXPECT_FALSE(group_id.has_value()); } else { EXPECT_TRUE(group_id.has_value()); EXPECT_EQ(*group_id, 0); } }); }); EXPECT_EQ(num_events, 3); } TEST(GroupEventsTest, SemanticUintArgNoMatchTest) { constexpr int64_t kIsRoot = 1; constexpr int64_t kStepNum = 100; constexpr int64_t kContextType = 123; constexpr uint64 kProducerId = UINT64_MAX; constexpr uint64 kConsumerId = UINT64_MAX - 1; XSpace raw_space; XPlane* raw_plane = raw_space.add_planes(); XPlaneBuilder plane(raw_plane); plane.ReserveLines(2); auto root_producer = plane.GetOrCreateLine(0); CreateXEvent(&plane, &root_producer, HostEventType::kTraceContext, 0, 100, {{StatType::kIsRoot, kIsRoot}, {StatType::kStepNum, kStepNum}}); CreateXEvent(&plane, &root_producer, HostEventType::kFunctionRun, 10, 90, {{StatType::kProducerType, kContextType}, {StatType::kProducerId, kProducerId}}); auto consumer = plane.GetOrCreateLine(1); CreateXEvent(&plane, &consumer, HostEventType::kExecutorStateProcess, 20, 80, {{StatType::kConsumerType, kContextType}, {StatType::kConsumerId, kConsumerId}}); GroupTfEvents(&raw_space); int num_events = 0; CreateTfXPlaneVisitor(raw_plane).ForEachLine([&](const XLineVisitor& line) { num_events += line.NumEvents(); line.ForEachEvent([&](const XEventVisitor& event) { std::optional<int64_t> group_id; if (std::optional<XStatVisitor> stat = event.GetStat(StatType::kGroupId)) { group_id = stat->IntValue(); } if (event.Type() == HostEventType::kExecutorStateProcess) { EXPECT_FALSE(group_id.has_value()); } else { EXPECT_TRUE(group_id.has_value()); EXPECT_EQ(*group_id, 0); } }); }); EXPECT_EQ(num_events, 3); } TEST(GroupEventsTest, AsyncEventTest) { constexpr int64_t kIsRoot = 1; constexpr int64_t kIsAsync = 1; constexpr absl::string_view kParent = "parent"; constexpr absl::string_view kAsync = "async"; constexpr absl::string_view kChild = "child"; XSpace raw_space; XPlane* raw_plane = raw_space.add_planes(); XPlaneBuilder plane(raw_plane); plane.ReserveLines(1); auto line = plane.GetOrCreateLine(0); CreateXEvent(&plane, &line, kParent, 0, 100, {{StatType::kIsRoot, kIsRoot}}); CreateXEvent(&plane, &line, kAsync, 10, 200, {{StatType::kIsAsync, kIsAsync}}); CreateXEvent(&plane, &line, kChild, 20, 80); GroupTfEvents(&raw_space); CreateTfXPlaneVisitor(raw_plane).ForEachLine([&](const XLineVisitor& line) { EXPECT_EQ(line.NumEvents(), 3); line.ForEachEvent([&](const XEventVisitor& event) { std::optional<int64_t> group_id; if (std::optional<XStatVisitor> stat = event.GetStat(StatType::kGroupId)) { group_id = stat->IntValue(); } if (event.Name() == kAsync) { EXPECT_FALSE(group_id.has_value()); } else { EXPECT_TRUE(group_id.has_value()); EXPECT_EQ(*group_id, 0); } }); }); } TEST(GroupEventsTest, BatchingSessionTest) { constexpr absl::string_view kSchedule = "Schedule"; constexpr int64_t kBatchContextType = static_cast<int64_t>(ContextType::kSharedBatchScheduler); constexpr int64_t kBatchContextId = 123; constexpr int64_t kBatchingSessionRunRootLevel = 1; constexpr int64_t kProcessBatchRootLevel = 2; XSpace raw_space; XPlane* raw_plane = raw_space.add_planes(); XPlaneBuilder plane(raw_plane); plane.ReserveLines(2); auto request_thread = plane.GetOrCreateLine(0); CreateXEvent(&plane, &request_thread, HostEventType::kBatchingSessionRun, 0, 100, {{StatType::kIsRoot, kBatchingSessionRunRootLevel}}); CreateXEvent(&plane, &request_thread, kSchedule, 0, 100, {{StatType::kProducerType, kBatchContextType}, {StatType::kProducerId, kBatchContextId}}); CreateXEvent(&plane, &request_thread, HostEventType::kBatchingSessionRun, 200, 100, {{StatType::kIsRoot, kBatchingSessionRunRootLevel}}); CreateXEvent(&plane, &request_thread, kSchedule, 200, 100, {{StatType::kProducerType, kBatchContextType}, {StatType::kProducerId, kBatchContextId}}); auto batch_thread = plane.GetOrCreateLine(1); CreateXEvent(&plane, &batch_thread, HostEventType::kProcessBatch, 200, 100, {{StatType::kConsumerType, kBatchContextType}, {StatType::kConsumerId, kBatchContextId}, {StatType::kIsRoot, kProcessBatchRootLevel}}); EventForest event_forest; GroupTfEvents(&raw_space, &event_forest); const GroupMetadataMap& group_metadata_map = event_forest.GetGroupMetadataMap(); EXPECT_EQ(group_metadata_map.size(), 3); EXPECT_EQ(group_metadata_map.at(0).parents.size(), 2); EXPECT_EQ(group_metadata_map.at(1).children.size(), 1); EXPECT_EQ(group_metadata_map.at(2).children.size(), 1); uint64 num_checked = 0; CreateTfXPlaneVisitor(raw_plane).ForEachLine([&](const XLineVisitor& line) { line.ForEachEvent([&](const XEventVisitor& event) { std::optional<int64_t> group_id; if (std::optional<XStatVisitor> stat = event.GetStat(StatType::kGroupId)) { group_id = stat->IntValue(); } EXPECT_TRUE(group_id.has_value()); if (line.Id() == 0 && event.Type() == HostEventType::kBatchingSessionRun) { ++num_checked; } else if (line.Id() == 1 && event.Type() == HostEventType::kProcessBatch) { ++num_checked; } }); }); EXPECT_EQ(num_checked, 3); } TEST(GroupTPUEventsTest, TpuExecuteOpTest) { tensorflow::profiler::XSpace space; XPlaneBuilder host_plane_builder(GetOrCreateHostXPlane(&space)); host_plane_builder.ReserveLines(1); auto main_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent( &host_plane_builder, &main_thread, HostEventType::kExecutorStateProcess, 20, 50, {{StatType::kStepId, int64_t{123}}, {StatType::kIterNum, int64_t{456}}}); EventForest event_forest; GroupTpuEventsOSS(&space, {}, &event_forest); EXPECT_EQ(event_forest.GetGroupMetadataMap().size(), 1); XPlaneVisitor host_plane_visitor = CreateTfXPlaneVisitor(&space.planes(0)); host_plane_visitor.ForEachLine([&](const XLineVisitor& line) { line.ForEachEvent([&](const XEventVisitor& event) { EXPECT_TRUE(event.GetStat(StatType::kGroupId).has_value()); }); }); } TEST(GroupTPUEventsTest, TpuRequestTest) { tensorflow::profiler::XSpace space; XPlaneBuilder host_plane_builder(GetOrCreateHostXPlane(&space)); host_plane_builder.ReserveLines(1); auto main_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kSessionRun, 0, 100, {{StatType::kIsRoot, int64_t{1}}}); CreateXEvent(&host_plane_builder, &main_thread, GetHostEventTypeStr(HostEventType::kEnqueueRequestLocked), 20, 50, {{StatType::kQueueAddr, int64_t{123}}, {StatType::kRequestId, int64_t{456}}}); EventForest event_forest; GroupTpuEventsOSS(&space, {}, &event_forest); EXPECT_EQ(event_forest.GetGroupMetadataMap().size(), 1); XPlaneVisitor host_plane_visitor = CreateTfXPlaneVisitor(&space.planes(0)); host_plane_visitor.ForEachLine([&](const XLineVisitor& line) { line.ForEachEvent([&](const XEventVisitor& event) { EXPECT_TRUE(event.GetStat(StatType::kGroupId).has_value()); }); }); } TEST(GroupTPUEventsTest, TpuProgramCallbackTest) { tensorflow::profiler::XSpace space; XPlaneBuilder host_plane_builder(GetOrCreateHostXPlane(&space)); host_plane_builder.ReserveLines(1); auto main_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kSessionRun, 0, 100, {{StatType::kIsRoot, int64_t{1}}}); CreateXEvent(&host_plane_builder, &main_thread, GetHostEventTypeStr(HostEventType::kDoEnqueueProgram), 20, 50, {{StatType::kRunId, int64_t{123}}, {StatType::kQueueId, int64_t{0}}, {StatType::kDeviceOrdinal, int64_t{1}}}); EventForest event_forest; GroupTpuEventsOSS(&space, {}, &event_forest); EXPECT_EQ(event_forest.GetGroupMetadataMap().size(), 1); XPlaneVisitor host_plane_visitor = CreateTfXPlaneVisitor(&space.planes(0)); host_plane_visitor.ForEachLine([&](const XLineVisitor& line) { line.ForEachEvent([&](const XEventVisitor& event) { EXPECT_TRUE(event.GetStat(StatType::kGroupId).has_value()); }); }); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/group_events.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/group_events_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0ab1eb70-b950-474e-92b9-0937ea336b35
cpp
tensorflow/tensorflow
timestamp_utils
third_party/xla/xla/tsl/profiler/utils/timestamp_utils.cc
third_party/xla/xla/tsl/profiler/utils/timestamp_utils_test.cc
#include "xla/tsl/profiler/utils/timestamp_utils.h" #include <cstdint> #include "absl/log/log.h" #include "xla/tsl/profiler/utils/xplane_builder.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "xla/tsl/profiler/utils/xplane_utils.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tsl { namespace profiler { void SetSessionTimestamps(uint64_t start_walltime_ns, uint64_t stop_walltime_ns, tensorflow::profiler::XSpace& space) { if (start_walltime_ns != 0 && stop_walltime_ns != 0) { tsl::profiler::XPlaneBuilder plane( tsl::profiler::FindOrAddMutablePlaneWithName( &space, tsl::profiler::kTaskEnvPlaneName)); plane.AddStatValue(*plane.GetOrCreateStatMetadata( GetTaskEnvStatTypeStr(kEnvProfileStartTime)), start_walltime_ns); plane.AddStatValue(*plane.GetOrCreateStatMetadata( GetTaskEnvStatTypeStr(kEnvProfileStopTime)), stop_walltime_ns); } else { LOG(WARNING) << "Not Setting Session Timestamps, (start_walltime_ns, " "stop_walltime_ns) : " << start_walltime_ns << ", " << stop_walltime_ns; } } } }
#include "xla/tsl/profiler/utils/timestamp_utils.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "xla/tsl/profiler/utils/xplane_utils.h" #include "xla/tsl/profiler/utils/xplane_visitor.h" #include "tsl/platform/test.h" namespace tsl { namespace profiler { using ::testing::Eq; TEST(TimestampUtilsTest, StartAndStopTimestampAreAdded) { XSpace xspace; SetSessionTimestamps(1000, 2000, xspace); const XPlane* xplane = FindPlaneWithName(xspace, kTaskEnvPlaneName); XPlaneVisitor visitor(xplane, {}, {FindTaskEnvStatType}); auto start_time = visitor.GetStat(TaskEnvStatType::kEnvProfileStartTime); auto stop_time = visitor.GetStat(TaskEnvStatType::kEnvProfileStopTime); EXPECT_THAT(start_time->IntOrUintValue(), Eq(1000)); EXPECT_THAT(stop_time->IntOrUintValue(), Eq(2000)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/timestamp_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/timestamp_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f6caa2d5-6866-43cc-a9a0-f63d605eeb98
cpp
tensorflow/tensorflow
buffer_pool
third_party/xla/xla/tsl/profiler/utils/buffer_pool.cc
third_party/xla/xla/tsl/profiler/utils/buffer_pool_test.cc
#include "xla/tsl/profiler/utils/buffer_pool.h" #include <ios> #include "tsl/platform/logging.h" #include "tsl/platform/mem.h" #include "tsl/platform/mutex.h" namespace tsl { namespace profiler { BufferPool::BufferPool(size_t buffer_size_in_bytes) : buffer_size_in_bytes_(buffer_size_in_bytes) {} BufferPool::~BufferPool() { DestroyAllBuffers(); } uint8_t* BufferPool::GetOrCreateBuffer() { { mutex_lock lock(buffers_mutex_); if (!buffers_.empty()) { uint8_t* buffer = buffers_.back(); buffers_.pop_back(); if (!buffer) { LOG(ERROR) << "A reused buffer must not be null!"; return nullptr; } VLOG(3) << "Reused Buffer, buffer=" << std::hex << reinterpret_cast<uintptr_t>(buffer) << std::dec; return buffer; } } constexpr size_t kBufferAlignSize = 8; uint8_t* buffer = reinterpret_cast<uint8_t*>( port::AlignedMalloc(buffer_size_in_bytes_, kBufferAlignSize)); if (buffer == nullptr) { LOG(WARNING) << "Buffer not allocated."; return nullptr; } VLOG(3) << "Allocated Buffer, buffer=" << std::hex << reinterpret_cast<uintptr_t>(buffer) << std::dec << " size=" << buffer_size_in_bytes_; return buffer; } void BufferPool::ReclaimBuffer(uint8_t* buffer) { mutex_lock lock(buffers_mutex_); buffers_.push_back(buffer); VLOG(3) << "Reclaimed Buffer, buffer=" << std::hex << reinterpret_cast<uintptr_t>(buffer) << std::dec; } void BufferPool::DestroyAllBuffers() { mutex_lock lock(buffers_mutex_); for (uint8_t* buffer : buffers_) { VLOG(3) << "Freeing Buffer, buffer:" << std::hex << reinterpret_cast<uintptr_t>(buffer) << std::dec; port::AlignedFree(buffer); } buffers_.clear(); } size_t BufferPool::GetBufferSizeInBytes() const { return buffer_size_in_bytes_; } } }
#include "xla/tsl/profiler/utils/buffer_pool.h" #include "tsl/platform/test.h" namespace tsl { namespace profiler { namespace { TEST(BufferPoolTest, GetOrCreateBufferAlloc) { constexpr size_t kBufferSizeInBytes = 32 * 1024; BufferPool buffer_pool(kBufferSizeInBytes); uint8_t* first_buffer = buffer_pool.GetOrCreateBuffer(); EXPECT_NE(first_buffer, nullptr); uint8_t* second_buffer = buffer_pool.GetOrCreateBuffer(); EXPECT_NE(second_buffer, first_buffer); for (size_t idx = 0; idx < kBufferSizeInBytes; ++idx) { first_buffer[idx] = 0xAB; } buffer_pool.ReclaimBuffer(first_buffer); buffer_pool.ReclaimBuffer(second_buffer); } TEST(BufferPoolTest, GetOrCreateBufferReuse) { constexpr size_t kBufferSizeInBytes = 32 * 1024; BufferPool buffer_pool(kBufferSizeInBytes); uint8_t* buffer = buffer_pool.GetOrCreateBuffer(); EXPECT_NE(buffer, nullptr); buffer[0] = 0xFF; uint8_t* previous_buffer = buffer; buffer_pool.ReclaimBuffer(buffer); uint8_t* reused_buffer = buffer_pool.GetOrCreateBuffer(); EXPECT_EQ(reused_buffer, previous_buffer); for (size_t idx = 0; idx < kBufferSizeInBytes; ++idx) { reused_buffer[idx] = 0xCD; } buffer_pool.ReclaimBuffer(reused_buffer); } TEST(BufferPoolTest, DestroyAllBuffers) { constexpr size_t kBufferSizeInBytes = 32 * 1024; BufferPool buffer_pool(kBufferSizeInBytes); uint8_t* first_buffer = buffer_pool.GetOrCreateBuffer(); EXPECT_NE(first_buffer, nullptr); buffer_pool.DestroyAllBuffers(); for (size_t idx = 0; idx < kBufferSizeInBytes; ++idx) { first_buffer[idx] = 0xEF; } uint8_t* second_buffer = buffer_pool.GetOrCreateBuffer(); for (size_t idx = 0; idx < kBufferSizeInBytes; ++idx) { second_buffer[idx] = 0xAB; } buffer_pool.ReclaimBuffer(first_buffer); buffer_pool.ReclaimBuffer(second_buffer); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/buffer_pool.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/buffer_pool_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
dc782095-8db1-4f12-bb84-d81e11395814
cpp
tensorflow/tensorflow
parse_annotation
third_party/xla/xla/tsl/profiler/utils/parse_annotation.cc
third_party/xla/xla/tsl/profiler/utils/parse_annotation_test.cc
#include "xla/tsl/profiler/utils/parse_annotation.h" #include <stack> #include <string> #include <utility> #include <vector> #include "absl/strings/ascii.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" namespace tsl { namespace profiler { namespace { std::vector<absl::string_view> SplitNameAndMetadata( absl::string_view annotation) { std::vector<absl::string_view> parts; if (!HasMetadata(annotation)) { parts.emplace_back(annotation); } else { annotation.remove_suffix(1); parts = absl::StrSplit(annotation, '#'); if (parts.size() > 2) { parts.resize(2); } } while (parts.size() < 2) { parts.emplace_back(); } return parts; } std::vector<absl::string_view> SplitPairs(absl::string_view metadata) { std::vector<absl::string_view> key_value_pairs; std::stack<char> quotes; size_t start = 0, end = 0; for (; end < metadata.size(); ++end) { char ch = metadata[end]; switch (ch) { case '\"': case '\'': if (quotes.empty() || quotes.top() != ch) { quotes.push(ch); } else { quotes.pop(); } break; case '{': case '(': case '[': quotes.push(ch); break; case '}': if (!quotes.empty() && quotes.top() == '{') { quotes.pop(); } break; case ')': if (!quotes.empty() && quotes.top() == '(') { quotes.pop(); } break; case ']': if (!quotes.empty() && quotes.top() == '[') { quotes.pop(); } break; case ',': if (quotes.empty()) { if (end - start > 1) { key_value_pairs.emplace_back(metadata.data() + start, end - start); } start = end + 1; } break; } } if (end - start > 1) { key_value_pairs.emplace_back(metadata.data() + start, end - start); } return key_value_pairs; } std::vector<std::pair<absl::string_view, absl::string_view>> ParseMetadata( absl::string_view metadata) { std::vector<std::pair<absl::string_view, absl::string_view>> key_values; for (absl::string_view pair : SplitPairs(metadata)) { std::vector<absl::string_view> parts = absl::StrSplit(pair, absl::MaxSplits('=', 1)); if (parts.size() == 2) { absl::string_view key = absl::StripAsciiWhitespace(parts[0]); absl::string_view value = absl::StripAsciiWhitespace(parts[1]); if (!key.empty() && !value.empty()) { key_values.push_back({key, value}); } } } return key_values; } } Annotation ParseAnnotation(absl::string_view annotation) { Annotation result; std::vector<absl::string_view> parts = SplitNameAndMetadata(annotation); if (!parts.empty()) { result.name = absl::StripAsciiWhitespace(parts[0]); for (const auto& key_value : ParseMetadata(parts[1])) { result.metadata.push_back({key_value.first, key_value.second}); } } return result; } std::vector<Annotation> ParseAnnotationStack( absl::string_view annotation_stack) { std::vector<Annotation> annotations; const std::string kAnnotationDelimiter = "::"; for (absl::string_view annotation : absl::StrSplit( annotation_stack, kAnnotationDelimiter, absl::SkipEmpty())) { annotations.emplace_back(ParseAnnotation(annotation)); } return annotations; } } }
#include "xla/tsl/profiler/utils/parse_annotation.h" #include <vector> #include "absl/strings/string_view.h" #include "tsl/platform/test.h" namespace tsl { namespace profiler { namespace { TEST(ParseAnnotationStackTest, EmptyAnnotationStackTest) { std::vector<Annotation> annotations = ParseAnnotationStack(""); ASSERT_TRUE(annotations.empty()); } TEST(ParseAnnotationStackTest, SingleAnnotationStackTest) { std::vector<Annotation> annotations = ParseAnnotationStack("name"); ASSERT_FALSE(annotations.empty()); EXPECT_EQ(annotations.back().name, "name"); EXPECT_TRUE(annotations.back().metadata.empty()); } TEST(ParseAnnotationStackTest, MultiLevelAnnotationStackTest) { std::vector<Annotation> annotations = ParseAnnotationStack("outer::inner"); ASSERT_EQ(annotations.size(), 2); EXPECT_EQ(annotations.front().name, "outer"); EXPECT_TRUE(annotations.front().metadata.empty()); EXPECT_EQ(annotations.back().name, "inner"); EXPECT_TRUE(annotations.back().metadata.empty()); } TEST(ParseAnnotationTest, EmptyAnnotationTest) { Annotation annotation = ParseAnnotation(""); EXPECT_TRUE(annotation.name.empty()); EXPECT_TRUE(annotation.metadata.empty()); } TEST(ParseAnnotationTest, SimpleNameTest) { Annotation annotation = ParseAnnotation("name"); EXPECT_EQ(annotation.name, "name"); EXPECT_TRUE(annotation.metadata.empty()); } TEST(ParseAnnotationTest, SimpleNameWithWhitespaceTest) { Annotation annotation = ParseAnnotation("name "); EXPECT_EQ(annotation.name, "name"); EXPECT_TRUE(annotation.metadata.empty()); } TEST(ParseAnnotationTest, EmptyMetadataTest) { Annotation annotation = ParseAnnotation("name#"); EXPECT_EQ(annotation.name, "name"); EXPECT_TRUE(annotation.metadata.empty()); annotation = ParseAnnotation("name1##"); EXPECT_EQ(annotation.name, "name1"); EXPECT_TRUE(annotation.metadata.empty()); annotation = ParseAnnotation("name2###"); EXPECT_EQ(annotation.name, "name2"); EXPECT_TRUE(annotation.metadata.empty()); } TEST(ParseAnnotationTest, SingleMetadataTest) { Annotation annotation = ParseAnnotation("name#key=value#"); EXPECT_EQ(annotation.name, "name"); ASSERT_EQ(annotation.metadata.size(), 1); EXPECT_EQ(annotation.metadata.at(0).key, "key"); EXPECT_EQ(annotation.metadata.at(0).value, "value"); } TEST(ParseAnnotationTest, MultipleMetadataTest) { Annotation annotation = ParseAnnotation("name#k1=v1,k2=v2,k3=v3#"); EXPECT_EQ(annotation.name, "name"); ASSERT_EQ(annotation.metadata.size(), 3); EXPECT_EQ(annotation.metadata.at(0).key, "k1"); EXPECT_EQ(annotation.metadata.at(0).value, "v1"); EXPECT_EQ(annotation.metadata.at(1).key, "k2"); EXPECT_EQ(annotation.metadata.at(1).value, "v2"); EXPECT_EQ(annotation.metadata.at(2).key, "k3"); EXPECT_EQ(annotation.metadata.at(2).value, "v3"); } TEST(ParseAnnotationTest, MultipleMetadataWithWhitespaceTest) { Annotation annotation = ParseAnnotation("name # k1 = v1, ,k2=v2 #"); EXPECT_EQ(annotation.name, "name"); ASSERT_EQ(annotation.metadata.size(), 2); EXPECT_EQ(annotation.metadata.at(0).key, "k1"); EXPECT_EQ(annotation.metadata.at(0).value, "v1"); EXPECT_EQ(annotation.metadata.at(1).key, "k2"); EXPECT_EQ(annotation.metadata.at(1).value, "v2"); } TEST(ParseAnnotationTest, KeyValueSeparatorTest) { Annotation annotation = ParseAnnotation("name#=v1,k2=,k3==v3,k4=v4=#"); EXPECT_EQ(annotation.name, "name"); ASSERT_EQ(annotation.metadata.size(), 2); EXPECT_EQ(annotation.metadata.at(0).key, "k3"); EXPECT_EQ(annotation.metadata.at(0).value, "=v3"); EXPECT_EQ(annotation.metadata.at(1).key, "k4"); EXPECT_EQ(annotation.metadata.at(1).value, "v4="); } TEST(ParseAnnotationTest, ExtraMetadataSeparatorTest) { Annotation annotation = ParseAnnotation("name##k1=v1#"); EXPECT_EQ(annotation.name, "name"); EXPECT_TRUE(annotation.metadata.empty()); } TEST(ParseAnnotationTest, QuotedMetadata) { Annotation annotation = ParseAnnotation( "name#k1=(v11,v12),k2=[v21,v22,v23],k3={v31,v32}, k4=\"v41,v42\"," "(k51,k52)='v51,v52'#"); EXPECT_EQ(annotation.metadata.at(0).key, "k1"); EXPECT_EQ(annotation.metadata.at(0).value, "(v11,v12)"); EXPECT_EQ(annotation.metadata.at(1).key, "k2"); EXPECT_EQ(annotation.metadata.at(1).value, "[v21,v22,v23]"); EXPECT_EQ(annotation.metadata.at(2).key, "k3"); EXPECT_EQ(annotation.metadata.at(2).value, "{v31,v32}"); EXPECT_EQ(annotation.metadata.at(3).key, "k4"); EXPECT_EQ(annotation.metadata.at(3).value, "\"v41,v42\""); EXPECT_EQ(annotation.metadata.at(4).key, "(k51,k52)"); EXPECT_EQ(annotation.metadata.at(4).value, "'v51,v52'"); } TEST(ParseAnnotationTest, UnmatchedQuotedMetadata) { Annotation annotation = ParseAnnotation("name#k1=v1,k2=(v2,k3=v3#"); EXPECT_EQ(annotation.metadata.at(0).key, "k1"); EXPECT_EQ(annotation.metadata.at(0).value, "v1"); EXPECT_EQ(annotation.metadata.at(1).key, "k2"); EXPECT_EQ(annotation.metadata.at(1).value, "(v2,k3=v3"); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/parse_annotation.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/parse_annotation_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6bc61fe2-d66b-43c8-afde-73c141c7c124
cpp
tensorflow/tensorflow
preprocess_xplane
third_party/xla/xla/tsl/profiler/utils/preprocess_xplane.cc
third_party/xla/xla/tsl/profiler/utils/preprocess_xplane_test.cc
#include "xla/tsl/profiler/utils/preprocess_xplane.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "xla/tsl/profiler/utils/xplane_builder.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "tsl/profiler/lib/context_types.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tsl { namespace profiler { namespace { using ::tsl::profiler::HostEventType; using ::tsl::profiler::StatType; using ::tsl::profiler::XEventBuilder; using ::tsl::profiler::XLineBuilder; using ::tsl::profiler::XPlane; using ::tsl::profiler::XPlaneBuilder; using ::tsl::profiler::XSpace; void MutateXPlane(XPlane& plane, const std::vector<std::unique_ptr<XplaneEventMutatorFactory>>& mutator_factories) { XPlaneBuilder plane_builder(&plane); absl::flat_hash_map<int64_t, std::vector<std::unique_ptr<XplaneEventMutator>>> mutators_from_event_metadata_id; std::vector<std::unique_ptr<XplaneEventMutator>> line_mutators; for (const auto& mutator_factory : mutator_factories) { auto mutators = mutator_factory->CreateMutators(plane_builder); for (auto& mutator : mutators) { if (mutator->event_metadata()) { auto id = mutator->event_metadata()->id(); mutators_from_event_metadata_id[id].push_back(std::move(mutator)); } else { line_mutators.push_back(std::move(mutator)); } } } if (mutators_from_event_metadata_id.empty() && line_mutators.empty()) { return; } plane_builder.ForEachLine([&](XLineBuilder line_builder) { for (const auto& mutator : line_mutators) { mutator->MutateEventsInLine(line_builder); } if (mutators_from_event_metadata_id.empty()) return; line_builder.ForEachEvent([&](XEventBuilder event_builder) { auto event_mutators = mutators_from_event_metadata_id.find(event_builder.MetadataId()); if (event_mutators != mutators_from_event_metadata_id.end()) { for (const auto& mutator : event_mutators->second) { mutator->Mutate(event_builder); } } }); }); } std::vector<std::unique_ptr<XplaneEventMutatorFactory>> CreateMutatorFactories() { std::vector<std::unique_ptr<XplaneEventMutatorFactory>> mutator_factories; mutator_factories.push_back(ThreadpoolLineMutatorFactory::CreateFactory()); mutator_factories.push_back(XplaneRootEventMutatorFactory::CreateFactory( HostEventType::kProcessBatch, 2)); mutator_factories.push_back(XplaneRootEventMutatorFactory::CreateFactory( HostEventType::kBatchingSessionRun, 1)); mutator_factories.push_back( XplaneConnectedEventMutatorFactory< HostEventType::kExecutorStateProcess, HostEventType::kTpuExecuteOp, ContextType::kLegacy, false, XContextStatsAccessor<uint64_t, StatType::kStepId>, XContextStatsAccessor<uint64_t, StatType::kIterNum>>::CreateFactory()); #define ADD_QUEUE_CONNECTION(__enque_event__, __deque_event__) \ mutator_factories.push_back( \ XplaneConnectedEventMutatorFactory< \ HostEventType::__enque_event__, HostEventType::__deque_event__, \ ContextType::kTpuStream, true, \ XContextStatsAccessor<uint64, StatType::kRequestId>, \ XContextStatsAccessor<uint64, \ StatType::kQueueAddr>>::CreateFactory()) ADD_QUEUE_CONNECTION(kEnqueueRequestLocked, kRunProgramRequest); ADD_QUEUE_CONNECTION(kEnqueueRequestLocked, kHostCallbackRequest); ADD_QUEUE_CONNECTION(kEnqueueRequestLocked, kTransferH2DRequest); ADD_QUEUE_CONNECTION(kEnqueueRequestLocked, kTransferPreprocessedH2DRequest); ADD_QUEUE_CONNECTION(kEnqueueRequestLocked, kTransferD2HRequest); ADD_QUEUE_CONNECTION(kEnqueueRequestLocked, kOnDeviceSendRequest); ADD_QUEUE_CONNECTION(kEnqueueRequestLocked, kOnDeviceRecvRequest); ADD_QUEUE_CONNECTION(kEnqueueRequestLocked, kOnDeviceSendRecvLocalRequest); ADD_QUEUE_CONNECTION(kEnqueueRequestLocked, kCustomWait); ADD_QUEUE_CONNECTION(kEnqueueRequestLocked, kOnDeviceSendRequestMulti); ADD_QUEUE_CONNECTION(kEnqueueRequestLocked, kOnDeviceRecvRequestMulti); ADD_QUEUE_CONNECTION(kEnqueueRequestLocked, kPjrtAsyncWait); #undef ADD_QUEUE_CONNECTION mutator_factories.push_back( HostRunIdMutatorFactory< HostEventType::kDoEnqueueProgram>::CreateFactory()); mutator_factories.push_back( HostRunIdMutatorFactory< HostEventType::kCompleteCallbacks>::CreateFactory()); mutator_factories.push_back( HostRunIdMutatorFactory< HostEventType::kDoEnqueueContinuationProgram>::CreateFactory()); mutator_factories.push_back( XplaneConnectedEventMutatorFactory< HostEventType::kDoEnqueueProgram, HostEventType::kCompleteCallbacks, ContextType::kTpuLaunch, true, XContextStatsAccessor<uint64_t, StatType::kDeviceOrdinal>, XContextStatsAccessor<uint64_t, StatType::kQueueId>, XContextStatsAccessor<uint64_t, StatType::kRunId>, XContextStatsAccessorWithDefault<uint64_t, StatType::kCoreType, 0ULL>>::CreateFactory()); mutator_factories.push_back(TpuModuleLineMutatorFactory::CreateFactory()); return mutator_factories; } } void PreprocessXPlane(XPlane* plane) { if (plane == nullptr) return; auto mutator_factories = CreateMutatorFactories(); MutateXPlane(*plane, mutator_factories); } void PreprocessXSpace(XSpace* space) { if (space == nullptr) return; auto mutator_factories = CreateMutatorFactories(); for (XPlane& plane : *space->mutable_planes()) { MutateXPlane(plane, mutator_factories); } } } }
#include "xla/tsl/profiler/utils/preprocess_xplane.h" #include <cstdint> #include <memory> #include <optional> #include "absl/container/flat_hash_map.h" #include "absl/hash/hash.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "xla/tsl/profiler/utils/xplane_builder.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "xla/tsl/profiler/utils/xplane_test_utils.h" #include "xla/tsl/profiler/utils/xplane_visitor.h" #include "tsl/platform/test.h" #include "tsl/profiler/lib/connected_traceme.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tsl { namespace profiler { namespace { using ::tsl::profiler::CreateTfXPlaneVisitor; using ::tsl::profiler::CreateXEvent; using ::tsl::profiler::GetHostEventTypeStr; using ::tsl::profiler::HostEventType; using ::tsl::profiler::StatType; using ::tsl::profiler::XEventVisitor; using ::tsl::profiler::XLineVisitor; using ::tsl::profiler::XPlane; using ::tsl::profiler::XPlaneBuilder; using ::tsl::profiler::XPlaneVisitor; using ::tsl::profiler::XSpace; TEST(PreprocessXPlane, IsRootStatsTest) { XSpace space; XPlane* plane = space.add_planes(); XPlaneBuilder plane_builder(plane); plane_builder.ReserveLines(1); auto line_builder = plane_builder.GetOrCreateLine(0); CreateXEvent(&plane_builder, &line_builder, GetHostEventTypeStr(HostEventType::kProcessBatch), 100, 100); CreateXEvent(&plane_builder, &line_builder, GetHostEventTypeStr(HostEventType::kBatchingSessionRun), 200, 100); PreprocessXSpace(&space); XPlaneVisitor plane_visitor = CreateTfXPlaneVisitor(plane); plane_visitor.ForEachLine([&](const XLineVisitor& line) { line.ForEachEvent([&](const XEventVisitor& event) { ASSERT_TRUE(event.GetStat(StatType::kIsRoot).has_value()); int64_t is_root = event.GetStat(StatType::kIsRoot)->IntValue(); if (event.Type() == HostEventType::kBatchingSessionRun) { EXPECT_EQ(is_root, 1); } else if (event.Type() == HostEventType::kProcessBatch) { EXPECT_EQ(is_root, 2); } else { CHECK(false); } }); }); } TEST(PreprocessXPlane, ProducerConsumerTest) { XSpace space; XPlane* plane = space.add_planes(); XPlaneBuilder plane_builder(plane); plane_builder.ReserveLines(2); auto line_builder = plane_builder.GetOrCreateLine(0); CreateXEvent( &plane_builder, &line_builder, GetHostEventTypeStr(HostEventType::kExecutorStateProcess), 100, 100, {{StatType::kStepId, int64_t{123}}, {StatType::kIterNum, int64_t{456}}}); line_builder = plane_builder.GetOrCreateLine(1); CreateXEvent( &plane_builder, &line_builder, GetHostEventTypeStr(HostEventType::kTpuExecuteOp), 200, 100, {{StatType::kStepId, int64_t{123}}, {StatType::kIterNum, int64_t{456}}}); PreprocessXSpace(&space); std::optional<uint64_t> producer_context_id, consumer_context_id; XPlaneVisitor plane_visitor = CreateTfXPlaneVisitor(plane); plane_visitor.ForEachLine([&](const XLineVisitor& line) { line.ForEachEvent([&](const XEventVisitor& event) { if (event.Type() == HostEventType::kExecutorStateProcess) { auto producer_type = event.GetStat(StatType::kProducerType); ASSERT_TRUE(producer_type.has_value()); EXPECT_EQ(producer_type->IntValue(), static_cast<int64_t>(ContextType::kLegacy)); auto producer_id = event.GetStat(StatType::kProducerId); ASSERT_TRUE(producer_id.has_value()); producer_context_id = producer_id->IntOrUintValue(); } else if (event.Type() == HostEventType::kTpuExecuteOp) { auto consumer_type = event.GetStat(StatType::kConsumerType); ASSERT_TRUE(consumer_type.has_value()); EXPECT_EQ(consumer_type->IntValue(), static_cast<int64_t>(ContextType::kLegacy)); auto consumer_id = event.GetStat(StatType::kConsumerId); ASSERT_TRUE(consumer_id.has_value()); consumer_context_id = consumer_id->IntOrUintValue(); } else { CHECK(false); } }); }); ASSERT_TRUE(producer_context_id && consumer_context_id); ASSERT_EQ(*producer_context_id, *consumer_context_id); } TEST(PreprocessXPlane, ProducerConsumerNotMatchedTest) { XSpace space; XPlane* plane = space.add_planes(); XPlaneBuilder plane_builder(plane); plane_builder.ReserveLines(2); auto line_builder = plane_builder.GetOrCreateLine(0); CreateXEvent(&plane_builder, &line_builder, GetHostEventTypeStr(HostEventType::kExecutorStateProcess), 100, 100, {{StatType::kStepId, int64_t{123}}, {StatType::kIterNum, int64_t{456}}, {StatType::kDeviceOrdinal, int64_t{789}}}); line_builder = plane_builder.GetOrCreateLine(1); CreateXEvent( &plane_builder, &line_builder, GetHostEventTypeStr(HostEventType::kTpuExecuteOp), 200, 100, {{StatType::kStepId, int64_t{123}}, {StatType::kIterNum, int64_t{789}}}); PreprocessXSpace(&space); std::optional<uint64_t> producer_context_id, consumer_context_id; XPlaneVisitor plane_visitor = CreateTfXPlaneVisitor(plane); plane_visitor.ForEachLine([&](const XLineVisitor& line) { line.ForEachEvent([&](const XEventVisitor& event) { if (event.Type() == HostEventType::kExecutorStateProcess) { auto producer_type = event.GetStat(StatType::kProducerType); ASSERT_TRUE(producer_type.has_value()); EXPECT_EQ(producer_type->IntValue(), static_cast<int64_t>(ContextType::kLegacy)); auto producer_id = event.GetStat(StatType::kProducerId); ASSERT_TRUE(producer_id.has_value()); producer_context_id = producer_id->IntOrUintValue(); } else if (event.Type() == HostEventType::kTpuExecuteOp) { auto consumer_type = event.GetStat(StatType::kConsumerType); ASSERT_TRUE(consumer_type.has_value()); EXPECT_EQ(consumer_type->IntValue(), static_cast<int64_t>(ContextType::kLegacy)); auto consumer_id = event.GetStat(StatType::kConsumerId); ASSERT_TRUE(consumer_id.has_value()); consumer_context_id = consumer_id->IntOrUintValue(); } else { CHECK(false); } }); }); ASSERT_TRUE(producer_context_id && consumer_context_id); ASSERT_NE(*producer_context_id, *consumer_context_id); } TEST(PreprocessXPlane, MissingLegacyStatTest) { XSpace space; XPlane* plane = space.add_planes(); XPlaneBuilder plane_builder(plane); plane_builder.ReserveLines(2); auto line_builder = plane_builder.GetOrCreateLine(0); CreateXEvent(&plane_builder, &line_builder, GetHostEventTypeStr(HostEventType::kExecutorStateProcess), 100, 100, {{StatType::kStepId, int64_t{123}}}); line_builder = plane_builder.GetOrCreateLine(1); CreateXEvent(&plane_builder, &line_builder, GetHostEventTypeStr(HostEventType::kTpuExecuteOp), 200, 100, {{StatType::kStepId, int64_t{123}}}); PreprocessXSpace(&space); XPlaneVisitor plane_visitor = CreateTfXPlaneVisitor(plane); plane_visitor.ForEachLine([&](const XLineVisitor& line) { line.ForEachEvent([&](const XEventVisitor& event) { if (event.Type() == HostEventType::kExecutorStateProcess) { auto producer_type = event.GetStat(StatType::kProducerType); ASSERT_FALSE(producer_type.has_value()); auto producer_id = event.GetStat(StatType::kProducerId); ASSERT_FALSE(producer_id.has_value()); } else if (event.Type() == HostEventType::kTpuExecuteOp) { auto consumer_type = event.GetStat(StatType::kConsumerType); ASSERT_FALSE(consumer_type.has_value()); auto consumer_id = event.GetStat(StatType::kConsumerId); ASSERT_FALSE(consumer_id.has_value()); } else { CHECK(false); } }); }); } TEST(PreprocessXPlane, HostRunIdPreprocessorTest) { XSpace space; XPlane* plane = space.add_planes(); XPlaneBuilder plane_builder(plane); plane_builder.ReserveLines(2); auto line_builder = plane_builder.GetOrCreateLine(0); int64_t host_run_id = int64_t{582974244}; int64_t device_run_id = int64_t{46103332}; CreateXEvent( &plane_builder, &line_builder, GetHostEventTypeStr(HostEventType::kDoEnqueueContinuationProgram), 100, 100, {}); CreateXEvent(&plane_builder, &line_builder, GetHostEventTypeStr(HostEventType::kDoEnqueueProgram), 100, 100, {{StatType::kRunId, int64_t{host_run_id}}}); CreateXEvent(&plane_builder, &line_builder, GetHostEventTypeStr(HostEventType::kTpuExecuteOp), 200, 100, {{StatType::kRunId, int64_t{device_run_id}}}); CreateXEvent(&plane_builder, &line_builder, GetHostEventTypeStr(HostEventType::kCompleteCallbacks), 300, 100, {{StatType::kRunId, int64_t{host_run_id}}}); line_builder = plane_builder.GetOrCreateLine(1); PreprocessXSpace(&space); XPlaneVisitor plane_visitor = CreateTfXPlaneVisitor(plane); plane_visitor.ForEachLine([&](const XLineVisitor& line) { line.ForEachEvent([&](const XEventVisitor& event) { if (event.Type() == HostEventType::kDoEnqueueContinuationProgram) { auto run_id = event.GetStat(StatType::kRunId); ASSERT_FALSE(run_id.has_value()); } else if (event.Type() == HostEventType::kDoEnqueueProgram) { auto run_id = event.GetStat(StatType::kRunId); ASSERT_TRUE(run_id.has_value()); ASSERT_EQ(run_id->IntValue(), device_run_id); } else if (event.Type() == HostEventType::kTpuExecuteOp) { auto run_id = event.GetStat(StatType::kRunId); ASSERT_TRUE(run_id.has_value()); ASSERT_EQ(run_id->IntValue(), device_run_id); } else if (event.Type() == HostEventType::kCompleteCallbacks) { auto run_id = event.GetStat(StatType::kRunId); ASSERT_TRUE(run_id.has_value()); ASSERT_EQ(run_id->IntValue(), device_run_id); } else { CHECK(false); } }); }); } TEST(PreprocessXPlane, ThreadPoolPreprocessorTest) { XSpace space; XPlane* plane = space.add_planes(); XPlaneBuilder plane_builder(plane); auto main_line = plane_builder.GetOrCreateLine(0); CreateXEvent(&plane_builder, &main_line, kThreadpoolListenerRecord, 100, 100, {{StatType::kProducerType, static_cast<int64_t>(ContextType::kThreadpoolEvent)}, {StatType::kProducerId, int64_t{123}}}); auto thread_pool_line = plane_builder.GetOrCreateLine(1); CreateXEvent(&plane_builder, &thread_pool_line, kThreadpoolListenerStartRegion, 200, 0, {{StatType::kConsumerType, static_cast<int64_t>(ContextType::kThreadpoolEvent)}, {StatType::kConsumerId, int64_t{123}}}); CreateXEvent(&plane_builder, &thread_pool_line, kThreadpoolListenerStopRegion, 300, 0, {{StatType::kConsumerType, static_cast<int64_t>(ContextType::kThreadpoolEvent)}, {StatType::kConsumerId, int64_t{123}}}); bool new_event_added = false; PreprocessXSpace(&space); XPlaneVisitor plane_visitor = CreateTfXPlaneVisitor(plane); plane_visitor.ForEachLine([&](const XLineVisitor& line) { line.ForEachEvent([&](const XEventVisitor& event) { if (event.Name() == kThreadpoolListenerRegion) { new_event_added = true; EXPECT_EQ(event.DurationPs(), 100); EXPECT_EQ(event.TimestampPs(), 200); auto stat = event.GetStat(StatType::kConsumerId); EXPECT_TRUE(stat.has_value()); EXPECT_EQ(stat->IntOrUintValue(), 123); } }); }); EXPECT_TRUE(new_event_added); } TEST(PreprocessXPlane, XContextStatsAccessorNPETest) { auto xplane = std::make_unique<XPlane>(); XPlaneBuilder xplane_builder(xplane.get()); XLine xline; XLineBuilder xline_builder(&xline, &xplane_builder); XEvent xevent; XEventBuilder xevent_builder(&xline, &xplane_builder, &xevent); XContextStatsAccessor<int64_t, StatType::kRunId> run_id_accessor; ASSERT_FALSE(run_id_accessor.Initialize(xplane_builder)); EXPECT_EQ(run_id_accessor.GetStat(xevent_builder), std::nullopt); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/preprocess_xplane.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/preprocess_xplane_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
62e61c22-dfcd-4e95-b89f-f33ebb6697b3
cpp
tensorflow/tensorflow
remote_profiler_session_manager
third_party/xla/xla/tsl/profiler/rpc/client/remote_profiler_session_manager.cc
third_party/xla/xla/tsl/profiler/rpc/client/remote_profiler_session_manager_test.cc
#include "xla/tsl/profiler/rpc/client/remote_profiler_session_manager.h" #include <cstddef> #include <memory> #include "absl/memory/memory.h" #include "absl/strings/string_view.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "xla/tsl/profiler/rpc/client/profiler_client.h" #include "xla/tsl/profiler/utils/time_utils.h" #include "tsl/platform/env_time.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/types.h" namespace tsl { namespace profiler { using tensorflow::ProfileRequest; using tensorflow::RemoteProfilerSessionManagerOptions; std::unique_ptr<RemoteProfilerSessionManager> RemoteProfilerSessionManager::Create( const RemoteProfilerSessionManagerOptions& options, const ProfileRequest& request, absl::Status& out_status, AddressResolver resolver) { VLOG(1) << "Creating a RemoteProfilerSessionManager."; auto session_manager = absl::WrapUnique( new RemoteProfilerSessionManager(options, request, resolver)); out_status = session_manager->Init(); if (!out_status.ok()) { return nullptr; } return session_manager; } RemoteProfilerSessionManager::RemoteProfilerSessionManager( RemoteProfilerSessionManagerOptions options, ProfileRequest request, AddressResolver resolver) : options_(options), request_(request) { if (resolver) { resolver_ = resolver; } else { resolver_ = [](absl::string_view addr) { return std::string(addr); }; } } RemoteProfilerSessionManager::~RemoteProfilerSessionManager() { VLOG(2) << "Destroying RemoteProfilerSessionManager."; } absl::Status RemoteProfilerSessionManager::Init() { mutex_lock lock(mutex_); VLOG(1) << "SessionManager initializing."; const absl::Time session_created_ts = absl::FromUnixNanos(options_.session_creation_timestamp_ns()); const absl::Time deadline = session_created_ts + absl::Milliseconds(options_.max_session_duration_ms()); LOG(INFO) << "Deadline set to " << deadline << " because max_session_duration_ms was " << options_.max_session_duration_ms() << " and session_creation_timestamp_ns was " << options_.session_creation_timestamp_ns() << " [" << session_created_ts << "]"; clients_.reserve(options_.service_addresses_size()); ProfileRequest request = request_; for (auto& service_address : options_.service_addresses()) { std::string resolved_service_address = resolver_(service_address); request.set_host_name(resolved_service_address); auto client = RemoteProfilerSession::Create(resolved_service_address, deadline, request); clients_.push_back(std::move(client)); } LOG(INFO) << "Issued Profile gRPC to " << clients_.size() << " clients"; return absl::OkStatus(); } std::vector<RemoteProfilerSessionManager::Response> RemoteProfilerSessionManager::WaitForCompletion() { mutex_lock lock(mutex_); std::vector<RemoteProfilerSessionManager::Response> remote_responses( clients_.size()); for (int32_t idx = 0; idx < clients_.size(); ++idx) { auto& remote_response = remote_responses[idx]; auto* client = clients_[idx].get(); remote_response.profile_response = client->WaitForCompletion(remote_response.status); remote_response.service_address = std::string(client->GetServiceAddress()); } return remote_responses; } } }
#include "xla/tsl/profiler/rpc/client/remote_profiler_session_manager.h" #include <memory> #include <string> #include <vector> #include "absl/status/status.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "xla/tsl/profiler/rpc/client/profiler_client_test_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/test.h" #include "tsl/platform/types.h" #include "tsl/profiler/protobuf/profiler_options.pb.h" #include "tsl/profiler/protobuf/profiler_service.pb.h" namespace tsl { namespace profiler { namespace { using tensorflow::ProfileRequest; using tensorflow::RemoteProfilerSessionManagerOptions; using ::tsl::profiler::test::DurationApproxLess; using ::tsl::profiler::test::DurationNear; using ::tsl::profiler::test::StartServer; using ::tsl::testing::TmpDir; using Response = tsl::profiler::RemoteProfilerSessionManager::Response; constexpr double kGracePeriodSeconds = 10.0; ProfileRequest PopulateProfileRequest( absl::string_view repository_root, absl::string_view session_id, absl::string_view host_name, const RemoteProfilerSessionManagerOptions& options) { constexpr uint64 kMaxEvents = 1000000; const absl::string_view kXPlanePb = "xplane.pb"; ProfileRequest request; request.set_duration_ms(options.profiler_options().duration_ms()); request.set_max_events(kMaxEvents); request.set_repository_root(repository_root.data(), repository_root.size()); request.set_session_id(session_id.data(), session_id.size()); request.set_host_name(host_name.data(), host_name.size()); request.add_tools(kXPlanePb.data(), kXPlanePb.size()); *request.mutable_opts() = options.profiler_options(); return request; } TEST(RemoteProfilerSessionManagerTest, Simple) { absl::Duration duration = absl::Milliseconds(30); RemoteProfilerSessionManagerOptions options; *options.mutable_profiler_options() = tsl::ProfilerSession::DefaultOptions(); options.mutable_profiler_options()->set_duration_ms( absl::ToInt64Milliseconds(duration)); std::string service_address; auto server = StartServer(duration, &service_address); options.add_service_addresses(service_address); absl::Time approx_start = absl::Now(); absl::Duration grace = absl::Seconds(kGracePeriodSeconds); absl::Duration max_duration = duration + grace; options.set_max_session_duration_ms(absl::ToInt64Milliseconds(max_duration)); options.set_session_creation_timestamp_ns(absl::ToUnixNanos(approx_start)); ProfileRequest request = PopulateProfileRequest(TmpDir(), "session_id", service_address, options); absl::Status status; auto sessions = RemoteProfilerSessionManager::Create(options, request, status); EXPECT_TRUE(status.ok()); std::vector<Response> responses = sessions->WaitForCompletion(); absl::Duration elapsed = absl::Now() - approx_start; ASSERT_EQ(responses.size(), 1); EXPECT_TRUE(responses.back().status.ok()); EXPECT_TRUE(responses.back().profile_response->empty_trace()); EXPECT_EQ(responses.back().profile_response->tool_data_size(), 0); EXPECT_THAT(elapsed, DurationApproxLess(max_duration)); } TEST(RemoteProfilerSessionManagerTest, ExpiredDeadline) { absl::Duration duration = absl::Milliseconds(30); RemoteProfilerSessionManagerOptions options; *options.mutable_profiler_options() = tsl::ProfilerSession::DefaultOptions(); options.mutable_profiler_options()->set_duration_ms( absl::ToInt64Milliseconds(duration)); std::string service_address; auto server = StartServer(duration, &service_address); options.add_service_addresses(service_address); absl::Duration grace = absl::Seconds(kGracePeriodSeconds); absl::Duration max_duration = duration + grace; options.set_max_session_duration_ms(absl::ToInt64Milliseconds(max_duration)); options.set_session_creation_timestamp_ns(0); absl::Time approx_start = absl::Now(); ProfileRequest request = PopulateProfileRequest(TmpDir(), "session_id", service_address, options); absl::Status status; auto sessions = RemoteProfilerSessionManager::Create(options, request, status); EXPECT_TRUE(status.ok()); std::vector<Response> responses = sessions->WaitForCompletion(); absl::Duration elapsed = absl::Now() - approx_start; EXPECT_THAT(elapsed, DurationNear(absl::Seconds(0))); ASSERT_EQ(responses.size(), 1); EXPECT_TRUE(absl::IsDeadlineExceeded(responses.back().status)); EXPECT_TRUE(responses.back().profile_response->empty_trace()); EXPECT_EQ(responses.back().profile_response->tool_data_size(), 0); } TEST(RemoteProfilerSessionManagerTest, LongSession) { absl::Duration duration = absl::Seconds(3); RemoteProfilerSessionManagerOptions options; *options.mutable_profiler_options() = tsl::ProfilerSession::DefaultOptions(); options.mutable_profiler_options()->set_duration_ms( absl::ToInt64Milliseconds(duration)); std::string service_address; auto server = StartServer(duration, &service_address); options.add_service_addresses(service_address); absl::Time approx_start = absl::Now(); absl::Duration grace = absl::Seconds(kGracePeriodSeconds); absl::Duration max_duration = duration + grace; options.set_max_session_duration_ms(absl::ToInt64Milliseconds(max_duration)); options.set_session_creation_timestamp_ns(absl::ToUnixNanos(approx_start)); ProfileRequest request = PopulateProfileRequest(TmpDir(), "session_id", service_address, options); absl::Status status; auto sessions = RemoteProfilerSessionManager::Create(options, request, status); EXPECT_TRUE(status.ok()); std::vector<Response> responses = sessions->WaitForCompletion(); absl::Duration elapsed = absl::Now() - approx_start; ASSERT_EQ(responses.size(), 1); EXPECT_TRUE(responses.back().status.ok()); EXPECT_TRUE(responses.back().profile_response->empty_trace()); EXPECT_EQ(responses.back().profile_response->tool_data_size(), 0); EXPECT_THAT(elapsed, DurationApproxLess(max_duration)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/rpc/client/remote_profiler_session_manager.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/rpc/client/remote_profiler_session_manager_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e8e70257-c930-4276-aa31-a78ba89ae267
cpp
tensorflow/tensorflow
profiler_client
third_party/xla/xla/tsl/profiler/rpc/client/profiler_client.cc
third_party/xla/xla/tsl/profiler/rpc/client/profiler_client_test.cc
#include "xla/tsl/profiler/rpc/client/profiler_client.h" #include <limits> #include <memory> #include "absl/memory/memory.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "grpcpp/grpcpp.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/types.h" #include "tsl/protobuf/error_codes.pb.h" namespace tsl { namespace profiler { namespace { using tensorflow::MonitorRequest; using tensorflow::MonitorResponse; using tensorflow::NewProfileSessionRequest; using tensorflow::NewProfileSessionResponse; using tensorflow::ProfileRequest; using tensorflow::ProfileResponse; inline absl::Status FromGrpcStatus(const ::grpc::Status& s) { return s.ok() ? absl::OkStatus() : absl::Status(static_cast<absl::StatusCode>(s.error_code()), s.error_message()); } template <typename T> std::unique_ptr<typename T::Stub> CreateStub( const std::string& service_address) { ::grpc::ChannelArguments channel_args; channel_args.SetMaxReceiveMessageSize(std::numeric_limits<int32>::max()); auto channel = ::grpc::CreateCustomChannel( service_address, ::grpc::InsecureChannelCredentials(), channel_args); if (!channel) { LOG(ERROR) << "Unable to create channel" << service_address; return nullptr; } return T::NewStub(channel); } } absl::Status ProfileGrpc(const std::string& service_address, const ProfileRequest& request, ProfileResponse* response) { ::grpc::ClientContext context; std::unique_ptr<tensorflow::grpc::ProfilerService::Stub> stub = CreateStub<tensorflow::grpc::ProfilerService>(service_address); TF_RETURN_IF_ERROR( FromGrpcStatus(stub->Profile(&context, request, response))); return absl::OkStatus(); } absl::Status NewSessionGrpc(const std::string& service_address, const NewProfileSessionRequest& request, NewProfileSessionResponse* response) { ::grpc::ClientContext context; std::unique_ptr<tensorflow::grpc::ProfileAnalysis::Stub> stub = CreateStub<tensorflow::grpc::ProfileAnalysis>(service_address); TF_RETURN_IF_ERROR( FromGrpcStatus(stub->NewSession(&context, request, response))); return absl::OkStatus(); } absl::Status MonitorGrpc(const std::string& service_address, const MonitorRequest& request, MonitorResponse* response) { ::grpc::ClientContext context; std::unique_ptr<tensorflow::grpc::ProfilerService::Stub> stub = CreateStub<tensorflow::grpc::ProfilerService>(service_address); TF_RETURN_IF_ERROR( FromGrpcStatus(stub->Monitor(&context, request, response))); return absl::OkStatus(); } std::unique_ptr<RemoteProfilerSession> RemoteProfilerSession::Create( const std::string& service_address, absl::Time deadline, const ProfileRequest& profile_request) { auto instance = absl::WrapUnique( new RemoteProfilerSession(service_address, deadline, profile_request)); instance->ProfileAsync(); return instance; } RemoteProfilerSession::RemoteProfilerSession( const std::string& service_address, absl::Time deadline, const ProfileRequest& profile_request) : response_(absl::make_unique<ProfileResponse>()), service_address_(service_address), stub_(CreateStub<tensorflow::grpc::ProfilerService>(service_address_)), deadline_(deadline), profile_request_(profile_request) { response_->set_empty_trace(true); } RemoteProfilerSession::~RemoteProfilerSession() { absl::Status dummy; WaitForCompletion(dummy); grpc_context_.TryCancel(); } void RemoteProfilerSession::ProfileAsync() { LOG(INFO) << "Asynchronous gRPC Profile() to " << service_address_; grpc_context_.set_deadline(absl::ToChronoTime(deadline_)); VLOG(1) << "Deadline set to " << deadline_; rpc_ = stub_->AsyncProfile(&grpc_context_, profile_request_, &cq_); rpc_->Finish(response_.get(), &grpc_status_, static_cast<void*>(&status_on_completion_)); VLOG(2) << "Asynchronous gRPC Profile() issued." << absl::Now(); } std::unique_ptr<ProfileResponse> RemoteProfilerSession::WaitForCompletion( absl::Status& out_status) { if (!response_) { out_status = errors::FailedPrecondition( "WaitForCompletion must only be called once."); return nullptr; } LOG(INFO) << "Waiting for completion."; void* got_tag = nullptr; bool ok = false; bool success = cq_.Next(&got_tag, &ok); if (!success || !ok || got_tag == nullptr) { out_status = errors::Internal("Missing or invalid event from completion queue."); return nullptr; } VLOG(1) << "Writing out status."; DCHECK_EQ(got_tag, &status_on_completion_); status_on_completion_.Update(FromGrpcStatus(grpc_status_)); if (status_on_completion_.code() == error::DEADLINE_EXCEEDED) { LOG(WARNING) << status_on_completion_; } else if (!status_on_completion_.ok()) { LOG(ERROR) << status_on_completion_; } out_status = status_on_completion_; return std::move(response_); } } }
#include "xla/tsl/profiler/rpc/client/profiler_client.h" #include <memory> #include <string> #include "absl/time/clock.h" #include "absl/time/time.h" #include "xla/tsl/profiler/rpc/client/profiler_client_test_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/test.h" #include "tsl/platform/types.h" #include "tsl/profiler/protobuf/profiler_service.pb.h" namespace tsl { namespace profiler { namespace { using tensorflow::ProfileRequest; using ::tsl::profiler::test::DurationApproxLess; using ::tsl::profiler::test::DurationNear; using ::tsl::profiler::test::StartServer; TEST(RemoteProfilerSession, Simple) { absl::Duration duration = absl::Milliseconds(10); ProfileRequest request; std::string service_addr; auto server = StartServer(duration, &service_addr, &request); absl::Duration grace = absl::Seconds(1); absl::Duration max_duration = duration + grace; absl::Time approx_start = absl::Now(); absl::Time deadline = approx_start + max_duration; auto remote_session = RemoteProfilerSession::Create(service_addr, deadline, request); absl::Status status; auto response = remote_session->WaitForCompletion(status); absl::Duration elapsed = absl::Now() - approx_start; EXPECT_TRUE(status.ok()); EXPECT_TRUE(response->empty_trace()); EXPECT_EQ(response->tool_data_size(), 0); EXPECT_THAT(elapsed, DurationApproxLess(max_duration)); } TEST(RemoteProfilerSession, WaitNotCalled) { absl::Duration duration = absl::Milliseconds(10); ProfileRequest request; std::string service_addr; auto server = StartServer(duration, &service_addr, &request); absl::Duration grace = absl::Seconds(1); absl::Duration max_duration = duration + grace; absl::Time approx_start = absl::Now(); absl::Time deadline = approx_start + max_duration; auto remote_session = RemoteProfilerSession::Create(service_addr, deadline, request); absl::Duration elapsed = absl::Now() - approx_start; EXPECT_THAT(elapsed, DurationApproxLess(max_duration)); } TEST(RemoteProfilerSession, Timeout) { absl::Duration duration = absl::Milliseconds(10); ProfileRequest request; std::string service_addr; auto server = StartServer(duration, &service_addr, &request); auto remote_session = RemoteProfilerSession::Create(service_addr, absl::Now(), request); absl::Status status; auto response = remote_session->WaitForCompletion(status); EXPECT_TRUE(errors::IsDeadlineExceeded(status)); EXPECT_TRUE(response->empty_trace()); EXPECT_EQ(response->tool_data_size(), 0); } TEST(RemoteProfilerSession, LongDeadline) { absl::Duration duration = absl::Milliseconds(10); ProfileRequest request; std::string service_addr; auto server = StartServer(duration, &service_addr, &request); absl::Time approx_start = absl::Now(); absl::Duration grace = absl::Seconds(1000); absl::Duration max_duration = duration + grace; const absl::Time deadline = approx_start + max_duration; auto remote_session = RemoteProfilerSession::Create(service_addr, deadline, request); absl::Status status; auto response = remote_session->WaitForCompletion(status); absl::Duration elapsed = absl::Now() - approx_start; EXPECT_TRUE(status.ok()); EXPECT_TRUE(response->empty_trace()); EXPECT_EQ(response->tool_data_size(), 0); EXPECT_THAT(elapsed, DurationNear(duration)); } TEST(RemoteProfilerSession, LongDuration) { absl::Duration duration = absl::Seconds(3); ProfileRequest request; std::string service_addr; auto server = StartServer(duration, &service_addr, &request); absl::Time approx_start = absl::Now(); absl::Duration grace = absl::Seconds(1); absl::Duration max_duration = duration + grace; const absl::Time deadline = approx_start + max_duration; auto remote_session = RemoteProfilerSession::Create(service_addr, deadline, request); absl::Status status; auto response = remote_session->WaitForCompletion(status); absl::Duration elapsed = absl::Now() - approx_start; EXPECT_TRUE(status.ok()); EXPECT_TRUE(response->empty_trace()); EXPECT_EQ(response->tool_data_size(), 0); EXPECT_THAT(elapsed, DurationApproxLess(max_duration)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/rpc/client/profiler_client.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/rpc/client/profiler_client_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fd3f943a-1cc2-433d-9f21-46081f85e3cd
cpp
tensorflow/tensorflow
trace_events_to_json
tensorflow/core/profiler/convert/trace_viewer/trace_events_to_json.cc
third_party/xla/xla/tsl/profiler/convert/trace_events_to_json_test.cc
#include "tensorflow/core/profiler/convert/trace_viewer/trace_events_to_json.h" #include <cstdint> #include <map> #include <string> #include <string_view> #include <utility> #include "absl/strings/match.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "tensorflow/core/profiler/protobuf/trace_events.pb.h" #include "tensorflow/core/profiler/protobuf/trace_events_raw.pb.h" namespace tensorflow { namespace profiler { std::string JsonEscape(absl::string_view raw) { std::string escaped_string; const size_t length = raw.length(); escaped_string.reserve((length + 1) * 2); escaped_string.push_back('"'); for (size_t i = 0; i < length; ++i) { const unsigned char c = raw[i]; if (c < 0x20) { escaped_string.push_back('\\'); switch (c) { case '\b': escaped_string.push_back('b'); break; case '\f': escaped_string.push_back('f'); break; case '\n': escaped_string.push_back('n'); break; case '\r': escaped_string.push_back('r'); break; case '\t': escaped_string.push_back('t'); break; default: absl::StrAppendFormat(&escaped_string, "u%04x", static_cast<unsigned int>(c)); } continue; } switch (c) { case '\"': escaped_string.append("\\\""); continue; case '\\': escaped_string.append("\\\\"); continue; case '<': case '>': case '&': { absl::StrAppendFormat(&escaped_string, "\\u%04x", static_cast<unsigned int>(c)); continue; } case '\xe2': { if ((i + 2 < length) && (raw[i + 1] == '\x80')) { if (raw[i + 2] == '\xa8') { escaped_string.append("\\u2028"); i += 2; continue; } else if (raw[i + 2] == '\xa9') { escaped_string.append("\\u2029"); i += 2; continue; } } escaped_string.push_back(c); continue; } } escaped_string.push_back(c); } escaped_string.push_back('"'); return escaped_string; } std::string ProtoString(const tsl::protobuf::Message& pb) { return JsonEscape(pb.DebugString()); } std::map<uint64_t, uint64_t> BuildStackFrameReferences(const Trace& trace) { const auto& name_table = trace.name_table(); std::map<uint64_t, uint64_t> output; for (const auto& [fp, name] : name_table) { if (!absl::StartsWith(name, "@@")) continue; output[fp] = 0; } uint64_t sf = 1; for (auto& it : output) { it.second = sf++; } return output; } } }
#include "xla/tsl/profiler/convert/trace_events_to_json.h" #include <string> #include "json/json.h" #include "xla/tsl/profiler/convert/trace_container.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/test.h" #include "tsl/profiler/protobuf/trace_events.pb.h" namespace tsl { namespace profiler { namespace { Json::Value ToJsonValue(const std::string& json_str) { Json::Value json; Json::Reader reader; EXPECT_TRUE(reader.parse(json_str, json)); return json; } TEST(TraceEventsToJson, JsonConversion) { const std::string metadata_string = R"pb( devices { key: 2 value { name: 'D2' device_id: 2 resources { key: 2 value { resource_id: 2 name: 'R2.2' } } } } devices { key: 1 value { name: 'D1' device_id: 1 resources { key: 2 value { resource_id: 1 name: 'R1.2' } } } } )pb"; TraceContainer container; EXPECT_TRUE(container.ParseMetadataFromString(metadata_string)); TraceEvent* event = container.CreateEvent(); event->set_device_id(1); event->set_resource_id(2); event->set_name("E1.2.1"); event->set_timestamp_ps(100000); event->set_duration_ps(10000); event->mutable_args()->insert({"long_name", "E1.2.1 long"}); event->mutable_args()->insert({"arg2", "arg2 val"}); event = container.CreateEvent(); event->set_device_id(2); event->set_resource_id(2); event->set_name("E2.2.1 # \"comment\""); event->set_timestamp_ps(105000); container.CapEvents(2); Json::Value json = ToJsonValue(TraceContainerToJson(container)); Json::Value expected_json = ToJsonValue(R"( { "displayTimeUnit": "ns", "metadata": { "highres-ticks": true }, "traceEvents": [ {"ph":"M", "pid":1, "name":"process_name", "args":{"name":"D1"}}, {"ph":"M", "pid":1, "name":"process_sort_index", "args":{"sort_index":1}}, {"ph":"M", "pid":1, "tid":2, "name":"thread_name", "args":{"name":"R1.2"}}, {"ph":"M", "pid":1, "tid":2, "name":"thread_sort_index", "args":{"sort_index":2}}, {"ph":"M", "pid":2, "name":"process_name", "args":{"name":"D2"}}, {"ph":"M", "pid":2, "name":"process_sort_index", "args":{"sort_index":2}}, {"ph":"M", "pid":2, "tid":2, "name":"thread_name", "args":{"name":"R2.2"}}, {"ph":"M", "pid":2, "tid":2, "name":"thread_sort_index", "args":{"sort_index":2}}, { "ph" : "X", "pid" : 1, "tid" : 2, "name" : "E1.2.1", "ts" : 0.1, "dur" : 0.01, "args" : {"arg2": "arg2 val", "long_name": "E1.2.1 long"} }, { "ph" : "X", "pid" : 2, "tid" : 2, "name" : "E2.2.1 # \"comment\"", "ts" : 0.105, "dur" : 1e-6 }, {} ] })"); EXPECT_EQ(json, expected_json); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/trace_viewer/trace_events_to_json.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/convert/trace_events_to_json_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fe0cd32f-dfd6-469a-95f5-6ad6cf632eca
cpp
tensorflow/tensorflow
trace_container
third_party/xla/xla/tsl/profiler/convert/trace_container.cc
third_party/xla/xla/tsl/profiler/convert/trace_container_test.cc
#include "xla/tsl/profiler/convert/trace_container.h" #include <algorithm> #include <string> #include <string_view> #include <vector> #include "tsl/platform/protobuf.h" namespace tsl { namespace profiler { bool TraceContainer::ParseMetadataFromString(const std::string& description) { return protobuf::TextFormat::ParseFromString(description, &metadata_); } void TraceContainer::CapEvents(const uint32_t max_count) { const size_t total_count = events_.size(); if (total_count <= max_count) { return; } const std::vector<TraceEvent*>::iterator end = events_.begin() + max_count; std::partial_sort( events_.begin(), end, events_.end(), [](const TraceEvent* const lhs, const TraceEvent* const rhs) -> bool { return lhs->timestamp_ps() < rhs->timestamp_ps(); }); for (std::vector<TraceEvent*>::iterator i = end; i != events_.end(); ++i) { delete *i; } events_.erase(end, events_.end()); } void TraceContainer::FlushAndSerializeEvents(std::string* const output) { Trace trace = metadata_; for (TraceEvent* const event : events_) { trace.mutable_trace_events()->AddAllocated(event); } events_.clear(); trace.SerializeToString(output); } } }
#include "xla/tsl/profiler/convert/trace_container.h" #include <string> #include "tsl/platform/protobuf.h" #include "tsl/platform/test.h" namespace tsl { namespace profiler { namespace { void PopulateDummyEvent(TraceEvent* const event) { event->set_device_id(1); event->set_resource_id(2); event->set_name("A"); event->set_timestamp_ps(3); event->set_duration_ps(4); } TEST(TraceContainer, TraceEventAllocation) { TraceContainer container; PopulateDummyEvent(container.CreateEvent()); } TEST(TraceContainer, FlushAndSerializeEvents) { TraceContainer container; PopulateDummyEvent(container.CreateEvent()); EXPECT_EQ(container.UnsortedEvents().size(), 1); std::string serialized; container.FlushAndSerializeEvents(&serialized); EXPECT_EQ(container.UnsortedEvents().size(), 0); PopulateDummyEvent(container.CreateEvent()); EXPECT_EQ(container.UnsortedEvents().size(), 1); std::string reserialized; container.FlushAndSerializeEvents(&reserialized); EXPECT_EQ(serialized, reserialized); EXPECT_EQ(container.UnsortedEvents().size(), 0); Trace trace; trace.ParseFromString(reserialized); EXPECT_EQ(trace.trace_events_size(), 1); } TEST(TraceContainer, CapEvents) { TraceContainer container; for (int i = 0; i < 100; i++) { container.CreateEvent()->set_timestamp_ps((100 - i) % 50); } container.CapEvents(101); EXPECT_EQ(container.UnsortedEvents().size(), 100); container.CapEvents(100); EXPECT_EQ(container.UnsortedEvents().size(), 100); container.CapEvents(99); EXPECT_EQ(container.UnsortedEvents().size(), 99); container.CapEvents(50); EXPECT_EQ(container.UnsortedEvents().size(), 50); for (const TraceEvent* const event : container.UnsortedEvents()) { EXPECT_LT(event->timestamp_ps(), 25); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/convert/trace_container.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/convert/trace_container_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
01947b9c-2719-4c74-b27a-405f3c7c3b5f
cpp
tensorflow/tensorflow
xplane_to_trace_events
third_party/xla/xla/tsl/profiler/convert/xplane_to_trace_events.cc
third_party/xla/xla/tsl/profiler/convert/xplane_to_trace_events_test.cc
#include "xla/tsl/profiler/convert/xplane_to_trace_events.h" #include <stddef.h> #include <algorithm> #include <string> #include <utility> #include <vector> #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "xla/tsl/profiler/utils/trace_utils.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "xla/tsl/profiler/utils/xplane_utils.h" #include "xla/tsl/profiler/utils/xplane_visitor.h" #include "tsl/platform/types.h" #include "tsl/profiler/protobuf/trace_events.pb.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tsl { namespace profiler { namespace { using tensorflow::profiler::XSpace; void BuildDeviceAndResources(uint32 device_id, const XPlaneVisitor& plane, Device* device) { device->set_name(std::string(plane.Name())); device->set_device_id(device_id); bool sort_by_ordinal = (device_id == kHostThreadsDeviceId); int ordinal = 0; plane.ForEachLine([&](const XLineVisitor& line) { uint32 resource_id = line.DisplayId(); Resource& resource = (*device->mutable_resources())[resource_id]; resource.set_resource_id(resource_id); resource.set_name(std::string(line.DisplayName())); if (sort_by_ordinal) { resource.set_sort_index(++ordinal); } }); } void ConvertXPlaneToTraceEvents(uint32 device_id, const XPlaneVisitor& xplane, TraceContainer& container) { BuildDeviceAndResources(device_id, xplane, container.MutableDevice(device_id)); xplane.ForEachLine([device_id, &container](const XLineVisitor& xline) { uint32 resource_id = xline.DisplayId(); if (xline.DisplayName() == tsl::profiler::kXlaAsyncOpLineName) { return; } xline.ForEachEvent( [device_id, resource_id, &container](const XEventVisitor& xevent) { int64_t event_type = xevent.Type().value_or(HostEventType::kUnknownHostEventType); if (IsInternalEvent(event_type)) return; TraceEvent* event = container.CreateEvent(); auto& args = *event->mutable_args(); event->set_device_id(device_id); event->set_resource_id(resource_id); if (xevent.HasDisplayName()) { event->set_name(std::string(xevent.DisplayName())); args["long_name"] = std::string(xevent.Name()); } else { event->set_name(std::string(xevent.Name())); } event->set_timestamp_ps(xevent.TimestampPs()); event->set_duration_ps(xevent.DurationPs()); auto for_each_stat = [&](const XStatVisitor& stat) { if (stat.ValueCase() == XStat::VALUE_NOT_SET) return; if (IsInternalStat(stat.Type())) return; if (stat.Type() == StatType::kStepName) { event->set_name(stat.ToString()); } args[std::string(stat.Name())] = stat.ToString(); }; xevent.Metadata().ForEachStat(for_each_stat); xevent.ForEachStat(for_each_stat); }); }); } } uint64 GetTraceViewerMaxEvents() { constexpr uint64 kMaxEvents = 1000000; char* max_events = getenv("TF_PROFILER_TRACE_VIEWER_MAX_EVENTS"); if (max_events != nullptr) { return std::stoull(max_events, nullptr, 10); } else { return kMaxEvents; } } TraceContainer ConvertXSpaceToTraceContainer(const XSpace& xspace) { TraceContainer container; const XPlane* host_plane = FindPlaneWithName(xspace, kHostThreadsPlaneName); if (host_plane != nullptr) { XPlaneVisitor xplane = CreateTfXPlaneVisitor(host_plane); ConvertXPlaneToTraceEvents(kHostThreadsDeviceId, xplane, container); } std::vector<const XPlane*> device_planes = FindPlanesWithPrefix(xspace, kGpuPlanePrefix); if (device_planes.empty()) { device_planes = FindPlanesWithPrefix(xspace, kTpuPlanePrefix); } if (device_planes.empty()) { device_planes = FindPlanesWithPrefix(xspace, kCustomPlanePrefix); } for (const XPlane* device_plane : device_planes) { XPlaneVisitor xplane = CreateTfXPlaneVisitor(device_plane); uint32 device_id = kFirstDeviceId + xplane.Id(); ConvertXPlaneToTraceEvents(device_id, xplane, container); } uint64 viewer_max_events = GetTraceViewerMaxEvents(); container.CapEvents(viewer_max_events); return container; } void ConvertXSpaceToTraceEventsString(const XSpace& xspace, std::string* content) { ConvertXSpaceToTraceContainer(xspace).FlushAndSerializeEvents(content); } } }
#include "xla/tsl/profiler/convert/xplane_to_trace_events.h" #include <limits> #include <utility> #include "xla/tsl/profiler/utils/trace_utils.h" #include "xla/tsl/profiler/utils/xplane_builder.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "tsl/platform/test.h" #include "tsl/profiler/protobuf/trace_events.pb.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tsl { namespace profiler { namespace { using tensorflow::profiler::XSpace; void CreateXSpace(XSpace* space) { XPlaneBuilder host_plane(space->add_planes()); host_plane.SetName(kHostThreadsPlaneName); XLineBuilder thread1 = host_plane.GetOrCreateLine(10); thread1.SetName("thread1"); XEventBuilder event1 = thread1.AddEvent(*host_plane.GetOrCreateEventMetadata("event1")); event1.SetTimestampNs(150000); event1.SetDurationNs(10000); event1.AddStatValue(*host_plane.GetOrCreateStatMetadata("tf_op"), *host_plane.GetOrCreateStatMetadata("Relu")); XLineBuilder thread2 = host_plane.GetOrCreateLine(20); thread2.SetName("thread2"); XEventBuilder event2 = thread2.AddEvent(*host_plane.GetOrCreateEventMetadata("event2")); event2.SetTimestampNs(160000); event2.SetDurationNs(10000); event2.AddStatValue(*host_plane.GetOrCreateStatMetadata("tf_op"), *host_plane.GetOrCreateStatMetadata("Conv2D")); XPlaneBuilder device_plane(space->add_planes()); device_plane.SetName(GpuPlaneName(0)); device_plane.SetId(0); XLineBuilder stream1 = device_plane.GetOrCreateLine(30); stream1.SetName("gpu stream 1"); XEventBuilder event3 = stream1.AddEvent(*device_plane.GetOrCreateEventMetadata("kernel1")); event3.SetTimestampNs(180000); event3.SetDurationNs(10000); event3.AddStatValue(*device_plane.GetOrCreateStatMetadata("correlation id"), 55); } TEST(ConvertXPlaneToTraceEvents, Convert) { XSpace xspace; CreateXSpace(&xspace); TraceContainer container = ConvertXSpaceToTraceContainer(xspace); ASSERT_EQ(container.trace().devices_size(), 2); EXPECT_EQ( container.trace().devices().at(kHostThreadsDeviceId).resources_size(), 2); EXPECT_EQ(container.trace().devices().at(kFirstDeviceId).resources_size(), 1); EXPECT_EQ(container.UnsortedEvents().size(), 3); } TEST(ConvertXPlaneToTraceEvents, SkipAsyncOps) { XSpace xspace; XPlaneBuilder device_plane(xspace.add_planes()); device_plane.SetName(GpuPlaneName(0)); XLineBuilder async_ops = device_plane.GetOrCreateLine(10); async_ops.SetName(kXlaAsyncOpLineName); XEventBuilder event1 = async_ops.AddEvent(*device_plane.GetOrCreateEventMetadata("event1")); event1.SetTimestampNs(100); event1.SetDurationNs(1); TraceContainer container = ConvertXSpaceToTraceContainer(xspace); ASSERT_THAT(container.UnsortedEvents(), ::testing::IsEmpty()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/convert/xplane_to_trace_events.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/convert/xplane_to_trace_events_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
66a14b23-1deb-461d-a3a5-eef516eff56b
cpp
tensorflow/tensorflow
tsl_status
third_party/xla/xla/tsl/c/tsl_status.cc
third_party/xla/xla/tsl/c/tsl_status_test.cc
#include "xla/tsl/c/tsl_status.h" #include <string> #include "xla/tsl/c/tsl_status_internal.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" using ::tsl::Status; using ::tsl::error::Code; using ::tsl::errors::IOError; TSL_Status* TSL_NewStatus() { return new TSL_Status; } void TSL_DeleteStatus(TSL_Status* s) { delete s; } void TSL_SetStatus(TSL_Status* s, TSL_Code code, const char* msg) { if (code == TSL_OK) { s->status = absl::OkStatus(); return; } s->status = Status(static_cast<absl::StatusCode>(code), absl::string_view(msg)); } void TSL_SetPayload(TSL_Status* s, const char* key, const char* value) { s->status.SetPayload(key, absl::Cord(absl::string_view(value))); } void TSL_ForEachPayload(const TSL_Status* s, TSL_PayloadVisitor visitor, void* capture) { s->status.ForEachPayload([visitor, capture](absl::string_view type_url, const absl::Cord& payload) { std::string type_url_str(type_url); std::string payload_str(payload); visitor(type_url_str.c_str(), payload_str.c_str(), capture); }); } void TSL_SetStatusFromIOError(TSL_Status* s, int error_code, const char* context) { s->status = IOError(context, error_code); } TSL_Code TSL_GetCode(const TSL_Status* s) { return static_cast<TSL_Code>(s->status.code()); } const char* TSL_Message(const TSL_Status* s) { return absl::StatusMessageAsCStr(s->status); }
#include "xla/tsl/c/tsl_status.h" #include <string> #include <unordered_map> #include <utility> #include "xla/tsl/c/tsl_status_internal.h" #include "tsl/platform/errors.h" #include "tsl/platform/test.h" namespace tsl { namespace { TEST(TSL_Status, PayloadsSet) { TSL_Status* tsl_status = TSL_NewStatus(); TSL_SetStatus(tsl_status, TSL_CANCELLED, "Error Message"); TSL_SetPayload(tsl_status, "a", "1"); TSL_SetPayload(tsl_status, "b", "2"); TSL_SetPayload(tsl_status, "c", "3"); std::unordered_map<std::string, std::string> payloads; TSL_ForEachPayload( tsl_status, [](const char* key, const char* value, void* capture) { std::unordered_map<std::string, std::string>* payloads = static_cast<std::unordered_map<std::string, std::string>*>(capture); payloads->emplace(key, value); }, &payloads); EXPECT_EQ(payloads.size(), 3); EXPECT_EQ(payloads.at("a"), "1"); EXPECT_EQ(payloads.at("b"), "2"); EXPECT_EQ(payloads.at("c"), "3"); TSL_DeleteStatus(tsl_status); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/c/tsl_status.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/c/tsl_status_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bb168610-5f08-458f-9cab-96ab93874d84
cpp
tensorflow/tensorflow
call_options
third_party/xla/xla/tsl/distributed_runtime/call_options.cc
tensorflow/core/distributed_runtime/call_options_test.cc
#include "xla/tsl/distributed_runtime/call_options.h" #include <utility> #include "tsl/platform/mutex.h" namespace tsl { CallOptions::CallOptions() = default; void CallOptions::StartCancel() { mutex_lock l(mu_); if (cancel_func_ != nullptr) { cancel_func_(); } } void CallOptions::SetCancelCallback(CancelFunction cancel_func) { mutex_lock l(mu_); cancel_func_ = std::move(cancel_func); } void CallOptions::ClearCancelCallback() { mutex_lock l(mu_); cancel_func_ = nullptr; } int64_t CallOptions::GetTimeout() { mutex_lock l(mu_); return timeout_in_ms_; } void CallOptions::SetTimeout(int64_t ms) { mutex_lock l(mu_); timeout_in_ms_ = ms; } }
#include "tensorflow/core/distributed_runtime/call_options.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(CallOptions, Cancel) { int num_calls = 0; CallOptions opts; opts.StartCancel(); EXPECT_EQ(num_calls, 0); opts.SetCancelCallback([&num_calls]() { num_calls++; }); EXPECT_EQ(num_calls, 0); opts.StartCancel(); EXPECT_EQ(num_calls, 1); opts.StartCancel(); EXPECT_EQ(num_calls, 2); opts.ClearCancelCallback(); EXPECT_EQ(num_calls, 2); opts.StartCancel(); EXPECT_EQ(num_calls, 2); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/distributed_runtime/call_options.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/call_options_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0c2807a6-9de3-4dea-b2ce-9f085bb68d10
cpp
tensorflow/tensorflow
coordination_service_error_util
third_party/xla/xla/tsl/distributed_runtime/coordination/coordination_service_error_util.cc
third_party/xla/xla/tsl/distributed_runtime/coordination/coordination_service_error_util_test.cc
#include "xla/tsl/distributed_runtime/coordination/coordination_service_error_util.h" #include <optional> #include <string> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "tsl/platform/regexp.h" namespace tsl { absl::Status TrimCoordinationErrorMessage(const absl::Status& s) { if (s.ok()) { return s; } auto status_message = std::string(s.message()); auto additional_info_index = status_message.find("Additional GRPC"); if (additional_info_index == std::string::npos) { return s; } std::optional<absl::Cord> payload = s.GetPayload(CoordinationErrorPayloadKey()); if (!payload.has_value() && absl::IsUnavailable(s)) { auto prefix_message = "Failed to send RPC to coordination service. Either the leader task " "died/restarted unexpectedly or this task is experiencing network " "issues. Check earlier logs from this task and the " "leader (usually slice 0 process/task/worker 0) to debug further.\n"; status_message = absl::StrCat( prefix_message, status_message.substr(additional_info_index)); } else { std::string rpc_name; RE2::PartialMatch(status_message, "(/tensorflow.CoordinationService/(\\w+))", &rpc_name); status_message = status_message.substr(0, additional_info_index); absl::StrAppend(&status_message, "\nRPC: ", rpc_name); } auto trimmed_status = absl::Status(s.code(), status_message); if (payload.has_value()) { trimmed_status.SetPayload(CoordinationErrorPayloadKey(), *payload); } #if defined(PLATFORM_GOOGLE) for (const auto& source_location : s.GetSourceLocations()) { trimmed_status.AddSourceLocation(source_location); } #endif return trimmed_status; } }
#include "xla/tsl/distributed_runtime/coordination/coordination_service_error_util.h" #include <string> #include "absl/status/status.h" #include "absl/strings/match.h" #include "xla/tsl/protobuf/coordination_service.pb.h" #include "tsl/platform/test.h" namespace tsl { namespace { using ::tensorflow::CoordinatedTask; using ::tensorflow::CoordinationServiceError; TEST(CoordinationServiceErrorUtil, MakeCoordinationErrorWithEmptyPayload) { absl::Status error = absl::InternalError("Test Error"); absl::Status coordination_error = MakeCoordinationError(error); EXPECT_EQ(coordination_error.code(), error.code()); EXPECT_EQ(coordination_error.message(), error.message()); EXPECT_EQ( coordination_error.GetPayload(CoordinationErrorPayloadKey()).value(), ""); } TEST(CoordinationServiceErrorUtil, MakeCoordinationErrorWithErrorOrigin) { absl::Status error = absl::InternalError("Test Error"); CoordinatedTask source_task; source_task.set_job_name("test_worker"); source_task.set_task_id(7); absl::Status coordination_error = MakeCoordinationError(error, source_task); EXPECT_EQ(coordination_error.code(), error.code()); EXPECT_EQ(coordination_error.message(), error.message()); CoordinationServiceError payload; payload.ParseFromString(std::string( coordination_error.GetPayload(CoordinationErrorPayloadKey()).value())); EXPECT_EQ(payload.source_task().job_name(), source_task.job_name()); EXPECT_EQ(payload.source_task().task_id(), source_task.task_id()); EXPECT_EQ(payload.is_reported_error(), false); } TEST(CoordinationServiceErrorUtil, MakeCoordinationErrorWithUserReportedError) { absl::Status error = absl::InternalError("Test Error"); CoordinatedTask source_task; source_task.set_job_name("test_worker"); source_task.set_task_id(7); absl::Status coordination_error = MakeCoordinationError(error, source_task, true); EXPECT_EQ(coordination_error.code(), error.code()); EXPECT_EQ(coordination_error.message(), error.message()); CoordinationServiceError payload; payload.ParseFromString(std::string( coordination_error.GetPayload(CoordinationErrorPayloadKey()).value())); EXPECT_EQ(payload.source_task().job_name(), source_task.job_name()); EXPECT_EQ(payload.source_task().task_id(), source_task.task_id()); EXPECT_EQ(payload.is_reported_error(), true); } TEST(CoordinationServiceErrorUtil, MakeCoordinationErrorWithPayload) { absl::Status error = absl::InternalError("Test Error"); CoordinationServiceError payload; CoordinatedTask* source_task = payload.mutable_source_task(); source_task->set_job_name("test_worker"); source_task->set_task_id(7); payload.set_is_reported_error(true); absl::Status coordination_error = MakeCoordinationError(error, payload); EXPECT_EQ(coordination_error.code(), error.code()); EXPECT_EQ(coordination_error.message(), error.message()); CoordinationServiceError actual_payload; actual_payload.ParseFromString(std::string( coordination_error.GetPayload(CoordinationErrorPayloadKey()).value())); EXPECT_EQ(actual_payload.source_task().job_name(), payload.source_task().job_name()); EXPECT_EQ(actual_payload.source_task().task_id(), payload.source_task().task_id()); EXPECT_EQ(actual_payload.is_reported_error(), payload.is_reported_error()); } TEST(CoordinationServiceErrorUtil, TrimCoordinationErrorMessage_CoordinationError) { absl::Status error = MakeCoordinationError(absl::InternalError( "Coordination service has stopped. RecordHeartbeat() from task: " "/job:jax_worker/replica:0/task:2 failed. Additional GRPC error " "information from remote target coordination_service while calling " "/tensorflow.CoordinationService/Heartbeat::UNKNOWN:Error received from " "peer " "{file:'third_party/grpc/src/core/lib/surface/filter_stack_call.cc', " "file_line:464, created_time:'2024-08-05T13:57:51.331198242-07:00', " "grpc_status:13, grpc_message:'Coordination service has stopped. " "RecordHeartbeat() from task: /job:jax_worker/replica:0/task:2 failed. " "'} ")); absl::Status trimmed_error = TrimCoordinationErrorMessage(error); EXPECT_EQ(trimmed_error.code(), error.code()); EXPECT_EQ(trimmed_error.message(), "Coordination service has stopped. RecordHeartbeat() from task: " "/job:jax_worker/replica:0/task:2 failed. \nRPC: " "/tensorflow.CoordinationService/Heartbeat"); EXPECT_EQ(trimmed_error.GetPayload(CoordinationErrorPayloadKey()).value(), ""); } TEST(CoordinationServiceErrorUtil, TrimCoordinationErrorMessage_NetworkError) { absl::Status error = absl::UnavailableError( "failed to connect to all addresses; last error: UNKNOWN: " "ipv4:127.0.0.1:10001: Failed to connect to remote host: Connection " "refused. Additional GRPC error information from remote target " "coordination_service while calling " "/tensorflow.CoordinationService/Heartbeat::UNKNOWN:Error received from " "peer " "{file:'third_party/grpc/src/core/lib/surface/filter_stack_call.cc', " "file_line:464, created_time:'2024-08-05T13:57:53.123562608-07:00', " "grpc_status:14, grpc_message:'failed to connect to all addresses; last " "error: UNKNOWN: ipv4:127.0.0.1:10001: Failed to connect to remote host: " "Connection refused'} "); absl::Status trimmed_error = TrimCoordinationErrorMessage(error); auto message = trimmed_error.message(); EXPECT_EQ(trimmed_error.code(), error.code()); EXPECT_TRUE(absl::StrContains(message, "Check earlier logs")); EXPECT_EQ(message.find("failed to connect"), message.rfind("failed to connect")) << trimmed_error; } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/distributed_runtime/coordination/coordination_service_error_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/distributed_runtime/coordination/coordination_service_error_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
dbee8c02-9029-4404-9614-1b7062d0d7a5
cpp
tensorflow/tensorflow
coordination_service
third_party/xla/xla/tsl/distributed_runtime/coordination/coordination_service.cc
third_party/xla/xla/tsl/distributed_runtime/coordination/coordination_service_test.cc
#include "xla/tsl/distributed_runtime/coordination/coordination_service.h" #include <algorithm> #include <cassert> #include <cstddef> #include <cstdint> #include <functional> #include <map> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/functional/bind_front.h" #include "absl/hash/hash.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "xla/tsl/distributed_runtime/call_options.h" #include "xla/tsl/distributed_runtime/coordination/coordination_client.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service_error_util.h" #include "xla/tsl/protobuf/coordination_config.pb.h" #include "xla/tsl/protobuf/coordination_service.pb.h" #include "xla/tsl/util/device_name_utils.h" #include "tsl/platform/env.h" #include "tsl/platform/random.h" #include "tsl/platform/status.h" namespace tsl { namespace { using tensorflow::CoordinatedTask; using tensorflow::CoordinatedTaskState; using tensorflow::CoordinatedTaskStateInfo; using tensorflow::CoordinationServiceConfig; using tensorflow::CoordinationServiceError; using tensorflow::DeviceInfo; using tensorflow::KeyValueEntry; constexpr absl::Duration kDevicePropagationTimeout = absl::Hours(1); constexpr int kDefaultHeartbeatTimeoutMs = 10 * 1000; constexpr int kServiceToClientTimeoutMs = 10 * 1000; constexpr size_t kOngoingBarriersSoftLimit = 20; constexpr char kHealthCheckThread[] = "CoordinationServiceHealthCheck"; constexpr int kPendingTaskLogLimit = 20; constexpr int kPendingStragglerLogLimit = 3; std::string GetTaskName(std::string_view job_name, int task_id) { return absl::StrCat("/job:", job_name, "/replica:", 0, "/task:", task_id); } std::string GetTaskName(const CoordinatedTask& task) { return GetTaskName(task.job_name(), task.task_id()); } CoordinatedTask GetTaskFromName(std::string_view task_name) { DeviceNameUtils::ParsedName parsed; DeviceNameUtils::ParseFullName(task_name, &parsed); CoordinatedTask task; task.set_job_name(parsed.job); task.set_task_id(parsed.task); return task; } struct CoordinatedTaskHash { uint64_t operator()(const CoordinatedTask& task) const { return absl::HashOf(task.job_name(), task.task_id()); } }; struct CoordinatedTaskEqual { bool operator()(const CoordinatedTask& lhs, const CoordinatedTask& rhs) const { return lhs.job_name() == rhs.job_name() && lhs.task_id() == rhs.task_id(); } }; class CoordinationServiceStandaloneImpl : public CoordinationServiceInterface { public: CoordinationServiceStandaloneImpl( Env* env, const CoordinationServiceConfig& config, std::unique_ptr<CoordinationClientCache> client_cache); ~CoordinationServiceStandaloneImpl() override { Stop(); } void SetDeviceAggregationFunction( std::function<DeviceInfo(const DeviceInfo& devices)> post_aggregate_device_fn) override; void LogConnectStatusLocked() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(state_mu_); absl::Status RegisterTask(const CoordinatedTask& task, uint64_t incarnation) override; void WaitForAllTasks(const CoordinatedTask& task, const DeviceInfo& devices, StatusCallback done) override; void ShutdownTaskAsync(const CoordinatedTask& task, StatusCallback done) override; absl::Status ResetTask(const CoordinatedTask& task) override; absl::Status RecordHeartbeat(const CoordinatedTask& task, uint64_t incarnation) override; absl::Status ReportTaskError(const CoordinatedTask& task, absl::Status error) override; std::vector<CoordinatedTaskStateInfo> GetTaskState( const std::vector<CoordinatedTask>& task) override; absl::Status InsertKeyValue(std::string_view key, std::string_view value) override; absl::Status InsertKeyValue(std::string_view key, std::string_view value, bool allow_overwrite) override; void GetKeyValueAsync(std::string_view key, StatusOrValueCallback done) override; absl::StatusOr<std::string> TryGetKeyValue(std::string_view key) override; std::vector<KeyValueEntry> GetKeyValueDir( std::string_view directory_key) override; absl::Status DeleteKeyValue(std::string_view key) override; void BarrierAsync(std::string_view barrier_id, absl::Duration timeout, const CoordinatedTask& task, const std::vector<CoordinatedTask>& participating_tasks, StatusCallback done) override; absl::Status CancelBarrier(std::string_view barrier_id, const CoordinatedTask& task) override; void PollForErrorAsync(const CoordinatedTask& task, StatusCallback done) override; private: const DeviceInfo& ListClusterDevices() override ABSL_EXCLUSIVE_LOCKS_REQUIRED(state_mu_); uint64_t GetServiceIncarnation() override; void CheckHeartbeatTimeout(); void CheckBarrierTimeout(); void CheckStaleness(); void StartCheckStaleness(); void Stop(bool shut_staleness_thread = true); bool ServiceHasStopped() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(state_mu_); void ReportServiceErrorToTaskAsync(const CoordinatedTask& destination_task, absl::Status error); void PropagateError(const CoordinatedTask& source_task, bool is_reported_by_task = false) ABSL_LOCKS_EXCLUDED(state_mu_); void SetTaskError(std::string_view task_name, absl::Status error) ABSL_EXCLUSIVE_LOCKS_REQUIRED(state_mu_); absl::Status DisconnectTask(const CoordinatedTask& task) ABSL_EXCLUSIVE_LOCKS_REQUIRED(state_mu_); struct BarrierState { bool passed = false; absl::Status result = absl::UnknownError( "Invalid barrier result."); uint64_t deadline_in_micros = 0; int num_pending_tasks = 0; absl::flat_hash_map<CoordinatedTask, bool, CoordinatedTaskHash, CoordinatedTaskEqual> tasks_at_barrier; std::vector<StatusCallback> done_callbacks; CoordinatedTask initiating_task; }; bool ValidateBarrierArgs( std::string_view barrier_id, absl::Duration timeout, const CoordinatedTask& task, const std::vector<CoordinatedTask>& participating_tasks, StatusCallback done); bool InitializeBarrier( BarrierState* barrier, std::string_view barrier_id, absl::Duration timeout, const CoordinatedTask& task, const std::vector<CoordinatedTask>& participating_tasks, StatusCallback done) ABSL_EXCLUSIVE_LOCKS_REQUIRED(state_mu_); void PassBarrier(std::string_view barrier_id, absl::Status result, BarrierState* barrier) ABSL_EXCLUSIVE_LOCKS_REQUIRED(state_mu_); void AggregateClusterDevices() ABSL_EXCLUSIVE_LOCKS_REQUIRED(state_mu_); void CompleteShutdownAfterBarrier(absl::Status result, BarrierState* barrier) ABSL_EXCLUSIVE_LOCKS_REQUIRED(state_mu_); bool ValidateTaskArgs( const std::vector<CoordinatedTask>& tasks_args, const absl::flat_hash_map<CoordinatedTask, bool, CoordinatedTaskHash, CoordinatedTaskEqual>& tasks_at_barrier, int64_t cluster_size); bool isRecoverableJob(std::string_view task_name) const; void SendErrorPollingResponse(const absl::Status& error); bool SendErrorPollingResponseOrStopService(const absl::Status& error); bool IsClientPollingForError() const; class ErrorPollingState { public: bool Responded() const { return responded_; } void SetError(const absl::Status& error); const absl::Status& GetError() const { return error_; } bool IsTaskPolling(absl::string_view task_name) const { return polling_task_names_.contains(task_name); } void AddTask(const CoordinatedTask& task, StatusCallback&& done); private: bool responded_ = false; absl::Status error_ = absl::OkStatus(); std::vector<StatusCallback> done_callbacks_; absl::flat_hash_set<std::string> polling_task_names_; }; class TaskState { public: CoordinatedTaskState GetState() { return state_; } absl::Status GetStatus() { return status_; } uint64_t GetTaskIncarnation() { return task_incarnation_; } void SetConnected(uint64_t task_incarnation); void Disconnect(uint64_t grace_period_duration_us); absl::Status RecordHeartbeat(uint64_t task_incarnation); int64_t TimeSinceLastHeartbeatMs(); void SetError(absl::Status status); DeviceInfo GetDeviceInfo() { return devices_; } void CollectDeviceInfo(const DeviceInfo& devices) { devices_ = devices; } bool DeviceInfoIsCollected() { return devices_.device_size() != 0; } absl::flat_hash_set<std::string> GetOngoingBarriers(); void JoinBarrier(std::string_view barrier_id); void ExitBarrier(std::string_view barrier_id); bool IsDisconnectedBeyondGracePeriod(); private: uint64_t task_incarnation_ = 0; CoordinatedTaskState state_ = CoordinatedTaskState::TASKSTATE_DISCONNECTED; absl::Status status_; absl::Mutex last_heartbeat_mu_; uint64_t last_heartbeat_us_ ABSL_GUARDED_BY(last_heartbeat_mu_); uint64_t disconnect_grace_period_us_ = 0; DeviceInfo devices_; absl::flat_hash_set<std::string> ongoing_barriers_for_task_; }; std::unique_ptr<CoordinationClientCache> client_cache_; Env& env_; const uint64_t service_incarnation_ = random::New64(); const uint64_t heartbeat_timeout_ms_; const absl::Duration shutdown_barrier_timeout_; bool allow_new_incarnation_to_reconnect_ = false; bool client_polling_for_error_ = false; std::function<DeviceInfo(const DeviceInfo& devices)> post_aggregate_device_fn_; const std::string device_propagation_barrier_id_ = absl::StrCat("WaitForAllTasks::", std::to_string(service_incarnation_)); const std::string shutdown_barrier_id_ = absl::StrCat("Shutdown::", std::to_string(service_incarnation_)); absl::Mutex state_mu_; absl::flat_hash_map<std::string, std::unique_ptr<TaskState>> cluster_state_ ABSL_GUARDED_BY(state_mu_); DeviceInfo cluster_devices_ ABSL_GUARDED_BY(state_mu_); absl::Mutex kv_mu_; std::map<std::string, std::string> kv_store_ ABSL_GUARDED_BY(kv_mu_); absl::flat_hash_map<std::string, std::vector<StatusOrValueCallback>> get_cb_ ABSL_GUARDED_BY(kv_mu_); absl::CondVar check_staleness_thread_cv_; bool shutting_down_ ABSL_GUARDED_BY(state_mu_) = false; std::unique_ptr<Thread> check_staleness_thread_; absl::flat_hash_map<std::string, BarrierState> barriers_ ABSL_GUARDED_BY(state_mu_); absl::flat_hash_set<std::string> ongoing_barriers_ ABSL_GUARDED_BY(state_mu_); absl::flat_hash_set<std::string> recoverable_jobs_; ErrorPollingState error_polling_state_ ABSL_GUARDED_BY(state_mu_); CoordinationServiceStandaloneImpl(const CoordinationServiceStandaloneImpl&) = delete; void operator=(const CoordinationServiceStandaloneImpl&) = delete; }; void CoordinationServiceStandaloneImpl::ErrorPollingState::SetError( const absl::Status& error) { if (responded_) return; responded_ = true; error_ = error; for (auto& done_cb : done_callbacks_) { done_cb(error_); } done_callbacks_.clear(); } void CoordinationServiceStandaloneImpl::ErrorPollingState::AddTask( const CoordinatedTask& task, StatusCallback&& done) { if (Responded()) return; polling_task_names_.insert(GetTaskName(task)); done_callbacks_.emplace_back(done); } void CoordinationServiceStandaloneImpl::TaskState::SetConnected( uint64_t task_incarnation) { state_ = CoordinatedTaskState::TASKSTATE_CONNECTED; status_ = absl::OkStatus(); task_incarnation_ = task_incarnation; absl::MutexLock l(&last_heartbeat_mu_); last_heartbeat_us_ = Env::Default()->NowMicros(); } void CoordinationServiceStandaloneImpl::TaskState::Disconnect( uint64_t grace_period_duration_us) { disconnect_grace_period_us_ = Env::Default()->NowMicros() + grace_period_duration_us; state_ = CoordinatedTaskState::TASKSTATE_DISCONNECTED; status_ = absl::OkStatus(); } void CoordinationServiceStandaloneImpl::TaskState::SetError( const absl::Status status) { if (state_ == CoordinatedTaskState::TASKSTATE_ERROR) return; state_ = CoordinatedTaskState::TASKSTATE_ERROR; status_ = status; } absl::Status CoordinationServiceStandaloneImpl::TaskState::RecordHeartbeat( uint64_t task_incarnation) { if (!status_.ok()) return status_; if (task_incarnation != task_incarnation_) { return MakeCoordinationError(absl::AbortedError(absl::StrCat( "Incarnation ID mismatch: expecting ", task_incarnation_, " but got ", task_incarnation, ". This means the remote task has restarted."))); } absl::MutexLock l(&last_heartbeat_mu_); last_heartbeat_us_ = Env::Default()->NowMicros(); return absl::OkStatus(); } int64_t CoordinationServiceStandaloneImpl::TaskState::TimeSinceLastHeartbeatMs() { absl::MutexLock l(&last_heartbeat_mu_); return (Env::Default()->NowMicros() - last_heartbeat_us_) / 1000; } absl::flat_hash_set<std::string> CoordinationServiceStandaloneImpl::TaskState::GetOngoingBarriers() { return ongoing_barriers_for_task_; } void CoordinationServiceStandaloneImpl::TaskState::JoinBarrier( std::string_view barrier_id) { ongoing_barriers_for_task_.emplace(barrier_id); } void CoordinationServiceStandaloneImpl::TaskState::ExitBarrier( std::string_view barrier_id) { ongoing_barriers_for_task_.erase(barrier_id); } bool CoordinationServiceStandaloneImpl::TaskState:: IsDisconnectedBeyondGracePeriod() { return GetState() == CoordinatedTaskState::TASKSTATE_DISCONNECTED && Env::Default()->NowMicros() > disconnect_grace_period_us_; } void CoordinationServiceStandaloneImpl::SetDeviceAggregationFunction( std::function<DeviceInfo(const DeviceInfo& devices)> post_aggregate_device_fn) { post_aggregate_device_fn_ = std::move(post_aggregate_device_fn); } CoordinationServiceStandaloneImpl::CoordinationServiceStandaloneImpl( Env* env, const CoordinationServiceConfig& config, std::unique_ptr<CoordinationClientCache> client_cache) : client_cache_(std::move(client_cache)), env_(*env), heartbeat_timeout_ms_([&config]() -> uint64_t { return config.heartbeat_timeout_in_ms() > 0 ? config.heartbeat_timeout_in_ms() : kDefaultHeartbeatTimeoutMs; }()), shutdown_barrier_timeout_( absl::Milliseconds(config.shutdown_barrier_timeout_in_ms())), allow_new_incarnation_to_reconnect_( config.allow_new_incarnation_to_reconnect()) { LOG(INFO) << "Initializing CoordinationService"; recoverable_jobs_ = absl::flat_hash_set<std::string>( config.recoverable_jobs().cbegin(), config.recoverable_jobs().cend()); for (const auto& job : config.coordinated_job_list()) { for (int i = 0; i < job.num_tasks(); ++i) { const std::string task_name = GetTaskName(job.name(), i); cluster_state_.emplace(task_name, std::make_unique<TaskState>()); } } StartCheckStaleness(); } void CoordinationServiceStandaloneImpl::CheckHeartbeatTimeout() { absl::Status status = absl::OkStatus(); std::vector<std::string_view> stale_task_names; const bool has_service_to_client_connection = client_cache_ != nullptr; { absl::MutexLock l(&state_mu_); for (const auto& [task_name, task_state] : cluster_state_) { if (task_state->GetState() != CoordinatedTaskState::TASKSTATE_CONNECTED) { continue; } const bool is_stale = task_state->TimeSinceLastHeartbeatMs() > heartbeat_timeout_ms_; VLOG(10) << "Checking staleness for " << task_name << " stale?=" << is_stale; if (is_stale) { stale_task_names.push_back(task_name); status = MakeCoordinationError(absl::UnavailableError( absl::StrCat("Task ", task_name, " heartbeat timeout. This indicates that the " "remote task has failed, got preempted, or " "crashed unexpectedly. Check the task logs " "for an earlier error to debug further."))); SetTaskError(task_name, status); } } } if (!stale_task_names.empty()) { if (!has_service_to_client_connection) { absl::Status heartbeat_timeout_error = MakeCoordinationError(absl::UnavailableError(absl::StrCat( "The following tasks are unhealthy (stopped sending " "heartbeats):\n", absl::StrJoin(stale_task_names, "\n"), "\nCheck the task logs for an earlier error to debug " "further."))); if (SendErrorPollingResponseOrStopService(heartbeat_timeout_error)) { return; } } else { for (const auto& stale_task_name : stale_task_names) { PropagateError(GetTaskFromName(stale_task_name)); } } } } void CoordinationServiceStandaloneImpl::CheckBarrierTimeout() { absl::flat_hash_map<std::string, BarrierState*> expired_barriers; uint64_t current_time_micros = Env::Default()->NowMicros(); std::optional<std::string> shutdown_error; { absl::MutexLock l(&state_mu_); for (std::string_view barrier_id : ongoing_barriers_) { auto* barrier = &barriers_[barrier_id]; if (current_time_micros > barrier->deadline_in_micros) { expired_barriers[barrier_id] = barrier; } } for (const auto& [barrier_id, barrier] : expired_barriers) { std::string pending_tasks; int pending_task_count = 0; for (const auto& [task, at_barrier] : barrier->tasks_at_barrier) { if (at_barrier) { continue; } ++pending_task_count; if (pending_task_count < kPendingTaskLogLimit) { absl::StrAppend(&pending_tasks, GetTaskName(task), "\n"); } } const int64_t tasks_at_barrier = barrier->tasks_at_barrier.size() - pending_task_count; std::string error_message = absl::StrFormat( "Barrier timed out. Id: %s. This usually happens because a task " "triggered the barrier too early or too slowly. Please look at the " "task logs (both timed out and first task) to debug further.\n" "# of tasks that reached the barrier: %d/%d.\nThe first " "task at the barrier: %s. Some timed out task names:\n%s", barrier_id, tasks_at_barrier, barrier->tasks_at_barrier.size(), GetTaskName(barrier->initiating_task), pending_tasks); if (barrier_id == shutdown_barrier_id_) { shutdown_error = error_message; } const absl::Status error = MakeCoordinationError(absl::DeadlineExceededError(error_message)); PassBarrier(barrier_id, error, barrier); } } const bool has_service_to_client_connection = client_cache_ != nullptr; if (!has_service_to_client_connection && shutdown_error) { SendErrorPollingResponseOrStopService( MakeCoordinationError(absl::DeadlineExceededError(absl::StrCat( "Shutdown barrier timed out. Error: ", *shutdown_error)))); } } void CoordinationServiceStandaloneImpl::CheckStaleness() { while (true) { { absl::MutexLock l(&state_mu_); check_staleness_thread_cv_.WaitWithTimeout(&state_mu_, absl::Seconds(1)); if (shutting_down_) { return; } } CheckHeartbeatTimeout(); CheckBarrierTimeout(); } } void CoordinationServiceStandaloneImpl::StartCheckStaleness() { check_staleness_thread_.reset(env_.StartThread( {}, kHealthCheckThread, absl::bind_front(&CoordinationServiceStandaloneImpl::CheckStaleness, this))); } void CoordinationServiceStandaloneImpl::Stop(bool shut_staleness_thread) { { absl::MutexLock l(&kv_mu_); for (const auto& [key, get_kv_callbacks] : get_cb_) { for (const auto& get_kv_callback : get_kv_callbacks) { get_kv_callback(absl::CancelledError( absl::StrCat("Coordination service is shutting down. Cancelling " "GetKeyValue() for key: ", key))); } } get_cb_.clear(); } { absl::MutexLock l(&state_mu_); shutting_down_ = true; check_staleness_thread_cv_.SignalAll(); for (auto& [barrier_id, barrier] : barriers_) { if (!barrier.passed) { absl::Status error = MakeCoordinationError(absl::AbortedError(absl::StrCat( "Barrier failed because service is shutting down. Barrier_id: ", barrier_id))); PassBarrier(barrier_id, error, &barrier); } } barriers_.clear(); cluster_state_.clear(); } if (IsClientPollingForError()) { SendErrorPollingResponse( absl::CancelledError("Coordination service is shutting down. " "Cancelling PollForErrorAsync()")); } if (shut_staleness_thread) { check_staleness_thread_.reset(); } } bool CoordinationServiceStandaloneImpl::ServiceHasStopped() const { return shutting_down_; } void CoordinationServiceStandaloneImpl::LogConnectStatusLocked() const { const int num_tasks = cluster_state_.size(); int pending_tasks = 0; std::vector<std::string> task_names; for (const auto& [task_name, task_state] : cluster_state_) { if (task_state->GetState() != CoordinatedTaskState::TASKSTATE_CONNECTED) { pending_tasks++; if (task_names.size() < kPendingStragglerLogLimit) { task_names.push_back(task_name); } } } LOG(INFO) << "Waiting for " << pending_tasks << "/" << num_tasks << " tasks to connect."; if (!task_names.empty()) { LOG(INFO) << "Example stragglers:\n" << absl::StrJoin(task_names, "\n"); } } absl::Status CoordinationServiceStandaloneImpl::RegisterTask( const CoordinatedTask& task, uint64_t incarnation) { const std::string task_name = GetTaskName(task); absl::Status error; std::string error_message; { absl::MutexLock l(&state_mu_); if (ServiceHasStopped()) { return MakeCoordinationError(absl::InternalError(absl::StrCat( "Coordination service has stopped. RegisterTask() from task: ", task_name, " failed. This usually implies an earlier error that caused " "coordination service to shut down before the workers disconnect " "gracefully. Check the task leader's logs for an earlier error to " "debug the root cause."))); } if (!cluster_state_.contains(task_name)) { return MakeCoordinationError(absl::InvalidArgumentError(absl::StrCat( "Unexpected task registered with task_name=", task_name))); } auto* task_cluster_state = cluster_state_[task_name].get(); const auto task_state = task_cluster_state->GetState(); const auto task_status = task_cluster_state->GetStatus(); if (task_state == CoordinatedTaskState::TASKSTATE_DISCONNECTED || (allow_new_incarnation_to_reconnect_ && (absl::IsUnavailable(task_status) && task_status.GetPayload(CoordinationErrorPayloadKey())))) { task_cluster_state->SetConnected(incarnation); LOG(INFO) << task_name << " has connected to coordination service. Incarnation: " << incarnation; LogConnectStatusLocked(); return absl::OkStatus(); } else if (task_state == CoordinatedTaskState::TASKSTATE_CONNECTED) { if (task_cluster_state->GetTaskIncarnation() == incarnation) { task_cluster_state->SetConnected(incarnation); LOG(INFO) << task_name << " has connected to coordination service with the same " << "incarnation again: " << incarnation; LogConnectStatusLocked(); return absl::OkStatus(); } else { error_message = absl::StrCat(task_name, " unexpectedly tried to connect with a different " "incarnation. It has likely restarted."); } } else { error_message = absl::StrCat(task_name, " unexpectedly tried to connect while it is already in " "error. ResetTask() should be called before a " "subsequent connect attempt."); } LOG(ERROR) << error_message; error = MakeCoordinationError(absl::AbortedError(error_message), task); SetTaskError(task_name, error); } assert(!error.ok()); PropagateError(task); return error; } void CoordinationServiceStandaloneImpl::WaitForAllTasks( const CoordinatedTask& task, const DeviceInfo& devices, StatusCallback done) { { absl::MutexLock l(&state_mu_); if (ServiceHasStopped()) { done(MakeCoordinationError(absl::InternalError( "Coordination service has stopped. WaitForAllTasks() failed."))); return; } const auto& task_state = cluster_state_.find(GetTaskName(task)); if (task_state != cluster_state_.end() && !task_state->second->DeviceInfoIsCollected()) { task_state->second->CollectDeviceInfo(devices); } } BarrierAsync(device_propagation_barrier_id_, kDevicePropagationTimeout, task, {}, std::move(done)); } void CoordinationServiceStandaloneImpl::ShutdownTaskAsync( const CoordinatedTask& task, StatusCallback done) { VLOG(3) << "Task " << GetTaskName(task) << " invoked ShutdownTaskAsync()"; if (shutdown_barrier_timeout_ > absl::ZeroDuration()) { BarrierAsync(shutdown_barrier_id_, shutdown_barrier_timeout_, task, {}, done); } else { absl::Status status; { absl::MutexLock l(&state_mu_); if (ServiceHasStopped()) { status = MakeCoordinationError(absl::InternalError( "Coordination service has stopped. ShutdownTaskAsync() failed.")); } else { status = DisconnectTask(task); } } done(status); } } absl::Status CoordinationServiceStandaloneImpl::ResetTask( const CoordinatedTask& task) { absl::MutexLock l(&state_mu_); return DisconnectTask(task); } absl::Status CoordinationServiceStandaloneImpl::DisconnectTask( const CoordinatedTask& task) { const std::string task_name = GetTaskName(task); if (ServiceHasStopped()) { return MakeCoordinationError(absl::InternalError( absl::StrCat("Coordination service has stopped. DisconnectTask() " "failed for task_name=", task_name))); } else if (!cluster_state_.contains(task_name)) { return MakeCoordinationError(absl::InvalidArgumentError(absl::StrCat( "Unexpected disconnect request with task_name=", task_name))); } else if (cluster_state_[task_name]->GetState() == CoordinatedTaskState::TASKSTATE_DISCONNECTED) { return MakeCoordinationError(absl::FailedPreconditionError( absl::StrCat("The task is already disconnected: ", task_name))); } cluster_state_[task_name]->Disconnect( heartbeat_timeout_ms_ * 1000); for (const auto& barrier_id : cluster_state_[task_name]->GetOngoingBarriers()) { absl::Status error = MakeCoordinationError(absl::InternalError(absl::StrCat( "Barrier failed because a task has disconnected. Barrier Id: ", barrier_id, ", Task: ", task_name))); PassBarrier(barrier_id, error, &barriers_[barrier_id]); } LOG(INFO) << task_name << " has disconnected from coordination service."; return absl::OkStatus(); } const DeviceInfo& CoordinationServiceStandaloneImpl::ListClusterDevices() { return cluster_devices_; } uint64_t CoordinationServiceStandaloneImpl::GetServiceIncarnation() { return service_incarnation_; } absl::Status CoordinationServiceStandaloneImpl::ReportTaskError( const CoordinatedTask& task, absl::Status error) { const std::string task_name = GetTaskName(task); { absl::MutexLock l(&state_mu_); if (ServiceHasStopped()) { return MakeCoordinationError(absl::InternalError( "Coordination service has stopped. ReportTaskError() failed.")); } else if (!cluster_state_.contains(task_name)) { return MakeCoordinationError(absl::InvalidArgumentError( absl::StrCat("Unexpected request from task ", task_name))); } else if (cluster_state_[task_name]->GetState() != CoordinatedTaskState::TASKSTATE_CONNECTED) { return MakeCoordinationError(absl::FailedPreconditionError( "The task is not connected or already has an error.")); } else { SetTaskError(task_name, error); } } PropagateError(task, true); return absl::OkStatus(); } std::vector<CoordinatedTaskStateInfo> CoordinationServiceStandaloneImpl::GetTaskState( const std::vector<CoordinatedTask>& tasks) { std::vector<CoordinatedTaskStateInfo> states_info; for (const auto& task : tasks) { const std::string task_name = GetTaskName(task); auto& state_info = states_info.emplace_back(); absl::Status error; { absl::MutexLock l(&state_mu_); state_info.set_state(cluster_state_[task_name]->GetState()); error = cluster_state_[task_name]->GetStatus(); } *state_info.mutable_task() = task; state_info.set_error_code(error.raw_code()); state_info.set_error_message(std::string(error.message())); if (!error.ok()) { *state_info.mutable_error_payload()->mutable_source_task() = task; state_info.mutable_error_payload()->set_is_reported_error(false); } } return states_info; } absl::Status CoordinationServiceStandaloneImpl::RecordHeartbeat( const CoordinatedTask& task, uint64_t incarnation) { const std::string task_name = GetTaskName(task); absl::Status s = absl::OkStatus(); { absl::MutexLock l(&state_mu_); if (ServiceHasStopped()) { return MakeCoordinationError(absl::InternalError(absl::StrCat( "Coordination service has stopped. RecordHeartbeat() from task: ", task_name, " failed. This usually implies an earlier error that caused " "coordination service to shut down before the workers disconnect " "gracefully. Check the task leader's logs for an earlier error to " "debug the root cause."))); } else if (!cluster_state_.contains(task_name)) { return MakeCoordinationError(absl::InvalidArgumentError( absl::StrCat("Unexpected heartbeat request from task: ", task_name, ". This usually implies a configuration error."))); } if (!cluster_state_[task_name]->GetStatus().ok()) { return cluster_state_[task_name]->GetStatus(); } else if (cluster_state_[task_name]->IsDisconnectedBeyondGracePeriod()) { return MakeCoordinationError(absl::InvalidArgumentError(absl::StrCat( "Task with task_name=", task_name, " must be registered before sending heartbeat messages"))); } VLOG(10) << "Record heartbeat from task: " << task_name << "at incarnation: " << incarnation << "at " << absl::Now(); s = cluster_state_[task_name]->RecordHeartbeat(incarnation); } if (!s.ok()) { { absl::MutexLock l(&state_mu_); SetTaskError(task_name, s); } PropagateError(task); } return s; } void CoordinationServiceStandaloneImpl::ReportServiceErrorToTaskAsync( const CoordinatedTask& destination_task, absl::Status error) { assert(!error.ok()); if (client_cache_ == nullptr) { LOG(ERROR) << error; return; } auto request = std::make_shared<ReportErrorToTaskRequest>(); auto response = std::make_shared<ReportErrorToTaskResponse>(); request->set_error_code(error.raw_code()); request->set_error_message(std::string(error.message())); CoordinatedTask* error_source = request->mutable_error_payload()->mutable_source_task(); error_source->set_job_name("coordination_service"); auto call_opts = std::make_shared<CallOptions>(); call_opts->SetTimeout(kServiceToClientTimeoutMs); const std::string task_name = GetTaskName(destination_task); CoordinationClient* client = client_cache_->GetClient(task_name); client->ReportErrorToTaskAsync( call_opts.get(), request.get(), response.get(), [request, response, task_name, call_opts](absl::Status s) { if (!s.ok()) { LOG(ERROR) << "Encountered another error while reporting to " << task_name << ": " << s; } }); } void CoordinationServiceStandaloneImpl::PropagateError( const CoordinatedTask& source_task, bool is_reported_by_task) { VLOG(3) << "PropagateError() from " << GetTaskName(source_task); if (isRecoverableJob(source_task.job_name())) return; absl::Status error; { absl::MutexLock l(&state_mu_); error = cluster_state_[GetTaskName(source_task)]->GetStatus(); } assert(!error.ok()); ReportErrorToTaskRequest request; request.set_error_code(error.raw_code()); request.set_error_message(std::string(error.message())); CoordinationServiceError* payload = request.mutable_error_payload(); *payload->mutable_source_task() = source_task; payload->set_is_reported_error(is_reported_by_task); CallOptions call_opts; call_opts.SetTimeout(kServiceToClientTimeoutMs); std::vector<std::shared_ptr<absl::Notification>> notifications; std::vector<std::string_view> task_names; { absl::ReaderMutexLock l(&state_mu_); task_names.reserve(cluster_state_.size()); for (const auto& pair : cluster_state_) { task_names.emplace_back(pair.first); } } for (std::string_view task : task_names) { { absl::MutexLock l(&state_mu_); if (cluster_state_[task]->GetState() != CoordinatedTaskState::TASKSTATE_CONNECTED) continue; } if (client_cache_ == nullptr) { SendErrorPollingResponseOrStopService(error); return; } CoordinationClient* client = client_cache_->GetClient(std::string(task)); auto response = std::make_shared<ReportErrorToTaskResponse>(); auto n = std::make_shared<absl::Notification>(); client->ReportErrorToTaskAsync( &call_opts, &request, response.get(), [response, n, task](absl::Status s) { if (!s.ok()) { LOG(ERROR) << "Encountered another error while reporting to " << task << ": " << s; } n->Notify(); }); notifications.push_back(n); } for (auto& n : notifications) { n->WaitForNotification(); } } std::string NormalizeKey(std::string_view orig_key) { std::string norm_key = std::string(orig_key); const char* src = norm_key.c_str(); std::string::iterator dst = norm_key.begin(); while (*src) { while (*src == '/') src++; while (*src && *src != '/') { *dst++ = *src++; } if (*src) { *dst++ = *src++; } } if (dst > norm_key.begin() && *(dst - 1) == '/') dst--; norm_key.resize(dst - norm_key.begin()); return norm_key; } absl::Status CoordinationServiceStandaloneImpl::InsertKeyValue( std::string_view key, std::string_view value) { return InsertKeyValue(key, value, false); } absl::Status CoordinationServiceStandaloneImpl::InsertKeyValue( std::string_view key, std::string_view value, bool allow_overwrite) { VLOG(3) << "InsertKeyValue(): " << key << ": " << value << " allow_overwrite: " << allow_overwrite; const std::string norm_key = NormalizeKey(key); absl::MutexLock l(&kv_mu_); if (!allow_overwrite && kv_store_.find(norm_key) != kv_store_.end()) { return MakeCoordinationError(absl::AlreadyExistsError( absl::StrCat("Config key ", key, " already exists."))); } kv_store_.insert_or_assign(norm_key, value); auto iter = get_cb_.find(norm_key); if (iter != get_cb_.end()) { for (const auto& cb : iter->second) { cb(value); } get_cb_.erase(iter); } return absl::OkStatus(); } void CoordinationServiceStandaloneImpl::GetKeyValueAsync( std::string_view key, StatusOrValueCallback done) { VLOG(3) << "GetKeyValue(): " << key; const std::string norm_key = NormalizeKey(key); absl::MutexLock l(&kv_mu_); const auto& iter = kv_store_.find(norm_key); if (iter != kv_store_.end()) { done(iter->second); return; } auto cb_iter = get_cb_.find(norm_key); if (cb_iter == get_cb_.end()) { cb_iter = get_cb_.emplace(norm_key, std::vector<StatusOrValueCallback>()).first; } cb_iter->second.emplace_back(std::move(done)); } absl::StatusOr<std::string> CoordinationServiceStandaloneImpl::TryGetKeyValue( std::string_view key) { VLOG(3) << "TryGetKeyValue(): " << key; const std::string norm_key = NormalizeKey(key); absl::MutexLock l(&kv_mu_); const auto& iter = kv_store_.find(norm_key); if (iter == kv_store_.end()) { return absl::NotFoundError(absl::StrCat("Config key ", key, " not found.")); } return iter->second; } std::vector<KeyValueEntry> CoordinationServiceStandaloneImpl::GetKeyValueDir( std::string_view directory_key) { VLOG(3) << "TryGetKeyValueDir(): " << directory_key; std::vector<KeyValueEntry> kvs_in_directory; const std::string norm_key = NormalizeKey(directory_key); const std::string dir = absl::StrCat(norm_key, "/"); absl::MutexLock l(&kv_mu_); auto begin = kv_store_.lower_bound(dir); std::map<std::string, std::string>::iterator it; for (it = begin; it != kv_store_.end(); ++it) { if (std::mismatch(dir.begin(), dir.end(), it->first.begin()).first != dir.end()) { break; } KeyValueEntry kv; kv.set_key(it->first); kv.set_value(it->second); kvs_in_directory.push_back(kv); } return kvs_in_directory; } absl::Status CoordinationServiceStandaloneImpl::DeleteKeyValue( std::string_view key) { VLOG(3) << "DeleteKeyValue(): " << key; const std::string norm_key = NormalizeKey(key); absl::MutexLock l(&kv_mu_); const std::string dir = absl::StrCat(norm_key, "/"); auto begin = kv_store_.lower_bound(dir); std::map<std::string, std::string>::iterator end; for (end = begin; end != kv_store_.end(); end++) { if (std::mismatch(dir.begin(), dir.end(), end->first.begin()).first != dir.end()) break; } kv_store_.erase(begin, end); auto iter = kv_store_.find(norm_key); if (iter != kv_store_.end()) { kv_store_.erase(iter); } return absl::OkStatus(); } void CoordinationServiceStandaloneImpl::SetTaskError(std::string_view task_name, absl::Status error) { cluster_state_[task_name]->SetError(error); for (const auto& barrier_id : cluster_state_[task_name]->GetOngoingBarriers()) { absl::Status barrier_error = MakeCoordinationError(absl::InternalError(absl::StrCat( "Barrier failed beacuse a task is in error. Barrier Id: ", barrier_id, ", Task: ", task_name, "Error: ", error.message()))); PassBarrier(barrier_id, barrier_error, &barriers_[barrier_id]); } LOG(ERROR) << task_name << " has been set to ERROR in coordination service: " << error; } void CoordinationServiceStandaloneImpl::PollForErrorAsync( const CoordinatedTask& task, StatusCallback done) { const std::string task_name = GetTaskName(task); VLOG(3) << "Task " << task_name << " invoked PollForErrorAsync()."; absl::MutexLock l(&state_mu_); if (ServiceHasStopped()) { done(MakeCoordinationError(absl::InternalError( "PollForError requested after coordination service has shut down."))); return; } if (client_cache_ != nullptr) { done(MakeCoordinationError( absl::InternalError("Should not use error polling from service when " "there is service to client connection."))); return; } client_polling_for_error_ = true; if (!cluster_state_.contains(task_name)) { done(MakeCoordinationError(absl::InvalidArgumentError( absl::StrCat("Unexpected task (", task_name, ") that is not in the cluster polling for errors.")))); return; } if (cluster_state_[task_name]->IsDisconnectedBeyondGracePeriod()) { done(MakeCoordinationError(absl::FailedPreconditionError( absl::StrCat("Task (", task_name, ") that has not been registered or has disconnected " "polling for errors.")))); return; } if (cluster_state_[task_name]->GetState() == CoordinatedTaskState::TASKSTATE_ERROR) { done(MakeCoordinationError(absl::FailedPreconditionError(absl::StrCat( "Task (", task_name, ") that is already in error state polling for errors. Current error: ", cluster_state_[task_name]->GetStatus().ToString())))); return; } if (error_polling_state_.Responded()) { done(error_polling_state_.GetError()); return; } error_polling_state_.AddTask(task, std::move(done)); } bool CoordinationServiceStandaloneImpl::ValidateBarrierArgs( std::string_view barrier_id, absl::Duration timeout, const CoordinatedTask& task, const std::vector<CoordinatedTask>& participating_tasks, StatusCallback done) { const std::string source_task_name = GetTaskName(task); bool among_participating_tasks = std::find_if(participating_tasks.begin(), participating_tasks.end(), [&](const CoordinatedTask& task) { return GetTaskName(task) == source_task_name; }) != participating_tasks.end(); if (!participating_tasks.empty() && !among_participating_tasks) { const std::string task_name = GetTaskName(task); absl::Status error = MakeCoordinationError(absl::InvalidArgumentError( absl::StrCat("A non-participating task (", GetTaskName(task), ") called the barrier: ", barrier_id))); { absl::MutexLock l(&state_mu_); if (ServiceHasStopped()) { done(MakeCoordinationError(absl::InternalError( "Barrier requested after coordination service has shut down."))); return false; } auto pair = barriers_.try_emplace(barrier_id); auto it = pair.first; auto* barrier = &it->second; PassBarrier(barrier_id, error, barrier); } done(error); return false; } return true; }; bool CoordinationServiceStandaloneImpl::InitializeBarrier( BarrierState* barrier, std::string_view barrier_id, absl::Duration timeout, const CoordinatedTask& task, const std::vector<CoordinatedTask>& participating_tasks, StatusCallback done) { barrier->passed = false; barrier->initiating_task = task; if (participating_tasks.empty()) { for (const auto& task_state : cluster_state_) { std::string_view task_name = task_state.first; barrier->tasks_at_barrier[GetTaskFromName(task_name)] = false; } } else { for (const auto& task : participating_tasks) { const std::string task_name = GetTaskName(task); if (!cluster_state_.contains(task_name)) { absl::Status error = MakeCoordinationError(absl::InvalidArgumentError( absl::StrCat("Unexpected task (", task_name, ") that is not in the cluster called the barrier. " "Barrier Id: ", barrier_id))); PassBarrier(barrier_id, error, barrier); done(error); return false; } barrier->tasks_at_barrier[task] = false; } } barrier->num_pending_tasks = barrier->tasks_at_barrier.size(); for (const auto& pending_task : barrier->tasks_at_barrier) { const std::string task_name = GetTaskName(pending_task.first); if (cluster_state_[task_name]->GetState() == CoordinatedTaskState::TASKSTATE_ERROR) { absl::Status error = MakeCoordinationError(absl::InternalError( absl::StrCat("Task (", task_name, ") is already in error before the barrier " "was called. Barrier Id: ", barrier_id))); PassBarrier(barrier_id, error, barrier); done(error); return false; } } barrier->deadline_in_micros = Env::Default()->NowMicros() + (timeout / absl::Microseconds(1)); ongoing_barriers_.emplace(barrier_id); const size_t num_ongoing_barriers = ongoing_barriers_.size(); if (num_ongoing_barriers > kOngoingBarriersSoftLimit) { LOG(WARNING) << "There is a high number of ongoing barriers in " "coordination service: " << num_ongoing_barriers; } for (const auto& pending_task : barrier->tasks_at_barrier) { const CoordinatedTask& task = pending_task.first; cluster_state_[GetTaskName(task)]->JoinBarrier(barrier_id); } return true; } void CoordinationServiceStandaloneImpl::BarrierAsync( std::string_view barrier_id, absl::Duration timeout, const CoordinatedTask& task, const std::vector<CoordinatedTask>& participating_tasks, StatusCallback done) { VLOG(3) << "Task " << GetTaskName(task) << " invoked BarrierAsync(" << barrier_id << ")."; if (!ValidateBarrierArgs(barrier_id, timeout, task, participating_tasks, done)) { return; } absl::MutexLock l(&state_mu_); if (ServiceHasStopped()) { done(MakeCoordinationError(absl::InternalError( "Barrier requested after coordination service has shut down."))); return; } auto pair = barriers_.try_emplace(barrier_id); auto it = pair.first; bool inserted = pair.second; auto* barrier = &it->second; if (inserted) { if (!InitializeBarrier(barrier, barrier_id, timeout, task, participating_tasks, done)) { return; } } if (barrier->passed) { if (barrier_id == shutdown_barrier_id_) { absl::Status s = DisconnectTask(task); if (!s.ok()) { done(s); return; } } done(barrier->result); return; } barrier->done_callbacks.push_back(done); if (!ValidateTaskArgs(participating_tasks, barrier->tasks_at_barrier, cluster_state_.size())) { absl::Status error = MakeCoordinationError(absl::InvalidArgumentError(absl::StrCat( "Conflicting tasks specified for the same barrier: ", barrier_id))); PassBarrier(barrier_id, error, barrier); return; } if (!barrier->tasks_at_barrier[task]) { barrier->tasks_at_barrier[task] = true; --barrier->num_pending_tasks; if (barrier->num_pending_tasks == 0) { PassBarrier(barrier_id, absl::OkStatus(), barrier); return; } } } absl::Status CoordinationServiceStandaloneImpl::CancelBarrier( std::string_view barrier_id, const CoordinatedTask& task) { absl::MutexLock l(&state_mu_); if (ServiceHasStopped()) { return MakeCoordinationError(absl::InternalError( "Coordination service has stopped. CancelBarrier() failed.")); } auto [it, inserted] = barriers_.try_emplace(barrier_id); auto* barrier = &it->second; if (inserted) { LOG(WARNING) << "Barrier (" << barrier_id << ") is cancelled before being created by task: " << GetTaskName(task); } if (barrier->passed) { return MakeCoordinationError(absl::FailedPreconditionError(absl::StrCat( "Barrier (", barrier_id, ") has already been passed with status code: ", barrier->result.code()))); } absl::Status cancelled = MakeCoordinationError(absl::CancelledError( absl::StrCat("Barrier (", barrier_id, ") is cancelled by task: ", GetTaskName(task)))); PassBarrier(barrier_id, cancelled, barrier); VLOG(3) << "Barrier (" << barrier_id << ") is cancelled."; return absl::OkStatus(); } void CoordinationServiceStandaloneImpl::PassBarrier(std::string_view barrier_id, absl::Status result, BarrierState* barrier) { barrier->passed = true; barrier->result = result; VLOG(3) << "Barrier(" << barrier_id << ") has passed with status: " << result; if (barrier_id == device_propagation_barrier_id_) { AggregateClusterDevices(); } for (const auto& task_at_barrier : barrier->tasks_at_barrier) { const CoordinatedTask& task = task_at_barrier.first; cluster_state_[GetTaskName(task)]->ExitBarrier(barrier_id); } if (barrier_id == shutdown_barrier_id_) { CompleteShutdownAfterBarrier(result, barrier); } barrier->tasks_at_barrier.clear(); ongoing_barriers_.erase(barrier_id); for (const auto& callback : barrier->done_callbacks) { callback(result); } barrier->done_callbacks.clear(); } void CoordinationServiceStandaloneImpl::SendErrorPollingResponse( const absl::Status& error) { CHECK(IsClientPollingForError()) << "`SendErrorPollingResponse` should only be called after agents poll " "errors from the service."; { absl::MutexLock l(&state_mu_); if (error_polling_state_.Responded()) { return; } } if (!absl::IsCancelled(error)) { VLOG(2) << "An error is encountered. Sending the error as a response to " "all error polling requests: " << error; } std::vector<std::string> missing_tasks; { absl::MutexLock l(&state_mu_); missing_tasks.reserve(cluster_state_.size()); for (const auto& [task_name, task_state] : cluster_state_) { if (!error_polling_state_.IsTaskPolling(task_name)) { missing_tasks.push_back(task_name); } } error_polling_state_.SetError(error); } if (!missing_tasks.empty()) { LOG(ERROR) << absl::StrFormat( "The following %d tasks in the cluster has not sent request to poll " "for error. Error will not be propagated to these tasks: %s", missing_tasks.size(), absl::StrJoin(missing_tasks, ",")); } } bool CoordinationServiceStandaloneImpl::ValidateTaskArgs( const std::vector<CoordinatedTask>& tasks_args, const absl::flat_hash_map<CoordinatedTask, bool, CoordinatedTaskHash, CoordinatedTaskEqual>& tasks_at_barrier, int64_t cluster_size) { if (tasks_args.empty()) { return tasks_at_barrier.size() == cluster_size; } else if (tasks_at_barrier.size() != tasks_args.size()) { return false; } else { for (const auto& task : tasks_args) { if (!tasks_at_barrier.contains(task)) { return false; } } } return true; } void CoordinationServiceStandaloneImpl::AggregateClusterDevices() { assert(cluster_devices_.device_size() == 0); std::vector<CoordinatedTask> ordered_tasks; ordered_tasks.reserve(cluster_state_.size()); for (const auto& task : cluster_state_) { ordered_tasks.push_back(GetTaskFromName(task.first)); } std::sort(ordered_tasks.begin(), ordered_tasks.end(), [](const CoordinatedTask& task1, const CoordinatedTask& task2) { if (task1.job_name() != task2.job_name()) { return task1.job_name() < task2.job_name(); } return task1.task_id() < task2.task_id(); }); for (const auto& task : ordered_tasks) { cluster_devices_.MergeFrom( cluster_state_[GetTaskName(task)]->GetDeviceInfo()); } if (post_aggregate_device_fn_ != nullptr) { cluster_devices_ = post_aggregate_device_fn_(cluster_devices_); } } void CoordinationServiceStandaloneImpl::CompleteShutdownAfterBarrier( absl::Status result, BarrierState* barrier) { if (result.ok()) { LOG(INFO) << "Shutdown barrier in coordination service has passed."; } else { LOG(ERROR) << "Shutdown barrier in coordination service has failed:\n" << result << "\nThis suggests that the workers are out of sync. Either " "at least one worker is too fast in its execution / " "crashed early or too slow / hanging. Check the logs for " "an earlier error to identify the root cause."; } absl::Status shutdown_error = MakeCoordinationError(absl::InternalError( absl::StrCat("Shutdown barrier has failed, but this task is not at the " "barrier yet.\nBarrier result: '", barrier->result.message()))); for (const auto& [task, at_barrier] : barrier->tasks_at_barrier) { if (at_barrier) { absl::Status disconnect_status = DisconnectTask(task); if (!disconnect_status.ok()) { LOG(ERROR) << disconnect_status; } } else { ReportServiceErrorToTaskAsync(task, shutdown_error); } } } } std::unique_ptr<CoordinationServiceInterface> EnableCoordinationService( Env* env, const CoordinationServiceConfig& config, std::unique_ptr<CoordinationClientCache> cache) { return std::make_unique<CoordinationServiceStandaloneImpl>(env, config, std::move(cache)); } bool CoordinationServiceStandaloneImpl::isRecoverableJob( const std::string_view task_name) const { return recoverable_jobs_.find(task_name) != recoverable_jobs_.end(); } bool CoordinationServiceStandaloneImpl::SendErrorPollingResponseOrStopService( const absl::Status& error) { CHECK(!error.ok()) << "SendErrorPollingResponseOrStopService called with OK " "status. Should always return an error."; assert(client_cache_ == nullptr); if (IsClientPollingForError()) { LOG(ERROR) << "Use error polling to propagate the following error to all tasks: " << error; SendErrorPollingResponse(error); return false; } LOG(ERROR) << "Stopping coordination service as there is no " "service-to-client connection, but we encountered an error: " << error; Stop(false); return true; } bool CoordinationServiceStandaloneImpl::IsClientPollingForError() const { return client_polling_for_error_; } REGISTER_COORDINATION_SERVICE("standalone", EnableCoordinationService); }
#include "xla/tsl/distributed_runtime/coordination/coordination_service.h" #include <cstdint> #include <memory> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "absl/time/time.h" #include "xla/tsl/distributed_runtime/call_options.h" #include "xla/tsl/distributed_runtime/coordination/coordination_client.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service_error_util.h" #include "xla/tsl/distributed_runtime/coordination/test_device.pb.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/protobuf/coordination_config.pb.h" #include "xla/tsl/protobuf/coordination_service.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/random.h" #include "tsl/platform/status.h" #include "tsl/platform/test.h" #include "tsl/platform/types.h" namespace tsl { namespace { using ::testing::Each; using ::testing::EqualsProto; using ::testing::HasSubstr; using ::testing::IsEmpty; using ::testing::UnorderedElementsAre; using ::testing::status::StatusIs; using tensorflow::CoordinatedJob; using tensorflow::CoordinatedTask; using tensorflow::CoordinationServiceConfig; using tensorflow::DeviceInfo; using tensorflow::KeyValueEntry; using tensorflow::TestDevice; using tensorflow::TestDeviceList; constexpr absl::Duration kHeartbeatTimeout = absl::Seconds(2); constexpr absl::Duration kShutdownBarrierTimeout = absl::Milliseconds(500); constexpr char kCoordinationServiceType[] = "standalone"; KeyValueEntry CreateKv(const std::string& key, const std::string& value) { KeyValueEntry kv; kv.set_key(key); kv.set_value(value); return kv; } CoordinationServiceConfig GetCoordinationServiceConfig(int num_tasks) { CoordinationServiceConfig config; config.set_service_type(kCoordinationServiceType); CoordinatedJob* job = config.mutable_coordinated_job_list()->Add(); job->set_name("worker"); job->set_num_tasks(num_tasks); return config; } class TestCoordinationClient : public CoordinationClient { public: TestCoordinationClient() = default; absl::Status GetStatus() { absl::MutexLock l(&mu_); return status_; } void RegisterTaskAsync(CallOptions* opts, const RegisterTaskRequest* request, RegisterTaskResponse* response, StatusCallback done) override { done(absl::OkStatus()); } void ReportErrorToTaskAsync(CallOptions* call_opts, const ReportErrorToTaskRequest* request, ReportErrorToTaskResponse* response, StatusCallback done) override { absl::MutexLock l(&mu_); status_ = absl::Status(static_cast<absl::StatusCode>(request->error_code()), request->error_message()); done(absl::OkStatus()); } #define UNIMPLEMENTED(method) \ void method##Async(const method##Request* request, \ method##Response* response, StatusCallback done) \ override{done(absl::UnimplementedError(#method "Async")); \ } UNIMPLEMENTED(WaitForAllTasks); UNIMPLEMENTED(ResetTask); UNIMPLEMENTED(ReportErrorToService); UNIMPLEMENTED(GetTaskState); UNIMPLEMENTED(InsertKeyValue); UNIMPLEMENTED(TryGetKeyValue); UNIMPLEMENTED(GetKeyValueDir); UNIMPLEMENTED(DeleteKeyValue); UNIMPLEMENTED(Barrier); UNIMPLEMENTED(CancelBarrier); #undef UNIMPLEMENTED #define UNIMPLEMENTED_WITH_CALL_OPTS(method) \ void method##Async(CallOptions* call_opts, const method##Request* request, \ method##Response* response, StatusCallback done) \ override{done(absl::UnimplementedError(#method "Async")); \ } UNIMPLEMENTED_WITH_CALL_OPTS(GetKeyValue); UNIMPLEMENTED_WITH_CALL_OPTS(Heartbeat); UNIMPLEMENTED_WITH_CALL_OPTS(ShutdownTask); UNIMPLEMENTED_WITH_CALL_OPTS(PollForError); #undef UNIMPLEMENTED_WITH_CALL_OPTS private: absl::Mutex mu_; absl::Status status_ ABSL_GUARDED_BY(mu_); }; class TestCoordinationClientCache : public CoordinationClientCache { public: void AddTask(const std::string& target, CoordinationClient* client) { clients_.emplace(target, client); } CoordinationClient* GetClient(const string& target) override { auto it = clients_.find(target); if (it == clients_.end()) return nullptr; return it->second; } std::unique_ptr<CoordinationClient> GetOwnedClient( const string& target) override { LOG(ERROR) << "GetOwnedClient is not supported."; return nullptr; } private: std::unordered_map<std::string, CoordinationClient*> clients_; }; class CoordinationBarrierTest : public ::testing::Test { protected: CoordinationBarrierTest() { const int num_tasks = 3; auto client_cache = std::make_unique<TestCoordinationClientCache>(); for (int i = 0; i < num_tasks; ++i) { CoordinatedTask task; task.set_job_name("worker"); task.set_task_id(i); auto client = std::make_unique<TestCoordinationClient>(); client_cache->AddTask(absl::StrCat("/job:worker/replica:0/task:", i), client.get()); tasks_.push_back(task); clients_.push_back(std::move(client)); } CoordinationServiceConfig config = GetCoordinationServiceConfig(num_tasks); coord_service_ = CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, std::move(client_cache)); for (int i = 0; i < num_tasks; ++i) { absl::Status s = coord_service_->RegisterTask(tasks_[i], 0); if (!s.ok()) { LOG(FATAL) << "RegisterTask() failed in CoordinationBarrierTest(): " << s; } } } CoordinationServiceInterface* GetCoordinationService() { return coord_service_.get(); } CoordinatedTask GetTask(int i) { return tasks_[i]; } std::string GetTaskName(const CoordinatedTask& task) { return absl::StrCat("/job:", task.job_name(), "/replica:", 0, "/task:", task.task_id()); } std::vector<TestCoordinationClient*> GetClients() { std::vector<TestCoordinationClient*> clients; for (const auto& client : clients_) { clients.push_back(client.get()); } return clients; } private: std::unique_ptr<CoordinationServiceInterface> coord_service_; std::vector<CoordinatedTask> tasks_; std::vector<std::unique_ptr<TestCoordinationClient>> clients_; }; class CoordinateTwoTasksTest : public ::testing::Test { protected: CoordinateTwoTasksTest() { task_0_.set_job_name("worker"); task_0_.set_task_id(0); task_1_.set_job_name("worker"); task_1_.set_task_id(1); } void EnableCoordinationService( bool has_service_to_client_connection = true, bool enable_shutdown_barrier = false, bool set_worker_job_recoverable = false, bool allow_new_incarnation_to_reconnect = false) { CoordinationServiceConfig config = GetCoordinationServiceConfig(2); auto client_cache = std::make_unique<TestCoordinationClientCache>(); if (has_service_to_client_connection) { client_cache->AddTask("/job:worker/replica:0/task:0", &client_0_); client_cache->AddTask("/job:worker/replica:0/task:1", &client_1_); } else { client_cache = nullptr; } config.set_heartbeat_timeout_in_ms(kHeartbeatTimeout / absl::Milliseconds(1)); if (set_worker_job_recoverable) { config.mutable_recoverable_jobs()->Add("worker"); } if (enable_shutdown_barrier) { config.set_shutdown_barrier_timeout_in_ms(kShutdownBarrierTimeout / absl::Milliseconds(1)); } if (allow_new_incarnation_to_reconnect) { config.set_allow_new_incarnation_to_reconnect(true); } coord_service_ = CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, std::move(client_cache)); } CoordinatedTask task_0_; const uint64_t incarnation_0_ = random::New64(); const uint64_t incarnation_0_new_ = random::New64(); TestCoordinationClient client_0_; CoordinatedTask task_1_; const uint64_t incarnation_1_ = random::New64(); const uint64_t incarnation_1_new_ = random::New64(); TestCoordinationClient client_1_; std::unique_ptr<CoordinationServiceInterface> coord_service_; }; TestDevice CreateTestDevice(absl::string_view name, int local_id = 0) { TestDevice device; device.set_name(name); device.set_local_id(local_id); return device; } TEST_F(CoordinateTwoTasksTest, TestStandaloneService) { EnableCoordinationService(); CoordinatedTask task_2; task_2.set_job_name("worker"); task_2.set_task_id(2); ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); absl::Notification wait_for_all; coord_service_->WaitForAllTasks(task_0_, {}, [&](absl::Status s) { ASSERT_OK(s); wait_for_all.Notify(); }); ASSERT_FALSE(wait_for_all.HasBeenNotified()); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); coord_service_->WaitForAllTasks(task_1_, {}, [&](absl::Status s) { ASSERT_OK(s); }); wait_for_all.WaitForNotification(); ASSERT_OK(coord_service_->RecordHeartbeat(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RecordHeartbeat(task_1_, incarnation_1_)); EXPECT_THAT(coord_service_->RecordHeartbeat(task_2, 0), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(coord_service_->RecordHeartbeat(task_1_, 0), StatusIs(absl::StatusCode::kAborted)); EXPECT_THAT(coord_service_->RecordHeartbeat(task_1_, 0), StatusIs(absl::StatusCode::kAborted)); EXPECT_THAT(client_0_.GetStatus(), StatusIs(absl::StatusCode::kAborted)); } TEST(CoordinationServiceTest, TestCoordinatedJobs) { CoordinatedTask chief; chief.set_job_name("chief"); chief.set_task_id(0); CoordinatedTask task_0; task_0.set_job_name("worker"); task_0.set_task_id(0); CoordinatedTask task_1; task_1.set_job_name("worker"); task_1.set_task_id(1); CoordinatedTask evaluator; evaluator.set_job_name("evaluator"); evaluator.set_task_id(0); CoordinationServiceConfig config; config.set_service_type(kCoordinationServiceType); CoordinatedJob* chief_job = config.mutable_coordinated_job_list()->Add(); chief_job->set_name("chief"); chief_job->set_num_tasks(1); CoordinatedJob* worker_job = config.mutable_coordinated_job_list()->Add(); worker_job->set_name("worker"); worker_job->set_num_tasks(2); auto client_cache = std::make_unique<TestCoordinationClientCache>(); TestCoordinationClient ci; client_cache->AddTask("/job:chief/replica:0/task:0", &ci); TestCoordinationClient wi0; client_cache->AddTask("/job:worker/replica:0/task:0", &wi0); TestCoordinationClient wi1; client_cache->AddTask("/job:worker/replica:0/task:1", &wi1); TestCoordinationClient ei; client_cache->AddTask("/job:evaluator/replica:0/task:0", &ei); std::unique_ptr<CoordinationServiceInterface> coord_service = CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, std::move(client_cache)); absl::Notification register_chief; ASSERT_OK(coord_service->RegisterTask(chief, 0)); coord_service->WaitForAllTasks(chief, {}, [&](absl::Status s) { ASSERT_OK(s); register_chief.Notify(); }); absl::Notification register_task0; ASSERT_OK(coord_service->RegisterTask(task_0, 0)); coord_service->WaitForAllTasks(task_0, {}, [&](absl::Status s) { ASSERT_OK(s); register_task0.Notify(); }); absl::Notification register_task1; ASSERT_OK(coord_service->RegisterTask(task_1, 0)); coord_service->WaitForAllTasks(task_1, {}, [&](absl::Status s) { ASSERT_OK(s); register_task1.Notify(); }); register_chief.WaitForNotification(); register_task0.WaitForNotification(); register_task1.WaitForNotification(); absl::Status status = coord_service->RegisterTask(evaluator, 0); EXPECT_THAT(status, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(CoordinationServiceTest, RegisterTask_AlreadyConnected_Succeeds) { const CoordinationServiceConfig config = GetCoordinationServiceConfig(1); CoordinatedTask task_0; task_0.set_job_name("worker"); task_0.set_task_id(0); std::unique_ptr<CoordinationServiceInterface> coord_service = CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, nullptr); ASSERT_OK(coord_service->RegisterTask(task_0, 0)); const absl::Status status = coord_service->RegisterTask(task_0, 0); TF_EXPECT_OK(status) << status; } TEST(CoordinationServiceTest, RegisterTask_AlreadyConnectedDifferentIncarnation_Fails) { const CoordinationServiceConfig config = GetCoordinationServiceConfig(1); CoordinatedTask task_0; task_0.set_job_name("worker"); task_0.set_task_id(0); std::unique_ptr<CoordinationServiceInterface> coord_service = CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, nullptr); ASSERT_OK(coord_service->RegisterTask(task_0, 0)); const absl::Status status = coord_service->RegisterTask(task_0, 1); EXPECT_THAT(status, StatusIs(absl::StatusCode::kAborted)); } TEST(CoordinationServiceTest, RegisterTask_AlreadyInError_Fails) { CoordinationServiceConfig config = GetCoordinationServiceConfig(1); CoordinatedTask task_0; task_0.set_job_name("worker"); task_0.set_task_id(0); std::unique_ptr<CoordinationServiceInterface> coord_service = CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, nullptr); ASSERT_OK(coord_service->RegisterTask(task_0, 0)); ASSERT_OK(coord_service->ReportTaskError(task_0, absl::InternalError("test_error"))); const absl::Status status = coord_service->RegisterTask(task_0, 0); EXPECT_THAT(status, StatusIs(absl::StatusCode::kAborted)); } TEST_F(CoordinateTwoTasksTest, TestTaskHeartbeatTimeout) { EnableCoordinationService(); ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); Env::Default()->SleepForMicroseconds( absl::ToInt64Microseconds(2 * kHeartbeatTimeout)); EXPECT_THAT(coord_service_->RecordHeartbeat(task_0_, incarnation_0_), StatusIs(absl::StatusCode::kUnavailable)); EXPECT_THAT(coord_service_->RecordHeartbeat(task_1_, incarnation_1_), StatusIs(absl::StatusCode::kUnavailable)); } TEST_F(CoordinateTwoTasksTest, ErrorPollingRequestsGotCancelledErrorUponServiceShutdown) { EnableCoordinationService(false); ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); std::vector<absl::Status> statuses; statuses.reserve(2); for (const CoordinatedTask& task : {task_0_, task_1_}) { coord_service_->PollForErrorAsync( task, [&](const absl::Status& status) { statuses.push_back(status); }); } EXPECT_EQ(statuses.size(), 0); coord_service_.reset(); EXPECT_EQ(statuses.size(), 2); EXPECT_THAT(statuses, Each(StatusIs(absl::StatusCode::kCancelled))); } TEST_F(CoordinateTwoTasksTest, HeartbeatTimeoutWithoutServerToClientConnection) { EnableCoordinationService(false); ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); Env::Default()->SleepForMicroseconds( absl::ToInt64Microseconds(2 * kHeartbeatTimeout)); EXPECT_THAT(coord_service_->RecordHeartbeat(task_0_, incarnation_0_), StatusIs(absl::StatusCode::kInternal)); EXPECT_THAT(coord_service_->RecordHeartbeat(task_1_, incarnation_1_), StatusIs(absl::StatusCode::kInternal)); } TEST_F(CoordinateTwoTasksTest, HeartbeatTimeoutErrorCanPropagateThroughErrorPolling) { EnableCoordinationService(false); ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); absl::Notification n0, n1; absl::Status s0, s1; coord_service_->PollForErrorAsync(task_0_, [&](const absl::Status& status) { s0 = status; n0.Notify(); }); coord_service_->PollForErrorAsync(task_1_, [&](const absl::Status& status) { s1 = status; n1.Notify(); }); Env::Default()->SleepForMicroseconds( absl::ToInt64Microseconds(2 * kHeartbeatTimeout)); n0.WaitForNotification(); n1.WaitForNotification(); EXPECT_THAT(s0, StatusIs(absl::StatusCode::kUnavailable)); EXPECT_THAT(s1, StatusIs(absl::StatusCode::kUnavailable)); } TEST_F(CoordinateTwoTasksTest, HeartbeatTimeoutErrorFromOneTaskCanPropagateThroughErrorPolling) { EnableCoordinationService(false); ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); absl::Status s0, s1; absl::Notification n0, n1; coord_service_->PollForErrorAsync(task_0_, [&](const absl::Status& status) { s0 = status; n0.Notify(); }); coord_service_->PollForErrorAsync(task_1_, [&](const absl::Status& status) { s1 = status; n1.Notify(); }); const int64_t sleeping_time = absl::ToInt64Microseconds(0.9 * kHeartbeatTimeout); Env::Default()->SleepForMicroseconds(sleeping_time); TF_EXPECT_OK(coord_service_->RecordHeartbeat(task_0_, incarnation_0_)); Env::Default()->SleepForMicroseconds(sleeping_time); TF_EXPECT_OK(coord_service_->RecordHeartbeat(task_0_, incarnation_0_)); Env::Default()->SleepForMicroseconds(sleeping_time); n0.WaitForNotification(); n1.WaitForNotification(); EXPECT_THAT(s0, StatusIs(absl::StatusCode::kUnavailable, HasSubstr("task:1"))); EXPECT_THAT(s1, StatusIs(absl::StatusCode::kUnavailable, HasSubstr("task:1"))); } TEST_F(CoordinateTwoTasksTest, ReportedErrorCanPropagateThroughErrorPolling) { EnableCoordinationService(false); ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); std::vector<absl::Status> statuses; statuses.reserve(2); for (const CoordinatedTask& task : {task_0_, task_1_}) { coord_service_->PollForErrorAsync( task, [&](const absl::Status& status) { statuses.push_back(status); }); } ASSERT_OK(coord_service_->ReportTaskError(task_1_, absl::InternalError("test_error"))); EXPECT_EQ(statuses.size(), 2); EXPECT_THAT(statuses, Each(StatusIs(absl::StatusCode::kInternal))); } TEST_F(CoordinateTwoTasksTest, TestTaskRestart) { EnableCoordinationService(); ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); absl::Status s = coord_service_->RegisterTask(task_1_, random::New64()); EXPECT_THAT(s, StatusIs(absl::StatusCode::kAborted)); EXPECT_THAT(client_0_.GetStatus(), StatusIs(absl::StatusCode::kAborted)); } TEST_F(CoordinateTwoTasksTest, InsertKeyValue_Duplicate_Fail) { EnableCoordinationService(); ASSERT_OK(coord_service_->InsertKeyValue("key0", "original_value")); EXPECT_THAT(coord_service_->InsertKeyValue("key0", "never_added"), StatusIs(absl::StatusCode::kAlreadyExists)); auto result = coord_service_->TryGetKeyValue("key0"); TF_EXPECT_OK(result.status()); EXPECT_EQ(result.value(), "original_value"); } TEST_F(CoordinateTwoTasksTest, InsertKeyValue_Duplicate_Overwrite) { EnableCoordinationService(); ASSERT_OK(coord_service_->InsertKeyValue("key0", "original_value")); TF_EXPECT_OK(coord_service_->InsertKeyValue("key0", "overwritten_value", true)); auto result = coord_service_->TryGetKeyValue("key0"); TF_EXPECT_OK(result.status()); EXPECT_EQ(result.value(), "overwritten_value"); } TEST_F(CoordinateTwoTasksTest, TestSetGetValues) { EnableCoordinationService(); ASSERT_OK(coord_service_->InsertKeyValue("key0", "value0")); ASSERT_OK(coord_service_->InsertKeyValue("/path", "value")); ASSERT_OK(coord_service_->InsertKeyValue("/path/to/key1", "value1")); ASSERT_OK(coord_service_->InsertKeyValue("path/to absl::Notification n1; absl::StatusOr<std::string_view> ret; coord_service_->GetKeyValueAsync( "key0", [&](const absl::StatusOr<std::string_view>& status_or_value) { ret = status_or_value; n1.Notify(); }); n1.WaitForNotification(); ASSERT_OK(ret.status()); EXPECT_EQ(ret.value(), "value0"); absl::Notification n2; coord_service_->GetKeyValueAsync( "path [&](const absl::StatusOr<std::string_view>& status_or_value) { ret = status_or_value; n2.Notify(); }); n2.WaitForNotification(); EXPECT_EQ(ret.value(), "value1"); ASSERT_OK(coord_service_->DeleteKeyValue("key0")); absl::Notification n3; coord_service_->GetKeyValueAsync( "key0", [&](const absl::StatusOr<std::string_view>& status_or_value) { ret = status_or_value; n3.Notify(); }); EXPECT_FALSE(n3.HasBeenNotified()); ASSERT_OK(coord_service_->InsertKeyValue("key0", "value0_new")); n3.WaitForNotification(); EXPECT_EQ(ret.value(), "value0_new"); ASSERT_OK(coord_service_->DeleteKeyValue("/path")); auto n4 = std::make_shared<absl::Notification>(); coord_service_->GetKeyValueAsync( "/path/to/key1", [n4](const absl::StatusOr<std::string_view>& status_or_value) { n4->Notify(); }); EXPECT_FALSE(n4->HasBeenNotified()); } TEST(CoordinationServiceTest, TryGetKeyValue) { const CoordinationServiceConfig config = GetCoordinationServiceConfig(1); auto client_cache = std::make_unique<TestCoordinationClientCache>(); std::unique_ptr<CoordinationServiceInterface> coord_service = CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, std::move(client_cache)); absl::StatusOr<std::string> result = coord_service->TryGetKeyValue("test_key"); EXPECT_THAT(result.status(), StatusIs(absl::StatusCode::kNotFound)); ASSERT_OK(coord_service->InsertKeyValue("test_key", "test_value")); result = coord_service->TryGetKeyValue("test_key"); EXPECT_EQ(result.value(), "test_value"); ASSERT_OK(coord_service->DeleteKeyValue("test_key")); result = coord_service->TryGetKeyValue("test_key"); EXPECT_THAT(result.status(), StatusIs(absl::StatusCode::kNotFound)); } TEST_F(CoordinateTwoTasksTest, GetKeyValueDir_SingleValueInDirectory) { EnableCoordinationService(); KeyValueEntry kv = CreateKv("dir/path", "value0"); ASSERT_OK(coord_service_->InsertKeyValue(kv.key(), kv.value())); std::vector<KeyValueEntry> result = coord_service_->GetKeyValueDir("dir"); EXPECT_THAT(result, UnorderedElementsAre(EqualsProto(kv))); } TEST_F(CoordinateTwoTasksTest, GetKeyValueDir_MultipleValuesInDirectory) { EnableCoordinationService(); KeyValueEntry kv = CreateKv("dir/path", "value0"); KeyValueEntry kv2 = CreateKv("dir/path2", "value1"); KeyValueEntry kv_sub = CreateKv("dir/sub_dir/path", "value_sub"); ASSERT_OK(coord_service_->InsertKeyValue(kv.key(), kv.value())); ASSERT_OK(coord_service_->InsertKeyValue(kv2.key(), kv2.value())); ASSERT_OK(coord_service_->InsertKeyValue(kv_sub.key(), kv_sub.value())); std::vector<KeyValueEntry> result = coord_service_->GetKeyValueDir("dir"); EXPECT_THAT(result, UnorderedElementsAre(EqualsProto(kv), EqualsProto(kv2), EqualsProto(kv_sub))); } TEST_F(CoordinateTwoTasksTest, GetKeyValueDir_Empty_ReturnsEmptyList) { EnableCoordinationService(); std::vector<KeyValueEntry> result = coord_service_->GetKeyValueDir("dir"); EXPECT_THAT(result, IsEmpty()); } TEST_F(CoordinateTwoTasksTest, GetKeyValueDir_WrongDir_ReturnsEmptyList) { EnableCoordinationService(); ASSERT_OK(coord_service_->InsertKeyValue("dir0/path", "value0")); std::vector<KeyValueEntry> result = coord_service_->GetKeyValueDir("dir"); EXPECT_THAT(result, IsEmpty()); } TEST_F(CoordinateTwoTasksTest, GetKeyValueDir_WrongDirPrefix_ReturnsEmptyList) { EnableCoordinationService(); ASSERT_OK(coord_service_->InsertKeyValue("wrong_dir/dir/path", "value0")); std::vector<KeyValueEntry> result = coord_service_->GetKeyValueDir("dir"); EXPECT_THAT(result, IsEmpty()); } TEST_F(CoordinateTwoTasksTest, GetKeyValueDir_NonDirectoryPrefix_ReturnsEmptyList) { EnableCoordinationService(); ASSERT_OK(coord_service_->InsertKeyValue("dir_key", "value0")); std::vector<KeyValueEntry> result = coord_service_->GetKeyValueDir("dir"); EXPECT_THAT(result, IsEmpty()); } TEST_F(CoordinateTwoTasksTest, GetKeyValueDir_NonDirectoryKey_ReturnsEmptyList) { EnableCoordinationService(); ASSERT_OK(coord_service_->InsertKeyValue("dir", "value0")); std::vector<KeyValueEntry> result = coord_service_->GetKeyValueDir("dir"); EXPECT_THAT(result, IsEmpty()); } } TEST(CoordinationServiceTest, ListClusterDevices_TfDevice) { const CoordinationServiceConfig config = GetCoordinationServiceConfig(3); CoordinatedTask task_0; task_0.set_job_name("worker"); task_0.set_task_id(0); CoordinatedTask task_1; task_1.set_job_name("worker"); task_1.set_task_id(1); CoordinatedTask task_2; task_2.set_job_name("worker"); task_2.set_task_id(2); absl::Status status = absl::OkStatus(); auto client_cache = std::make_unique<TestCoordinationClientCache>(); std::unique_ptr<CoordinationServiceInterface> coord_service = CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, std::move(client_cache)); absl::Notification n; DeviceInfo local_devices_0; DeviceInfo local_devices_1; DeviceInfo local_devices_2; local_devices_0.mutable_device()->Add()->PackFrom( CreateTestDevice("task0_device0")); local_devices_0.mutable_device()->Add()->PackFrom( CreateTestDevice("task0_device1")); local_devices_1.mutable_device()->Add()->PackFrom( CreateTestDevice("task1_device0")); local_devices_2.mutable_device()->Add()->PackFrom( CreateTestDevice("task2_device0")); DeviceInfo cluster_devices; coord_service->WaitForAllTasks(task_0, local_devices_0, [&](absl::Status s) { ASSERT_OK(s); }); coord_service->WaitForAllTasks(task_1, local_devices_1, [&](absl::Status s) { ASSERT_OK(s); }); coord_service->WaitForAllTasks(task_2, local_devices_2, [&](absl::Status s) { ASSERT_OK(s); cluster_devices = coord_service->ListClusterDevices(); n.Notify(); }); n.WaitForNotification(); DeviceInfo expected_cluster_devices; auto expected_devices = expected_cluster_devices.mutable_device(); expected_devices->Add(local_devices_0.device().begin(), local_devices_0.device().end()); expected_devices->Add(local_devices_1.device().begin(), local_devices_1.device().end()); expected_devices->Add(local_devices_2.device().begin(), local_devices_2.device().end()); EXPECT_THAT(cluster_devices, EqualsProto(expected_cluster_devices)); } TEST(CoordinationServiceTest, ListClusterDevices_XlaDevice) { const CoordinationServiceConfig config = GetCoordinationServiceConfig(3); CoordinatedTask task_0; task_0.set_job_name("worker"); task_0.set_task_id(0); CoordinatedTask task_1; task_1.set_job_name("worker"); task_1.set_task_id(1); CoordinatedTask task_2; task_2.set_job_name("worker"); task_2.set_task_id(2); absl::Status status = absl::OkStatus(); auto client_cache = std::make_unique<TestCoordinationClientCache>(); std::unique_ptr<CoordinationServiceInterface> coord_service = CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, std::move(client_cache)); coord_service->SetDeviceAggregationFunction( [](const DeviceInfo& raw_global_devices) { TestDeviceList global_device_list; int global_id = 0; for (const auto& device : raw_global_devices.device()) { TestDevice local_device; device.UnpackTo(&local_device); local_device.set_global_id(global_id++); *global_device_list.mutable_device()->Add() = local_device; } DeviceInfo global_devices; global_devices.mutable_device()->Add()->PackFrom(global_device_list); return global_devices; }); absl::Notification n; DeviceInfo local_devices_0; DeviceInfo local_devices_1; DeviceInfo local_devices_2; TestDevice local_0 = CreateTestDevice("task0_device0", 0); TestDevice local_0_1 = CreateTestDevice("task0_device1", 1); TestDevice local_1 = CreateTestDevice("task1_device0", 0); TestDevice local_2 = CreateTestDevice("task2_device0", 0); local_devices_0.mutable_device()->Add()->PackFrom(local_0); local_devices_0.mutable_device()->Add()->PackFrom(local_0_1); local_devices_1.mutable_device()->Add()->PackFrom(local_1); local_devices_2.mutable_device()->Add()->PackFrom(local_2); DeviceInfo cluster_devices; coord_service->WaitForAllTasks(task_1, local_devices_1, [&](absl::Status s) { ASSERT_OK(s); }); coord_service->WaitForAllTasks(task_0, local_devices_0, [&](absl::Status s) { ASSERT_OK(s); }); coord_service->WaitForAllTasks(task_2, local_devices_2, [&](absl::Status s) { ASSERT_OK(s); cluster_devices = coord_service->ListClusterDevices(); n.Notify(); }); n.WaitForNotification(); DeviceInfo expected_cluster_devices; TestDeviceList global_device_list; local_0.set_global_id(0); local_0_1.set_global_id(1); local_1.set_global_id(2); local_2.set_global_id(3); *global_device_list.add_device() = local_0; *global_device_list.add_device() = local_0_1; *global_device_list.add_device() = local_1; *global_device_list.add_device() = local_2; expected_cluster_devices.mutable_device()->Add()->PackFrom( global_device_list); EXPECT_THAT(cluster_devices, EqualsProto(expected_cluster_devices)); } TEST(CoordinationServiceTest, ListClusterDevices_DevicesAreNotAddedTwice) { const CoordinationServiceConfig config = GetCoordinationServiceConfig(2); CoordinatedTask task_0; task_0.set_job_name("worker"); task_0.set_task_id(0); CoordinatedTask task_1; task_1.set_job_name("worker"); task_1.set_task_id(1); absl::Status status = absl::OkStatus(); auto client_cache = std::make_unique<TestCoordinationClientCache>(); std::unique_ptr<CoordinationServiceInterface> coord_service = CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, std::move(client_cache)); absl::Notification n; DeviceInfo local_devices_0; DeviceInfo local_devices_1; local_devices_0.mutable_device()->Add()->PackFrom( CreateTestDevice("task0_device0")); local_devices_0.mutable_device()->Add()->PackFrom( CreateTestDevice("task0_device1")); local_devices_1.mutable_device()->Add()->PackFrom( CreateTestDevice("task1_device0")); DeviceInfo cluster_devices; coord_service->WaitForAllTasks(task_0, local_devices_0, [](absl::Status s) { ASSERT_OK(s); }); coord_service->WaitForAllTasks(task_0, local_devices_0, [](absl::Status s) { ASSERT_OK(s); }); coord_service->WaitForAllTasks(task_1, local_devices_1, [coord_service = coord_service.get(), &cluster_devices, &n](absl::Status s) { ASSERT_OK(s); cluster_devices = coord_service->ListClusterDevices(); n.Notify(); }); n.WaitForNotification(); DeviceInfo expected_cluster_devices; auto expected_devices = expected_cluster_devices.mutable_device(); expected_devices->Add(local_devices_0.device().begin(), local_devices_0.device().end()); expected_devices->Add(local_devices_1.device().begin(), local_devices_1.device().end()); EXPECT_THAT(cluster_devices, EqualsProto(expected_cluster_devices)); } TEST_F(CoordinationBarrierTest, Barrier) { const std::string barrier_id = "barrier_id"; absl::Duration timeout = absl::Seconds(5); absl::Status barrier_status_0; absl::Status barrier_status_1; absl::Status barrier_status_2; absl::Notification n_0; absl::Notification n_1; absl::Notification n_2; GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(0), {}, [&barrier_status_0, &n_0](absl::Status s) { barrier_status_0 = s; n_0.Notify(); }); GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(1), {}, [&barrier_status_1, &n_1](absl::Status s) { barrier_status_1 = s; n_1.Notify(); }); EXPECT_FALSE(n_0.HasBeenNotified()); EXPECT_FALSE(n_1.HasBeenNotified()); EXPECT_FALSE(n_2.HasBeenNotified()); GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(2), {}, [&barrier_status_2, &n_2](absl::Status s) { barrier_status_2 = s; n_2.Notify(); }); EXPECT_TRUE(n_0.HasBeenNotified()); EXPECT_TRUE(n_1.HasBeenNotified()); EXPECT_TRUE(n_2.HasBeenNotified()); TF_EXPECT_OK(barrier_status_0); TF_EXPECT_OK(barrier_status_1); TF_EXPECT_OK(barrier_status_2); } TEST_F(CoordinationBarrierTest, BarrierWithSubsetOfTasks) { const std::string barrier_id = "barrier_id"; absl::Duration timeout = absl::Seconds(5); absl::Status barrier_status_0; absl::Status barrier_status_1; absl::Notification n_0; absl::Notification n_1; GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(0), {GetTask(0), GetTask(1)}, [&barrier_status_0, &n_0](absl::Status s) { barrier_status_0 = s; n_0.Notify(); }); GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(1), {GetTask(0), GetTask(1)}, [&barrier_status_1, &n_1](absl::Status s) { barrier_status_1 = s; n_1.Notify(); }); EXPECT_TRUE(n_0.HasBeenNotified()); EXPECT_TRUE(n_1.HasBeenNotified()); TF_EXPECT_OK(barrier_status_0); TF_EXPECT_OK(barrier_status_1); } TEST_F(CoordinationBarrierTest, BarrierWithMismatchedTasks) { const std::string barrier_id = "barrier_id"; absl::Duration timeout = absl::Seconds(5); absl::Status barrier_status_0; absl::Status barrier_status_1; GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(0), {GetTask(0), GetTask(1)}, [&barrier_status_0](absl::Status s) { barrier_status_0 = s; }); GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(1), {GetTask(1), GetTask(2)}, [&barrier_status_1](absl::Status s) { barrier_status_1 = s; }); EXPECT_THAT(barrier_status_0, StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(barrier_status_1, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST_F(CoordinationBarrierTest, BarrierByNonParticipatingTask) { const std::string barrier_id = "barrier_id"; absl::Duration timeout = absl::Seconds(5); absl::Status barrier_status_0; absl::Status barrier_status_1; absl::Notification n_0; absl::Notification n_1; GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(0), {GetTask(0), GetTask(1)}, [&barrier_status_0](absl::Status s) { barrier_status_0 = s; }); GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(2), {GetTask(0), GetTask(1)}, [&barrier_status_1](absl::Status s) { barrier_status_1 = s; }); EXPECT_THAT(barrier_status_0, StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(barrier_status_1, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST_F(CoordinationBarrierTest, BarrierByNonParticipatingTaskThreeTasks) { const std::string barrier_id = "barrier_id"; absl::Duration timeout = absl::Seconds(5); absl::Status barrier_status_0; absl::Status barrier_status_1; absl::Status barrier_status_2; absl::Notification n_0; absl::Notification n_1; GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(0), {GetTask(0), GetTask(1)}, [&barrier_status_0, &n_0](absl::Status s) { barrier_status_0 = s; n_0.Notify(); }); GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(1), {GetTask(0), GetTask(1)}, [&barrier_status_1, &n_1](absl::Status s) { barrier_status_1 = s; n_1.Notify(); }); n_0.WaitForNotification(); n_1.WaitForNotification(); TF_EXPECT_OK(barrier_status_0); TF_EXPECT_OK(barrier_status_1); GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(2), {GetTask(0), GetTask(1)}, [&barrier_status_2](absl::Status s) { barrier_status_2 = s; }); EXPECT_THAT(barrier_status_2, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST_F(CoordinationBarrierTest, BarrierByNonClusterTask) { const std::string barrier_id = "barrier_id"; absl::Duration timeout = absl::Seconds(5); absl::Status barrier_status_0; absl::Notification n_0; CoordinatedTask unspecified_task; unspecified_task.set_job_name("task_from_another_cluster"); unspecified_task.set_task_id(2); GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(0), {GetTask(0), unspecified_task}, [&barrier_status_0, &n_0](absl::Status s) { barrier_status_0 = s; n_0.Notify(); }); n_0.WaitForNotification(); EXPECT_THAT(barrier_status_0, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST_F(CoordinationBarrierTest, BarrierTimeout) { const std::string barrier_id = "barrier_id"; absl::Duration timeout = absl::Seconds(1); absl::Status barrier_status_0, barrier_status_1; absl::Notification n_0, n_1; GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(1), {}, [&barrier_status_1, &n_1](absl::Status s) { barrier_status_1 = s; n_1.Notify(); }); GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(0), {}, [&barrier_status_0, &n_0](absl::Status s) { barrier_status_0 = s; n_0.Notify(); }); n_0.WaitForNotification(); n_1.WaitForNotification(); EXPECT_EQ(barrier_status_0, barrier_status_1); EXPECT_THAT(barrier_status_0, StatusIs(absl::StatusCode::kDeadlineExceeded)); EXPECT_FALSE( absl::StrContains(barrier_status_0.message(), GetTaskName(GetTask(0)))); EXPECT_TRUE( absl::StrContains(barrier_status_0.message(), GetTaskName(GetTask(1)))); EXPECT_TRUE(absl::StrContains(barrier_status_0.message(), GetTaskName(GetTask(2)))); EXPECT_TRUE(absl::StrContains( barrier_status_0.message(), "2/3")); } TEST_F(CoordinationBarrierTest, BarrierReturnsPreviousError) { const std::string barrier_id = "barrier_id"; absl::Duration timeout = absl::Seconds(1); absl::Status barrier_status_0; absl::Status barrier_status_1; absl::Notification n_0; GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(0), {}, [&barrier_status_0, &n_0](absl::Status s) { barrier_status_0 = s; n_0.Notify(); }); ASSERT_OK(GetCoordinationService()->ReportTaskError( GetTask(0), absl::InternalError("test_error"))); n_0.WaitForNotification(); GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(1), {}, [&barrier_status_1](absl::Status s) { barrier_status_1 = s; }); EXPECT_THAT(barrier_status_0, StatusIs(absl::StatusCode::kInternal)); EXPECT_THAT(barrier_status_1, StatusIs(absl::StatusCode::kInternal)); } TEST_F(CoordinationBarrierTest, BarrierCancelled) { const std::string barrier_id = "barrier_id"; absl::Duration timeout = absl::Seconds(5); absl::Status barrier_status; GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(0), {}, [&barrier_status](absl::Status s) { barrier_status = s; }); absl::Status cancelled_status = GetCoordinationService()->CancelBarrier(barrier_id, GetTask(0)); EXPECT_THAT(barrier_status, StatusIs(absl::StatusCode::kCancelled)); TF_EXPECT_OK(cancelled_status); } TEST_F(CoordinationBarrierTest, CancelNonExistentBarrier_FutureBarrierFails) { const std::string barrier_id = "cancelled_barrier_id"; absl::Duration timeout = absl::Seconds(1); absl::Status barrier_status; ASSERT_OK(GetCoordinationService()->CancelBarrier(barrier_id, GetTask(0))); GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(0), {}, [&barrier_status](absl::Status s) { barrier_status = s; }); EXPECT_THAT(barrier_status, StatusIs(absl::StatusCode::kCancelled)); } TEST_F(CoordinationBarrierTest, CancelAfterBarrierHasPassed) { const std::string barrier_id = "barrier_id"; absl::Duration timeout = absl::Seconds(5); absl::Status barrier_status_0; absl::Status barrier_status_1; absl::Status barrier_status_2; GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(0), {}, [&barrier_status_0](absl::Status s) { barrier_status_0 = s; }); GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(1), {}, [&barrier_status_1](absl::Status s) { barrier_status_1 = s; }); GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(2), {}, [&barrier_status_2](absl::Status s) { barrier_status_2 = s; }); absl::Status cancelled_status = GetCoordinationService()->CancelBarrier(barrier_id, GetTask(0)); EXPECT_THAT(cancelled_status, StatusIs(absl::StatusCode::kFailedPrecondition)); TF_EXPECT_OK(barrier_status_0); TF_EXPECT_OK(barrier_status_1); TF_EXPECT_OK(barrier_status_2); } TEST_F(CoordinationBarrierTest, PassedBarrierReturnsImmediately) { const std::string barrier_id = "barrier_id"; absl::Duration timeout = absl::Seconds(5); absl::Status barrier_status_0; absl::Status barrier_status_1; absl::Status barrier_status_2; absl::Status barrier_status_repeat; absl::Notification n0; absl::Notification n1; absl::Notification n2; absl::Notification n_repeat; GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(0), {}, [&barrier_status_0, &n0](absl::Status s) { barrier_status_0 = s; n0.Notify(); }); GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(1), {}, [&barrier_status_1, &n1](absl::Status s) { barrier_status_1 = s; n1.Notify(); }); GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(2), {}, [&barrier_status_2, &n2](absl::Status s) { barrier_status_2 = s; n2.Notify(); }); GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(1), {}, [&barrier_status_repeat, &n_repeat](absl::Status s) { barrier_status_repeat = s; n_repeat.Notify(); }); EXPECT_TRUE(n0.HasBeenNotified()); EXPECT_TRUE(n1.HasBeenNotified()); EXPECT_TRUE(n2.HasBeenNotified()); EXPECT_TRUE(n_repeat.HasBeenNotified()); TF_EXPECT_OK(barrier_status_0); TF_EXPECT_OK(barrier_status_1); TF_EXPECT_OK(barrier_status_2); TF_EXPECT_OK(barrier_status_repeat); } TEST_F(CoordinationBarrierTest, BarrierFailsIfTaskIsAlreadyInError) { const std::string barrier_id = "barrier_id"; absl::Duration timeout = absl::Seconds(5); ASSERT_OK(GetCoordinationService()->ReportTaskError( GetTask(0), absl::InternalError("test_error"))); absl::Status barrier_status; GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(1), {}, [&barrier_status](absl::Status s) { barrier_status = s; }); EXPECT_THAT(barrier_status, StatusIs(absl::StatusCode::kInternal)); } TEST_F(CoordinationBarrierTest, BarrierFailsUponTaskError) { const std::string barrier_id = "barrier_id"; absl::Duration timeout = absl::Seconds(5); absl::Notification n0; absl::Status barrier_status; GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(0), {}, [&barrier_status, &n0](absl::Status s) { barrier_status = s; n0.Notify(); }); ASSERT_OK(GetCoordinationService()->ReportTaskError( GetTask(0), absl::InternalError("test_error"))); n0.WaitForNotification(); EXPECT_THAT(barrier_status, StatusIs(absl::StatusCode::kInternal)); } TEST_F(CoordinationBarrierTest, BarrierStillBlocksIfSameTaskCallsOngoingBarrierRepeatedly) { const std::string barrier_id = "barrier_id"; absl::Duration timeout = absl::Seconds(5); absl::Status barrier_status_0; absl::Status barrier_status_1; absl::Status barrier_status_2; absl::Notification n_0; absl::Notification n_1; absl::Notification n_2; GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(0), {GetTask(0), GetTask(1)}, [&barrier_status_0, &n_0](absl::Status s) { barrier_status_0 = s; n_0.Notify(); }); GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(0), {GetTask(0), GetTask(1)}, [&barrier_status_1, &n_1](absl::Status s) { barrier_status_1 = s; n_1.Notify(); }); EXPECT_FALSE(n_0.HasBeenNotified()); EXPECT_FALSE(n_1.HasBeenNotified()); GetCoordinationService()->BarrierAsync( barrier_id, timeout, GetTask(1), {GetTask(0), GetTask(1)}, [&barrier_status_2, &n_2](absl::Status s) { barrier_status_2 = s; n_2.Notify(); }); TF_EXPECT_OK(barrier_status_0); TF_EXPECT_OK(barrier_status_1); TF_EXPECT_OK(barrier_status_2); } TEST_F(CoordinateTwoTasksTest, ResetAndRegisterAgain) { EnableCoordinationService(); TF_EXPECT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); TF_EXPECT_OK(coord_service_->ResetTask(task_0_)); TF_EXPECT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); } TEST_F(CoordinateTwoTasksTest, Reset_HeartbeatsAreAcceptedForAGracePeriod) { EnableCoordinationService(); TF_EXPECT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); TF_EXPECT_OK(coord_service_->ResetTask(task_0_)); TF_EXPECT_OK(coord_service_->RecordHeartbeat(task_0_, incarnation_0_)); Env::Default()->SleepForMicroseconds( absl::ToInt64Microseconds(3 * kHeartbeatTimeout)); EXPECT_THAT(coord_service_->RecordHeartbeat(task_0_, incarnation_0_), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST_F(CoordinateTwoTasksTest, Reset_FailsOngoingBarrier) { EnableCoordinationService(true, false); TF_EXPECT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); absl::Status barrier_status; absl::Notification barrier_n; coord_service_->BarrierAsync("ongoing_barrier", absl::InfiniteDuration(), task_0_, {}, [&barrier_status, &barrier_n](absl::Status s) { barrier_status = s; barrier_n.Notify(); }); TF_EXPECT_OK(coord_service_->ResetTask(task_0_)); EXPECT_TRUE(barrier_n.HasBeenNotified()); EXPECT_THAT(barrier_status, StatusIs(absl::StatusCode::kInternal)); } TEST_F(CoordinateTwoTasksTest, Shutdown_HeartbeatsAreAcceptedForAGracePeriod) { EnableCoordinationService(true, false); TF_EXPECT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); absl::Notification n; coord_service_->ShutdownTaskAsync(task_0_, [&n](absl::Status s) { TF_EXPECT_OK(s); n.Notify(); }); n.WaitForNotification(); TF_EXPECT_OK(coord_service_->RecordHeartbeat(task_0_, incarnation_0_)); Env::Default()->SleepForMicroseconds( absl::ToInt64Microseconds(3 * kHeartbeatTimeout)); EXPECT_THAT(coord_service_->RecordHeartbeat(task_0_, incarnation_0_), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST_F(CoordinateTwoTasksTest, Shutdown_FailsOngoingBarrier) { EnableCoordinationService(true, false); TF_EXPECT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); absl::Status barrier_status; absl::Notification barrier_n; coord_service_->BarrierAsync("ongoing_barrier", absl::InfiniteDuration(), task_0_, {}, [&barrier_status, &barrier_n](absl::Status s) { barrier_status = s; barrier_n.Notify(); }); absl::Notification shutdown_n; coord_service_->ShutdownTaskAsync(task_0_, [&shutdown_n](absl::Status s) { TF_EXPECT_OK(s); shutdown_n.Notify(); }); shutdown_n.WaitForNotification(); EXPECT_TRUE(barrier_n.HasBeenNotified()); EXPECT_THAT(barrier_status, StatusIs(absl::StatusCode::kInternal)); } TEST_F(CoordinateTwoTasksTest, ShutdownWithBarrier_BarrierSucceeds) { EnableCoordinationService(true, true); TF_EXPECT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); TF_EXPECT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); absl::Status barrier_status; absl::Status barrier_status_2; coord_service_->ShutdownTaskAsync( task_0_, [&barrier_status](absl::Status s) { barrier_status = s; }); coord_service_->ShutdownTaskAsync( task_1_, [&barrier_status_2](absl::Status s) { barrier_status_2 = s; }); TF_EXPECT_OK(barrier_status); TF_EXPECT_OK(barrier_status_2); TF_EXPECT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); TF_EXPECT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); } TEST_F(CoordinateTwoTasksTest, ShutdownWithBarrier_BarrierFails_TaskDisconnectsOtherTaskIsAlerted) { EnableCoordinationService(true, true); TF_EXPECT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); TF_EXPECT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); absl::Status barrier_status; absl::Notification n; coord_service_->ShutdownTaskAsync(task_0_, [&n, &barrier_status](absl::Status s) { barrier_status = s; n.Notify(); }); n.WaitForNotification(); EXPECT_THAT(barrier_status, StatusIs(absl::StatusCode::kDeadlineExceeded)); TF_EXPECT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); absl::Status other_task_status = client_1_.GetStatus(); EXPECT_THAT(other_task_status, StatusIs(absl::StatusCode::kInternal)); } TEST_F(CoordinateTwoTasksTest, ShutdownWithBarrier_BarrierFailsWithoutClientConnection_ServiceStops) { EnableCoordinationService(false, true); TF_EXPECT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); TF_EXPECT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); absl::Status barrier_status; absl::Notification n; coord_service_->ShutdownTaskAsync(task_0_, [&n, &barrier_status](absl::Status s) { barrier_status = s; n.Notify(); }); n.WaitForNotification(); Env::Default()->SleepForMicroseconds( absl::ToInt64Microseconds(absl::Seconds(1))); EXPECT_THAT(barrier_status, StatusIs(absl::StatusCode::kDeadlineExceeded)); absl::Status s = coord_service_->RecordHeartbeat(task_1_, incarnation_1_); EXPECT_THAT(s, StatusIs(absl::StatusCode::kInternal)); } TEST_F(CoordinateTwoTasksTest, BarrierFailsIfServiceHasStopped) { EnableCoordinationService(false); ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); absl::Notification n0; absl::Status barrier_status; Env::Default()->SleepForMicroseconds( absl::ToInt64Microseconds(2 * kHeartbeatTimeout)); coord_service_->BarrierAsync("barrier_id", absl::Seconds(5), task_0_, {}, [&](absl::Status s) { barrier_status = s; n0.Notify(); }); n0.WaitForNotification(); EXPECT_THAT(barrier_status, StatusIs(absl::StatusCode::kInternal)); } TEST_F(CoordinateTwoTasksTest, BarrierFailsAfterErrorPollingResponse) { EnableCoordinationService(false); ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); absl::Notification n0, n1; absl::Status s0, s1; coord_service_->PollForErrorAsync(task_0_, [&](const absl::Status& status) { s0 = status; n0.Notify(); }); coord_service_->PollForErrorAsync(task_1_, [&](const absl::Status& status) { s1 = status; n1.Notify(); }); Env::Default()->SleepForMicroseconds( absl::ToInt64Microseconds(2 * kHeartbeatTimeout)); n0.WaitForNotification(); n1.WaitForNotification(); EXPECT_THAT(s0, StatusIs(absl::StatusCode::kUnavailable)); EXPECT_THAT(s1, StatusIs(absl::StatusCode::kUnavailable)); absl::Notification n_barrier; absl::Status barrier_status; coord_service_->BarrierAsync("barrier_id", absl::Seconds(5), task_0_, {}, [&](absl::Status s) { barrier_status = s; n_barrier.Notify(); }); n_barrier.WaitForNotification(); EXPECT_THAT(barrier_status, StatusIs(absl::StatusCode::kInternal)); } TEST_F(CoordinateTwoTasksTest, BarrierWithSubsetFailsIfServiceHasStopped) { EnableCoordinationService(false); ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); absl::Notification n0; absl::Status barrier_status; Env::Default()->SleepForMicroseconds( absl::ToInt64Microseconds(2 * kHeartbeatTimeout)); coord_service_->BarrierAsync("barrier_id", absl::Seconds(5), task_0_, {task_0_}, [&](absl::Status s) { barrier_status = s; n0.Notify(); }); n0.WaitForNotification(); EXPECT_THAT(barrier_status, StatusIs(absl::StatusCode::kInternal)); } TEST_F(CoordinateTwoTasksTest, BarrierWithNonParticipatingTaskFailsIfServiceHasStopped) { EnableCoordinationService(false); ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); absl::Notification n0; absl::Status barrier_status; Env::Default()->SleepForMicroseconds( absl::ToInt64Microseconds(2 * kHeartbeatTimeout)); coord_service_->BarrierAsync("barrier_id", absl::Seconds(5), task_0_, {task_1_}, [&](absl::Status s) { barrier_status = s; n0.Notify(); }); n0.WaitForNotification(); EXPECT_THAT(barrier_status, StatusIs(absl::StatusCode::kInternal)); } TEST_F(CoordinateTwoTasksTest, UnrecoverableTaskPropagatesError) { EnableCoordinationService(true, false, false); TF_EXPECT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); TF_EXPECT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); ASSERT_OK(coord_service_->ReportTaskError(task_0_, absl::InternalError("test_error"))); EXPECT_THAT(coord_service_->RecordHeartbeat(task_0_, incarnation_0_), StatusIs(absl::StatusCode::kInternal)); EXPECT_THAT(client_1_.GetStatus(), StatusIs(absl::StatusCode::kInternal)); } TEST_F(CoordinateTwoTasksTest, RecoverableTaskWillNotPropagateError) { EnableCoordinationService(true, false, true); TF_EXPECT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); TF_EXPECT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); ASSERT_OK(coord_service_->ReportTaskError(task_0_, absl::InternalError("test_error"))); EXPECT_THAT(coord_service_->RecordHeartbeat(task_0_, incarnation_0_), StatusIs(absl::StatusCode::kInternal)); TF_EXPECT_OK(client_1_.GetStatus()); } TEST_F(CoordinateTwoTasksTest, RecoverableTaskReportErrorResetAndRegisterAgain) { EnableCoordinationService(true, false, true); TF_EXPECT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); TF_EXPECT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); ASSERT_OK(coord_service_->ReportTaskError(task_0_, absl::InternalError("test_error"))); EXPECT_THAT(coord_service_->RecordHeartbeat(task_0_, incarnation_0_), StatusIs(absl::StatusCode::kInternal)); TF_EXPECT_OK(client_1_.GetStatus()); TF_EXPECT_OK(coord_service_->ResetTask(task_0_)); TF_EXPECT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_new_)); TF_EXPECT_OK(coord_service_->RecordHeartbeat(task_0_, incarnation_0_new_)); TF_EXPECT_OK(client_1_.GetStatus()); } TEST_F(CoordinateTwoTasksTest, UnavailableTaskCanReconnect) { EnableCoordinationService(true, false, false, true); TF_EXPECT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->ReportTaskError( task_0_, MakeCoordinationError(absl::UnavailableError("test_error")))); TF_EXPECT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_new_)); } TEST_F(CoordinateTwoTasksTest, DoNotAllowPollForErrorIfHasServiceToClientConnection) { EnableCoordinationService(true); ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); std::vector<absl::Status> statuses; statuses.reserve(2); for (const CoordinatedTask& task : {task_0_, task_1_}) { coord_service_->PollForErrorAsync( task, [&](const absl::Status& status) { statuses.push_back(status); }); } EXPECT_EQ(statuses.size(), 2); EXPECT_THAT(statuses, Each(StatusIs(absl::StatusCode::kInternal))); } TEST_F(CoordinateTwoTasksTest, DoNotAllowPollForErrorIfNotInCluster) { EnableCoordinationService(false); CoordinatedTask task_not_in_cluster; absl::Status s; coord_service_->PollForErrorAsync( task_not_in_cluster, [&](const absl::Status& status) { s = status; }); EXPECT_THAT(s, StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("not in the cluster"))); } TEST_F(CoordinateTwoTasksTest, DoNotAllowPollForErrorIfTaskNotRegistered) { EnableCoordinationService(false); absl::Status s; coord_service_->PollForErrorAsync( task_0_, [&](const absl::Status& status) { s = status; }); EXPECT_THAT(s, StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("has not been registered"))); } TEST_F(CoordinateTwoTasksTest, AllowPollForErrorWithinGracePeriodIfTaskHasShutDown) { EnableCoordinationService(false); absl::Status s; ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); coord_service_->ShutdownTaskAsync(task_0_, [&](const absl::Status& status) {}); coord_service_->ShutdownTaskAsync(task_1_, [&](const absl::Status& status) {}); coord_service_->PollForErrorAsync( task_0_, [&](const absl::Status& status) { s = status; }); coord_service_.reset(); EXPECT_THAT(s, StatusIs(absl::StatusCode::kCancelled)); } TEST_F(CoordinateTwoTasksTest, DoNotAllowPollForErrorIfTaskHasShutDown) { EnableCoordinationService(false); absl::Status s; ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); coord_service_->ShutdownTaskAsync(task_0_, [&](const absl::Status& status) {}); coord_service_->ShutdownTaskAsync(task_1_, [&](const absl::Status& status) {}); Env::Default()->SleepForMicroseconds( absl::ToInt64Microseconds(2 * kHeartbeatTimeout)); coord_service_->PollForErrorAsync( task_0_, [&](const absl::Status& status) { s = status; }); EXPECT_THAT(s, StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("has disconnected"))); } TEST_F(CoordinateTwoTasksTest, DoNotAllowPollForErrorAfterReset) { EnableCoordinationService(false); absl::Status s; ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->ResetTask(task_0_)); Env::Default()->SleepForMicroseconds( absl::ToInt64Microseconds(2 * kHeartbeatTimeout)); coord_service_->PollForErrorAsync( task_0_, [&](const absl::Status& status) { s = status; }); EXPECT_THAT(s, StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("has disconnected"))); } TEST_F(CoordinateTwoTasksTest, DoNotAllowPollForErrorWhenInErrorState) { EnableCoordinationService(false); absl::Status s; ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->ReportTaskError(task_0_, absl::InternalError("test_error"))); coord_service_->PollForErrorAsync( task_0_, [&](const absl::Status& status) { s = status; }); EXPECT_THAT(s, StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("test_error"))); } TEST_F(CoordinateTwoTasksTest, DoNotAllowPollForErrorIfServiceHasStopped) { EnableCoordinationService(false); ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); Env::Default()->SleepForMicroseconds( absl::ToInt64Microseconds(2 * kHeartbeatTimeout)); absl::Status s; coord_service_->PollForErrorAsync( task_0_, [&](const absl::Status& status) { s = status; }); EXPECT_THAT(s, StatusIs(absl::StatusCode::kInternal, HasSubstr("service has shut down"))); } TEST_F(CoordinateTwoTasksTest, CanPropagateTaskRegistrationErrorThroughErrorPolling) { EnableCoordinationService(false); ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); absl::Status s0; coord_service_->PollForErrorAsync( task_0_, [&](const absl::Status& status) { s0 = status; }); ASSERT_THAT(coord_service_->RegisterTask(task_1_, incarnation_0_), StatusIs(absl::StatusCode::kAborted)); EXPECT_THAT(s0, StatusIs(absl::StatusCode::kAborted)); } TEST_F(CoordinateTwoTasksTest, LatePollingTaskCanGetError) { EnableCoordinationService(false); ASSERT_OK(coord_service_->RegisterTask(task_0_, incarnation_0_)); ASSERT_OK(coord_service_->RegisterTask(task_1_, incarnation_1_)); std::vector<absl::Status> statuses; statuses.reserve(2); coord_service_->PollForErrorAsync( task_0_, [&](const absl::Status& status) { statuses.push_back(status); }); ASSERT_OK(coord_service_->ReportTaskError( task_0_, absl::FailedPreconditionError("test_error_from_task_0"))); coord_service_->PollForErrorAsync( task_1_, [&](const absl::Status& status) { statuses.push_back(status); }); EXPECT_EQ(statuses.size(), 2); EXPECT_THAT(statuses, Each(StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("test_error_from_task_0")))); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/distributed_runtime/coordination/coordination_service.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/distributed_runtime/coordination/coordination_service_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c610c4bf-ddc0-4b3d-946d-435e6dbf2fa1
cpp
tensorflow/tensorflow
coordination_service_agent
third_party/xla/xla/tsl/distributed_runtime/coordination/coordination_service_agent.cc
third_party/xla/xla/tsl/distributed_runtime/coordination/coordination_service_agent_test.cc
#include "xla/tsl/distributed_runtime/coordination/coordination_service_agent.h" #include <algorithm> #include <cassert> #include <cstdint> #include <iterator> #include <map> #include <memory> #include <optional> #include <random> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/functional/bind_front.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "xla/tsl/distributed_runtime/call_options.h" #include "xla/tsl/distributed_runtime/coordination/coordination_client.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service_error_util.h" #include "xla/tsl/framework/cancellation.h" #include "xla/tsl/lib/monitoring/gauge.h" #include "xla/tsl/protobuf/coordination_config.pb.h" #include "xla/tsl/protobuf/coordination_service.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/random.h" #include "tsl/platform/status.h" #include "tsl/platform/thread_annotations.h" namespace tsl { using tensorflow::CoordinatedTask; using tensorflow::CoordinatedTaskState; using tensorflow::CoordinatedTaskStateInfo; using tensorflow::CoordinationServiceConfig; using tensorflow::DeviceInfo; using tensorflow::KeyValueEntry; namespace { auto* enabled_usage_metric = monitoring::Gauge<bool, 0>::New("/coordination_service/agent/enabled", "Tracks usage of coordination service."); constexpr absl::Duration kDefaultClusterRegisterTimeout = absl::Hours(1); constexpr absl::Duration kDefaultHeartbeatTimeout = absl::Seconds(10); constexpr absl::Duration kDefaultShutdownTimeout = absl::Seconds(10); constexpr char kHeartbeatThread[] = "CoordinationServiceHeartbeatLoop"; constexpr char kErrorPollingThread[] = "CoordinationServiceErrorPolling"; class CoordinationServiceAgentImpl : public CoordinationServiceAgent { public: CoordinationServiceAgentImpl() = default; ~CoordinationServiceAgentImpl() override { absl::Status s = ShutdownInternal(); VLOG(3) << "Coordination agent dtor failed with status: " << s; } absl::Status Initialize(Env* env, std::string_view job_name, int task_id, const CoordinationServiceConfig& configs, std::unique_ptr<CoordinationClient> leader_client, StatusCallback error_fn) override; absl::Status Initialize(Env* env, const CoordinatedTask& task, const CoordinationServiceConfig& configs, std::unique_ptr<CoordinationClient> leader_client, StatusCallback error_fn) override; bool IsInitialized() override; bool IsConnected() override; bool IsError() override; absl::Status Connect() override; absl::Status WaitForAllTasks(const DeviceInfo& local_devices) override; const DeviceInfo& GetClusterDeviceInfo() override; absl::StatusOr<CoordinatedTask> GetOwnTask() override; absl::StatusOr<std::vector<CoordinatedTaskStateInfo>> GetTaskState( const std::vector<CoordinatedTask>& task) override; absl::Status ReportError(const absl::Status& error) override; absl::Status Shutdown() override; absl::Status Reset() override; absl::StatusOr<std::string> GetKeyValue(std::string_view key) override; absl::StatusOr<std::string> GetKeyValue(std::string_view key, absl::Duration timeout) override; std::shared_ptr<CallOptions> GetKeyValueAsync( std::string_view key, StatusOrValueCallback done) override; absl::StatusOr<std::string> TryGetKeyValue(std::string_view key) override; absl::StatusOr<std::vector<KeyValueEntry>> GetKeyValueDir( std::string_view key) override; void GetKeyValueDirAsync(std::string_view key, StatusOrValueDirCallback done) override; absl::Status InsertKeyValue(std::string_view key, std::string_view value) override; absl::Status InsertKeyValue(std::string_view key, std::string_view value, bool allow_overwrite) override; absl::Status DeleteKeyValue(std::string_view key) override; absl::Status UpdateKeyValue(std::string_view key, std::string_view value) override; absl::Status StartWatchKey(std::string_view key, ChangedKeyValuesCallback on_change) override; absl::Status StopWatchKey(std::string_view key) override; absl::Status WaitAtBarrier( std::string_view barrier_id, absl::Duration timeout, const std::vector<CoordinatedTask>& tasks) override; void WaitAtBarrierAsync(std::string_view barrier_id, absl::Duration timeout, const std::vector<CoordinatedTask>& tasks, StatusCallback done) override; absl::Status CancelBarrier(std::string_view barrier_id) override; void CancelBarrierAsync(std::string_view barrier_id, StatusCallback done) override; absl::StatusOr<Env*> GetEnv() override; protected: void SetError(const absl::Status& error) override; absl::Status ActivateWatch( std::string_view key, const std::map<std::string, std::string>&) override; absl::Status ValidateRunningAgent(bool allow_disconnected = false); void StopHeartbeat(); private: absl::Status ShutdownInternal(); void StartSendingHeartbeats(); absl::Status PollForError(); std::shared_ptr<CallOptions> PollForErrorAsync(StatusCallback done); void StartPollingForError(); void StopErrorPolling(); void ResetCancellationManager(); Env* env_ = nullptr; const uint64_t incarnation_id_ = random::New64(); CoordinatedTask task_; CoordinationServiceConfig configs_; StatusCallback error_fn_; mutable absl::Mutex state_mu_; CoordinatedTaskState state_ TF_GUARDED_BY(state_mu_) = CoordinatedTaskState::TASKSTATE_UNINITIALIZED; absl::Status status_ TF_GUARDED_BY(state_mu_) = absl::OkStatus(); absl::flat_hash_set<std::string> used_barrier_ids_ TF_GUARDED_BY(state_mu_); uint64_t leader_incarnation_ = 0; DeviceInfo cluster_devices_; absl::Mutex heartbeat_thread_shutdown_mu_; absl::CondVar heartbeat_thread_cv_; bool shutting_down_ TF_GUARDED_BY(heartbeat_thread_shutdown_mu_) = false; std::unique_ptr<Thread> heartbeat_thread_; std::unique_ptr<Thread> error_polling_thread_; CancellationManager cancellation_manager_; std::unique_ptr<CancellationManager> error_polling_cancellation_manager_ = std::make_unique<CancellationManager>(); std::unique_ptr<CoordinationClient> leader_client_; CoordinationServiceAgentImpl(const CoordinationServiceAgentImpl&) = delete; void operator=(const CoordinationServiceAgentImpl&) = delete; }; absl::Status CoordinationServiceAgentImpl::Initialize( Env* env, std::string_view job_name, int task_id, const CoordinationServiceConfig& configs, std::unique_ptr<CoordinationClient> leader_client, StatusCallback error_fn) { CoordinatedTask task; task.set_job_name(std::string(job_name)); task.set_task_id(task_id); return Initialize(env, task, configs, std::move(leader_client), error_fn); } absl::Status CoordinationServiceAgentImpl::Initialize( Env* env, const CoordinatedTask& task, const CoordinationServiceConfig& configs, std::unique_ptr<CoordinationClient> leader_client, StatusCallback error_fn) { enabled_usage_metric->GetCell()->Set(true); absl::MutexLock l(&state_mu_); if (state_ != CoordinatedTaskState::TASKSTATE_UNINITIALIZED) { return MakeCoordinationError(absl::FailedPreconditionError( "Coordination service agent has already been initialized.")); } env_ = env; task_ = task; configs_ = configs; if (configs_.service_leader().empty()) { return MakeCoordinationError(absl::InvalidArgumentError( "CoordinationServiceAgent must be initialized with a valid leader.")); } leader_client_ = std::move(leader_client); if (leader_client_ == nullptr) { return MakeCoordinationError(absl::InvalidArgumentError( "CoordinationServiceAgent must have a valid leader client.")); } error_fn_ = error_fn; state_ = CoordinatedTaskState::TASKSTATE_DISCONNECTED; return absl::OkStatus(); } bool CoordinationServiceAgentImpl::IsInitialized() { absl::MutexLock l(&state_mu_); return state_ != CoordinatedTaskState::TASKSTATE_UNINITIALIZED; } bool CoordinationServiceAgentImpl::IsConnected() { absl::MutexLock l(&state_mu_); return state_ == CoordinatedTaskState::TASKSTATE_CONNECTED; } bool CoordinationServiceAgentImpl::IsError() { absl::MutexLock l(&state_mu_); return state_ == CoordinatedTaskState::TASKSTATE_ERROR; } void CoordinationServiceAgentImpl::StopHeartbeat() { { absl::MutexLock l(&heartbeat_thread_shutdown_mu_); shutting_down_ = true; heartbeat_thread_cv_.SignalAll(); } heartbeat_thread_ = nullptr; } void CoordinationServiceAgentImpl::StopErrorPolling() { error_polling_cancellation_manager_->StartCancel(); error_polling_thread_ = nullptr; } void CoordinationServiceAgentImpl::ResetCancellationManager() { error_polling_cancellation_manager_ = std::make_unique<CancellationManager>(); } absl::Status CoordinationServiceAgentImpl::Connect() { VLOG(3) << "Agent has started trying to Connect()."; { absl::MutexLock l(&state_mu_); if (state_ != CoordinatedTaskState::TASKSTATE_DISCONNECTED) { return MakeCoordinationError(absl::FailedPreconditionError( "Coordination service agent is not in DISCONNECTED state.")); } } absl::Status connect_status = absl::UnknownError("Connection not attempted yet."); RegisterTaskRequest request; *request.mutable_source_task() = task_; request.set_incarnation(incarnation_id_); RegisterTaskResponse response; const int64_t register_timeout = configs_.cluster_register_timeout_in_ms() > 0 ? configs_.cluster_register_timeout_in_ms() : absl::ToInt64Milliseconds(kDefaultClusterRegisterTimeout); const absl::Time deadline = absl::Now() + absl::Milliseconds(register_timeout); int attempt = 0; std::default_random_engine generator; std::uniform_real_distribution<double> distribution(0.0, 1.0); do { ++attempt; CallOptions call_opts; call_opts.SetTimeout(absl::ToInt64Milliseconds(deadline - absl::Now())); absl::Notification n; leader_client_->RegisterTaskAsync( &call_opts, &request, &response, [&](absl::Status s) { if (s.ok()) { leader_incarnation_ = response.leader_incarnation(); { absl::MutexLock l(&state_mu_); state_ = CoordinatedTaskState::TASKSTATE_CONNECTED; } } connect_status = s; n.Notify(); }); n.WaitForNotification(); if (!connect_status.ok()) { const int backoff = 1 << std::min(14, attempt); absl::SleepFor(absl::Milliseconds(backoff * distribution(generator))); } } while (!connect_status.ok() && absl::Now() < deadline && (connect_status.GetPayload(CoordinationErrorPayloadKey()) == std::nullopt || absl::IsAborted(connect_status) || absl::IsInternal(connect_status))); if (!connect_status.ok()) { SetError(connect_status); return connect_status; } LOG(INFO) << "Coordination agent has successfully connected."; heartbeat_thread_.reset(env_->StartThread( ThreadOptions(), kHeartbeatThread, absl::bind_front(&CoordinationServiceAgentImpl::StartSendingHeartbeats, this))); if (configs_.poll_for_error_from_service_at_startup()) { error_polling_thread_.reset(env_->StartThread( ThreadOptions(), kErrorPollingThread, absl::bind_front(&CoordinationServiceAgentImpl::StartPollingForError, this))); } return absl::OkStatus(); } void CoordinationServiceAgentImpl::StartSendingHeartbeats() { HeartbeatRequest request; *request.mutable_source_task() = task_; request.set_incarnation(incarnation_id_); HeartbeatResponse response; const int64_t heartbeat_interval_ms = configs_.heartbeat_timeout_in_ms() > 0 ? configs_.heartbeat_timeout_in_ms() / 2 : absl::ToInt64Milliseconds(kDefaultHeartbeatTimeout) / 2; CallOptions call_opts; call_opts.SetTimeout(heartbeat_interval_ms); while (true) { absl::Status status; absl::Notification n; VLOG(10) << "HeartbeatRequest: " << request.DebugString(); leader_client_->HeartbeatAsync(&call_opts, &request, &response, [&](absl::Status s) { status = s; n.Notify(); }); n.WaitForNotification(); VLOG(10) << "HeartbeatResponse: " << status; if (!status.ok()) { absl::SleepFor(absl::Seconds(1)); { absl::MutexLock l(&heartbeat_thread_shutdown_mu_); if (shutting_down_) { return; } } SetError(status); } else if (response.leader_incarnation() != leader_incarnation_) { SetError(MakeCoordinationError( absl::AbortedError("Leader incarnation ID mismatch: the " "coordination leader has restarted."))); } { absl::MutexLock l(&heartbeat_thread_shutdown_mu_); heartbeat_thread_cv_.WaitWithTimeout( &heartbeat_thread_shutdown_mu_, absl::Milliseconds(heartbeat_interval_ms)); if (shutting_down_) { return; } } } } void CoordinationServiceAgentImpl::StartPollingForError() { LOG(INFO) << "Polling for error from coordination service. This thread will " "run until an error is encountered or the agent is shutdown."; absl::Status status = PollForError(); CHECK(!status.ok()) << "PollForError returned OK status. Should " "always return an error."; if (absl::IsCancelled(status)) { LOG(INFO) << "Cancelling error polling because the service or the agent is " "shutting down."; return; } LOG(ERROR) << "An error is returned from coordination service (this can be " "an error from this or another task)."; SetError(status); } absl::Status CoordinationServiceAgentImpl::PollForError() { absl::Status status = absl::OkStatus(); absl::Notification n; PollForErrorAsync([&](absl::Status s) { status = s; n.Notify(); }); n.WaitForNotification(); CHECK(!status.ok()) << "PollForError returned OK status. Should always return an error."; return status; } std::shared_ptr<CallOptions> CoordinationServiceAgentImpl::PollForErrorAsync( StatusCallback done) { auto call_opts = std::make_shared<CallOptions>(); absl::Status agent_running_status = ValidateRunningAgent(true); if (!agent_running_status.ok()) { done(agent_running_status); return call_opts; } auto request = std::make_shared<PollForErrorRequest>(); auto response = std::make_shared<PollForErrorResponse>(); *request->mutable_source_task() = task_; VLOG(3) << "PollForErrorRequest: " << request->DebugString(); const CancellationToken token = error_polling_cancellation_manager_->get_cancellation_token(); const bool already_cancelled = !error_polling_cancellation_manager_->RegisterCallback( token, [call_opts]() { call_opts->StartCancel(); }); if (already_cancelled) { done(absl::CancelledError("PollForErrorAsync() was cancelled.")); return call_opts; } leader_client_->PollForErrorAsync( call_opts.get(), request.get(), response.get(), [call_opts, request, response, done = std::move(done), &cm = error_polling_cancellation_manager_, token](const absl::Status& s) { cm->TryDeregisterCallback(token); done(s); }); return call_opts; } absl::Status CoordinationServiceAgentImpl::WaitForAllTasks( const DeviceInfo& local_devices) { absl::Status agent_running_status = ValidateRunningAgent(); if (!agent_running_status.ok()) { return agent_running_status; } WaitForAllTasksRequest request; *request.mutable_source_task() = task_; *request.mutable_device_info() = local_devices; VLOG(3) << "WaitForAllTasksRequest: " << request.DebugString(); WaitForAllTasksResponse response; absl::Status status; absl::Notification n; leader_client_->WaitForAllTasksAsync(&request, &response, [&](absl::Status s) { status = s; n.Notify(); }); n.WaitForNotification(); if (!status.ok()) { VLOG(3) << "WaitForAllTasksResponse: " << status; SetError(status); return status; } VLOG(3) << "WaitForAllTasksResponse: " << response.DebugString(); cluster_devices_ = response.device_info(); return absl::OkStatus(); } const DeviceInfo& CoordinationServiceAgentImpl::GetClusterDeviceInfo() { return cluster_devices_; } absl::StatusOr<CoordinatedTask> CoordinationServiceAgentImpl::GetOwnTask() { if (!IsInitialized()) { return MakeCoordinationError(absl::FailedPreconditionError( "Agent has not been initialized; we do not " "know the associated task yet.")); } return task_; } absl::StatusOr<std::vector<CoordinatedTaskStateInfo>> CoordinationServiceAgentImpl::GetTaskState( const std::vector<CoordinatedTask>& tasks) { GetTaskStateRequest request; *request.mutable_source_task() = {tasks.begin(), tasks.end()}; GetTaskStateResponse response; absl::Notification n; absl::StatusOr<std::vector<CoordinatedTaskStateInfo>> result; leader_client_->GetTaskStateAsync( &request, &response, [&](const absl::Status& s) { if (s.ok()) { result = std::vector<CoordinatedTaskStateInfo>( std::make_move_iterator(response.task_state().begin()), std::make_move_iterator(response.task_state().end())); } else { result = s; } n.Notify(); }); n.WaitForNotification(); return result; } absl::Status CoordinationServiceAgentImpl::ReportError( const absl::Status& error) { { absl::MutexLock l(&state_mu_); if (state_ == CoordinatedTaskState::TASKSTATE_UNINITIALIZED) { return MakeCoordinationError(absl::FailedPreconditionError( "Coordination service agent must be initialized first before " "reporting error.")); } else if (state_ == CoordinatedTaskState::TASKSTATE_ERROR) { return MakeCoordinationError(absl::FailedPreconditionError( "Coordination service agent is already in error state.")); } } SetError(MakeCoordinationError(error, task_, true)); LOG(INFO) << "Reporting error to coordination service: " << error; ReportErrorToServiceRequest request; request.set_error_code(error.raw_code()); request.set_error_message(std::string(error.message())); *request.mutable_error_origin() = task_; VLOG(5) << "ReportErrorToServiceRequest: " << request.DebugString(); ReportErrorToServiceResponse response; absl::Notification n; leader_client_->ReportErrorToServiceAsync( &request, &response, [&](absl::Status s) { VLOG(5) << "ReportErrorToServiceResponse: " << s; if (!s.ok()) { LOG(ERROR) << "Encountered another error when reporting error to " "coordination service: " << s << "\nThis is usually caused by an earlier error during " "execution. Check the logs (this task or the leader) for " "an earlier error to debug further."; } n.Notify(); }); n.WaitForNotification(); return absl::OkStatus(); } absl::Status CoordinationServiceAgentImpl::Shutdown() { return ShutdownInternal(); } absl::Status CoordinationServiceAgentImpl::ShutdownInternal() { absl::Status status = absl::OkStatus(); bool is_connected = false; { absl::MutexLock l(&state_mu_); is_connected = state_ == CoordinatedTaskState::TASKSTATE_CONNECTED; } if (!configs_.agent_destruction_without_shutdown() && is_connected) { LOG(INFO) << "Coordination agent has initiated Shutdown()."; ShutdownTaskRequest request; *request.mutable_source_task() = task_; ShutdownTaskResponse response; CallOptions call_opts; const int64_t shutdown_timeout = configs_.shutdown_barrier_timeout_in_ms() > 0 ? configs_.shutdown_barrier_timeout_in_ms() : absl::ToInt64Milliseconds(kDefaultShutdownTimeout); call_opts.SetTimeout(shutdown_timeout); absl::Notification n; leader_client_->ShutdownTaskAsync(&call_opts, &request, &response, [&status, &n](absl::Status s) { status = s; n.Notify(); }); n.WaitForNotification(); if (status.ok()) { LOG(INFO) << "Coordination agent has successfully shut down."; } else { LOG(ERROR) << "Failed to disconnect from coordination service with status: " << TrimCoordinationErrorMessage(status) << "\nProceeding with agent shutdown anyway. This is usually caused " "by an earlier error during execution. Check the logs (this task " "or the leader) for an earlier error to debug further."; } } StopHeartbeat(); StopErrorPolling(); { absl::MutexLock l(&state_mu_); if (state_ == CoordinatedTaskState::TASKSTATE_ERROR) { const std::string status_message = absl::StrCat( "Shutdown() was called while coordination agent is in error state, " "implying that distributed execution failed. Note: agent will " "still shutdown anyway. Agent status: ", status_.ToString(), "\nThis is usually caused by an earlier error during execution. " "Check the logs (this task or the leader) for an earlier error to " "debug further."); status = MakeCoordinationError(absl::FailedPreconditionError(status_message)); LOG(ERROR) << status_message; } state_ = CoordinatedTaskState::TASKSTATE_DISCONNECTED; } cancellation_manager_.StartCancel(); return status; } absl::Status CoordinationServiceAgentImpl::Reset() { { absl::MutexLock l(&state_mu_); if (state_ != CoordinatedTaskState::TASKSTATE_ERROR) { return MakeCoordinationError(absl::FailedPreconditionError( "Reset() failed: coordination service agent is not in ERROR state.")); } } ResetTaskRequest request; *request.mutable_source_task() = task_; VLOG(3) << "ResetTaskRequest: " << request.DebugString(); ResetTaskResponse response; absl::Status status; absl::Notification n; leader_client_->ResetTaskAsync(&request, &response, [&status, &n](absl::Status s) { status = s; n.Notify(); }); n.WaitForNotification(); VLOG(3) << "ResetTaskResponse: " << status; if (!status.ok()) { return status; } StopHeartbeat(); StopErrorPolling(); ResetCancellationManager(); { absl::MutexLock l(&state_mu_); state_ = CoordinatedTaskState::TASKSTATE_DISCONNECTED; } { absl::MutexLock l(&heartbeat_thread_shutdown_mu_); shutting_down_ = false; } LOG(INFO) << "Coordination agent has been reset."; return status; } absl::StatusOr<std::string> CoordinationServiceAgentImpl::GetKeyValue( std::string_view key) { return GetKeyValue(key, absl::InfiniteDuration()); } absl::StatusOr<std::string> CoordinationServiceAgentImpl::GetKeyValue( std::string_view key, absl::Duration timeout) { auto n = std::make_shared<absl::Notification>(); auto result = std::make_shared<absl::StatusOr<std::string>>(); GetKeyValueAsync( key, [n, result](const absl::StatusOr<std::string>& status_or_value) { *result = status_or_value; n->Notify(); }); bool call_completed_before_timeout = n->WaitForNotificationWithTimeout(timeout); if (!call_completed_before_timeout) { VLOG(3) << "GetKeyValue(" << key << ") timed out after " << timeout; return MakeCoordinationError(absl::DeadlineExceededError(absl::Substitute( "GetKeyValue() timed out with key: $0 and duration: $1", key, absl::FormatDuration(timeout)))); } return *result; } std::shared_ptr<CallOptions> CoordinationServiceAgentImpl::GetKeyValueAsync( std::string_view key, StatusOrValueCallback done) { auto request = std::make_shared<GetKeyValueRequest>(); request->set_key(key.data(), key.size()); VLOG(3) << "GetKeyValueRequest: " << request->DebugString(); auto response = std::make_shared<GetKeyValueResponse>(); auto call_opts = std::make_shared<CallOptions>(); const CancellationToken token = cancellation_manager_.get_cancellation_token(); const bool already_cancelled = !cancellation_manager_.RegisterCallback( token, [call_opts]() { call_opts->StartCancel(); }); if (already_cancelled) { done(absl::CancelledError("GetKeyValueAsync() was cancelled.")); return call_opts; } leader_client_->GetKeyValueAsync( call_opts.get(), request.get(), response.get(), [call_opts, request, response, done = std::move(done), &cm = cancellation_manager_, token](const absl::Status& s) { cm.TryDeregisterCallback(token); if (!s.ok()) { done(s); VLOG(3) << "GetKeyValueResponse: " << s; } else { done(response->kv().value()); VLOG(3) << "GetKeyValueResponse: " << response->DebugString(); } }); return call_opts; } absl::StatusOr<std::string> CoordinationServiceAgentImpl::TryGetKeyValue( std::string_view key) { absl::Notification n; absl::StatusOr<std::string> result; TryGetKeyValueRequest request; request.set_key(key.data(), key.size()); VLOG(3) << "TryGetKeyValueRequest: " << request.DebugString(); TryGetKeyValueResponse response; leader_client_->TryGetKeyValueAsync( &request, &response, [&](const absl::Status& s) { if (s.ok()) { result = response.kv().value(); VLOG(3) << "TryGetKeyValueResponse: " << result.value(); } else { result = s; VLOG(3) << "TryGetKeyValueResponse: " << s; } n.Notify(); }); n.WaitForNotification(); return result; } absl::StatusOr<std::vector<KeyValueEntry>> CoordinationServiceAgentImpl::GetKeyValueDir(std::string_view key) { absl::Notification n; absl::StatusOr<std::vector<KeyValueEntry>> result; GetKeyValueDirAsync( key, [&n, &result]( absl::StatusOr<std::vector<KeyValueEntry>> status_or_value) { result = std::move(status_or_value); n.Notify(); }); n.WaitForNotification(); return result; } void CoordinationServiceAgentImpl::GetKeyValueDirAsync( std::string_view key, StatusOrValueDirCallback done) { auto request = std::make_shared<GetKeyValueDirRequest>(); request->set_directory_key(key.data(), key.size()); VLOG(3) << "GetKeyValueDirRequest: " << request->DebugString(); auto response = std::make_shared<GetKeyValueDirResponse>(); leader_client_->GetKeyValueDirAsync( request.get(), response.get(), [request, response, done = std::move(done)](const absl::Status& s) { if (!s.ok()) { done(s); VLOG(3) << "GetKeyValueDirResponse: " << s; } else { VLOG(3) << "GetKeyValueDirResponse: " << response->DebugString(); std::vector<KeyValueEntry> kv_in_directory = { std::make_move_iterator(response->kv().begin()), std::make_move_iterator(response->kv().end())}; done(kv_in_directory); } }); } absl::Status CoordinationServiceAgentImpl::InsertKeyValue( std::string_view key, std::string_view value) { return InsertKeyValue(key, value, false); } absl::Status CoordinationServiceAgentImpl::InsertKeyValue( std::string_view key, std::string_view value, bool allow_overwrite) { InsertKeyValueRequest request; request.mutable_kv()->set_key(key.data(), key.size()); request.mutable_kv()->set_value(value.data(), value.size()); request.set_allow_overwrite(allow_overwrite); VLOG(3) << "InsertKeyValueRequest: " << request.DebugString(); InsertKeyValueResponse response; absl::Status status; absl::Notification n; leader_client_->InsertKeyValueAsync(&request, &response, [&](absl::Status s) { status = s; n.Notify(); }); n.WaitForNotification(); VLOG(3) << "InsertKeyValueResponse: " << status; return status; } absl::Status CoordinationServiceAgentImpl::DeleteKeyValue( std::string_view key) { DeleteKeyValueRequest request; request.set_key(key.data(), key.size()); request.set_is_directory(true); VLOG(3) << "DeleteKeyValueRequest: " << request.DebugString(); DeleteKeyValueResponse response; absl::Status status; absl::Notification n; leader_client_->DeleteKeyValueAsync(&request, &response, [&](absl::Status s) { status = s; n.Notify(); }); n.WaitForNotification(); VLOG(3) << "DeleteKeyValueResponse " << status; return absl::OkStatus(); } absl::Status CoordinationServiceAgentImpl::UpdateKeyValue( std::string_view key, std::string_view value) { return MakeCoordinationError(absl::UnimplementedError( "CoordinationServiceAgent::UpdateKeyValue is not implemented.")); } absl::Status CoordinationServiceAgentImpl::StartWatchKey( std::string_view key, CoordinationServiceAgentImpl::ChangedKeyValuesCallback on_change) { return MakeCoordinationError(absl::UnimplementedError( "CoordinationServiceAgent::StartWatchKey is not implemented.")); } absl::Status CoordinationServiceAgentImpl::StopWatchKey(std::string_view key) { return MakeCoordinationError(absl::UnimplementedError( "CoordinationServiceAgent::StopWatchKey is not implemented.")); } void CoordinationServiceAgentImpl::SetError(const absl::Status& error) { assert(!error.ok()); absl::MutexLock l(&state_mu_); if (state_ == CoordinatedTaskState::TASKSTATE_ERROR) return; absl::Status trimmed_error = TrimCoordinationErrorMessage(error); LOG(ERROR) << "Coordination agent is set to ERROR: " << trimmed_error; state_ = CoordinatedTaskState::TASKSTATE_ERROR; status_ = trimmed_error; error_fn_(trimmed_error); } absl::Status CoordinationServiceAgentImpl::ActivateWatch( std::string_view key, const std::map<std::string, std::string>& kvs) { return MakeCoordinationError(absl::UnimplementedError( "CoordinationServiceAgent::ActivateWatch is not implemented.")); } absl::Status CoordinationServiceAgentImpl::WaitAtBarrier( std::string_view barrier_id, absl::Duration timeout, const std::vector<CoordinatedTask>& tasks) { absl::Status status; absl::Notification n; WaitAtBarrierAsync(barrier_id, timeout, tasks, [&](absl::Status s) { status = s; n.Notify(); }); n.WaitForNotification(); return status; } void CoordinationServiceAgentImpl::WaitAtBarrierAsync( std::string_view barrier_id, absl::Duration timeout, const std::vector<CoordinatedTask>& tasks, StatusCallback done) { absl::Status agent_running_status = ValidateRunningAgent(true); if (!agent_running_status.ok()) { done(agent_running_status); return; } { absl::MutexLock l(&state_mu_); auto [it, inserted] = used_barrier_ids_.insert(std::string(barrier_id)); if (!inserted) { done(absl::FailedPreconditionError(absl::StrCat( "WaitAtBarrier() should not be called with the same id more than " "once. Barrier id: ", barrier_id))); return; } } auto request = std::make_shared<BarrierRequest>(); auto response = std::make_shared<BarrierResponse>(); request->set_barrier_id(std::string(barrier_id)); request->set_barrier_timeout_in_ms(timeout / absl::Milliseconds(1)); *request->mutable_source_task() = task_; *request->mutable_tasks() = {tasks.begin(), tasks.end()}; VLOG(3) << "WaitAtBarrierRequest: " << request->DebugString(); leader_client_->BarrierAsync( request.get(), response.get(), [request, response, done = std::move(done)](const absl::Status& s) { auto status = TrimCoordinationErrorMessage(s); done(status); VLOG(3) << "WaitAtBarrierResponse: " << status; }); } absl::Status CoordinationServiceAgentImpl::CancelBarrier( std::string_view barrier_id) { absl::Status status; absl::Notification n; CancelBarrierAsync(barrier_id, [&](const absl::Status& s) { status = s; n.Notify(); }); n.WaitForNotification(); return status; } void CoordinationServiceAgentImpl::CancelBarrierAsync( std::string_view barrier_id, StatusCallback done) { absl::Status agent_running_status = ValidateRunningAgent(true); if (!agent_running_status.ok()) { done(agent_running_status); return; } auto request = std::make_shared<CancelBarrierRequest>(); auto response = std::make_shared<CancelBarrierResponse>(); request->set_barrier_id(std::string(barrier_id)); *request->mutable_source_task() = task_; VLOG(3) << "CancelBarrierRequest: " << request->DebugString(); leader_client_->CancelBarrierAsync( request.get(), response.get(), [request, response, done = std::move(done)](const absl::Status& s) { done(s); VLOG(3) << "CancelBarrierResponse: " << s; }); } absl::Status CoordinationServiceAgentImpl::ValidateRunningAgent( bool allow_disconnected) { absl::MutexLock l(&state_mu_); switch (state_) { case CoordinatedTaskState::TASKSTATE_CONNECTED: return absl::OkStatus(); case CoordinatedTaskState::TASKSTATE_UNINITIALIZED: return MakeCoordinationError(absl::FailedPreconditionError( "Agent must be in CONNECTED state. It is currently UNINITIALIZED.")); case CoordinatedTaskState::TASKSTATE_DISCONNECTED: if (allow_disconnected) return absl::OkStatus(); return MakeCoordinationError(absl::FailedPreconditionError( "Agent must be in CONNECTED state. It is currently DISCONNECTED.")); case CoordinatedTaskState::TASKSTATE_ERROR: return MakeCoordinationError(absl::FailedPreconditionError( "Agent must be in CONNECTED state. It is currently in ERROR.")); default: return MakeCoordinationError(absl::FailedPreconditionError(absl::StrCat( "Agent is not in CONNECTED state. Current state: ", state_))); } } absl::StatusOr<Env*> CoordinationServiceAgentImpl::GetEnv() { if (!IsInitialized()) { return MakeCoordinationError(absl::FailedPreconditionError( "Coordination service agent has not been initialized.")); } if (env_ == nullptr) { return MakeCoordinationError( absl::FailedPreconditionError("Coordination service agent was not " "initialized with a valid Env* object.")); } return env_; } } std::unique_ptr<CoordinationServiceAgent> CreateCoordinationServiceAgent() { return std::make_unique<CoordinationServiceAgentImpl>(); } }
#include "xla/tsl/distributed_runtime/coordination/coordination_service_agent.h" #include <memory> #include <ostream> #include <string> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "xla/tsl/distributed_runtime/call_options.h" #include "xla/tsl/distributed_runtime/coordination/coordination_client.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/protobuf/coordination_config.pb.h" #include "xla/tsl/protobuf/coordination_service.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/status.h" #include "tsl/platform/test.h" namespace tsl { namespace { using tensorflow::CoordinatedTask; using tensorflow::CoordinationServiceConfig; using tensorflow::KeyValueEntry; using ::testing::_; using ::testing::DoAll; using ::testing::InvokeArgument; using ::testing::SetArgPointee; using ::testing::UnorderedPointwise; using ::testing::WithArgs; class ProtoStringMatcher { public: explicit ProtoStringMatcher(const tsl::protobuf::Message& expected) : expected_(expected.DebugString()) {} template <typename Message> bool MatchAndExplain(const Message& p, ::testing::MatchResultListener*) const { return p.DebugString() == expected_; } void DescribeTo(std::ostream* os) const { *os << expected_; } void DescribeNegationTo(std::ostream* os) const { *os << "not equal to expected message: " << expected_; } private: const std::string expected_; }; MATCHER(KvEq, "simple KeyValueEntry matcher") { const KeyValueEntry& kv0 = std::get<0>(arg); const KeyValueEntry& kv1 = std::get<1>(arg); return kv0.key() == kv1.key() && kv0.value() == kv1.value(); } KeyValueEntry CreateKv(const std::string& key, const std::string& value) { KeyValueEntry kv; kv.set_key(key); kv.set_value(value); return kv; } class TestCoordinationClient : public CoordinationClient { public: TestCoordinationClient() = default; MOCK_METHOD(void, GetKeyValueAsync, (CallOptions * call_opts, const GetKeyValueRequest*, GetKeyValueResponse*, StatusCallback), (override)); MOCK_METHOD(void, TryGetKeyValueAsync, (const TryGetKeyValueRequest*, TryGetKeyValueResponse*, StatusCallback), (override)); MOCK_METHOD(void, GetKeyValueDirAsync, (const GetKeyValueDirRequest*, GetKeyValueDirResponse*, StatusCallback), (override)); MOCK_METHOD(void, InsertKeyValueAsync, (const InsertKeyValueRequest*, InsertKeyValueResponse*, StatusCallback), (override)); MOCK_METHOD(void, DeleteKeyValueAsync, (const DeleteKeyValueRequest*, DeleteKeyValueResponse*, StatusCallback), (override)); MOCK_METHOD(void, RegisterTaskAsync, (CallOptions*, const RegisterTaskRequest*, RegisterTaskResponse*, StatusCallback), (override)); MOCK_METHOD(void, ShutdownTaskAsync, (CallOptions*, const ShutdownTaskRequest*, ShutdownTaskResponse*, StatusCallback), (override)); MOCK_METHOD(void, ResetTaskAsync, (const ResetTaskRequest*, ResetTaskResponse*, StatusCallback), (override)); MOCK_METHOD(void, ReportErrorToServiceAsync, (const ReportErrorToServiceRequest*, ReportErrorToServiceResponse*, StatusCallback), (override)); MOCK_METHOD(void, BarrierAsync, (const BarrierRequest*, BarrierResponse*, StatusCallback), (override)); MOCK_METHOD(void, GetTaskStateAsync, (const GetTaskStateRequest*, GetTaskStateResponse*, StatusCallback), (override)); MOCK_METHOD(void, HeartbeatAsync, (CallOptions*, const HeartbeatRequest*, HeartbeatResponse*, StatusCallback), (override)); MOCK_METHOD(void, PollForErrorAsync, (CallOptions * call_opts, const PollForErrorRequest*, PollForErrorResponse*, StatusCallback), (override)); #define UNIMPLEMENTED(method) \ void method##Async(const method##Request* request, \ method##Response* response, StatusCallback done) \ override { \ done(absl::UnimplementedError(#method "Async")); \ } UNIMPLEMENTED(WaitForAllTasks); UNIMPLEMENTED(CancelBarrier); #undef UNIMPLEMENTED void ReportErrorToTaskAsync(CallOptions* call_opts, const ReportErrorToTaskRequest* request, ReportErrorToTaskResponse* response, StatusCallback done) override { done(absl::UnimplementedError("ReportErrorToTaskAsync")); } }; class CoordinationServiceAgentTest : public ::testing::Test { public: void SetUp() override { ON_CALL(*client_, RegisterTaskAsync(_, _, _, _)) .WillByDefault(InvokeArgument<3>(absl::OkStatus())); ON_CALL(*client_, HeartbeatAsync(_, _, _, _)) .WillByDefault(InvokeArgument<3>(absl::OkStatus())); ON_CALL(*client_, ShutdownTaskAsync(_, _, _, _)) .WillByDefault(InvokeArgument<3>(absl::OkStatus())); ON_CALL(*client_, ReportErrorToServiceAsync(_, _, _)) .WillByDefault(InvokeArgument<2>(absl::OkStatus())); ON_CALL(*client_, ResetTaskAsync(_, _, _)) .WillByDefault(InvokeArgument<2>(absl::OkStatus())); ON_CALL(*client_, BarrierAsync(_, _, _)) .WillByDefault(InvokeArgument<2>(absl::OkStatus())); ON_CALL(*client_, GetTaskStateAsync(_, _, _)) .WillByDefault(InvokeArgument<2>(absl::OkStatus())); } void InitializeAgent(CoordinationServiceConfig config = {}) { config.set_service_leader("test_leader"); TF_ASSERT_OK(agent_->Initialize( Env::Default(), "test_job", 0, config, std::move(client_), [](absl::Status s) { LOG(ERROR) << "Coordination agent is set to error: " << s; })); } TestCoordinationClient* GetClient() { CHECK(client_ != nullptr) << "GetClient() was called after InitializeAgent()"; return client_.get(); } protected: std::unique_ptr<CoordinationServiceAgent> agent_ = CreateCoordinationServiceAgent(); std::unique_ptr<TestCoordinationClient> client_ = std::make_unique<TestCoordinationClient>(); }; TEST_F(CoordinationServiceAgentTest, GetKeyValue_Simple_Success) { const std::string& test_key = "test_key"; const std::string& test_value = "test_value"; GetKeyValueResponse mocked_response; auto kv = mocked_response.mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); ON_CALL(*GetClient(), GetKeyValueAsync(_, _, _, _)) .WillByDefault(DoAll(SetArgPointee<2>(mocked_response), InvokeArgument<3>(absl::OkStatus()))); InitializeAgent(); auto result = agent_->GetKeyValue(test_key); TF_ASSERT_OK(result.status()); EXPECT_EQ(*result, test_value); } TEST_F(CoordinationServiceAgentTest, GetKeyValue_WithTimeout_Success) { const std::string& test_key = "test_key"; const std::string& test_value = "test_value"; GetKeyValueResponse mocked_response; auto kv = mocked_response.mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); ON_CALL(*GetClient(), GetKeyValueAsync(_, _, _, _)) .WillByDefault(DoAll(SetArgPointee<2>(mocked_response), InvokeArgument<3>(absl::OkStatus()))); InitializeAgent(); auto result = agent_->GetKeyValue(test_key, absl::Seconds(10)); TF_ASSERT_OK(result.status()); EXPECT_EQ(*result, test_value); } TEST_F(CoordinationServiceAgentTest, GetKeyValue_Timeout_ReturnError) { const std::string& test_key = "test_key"; StatusCallback owned_done; ON_CALL(*GetClient(), GetKeyValueAsync(_, _, _, _)) .WillByDefault(WithArgs<3>([&](StatusCallback done) { owned_done = done; })); InitializeAgent(); auto result = agent_->GetKeyValue(test_key, absl::Seconds(1)); EXPECT_TRUE(absl::IsDeadlineExceeded(result.status())); owned_done(absl::CancelledError("error")); } TEST_F(CoordinationServiceAgentTest, GetKeyValue_DelayedResponse_TimeoutWithoutMemoryError) { const std::string& test_key = "test_key"; const std::string& test_value = "test_value"; auto client = std::make_unique<TestCoordinationClient>(); GetKeyValueResponse* owned_response; StatusCallback owned_done; ON_CALL(*GetClient(), GetKeyValueAsync(_, _, _, _)) .WillByDefault(WithArgs<2, 3>( [&](GetKeyValueResponse* response, StatusCallback done) { owned_response = response; owned_done = done; })); InitializeAgent(); auto result = agent_->GetKeyValue(test_key, absl::Seconds(1)); EXPECT_TRUE(absl::IsDeadlineExceeded(result.status())); auto kv = owned_response->mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); owned_done(absl::OkStatus()); } TEST_F(CoordinationServiceAgentTest, GetKeyValue_DelayedResponseBeforeTimeout_Success) { const std::string& test_key = "test_key"; const std::string& test_value = "test_value"; auto client = std::make_unique<TestCoordinationClient>(); std::unique_ptr<Thread> async_thread; GetKeyValueResponse* owned_response; StatusCallback owned_done; ON_CALL(*GetClient(), GetKeyValueAsync(_, _, _, _)) .WillByDefault(WithArgs<2, 3>( [&](GetKeyValueResponse* response, StatusCallback done) { owned_response = response; owned_done = done; async_thread = absl::WrapUnique(Env::Default()->StartThread( ThreadOptions(), "async_thread", [&]() { absl::SleepFor(absl::Seconds(5)); auto kv = owned_response->mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); owned_done(absl::OkStatus()); })); })); InitializeAgent(); auto result = agent_->GetKeyValue(test_key, absl::Seconds(10)); TF_ASSERT_OK(result.status()); EXPECT_EQ(*result, test_value); } TEST_F(CoordinationServiceAgentTest, CancelGetKeyValue_Success) { const std::string test_key = "test_key"; ON_CALL(*GetClient(), GetKeyValueAsync(_, _, _, _)) .WillByDefault( WithArgs<0, 3>([](CallOptions* call_opts, StatusCallback done) { call_opts->SetCancelCallback([callback = std::move(done)]() { callback(absl::CancelledError("RPC call cancelled.")); }); })); InitializeAgent(); absl::Status status; std::shared_ptr<CallOptions> get_kv_call_opts = agent_->GetKeyValueAsync( test_key, [&status](const absl::StatusOr<std::string>& result) { status = result.status(); }); get_kv_call_opts->StartCancel(); EXPECT_TRUE(absl::IsCancelled(status)) << status; get_kv_call_opts->ClearCancelCallback(); } TEST_F(CoordinationServiceAgentTest, TryGetKeyValue_Simple_Success) { const std::string& test_key = "test_key"; const std::string& test_value = "test_value"; TryGetKeyValueResponse mocked_response; auto kv = mocked_response.mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); ON_CALL(*GetClient(), TryGetKeyValueAsync(_, _, _)) .WillByDefault(DoAll(SetArgPointee<1>(mocked_response), InvokeArgument<2>(absl::OkStatus()))); InitializeAgent(); auto result = agent_->TryGetKeyValue(test_key); TF_ASSERT_OK(result.status()); EXPECT_EQ(*result, test_value); } TEST_F(CoordinationServiceAgentTest, GetKeyValueDir_Simple_Success) { const std::string test_key = "test_key_dir"; std::vector<KeyValueEntry> test_values; test_values.push_back(CreateKv("test_key_dir/task_0", "0")); test_values.push_back(CreateKv("test_key_dir/task_1", "1")); GetKeyValueDirResponse mocked_response; mocked_response.set_directory_key(test_key); *mocked_response.mutable_kv() = {test_values.begin(), test_values.end()}; ON_CALL(*GetClient(), GetKeyValueDirAsync(_, _, _)) .WillByDefault(DoAll(SetArgPointee<1>(mocked_response), InvokeArgument<2>(absl::OkStatus()))); InitializeAgent(); auto result = agent_->GetKeyValueDir(test_key); TF_ASSERT_OK(result.status()); EXPECT_THAT(*result, UnorderedPointwise(KvEq(), test_values)); } TEST_F(CoordinationServiceAgentTest, ShutdownInErrorShouldReturnError) { InitializeAgent(); TF_ASSERT_OK(agent_->Connect()); TF_ASSERT_OK(agent_->ReportError(absl::InternalError("Test Error."))); absl::Status s = agent_->Shutdown(); EXPECT_TRUE(absl::IsFailedPrecondition(s)); } TEST_F(CoordinationServiceAgentTest, Reset_ConnectedButNotInError_Fail) { InitializeAgent(); TF_ASSERT_OK(agent_->Connect()); auto status = agent_->Reset(); EXPECT_TRUE(absl::IsFailedPrecondition(status)); } TEST_F(CoordinationServiceAgentTest, ConnectAfterResetError) { InitializeAgent(); TF_ASSERT_OK(agent_->Connect()); TF_ASSERT_OK(agent_->ReportError(absl::InternalError("Test Error."))); TF_ASSERT_OK(agent_->Reset()); TF_EXPECT_OK(agent_->Connect()); } TEST_F(CoordinationServiceAgentTest, ConnectAfterReset_WithErrorPolling) { PollForErrorResponse mocked_response; EXPECT_CALL(*GetClient(), PollForErrorAsync(_, _, _, _)) .WillOnce(DoAll(SetArgPointee<2>(mocked_response), InvokeArgument<3>(absl::UnavailableError("Test Error.")))) .WillOnce(DoAll(SetArgPointee<2>(mocked_response), InvokeArgument<3>(absl::InternalError("Test Error.")))); CoordinationServiceConfig config; config.set_poll_for_error_from_service_at_startup(true); InitializeAgent(config); TF_ASSERT_OK(agent_->Connect()); absl::SleepFor(absl::Seconds(2)); ASSERT_TRUE(agent_->IsError()); TF_ASSERT_OK(agent_->Reset()); TF_EXPECT_OK(agent_->Connect()); absl::SleepFor(absl::Seconds(2)); EXPECT_TRUE(agent_->IsError()); } TEST_F(CoordinationServiceAgentTest, CancelledPollForErrorRequest) { PollForErrorResponse mocked_response; EXPECT_CALL(*GetClient(), PollForErrorAsync(_, _, _, _)) .WillOnce(DoAll(SetArgPointee<2>(mocked_response), InvokeArgument<3>(absl::CancelledError("Test Error.")))); CoordinationServiceConfig config; config.set_poll_for_error_from_service_at_startup(true); InitializeAgent(config); TF_ASSERT_OK(agent_->Connect()); absl::SleepFor(absl::Seconds(2)); ASSERT_FALSE(agent_->IsError()); } TEST_F(CoordinationServiceAgentTest, InvalidPollForErrorRequest) { PollForErrorResponse mocked_response; EXPECT_CALL(*GetClient(), PollForErrorAsync(_, _, _, _)) .WillOnce( DoAll(SetArgPointee<2>(mocked_response), InvokeArgument<3>(absl::InvalidArgumentError("Test Error.")))); CoordinationServiceConfig config; config.set_poll_for_error_from_service_at_startup(true); InitializeAgent(config); TF_ASSERT_OK(agent_->Connect()); absl::SleepFor(absl::Seconds(2)); ASSERT_TRUE(agent_->IsError()); } TEST_F(CoordinationServiceAgentTest, PollForErrorRequestWithFailedPrecondition) { PollForErrorResponse mocked_response; EXPECT_CALL(*GetClient(), PollForErrorAsync(_, _, _, _)) .WillOnce(DoAll( SetArgPointee<2>(mocked_response), InvokeArgument<3>(absl::FailedPreconditionError("Test Error.")))); CoordinationServiceConfig config; config.set_poll_for_error_from_service_at_startup(true); InitializeAgent(config); TF_ASSERT_OK(agent_->Connect()); absl::SleepFor(absl::Seconds(2)); ASSERT_TRUE(agent_->IsError()); } TEST_F(CoordinationServiceAgentTest, ResetCanBeRetried) { EXPECT_CALL(*GetClient(), ResetTaskAsync(_, _, _)) .WillOnce(InvokeArgument<2>(absl::InternalError("Reset error"))) .WillOnce(InvokeArgument<2>(absl::OkStatus())); InitializeAgent(); TF_ASSERT_OK(agent_->Connect()); TF_ASSERT_OK(agent_->ReportError(absl::InternalError("Test Error."))); absl::Status reset_status = agent_->Reset(); EXPECT_TRUE(absl::IsInternal(reset_status)); TF_ASSERT_OK(agent_->Reset()); TF_EXPECT_OK(agent_->Connect()); } TEST_F(CoordinationServiceAgentTest, GetOwnTask) { InitializeAgent(); auto result = agent_->GetOwnTask(); TF_ASSERT_OK(result.status()); CoordinatedTask actual_task = *result; CoordinatedTask expected_task; expected_task.set_job_name("test_job"); expected_task.set_task_id(0); EXPECT_EQ(actual_task.job_name(), expected_task.job_name()); EXPECT_EQ(actual_task.task_id(), expected_task.task_id()); } TEST_F(CoordinationServiceAgentTest, GetOwnTask_Uninitialized) { auto result = agent_->GetOwnTask(); EXPECT_TRUE(absl::IsFailedPrecondition(result.status())); } TEST_F(CoordinationServiceAgentTest, WaitAtBarrier_SameIdUsedTwice_Fails) { InitializeAgent(); const std::string barrier_id = "only_use_once"; TF_ASSERT_OK(agent_->Connect()); TF_ASSERT_OK( agent_->WaitAtBarrier(barrier_id, absl::Seconds(1), {})); auto result = agent_->WaitAtBarrier(barrier_id, absl::Seconds(1), {}); EXPECT_TRUE(absl::IsFailedPrecondition(result)); } TEST_F(CoordinationServiceAgentTest, GetEnv_SucceedsAfterInit) { EXPECT_TRUE(absl::IsFailedPrecondition(agent_->GetEnv().status())); InitializeAgent(); absl::StatusOr<Env*> result = agent_->GetEnv(); TF_ASSERT_OK(result.status()); EXPECT_EQ(*result, Env::Default()); } TEST_F(CoordinationServiceAgentTest, Connect_AbortedErrorShouldBeRetried) { EXPECT_CALL(*GetClient(), RegisterTaskAsync(_, _, _, _)) .WillOnce( InvokeArgument<3>(absl::AbortedError("DuplicateTaskRegistration"))) .WillOnce( InvokeArgument<3>(absl::AbortedError("DuplicateTaskRegistration"))) .WillOnce(InvokeArgument<3>(absl::OkStatus())); InitializeAgent(); TF_EXPECT_OK(agent_->Connect()); } TEST_F(CoordinationServiceAgentTest, Connect_AbortedErrorShouldFailEventually) { EXPECT_CALL(*GetClient(), RegisterTaskAsync(_, _, _, _)) .WillRepeatedly( InvokeArgument<3>(absl::AbortedError("DuplicateTaskRegistration"))); CoordinationServiceConfig config; config.set_cluster_register_timeout_in_ms( absl::ToInt64Milliseconds(absl::Seconds(3))); InitializeAgent(config); absl::Status s = agent_->Connect(); EXPECT_TRUE(absl::IsAborted(s)); } TEST_F(CoordinationServiceAgentTest, Connect_InternalErrorShouldBeRetried) { EXPECT_CALL(*GetClient(), RegisterTaskAsync(_, _, _, _)) .WillOnce(InvokeArgument<3>( absl::InternalError("Coordination service is not enabled."))) .WillOnce(InvokeArgument<3>( absl::InternalError("Coordination service is not enabled."))) .WillOnce(InvokeArgument<3>(absl::OkStatus())); InitializeAgent(); TF_EXPECT_OK(agent_->Connect()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/distributed_runtime/coordination/coordination_service_agent.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/distributed_runtime/coordination/coordination_service_agent_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8323463a-09b1-420b-baaf-d77521ca8e27
cpp
tensorflow/tensorflow
preemption_sync_manager
third_party/xla/xla/tsl/distributed_runtime/preemption/preemption_sync_manager.cc
third_party/xla/xla/tsl/distributed_runtime/preemption/preemption_sync_manager_test.cc
#include "xla/tsl/distributed_runtime/preemption/preemption_sync_manager.h" #include <algorithm> #include <cstdint> #include <functional> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/log/log.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "xla/tsl/distributed_runtime/call_options.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service_agent.h" #include "xla/tsl/distributed_runtime/preemption/preemption_notifier.h" #include "xla/tsl/lib/monitoring/gauge.h" #include "xla/tsl/protobuf/coordination_service.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/statusor.h" namespace tsl { namespace { using tensorflow::CoordinatedTask; using tensorflow::KeyValueEntry; constexpr int64_t kPreemptionSyncUnsetCounter = -1; constexpr char kPreemptionNoticeKey[] = "RECEIVED_PREEMPTION_NOTICE"; constexpr char kPreemptionCounterDirKey[] = "PREEMPTION_CURRENT_COUNTER/"; constexpr char kPreemptionBarrier[] = "PREEMPTION_SYNC_BARRIER"; constexpr absl::Duration kPreemptionBarrierTimeout = absl::Minutes(3); auto* sync_usage_metric = monitoring::Gauge<bool, 0>::New( "/coordination_service/preempt_manager/reached_sync_point_usage", "Records if preempt sync manager's ReachSyncPoint() was called at least " "once."); auto* notified_metric = monitoring::Gauge<bool, 0>::New( "/coordination_service/preempt_manager/notified", "Records receipt of preemption notification."); auto* set_sync_point_metric = monitoring::Gauge<bool, 0>::New( "/coordination_service/preempt_manager/set_sync_point", "Records that sync point is set."); auto* reached_sync_point_metric = monitoring::Gauge<bool, 0>::New( "/coordination_service/preempt_manager/reached_sync_point", "Records that sync point is reached."); constexpr absl::Duration kProtocolDuration = absl::Minutes(15); class PreemptionSyncManagerImpl : public PreemptionSyncManager { public: PreemptionSyncManagerImpl() = default; ~PreemptionSyncManagerImpl() override { shutdown_.Notify(); } absl::Status Initialize(CoordinationServiceAgent* agent) override; absl::Status Initialize(CoordinationServiceAgent* agent, const std::string& preemption_notifier_type) override; absl::Status Initialize( CoordinationServiceAgent* agent, std::unique_ptr<PreemptionNotifier> notifier) override; bool ReachedSyncPoint(int step_counter) override; private: void ComputeSyncCallCounter(absl::Time death_time); void CancelPreemptionBarrier(); absl::Mutex mu_; int64_t call_counter_ ABSL_GUARDED_BY(mu_) = 0; int64_t preemption_sync_counter_ ABSL_GUARDED_BY(mu_) = kPreemptionSyncUnsetCounter; std::string current_call_counter_key_; Env* env_; CoordinationServiceAgent* agent_; absl::Notification shutdown_; std::unique_ptr<Thread> sync_protocol_thread_; std::unique_ptr<PreemptionNotifier> preemption_notifier_; std::shared_ptr<CallOptions> call_opts_; }; absl::Status PreemptionSyncManagerImpl::Initialize( CoordinationServiceAgent* agent) { return Initialize(agent, "sigterm"); } absl::Status PreemptionSyncManagerImpl::Initialize( CoordinationServiceAgent* agent, const std::string& preemption_notifier_type) { TF_ASSIGN_OR_RETURN(Env * env, agent->GetEnv()); return Initialize(agent, PreemptionNotifier::CreatePreemptionNotifier( preemption_notifier_type, env)); } absl::Status PreemptionSyncManagerImpl::Initialize( CoordinationServiceAgent* agent, std::unique_ptr<PreemptionNotifier> notifier) { TF_ASSIGN_OR_RETURN(Env * env, agent->GetEnv()); env_ = env; agent_ = agent; preemption_notifier_ = std::move(notifier); TF_ASSIGN_OR_RETURN(CoordinatedTask own_task, agent->GetOwnTask()); const std::string task_name = absl::StrCat("/job:", own_task.job_name(), "/task:", own_task.task_id()); current_call_counter_key_ = absl::StrCat(kPreemptionCounterDirKey, task_name); preemption_notifier_->WillBePreemptedAtAsync( [agent = agent_, task_name](absl::StatusOr<absl::Time> death_time) { if (!death_time.ok()) { if (absl::IsCancelled(death_time.status())) { LOG(INFO) << "Preemption sync protocol cancelled by notifier: " << death_time.status() << ". This is expected during program shutdown."; } else { LOG(ERROR) << "Error from preemption notifier: " << death_time.status(); } return; } notified_metric->GetCell()->Set(true); const absl::Status s = agent->InsertKeyValue( kPreemptionNoticeKey, absl::FormatTime(*death_time)); LOG(INFO) << "Notified coordination service that this task will " "be preempted at " << *death_time << ". absl::Status: " << s; }); call_opts_ = agent_->GetKeyValueAsync( kPreemptionNoticeKey, [this, agent = agent_](absl::StatusOr<std::string> status_or_death_time) { if (absl::IsCancelled(status_or_death_time.status())) { LOG(INFO) << "Cancelled call to retrieve preemption notice. This is " "expected upon program shutdown."; return; } else if (!status_or_death_time.ok()) { LOG(WARNING) << "Failed to retrieve preemption notice from " "coordination service: " << status_or_death_time.status() << ". This is only expected if one of the tasks is unhealthy." " Check the logs for the actual root cause."; agent->CancelBarrierAsync( kPreemptionBarrier, [](const absl::Status& status) { if (!status.ok()) { LOG(ERROR) << "Failed to cancel preemption barrier: " << status; } }); return; } std::string err; absl::Time death_time; if (absl::ParseTime(absl::RFC3339_full, *status_or_death_time, &death_time, &err)) { LOG(INFO) << "Received preemption notice with death_time " << death_time; } else { LOG(ERROR) << "Unable to parse preemption notice's death time: " << err; CancelPreemptionBarrier(); return; } sync_protocol_thread_ = absl::WrapUnique(env_->StartThread( {}, "PreemptionSyncManager_SyncProtocol", std::bind(&PreemptionSyncManagerImpl::ComputeSyncCallCounter, this, death_time))); }); return absl::OkStatus(); } void PreemptionSyncManagerImpl::ComputeSyncCallCounter(absl::Time death_time) { const absl::Duration remaining_time = death_time - absl::Now(); if (remaining_time > kProtocolDuration) { LOG(INFO) << "Will begin preemption sync protocol in " << remaining_time; const absl::Duration sleep_time = remaining_time - kProtocolDuration; if (shutdown_.WaitForNotificationWithTimeout(sleep_time)) { LOG(WARNING) << "Shutdown is triggered before preemption sync protocol has begun."; CancelPreemptionBarrier(); return; } } absl::MutexLock l(&mu_); const absl::Status notified_status = agent_->InsertKeyValue( current_call_counter_key_, std::to_string(call_counter_)); if (!notified_status.ok()) { LOG(ERROR) << "Preemption sync failed - could not inform service of " "current call counter: " << notified_status; CancelPreemptionBarrier(); return; } const absl::Status barrier_status = agent_->WaitAtBarrier(kPreemptionBarrier, kPreemptionBarrierTimeout, {}); if (!barrier_status.ok()) { LOG(ERROR) << "Preemption sync barrier failed: " << barrier_status; return; } absl::StatusOr<std::vector<KeyValueEntry>> all_counters = agent_->GetKeyValueDir(kPreemptionCounterDirKey); if (!all_counters.ok()) { LOG(ERROR) << "Preemption sync failed - unable to retrieve call counters: " << all_counters.status(); return; } int64_t max_counter = kPreemptionSyncUnsetCounter; for (const auto& kv : *all_counters) { int64_t call_counter; if (!absl::SimpleAtoi(kv.value(), &call_counter)) { LOG(ERROR) << "Preemption sync failed - failed to parse preemption call " "counter: " << kv.DebugString(); return; } max_counter = std::max(max_counter, call_counter); } if (max_counter == kPreemptionSyncUnsetCounter) { LOG(ERROR) << "Preemption sync failed - no call counters found."; return; } preemption_sync_counter_ = max_counter + 1; LOG(INFO) << "Preemption sync counter is set: " << preemption_sync_counter_; set_sync_point_metric->GetCell()->Set(true); } void PreemptionSyncManagerImpl::CancelPreemptionBarrier() { agent_->CancelBarrierAsync( kPreemptionBarrier, [](const absl::Status& status) { if (!status.ok()) { LOG(ERROR) << "Failed to cancel preemption barrier: " << status; } }); } bool PreemptionSyncManagerImpl::ReachedSyncPoint(int step_counter) { sync_usage_metric->GetCell()->Set(true); absl::MutexLock l(&mu_); call_counter_ = step_counter; VLOG(3) << "Current call counter: " << call_counter_ << ", Preemption sync point: " << preemption_sync_counter_; const bool reached_sync_point = preemption_sync_counter_ == call_counter_; if (reached_sync_point) { reached_sync_point_metric->GetCell()->Set(true); } return reached_sync_point; } } std::unique_ptr<PreemptionSyncManager> CreatePreemptionSyncManager() { return std::make_unique<PreemptionSyncManagerImpl>(); } }
#include "xla/tsl/distributed_runtime/preemption/preemption_sync_manager.h" #include <memory> #include <string> #include <utility> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "grpcpp/server.h" #include "grpcpp/server_builder.h" #include "grpcpp/support/channel_arguments.h" #include "xla/tsl/distributed_runtime/coordination/coordination_client.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service_agent.h" #include "xla/tsl/distributed_runtime/preemption/preemption_notifier.h" #include "xla/tsl/distributed_runtime/rpc/async_service_interface.h" #include "xla/tsl/distributed_runtime/rpc/coordination/grpc_coordination_client.h" #include "xla/tsl/distributed_runtime/rpc/coordination/grpc_coordination_service_impl.h" #include "xla/tsl/protobuf/coordination_config.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace tsl { namespace { using tensorflow::CoordinatedJob; using tensorflow::CoordinatedTask; using tensorflow::CoordinationServiceConfig; constexpr char kJobName[] = "test_worker"; class FakePreemptionNotifier : public PreemptionNotifier { public: FakePreemptionNotifier() : PreemptionNotifier(nullptr) {} ~FakePreemptionNotifier() override { NotifyRegisteredListeners( absl::CancelledError("~FakePreemptionNotifier() was called.")); } void AnnounceDeath(absl::Time death_time) { LOG(WARNING) << "Received preemption notice with death time: " << death_time; NotifyRegisteredListeners(death_time); } }; class PreemptionSyncManagerTest : public ::testing::Test { protected: PreemptionSyncManagerTest() { StartCoordinationService(); InitializeAndConnectCoordinationAgents(); auto preempt_notifier = std::make_unique<FakePreemptionNotifier>(); preempt_notifier_ = preempt_notifier.get(); CHECK_OK(preempt_sync_mgr_->Initialize(coord_agent_.get(), std::move(preempt_notifier))); auto preempt_notifier2 = std::make_unique<FakePreemptionNotifier>(); preempt_notifier2_ = preempt_notifier2.get(); CHECK_OK(preempt_sync_mgr2_->Initialize(coord_agent2_.get(), std::move(preempt_notifier2))); } ~PreemptionSyncManagerTest() override { preempt_sync_mgr_ = nullptr; preempt_sync_mgr2_ = nullptr; coord_agent_ = nullptr; coord_agent2_ = nullptr; coord_service_ = nullptr; static_cast<tsl::GrpcCoordinationServiceImpl*>(coord_rpc_service_.get()) ->SetCoordinationServiceInstance(nullptr); grpc_server_->Shutdown(); coord_rpc_service_->Shutdown(); } void SendPreemptionNotice(absl::Time death_time = absl::Now(), bool to_task1 = true) { if (to_task1) { preempt_notifier_->AnnounceDeath(death_time); } else { preempt_notifier2_->AnnounceDeath(death_time); } Env::Default()->SleepForMicroseconds( absl::ToInt64Microseconds(absl::Seconds(1))); } void SimulateUnhealthyTaskTwo() { CoordinatedTask task2; task2.set_job_name(kJobName); task2.set_task_id(1); CHECK_OK(coord_service_->ReportTaskError( task2, absl::InternalError("test_error"))); } std::unique_ptr<PreemptionSyncManager> preempt_sync_mgr_ = CreatePreemptionSyncManager(); std::unique_ptr<PreemptionSyncManager> preempt_sync_mgr2_ = CreatePreemptionSyncManager(); protected: void StartCoordinationService() { ::grpc::ServerBuilder builder; coord_service_ = EnableCoordinationService(); coord_compute_pool_ = std::make_unique<thread::ThreadPool>( Env::Default(), "CoordinationServiceRpcHandler", 1); coord_rpc_service_ = std::make_unique<GrpcCoordinationServiceImpl>( coord_compute_pool_.get(), &builder); auto* grpc_coord_service = static_cast<GrpcCoordinationServiceImpl*>(coord_rpc_service_.get()); grpc_coord_service->SetCoordinationServiceInstance(coord_service_.get()); grpc_server_ = builder.BuildAndStart(); coord_rpc_thread_ = absl::WrapUnique(Env::Default()->StartThread( {}, "CoordinationServiceHandleRPCsLoop", [service = coord_rpc_service_.get()]() { service->HandleRPCsLoop(); })); } std::unique_ptr<CoordinationServiceInterface> EnableCoordinationService() { CoordinationServiceConfig config; config.set_service_type("standalone"); CoordinatedJob* job = config.mutable_coordinated_job_list()->Add(); job->set_name(kJobName); job->set_num_tasks(2); return CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, nullptr); } void InitializeAndConnectCoordinationAgents() { std::unique_ptr<CoordinationClient> coord_client = absl::WrapUnique(NewGrpcCoordinationClient( grpc_server_->InProcessChannel(::grpc::ChannelArguments()))); std::unique_ptr<CoordinationClient> coord_client2 = absl::WrapUnique(NewGrpcCoordinationClient( grpc_server_->InProcessChannel(::grpc::ChannelArguments()))); auto error_fn = [](const absl::Status& status) { LOG(ERROR) << "Coordination service agent in error status: " << status; }; CoordinationServiceConfig coord_config; coord_config.set_service_leader("test_leader"); CHECK_OK(coord_agent_->Initialize(Env::Default(), kJobName, 0, coord_config, std::move(coord_client), error_fn)); CHECK_OK(coord_agent2_->Initialize(Env::Default(), kJobName, 1, coord_config, std::move(coord_client2), error_fn)); CHECK_OK(coord_agent_->Connect()); CHECK_OK(coord_agent2_->Connect()); } std::unique_ptr<CoordinationServiceInterface> coord_service_; std::unique_ptr<::grpc::Server> grpc_server_; std::unique_ptr<thread::ThreadPool> coord_compute_pool_; std::unique_ptr<AsyncServiceInterface> coord_rpc_service_; std::unique_ptr<Thread> coord_rpc_thread_; std::unique_ptr<CoordinationServiceAgent> coord_agent_ = CreateCoordinationServiceAgent(); FakePreemptionNotifier* preempt_notifier_; std::unique_ptr<CoordinationServiceAgent> coord_agent2_ = CreateCoordinationServiceAgent(); FakePreemptionNotifier* preempt_notifier2_; }; TEST_F(PreemptionSyncManagerTest, NoPreemption_NoSyncPoint) { int step_counter = 0; EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); } TEST_F(PreemptionSyncManagerTest, Preemption_SingleSyncPoint) { int step_counter = 0; EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); SendPreemptionNotice(); EXPECT_TRUE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); } TEST_F(PreemptionSyncManagerTest, DelayedPreemption_NoSyncPointYet) { int step_counter = 0; EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); SendPreemptionNotice(absl::Now() + absl::Hours(1)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); } TEST_F(PreemptionSyncManagerTest, UnhealthyTask_NoSyncPoint) { int step_counter = 0; EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); SimulateUnhealthyTaskTwo(); SendPreemptionNotice(); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); } TEST_F(PreemptionSyncManagerTest, ShutdownTasksWithoutPreemption) { int step_counter = 0; EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); CHECK_OK(coord_agent_->Shutdown()); CHECK_OK(coord_agent2_->Shutdown()); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); } TEST_F(PreemptionSyncManagerTest, PreemptSlowTask) { int step_counter0 = 0; int step_counter2 = 0; EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_FALSE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); EXPECT_FALSE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); EXPECT_FALSE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); SendPreemptionNotice(); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_TRUE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_TRUE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); } TEST_F(PreemptionSyncManagerTest, PreemptFastTask) { int step_counter0 = 0; int step_counter2 = 0; EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_FALSE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); EXPECT_FALSE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); EXPECT_FALSE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); SendPreemptionNotice(absl::Now(), false); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_TRUE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_TRUE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/distributed_runtime/preemption/preemption_sync_manager.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/distributed_runtime/preemption/preemption_sync_manager_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4b72f2e1-377f-44c8-8739-38c4935bd9a9
cpp
tensorflow/tensorflow
preemption_notifier
third_party/xla/xla/tsl/distributed_runtime/preemption/preemption_notifier.cc
third_party/xla/xla/tsl/distributed_runtime/preemption/preemption_notifier_test.cc
#include "xla/tsl/distributed_runtime/preemption/preemption_notifier.h" #include <atomic> #include <csignal> #include <functional> #include <memory> #include <utility> #include "absl/synchronization/notification.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/mutex.h" #include "tsl/platform/statusor.h" #if defined(PLATFORM_GOOGLE) #include "thread/executor.h" #include "thread/signal.h" #endif namespace tsl { namespace { constexpr absl::Duration kListenInterval = absl::Seconds(1); constexpr absl::Time kUnsetDeathTime = absl::InfinitePast(); static std::atomic_bool sigterm_received(false); class SigtermNotifier : public PreemptionNotifier { public: explicit SigtermNotifier(Env* env); ~SigtermNotifier() override { shutdown_notification_.Notify(); } private: void StartListenerThread(); absl::Notification shutdown_notification_; std::unique_ptr<Thread> preempt_listener_thread_; }; SigtermNotifier::SigtermNotifier(Env* env) : PreemptionNotifier(env) { sigterm_received.store(false); StartListenerThread(); #if defined(PLATFORM_GOOGLE) thread::signal::Token unused_token; thread::signal::AddHandler( SIGTERM, thread::Executor::DefaultExecutor(), []() { sigterm_received.store(true); }, 0, &unused_token); #else std::signal(SIGTERM, [](int signal) { sigterm_received.store(true); }); #endif } void SigtermNotifier::StartListenerThread() { preempt_listener_thread_.reset( GetEnv()->StartThread({}, "PreemptionNotifier_Listen", [this]() { while (!sigterm_received.load()) { if (shutdown_notification_.WaitForNotificationWithTimeout( kListenInterval)) { NotifyRegisteredListeners( errors::Cancelled("Preemption notifier is being deleted.")); return; } } const absl::Time death_time = absl::Now(); LOG(WARNING) << "SIGTERM caught at " << death_time; NotifyRegisteredListeners(death_time); })); } } absl::StatusOr<absl::Time> PreemptionNotifier::WillBePreemptedAt() { absl::Notification n; absl::StatusOr<absl::Time> result; WillBePreemptedAtAsync( [&n, &result](absl::StatusOr<absl::Time> async_result) { result = async_result; n.Notify(); }); n.WaitForNotification(); return result; } void PreemptionNotifier::WillBePreemptedAtAsync(PreemptTimeCallback callback) { mutex_lock l(mu_); if (death_time_ == kUnsetDeathTime) { callbacks_.push_back(std::move(callback)); } else { callback(death_time_); } } void PreemptionNotifier::NotifyRegisteredListeners( absl::StatusOr<absl::Time> death_time) { mutex_lock l(mu_); if (death_time.ok()) { death_time_ = death_time.value(); } for (const auto& callback : callbacks_) { callback(death_time); } callbacks_.clear(); } REGISTER_PREEMPTION_NOTIFIER( "sigterm", [](Env* env) -> std::unique_ptr<PreemptionNotifier> { return std::make_unique<SigtermNotifier>(env); }); }
#include "xla/tsl/distributed_runtime/preemption/preemption_notifier.h" #include <csignal> #include <functional> #include <memory> #include <utility> #include "absl/synchronization/notification.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #if defined(PLATFORM_GOOGLE) #include "thread/executor.h" #include "thread/signal.h" #endif namespace tsl { namespace { class PreemptNotifierTest : public ::testing::Test { public: PreemptNotifierTest() { #if defined(PLATFORM_GOOGLE) thread::signal::Token unused_token; thread::signal::AddHandler( SIGTERM, thread::Executor::DefaultExecutor(), []() {}, thread::signal::kOverrideDefault, &unused_token); #endif } }; TEST_F(PreemptNotifierTest, WillBePreemptedAt) { auto env = Env::Default(); std::unique_ptr<PreemptionNotifier> preempt_notifier = PreemptionNotifier::CreatePreemptionNotifier("sigterm", env); absl::Time start_time = absl::Now(); env->SchedClosureAfter(absl::ToInt64Microseconds(absl::Seconds(1)), []() { std::raise(SIGTERM); }); absl::StatusOr<absl::Time> result = preempt_notifier->WillBePreemptedAt(); TF_CHECK_OK(result.status()); absl::Time preempt_time = result.value(); absl::Duration time_diff = preempt_time - start_time; EXPECT_GT(time_diff, absl::Seconds(1.0)); EXPECT_LT(time_diff, absl::Seconds(3)); } TEST_F(PreemptNotifierTest, WillBePreemptedAt_AlreadyPreempted_ReturnsImmediately) { auto env = Env::Default(); std::unique_ptr<PreemptionNotifier> preempt_notifier = PreemptionNotifier::CreatePreemptionNotifier("sigterm", env); absl::Time start_time = absl::Now(); std::raise(SIGTERM); env->SleepForMicroseconds(absl::ToInt64Microseconds(absl::Seconds(2))); absl::StatusOr<absl::Time> result = preempt_notifier->WillBePreemptedAt(); TF_CHECK_OK(result.status()); absl::Time preempt_time = result.value(); absl::Duration time_diff = preempt_time - start_time; EXPECT_GT(time_diff, absl::ZeroDuration()); EXPECT_LT(time_diff, absl::Seconds(2)); } TEST_F(PreemptNotifierTest, WillBePreemptedAtAsync_SameResultForAllCallbacks) { auto env = Env::Default(); std::unique_ptr<PreemptionNotifier> preempt_notifier = PreemptionNotifier::CreatePreemptionNotifier("sigterm", env); env->SchedClosureAfter(absl::ToInt64Microseconds(absl::Seconds(1)), []() { std::raise(SIGTERM); }); absl::StatusOr<absl::Time> preempt_time; absl::StatusOr<absl::Time> preempt_time_2; absl::Notification n; absl::Notification n_2; preempt_notifier->WillBePreemptedAtAsync( [&preempt_time, &n](absl::StatusOr<absl::Time> result) { preempt_time = result; n.Notify(); }); preempt_notifier->WillBePreemptedAtAsync( [&preempt_time_2, &n_2](absl::StatusOr<absl::Time> result) { preempt_time_2 = result; n_2.Notify(); }); n.WaitForNotification(); n_2.WaitForNotification(); TF_CHECK_OK(preempt_time.status()); TF_CHECK_OK(preempt_time_2.status()); EXPECT_EQ(preempt_time.value(), preempt_time_2.value()); } TEST_F(PreemptNotifierTest, Reset_TwoDifferentPreemptTimesRecorded) { auto env = Env::Default(); std::unique_ptr<PreemptionNotifier> preempt_notifier = PreemptionNotifier::CreatePreemptionNotifier("sigterm", env); std::raise(SIGTERM); absl::StatusOr<absl::Time> result = preempt_notifier->WillBePreemptedAt(); TF_CHECK_OK(result.status()); absl::Time preempt_time = result.value(); preempt_notifier = PreemptionNotifier::CreatePreemptionNotifier("sigterm", env); std::raise(SIGTERM); absl::Time preempt_time_2 = preempt_notifier->WillBePreemptedAt().value(); EXPECT_NE(preempt_time, preempt_time_2); } TEST_F(PreemptNotifierTest, DestructorCancelsPendingCalls) { auto env = Env::Default(); std::unique_ptr<PreemptionNotifier> preempt_notifier = PreemptionNotifier::CreatePreemptionNotifier("sigterm", env); absl::StatusOr<absl::Time> result; absl::Notification n; preempt_notifier->WillBePreemptedAtAsync( [&result, &n](absl::StatusOr<absl::Time> status_or_time) { result = status_or_time; n.Notify(); }); preempt_notifier = nullptr; n.WaitForNotification(); EXPECT_TRUE(errors::IsCancelled(result.status())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/distributed_runtime/preemption/preemption_notifier.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/distributed_runtime/preemption/preemption_notifier_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
323ebe3f-b5fc-466c-a6df-f963cbafa3a8
cpp
tensorflow/tensorflow
grpc_channel
third_party/xla/xla/tsl/distributed_runtime/rpc/grpc_channel.cc
third_party/xla/xla/tsl/distributed_runtime/rpc/grpc_channel_test.cc
#include "xla/tsl/distributed_runtime/rpc/grpc_channel.h" #include <cstdlib> #include <limits> #include <map> #include <string> #include <unordered_map> #include "absl/strings/escaping.h" #include "absl/strings/match.h" #include "absl/strings/str_split.h" #include "grpcpp/create_channel.h" #include "xla/tsl/distributed_runtime/rpc/grpc_channel_common.h" #include "xla/tsl/lib/gtl/map_util.h" #include "xla/tsl/protobuf/rpc_options.pb.h" #include "xla/tsl/util/device_name_utils.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" #include "tsl/platform/mutex.h" #include "tsl/platform/numbers.h" #include "tsl/platform/status.h" #include "tsl/platform/str_util.h" #include "tsl/platform/strcat.h" #include "tsl/platform/thread_annotations.h" #include "tsl/platform/types.h" namespace tsl { namespace { string MakeAddress(const string& job, int replica, int task) { return strings::StrCat("/job:", job, "/replica:", replica, "/task:", task); } absl::Status ValidateHostPortPair(const string& host_port) { string bns_prefix = "/bns/"; if (host_port.substr(0, bns_prefix.length()) == bns_prefix) { return absl::OkStatus(); } uint32 port; auto colon_index = host_port.find_last_of(':'); if (!strings::safe_strtou32(host_port.substr(colon_index + 1), &port) || host_port.substr(0, colon_index).find('/') != string::npos) { return errors::InvalidArgument("Could not interpret \"", host_port, "\" as a host-port pair."); } return absl::OkStatus(); } ::grpc::ChannelArguments* CreateDefaultChannelArguments() { ::grpc::ChannelArguments* args = new ::grpc::ChannelArguments(); const char* env = std::getenv("TF_GRPC_DEFAULT_OPTIONS"); if (env != nullptr) { for (auto& grpc_option : absl::StrSplit(env, ',')) { std::vector<string> name_value = absl::StrSplit(grpc_option, '='); if (name_value.size() != 2) { LOG(ERROR) << "Invalid GRPC options format: " << grpc_option; continue; } VLOG(3) << "Setting GRPC default for '" << name_value[0] << "' to '" << name_value[1] << "'"; if (name_value[1].size() >= 2 && name_value[1][0] == '"') { string ue_value = name_value[1].substr(1, name_value[1].size() - 2); string value; string error; if (!absl::CUnescape(ue_value, &value, &error)) { LOG(ERROR) << "Failed to parse escaped string for " << grpc_option << ": " << error; } else { args->SetString(name_value[0], value); } } else { int64_t value; if (strings::safe_strto64(name_value[1], &value)) { args->SetInt(name_value[0], value); } else { LOG(ERROR) << "Invalid integer value: " << grpc_option; } } } } return args; } const ::grpc::ChannelArguments* GetDefaultChannelArguments() { static const ::grpc::ChannelArguments* args = CreateDefaultChannelArguments(); return args; } } ::grpc::ChannelArguments GetChannelArguments(const RPCOptions* rpc_options) { ::grpc::ChannelArguments args = *GetDefaultChannelArguments(); args.SetInt(GRPC_ARG_MAX_MESSAGE_LENGTH, std::numeric_limits<int32>::max()); args.SetInt(GRPC_ARG_MAX_RECONNECT_BACKOFF_MS, 1000); if (rpc_options != nullptr) { if (rpc_options->compression_algorithm() == "deflate") { args.SetCompressionAlgorithm(GRPC_COMPRESS_DEFLATE); args.SetInt(GRPC_COMPRESSION_CHANNEL_DEFAULT_LEVEL, rpc_options->compression_level()); VLOG(5) << "Setting GRPC compression : algo='" << rpc_options->compression_algorithm() << "' level=" << rpc_options->compression_level(); } else if (rpc_options->compression_algorithm() == "gzip") { args.SetCompressionAlgorithm(GRPC_COMPRESS_GZIP); args.SetInt(GRPC_COMPRESSION_CHANNEL_DEFAULT_LEVEL, rpc_options->compression_level()); VLOG(5) << "Setting GRPC compression : algo='" << rpc_options->compression_algorithm() << "' level=" << rpc_options->compression_level(); } else if (!rpc_options->compression_algorithm().empty()) { LOG(ERROR) << "Invalid compression algorithm: " << rpc_options->compression_algorithm(); } if (rpc_options->disable_session_connection_sharing()) { VLOG(5) << "Disabling TCP connection sharing"; args.SetInt(GRPC_ARG_USE_LOCAL_SUBCHANNEL_POOL, true); } } return args; } absl::Status NewHostPortGrpcChannel(const string& target, const RPCOptions* rpc_options, SharedGrpcChannelPtr* channel_pointer) { TF_RETURN_IF_ERROR(ValidateHostPortPair(target)); ::grpc::ChannelArguments args = GetChannelArguments(rpc_options); *channel_pointer = ::grpc::CreateCustomChannel( "dns: return absl::OkStatus(); } ChannelCreationFunction ConvertToChannelCreationFunction( const std::function<absl::Status(string, const RPCOptions*, SharedGrpcChannelPtr*)>& new_channel_func_ptr) { return [new_channel_func_ptr](const string& target) -> SharedGrpcChannelPtr { SharedGrpcChannelPtr channel_ptr; if (new_channel_func_ptr(target, nullptr, &channel_ptr) .ok()) { return channel_ptr; } else { return nullptr; } }; } absl::Status GrpcChannelSpec::AddHostPortsJob( const string& job_id, const std::map<int, string>& host_ports) { if (!job_ids_.insert(job_id).second) { return errors::InvalidArgument( "Duplicate job ID in cluster specification: ", job_id); } for (const auto& id_host_port : host_ports) { TF_RETURN_IF_ERROR(ValidateHostPortPair(id_host_port.second)); } host_ports_jobs_.emplace_back(job_id, host_ports); return absl::OkStatus(); } namespace { using CachingGrpcChannelCache = GenericCachingChannelCache<GrpcChannelCache>; class MultiGrpcChannelCache : public CachingGrpcChannelCache { public: explicit MultiGrpcChannelCache(const std::vector<GrpcChannelCache*>& caches, int num_channels_per_target) : CachingGrpcChannelCache(num_channels_per_target), caches_(caches) {} ~MultiGrpcChannelCache() override { for (GrpcChannelCache* cache : caches_) { delete cache; } } void ListWorkers(std::vector<string>* workers) override { for (GrpcChannelCache* cache : caches_) { cache->ListWorkers(workers); } } void ListWorkersInJob(const string& job_name, std::vector<string>* workers) override { for (GrpcChannelCache* cache : caches_) { cache->ListWorkersInJob(job_name, workers); } } string TranslateTask(const string& target) override { mutex_lock l(mu_); GrpcChannelCache* cache = gtl::FindPtrOrNull(target_caches_, target); if (cache == nullptr) { for (GrpcChannelCache* c : caches_) { string r = c->TranslateTask(target); if (!r.empty()) { target_caches_.insert({target, c}); cache = c; break; } } } CHECK(cache) << "Could not find GrpcChannelCache holding channel for " << target; return cache->TranslateTask(target); } protected: SharedGrpcChannelPtr FindChannelOnce(const string& target) override { for (GrpcChannelCache* cache : caches_) { SharedGrpcChannelPtr ch(cache->FindWorkerChannel(target)); if (ch) { mutex_lock l(mu_); target_caches_.insert({target, cache}); return ch; } } return nullptr; } private: const std::vector<GrpcChannelCache*> caches_; mutex mu_; std::unordered_map<string, GrpcChannelCache*> target_caches_ TF_GUARDED_BY(mu_); }; class SparseGrpcChannelCache : public CachingGrpcChannelCache { public: SparseGrpcChannelCache(const string& job_id, const std::map<int, string>& host_ports, ChannelCreationFunction channel_func, int num_channels_per_target) : CachingGrpcChannelCache(num_channels_per_target), job_id_(job_id), host_ports_(host_ports), channel_func_(std::move(channel_func)) { VLOG(2) << "Initialize GrpcChannelCache for job " << ToString(); } ~SparseGrpcChannelCache() override {} void ListWorkers(std::vector<string>* workers) override { workers->reserve(workers->size() + host_ports_.size()); for (const auto& id_host_port : host_ports_) { std::vector<std::string> replicas = absl::StrSplit(id_host_port.second, ',', absl::SkipEmpty()); for (int replica = 0; replica < replicas.size(); ++replica) { workers->emplace_back( MakeAddress(job_id_, replica, id_host_port.first)); } } } void ListWorkersInJob(const string& job_name, std::vector<string>* workers) override { if (job_name == job_id_) { ListWorkers(workers); } } string TranslateTask(const string& target) override { DeviceNameUtils::ParsedName parsed; if (!DeviceNameUtils::ParseFullName(target, &parsed)) { LOG(WARNING) << "Invalid target: " << target; return ""; } if (!parsed.has_job || parsed.job != job_id_) { return ""; } int32_t task = parsed.has_task ? parsed.task : -1; auto iter = host_ports_.find(task); if (iter == host_ports_.end()) { LOG(WARNING) << "Task " << task << " was not defined in sparse job " << job_id_ << ": " << target; return ""; } std::vector<std::string> host_ports = absl::StrSplit(iter->second, ',', absl::SkipEmpty()); if (host_ports.size() > parsed.replica) { return host_ports[parsed.replica]; } LOG(WARNING) << "Requested out-of-range replica, defaulting to 0: " << target; return host_ports[0]; } protected: SharedGrpcChannelPtr FindChannelOnce(const string& target) override { const string host_port = TranslateTask(target); if (host_port.empty()) { return nullptr; } auto chan_ptr = channel_func_(host_port); VLOG(5) << "Channel created for: job: " << job_id_ << " host_port: " << host_port << " target : " << target << " Ptr: " << chan_ptr.get(); return chan_ptr; } private: string ToString() { std::vector<string> task_strings; task_strings.reserve(host_ports_.size()); for (const auto& id_host_port : host_ports_) { task_strings.emplace_back( strings::StrCat(id_host_port.first, " -> ", id_host_port.second)); } return strings::StrCat(job_id_, " -> {", absl::StrJoin(task_strings, ", "), "}"); } const string job_id_; const std::map<int, string> host_ports_; const ChannelCreationFunction channel_func_; SparseGrpcChannelCache(const SparseGrpcChannelCache&) = delete; void operator=(const SparseGrpcChannelCache&) = delete; }; } GrpcChannelCache* NewGrpcChannelCache(const GrpcChannelSpec& spec, ChannelCreationFunction channel_func, const RPCOptions& options) { const int num_jobs = spec.host_ports_jobs().size(); if (!num_jobs) { LOG(ERROR) << "Empty channel spec."; return nullptr; } std::vector<GrpcChannelCache*> caches; caches.reserve(num_jobs); for (auto& job : spec.host_ports_jobs()) { VLOG(2) << "Creating Grpc Channel Cache for: " << job.job_id; caches.push_back( new SparseGrpcChannelCache(job.job_id, job.host_ports, channel_func, options.num_channels_per_target())); } return caches.size() == 1 ? caches[0] : new MultiGrpcChannelCache( caches, options.num_channels_per_target()); } }
#include "xla/tsl/distributed_runtime/rpc/grpc_channel.h" #include <string> #include <vector> #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/protobuf/rpc_options.pb.h" #include "xla/tsl/util/device_name_utils.h" #include "tsl/platform/strcat.h" #include "tsl/platform/test.h" namespace tsl { #define IsSameAddrSp DeviceNameUtils::IsSameAddressSpace TEST(GrpcChannelTest, IsSameAddressSpace) { EXPECT_TRUE(IsSameAddrSp("/job:mnist/replica:10/task:10/cpu:0", "/job:mnist/replica:10/task:10/cpu:1")); EXPECT_TRUE(IsSameAddrSp("/job:mnist/replica:10/task:10/cpu:0", "/job:mnist/replica:10/task:10/device:GPU:2")); EXPECT_TRUE(IsSameAddrSp("/job:mnist/replica:10/task:10", "/job:mnist/replica:10/task:10/device:GPU:2")); EXPECT_TRUE(IsSameAddrSp("/job:mnist/replica:10/task:10/cpu:1", "/job:mnist/replica:10/task:10")); EXPECT_FALSE(IsSameAddrSp("/job:mnist/replica:10/task:9/cpu:0", "/job:mnist/replica:10/task:10/cpu:0")); EXPECT_FALSE(IsSameAddrSp("/job:mnist/replica:9/task:10/cpu:0", "/job:mnist/replica:10/task:10/cpu:0")); EXPECT_FALSE(IsSameAddrSp("/job:MNIST/replica:10/task:10/cpu:0", "/job:mnist/replica:10/task:10/cpu:0")); EXPECT_FALSE(IsSameAddrSp("random_invalid_target", "random_invalid_target")); EXPECT_FALSE(IsSameAddrSp("/job:/replica:10/task:10/cpu:0", "/job:/replica:10/task:10/cpu:1")); EXPECT_FALSE(IsSameAddrSp("/job:mnist/replica:xx/task:10/cpu:0", "/job:mnist/replica:xx/task:10/cpu:1")); EXPECT_FALSE(IsSameAddrSp("/job:mnist/replica:10/task:yy/cpu:0", "/job:mnist/replica:10/task:yy/cpu:1")); } TEST(GrpcChannelTest, HostPorts) { GrpcChannelSpec spec; TF_ASSERT_OK(spec.AddHostPortsJob("mnist", {{0, "a:1"}, {1, "b:2"}, {2, "c:3"}, {3, "d:4"}, {4, "e:5"}, {5, "f:6"}})); ChannelCreationFunction channel_func = ConvertToChannelCreationFunction(NewHostPortGrpcChannel); std::unique_ptr<GrpcChannelCache> cc( NewGrpcChannelCache(spec, channel_func, tensorflow::RPCOptions())); EXPECT_EQ(nullptr, cc->FindWorkerChannel("invalid_target")); EXPECT_EQ(nullptr, cc->FindWorkerChannel("/job:other/replica:0/task:0")); EXPECT_EQ(nullptr, cc->FindWorkerChannel("/job:mnist/replica:0/task:6")); { auto a_1_1 = cc->FindWorkerChannel("/job:mnist/replica:0/task:0"); auto a_1_2 = cc->FindWorkerChannel("/job:mnist/replica:0/task:0"); auto d_4_1 = cc->FindWorkerChannel("/job:mnist/replica:0/task:3"); auto d_4_2 = cc->FindWorkerChannel("/job:mnist/replica:0/task:3"); auto e_5_1 = cc->FindWorkerChannel("/job:mnist/replica:0/task:4"); auto e_5_2 = cc->FindWorkerChannel("/job:mnist/replica:0/task:4"); EXPECT_EQ(a_1_1.get(), a_1_2.get()); EXPECT_EQ(d_4_1.get(), d_4_2.get()); EXPECT_EQ(e_5_1.get(), e_5_2.get()); EXPECT_NE(a_1_1.get(), d_4_2.get()); EXPECT_NE(a_1_1.get(), e_5_2.get()); EXPECT_NE(d_4_1.get(), e_5_2.get()); } { std::vector<string> workers; cc->ListWorkers(&workers); EXPECT_EQ( std::vector<string>( {"/job:mnist/replica:0/task:0", "/job:mnist/replica:0/task:1", "/job:mnist/replica:0/task:2", "/job:mnist/replica:0/task:3", "/job:mnist/replica:0/task:4", "/job:mnist/replica:0/task:5"}), workers); } { std::vector<string> workers; cc->ListWorkersInJob("mnist", &workers); EXPECT_EQ( std::vector<string>( {"/job:mnist/replica:0/task:0", "/job:mnist/replica:0/task:1", "/job:mnist/replica:0/task:2", "/job:mnist/replica:0/task:3", "/job:mnist/replica:0/task:4", "/job:mnist/replica:0/task:5"}), workers); } { std::vector<string> workers; cc->ListWorkersInJob("other", &workers); EXPECT_TRUE(workers.empty()); } } TEST(GrpcChannelTest, HostPortsMultiChannelPerTarget) { GrpcChannelSpec spec; TF_EXPECT_OK( spec.AddHostPortsJob("mnist", {{0, "a:1"}, {1, "b:2"}, {2, "c:3"}})); ChannelCreationFunction channel_func = ConvertToChannelCreationFunction(NewHostPortGrpcChannel); tensorflow::RPCOptions rpc_options; rpc_options.set_num_channels_per_target(4); std::unique_ptr<GrpcChannelCache> cc( NewGrpcChannelCache(spec, channel_func, rpc_options)); EXPECT_EQ(nullptr, cc->FindWorkerChannel("invalid_target")); EXPECT_EQ(nullptr, cc->FindWorkerChannel("/job:other/replica:0/task:0")); EXPECT_EQ(nullptr, cc->FindWorkerChannel("/job:mnist/replica:0/task:3")); { std::vector<SharedGrpcChannelPtr> a_1_channels, b_2_channels, c_3_channels; for (int i = 0; i < 10; i++) { a_1_channels.push_back( cc->FindWorkerChannel("/job:mnist/replica:0/task:0")); b_2_channels.push_back( cc->FindWorkerChannel("/job:mnist/replica:0/task:1")); c_3_channels.push_back( cc->FindWorkerChannel("/job:mnist/replica:0/task:2")); } for (int i = 0; i < 6; i++) { EXPECT_EQ(a_1_channels[i].get(), a_1_channels[i + 4].get()); EXPECT_EQ(b_2_channels[i].get(), b_2_channels[i + 4].get()); EXPECT_EQ(c_3_channels[i].get(), c_3_channels[i + 4].get()); } for (int i = 0; i < 6; i++) { for (int j = 1; j < 4; j++) { EXPECT_NE(a_1_channels[i].get(), a_1_channels[i + j].get()); EXPECT_NE(b_2_channels[i].get(), b_2_channels[i + j].get()); EXPECT_NE(c_3_channels[i].get(), c_3_channels[i + j].get()); } } for (int i = 0; i < 6; i++) { for (int j = 0; j < 6; j++) { EXPECT_NE(a_1_channels[i].get(), b_2_channels[j].get()); EXPECT_NE(a_1_channels[i].get(), c_3_channels[j].get()); EXPECT_NE(b_2_channels[i].get(), c_3_channels[j].get()); } } } { std::vector<string> workers; cc->ListWorkers(&workers); EXPECT_EQ(std::vector<string>({"/job:mnist/replica:0/task:0", "/job:mnist/replica:0/task:1", "/job:mnist/replica:0/task:2"}), workers); } { std::vector<string> workers; cc->ListWorkersInJob("mnist", &workers); EXPECT_EQ(std::vector<string>({"/job:mnist/replica:0/task:0", "/job:mnist/replica:0/task:1", "/job:mnist/replica:0/task:2"}), workers); } { std::vector<string> workers; cc->ListWorkersInJob("other", &workers); EXPECT_TRUE(workers.empty()); } } TEST(GrpcChannelTest, HostPortsMultiGrpcMultiChannelPerTarget) { GrpcChannelSpec spec; TF_EXPECT_OK( spec.AddHostPortsJob("mnist", {{0, "a:1"}, {1, "b:2"}, {2, "c:3"}})); TF_EXPECT_OK( spec.AddHostPortsJob("mnist2", {{0, "a:1"}, {1, "b:2"}, {2, "c:3"}})); ChannelCreationFunction channel_func = ConvertToChannelCreationFunction(NewHostPortGrpcChannel); tensorflow::RPCOptions rpc_options; rpc_options.set_num_channels_per_target(4); std::unique_ptr<GrpcChannelCache> cc( NewGrpcChannelCache(spec, channel_func, rpc_options)); EXPECT_EQ(nullptr, cc->FindWorkerChannel("invalid_target")); EXPECT_EQ(nullptr, cc->FindWorkerChannel("/job:other/replica:0/task:0")); EXPECT_EQ(nullptr, cc->FindWorkerChannel("/job:mnist/replica:0/task:3")); EXPECT_NE(nullptr, cc->FindWorkerChannel("/job:mnist2/replica:0/task:0")); { std::vector<SharedGrpcChannelPtr> a_1_channels, b_2_channels, c_3_channels; for (int i = 0; i < 10; i++) { a_1_channels.push_back( cc->FindWorkerChannel("/job:mnist/replica:0/task:0")); b_2_channels.push_back( cc->FindWorkerChannel("/job:mnist/replica:0/task:1")); c_3_channels.push_back( cc->FindWorkerChannel("/job:mnist2/replica:0/task:0")); } for (int i = 0; i < 6; i++) { EXPECT_EQ(a_1_channels[i].get(), a_1_channels[i + 4].get()); EXPECT_EQ(b_2_channels[i].get(), b_2_channels[i + 4].get()); EXPECT_EQ(c_3_channels[i].get(), c_3_channels[i + 4].get()); } for (int i = 0; i < 6; i++) { for (int j = 1; j < 4; j++) { EXPECT_NE(a_1_channels[i].get(), a_1_channels[i + j].get()); EXPECT_NE(b_2_channels[i].get(), b_2_channels[i + j].get()); EXPECT_NE(c_3_channels[i].get(), c_3_channels[i + j].get()); } } for (int i = 0; i < 6; i++) { for (int j = 0; j < 6; j++) { EXPECT_NE(a_1_channels[i].get(), b_2_channels[j].get()); EXPECT_NE(a_1_channels[i].get(), c_3_channels[j].get()); EXPECT_NE(b_2_channels[i].get(), c_3_channels[j].get()); } } } { std::vector<string> workers; cc->ListWorkers(&workers); EXPECT_EQ( std::vector<string>( {"/job:mnist/replica:0/task:0", "/job:mnist/replica:0/task:1", "/job:mnist/replica:0/task:2", "/job:mnist2/replica:0/task:0", "/job:mnist2/replica:0/task:1", "/job:mnist2/replica:0/task:2"}), workers); } { std::vector<string> workers, workers2; cc->ListWorkersInJob("mnist", &workers); EXPECT_EQ(std::vector<string>({"/job:mnist/replica:0/task:0", "/job:mnist/replica:0/task:1", "/job:mnist/replica:0/task:2"}), workers); cc->ListWorkersInJob("mnist2", &workers2); EXPECT_EQ(std::vector<string>({"/job:mnist2/replica:0/task:0", "/job:mnist2/replica:0/task:1", "/job:mnist2/replica:0/task:2"}), workers2); } { std::vector<string> workers; cc->ListWorkersInJob("other", &workers); EXPECT_TRUE(workers.empty()); } } TEST(GrpcChannelTest, SparseHostPorts) { GrpcChannelSpec spec; TF_EXPECT_OK( spec.AddHostPortsJob("mnist", {{0, "a:1"}, {3, "d:4"}, {4, "e:5"}})); ChannelCreationFunction channel_func = ConvertToChannelCreationFunction(NewHostPortGrpcChannel); std::unique_ptr<GrpcChannelCache> cc( NewGrpcChannelCache(spec, channel_func, tensorflow::RPCOptions())); EXPECT_EQ(nullptr, cc->FindWorkerChannel("invalid_target")); EXPECT_EQ(nullptr, cc->FindWorkerChannel("/job:other/replica:0/task:0")); EXPECT_EQ(nullptr, cc->FindWorkerChannel("/job:mnist/replica:0/task:1")); EXPECT_EQ(nullptr, cc->FindWorkerChannel("/job:mnist/replica:0/task:2")); EXPECT_EQ(nullptr, cc->FindWorkerChannel("/job:mnist/replica:0/task:5")); { auto a_1_1 = cc->FindWorkerChannel("/job:mnist/replica:0/task:0"); auto a_1_2 = cc->FindWorkerChannel("/job:mnist/replica:0/task:0"); LOG(WARNING) << " Getting task 3"; auto d_4_1 = cc->FindWorkerChannel("/job:mnist/replica:0/task:3"); auto d_4_2 = cc->FindWorkerChannel("/job:mnist/replica:0/task:3"); LOG(WARNING) << " Getting task 4"; auto e_5_1 = cc->FindWorkerChannel("/job:mnist/replica:0/task:4"); auto e_5_2 = cc->FindWorkerChannel("/job:mnist/replica:0/task:4"); EXPECT_EQ(a_1_1.get(), a_1_2.get()); EXPECT_EQ(d_4_1.get(), d_4_2.get()); EXPECT_EQ(e_5_1.get(), e_5_2.get()); EXPECT_NE(a_1_1.get(), d_4_2.get()); EXPECT_NE(a_1_1.get(), e_5_2.get()); EXPECT_NE(d_4_1.get(), e_5_2.get()); } { std::vector<string> workers; cc->ListWorkers(&workers); std::sort(workers.begin(), workers.end()); EXPECT_EQ(std::vector<string>({"/job:mnist/replica:0/task:0", "/job:mnist/replica:0/task:3", "/job:mnist/replica:0/task:4"}), workers); } { std::vector<string> workers; cc->ListWorkersInJob("mnist", &workers); EXPECT_EQ(std::vector<string>({"/job:mnist/replica:0/task:0", "/job:mnist/replica:0/task:3", "/job:mnist/replica:0/task:4"}), workers); } { std::vector<string> workers; cc->ListWorkersInJob("other", &workers); EXPECT_TRUE(workers.empty()); } } TEST(GrpcChannelTest, NewHostPortGrpcChannelValidation) { SharedGrpcChannelPtr mock_ptr; EXPECT_TRUE(NewHostPortGrpcChannel("127.0.0.1:2222", nullptr, &mock_ptr) .ok()); EXPECT_TRUE(NewHostPortGrpcChannel("example.com:2222", nullptr, &mock_ptr) .ok()); EXPECT_TRUE(NewHostPortGrpcChannel("fqdn.example.com.:2222", nullptr, &mock_ptr) .ok()); EXPECT_TRUE(NewHostPortGrpcChannel("[2002:a9c:258e::]:2222", nullptr, &mock_ptr) .ok()); EXPECT_TRUE( NewHostPortGrpcChannel("[::]:2222", nullptr, &mock_ptr) .ok()); EXPECT_FALSE(NewHostPortGrpcChannel("example.com/abc:2222", nullptr, &mock_ptr) .ok()); EXPECT_FALSE(NewHostPortGrpcChannel("127.0.0.1:2222/", nullptr, &mock_ptr) .ok()); EXPECT_FALSE(NewHostPortGrpcChannel( "example.com/abc:", nullptr, &mock_ptr) .ok()); EXPECT_FALSE( NewHostPortGrpcChannel("[::]/:2222", nullptr, &mock_ptr) .ok()); EXPECT_FALSE( NewHostPortGrpcChannel("[::]:2222/", nullptr, &mock_ptr) .ok()); EXPECT_FALSE( NewHostPortGrpcChannel("[::]:", nullptr, &mock_ptr).ok()); EXPECT_TRUE( NewHostPortGrpcChannel("/bns/example", nullptr, &mock_ptr) .ok()); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/distributed_runtime/rpc/grpc_channel.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/distributed_runtime/rpc/grpc_channel_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3ca4d441-4a85-4359-b35d-0b039f6559a9
cpp
tensorflow/tensorflow
grpc_util
tensorflow/core/distributed_runtime/rpc/grpc_util.cc
tensorflow/core/data/service/grpc_util_test.cc
#include "tensorflow/core/distributed_runtime/rpc/grpc_util.h" #include "tensorflow/core/distributed_runtime/tensor_coding.h" namespace tensorflow { bool GrpcMaybeParseTensorResponse(::grpc::ByteBuffer* src, TensorResponse* dst) { ::tensorflow::GrpcByteSource byte_source(src); auto s = dst->ParseFrom(&byte_source); return s.ok(); } }
#include "tensorflow/core/data/service/grpc_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace grpc_util { TEST(GrpcUtil, WrapInvalidArgument) { grpc::Status s(grpc::StatusCode::INVALID_ARGUMENT, "test message"); Status wrapped = WrapError("wrapping message", s); ASSERT_EQ(wrapped, errors::InvalidArgument("wrapping message: test message")); } TEST(GrpcUtil, WrapOk) { grpc::Status s; Status wrapped = WrapError("wrapping message", s); ASSERT_EQ(wrapped, errors::Internal("Expected a non-ok grpc status. Wrapping " "message: wrapping message")); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/rpc/grpc_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/grpc_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1314d878-27b7-445b-b083-af17ea4b6829
cpp
tensorflow/tensorflow
executor
tensorflow/core/common_runtime/executor.cc
tensorflow/core/common_runtime/executor_test.cc
#include "tensorflow/core/common_runtime/executor.h" #include <algorithm> #include <atomic> #include <memory> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "absl/strings/str_join.h" #include "absl/time/time.h" #include "absl/types/optional.h" #include "tensorflow/core/activity_watcher/activity.h" #include "tensorflow/core/common_runtime/costmodel_manager.h" #include "tensorflow/core/common_runtime/entry.h" #include "tensorflow/core/common_runtime/executor_factory.h" #include "tensorflow/core/common_runtime/graph_view.h" #include "tensorflow/core/common_runtime/immutable_executor_state.h" #include "tensorflow/core/common_runtime/pending_counts.h" #include "tensorflow/core/common_runtime/propagator_state.h" #include "tensorflow/core/common_runtime/renamed_device.h" #include "tensorflow/core/common_runtime/simple_propagator_state.h" #include "tensorflow/core/common_runtime/step_stats_collector.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/collective.h" #include "tensorflow/core/framework/control_flow.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/framework/log_memory.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_segment.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_reference.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/edgeset.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_node_util.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/gtl/flatmap.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/lib/gtl/manual_constructor.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/platform/context.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/profile_utils/cpu_utils.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/lib/annotated_traceme.h" #include "tensorflow/core/profiler/lib/connected_traceme.h" #include "tensorflow/core/profiler/lib/context_types.h" #include "tensorflow/core/profiler/lib/scoped_annotation.h" #include "tensorflow/core/profiler/lib/traceme.h" #include "tensorflow/core/profiler/lib/traceme_encode.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/util/determinism.h" #include "tensorflow/core/util/managed_stack_trace.h" #include "tensorflow/core/util/tensor_slice_reader_cache.h" #include "tsl/platform/tracing.h" namespace tensorflow { namespace { static const Tensor* const kEmptyTensor = new Tensor; namespace nodestats { inline int64_t NowInNsec() { return EnvTime::NowNanos(); } void SetScheduled(NodeExecStatsInterface* stats, int64_t micros) { if (!stats) return; stats->SetScheduled(micros * EnvTime::kMicrosToNanos); } void SetAllStart(NodeExecStatsInterface* stats) { if (!stats) return; stats->RecordExecutorStarted(); } void SetOpStart(NodeExecStatsInterface* stats) { if (!stats) return; stats->RecordComputeStarted(); } void SetOpEnd(NodeExecStatsInterface* stats) { if (!stats) return; stats->RecordComputeEnded(); } void SetAllEnd(NodeExecStatsInterface* stats) { if (!stats) return; stats->RecordExecutorEnded(); } void SetOutput(NodeExecStatsInterface* stats, int slot, const Tensor* v) { if (!stats) return; stats->SetOutput(slot, v); } void SetMemory(NodeExecStatsInterface* stats, OpKernelContext* ctx) { if (!stats) return; stats->SetMemory(ctx); } } struct KernelTimer { uint64 start_cycles = profile_utils::CpuUtils::GetCurrentClockCycle(); uint64 ElapsedCycles() { return profile_utils::CpuUtils::GetCurrentClockCycle() - start_cycles; } }; typedef absl::InlinedVector<TensorValue, 4UL> TensorValueVec; typedef absl::InlinedVector<AllocatorAttributes, 4UL> AllocatorAttributeVec; class ExecutorImpl : public Executor { public: explicit ExecutorImpl(const LocalExecutorParams& p) : immutable_state_(p) {} Status Initialize(const Graph& graph) { TF_RETURN_IF_ERROR(immutable_state_.Initialize(graph)); kernel_stats_.Initialize(immutable_state_.graph_view()); return absl::OkStatus(); } private: void RunAsyncInternal(const Args& args, DoneCallback done) override; template <class PropagatorStateType> friend class ExecutorState; class KernelStats { public: KernelStats() = default; void Initialize(const GraphView& gview) { is_expensive_.resize(gview.num_nodes()); cost_estimates_ = std::make_unique<std::atomic_uint_fast64_t[]>(gview.num_nodes()); for (int32_t i = 0; i < gview.num_nodes(); ++i) { if (gview.node(i)) { is_expensive_[i] = gview.node(i)->kernel && gview.node(i)->kernel->IsExpensive(); cost_estimates_[i] = kInitialCostEstimateCycles; } } } bool IsExpensive(const NodeItem& node) const { return is_expensive_[node.node_id] && (cost_estimates_[node.node_id].load(std::memory_order_relaxed) > kOpIsExpensiveThresholdCycles); } bool HasExpensiveMarker(const NodeItem& node) const { return is_expensive_[node.node_id]; } void UpdateCostEstimate(const NodeItem& node, uint64 elapsed_cycles) { std::atomic_uint_fast64_t& cost_estimate = cost_estimates_[node.node_id]; auto prev_estimate = cost_estimate.load(std::memory_order_relaxed); uint64 new_estimate = ((kCostDecay - 1) * prev_estimate + elapsed_cycles) / kCostDecay; cost_estimate.store(new_estimate, std::memory_order_relaxed); } private: static constexpr uint64 kInitialCostEstimateCycles = 100 * 1000 * 1000; static constexpr uint64 kOpIsExpensiveThresholdCycles = 8000; static constexpr uint64 kCostDecay = 10; std::vector<bool> is_expensive_; std::unique_ptr<std::atomic_uint_fast64_t[]> cost_estimates_; }; ImmutableExecutorState immutable_state_; KernelStats kernel_stats_; ExecutorImpl(const ExecutorImpl&) = delete; void operator=(const ExecutorImpl&) = delete; }; template <class PropagatorStateType> class ExecutorState { public: ExecutorState(const Executor::Args& args, const ImmutableExecutorState& immutable_state_, ExecutorImpl::KernelStats* kernel_stats_); ~ExecutorState(); void RunAsync(Executor::DoneCallback done); private: typedef typename PropagatorStateType::TaggedNode TaggedNode; typedef typename PropagatorStateType::TaggedNodeReadyQueue TaggedNodeReadyQueue; typedef typename PropagatorStateType::TaggedNodeSeq TaggedNodeSeq; struct AsyncState; void Process(const TaggedNode& node, int64_t scheduled_nsec); void ProcessInline(TaggedNodeReadyQueue* inline_ready, int64_t scheduled_nsec); Status ProcessSync(const NodeItem& item, OpKernelContext::Params* params, EntryVector* outputs, NodeExecStatsInterface* stats); void ProcessAsync(const NodeItem& item, const OpKernelContext::Params& params, const TaggedNode& tagged_node, Entry* first_input, NodeExecStatsInterface* stats, activity_watcher::ActivityId activity_id); void ProcessNoop(NodeExecStatsInterface* stats); void ProcessConstTensor(const NodeItem& item, EntryVector* outputs, NodeExecStatsInterface* stats); Status PrepareInputs(const NodeItem& item, Entry* first_input, TensorValueVec* inputs, AllocatorAttributeVec* input_alloc_attrs, bool* is_input_dead); Status ProcessOutputs(const NodeItem& item, OpKernelContext* ctx, Entry* outputs, NodeExecStatsInterface* stats); bool NodeDone(const Status& s, TaggedNodeSeq* ready, NodeExecStatsInterface* stats, TaggedNodeReadyQueue* inline_ready); void ScheduleReady(TaggedNodeSeq* ready, TaggedNodeReadyQueue* inline_ready); template <typename Closure> void RunTask(Closure&& c, int sample_rate = 0); void Finish(); void ScheduleFinish(); DeviceContext* device_context_ = nullptr; const bool vlog_; const bool log_memory_; int64_t step_id_; int64_t trace_id_; int64_t start_time_usecs_ = 0; absl::optional<absl::Time> deadline_; static constexpr uint64 kInlineScheduleReadyThreshold = 500; RendezvousInterface* rendezvous_; CollectiveExecutor* collective_executor_ = nullptr; const ConfigProto* const session_config_; SessionState* session_state_; string session_handle_; const SessionMetadata* session_metadata_ = nullptr; TensorStore* tensor_store_; ScopedStepContainer* step_container_; StepStatsCollectorInterface* const stats_collector_; const tsl::tracing::EventCollector* const event_collector_; Context context_; checkpoint::TensorSliceReaderCacheWrapper* slice_reader_cache_; CallFrameInterface* call_frame_; const ImmutableExecutorState& immutable_state_; ExecutorImpl::KernelStats* const kernel_stats_; CancellationManager* cancellation_manager_; tsl::CoordinationServiceAgent* coordination_service_agent_; absl::optional<ManagedStackTrace> stack_trace_ = absl::nullopt; std::unique_ptr<DeviceBase> user_device_; Executor::Args::Runner runner_; bool sync_on_finish_; const bool run_all_kernels_inline_; PropagatorStateType propagator_; Executor::DoneCallback done_cb_; std::atomic_int_fast32_t num_outstanding_ops_; mutex num_deferred_ops_mu_; int64_t num_deferred_ops_ TF_GUARDED_BY(num_deferred_ops_mu_) = 0; bool finish_when_deferred_ops_done_ TF_GUARDED_BY(num_deferred_ops_mu_) = false; mutex mu_; Status status_ TF_GUARDED_BY(mu_); }; template <class PropagatorStateType> ExecutorState<PropagatorStateType>::ExecutorState( const Executor::Args& args, const ImmutableExecutorState& immutable_state, ExecutorImpl::KernelStats* kernel_stats) : vlog_(VLOG_IS_ON(1)), log_memory_(LogMemory::IsEnabled()), step_id_(args.step_id), trace_id_(args.function_trace_id ? *args.function_trace_id : step_id_), start_time_usecs_(args.start_time_usecs), deadline_(args.deadline), rendezvous_(args.rendezvous), collective_executor_(args.collective_executor), session_config_(args.session_config), session_state_(args.session_state), session_handle_(args.session_handle), session_metadata_(immutable_state.params().session_metadata), tensor_store_(args.tensor_store), step_container_(args.step_container), stats_collector_(args.stats_collector), event_collector_(tsl::tracing::GetEventCollector( tsl::tracing::EventCategory::kCompute)), context_(ContextKind::kThread), slice_reader_cache_(new checkpoint::TensorSliceReaderCacheWrapper), call_frame_(args.call_frame), immutable_state_(immutable_state), kernel_stats_(kernel_stats), cancellation_manager_(args.cancellation_manager), coordination_service_agent_(args.coordination_service_agent), stack_trace_(args.stack_trace), runner_(args.runner), sync_on_finish_(args.sync_on_finish), run_all_kernels_inline_(args.run_all_kernels_inline), propagator_(immutable_state, step_id_, vlog_), num_outstanding_ops_(0) { if (args.user_intra_op_threadpool != nullptr) { Device* device = immutable_state_.params().device; user_device_ = RenamedDevice::NewRenamedDevice( device->name(), device, false, false, args.user_intra_op_threadpool); } } template <class PropagatorStateType> ExecutorState<PropagatorStateType>::~ExecutorState() { if (device_context_) { device_context_->Unref(); } delete slice_reader_cache_; } template <class PropagatorStateType> template <typename Closure> void ExecutorState<PropagatorStateType>::RunTask(Closure&& c, int sample_rate) { alignas(64) static std::atomic<int64_t> num_enqueue_ops{0}; alignas(64) static std::atomic<int64_t> num_dequeue_ops{0}; auto n_enqueues = num_enqueue_ops.fetch_add(1, std::memory_order_relaxed); if (n_enqueues % std::max(16, sample_rate) == 0) { auto n_dequeues = num_dequeue_ops.load(std::memory_order_relaxed); metrics::UpdateGraphPendingQueueLength(n_enqueues - n_dequeues); } runner_([c = std::forward<Closure>(c)]() mutable { num_dequeue_ops.fetch_add(1, std::memory_order_relaxed); std::forward<Closure>(c)(); }); } template <class PropagatorStateType> void ExecutorState<PropagatorStateType>::RunAsync(Executor::DoneCallback done) { TaggedNodeSeq ready; Device* device = immutable_state_.params().device; const Status get_context_status = device->TryGetDeviceContext(&device_context_); if (!get_context_status.ok()) { delete this; done(get_context_status); return; } ready.reserve(immutable_state_.root_nodes().size()); propagator_.ActivateRoots(immutable_state_.root_nodes(), &ready); num_outstanding_ops_ = ready.size(); if (ready.empty()) { delete this; done(absl::OkStatus()); } else { done_cb_ = std::move(done); ScheduleReady(&ready, nullptr); } } template <class PropagatorStateType> struct ExecutorState<PropagatorStateType>::AsyncState { AsyncState(const OpKernelContext::Params& p, const TaggedNode& _tagged_node, const NodeItem* _item, Entry* _first_input, NodeExecStatsInterface* _stats) : saved_inputs(p.inputs.begin(), p.inputs.end()), saved_input_alloc_attrs(p.input_alloc_attrs.begin(), p.input_alloc_attrs.end()), params(p), tagged_node(_tagged_node), item(_item), first_input(_first_input), ctx(ParamsButClearingEigenGPUDevice(&params), item->num_outputs), stats(_stats) { params.inputs = saved_inputs; params.input_alloc_attrs = saved_input_alloc_attrs; } TensorValueVec saved_inputs; AllocatorAttributeVec saved_input_alloc_attrs; OpKernelContext::Params params; TaggedNode tagged_node; const NodeItem* item; Entry* first_input; OpKernelContext ctx; NodeExecStatsInterface* stats; private: OpKernelContext::Params* ParamsButClearingEigenGPUDevice( OpKernelContext::Params* p) { p->eigen_gpu_device = nullptr; return p; } }; bool MightTrace(const tsl::tracing::EventCollector* event_collector, bool is_expensive) { if (event_collector != nullptr) { return true; } if (tsl::profiler::ScopedAnnotation::IsEnabled()) return true; return tsl::profiler::TraceMe::Active( tsl::profiler::GetTFTraceMeLevel(is_expensive)); } template <class PropagatorStateType> Status ExecutorState<PropagatorStateType>::ProcessSync( const NodeItem& item, OpKernelContext::Params* params, EntryVector* outputs, NodeExecStatsInterface* stats) { Status s; OpKernelContext ctx(params, item.num_outputs); nodestats::SetOpStart(stats); OpKernel* op_kernel = item.kernel; Device* device = immutable_state_.params().device; const bool is_expensive = kernel_stats_->IsExpensive(item); if (TF_PREDICT_FALSE(MightTrace(event_collector_, is_expensive))) { tsl::tracing::ScopedRegion region(tsl::tracing::EventCategory::kCompute, op_kernel->name_view()); profiler::AnnotatedTraceMe activity( [op_kernel, &ctx] { return op_kernel->TraceString( ctx, tsl::profiler::TfOpDetailsEnabled()); }, tsl::profiler::GetTFTraceMeLevel(is_expensive)); device->Compute(op_kernel, &ctx); } else if (kernel_stats_->HasExpensiveMarker(item)) { KernelTimer timer; device->Compute(op_kernel, &ctx); constexpr int kKernelExecutionTrackingInvocationSkipCount = 16; if (is_expensive || timer.start_cycles % kKernelExecutionTrackingInvocationSkipCount == 0) { kernel_stats_->UpdateCostEstimate(item, timer.ElapsedCycles()); } } else { device->Compute(op_kernel, &ctx); } nodestats::SetOpEnd(stats); if (outputs->size() < item.num_outputs) outputs->resize(item.num_outputs); s = ProcessOutputs(item, &ctx, outputs->data(), stats); nodestats::SetMemory(stats, &ctx); return s; } template <class PropagatorStateType> void ExecutorState<PropagatorStateType>::ProcessAsync( const NodeItem& item, const OpKernelContext::Params& params, const TaggedNode& tagged_node, Entry* first_input, NodeExecStatsInterface* stats, activity_watcher::ActivityId activity_id) { AsyncOpKernel* async_kernel = item.kernel->AsAsync(); DCHECK(async_kernel != nullptr); AsyncState* state = new AsyncState(params, tagged_node, &item, first_input, stats); nodestats::SetOpStart(stats); { profiler::AnnotatedTraceMe activity( [async_kernel, state] { return async_kernel->TraceString( state->ctx, tsl::profiler::TfOpDetailsEnabled()); }, tsl::profiler::GetTFTraceMeLevel(false)); tsl::profiler::TraceMeProducer producer( [&] { return tsl::profiler::TraceMeEncode( "ExecutorState::ProcessAsync::Start", {{"name", async_kernel->name()}, {"kernel_type", async_kernel->type_string()}, {"step_id", step_id_}}); }, tsl::profiler::ContextType::kTfExecutor); auto done = [this, state, activity_id, ctx_id = producer.GetContextId()]() { tsl::profiler::TraceMeConsumer consumer( [&] { return profiler::TraceMeEncode( "ExecutorState::ProcessAsync::Done", {{"name", state->item->kernel->name()}, {"kernel_type", state->item->kernel->type_string()}, {"step_id", step_id_}}); }, tsl::profiler::ContextType::kTfExecutor, ctx_id); Device* device = immutable_state_.params().device; NodeExecStatsInterface* stats = state->stats; Entry* first_input = state->first_input; nodestats::SetOpEnd(stats); EntryVector outputs(state->item->num_outputs); Status s = ProcessOutputs(*state->item, &state->ctx, outputs.data(), stats); nodestats::SetMemory(stats, &state->ctx); if (vlog_) { VLOG(2) << "Async kernel done: " << state->item->node_id << " step " << step_id_ << " " << SummarizeNodeDef(state->item->kernel->def()) << (state->tagged_node.get_is_dead() ? " is dead" : "") << " device: " << device->name(); } const int num_inputs = state->item->num_inputs; for (int i = 0; i < num_inputs; ++i) { (first_input + i)->ClearVal(); } propagator_.MaybeMarkCompleted(state->tagged_node); activity_watcher::ActivityEnd(activity_id); TaggedNodeSeq ready; if (s.ok()) { propagator_.PropagateOutputs(state->tagged_node, &outputs, &ready); } outputs.clear(); const bool completed = NodeDone(s, &ready, stats, nullptr); delete state; if (completed) ScheduleFinish(); }; immutable_state_.params().device->ComputeAsync(async_kernel, &state->ctx, std::move(done)); } } template <class PropagatorStateType> void ExecutorState<PropagatorStateType>::ProcessNoop( NodeExecStatsInterface* stats) { nodestats::SetOpStart(stats); nodestats::SetOpEnd(stats); } template <class PropagatorStateType> void ExecutorState<PropagatorStateType>::ProcessConstTensor( const NodeItem& item, EntryVector* outputs, NodeExecStatsInterface* stats) { nodestats::SetOpStart(stats); nodestats::SetOpEnd(stats); Entry& output = (*outputs)[0]; output.state = Entry::State::HAS_CONST_TENSOR; output.const_tensor = item.const_tensor; output.alloc_attr = item.output_attrs()[0]; } template <class PropagatorStateType> void ExecutorState<PropagatorStateType>::Process(const TaggedNode& tagged_node, int64_t scheduled_nsec) { tsl::profiler::TraceMe traceme("ExecutorState::Process Scheduled", tsl::profiler::TraceMeLevel::kVerbose); TaggedNodeReadyQueue inline_ready; inline_ready.push_back(tagged_node); return ProcessInline(&inline_ready, scheduled_nsec); } template <class PropagatorStateType> void ExecutorState<PropagatorStateType>::ProcessInline( TaggedNodeReadyQueue* inline_ready, int64_t scheduled_nsec) { WithContext wc(context_); auto ready = std::make_unique<TaggedNodeSeq>(); auto inputs = std::make_unique<TensorValueVec>(); AllocatorAttributeVec input_alloc_attrs; auto params = std::make_unique<OpKernelContext::Params>(); params->step_id = step_id_; Device* device = immutable_state_.params().device; if (user_device_) { params->device = user_device_.get(); } else { params->device = device; } params->start_time_usecs = start_time_usecs_; params->deadline = deadline_; params->log_memory = log_memory_; params->rendezvous = rendezvous_; params->collective_executor = collective_executor_; params->session_config = session_config_; params->session_state = session_state_; params->session_handle = session_handle_; params->session_metadata = session_metadata_; params->tensor_store = tensor_store_; params->cancellation_manager = cancellation_manager_; params->coordination_service_agent = coordination_service_agent_; params->stack_trace = stack_trace_; params->call_frame = call_frame_; params->function_library = immutable_state_.params().function_library; params->resource_manager = device->resource_manager(); params->step_container = step_container_; params->slice_reader_cache = slice_reader_cache_; params->runner = &runner_; params->run_all_kernels_inline = run_all_kernels_inline_; params->stats_collector = stats_collector_; params->inc_num_deferred_ops_function = [this]() { mutex_lock lock(num_deferred_ops_mu_); num_deferred_ops_++; }; params->dec_num_deferred_ops_function = [this]() { bool finish_when_deferred_ops_done = false; { mutex_lock lock(num_deferred_ops_mu_); num_deferred_ops_--; if (num_deferred_ops_ == 0) { finish_when_deferred_ops_done = finish_when_deferred_ops_done_; } } if (finish_when_deferred_ops_done) Finish(); }; params->op_device_context = device_context_; Status s; NodeExecStatsInterface* stats = nullptr; EntryVector outputs(1); bool completed = false; int64_t last_iter_num = -1; std::unique_ptr<tsl::profiler::TraceMeConsumer> iteration_scope; while (!inline_ready->empty()) { TaggedNode tagged_node = inline_ready->front(); int64_t current_iter_num = tagged_node.get_iter_num(); if (current_iter_num != last_iter_num) { iteration_scope = std::make_unique<tsl::profiler::TraceMeConsumer>( [&] { return profiler::TraceMeEncode( "ExecutorState::Process", {{"id", step_id_}, {"iter_num", tagged_node.get_iter_num()}}); }, tsl::profiler::ContextType::kTfExecutor, trace_id_, tsl::profiler::TraceMeLevel::kInfo); last_iter_num = current_iter_num; } inline_ready->pop_front(); const NodeItem& item = tagged_node.get_node_item(); const int id = item.node_id; propagator_.MaybeMarkStarted(tagged_node); const activity_watcher::ActivityId activity_id = activity_watcher::ActivityStart( [&]() { return std::make_unique<activity_watcher::Activity>( "ExecutorState::Process", activity_watcher::ActivityCategory::kMisc, activity_watcher::Activity::Attributes{ {"node_name", item.kernel->def().name()}, {"op", item.kernel->def().op()}, {"iter_num", absl::StrCat(tagged_node.get_iter_num())}, {"step_id", absl::StrCat(params->step_id)}, {"node_id", absl::StrCat(id)}, {"device", device->name()}, {"inputs", absl::StrJoin(item.kernel->def().input(), "; ")}, {"original_node_names", absl::StrJoin(item.kernel->def() .experimental_debug_info() .original_node_names(), "; ")}, {"original_func_names", absl::StrJoin(item.kernel->def() .experimental_debug_info() .original_func_names(), "; ")}, }); }, 2); params->track_allocations = false; stats = nullptr; if (stats_collector_ && !tagged_node.get_is_dead()) { stats = stats_collector_->CreateNodeExecStats(&item.kernel->def()); params->track_allocations = stats ? stats->TrackAllocations() : false; nodestats::SetScheduled(stats, scheduled_nsec); nodestats::SetAllStart(stats); } if (vlog_) { VLOG(1) << "Process node: " << id << " step " << params->step_id << " " << SummarizeNodeDef(item.kernel->def()) << (tagged_node.get_is_dead() ? " is dead" : "") << " device: " << device->name(); } Entry* first_input = propagator_.GetInputTensors(tagged_node); bool launched_asynchronously = false; if (tagged_node.get_is_dead() && !item.is_transfer_node) { if (outputs.size() < item.num_outputs) outputs.resize(item.num_outputs); } else if (TF_PREDICT_FALSE(item.is_noop)) { ProcessNoop(stats); } else if (item.const_tensor != nullptr && !params->track_allocations) { ProcessConstTensor(item, &outputs, stats); } else { bool is_input_dead = false; s = PrepareInputs(item, first_input, inputs.get(), &input_alloc_attrs, &is_input_dead); if (!s.ok()) { const int num_inputs = item.num_inputs; for (int i = 0; i < num_inputs; ++i) { (first_input + i)->ClearVal(); } propagator_.MaybeMarkCompleted(tagged_node); activity_watcher::ActivityEnd(activity_id); completed = NodeDone(s, ready.get(), stats, inline_ready); continue; } params->op_kernel = item.kernel; params->frame_iter = propagator_.GetFrameAndIter(tagged_node); params->is_input_dead = is_input_dead; params->output_attr_array = item.output_attrs(); params->forward_from_array = item.forward_from(); params->outputs_required_array = item.outputs_required.get(); params->inputs = *inputs; params->input_alloc_attrs = input_alloc_attrs; if (item.kernel_is_async) { ProcessAsync(item, *params, tagged_node, first_input, stats, activity_id); launched_asynchronously = true; } else { s = ProcessSync(item, params.get(), &outputs, stats); } } if (!launched_asynchronously) { if (vlog_) { VLOG(2) << "Synchronous kernel done: " << id << " step " << params->step_id << " " << SummarizeNodeDef(item.kernel->def()) << (tagged_node.get_is_dead() ? " is dead: " : "") << " device: " << device->name(); } const int num_inputs = item.num_inputs; for (int i = 0; i < num_inputs; ++i) { (first_input + i)->ClearVal(); } propagator_.MaybeMarkCompleted(tagged_node); activity_watcher::ActivityEnd(activity_id); if (s.ok()) { propagator_.PropagateOutputs(tagged_node, &outputs, ready.get()); } const int num_outputs = item.num_outputs; for (int i = 0; i < num_outputs; ++i) { outputs[i].ClearVal(); } if (stats) { scheduled_nsec = nodestats::NowInNsec(); } completed = NodeDone(s, ready.get(), stats, inline_ready); } } if (completed) ScheduleFinish(); } template <class PropagatorStateType> Status ExecutorState<PropagatorStateType>::PrepareInputs( const NodeItem& item, Entry* first_input, TensorValueVec* inputs, AllocatorAttributeVec* input_alloc_attrs, bool* is_input_dead) { inputs->resize(item.num_inputs); input_alloc_attrs->resize(item.num_inputs); *is_input_dead = false; for (int i = 0; i < item.num_inputs; ++i) { const bool expect_ref = TF_PREDICT_FALSE(item.is_any_input_ref_typed) && IsRefType(item.input_type(i)); Entry* entry = first_input + i; (*input_alloc_attrs)[i] = entry->alloc_attr; TensorValue* inp = &(*inputs)[i]; switch (entry->state) { case Entry::State::NO_VALUE: { inp->mutex_if_ref = nullptr; if (item.is_merge) { inp->tensor = nullptr; } else { DCHECK(item.is_transfer_node) << item.kernel->name() << " - input " << i; entry->state = Entry::State::HAS_CONST_TENSOR; entry->const_tensor = kEmptyTensor; inp->tensor = const_cast<Tensor*>(kEmptyTensor); *is_input_dead = true; } break; } case Entry::State::HAS_VALUE: { if (TF_PREDICT_FALSE(expect_ref)) { return AttachDef( errors::InvalidArgument(i, "-th input expects a ref type"), item.kernel->def()); } inp->mutex_if_ref = nullptr; inp->tensor = entry->val.get(); break; } case Entry::State::HAS_CONST_TENSOR: { if (TF_PREDICT_FALSE(expect_ref)) { return AttachDef( errors::InvalidArgument(i, "-th input expects a ref type"), item.kernel->def()); } inp->mutex_if_ref = nullptr; inp->tensor = const_cast<Tensor*>(entry->const_tensor); break; } case Entry::State::HAS_REF_TENSOR: { { tf_shared_lock ml(*entry->ref_tensor.mu); if (TF_PREDICT_FALSE(!entry->ref_tensor.tensor->IsInitialized() && !item.is_initialization_op)) { return AttachDef(errors::FailedPrecondition( "Attempting to use uninitialized value ", item.kernel->requested_input(i)), item.kernel->def()); } } if (expect_ref) { inp->mutex_if_ref = entry->ref_tensor.mu; inp->tensor = entry->ref_tensor.tensor; } else { { mutex* ref_mu = entry->ref_tensor.mu; Tensor* ref_tensor = entry->ref_tensor.tensor; tf_shared_lock l(*ref_mu); entry->val.Init(*ref_tensor); } entry->state = Entry::State::HAS_VALUE; inp->mutex_if_ref = nullptr; inp->tensor = entry->val.get(); if (TF_PREDICT_FALSE(item.input_type(i) != inp->tensor->dtype())) { return AttachDef( errors::InvalidArgument( i, "-th input expects type ", DataTypeString(item.input_type(i)), " but automatically dereferenced input tensor has type ", DataTypeString(inp->tensor->dtype())), item.kernel->def()); } } break; } } } return absl::OkStatus(); } template <class PropagatorStateType> Status ExecutorState<PropagatorStateType>::ProcessOutputs( const NodeItem& item, OpKernelContext* ctx, Entry* outputs, NodeExecStatsInterface* stats) { Status s = ctx->status(); if (!s.ok()) { s = AttachDef(s, item.kernel->def()); if (vlog_ && VLOG_IS_ON(1)) { LOG(WARNING) << this << " Compute status: " << s; } if (s.code() == error::RESOURCE_EXHAUSTED) { if (stats_collector_) { string err = stats_collector_->ReportAllocsOnResourceExhausted(s.message()); s = errors::CreateWithUpdatedMessage(s, strings::StrCat(s.message(), err)); } else { s = errors::CreateWithUpdatedMessage( s, strings::StrCat( s.message(), "\nHint: If you want to see a list of allocated tensors when " "OOM happens, add report_tensor_allocations_upon_oom " "to RunOptions for current allocation info. This isn't " "available when running in Eager mode.\n")); } } else if (s.code() == error::UNAVAILABLE && !item.is_distributed_communication) { s = errors::ReplaceErrorFromNonCommunicationOps(s, item.kernel->name()); } return ADD_SOURCE_LOCATION(s); } for (int i = 0; i < item.num_outputs; ++i) { const TensorValue val = ctx->release_output(i); Entry* out = &outputs[i]; DCHECK(out->state == Entry::State::NO_VALUE); if (val.tensor == nullptr) { if (!(item.is_recv_or_switch || (item.outputs_required && !item.outputs_required[i]))) { s.Update(errors::Internal("Missing ", i, "-th output from ", FormatNodeDefForError(item.kernel->def()))); } } else { out->alloc_attr = ctx->output_alloc_attr(i); DataType dtype = val.dtype_safe(); if (dtype == item.output_type(i)) { if (stats && val.tensor->IsInitialized()) { nodestats::SetOutput(stats, i, val.tensor); } if (val.is_ref()) { out->state = Entry::State::HAS_REF_TENSOR; out->ref_tensor.tensor = val.tensor; out->ref_tensor.mu = val.mutex_if_ref; if (log_memory_) { Tensor to_log; { tf_shared_lock l(*out->ref_tensor.mu); to_log = *out->ref_tensor.tensor; } LogMemory::RecordTensorOutput(ctx->op_kernel().name(), ctx->step_id(), i, to_log); } } else { out->state = Entry::State::HAS_VALUE; out->val.Init(std::move(*val.tensor)); if (log_memory_) { LogMemory::RecordTensorOutput(ctx->op_kernel().name(), ctx->step_id(), i, *out->val); } } } else { s.Update( errors::Internal("Output ", i, " of type ", DataTypeString(dtype), " does not match declared output type ", DataTypeString(item.output_type(i)), " for node ", FormatNodeDefForError(item.kernel->def()))); } } if (!val.is_ref()) { delete val.tensor; } } return s; } template <class PropagatorStateType> bool ExecutorState<PropagatorStateType>::NodeDone( const Status& s, TaggedNodeSeq* ready, NodeExecStatsInterface* stats, TaggedNodeReadyQueue* inline_ready) { if (stats) { nodestats::SetAllEnd(stats); DCHECK_NE(stats_collector_, nullptr); stats->Done(immutable_state_.params().device->name()); } if (TF_PREDICT_TRUE(s.ok())) { const size_t ready_size = ready->size(); if (ready_size == 0) { return num_outstanding_ops_.fetch_sub(1) == 1; } else { if (ready_size > 1) { num_outstanding_ops_.fetch_add(ready_size - 1, std::memory_order_relaxed); } ScheduleReady(ready, inline_ready); return false; } } else { bool abort_run = false; Status maybe_derived_s(s); { mutex_lock l(mu_); if (status_.ok()) { abort_run = true; if (cancellation_manager_ && cancellation_manager_->IsCancelled() && (errors::IsCancelled(s) || errors::IsAborted(s))) { status_ = StatusGroup::MakeDerived(s); maybe_derived_s = status_; } else { status_ = s; } } } if (abort_run) { TRACEPRINTF("StartAbort: %s", s.ToString()); if (cancellation_manager_) { VLOG(1) << "[" << immutable_state_.params().device->name() << "] Executor start aborting: " << s; } if (rendezvous_) { rendezvous_->StartAbort(s); } if (cancellation_manager_) { cancellation_manager_->StartCancelWithStatus(maybe_derived_s); } else if (collective_executor_) { collective_executor_->StartAbort(s); } } return num_outstanding_ops_.fetch_sub(1) == 1; } } template <class PropagatorStateType> void ExecutorState<PropagatorStateType>::ScheduleReady( TaggedNodeSeq* ready, TaggedNodeReadyQueue* inline_ready) { tsl::profiler::TraceMe activity( [&]() { return strings::StrCat( "ExecutorState::ScheduleReady#", "ready_size=", (ready == nullptr ? -1 : ready->size()), ",inline_ready_size=", (inline_ready == nullptr ? -1 : inline_ready->size()), "#"); }, tsl::profiler::GetTFTraceMeLevel(false)); DCHECK(!ready->empty()); int64_t scheduled_nsec = 0; if (stats_collector_) { scheduled_nsec = nodestats::NowInNsec(); } if (run_all_kernels_inline_) { if (inline_ready == nullptr) { RunTask([this, ready = std::move(*ready), scheduled_nsec]() { for (auto& tagged_node : ready) { Process(tagged_node, scheduled_nsec); } }); } else { for (auto& tagged_node : *ready) { inline_ready->push_back(tagged_node); } } } else { const TaggedNode* curr_expensive_node = nullptr; TaggedNodeSeq expensive_nodes; if (inline_ready == nullptr) { for (auto& tagged_node : *ready) { RunTask([=]() { Process(tagged_node, scheduled_nsec); }, ready->size()); } } else { for (auto& tagged_node : *ready) { const NodeItem& item = *tagged_node.node_item; if (tagged_node.get_is_dead() || !kernel_stats_->IsExpensive(item)) { inline_ready->push_back(tagged_node); } else { if (curr_expensive_node) { expensive_nodes.push_back(*curr_expensive_node); } curr_expensive_node = &tagged_node; } } } if (curr_expensive_node) { if (inline_ready->empty()) { inline_ready->push_back(*curr_expensive_node); } else { expensive_nodes.push_back(*curr_expensive_node); } } if (!expensive_nodes.empty()) { if (expensive_nodes.size() < kInlineScheduleReadyThreshold) { for (auto& tagged_node : expensive_nodes) { RunTask(std::bind(&ExecutorState::Process, this, tagged_node, scheduled_nsec), expensive_nodes.size()); } } else { auto it = expensive_nodes.begin(); while (it < expensive_nodes.end()) { auto end = it; std::advance(end, kInlineScheduleReadyThreshold); if (end > expensive_nodes.end()) { end = expensive_nodes.end(); } TaggedNodeSeq ready_chunk{it, end}; RunTask( [this, ready_chunk = std::move(ready_chunk), scheduled_nsec]() { tsl::profiler::TraceMe activity( [&]() { return strings::StrCat( "ExecutorState::ScheduleReady::" "ChildThreadExpensiveNodes#", "ready_chunk_size=", ready_chunk.size(), "#"); }, tsl::profiler::GetTFTraceMeLevel(false)); for (auto& tagged_node : ready_chunk) { RunTask(std::bind(&ExecutorState::Process, this, tagged_node, scheduled_nsec), ready_chunk.size()); } }); it = end; } } } } ready->clear(); } template <class PropagatorStateType> void ExecutorState<PropagatorStateType>::ScheduleFinish() { { mutex_lock lock(num_deferred_ops_mu_); if (num_deferred_ops_ > 0) { finish_when_deferred_ops_done_ = true; return; } } Finish(); } template <class PropagatorStateType> void ExecutorState<PropagatorStateType>::Finish() { mu_.lock(); auto status = status_; auto done_cb = std::move(done_cb_); auto runner = std::move(runner_); mu_.unlock(); int64_t trace_id = trace_id_; int64_t step_id = step_id_; CHECK(done_cb != nullptr); Device* device = immutable_state_.params().device; if (vlog_ && !status.ok() && VLOG_IS_ON(1)) { propagator_.DumpState(); } if (!device->AllowsSyncOnCompletion()) { status.Update(device->RefreshStatus()); if (!status.ok()) { if (rendezvous_) { rendezvous_->StartAbort(status); } if (cancellation_manager_) { cancellation_manager_->StartCancelWithStatus(status); } else if (collective_executor_) { collective_executor_->StartAbort(status); } } delete this; runner([step_id, trace_id, status, done_cb = std::move(done_cb)]() { tsl::profiler::TraceMeConsumer activity( [&] { return tsl::profiler::TraceMeEncode("ExecutorDoneCallback", {{"id", step_id}}); }, tsl::profiler::ContextType::kTfExecutor, trace_id, tsl::profiler::TraceMeLevel::kInfo); done_cb(status); }); return; } if (sync_on_finish_ && status.ok()) { device->Sync([this, step_id, trace_id, runner = std::move(runner), done_cb = std::move(done_cb)](const Status& status) mutable { delete this; runner([step_id, trace_id, status, done_cb = std::move(done_cb)]() { tsl::profiler::TraceMeConsumer activity( [&] { return tsl::profiler::TraceMeEncode("ExecutorDoneCallback", {{"id", step_id}}); }, tsl::profiler::ContextType::kTfExecutor, trace_id, tsl::profiler::TraceMeLevel::kInfo); done_cb(status); }); }); } else { delete this; runner([step_id, trace_id, status, done_cb = std::move(done_cb)]() { tsl::profiler::TraceMeConsumer activity( [&] { return tsl::profiler::TraceMeEncode("ExecutorDoneCallback", {{"id", step_id}}); }, tsl::profiler::ContextType::kTfExecutor, trace_id, tsl::profiler::TraceMeLevel::kInfo); done_cb(status); }); } } void ExecutorImpl::RunAsyncInternal(const Args& args, DoneCallback done) { if (OpOrderDeterminismRequired()) { (new ExecutorState<OrderedPropagatorState>(args, immutable_state_, &kernel_stats_)) ->RunAsync(std::move(done)); } else if (immutable_state_.requires_control_flow_support()) { (new ExecutorState<PropagatorState>(args, immutable_state_, &kernel_stats_)) ->RunAsync(std::move(done)); } else { (new ExecutorState<SimplePropagatorState>(args, immutable_state_, &kernel_stats_)) ->RunAsync(std::move(done)); } } } Status NewLocalExecutor(const LocalExecutorParams& params, const Graph& graph, Executor** executor) { ExecutorImpl* impl = new ExecutorImpl(params); const Status s = impl->Initialize(graph); if (s.ok()) { *executor = impl; } else { delete impl; } return s; } Status CreateNonCachedKernel(Device* device, FunctionLibraryRuntime* flib, const std::shared_ptr<const NodeProperties>& props, int graph_def_version, OpKernel** kernel) { const auto device_type = DeviceType(device->attributes().device_type()); auto allocator = device->GetAllocator(AllocatorAttributes()); return CreateOpKernel(device_type, device, allocator, flib, device->resource_manager(), props, graph_def_version, kernel); } void DeleteNonCachedKernel(OpKernel* kernel) { delete kernel; } namespace { class DefaultExecutorRegistrar { public: DefaultExecutorRegistrar() { Factory* factory = new Factory; ExecutorFactory::Register("", factory); ExecutorFactory::Register("DEFAULT", factory); } private: class Factory : public ExecutorFactory { Status NewExecutor(const LocalExecutorParams& params, const Graph& graph, std::unique_ptr<Executor>* out_executor) override { Executor* ret = nullptr; TF_RETURN_IF_ERROR(NewLocalExecutor(params, std::move(graph), &ret)); out_executor->reset(ret); return absl::OkStatus(); } }; }; static DefaultExecutorRegistrar registrar; } }
#include "tensorflow/core/common_runtime/executor.h" #include <algorithm> #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/control_flow_ops_internal.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/common_runtime/lower_functional_ops.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/common_runtime/step_stats_collector.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/local_rendezvous.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/rendezvous.h" #include "tensorflow/core/framework/step_stats.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/testlib.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/random/simple_philox.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { class ExecutorTest : public ::testing::Test { protected: ExecutorTest() : device_(DeviceFactory::NewDevice("CPU", {}, "/job:localhost/replica:0/task:0")), step_stats_collector_(&step_stats_) { SessionOptions options; thread_pool_ = ComputePool(options); } ~ExecutorTest() override { while (!rendez_->RefCountIsOne()) { LOG(INFO) << "Waiting for rendezvous to release. Current refcount: " << rendez_->RefCount(); absl::SleepFor(absl::Milliseconds(200)); LocalRendezvous::ReleaseAbortedRendezvous(); } CHECK(rendez_->Unref()); delete exec_; } void Create(std::unique_ptr<const Graph> graph) { const int version = graph->versions().producer(); LocalExecutorParams params; params.device = device_.get(); params.create_kernel = [this, version](const std::shared_ptr<const NodeProperties>& props, OpKernel** kernel) { return CreateNonCachedKernel(device_.get(), nullptr, props, version, kernel); }; params.delete_kernel = [](OpKernel* kernel) { DeleteNonCachedKernel(kernel); }; rendez_ = NewLocalRendezvous(); delete exec_; TF_CHECK_OK(NewLocalExecutor(params, *graph, &exec_)); runner_ = [this](std::function<void()> fn) { thread_pool_->Schedule(fn); }; } Status Run(Rendezvous* rendez) { Executor::Args args; args.rendezvous = rendez; args.stats_collector = &step_stats_collector_; args.runner = runner_; return exec_->Run(args); } thread::ThreadPool* thread_pool_ = nullptr; std::unique_ptr<Device> device_; Executor* exec_ = nullptr; StepStatsCollector step_stats_collector_; StepStats step_stats_; Executor::Args::Runner runner_; Rendezvous* rendez_ = nullptr; }; Tensor V(const float val) { Tensor tensor(DT_FLOAT, TensorShape({})); tensor.scalar<float>()() = val; return tensor; } Tensor VI(const int32_t val) { Tensor tensor(DT_INT32, TensorShape({})); tensor.scalar<int32>()() = val; return tensor; } Tensor VB(const bool val) { Tensor tensor(DT_BOOL, TensorShape({})); tensor.scalar<bool>()() = val; return tensor; } Tensor VD(const double val) { Tensor tensor(DT_DOUBLE, TensorShape({})); tensor.scalar<double>()() = val; return tensor; } float V(const Tensor& tensor) { CHECK_EQ(tensor.dtype(), DT_FLOAT); CHECK(TensorShapeUtils::IsScalar(tensor.shape())); return tensor.scalar<float>()(); } static uint64 kIncarnation = 1; Rendezvous::ParsedKey Key(const string& sender, const uint64 incarnation, const string& receiver, const string& name) { Rendezvous::ParsedKey result; CHECK( Rendezvous::ParseKey(Rendezvous::CreateKey(sender, incarnation, receiver, name, FrameAndIter(0, 0)), &result) .ok()); return result; } #define ALICE "/job:j/replica:0/task:0/cpu:0" #define BOB "/job:j/replica:0/task:0/device:GPU:0" TEST_F(ExecutorTest, SimpleAdd) { auto g = std::make_unique<Graph>(OpRegistry::Global()); auto in0 = test::graph::Recv(g.get(), "a", "float", ALICE, 1, BOB); auto in1 = test::graph::Recv(g.get(), "b", "float", ALICE, 1, BOB); auto tmp = test::graph::Add(g.get(), in0, in1); test::graph::Send(g.get(), tmp, "c", BOB, 1, ALICE); Create(std::move(g)); Rendezvous::Args args; TF_ASSERT_OK(rendez_->Send(Key(ALICE, kIncarnation, BOB, "a"), args, V(1.0), false)); TF_ASSERT_OK(rendez_->Send(Key(ALICE, kIncarnation, BOB, "b"), args, V(1.0), false)); TF_ASSERT_OK(Run(rendez_)); Tensor out = V(-1); bool is_dead = false; TF_ASSERT_OK( rendez_->Recv(Key(BOB, kIncarnation, ALICE, "c"), args, &out, &is_dead)); EXPECT_EQ(2.0, V(out)); } TEST_F(ExecutorTest, SelfAdd) { auto g = std::make_unique<Graph>(OpRegistry::Global()); auto v = test::graph::Recv(g.get(), "a", "float", ALICE, 1, BOB); const int N = 10; for (int i = 1; i <= N; ++i) { v = test::graph::Add(g.get(), v, v); } test::graph::Send(g.get(), v, "b", BOB, 1, ALICE); Create(std::move(g)); Rendezvous::Args args; TF_ASSERT_OK( rendez_->Send(Key(ALICE, kIncarnation, BOB, "a"), args, V(1.0), false)); TF_ASSERT_OK(Run(rendez_)); Tensor out = V(-1); bool is_dead = false; TF_ASSERT_OK( rendez_->Recv(Key(BOB, kIncarnation, ALICE, "b"), args, &out, &is_dead)); EXPECT_EQ(1024.0, V(out)); } void BuildTree(int N, Graph* g) { CHECK_GT(N, 1); auto in = test::graph::Recv(g, "a", "float", ALICE, 1, BOB); std::vector<Node*> nodes; int i = 0; for (; i < N; ++i) { nodes.push_back(test::graph::Identity(g, in, 0)); } random::PhiloxRandom philox(testing::RandomSeed(), 17); random::SimplePhilox rnd(&philox); while (nodes.size() > 1) { int x = rnd.Uniform(nodes.size()); auto in0 = nodes[x]; nodes[x] = nodes.back(); nodes.resize(nodes.size() - 1); x = rnd.Uniform(nodes.size()); auto in1 = nodes[x]; nodes[x] = test::graph::Add(g, in0, in1); } test::graph::Send(g, nodes.back(), "b", BOB, 1, ALICE); } TEST_F(ExecutorTest, RandomTree) { auto g = std::make_unique<Graph>(OpRegistry::Global()); BuildTree(4096, g.get()); Create(std::move(g)); Rendezvous::Args args; TF_ASSERT_OK( rendez_->Send(Key(ALICE, kIncarnation, BOB, "a"), args, V(1.0), false)); TF_ASSERT_OK(Run(rendez_)); Tensor out = V(-1); bool is_dead = false; TF_ASSERT_OK( rendez_->Recv(Key(BOB, kIncarnation, ALICE, "b"), args, &out, &is_dead)); EXPECT_EQ(4096.0, V(out)); } void BuildConcurrentAddAssign(Graph* g) { auto one = test::graph::Constant(g, V(1.0)); auto var = test::graph::Var(g, DT_FLOAT, TensorShape({})); auto init = test::graph::Assign(g, var, one); auto out = test::graph::Send(g, var, "out", ALICE, kIncarnation, BOB); for (int i = 0; i < 1024; ++i) { auto add = test::graph::Add(g, var, one); g->AddControlEdge(init, add); auto assign = test::graph::Assign(g, var, add); g->AddControlEdge(assign, out); } } #ifndef THREAD_SANITIZER TEST_F(ExecutorTest, ConcurrentAddAssign) { auto g = std::make_unique<Graph>(OpRegistry::Global()); BuildConcurrentAddAssign(g.get()); Create(std::move(g)); for (int iters = 0; iters < 16; ++iters) { Rendezvous* rendez = NewLocalRendezvous(); TF_ASSERT_OK(Run(rendez)); Rendezvous::Args args; Tensor out; bool is_dead; TF_ASSERT_OK(rendez->Recv(Key(ALICE, kIncarnation, BOB, "out"), args, &out, &is_dead)); VLOG(1) << "Get " << V(out); EXPECT_LE(V(out), 1025.0); rendez->Unref(); } } #endif TEST_F(ExecutorTest, SimpleSwitchLive) { auto g = std::make_unique<Graph>(OpRegistry::Global()); auto in0 = test::graph::Recv(g.get(), "a", "float", ALICE, 1, BOB); auto in1 = test::graph::Constant(g.get(), VB(false)); auto tmp = test::graph::Switch(g.get(), in0, in1); test::graph::Send(g.get(), tmp, "c", BOB, 1, ALICE); Create(std::move(g)); Rendezvous::Args args; TF_ASSERT_OK(rendez_->Send(Key(ALICE, kIncarnation, BOB, "a"), args, V(1.0), false)); TF_ASSERT_OK(Run(rendez_)); Tensor out = V(-1); bool is_dead = false; TF_ASSERT_OK( rendez_->Recv(Key(BOB, kIncarnation, ALICE, "c"), args, &out, &is_dead)); EXPECT_EQ(1.0, V(out)); EXPECT_FALSE(is_dead); } TEST_F(ExecutorTest, SimpleSwitchDead) { auto g = std::make_unique<Graph>(OpRegistry::Global()); auto in0 = test::graph::Recv(g.get(), "a", "float", ALICE, 1, BOB); auto in1 = test::graph::Constant(g.get(), VB(true)); auto tmp = test::graph::Switch(g.get(), in0, in1); test::graph::Send(g.get(), tmp, "c", BOB, 1, ALICE); Create(std::move(g)); Rendezvous::Args args; TF_ASSERT_OK(rendez_->Send(Key(ALICE, kIncarnation, BOB, "a"), args, V(1.0), false)); TF_ASSERT_OK(Run(rendez_)); Tensor out = V(-1); bool is_dead = false; TF_ASSERT_OK( rendez_->Recv(Key(BOB, kIncarnation, ALICE, "c"), args, &out, &is_dead)); EXPECT_TRUE(is_dead); } TEST_F(ExecutorTest, Abort) { auto g = std::make_unique<Graph>(OpRegistry::Global()); auto in0 = test::graph::Recv(g.get(), "a", "float", ALICE, 1, BOB); auto in1 = test::graph::Recv(g.get(), "b", "float", ALICE, 1, BOB); auto in2 = test::graph::Recv(g.get(), "c", "float", ALICE, 1, BOB); auto in3 = test::graph::Recv(g.get(), "d", "float", ALICE, 1, BOB); auto add0 = test::graph::Add(g.get(), in0, in1); auto add1 = test::graph::Add(g.get(), in2, in3); auto add2 = test::graph::Add(g.get(), add0, add1); test::graph::Send(g.get(), add2, "e", BOB, 1, ALICE); Create(std::move(g)); rendez_->Ref(); SchedClosure([this]() { Env::Default()->SleepForMicroseconds(100 * 1000); Status s = rendez_->Send(Key(ALICE, kIncarnation, BOB, "a"), Rendezvous::Args(), V(1.0), false); rendez_->Unref(); }); rendez_->Ref(); SchedClosure([this]() { Env::Default()->SleepForMicroseconds(100 * 1000); Status s = rendez_->Send(Key(ALICE, kIncarnation, BOB, "b"), Rendezvous::Args(), V(1.0), false); rendez_->Unref(); }); rendez_->Ref(); SchedClosure([this]() { Env::Default()->SleepForMicroseconds(100 * 1000); Status s = rendez_->Send(Key(ALICE, kIncarnation, BOB, "c"), Rendezvous::Args(), V(1.0), false); rendez_->Unref(); }); rendez_->Ref(); SchedClosure([this]() { Env::Default()->SleepForMicroseconds(100 * 1000); rendez_->StartAbort(errors::Aborted("")); rendez_->Unref(); }); EXPECT_TRUE(errors::IsAborted(Run(rendez_))); Tensor out = V(-1); bool is_dead = false; EXPECT_TRUE(errors::IsAborted(rendez_->Recv( Key(BOB, kIncarnation, ALICE, "c"), Rendezvous::Args(), &out, &is_dead))); } TEST_F(ExecutorTest, RecvInvalidDtype) { auto g = std::make_unique<Graph>(OpRegistry::Global()); auto one = test::graph::Recv(g.get(), "one", "float", ALICE, 1, BOB); auto var = test::graph::Var(g.get(), DT_FLOAT, TensorShape({1})); auto init = test::graph::Assign(g.get(), var, one); auto* two = test::graph::Send(g.get(), var, "two", BOB, 1, ALICE); g->AddControlEdge(init, two); Create(std::move(g)); Rendezvous* rendez = NewLocalRendezvous(); TF_ASSERT_OK(rendez->Send(Key(ALICE, 1, BOB, "one"), Rendezvous::Args(), VD(1.0), false)); EXPECT_TRUE(errors::IsInternal(Run(rendez))); Tensor output; bool is_dead; EXPECT_TRUE(errors::IsInternal(rendez->Recv( Key(BOB, 1, ALICE, "two"), Rendezvous::Args(), &output, &is_dead))); rendez->Unref(); } TEST_F(ExecutorTest, RecvInvalidRefDtype) { auto g = std::make_unique<Graph>(OpRegistry::Global()); auto var = test::graph::InvalidRefType(g.get(), DT_FLOAT, DT_DOUBLE); test::graph::Send(g.get(), var, "out", BOB, 1, ALICE); Create(std::move(g)); Rendezvous* rendez = NewLocalRendezvous(); EXPECT_TRUE(errors::IsInternal(Run(rendez))); Tensor output; bool is_dead; EXPECT_TRUE(errors::IsInternal(rendez->Recv( Key(BOB, 1, ALICE, "out"), Rendezvous::Args(), &output, &is_dead))); rendez->Unref(); } TEST_F(ExecutorTest, NoInputTensors) { auto g = std::make_unique<Graph>(OpRegistry::Global()); test::graph::Constant(g.get(), V(1.0)); Create(std::move(g)); TF_ASSERT_OK(Run(rendez_)); } static void BM_executor(::testing::benchmark::State& state) { const int width = state.range(0); const int depth = state.range(1); Graph* g = new Graph(OpRegistry::Global()); random::PhiloxRandom philox(1729, 17); random::SimplePhilox rand(&philox); uint64 cur = 0; uint32 r = 1 + rand.Rand32() % width; std::vector<Node*> ready_nodes; for (int i = 0; i < r; ++i) { ready_nodes.push_back(test::graph::NoOp(g, {})); ++cur; } std::random_device random_device; std::mt19937 rng(random_device()); for (int i = 0; i < depth; ++i) { std::shuffle(ready_nodes.begin(), ready_nodes.end(), rng); r = 1 + rand.Rand32() % (ready_nodes.size()); std::vector<Node*> control_inputs; for (int j = 0; j < r; ++j) { control_inputs.push_back(ready_nodes.back()); ready_nodes.pop_back(); } Node* n = test::graph::NoOp(g, control_inputs); ++cur; r = 1 + rand.Rand32() % width; for (int j = 0; j < r; ++j) { ready_nodes.push_back(test::graph::NoOp(g, {n})); ++cur; } } FixupSourceAndSinkEdges(g); test::Benchmark("cpu", g, false).Run(state); state.SetLabel(strings::StrCat("Nodes = ", cur)); state.SetItemsProcessed(cur * static_cast<int64_t>(state.iterations())); } BENCHMARK(BM_executor)->UseRealTime()->ArgPair(16, 1024); BENCHMARK(BM_executor)->UseRealTime()->ArgPair(32, 8192); BENCHMARK(BM_executor)->UseRealTime()->ArgPair(1024, 16); BENCHMARK(BM_executor)->UseRealTime()->ArgPair(8192, 32); BENCHMARK(BM_executor)->UseRealTime()->ArgPair(1024, 1024); static void BM_const_identity(::testing::benchmark::State& state) { const int width = state.range(0); const int outputs_per_const = state.range(1); Graph* g = new Graph(OpRegistry::Global()); for (int i = 0; i < width; ++i) { Tensor i_t(i); Node* const_node = test::graph::Constant(g, i_t); for (int j = 0; j < outputs_per_const; ++j) { test::graph::Identity(g, const_node); } } FixupSourceAndSinkEdges(g); test::Benchmark("cpu", g, false).Run(state); state.SetLabel(strings::StrCat("Nodes = ", (1 + outputs_per_const) * width)); state.SetItemsProcessed((1 + outputs_per_const) * width * static_cast<int64_t>(state.iterations())); } BENCHMARK(BM_const_identity) ->UseRealTime() ->ArgPair(1, 1) ->ArgPair(1, 100) ->ArgPair(100, 1) ->ArgPair(100, 100); static void BM_FeedInputFetchOutput(::testing::benchmark::State& state) { Graph* g = new Graph(OpRegistry::Global()); Node* x = test::graph::Recv(g, "x", "float", ALICE, 1, BOB); Node* y = test::graph::Recv(g, "y", "float", ALICE, 1, BOB); Node* sum = test::graph::Add(g, x, y); Node* z = test::graph::Send(g, sum, "z", BOB, 1, ALICE); string x_key = test::GetRendezvousKey(x); string y_key = test::GetRendezvousKey(y); string z_key = test::GetRendezvousKey(z); Tensor val(DT_FLOAT, TensorShape({})); val.scalar<float>()() = 3.14; FixupSourceAndSinkEdges(g); test::Benchmark("cpu", g, false) .RunWithRendezvousArgs({{x_key, val}, {y_key, val}}, {z_key}, state); state.SetItemsProcessed(static_cast<int64_t>(state.iterations())); } BENCHMARK(BM_FeedInputFetchOutput); Status ReplaceEdgeWithSendRecv(Graph* g, const Edge* edge, const string& tensor, const string& sender, const uint64 sender_incarnation, const string& receiver) { Node* send; NodeDef send_def; TF_CHECK_OK(NodeDefBuilder(g->NewName("n"), "_Send") .Input(edge->src()->name(), edge->src_output(), edge->src()->output_type(edge->src_output())) .Attr("tensor_name", tensor) .Attr("send_device", sender) .Attr("send_device_incarnation", static_cast<int64_t>(sender_incarnation)) .Attr("recv_device", receiver) .Finalize(&send_def)); TF_ASSIGN_OR_RETURN(send, g->AddNode(send_def)); Node* recv; NodeDef recv_def; TF_CHECK_OK( NodeDefBuilder(g->NewName("n"), "_Recv") .Attr("tensor_name", tensor) .Attr("send_device", sender) .Attr("send_device_incarnation", static_cast<int64_t>(sender_incarnation)) .Attr("recv_device", receiver) .Attr("tensor_type", edge->dst()->input_type(edge->dst_input())) .Finalize(&recv_def)); TF_ASSIGN_OR_RETURN(recv, g->AddNode(recv_def)); g->AddEdge(edge->src(), edge->src_output(), send, 0); g->AddEdge(recv, 0, edge->dst(), edge->dst_input()); g->AddControlEdge(edge->src(), recv); g->RemoveEdge(edge); return absl::OkStatus(); } static void BM_WhileLoopHelper(::testing::benchmark::State& state, int loop_iters, int loop_vars, bool lower, bool transfer) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); FunctionDefLibrary f_lib_proto; const Tensor one_t = test::AsScalar<int32>(1); std::vector<string> args; args.reserve(loop_vars); args.push_back("x: int32"); for (int i = 1; i < loop_vars; ++i) { args.push_back(strings::StrCat("x", i, ": int32")); } std::vector<string> body_rets; body_rets.reserve(loop_vars); body_rets.push_back("y: int32"); for (int i = 1; i < loop_vars; ++i) { body_rets.push_back(strings::StrCat("y", i, ": int32")); } std::vector<FunctionDefHelper::Node> body_nodes; body_nodes.reserve(1 + loop_vars); body_nodes.push_back( {{"one"}, "Const", {}, {{"value", one_t}, {"dtype", DT_INT32}}}); body_nodes.push_back({{"y"}, "Add", {"x", "one"}, {{"T", DT_INT32}}}); for (int i = 1; i < loop_vars; ++i) { body_nodes.push_back({{strings::StrCat("y", i)}, "Relu", {strings::StrCat("x", i)}, {{"T", DT_INT32}}}); } *f_lib_proto.add_function() = FunctionDefHelper::Define( "XPlusOne", args, body_rets, {}, body_nodes); const Tensor loop_iters_t = test::AsScalar<int32>(loop_iters); *f_lib_proto.add_function() = FunctionDefHelper::Define( "LessThanOrEqualToN", args, {"z: bool"}, {}, { {{"N"}, "Const", {}, {{"value", loop_iters_t}, {"dtype", DT_INT32}}}, {{"z"}, "LessEqual", {"x", "N"}, {{"T", DT_INT32}}}, }); Scope root = Scope::NewRootScope().ExitOnError(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto a = ops::Const(root.WithOpName("A"), 0, {}); Node* while_node; std::vector<NodeBuilder::NodeOut> inputs; std::vector<DataType> input_types(loop_vars, DT_INT32); inputs.reserve(loop_vars); for (int i = 0; i < loop_vars; ++i) { inputs.push_back(NodeBuilder::NodeOut(a.node())); } AttrValue int32_attr; int32_attr.set_type(DT_INT32); AttrValue cond_func; cond_func.mutable_func()->set_name("LessThanOrEqualToN"); AttrValue body_func; body_func.mutable_func()->set_name("XPlusOne"); TF_ASSERT_OK( NodeBuilder("while", "While", &root.graph()->flib_def()) .Input(inputs) .Attr("T", input_types) .Attr("cond", cond_func) .Attr("body", body_func) .Attr("parallel_iterations", 20) .Attr(LowerFunctionalOpsPass::kLowerUsingSwitchMergeAttr, true) .Finalize(root.graph(), &while_node)); auto c = ops::Identity( root.WithOpName("C").WithControlDependencies(Output(while_node)), Output(while_node)); TF_ASSERT_OK(root.DoShapeInference(while_node)); TF_ASSERT_OK(root.ToGraph(graph.get())); if (lower) { FunctionLibraryDefinition flib_def(graph->flib_def()); GraphOptimizationPassOptions opt_options; SessionOptions session_options; session_options.config.mutable_graph_options() ->mutable_optimizer_options() ->set_do_function_inlining(true); opt_options.session_options = &session_options; opt_options.graph = &graph; opt_options.flib_def = &flib_def; LowerFunctionalOpsPass pass; TF_ASSERT_OK(pass.Run(opt_options)); if (transfer) { for (Node* node : graph->nodes()) { if (node->type_string() != "LoopCond") { continue; } for (const Edge* edge : node->out_edges()) { if (edge->dst()->type_string() != "Switch") { continue; } string tensor_name = strings::StrCat("c", edge->id()); TF_ASSERT_OK(ReplaceEdgeWithSendRecv(graph.get(), edge, tensor_name, BOB, 1, ALICE)); } } } } SessionOptions options; options.config.set_inter_op_parallelism_threads(4); FixupSourceAndSinkEdges(graph.get()); test::Benchmark("cpu", graph.release(), &options, nullptr, nullptr, "", false) .Run(state); } static void BM_LoweredWhileLoop(::testing::benchmark::State& state) { const int loop_iters = state.range(0); const int loop_vars = state.range(1); BM_WhileLoopHelper(state, loop_iters, loop_vars, true, false); } BENCHMARK(BM_LoweredWhileLoop) ->ArgPair(0, 1) ->ArgPair(1, 1) ->ArgPair(10, 1) ->ArgPair(100, 1) ->ArgPair(1000, 1) ->ArgPair(0, 100) ->ArgPair(1, 100) ->ArgPair(10, 100) ->ArgPair(100, 100) ->ArgPair(1000, 100); static void BM_LoweredWhileLoopWithTransfer( ::testing::benchmark::State& state) { const int loop_iters = state.range(0); const int loop_vars = state.range(1); BM_WhileLoopHelper(state, loop_iters, loop_vars, true, true); } BENCHMARK(BM_LoweredWhileLoopWithTransfer) ->ArgPair(0, 100) ->ArgPair(1, 100) ->ArgPair(10, 100) ->ArgPair(100, 100) ->ArgPair(1000, 100) ->ArgPair(1, 5000) ->ArgPair(10, 5000) ->ArgPair(100, 5000) ->ArgPair(1000, 5000); static void BM_FunctionalWhileLoop(::testing::benchmark::State& state) { const int loop_iters = state.range(0); const int loop_vars = state.range(1); BM_WhileLoopHelper(state, loop_iters, loop_vars, false, false); } BENCHMARK(BM_FunctionalWhileLoop) ->ArgPair(0, 1) ->ArgPair(1, 1) ->ArgPair(10, 1) ->ArgPair(100, 1) ->ArgPair(1000, 1) ->ArgPair(0, 100) ->ArgPair(1, 100) ->ArgPair(10, 100) ->ArgPair(100, 100) ->ArgPair(1000, 100); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/executor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/executor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
734ac35f-845b-4102-a28f-233a8b460dc1
cpp
tensorflow/tensorflow
convolution_thunk
third_party/xla/xla/service/gpu/runtime/convolution_thunk.cc
third_party/xla/xla/backends/cpu/runtime/convolution_thunk_test.cc
#include "xla/service/gpu/runtime/convolution_thunk.h" #include <cstdint> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/service/buffer_assignment.h" #if TENSORFLOW_USE_ROCM #include "xla/service/gpu/stream_executor_util.h" #endif #include "xla/service/gpu/gpu_conv_runner.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/scratch_allocator.h" #include "xla/stream_executor/stream_executor.h" #include "xla/util.h" #include "tsl/platform/errors.h" namespace xla { namespace gpu { ConvolutionThunk::ConvolutionThunk( ThunkInfo thunk_info, GpuConvConfig config, std::vector<BufferAllocation::Slice> operand_slices, std::vector<BufferAllocation::Slice> result_slices, BufferAllocation::Slice scratch_slice) : Thunk(Kind::kConvolution, thunk_info), operand_buffers_(std::move(operand_slices)), result_buffers_(std::move(result_slices)), scratch_buffer_(scratch_slice), config_(std::move(config)) {} GenericConvRunner& ConvolutionThunk::GetOrCreateRunner( const stream_executor::Stream* stream, bool* runner_created) { absl::MutexLock lock(&mu_); auto it = runner_cache_.find(stream); *runner_created = (it == runner_cache_.end()); if (*runner_created) { it = runner_cache_ .insert({stream, std::make_unique<GenericConvRunner>(config_)}) .first; } return *it->second; } absl::Status ConvolutionThunk::ExecuteOnStream(const ExecuteParams& params) { const auto& buffer_allocations = *params.buffer_allocations; std::vector<se::DeviceMemoryBase> operand_se_buffers, result_se_buffers; operand_se_buffers.reserve(operand_buffers_.size()); for (BufferAllocation::Slice buffer : operand_buffers_) { operand_se_buffers.push_back(buffer_allocations.GetDeviceAddress(buffer)); } result_se_buffers.reserve(result_buffers_.size()); for (BufferAllocation::Slice buffer : result_buffers_) { result_se_buffers.push_back(buffer_allocations.GetDeviceAddress(buffer)); } se::DeviceMemoryBase scratch = buffer_allocations.GetDeviceAddress(scratch_buffer_); bool runner_created = false; RunConvOptions opts; opts.runner_cache = &GetOrCreateRunner(params.stream, &runner_created); #if TENSORFLOW_USE_ROCM if (runner_created) { TF_ASSIGN_OR_RETURN( GpuConvParams conv_params, GetGpuConvParams(config_, operand_se_buffers, result_se_buffers)); TF_ASSIGN_OR_RETURN(se::dnn::ConvolutionKind kind, GetDNNConvKindFromCudnnConvKind(config_.kind)); TF_ASSIGN_OR_RETURN(se::dnn::DataType input_type, GetDNNDataTypeFromPrimitiveType(config_.input_type)); TF_ASSIGN_OR_RETURN(se::dnn::DataType output_type, GetDNNDataTypeFromPrimitiveType(config_.output_type)); TF_ASSIGN_OR_RETURN(auto dnn, se::dnn::internal::GetDnnFromStream(params.stream)); se::OwningScratchAllocator<> scratch_allocator( buffer_allocations.device_ordinal(), buffer_allocations.memory_allocator()); std::vector<se::dnn::ProfileResult> profile_results; dnn->GetMIOpenConvolveAlgorithms( kind, input_type, output_type, params.stream, config_.input_descriptor, conv_params.input_buf, config_.filter_descriptor, conv_params.filter_buf, config_.output_descriptor, conv_params.output_buf, config_.conv_desc, &scratch_allocator, &profile_results); } #endif TF_RETURN_IF_ERROR(RunGpuConv(config_, absl::MakeSpan(operand_se_buffers), absl::MakeSpan(result_se_buffers), scratch, params.stream, opts)); if (!params.stream->ok()) { return Internal("ConvolutionThunk::ExecuteOnStream failed."); } return absl::OkStatus(); } ConvolutionReorderThunk::ConvolutionReorderThunk( ThunkInfo thunk_info, absl::Span<int64_t> filter_nchw, absl::InlinedVector<BufferAllocation::Slice, 2> operand_slices, absl::InlinedVector<BufferAllocation::Slice, 2> result_slices) : Thunk(Kind::kConvolutionReorder, thunk_info), filter_descriptor_(CreateFilterDescriptor(filter_nchw)), operand_buffers_(operand_slices), result_buffers_(result_slices) {} absl::Status ConvolutionReorderThunk::ExecuteOnStream( const ExecuteParams& params) { bool has_bias = operand_buffers_.size() > 1; CHECK_EQ(operand_buffers_.size(), result_buffers_.size()); const auto& buffer_allocations = *params.buffer_allocations; auto filter_input = se::DeviceMemory<int8_t>( buffer_allocations.GetDeviceAddress(operand_buffers_[0])); auto filter_output = se::DeviceMemory<int8_t>( buffer_allocations.GetDeviceAddress(result_buffers_[0])); auto bias_input = has_bias ? std::make_optional(se::DeviceMemory<float>( buffer_allocations.GetDeviceAddress(operand_buffers_[1]))) : std::nullopt; auto bias_output = has_bias ? std::make_optional(se::DeviceMemory<float>( buffer_allocations.GetDeviceAddress(result_buffers_[1]))) : std::nullopt; auto dnn = params.stream->parent()->AsDnn(); if (dnn == nullptr) { return absl::InternalError("No DNN for stream."); } return dnn->CudnnReorderConvolutionFilterAndBias( params.stream, filter_descriptor_, filter_input, &filter_output, std::move(bias_input), std::move(bias_output)); } se::dnn::FilterDescriptor ConvolutionReorderThunk::CreateFilterDescriptor( absl::Span<int64_t> filter_nchw) { CHECK_EQ(filter_nchw.size(), 4); se::dnn::FilterDescriptor filter_desc(2); filter_desc.set_layout(se::dnn::FilterLayout::kOutputInputYX32); filter_desc.set_output_feature_map_count(filter_nchw[0]); filter_desc.set_input_feature_map_count(filter_nchw[1]); filter_desc.set_input_filter_height(filter_nchw[2]); filter_desc.set_input_filter_width(filter_nchw[3]); return filter_desc; } } }
#include "xla/backends/cpu/runtime/convolution_thunk.h" #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/status/status.h" #include "Eigen/Core" #include "xla/backends/cpu/runtime/buffer_allocations.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/primitive_util.h" #include "xla/service/buffer_assignment.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { struct ConvolutionDimensions { explicit ConvolutionDimensions(int convolution_rank = 2) : convolution_rank(convolution_rank) {} int convolution_rank = 2; int batch_size = 1; int input_size = 3; int input_channels = 5; int kernel_size = 3; int output_channels = 3; int output_size = input_size - kernel_size + 1; }; template <typename T> class ConvolutionThunkTypedTest : public ::testing::Test {}; using CorrectTypes = ::testing::Types<float, Eigen::half>; TYPED_TEST_SUITE(ConvolutionThunkTypedTest, CorrectTypes); std::vector<int64_t> MakeInputDims( ConvolutionDimensions dims = ConvolutionDimensions()) { std::vector<int64_t> input_dims = {dims.batch_size}; for (int i = 0; i < dims.convolution_rank; ++i) { input_dims.push_back(dims.input_size); } input_dims.push_back(dims.input_channels); return input_dims; } std::vector<int64_t> MakeKernelDims( ConvolutionDimensions dims = ConvolutionDimensions()) { std::vector<int64_t> kernel_dims = {}; for (int i = 0; i < dims.convolution_rank; ++i) { kernel_dims.push_back(dims.kernel_size); } kernel_dims.push_back(dims.input_channels); kernel_dims.push_back(dims.output_channels); return kernel_dims; } std::vector<int64_t> MakeOutputDims( ConvolutionDimensions dims = ConvolutionDimensions()) { std::vector<int64_t> output_dims = {dims.batch_size}; for (int i = 0; i < dims.convolution_rank; ++i) { output_dims.push_back(dims.output_size); } output_dims.push_back(dims.output_channels); return output_dims; } template <typename ElementType> std::vector<ElementType> MakeDataVector(const std::vector<int64_t>& dims) { auto size = absl::c_accumulate(dims, 1, std::multiplies<int>()); return std::vector<ElementType>(size, ElementType(0.0)); } template <typename ElementType> std::vector<MaybeOwningDeviceMemory> MakeBuffers( const std::vector<ElementType>& input, const std::vector<ElementType>& kernel, const std::vector<ElementType>& output) { std::vector<MaybeOwningDeviceMemory> buffers; size_t input_size_in_bytes = input.size() * sizeof(ElementType); buffers.emplace_back(se::DeviceMemoryBase(input.data(), input_size_in_bytes)); size_t kernel_size_in_bytes = kernel.size() * sizeof(ElementType); buffers.emplace_back( se::DeviceMemoryBase(kernel.data(), kernel_size_in_bytes)); size_t output_size_in_bytes = output.size() * sizeof(ElementType); buffers.emplace_back( se::DeviceMemoryBase(output.data(), output_size_in_bytes)); return buffers; } ConvolutionThunk::Options MakeConvolutionOptions() { ConvolutionThunk::Options options; options.multi_threaded = false; options.use_acl = false; return options; } ConvolutionDimensionNumbers MakeConvolutionDimensionNumbers( int convolution_rank) { ConvolutionDimensionNumbers dnums; int dim = 0; dnums.set_input_batch_dimension(dim++); for (int i = 0; i < convolution_rank; ++i) { dnums.add_input_spatial_dimensions(dim++); } dnums.set_input_feature_dimension(dim++); dim = 0; for (int i = 0; i < convolution_rank; ++i) { dnums.add_kernel_spatial_dimensions(dim++); } dnums.set_kernel_input_feature_dimension(dim++); dnums.set_kernel_output_feature_dimension(dim++); dim = 0; dnums.set_output_batch_dimension(dim++); for (int i = 0; i < convolution_rank; ++i) { dnums.add_output_spatial_dimensions(dim++); } dnums.set_output_feature_dimension(dim++); return dnums; } Window MakeWindow(int convolution_rank) { Window window; for (int i = 0; i < convolution_rank; ++i) { WindowDimension* window_dim = window.add_dimensions(); window_dim->set_stride(1); window_dim->set_padding_low(0); window_dim->set_padding_high(0); window_dim->set_window_dilation(1); window_dim->set_base_dilation(1); } return window; } template <typename ElementType> class ConvolutionThunkBuilder { public: void SetOptions(ConvolutionThunk::Options options) { options_ = std::move(options); } auto Build(ConvolutionDimensions dims = ConvolutionDimensions()) { auto input_dims = MakeInputDims(dims); auto kernel_dims = MakeKernelDims(dims); auto output_dims = MakeOutputDims(dims); return Build(input_dims, kernel_dims, output_dims); } auto Build(const std::vector<int64_t>& input_dims, const std::vector<int64_t>& kernel_dims, const std::vector<int64_t>& output_dims) { int convolution_rank = input_dims.size() - 2; input_ = MakeDataVector<ElementType>(input_dims); kernel_ = MakeDataVector<ElementType>(kernel_dims); output_ = MakeDataVector<ElementType>(output_dims); size_t input_size_in_bytes = input_.size() * sizeof(ElementType); buffers_.emplace_back( se::DeviceMemoryBase(input_.data(), input_size_in_bytes)); size_t kernel_size_in_bytes = kernel_.size() * sizeof(ElementType); buffers_.emplace_back( se::DeviceMemoryBase(kernel_.data(), kernel_size_in_bytes)); size_t output_size_in_bytes = output_.size() * sizeof(ElementType); buffers_.emplace_back( se::DeviceMemoryBase(output_.data(), output_size_in_bytes)); allocations_ = std::make_unique<BufferAllocations>(buffers_); input_alloc_ = std::make_unique<BufferAllocation>(0, input_size_in_bytes, 0); kernel_alloc_ = std::make_unique<BufferAllocation>(1, kernel_size_in_bytes, 0); output_alloc_ = std::make_unique<BufferAllocation>(2, output_size_in_bytes, 0); BufferAllocation::Slice input_slice(input_alloc_.get(), 0, input_size_in_bytes); BufferAllocation::Slice kernel_slice(kernel_alloc_.get(), 0, kernel_size_in_bytes); BufferAllocation::Slice output_slice(output_alloc_.get(), 0, output_size_in_bytes); auto primitive_type = primitive_util::NativeToPrimitiveType<ElementType>(); Shape input_shape = ShapeUtil::MakeShape(primitive_type, input_dims); Shape kernel_shape = ShapeUtil::MakeShape(primitive_type, kernel_dims); Shape output_shape = ShapeUtil::MakeShape(primitive_type, output_dims); auto dnums = MakeConvolutionDimensionNumbers(convolution_rank); auto window = MakeWindow(convolution_rank); return ConvolutionThunk::Create( {"convolution"}, options_, std::move(input_slice), input_shape, std::move(kernel_slice), kernel_shape, std::move(output_slice), output_shape, dnums, window, 1); } auto GetExecutionParams() { return Thunk::ExecuteParams{nullptr, allocations_.get()}; } private: std::vector<ElementType> input_; std::vector<ElementType> kernel_; std::vector<ElementType> output_; std::vector<MaybeOwningDeviceMemory> buffers_; ConvolutionThunk::Options options_ = MakeConvolutionOptions(); std::unique_ptr<BufferAllocations> allocations_; std::unique_ptr<BufferAllocation> input_alloc_; std::unique_ptr<BufferAllocation> kernel_alloc_; std::unique_ptr<BufferAllocation> output_alloc_; }; template <typename ElementType> void SuccessfulConvolution(int convolution_rank) { ConvolutionThunkBuilder<ElementType> builder; TF_ASSERT_OK_AND_ASSIGN( auto thunk, builder.Build(ConvolutionDimensions(convolution_rank))); Thunk::ExecuteParams params = builder.GetExecutionParams(); auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()) << execute_event.GetError(); } TYPED_TEST(ConvolutionThunkTypedTest, SuccessfulConvolution1D) { SuccessfulConvolution<TypeParam>(1); } TYPED_TEST(ConvolutionThunkTypedTest, SuccessfulConvolution2D) { SuccessfulConvolution<TypeParam>(2); } TYPED_TEST(ConvolutionThunkTypedTest, SuccessfulConvolution3D) { SuccessfulConvolution<TypeParam>(3); } TEST(ConvolutionThunkTest, CreationErrorOnUnsupportedType) { ConvolutionThunkBuilder<int> builder; auto status_or_thunk = builder.Build(); EXPECT_EQ(status_or_thunk.status().code(), absl::StatusCode::kInvalidArgument); EXPECT_THAT(status_or_thunk.status().message(), ::testing::HasSubstr("Unsupported element type (S32)")); } TEST(ConvolutionThunkTest, CreationErrorOnTooHighConvolutionRank) { ConvolutionThunkBuilder<float> builder; auto status_or_thunk = builder.Build(ConvolutionDimensions(4)); EXPECT_EQ(status_or_thunk.status().code(), absl::StatusCode::kInvalidArgument); EXPECT_THAT(status_or_thunk.status().message(), ::testing::HasSubstr("Incorrect convolution rank (4)")); } TEST(ConvolutionThunkTest, CreationErrorOnTooLowConvolutionRank) { ConvolutionThunkBuilder<float> builder; auto status_or_thunk = builder.Build(ConvolutionDimensions(0)); EXPECT_EQ(status_or_thunk.status().code(), absl::StatusCode::kInvalidArgument); EXPECT_THAT(status_or_thunk.status().message(), ::testing::HasSubstr("Incorrect convolution rank (0)")); } TEST(ConvolutionThunkTest, CreationErrorOnMismatchedKernelBufferRank) { ConvolutionThunkBuilder<float> builder; ConvolutionDimensions dims_2d(2); auto input_dims = MakeInputDims(dims_2d); auto output_dims = MakeOutputDims(dims_2d); ConvolutionDimensions dims_3d(3); auto kernel_dims = MakeKernelDims(dims_3d); auto status_or_thunk = builder.Build(input_dims, kernel_dims, output_dims); EXPECT_EQ(status_or_thunk.status().code(), absl::StatusCode::kInvalidArgument); EXPECT_THAT(status_or_thunk.status().message(), ::testing::HasSubstr("Buffer ranks mismatch. Input rank (4) vs " "kernel rank (5) vs output rank (4)")); } TEST(ConvolutionThunkTest, CreationErrorOnMismatchedOutputBufferRank) { ConvolutionThunkBuilder<float> builder; ConvolutionDimensions dims_2d(2); auto input_dims = MakeInputDims(dims_2d); auto kernel_dims = MakeKernelDims(dims_2d); ConvolutionDimensions dims_3d(3); auto output_dims = MakeOutputDims(dims_3d); auto status_or_thunk = builder.Build(input_dims, kernel_dims, output_dims); EXPECT_EQ(status_or_thunk.status().code(), absl::StatusCode::kInvalidArgument); EXPECT_THAT(status_or_thunk.status().message(), ::testing::HasSubstr("Buffer ranks mismatch. Input rank (4) vs " "kernel rank (4) vs output rank (5)")); } TEST(ConvolutionThunkTest, CreationErrorOnBatchSizeMismatch) { ConvolutionThunkBuilder<float> builder; ConvolutionDimensions dims; dims.batch_size = 1; auto input_dims = MakeInputDims(dims); auto kernel_dims = MakeKernelDims(dims); dims.batch_size = 2; auto output_dims = MakeOutputDims(dims); auto status_or_thunk = builder.Build(input_dims, kernel_dims, output_dims); EXPECT_EQ(status_or_thunk.status().code(), absl::StatusCode::kInvalidArgument); EXPECT_THAT(status_or_thunk.status().message(), ::testing::HasSubstr( "Batch sizes mismatch. Input batch (1) vs output batch (2)")); } TEST(ConvolutionThunkTest, CreationErrorOnOutputChannelsMismatch) { ConvolutionThunkBuilder<float> builder; ConvolutionDimensions dims; dims.output_channels = 3; auto input_dims = MakeInputDims(dims); auto kernel_dims = MakeKernelDims(dims); dims.output_channels = 4; auto output_dims = MakeOutputDims(dims); auto status_or_thunk = builder.Build(input_dims, kernel_dims, output_dims); EXPECT_EQ(status_or_thunk.status().code(), absl::StatusCode::kInvalidArgument); EXPECT_THAT( status_or_thunk.status().message(), ::testing::HasSubstr("Output channels mismatch. Kernel filters count (3) " "should be the same as output channels count (4)")); } TEST(ConvolutionThunkTest, ExecutionErrorOnMissingThreadPoolInMultiThreadedMode) { ConvolutionThunkBuilder<float> builder; auto options = MakeConvolutionOptions(); options.multi_threaded = true; builder.SetOptions(options); TF_ASSERT_OK_AND_ASSIGN(auto thunk, builder.Build(ConvolutionDimensions())); Thunk::ExecuteParams params = builder.GetExecutionParams(); params.intra_op_threadpool = nullptr; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_TRUE(execute_event.IsError()); auto status = execute_event.GetError(); EXPECT_EQ(absl::StatusCode::kInternal, status.code()); EXPECT_EQ( "Intra-op threadpool must be provided for ConvolutionThunk in " "multi-threaded mode.", status.message()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/runtime/convolution_thunk.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/convolution_thunk_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a6c01e1e-ca85-4c99-9bc7-027086e9a935
cpp
tensorflow/tensorflow
thunk
third_party/xla/xla/service/gpu/runtime/thunk.cc
third_party/xla/xla/backends/cpu/runtime/thunk_test.cc
#include "xla/service/gpu/runtime/thunk.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <ostream> #include <string> #include <utility> #include "absl/algorithm/container.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/executable_run_options.h" #include "xla/ffi/execution_context.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/translate/mhlo_to_hlo/location_exporter.h" #include "xla/service/global_device_id.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/buffer_allocations.h" #include "xla/service/gpu/gpu_executable_run_options.h" #include "xla/service/gpu/runtime/nccl_api.h" #include "xla/service/gpu/runtime/nccl_clique.h" #include "xla/service/gpu/runtime/nccl_clique_key.h" #include "xla/service/service_executable_run_options.h" #include "xla/stream_executor/stream.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { Thunk::CollectiveCliques::CollectiveCliques( NcclClique::AcquiredCliquesMap cliques_map) : cliques_map_(std::move(cliques_map)) {} absl::StatusOr<NcclApi::NcclCommHandle> Thunk::CollectiveCliques::GetComm( const NcclCliqueKey& clique_key, int32_t rank) const { auto clique = cliques_map_.find(clique_key); if (clique == cliques_map_.end()) { return absl::NotFoundError(absl::StrCat("No clique found for clique key: ", clique_key.ToString())); } auto communicator = (*clique->second)->comm(rank); if (!communicator.has_value()) { return absl::InternalError(absl::StrCat("Communicator for rank ", rank, " not found in a NCCL clique ", clique_key.ToString())); } return *communicator; } absl::StatusOr<bool> Thunk::CollectiveCliques::is_local_clique( const NcclCliqueKey& clique_key) const { auto clique = cliques_map_.find(clique_key); if (clique == cliques_map_.end()) { return absl::NotFoundError(absl::StrCat("No clique found for clique key: ", clique_key.ToString())); } return (*clique->second)->IsLocal(); } absl::StatusOr<size_t> Thunk::CollectiveCliques::num_communicators( const NcclCliqueKey& clique_key) const { auto clique = cliques_map_.find(clique_key); if (clique == cliques_map_.end()) { return absl::NotFoundError(absl::StrCat("No clique found for clique key: ", clique_key.ToString())); } return (*clique->second)->num_communicators(); } using GlobalDeviceIdMap = Thunk::CollectiveExecuteParams::GlobalDeviceIdMap; static absl::StatusOr<GlobalDeviceId> GetGlobalDeviceId( const GlobalDeviceIdMap* device_id_map, int64_t local_device_ordinal) { if (!device_id_map) return GlobalDeviceId(local_device_ordinal); auto it = device_id_map->find(local_device_ordinal); if (it == device_id_map->end()) return absl::NotFoundError( absl::StrCat("No global device id found for local device ordinal: ", local_device_ordinal)); return it->second; } absl::StatusOr<Thunk::CollectiveExecuteParams> Thunk::CollectiveExecuteParams::Create( const ServiceExecutableRunOptions& run_options, absl::Span<se::Stream* const> async_streams, int64_t local_device_ordinal, int64_t collective_max_nchannels, int64_t p2p_max_nchannels) { const GpuExecutableRunOptions* gpu_options = run_options.run_options().gpu_executable_run_options(); auto* device_id_map = gpu_options && gpu_options->gpu_global_device_ids() ? &*gpu_options->gpu_global_device_ids() : nullptr; auto* nccl_callback = gpu_options && gpu_options->nccl_clique_id_callback() ? &gpu_options->nccl_clique_id_callback() : nullptr; TF_ASSIGN_OR_RETURN(GlobalDeviceId global_device_id, GetGlobalDeviceId(device_id_map, local_device_ordinal)); return CollectiveExecuteParams( run_options.stream()->parent(), run_options.run_options().run_id(), async_streams, local_device_ordinal, global_device_id, run_options.run_options().device_assignment(), device_id_map, nccl_callback, collective_max_nchannels, p2p_max_nchannels); } Thunk::CollectiveExecuteParams::CollectiveExecuteParams( se::StreamExecutor* executor, RunId run_id, absl::Span<se::Stream* const> async_streams, int64_t local_device_ordinal, GlobalDeviceId global_device_id, const DeviceAssignment* device_assn, const GlobalDeviceIdMap* global_device_id_map, const NcclCliqueIdCallback* nccl_clique_id_callback, int64_t collective_max_nchannels, int64_t p2p_max_nchannels) : executor(executor), run_id(run_id), async_streams(async_streams.begin(), async_streams.end()), local_device_ordinal(local_device_ordinal), global_device_id(global_device_id), device_assn(device_assn), global_device_id_map(global_device_id_map), nccl_clique_id_callback(nccl_clique_id_callback), collective_max_nchannels(collective_max_nchannels), p2p_max_nchannels(p2p_max_nchannels) {} Thunk::ExecuteParams Thunk::ExecuteParams::Create( const ServiceExecutableRunOptions& run_options, const BufferAllocations& buffer_allocations, se::Stream* stream, se::Stream* command_buffer_trace_stream, CollectiveExecuteParams* collective_params, CollectiveCliques* collective_cliques, ExecutionStreamIdMap additional_compute_streams) { return ExecuteParams(&buffer_allocations, stream, command_buffer_trace_stream, collective_params, collective_cliques, run_options.run_options().device_to_host_stream(), run_options.run_options().host_to_device_stream(), run_options.run_options().send_device_memory_function(), run_options.run_options().recv_device_memory_function(), run_options.run_options().ffi_execution_context(), additional_compute_streams, run_options.run_options().gpu_executable_run_options() ? run_options.run_options() .gpu_executable_run_options() ->enable_mock_nccl_collectives() : false); } Thunk::ExecuteParams Thunk::ExecuteParams::CloneWithNewAllocations( const Thunk::ExecuteParams& params, const BufferAllocations& buffer_allocations) { return ExecuteParams( &buffer_allocations, params.stream, params.command_buffer_trace_stream, params.collective_params, params.collective_cliques, params.device_to_host_stream, params.host_to_device_stream, params.send_device_memory_function, params.recv_device_memory_function, params.ffi_execution_context, params.additional_compute_streams); } Thunk::ExecuteParams::ExecuteParams( const BufferAllocations* buffer_allocations, se::Stream* stream, se::Stream* command_buffer_trace_stream, CollectiveExecuteParams* collective_params, CollectiveCliques* collective_cliques, se::Stream* device_to_host_stream, se::Stream* host_to_device_stream, SendDeviceMemoryFunction* send_device_memory_function, RecvDeviceMemoryFunction* recv_device_memory_function, const ffi::ExecutionContext* ffi_execution_context, ExecutionStreamIdMap additional_compute_streams, bool mock_collectives) : buffer_allocations(buffer_allocations), stream(stream), command_buffer_trace_stream(command_buffer_trace_stream), collective_params(collective_params), collective_cliques(collective_cliques), device_to_host_stream(device_to_host_stream), host_to_device_stream(host_to_device_stream), send_device_memory_function(send_device_memory_function), recv_device_memory_function(recv_device_memory_function), ffi_execution_context(ffi_execution_context), additional_compute_streams(additional_compute_streams), mock_collectives(mock_collectives) {} absl::string_view Thunk::KindToString(Thunk::Kind kind) { #define CASE(x) \ case Thunk::x: \ return #x switch (kind) { CASE(kDynamicSlice); CASE(kCholesky); CASE(kCommandBuffer); CASE(kConditional); CASE(kConvolution); CASE(kConvolutionReorder); CASE(kCopy); CASE(kCopyDone); CASE(kCubSort); CASE(kCublasLtMatmul); CASE(kCustomCall); CASE(kCustomKernel); CASE(kNcclAllGather); CASE(kNcclAllGatherStart); CASE(kNcclAllGatherDone); CASE(kNcclAllReduce); CASE(kNcclAllReduceStart); CASE(kNcclAllReduceDone); CASE(kNcclCollectiveBroadcast); CASE(kNcclCollectiveBroadcastStart); CASE(kNcclCollectiveBroadcastDone); CASE(kNcclCollectivePermute); CASE(kNcclCollectivePermuteStart); CASE(kNcclCollectivePermuteDone); CASE(kNcclReduceScatter); CASE(kNcclReduceScatterStart); CASE(kNcclReduceScatterDone); CASE(kNcclAllToAll); CASE(kNcclAllToAllStart); CASE(kNcclAllToAllDone); CASE(kNcclSend); CASE(kNcclSendDone); CASE(kNcclRecv); CASE(kNcclRecvDone); CASE(kFft); CASE(kGemm); CASE(kInfeed); CASE(kKernel); CASE(kMemset32BitValue); CASE(kMemzero); CASE(kNorm); CASE(kOutfeed); CASE(kSend); CASE(kSendDone); CASE(kPartitionId); CASE(kReplicaId); CASE(kRecv); CASE(kRecvDone); CASE(kSequential); CASE(kTriangularSolve); CASE(kWhile); CASE(kWaitForStreams); CASE(kCuDnn); } } absl::StatusOr<se::Stream*> Thunk::GetStreamForExecution( ExecutionStreamId stream_id, const ExecuteParams& params) { if (stream_id == kDefaultExecutionStreamId) { return params.stream; } auto iter = params.additional_compute_streams.find(stream_id); if (iter == params.additional_compute_streams.end()) { return absl::InvalidArgumentError("Invalid execution stream id."); } return iter->second; } std::ostream& operator<<(std::ostream& os, Thunk::Kind kind) { return os << Thunk::KindToString(kind); } bool IsReductionCollective(Thunk::Kind kind) { return kind == Thunk::kNcclAllReduce || kind == Thunk::kNcclAllReduceStart || kind == Thunk::kNcclReduceScatter || kind == Thunk::kNcclReduceScatterStart; } Thunk::ThunkInfo Thunk::ThunkInfo::WithProfileAnnotation( const HloInstruction* instr) { ThunkInfo thunk_info; thunk_info.profile_annotation = instr->name(); auto gpu_backend_config = instr->backend_config<GpuBackendConfig>(); if (gpu_backend_config.ok()) { thunk_info.execution_stream_id = std::max<uint64_t>(kDefaultExecutionStreamId.value(), gpu_backend_config->operation_queue_id()); } return thunk_info; } bool Thunk::IsCollective() const { switch (kind()) { case kNcclAllGather: case kNcclAllGatherStart: case kNcclAllGatherDone: case kNcclAllReduce: case kNcclAllReduceStart: case kNcclAllReduceDone: case kNcclCollectiveBroadcast: case kNcclCollectiveBroadcastStart: case kNcclCollectiveBroadcastDone: case kNcclCollectivePermute: case kNcclCollectivePermuteStart: case kNcclCollectivePermuteDone: case kNcclReduceScatter: case kNcclReduceScatterStart: case kNcclReduceScatterDone: case kNcclAllToAll: case kNcclAllToAllStart: case kNcclAllToAllDone: case kNcclSend: case kNcclSendDone: case kNcclRecv: case kNcclRecvDone: return true; default: return false; } } } }
#include "xla/backends/cpu/runtime/thunk.h" #include <cstdint> #include <utility> #include "xla/executable_run_options.h" #include "xla/service/cpu/collectives_interface.h" #include "xla/service/cpu/cpu_executable_run_options.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { class ThunkExecuteStateTestHelper : public Thunk { public: static ExecuteState CreateExecuteState(int64_t parallel_tasks) { return ExecuteState(parallel_tasks); } }; TEST(ThunkTest, OkExecuteEventSingleton) { auto event = Thunk::OkExecuteEventSingleton(); ASSERT_TRUE(event.IsConcrete()); } TEST(ThunkExecuteStateTest, OneTask) { auto execute_state = ThunkExecuteStateTestHelper::CreateExecuteState(1); EXPECT_FALSE(execute_state.event.IsAvailable()); execute_state.Notify(); EXPECT_TRUE(execute_state.event.IsAvailable()); } TEST(ThunkExecuteStateTest, MultipleTasks) { int parallel_tasks = 10; auto execute_state = ThunkExecuteStateTestHelper::CreateExecuteState(parallel_tasks); for (int i = 0; i < parallel_tasks; ++i) { EXPECT_FALSE(execute_state.event.IsAvailable()); execute_state.Notify(); } EXPECT_TRUE(execute_state.event.IsAvailable()); } TEST(ThunkTest, ExecuteSession) { Thunk::ExecuteSession session(2, 2); EXPECT_EQ(session.num_workers(), 0); { Thunk::ExecuteSession::Lock lock = session.Join(); EXPECT_TRUE(lock); EXPECT_EQ(session.num_workers(), 1); } EXPECT_EQ(session.num_workers(), 0); Thunk::ExecuteSession::Lock lock0 = session.TryJoin(); Thunk::ExecuteSession::Lock lock1 = session.TryJoin(); EXPECT_TRUE(lock0); EXPECT_TRUE(lock1); EXPECT_EQ(session.num_workers(), 2); Thunk::ExecuteSession::Lock lock2 = session.TryJoin(); EXPECT_FALSE(lock2); EXPECT_EQ(session.num_workers(), 2); Thunk::ExecuteSession::Lock lock3 = session.Join(); EXPECT_TRUE(lock3); EXPECT_EQ(session.num_workers(), 3); auto sink = [](Thunk::ExecuteSession::Lock lock) {}; sink(std::move(lock0)); sink(std::move(lock1)); sink(std::move(lock3)); EXPECT_EQ(session.num_workers(), 0); Thunk::ExecuteSession::Lock lock4 = session.Join(); Thunk::ExecuteSession::Lock lock5 = lock4; EXPECT_TRUE(lock4); EXPECT_TRUE(lock5); EXPECT_EQ(session.num_workers(), 2); } TEST(ThunkTest, CollectiveExecuteParams) { ExecutableRunOptions run_options; run_options.set_device_ordinal(0); TF_ASSERT_OK_AND_ASSIGN(auto params, Thunk::CollectiveExecuteParams::Create(&run_options)); EXPECT_NE(params.collectives, nullptr); CpuExecutableRunOptions cpu_run_options; cpu_run_options.set_collectives( reinterpret_cast<CollectivesInterface*>(0x12345678)); run_options.set_cpu_executable_run_options(&cpu_run_options); TF_ASSERT_OK_AND_ASSIGN(params, Thunk::CollectiveExecuteParams::Create(&run_options)); EXPECT_EQ(params.collectives, reinterpret_cast<CollectivesInterface*>(0x12345678)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/runtime/thunk.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/thunk_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
01d2348a-58d6-42fa-82b6-d0616d993f89
cpp
tensorflow/tensorflow
conditional_thunk
third_party/xla/xla/service/gpu/runtime/conditional_thunk.cc
third_party/xla/xla/backends/cpu/runtime/conditional_thunk_test.cc
#include "xla/service/gpu/runtime/conditional_thunk.h" #include <cstdint> #include <memory> #include <string_view> #include <utility> #include <variant> #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/service/gpu/variant_visitor.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/memory_allocation.h" #include "xla/stream_executor/stream_executor.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { ConditionalThunk::ConditionalThunk( ThunkInfo thunk_info, ConditionalThunkConfig config, const BufferAllocation::Slice& branch_index_buffer_index) : Thunk(Kind::kConditional, thunk_info), config_(std::move(config)), branch_index_buffer_index_(branch_index_buffer_index) {} absl::Status ConditionalThunk::Prepare(const PrepareParams& params, ResourceRequests& resource_requests) { if (config_.branch_index_is_bool) { TF_RET_CHECK(config_.branch_thunks.size() == 2); } else { TF_RET_CHECK(!config_.branch_thunks.empty()); } for (auto& branch_thunk : config_.branch_thunks) { TF_RETURN_IF_ERROR(branch_thunk->Prepare(params, resource_requests)); } return absl::OkStatus(); } absl::Status ConditionalThunk::Initialize(const InitializeParams& params) { if (config_.branch_index_is_bool) { TF_RET_CHECK(config_.branch_thunks.size() == 2); } else { TF_RET_CHECK(!config_.branch_thunks.empty()); } for (auto& branch_thunk : config_.branch_thunks) { TF_RETURN_IF_ERROR(branch_thunk->Initialize(params)); } absl::MutexLock lock(&mutex_); if (auto it = predicates_.find(params.executor); it == predicates_.end()) { TF_ASSIGN_OR_RETURN( std::unique_ptr<se::MemoryAllocation> allocation, params.executor->HostMemoryAllocate( config_.branch_index_is_bool ? sizeof(bool) : sizeof(int32_t))); predicates_.emplace(params.executor, std::move(allocation)); } return absl::OkStatus(); } absl::Status ConditionalThunk::ExecuteOnStream(const ExecuteParams& params) { auto& stream = *params.stream; auto branch_index_or_pred = [&]() -> std::variant<int32_t*, bool*> { absl::MutexLock lock(&mutex_); se::StreamExecutor* executor = stream.parent(); if (config_.branch_index_is_bool) { return reinterpret_cast<bool*>(predicates_.at(executor)->opaque()); } else { return reinterpret_cast<int32_t*>(predicates_.at(executor)->opaque()); } }(); se::DeviceMemoryBase branch_index_address = params.buffer_allocations->GetDeviceAddress(branch_index_buffer_index_); if (config_.branch_index_is_bool) { TF_RETURN_IF_ERROR(stream.Memcpy(std::get<bool*>(branch_index_or_pred), branch_index_address, sizeof(bool))); } else { TF_RETURN_IF_ERROR(stream.Memcpy(std::get<int32_t*>(branch_index_or_pred), branch_index_address, sizeof(int32_t))); } if (absl::Status blocked = stream.BlockHostUntilDone(); !blocked.ok()) { return Internal("Failed to retrieve branch_index value on stream %p: %s.", &stream, blocked.message()); } int32_t branch_index = std::visit( VariantVisitor{[](int32_t* branch_index) { return *branch_index; }, [](bool* pred) { return *pred ? 0 : 1; }}, branch_index_or_pred); std::string_view branch_kind = std::visit(VariantVisitor{[](int32_t*) { return "index"; }, [](bool*) { return "pred"; }}, branch_index_or_pred); VLOG(3) << "ConditionalThunk: branch_index=" << branch_index << " (kind: " << branch_kind << ")"; if (branch_index < 0 || branch_index >= config_.branch_count) { branch_index = config_.branch_count - 1; } TF_RETURN_IF_ERROR( config_.branch_thunks[branch_index]->ExecuteOnStream(params)); return absl::OkStatus(); } } }
#include "xla/backends/cpu/runtime/conditional_thunk.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "xla/backends/cpu/runtime/resource_use.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/backends/cpu/runtime/thunk_testlib.h" #include "xla/runtime/buffer_use.h" #include "xla/service/buffer_assignment.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { TEST(ConditionalThunkTest, BufferUses) { BufferAllocation alloc(0, 1024, 0); BufferAllocation::Slice branch_index_slice(&alloc, 0, sizeof(int32_t)); BufferAllocation::Slice read_slice(&alloc, 10, 10); std::vector<ThunkSequence> branch_sequences(1); branch_sequences[0].push_back( std::make_unique<BufferUseThunk>(BufferUse::Read(read_slice))); TF_ASSERT_OK_AND_ASSIGN( auto thunk, ConditionalThunk::Create({"conditional"}, branch_index_slice, std::move(branch_sequences))); EXPECT_EQ(thunk->buffer_uses().size(), 2); EXPECT_EQ(thunk->buffer_uses()[0], BufferUse::Read(branch_index_slice)); EXPECT_EQ(thunk->buffer_uses()[1], BufferUse::Read(read_slice)); } TEST(ConditionalThunkTest, ResourceUses) { BufferAllocation alloc(0, 1024, 0); BufferAllocation::Slice branch_index_slice(&alloc, 0, sizeof(int32_t)); auto token = Resource::Create(Resource::kToken); std::vector<ThunkSequence> branch_sequences(1); branch_sequences[0].push_back( std::make_unique<ResourceUseThunk>(ResourceUse::Read(token))); TF_ASSERT_OK_AND_ASSIGN( auto thunk, ConditionalThunk::Create({"conditional"}, branch_index_slice, std::move(branch_sequences))); EXPECT_EQ(thunk->resource_uses().size(), 1); EXPECT_EQ(thunk->resource_uses()[0], ResourceUse::Read(token)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/runtime/conditional_thunk.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/conditional_thunk_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
715a0fe5-3ad4-439c-9e62-b63e79c3c1be
cpp
tensorflow/tensorflow
logical_id_thunk
third_party/xla/xla/backends/cpu/runtime/logical_id_thunk.cc
third_party/xla/xla/backends/cpu/runtime/logical_id_thunk_test.cc
#include "xla/backends/cpu/runtime/logical_id_thunk.h" #include <cstdint> #include <cstring> #include <memory> #include <utility> #include "absl/memory/memory.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/runtime/buffer_use.h" #include "xla/service/buffer_assignment.h" #include "xla/service/computation_placer.h" #include "xla/service/global_device_id.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/traceme.h" namespace xla::cpu::internal { static Thunk::Kind ToThunkKind(LogicalIdKind logical_id_kind) { switch (logical_id_kind) { case LogicalIdKind::kPartitionId: return Thunk::Kind::kPartitionId; case LogicalIdKind::kReplicaId: return Thunk::Kind::kReplicaId; } } template <LogicalIdKind logical_id_kind> absl::StatusOr<std::unique_ptr<LogicalIdThunk<logical_id_kind>>> LogicalIdThunk<logical_id_kind>::Create( Info info, BufferAllocation::Slice logical_id_buffer) { return absl::WrapUnique( new LogicalIdThunk(std::move(info), logical_id_buffer)); } template <LogicalIdKind logical_id_kind> LogicalIdThunk<logical_id_kind>::LogicalIdThunk( Info info, BufferAllocation::Slice logical_id_buffer) : Thunk(ToThunkKind(logical_id_kind), info), logical_id_buffer_(logical_id_buffer) {} template <LogicalIdKind logical_id_kind> static constexpr auto ToString() { if constexpr (logical_id_kind == LogicalIdKind::kPartitionId) { return "Partition"; } else if constexpr (logical_id_kind == LogicalIdKind::kReplicaId) { return "Replica"; } } template <LogicalIdKind logical_id_kind> absl::StatusOr<int32_t> LogicalIdThunk<logical_id_kind>::GetIdForDevice( const DeviceAssignment* device_assignment, GlobalDeviceId device_id) const { if constexpr (logical_id_kind == LogicalIdKind::kPartitionId) { return device_assignment->PartitionIdForDevice(device_id); } else if constexpr (logical_id_kind == LogicalIdKind::kReplicaId) { return device_assignment->ReplicaIdForDevice(device_id); } } template <LogicalIdKind logical_id_kind> tsl::AsyncValueRef<typename LogicalIdThunk<logical_id_kind>::ExecuteEvent> LogicalIdThunk<logical_id_kind>::Execute(const ExecuteParams& params) { tsl::profiler::TraceMe trace([&] { return TraceMeEncode(); }); TF_ASSIGN_OR_RETURN( se::DeviceMemoryBase logical_id_data, params.buffer_allocations->GetDeviceAddress(logical_id_buffer_)); TF_RET_CHECK(logical_id_data.size() == sizeof(int32_t)) << "Logical id buffer must be able to fit logical id value"; TF_RET_CHECK(params.collective_params) << ToString<logical_id_kind>() << " id requires collective params"; TF_ASSIGN_OR_RETURN( int32_t logical_id, GetIdForDevice(params.collective_params->device_assignment, params.collective_params->global_device_id)); VLOG(3) << absl::StreamFormat("%s id: %d", ToString<logical_id_kind>(), logical_id); VLOG(3) << absl::StreamFormat(" logical_id: slice %s (%p)", logical_id_buffer_.ToString(), logical_id_data.opaque()); std::memcpy(logical_id_data.opaque(), &logical_id, sizeof(int32_t)); return OkExecuteEvent(); } template <LogicalIdKind logical_id_kind> Thunk::BufferUses LogicalIdThunk<logical_id_kind>::buffer_uses() const { return {BufferUse::Write(logical_id_buffer_)}; } template class LogicalIdThunk<LogicalIdKind::kReplicaId>; template class LogicalIdThunk<LogicalIdKind::kPartitionId>; }
#include "xla/backends/cpu/runtime/logical_id_thunk.h" #include <cstdint> #include <limits> #include <string> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/backends/cpu/runtime/buffer_allocations.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/executable_run_options.h" #include "xla/service/buffer_assignment.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { absl::StatusOr<DeviceAssignment> CreateDeviceAssignment( std::vector<std::vector<int64_t>> devices) { const auto computation_count = devices.size(); if (devices.empty()) { return absl::InternalError("Devices must not be empty."); } const auto replica_count = devices[0].size(); DeviceAssignment device_assignment(replica_count, computation_count); for (int64_t partition = 0; partition < computation_count; ++partition) { for (int64_t replica = 0; replica < replica_count; ++replica) { device_assignment(replica, partition) = devices[partition][replica]; } } return device_assignment; } TEST(LogicalIdThunkTest, GetReplicaId) { std::vector<int32_t> dst(1, std::numeric_limits<int32_t>::min()); std::vector<MaybeOwningDeviceMemory> buffers; buffers.emplace_back(se::DeviceMemoryBase(dst.data(), sizeof(int32_t))); BufferAllocation alloc(0, sizeof(int32_t), 0); BufferAllocation::Slice id_slice(&alloc, 0, sizeof(int32_t)); std::string name(Thunk::KindToString(Thunk::Kind::kReplicaId)); TF_ASSERT_OK_AND_ASSIGN(auto thunk, ReplicaIdThunk::Create({name}, id_slice)); BufferAllocations allocations(buffers); TF_ASSERT_OK_AND_ASSIGN(DeviceAssignment device_assn, CreateDeviceAssignment({{0, 1}})); ExecutableRunOptions run_options; run_options.set_device_ordinal(0); run_options.set_device_assignment(&device_assn); TF_ASSERT_OK_AND_ASSIGN(Thunk::CollectiveExecuteParams collective_params, Thunk::CollectiveExecuteParams::Create(&run_options)); Thunk::ExecuteParams params; params.buffer_allocations = &allocations; params.collective_params = &collective_params; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); EXPECT_EQ(dst[0], 0); } TEST(LogicalIdThunkTest, GetPartitionId) { std::vector<int32_t> dst(2, std::numeric_limits<int32_t>::min()); std::vector<MaybeOwningDeviceMemory> buffers; static constexpr auto kDataSize = 2 * sizeof(int32_t); buffers.emplace_back(se::DeviceMemoryBase(dst.data(), kDataSize)); BufferAllocation alloc(0, kDataSize, 0); BufferAllocation::Slice id_slice(&alloc, sizeof(int32_t), sizeof(int32_t)); std::string name(Thunk::KindToString(Thunk::Kind::kPartitionId)); TF_ASSERT_OK_AND_ASSIGN(auto thunk, PartitionIdThunk::Create({name}, id_slice)); BufferAllocations allocations(buffers); TF_ASSERT_OK_AND_ASSIGN(DeviceAssignment device_assn, CreateDeviceAssignment({{0}, {1}})); ExecutableRunOptions run_options; run_options.set_device_ordinal(0); run_options.set_device_assignment(&device_assn); TF_ASSERT_OK_AND_ASSIGN(Thunk::CollectiveExecuteParams collective_params, Thunk::CollectiveExecuteParams::Create(&run_options)); Thunk::ExecuteParams params; params.buffer_allocations = &allocations; params.collective_params = &collective_params; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); EXPECT_EQ(dst[0], std::numeric_limits<int32_t>::min()); EXPECT_EQ(dst[1], 0); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/logical_id_thunk.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/logical_id_thunk_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fed78beb-029c-47b3-aad3-c4c29d5b52fc
cpp
tensorflow/tensorflow
sort_thunk
third_party/xla/xla/backends/cpu/runtime/sort_thunk.cc
third_party/xla/xla/backends/cpu/runtime/sort_thunk_test.cc
#include "xla/backends/cpu/runtime/sort_thunk.h" #include <algorithm> #include <array> #include <cstddef> #include <cstdint> #include <cstring> #include <functional> #include <iterator> #include <memory> #include <string> #include <type_traits> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/dynamic_annotations.h" #include "absl/base/optimization.h" #include "absl/container/inlined_vector.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/layout_util.h" #include "xla/primitive_util.h" #include "xla/runtime/buffer_use.h" #include "xla/service/buffer_assignment.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/traceme.h" namespace xla::cpu { static absl::Status VerifySortInputs(absl::Span<const SortThunk::Input> inputs, int64_t dimension) { if (inputs.empty()) { return Internal("Inputs must not be empty"); } auto equal = Shape::Equal().IgnoreElementType(); const Shape& shape = inputs[0].shape; for (const SortThunk::Input& input : inputs) { if (!equal(shape, input.shape)) { return Internal("Inputs must have the same shape"); } } int64_t sort_dimension = dimension >= 0 ? dimension : shape.rank() + dimension; if (shape.rank() <= sort_dimension) { return Internal( "Shape of dimensions [%s] can't be sorted along dimension %d", absl::StrJoin(shape.dimensions(), ","), dimension); } return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<SortThunk>> SortThunk::Create( Info info, absl::Span<const Input> inputs, int64_t dimension, bool is_stable, LessThan less_than) { TF_RETURN_IF_ERROR(VerifySortInputs(inputs, dimension)); return absl::WrapUnique(new SortThunk(std::move(info), inputs, dimension, is_stable, std::move(less_than))); } absl::StatusOr<std::unique_ptr<SortThunk>> SortThunk::Create( Info info, absl::Span<const Input> inputs, int64_t dimension, bool is_stable, std::string comparator_name) { TF_RETURN_IF_ERROR(VerifySortInputs(inputs, dimension)); return absl::WrapUnique(new SortThunk(std::move(info), inputs, dimension, is_stable, std::move(comparator_name))); } SortThunk::SortThunk(Info info, absl::Span<const Input> inputs, int64_t dimension, bool is_stable, LessThan less_than) : Thunk(Kind::kSort, std::move(info)), inputs_(inputs.begin(), inputs.end()), dimension_(dimension), is_stable_(is_stable), less_than_(std::move(less_than)), less_than_ptr_(&*less_than_) {} SortThunk::SortThunk(Info info, absl::Span<const Input> inputs, int64_t dimension, bool is_stable, std::string comparator_name) : Thunk(Kind::kSort, std::move(info)), inputs_(inputs.begin(), inputs.end()), dimension_(dimension), is_stable_(is_stable), comparator_name_(std::move(comparator_name)), less_than_ptr_(nullptr) {} namespace { static constexpr size_t kMaxElementSize = 16; template <size_t n> struct Ref; struct DRef; template <size_t n> struct Value { Value(const Ref<n>& ref); const void* compared_value(size_t i) const { return value[i].data(); } using ValueStorage = std::array<std::byte, kMaxElementSize>; alignas(alignof(std::max_align_t)) std::array<ValueStorage, n> value; std::array<uint8_t, n> value_sizes; }; struct DValue { DValue(const DRef& ref); const void* compared_value(size_t i) const { return value[i].data(); } using ValueStorage = std::array<std::byte, kMaxElementSize>; std::vector<ValueStorage> value; std::vector<uint8_t> value_sizes; size_t n; }; template <size_t n> struct Ref { Ref(std::array<std::byte*, n> ptr, std::array<uint8_t, n> ptr_sizes) : ptr(ptr), ptr_sizes(ptr_sizes) {} Ref& operator=(const Value<n>& value); Ref& operator=(const Ref<n>& other); const void* compared_value(size_t i) const { return ptr[i]; } std::array<std::byte*, n> ptr; std::array<uint8_t, n> ptr_sizes; }; struct DRef { DRef(std::vector<std::byte*> ptr, std::vector<uint8_t> ptr_sizes) : ptr(ptr), ptr_sizes(ptr_sizes), n(ptr.size()) {} DRef& operator=(const DValue& value); DRef& operator=(const DRef& other); const void* compared_value(size_t i) const { return ptr[i]; } std::vector<std::byte*> ptr; std::vector<uint8_t> ptr_sizes; const size_t n; }; template <size_t n> Value<n>::Value(const Ref<n>& ref) : value_sizes(ref.ptr_sizes) { for (size_t i = 0; i < n; ++i) { std::memcpy(value[i].data(), ref.ptr[i], ref.ptr_sizes[i]); } } DValue::DValue(const DRef& ref) : value_sizes(ref.ptr_sizes), n(ref.ptr.size()) { value.reserve(n); for (size_t i = 0; i < n; ++i) { value.emplace_back(); std::memcpy(value[i].data(), ref.ptr[i], ref.ptr_sizes[i]); } } template <size_t n> Ref<n>& Ref<n>::operator=(const Value<n>& value) { DCHECK(ptr_sizes == value.value_sizes); for (size_t i = 0; i < n; ++i) { std::memcpy(ptr[i], value.value[i].data(), value.value_sizes[i]); } return *this; } DRef& DRef::operator=(const DValue& value) { DCHECK(ptr_sizes == value.value_sizes); for (size_t i = 0; i < n; ++i) { std::memcpy(ptr[i], value.value[i].data(), value.value_sizes[i]); } return *this; } template <size_t n> Ref<n>& Ref<n>::operator=(const Ref<n>& other) { DCHECK(ptr_sizes == other.ptr_sizes); for (size_t i = 0; i < n; ++i) { std::memcpy(ptr[i], other.ptr[i], other.ptr_sizes[i]); } return *this; } DRef& DRef::operator=(const DRef& other) { DCHECK(ptr_sizes == other.ptr_sizes); const size_t n = other.ptr.size(); for (size_t i = 0; i < n; ++i) { std::memcpy(ptr[i], other.ptr[i], other.ptr_sizes[i]); } return *this; } template <size_t n> void swap(const Ref<n>& lhs, const Ref<n>& rhs) { for (size_t i = 0; i < n; ++i) { std::array<std::byte, kMaxElementSize> tmp; std::memcpy(tmp.data(), lhs.ptr[i], lhs.ptr_sizes[i]); std::memcpy(lhs.ptr[i], rhs.ptr[i], rhs.ptr_sizes[i]); std::memcpy(rhs.ptr[i], tmp.data(), lhs.ptr_sizes[i]); } } void swap(const DRef& lhs, const DRef& rhs) { DCHECK(lhs.ptr_sizes == rhs.ptr_sizes); const size_t n = lhs.ptr.size(); for (size_t i = 0; i < n; ++i) { std::array<std::byte, kMaxElementSize> tmp; std::memcpy(tmp.data(), lhs.ptr[i], lhs.ptr_sizes[i]); std::memcpy(lhs.ptr[i], rhs.ptr[i], rhs.ptr_sizes[i]); std::memcpy(rhs.ptr[i], tmp.data(), lhs.ptr_sizes[i]); } } template <size_t n> struct Ptr { using difference_type = std::ptrdiff_t; Ptr() = default; Ptr(std::array<std::byte*, n> ptr, std::array<uint8_t, n> ptr_sizes) : ptr(ptr), ptr_sizes(ptr_sizes) {} Ref<n> operator*() const { return Ref<n>{ptr, ptr_sizes}; } Ptr& operator+=(difference_type diff) { for (size_t i = 0; i < n; ++i) ptr[i] += diff * ptr_sizes[i]; return *this; } Ptr& operator-=(difference_type diff) { for (size_t i = 0; i < n; ++i) ptr[i] -= diff * ptr_sizes[i]; return *this; } Ptr operator+(difference_type diff) const { std::array<std::byte*, n> upd; for (size_t i = 0; i < n; ++i) upd[i] = ptr[i] + diff * ptr_sizes[i]; return Ptr{upd, ptr_sizes}; } Ptr operator-(difference_type diff) const { std::array<std::byte*, n> upd; for (size_t i = 0; i < n; ++i) upd[i] = ptr[i] - diff * ptr_sizes[i]; return Ptr{upd, ptr_sizes}; } difference_type operator-(const Ptr& rhs) const { DCHECK(ptr_sizes == rhs.ptr_sizes); return (ptr[0] - rhs.ptr[0]) / ptr_sizes[0]; } bool operator==(const Ptr& rhs) const { return ptr[0] == rhs.ptr[0]; } bool operator!=(const Ptr& rhs) const { return ptr[0] != rhs.ptr[0]; } bool operator>(const Ptr& rhs) const { return ptr[0] > rhs.ptr[0]; } bool operator<(const Ptr& rhs) const { return ptr[0] < rhs.ptr[0]; } bool operator>=(const Ptr& rhs) const { return ptr[0] >= rhs.ptr[0]; } bool operator<=(const Ptr& rhs) const { return ptr[0] <= rhs.ptr[0]; } std::array<std::byte*, n> ptr; std::array<uint8_t, n> ptr_sizes; }; struct DPtr { using difference_type = std::ptrdiff_t; DPtr() = default; DPtr(std::vector<std::byte*> ptr, std::vector<uint8_t> ptr_sizes) : ptr(ptr), ptr_sizes(ptr_sizes), n(ptr.size()) {} DRef operator*() const { return DRef{ptr, ptr_sizes}; } DPtr& operator+=(difference_type diff) { for (size_t i = 0; i < n; ++i) ptr[i] += diff * ptr_sizes[i]; return *this; } DPtr& operator-=(difference_type diff) { for (size_t i = 0; i < n; ++i) ptr[i] -= diff * ptr_sizes[i]; return *this; } DPtr operator+(difference_type diff) const { std::vector<std::byte*> upd(n); for (size_t i = 0; i < n; ++i) upd[i] = ptr[i] + diff * ptr_sizes[i]; return DPtr{upd, ptr_sizes}; } DPtr operator-(difference_type diff) const { std::vector<std::byte*> upd(n); for (size_t i = 0; i < n; ++i) upd[i] = ptr[i] - diff * ptr_sizes[i]; return DPtr{upd, ptr_sizes}; } difference_type operator-(const DPtr& rhs) const { DCHECK(ptr_sizes == rhs.ptr_sizes); return (ptr[0] - rhs.ptr[0]) / ptr_sizes[0]; } bool operator==(const DPtr& rhs) const { return ptr[0] == rhs.ptr[0]; } bool operator!=(const DPtr& rhs) const { return ptr[0] != rhs.ptr[0]; } bool operator>(const DPtr& rhs) const { return ptr[0] > rhs.ptr[0]; } bool operator<(const DPtr& rhs) const { return ptr[0] < rhs.ptr[0]; } bool operator>=(const DPtr& rhs) const { return ptr[0] >= rhs.ptr[0]; } bool operator<=(const DPtr& rhs) const { return ptr[0] <= rhs.ptr[0]; } std::vector<std::byte*> ptr; std::vector<uint8_t> ptr_sizes; size_t n; }; template <class Value, class Ref, class Ptr> class SortIterator { public: using iterator_category = std::random_access_iterator_tag; using difference_type = std::ptrdiff_t; using value_type = Value; using reference = Ref; using pointer = Ptr; SortIterator() = default; SortIterator(pointer ptr, difference_type stride) : ptr_(ptr), stride_(stride) {} SortIterator(const SortIterator& other) = default; SortIterator& operator=(const SortIterator& other) = default; SortIterator(SortIterator&& other) = default; SortIterator& operator=(SortIterator&& other) = default; reference operator*() const { return *ptr_; } difference_type operator-(const SortIterator& rhs) const { return (ptr_ - rhs.ptr_) / stride_; } SortIterator& operator+=(difference_type diff) { ptr_ += diff * stride_; return *this; } SortIterator& operator-=(difference_type diff) { ptr_ -= diff * stride_; return *this; } SortIterator& operator++() { ptr_ += stride_; return *this; } SortIterator& operator--() { ptr_ -= stride_; return *this; } SortIterator operator+(difference_type diff) const { return SortIterator(ptr_ + diff * stride_, stride_); } SortIterator operator-(difference_type diff) const { return SortIterator(ptr_ - diff * stride_, stride_); } bool operator==(const SortIterator& rhs) const { return ptr_ == rhs.ptr_; } bool operator!=(const SortIterator& rhs) const { return ptr_ != rhs.ptr_; } bool operator>(const SortIterator& rhs) const { return ptr_ > rhs.ptr_; } bool operator<(const SortIterator& rhs) const { return ptr_ < rhs.ptr_; } bool operator>=(const SortIterator& rhs) const { return ptr_ >= rhs.ptr_; } bool operator<=(const SortIterator& rhs) const { return ptr_ <= rhs.ptr_; } private: pointer ptr_; difference_type stride_ = 1; }; struct SortDims { int64_t outer_dim_size; int64_t sort_dim_size; int64_t inner_dim_size; int64_t num_iterations; }; } static SortDims GetSortDims(const Shape& shape, int64_t dimension) { int64_t sort_dimension = dimension >= 0 ? dimension : shape.rank() + dimension; Shape physical_shape = ShapeUtil::MakeShapeWithDescendingLayoutAndSamePhysicalLayout(shape); auto logical_to_physical = LayoutUtil::MakeLogicalToPhysical(shape.layout()); sort_dimension = logical_to_physical[sort_dimension]; auto product = [](absl::Span<const int64_t> dims) { return absl::c_accumulate(dims, int64_t{1}, std::multiplies<>()); }; absl::Span<const int64_t> dimensions = physical_shape.dimensions(); int64_t outer_dim_size = product(dimensions.subspan(0, sort_dimension)); int64_t sort_dim_size = dimensions[sort_dimension]; int64_t inner_dim_size = product(dimensions.subspan(sort_dimension + 1)); int64_t num_iterations = outer_dim_size * inner_dim_size; return SortDims{outer_dim_size, sort_dim_size, inner_dim_size, num_iterations}; } template <size_t n> static void SortInplace(const SortDims& sort_dims, int64_t offset, absl::Span<se::DeviceMemoryBase> data, absl::Span<const Shape> shapes, bool is_stable, SortThunk::LessThan* less_than) { std::array<std::byte*, n> ptr; std::array<uint8_t, n> ptr_sizes; for (size_t i = 0; i < n; ++i) { std::byte* base = reinterpret_cast<std::byte*>(data[i].opaque()); ptr_sizes[i] = primitive_util::ByteWidth(shapes[i].element_type()); ptr[i] = base + offset * ptr_sizes[i]; } auto compare = [&](const auto& a, const auto& b) { std::array<const void*, 2 * n> data; for (size_t i = 0, j = 0; i < n; i += 1, j += 2) { data[j] = a.compared_value(i); data[j + 1] = b.compared_value(i); } return (*less_than)(data.data()); }; SortIterator<Value<n>, Ref<n>, Ptr<n>> begin( Ptr<n>(ptr, ptr_sizes), sort_dims.inner_dim_size); if (is_stable) { std::stable_sort(begin, begin + sort_dims.sort_dim_size, compare); } else { std::sort(begin, begin + sort_dims.sort_dim_size, compare); } } static void DSortInplace(const SortDims& sort_dims, int64_t offset, absl::Span<se::DeviceMemoryBase> data, absl::Span<const Shape> shapes, bool is_stable, SortThunk::LessThan* less_than, size_t n) { std::vector<std::byte*> ptr(n); std::vector<uint8_t> ptr_sizes(n); for (size_t i = 0; i < n; ++i) { std::byte* base = reinterpret_cast<std::byte*>(data[i].opaque()); ptr_sizes[i] = primitive_util::ByteWidth(shapes[i].element_type()); ptr[i] = base + offset * ptr_sizes[i]; } auto compare = [&](const auto& a, const auto& b) { std::vector<const void*> data(2 * n); for (size_t i = 0, j = 0; i < n; i += 1, j += 2) { data[j] = a.compared_value(i); data[j + 1] = b.compared_value(i); } return (*less_than)(data.data()); }; SortIterator<DValue, DRef, DPtr> begin(DPtr(ptr, ptr_sizes), sort_dims.inner_dim_size); if (is_stable) { std::stable_sort(begin, begin + sort_dims.sort_dim_size, compare); } else { std::sort(begin, begin + sort_dims.sort_dim_size, compare); } } static absl::Status SortInplace(absl::Span<se::DeviceMemoryBase> data, absl::Span<const Shape> shapes, int64_t dimension, bool is_stable, SortThunk::LessThan* less_than) { SortDims sort_dims = GetSortDims(shapes[0], dimension); for (int64_t i = 0; i < sort_dims.num_iterations; ++i) { int64_t inner_idx = i % sort_dims.inner_dim_size; int64_t offset = inner_idx + (i - inner_idx) * sort_dims.sort_dim_size; auto sort = [&](auto num_inputs) { SortInplace<decltype(num_inputs)::value>(sort_dims, offset, data, shapes, is_stable, less_than); }; auto dsort = [&](size_t num_inputs) { DSortInplace(sort_dims, offset, data, shapes, is_stable, less_than, num_inputs); }; switch (data.size()) { case 1: sort(std::integral_constant<size_t, 1>{}); break; case 2: sort(std::integral_constant<size_t, 2>{}); break; case 3: sort(std::integral_constant<size_t, 3>{}); break; case 4: sort(std::integral_constant<size_t, 4>{}); break; case 5: sort(std::integral_constant<size_t, 5>{}); break; case 6: sort(std::integral_constant<size_t, 6>{}); break; case 7: sort(std::integral_constant<size_t, 7>{}); break; case 8: sort(std::integral_constant<size_t, 8>{}); break; case 9: sort(std::integral_constant<size_t, 9>{}); break; case 10: sort(std::integral_constant<size_t, 10>{}); break; case 11: sort(std::integral_constant<size_t, 11>{}); break; case 12: sort(std::integral_constant<size_t, 12>{}); break; case 13: sort(std::integral_constant<size_t, 13>{}); break; case 14: sort(std::integral_constant<size_t, 14>{}); break; case 15: sort(std::integral_constant<size_t, 15>{}); break; case 16: sort(std::integral_constant<size_t, 16>{}); break; case 17: sort(std::integral_constant<size_t, 17>{}); break; case 18: sort(std::integral_constant<size_t, 18>{}); break; case 19: sort(std::integral_constant<size_t, 19>{}); break; case 20: sort(std::integral_constant<size_t, 20>{}); break; case 21: sort(std::integral_constant<size_t, 21>{}); break; case 22: sort(std::integral_constant<size_t, 22>{}); break; case 23: sort(std::integral_constant<size_t, 23>{}); break; case 24: sort(std::integral_constant<size_t, 24>{}); break; case 25: sort(std::integral_constant<size_t, 25>{}); break; default: dsort(data.size()); break; } } return absl::OkStatus(); } tsl::AsyncValueRef<SortThunk::ExecuteEvent> SortThunk::Execute( const ExecuteParams& params) { tsl::profiler::TraceMe trace([&] { return TraceMeEncode(); }); VLOG(3) << absl::StreamFormat( "Sort %d inputs along dimension %d (is_stable=%v)", inputs_.size(), dimension_, is_stable_); absl::InlinedVector<se::DeviceMemoryBase, 8> data; data.reserve(inputs_.size()); absl::InlinedVector<Shape, 8> shapes; shapes.reserve(inputs_.size()); for (const Input& input : inputs_) { size_t idx = data.size(); TF_ASSIGN_OR_RETURN( data.emplace_back(), params.buffer_allocations->GetDeviceAddress(input.slice)); shapes.push_back(input.shape); ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(data.back().opaque(), data.back().size()); VLOG(3) << absl::StreamFormat(" sort input #%d: %s in slice %s (%p)", idx, input.shape.ToString(true), input.slice.ToString(), data.back().opaque()); } LessThan* less_than = less_than_ptr_.load(); if (ABSL_PREDICT_FALSE(less_than == nullptr)) { TF_ASSIGN_OR_RETURN( FunctionRegistry::Comparator comparator, params.function_registry->FindComparator(comparator_name_)); absl::MutexLock lock(&mutex_); less_than_ = [comparator](const void** data) { bool result; comparator(&result, nullptr, data, nullptr, nullptr, nullptr); ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(&result, sizeof(result)); return result; }; less_than_ptr_.store(less_than = &*less_than_); } TF_RETURN_IF_ERROR(SortInplace(absl::MakeSpan(data), shapes, dimension_, is_stable_, less_than)); return OkExecuteEvent(); } SortThunk::BufferUses SortThunk::buffer_uses() const { BufferUses buffer_uses; buffer_uses.reserve(inputs_.size()); for (const Input& input : inputs_) { buffer_uses.emplace_back(BufferUse::Write(input.slice)); } return buffer_uses; } }
#include "xla/backends/cpu/runtime/sort_thunk.h" #include <array> #include <cstddef> #include <cstdint> #include <numeric> #include <string_view> #include <vector> #include "absl/status/statusor.h" #include "xla/backends/cpu/runtime/buffer_allocations.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/service/buffer_assignment.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace xla::cpu { namespace { class SortThunkTest : public testing::TestWithParam<bool> {}; static bool LessThan(const void** data) { auto* lhs = reinterpret_cast<const float*>(data[0]); auto* rhs = reinterpret_cast<const float*>(data[1]); return *lhs < *rhs; } class LessThanComparator : public Thunk::FunctionRegistry { public: static void LessThanWrapper(bool* result, const void*, const void** data, const void*, const void*, const void*) { *result = LessThan(data); } absl::StatusOr<Comparator> FindComparator(std::string_view name) final { DCHECK_EQ(name, "less_than"); return LessThanWrapper; } }; TEST_P(SortThunkTest, Sort1D) { bool is_stable = GetParam(); std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> data = {2.0, 4.0, 1.0, 3.0}; std::vector<int32_t> indices = {0, 1, 2, 3}; size_t size_in_bytes = data.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(data.data(), size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(indices.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation alloc0(0, size_in_bytes, 0); BufferAllocation alloc1(1, size_in_bytes, 0); BufferAllocation::Slice slice0(&alloc0, 0, size_in_bytes); BufferAllocation::Slice slice1(&alloc1, 0, size_in_bytes); Shape data_shape = ShapeUtil::MakeShape(F32, {4}); Shape indices_shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto thunk, SortThunk::Create( {"sort"}, {{slice0, data_shape}, {slice1, indices_shape}}, 0, is_stable, LessThan)); Thunk::ExecuteParams params; params.buffer_allocations = &allocations; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); std::vector<float> expected_data = {1.0, 2.0, 3.0, 4.0}; std::vector<int32_t> expected_indices = {2, 0, 3, 1}; EXPECT_EQ(data, expected_data); EXPECT_EQ(indices, expected_indices); } TEST_P(SortThunkTest, DynamicSort1D) { bool is_stable = GetParam(); constexpr int num_of_empty_slices = 33; constexpr int total_num_of_slices = num_of_empty_slices + 2; constexpr int data_size = 31; constexpr float starting_value = 5.0f; std::array<float, data_size> data{ 17.0f, 16.0f, 5.0f, 10.0f, 30.0f, 8.0f, 9.0f, 21.0f, 14.0f, 32.0f, 29.0f, 28.0f, 19.0f, 12.0f, 25.0f, 22.0f, 18.0f, 35.0f, 34.0f, 23.0f, 7.0f, 13.0f, 26.0f, 33.0f, 15.0f, 24.0f, 20.0f, 31.0f, 6.0f, 27.0f, 11.0f}; std::array<int32_t, data_size> indices; std::iota(indices.begin(), indices.end(), 0); std::array<uint32_t, data_size * num_of_empty_slices> empty; const size_t data_size_in_bytes = data.size() * sizeof(float); const size_t ind_size_in_bytes = indices.size() * sizeof(int32_t); const size_t empty_size_in_bytes = empty.size() * sizeof(uint32_t); const BufferAllocation alloc0(0, data_size_in_bytes, 0); const BufferAllocation alloc1(1, ind_size_in_bytes, 0); const BufferAllocation rest(2, empty_size_in_bytes, 0); const BufferAllocation::Slice slice0(&alloc0, 0, data_size_in_bytes); const BufferAllocation::Slice slice1(&alloc1, 0, ind_size_in_bytes); const Shape data_shape = ShapeUtil::MakeShape(F32, {data_size}); const Shape indices_shape = ShapeUtil::MakeShape(S32, {data_size}); const Shape rest_shape = ShapeUtil::MakeShape(U32, {data_size}); std::vector<MaybeOwningDeviceMemory> buffers; buffers.emplace_back(se::DeviceMemoryBase(data.data(), data_size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(indices.data(), ind_size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(empty.data(), empty_size_in_bytes)); BufferAllocations allocations(buffers); std::array<SortThunk::Input, total_num_of_slices> inputs{ {{slice0, data_shape}, {slice1, indices_shape}}}; for (int i = 0; i < num_of_empty_slices; ++i) { constexpr size_t empty_slice_in_bytes = data_size * sizeof(uint32_t); inputs[i + 2].slice = BufferAllocation::Slice( &rest, i * empty_slice_in_bytes, empty_slice_in_bytes); inputs[i + 2].shape = rest_shape; } TF_ASSERT_OK_AND_ASSIGN( auto thunk, SortThunk::Create({"sort"}, inputs, 0, is_stable, LessThan)); Thunk::ExecuteParams params; params.buffer_allocations = &allocations; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); std::array<float, data_size> expected_data; std::iota(expected_data.begin(), expected_data.end(), starting_value); const std::array<int32_t, data_size> expected_indices{ 2, 28, 20, 5, 6, 3, 30, 13, 21, 8, 24, 1, 0, 16, 12, 26, 7, 15, 19, 25, 14, 22, 29, 11, 10, 4, 27, 9, 23, 18, 17}; EXPECT_EQ(data, expected_data); EXPECT_EQ(indices, expected_indices); } TEST_P(SortThunkTest, Sort2D) { bool is_stable = GetParam(); std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> data = {2.0, 4.0, 1.0, 3.0}; std::vector<int32_t> indices = {0, 1, 2, 3}; size_t size_in_bytes = data.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(data.data(), size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(indices.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation alloc0(0, size_in_bytes, 0); BufferAllocation alloc1(1, size_in_bytes, 0); BufferAllocation::Slice slice0(&alloc0, 0, size_in_bytes); BufferAllocation::Slice slice1(&alloc1, 0, size_in_bytes); Shape data_shape = ShapeUtil::MakeShape(F32, {2, 2}); Shape indices_shape = ShapeUtil::MakeShape(S32, {2, 2}); TF_ASSERT_OK_AND_ASSIGN( auto sort_dim0, SortThunk::Create({"sort"}, {{slice0, data_shape}, {slice1, indices_shape}}, 0, is_stable, "less_than")); Thunk::ExecuteParams params; params.buffer_allocations = &allocations; LessThanComparator less_than_comparator; params.function_registry = &less_than_comparator; auto execute_event0 = sort_dim0->Execute(params); tsl::BlockUntilReady(execute_event0); ASSERT_FALSE(execute_event0.IsError()); std::vector<float> expected_data = {1.0, 3.0, 2.0, 4.0}; std::vector<int32_t> expected_indices = {2, 3, 0, 1}; EXPECT_EQ(data, expected_data); EXPECT_EQ(indices, expected_indices); data = {4.0, 3.0, 2.0, 1.0}; indices = {0, 1, 2, 3}; TF_ASSERT_OK_AND_ASSIGN( auto sort_dim1, SortThunk::Create({"sort"}, {{slice0, data_shape}, {slice1, indices_shape}}, 1, false, "less_than")); auto execute_event1 = sort_dim1->Execute(params); tsl::BlockUntilReady(execute_event1); ASSERT_FALSE(execute_event1.IsError()); expected_data = {3.0, 4.0, 1.0, 2.0}; expected_indices = {1, 0, 3, 2}; EXPECT_EQ(data, expected_data); EXPECT_EQ(indices, expected_indices); } TEST_P(SortThunkTest, Sort2DWithLayout) { bool is_stable = GetParam(); std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> data = {4.0, 3.0, 2.0, 1.0}; std::vector<int32_t> indices = {0, 1, 2, 3}; size_t size_in_bytes = data.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(data.data(), size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(indices.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation alloc0(0, size_in_bytes, 0); BufferAllocation alloc1(1, size_in_bytes, 0); BufferAllocation::Slice slice0(&alloc0, 0, size_in_bytes); BufferAllocation::Slice slice1(&alloc1, 0, size_in_bytes); Shape data_shape = ShapeUtil::MakeShape(F32, {2, 2}); *data_shape.mutable_layout() = LayoutUtil::MakeLayout({0, 1}); Shape indices_shape = ShapeUtil::MakeShape(S32, {2, 2}); *indices_shape.mutable_layout() = LayoutUtil::MakeLayout({0, 1}); TF_ASSERT_OK_AND_ASSIGN( auto sort_dim0, SortThunk::Create({"sort"}, {{slice0, data_shape}, {slice1, indices_shape}}, 0, is_stable, "less_than")); Thunk::ExecuteParams params; params.buffer_allocations = &allocations; LessThanComparator less_than_comparator; params.function_registry = &less_than_comparator; auto execute_event0 = sort_dim0->Execute(params); tsl::BlockUntilReady(execute_event0); ASSERT_FALSE(execute_event0.IsError()); std::vector<float> expected_data = {3.0, 4.0, 1.0, 2.0}; std::vector<int32_t> expected_indices = {1, 0, 3, 2}; EXPECT_EQ(data, expected_data); EXPECT_EQ(indices, expected_indices); data = {2.0, 4.0, 1.0, 3.0}; indices = {0, 1, 2, 3}; TF_ASSERT_OK_AND_ASSIGN( auto sort_dim1, SortThunk::Create({"sort"}, {{slice0, data_shape}, {slice1, indices_shape}}, 1, false, "less_than")); auto execute_event1 = sort_dim1->Execute(params); tsl::BlockUntilReady(execute_event1); ASSERT_FALSE(execute_event1.IsError()); expected_data = {1.0, 3.0, 2.0, 4.0}; expected_indices = {2, 3, 0, 1}; EXPECT_EQ(data, expected_data); EXPECT_EQ(indices, expected_indices); } void BM_DynamicSort1D(::testing::benchmark::State& state, bool is_stable) { const int total_num_of_slices = state.range(0); const int num_of_empty_slices = total_num_of_slices - 2; constexpr int data_size = 31; const std::array<float, data_size> data{ 17.0f, 16.0f, 5.0f, 10.0f, 30.0f, 8.0f, 9.0f, 21.0f, 14.0f, 32.0f, 29.0f, 28.0f, 19.0f, 12.0f, 25.0f, 22.0f, 18.0f, 35.0f, 34.0f, 23.0f, 7.0f, 13.0f, 26.0f, 33.0f, 15.0f, 24.0f, 20.0f, 31.0f, 6.0f, 27.0f, 11.0f}; std::array<int32_t, data_size> indices; std::iota(indices.begin(), indices.end(), 0); std::vector<uint32_t> empty(data_size * num_of_empty_slices); const size_t data_size_in_bytes = data.size() * sizeof(float); const size_t ind_size_in_bytes = indices.size() * sizeof(int32_t); const size_t empty_size_in_bytes = empty.size() * sizeof(uint32_t); const BufferAllocation alloc0(0, data_size_in_bytes, 0); const BufferAllocation alloc1(1, ind_size_in_bytes, 0); const BufferAllocation rest(2, empty_size_in_bytes, 0); const BufferAllocation::Slice slice0(&alloc0, 0, data_size_in_bytes); const BufferAllocation::Slice slice1(&alloc1, 0, ind_size_in_bytes); const Shape data_shape = ShapeUtil::MakeShape(F32, {data_size}); const Shape indices_shape = ShapeUtil::MakeShape(S32, {data_size}); const Shape rest_shape = ShapeUtil::MakeShape(U32, {data_size}); for (auto s : state) { state.PauseTiming(); auto data_clone(data); auto indices_clone(indices); std::vector<MaybeOwningDeviceMemory> buffers; buffers.emplace_back( se::DeviceMemoryBase(data_clone.data(), data_size_in_bytes)); buffers.emplace_back( se::DeviceMemoryBase(indices_clone.data(), ind_size_in_bytes)); buffers.emplace_back( se::DeviceMemoryBase(empty.data(), empty_size_in_bytes)); BufferAllocations allocations(buffers); std::vector<SortThunk::Input> inputs(total_num_of_slices); inputs[0] = {slice0, data_shape}; inputs[1] = {slice1, indices_shape}; for (int i = 0; i < num_of_empty_slices; ++i) { constexpr size_t empty_slice_in_bytes = data_size * sizeof(uint32_t); inputs[i + 2].slice = BufferAllocation::Slice( &rest, i * empty_slice_in_bytes, empty_slice_in_bytes); inputs[i + 2].shape = rest_shape; } Thunk::ExecuteParams params; params.buffer_allocations = &allocations; state.ResumeTiming(); TF_ASSERT_OK_AND_ASSIGN( auto thunk, SortThunk::Create({"sort"}, inputs, 0, is_stable, LessThan)); auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); } } void BM_StableDynamicSort1D(::testing::benchmark::State& state) { BM_DynamicSort1D(state, true); } void BM_UnstableDynamicSort1D(::testing::benchmark::State& state) { BM_DynamicSort1D(state, false); } BENCHMARK(BM_StableDynamicSort1D) ->MeasureProcessCPUTime() ->Arg(35) ->Arg(50) ->Arg(100); BENCHMARK(BM_UnstableDynamicSort1D) ->MeasureProcessCPUTime() ->Arg(35) ->Arg(50) ->Arg(100); INSTANTIATE_TEST_SUITE_P(SortThunk, SortThunkTest, testing::Bool(), testing::PrintToStringParamName()); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/sort_thunk.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/sort_thunk_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9ec2ecf4-73bd-4fdb-aa81-263d6baa14ff
cpp
tensorflow/tensorflow
outfeed_thunk
third_party/xla/xla/service/gpu/runtime/outfeed_thunk.cc
third_party/xla/xla/backends/cpu/runtime/outfeed_thunk_test.cc
#include "xla/service/gpu/runtime/outfeed_thunk.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/log/log.h" #include "absl/status/status.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/buffer_allocations.h" #include "xla/service/gpu/gpu_transfer_manager.h" #include "xla/service/gpu/outfeed_manager.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/stream_executor.h" #include "xla/util.h" #include "tsl/platform/errors.h" namespace xla { namespace gpu { OutfeedThunk::OutfeedThunk(ThunkInfo thunk_info, std::vector<ShapedSlice> source_slices) : Thunk(Kind::kOutfeed, thunk_info), source_slices_(std::move(source_slices)) {} absl::Status OutfeedThunk::ExecuteOnStream(const ExecuteParams& params) { se::Stream& stream = *params.stream; const BufferAllocations& buffer_allocations = *params.buffer_allocations; VLOG(2) << "Outfeeding from GPU"; OutfeedManager* outfeed_manager = GpuTransferManager::GetOrCreateOutfeedManager(stream.parent()); ShapeTree<std::unique_ptr<OutfeedBuffer>>* output_buffers = outfeed_manager->BlockingGetNextDestination(); if (source_slices_.empty()) { return absl::OkStatus(); } const int64_t leaf_count = output_buffers->leaf_count(); TF_RET_CHECK(source_slices_.size() == leaf_count) << "Mismatch between number of outfeed inputs (" << source_slices_.size() << ") and outputs (" << leaf_count << ")"; auto output_leaf_it = output_buffers->leaf_begin(); for (int64_t index = 0; index < leaf_count; ++index) { const ShapeIndex& shape_index = output_leaf_it->first; std::unique_ptr<OutfeedBuffer>& buffer = output_leaf_it->second; ++output_leaf_it; const Shape& output_shape = ShapeUtil::GetSubshape(output_buffers->shape(), shape_index); TF_RET_CHECK( ShapeUtil::ReshapeIsBitcast(source_slices_[index].shape, output_shape)) << "Mismatch between outfeed output buffer shape " << ShapeUtil::HumanStringWithLayout(output_shape) << " and outfeed source buffer shape " << ShapeUtil::HumanStringWithLayout(source_slices_[index].shape); BufferAllocation::Slice source_slice = source_slices_[index].slice; if (!source_slice.allocation()) return Internal("outfeed source missing buffer allocation"); se::DeviceMemoryBase data_address = buffer_allocations.GetDeviceAddress(source_slice); TF_RETURN_IF_ERROR(stream.Memcpy(buffer->destination()->untyped_data(), data_address, buffer->length())); TF_RETURN_IF_ERROR(stream.DoHostCallback([&buffer]() { buffer->Done(); })); } absl::Status block_status = stream.BlockHostUntilDone(); if (!block_status.ok()) { return Internal("Failed to complete data transfer on stream %p: %s", &stream, block_status.message()); } VLOG(2) << "Outfeeding from GPU complete"; return absl::OkStatus(); } } }
#include "xla/backends/cpu/runtime/outfeed_thunk.h" #include <memory> #include "xla/backends/cpu/runtime/resource_use.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/runtime/buffer_use.h" #include "xla/service/buffer_assignment.h" #include "xla/shape_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { TEST(OutfeedThunkTest, BufferAndResourceUses) { BufferAllocation alloc(0, 1024, 0); BufferAllocation::Slice outfeed_slice(&alloc, 10, 40); OutfeedThunk::OutfeedBuffer outfeed_buffer = { outfeed_slice, ShapeUtil::MakeShape(F32, {10}), }; auto consume_token = Resource::Create(Resource::kToken); auto produce_token = Resource::Create(Resource::kToken); TF_ASSERT_OK_AND_ASSIGN(auto thunk, OutfeedThunk::Create({"outfeed"}, {outfeed_buffer}, {consume_token, produce_token})); EXPECT_EQ(thunk->buffer_uses().size(), 1); EXPECT_EQ(thunk->buffer_uses()[0], BufferUse::Read(outfeed_slice)); EXPECT_EQ(thunk->resource_uses().size(), 2); EXPECT_EQ(thunk->resource_uses()[0], ResourceUse::Read(consume_token)); EXPECT_EQ(thunk->resource_uses()[1], ResourceUse::Write(produce_token)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/runtime/outfeed_thunk.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/outfeed_thunk_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
229b23b1-a820-4bd3-ae84-ec9d912fadd4
cpp
tensorflow/tensorflow
infeed_thunk
third_party/xla/xla/service/gpu/runtime/infeed_thunk.cc
third_party/xla/xla/backends/cpu/runtime/infeed_thunk_test.cc
#include "xla/service/gpu/runtime/infeed_thunk.h" #include <cstddef> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "xla/service/gpu/buffer_allocations.h" #include "xla/service/gpu/gpu_transfer_manager.h" #include "xla/service/gpu/infeed_manager.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_handle.h" #include "xla/stream_executor/stream_executor.h" #include "xla/util.h" #include "tsl/platform/errors.h" namespace xla { namespace gpu { InfeedThunk::InfeedThunk(ThunkInfo thunk_info, std::vector<ShapedSlice> dest_slices) : Thunk(Kind::kInfeed, thunk_info), dest_slices_(std::move(dest_slices)) {} absl::Status InfeedThunk::ExecuteOnStream(const ExecuteParams& params) { se::Stream& stream = *params.stream; const BufferAllocations& buffer_allocations = *params.buffer_allocations; VLOG(2) << "Infeeding to GPU"; ShapeTree<se::DeviceMemoryHandle> source_buffers = GpuTransferManager::GetOrCreateInfeedManager(stream.parent()) ->BlockingGetNextDestination(); size_t index = 0; for (auto& source : source_buffers.leaves()) { const ShapeIndex& shape_index = source.first; se::DeviceMemoryHandle& buffer = source.second; const Shape& source_shape = ShapeUtil::GetSubshape(source_buffers.shape(), shape_index); TF_RET_CHECK( ShapeUtil::ReshapeIsBitcast(dest_slices_[index].shape, source_shape)) << "Mismatch between infeed source buffer shape " << ShapeUtil::HumanStringWithLayout(source_shape) << " and infeed dest buffer shape " << ShapeUtil::HumanStringWithLayout(dest_slices_[index].shape); se::DeviceMemoryBase dest_address = buffer_allocations.GetDeviceAddress(dest_slices_[index++].slice); TF_RETURN_IF_ERROR( stream.Memcpy(&dest_address, buffer.memory(), buffer.memory().size())); } CHECK_EQ(index, dest_slices_.size()) << "Infeed did not populate all destination buffers"; absl::Status block_status = stream.BlockHostUntilDone(); if (!block_status.ok()) { return Internal("Failed to complete data transfer on stream %p: %s", &stream, block_status.message()); } VLOG(2) << "Infeeding to GPU complete"; return absl::OkStatus(); } } }
#include "xla/backends/cpu/runtime/infeed_thunk.h" #include <memory> #include "xla/backends/cpu/runtime/resource_use.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/runtime/buffer_use.h" #include "xla/service/buffer_assignment.h" #include "xla/shape_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { TEST(InfeedThunkTest, BufferAndResourceUses) { BufferAllocation alloc(0, 1024, 0); BufferAllocation::Slice infeed_slice(&alloc, 10, 40); InfeedThunk::InfeedBuffer infeed_buffer = { infeed_slice, ShapeUtil::MakeShape(F32, {10}), }; auto consume_token = Resource::Create(Resource::kToken); auto produce_token = Resource::Create(Resource::kToken); TF_ASSERT_OK_AND_ASSIGN(auto thunk, InfeedThunk::Create({"infeed"}, {infeed_buffer}, {consume_token, produce_token})); EXPECT_EQ(thunk->buffer_uses().size(), 1); EXPECT_EQ(thunk->buffer_uses()[0], BufferUse::Write(infeed_slice)); EXPECT_EQ(thunk->resource_uses().size(), 2); EXPECT_EQ(thunk->resource_uses()[0], ResourceUse::Read(consume_token)); EXPECT_EQ(thunk->resource_uses()[1], ResourceUse::Write(produce_token)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/runtime/infeed_thunk.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/infeed_thunk_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f0dde765-55b6-493c-95a6-d09131a7d8c2
cpp
tensorflow/tensorflow
while_thunk
third_party/xla/xla/service/gpu/runtime/while_thunk.cc
third_party/xla/xla/backends/cpu/runtime/while_thunk_test.cc
#include "xla/service/gpu/runtime/while_thunk.h" #include <cstdint> #include <iterator> #include <list> #include <memory> #include <optional> #include <utility> #include "absl/cleanup/cleanup.h" #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "absl/synchronization/mutex.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/runtime/sequential_thunk.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/memory_allocation.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { static std::list<int64_t>& LoopCounters() { static thread_local std::list<int64_t> loop_counters; return loop_counters; } absl::StatusOr<int64_t> WhileThunk::CurrentLoopIteration(int64_t depth) { if (depth >= LoopCounters().size()) { return absl::InvalidArgumentError(absl::StrFormat( "Loop depth %d is greater than the number of tracked loops %d", depth, LoopCounters().size())); } auto counter = LoopCounters().begin(); std::advance(counter, depth); return *counter; } WhileThunk::WhileThunk( ThunkInfo thunk_info, const BufferAllocation::Slice& condition_result_buffer_index, std::unique_ptr<SequentialThunk> condition_thunk_sequence, std::unique_ptr<SequentialThunk> body_thunk_sequence, std::optional<int64_t> trip_count) : Thunk(Kind::kWhile, thunk_info), condition_result_buffer_index_(condition_result_buffer_index), condition_thunk_sequence_(std::move(condition_thunk_sequence)), body_thunk_sequence_(std::move(body_thunk_sequence)), trip_count_(trip_count) {} absl::Status WhileThunk::Prepare(const PrepareParams& params, ResourceRequests& resource_requests) { TF_RETURN_IF_ERROR( condition_thunk_sequence_->Prepare(params, resource_requests)); TF_RETURN_IF_ERROR(body_thunk_sequence_->Prepare(params, resource_requests)); return absl::OkStatus(); } absl::Status WhileThunk::Initialize(const InitializeParams& params) { TF_RETURN_IF_ERROR(condition_thunk_sequence_->Initialize(params)); TF_RETURN_IF_ERROR(body_thunk_sequence_->Initialize(params)); absl::MutexLock lock(&mutex_); if (auto it = predicates_.find(params.executor); it == predicates_.end()) { TF_ASSIGN_OR_RETURN(std::unique_ptr<se::MemoryAllocation> allocation, params.executor->HostMemoryAllocate(sizeof(bool))); predicates_.emplace(params.executor, std::move(allocation)); } return absl::OkStatus(); } absl::Status WhileThunk::ExecuteOnStream(const ExecuteParams& params) { auto& stream = *params.stream; int64_t& iter = LoopCounters().emplace_front(); absl::Cleanup cleanup = [&] { LoopCounters().pop_front(); }; se::DeviceMemoryBase condition_result_data = params.buffer_allocations->GetDeviceAddress( condition_result_buffer_index_); if (trip_count_.has_value()) { VLOG(2) << "Executing WhileThunk for " << *trip_count_ << " iterations"; for (iter = 0; iter < trip_count_; ++iter) { VLOG(3) << "Executing iteration # " << iter; TF_RETURN_IF_ERROR(body_thunk_sequence_->ExecuteOnStream(params)); } return absl::OkStatus(); } bool* condition_result = [&] { absl::MutexLock lock(&mutex_); return reinterpret_cast<bool*>(predicates_.at(stream.parent())->opaque()); }(); while (true) { VLOG(3) << "Executing WhileThunk condition computation; iter=" << iter; TF_RETURN_IF_ERROR(condition_thunk_sequence_->ExecuteOnStream(params)); TF_RETURN_IF_ERROR( stream.Memcpy(condition_result, condition_result_data, sizeof(bool))); if (absl::Status blocked = stream.BlockHostUntilDone(); !blocked.ok()) { return absl::InternalError(absl::StrFormat( "Failed to complete all kernels launched on stream %p: %s", &stream, blocked.message())); } VLOG(3) << "condition_result = " << *condition_result; if (!*condition_result) { VLOG(3) << "Break WhileThunk loop; iter=" << iter; break; } VLOG(3) << "Executing WhileThunk body computation; iter=" << iter; TF_RETURN_IF_ERROR(body_thunk_sequence_->ExecuteOnStream(params)); ++iter; } return absl::OkStatus(); } } }
#include "xla/backends/cpu/runtime/while_thunk.h" #include <atomic> #include <cstddef> #include <cstdint> #include <memory> #include <utility> #include <vector> #include "xla/backends/cpu/runtime/buffer_allocations.h" #include "xla/backends/cpu/runtime/resource_use.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/backends/cpu/runtime/thunk_testlib.h" #include "xla/runtime/buffer_use.h" #include "xla/service/buffer_assignment.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/env.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" #define EIGEN_USE_THREADS #include "Eigen/ThreadPool" #include "unsupported/Eigen/CXX11/Tensor" namespace xla::cpu { namespace { TEST(WhileThunkTest, BufferUses) { BufferAllocation alloc(0, 1024, 0); BufferAllocation::Slice pred_slice(&alloc, 0, sizeof(char)); BufferAllocation::Slice cond_read_slice(&alloc, 10, 10); BufferAllocation::Slice body_read_slice(&alloc, 20, 10); ThunkSequence cond_sequence; cond_sequence.push_back( std::make_unique<BufferUseThunk>(BufferUse::Read(cond_read_slice))); ThunkSequence body_sequence; body_sequence.push_back( std::make_unique<BufferUseThunk>(BufferUse::Read(body_read_slice))); TF_ASSERT_OK_AND_ASSIGN( auto thunk, WhileThunk::Create({"while"}, pred_slice, std::move(cond_sequence), std::move(body_sequence))); EXPECT_EQ(thunk->buffer_uses().size(), 3); EXPECT_EQ(thunk->buffer_uses()[0], BufferUse::Write(pred_slice)); EXPECT_EQ(thunk->buffer_uses()[1], BufferUse::Read(cond_read_slice)); EXPECT_EQ(thunk->buffer_uses()[2], BufferUse::Read(body_read_slice)); } TEST(WhileThunkTest, ResourceUses) { BufferAllocation alloc(0, 1024, 0); BufferAllocation::Slice pred_slice(&alloc, 0, sizeof(char)); auto token0 = Resource::Create(Resource::kToken); auto token1 = Resource::Create(Resource::kToken); ThunkSequence cond_sequence; cond_sequence.push_back( std::make_unique<ResourceUseThunk>(ResourceUse::Read(token0))); ThunkSequence body_sequence; body_sequence.push_back( std::make_unique<ResourceUseThunk>(ResourceUse::Read(token1))); TF_ASSERT_OK_AND_ASSIGN( auto thunk, WhileThunk::Create({"while"}, pred_slice, std::move(cond_sequence), std::move(body_sequence))); EXPECT_EQ(thunk->resource_uses().size(), 2); EXPECT_EQ(thunk->resource_uses()[0], ResourceUse::Read(token0)); EXPECT_EQ(thunk->resource_uses()[1], ResourceUse::Read(token1)); } class CondThunk : public Thunk { public: CondThunk(size_t counter, BufferAllocation::Slice pred_slice) : Thunk(Kind::kKernel, {"cond"}), counter_(counter + 1), pred_slice_(pred_slice) {} tsl::AsyncValueRef<ExecuteEvent> Execute(const ExecuteParams& params) final { auto event = tsl::MakeConstructedAsyncValueRef<ExecuteEvent>(); TF_ASSIGN_OR_RETURN( se::DeviceMemoryBase predicate_mem, params.buffer_allocations->GetDeviceAddress(pred_slice_)); bool* predicate = reinterpret_cast<bool*>(predicate_mem.opaque()); *predicate = counter_.fetch_sub(1) > 1; params.intra_op_threadpool->getPool()->Schedule( [event] { event.SetStateConcrete(); }); return event; } BufferUses buffer_uses() const final { return {BufferUse::Write(pred_slice_)}; } private: std::atomic<size_t> counter_; BufferAllocation::Slice pred_slice_; }; class BodyThunk : public Thunk { public: explicit BodyThunk(BufferAllocation::Slice counter_slice) : Thunk(Kind::kKernel, {"body"}), counter_slice_(counter_slice) {} tsl::AsyncValueRef<ExecuteEvent> Execute(const ExecuteParams& params) final { auto event = tsl::MakeConstructedAsyncValueRef<ExecuteEvent>(); TF_ASSIGN_OR_RETURN( se::DeviceMemoryBase counter_mem, params.buffer_allocations->GetDeviceAddress(counter_slice_)); int32_t* counter = reinterpret_cast<int32_t*>(counter_mem.opaque()); ++*counter; params.intra_op_threadpool->getPool()->Schedule( [event] { event.SetStateConcrete(); }); return event; } BufferUses buffer_uses() const final { return {}; } private: BufferAllocation::Slice counter_slice_; }; TEST(WhileThunkTest, NonBlockingExecute) { static constexpr size_t kNumIterations = 100; BufferAllocation pred_alloc(0, sizeof(char), 0); BufferAllocation cnt_alloc(1, sizeof(int32_t), 0); BufferAllocation::Slice pred_slice(&pred_alloc, 0, sizeof(char)); BufferAllocation::Slice cnt_slice(&cnt_alloc, 0, sizeof(int32_t)); std::vector<MaybeOwningDeviceMemory> buffers; std::vector<char> predicate = {false}; std::vector<int32_t> counter = {0}; buffers.emplace_back(se::DeviceMemoryBase(predicate.data(), sizeof(char))); buffers.emplace_back(se::DeviceMemoryBase(counter.data(), sizeof(int32_t))); BufferAllocations allocations(buffers); ThunkSequence cond_sequence; cond_sequence.push_back( std::make_unique<CondThunk>(kNumIterations, pred_slice)); ThunkSequence body_sequence; body_sequence.push_back(std::make_unique<BodyThunk>(cnt_slice)); TF_ASSERT_OK_AND_ASSIGN( auto thunk, WhileThunk::Create({"while"}, pred_slice, std::move(cond_sequence), std::move(body_sequence))); tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "while-test", 8); Eigen::ThreadPoolDevice device(thread_pool.AsEigenThreadPool(), thread_pool.NumThreads()); Thunk::ExecuteParams params; params.buffer_allocations = &allocations; params.intra_op_threadpool = &device; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); EXPECT_EQ(counter[0], kNumIterations); } TEST(WhileThunkTest, NonBlockingExecuteWithTripCount) { static constexpr size_t kNumIterations = 100; BufferAllocation pred_alloc(0, sizeof(char), 0); BufferAllocation cnt_alloc(1, sizeof(int32_t), 0); BufferAllocation::Slice pred_slice(&pred_alloc, 0, sizeof(char)); BufferAllocation::Slice cnt_slice(&cnt_alloc, 0, sizeof(int32_t)); std::vector<MaybeOwningDeviceMemory> buffers; std::vector<char> predicate = {false}; std::vector<int32_t> counter = {0}; buffers.emplace_back(se::DeviceMemoryBase(predicate.data(), sizeof(char))); buffers.emplace_back(se::DeviceMemoryBase(counter.data(), sizeof(int32_t))); BufferAllocations allocations(buffers); ThunkSequence cond_sequence; ThunkSequence body_sequence; body_sequence.push_back(std::make_unique<BodyThunk>(cnt_slice)); TF_ASSERT_OK_AND_ASSIGN( auto thunk, WhileThunk::Create( {"while"}, pred_slice, std::move(cond_sequence), std::move(body_sequence), kNumIterations)); tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "while-test", 8); Eigen::ThreadPoolDevice device(thread_pool.AsEigenThreadPool(), thread_pool.NumThreads()); Thunk::ExecuteParams params; params.buffer_allocations = &allocations; params.intra_op_threadpool = &device; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); EXPECT_EQ(counter[0], kNumIterations); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/runtime/while_thunk.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/while_thunk_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c297c433-ff38-48f0-b470-44bddb8dde91
cpp
tensorflow/tensorflow
thunk_executor
third_party/xla/xla/backends/cpu/runtime/thunk_executor.cc
third_party/xla/xla/backends/cpu/runtime/thunk_executor_test.cc
#include "xla/backends/cpu/runtime/thunk_executor.h" #include <atomic> #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/attributes.h" #include "absl/base/optimization.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/backends/cpu/runtime/resource_use.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/runtime/buffer_use.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/logging.h" #include "tsl/profiler/lib/traceme.h" namespace xla::cpu { ThunkExecutor::ThunkExecutor(ThunkSequence thunk_sequence, std::vector<NodeDef> nodes_defs, const ThunkExecutor::Options& options) : thunk_sequence_(std::move(thunk_sequence)), options_(options), num_thunks_(thunk_sequence_.size()), nodes_defs_(std::move(nodes_defs)), is_sequential_(true) { for (NodeId i = 0; i < nodes_defs_.size(); ++i) { if (nodes_defs_[i].in_edges.empty()) { source_.push_back(i); } if (nodes_defs_[i].out_edges.empty()) { sink_.push_back(i); } } int64_t num_erased_edges = RunTransitiveReductionAndUpdatePriorities(); for (NodeId i = 1; i < nodes_defs_.size() && is_sequential_; ++i) { is_sequential_ &= (absl::c_count(nodes_defs_[i].in_edges, i - 1) != 0); } auto uses_small_buffers = [&](const std::unique_ptr<Thunk>& thunk) { return absl::c_all_of(thunk->buffer_uses(), [&](const BufferUse& use) { return use.slice().size() <= options.execute_sequential_buffer_threshold; }); }; bool small_buffers = absl::c_all_of(thunk_sequence_, uses_small_buffers); is_sequential_ |= small_buffers; is_sequential_ |= thunk_sequence_.size() <= options.execute_sequential_num_thunks_threshold; VLOG(2) << absl::StreamFormat( "Constructed ThunkExecutor with %d nodes: #source_nodes=%d " "#sink_nodes=%d, #erased_edges=%d, is_sequential=%v, small_buffers=%v", nodes_defs_.size(), source_.size(), sink_.size(), num_erased_edges, is_sequential_, small_buffers); DCHECK((!source_.empty() && !sink_.empty() && !thunk_sequence_.empty()) || (source_.empty() && sink_.empty() && thunk_sequence_.empty())); } absl::StatusOr<ThunkExecutor> ThunkExecutor::Create( ThunkSequence thunk_sequence, const ThunkExecutor::Options& options) { std::vector<NodeDef> defs(thunk_sequence.size()); std::vector<BufferUse::ReadWriteSet> buffer_rwsets(thunk_sequence.size()); std::vector<ResourceUse::ReadWriteSet> resource_rwsets(thunk_sequence.size()); for (NodeId i = 0; i < thunk_sequence.size(); ++i) { defs[i].id = i; Thunk& thunk = *thunk_sequence[i]; buffer_rwsets[i].AddAll(thunk.buffer_uses()); resource_rwsets[i].AddAll(thunk.resource_uses()); for (NodeId j = 0; j < i; ++j) { if (buffer_rwsets[j].HasConflicts(buffer_rwsets[i]) || resource_rwsets[j].HasConflicts(resource_rwsets[i])) { defs[j].out_edges.push_back(i); defs[i].in_edges.push_back(j); } } } for (NodeId i = 0; i < defs.size(); ++i) { DCHECK(absl::c_is_sorted(defs[i].out_edges)); DCHECK(absl::c_is_sorted(defs[i].in_edges)); } return ThunkExecutor(std::move(thunk_sequence), std::move(defs), options); } ThunkExecutor::ExecuteState::Node::Node(const NodeDef& node_def) : counter(node_def.in_edges.size()), out_edges(&node_def.out_edges) {} ThunkExecutor::ExecuteState::ExecuteState(ThunkExecutor* executor, Thunk::TaskRunner* runner) : executor(executor), runner(runner), nodes(executor->nodes_defs().size()), execute_event(tsl::MakeConstructedAsyncValueRef<ExecuteEvent>()), pending_sink_nodes(executor->sink().size()), abort(false) { DCHECK(runner == nullptr || static_cast<bool>(*runner)) << "`runner` must be nullptr or a valid TaskRunner"; NodeStorage* node = nodes.data(); for (const NodeDef& node_def : executor->nodes_defs()) { new (node++) Node(node_def); } } tsl::AsyncValueRef<ThunkExecutor::ExecuteEvent> ThunkExecutor::Execute( const Thunk::ExecuteParams& params) { if (ABSL_PREDICT_FALSE(num_thunks_ == 0)) { return Thunk::OkExecuteEventSingleton(); } if (ABSL_PREDICT_FALSE(num_thunks_ == 1)) { return thunk_sequence_[0]->Execute(params); } if (is_sequential_) { return ExecuteSequential(params); } auto state = std::make_unique<ExecuteState>(this, params.task_runner); if (options_.use_priority_ready_queue) { Execute(state.get(), params, PriorityReadyQueue(nodes_defs_, source_), nullptr); } else { Execute(state.get(), params, FifoReadyQueue(source_), nullptr); } if (ABSL_PREDICT_TRUE(state->execute_event.IsAvailable())) { return std::move(state->execute_event); } tsl::AsyncValueRef<ExecuteEvent> execute_event = state->execute_event; execute_event.AndThen([state = std::move(state)] { auto cnt = state->pending_sink_nodes.load(std::memory_order_acquire); DCHECK_EQ(cnt, 0) << "All sink nodes must be completed before execute_event is marked " "available."; }); return execute_event; } tsl::AsyncValueRef<ThunkExecutor::ExecuteEvent> ThunkExecutor::ExecuteSequential(const Thunk::ExecuteParams& params) { for (auto it = thunk_sequence_.begin(); it != thunk_sequence_.end(); ++it) { Thunk& thunk = **it; auto execute_event = thunk.Execute(params); if (ABSL_PREDICT_TRUE(thunk.IsOkExecuteEvent(execute_event))) { continue; } if (ABSL_PREDICT_FALSE(!execute_event.IsAvailable())) { auto event = tsl::MakeConstructedAsyncValueRef<ExecuteEvent>(); execute_event.AndThen([this, &params, it, event](absl::Status status) { if (ABSL_PREDICT_FALSE(!status.ok())) { event.SetError(std::move(status)); } else { ResumeExecuteSequential(it + 1, params, std::move(event)); } }); return event; } if (ABSL_PREDICT_FALSE(execute_event.IsError())) { return execute_event; } } return Thunk::OkExecuteEventSingleton(); } void ThunkExecutor::ResumeExecuteSequential( ThunkIterator it, const Thunk::ExecuteParams& params, tsl::AsyncValueRef<ExecuteEvent> event) { for (; it != thunk_sequence_.end(); ++it) { Thunk& thunk = **it; auto execute_event = thunk.Execute(params); if (ABSL_PREDICT_TRUE(thunk.IsOkExecuteEvent(execute_event))) { continue; } if (ABSL_PREDICT_FALSE(!execute_event.IsAvailable())) { execute_event.AndThen( [this, &params, it, event = std::move(event)](absl::Status status) { if (ABSL_PREDICT_FALSE(!status.ok())) { event.SetError(std::move(status)); } else { ResumeExecuteSequential(it + 1, params, std::move(event)); } }); return; } if (ABSL_PREDICT_FALSE(execute_event.IsError())) { event.SetError(execute_event.GetError()); return; } } event.SetStateConcrete(); } template <typename ReadyQueue> void ThunkExecutor::Execute(ExecuteState* state, const Thunk::ExecuteParams& params, ReadyQueue ready_queue, Thunk::ExecuteSession::Lock lock) { DCHECK(!ready_queue.Empty()) << "Ready queue must not be empty"; tsl::profiler::TraceMe trace("ThunkExecutor::Execute"); bool has_runner = state->runner != nullptr; bool has_lock = static_cast<bool>(lock); int64_t split_threshold = params.session.split_threshold(); while (!ready_queue.Empty()) { DCHECK_EQ(static_cast<bool>(lock), has_lock) << "Execute session lock must not be lost in the middle of the loop"; NodeId id = ready_queue.Pop(); ExecuteState::Node& node = state->node(id); int64_t cnt = node.counter.load(std::memory_order_acquire); DCHECK_EQ(cnt, 0) << "Node counter must be 0"; int64_t num_ready_thunks = ready_queue.Size(); if (ABSL_PREDICT_FALSE(has_runner && num_ready_thunks > split_threshold)) { SplitReadyQueue(state, params, ready_queue, split_threshold); } Thunk& thunk = *state->executor->thunk_sequence_[id]; tsl::AsyncValueRef<ExecuteEvent> execute_event = ABSL_PREDICT_FALSE(state->abort.load(std::memory_order_relaxed)) ? Thunk::OkExecuteEventSingleton() : thunk.Execute(params); if (ABSL_PREDICT_TRUE(execute_event.IsAvailable())) { ProcessOutEdges(state, execute_event.AsPtr(), node, ready_queue); } else { execute_event.AndThen( [&params, &node, state, execute_event = execute_event.AsPtr(), ready_queue = ready_queue.CreateEmptyReadyQueue(), lock = ready_queue.Empty() ? std::move(lock) : params.session.Join()]() mutable { state->executor->ProcessOutEdges(state, execute_event, node, ready_queue); if (ABSL_PREDICT_TRUE(!ready_queue.Empty())) { state->executor->Execute(state, params, std::move(ready_queue), std::move(lock)); } }); } } } template <typename ReadyQueue> inline ABSL_ATTRIBUTE_ALWAYS_INLINE void ThunkExecutor::SplitReadyQueue( ExecuteState* state, const Thunk::ExecuteParams& params, ReadyQueue& ready_queue, int64_t split_threshold) { DCHECK(state->runner) << "TaskRunner must be set"; while (ready_queue.Size() > split_threshold) { Thunk::ExecuteSession::Lock task_runner_lock = params.session.TryJoin(); if (!task_runner_lock) { break; } (*state->runner)([&params, state, ready_queue = ready_queue.PopHalf(), lock = std::move(task_runner_lock)]() mutable { state->executor->Execute(state, params, std::move(ready_queue), std::move(lock)); }); } } template <typename ReadyQueue> void ThunkExecutor::ProcessOutEdges( ExecuteState* state, tsl::AsyncValuePtr<Thunk::ExecuteEvent> node_event, ExecuteState::Node& node, ReadyQueue& ready_queue) { if (ABSL_PREDICT_FALSE(node_event.IsError())) { absl::MutexLock lock(&state->abort_mutex); state->abort = true; state->abort_status.Update(node_event.GetError()); } bool is_sink = node.out_edges->empty(); for (NodeId out_edge : *node.out_edges) { ExecuteState::Node& out_node = state->node(out_edge); int64_t cnt = out_node.counter.fetch_sub(1, std::memory_order_release); DCHECK_GE(cnt, 1) << "Node counter can't drop below 0"; if (cnt == 1) ready_queue.Push(out_edge); } if (ABSL_PREDICT_FALSE(is_sink)) { bool is_done = state->pending_sink_nodes.fetch_sub(1, std::memory_order_acq_rel) == 1; if (ABSL_PREDICT_TRUE(!is_done)) return; if (ABSL_PREDICT_FALSE(state->abort.load(std::memory_order_relaxed))) { auto take_error = [&] { absl::MutexLock lock(&state->abort_mutex); DCHECK(!state->abort_status.ok()) << "Abort status must be set if execution is aborted"; return std::move(state->abort_status); }; state->execute_event.SetError(take_error()); } else { state->execute_event.SetStateConcrete(); } } } static int64_t EraseEdge(ThunkExecutor::NodeDef& from, ThunkExecutor::NodeDef& to) { DCHECK_NE(from.id, to.id) << "Nodes must be different"; DCHECK_LT(from.id, to.id) << "Nodes must be ordered"; if (from.out_edges.empty() || to.in_edges.empty()) { DCHECK_EQ(absl::c_count(from.out_edges, to.id), 0) << "Unexpected out edge"; DCHECK_EQ(absl::c_count(to.in_edges, from.id), 0) << "Unexpected in edge"; return 0; } if (from.out_edges.back() < to.id || to.in_edges.front() > from.id) { DCHECK_EQ(absl::c_count(from.out_edges, to.id), 0) << "Unexpected out edge"; DCHECK_EQ(absl::c_count(to.in_edges, from.id), 0) << "Unexpected in edge"; return 0; } auto out_edges_it = absl::c_lower_bound(from.out_edges, to.id); bool has_out_edge = out_edges_it != from.out_edges.end() && *out_edges_it == to.id; if (!has_out_edge) { DCHECK_EQ(absl::c_count(to.in_edges, from.id), 0) << "Unexpected in edge"; return 0; } auto in_edges_it = absl::c_lower_bound(to.in_edges, from.id); bool has_in_edge = in_edges_it != to.in_edges.end() && *in_edges_it == from.id; DCHECK(has_in_edge) << "In-edge must exist if out-edge exists"; from.out_edges.erase(out_edges_it); to.in_edges.erase(in_edges_it); return 1; } int64_t ThunkExecutor::RunTransitiveReductionAndUpdatePriorities() { int64_t num_erased_edges = 0; std::vector<int64_t> stack; std::vector<bool> visited; auto add_to_stack = [&](int64_t node_id) { if (!visited[node_id]) { stack.push_back(node_id); visited[node_id] = true; } }; for (int64_t i = nodes_defs_.size() - 1; i >= 0; --i) { NodeDef& source_node = nodes_defs_[i]; stack.clear(); visited.assign(nodes_defs_.size(), false); for (int64_t out_id : source_node.out_edges) { NodeDef& out_node = nodes_defs_[out_id]; visited[out_id] = true; for (int64_t start_id : out_node.out_edges) add_to_stack(start_id); } while (!stack.empty()) { int64_t node_id = stack.back(); stack.pop_back(); NodeDef& node = nodes_defs_[node_id]; num_erased_edges += EraseEdge(source_node, node); for (int64_t out_id : node.out_edges) add_to_stack(out_id); } source_node.priority = absl::c_count(visited, true); } return num_erased_edges; } std::string ThunkExecutor::ToString() const { std::string str = absl::StrFormat( "ThunkExecutor: #thunks=%d #source_nodes=%d #sink_nodes=%d", num_thunks_, source_.size(), sink_.size()); std::vector<std::vector<std::string>> in_edges(num_thunks_); for (const auto& node_def : nodes_defs_) { for (NodeId in_edge : node_def.in_edges) { in_edges[node_def.id].push_back(thunk_sequence_[in_edge]->info().op_name); } } for (NodeId i = 0; i < num_thunks_; ++i) { const Thunk& thunk = *thunk_sequence_[i]; bool is_source = absl::c_find(source_, i) != source_.end(); bool is_sink = absl::c_find(sink_, i) != sink_.end(); absl::StrAppendFormat(&str, "\n thunk #%05d: op_name=%s, dependencies=[%s], " "source=%v, sink=%v, priority=%d", i, thunk.info().op_name, absl::StrJoin(in_edges[i], ", "), is_source, is_sink, nodes_defs_[i].priority); } return str; } ThunkExecutor::FifoReadyQueue::FifoReadyQueue( absl::Span<const NodeId> ready_nodes) : queue_(ready_nodes.begin(), ready_nodes.end()) {} void ThunkExecutor::FifoReadyQueue::Push(NodeId id) { queue_.push_back(id); } ThunkExecutor::NodeId ThunkExecutor::FifoReadyQueue::Pop() { DCHECK(!Empty()) << "Queue must not be empty"; return queue_[head_++]; } ThunkExecutor::FifoReadyQueue ThunkExecutor::FifoReadyQueue::PopHalf() { DCHECK(!Empty()) << "Queue must not be empty"; auto mid = queue_.begin() + head_ + Size() / 2; FifoReadyQueue popped(absl::MakeConstSpan(&*mid, queue_.end() - mid)); queue_.resize(mid - queue_.begin()); return popped; } size_t ThunkExecutor::FifoReadyQueue::Size() const { return queue_.size() - head_; } bool ThunkExecutor::FifoReadyQueue::Empty() const { return head_ == queue_.size(); } ThunkExecutor::FifoReadyQueue ThunkExecutor::FifoReadyQueue::CreateEmptyReadyQueue() const { return FifoReadyQueue(absl::Span<const NodeId>()); } ThunkExecutor::PriorityReadyQueue::PriorityReadyQueue( absl::Span<const NodeDef> nodes_defs, absl::Span<const NodeId> ready_nodes) : nodes_defs_(nodes_defs), queue_(ready_nodes.begin(), ready_nodes.end(), Compare{nodes_defs}) {} void ThunkExecutor::PriorityReadyQueue::Push(NodeId id) { queue_.push(id); } ThunkExecutor::NodeId ThunkExecutor::PriorityReadyQueue::Pop() { DCHECK(!Empty()) << "Queue must not be empty"; NodeId id = queue_.top(); queue_.pop(); return id; } ThunkExecutor::PriorityReadyQueue ThunkExecutor::PriorityReadyQueue::PopHalf() { DCHECK(!Empty()) << "Queue must not be empty"; int64_t keep_top_nodes = queue_.size() / 2; PriorityReadyQueue popped(nodes_defs_, {}); while (keep_top_nodes-- > 0) { popped.queue_.push(queue_.top()); queue_.pop(); } popped.queue_.swap(queue_); return popped; } size_t ThunkExecutor::PriorityReadyQueue::Size() const { return queue_.size(); } bool ThunkExecutor::PriorityReadyQueue::Empty() const { return queue_.empty(); } ThunkExecutor::PriorityReadyQueue ThunkExecutor::PriorityReadyQueue::CreateEmptyReadyQueue() const { return PriorityReadyQueue(nodes_defs_, {}); } }
#include "xla/backends/cpu/runtime/thunk_executor.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <random> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "xla/backends/cpu/runtime/buffer_allocations.h" #include "xla/backends/cpu/runtime/resource_use.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/runtime/buffer_use.h" #include "xla/service/buffer_assignment.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" #include "tsl/platform/threadpool.h" #define EIGEN_USE_THREADS #include "unsupported/Eigen/CXX11/Tensor" namespace xla::cpu { namespace { using ::testing::ElementsAre; static int64_t shared_resource; class AddI32Thunk final : public Thunk { public: AddI32Thunk(std::string name, std::vector<BufferAllocation::Slice> srcs, std::vector<BufferAllocation::Slice> dsts, std::vector<std::string>* trace, bool use_shared_resource, bool inject_error); static std::unique_ptr<Thunk> Create( std::string name, std::vector<BufferAllocation::Slice> srcs, std::vector<BufferAllocation::Slice> dsts, std::vector<std::string>* trace = nullptr, bool use_shared_resource = false, bool inject_error = false); static std::vector<MaybeOwningDeviceMemory> AsDeviceMemory( absl::Span<std::vector<int32_t>* const> data); static absl::Status Execute(const BufferAllocations* allocations, BufferAllocation::Slice src_slice, BufferAllocation::Slice dst_slice); tsl::AsyncValueRef<ExecuteEvent> Execute(const ExecuteParams&) final; BufferUses buffer_uses() const final; ResourceUses resource_uses() const final; private: std::vector<BufferAllocation::Slice> srcs_; std::vector<BufferAllocation::Slice> dsts_; std::vector<std::string>* trace_; bool use_shared_resource_; bool inject_error_; }; std::unique_ptr<Thunk> AddI32Thunk::Create( std::string name, std::vector<BufferAllocation::Slice> srcs, std::vector<BufferAllocation::Slice> dsts, std::vector<std::string>* trace, bool use_shared_resource, bool inject_error) { return std::make_unique<AddI32Thunk>(std::move(name), std::move(srcs), std::move(dsts), trace, use_shared_resource, inject_error); } std::vector<MaybeOwningDeviceMemory> AddI32Thunk::AsDeviceMemory( absl::Span<std::vector<int32_t>* const> data) { std::vector<MaybeOwningDeviceMemory> buffers; for (auto& vec : data) { buffers.emplace_back( se::DeviceMemoryBase(vec->data(), vec->size() * sizeof(int32_t))); } return buffers; } AddI32Thunk::AddI32Thunk(std::string name, std::vector<BufferAllocation::Slice> srcs, std::vector<BufferAllocation::Slice> dsts, std::vector<std::string>* trace, bool use_shared_resource, bool inject_error) : Thunk(Kind::kKernel, Info{name}), srcs_(std::move(srcs)), dsts_(std::move(dsts)), trace_(trace), use_shared_resource_(use_shared_resource), inject_error_(inject_error) {} absl::Status AddI32Thunk::Execute(const BufferAllocations* allocations, BufferAllocation::Slice src_slice, BufferAllocation::Slice dst_slice) { TF_ASSIGN_OR_RETURN(se::DeviceMemoryBase src, allocations->GetDeviceAddress(src_slice)); TF_ASSIGN_OR_RETURN(se::DeviceMemoryBase dst, allocations->GetDeviceAddress(dst_slice)); CHECK_EQ(src.size() % sizeof(int32_t), 0); CHECK_EQ(dst.size() % sizeof(int32_t), 0); int32_t* src_ptr = static_cast<int32_t*>(src.opaque()); int32_t* dst_ptr = static_cast<int32_t*>(dst.opaque()); size_t len = std::min(src.size(), dst.size()) / sizeof(int32_t); for (int j = 0; j < len; ++j) dst_ptr[j] += src_ptr[j]; return absl::OkStatus(); } tsl::AsyncValueRef<Thunk::ExecuteEvent> AddI32Thunk::Execute( const ExecuteParams& params) { if (trace_) trace_->push_back(info().op_name); auto execute = [&]() -> absl::Status { CHECK_EQ(srcs_.size(), dsts_.size()); for (int i = 0; i < srcs_.size(); ++i) { TF_RETURN_IF_ERROR( Execute(params.buffer_allocations, srcs_.at(i), dsts_.at(i))); } return absl::OkStatus(); }; if (params.intra_op_threadpool) { auto event = tsl::MakeConstructedAsyncValueRef<ExecuteEvent>(); params.intra_op_threadpool->getPool()->Schedule([&, event, execute] { if (use_shared_resource_) { shared_resource++; } if (inject_error_) { event.SetError(absl::InternalError("Injected error")); } else { CHECK_OK(execute()); event.SetStateConcrete(); } }); return event; } if (use_shared_resource_) { shared_resource++; } if (inject_error_) { return tsl::MakeErrorAsyncValueRef(absl::InternalError("Injected error")); } TF_RETURN_IF_ERROR(execute()); return Thunk::OkExecuteEvent(); } AddI32Thunk::BufferUses AddI32Thunk::buffer_uses() const { BufferUses buffer_uses; for (const auto& src : srcs_) buffer_uses.push_back(BufferUse::Read(src)); for (const auto& dst : dsts_) buffer_uses.push_back(BufferUse::Write(dst)); return buffer_uses; } AddI32Thunk::ResourceUses AddI32Thunk::resource_uses() const { static std::shared_ptr<Resource>* shared_resource = new std::shared_ptr<Resource>(Resource::Create(Resource::kToken)); return use_shared_resource_ ? ResourceUses{ResourceUse::Write(*shared_resource)} : ResourceUses{}; } static ThunkExecutor::Options OptionsForTest() { return ThunkExecutor::Options{0, 0}; } TEST(ThunkExecutorTest, FifoReadyQueueTest) { ThunkExecutor::FifoReadyQueue queue({}); EXPECT_TRUE(queue.Empty()); EXPECT_EQ(queue.Size(), 0); queue.Push(1); queue.Push(2); queue.Push(3); EXPECT_EQ(queue.Size(), 3); EXPECT_EQ(queue.Pop(), 1); EXPECT_EQ(queue.Pop(), 2); EXPECT_EQ(queue.Pop(), 3); EXPECT_TRUE(queue.Empty()); EXPECT_EQ(queue.Size(), 0); queue.Push(1); queue.Push(2); queue.Push(3); ThunkExecutor::FifoReadyQueue half0 = queue.PopHalf(); EXPECT_EQ(half0.Size(), 2); EXPECT_EQ(half0.Pop(), 2); EXPECT_EQ(half0.Pop(), 3); EXPECT_EQ(queue.Size(), 1); ThunkExecutor::FifoReadyQueue half1 = queue.PopHalf(); EXPECT_EQ(half1.Size(), 1); EXPECT_EQ(queue.Size(), 0); queue.Push(1); queue.Push(2); queue.Push(3); queue.Push(4); queue.Push(5); EXPECT_EQ(queue.Pop(), 1); ThunkExecutor::FifoReadyQueue half2 = queue.PopHalf(); EXPECT_EQ(half2.Size(), 2); EXPECT_EQ(half2.Pop(), 4); EXPECT_EQ(half2.Pop(), 5); } TEST(ThunkExecutorTest, PriorityReadyQueueTest) { std::vector<ThunkExecutor::NodeDef> nodes_defs(16); for (size_t i = 0; i < nodes_defs.size(); ++i) { nodes_defs[i].priority = i; } ThunkExecutor::PriorityReadyQueue queue(nodes_defs, {}); EXPECT_TRUE(queue.Empty()); EXPECT_EQ(queue.Size(), 0); queue.Push(1); queue.Push(3); queue.Push(2); EXPECT_EQ(queue.Pop(), 3); EXPECT_EQ(queue.Pop(), 2); EXPECT_EQ(queue.Pop(), 1); EXPECT_TRUE(queue.Empty()); EXPECT_EQ(queue.Size(), 0); queue.Push(2); queue.Push(1); queue.Push(3); ThunkExecutor::PriorityReadyQueue half0 = queue.PopHalf(); EXPECT_EQ(half0.Size(), 2); EXPECT_EQ(half0.Pop(), 2); EXPECT_EQ(half0.Pop(), 1); EXPECT_EQ(queue.Size(), 1); ThunkExecutor::PriorityReadyQueue half1 = queue.PopHalf(); EXPECT_EQ(half1.Size(), 1); EXPECT_EQ(half1.Pop(), 3); EXPECT_EQ(queue.Size(), 0); queue.Push(4); queue.Push(3); queue.Push(5); queue.Push(1); queue.Push(2); EXPECT_EQ(queue.Pop(), 5); ThunkExecutor::PriorityReadyQueue half2 = queue.PopHalf(); EXPECT_EQ(half2.Size(), 2); EXPECT_EQ(half2.Pop(), 2); EXPECT_EQ(half2.Pop(), 1); } TEST(ThunkExecutorTest, DependencyOrdering) { BufferAllocation alloc(0, 80, 0); BufferAllocation::Slice slice0(&alloc, 0, 40); BufferAllocation::Slice slice1(&alloc, 40, 40); BufferAllocation::Slice slice2(&alloc, 20, 40); ThunkSequence sequence; sequence.push_back(AddI32Thunk::Create("a", {slice0}, {slice0})); sequence.push_back(AddI32Thunk::Create("b", {slice1}, {slice1})); sequence.push_back(AddI32Thunk::Create("c", {slice2}, {slice2})); TF_ASSERT_OK_AND_ASSIGN( ThunkExecutor executor, ThunkExecutor::Create(std::move(sequence), OptionsForTest())); EXPECT_FALSE(executor.is_sequential()); EXPECT_THAT(executor.source(), ElementsAre(0, 1)); EXPECT_THAT(executor.sink(), ElementsAre(2)); EXPECT_EQ(executor.node_def(0).priority, 1); EXPECT_EQ(executor.node_def(1).priority, 1); EXPECT_EQ(executor.node_def(2).priority, 0); } TEST(ThunkExecutorTest, SequentialOrdering) { BufferAllocation alloc(0, 80, 0); BufferAllocation::Slice slice(&alloc, 0, 40); ThunkSequence sequence; sequence.push_back(AddI32Thunk::Create("a", {slice}, {slice})); sequence.push_back(AddI32Thunk::Create("b", {slice}, {slice})); sequence.push_back(AddI32Thunk::Create("c", {slice}, {slice})); TF_ASSERT_OK_AND_ASSIGN( ThunkExecutor executor, ThunkExecutor::Create(std::move(sequence), OptionsForTest())); EXPECT_TRUE(executor.is_sequential()); EXPECT_THAT(executor.source(), ElementsAre(0)); EXPECT_THAT(executor.sink(), ElementsAre(2)); EXPECT_EQ(executor.node_def(0).priority, 2); EXPECT_EQ(executor.node_def(1).priority, 1); EXPECT_EQ(executor.node_def(2).priority, 0); } TEST(ThunkExecutorTest, ResourceOrdering) { BufferAllocation alloc(0, 80, 0); BufferAllocation::Slice slice0(&alloc, 0, 40); BufferAllocation::Slice slice1(&alloc, 40, 40); ThunkSequence sequence; sequence.push_back(AddI32Thunk::Create("a", {slice0}, {slice0}, nullptr, true)); sequence.push_back(AddI32Thunk::Create("b", {slice1}, {slice1}, nullptr, true)); TF_ASSERT_OK_AND_ASSIGN( ThunkExecutor executor, ThunkExecutor::Create(std::move(sequence), OptionsForTest())); EXPECT_TRUE(executor.is_sequential()); EXPECT_THAT(executor.source(), ElementsAre(0)); EXPECT_THAT(executor.sink(), ElementsAre(1)); EXPECT_EQ(executor.node_def(0).priority, 1); EXPECT_EQ(executor.node_def(1).priority, 0); } TEST(ThunkExecutorTest, TransitiveReduction) { BufferAllocation alloc(0, 80, 0); BufferAllocation::Slice slice(&alloc, 0, 40); ThunkSequence sequence; sequence.push_back(AddI32Thunk::Create("a", {slice}, {slice})); sequence.push_back(AddI32Thunk::Create("b", {slice}, {slice})); sequence.push_back(AddI32Thunk::Create("c", {slice}, {slice})); TF_ASSERT_OK_AND_ASSIGN( ThunkExecutor executor, ThunkExecutor::Create(std::move(sequence), OptionsForTest())); EXPECT_THAT(executor.source(), ElementsAre(0)); EXPECT_THAT(executor.sink(), ElementsAre(2)); EXPECT_THAT(executor.node_def(0).out_edges, ElementsAre(1)); EXPECT_THAT(executor.node_def(1).in_edges, ElementsAre(0)); EXPECT_THAT(executor.node_def(1).out_edges, ElementsAre(2)); EXPECT_THAT(executor.node_def(2).in_edges, ElementsAre(1)); EXPECT_EQ(executor.node_def(0).priority, 2); EXPECT_EQ(executor.node_def(1).priority, 1); EXPECT_EQ(executor.node_def(2).priority, 0); } TEST(ThunkExecutorTest, Execute) { BufferAllocation alloc(0, 80, 0); BufferAllocation::Slice slice0(&alloc, 0, 40); BufferAllocation::Slice slice1(&alloc, 40, 40); BufferAllocation::Slice slice2(&alloc, 20, 40); std::vector<std::string> trace; ThunkSequence sequence; sequence.push_back(AddI32Thunk::Create("a", {slice0}, {slice0}, &trace)); sequence.push_back(AddI32Thunk::Create("b", {slice1}, {slice1}, &trace)); sequence.push_back(AddI32Thunk::Create("c", {slice2}, {slice2}, &trace)); TF_ASSERT_OK_AND_ASSIGN( ThunkExecutor executor, ThunkExecutor::Create(std::move(sequence), OptionsForTest())); std::vector<int32_t> data(20, 1); auto buffers = AddI32Thunk::AsDeviceMemory({&data}); BufferAllocations allocations(buffers); Thunk::TaskRunner task_runner = [&](Thunk::Task task) { trace.push_back("<TaskRunner>"); task(); }; Thunk::ExecuteParams params = {nullptr, &allocations}; params.task_runner = &task_runner; params.session = Thunk::ExecuteSession(8, 0); auto execute_event = executor.Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_TRUE(execute_event.IsConcrete()); EXPECT_THAT(trace, ElementsAre("<TaskRunner>", "b", "a", "c")); EXPECT_THAT(data, ElementsAre(2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2)); } enum class SharedResourceUse { kNo, kAll, kRandom }; struct GeneratedThunkSequence { BufferAllocation src_alloc; BufferAllocation dst_alloc; std::vector<int32_t> src; std::vector<int32_t> dst; std::vector<int32_t> expected; int32_t expected_shared_resource_value; std::vector<MaybeOwningDeviceMemory> expected_buffers; std::vector<MaybeOwningDeviceMemory> buffers; ThunkSequence sequence; }; static absl::StatusOr<std::unique_ptr<GeneratedThunkSequence>> GenerateThunkSequence(size_t num_elements, size_t num_thunks, SharedResourceUse shared_resource_use, bool inject_errors) { auto g = std::make_unique<GeneratedThunkSequence>(GeneratedThunkSequence{ BufferAllocation(0, num_elements * sizeof(int32_t), 0), BufferAllocation(1, num_elements * sizeof(int32_t), 0), std::vector<int32_t>(num_elements, 1), std::vector<int32_t>(num_elements, 0), std::vector<int32_t>(num_elements, 0), 0, }); g->sequence.reserve(num_thunks); g->expected_buffers = AddI32Thunk::AsDeviceMemory({&g->src, &g->expected}); g->buffers = AddI32Thunk::AsDeviceMemory({&g->src, &g->dst}); std::minstd_rand0 engine; std::uniform_int_distribution<size_t> offset_dist(0, num_elements - 1); std::uniform_int_distribution<size_t> size_dist(32, 64); std::uniform_int_distribution<size_t> use_resource_dist(0, num_thunks / 10); std::uniform_int_distribution<size_t> inject_error_dist(0, num_thunks / 10); auto random_slice = [&](BufferAllocation* alloc) { size_t start = offset_dist(engine); size_t size = std::min(num_elements - start, size_dist(engine)); return BufferAllocation::Slice(alloc, start * sizeof(int32_t), size * sizeof(int32_t)); }; for (int i = 0; i < num_thunks; ++i) { BufferAllocation::Slice src = random_slice(&g->src_alloc); BufferAllocation::Slice dst = random_slice(&g->dst_alloc); BufferAllocations allocations(g->expected_buffers); TF_RETURN_IF_ERROR(AddI32Thunk::Execute(&allocations, src, dst)); bool use_resource = [&] { switch (shared_resource_use) { case SharedResourceUse::kNo: return false; case SharedResourceUse::kAll: return true; case SharedResourceUse::kRandom: return use_resource_dist(engine) == 0; } }(); if (use_resource) g->expected_shared_resource_value++; bool inject_error = inject_errors && inject_error_dist(engine) == 0; g->sequence.push_back(AddI32Thunk::Create(absl::StrCat(i), {src}, {dst}, nullptr, use_resource, inject_error)); } return g; } class ThunkExecutorStressTest : public testing::TestWithParam< std::tuple<int32_t, bool, bool, SharedResourceUse, bool, bool>> { public: void SetUp() override { auto& [num_thunks, use_task_runner, use_device, shared_resource_use, inject_errors, use_priority_ready_queue] = GetParam(); use_task_runner_ = use_task_runner; use_device_ = use_device; if (use_task_runner_ || use_device_) { thread_pool_.emplace(tsl::Env::Default(), "thunk-executor", 8); device_.emplace(thread_pool_->AsEigenThreadPool(), thread_pool_->NumThreads()); task_runner_.emplace([this](Thunk::Task task) { thread_pool_->Schedule(std::move(task)); }); } } Thunk::TaskRunner* task_runner() { if (!use_task_runner_) return nullptr; return &*task_runner_; } Eigen::ThreadPoolDevice* device() { if (!use_device_) return nullptr; return &*device_; } private: bool use_task_runner_; bool use_device_; std::optional<tsl::thread::ThreadPool> thread_pool_; std::optional<Eigen::ThreadPoolDevice> device_; std::optional<Thunk::TaskRunner> task_runner_; }; TEST_P(ThunkExecutorStressTest, Execute) { auto [num_thunks, use_task_runner, use_device, shared_resource_use, inject_errors, use_priority_ready_queue] = GetParam(); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<GeneratedThunkSequence> g, GenerateThunkSequence(1024, num_thunks, shared_resource_use, inject_errors)); ThunkExecutor::Options executor_options = { 0, use_priority_ready_queue, }; TF_ASSERT_OK_AND_ASSIGN( ThunkExecutor executor, ThunkExecutor::Create(std::move(g->sequence), executor_options)); BufferAllocations allocations(g->buffers); Thunk::ExecuteParams params = {nullptr, &allocations, nullptr, device(), task_runner()}; shared_resource = 0; auto execute_event = executor.Execute(params); tsl::BlockUntilReady(execute_event); if (inject_errors) { ASSERT_TRUE(execute_event.IsError()); EXPECT_EQ(execute_event.GetError(), absl::InternalError("Injected error")); } else { ASSERT_TRUE(execute_event.IsConcrete()); EXPECT_EQ(shared_resource, g->expected_shared_resource_value); EXPECT_EQ(g->dst, g->expected); } } INSTANTIATE_TEST_SUITE_P( ThunkExecutor, ThunkExecutorStressTest, testing::Combine(testing::ValuesIn({10, 100, 1000}), testing::Bool(), testing::Bool(), testing::Values(SharedResourceUse::kNo, SharedResourceUse::kAll, SharedResourceUse::kRandom), testing::Bool(), testing::Bool())); static void BM_FifoReadyQueuePushPop(benchmark::State& state) { ThunkExecutor::FifoReadyQueue queue({}); const size_t num_push_pop = state.range(0); for (auto _ : state) { for (int i = 0; i < num_push_pop; ++i) { queue.Push(i); } for (int i = 0; i < num_push_pop; ++i) { benchmark::DoNotOptimize(queue.Pop()); } } } static void BM_FifoReadyQueuePushPopHalf(benchmark::State& state) { ThunkExecutor::FifoReadyQueue queue({}); const size_t num_push_pop = state.range(0); for (auto _ : state) { for (int i = 0; i < num_push_pop; ++i) { queue.Push(i); } benchmark::DoNotOptimize(queue.PopHalf()); } } static void BM_PriorityReadyQueuePushPop(benchmark::State& state) { std::vector<ThunkExecutor::NodeDef> nodes_defs(16); for (size_t i = 0; i < nodes_defs.size(); ++i) { nodes_defs[i].priority = i; } std::default_random_engine rng; absl::c_shuffle(nodes_defs, rng); ThunkExecutor::PriorityReadyQueue queue(nodes_defs, {}); const size_t num_push_pop = state.range(0); for (auto _ : state) { for (int i = 0; i < num_push_pop; ++i) { queue.Push(i); } for (int i = 0; i < num_push_pop; ++i) { benchmark::DoNotOptimize(queue.Pop()); } } } static void BM_PriorityReadyQueuePushPopHalf(benchmark::State& state) { std::vector<ThunkExecutor::NodeDef> nodes_defs(16); for (size_t i = 0; i < nodes_defs.size(); ++i) { nodes_defs[i].priority = i; } std::default_random_engine rng; absl::c_shuffle(nodes_defs, rng); ThunkExecutor::PriorityReadyQueue queue(nodes_defs, {}); const size_t num_push_pop = state.range(0); for (auto _ : state) { for (int i = 0; i < num_push_pop; ++i) { queue.Push(i); } benchmark::DoNotOptimize(queue.PopHalf()); } } #define BENCHMARK_READY_QUEUE(name) \ BENCHMARK(name) \ ->MeasureProcessCPUTime() \ ->Arg(1) \ ->Arg(2) \ ->Arg(4) \ ->Arg(8) \ ->Arg(16) BENCHMARK_READY_QUEUE(BM_FifoReadyQueuePushPop); BENCHMARK_READY_QUEUE(BM_FifoReadyQueuePushPopHalf); BENCHMARK_READY_QUEUE(BM_PriorityReadyQueuePushPop); BENCHMARK_READY_QUEUE(BM_PriorityReadyQueuePushPopHalf); static void BM_CreateThunkExecutor(benchmark::State& state) { const size_t num_thunks = state.range(0); for (auto _ : state) { auto g = GenerateThunkSequence(1024, num_thunks, SharedResourceUse::kNo, false); CHECK_OK(ThunkExecutor::Create(std::move((*g)->sequence), OptionsForTest()) .status()); } } static void BM_SequentialThunkExecutor(benchmark::State& state) { const size_t num_thunks = state.range(0); auto g = GenerateThunkSequence(1024, num_thunks, SharedResourceUse::kAll, false) .value(); auto e = ThunkExecutor::Create(std::move(g->sequence), OptionsForTest()).value(); BufferAllocations allocations(g->buffers); Thunk::ExecuteParams params = {nullptr, &allocations}; for (auto _ : state) { auto execute_event = e.Execute(params); tsl::BlockUntilReady(execute_event); CHECK(execute_event.IsConcrete()); } } static void BM_SyncThunkExecutor(benchmark::State& state) { const size_t num_thunks = state.range(0); auto g = GenerateThunkSequence(1024, num_thunks, SharedResourceUse::kNo, false) .value(); auto e = ThunkExecutor::Create(std::move(g->sequence), OptionsForTest()).value(); BufferAllocations allocations(g->buffers); Thunk::ExecuteParams params = {nullptr, &allocations}; for (auto _ : state) { auto execute_event = e.Execute(params); tsl::BlockUntilReady(execute_event); CHECK(execute_event.IsConcrete()); } } static void BM_AsyncThunkExecutor(benchmark::State& state) { const size_t num_thunks = state.range(0); tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "thunk-executor", 8); Eigen::ThreadPoolDevice device(thread_pool.AsEigenThreadPool(), thread_pool.NumThreads()); auto g = GenerateThunkSequence(1024, num_thunks, SharedResourceUse::kNo, false) .value(); auto e = ThunkExecutor::Create(std::move(g->sequence), OptionsForTest()).value(); BufferAllocations allocations(g->buffers); Thunk::TaskRunner task_runner = [&](Thunk::Task task) { thread_pool.Schedule(std::move(task)); }; Thunk::ExecuteParams params = {nullptr, &allocations, nullptr, &device, &task_runner}; for (auto _ : state) { auto execute_event = e.Execute(params); tsl::BlockUntilReady(execute_event); CHECK(execute_event.IsConcrete()); } } #define BENCHMARK_THUNK_EXECUTOR(name) \ BENCHMARK(name) \ ->MeasureProcessCPUTime() \ ->Arg(1) \ ->Arg(2) \ ->Arg(4) \ ->Arg(8) \ ->Arg(16) \ ->Arg(32) \ ->Arg(64) \ ->Arg(128) \ ->Arg(256) \ ->Arg(512) BENCHMARK_THUNK_EXECUTOR(BM_CreateThunkExecutor); BENCHMARK_THUNK_EXECUTOR(BM_SequentialThunkExecutor); BENCHMARK_THUNK_EXECUTOR(BM_SyncThunkExecutor); BENCHMARK_THUNK_EXECUTOR(BM_AsyncThunkExecutor); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/thunk_executor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/thunk_executor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3c7cc377-e95e-41fa-9b3f-d5f718e8e8de
cpp
tensorflow/tensorflow
kernel_thunk
third_party/xla/xla/service/gpu/runtime/kernel_thunk.cc
third_party/xla/xla/backends/cpu/runtime/kernel_thunk_test.cc
#include "xla/service/gpu/runtime/kernel_thunk.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/kernel_arguments.h" #include "xla/service/gpu/kernels/custom_kernel.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/launch_dim.h" #include "xla/stream_executor/stream_executor.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { KernelThunk::KernelThunk(const HloInstruction* instr, std::string kernel_name, absl::Span<const KernelArgument> kernel_arguments, LaunchDimensions launch_dimensions, std::optional<se::ClusterDim> cluster_dim, int64_t shmem_bytes) : Thunk(Kind::kKernel, Thunk::ThunkInfo::WithProfileAnnotation(instr)), kernel_name_(std::move(kernel_name)), launch_dimensions_(std::move(launch_dimensions)), cluster_dim_(std::move(cluster_dim)), shmem_bytes_(shmem_bytes) { args_.reserve(kernel_arguments.size()); written_.reserve(kernel_arguments.size()); for (const auto& kernel_argument : kernel_arguments) { if (!kernel_argument.first_with_same_slice().has_value()) { args_.push_back(kernel_argument.slice()); written_.push_back(kernel_argument.written()); } } } std::string KernelThunk::ToString(int indent) const { return absl::StrFormat( ", kernel = %s, launch dimensions = %s, cluster_dim = %s", kernel_name_, launch_dimensions_.ToString(), cluster_dim_.has_value() ? cluster_dim_->ToString() : "nullopt"); } absl::Status KernelThunk::Initialize(const InitializeParams& params) { absl::MutexLock lock(&mutex_); auto it = kernel_cache_.find(params.executor); if (kernel_cache_.end() == it) { TF_ASSIGN_OR_RETURN( std::unique_ptr<se::Kernel> kernel, CreateKernel(kernel_name_, args_.size(), params.src.text, params.src.binary, params.executor, shmem_bytes_)); kernel_cache_.emplace(params.executor, std::move(kernel)); } return absl::OkStatus(); } static void PrintBufferContents( se::Stream* stream, absl::Span<const se::DeviceMemoryBase> buffer_args) { int input_idx = 0; for (const se::DeviceMemoryBase& buf : buffer_args) { auto host_buffer = std::make_unique<char[]>(buf.size()); CHECK_OK(stream->Memcpy(host_buffer.get(), buf, buf.size())); CHECK_OK(stream->BlockHostUntilDone()); std::string buffer_contents; for (int i = 0; i < buf.size(); i++) { absl::StrAppendFormat(&buffer_contents, "%x ", static_cast<unsigned>(host_buffer[i])); } VLOG(100) << "BUF(" << input_idx++ << ") = " << buffer_contents; } } absl::Status KernelThunk::ExecuteOnStream(const ExecuteParams& params) { se::StreamExecutor* executor = params.stream->parent(); LaunchDimensions launch_dimensions; std::optional<se::ClusterDim> cluster_dim; const se::Kernel* kernel = nullptr; TF_ASSIGN_OR_RETURN( se::Stream * stream, GetStreamForExecution(Thunk::execution_stream_id(), params)); { absl::MutexLock lock(&mutex_); auto it = kernel_cache_.find(executor); CHECK(it != kernel_cache_.end()) << "Initialize() not called for StreamExecutor " << executor; launch_dimensions = launch_dimensions_; cluster_dim = cluster_dim_; kernel = it->second.get(); } VLOG(3) << "Launching " << kernel->name(); absl::InlinedVector<se::DeviceMemoryBase, 4> buffer_args; for (const BufferAllocation::Slice& arg : args_) { se::DeviceMemoryBase buf = params.buffer_allocations->GetDeviceAddress(arg); VLOG(3) << " Arg: alloc #" << arg.index() << ", offset: " << arg.offset() << ": " << buf.opaque() << " (" << buf.size() << "B)"; buffer_args.push_back(buf); } if (VLOG_IS_ON(100)) { PrintBufferContents(stream, buffer_args); } if (cluster_dim.has_value()) { return ExecuteKernelOnStream(*kernel, buffer_args, launch_dimensions, cluster_dim.value(), stream); } else { return ExecuteKernelOnStream(*kernel, buffer_args, launch_dimensions, stream); } } CustomKernelThunk::CustomKernelThunk( const HloInstruction* instr, CustomKernel custom_kernel, absl::Span<const KernelArgument> kernel_arguments) : Thunk(Kind::kCustomKernel, Thunk::ThunkInfo::WithProfileAnnotation(instr)), custom_kernel_(std::move(custom_kernel)) { args_.reserve(kernel_arguments.size()); written_.reserve(kernel_arguments.size()); for (const auto& kernel_argument : kernel_arguments) { if (!kernel_argument.first_with_same_slice().has_value()) { args_.push_back(kernel_argument.slice()); written_.push_back(kernel_argument.written()); } } } std::string CustomKernelThunk::ToString(int indent) const { return custom_kernel_.ToString(); } absl::Status CustomKernelThunk::Initialize(const InitializeParams& params) { absl::MutexLock lock(&mutex_); auto it = kernel_cache_.find(params.executor); if (kernel_cache_.end() == it) { TF_ASSIGN_OR_RETURN( std::unique_ptr<se::Kernel> kernel, params.executor->LoadKernel(custom_kernel_.kernel_spec())); kernel_cache_.emplace(params.executor, std::move(kernel)); } return absl::OkStatus(); } absl::Status CustomKernelThunk::ExecuteOnStream(const ExecuteParams& params) { se::StreamExecutor* executor = params.stream->parent(); const se::Kernel* kernel = [&] { absl::MutexLock lock(&mutex_); return kernel_cache_[executor].get(); }(); VLOG(3) << "Launching " << custom_kernel_.ToString() << " as device kernel " << kernel->name(); absl::InlinedVector<se::DeviceMemoryBase, 4> buffer_args; for (const BufferAllocation::Slice& arg : args_) { se::DeviceMemoryBase buf = params.buffer_allocations->GetDeviceAddress(arg); VLOG(3) << " Arg: alloc #" << arg.index() << ", offset: " << arg.offset() << ": " << buf.opaque() << " (" << buf.size() << "B)"; buffer_args.push_back(buf); } if (VLOG_IS_ON(100)) { PrintBufferContents(params.stream, buffer_args); } se::KernelArgsDeviceMemoryArray args(buffer_args, custom_kernel_.shared_memory_bytes()); if (auto cluster = custom_kernel_.cluster_dims(); cluster.has_value()) { return params.stream->Launch(custom_kernel_.thread_dims(), custom_kernel_.block_dims(), *cluster, *kernel, args); } else { return params.stream->Launch(custom_kernel_.thread_dims(), custom_kernel_.block_dims(), *kernel, args); } } } }
#include "xla/backends/cpu/runtime/kernel_thunk.h" #include <cstddef> #include <cstdint> #include <string_view> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "xla/backends/cpu/runtime/buffer_allocations.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/service/buffer_assignment.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/host/host_kernel_c_api.h" #include "xla/stream_executor/launch_dim.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { class AddF32HostKernel : public Thunk::FunctionRegistry { public: absl::StatusOr<Kernel> FindKernel(std::string_view name) override { return +[](const SE_HOST_KernelCallFrame* call_frame) { const SE_HOST_KernelArg& in = call_frame->args[0]; const SE_HOST_KernelArg& out = call_frame->args[1]; float* in_ptr = reinterpret_cast<float*>(in.data); float* out_ptr = reinterpret_cast<float*>(out.data); uint64_t i = call_frame->thread->x; *(out_ptr + i) = *(in_ptr + i) + *(in_ptr + i); return static_cast<SE_HOST_KernelError*>(nullptr); }; } }; TEST(KernelThunkTest, CheckAlignment) { auto thunk = KernelThunk::Create({"test"}, {}, {}, "test", se::ThreadDim(), {}, 3); EXPECT_TRUE(absl::StrContains(thunk.status().message(), "minimum alignment 3 is not a power of 2")); } TEST(KernelThunkTest, AddF32) { std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> in = {1.0, 2.0, 3.0, 4.0}; std::vector<float> out(4, 0.0); size_t size_in_bytes = in.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(in.data(), size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(out.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation in_alloc(0, size_in_bytes, 0); BufferAllocation out_alloc(1, size_in_bytes, 0); BufferAllocation::Slice in_slice(&in_alloc, 0, size_in_bytes); BufferAllocation::Slice out_slice(&out_alloc, 0, size_in_bytes); TF_ASSERT_OK_AND_ASSIGN( auto thunk, KernelThunk::Create({"add_f32"}, {in_slice}, {out_slice}, "add_f32", se::ThreadDim(4), {0})); AddF32HostKernel host_kernels; Thunk::ExecuteParams params = {&host_kernels, &allocations}; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()) << execute_event.GetError(); std::vector<float> expected = {2.0, 4.0, 6.0, 8.0}; EXPECT_EQ(out, expected); } TEST(KernelThunkTest, AddF32Inline) { std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> in_out = {1.0, 2.0, 3.0, 4.0}; size_t size_in_bytes = in_out.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(in_out.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation in_out_alloc(0, size_in_bytes, 0); BufferAllocation::Slice in_out_slice(&in_out_alloc, 0, size_in_bytes); TF_ASSERT_OK_AND_ASSIGN( auto thunk, KernelThunk::Create( {"add_f32"}, {in_out_slice}, {in_out_slice}, "add_f32", se::ThreadDim(4), {})); AddF32HostKernel host_kernels; Thunk::ExecuteParams params = {&host_kernels, &allocations}; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); std::vector<float> expected = {2.0, 4.0, 6.0, 8.0}; EXPECT_EQ(in_out, expected); } TEST(KernelThunkInvariantBuffersTest, MissingBufferSlice) { #ifdef NDEBUG GTEST_SKIP() << "Invariant buffers check is disabled in optimized build."; #endif std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> in = {1.0, 2.0, 3.0, 4.0}; std::vector<float> out(4, 0.0); size_t size_in_bytes = in.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(in.data(), size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(out.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation in_alloc(0, size_in_bytes, 0); BufferAllocation out_alloc(1, size_in_bytes, 0); BufferAllocation::Slice in_slice(&in_alloc, 0, size_in_bytes); BufferAllocation::Slice out_slice(&out_alloc, 0, size_in_bytes); TF_ASSERT_OK_AND_ASSIGN( auto thunk, KernelThunk::Create({"add_f32"}, {in_slice}, {out_slice}, "add_f32", se::ThreadDim(4), {})); AddF32HostKernel host_kernels; Thunk::ExecuteParams params = {&host_kernels, &allocations}; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_TRUE(execute_event.IsError()); auto status = execute_event.GetError(); EXPECT_EQ(status.code(), absl::StatusCode::kInternal); EXPECT_TRUE(absl::StrContains(status.message(), "Mismatch in invariant buffers metadata")); } TEST(KernelThunkInvariantBuffersTest, ExtraInputOutputBufferSlice) { #ifdef NDEBUG GTEST_SKIP() << "Invariant buffers check is disabled in optimized build."; #endif std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> in_out = {1.0, 2.0, 3.0, 4.0}; size_t size_in_bytes = in_out.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(in_out.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation in_out_alloc(0, size_in_bytes, 0); BufferAllocation::Slice in_out_slice(&in_out_alloc, 0, size_in_bytes); TF_ASSERT_OK_AND_ASSIGN( auto thunk, KernelThunk::Create( {"add_f32"}, {in_out_slice}, {in_out_slice}, "add_f32", se::ThreadDim(4), {0})); AddF32HostKernel host_kernels; Thunk::ExecuteParams params = {&host_kernels, &allocations}; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_TRUE(execute_event.IsError()); auto status = execute_event.GetError(); EXPECT_EQ(status.code(), absl::StatusCode::kInternal); EXPECT_TRUE(absl::StrContains(status.message(), "Mismatch in invariant buffers metadata")); } TEST(KernelThunkInvariantBuffersTest, MemorySectionIncorrectlyMarkedAsInvariant) { #ifdef NDEBUG GTEST_SKIP() << "Invariant buffers check is disabled in optimized build."; #endif std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> in_out = {1.0, 2.0, 3.0, 4.0}; size_t size_in_bytes = in_out.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(in_out.data(), size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(in_out.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation in_0_alloc(0, size_in_bytes, 0); BufferAllocation in_1_alloc(1, size_in_bytes, 0); BufferAllocation::Slice in_0_slice(&in_0_alloc, 0, size_in_bytes); BufferAllocation::Slice in_1_slice(&in_1_alloc, 0, size_in_bytes); TF_ASSERT_OK_AND_ASSIGN( auto thunk, KernelThunk::Create({"add_f32"}, {in_0_slice, in_1_slice}, {in_0_slice}, "add_f32", se::ThreadDim(4), {1})); AddF32HostKernel host_kernels; Thunk::ExecuteParams params = {&host_kernels, &allocations}; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_TRUE(execute_event.IsError()); auto status = execute_event.GetError(); EXPECT_EQ(status.code(), absl::StatusCode::kInternal); EXPECT_TRUE(absl::StrContains(status.message(), "Mismatch in invariant buffers metadata")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/runtime/kernel_thunk.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/kernel_thunk_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5a9a5a37-1608-4723-b051-5296431e6522
cpp
tensorflow/tensorflow
resource_use
third_party/xla/xla/backends/cpu/runtime/resource_use.cc
third_party/xla/xla/backends/cpu/runtime/resource_use_test.cc
#include "xla/backends/cpu/runtime/resource_use.h" #include <memory> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/memory/memory.h" #include "absl/types/span.h" namespace xla::cpu { std::shared_ptr<Resource> Resource::Create(Kind kind) { return absl::WrapUnique(new Resource(kind)); } Resource::Resource(Kind kind) : kind_(kind) {} ResourceUse::ResourceUse(std::shared_ptr<Resource> resource, ResourceAccess access) : resource_(resource), access_(access) {} ResourceUse::ReadWriteSet::ReadWriteSet() = default; void ResourceUse::ReadWriteSet::Add(ResourceUse use) { switch (use.access()) { case ResourceUse::kRead: read_.insert(use.resource()); break; case ResourceUse::kWrite: write_.insert(use.resource()); break; } } void ResourceUse::ReadWriteSet::AddAll(absl::Span<const ResourceUse> uses) { for (const auto& use : uses) Add(use); } bool ResourceUse::ReadWriteSet::HasConflicts(const ResourceUse& use) const { return use.access() == ResourceAccess::kWrite ? write_.contains(use.resource()) || read_.contains(use.resource()) : write_.contains(use.resource()); } bool ResourceUse::ReadWriteSet::HasConflicts( absl::Span<const ResourceUse> uses) const { return absl::c_any_of( uses, [&](const ResourceUse& use) { return HasConflicts(use); }); } bool ResourceUse::ReadWriteSet::HasConflicts(const ReadWriteSet& other) { return absl::c_any_of(other.read_, [&](const std::shared_ptr<Resource>& resource) { return HasConflicts(ResourceUse::Read(resource)); }) || absl::c_any_of(other.write_, [&](const std::shared_ptr<Resource>& resource) { return HasConflicts(ResourceUse::Write(resource)); }); } }
#include "xla/backends/cpu/runtime/resource_use.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { TEST(ResourceUseTest, Equality) { auto token = Resource::Create(Resource::kToken); auto use0 = ResourceUse::Read(token); auto use1 = ResourceUse::Write(token); auto use2 = ResourceUse::Read(token); EXPECT_NE(use0, use1); EXPECT_EQ(use0, use2); } TEST(ResourceUseTest, ReadWriteSet) { ResourceUse::ReadWriteSet rwset; auto token0 = Resource::Create(Resource::kToken); auto token1 = Resource::Create(Resource::kToken); rwset.Add(ResourceUse::Read(token0)); EXPECT_FALSE(rwset.HasConflicts({ResourceUse::Read(token0)})); EXPECT_TRUE(rwset.HasConflicts({ResourceUse::Write(token0)})); EXPECT_FALSE(rwset.HasConflicts({ResourceUse::Read(token1)})); EXPECT_FALSE(rwset.HasConflicts({ResourceUse::Write(token1)})); rwset.Add(ResourceUse::Write(token0)); EXPECT_TRUE(rwset.HasConflicts({ResourceUse::Read(token0)})); EXPECT_TRUE(rwset.HasConflicts({ResourceUse::Write(token0)})); EXPECT_FALSE(rwset.HasConflicts({ResourceUse::Read(token1)})); EXPECT_FALSE(rwset.HasConflicts({ResourceUse::Write(token1)})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/resource_use.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/resource_use_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d46120d8-760a-4260-9f54-29cb14e1086c
cpp
tensorflow/tensorflow
copy_thunk
third_party/xla/xla/service/gpu/runtime/copy_thunk.cc
third_party/xla/xla/backends/cpu/runtime/copy_thunk_test.cc
#include "xla/service/gpu/runtime/copy_thunk.h" #include <cstdint> #include <memory> #include <utility> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/event.h" #include "xla/stream_executor/stream_executor.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { DeviceToDeviceCopyThunk::DeviceToDeviceCopyThunk( ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size) : Thunk(Kind::kCopy, std::move(thunk_info)), source_buffer_(source_buffer), destination_buffer_(destination_buffer), mem_size_(mem_size) {} absl::Status DeviceToDeviceCopyThunk::ExecuteOnStream( const ExecuteParams& params) { se::DeviceMemoryBase destination_data = params.buffer_allocations->GetDeviceAddress(destination_buffer_); se::DeviceMemoryBase source_data = params.buffer_allocations->GetDeviceAddress(source_buffer_); VLOG(3) << "Memcpy D2D of size " << mem_size_ << " from " << source_data.opaque() << " to " << destination_data.opaque(); return params.stream->Memcpy(&destination_data, source_data, mem_size_); } CopyThunk::CopyThunk(ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size) : Thunk(Kind::kCopy, std::move(thunk_info)), source_buffer_(source_buffer), destination_buffer_(destination_buffer), mem_size_(mem_size) {} absl::Status CopyThunk::ExecuteOnStream(const ExecuteParams& params) { return absl::OkStatus(); } absl::Status CopyThunk::AsyncEvents::Emplace(se::StreamExecutor* executor, const HloInstruction* instr, std::unique_ptr<se::Event> event) { Key key = {executor, instr}; absl::MutexLock lock(&mutex_); VLOG(3) << "Emplace event " << event.get(); if (auto [it, inserted] = events_.try_emplace(key, std::move(event)); inserted) { return absl::OkStatus(); } return absl::InternalError("Async copy event already exists!"); } absl::StatusOr<std::unique_ptr<se::Event>> CopyThunk::AsyncEvents::Extract( se::StreamExecutor* executor, const HloInstruction* instr) { Key key = {executor, instr}; absl::MutexLock lock(&mutex_); if (auto event = events_.extract(key)) { VLOG(3) << "Extract event " << event.mapped().get(); return std::move(event.mapped()); } return absl::InternalError("Async copy event was not found!"); } DeviceToHostCopyThunk::DeviceToHostCopyThunk( ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size, std::shared_ptr<CopyThunk::AsyncEvents> async_events, const HloInstruction* instr) : CopyThunk(std::move(thunk_info), source_buffer, destination_buffer, mem_size), async_events_(std::move(async_events)), instr_(instr) {} absl::Status DeviceToHostCopyThunk::ExecuteOnStream( const ExecuteParams& params) { se::DeviceMemoryBase destination_data = params.buffer_allocations->GetDeviceAddress(destination()); se::DeviceMemoryBase source_data = params.buffer_allocations->GetDeviceAddress(source()); void* cpu_dst = destination_data.opaque(); TF_ASSIGN_OR_RETURN( se::Stream * stream, GetStreamForExecution(Thunk::execution_stream_id(), params)); TF_RETURN_IF_ERROR(stream->Memcpy(cpu_dst, source_data, size_bytes())); if (stream == params.stream) { VLOG(2) << "Memcpy D2H from the main stream"; return absl::OkStatus(); } VLOG(2) << "Memcpy D2H from the other stream"; se::StreamExecutor* executor = params.stream->parent(); TF_ASSIGN_OR_RETURN(auto event, executor->CreateEvent()); TF_RETURN_IF_ERROR(stream->RecordEvent(event.get())); VLOG(3) << "Emplace events: " << event.get() << " for instr: " << instr_->ToString(); return async_events_->Emplace(executor, instr_, std::move(event)); } HostToDeviceCopyThunk::HostToDeviceCopyThunk( ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size, std::shared_ptr<CopyThunk::AsyncEvents> async_events, const HloInstruction* instr) : CopyThunk(std::move(thunk_info), source_buffer, destination_buffer, mem_size), async_events_(std::move(async_events)), instr_(instr) {} absl::Status HostToDeviceCopyThunk::ExecuteOnStream( const ExecuteParams& params) { se::DeviceMemoryBase destination_data = params.buffer_allocations->GetDeviceAddress(destination()); se::DeviceMemoryBase source_data = params.buffer_allocations->GetDeviceAddress(source()); void* cpu_src = source_data.opaque(); TF_ASSIGN_OR_RETURN( se::Stream * stream, GetStreamForExecution(Thunk::execution_stream_id(), params)); TF_RETURN_IF_ERROR(stream->Memcpy(&destination_data, cpu_src, size_bytes())); if (stream == params.stream) { VLOG(2) << "Memcpy H2D from the main stream"; return absl::OkStatus(); } VLOG(2) << "Memcpy H2D from the other stream"; se::StreamExecutor* executor = params.stream->parent(); TF_ASSIGN_OR_RETURN(auto event, executor->CreateEvent()); TF_RETURN_IF_ERROR(stream->RecordEvent(event.get())); VLOG(3) << "Emplace events: " << event.get() << " for instr: " << instr_->ToString(); return async_events_->Emplace(executor, instr_, std::move(event)); } CopyDoneThunk::CopyDoneThunk( Thunk::Kind kind, ThunkInfo thunk_info, std::shared_ptr<CopyThunk::AsyncEvents> async_events, const HloInstruction* copy_start_instr) : Thunk(kind, std::move(thunk_info)), async_events_(std::move(async_events)), copy_start_instr_(copy_start_instr) {} absl::Status CopyDoneThunk::ExecuteOnStream(const ExecuteParams& params) { VLOG(3) << "CopyDone thunk between a host and a device for: " << copy_start_instr_->ToString(); se::StreamExecutor* executor = params.stream->parent(); TF_ASSIGN_OR_RETURN(std::unique_ptr<se::Event> event, async_events_->Extract(executor, copy_start_instr_)); return params.stream->WaitFor(event.get()); } } }
#include "xla/backends/cpu/runtime/copy_thunk.h" #include <cstddef> #include <vector> #include "xla/backends/cpu/runtime/buffer_allocations.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/layout_util.h" #include "xla/service/buffer_assignment.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { TEST(CopyThunkTest, CopyEmptyShape) { std::vector<MaybeOwningDeviceMemory> buffers; buffers.emplace_back(se::DeviceMemoryBase(nullptr, 0)); buffers.emplace_back(se::DeviceMemoryBase(nullptr, 0)); BufferAllocations allocations(buffers); BufferAllocation src_alloc(0, 100, 0); BufferAllocation dst_alloc(1, 100, 0); BufferAllocation::Slice src_slice(&src_alloc, 0, 0); BufferAllocation::Slice dst_slice(&dst_alloc, 0, 0); Shape shape = ShapeUtil::MakeShape(F32, {0, 2}); TF_ASSERT_OK_AND_ASSIGN( auto thunk, CopyThunk::Create({"copy"}, src_slice, shape, dst_slice, shape)); Thunk::ExecuteParams params = {nullptr, &allocations}; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); } TEST(CopyThunkTest, CopySameShape) { std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> src = {1.0, 2.0, 3.0, 4.0}; std::vector<float> dst(4, 0.0); size_t size_in_bytes = src.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(src.data(), size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(dst.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation src_alloc(0, size_in_bytes, 0); BufferAllocation dst_alloc(1, size_in_bytes, 0); BufferAllocation::Slice src_slice(&src_alloc, 0, size_in_bytes); BufferAllocation::Slice dst_slice(&dst_alloc, 0, size_in_bytes); Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); TF_ASSERT_OK_AND_ASSIGN( auto thunk, CopyThunk::Create({"copy"}, src_slice, shape, dst_slice, shape)); Thunk::ExecuteParams params = {nullptr, &allocations}; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); EXPECT_EQ(src, dst); } TEST(CopyThunkTest, CopyTransposed) { std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> src = {1.0, 2.0, 3.0, 4.0}; std::vector<float> dst(4, 0.0); size_t size_in_bytes = src.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(src.data(), size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(dst.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation src_alloc(0, size_in_bytes, 0); BufferAllocation dst_alloc(1, size_in_bytes, 0); BufferAllocation::Slice src_slice(&src_alloc, 0, size_in_bytes); BufferAllocation::Slice dst_slice(&dst_alloc, 0, size_in_bytes); Shape src_shape = ShapeUtil::MakeShape(F32, {2, 2}); *src_shape.mutable_layout() = LayoutUtil::MakeLayout({0, 1}); Shape dst_shape = ShapeUtil::MakeShape(F32, {2, 2}); TF_ASSERT_OK_AND_ASSIGN( auto thunk, CopyThunk::Create({"copy"}, src_slice, src_shape, dst_slice, dst_shape)); Thunk::ExecuteParams params = {nullptr, &allocations}; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); std::vector<float> expected = {1.0, 3.0, 2.0, 4.0}; EXPECT_EQ(expected, dst); } TEST(CopyThunkTest, CopyTransposedEmptyShape) { std::vector<MaybeOwningDeviceMemory> buffers; buffers.emplace_back(se::DeviceMemoryBase(nullptr, 0)); buffers.emplace_back(se::DeviceMemoryBase(nullptr, 0)); BufferAllocations allocations(buffers); BufferAllocation src_alloc(0, 100, 0); BufferAllocation dst_alloc(1, 100, 0); BufferAllocation::Slice src_slice(&src_alloc, 0, 0); BufferAllocation::Slice dst_slice(&dst_alloc, 0, 0); Shape src_shape = ShapeUtil::MakeShape(F32, {0, 2}); *src_shape.mutable_layout() = LayoutUtil::MakeLayout({0, 1}); Shape dst_shape = ShapeUtil::MakeShape(F32, {0, 2}); TF_ASSERT_OK_AND_ASSIGN( auto thunk, CopyThunk::Create({"copy"}, src_slice, src_shape, dst_slice, dst_shape)); Thunk::ExecuteParams params = {nullptr, &allocations}; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/runtime/copy_thunk.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/copy_thunk_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ab83b9d8-6c24-44c9-a4c8-cd77b911d2de
cpp
tensorflow/tensorflow
cupti_buffer_events
third_party/xla/xla/backends/profiler/gpu/cupti_buffer_events.cc
third_party/xla/xla/backends/profiler/gpu/cupti_buffer_events_test.cc
#include "xla/backends/profiler/gpu/cupti_buffer_events.h" #include "absl/strings/str_cat.h" #include "third_party/gpus/cuda/include/cuda.h" #include "xla/backends/profiler/gpu/cupti_interface.h" #include "tsl/platform/errors.h" #include "tsl/platform/mem.h" namespace xla { namespace profiler { namespace { using absl::StatusCode; template <typename CuptiActivity> struct CuptiActivityHasGraphId { static constexpr bool value = false; }; #if CUDA_VERSION >= 12000 #define TF_CUPTI_HAS_CHANNEL_ID 1 using CuptiActivityKernelTy = CUpti_ActivityKernel9; using CuptiActivityMemcpyTy = CUpti_ActivityMemcpy5; using CuptiActivityMemcpyP2PTy = CUpti_ActivityMemcpyPtoP4; using CuptiActivityMemsetTy = CUpti_ActivityMemset4; template <> struct CuptiActivityHasGraphId<CuptiActivityKernelTy> { static constexpr bool value = true; }; template <> struct CuptiActivityHasGraphId<CuptiActivityMemcpyTy> { static constexpr bool value = true; }; template <> struct CuptiActivityHasGraphId<CuptiActivityMemcpyP2PTy> { static constexpr bool value = true; }; template <> struct CuptiActivityHasGraphId<CuptiActivityMemsetTy> { static constexpr bool value = true; }; #elif CUDA_VERSION >= 11060 #define TF_CUPTI_HAS_CHANNEL_ID 1 using CuptiActivityKernelTy = CUpti_ActivityKernel7; using CuptiActivityMemcpyTy = CUpti_ActivityMemcpy5; using CuptiActivityMemcpyP2PTy = CUpti_ActivityMemcpyPtoP4; using CuptiActivityMemsetTy = CUpti_ActivityMemset4; template <> struct CuptiActivityHasGraphId<CuptiActivityKernelTy> { static constexpr bool value = true; }; template <> struct CuptiActivityHasGraphId<CuptiActivityMemcpyTy> { static constexpr bool value = true; }; template <> struct CuptiActivityHasGraphId<CuptiActivityMemcpyP2PTy> { static constexpr bool value = true; }; template <> struct CuptiActivityHasGraphId<CuptiActivityMemsetTy> { static constexpr bool value = true; }; #else using CuptiActivityKernelTy = CUpti_ActivityKernel4; using CuptiActivityMemcpyTy = CUpti_ActivityMemcpy; using CuptiActivityMemcpyP2PTy = CUpti_ActivityMemcpy2; using CuptiActivityMemsetTy = CUpti_ActivityMemset; #endif #if CUDA_VERSION >= 11070 using CuptiActivityGraphTraceTy = CUpti_ActivityGraphTrace; #endif const char *getActivityOverheadKindString(CUpti_ActivityOverheadKind kind) { switch (kind) { case CUPTI_ACTIVITY_OVERHEAD_DRIVER_COMPILER: return "COMPILER"; case CUPTI_ACTIVITY_OVERHEAD_CUPTI_BUFFER_FLUSH: return "BUFFER_FLUSH"; case CUPTI_ACTIVITY_OVERHEAD_CUPTI_INSTRUMENTATION: return "INSTRUMENTATION"; case CUPTI_ACTIVITY_OVERHEAD_CUPTI_RESOURCE: return "RESOURCE"; default: break; } return "<UNKNOWN>"; } const char *getActivityUnifiedMemoryKindString( CUpti_ActivityUnifiedMemoryCounterKind kind) { switch (kind) { case CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_KIND_BYTES_TRANSFER_HTOD: return "UM_BYTES_TRANSFER_HTOD"; case CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_KIND_BYTES_TRANSFER_DTOH: return "UM_BYTES_TRANSFER_DTOH"; case CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_KIND_CPU_PAGE_FAULT_COUNT: return "UM_CPU_PAGE_FAULT"; case CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_KIND_GPU_PAGE_FAULT: return "UM_GPU_PAGE_FAULT"; case CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_KIND_THRASHING: return "UM_THRASHING"; case CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_KIND_THROTTLING: return "UM_THROTTLING"; case CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_KIND_REMOTE_MAP: return "UM_REMOTE_MAP"; case CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_KIND_BYTES_TRANSFER_DTOD: return "UM_BYTES_TRANSFER_DTOD"; default: break; } return "<UNKNOWN>"; } template <typename CuptiActivity> void SetEventGraphId(CuptiTracerEvent &event, const CuptiActivity *cupti_activity) { if constexpr (CuptiActivityHasGraphId<CuptiActivity>::value) { event.graph_id = cupti_activity->graphId; } } template <bool cupti_has_channel_id, typename CuptiActivityKernel> void AddKernelActivityEvent(CuptiEventCollectorDelegate &collector, const CuptiActivityKernel *kernel) { CuptiTracerEvent event{}; event.type = CuptiTracerEventType::Kernel; event.source = CuptiTracerEventSource::Activity; event.name = kernel->name; event.start_time_ns = kernel->start; event.end_time_ns = kernel->end; event.device_id = kernel->deviceId; event.context_id = kernel->contextId; event.stream_id = kernel->streamId; event.correlation_id = kernel->correlationId; AnnotationMap::AnnotationInfo info = collector.annotation_map.LookUp(event.device_id, event.correlation_id); event.annotation = info.annotation; event.nvtx_range = info.nvtx_range; SetEventGraphId(event, kernel); event.kernel_info.registers_per_thread = kernel->registersPerThread; event.kernel_info.static_shared_memory_usage = kernel->staticSharedMemory; event.kernel_info.dynamic_shared_memory_usage = kernel->dynamicSharedMemory; event.kernel_info.block_x = kernel->blockX; event.kernel_info.block_y = kernel->blockY; event.kernel_info.block_z = kernel->blockZ; event.kernel_info.grid_x = kernel->gridX; event.kernel_info.grid_y = kernel->gridY; event.kernel_info.grid_z = kernel->gridZ; if constexpr (cupti_has_channel_id) { event.kernel_info.channel_id = kernel->channelID; event.kernel_info.channel_type = kernel->channelType; } collector.receive(std::move(event)); } void AddGraphTraceActivityEvent(CuptiEventCollectorDelegate &collector, CuptiActivityGraphTraceTy *graph_trace) { AnnotationMap::AnnotationInfo info = collector.annotation_map.LookUp( graph_trace->deviceId, graph_trace->correlationId); collector.receive(CuptiTracerEvent{ CuptiTracerEventType::CudaGraph, CuptiTracerEventSource::Activity, absl::StrCat("CudaGraphExec:", graph_trace->graphId), info.annotation, info.nvtx_range, graph_trace->start, graph_trace->end, graph_trace->deviceId, graph_trace->correlationId, CuptiTracerEvent::kInvalidThreadId, graph_trace->contextId, graph_trace->streamId, graph_trace->graphId, }); } void AddMemcpyActivityEvent(CuptiEventCollectorDelegate &collector, const CuptiActivityMemcpyTy *memcpy) { CuptiTracerEvent event{}; switch (memcpy->copyKind) { case CUPTI_ACTIVITY_MEMCPY_KIND_HTOD: event.type = CuptiTracerEventType::MemcpyH2D; event.name = "MemcpyH2D"; break; case CUPTI_ACTIVITY_MEMCPY_KIND_DTOH: event.type = CuptiTracerEventType::MemcpyD2H; event.name = "MemcpyD2H"; break; case CUPTI_ACTIVITY_MEMCPY_KIND_DTOD: event.type = CuptiTracerEventType::MemcpyD2D; event.name = "MemcpyD2D"; break; case CUPTI_ACTIVITY_MEMCPY_KIND_PTOP: event.type = CuptiTracerEventType::MemcpyP2P; event.name = "MemcpyP2P"; break; default: event.type = CuptiTracerEventType::MemcpyOther; event.name = "MemcpyOther"; break; } event.source = CuptiTracerEventSource::Activity; event.start_time_ns = memcpy->start; event.end_time_ns = memcpy->end; event.device_id = memcpy->deviceId; event.context_id = memcpy->contextId; event.stream_id = memcpy->streamId; event.correlation_id = memcpy->correlationId; AnnotationMap::AnnotationInfo info = collector.annotation_map.LookUp(event.device_id, event.correlation_id); event.annotation = info.annotation; SetEventGraphId(event, memcpy); event.memcpy_info.copy_kind = memcpy->copyKind; event.memcpy_info.num_bytes = memcpy->bytes; event.memcpy_info.destination = memcpy->deviceId; event.memcpy_info.async = memcpy->flags & CUPTI_ACTIVITY_FLAG_MEMCPY_ASYNC; event.memcpy_info.src_mem_kind = memcpy->srcKind; event.memcpy_info.dst_mem_kind = memcpy->dstKind; #if TF_CUPTI_HAS_CHANNEL_ID event.memcpy_info.channel_id = memcpy->channelID; event.memcpy_info.channel_type = memcpy->channelType; #endif collector.receive(std::move(event)); } void AddMemcpyP2PActivityEvent(CuptiEventCollectorDelegate &collector, const CuptiActivityMemcpyP2PTy *memcpy) { CuptiTracerEvent event{}; event.type = CuptiTracerEventType::MemcpyP2P; event.name = "MemcpyP2P"; event.source = CuptiTracerEventSource::Activity; event.start_time_ns = memcpy->start; event.end_time_ns = memcpy->end; event.device_id = memcpy->srcDeviceId; event.context_id = memcpy->contextId; event.stream_id = memcpy->streamId; event.correlation_id = memcpy->correlationId; AnnotationMap::AnnotationInfo info = collector.annotation_map.LookUp(event.device_id, event.correlation_id); event.annotation = info.annotation; SetEventGraphId(event, memcpy); event.memcpy_info.copy_kind = CUPTI_ACTIVITY_MEMCPY_KIND_PTOP; event.memcpy_info.num_bytes = memcpy->bytes; event.memcpy_info.destination = memcpy->dstDeviceId; event.memcpy_info.async = memcpy->flags & CUPTI_ACTIVITY_FLAG_MEMCPY_ASYNC; event.memcpy_info.src_mem_kind = memcpy->srcKind; event.memcpy_info.dst_mem_kind = memcpy->dstKind; #if TF_CUPTI_HAS_CHANNEL_ID event.memcpy_info.channel_id = memcpy->channelID; event.memcpy_info.channel_type = memcpy->channelType; #endif collector.receive(std::move(event)); } void AddCuptiOverheadActivityEvent(CuptiEventCollectorDelegate &collector, const CUpti_ActivityOverhead *overhead) { CuptiTracerEvent event{}; event.type = CuptiTracerEventType::Overhead; event.name = getActivityOverheadKindString(overhead->overheadKind); event.source = CuptiTracerEventSource::Activity; event.start_time_ns = overhead->start; event.end_time_ns = overhead->end; event.device_id = 0; switch (overhead->objectKind) { case CUPTI_ACTIVITY_OBJECT_UNKNOWN: return; case CUPTI_ACTIVITY_OBJECT_THREAD: case CUPTI_ACTIVITY_OBJECT_PROCESS: event.thread_id = overhead->objectId.pt.threadId; break; case CUPTI_ACTIVITY_OBJECT_STREAM: event.stream_id = overhead->objectId.dcs.streamId; TF_FALLTHROUGH_INTENDED; case CUPTI_ACTIVITY_OBJECT_DEVICE: case CUPTI_ACTIVITY_OBJECT_CONTEXT: event.device_id = overhead->objectId.dcs.deviceId; break; default: LOG(ERROR) << "Unexpected object kind: " << overhead->objectKind; return; } collector.receive(std::move(event)); } void AddUnifiedMemoryActivityEvent( CuptiEventCollectorDelegate &collector, const CUpti_ActivityUnifiedMemoryCounter2 *record) { VLOG(3) << "Cuda Unified Memory Activity, kind: " << record->counterKind << " src: " << record->srcId << " dst: " << record->dstId; CuptiTracerEvent event{}; event.type = CuptiTracerEventType::UnifiedMemory; event.name = getActivityUnifiedMemoryKindString(record->counterKind); event.source = CuptiTracerEventSource::Activity; event.start_time_ns = record->start; if (record->counterKind == CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_KIND_CPU_PAGE_FAULT_COUNT || record->counterKind == CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_KIND_THRASHING || record->counterKind == CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_KIND_REMOTE_MAP || record->end <= record->start) { event.end_time_ns = record->start + 1; } else { event.end_time_ns = record->end; } event.device_id = record->srcId; constexpr int kPseudoStreamId = 0x10000000; event.stream_id = kPseudoStreamId + record->counterKind; event.memcpy_info.copy_kind = CUPTI_ACTIVITY_MEMCPY_KIND_UNKNOWN; if (record->counterKind == CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_KIND_BYTES_TRANSFER_HTOD || record->counterKind == CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_KIND_BYTES_TRANSFER_DTOH || record->counterKind == CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_KIND_BYTES_TRANSFER_DTOD) { event.memcpy_info.num_bytes = record->value; } else { event.memcpy_info.num_bytes = 0; } event.memcpy_info.destination = record->dstId; event.memcpy_info.async = false; collector.receive(std::move(event)); } void AddMemoryActivityEvent(CuptiEventCollectorDelegate &collector, const CUpti_ActivityMemory *memory) { CuptiTracerEvent event{}; event.name = absl::StrCat("Memory ", GetMemoryKindName(memory->memoryKind)); event.type = CuptiTracerEventType::MemoryResidency; event.source = CuptiTracerEventSource::Activity; event.start_time_ns = memory->start; event.end_time_ns = std::max(memory->end, memory->start + 1); event.device_id = memory->deviceId; event.context_id = memory->contextId; event.stream_id = 0; event.memory_residency_info.num_bytes = memory->bytes; event.memory_residency_info.mem_kind = memory->memoryKind; event.memory_residency_info.address = memory->address; VLOG(5) << "Cuda activity " << event.name << " addr: " << reinterpret_cast<void *>(memory->address) << " bytes: " << memory->bytes; collector.receive(std::move(event)); } void AddMemsetActivityEvent(CuptiEventCollectorDelegate &collector, const CuptiActivityMemsetTy *memset) { auto mem_kind = memset->memoryKind; CuptiTracerEvent event{}; event.type = CuptiTracerEventType::Memset; event.source = CuptiTracerEventSource::Activity; event.name = absl::StrCat("Memset ", mem_kind); event.start_time_ns = memset->start; event.end_time_ns = std::max(memset->end, memset->start + 1); event.device_id = memset->deviceId; event.correlation_id = memset->correlationId; event.context_id = memset->contextId; event.stream_id = memset->streamId; SetEventGraphId(event, memset); event.memset_info.num_bytes = memset->bytes; event.memset_info.mem_kind = mem_kind; event.memset_info.async = (memset->flags & CUPTI_ACTIVITY_FLAG_MEMSET_ASYNC); #if TF_CUPTI_HAS_CHANNEL_ID event.memset_info.channel_id = memset->channelID; event.memset_info.channel_type = memset->channelType; #endif VLOG(5) << "Cuda activity " << event.name << " bytes: " << memset->bytes << " async: " << event.memset_info.async; collector.receive(std::move(event)); } void AddSynchronizationActivityEvent( CuptiEventCollectorDelegate &collector, const CUpti_ActivitySynchronization *sync) { CuptiTracerEvent event{}; event.type = CuptiTracerEventType::Generic; event.source = CuptiTracerEventSource::Activity; switch (sync->type) { case CUPTI_ACTIVITY_SYNCHRONIZATION_TYPE_EVENT_SYNCHRONIZE: event.name = "cuEventSynchronize"; break; case CUPTI_ACTIVITY_SYNCHRONIZATION_TYPE_STREAM_WAIT_EVENT: event.name = "cuStreamWaitEvent"; break; case CUPTI_ACTIVITY_SYNCHRONIZATION_TYPE_STREAM_SYNCHRONIZE: event.name = "cuStreamSynchronize"; break; case CUPTI_ACTIVITY_SYNCHRONIZATION_TYPE_CONTEXT_SYNCHRONIZE: event.name = "cuCtxSynchronize"; break; default: event.name = "unknown synchronization event"; break; } event.start_time_ns = sync->start; event.end_time_ns = std::max(sync->end, sync->start + 1); event.correlation_id = sync->correlationId; event.context_id = sync->contextId; VLOG(5) << "Cuda activity " << event.name; collector.receive(std::move(event)); } static absl::Status ConvertActivityBuffer( CuptiEventCollectorDelegate &collector, uint8_t *buffer, const size_t size, const size_t max_activity_event_count, size_t &total_activity_event_count, size_t &dropped_activity_event_count) { CuptiInterface *cupti_interface = GetCuptiInterface(); CUpti_Activity *record = nullptr; while (true) { CUptiResult status = cupti_interface->ActivityGetNextRecord(buffer, size, &record); if (status == CUPTI_SUCCESS) { if (total_activity_event_count >= max_activity_event_count) { dropped_activity_event_count++; continue; } total_activity_event_count++; switch (record->kind) { case CUPTI_ACTIVITY_KIND_KERNEL: case CUPTI_ACTIVITY_KIND_CONCURRENT_KERNEL: AddKernelActivityEvent<TF_CUPTI_HAS_CHANNEL_ID>( collector, reinterpret_cast<CuptiActivityKernelTy *>(record)); break; case CUPTI_ACTIVITY_KIND_CDP_KERNEL: AddKernelActivityEvent<false>( collector, reinterpret_cast<CUpti_ActivityCdpKernel *>(record)); break; case CUPTI_ACTIVITY_KIND_MEMCPY: AddMemcpyActivityEvent( collector, reinterpret_cast<CuptiActivityMemcpyTy *>(record)); break; case CUPTI_ACTIVITY_KIND_MEMCPY2: AddMemcpyP2PActivityEvent( collector, reinterpret_cast<CuptiActivityMemcpyP2PTy *>(record)); break; case CUPTI_ACTIVITY_KIND_OVERHEAD: AddCuptiOverheadActivityEvent( collector, reinterpret_cast<CUpti_ActivityOverhead *>(record)); break; case CUPTI_ACTIVITY_KIND_UNIFIED_MEMORY_COUNTER: AddUnifiedMemoryActivityEvent( collector, reinterpret_cast<CUpti_ActivityUnifiedMemoryCounter2 *>(record)); break; case CUPTI_ACTIVITY_KIND_MEMORY: { AddMemoryActivityEvent( collector, reinterpret_cast<CUpti_ActivityMemory *>(record)); } break; case CUPTI_ACTIVITY_KIND_MEMSET: AddMemsetActivityEvent( collector, reinterpret_cast<CuptiActivityMemsetTy *>(record)); break; case CUPTI_ACTIVITY_KIND_SYNCHRONIZATION: AddSynchronizationActivityEvent( collector, reinterpret_cast<CUpti_ActivitySynchronization *>(record)); break; #if CUDA_VERSION >= 11070 case CUPTI_ACTIVITY_KIND_GRAPH_TRACE: AddGraphTraceActivityEvent( collector, reinterpret_cast<CuptiActivityGraphTraceTy *>(record)); break; #endif default: VLOG(3) << "Activity type " << record->kind << " is not supported."; break; } } else if (status == CUPTI_ERROR_MAX_LIMIT_REACHED) { break; } else if (status == CUPTI_ERROR_INVALID_KIND) { VLOG(3) << "CUPTI parse ACTIVITY buffer got CUPTI_ERROR_INVALID_KIND"; break; } else { LOG(WARNING) << "CUPTI parse ACTIVITY buffer error: " << status; return absl::Status(StatusCode::kInternal, "Parse cupti activity buffer error."); } } VLOG(3) << "CUPTI tracer post-process one ACTIVITY buffer of size: " << size << ", total events count:" << total_activity_event_count; return absl::OkStatus(); } } absl::string_view StringDeduper::Dedup(absl::string_view str, size_t max_unique_count) { if (str.empty()) return absl::string_view(); auto it = strings_.find(str); if (it != strings_.end()) return *it; if (max_unique_count == 0 || strings_.size() < max_unique_count) return *strings_.emplace(str).first; return absl::string_view(); } void AnnotationMap::Add(uint32_t device_id, uint32_t correlation_id, const absl::string_view annotation, const absl::string_view nvtx_range) { if (annotation.empty() && nvtx_range.empty()) return; VLOG(3) << "Add annotation: device_id: " << device_id << " correlation_id: " << correlation_id << " annotation: " << annotation; if (device_id >= per_device_map_.size()) return; auto &per_device_map = per_device_map_[device_id]; if (per_device_map.annotation_deduper.Size() < max_size_) { AnnotationInfo info; info.annotation = per_device_map.annotation_deduper.Dedup(annotation); info.nvtx_range = per_device_map.nvtx_range_deduper.Dedup(nvtx_range); per_device_map.correlation_map.emplace(correlation_id, info); } } AnnotationMap::AnnotationInfo AnnotationMap::LookUp( uint32_t device_id, uint32_t correlation_id) const { if (device_id >= per_device_map_.size()) return AnnotationInfo(); auto &per_device_map = per_device_map_[device_id]; auto it = per_device_map.correlation_map.find(correlation_id); return it != per_device_map.correlation_map.end() ? it->second : AnnotationInfo(); } CuptiActivityBufferManager::ActivityBufferAndSize::ActivityBufferAndSize( uint8_t *p, size_t sz) : buffer(p, [](uint8_t *p) { if (p != nullptr) tsl::port::AlignedFree(p); }), size(sz) {} void AddActivityBufferListEventsTo( CuptiEventCollectorDelegate &collector, std::list<CuptiActivityBufferManager::ActivityBufferAndSize> &buffer_list, size_t max_activity_event_count, size_t &dropped_activity_event_count) { dropped_activity_event_count = 0; size_t total_activity_event_count = 0; while (!buffer_list.empty()) { CuptiActivityBufferManager::ActivityBufferAndSize buffer_and_size( std::move(buffer_list.front())); buffer_list.pop_front(); ConvertActivityBuffer(collector, buffer_and_size.buffer.get(), buffer_and_size.size, max_activity_event_count, total_activity_event_count, dropped_activity_event_count) .IgnoreError(); } } CallbackAnnotationsAndEvents::CallbackAnnotationsAndEvents( CallbackAnnotationsAndEvents &&another) { *this = std::move(another); } CallbackAnnotationsAndEvents &CallbackAnnotationsAndEvents::operator=( CallbackAnnotationsAndEvents &&another) { annotations_ = std::move(another.annotations_); nvtx_ranges_ = std::move(another.nvtx_ranges_); num_dropped_events_ = another.num_dropped_events_; event_queue_ = std::move(another.event_queue_); another.Clear(); return *this; } void CallbackAnnotationsAndEvents::Clear() { annotations_.Clear(); nvtx_ranges_.Clear(); num_dropped_events_ = 0; event_queue_.Clear(); } } }
#include "xla/backends/profiler/gpu/cupti_buffer_events.h" #include "tsl/platform/test.h" namespace xla { namespace profiler { namespace test { namespace { TEST(CuptiBufferEventsTest, EventInitialization) { CuptiTracerEvent event{ CuptiTracerEventType::CudaGraph, CuptiTracerEventSource::Activity, "CudaGraphExec:2", "annotation", "nvtx_range", 100, 200, 6, 8, 12345, 9, 2, 5, }; EXPECT_EQ(event.type, CuptiTracerEventType::CudaGraph); EXPECT_EQ(event.source, CuptiTracerEventSource::Activity); EXPECT_EQ(event.name, "CudaGraphExec:2"); EXPECT_EQ(event.annotation, "annotation"); EXPECT_EQ(event.nvtx_range, "nvtx_range"); EXPECT_EQ(event.start_time_ns, 100); EXPECT_EQ(event.end_time_ns, 200); EXPECT_EQ(event.device_id, 6); EXPECT_EQ(event.correlation_id, 8); EXPECT_EQ(event.thread_id, 12345); EXPECT_EQ(event.context_id, 9); EXPECT_EQ(event.stream_id, 2); EXPECT_EQ(event.graph_id, 5); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/profiler/gpu/cupti_buffer_events.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/profiler/gpu/cupti_buffer_events_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f054a731-cf43-403c-8e10-e90641ca41dd
cpp
tensorflow/tensorflow
cupti_error_manager
third_party/xla/xla/backends/profiler/gpu/cupti_error_manager.cc
third_party/xla/xla/backends/profiler/gpu/cupti_error_manager_test.cc
#include "xla/backends/profiler/gpu/cupti_error_manager.h" #include <utility> #include "absl/debugging/leak_check.h" #include "tsl/platform/logging.h" namespace xla { namespace profiler { using tsl::mutex_lock; CuptiErrorManager::CuptiErrorManager(std::unique_ptr<CuptiInterface> interface) : interface_(std::move(interface)), disabled_(0), undo_disabled_(false) {} #define IGNORE_CALL_IF_DISABLED \ if (disabled_) { \ LOG(ERROR) << "cupti" << __func__ << ": ignored due to a previous error."; \ return CUPTI_ERROR_DISABLED; \ } \ VLOG(1) << "cupti" << __func__; #define ALLOW_ERROR(e, ERROR) \ if (e == ERROR) { \ VLOG(1) << "cupti" << __func__ << ": error " << static_cast<int>(e) \ << ": " << ResultString(e) << " (allowed)"; \ return e; \ } #define LOG_AND_DISABLE_IF_ERROR(e) \ if (e != CUPTI_SUCCESS) { \ LOG(ERROR) << "cupti" << __func__ << ": error " << static_cast<int>(e) \ << ": " << ResultString(e); \ UndoAndDisable(); \ } void CuptiErrorManager::RegisterUndoFunction( const CuptiErrorManager::UndoFunction& func) { mutex_lock lock(undo_stack_mu_); undo_stack_.push_back(func); } CUptiResult CuptiErrorManager::ActivityDisable(CUpti_ActivityKind kind) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->ActivityDisable(kind); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::ActivityEnable(CUpti_ActivityKind kind) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->ActivityEnable(kind); if (error == CUPTI_SUCCESS) { auto f = std::bind(&CuptiErrorManager::ActivityDisable, this, kind); RegisterUndoFunction(f); } LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::ActivityFlushAll(uint32_t flag) { CUptiResult error = interface_->ActivityFlushAll(flag); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::ActivityGetNextRecord( uint8_t* buffer, size_t valid_buffer_size_bytes, CUpti_Activity** record) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->ActivityGetNextRecord( buffer, valid_buffer_size_bytes, record); ALLOW_ERROR(error, CUPTI_ERROR_MAX_LIMIT_REACHED); ALLOW_ERROR(error, CUPTI_ERROR_INVALID_KIND); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::ActivityGetNumDroppedRecords(CUcontext context, uint32_t stream_id, size_t* dropped) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->ActivityGetNumDroppedRecords(context, stream_id, dropped); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::ActivityConfigureUnifiedMemoryCounter( CUpti_ActivityUnifiedMemoryCounterConfig* config, uint32_t count) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->ActivityConfigureUnifiedMemoryCounter(config, count); return error; } CUptiResult CuptiErrorManager::ActivityRegisterCallbacks( CUpti_BuffersCallbackRequestFunc func_buffer_requested, CUpti_BuffersCallbackCompleteFunc func_buffer_completed) { IGNORE_CALL_IF_DISABLED; absl::LeakCheckDisabler disabler; CUptiResult error = interface_->ActivityRegisterCallbacks( func_buffer_requested, func_buffer_completed); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::ActivityUsePerThreadBuffer() { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->ActivityUsePerThreadBuffer(); return error; } CUptiResult CuptiErrorManager::SetActivityFlushPeriod(uint32_t period_ms) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->SetActivityFlushPeriod(period_ms); LOG_AND_DISABLE_IF_ERROR(error); return error; }; CUptiResult CuptiErrorManager::GetDeviceId(CUcontext context, uint32_t* device_id) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->GetDeviceId(context, device_id); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::GetTimestamp(uint64_t* timestamp) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->GetTimestamp(timestamp); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::Finalize() { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->Finalize(); ALLOW_ERROR(error, CUPTI_ERROR_API_NOT_IMPLEMENTED); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::EnableCallback(uint32_t enable, CUpti_SubscriberHandle subscriber, CUpti_CallbackDomain domain, CUpti_CallbackId callback_id) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->EnableCallback(enable, subscriber, domain, callback_id); if (error == CUPTI_SUCCESS) { if (enable == 1) { auto f = std::bind(&CuptiErrorManager::EnableCallback, this, 0 , subscriber, domain, callback_id); RegisterUndoFunction(f); } } else { LOG(ERROR) << "cupti" << __func__ << ": error with domain:" << static_cast<int>(domain) << " and callback_id:" << static_cast<int>(callback_id); } LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::EnableDomain(uint32_t enable, CUpti_SubscriberHandle subscriber, CUpti_CallbackDomain domain) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->EnableDomain(enable, subscriber, domain); if (error == CUPTI_SUCCESS) { if (enable == 1) { auto f = std::bind(&CuptiErrorManager::EnableDomain, this, 0 , subscriber, domain); RegisterUndoFunction(f); } } LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::Subscribe(CUpti_SubscriberHandle* subscriber, CUpti_CallbackFunc callback, void* userdata) { IGNORE_CALL_IF_DISABLED; absl::LeakCheckDisabler disabler; CUptiResult error = interface_->Subscribe(subscriber, callback, userdata); if (error == CUPTI_SUCCESS) { auto f = std::bind(&CuptiErrorManager::Unsubscribe, this, *subscriber); RegisterUndoFunction(f); } LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::Unsubscribe(CUpti_SubscriberHandle subscriber) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->Unsubscribe(subscriber); LOG_AND_DISABLE_IF_ERROR(error); return error; } void CuptiErrorManager::UndoAndDisable() { if (undo_disabled_) { return; } mutex_lock lock(undo_stack_mu_); undo_disabled_ = true; while (!undo_stack_.empty()) { LOG(ERROR) << "CuptiErrorManager is disabling profiling automatically."; undo_stack_.back()(); undo_stack_.pop_back(); } undo_disabled_ = false; disabled_ = 1; } CUptiResult CuptiErrorManager::GetResultString(CUptiResult result, const char** str) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->GetResultString(result, str); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::GetContextId(CUcontext context, uint32_t* context_id) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->GetContextId(context, context_id); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::GetStreamIdEx(CUcontext context, CUstream stream, uint8_t per_thread_stream, uint32_t* stream_id) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->GetStreamIdEx(context, stream, per_thread_stream, stream_id); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::GetGraphId(CUgraph graph, uint32_t* graph_id) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->GetGraphId(graph, graph_id); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::GetGraphExecId(CUgraphExec graph_exec, uint32_t* graph_id) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->GetGraphExecId(graph_exec, graph_id); LOG_AND_DISABLE_IF_ERROR(error); return error; } void CuptiErrorManager::CleanUp() { if (undo_disabled_) { return; } mutex_lock lock(undo_stack_mu_); undo_disabled_ = true; while (!undo_stack_.empty()) { undo_stack_.pop_back(); } undo_disabled_ = false; } std::string CuptiErrorManager::ResultString(CUptiResult error) const { const char* error_message = nullptr; if (interface_->GetResultString(error, &error_message) == CUPTI_SUCCESS && error_message != nullptr) { return error_message; } return ""; } } }
#if GOOGLE_CUDA #include "xla/backends/profiler/gpu/cupti_error_manager.h" #include <cstdint> #include <memory> #include <utility> #include "absl/memory/memory.h" #include "xla/backends/profiler/gpu/cuda_test.h" #include "xla/backends/profiler/gpu/cupti_interface.h" #include "xla/backends/profiler/gpu/cupti_tracer.h" #include "xla/backends/profiler/gpu/cupti_wrapper.h" #include "xla/backends/profiler/gpu/mock_cupti.h" #include "xla/tsl/profiler/utils/time_utils.h" #include "tsl/platform/test.h" namespace xla { namespace profiler { namespace test { using xla::profiler::CuptiInterface; using xla::profiler::CuptiTracer; using xla::profiler::CuptiTracerCollectorOptions; using xla::profiler::CuptiTracerOptions; using xla::profiler::CuptiWrapper; using ::testing::_; using ::testing::Invoke; using ::testing::Return; using ::testing::Sequence; using ::testing::StrictMock; class TestableCuptiTracer : public CuptiTracer { public: explicit TestableCuptiTracer(CuptiInterface* cupti_interface) : CuptiTracer(cupti_interface) {} }; class CuptiErrorManagerTest : public ::testing::Test { protected: CuptiErrorManagerTest() {} void SetUp() override { ASSERT_GT(CuptiTracer::NumGpus(), 0) << "No devices found"; auto mock_cupti = std::make_unique<StrictMock<MockCupti>>(); mock_ = mock_cupti.get(); cupti_error_manager_ = std::make_unique<CuptiErrorManager>(std::move(mock_cupti)); cupti_tracer_ = std::make_unique<TestableCuptiTracer>(cupti_error_manager_.get()); cupti_wrapper_ = std::make_unique<CuptiWrapper>(); CuptiTracerCollectorOptions collector_options; collector_options.num_gpus = CuptiTracer::NumGpus(); uint64_t start_gputime_ns = CuptiTracer::GetTimestamp(); uint64_t start_walltime_ns = tsl::profiler::GetCurrentTimeNanos(); cupti_collector_ = CreateCuptiCollector( collector_options, start_walltime_ns, start_gputime_ns); } void EnableProfiling(const CuptiTracerOptions& option) { cupti_tracer_->Enable(option, cupti_collector_.get()); } void DisableProfiling() { cupti_tracer_->Disable(); } bool CuptiDisabled() const { return cupti_error_manager_->Disabled(); } void RunGpuApp() { MemCopyH2D(); PrintfKernel(10); Synchronize(); MemCopyD2H(); } StrictMock<MockCupti>* mock_; std::unique_ptr<TestableCuptiTracer> cupti_tracer_ = nullptr; std::unique_ptr<CuptiInterface> cupti_error_manager_; std::unique_ptr<CuptiWrapper> cupti_wrapper_; std::unique_ptr<xla::profiler::CuptiTraceCollector> cupti_collector_; }; TEST_F(CuptiErrorManagerTest, GpuTraceActivityEnableTest) { Sequence s1; EXPECT_CALL(*mock_, Subscribe(_, _, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::Subscribe)); const int cb_enable_times = IsCudaNewEnoughForGraphTraceTest() ? 4 : 1; EXPECT_CALL(*mock_, EnableCallback(1, _, _, _)) .Times(cb_enable_times) .InSequence(s1) .WillRepeatedly( Invoke(cupti_wrapper_.get(), &CuptiWrapper::EnableCallback)); EXPECT_CALL(*mock_, ActivityUsePerThreadBuffer()) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::ActivityUsePerThreadBuffer)); EXPECT_CALL(*mock_, ActivityRegisterCallbacks(_, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::ActivityRegisterCallbacks)); EXPECT_CALL(*mock_, ActivityEnable(CUPTI_ACTIVITY_KIND_KERNEL)) .InSequence(s1) .WillOnce(Return(CUPTI_ERROR_UNKNOWN)); EXPECT_CALL(*mock_, GetResultString(CUPTI_ERROR_UNKNOWN, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::GetResultString)); EXPECT_CALL(*mock_, EnableCallback(0, _, _, _)) .Times(cb_enable_times) .InSequence(s1) .WillRepeatedly( Invoke(cupti_wrapper_.get(), &CuptiWrapper::EnableCallback)); EXPECT_CALL(*mock_, Unsubscribe(_)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::Unsubscribe)); EXPECT_FALSE(CuptiDisabled()); CuptiTracerOptions options; options.activities_selected.push_back(CUPTI_ACTIVITY_KIND_KERNEL); options.cbids_selected.push_back(CUPTI_DRIVER_TRACE_CBID_cuLaunchKernel); EnableProfiling(options); EXPECT_TRUE(CuptiDisabled()); RunGpuApp(); EXPECT_TRUE(CuptiDisabled()); DisableProfiling(); EXPECT_TRUE(CuptiDisabled()); } TEST_F(CuptiErrorManagerTest, GpuTraceAutoEnableTest) { EXPECT_FALSE(CuptiDisabled()); Sequence s1; EXPECT_CALL(*mock_, Subscribe(_, _, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::Subscribe)); const int cb_enable_times = IsCudaNewEnoughForGraphTraceTest() ? 3 : 0; if (cb_enable_times > 0) { EXPECT_CALL(*mock_, EnableCallback(1, _, _, _)) .Times(cb_enable_times) .InSequence(s1) .WillRepeatedly( Invoke(cupti_wrapper_.get(), &CuptiWrapper::EnableCallback)); } EXPECT_CALL(*mock_, EnableDomain(1, _, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::EnableDomain)); EXPECT_CALL(*mock_, ActivityUsePerThreadBuffer()) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::ActivityUsePerThreadBuffer)); EXPECT_CALL(*mock_, ActivityRegisterCallbacks(_, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::ActivityRegisterCallbacks)); EXPECT_CALL(*mock_, ActivityEnable(CUPTI_ACTIVITY_KIND_MEMCPY)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::ActivityEnable)); EXPECT_CALL(*mock_, ActivityEnable(CUPTI_ACTIVITY_KIND_MEMCPY2)) .InSequence(s1) .WillOnce(Return(CUPTI_ERROR_UNKNOWN)); EXPECT_CALL(*mock_, GetResultString(CUPTI_ERROR_UNKNOWN, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::GetResultString)); EXPECT_CALL(*mock_, ActivityDisable(CUPTI_ACTIVITY_KIND_MEMCPY)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::ActivityDisable)); EXPECT_CALL(*mock_, EnableDomain(0, _, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::EnableDomain)); if (cb_enable_times > 0) { EXPECT_CALL(*mock_, EnableCallback(0, _, _, _)) .Times(cb_enable_times) .InSequence(s1) .WillRepeatedly( Invoke(cupti_wrapper_.get(), &CuptiWrapper::EnableCallback)); } EXPECT_CALL(*mock_, Unsubscribe(_)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::Unsubscribe)); EXPECT_FALSE(CuptiDisabled()); CuptiTracerOptions options; options.activities_selected.push_back(CUPTI_ACTIVITY_KIND_MEMCPY); options.activities_selected.push_back(CUPTI_ACTIVITY_KIND_MEMCPY2); options.activities_selected.push_back(CUPTI_ACTIVITY_KIND_KERNEL); EnableProfiling(options); EXPECT_TRUE(CuptiDisabled()); RunGpuApp(); EXPECT_TRUE(CuptiDisabled()); DisableProfiling(); EXPECT_TRUE(CuptiDisabled()); } } } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/profiler/gpu/cupti_error_manager.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/profiler/gpu/cupti_error_manager_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d937813a-ec6a-45e2-9277-8cabb12ff3bb
cpp
tensorflow/tensorflow
host_tracer
third_party/xla/xla/backends/profiler/cpu/host_tracer.cc
third_party/xla/xla/backends/profiler/cpu/host_tracer_test.cc
#include "xla/backends/profiler/cpu/host_tracer.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/log/log.h" #include "absl/status/status.h" #include "xla/tsl/profiler/backends/cpu/host_tracer_utils.h" #include "xla/tsl/profiler/backends/cpu/threadpool_listener.h" #include "xla/tsl/profiler/backends/cpu/traceme_recorder.h" #include "xla/tsl/profiler/utils/time_utils.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "xla/tsl/profiler/utils/xplane_utils.h" #include "tsl/platform/errors.h" #include "tsl/profiler/lib/profiler_collection.h" #include "tsl/profiler/lib/profiler_interface.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace xla { namespace profiler { namespace { class HostTracer : public tsl::profiler::ProfilerInterface { public: explicit HostTracer(int host_trace_level); ~HostTracer() override; absl::Status Start() override; absl::Status Stop() override; absl::Status CollectData( tensorflow::profiler::XSpace* space) override; private: const int host_trace_level_; bool recording_ = false; uint64_t start_timestamp_ns_ = 0; tsl::profiler::TraceMeRecorder::Events events_; }; HostTracer::HostTracer(int host_trace_level) : host_trace_level_(host_trace_level) {} HostTracer::~HostTracer() { Stop().IgnoreError(); } absl::Status HostTracer::Start() { if (recording_) { return tsl::errors::Internal("TraceMeRecorder already started"); } start_timestamp_ns_ = tsl::profiler::GetCurrentTimeNanos(); recording_ = tsl::profiler::TraceMeRecorder::Start(host_trace_level_); if (!recording_) { return tsl::errors::Internal("Failed to start TraceMeRecorder"); } return absl::OkStatus(); } absl::Status HostTracer::Stop() { if (!recording_) { return tsl::errors::Internal("TraceMeRecorder not started"); } events_ = tsl::profiler::TraceMeRecorder::Stop(); recording_ = false; return absl::OkStatus(); } absl::Status HostTracer::CollectData( tensorflow::profiler::XSpace* space) { VLOG(2) << "Collecting data to XSpace from HostTracer."; if (recording_) { return tsl::errors::Internal("TraceMeRecorder not stopped"); } if (events_.empty()) { return absl::OkStatus(); } tensorflow::profiler::XPlane* plane = tsl::profiler::FindOrAddMutablePlaneWithName( space, tsl::profiler::kHostThreadsPlaneName); ConvertCompleteEventsToXPlane(start_timestamp_ns_, std::exchange(events_, {}), plane); return absl::OkStatus(); } } std::unique_ptr<tsl::profiler::ProfilerInterface> CreateHostTracer( const HostTracerOptions& options) { if (options.trace_level == 0) return nullptr; std::vector<std::unique_ptr<tsl::profiler::ProfilerInterface>> profilers; profilers.push_back(std::make_unique<HostTracer>(options.trace_level)); profilers.push_back( std::make_unique<tsl::profiler::ThreadpoolProfilerInterface>()); return std::make_unique<tsl::profiler::ProfilerCollection>( std::move(profilers)); } } }
#include "xla/backends/profiler/cpu/host_tracer.h" #include <cstdint> #include <memory> #include <optional> #include <ostream> #include <string> #include <gtest/gtest.h> #include "absl/types/optional.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "xla/tsl/profiler/utils/timespan.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "xla/tsl/profiler/utils/xplane_visitor.h" #include "tsl/platform/blocking_counter.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" #include "tsl/platform/types.h" #include "tsl/profiler/lib/profiler_interface.h" #include "tsl/profiler/lib/traceme.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace xla { namespace profiler { namespace { using ::tsl::Env; using ::tsl::Thread; using ::tsl::ThreadOptions; using ::tsl::profiler::StatType; using ::tsl::profiler::Timespan; using ::tsl::profiler::TraceMe; using ::tsl::profiler::XEventVisitor; using ::tsl::profiler::XLineVisitor; using ::tsl::profiler::XPlaneVisitor; using ::tsl::profiler::XStatVisitor; TEST(HostTracerTest, CollectsTraceMeEventsAsXSpace) { tsl::uint32 thread_id; std::string thread_name = "MyThreadName"; tensorflow::profiler::XSpace space; std::unique_ptr<Thread> traced_thread( Env::Default()->StartThread(ThreadOptions(), thread_name, [&] { ASSERT_TRUE(Env::Default()->GetCurrentThreadName(&thread_name)); thread_id = Env::Default()->GetCurrentThreadId(); auto tracer = CreateHostTracer({}); TF_ASSERT_OK(tracer->Start()); { TraceMe traceme("hello"); } { TraceMe traceme("world"); } { TraceMe traceme("contains#inside"); } { TraceMe traceme("good#key1=value1#"); } { TraceMe traceme("morning#key1=value1,key2=value2#"); } { TraceMe traceme("incomplete#key1=value1,key2#"); } { TraceMe traceme("Iterator::XXX::YYY::ParallelMap"); } TF_ASSERT_OK(tracer->Stop()); TF_ASSERT_OK(tracer->CollectData(&space)); })); traced_thread.reset(); ASSERT_NO_FATAL_FAILURE(); ASSERT_EQ(space.planes_size(), 1); const auto& plane = space.planes(0); XPlaneVisitor xplane(&plane); ASSERT_EQ(plane.name(), ::tsl::profiler::kHostThreadsPlaneName); ASSERT_EQ(plane.lines_size(), 1); ASSERT_EQ(plane.event_metadata_size(), 7); ASSERT_EQ(plane.stat_metadata_size(), 4); const auto& line = plane.lines(0); EXPECT_EQ(line.id(), thread_id); EXPECT_EQ(line.name(), thread_name); ASSERT_EQ(line.events_size(), 7); const auto& events = line.events(); XEventVisitor e0(&xplane, &line, &events[0]); EXPECT_EQ(e0.Name(), "hello"); ASSERT_EQ(events[0].stats_size(), 0); XEventVisitor e1(&xplane, &line, &events[1]); EXPECT_EQ(e1.Name(), "world"); ASSERT_EQ(events[1].stats_size(), 0); XEventVisitor e2(&xplane, &line, &events[2]); EXPECT_EQ(e2.Name(), "contains#inside"); ASSERT_EQ(events[2].stats_size(), 0); XEventVisitor e3(&xplane, &line, &events[3]); EXPECT_EQ(e3.Name(), "good"); ASSERT_EQ(events[3].stats_size(), 1); { std::optional<std::string> value; e3.ForEachStat([&](const XStatVisitor& stat) { if (stat.Name() == "key1") value = stat.ToString(); }); ASSERT_TRUE(value); EXPECT_EQ(*value, "value1"); } XEventVisitor e4(&xplane, &line, &events[4]); EXPECT_EQ(e4.Name(), "morning"); ASSERT_EQ(events[4].stats_size(), 2); { std::optional<std::string> value1, value2; e4.ForEachStat([&](const XStatVisitor& stat) { if (stat.Name() == "key1") { value1 = stat.ToString(); } else if (stat.Name() == "key2") { value2 = stat.ToString(); } }); ASSERT_TRUE(value1 && value2); EXPECT_EQ(*value1, "value1"); EXPECT_EQ(*value2, "value2"); } XEventVisitor e5(&xplane, &line, &events[5]); EXPECT_EQ(e5.Name(), "incomplete"); ASSERT_EQ(events[5].stats_size(), 1); { std::optional<std::string> value1, value2; e5.ForEachStat([&](const XStatVisitor& stat) { if (stat.Name() == "key1") { value1 = stat.ToString(); } else if (stat.Name() == "key2") { value2 = stat.ToString(); } }); ASSERT_TRUE(value1 && !value2); EXPECT_EQ(*value1, "value1"); } XEventVisitor e6(&xplane, &line, &events[6]); EXPECT_EQ(e6.Name(), "Iterator::XXX::YYY::ParallelMap"); EXPECT_EQ(e6.DisplayName(), "Iterator::ParallelMap"); } TEST(HostTracerTest, CollectEventsFromThreadPool) { auto thread_pool = std::make_unique<tsl::thread::ThreadPool>(Env::Default(), "HostTracerTest", 1); tsl::BlockingCounter counter(1); auto tracer = CreateHostTracer({}); TF_EXPECT_OK(tracer->Start()); thread_pool->Schedule([&counter] { TraceMe traceme("hello"); counter.DecrementCount(); }); counter.Wait(); thread_pool.reset(); TF_EXPECT_OK(tracer->Stop()); tensorflow::profiler::XSpace space; TF_EXPECT_OK(tracer->CollectData(&space)); EXPECT_THAT(space.planes(), testing::SizeIs(1)); XPlaneVisitor xplane = tsl::profiler::CreateTfXPlaneVisitor(&space.planes(0)); bool has_record_event = false; bool has_start_region_event = false; bool has_end_region_event = false; int64_t record_region_id = 0; int64_t start_region_id = 0; Timespan region_timespan; Timespan traceme_timespan; xplane.ForEachLine([&](const XLineVisitor& line) { line.ForEachEvent([&](const XEventVisitor& event) { if (event.Name() == tsl::profiler::kThreadpoolListenerRecord) { has_record_event = true; const auto& stat = event.GetStat(StatType::kProducerId); EXPECT_TRUE(stat.has_value()); record_region_id = stat->IntOrUintValue(); } else if (event.Name() == tsl::profiler::kThreadpoolListenerStartRegion) { has_start_region_event = true; const auto& stat = event.GetStat(StatType::kConsumerId); EXPECT_TRUE(stat.has_value()); start_region_id = stat->IntOrUintValue(); region_timespan = event.GetTimespan(); } else if (event.Name() == tsl::profiler::kThreadpoolListenerStopRegion) { has_end_region_event = true; region_timespan = Timespan::FromEndPoints(region_timespan.begin_ps(), event.GetTimespan().end_ps()); } else if (event.Name() == "hello") { traceme_timespan = event.GetTimespan(); } }); }); EXPECT_TRUE(has_record_event); EXPECT_TRUE(has_start_region_event); EXPECT_TRUE(has_end_region_event); EXPECT_EQ(record_region_id, start_region_id); EXPECT_TRUE(region_timespan.Includes(traceme_timespan)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/profiler/cpu/host_tracer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/profiler/cpu/host_tracer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
779d4496-04b8-4f88-ac0d-4810141e0540
cpp
tensorflow/tensorflow
plugin_tracer_impl
third_party/xla/xla/backends/profiler/plugin/plugin_tracer_impl.cc
third_party/xla/xla/backends/profiler/plugin/plugin_tracer_impl_test.cc
#include "xla/backends/profiler/plugin/plugin_tracer_impl.h" #include <cstddef> #include <cstdint> #include <memory> #include <vector> #include "xla/backends/profiler/plugin/profiler_c_api.h" #include "xla/backends/profiler/plugin/profiler_error.h" #include "tsl/platform/logging.h" #include "tsl/profiler/lib/profiler_collection.h" #include "tsl/profiler/lib/profiler_factory.h" #include "tsl/profiler/protobuf/profiler_options.pb.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace xla { namespace profiler { PLUGIN_Profiler_Error* PLUGIN_Profiler_Create( PLUGIN_Profiler_Create_Args* args) { VLOG(1) << "Creating plugin profiler"; auto profiler = std::make_unique<PLUGIN_Profiler>(); profiler->stopped = true; tensorflow::ProfileOptions options; options.ParseFromArray(args->options, args->options_size); profiler->impl = std::make_unique<tsl::profiler::ProfilerCollection>( tsl::profiler::CreateProfilers(options)); args->profiler = profiler.release(); return nullptr; } PLUGIN_Profiler_Error* PLUGIN_Profiler_Destroy( PLUGIN_Profiler_Destroy_Args* args) { VLOG(1) << "Destroying plugin profiler"; if (args->profiler != nullptr) { delete args->profiler; } return nullptr; } PLUGIN_Profiler_Error* PLUGIN_Profiler_Start(PLUGIN_Profiler_Start_Args* args) { VLOG(1) << "Starting profiler"; if (!args->profiler->stopped) { VLOG(1) << "Profiler is already started"; return nullptr; } args->profiler->byte_size = 0; PLUGIN_PROFILER_RETURN_IF_ERROR(args->profiler->impl->Start()); args->profiler->stopped = false; return nullptr; } PLUGIN_Profiler_Error* PLUGIN_Profiler_Stop(PLUGIN_Profiler_Stop_Args* args) { VLOG(1) << "Stopping profiler"; if (args->profiler->stopped) { VLOG(1) << "Profiler is already stopped"; return nullptr; } PLUGIN_PROFILER_RETURN_IF_ERROR(args->profiler->impl->Stop()); args->profiler->stopped = false; return nullptr; } PLUGIN_Profiler_Error* PLUGIN_Profiler_CollectData( PLUGIN_Profiler_CollectData_Args* args) { VLOG(1) << "Collecting data from profiler"; tensorflow::profiler::XSpace space; if (!args->profiler->space) { VLOG(1) << "TpuProfiler CollectData"; PLUGIN_PROFILER_RETURN_IF_ERROR(args->profiler->impl->CollectData(&space)); args->profiler->byte_size = space.ByteSizeLong(); VLOG(2) << "TpuProfiler CollectData: Number of XPlanes: " << space.planes_size(); } const size_t profiler_data_size = space.ByteSizeLong(); if (args->buffer == nullptr) { args->profiler->buffer = std::make_unique<std::vector<uint8_t>>(profiler_data_size + 1); space.SerializeToArray(args->profiler->buffer->data(), profiler_data_size); args->buffer_size_in_bytes = args->profiler->buffer->size(); args->buffer = args->profiler->buffer->data(); return nullptr; } return nullptr; } } }
#include "xla/backends/profiler/plugin/plugin_tracer_impl.h" #include <cstdint> #include <memory> #include <optional> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "xla/backends/profiler/plugin/plugin_tracer.h" #include "xla/backends/profiler/plugin/profiler_c_api.h" #include "xla/backends/profiler/plugin/profiler_error.h" #include "xla/tsl/profiler/utils/xplane_builder.h" #include "xla/tsl/profiler/utils/xplane_visitor.h" #include "tsl/platform/logging.h" #include "tsl/profiler/lib/profiler_factory.h" #include "tsl/profiler/lib/profiler_interface.h" #include "tsl/profiler/protobuf/profiler_options.pb.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace xla { namespace profiler { using tensorflow::ProfileOptions; using tsl::profiler::ProfilerInterface; using tsl::profiler::XPlaneBuilder; class PluginTracerImpl : public ProfilerInterface { public: explicit PluginTracerImpl(const ProfileOptions& options) : options_(options) {} absl::Status Start() override { LOG(INFO) << "Starting Tracer"; return absl::OkStatus(); } absl::Status Stop() override { LOG(INFO) << "Stopping Tracer"; return absl::OkStatus(); } absl::Status CollectData(tensorflow::profiler::XSpace* space) override { LOG(INFO) << "Collecting data"; tensorflow::profiler::XPlane* plane = space->add_planes(); XPlaneBuilder builder(plane); builder.SetName("GpuBackendTracer"); tensorflow::profiler::XStatMetadata* metadata = builder.GetOrCreateStatMetadata((int64_t)0); metadata->set_name("ProfileOptions"); builder.AddStatValue(*metadata, options_.SerializeAsString()); return absl::OkStatus(); } private: ProfileOptions options_; }; std::unique_ptr<ProfilerInterface> CreatePluginTracer( const ProfileOptions& options) { return std::make_unique<PluginTracerImpl>(options); } static auto register_test_tracer = [] { RegisterProfilerFactory(&CreatePluginTracer); return 0; }(); TEST(PluginTracerTest, TestPluginWithPluginTracer) { PLUGIN_Profiler_Api api; api.create = &PLUGIN_Profiler_Create; api.start = &PLUGIN_Profiler_Start; api.stop = &PLUGIN_Profiler_Stop; api.collect_data = &PLUGIN_Profiler_CollectData; api.destroy = &PLUGIN_Profiler_Destroy; api.error_destroy = &PLUGIN_Profiler_Error_Destroy; api.error_message = &PLUGIN_Profiler_Error_Message; api.error_get_code = &PLUGIN_Profiler_Error_GetCode; api.struct_size = PLUGIN_Profiler_Api_STRUCT_SIZE; ProfileOptions options; options.set_repository_path("TestRepositoryPath"); options.set_device_tracer_level(2); PluginTracer tracer(&api, options); tensorflow::profiler::XSpace xspace; EXPECT_TRUE(tracer.Start().ok()); EXPECT_TRUE(tracer.Stop().ok()); EXPECT_TRUE(tracer.CollectData(&xspace).ok()); ASSERT_THAT(xspace.planes(), testing::SizeIs(1)); ASSERT_THAT(xspace.planes(0).stats(), testing::SizeIs(1)); tsl::profiler::XPlaneVisitor visitor(&xspace.planes(0)); std::optional<tsl::profiler::XStatVisitor> stat = visitor.GetStat(0, *visitor.GetStatMetadata(0)); ASSERT_TRUE(stat.has_value()); EXPECT_EQ(stat->Name(), "ProfileOptions"); EXPECT_EQ(stat->StrOrRefValue(), options.SerializeAsString()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/profiler/plugin/plugin_tracer_impl.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/profiler/plugin/plugin_tracer_impl_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3cd770ea-afe3-4a25-b3c7-1b35a92ac8d0
cpp
tensorflow/tensorflow
buffer_use
third_party/xla/xla/runtime/buffer_use.cc
third_party/xla/xla/runtime/buffer_use_test.cc
#include "xla/runtime/buffer_use.h" #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/types/span.h" #include "xla/service/buffer_assignment.h" namespace xla { BufferUse::ReadWriteSet::ReadWriteSet() = default; void BufferUse::ReadWriteSet::Add(BufferUse use) { switch (use.access()) { case BufferUse::kRead: AddRead(use.slice()); break; case BufferUse::kWrite: AddWrite(use.slice()); break; } } void BufferUse::ReadWriteSet::AddRead(BufferAllocation::Slice slice) { read_.insert(slice); } void BufferUse::ReadWriteSet::AddWrite(BufferAllocation::Slice slice) { write_.insert(slice); } void BufferUse::ReadWriteSet::AddAll(absl::Span<const BufferUse> uses) { for (const auto& use : uses) Add(use); } bool BufferUse::ReadWriteSet::HasConflicts(const BufferUse& use) const { auto overlaps = [](const absl::flat_hash_set<BufferAllocation::Slice>& set, const BufferUse& use) { return set.contains(use.slice()) || absl::c_any_of(set, [&](const BufferAllocation::Slice& slice) { return slice.OverlapsWith(use.slice()); }); }; return use.access() == MemoryAccess::kWrite ? overlaps(write_, use) || overlaps(read_, use) : overlaps(write_, use); } bool BufferUse::ReadWriteSet::HasConflicts(const ReadWriteSet& other) { return absl::c_any_of(other.read_, [&](const BufferAllocation::Slice& slice) { return HasConflicts(BufferUse::Read(slice)); }) || absl::c_any_of(other.write_, [&](const BufferAllocation::Slice& slice) { return HasConflicts(BufferUse::Write(slice)); }); } }
#include "xla/runtime/buffer_use.h" #include "xla/service/buffer_assignment.h" #include "tsl/platform/test.h" namespace xla { namespace { TEST(BufferUseTest, Equality) { BufferAllocation alloc(0, 1024, 0); BufferAllocation::Slice slice0(&alloc, 0, 10); BufferUse use0(slice0, BufferUse::MemoryAccess::kRead); BufferUse use1(slice0, BufferUse::MemoryAccess::kWrite); BufferUse use2(slice0, BufferUse::MemoryAccess::kRead); EXPECT_NE(use0, use1); EXPECT_EQ(use0, use2); } TEST(BufferUseTest, ReadWriteSet) { BufferUse::ReadWriteSet rwset; BufferAllocation alloc(0, 1024, 0); BufferAllocation::Slice slice0(&alloc, 0, 10); BufferAllocation::Slice slice1(&alloc, 5, 10); BufferAllocation::Slice slice2(&alloc, 10, 10); rwset.Add(BufferUse::Read(slice0)); EXPECT_FALSE(rwset.HasConflicts({BufferUse::Read(slice1)})); EXPECT_TRUE(rwset.HasConflicts({BufferUse::Write(slice1)})); EXPECT_FALSE(rwset.HasConflicts({BufferUse::Write(slice2)})); rwset.Add(BufferUse::Read(slice1)); EXPECT_TRUE(rwset.HasConflicts({BufferUse::Write(slice2)})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/runtime/buffer_use.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/runtime/buffer_use_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
53279176-e6bf-43d8-9e11-0769e087a2d8
cpp
tensorflow/tensorflow
literal_test_util
third_party/xla/xla/tests/literal_test_util.cc
third_party/xla/xla/tests/literal_test_util_test.cc
#include "xla/tests/literal_test_util.h" #include "absl/strings/str_format.h" #include "xla/literal_comparison.h" #include "tsl/platform/env.h" #include "tsl/platform/path.h" #include "tsl/platform/test.h" namespace xla { namespace { void WriteLiteralToTempFile(const LiteralSlice& literal, const std::string& name) { std::string outdir; if (!tsl::io::GetTestUndeclaredOutputsDir(&outdir)) { outdir = tsl::testing::TmpDir(); } auto* env = tsl::Env::Default(); std::string filename = tsl::io::JoinPath( outdir, absl::StrFormat("tempfile-%d-%s", env->NowMicros(), name)); TF_CHECK_OK(tsl::WriteBinaryProto(env, absl::StrCat(filename, ".pb"), literal.ToProto())); TF_CHECK_OK(tsl::WriteStringToFile(env, absl::StrCat(filename, ".txt"), literal.ToString())); LOG(ERROR) << "wrote Literal to " << name << " file: " << filename << ".{pb,txt}"; } void OnMiscompare(const LiteralSlice& expected, const LiteralSlice& actual, const LiteralSlice& mismatches, const ShapeIndex& , const literal_comparison::ErrorBuckets& ) { LOG(INFO) << "expected: " << ShapeUtil::HumanString(expected.shape()) << " " << literal_comparison::ToStringTruncated(expected); LOG(INFO) << "actual: " << ShapeUtil::HumanString(actual.shape()) << " " << literal_comparison::ToStringTruncated(actual); LOG(INFO) << "Dumping literals to temp files..."; WriteLiteralToTempFile(expected, "expected"); WriteLiteralToTempFile(actual, "actual"); WriteLiteralToTempFile(mismatches, "mismatches"); } ::testing::AssertionResult StatusToAssertion(const absl::Status& s) { if (s.ok()) { return ::testing::AssertionSuccess(); } return ::testing::AssertionFailure() << s.message(); } } ::testing::AssertionResult LiteralTestUtil::EqualShapes( const Shape& expected, const Shape& actual) { return StatusToAssertion(literal_comparison::EqualShapes(expected, actual)); } ::testing::AssertionResult LiteralTestUtil::EqualShapesAndLayouts( const Shape& expected, const Shape& actual) { if (expected.ShortDebugString() != actual.ShortDebugString()) { return ::testing::AssertionFailure() << "want: " << expected.ShortDebugString() << " got: " << actual.ShortDebugString(); } return ::testing::AssertionSuccess(); } ::testing::AssertionResult LiteralTestUtil::Equal( const LiteralSlice& expected, const LiteralSlice& actual) { return StatusToAssertion(literal_comparison::Equal(expected, actual)); } ::testing::AssertionResult LiteralTestUtil::Near( const LiteralSlice& expected, const LiteralSlice& actual, const ErrorSpec& error_spec, std::optional<bool> detailed_message) { return StatusToAssertion(literal_comparison::Near( expected, actual, error_spec, detailed_message, &OnMiscompare)); } ::testing::AssertionResult LiteralTestUtil::NearOrEqual( const LiteralSlice& expected, const LiteralSlice& actual, const std::optional<ErrorSpec>& error) { if (error.has_value()) { VLOG(1) << "Expects near"; return StatusToAssertion(literal_comparison::Near( expected, actual, *error, std::nullopt, &OnMiscompare)); } VLOG(1) << "Expects equal"; return StatusToAssertion(literal_comparison::Equal(expected, actual)); } }
#include "xla/tests/literal_test_util.h" #include <vector> #include "absl/strings/str_join.h" #include "xla/literal.h" #include "xla/test_helpers.h" #include "tsl/platform/env.h" #include "tsl/platform/logging.h" #include "tsl/platform/path.h" #include "tsl/platform/test.h" namespace xla { namespace { TEST(LiteralTestUtilTest, ComparesEqualTuplesEqual) { Literal literal = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<int32_t>(42), LiteralUtil::CreateR0<int32_t>(64), }); EXPECT_TRUE(LiteralTestUtil::Equal(literal, literal)); } TEST(LiteralTestUtilTest, ComparesEqualComplex64TuplesEqual) { Literal literal = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex64>({42.0, 64.0}), LiteralUtil::CreateR0<complex64>({64.0, 42.0}), }); EXPECT_TRUE(LiteralTestUtil::Equal(literal, literal)); } TEST(LiteralTestUtilTest, ComparesEqualComplex128TuplesEqual) { Literal literal = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex128>({42.0, 64.0}), LiteralUtil::CreateR0<complex128>({64.0, 42.0}), }); EXPECT_TRUE(LiteralTestUtil::Equal(literal, literal)); } TEST(LiteralTestUtilTest, ComparesUnequalComplex64TuplesUnequal) { Literal literal0 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex64>({42.0, 64.0}), LiteralUtil::CreateR0<complex64>({64.0, 42.0}), }); Literal literal1 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex64>({64.0, 42.0}), LiteralUtil::CreateR0<complex64>({42.0, 64.0}), }); Literal literal2 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex64>({42.42, 64.0}), LiteralUtil::CreateR0<complex64>({64.0, 42.0}), }); Literal literal3 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex64>({42.0, 64.0}), LiteralUtil::CreateR0<complex64>({64.0, 42.42}), }); EXPECT_FALSE(LiteralTestUtil::Equal(literal0, literal1)); EXPECT_FALSE(LiteralTestUtil::Equal(literal0, literal2)); EXPECT_FALSE(LiteralTestUtil::Equal(literal0, literal3)); EXPECT_FALSE(LiteralTestUtil::Equal(literal2, literal3)); } TEST(LiteralTestUtilTest, ComparesUnequalComplex128TuplesUnequal) { Literal literal0 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex128>({42.0, 64.0}), LiteralUtil::CreateR0<complex128>({64.0, 42.0}), }); Literal literal1 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex128>({64.0, 42.0}), LiteralUtil::CreateR0<complex128>({42.0, 64.0}), }); Literal literal2 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex128>({42.42, 64.0}), LiteralUtil::CreateR0<complex128>({64.0, 42.0}), }); Literal literal3 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex128>({42.0, 64.0}), LiteralUtil::CreateR0<complex128>({64.0, 42.42}), }); EXPECT_FALSE(LiteralTestUtil::Equal(literal0, literal1)); EXPECT_FALSE(LiteralTestUtil::Equal(literal0, literal2)); EXPECT_FALSE(LiteralTestUtil::Equal(literal0, literal3)); EXPECT_FALSE(LiteralTestUtil::Equal(literal2, literal3)); } TEST(LiteralTestUtilTest, ComparesUnequalTuplesUnequal) { auto unequal_things_are_equal = [] { Literal lhs = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<int32_t>(42), LiteralUtil::CreateR0<int32_t>(64), }); Literal rhs = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<int32_t>(64), LiteralUtil::CreateR0<int32_t>(42), }); CHECK(LiteralTestUtil::Equal(lhs, rhs)) << "LHS and RHS are unequal"; }; ASSERT_DEATH(unequal_things_are_equal(), "LHS and RHS are unequal"); } TEST(LiteralTestUtilTest, ExpectNearFailurePlacesResultsInTemporaryDirectory) { auto dummy_lambda = [] { auto two = LiteralUtil::CreateR0<float>(2); auto four = LiteralUtil::CreateR0<float>(4); ErrorSpec error(0.001); CHECK(LiteralTestUtil::Near(two, four, error)) << "two is not near four"; }; tsl::Env* env = tsl::Env::Default(); std::string outdir; if (!tsl::io::GetTestUndeclaredOutputsDir(&outdir)) { outdir = tsl::testing::TmpDir(); } std::string pattern = tsl::io::JoinPath(outdir, "tempfile-*.pb"); std::vector<std::string> files; TF_CHECK_OK(env->GetMatchingPaths(pattern, &files)); for (const auto& f : files) { TF_CHECK_OK(env->DeleteFile(f)) << f; } ASSERT_DEATH(dummy_lambda(), "two is not near four"); std::vector<std::string> results; TF_CHECK_OK(env->GetMatchingPaths(pattern, &results)); LOG(INFO) << "results: [" << absl::StrJoin(results, ", ") << "]"; EXPECT_EQ(3, results.size()); for (const std::string& result : results) { LiteralProto literal_proto; TF_CHECK_OK( tsl::ReadBinaryProto(tsl::Env::Default(), result, &literal_proto)); Literal literal = Literal::CreateFromProto(literal_proto).value(); if (result.find("expected") != std::string::npos) { EXPECT_EQ("f32[] 2", literal.ToString()); } else if (result.find("actual") != std::string::npos) { EXPECT_EQ("f32[] 4", literal.ToString()); } else if (result.find("mismatches") != std::string::npos) { EXPECT_EQ("pred[] true", literal.ToString()); } else { FAIL() << "unknown file in temporary directory: " << result; } } } TEST(LiteralTestUtilTest, NotEqualHasValuesInMessage) { auto expected = LiteralUtil::CreateR1<int32_t>({1, 2, 3}); auto actual = LiteralUtil::CreateR1<int32_t>({4, 5, 6}); ::testing::AssertionResult result = LiteralTestUtil::Equal(expected, actual); EXPECT_THAT(result.message(), ::testing::HasSubstr("Expected literal:\ns32[3] {1, 2, 3}")); EXPECT_THAT(result.message(), ::testing::HasSubstr("Actual literal:\ns32[3] {4, 5, 6}")); } TEST(LiteralTestUtilTest, NearComparatorR1) { auto a = LiteralUtil::CreateR1<float>( {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}); auto b = LiteralUtil::CreateR1<float>( {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}); EXPECT_TRUE(LiteralTestUtil::Near(a, b, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, NearComparatorR1Complex64) { auto a = LiteralUtil::CreateR1<complex64>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.8, 1.8}}); auto b = LiteralUtil::CreateR1<complex64>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.8, 1.8}}); auto c = LiteralUtil::CreateR1<complex64>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.9, 1.8}}); auto d = LiteralUtil::CreateR1<complex64>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.8, 1.9}}); EXPECT_TRUE(LiteralTestUtil::Near(a, b, ErrorSpec{0.0001})); EXPECT_FALSE(LiteralTestUtil::Near(a, c, ErrorSpec{0.0001})); EXPECT_FALSE(LiteralTestUtil::Near(a, d, ErrorSpec{0.0001})); EXPECT_FALSE(LiteralTestUtil::Near(c, d, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, NearComparatorR1Complex128) { auto a = LiteralUtil::CreateR1<complex128>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.8, 1.8}}); auto b = LiteralUtil::CreateR1<complex128>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.8, 1.8}}); auto c = LiteralUtil::CreateR1<complex128>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.9, 1.8}}); auto d = LiteralUtil::CreateR1<complex128>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.8, 1.9}}); EXPECT_TRUE(LiteralTestUtil::Near(a, b, ErrorSpec{0.0001})); EXPECT_FALSE(LiteralTestUtil::Near(a, c, ErrorSpec{0.0001})); EXPECT_FALSE(LiteralTestUtil::Near(a, d, ErrorSpec{0.0001})); EXPECT_FALSE(LiteralTestUtil::Near(c, d, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, NearComparatorR1Nan) { auto a = LiteralUtil::CreateR1<float>( {0.0, 0.1, 0.2, 0.3, NAN, 0.5, 0.6, 0.7, 0.8}); auto b = LiteralUtil::CreateR1<float>( {0.0, 0.1, 0.2, 0.3, NAN, 0.5, 0.6, 0.7, 0.8}); EXPECT_TRUE(LiteralTestUtil::Near(a, b, ErrorSpec{0.0001})); } TEST(LiteralTestUtil, NearComparatorDifferentLengths) { auto a = LiteralUtil::CreateR1<float>( {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}); auto b = LiteralUtil::CreateR1<float>({0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}); EXPECT_FALSE(LiteralTestUtil::Near(a, b, ErrorSpec{0.0001})); EXPECT_FALSE(LiteralTestUtil::Near(b, a, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, ExpectNearDoubleOutsideFloatValueRange) { auto two_times_float_max = LiteralUtil::CreateR0<double>(2.0 * std::numeric_limits<float>::max()); ErrorSpec error(0.001); EXPECT_TRUE( LiteralTestUtil::Near(two_times_float_max, two_times_float_max, error)); } TEST(LiteralTestUtilTest, DynamicEqualityR1) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {10})); literal1.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal1.SetDynamicSize(0, 5); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {10})); literal2.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 99, 99, 99, 99, 99}); literal2.SetDynamicSize(0, 5); EXPECT_TRUE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, DynamicEqualityR2Dim) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal1.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(0, 2); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal2.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {99, 99, 99}}); literal2.SetDynamicSize(0, 2); EXPECT_TRUE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, DynamicEqualityR2Dim1) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal1.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(1, 2); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal2.PopulateR2<uint32_t>({{1, 2, 99}, {4, 5, 99}, {7, 8, 99}}); literal2.SetDynamicSize(1, 2); EXPECT_TRUE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, DynamicNearEqualityR1) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {10})); literal1.PopulateR1<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal1.SetDynamicSize(0, 5); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {10})); literal2.PopulateR1<float>({1, 2, 3, 4, 5, 99, 99, 99, 99, 99}); literal2.SetDynamicSize(0, 5); ErrorSpec error(0.001); EXPECT_TRUE(LiteralTestUtil::Near(literal1, literal2, error)); } TEST(LiteralTestUtilTest, DynamicNearEqualityR2Dim) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal1.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(0, 2); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal2.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {99, 99, 99}}); literal2.SetDynamicSize(0, 2); ErrorSpec error(0.001); EXPECT_TRUE(LiteralTestUtil::Near(literal1, literal2, error)); } TEST(LiteralTestUtilTest, DynamicNearEqualityR2Dim1) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal1.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(1, 2); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal2.PopulateR2<float>({{1, 2, 99}, {4, 5, 99}, {7, 8, 99}}); literal2.SetDynamicSize(1, 2); ErrorSpec error(0.001); EXPECT_TRUE(LiteralTestUtil::Near(literal1, literal2, error)); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR1) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {10})); literal1.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal1.SetDynamicSize(0, 5); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {10})); literal2.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal2.SetDynamicSize(0, 6); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR1_F32) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {10})); literal1.PopulateR1<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal1.SetDynamicSize(0, 5); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {10})); literal2.PopulateR1<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal2.SetDynamicSize(0, 6); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, ExpectedIsDynamicActualIsNotR1) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {10})); literal1.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal1.SetDynamicSize(0, 5); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {10})); literal2.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, ExpectedIsDynamicActualIsNotR1_F32) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {10})); literal1.PopulateR1<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal1.SetDynamicSize(0, 5); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {10})); literal2.PopulateR1<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, ActualIsDynamicExpectedIsNotR1) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {10})); literal1.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {10})); literal2.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal2.SetDynamicSize(0, 5); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, ActualIsDynamicExpectedIsNotR1_F32) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {10})); literal1.PopulateR1<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {10})); literal2.PopulateR1<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal2.SetDynamicSize(0, 5); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR2Dim0) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal1.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(0, 2); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal2.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal2.SetDynamicSize(0, 3); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR2Dim0_F32) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal1.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(0, 2); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal2.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal2.SetDynamicSize(0, 3); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR2Dim1) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal1.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(1, 2); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal2.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal2.SetDynamicSize(1, 3); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR2Dim1_F32) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal1.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(1, 2); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal2.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal2.SetDynamicSize(1, 3); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR2DifferentDimensions) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal1.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(1, 2); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal2.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal2.SetDynamicSize(0, 2); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR2DifferentDimensions_F32) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal1.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(1, 2); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal2.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal2.SetDynamicSize(0, 2); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, DynamicTuplesAreEqual) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 5); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); literal2.SetDynamicSize(0, {0}, 5); EXPECT_TRUE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, DynamicTuplesAreNear) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<float>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 5); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<float>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); literal2.SetDynamicSize(0, {0}, 5); EXPECT_TRUE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, DynamicTuplesAreEqualWithinDynamicBounds) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 3); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<uint32_t>({1, 2, 3, 99, 99}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); literal2.SetDynamicSize(0, {0}, 3); EXPECT_TRUE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, DynamicTuplesAreNearWithinDynamicBounds) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<float>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 3); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<float>({1, 2, 3, 99, 99}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); literal2.SetDynamicSize(0, {0}, 3); EXPECT_TRUE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, DynamicTuplesHaveDifferentDynamicSizes) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 5); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); literal2.SetDynamicSize(0, {0}, 4); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, DynamicTuplesHaveDifferentDynamicSizes_F32) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<float>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 5); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<float>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); literal2.SetDynamicSize(0, {0}, 4); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, OneTupleDynamicOneIsNot) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 5); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, OneTupleDynamicOneIsNot_F32) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<float>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 5); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<float>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tests/literal_test_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tests/literal_test_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1986c596-9933-436d-a46c-46859567f49a
cpp
tensorflow/tensorflow
cycle_detector
third_party/xla/xla/mlir_hlo/utils/cycle_detector.cc
third_party/xla/xla/mlir_hlo/utils/cycle_detector_test.cc
#include "utils/cycle_detector.h" #include <algorithm> #include <optional> #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallVector.h" namespace mlir { namespace { using NodeSet = llvm::DenseSet<int32_t>; using OrderedNodeSet = OrderedSet<int32_t>; template <typename T> struct VecStruct { using type = llvm::SmallVector<T, 4>; }; template <typename T> using Vec = typename VecStruct<T>::type; struct Node { int32_t rank; bool visited; void* data; OrderedNodeSet in; OrderedNodeSet out; }; } struct GraphCycles::Rep { Vec<Node*> nodes; Vec<int32_t> freeNodes; Vec<int32_t> deltaf; Vec<int32_t> deltab; Vec<int32_t> list; Vec<int32_t> merged; Vec<int32_t> stack; }; GraphCycles::GraphCycles(int32_t numNodes) : rep_(new Rep) { rep_->nodes.reserve(numNodes); for (int32_t i = 0; i < numNodes; ++i) { Node* n = new Node; n->visited = false; n->data = nullptr; n->rank = rep_->nodes.size(); rep_->nodes.push_back(n); } } GraphCycles::~GraphCycles() { for (Vec<Node*>::size_type i = 0, e = rep_->nodes.size(); i < e; ++i) { delete rep_->nodes[i]; } delete rep_; } bool GraphCycles::HasEdge(int32_t x, int32_t y) const { return rep_->nodes[x]->out.Contains(y); } void GraphCycles::RemoveEdge(int32_t x, int32_t y) { rep_->nodes[x]->out.Erase(y); rep_->nodes[y]->in.Erase(x); } static bool forwardDfs(GraphCycles::Rep* r, int32_t n, int32_t upperBound); static void backwardDfs(GraphCycles::Rep* r, int32_t n, int32_t lowerBound); static void reorder(GraphCycles::Rep* r); static void sort(const Vec<Node*>&, Vec<int32_t>* delta); static void moveToList(GraphCycles::Rep* r, Vec<int32_t>* src, Vec<int32_t>* dst); static void clearVisitedBits(GraphCycles::Rep* r, const Vec<int32_t>& nodes); bool GraphCycles::InsertEdge(int32_t x, int32_t y) { if (x == y) return false; Rep* r = rep_; Node* nx = r->nodes[x]; if (!nx->out.Insert(y)) { return true; } Node* ny = r->nodes[y]; ny->in.Insert(x); if (nx->rank <= ny->rank) { return true; } if (forwardDfs(r, y, nx->rank)) { nx->out.Erase(y); ny->in.Erase(x); clearVisitedBits(r, r->deltaf); return false; } backwardDfs(r, x, ny->rank); reorder(r); return true; } static bool forwardDfs(GraphCycles::Rep* r, int32_t n, int32_t upperBound) { r->deltaf.clear(); r->stack.clear(); r->stack.push_back(n); while (!r->stack.empty()) { n = r->stack.back(); r->stack.pop_back(); Node* nn = r->nodes[n]; if (nn->visited) continue; nn->visited = true; r->deltaf.push_back(n); for (auto w : nn->out.GetSequence()) { Node* nw = r->nodes[w]; if (nw->rank == upperBound) { return true; } if (!nw->visited && nw->rank < upperBound) { r->stack.push_back(w); } } } return false; } static void backwardDfs(GraphCycles::Rep* r, int32_t n, int32_t lowerBound) { r->deltab.clear(); r->stack.clear(); r->stack.push_back(n); while (!r->stack.empty()) { n = r->stack.back(); r->stack.pop_back(); Node* nn = r->nodes[n]; if (nn->visited) continue; nn->visited = true; r->deltab.push_back(n); for (auto w : nn->in.GetSequence()) { Node* nw = r->nodes[w]; if (!nw->visited && lowerBound < nw->rank) { r->stack.push_back(w); } } } } static void reorder(GraphCycles::Rep* r) { sort(r->nodes, &r->deltab); sort(r->nodes, &r->deltaf); r->list.clear(); moveToList(r, &r->deltab, &r->list); moveToList(r, &r->deltaf, &r->list); r->merged.resize(r->deltab.size() + r->deltaf.size()); std::merge(r->deltab.begin(), r->deltab.end(), r->deltaf.begin(), r->deltaf.end(), r->merged.begin()); for (Vec<int32_t>::size_type i = 0, e = r->list.size(); i < e; ++i) { r->nodes[r->list[i]]->rank = r->merged[i]; } } static void sort(const Vec<Node*>& nodes, Vec<int32_t>* delta) { struct ByRank { const Vec<Node*>* nodes; bool operator()(int32_t a, int32_t b) const { return (*nodes)[a]->rank < (*nodes)[b]->rank; } }; ByRank cmp; cmp.nodes = &nodes; std::sort(delta->begin(), delta->end(), cmp); } static void moveToList(GraphCycles::Rep* r, Vec<int32_t>* src, Vec<int32_t>* dst) { for (Vec<int32_t>::size_type i = 0, e = src->size(); i < e; i++) { int32_t w = (*src)[i]; (*src)[i] = r->nodes[w]->rank; r->nodes[w]->visited = false; dst->push_back(w); } } static void clearVisitedBits(GraphCycles::Rep* r, const Vec<int32_t>& nodes) { for (Vec<int32_t>::size_type i = 0, e = nodes.size(); i < e; i++) { r->nodes[nodes[i]]->visited = false; } } bool GraphCycles::IsReachable(int32_t x, int32_t y) { if (x == y) return true; Rep* r = rep_; Node* nx = r->nodes[x]; Node* ny = r->nodes[y]; if (nx->rank >= ny->rank) { return false; } bool reachable = forwardDfs(r, x, ny->rank); clearVisitedBits(r, r->deltaf); return reachable; } std::optional<int32_t> GraphCycles::ContractEdge(int32_t a, int32_t b) { assert(HasEdge(a, b)); RemoveEdge(a, b); if (IsReachable(a, b)) { InsertEdge(a, b); return {}; } if (rep_->nodes[b]->in.Size() + rep_->nodes[b]->out.Size() > rep_->nodes[a]->in.Size() + rep_->nodes[a]->out.Size()) { std::swap(a, b); } Node* nb = rep_->nodes[b]; OrderedNodeSet out = std::move(nb->out); OrderedNodeSet in = std::move(nb->in); for (int32_t y : out.GetSequence()) { rep_->nodes[y]->in.Erase(b); } for (int32_t y : in.GetSequence()) { rep_->nodes[y]->out.Erase(b); } rep_->freeNodes.push_back(b); rep_->nodes[a]->out.Reserve(rep_->nodes[a]->out.Size() + out.Size()); for (int32_t y : out.GetSequence()) { InsertEdge(a, y); } rep_->nodes[a]->in.Reserve(rep_->nodes[a]->in.Size() + in.Size()); for (int32_t y : in.GetSequence()) { InsertEdge(y, a); } return a; } std::vector<int32_t> GraphCycles::SuccessorsCopy(int32_t node) const { return rep_->nodes[node]->out.GetSequence(); } namespace { void sortInPostOrder(const Vec<Node*>& nodes, std::vector<int32_t>* toSort) { std::sort(toSort->begin(), toSort->end(), [&](int32_t a, int32_t b) { return nodes[a]->rank > nodes[b]->rank; }); } } std::vector<int32_t> GraphCycles::AllNodesInPostOrder() const { llvm::DenseSet<int32_t> freeNodesSet; for (int32_t n : rep_->freeNodes) freeNodesSet.insert(n); std::vector<int32_t> allNodes; allNodes.reserve(rep_->nodes.size() - freeNodesSet.size()); for (size_t i = 0, e = rep_->nodes.size(); i < e; i++) { if (!freeNodesSet.count(i)) { allNodes.push_back(i); } } sortInPostOrder(rep_->nodes, &allNodes); return allNodes; } }
#include "utils/cycle_detector.h" #include "xla/test.h" class GraphCyclesTest : public ::testing::Test { public: GraphCyclesTest() : g_(100) {} bool AddEdge(int x, int y) { return g_.InsertEdge(x, y); } void AddMultiples() { for (int x = 1; x < 25; x++) { EXPECT_TRUE(AddEdge(x, 2 * x)) << x; EXPECT_TRUE(AddEdge(x, 3 * x)) << x; } } mlir::GraphCycles g_; }; TEST_F(GraphCyclesTest, NoCycle) { AddMultiples(); } TEST_F(GraphCyclesTest, SimpleCycle) { AddMultiples(); EXPECT_FALSE(AddEdge(8, 4)); } TEST_F(GraphCyclesTest, IndirectCycle) { AddMultiples(); EXPECT_TRUE(AddEdge(16, 9)); EXPECT_FALSE(AddEdge(9, 2)); } TEST_F(GraphCyclesTest, RemoveEdge) { EXPECT_TRUE(AddEdge(1, 2)); EXPECT_TRUE(AddEdge(2, 3)); EXPECT_TRUE(AddEdge(3, 4)); EXPECT_TRUE(AddEdge(4, 5)); g_.RemoveEdge(2, 3); EXPECT_FALSE(g_.HasEdge(2, 3)); } TEST_F(GraphCyclesTest, IsReachable) { EXPECT_TRUE(AddEdge(1, 2)); EXPECT_TRUE(AddEdge(2, 3)); EXPECT_TRUE(AddEdge(3, 4)); EXPECT_TRUE(AddEdge(4, 5)); EXPECT_TRUE(g_.IsReachable(1, 5)); EXPECT_FALSE(g_.IsReachable(5, 1)); } TEST_F(GraphCyclesTest, ContractEdge) { ASSERT_TRUE(AddEdge(1, 2)); ASSERT_TRUE(AddEdge(1, 3)); ASSERT_TRUE(AddEdge(2, 3)); ASSERT_TRUE(AddEdge(2, 4)); ASSERT_TRUE(AddEdge(3, 4)); EXPECT_FALSE(g_.ContractEdge(1, 3).has_value()); EXPECT_TRUE(g_.HasEdge(1, 3)); EXPECT_EQ(*g_.ContractEdge(1, 2), 2); EXPECT_TRUE(g_.HasEdge(2, 3)); EXPECT_TRUE(g_.HasEdge(2, 4)); EXPECT_TRUE(g_.HasEdge(3, 4)); EXPECT_EQ(*g_.ContractEdge(2, 3), 2); EXPECT_TRUE(g_.HasEdge(2, 4)); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/mlir_hlo/utils/cycle_detector.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/mlir_hlo/utils/cycle_detector_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b4ad9eac-84ab-45ce-8e5f-fd72109f0f90
cpp
tensorflow/tensorflow
hlo_utils
third_party/xla/xla/hlo/translate/hlo_to_mhlo/hlo_utils.cc
third_party/xla/xla/hlo/translate/hlo_to_mhlo/hlo_utils_test.cc
#include "xla/hlo/translate/hlo_to_mhlo/hlo_utils.h" #include <cassert> #include <cstddef> #include <cstdint> #include <vector> #include "absl/status/statusor.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Casting.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Location.h" #include "mlir/IR/Operation.h" #include "mlir/IR/TypeUtilities.h" #include "mlir/IR/ValueRange.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/mlir/utils/type_util.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" #include "xla/primitive_util.h" #include "xla/shape.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using mlir::AffineMap; using mlir::Builder; using mlir::DenseElementsAttr; using mlir::ShapedType; template <typename CppType> ::mlir::DenseElementsAttr CreateDenseAttrFromLiteral( const ShapedType& type, const LiteralBase& literal) { if constexpr (is_intN_v<CppType>) { auto data_span = literal.data<CppType>(); std::vector<char> packed_padded_data; packed_padded_data.reserve(literal.element_count()); for (size_t i = 0; i < literal.element_count(); i++) { packed_padded_data.push_back(static_cast<char>(data_span[i])); } return ::mlir::DenseElementsAttr::getFromRawBuffer(type, packed_padded_data); } else { auto data_span = literal.data<CppType>(); return ::mlir::DenseElementsAttr::get( type, llvm::ArrayRef(data_span.data(), data_span.size())); } } absl::StatusOr<AffineMap> GetPermutationIfAvailable(const Shape& shape, mlir::Builder builder) { if (!shape.layout().tiles().empty()) { return Internal("Tiled layouts are not yet supported"); } if (!shape.has_layout() || LayoutUtil::IsMonotonicWithDim0Major(shape.layout())) { return AffineMap(); } if (!shape.is_static()) { return Internal("Permutations for dynamic shapes are not yet supported"); } int64_t accumulated_stride = 1; llvm::SmallVector<int64_t, 4> strides(shape.rank(), 1); for (int64_t dim : LayoutUtil::MinorToMajor(shape)) { strides[dim] = accumulated_stride; accumulated_stride *= shape.dimensions(dim); } if (accumulated_stride == 0) { return AffineMap(); } return makeStridedLinearLayoutMap(strides, 0, builder.getContext()); } } absl::StatusOr<mlir::MemRefType> ConvertTensorShapeToMemRefType( const Shape& shape, mlir::Builder builder) { auto element_type_or = ConvertPrimitiveTypeToMlirType(shape.element_type(), builder); if (!element_type_or.ok()) return element_type_or.status(); using mlir::MemRefType; auto dimensions = shape.dimensions(); llvm::SmallVector<int64_t, 4> array(dimensions.begin(), dimensions.end()); auto permutation_or = GetPermutationIfAvailable(shape, builder); if (!permutation_or.ok()) return permutation_or.status(); return MemRefType::get(array, element_type_or.value(), permutation_or.value()); } absl::StatusOr<mlir::DenseElementsAttr> CreateDenseElementsAttrFromLiteral( const LiteralBase& literal, Builder builder) { TF_ASSIGN_OR_RETURN(auto type, ConvertTensorShapeToType<mlir::RankedTensorType>( literal.shape(), builder)); auto element_type = literal.shape().element_type(); return primitive_util::PrimitiveTypeSwitch< absl::StatusOr<mlir::DenseElementsAttr>>( [&](auto primitive_type_constant) -> absl::StatusOr<mlir::DenseElementsAttr> { if constexpr (primitive_util::IsArrayType(primitive_type_constant)) { return CreateDenseAttrFromLiteral< primitive_util::NativeTypeOf<primitive_type_constant>>(type, literal); } return Internal("Unsupported type: %s", PrimitiveType_Name(element_type)); }, element_type); } mlir::DenseIntElementsAttr CreateDenseIntElementsAttrFromVector( const llvm::ArrayRef<int64_t> vector, mlir::Builder builder, llvm::ArrayRef<int64_t> shape) { return mlir::DenseIntElementsAttr::get( mlir::RankedTensorType::get(shape.empty() ? vector.size() : shape, builder.getIntegerType(64)), vector); } mlir::Value CreateTupleValue(mlir::OpBuilder* func_builder, mlir::Location loc, mlir::ValueRange& flatten_values, mlir::Type type) { auto tuple_type = type.dyn_cast<mlir::TupleType>(); if (!tuple_type) { assert(!flatten_values.empty()); auto retval = flatten_values.front(); flatten_values = flatten_values.drop_front(); return retval; } llvm::SmallVector<mlir::Value> flatten_sub_values; for (auto child_type : tuple_type.getTypes()) flatten_sub_values.push_back( CreateTupleValue(func_builder, loc, flatten_values, child_type)); return func_builder->create<mlir::mhlo::TupleOp>(loc, flatten_sub_values) .getResult(); } mlir::Operation* CreateTupleFromOpResults(mlir::OpBuilder* func_builder, mlir::Location loc, mlir::Operation* op, mlir::Type type) { if (!type.isa<mlir::TupleType>()) return op; mlir::ValueRange flattened_results_ref(op->getResults()); auto result = CreateTupleValue(func_builder, loc, flattened_results_ref, type); auto defining_tuple_op = result.getDefiningOp<mlir::mhlo::TupleOp>(); assert(defining_tuple_op && "builder didn't return the right type"); auto tupleOp = defining_tuple_op.getOperation(); return tupleOp; } mlir::TypeRange Untuple(const mlir::Type& type) { if (llvm::isa<mlir::TupleType>(type)) { return llvm::dyn_cast<mlir::TupleType>(type).getTypes(); } return type; } }
#include "xla/hlo/translate/hlo_to_mhlo/hlo_utils.h" #include <cstdint> #include <cstring> #include <vector> #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Support/DebugStringHelper.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/types.h" namespace xla { namespace { TEST(ConvertTensorShapeToType, Simple) { mlir::MLIRContext context; context.loadDialect<mlir::mhlo::MhloDialect>(); mlir::Builder builder(&context); { auto shape = ShapeUtil::MakeShape(PrimitiveType::S32, {8, 128}); TF_ASSERT_OK_AND_ASSIGN( auto type, ConvertTensorShapeToType<mlir::RankedTensorType>(shape, builder)); auto expected = mlir::RankedTensorType::get({8, 128}, builder.getI32Type()); EXPECT_TRUE(type == expected) << " Expected: " << mlir::debugString(expected) << " Computed: " << mlir::debugString(type); } { auto shape = ShapeUtil::MakeShape(PrimitiveType::S32, {8, 128}, {true, false}); TF_ASSERT_OK_AND_ASSIGN( auto type, ConvertTensorShapeToType<mlir::RankedTensorType>(shape, builder)); int64_t bounds[] = {8, mlir::ShapedType::kDynamic}; auto extensions = mlir::mhlo::TypeExtensionsAttr::get(&context, bounds); auto expected = mlir::RankedTensorType::get( {mlir::ShapedType::kDynamic, 128}, builder.getI32Type(), extensions); EXPECT_TRUE(type == expected) << " Expected: " << mlir::debugString(expected) << " Computed: " << mlir::debugString(type); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/translate/hlo_to_mhlo/hlo_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/translate/hlo_to_mhlo/hlo_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
02e32eea-6457-4f34-9a05-e15a3b90742b
cpp
tensorflow/tensorflow
func
tensorflow/compiler/mlir/quantization/common/func.cc
tensorflow/compiler/mlir/quantization/common/func_test.cc
#include "tensorflow/compiler/mlir/quantization/common/func.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/SymbolTable.h" #include "mlir/Support/LLVM.h" #include "tensorflow/cc/saved_model/signature_constants.h" #include "tensorflow/compiler/mlir/tensorflow/translate/import_model.h" namespace mlir::quant { namespace { using ::tensorflow::kDefaultServingSignatureDefKey; using ::tensorflow::kImportModelDefaultGraphFuncName; bool IsPublicFuncOp(func::FuncOp func_op) { return SymbolTable::getSymbolVisibility(&*func_op) == SymbolTable::Visibility::Public; } } func::FuncOp FindMainFuncOp(ModuleOp module_op) { if (const auto main_func_op = module_op.lookupSymbol<func::FuncOp>( kImportModelDefaultGraphFuncName); main_func_op != nullptr && IsPublicFuncOp(main_func_op)) { return main_func_op; } if (const auto serving_default_func_op = module_op.lookupSymbol<func::FuncOp>(kDefaultServingSignatureDefKey); serving_default_func_op != nullptr && IsPublicFuncOp(serving_default_func_op)) { return serving_default_func_op; } return nullptr; } }
#include "tensorflow/compiler/mlir/quantization/common/func.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/OwningOpRef.h" #include "tensorflow/compiler/mlir/quantization/common/test_base.h" namespace mlir::quant { namespace { using ::testing::IsNull; using ::testing::NotNull; using FindMainFuncOpTest = ::mlir::quant::QuantizationTestBase; TEST_F(FindMainFuncOpTest, ReturnsMainFuncOp) { constexpr absl::string_view kModuleWithMainFunc = R"mlir( module { func.func @main() -> () { return } } )mlir"; OwningOpRef<ModuleOp> module_op = ParseModuleOpString(kModuleWithMainFunc); EXPECT_THAT(*module_op, NotNull()); func::FuncOp main_func_op = FindMainFuncOp(*module_op); EXPECT_THAT(main_func_op, NotNull()); } TEST_F(FindMainFuncOpTest, ReturnsNullWhenMainFuncOpIsPrivate) { constexpr absl::string_view kModuleWithPrivateMainFunc = R"mlir( module { func.func private @main() -> () { return } } )mlir"; OwningOpRef<ModuleOp> module_op = ParseModuleOpString(kModuleWithPrivateMainFunc); EXPECT_THAT(*module_op, NotNull()); EXPECT_THAT(FindMainFuncOp(*module_op), IsNull()); } TEST_F(FindMainFuncOpTest, ReturnsServingDefaultFuncOp) { constexpr absl::string_view kModuleWithServingDefaultFunc = R"mlir( module { func.func @serving_default() -> () { return } } )mlir"; OwningOpRef<ModuleOp> module_op = ParseModuleOpString(kModuleWithServingDefaultFunc); EXPECT_THAT(*module_op, NotNull()); EXPECT_THAT(FindMainFuncOp(*module_op), NotNull()); } TEST_F(FindMainFuncOpTest, ReturnsNullWhenServingDefaultFuncOpIsPrivate) { constexpr absl::string_view kModuleWithPrivateServingDefaultFunc = R"mlir( module { func.func private @serving_default() -> () { return } } )mlir"; OwningOpRef<ModuleOp> module_op = ParseModuleOpString(kModuleWithPrivateServingDefaultFunc); EXPECT_THAT(*module_op, NotNull()); EXPECT_THAT(FindMainFuncOp(*module_op), IsNull()); } TEST_F(FindMainFuncOpTest, ReturnsNullWhenMainFuncNotFound) { constexpr absl::string_view kModuleWithNoMainFunc = R"mlir( module { func.func @foo() -> () { return } } )mlir"; OwningOpRef<ModuleOp> module_op = ParseModuleOpString(kModuleWithNoMainFunc); EXPECT_THAT(*module_op, NotNull()); EXPECT_THAT(FindMainFuncOp(*module_op), IsNull()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/common/func.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/common/func_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
64e73bd8-48f9-4cb1-8ac8-ead261a6781a
cpp
tensorflow/tensorflow
interpreter
tensorflow/lite/core/interpreter.cc
tensorflow/lite/interpreter_test.cc
#include "tensorflow/lite/core/interpreter.h" #include <stddef.h> #include <stdint.h> #include <stdlib.h> #include <functional> #include <map> #include <memory> #include <string> #include <utility> #include <vector> #include "ruy/denormal.h" #include "tensorflow/compiler/mlir/lite/allocation.h" #include "tensorflow/compiler/mlir/lite/experimental/remat/metadata_util.h" #include "tensorflow/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/api/profiler.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/signature_runner.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/external_cpu_backend_context.h" #include "tensorflow/lite/internal/signature_def.h" #include "tensorflow/lite/interpreter_options.h" #include "tensorflow/lite/logger.h" #include "tensorflow/lite/minimal_logging.h" #include "tensorflow/lite/profiling/root_profiler.h" #include "tensorflow/lite/profiling/telemetry/c/telemetry_setting.h" #include "tensorflow/lite/profiling/telemetry/telemetry.h" #include "tensorflow/lite/stderr_reporter.h" #include "tensorflow/lite/util.h" #if defined(__ANDROID__) #define TFLITE_IS_MOBILE_PLATFORM #endif #if defined(__APPLE__) #include "TargetConditionals.h" #if TARGET_IPHONE_SIMULATOR #define TFLITE_IS_MOBILE_PLATFORM #elif TARGET_OS_IPHONE #define TFLITE_IS_MOBILE_PLATFORM #endif #endif static_assert(sizeof(TfLiteFloat16) == sizeof(uint16_t), "Float 16 type must be 16 bits."); namespace tflite { namespace { TfLiteQuantization GetQuantizationFromLegacy( const TfLiteQuantizationParams& legacy_quantization) { TfLiteQuantization quantization; quantization.type = kTfLiteAffineQuantization; auto* affine_quantization = reinterpret_cast<TfLiteAffineQuantization*>( calloc(1, sizeof(TfLiteAffineQuantization))); affine_quantization->scale = TfLiteFloatArrayCreate(1); affine_quantization->zero_point = TfLiteIntArrayCreate(1); affine_quantization->scale->data[0] = legacy_quantization.scale; affine_quantization->zero_point->data[0] = legacy_quantization.zero_point; quantization.params = affine_quantization; return quantization; } #define TF_LITE_ENSURE_STATUS_WITH_SCOPED_INSTRUMENTATION(runtime_event, a) \ do { \ TfLiteStatus status = (a); \ runtime_event.set_runtime_status(0, \ static_cast<int64_t>(status)); \ TF_LITE_ENSURE_STATUS(status); \ } while (0) } Interpreter::Interpreter(ErrorReporter* error_reporter) : error_reporter_(error_reporter ? error_reporter : DefaultErrorReporter()) { #if defined(TFLITE_IS_MOBILE_PLATFORM) TFLITE_LOG_PROD_ONCE(TFLITE_LOG_INFO, "Initialized TensorFlow Lite runtime."); #else TFLITE_LOG_ONCE(TFLITE_LOG_INFO, "Initialized TensorFlow Lite runtime."); #endif AddSubgraphs(1); context_ = primary_subgraph().context(); for (int i = 0; i < kTfLiteMaxExternalContexts; ++i) { external_contexts_[i] = nullptr; } own_external_cpu_backend_context_ = std::make_unique<ExternalCpuBackendContext>(); external_contexts_[kTfLiteCpuBackendContext] = own_external_cpu_backend_context_.get(); } Interpreter::~Interpreter() { if (external_contexts_[kTfLiteCpuBackendContext] && (external_contexts_[kTfLiteCpuBackendContext] != own_external_cpu_backend_context_.get())) { ExternalCpuBackendContext* external_context = static_cast<ExternalCpuBackendContext*>( external_contexts_[kTfLiteCpuBackendContext]); TfLiteInternalBackendContext* internal_context = external_context->internal_backend_context(); if (internal_context) { internal_context->ClearCaches(); } } } void Interpreter::SetExternalContext(TfLiteExternalContextType type, TfLiteExternalContext* ctx) { if (ctx == own_external_cpu_backend_context_.get()) { error_reporter_->Report( "WARNING: The passed external context is identical to the internally " "owned one."); return; } if (kTfLiteCpuBackendContext == type && external_contexts_[kTfLiteCpuBackendContext] == own_external_cpu_backend_context_.get()) { own_external_cpu_backend_context_.reset(); } primary_subgraph().SetExternalContext(type, ctx); } TfLiteStatus Interpreter::SetInputs(std::vector<int> inputs) { return primary_subgraph().SetInputs(std::move(inputs)); } TfLiteStatus Interpreter::SetOutputs(std::vector<int> outputs) { return primary_subgraph().SetOutputs(std::move(outputs)); } TfLiteStatus Interpreter::SetVariables(std::vector<int> variables) { return primary_subgraph().SetVariables(std::move(variables)); } TfLiteStatus Interpreter::AllocateTensors() { if (ApplyLazyDelegateProviders() == kTfLiteError) return kTfLiteError; return primary_subgraph().AllocateTensors(); } void Interpreter::AddSubgraphs(int subgraphs_to_add, int* first_new_subgraph_index) { const size_t base_index = subgraphs_.size(); if (first_new_subgraph_index) *first_new_subgraph_index = base_index; subgraphs_.reserve(base_index + subgraphs_to_add); for (int i = 0; i < subgraphs_to_add; ++i) { Subgraph* subgraph = new Subgraph( error_reporter_, external_contexts_, &subgraphs_, &resources_, &resource_ids_, &initialization_status_map_, subgraphs_.size()); subgraphs_.emplace_back(subgraph); } } TfLiteStatus Interpreter::AddNodeWithParameters( const std::vector<int>& inputs, const std::vector<int>& outputs, const char* init_data, size_t init_data_size, void* builtin_data, const TfLiteRegistration* registration, int* node_index) { return primary_subgraph().AddNodeWithParameters( inputs, outputs, {}, init_data, init_data_size, builtin_data, registration, node_index); } TfLiteStatus Interpreter::ResizeInputTensor(int tensor_index, const std::vector<int>& dims) { return primary_subgraph().ResizeInputTensor(tensor_index, dims); } TfLiteStatus Interpreter::ResizeInputTensorStrict( int tensor_index, const std::vector<int>& dims) { return primary_subgraph().ResizeInputTensorStrict(tensor_index, dims); } TfLiteStatus Interpreter::Invoke() { ScopedRuntimeInstrumentationProfile scoped_runtime_event(root_profiler_.get(), "invoke"); if (cancellation_enabled_) (void)continue_invocation_.test_and_set(); ruy::ScopedSuppressDenormals suppress_denormals; TF_LITE_ENSURE_STATUS_WITH_SCOPED_INSTRUMENTATION( scoped_runtime_event, primary_subgraph().Invoke()); if (!allow_buffer_handle_output_) { for (int tensor_index : outputs()) { TF_LITE_ENSURE_STATUS_WITH_SCOPED_INSTRUMENTATION( scoped_runtime_event, primary_subgraph().EnsureTensorDataIsReadable(tensor_index)); } } return kTfLiteOk; } TfLiteStatus Interpreter::AddTensors(int tensors_to_add, int* first_new_tensor_index) { return primary_subgraph().AddTensors(tensors_to_add, first_new_tensor_index); } TfLiteStatus Interpreter::SetTensorParametersReadOnly( int tensor_index, TfLiteType type, const char* name, const std::vector<int>& dims, TfLiteQuantization quantization, const char* buffer, size_t bytes, const Allocation* allocation) { return primary_subgraph().SetTensorParametersReadOnly( tensor_index, type, name, dims.size(), dims.data(), quantization, buffer, bytes, allocation); } TfLiteStatus Interpreter::SetTensorParametersReadWrite( int tensor_index, TfLiteType type, const char* name, const std::vector<int>& dims, TfLiteQuantization quantization, bool is_variable) { return primary_subgraph().SetTensorParametersReadWrite( tensor_index, type, name, dims.size(), dims.data(), quantization, is_variable); } TfLiteStatus Interpreter::SetTensorParametersReadOnly( int tensor_index, TfLiteType type, const char* name, size_t rank, const int* dims, TfLiteQuantizationParams quantization, const char* buffer, size_t bytes, const Allocation* allocation) { TfLiteQuantization new_quantization = GetQuantizationFromLegacy(quantization); return primary_subgraph().SetTensorParametersReadOnly( tensor_index, type, name, rank, dims, new_quantization, buffer, bytes, allocation); } TfLiteStatus Interpreter::SetTensorParametersReadWrite( int tensor_index, TfLiteType type, const char* name, size_t rank, const int* dims, TfLiteQuantizationParams quantization, bool is_variable, size_t rank_dims_signature, const int* dims_signature) { TfLiteQuantization new_quantization = GetQuantizationFromLegacy(quantization); return primary_subgraph().SetTensorParametersReadWrite( tensor_index, type, name, rank, dims, new_quantization, is_variable, rank_dims_signature, dims_signature); } TfLiteStatus Interpreter::SetExecutionPlan(const std::vector<int>& new_plan) { return primary_subgraph().SetExecutionPlan(new_plan); } TfLiteStatus Interpreter::SetNumThreads(int num_threads) { if (num_threads < -1) { context_->ReportError(context_, "num_threads should be >=0 or just -1 to let TFLite " "runtime set the value."); return kTfLiteError; } num_threads = num_threads == 0 ? 1 : num_threads; for (auto& subgraph : subgraphs_) { subgraph->context()->recommended_num_threads = num_threads; } for (int i = 0; i < kTfLiteMaxExternalContexts; ++i) { auto* c = external_contexts_[i]; if (c && c->Refresh) { c->Refresh(context_); } } return kTfLiteOk; } TfLiteStatus Interpreter::ApplyLazyDelegateProviders() { if (lazy_delegate_providers_.empty() || IsFullyDelegated()) return kTfLiteOk; TfLiteDelegateCreators delegate_providers; delegate_providers.swap(lazy_delegate_providers_); TFLITE_LOG(TFLITE_LOG_INFO, "Applying %zu TensorFlow Lite delegate(s) lazily.", delegate_providers.size()); for (size_t i = 0; i < delegate_providers.size(); ++i) { auto delegate_ptr = delegate_providers[i](context_); if (delegate_ptr == nullptr) continue; auto status = ModifyGraphWithDelegateImpl(std::move(delegate_ptr)); switch (status) { case kTfLiteOk: TFLITE_LOG( TFLITE_LOG_INFO, "Successfully applied the default TensorFlow Lite " "delegate indexed at %zu.\n *NOTE*: because a delegate has been " "applied, the precision of computations should be unchanged, but " "the exact output tensor values may have changed. If such output " "values are checked in your code, like in your tests etc., please " "consider increasing error tolerance for the check.", i); break; case kTfLiteError: TF_LITE_REPORT_ERROR(error_reporter_, "Failed to apply the default TensorFlow Lite " "delegate indexed at %zu.", i); return kTfLiteError; case kTfLiteDelegateError: TFLITE_LOG( TFLITE_LOG_INFO, "Error in applying the default TensorFlow Lite delegate indexed " "at %zu, and all previously applied delegates are reverted.", i); return kTfLiteDelegateError; case kTfLiteApplicationError: TFLITE_LOG( TFLITE_LOG_INFO, "Failed to apply the default TensorFlow Lite delegate indexed at " "%zu because of incompatibility between runtime and delegate. " "Ignoring the error, and continuing anyway.", i); return kTfLiteApplicationError; case kTfLiteUnresolvedOps: TFLITE_LOG( TFLITE_LOG_INFO, "Failed to apply the default TensorFlow Lite delegate indexed at " "%zu because of unresolved ops (which could be resolved by " "another delegate). Ignoring the error, and continuing anyway.", i); return kTfLiteUnresolvedOps; default: TF_LITE_REPORT_ERROR(error_reporter_, "Unknown status (%d) after applying the default " "TensorFlow Lite delegate indexed at %zu.", status, i); return kTfLiteError; } } return kTfLiteOk; } TfLiteStatus Interpreter::ModifyGraphWithDelegateImpl( TfLiteDelegate* delegate) { TfLiteStatus status = kTfLiteOk; for (auto& subgraph : subgraphs_) { if (IsValidationSubgraph(subgraph->GetName().c_str()) || subgraph->IsDelegationSkippable()) { TFLITE_LOG(TFLITE_LOG_INFO, "Skipping calling ModifyGraphWithDelegate on Subgraph %i: %s", subgraph->GetSubgraphIndex(), subgraph->GetName().c_str()); continue; } status = subgraph->ModifyGraphWithDelegate(delegate); if (status != kTfLiteOk) { break; } } if (status == kTfLiteDelegateError) { TF_LITE_ENSURE_STATUS(RemoveAllDelegates()); } return status; } TfLiteStatus Interpreter::RemoveAllDelegates() { for (auto& subgraph : subgraphs_) { TF_LITE_ENSURE_STATUS(subgraph->RemoveAllDelegates()); } return kTfLiteOk; } TfLiteStatus Interpreter::SetMetadata( const std::map<std::string, std::string>& metadata) { metadata_ = metadata; const auto maybe_model_control_dependencies = metadata_.find(kModelControlDependenciesMetadataKey); if (maybe_model_control_dependencies == metadata_.end() || !ParseModelControlDependencies( maybe_model_control_dependencies->second.data(), maybe_model_control_dependencies->second.size(), &model_control_dependencies_)) { model_control_dependencies_.clear(); } for (int subgraph_index = 0; subgraph_index < subgraphs_.size(); ++subgraph_index) { TF_LITE_ENSURE_STATUS(subgraphs_[subgraph_index]->SetMetadata( &metadata_, model_control_dependencies_.empty() ? nullptr : &model_control_dependencies_[subgraph_index])); } return kTfLiteOk; } TfLiteStatus Interpreter::SetTelemetrySettings( std::unique_ptr<TfLiteTelemetryInterpreterSettings> settings) { telemetry_data_ = std::move(settings); return kTfLiteOk; } TfLiteStatus Interpreter::ReportTelemetrySettings(const char* setting_name) { telemetry::TelemetryReportSettings(context_, setting_name, telemetry_data_.get()); return kTfLiteOk; } bool Interpreter::IsFullyDelegated() const { return primary_subgraph().IsFullyDelegated(); } void Interpreter::SetProfilerImpl(std::unique_ptr<Profiler> profiler) { if (profiler == nullptr) { root_profiler_ = nullptr; return; } if (root_profiler_ == nullptr) { root_profiler_ = std::make_unique<profiling::RootProfiler>(); } else { root_profiler_->RemoveChildProfilers(); } root_profiler_->AddProfiler(std::move(profiler)); SetSubgraphProfiler(); } void Interpreter::SetSubgraphProfiler() { for (int subgraph_index = 0; subgraph_index < subgraphs_.size(); ++subgraph_index) { subgraphs_[subgraph_index]->SetProfiler(root_profiler_.get(), subgraph_index); } } TfLiteStatus Interpreter::ApplyOptionsImpl(InterpreterOptions* options) { if (options == nullptr) { return kTfLiteOk; } options_ = std::make_unique<InterpreterOptions>(*options); for (auto& subgraph : subgraphs_) { subgraph->SetOptions(options_.get()); } return kTfLiteOk; } TfLiteStatus Interpreter::EnableCancellation() { cancellation_enabled_ = true; for (auto& subgraph : subgraphs_) { TF_LITE_ENSURE_STATUS(subgraph->EnableCancellation(&continue_invocation_)); } return kTfLiteOk; } TfLiteStatus Interpreter::Cancel() { return primary_subgraph().Cancel(); } void Interpreter::AddProfiler(std::unique_ptr<Profiler> profiler) { if (profiler == nullptr) return; if (root_profiler_ == nullptr) { root_profiler_ = std::make_unique<profiling::RootProfiler>(); } root_profiler_->AddProfiler(std::move(profiler)); SetSubgraphProfiler(); } impl::SignatureRunner* Interpreter::GetSignatureRunner( const char* signature_key_) { auto [signature_key, empty_signature_fallback] = ReplaceWithPlaceholderSignatureKeyIfNeeded(signature_key_); if (!signature_key) { return nullptr; } auto iter = signature_runner_map_.find(signature_key); if (iter != signature_runner_map_.end()) { return &(iter->second); } if (ApplyLazyDelegateProviders() == kTfLiteError) { return nullptr; } if (empty_signature_fallback) { placeholder_signature_def_ = CreatePlaceholderSignatureDef(); auto status = signature_runner_map_.insert( {signature_key, SignatureRunner(placeholder_signature_def_.get(), &primary_subgraph())}); return &(status.first->second); } for (const auto& signature : signature_defs_) { if (signature.signature_key == signature_key) { auto status = signature_runner_map_.insert( {signature_key, SignatureRunner(&signature, subgraph(signature.subgraph_index))}); return &(status.first->second); } } return nullptr; } std::unique_ptr<internal::SignatureDef> Interpreter::CreatePlaceholderSignatureDef() { auto placeholder_signature_def = std::make_unique<internal::SignatureDef>(); for (auto i = 0; i < inputs().size(); ++i) { auto* name = GetInputName(i); placeholder_signature_def->inputs[name] = inputs()[i]; } for (auto i = 0; i < outputs().size(); ++i) { auto* name = GetOutputName(i); placeholder_signature_def->outputs[name] = outputs()[i]; } placeholder_signature_def->signature_key = kPlaceholderSignatureDefKey; placeholder_signature_def->subgraph_index = 0; return placeholder_signature_def; } std::pair<const char*, bool> Interpreter::ReplaceWithPlaceholderSignatureKeyIfNeeded( const char* signature_key) { bool empty_signature_fallback = false; if (signature_key == nullptr) { if (signature_defs_.empty()) { signature_key = kPlaceholderSignatureDefKey; empty_signature_fallback = true; } else { for (const auto& signature : signature_defs_) { if (signature.subgraph_index == 0) { signature_key = signature.signature_key.c_str(); break; } } } } if (signature_key == nullptr) { TF_LITE_REPORT_ERROR(error_reporter_, "The model has signature def but none of those points " "to primary subgraph."); return {nullptr, empty_signature_fallback}; } else { return {signature_key, empty_signature_fallback}; } } }
#include "tensorflow/lite/core/interpreter.h" #include <stddef.h> #include <stdint.h> #include <stdlib.h> #include <string.h> #include <map> #include <memory> #include <string> #include <thread> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "Eigen/Core" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/kernels/builtin_op_kernels.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/delegates/utils/simple_delegate.h" #include "tensorflow/lite/external_cpu_backend_context.h" #include "tensorflow/lite/interpreter_options.h" #include "tensorflow/lite/interpreter_test_util.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/string_util.h" #include "tensorflow/lite/testing/util.h" #include "tensorflow/lite/util.h" #ifdef __APPLE__ #include "TargetConditionals.h" #endif namespace tflite { namespace { using ::testing::ElementsAre; using ::testing::IsEmpty; TEST(BasicInterpreter, ZeroInterpreter) { testing::internal::CaptureStderr(); Interpreter interpreter; #if (!defined(NDEBUG)) || defined(__ANDROID__) || \ (defined(__APPLE__) && (TARGET_IPHONE_SIMULATOR || TARGET_OS_IPHONE)) const char* kExpectedLog = "INFO: Initialized TensorFlow Lite runtime"; EXPECT_THAT(testing::internal::GetCapturedStderr(), testing::HasSubstr(kExpectedLog)); #else EXPECT_THAT(testing::internal::GetCapturedStderr(), testing::IsEmpty()); #endif interpreter.SetInputs({}); interpreter.SetOutputs({}); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.Invoke(), kTfLiteOk); testing::internal::CaptureStderr(); Interpreter interpreter2; EXPECT_THAT(testing::internal::GetCapturedStderr(), IsEmpty()); } TEST(BasicInterpreter, InvokeInvalidModel) { Interpreter interpreter; ASSERT_NE(interpreter.Invoke(), kTfLiteOk); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.Invoke(), kTfLiteOk); } TEST(BasicInterpreter, TestAllocateTensorsResetVariableTensorsFloatAndHyrbid) { Interpreter interpreter; int tensor_index; ASSERT_EQ(interpreter.AddTensors(1, &tensor_index), kTfLiteOk); constexpr int kTensorSize = 16; TfLiteQuantizationParams quant; interpreter.SetTensorParametersReadWrite(tensor_index, kTfLiteFloat32, "", {kTensorSize}, quant, true); interpreter.SetVariables({tensor_index}); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); TfLiteTensor* tensor = interpreter.tensor(tensor_index); for (int i = 0; i < kTensorSize; ++i) { ASSERT_EQ(tensor->data.f[i], 0.0f); } } TEST(BasicInterpreter, TestAllocateTensorsResetVariableTensorsInt8) { Interpreter interpreter; int tensor_index; ASSERT_EQ(interpreter.AddTensors(1, &tensor_index), kTfLiteOk); constexpr int kTensorSize = 16; TfLiteQuantizationParams quant; quant.scale = 0.15; quant.zero_point = -3; interpreter.SetTensorParametersReadWrite(tensor_index, kTfLiteInt8, "", {kTensorSize}, quant, true); interpreter.SetVariables({tensor_index}); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); TfLiteTensor* tensor = interpreter.tensor(tensor_index); for (int i = 0; i < kTensorSize; ++i) { ASSERT_EQ(tensor->data.int8[i], -3); } } TEST(BasicInterpreter, TestSizeFunctions) { Interpreter interpreter; int base_index; ASSERT_EQ(interpreter.nodes_size(), 0); ASSERT_EQ(interpreter.tensors_size(), 0); ASSERT_EQ(interpreter.AddTensors(2, &base_index), kTfLiteOk); ASSERT_EQ(interpreter.tensors_size(), 2); ASSERT_EQ(base_index, 0); ASSERT_EQ(interpreter.AddTensors(3, &base_index), kTfLiteOk); ASSERT_EQ(interpreter.tensors_size(), 5); ASSERT_EQ(interpreter.AddTensors(1), kTfLiteOk); ASSERT_EQ(interpreter.tensors_size(), 6); ASSERT_EQ(base_index, 2); } TEST(BasicInterpreter, InconsistentModel) { { Interpreter interpreter; ASSERT_NE(interpreter.SetInputs({5}), kTfLiteOk); ASSERT_NE(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_NE(interpreter.Invoke(), kTfLiteOk); ASSERT_EQ(interpreter.inputs(), std::vector<int>()); } { Interpreter interpreter; ASSERT_NE(interpreter.SetOutputs({5}), kTfLiteOk); ASSERT_NE(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_NE(interpreter.Invoke(), kTfLiteOk); ASSERT_EQ(interpreter.outputs(), std::vector<int>()); } { Interpreter interpreter; TfLiteRegistration registration = {nullptr, nullptr, nullptr, nullptr}; ASSERT_NE(interpreter.AddNodeWithParameters({3}, {0}, nullptr, 0, nullptr, &registration), kTfLiteOk); ASSERT_NE(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_NE(interpreter.Invoke(), kTfLiteOk); } { Interpreter interpreter; ASSERT_EQ(interpreter.AddTensors(2), kTfLiteOk); TfLiteRegistration registration = {nullptr, nullptr, nullptr, nullptr}; ASSERT_EQ(interpreter.SetInputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.SetOutputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.AddNodeWithParameters({0}, {1}, nullptr, 0, nullptr, &registration), kTfLiteOk); } } TEST(BasicInterpreter, CheckAllocate) { struct { TfLiteType type; size_t size; } cases[] = { {kTfLiteFloat32, sizeof(float)}, {kTfLiteInt32, sizeof(int32_t)}, {kTfLiteUInt32, sizeof(uint32_t)}, {kTfLiteUInt8, sizeof(uint8_t)}, {kTfLiteInt64, sizeof(int64_t)}, {kTfLiteInt16, sizeof(int16_t)}, {kTfLiteUInt16, sizeof(uint16_t)}, {kTfLiteFloat16, sizeof(TfLiteFloat16)}, }; for (auto test : cases) { Interpreter interpreter; ASSERT_EQ(interpreter.AddTensors(2), kTfLiteOk); interpreter.SetInputs({0, 1}); interpreter.SetOutputs({}); TfLiteQuantizationParams quant; interpreter.SetTensorParametersReadWrite(0, test.type, "", {3}, quant); interpreter.SetTensorParametersReadWrite(1, test.type, "", {4}, quant); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.tensor(0)->bytes, 3 * test.size); ASSERT_NE(interpreter.tensor(0)->data.raw, nullptr); ASSERT_EQ(interpreter.tensor(1)->bytes, 4 * test.size); ASSERT_NE(interpreter.tensor(1)->data.raw, nullptr); } } TEST(BasicInterpreter, CheckQuantization) { Interpreter interpreter; ASSERT_EQ(interpreter.AddTensors(2), kTfLiteOk); interpreter.SetInputs({0, 1}); interpreter.SetOutputs({}); TfLiteType tensor_type = kTfLiteInt8; const uint8_t int8s[] = {3, 4}; float scale = 0.5f; int32_t zero_point = 12; TfLiteQuantization rw_quantization; rw_quantization.type = kTfLiteAffineQuantization; auto* rw_affine_quantization = static_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); rw_affine_quantization->scale = TfLiteFloatArrayCreate(1); rw_affine_quantization->zero_point = TfLiteIntArrayCreate(1); rw_affine_quantization->scale->data[0] = scale; rw_affine_quantization->zero_point->data[0] = zero_point; rw_quantization.params = rw_affine_quantization; TfLiteQuantization ro_quantization; ro_quantization.type = kTfLiteAffineQuantization; auto* ro_affine_quantization = static_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); ro_affine_quantization->scale = TfLiteFloatArrayCreate(1); ro_affine_quantization->zero_point = TfLiteIntArrayCreate(1); ro_affine_quantization->scale->data[0] = scale; ro_affine_quantization->zero_point->data[0] = zero_point; ro_quantization.params = ro_affine_quantization; ASSERT_EQ(interpreter.SetTensorParametersReadWrite(0, tensor_type, "", {3}, rw_quantization), kTfLiteOk); ASSERT_EQ(interpreter.SetTensorParametersReadOnly( 1, tensor_type, "", {2}, ro_quantization, reinterpret_cast<const char*>(int8s), 2), kTfLiteOk); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.tensor(0)->params.scale, scale); ASSERT_EQ(interpreter.tensor(0)->params.zero_point, zero_point); ASSERT_EQ(interpreter.tensor(0)->quantization.type, rw_quantization.type); ASSERT_EQ(interpreter.tensor(1)->params.scale, scale); ASSERT_EQ(interpreter.tensor(1)->params.zero_point, zero_point); ASSERT_EQ(interpreter.tensor(1)->quantization.type, ro_quantization.type); } TEST(BasicInterpreter, CheckResize) { const float floats[] = {-3., -4.}; const int32_t int32s[] = {-3, -4}; const uint32_t uint32s[] = {3, 4}; const uint8_t uint8s[] = {3, 4}; const int64_t int64s[] = {6, -7}; const int16_t int16s[] = {8, -9}; const Eigen::half float16s[] = {Eigen::half(-3.f), Eigen::half(-4.f)}; struct { TfLiteType type; size_t size; const char* array; } cases[] = { {kTfLiteFloat32, sizeof(float), reinterpret_cast<const char*>(floats)}, {kTfLiteInt32, sizeof(int32_t), reinterpret_cast<const char*>(int32s)}, {kTfLiteUInt32, sizeof(uint32_t), reinterpret_cast<const char*>(uint32s)}, {kTfLiteUInt8, sizeof(uint8_t), reinterpret_cast<const char*>(uint8s)}, {kTfLiteInt64, sizeof(int64_t), reinterpret_cast<const char*>(int64s)}, {kTfLiteInt16, sizeof(int16_t), reinterpret_cast<const char*>(int16s)}, {kTfLiteFloat16, sizeof(TfLiteFloat16), reinterpret_cast<const char*>(float16s)}, }; for (auto test : cases) { Interpreter interpreter; ASSERT_EQ(interpreter.AddTensors(2), kTfLiteOk); interpreter.SetInputs({0, 1}); interpreter.SetOutputs({}); TfLiteQuantizationParams quant; ASSERT_EQ( interpreter.SetTensorParametersReadWrite(0, test.type, "", {3}, quant), kTfLiteOk); ASSERT_EQ(interpreter.SetTensorParametersReadOnly( 1, test.type, "", {2}, quant, test.array, 2 * test.size), kTfLiteOk); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.ResizeInputTensor(0, {1, 2}), kTfLiteOk); ASSERT_NE(interpreter.ResizeInputTensor(1, {3}), kTfLiteOk); ASSERT_NE(interpreter.SetTensorParametersReadOnly( 1, test.type, "", {2}, quant, test.array, 1 * test.size), kTfLiteOk); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); } } TEST(BasicInterpreter, CheckAlignment) { struct { TfLiteType type; } cases[] = {{kTfLiteFloat32}, {kTfLiteInt32}, {kTfLiteUInt32}, {kTfLiteUInt8}, {kTfLiteInt64}, {kTfLiteInt16}, {kTfLiteFloat16}}; for (auto test : cases) { Interpreter interpreter; ASSERT_EQ(interpreter.AddTensors(4), kTfLiteOk); for (int i = 0; i < 4; i++) { TfLiteQuantizationParams quant; interpreter.SetTensorParametersReadWrite(i, test.type, "", {2 * i + 1}, quant); } interpreter.AllocateTensors(); for (int i = 0; i < 4; i++) { const TfLiteTensor& tensor = *interpreter.tensor(i); ASSERT_EQ(reinterpret_cast<intptr_t>(tensor.data.raw) % 4, 0); } } } TEST(BasicInterpreter, CheckArenaAllocation) { Interpreter interpreter; ASSERT_EQ(interpreter.AddTensors(10), kTfLiteOk); TfLiteQuantizationParams quant; TfLiteRegistration reg = {nullptr, nullptr, nullptr, nullptr}; std::vector<int> sizes{2048, 4096, 1023, 2047, 1021, 2047, 1023, 2046, 0, 2048}; for (size_t i = 0; i < sizes.size(); ++i) { interpreter.SetTensorParametersReadWrite(static_cast<int>(i), kTfLiteUInt8, "", {sizes[i]}, quant); } interpreter.SetInputs({0, 1}); interpreter.SetOutputs({9, 4}); interpreter.AddNodeWithParameters({0, 1}, {2, 3}, nullptr, 0, nullptr, &reg); interpreter.AddNodeWithParameters({2, 1}, {4, 5}, nullptr, 0, nullptr, &reg); interpreter.AddNodeWithParameters({4, 3}, {6, 7}, nullptr, 0, nullptr, &reg); interpreter.AddNodeWithParameters({6, 5}, {8}, nullptr, 0, nullptr, &reg); interpreter.AddNodeWithParameters({8, 7}, {9}, nullptr, 0, nullptr, &reg); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); #ifndef TFLITE_USE_SIMPLE_MEMORY_PLANNER ASSERT_LT(interpreter.tensor(0)->data.raw, interpreter.tensor(1)->data.raw); ASSERT_LT(interpreter.tensor(1)->data.raw, interpreter.tensor(3)->data.raw); ASSERT_EQ(interpreter.tensor(3)->data.raw, interpreter.tensor(9)->data.raw); ASSERT_LT(interpreter.tensor(3)->data.raw, interpreter.tensor(5)->data.raw); ASSERT_LT(interpreter.tensor(5)->data.raw, interpreter.tensor(2)->data.raw); ASSERT_EQ(interpreter.tensor(2)->data.raw, interpreter.tensor(7)->data.raw); ASSERT_LT(interpreter.tensor(2)->data.raw, interpreter.tensor(4)->data.raw); #endif ASSERT_EQ(interpreter.tensor(8)->data.raw, nullptr); } TEST(BasicInterpreter, BufferAccess) { Interpreter interpreter; ASSERT_EQ(interpreter.AddTensors(1), kTfLiteOk); ASSERT_EQ(interpreter.SetInputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.SetTensorParametersReadWrite( 0, kTfLiteFloat32, "", {3}, TfLiteQuantizationParams()), kTfLiteOk); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_NE(interpreter.typed_tensor<float>(0), nullptr); ASSERT_EQ(interpreter.typed_tensor<int>(0), nullptr); ASSERT_EQ(interpreter.typed_tensor<float>(0), interpreter.tensor(0)->data.f); } TEST(BasicInterpreter, NoOpInterpreter) { Interpreter interpreter; ASSERT_EQ(interpreter.AddTensors(1), kTfLiteOk); ASSERT_EQ(interpreter.SetInputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.SetOutputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.SetTensorParametersReadWrite( 0, kTfLiteFloat32, "", {3}, TfLiteQuantizationParams()), kTfLiteOk); ASSERT_EQ(interpreter.ResizeInputTensor(interpreter.inputs()[0], {1, 2, 3}), kTfLiteOk); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.Invoke(), kTfLiteOk); } TEST(BasicInterpreter, RedundantAllocateTensors) { Interpreter interpreter; ASSERT_EQ(interpreter.AddTensors(1), kTfLiteOk); ASSERT_EQ(interpreter.SetInputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.SetTensorParametersReadWrite( 0, kTfLiteFloat32, "", {3}, TfLiteQuantizationParams()), kTfLiteOk); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); const auto data_raw = interpreter.tensor(0)->data.raw; ASSERT_NE(data_raw, nullptr); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.tensor(0)->data.raw, data_raw); } TEST(BasicInterpreter, RedundantAllocateTensorsWithDynamicInputs) { Interpreter interpreter; TfLiteRegistration reg = {nullptr, nullptr, nullptr, nullptr}; ASSERT_EQ(interpreter.AddTensors(2), kTfLiteOk); interpreter.SetInputs({0}); interpreter.SetOutputs({1}); interpreter.AddNodeWithParameters({0}, {1}, nullptr, 0, nullptr, &reg); ASSERT_EQ(interpreter.SetTensorParametersReadWrite( 0, kTfLiteFloat32, "", {3}, TfLiteQuantizationParams()), kTfLiteOk); ASSERT_EQ(interpreter.SetTensorParametersReadWrite( 1, kTfLiteFloat32, "", {3}, TfLiteQuantizationParams()), kTfLiteOk); interpreter.tensor(0)->data.raw = nullptr; interpreter.tensor(0)->allocation_type = kTfLiteDynamic; ASSERT_EQ(interpreter.ResizeInputTensor(interpreter.inputs()[0], {1, 2, 3}), kTfLiteOk); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_NE(interpreter.tensor(1)->data.raw, nullptr); interpreter.tensor(1)->data.raw = nullptr; ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_NE(interpreter.tensor(1)->data.raw, nullptr); } TEST(BasicInterpreter, ResizingTensors) { Interpreter interpreter; ASSERT_EQ(interpreter.AddTensors(1), kTfLiteOk); ASSERT_EQ(interpreter.SetInputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.SetOutputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.SetTensorParametersReadWrite( 0, kTfLiteFloat32, "", {3}, TfLiteQuantizationParams()), kTfLiteOk); int t = interpreter.inputs()[0]; TfLiteTensor* tensor = interpreter.tensor(t); ASSERT_EQ(interpreter.ResizeInputTensor(t, {1, 2, 3}), kTfLiteOk); EXPECT_EQ(tensor->bytes, 6 * sizeof(float)); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); tensor->data.f[5] = 0.123f; tensor->data.raw = nullptr; tensor->allocation_type = kTfLiteDynamic; ASSERT_EQ(interpreter.ResizeInputTensor(t, {1, 2, 4}), kTfLiteOk); EXPECT_EQ(tensor->bytes, 8 * sizeof(float)); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.ResizeInputTensor(t, {}), kTfLiteOk); EXPECT_EQ(tensor->bytes, 1 * sizeof(float)); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.ResizeInputTensor(t, {0}), kTfLiteOk); EXPECT_EQ(tensor->bytes, 0); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.ResizeInputTensor(t, {1, 2, 0}), kTfLiteOk); EXPECT_EQ(tensor->bytes, 0); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); TfLiteTensorRealloc(9 * sizeof(float), tensor); tensor->data.f[7] = 0.123f; ASSERT_EQ(interpreter.ResizeInputTensor(t, {2, 2, 4}), kTfLiteOk); EXPECT_EQ(tensor->bytes, 16 * sizeof(float)); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); TfLiteTensorRealloc(17 * sizeof(float), tensor); tensor->data.f[15] = 0.123f; } TEST(BasicInterpreter, NoopResizingTensors) { Interpreter interpreter; ASSERT_EQ(interpreter.AddTensors(1), kTfLiteOk); ASSERT_EQ(interpreter.SetInputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.SetOutputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.SetTensorParametersReadWrite( 0, kTfLiteFloat32, "", {3}, TfLiteQuantizationParams()), kTfLiteOk); int t = interpreter.inputs()[0]; TfLiteTensor* tensor = interpreter.tensor(t); ASSERT_EQ(interpreter.ResizeInputTensor(t, {1, 2, 3}), kTfLiteOk); EXPECT_EQ(tensor->bytes, 6 * sizeof(float)); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); tensor->data.f[5] = 0.123f; ASSERT_EQ(interpreter.ResizeInputTensor(t, {1, 2, 3}), kTfLiteOk); EXPECT_EQ(tensor->bytes, 6 * sizeof(float)); ASSERT_NE(tensor->data.raw, nullptr); ASSERT_EQ(tensor->data.f[5], 0.123f); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); EXPECT_EQ(tensor->bytes, 6 * sizeof(float)); ASSERT_NE(tensor->data.raw, nullptr); ASSERT_EQ(tensor->data.f[5], 0.123f); } TEST(BasicInterpreter, ResizingTensorsStrictInvalid) { Interpreter interpreter; ASSERT_EQ(interpreter.AddTensors(1), kTfLiteOk); ASSERT_EQ(interpreter.SetInputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.SetOutputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.SetTensorParametersReadWrite( 0, kTfLiteFloat32, "", {1, 1, 3}, TfLiteQuantizationParams()), kTfLiteOk); int t = interpreter.inputs()[0]; TfLiteTensor* tensor = interpreter.tensor(t); ASSERT_EQ(interpreter.ResizeInputTensorStrict(t, {1, 1, 3}), kTfLiteOk); EXPECT_EQ(tensor->bytes, 3 * sizeof(float)); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.ResizeInputTensorStrict(t, {1, 2, 3}), kTfLiteError); EXPECT_EQ(tensor->bytes, 3 * sizeof(float)); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.ResizeInputTensor(t, {1, 2, 3}), kTfLiteOk); EXPECT_EQ(tensor->bytes, 6 * sizeof(float)); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); } TEST(BasicInterpreter, ResizingTensorsStrict) { Interpreter interpreter; ASSERT_EQ(interpreter.AddTensors(1), kTfLiteOk); ASSERT_EQ(interpreter.SetInputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.SetOutputs({0}), kTfLiteOk); std::vector<int> dims_signature = {-1, -1, 3}; ASSERT_EQ(interpreter.SetTensorParametersReadWrite( 0, kTfLiteFloat32, "", {1, 1, 3}, TfLiteQuantizationParams(), false, &dims_signature), kTfLiteOk); int t = interpreter.inputs()[0]; TfLiteTensor* tensor = interpreter.tensor(t); ASSERT_EQ(interpreter.ResizeInputTensorStrict(t, {1, 2, 3}), kTfLiteOk); EXPECT_EQ(tensor->bytes, 6 * sizeof(float)); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.ResizeInputTensorStrict(t, {1, 2, 4}), kTfLiteError); EXPECT_EQ(tensor->bytes, 6 * sizeof(float)); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.ResizeInputTensor(t, {1, 2, 4}), kTfLiteOk); EXPECT_EQ(tensor->bytes, 8 * sizeof(float)); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.ResizeInputTensorStrict(t, {8}), kTfLiteError); ASSERT_EQ(interpreter.ResizeInputTensorStrict(t, {1}), kTfLiteError); EXPECT_EQ(tensor->bytes, 8 * sizeof(float)); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.ResizeInputTensorStrict(t, {1, 2, 4, 1}), kTfLiteError); EXPECT_EQ(tensor->bytes, 8 * sizeof(float)); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); } TfLiteRegistration GetPassthroughOpRegistration() { TfLiteRegistration reg = {nullptr, nullptr, nullptr, nullptr}; reg.init = [](TfLiteContext* context, const char*, size_t) -> void* { auto* first_new_tensor = new int; context->AddTensors(context, 2, first_new_tensor); return first_new_tensor; }; reg.free = [](TfLiteContext* context, void* buffer) { delete static_cast<int*>(buffer); }; reg.prepare = [](TfLiteContext* context, TfLiteNode* node) { auto* first_new_tensor = static_cast<int*>(node->user_data); const TfLiteTensor* tensor0; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &tensor0)); TfLiteTensor* tensor1; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &tensor1)); TfLiteIntArray* newSize = TfLiteIntArrayCopy(tensor0->dims); TF_LITE_ENSURE_STATUS(context->ResizeTensor(context, tensor1, newSize)); TfLiteIntArrayFree(node->temporaries); node->temporaries = TfLiteIntArrayCreate(2); for (int i = 0; i < 2; ++i) { node->temporaries->data[i] = *(first_new_tensor) + i; } auto setup_temporary = [&](int id) { TfLiteTensor* tmp = &context->tensors[id]; tmp->type = kTfLiteFloat32; tmp->allocation_type = kTfLiteArenaRw; return context->ResizeTensor(context, tmp, TfLiteIntArrayCopy(tensor0->dims)); }; TF_LITE_ENSURE_STATUS(setup_temporary(node->temporaries->data[0])); TF_LITE_ENSURE_STATUS(setup_temporary(node->temporaries->data[1])); return kTfLiteOk; }; reg.invoke = [](TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* a0; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &a0)); auto populate = [&](int id) { TfLiteTensor* t = &context->tensors[id]; int num = a0->dims->data[0]; for (int i = 0; i < num; i++) { t->data.f[i] = a0->data.f[i]; } }; populate(node->outputs->data[0]); populate(node->temporaries->data[0]); populate(node->temporaries->data[1]); return kTfLiteOk; }; return reg; } TEST(BasicInterpreter, OneOpInterpreter) { Interpreter interpreter; ASSERT_EQ(interpreter.AddTensors(2), kTfLiteOk); ASSERT_EQ(interpreter.SetInputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.SetOutputs({1}), kTfLiteOk); TfLiteQuantizationParams quantized; ASSERT_EQ(interpreter.SetTensorParametersReadWrite(0, kTfLiteFloat32, "in1", {3}, quantized), kTfLiteOk); ASSERT_EQ(interpreter.SetTensorParametersReadWrite(1, kTfLiteFloat32, "out0", {3}, quantized), kTfLiteOk); ASSERT_EQ(interpreter.GetInputName(0), "in1"); ASSERT_EQ(interpreter.GetOutputName(0), "out0"); TfLiteRegistration reg = GetPassthroughOpRegistration(); ASSERT_EQ( interpreter.AddNodeWithParameters({0}, {1}, nullptr, 0, nullptr, &reg), kTfLiteOk); ASSERT_EQ(interpreter.ResizeInputTensor(0, {3}), kTfLiteOk); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.Invoke(), kTfLiteOk); } TEST(BasicInterpreter, ReleaseNonPersistentMemory) { Interpreter interpreter; ASSERT_EQ(interpreter.AddTensors(2), kTfLiteOk); ASSERT_EQ(interpreter.SetInputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.SetOutputs({1}), kTfLiteOk); TfLiteQuantizationParams quantized; ASSERT_EQ(interpreter.SetTensorParametersReadWrite(0, kTfLiteFloat32, "in1", {3}, quantized), kTfLiteOk); ASSERT_EQ(interpreter.SetTensorParametersReadWrite(1, kTfLiteFloat32, "out0", {3}, quantized), kTfLiteOk); TfLiteRegistration reg = GetPassthroughOpRegistration(); ASSERT_EQ( interpreter.AddNodeWithParameters({0}, {1}, nullptr, 0, nullptr, &reg), kTfLiteOk); ASSERT_EQ(interpreter.ResizeInputTensor(0, {3}), kTfLiteOk); ASSERT_EQ(interpreter.ReleaseNonPersistentMemory(), kTfLiteOk); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.Invoke(), kTfLiteOk); ASSERT_EQ(interpreter.ReleaseNonPersistentMemory(), kTfLiteOk); ASSERT_NE(interpreter.Invoke(), kTfLiteOk); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.Invoke(), kTfLiteOk); ASSERT_EQ(interpreter.ReleaseNonPersistentMemory(), kTfLiteOk); ASSERT_EQ(interpreter.ResizeInputTensor(0, {4}), kTfLiteOk); ASSERT_NE(interpreter.Invoke(), kTfLiteOk); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.Invoke(), kTfLiteOk); } TEST(BasicInterpreter, ThreeStepAllocate) { Interpreter interpreter; ASSERT_EQ(interpreter.AddTensors(5), kTfLiteOk); ASSERT_EQ(interpreter.SetInputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.SetOutputs({4}), kTfLiteOk); TfLiteQuantizationParams quantized; union { char raw_bytes[15]; struct { int32_t num_strs; int32_t offsets[2]; char str_data[3]; } tensor_data; } data; data.tensor_data = {1, {12, 15}, {'A', 'B', 'C'}}; ASSERT_EQ(interpreter.SetTensorParametersReadOnly(0, kTfLiteString, "", {1}, quantized, data.raw_bytes, sizeof(data.raw_bytes)), kTfLiteOk); ASSERT_EQ(interpreter.SetTensorParametersReadWrite(1, kTfLiteString, "", {1}, quantized), kTfLiteOk); ASSERT_EQ(interpreter.SetTensorParametersReadWrite(2, kTfLiteInt32, "", {1}, quantized), kTfLiteOk); ASSERT_EQ(interpreter.SetTensorParametersReadWrite(3, kTfLiteString, "", {1}, quantized), kTfLiteOk); ASSERT_EQ(interpreter.SetTensorParametersReadWrite(4, kTfLiteInt32, "", {1}, quantized), kTfLiteOk); TfLiteRegistration reg_copy = {nullptr, nullptr, nullptr, nullptr}; reg_copy.invoke = [](TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); DynamicBuffer buf; StringRef str_ref = GetString(input, 0); buf.AddString(str_ref); buf.WriteToTensorAsVector(output); return kTfLiteOk; }; TfLiteRegistration reg_len = {nullptr, nullptr, nullptr, nullptr}; reg_len.prepare = [](TfLiteContext* context, TfLiteNode* node) { TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); TfLiteIntArray* outputSize = TfLiteIntArrayCreate(1); outputSize->data[0] = 1; return context->ResizeTensor(context, output, outputSize); }; reg_len.invoke = [](TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* a0; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &a0)); TfLiteTensor* a1; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &a1)); a1->data.i32[0] = a0->bytes; return kTfLiteOk; }; ASSERT_EQ(interpreter.AddNodeWithParameters({0}, {1}, nullptr, 0, nullptr, &reg_copy), kTfLiteOk); ASSERT_EQ(interpreter.AddNodeWithParameters({1}, {2}, nullptr, 0, nullptr, &reg_len), kTfLiteOk); ASSERT_EQ(interpreter.AddNodeWithParameters({0}, {3}, nullptr, 0, nullptr, &reg_copy), kTfLiteOk); ASSERT_EQ(interpreter.AddNodeWithParameters({3}, {4}, nullptr, 0, nullptr, &reg_len), kTfLiteOk); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.Invoke(), kTfLiteOk); ASSERT_EQ(interpreter.tensor(0)->bytes, 15); ASSERT_NE(interpreter.tensor(0)->data.raw, nullptr); ASSERT_EQ(interpreter.tensor(1)->bytes, 15); ASSERT_NE(interpreter.tensor(1)->data.raw, nullptr); ASSERT_EQ(interpreter.tensor(3)->bytes, 15); ASSERT_NE(interpreter.tensor(4)->data.raw, nullptr); ASSERT_EQ(interpreter.tensor(2)->bytes, 4); ASSERT_EQ(interpreter.tensor(2)->data.i32[0], 15); ASSERT_EQ(interpreter.tensor(4)->bytes, 4); ASSERT_EQ(interpreter.tensor(4)->data.i32[0], 15); } TEST(BasicInterpreter, AllocateTwice) { Interpreter interpreter; ASSERT_EQ(interpreter.AddTensors(2), kTfLiteOk); ASSERT_EQ(interpreter.SetInputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.SetOutputs({1}), kTfLiteOk); TfLiteQuantizationParams quantized; ASSERT_EQ(interpreter.SetTensorParametersReadWrite(0, kTfLiteFloat32, "", {3}, quantized), kTfLiteOk); ASSERT_EQ(interpreter.SetTensorParametersReadWrite(1, kTfLiteFloat32, "", {3}, quantized), kTfLiteOk); TfLiteRegistration reg = {nullptr, nullptr, nullptr, nullptr}; reg.prepare = [](TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* tensor0; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &tensor0)); TfLiteTensor* tensor1; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &tensor1)); TfLiteIntArray* newSize = TfLiteIntArrayCopy(tensor0->dims); return context->ResizeTensor(context, tensor1, newSize); }; reg.invoke = [](TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* a0; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &a0)); TfLiteTensor* a1; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &a1)); int num = a0->dims->data[0]; for (int i = 0; i < num; i++) { a1->data.f[i] = a0->data.f[i]; } return kTfLiteOk; }; ASSERT_EQ( interpreter.AddNodeWithParameters({0}, {1}, nullptr, 0, nullptr, &reg), kTfLiteOk); ASSERT_EQ(interpreter.ResizeInputTensor(0, {3}), kTfLiteOk); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.Invoke(), kTfLiteOk); char* old_tensor0_ptr = interpreter.tensor(0)->data.raw; char* old_tensor1_ptr = interpreter.tensor(1)->data.raw; ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.Invoke(), kTfLiteOk); ASSERT_EQ(old_tensor0_ptr, interpreter.tensor(0)->data.raw); ASSERT_EQ(old_tensor1_ptr, interpreter.tensor(1)->data.raw); } TEST(BasicInterpreter, TestNullErrorReporter) { TestErrorReporter reporter; Interpreter interpreter; } TEST(BasicInterpreter, TestCustomErrorReporter) { TestErrorReporter reporter; Interpreter interpreter(&reporter); ASSERT_NE(interpreter.Invoke(), kTfLiteOk); ASSERT_EQ(reporter.error_messages(), "Invoke called on model that is not ready."); ASSERT_EQ(reporter.num_calls(), 1); } TEST(BasicInterpreter, TestOverflow) { TestErrorReporter reporter; Interpreter interpreter(&reporter); TfLiteQuantizationParams quantized; ASSERT_EQ(interpreter.AddTensors(1), kTfLiteOk); ASSERT_EQ(interpreter.SetInputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.SetOutputs({0}), kTfLiteOk); if (sizeof(size_t) == 8) { ASSERT_EQ(interpreter.SetTensorParametersReadWrite( 0, kTfLiteFloat32, "in1", {1 << 30, 1 << 30}, quantized), kTfLiteOk); ASSERT_NE( interpreter.SetTensorParametersReadWrite( 0, kTfLiteFloat32, "in1", {1 << 30, 1 << 30, 1 << 2}, quantized), kTfLiteOk); EXPECT_THAT( reporter.error_messages(), testing::EndsWith("BytesRequired number of bytes overflowed.\n")); reporter.Reset(); ASSERT_NE(interpreter.SetTensorParametersReadWrite( 0, kTfLiteFloat32, "in1", {1 << 30, 1 << 30, 1 << 2, 1 << 4}, quantized), kTfLiteOk); EXPECT_THAT( reporter.error_messages(), testing::EndsWith("BytesRequired number of elements overflowed.\n")); } else if (sizeof(size_t) == 4) { ASSERT_EQ(interpreter.SetTensorParametersReadWrite( 0, kTfLiteFloat32, "in1", {1 << 14, 1 << 14}, quantized), kTfLiteOk); ASSERT_NE( interpreter.SetTensorParametersReadWrite( 0, kTfLiteFloat32, "in1", {1 << 14, 1 << 14, 1 << 3}, quantized), kTfLiteOk); EXPECT_THAT( reporter.error_messages(), testing::EndsWith("BytesRequired number of bytes overflowed.\n")); reporter.Reset(); ASSERT_NE( interpreter.SetTensorParametersReadWrite( 0, kTfLiteFloat32, "in1", {1 << 14, 1 << 14, 1 << 4}, quantized), kTfLiteOk); EXPECT_THAT( reporter.error_messages(), testing::EndsWith("BytesRequired number of elements overflowed.\n")); } else { ASSERT_TRUE(false); } } TEST(BasicInterpreter, TestUnsupportedDelegateFunctions) { Interpreter interpreter; ASSERT_EQ(interpreter.AddTensors(2), kTfLiteOk); TfLiteRegistration registration = {nullptr, nullptr, nullptr, nullptr}; registration.prepare = [](TfLiteContext* context, TfLiteNode* node) { { TfLiteIntArray* execution_plan; EXPECT_EQ(context->GetExecutionPlan(context, &execution_plan), kTfLiteError); } { TfLiteNode* node; TfLiteRegistration* registration; EXPECT_EQ( context->GetNodeAndRegistration(context, 0, &node, &registration), kTfLiteError); } { TfLiteRegistration delegate_registration = {nullptr, nullptr, nullptr, nullptr}; TfLiteIntArray nodes_to_replace; nodes_to_replace.size = 0; EXPECT_EQ(context->ReplaceNodeSubsetsWithDelegateKernels( context, delegate_registration, &nodes_to_replace, nullptr), kTfLiteError); } return kTfLiteError; }; ASSERT_EQ(interpreter.SetInputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.SetOutputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.AddNodeWithParameters({0}, {1}, nullptr, 0, nullptr, &registration), kTfLiteOk); EXPECT_EQ(interpreter.AllocateTensors(), kTfLiteError); } TEST(BasicInterpreter, DynamicTensorsResizeDescendants) { Interpreter interpreter; interpreter.AddTensors(4); interpreter.SetInputs({0, 1}); interpreter.SetOutputs({3}); TfLiteQuantizationParams quant; interpreter.SetTensorParametersReadWrite(0, kTfLiteFloat32, "", {2, 2, 1, 1}, quant); interpreter.SetTensorParametersReadWrite(1, kTfLiteInt32, "", {4, 2}, quant); interpreter.SetTensorParametersReadWrite(2, kTfLiteFloat32, "", {}, quant); interpreter.SetTensorParametersReadWrite(3, kTfLiteFloat32, "", {}, quant); TfLiteRegistration* pad_op = tflite::ops::builtin::Register_PADV2(); TfLiteRegistration* neg_op = tflite::ops::builtin::Register_NEG(); interpreter.AddNodeWithParameters({0, 1}, {2}, nullptr, 0, nullptr, pad_op); interpreter.AddNodeWithParameters({2}, {3}, nullptr, 0, nullptr, neg_op); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); interpreter.typed_tensor<int>(1)[0] = 2; interpreter.typed_tensor<int>(1)[1] = 2; interpreter.typed_tensor<int>(1)[2] = 2; interpreter.typed_tensor<int>(1)[3] = 2; interpreter.typed_tensor<int>(1)[4] = 0; interpreter.typed_tensor<int>(1)[5] = 0; interpreter.typed_tensor<int>(1)[6] = 0; interpreter.typed_tensor<int>(1)[7] = 0; ASSERT_EQ(interpreter.Invoke(), kTfLiteOk); ASSERT_EQ(interpreter.tensor(2)->bytes, sizeof(float) * 6 * 6); ASSERT_EQ(interpreter.tensor(3)->bytes, sizeof(float) * 6 * 6); interpreter.typed_tensor<int>(1)[0] = 4; interpreter.typed_tensor<int>(1)[1] = 4; interpreter.typed_tensor<int>(1)[2] = 6; interpreter.typed_tensor<int>(1)[3] = 6; interpreter.typed_tensor<int>(1)[4] = 0; interpreter.typed_tensor<int>(1)[5] = 0; interpreter.typed_tensor<int>(1)[6] = 0; interpreter.typed_tensor<int>(1)[7] = 0; ASSERT_EQ(interpreter.Invoke(), kTfLiteOk); ASSERT_EQ(interpreter.tensor(2)->bytes, sizeof(float) * 10 * 14); ASSERT_EQ(interpreter.tensor(3)->bytes, sizeof(float) * 10 * 14); } TEST(BasicInterpreter, ReleaseDynamicTensors) { Interpreter interpreter; interpreter.AddTensors(4); interpreter.SetInputs({0, 1}); interpreter.SetOutputs({3}); TfLiteQuantizationParams quant; interpreter.SetTensorParametersReadWrite(0, kTfLiteFloat32, "", {2, 2, 1, 1}, quant); interpreter.SetTensorParametersReadWrite( 1, kTfLiteInt32, "", {4, 2}, quant); interpreter.SetTensorParametersReadWrite(2, kTfLiteFloat32, "", {}, quant); interpreter.SetTensorParametersReadWrite(3, kTfLiteFloat32, "", {}, quant); TfLiteRegistration* pad_op = tflite::ops::builtin::Register_PADV2(); TfLiteRegistration* neg_op = tflite::ops::builtin::Register_NEG(); interpreter.AddNodeWithParameters( {0, 1}, {2}, nullptr, 0, nullptr, pad_op); interpreter.AddNodeWithParameters( {2}, {3}, nullptr, 0, nullptr, neg_op); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); const std::vector<int> padding = {2, 2, 2, 2, 0, 0, 0, 0}; int* tensor_value = interpreter.typed_tensor<int>(1); for (int i = 0; i < padding.size(); ++i) { tensor_value[i] = padding[i]; } ASSERT_EQ(interpreter.Invoke(), kTfLiteOk); ASSERT_NE(interpreter.tensor(2)->data.raw, nullptr); InterpreterOptions options; options.SetEnsureDynamicTensorsAreReleased(); interpreter.ApplyOptions(&options); ASSERT_EQ(interpreter.Invoke(), kTfLiteOk); ASSERT_EQ(interpreter.tensor(2)->data.raw, nullptr); ASSERT_EQ(interpreter.tensor(3)->bytes, sizeof(float) * 6 * 6); } TEST(InterpreterTensorsCapacityTest, TestWithinHeadroom) { Interpreter interpreter; ASSERT_EQ(interpreter.AddTensors(Interpreter::kTensorsReservedCapacity), kTfLiteOk); TfLiteRegistration registration = {nullptr, nullptr, nullptr, nullptr}; registration.prepare = [](TfLiteContext* context, TfLiteNode* node) { TfLiteTensor* first_tensor = context->tensors; int new_tensor_index; context->AddTensors(context, Interpreter::kTensorsCapacityHeadroom, &new_tensor_index); EXPECT_EQ(first_tensor, context->tensors); return kTfLiteOk; }; ASSERT_EQ(interpreter.AddNodeWithParameters({0}, {1}, nullptr, 0, nullptr, &registration), kTfLiteOk); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); } TEST(InterpreterTensorsCapacityTest, TestExceedHeadroom) { Interpreter interpreter; ASSERT_EQ(interpreter.AddTensors(Interpreter::kTensorsReservedCapacity), kTfLiteOk); TfLiteRegistration registration = {nullptr, nullptr, nullptr, nullptr}; registration.prepare = [](TfLiteContext* context, TfLiteNode* node) { TfLiteTensor* first_tensor = context->tensors; int new_tensor_index; context->AddTensors( context, (context->tensors_size + Interpreter::kTensorsCapacityHeadroom + 1) * 2, &new_tensor_index); EXPECT_NE(first_tensor, context->tensors); return kTfLiteOk; }; ASSERT_EQ(interpreter.AddNodeWithParameters({0}, {1}, nullptr, 0, nullptr, &registration), kTfLiteOk); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); } TEST_F(InterpreterTest, SubgraphNumbering) { EXPECT_THAT(interpreter_->subgraph(0)->GetSubgraphIndex(), 0); AddSubgraphs(2); AddSubgraphs(3); std::vector<int> subgraph_indices; for (int i = 0; i < interpreter_->subgraphs_size(); ++i) { subgraph_indices.push_back(interpreter_->subgraph(i)->GetSubgraphIndex()); } EXPECT_THAT(subgraph_indices, ElementsAre(0, 1, 2, 3, 4, 5)); } struct TestExternalContext : public TfLiteExternalContext { static constexpr TfLiteExternalContextType kType = kTfLiteGemmLowpContext; static TestExternalContext* Get(TfLiteContext* context) { return reinterpret_cast<TestExternalContext*>( context->GetExternalContext(context, kType)); } static void Set(TfLiteContext* context, TestExternalContext* value) { context->SetExternalContext(context, kType, value); } int num_refreshes = 0; }; TEST_F(InterpreterTest, GetSetResetExternalContexts) { auto* context = GetInterpreterContext(); TestExternalContext external_context; external_context.Refresh = [](TfLiteContext* context) { auto* ptr = TestExternalContext::Get(context); if (ptr != nullptr) { ++ptr->num_refreshes; } return kTfLiteOk; }; EXPECT_EQ(TestExternalContext::Get(context), nullptr); ASSERT_EQ(interpreter_->SetNumThreads(4), kTfLiteOk); TestExternalContext::Set(context, &external_context); EXPECT_EQ(TestExternalContext::Get(context), &external_context); ASSERT_EQ(interpreter_->SetNumThreads(4), kTfLiteOk); ASSERT_EQ(interpreter_->SetNumThreads(5), kTfLiteOk); EXPECT_EQ(external_context.num_refreshes, 2); external_context.num_refreshes = 0; ASSERT_EQ(interpreter_->SetNumThreads(-2), kTfLiteError); EXPECT_EQ(external_context.num_refreshes, 0); ASSERT_EQ(interpreter_->SetNumThreads(-1), kTfLiteOk); EXPECT_EQ(external_context.num_refreshes, 1); TestExternalContext::Set(context, nullptr); EXPECT_EQ(TestExternalContext::Get(context), nullptr); ASSERT_EQ(interpreter_->SetNumThreads(4), kTfLiteOk); } TEST_F(InterpreterTest, SetNumThreadsSucceedsWithZero) { ASSERT_EQ(interpreter_->SetNumThreads(0), kTfLiteOk); EXPECT_EQ(interpreter_->subgraph(0)->context()->recommended_num_threads, 1); } struct TestCpuBackendContext : public TfLiteInternalBackendContext { void ClearCaches() override { ++num_calls; } void SetMaxNumThreads(int num_threads) override {} int num_calls = 0; }; TEST_F(InterpreterTest, ExternalBackendContextClearsCachesOnDelete) { ExternalCpuBackendContext external_cpu_context; TestCpuBackendContext* cpu_backend_context = new TestCpuBackendContext(); external_cpu_context.set_internal_backend_context( std::unique_ptr<TfLiteInternalBackendContext>(cpu_backend_context)); { Interpreter interpreter; interpreter.SetExternalContext(kTfLiteCpuBackendContext, &external_cpu_context); EXPECT_EQ(cpu_backend_context->num_calls, 0); } EXPECT_EQ(cpu_backend_context->num_calls, 1); } class TestExecutionPlan : public InterpreterTest { class CallReporting { public: CallReporting(int node_id, std::vector<int>* run_order) : node_id_(node_id), run_order_(run_order) {} void Record() { run_order_->push_back(node_id_); } private: int node_id_; std::vector<int>* run_order_; }; TfLiteRegistration CopyOpRegistration() { TfLiteRegistration reg = {nullptr, nullptr, nullptr, nullptr}; reg.prepare = [](TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* tensor0; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &tensor0)); TfLiteTensor* tensor1; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &tensor1)); TfLiteIntArray* newSize = TfLiteIntArrayCopy(tensor0->dims); return context->ResizeTensor(context, tensor1, newSize); }; reg.invoke = [](TfLiteContext* context, TfLiteNode* node) { CallReporting* call_reporting = static_cast<CallReporting*>(node->builtin_data); const TfLiteTensor* a0; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &a0)); TfLiteTensor* a1; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &a1)); int num = a0->dims->data[0]; for (int i = 0; i < num; i++) { a1->data.f[i] = a0->data.f[i]; } call_reporting->Record(); return kTfLiteOk; }; return reg; } void MakeCopyNode(int input, int output) { TfLiteRegistration copy_op = CopyOpRegistration(); CallReporting* call_reporting_1 = static_cast<CallReporting*>(malloc(sizeof(CallReporting))); new (call_reporting_1) CallReporting(input, &run_order_); ASSERT_EQ(interpreter_->AddNodeWithParameters( {0}, {2}, nullptr, 0, static_cast<void*>(call_reporting_1), &copy_op), kTfLiteOk); ASSERT_EQ(interpreter_->ResizeInputTensor(input, {3}), kTfLiteOk); } void SetUp() final { ASSERT_EQ(interpreter_->AddTensors(4), kTfLiteOk); interpreter_->SetInputs({0, 1}); interpreter_->SetOutputs({2, 3}); TfLiteQuantizationParams quantized; for (int tensor_index = 0; tensor_index < 4; tensor_index++) { ASSERT_EQ(interpreter_->SetTensorParametersReadWrite( tensor_index, kTfLiteFloat32, "", {3}, quantized), kTfLiteOk); } MakeCopyNode(0, 2); MakeCopyNode(1, 3); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); } protected: std::vector<int> run_order_; }; TEST_F(TestExecutionPlan, DefaultExecutionPlan) { ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); ASSERT_EQ(run_order_, std::vector<int>({0, 1})); } TEST_F(TestExecutionPlan, ReversedExecutionPlan) { SetExecutionPlan({1, 0}); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); ASSERT_EQ(run_order_, std::vector<int>({1, 0})); } TEST_F(TestExecutionPlan, SubsetExecutionPlan) { SetExecutionPlan({1}); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); ASSERT_EQ(run_order_, std::vector<int>({1})); } TEST_F(TestExecutionPlan, NullExecutionPlan) { SetExecutionPlan({}); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); ASSERT_EQ(run_order_, std::vector<int>()); } TEST(TestDelegateOwnership, ProperlyDisposed) { struct TfLiteInterpreterOwnedDelegate : public TfLiteDelegate { TfLiteInterpreterOwnedDelegate(bool* destroyed, bool* prepared) : TfLiteDelegate(TfLiteDelegateCreate()), destroyed(destroyed), prepared(prepared) { flags = kTfLiteDelegateFlagsNone; Prepare = [](TfLiteContext*, TfLiteDelegate* delegate) -> TfLiteStatus { *static_cast<TfLiteInterpreterOwnedDelegate*>(delegate)->prepared = true; return kTfLiteOk; }; } ~TfLiteInterpreterOwnedDelegate() { *destroyed = true; } bool* destroyed; bool* prepared; }; bool destroyed = false; bool prepared = false; std::unique_ptr<TfLiteInterpreterOwnedDelegate> delegate( new TfLiteInterpreterOwnedDelegate(&destroyed, &prepared)); { Interpreter interpreter; TfLiteRegistration registration = {nullptr, nullptr, nullptr, nullptr}; ASSERT_EQ(interpreter.AddTensors(2), kTfLiteOk); ASSERT_EQ(interpreter.SetInputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.SetOutputs({1}), kTfLiteOk); ASSERT_EQ(interpreter.AddNodeWithParameters({0}, {1}, nullptr, 0, nullptr, &registration), kTfLiteOk); ASSERT_EQ(InterpreterTest::ModifyGraphWithDelegate(&interpreter, std::move(delegate)), kTfLiteOk); EXPECT_TRUE(prepared); EXPECT_FALSE(destroyed); interpreter.AllocateTensors(); interpreter.Invoke(); EXPECT_FALSE(destroyed); } EXPECT_TRUE(destroyed); } struct CancellationData { bool is_cancelled = false; Interpreter* interpreter = nullptr; TfLiteStatus cancellation_status = kTfLiteError; uint cancel_count = 1; }; bool CheckCancellation(void* data) { CancellationData* cancellation_data = static_cast<struct CancellationData*>(data); return cancellation_data->is_cancelled; } CancellationData& GetCancellationData() { static CancellationData* data = []() -> CancellationData* { return new CancellationData(); }(); return *data; } auto GetOpPrepare() { return [](TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* in_tensor; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &in_tensor)); TfLiteTensor* out_tensor; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &out_tensor)); TfLiteIntArray* new_size = TfLiteIntArrayCopy(in_tensor->dims); return context->ResizeTensor(context, out_tensor, new_size); }; } class CancelTest : public InterpreterTest { protected: TfLiteRegistration CancelOpRegistration() { TfLiteRegistration reg{}; reg.prepare = GetOpPrepare(); reg.invoke = [](TfLiteContext* context, TfLiteNode* node) { if (GetCancellationData().cancel_count--) { std::thread([]() { GetCancellationData().cancellation_status = GetCancellationData().interpreter->Cancel(); }).join(); } return kTfLiteOk; }; return reg; } TfLiteRegistration OkOpRegistration() { TfLiteRegistration reg{}; reg.prepare = GetOpPrepare(); reg.invoke = [](TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; }; return reg; } void MakeCancelNode(int input, int output) { TfLiteRegistration op = CancelOpRegistration(); ASSERT_EQ(interpreter_->AddNodeWithParameters({input}, {output}, nullptr, 0, nullptr, &op), kTfLiteOk); ASSERT_EQ(interpreter_->ResizeInputTensor(input, {3}), kTfLiteOk); } TfLiteRegistration CancelAndCallOpRegistartion() { TfLiteRegistration reg{}; reg.prepare = [](TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* in_tensor; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &in_tensor)); TfLiteTensor* out_tensor; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &out_tensor)); TfLiteIntArray* new_size = TfLiteIntArrayCopy(in_tensor->dims); TF_LITE_ENSURE_STATUS( context->ResizeTensor(context, out_tensor, new_size)); auto* subgraphs = reinterpret_cast<Subgraph*>(context->impl_)->GetSubgraphs(); Subgraph* callee_subgraph = (*subgraphs)[1].get(); return callee_subgraph->AllocateTensors(); }; reg.invoke = [](TfLiteContext* context, TfLiteNode* node) { if (GetCancellationData().cancel_count--) { std::thread([]() { GetCancellationData().cancellation_status = GetCancellationData().interpreter->Cancel(); }).join(); } auto* subgraphs = reinterpret_cast<Subgraph*>(context->impl_)->GetSubgraphs(); Subgraph* callee_subgraph = (*subgraphs)[1].get(); return callee_subgraph->Invoke(); }; return reg; } void MakeCancelAndCallNode(int input, int output) { TfLiteRegistration op = CancelAndCallOpRegistartion(); ASSERT_EQ(interpreter_->AddNodeWithParameters({input}, {output}, nullptr, 0, nullptr, &op), kTfLiteOk); ASSERT_EQ(interpreter_->ResizeInputTensor(input, {3}), kTfLiteOk); } void SetUpCalleeSubgraph() { TfLiteRegistration op = OkOpRegistration(); auto* subgraph = interpreter_->subgraph(1); ASSERT_EQ( subgraph->AddNodeWithParameters({0}, {1}, {}, nullptr, 0, nullptr, &op), kTfLiteOk); ASSERT_EQ(subgraph->ResizeInputTensor(0, {3}), kTfLiteOk); } void MakeOkNode(int input, int output) { TfLiteRegistration op = OkOpRegistration(); ASSERT_EQ(interpreter_->AddNodeWithParameters({input}, {output}, nullptr, 0, nullptr, &op), kTfLiteOk); ASSERT_EQ(interpreter_->ResizeInputTensor(input, {3}), kTfLiteOk); } void SetUp() final { int num_tensors = 3; ASSERT_EQ(interpreter_->AddTensors(num_tensors), kTfLiteOk); interpreter_->SetInputs({0}); interpreter_->SetOutputs({2}); TfLiteQuantizationParams quantized; for (int tensor_index = 0; tensor_index < num_tensors; tensor_index++) { ASSERT_EQ(interpreter_->SetTensorParametersReadWrite( tensor_index, kTfLiteFloat32, "", {3}, quantized), kTfLiteOk); } AddSubgraphs(1); auto* subgraph = interpreter_->subgraph(1); num_tensors = 2; ASSERT_EQ(subgraph->AddTensors(num_tensors), kTfLiteOk); subgraph->SetInputs({0}); subgraph->SetOutputs({1}); TfLiteQuantization quant{kTfLiteNoQuantization, nullptr}; for (int tensor_index = 0; tensor_index < num_tensors; tensor_index++) { ASSERT_EQ(subgraph->SetTensorParametersReadWrite( tensor_index, kTfLiteFloat32, "", {3}, quant), kTfLiteOk); } GetCancellationData().interpreter = interpreter_.get(); GetCancellationData().cancellation_status = kTfLiteError; GetCancellationData().cancel_count = 1; } }; TEST_F(CancelTest, CancellationNotSupported) { EXPECT_EQ(kTfLiteError, interpreter_->Cancel()); } TEST_F(CancelTest, CancellationSupported) { MakeCancelNode(0, 1); MakeOkNode(1, 2); interpreter_->EnableCancellation(); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); EXPECT_EQ(kTfLiteCancelled, interpreter_->Invoke()); ASSERT_EQ(kTfLiteOk, GetCancellationData().cancellation_status); } TEST_F(CancelTest, CancelBeforeInvoke) { MakeOkNode(0, 1); MakeOkNode(1, 2); interpreter_->EnableCancellation(); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); ASSERT_EQ(kTfLiteOk, interpreter_->Cancel()); EXPECT_EQ(kTfLiteOk, interpreter_->Invoke()); } TEST_F(CancelTest, CancelOnlyAffectsOngoingInvoke) { MakeCancelNode(0, 1); MakeOkNode(1, 2); interpreter_->EnableCancellation(); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); EXPECT_EQ(kTfLiteCancelled, interpreter_->Invoke()); ASSERT_EQ(kTfLiteOk, GetCancellationData().cancellation_status); EXPECT_EQ(kTfLiteOk, interpreter_->Invoke()); } TEST_F(CancelTest, CancellationAffectsOtherSubgraphs) { MakeCancelAndCallNode(0, 1); MakeOkNode(1, 2); SetUpCalleeSubgraph(); interpreter_->EnableCancellation(); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); EXPECT_EQ(kTfLiteCancelled, interpreter_->Invoke()); ASSERT_EQ(kTfLiteOk, GetCancellationData().cancellation_status); EXPECT_EQ(kTfLiteOk, interpreter_->Invoke()); } class SetCancellationFunctionTest : public InterpreterTest { public: TfLiteStatus Invoke() { return interpreter_->Invoke(); } void Cancel() { GetCancellationData().is_cancelled = true; } void MakeCancelNode(int input, int output) { TfLiteRegistration op = CancelOpRegistration(); ASSERT_EQ(interpreter_->AddNodeWithParameters({input}, {output}, nullptr, 0, nullptr, &op), kTfLiteOk); ASSERT_EQ(interpreter_->ResizeInputTensor(input, {3}), kTfLiteOk); } void MakeOkNode(int input, int output) { TfLiteRegistration op = OkOpRegistration(); ASSERT_EQ(interpreter_->AddNodeWithParameters({input}, {output}, nullptr, 0, nullptr, &op), kTfLiteOk); ASSERT_EQ(interpreter_->ResizeInputTensor(input, {3}), kTfLiteOk); } private: TfLiteRegistration CancelOpRegistration() { TfLiteRegistration reg{}; reg.prepare = GetOpPrepare(); reg.invoke = [](TfLiteContext* context, TfLiteNode* node) { GetCancellationData().is_cancelled = true; return kTfLiteOk; }; return reg; } TfLiteRegistration OkOpRegistration() { TfLiteRegistration reg{}; reg.prepare = GetOpPrepare(); reg.invoke = [](TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; }; return reg; } void SetUp() final { GetCancellationData().is_cancelled = false; int num_tensors = 3; ASSERT_EQ(interpreter_->AddTensors(num_tensors), kTfLiteOk); interpreter_->SetInputs({0}); interpreter_->SetOutputs({2}); TfLiteQuantizationParams quantized; for (int tensor_index = 0; tensor_index < num_tensors; tensor_index++) { ASSERT_EQ(interpreter_->SetTensorParametersReadWrite( tensor_index, kTfLiteFloat32, "", {3}, quantized), kTfLiteOk); } interpreter_->SetCancellationFunction(&GetCancellationData(), &CheckCancellation); } }; TEST_F(SetCancellationFunctionTest, CancelBeforeInvoke) { SetCancellationFunctionTest::MakeOkNode(1, 2); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); SetCancellationFunctionTest::Cancel(); TfLiteStatus invoke_error_code = SetCancellationFunctionTest::Invoke(); ASSERT_EQ(invoke_error_code, kTfLiteError); } TEST_F(SetCancellationFunctionTest, CancelDuringInvoke) { SetCancellationFunctionTest::MakeCancelNode(0, 1); SetCancellationFunctionTest::MakeOkNode(1, 2); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); TfLiteStatus invoke_error_code = SetCancellationFunctionTest::Invoke(); ASSERT_EQ(invoke_error_code, kTfLiteError); } class TestCustomAllocation : public InterpreterTest { protected: void SetUp() override { interpreter_ = std::make_unique<Interpreter>(); interpreter_->AddTensors(7); interpreter_->SetInputs({0, 1}); interpreter_->SetOutputs({3, 4, 6}); TfLiteQuantizationParams quant; interpreter_->SetTensorParametersReadWrite(0, kTfLiteFloat32, "", {3}, quant); interpreter_->SetTensorParametersReadWrite(1, kTfLiteFloat32, "", {3}, quant); interpreter_->SetTensorParametersReadWrite(2, kTfLiteFloat32, "", {3}, quant); interpreter_->SetTensorParametersReadWrite(3, kTfLiteFloat32, "", {3}, quant); interpreter_->SetTensorParametersReadWrite(4, kTfLiteFloat32, "", {3}, quant); interpreter_->SetTensorParametersReadWrite(5, kTfLiteFloat32, "", {3}, quant, true); interpreter_->SetTensorParametersReadWrite(6, kTfLiteFloat32, "", {3}, quant); auto* add_reg = ops::builtin::Register_ADD(); TfLiteAddParams* builtin_data0 = reinterpret_cast<TfLiteAddParams*>(malloc(sizeof(TfLiteAddParams))); TfLiteAddParams* builtin_data1 = reinterpret_cast<TfLiteAddParams*>(malloc(sizeof(TfLiteAddParams))); TfLiteAddParams* builtin_data2 = reinterpret_cast<TfLiteAddParams*>(malloc(sizeof(TfLiteAddParams))); TfLiteAddParams* builtin_data3 = reinterpret_cast<TfLiteAddParams*>(malloc(sizeof(TfLiteAddParams))); builtin_data0->activation = kTfLiteActNone; builtin_data1->activation = kTfLiteActNone; builtin_data2->activation = kTfLiteActNone; builtin_data3->activation = kTfLiteActNone; interpreter_->AddNodeWithParameters({0, 0}, {2}, nullptr, 0, builtin_data0, add_reg); interpreter_->AddNodeWithParameters({1, 1}, {3}, nullptr, 0, builtin_data1, add_reg); interpreter_->AddNodeWithParameters({2, 1}, {4}, nullptr, 0, builtin_data2, add_reg); interpreter_->AddNodeWithParameters({0, 5}, {6}, nullptr, 0, builtin_data3, add_reg); interpreter_->SetVariables({5}); } void AssignCustomAllocForTensor(int tensor_idx, int required_alignment) { const TfLiteTensor* tensor = interpreter_->tensor(tensor_idx); auto tensor_alloc = NewCustomAlloc(tensor->bytes, required_alignment); ASSERT_EQ( interpreter_->SetCustomAllocationForTensor(tensor_idx, tensor_alloc), kTfLiteOk); } void VerifyInvoke() { std::vector<float> input = {1.0f, 2.0f, 3.0f}; std::vector<float> variable = {0.0f, 1.0f, 2.0f}; std::vector<float> expected_output = {2.0f, 4.0f, 6.0f}; memcpy(interpreter_->typed_tensor<float>(interpreter_->variables()[0]), variable.data(), 3 * sizeof(float)); memcpy(interpreter_->typed_tensor<float>(0), input.data(), 3 * sizeof(float)); memcpy(interpreter_->typed_tensor<float>(1), input.data(), 3 * sizeof(float)); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); TfLiteTensor* output_tensor = interpreter_->tensor(interpreter_->outputs()[0]); for (int i = 0; i < 3; ++i) { EXPECT_EQ(output_tensor->data.f[i], expected_output[i]) << i; } } TfLiteCustomAllocation NewCustomAlloc(size_t num_bytes, int required_alignment) { char* new_alloc = new char[num_bytes + required_alignment]; char* new_underlying_buffer_aligned_ptr = reinterpret_cast<char*>( AlignTo(required_alignment, reinterpret_cast<intptr_t>(new_alloc))); custom_alloc_buffers_.emplace_back(new_alloc); return TfLiteCustomAllocation( {new_underlying_buffer_aligned_ptr, num_bytes}); } intptr_t AlignTo(size_t alignment, intptr_t offset) { return offset % alignment == 0 ? offset : offset + (alignment - offset % alignment); } void TearDown() override { interpreter_.reset(); custom_alloc_buffers_.clear(); } protected: TfLiteAddParams add_params_; std::vector<std::unique_ptr<char[]>> custom_alloc_buffers_; }; TEST_F(TestCustomAllocation, InvalidAlignment) { const TfLiteTensor* input_tensor = interpreter_->tensor(interpreter_->inputs()[0]); intptr_t dummy_ptr = kDefaultTensorAlignment - 1; TfLiteCustomAllocation input_alloc{reinterpret_cast<void*>(dummy_ptr), input_tensor->bytes}; ASSERT_EQ(interpreter_->SetCustomAllocationForTensor( interpreter_->inputs()[0], input_alloc), kTfLiteError); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); VerifyInvoke(); } TEST_F(TestCustomAllocation, InvalidAlignment_SkipCheck) { const TfLiteTensor* input_tensor = interpreter_->tensor(interpreter_->inputs()[0]); const int required_alignment = kDefaultTensorAlignment - 1; auto tensor_alloc = NewCustomAlloc(input_tensor->bytes, required_alignment); ASSERT_EQ(interpreter_->SetCustomAllocationForTensor( interpreter_->inputs()[0], tensor_alloc, kTfLiteCustomAllocationFlagsSkipAlignCheck), kTfLiteOk); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); } TEST_F(TestCustomAllocation, InsufficientBytes) { auto input_alloc = NewCustomAlloc(4, kDefaultTensorAlignment); ASSERT_EQ(interpreter_->SetCustomAllocationForTensor( interpreter_->inputs()[0], input_alloc), kTfLiteOk); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteError); ASSERT_EQ(interpreter_->Invoke(), kTfLiteError); } TEST_F(TestCustomAllocation, CustomInputAlloc) { AssignCustomAllocForTensor(interpreter_->inputs()[0], kDefaultTensorAlignment); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); VerifyInvoke(); } TEST_F(TestCustomAllocation, CustomInputAlloc_MultipleAssigns) { AssignCustomAllocForTensor(interpreter_->inputs()[0], kDefaultTensorAlignment); AssignCustomAllocForTensor(interpreter_->inputs()[0], kDefaultTensorAlignment); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); VerifyInvoke(); AssignCustomAllocForTensor(interpreter_->inputs()[0], kDefaultTensorAlignment); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); VerifyInvoke(); } TEST_F(TestCustomAllocation, CustomInputAlloc_AllocateTensorsBefore) { ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); AssignCustomAllocForTensor(interpreter_->inputs()[0], kDefaultTensorAlignment); VerifyInvoke(); } TEST_F(TestCustomAllocation, CustomInputAndOutputAllocs) { AssignCustomAllocForTensor(interpreter_->inputs()[0], kDefaultTensorAlignment); AssignCustomAllocForTensor(interpreter_->inputs()[1], kDefaultTensorAlignment); AssignCustomAllocForTensor(interpreter_->outputs()[0], kDefaultTensorAlignment); AssignCustomAllocForTensor(interpreter_->outputs()[1], kDefaultTensorAlignment); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); VerifyInvoke(); } TEST_F(TestCustomAllocation, CustomAlloc_VariableTensor) { AssignCustomAllocForTensor(interpreter_->variables()[0], kDefaultTensorAlignment); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); VerifyInvoke(); AssignCustomAllocForTensor(interpreter_->variables()[0], kDefaultTensorAlignment); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); std::vector<float> input = {2.0f, 3.0f, 4.0f}; std::vector<float> variable = {1.0f, 2.0f, 3.0f}; std::vector<float> expected_output = {3.0f, 5.0f, 7.0f}; memcpy(interpreter_->typed_tensor<float>(interpreter_->variables()[0]), variable.data(), 3 * sizeof(float)); memcpy(interpreter_->typed_tensor<float>(0), input.data(), 3 * sizeof(float)); memcpy(interpreter_->typed_tensor<float>(1), input.data(), 3 * sizeof(float)); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); TfLiteTensor* output_tensor = interpreter_->tensor(interpreter_->outputs()[2]); for (int i = 0; i < 3; ++i) { EXPECT_EQ(output_tensor->data.f[i], expected_output[i]) << i; } } TEST_F(TestCustomAllocation, ResizeInputsWithoutEnoughMemory) { AssignCustomAllocForTensor(interpreter_->inputs()[0], kDefaultTensorAlignment); AssignCustomAllocForTensor(interpreter_->inputs()[1], kDefaultTensorAlignment); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {2, 3}), kTfLiteOk); ASSERT_EQ(interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {2, 3}), kTfLiteOk); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteError); ASSERT_EQ(interpreter_->Invoke(), kTfLiteError); } TEST_F(TestCustomAllocation, ResizeInputsWithEnoughMemory) { const TfLiteTensor* input0_tensor = interpreter_->tensor(interpreter_->inputs()[0]); auto input0_alloc = NewCustomAlloc(2 * input0_tensor->bytes, kDefaultTensorAlignment); ASSERT_EQ(interpreter_->SetCustomAllocationForTensor( interpreter_->inputs()[0], input0_alloc), kTfLiteOk); const TfLiteTensor* input1_tensor = interpreter_->tensor(interpreter_->inputs()[1]); auto input1_alloc = NewCustomAlloc(2 * input1_tensor->bytes, kDefaultTensorAlignment); ASSERT_EQ(interpreter_->SetCustomAllocationForTensor( interpreter_->inputs()[1], input1_alloc), kTfLiteOk); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {6, 1}), kTfLiteOk); ASSERT_EQ(interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {6, 1}), kTfLiteOk); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); std::vector<float> input = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f}; std::vector<float> expected_output = {2.0f, 4.0f, 6.0f, 8.0f, 10.0f, 12.0f}; TfLiteTensor* tensor = interpreter_->tensor(interpreter_->outputs()[0]); memcpy(interpreter_->typed_tensor<float>(0), input.data(), 6 * sizeof(float)); memcpy(interpreter_->typed_tensor<float>(1), input.data(), 6 * sizeof(float)); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); for (int i = 0; i < 6; ++i) { EXPECT_EQ(tensor->data.f[i], expected_output[i]) << i; } ASSERT_EQ(interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {3, 1}), kTfLiteOk); ASSERT_EQ(interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {3, 1}), kTfLiteOk); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); VerifyInvoke(); } TEST_F(TestCustomAllocation, ResizeAndAllocateForEveryInvoke) { AssignCustomAllocForTensor(interpreter_->inputs()[0], kDefaultTensorAlignment); AssignCustomAllocForTensor(interpreter_->inputs()[1], kDefaultTensorAlignment); AssignCustomAllocForTensor(interpreter_->outputs()[0], kDefaultTensorAlignment); AssignCustomAllocForTensor(interpreter_->outputs()[1], kDefaultTensorAlignment); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {1, 1}), kTfLiteOk); ASSERT_EQ(interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {1, 1}), kTfLiteOk); auto input0_alloc = NewCustomAlloc( 4, kDefaultTensorAlignment); ASSERT_EQ(interpreter_->SetCustomAllocationForTensor( interpreter_->inputs()[0], input0_alloc), kTfLiteOk); auto input1_alloc = NewCustomAlloc( 4, kDefaultTensorAlignment); ASSERT_EQ(interpreter_->SetCustomAllocationForTensor( interpreter_->inputs()[1], input1_alloc), kTfLiteOk); auto output0_alloc = NewCustomAlloc( 4, kDefaultTensorAlignment); ASSERT_EQ(interpreter_->SetCustomAllocationForTensor( interpreter_->outputs()[0], output0_alloc), kTfLiteOk); auto output1_alloc = NewCustomAlloc( 4, kDefaultTensorAlignment); ASSERT_EQ(interpreter_->SetCustomAllocationForTensor( interpreter_->outputs()[1], output1_alloc), kTfLiteOk); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); std::vector<float> input = {2.0f}; std::vector<float> expected_output = {4.0f}; TfLiteTensor* tensor = interpreter_->tensor(interpreter_->outputs()[0]); memcpy(interpreter_->typed_tensor<float>(0), input.data(), sizeof(float)); memcpy(interpreter_->typed_tensor<float>(1), input.data(), sizeof(float)); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); EXPECT_EQ(tensor->data.f[0], expected_output[0]); } TEST_F(TestCustomAllocation, ResizeAndAllocate_InvalidAllocAfterInvokable) { AssignCustomAllocForTensor(interpreter_->inputs()[0], kDefaultTensorAlignment); AssignCustomAllocForTensor(interpreter_->inputs()[1], kDefaultTensorAlignment); AssignCustomAllocForTensor(interpreter_->outputs()[0], kDefaultTensorAlignment); AssignCustomAllocForTensor(interpreter_->outputs()[1], kDefaultTensorAlignment); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); VerifyInvoke(); auto invalid_output_alloc = NewCustomAlloc( 4, kDefaultTensorAlignment); ASSERT_EQ(interpreter_->SetCustomAllocationForTensor( interpreter_->outputs()[0], invalid_output_alloc), kTfLiteOk); ASSERT_NE(interpreter_->AllocateTensors(), kTfLiteOk); } TEST_F(TestCustomAllocation, ResizeAndAllocate_WithDynamicTensor) { TfLiteTensor* intermediate_tensor = interpreter_->tensor(2); intermediate_tensor->allocation_type = kTfLiteDynamic; ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); VerifyInvoke(); ASSERT_EQ(interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {1, 1}), kTfLiteOk); ASSERT_EQ(interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {1, 1}), kTfLiteOk); auto input0_alloc = NewCustomAlloc( 4, kDefaultTensorAlignment); ASSERT_EQ(interpreter_->SetCustomAllocationForTensor( interpreter_->inputs()[0], input0_alloc), kTfLiteOk); auto input1_alloc = NewCustomAlloc( 4, kDefaultTensorAlignment); ASSERT_EQ(interpreter_->SetCustomAllocationForTensor( interpreter_->inputs()[1], input1_alloc), kTfLiteOk); auto output0_alloc = NewCustomAlloc( 4, kDefaultTensorAlignment); ASSERT_EQ(interpreter_->SetCustomAllocationForTensor( interpreter_->outputs()[0], output0_alloc), kTfLiteOk); auto output1_alloc = NewCustomAlloc( 4, kDefaultTensorAlignment); ASSERT_EQ(interpreter_->SetCustomAllocationForTensor( interpreter_->outputs()[1], output1_alloc), kTfLiteOk); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); std::vector<float> input = {2.0f}; std::vector<float> expected_output = {4.0f}; TfLiteTensor* tensor = interpreter_->tensor(interpreter_->outputs()[0]); memcpy(interpreter_->typed_tensor<float>(0), input.data(), sizeof(float)); memcpy(interpreter_->typed_tensor<float>(1), input.data(), sizeof(float)); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); EXPECT_EQ(tensor->data.f[0], expected_output[0]); intermediate_tensor = interpreter_->tensor(2); intermediate_tensor->allocation_type = kTfLiteDynamic; auto invalid_output0_alloc = NewCustomAlloc( 2, kDefaultTensorAlignment); ASSERT_EQ(interpreter_->SetCustomAllocationForTensor( interpreter_->outputs()[0], invalid_output0_alloc), kTfLiteOk); ASSERT_NE(interpreter_->AllocateTensors(), kTfLiteOk); } class TestLazyDelegateProvider : public InterpreterTest { protected: class DummyLazyDelegateKernel : public SimpleDelegateKernelInterface { public: explicit DummyLazyDelegateKernel(bool prepare_error) : prepare_error_(prepare_error) {} TfLiteStatus Init(TfLiteContext* context, const TfLiteDelegateParams* params) override { return kTfLiteOk; } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) override { return prepare_error_ ? kTfLiteError : kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) override { return kTfLiteOk; } private: const bool prepare_error_; }; class DummyLazyDelegate : public SimpleDelegateInterface { public: explicit DummyLazyDelegate(bool return_error) : return_error_(return_error) {} bool IsNodeSupportedByDelegate(const TfLiteRegistration* registration, const TfLiteNode* node, TfLiteContext* context) const override { return true; } TfLiteStatus Initialize(TfLiteContext* context) override { return kTfLiteOk; } const char* Name() const override { return "DummyLazyDelegateForTest"; } std::unique_ptr<SimpleDelegateKernelInterface> CreateDelegateKernelInterface() override { return std::unique_ptr<SimpleDelegateKernelInterface>( new DummyLazyDelegateKernel(return_error_)); } SimpleDelegateInterface::Options DelegateOptions() const override { return SimpleDelegateInterface::Options(); } private: bool return_error_; }; void InitWithLazyDelegate(bool create_dyanmic_tensor = false, bool return_error = false) { TfLiteRegistration reg = {nullptr}; ASSERT_EQ(interpreter_->AddTensors(2), kTfLiteOk); interpreter_->SetInputs({0}); interpreter_->SetOutputs({1}); interpreter_->AddNodeWithParameters({0}, {1}, nullptr, 0, nullptr, &reg); Interpreter::TfLiteDelegatePtr delegate( TfLiteDelegateFactory::CreateSimpleDelegate( std::unique_ptr<SimpleDelegateInterface>( new DummyLazyDelegate(return_error))), TfLiteDelegateFactory::DeleteSimpleDelegate); mutable_lazy_delegate_providers()->push_back( [=](TfLiteContext* ) { return Interpreter::TfLiteDelegatePtr( TfLiteDelegateFactory::CreateSimpleDelegate( std::unique_ptr<SimpleDelegateInterface>( new DummyLazyDelegate(return_error))), TfLiteDelegateFactory::DeleteSimpleDelegate); }); if (create_dyanmic_tensor) { interpreter_->tensor(1)->data.raw = nullptr; interpreter_->tensor(1)->allocation_type = kTfLiteDynamic; } } }; TEST_F(TestLazyDelegateProvider, ApplicationSuccess) { InitWithLazyDelegate(); EXPECT_EQ(kTfLiteOk, interpreter_->AllocateTensors()); EXPECT_TRUE(mutable_lazy_delegate_providers()->empty()); EXPECT_TRUE(HasDelegates()); EXPECT_TRUE(IsFullyDelegated()); } TEST_F(TestLazyDelegateProvider, ApplicationFailure) { InitWithLazyDelegate(false , true ); EXPECT_EQ(kTfLiteDelegateError, ApplyLazyDelegateProviders()); EXPECT_TRUE(mutable_lazy_delegate_providers()->empty()); EXPECT_EQ(kTfLiteOk, interpreter_->AllocateTensors()); EXPECT_FALSE(HasDelegates()); EXPECT_FALSE(IsFullyDelegated()); } TEST_F(TestLazyDelegateProvider, ApplicationSkipped) { InitWithLazyDelegate(true ); EXPECT_EQ(kTfLiteOk, interpreter_->AllocateTensors()); EXPECT_TRUE(mutable_lazy_delegate_providers()->empty()); EXPECT_FALSE(HasDelegates()); EXPECT_FALSE(IsFullyDelegated()); } TEST_F(InterpreterTest, SingleSignature_get_signatures) { const char kSignatureKey[] = "test_method"; BuildSignature(kSignatureKey, {{"Input1", 0}, {"Input2", 1}}, {{"Output1", 5}}); auto results = interpreter_->signature_keys(); ASSERT_EQ(1, results.size()); EXPECT_EQ(kSignatureKey, *results[0]); } TEST_F(InterpreterTest, SingleSignature_get_inputs) { const char kSignatureKey[] = "test_method"; const std::map<std::string, uint32_t> inputs = {{"Input1", 0}, {"Input2", 1}}; const std::map<std::string, uint32_t> outputs = {{"Output1", 5}}; BuildSignature(kSignatureKey, inputs, outputs); EXPECT_THAT(interpreter_->signature_inputs(kSignatureKey), testing::Eq(inputs)); EXPECT_THAT(interpreter_->signature_outputs(kSignatureKey), testing::Eq(outputs)); } TEST_F(InterpreterTest, SingleSignature_validate_get_tensor) { const char kSignatureKey[] = "test_method"; const std::map<std::string, uint32_t> inputs = {{"Input1", 0}, {"Input2", 1}}; const std::map<std::string, uint32_t> outputs = {{"Output1", 5}}; BuildSignature(kSignatureKey, inputs, outputs); ASSERT_EQ(interpreter_->AddTensors(6), kTfLiteOk); ASSERT_EQ(interpreter_->SetInputs({0, 1}), kTfLiteOk); ASSERT_EQ(interpreter_->SetOutputs({5}), kTfLiteOk); ASSERT_EQ(interpreter_->SetTensorParametersReadWrite( 0, kTfLiteFloat32, "", {3}, TfLiteQuantizationParams()), kTfLiteOk); ASSERT_EQ(interpreter_->SetTensorParametersReadWrite( 1, kTfLiteFloat32, "", {3}, TfLiteQuantizationParams()), kTfLiteOk); ASSERT_EQ( interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {1, 2, 3}), kTfLiteOk); ASSERT_EQ( interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {1, 2, 3}), kTfLiteOk); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); EXPECT_TRUE(interpreter_->input_tensor_by_signature( "Input1", kSignatureKey) != nullptr); EXPECT_TRUE(interpreter_->input_tensor_by_signature( "Input2", kSignatureKey) != nullptr); EXPECT_TRUE(interpreter_->output_tensor_by_signature( "Output1", kSignatureKey) != nullptr); EXPECT_EQ(interpreter_->input_tensor_by_signature("Input3", kSignatureKey), nullptr); EXPECT_EQ(interpreter_->output_tensor_by_signature("Input3", kSignatureKey), nullptr); EXPECT_EQ(interpreter_->input_tensor_by_signature("Input1", "InvalidMethod"), nullptr); EXPECT_EQ( interpreter_->output_tensor_by_signature("Output1", "InvalidMethod"), nullptr); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/interpreter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/interpreter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
57f1cd51-8a49-41d2-8617-e678c4a4dc31
cpp
tensorflow/tensorflow
tensor_or_memref
third_party/xla/xla/mlir/tools/mlir_interpreter/framework/tensor_or_memref.cc
third_party/xla/xla/mlir/tools/mlir_interpreter/framework/tests/tensor_or_memref_test.cc
#include "xla/mlir/tools/mlir_interpreter/framework/tensor_or_memref.h" #include <cstddef> #include <cstdint> #include <optional> #include <utility> #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Dialect/Utils/IndexingUtils.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" namespace mlir { namespace interpreter { std::optional<int64_t> BufferView::GetPhysicalIndex( llvm::ArrayRef<int64_t> view_indices) const { int64_t result = offset; if (!InBounds(view_indices)) { return std::nullopt; } for (int64_t i = 0; i < view_indices.size(); ++i) { result += view_indices[i] * strides[i]; } return result; } bool BufferView::InBounds(llvm::ArrayRef<int64_t> view_indices) const { if (view_indices.size() > sizes.size()) { return false; } for (auto [index, size] : llvm::zip(view_indices, sizes)) { if (index < 0 || index >= size) { return false; } } return true; } SmallVector<int64_t> BufferView::GetDefaultStrides(ArrayRef<int64_t> sizes) { SmallVector<int64_t> result(sizes.size()); int64_t stride = 1; for (int64_t i = result.size() - 1; i >= 0; --i) { result[i] = stride; stride *= sizes[i]; } return result; } SmallVector<int64_t> BufferView::GetStridesForLayout(ArrayRef<int64_t> sizes, ArrayRef<int64_t> layout) { if (layout.empty()) return GetDefaultStrides(sizes); auto inverse_layout = invertPermutationVector(layout); SmallVector<int64_t> result(sizes.size()); int64_t stride = 1; for (int64_t i = 0; i < layout.size(); ++i) { result[inverse_layout[i]] = stride; stride *= sizes[inverse_layout[i]]; } return result; } LogicalResult BufferView::Slice(int64_t dim_index, int64_t dim_offset) { llvm::SmallVector<int64_t> offsets(Rank(), 0); offsets[dim_index] = dim_offset; if (auto new_offset = GetPhysicalIndex(offsets)) { offset = *new_offset; } else { return failure(); } if (dim_index >= Rank()) --*num_vector_dims; strides.erase(strides.begin() + dim_index); sizes.erase(sizes.begin() + dim_index); return success(); } LogicalResult BufferView::Slice(int64_t dim_index, int64_t dim_offset, int64_t dim_size, int64_t dim_stride) { llvm::SmallVector<int64_t> offsets(Rank(), 0); offsets[dim_index] = dim_offset; if (dim_size == 0) { offset = 0; } else if (auto new_offset = GetPhysicalIndex(offsets)) { offset = *new_offset; } else { return failure(); } sizes[dim_index] = dim_size; strides[dim_index] *= dim_stride; return success(); } LogicalResult BufferView::Subview(ArrayRef<int64_t> subview_offsets, ArrayRef<int64_t> subview_sizes, ArrayRef<int64_t> subview_strides) { if (auto new_offset = GetPhysicalIndex(subview_offsets)) { offset = *new_offset; } else { return failure(); } for (auto [in_size, subview_offset, subview_size, subview_stride] : llvm::zip(sizes, subview_offsets, subview_sizes, subview_strides)) { int64_t limit_index = subview_offset + (subview_size - 1) * subview_stride; if (subview_offset < 0 || subview_offset >= in_size || limit_index < 0 || limit_index >= in_size) { return failure(); } } for (auto [in_stride, subview_stride] : llvm::zip(strides, subview_strides)) { in_stride *= subview_stride; } sizes = llvm::to_vector(subview_sizes); return success(); } int64_t BufferView::GetNumElements(bool include_vector_dims) const { size_t n = 1; for (auto size : ArrayRef<int64_t>(sizes).drop_back( include_vector_dims ? 0 : num_vector_dims.value_or(0))) { n *= size; } return n; } std::optional<int64_t> BufferView::GetCollapsedStride( llvm::ArrayRef<int64_t> dims) const { using StrideAndDim = std::pair<int64_t, int64_t>; llvm::SmallVector<StrideAndDim> strides_and_dims; for (auto dim : dims) { if (sizes[dim] != 1) { strides_and_dims.emplace_back(strides[dim], dim); } } if (strides_and_dims.empty()) { return 0; } llvm::sort(strides_and_dims); int64_t next_stride = strides_and_dims.front().first; for (auto [stride, dim] : strides_and_dims) { if (stride != next_stride) { return std::nullopt; } next_stride *= sizes[dim]; } return strides_and_dims.front().first; } } }
#include "xla/mlir/tools/mlir_interpreter/framework/tensor_or_memref.h" #include <algorithm> #include <cstdint> #include <optional> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_join.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Support/LLVM.h" namespace mlir { namespace interpreter { namespace { using ::testing::ElementsAre; TEST(TensorOrMemrefTest, DefaultStrides) { EXPECT_THAT(BufferView::GetDefaultStrides({1, 2, 3}), ElementsAre(6, 3, 1)); } TEST(TensorOrMemrefTest, StridesForLayout) { EXPECT_THAT(BufferView::GetStridesForLayout({1, 2, 3}, {2, 1, 0}), ElementsAre(6, 3, 1)); EXPECT_THAT(BufferView::GetStridesForLayout({1, 2, 3}, {0, 1, 2}), ElementsAre(1, 1, 2)); EXPECT_THAT(BufferView::GetStridesForLayout({3, 3, 3, 3}, {3, 0, 1, 2}), ElementsAre(27, 1, 3, 9)); } std::optional<int64_t> GetCollapsedStrideNaive(llvm::ArrayRef<int64_t> dims, const BufferView& view) { BufferView f; for (int64_t dim : dims) { f.sizes.push_back(view.sizes[dim]); } llvm::SmallBitVector v(view.GetNumElements()); for (const auto& indices : f.Indices()) { SmallVector<int64_t> view_indices(view.Rank()); for (auto [dim, index] : llvm::zip(dims, indices)) { view_indices[dim] = index; } v[*view.GetPhysicalIndex(view_indices)] = true; } if (v.count() != f.GetNumElements()) return std::nullopt; if (f.GetNumElements() <= 1) return 0; int64_t min = v.find_first(); int64_t expected_stride = (v.find_last() - min) / (f.GetNumElements() - 1); for (int64_t i = 0; i < f.GetNumElements(); ++i) { if (!v[i * expected_stride + min]) { return std::nullopt; } } return expected_stride; } TEST(TensorOrMemrefTest, CollapsedStride) { BufferView view{.sizes = {1, 2, 3, 1, 5}, .strides = BufferView::GetDefaultStrides({1, 2, 3, 1, 5})}; auto check_all = [&]() { for (int64_t i = 0; i < (1 << view.Rank()); ++i) { SmallVector<int64_t> dims; for (int64_t dim = 0; dim < view.Rank(); ++dim) { if (i & (1 << dim)) dims.push_back(dim); } do { auto v = view.GetCollapsedStride(dims); auto n = GetCollapsedStrideNaive(dims, view); EXPECT_EQ(n, v) << "checking " << absl::StrJoin(dims, ", "); } while (std::next_permutation(dims.begin(), dims.end())); } }; check_all(); ASSERT_TRUE(view.Slice(3, 0).succeeded()); check_all(); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/mlir/tools/mlir_interpreter/framework/tensor_or_memref.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/mlir/tools/mlir_interpreter/framework/tests/tensor_or_memref_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d2594947-6568-4ee6-a346-5acce0f5b176
cpp
tensorflow/tensorflow
registration
third_party/xla/xla/mlir/tools/mlir_interpreter/framework/registration.cc
tensorflow/core/framework/registration/registration_test.cc
#include "xla/mlir/tools/mlir_interpreter/framework/registration.h" #include <cassert> #include <functional> #include <utility> #include "mlir/IR/Operation.h" #include "mlir/Support/LLVM.h" #include "xla/mlir/tools/mlir_interpreter/framework/interpreter.h" #include "xla/mlir/tools/mlir_interpreter/framework/interpreter_value.h" namespace mlir { namespace interpreter { namespace detail { namespace { DenseMap<llvm::StringRef, llvm::StringRef>& GetOpAliases() { static DenseMap<llvm::StringRef, llvm::StringRef>* aliases = nullptr; if (!aliases) { aliases = new DenseMap<llvm::StringRef, llvm::StringRef>(); } return *aliases; } DenseMap<llvm::StringRef, InterpreterFunction>& GetFunctions() { static DenseMap<llvm::StringRef, InterpreterFunction>* functions = nullptr; if (!functions) { functions = new DenseMap<llvm::StringRef, InterpreterFunction>(); } return *functions; } } InterpreterFunction GetFunction(llvm::StringRef name) { const auto& fns = GetFunctions(); auto fn = fns.find(name); if (fn != fns.end()) { return fn->second; } const auto& aliases = GetOpAliases(); auto alias = aliases.find(name); if (alias != aliases.end()) { return fns.find(alias->second)->second; } return nullptr; } void RegisterInterpreterOp(llvm::StringRef name, InterpreterValue (*fn)(const InterpreterValue&)) { RegisterInterpreterOp( name, [fn](MutableArrayRef<InterpreterValue> operands, mlir::Operation*, InterpreterState&) -> SmallVector<InterpreterValue> { assert(operands.size() == 1 && "unexpected number of operands"); return {fn(operands[0])}; }); } void RegisterInterpreterOp(llvm::StringRef name, InterpreterValue (*fn)(const InterpreterValue&, const InterpreterValue&)) { RegisterInterpreterOp( name, [fn](MutableArrayRef<InterpreterValue> operands, mlir::Operation*, InterpreterState&) -> SmallVector<InterpreterValue> { assert(operands.size() == 2 && "unexpected number of operands"); return {fn(operands[0], operands[1])}; }); } void RegisterInterpreterOp( llvm::StringRef name, InterpreterValue (*fn)(MutableArrayRef<InterpreterValue>)) { RegisterInterpreterOp( name, [fn](MutableArrayRef<InterpreterValue> operands, mlir::Operation*, InterpreterState&) -> SmallVector<InterpreterValue> { return {fn(operands)}; }); } void RegisterInterpreterOp( llvm::StringRef name, std::function<llvm::SmallVector<InterpreterValue>( MutableArrayRef<InterpreterValue>, mlir::Operation*, InterpreterState&)> fn) { GetFunctions()[name] = std::move(fn); } void RegisterInterpreterOp(llvm::StringRef name, llvm::StringRef original) { GetOpAliases()[name] = original; } } } }
#include "tensorflow/core/framework/registration/registration.h" #include <gmock/gmock.h> #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { using ::testing::Eq; #define STORE_NEXT_ID_IMPL(id, name) constexpr int name = id #define STORE_NEXT_ID(name) TF_NEW_ID_FOR_INIT(STORE_NEXT_ID_IMPL, name) STORE_NEXT_ID(kBaseId); STORE_NEXT_ID(kNextId1); STORE_NEXT_ID(kNextId2); TEST(NewIdForInitTest, SequentialIds) { static_assert(kBaseId >= 0, "kBaseId < 0"); static_assert(kNextId1 == kBaseId + 1, "kNextId1 != kBaseId+1"); static_assert(kNextId2 == kBaseId + 2, "kNextId2 != kBaseId+2"); } int observed_unconditional_init; InitOnStartupMarker const kUnconditionalInitMarker = InitOnStartupMarker{} << []() { observed_unconditional_init++; return InitOnStartupMarker{}; }; TEST(InitOnStartupTest, Unconditional) { EXPECT_THAT(observed_unconditional_init, Eq(1)); } template <bool Enable> int observed_conditional_init; template <bool Enable> InitOnStartupMarker const kConditionalInitMarker = TF_INIT_ON_STARTUP_IF(Enable) << []() { (observed_conditional_init<Enable>)++; return InitOnStartupMarker{}; }; template InitOnStartupMarker const kConditionalInitMarker<true>; template InitOnStartupMarker const kConditionalInitMarker<false>; TEST(InitOnStartupTest, DISABLED_Conditional) { EXPECT_THAT(observed_conditional_init<true>, Eq(1)); EXPECT_THAT(observed_conditional_init<false>, Eq(0)); } template <bool Enable> int observed_conditional_init_immediate; template <bool Enable> InitOnStartupMarker const kConditionalInitImmediateMarker = TF_INIT_ON_STARTUP_IF(Enable) << ([]() { (observed_conditional_init_immediate<Enable>)++; return InitOnStartupMarker{}; })(); template InitOnStartupMarker const kConditionalInitImmediateMarker<true>; template InitOnStartupMarker const kConditionalInitImmediateMarker<false>; TEST(InitOnStartupTest, DISABLED_ConditionalImmediate) { EXPECT_THAT(observed_conditional_init_immediate<true>, Eq(1)); EXPECT_THAT(observed_conditional_init_immediate<false>, Eq(0)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/mlir/tools/mlir_interpreter/framework/registration.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/framework/registration/registration_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
21dfe8dd-d12e-423a-9396-e9855bfff713
cpp
tensorflow/tensorflow
interpreter_value
third_party/xla/xla/mlir/tools/mlir_interpreter/framework/interpreter_value.cc
third_party/xla/xla/mlir/tools/mlir_interpreter/framework/tests/interpreter_value_test.cc
#include "xla/mlir/tools/mlir_interpreter/framework/interpreter_value.h" #include <cassert> #include <complex> #include <cstdint> #include <functional> #include <iterator> #include <memory> #include <string> #include <string_view> #include <type_traits> #include <variant> #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Types.h" #include "mlir/Support/LLVM.h" #include "xla/mlir/tools/mlir_interpreter/framework/tensor_or_memref.h" namespace mlir { namespace interpreter { namespace { struct TypeStr { static std::string_view Get(bool) { return "i1"; } static std::string_view Get(int64_t) { return "i64"; } static std::string_view Get(int32_t) { return "i32"; } static std::string_view Get(int16_t) { return "i16"; } static std::string_view Get(int8_t) { return "i8"; } static std::string_view Get(uint64_t) { return "ui64"; } static std::string_view Get(uint32_t) { return "ui32"; } static std::string_view Get(uint16_t) { return "ui16"; } static std::string_view Get(uint8_t) { return "ui8"; } static std::string_view Get(float) { return "f32"; } static std::string_view Get(double) { return "f64"; } static std::string_view Get(std::complex<float>) { return "complex<f32>"; } static std::string_view Get(std::complex<double>) { return "complex<f64>"; } }; struct InterpreterValuePrinter { llvm::raw_ostream& os; template <typename T> void operator()(const TensorOrMemref<T>& t) { if (!t.buffer) { os << "Memref: null"; return; } if (t.view.is_vector) { os << "vector<"; } else { os << "TensorOrMemref<"; } ArrayRef<int64_t> sizes = t.view.sizes; for (int64_t size : sizes.drop_back(t.view.num_vector_dims.value_or(0))) { os << size << "x"; } if (t.view.num_vector_dims) { os << "vector<"; for (int64_t size : sizes.take_back(*t.view.num_vector_dims)) { os << size << "x"; } os << TypeStr::Get(T{}) << ">>: "; } else { os << TypeStr::Get(T{}) << ">: "; } SmallVector<int64_t> indices(t.view.Rank() + t.view.num_vector_dims.value_or(0)); std::function<void(int64_t)> print; print = [&](int64_t dim) { if (dim == indices.size()) { PrintScalar(t.at(indices)); } else { os << "["; for (int64_t i = 0; i < t.view.sizes[dim]; ++i) { if (i > 0) os << ", "; indices[dim] = i; print(dim + 1); } os << "]"; } }; if (t.buffer->Deallocated()) { os << "<<deallocated>>"; } else { print(0); } } void operator()(const Tuple& t) { os << "("; bool first = true; for (const auto& v : t.values) { if (!first) os << ", "; first = false; v->Print(os); } os << ")"; } template <typename T> void operator()(const T& t) { os << TypeStr::Get(t) << ": "; PrintScalar(t); } template <typename T> void PrintScalar(const T& v) { os << v; } template <typename T> void PrintScalar(const std::complex<T>& v) { os << v.real() << (v.imag() >= 0 ? "+" : "") << v.imag() << "i"; } void PrintScalar(bool v) { os << (v ? "true" : "false"); } void PrintScalar(int8_t v) { os << (int)v; } void PrintScalar(uint8_t v) { os << (int)v; } }; } void InterpreterValue::Print(llvm::raw_ostream& os) const { std::visit(InterpreterValuePrinter{os}, storage); } std::string InterpreterValue::ToString() const { std::string buf; llvm::raw_string_ostream os(buf); Print(os); return buf; } InterpreterValue InterpreterValue::ExtractElement( llvm::ArrayRef<int64_t> indices) const { return std::visit( [&](auto& it) -> InterpreterValue { using T = std::decay_t<decltype(it)>; if constexpr (is_tensor_or_memref_v<T>) { if (it.view.num_vector_dims) { return {it.VectorAt(indices)}; } else { return {it.at(indices)}; } } else if constexpr (std::is_same_v<T, Tuple>) { llvm_unreachable("extracting from tuples is unsupported"); } else { return {it}; } }, storage); } void InterpreterValue::InsertElement(llvm::ArrayRef<int64_t> indices, const InterpreterValue& value) { std::visit( [&](auto& it) { using T = std::decay_t<decltype(it)>; if constexpr (is_tensor_or_memref_v<T>) { if (it.view.num_vector_dims) { auto subview = it.VectorAt(indices); const auto& values = std::get<T>(value.storage); assert(values.view.sizes == subview.view.sizes && "mismatched sizes"); for (const auto& index : subview.view.Indices()) { subview.at(index) = values.at(index); } } else { it.at(indices) = std::get<typename T::element_type>(value.storage); } } else if constexpr (std::is_same_v<T, Tuple>) { llvm_unreachable("inserting into tuples is unsupported"); } else { it = std::get<T>(value.storage); } }, storage); } void InterpreterValue::Fill( const std::function<InterpreterValue(llvm::ArrayRef<int64_t> indices)>& f) { std::visit( [&](auto& it) { using T = std::decay_t<decltype(it)>; if constexpr (is_tensor_or_memref_v<T>) { for (const auto& indices : it.view.Indices()) { if (it.view.num_vector_dims) { auto subview = it.VectorAt(indices); auto value = std::get<T>(f(indices).storage); for (const auto& index : subview.view.Indices()) { subview.at(index) = value.at(index); } } else { it.at(indices) = std::get<typename T::element_type>(f(indices).storage); } } } else if constexpr (std::is_same_v<T, Tuple>) { llvm_unreachable("Filling tuples is unsupported"); } else { it = std::get<T>(f({}).storage); } }, storage); } InterpreterValue InterpreterValue::Clone(ArrayRef<int64_t> layout) const { return std::visit( [&](const auto& it) -> InterpreterValue { using T = std::decay_t<decltype(it)>; if constexpr (is_tensor_or_memref_v<T>) { return {it.Clone(layout)}; } else if constexpr (std::is_same_v<T, Tuple>) { llvm_unreachable("cloning tuples is unsupported"); } else { return {it}; } }, storage); } InterpreterValue InterpreterValue::CoerceLayout( ArrayRef<int64_t> layout) const { const auto& view = this->View(); if (view.strides == BufferView::GetStridesForLayout(view.sizes, layout)) { return *this; } return Clone(layout); } InterpreterValue InterpreterValue::TypedAlike( llvm::ArrayRef<int64_t> shape) const { return std::visit( [&](const auto& it) -> InterpreterValue { using T = std::decay_t<decltype(it)>; if constexpr (is_tensor_or_memref_v<T>) { return {T::Empty(shape)}; } else if constexpr (std::is_same_v<T, Tuple>) { llvm_unreachable("TypedAlike for tuples is unsupported"); } else { return {TensorOrMemref<T>::Empty(shape)}; } }, storage); } InterpreterValue InterpreterValue::MakeTensor(mlir::Type element_type, SmallVector<int64_t> shape) { auto vector_ty = llvm::dyn_cast<VectorType>(element_type); if (vector_ty) { llvm::copy(vector_ty.getShape(), std::back_inserter(shape)); } return DispatchScalarType(element_type, [&](auto dummy) -> InterpreterValue { auto tensor = TensorOrMemref<decltype(dummy)>::Empty(shape); if (vector_ty) { tensor.view.num_vector_dims = vector_ty.getRank(); } return {tensor}; }); } BufferView& InterpreterValue::View() { return std::visit( [](auto& it) -> BufferView& { if constexpr (is_tensor_or_memref_v<decltype(it)>) { return it.view; } llvm_unreachable("view is only supported for tensors"); }, storage); } const BufferView& InterpreterValue::View() const { return std::visit( [](const auto& it) -> const BufferView& { if constexpr (is_tensor_or_memref_v<decltype(it)>) { return it.view; } llvm_unreachable("view is only supported for tensors"); }, storage); } bool InterpreterValue::IsTensor() const { return std::visit( [](const auto& it) { return is_tensor_or_memref_v<decltype(it)>; }, storage); } InterpreterValue InterpreterValue::AsUnitTensor(bool is_vector) const { auto result = TypedAlike({}); result.InsertElement({}, *this); result.View().is_vector = is_vector; return result; } bool Tuple::operator==(const Tuple& other) const { if (other.values.size() != values.size()) return false; for (const auto& [lhs, rhs] : llvm::zip(values, other.values)) { if (!(*lhs == *rhs)) return false; } return true; } std::shared_ptr<Buffer> InterpreterValue::GetBuffer() const { return std::visit( [](const auto& it) -> std::shared_ptr<interpreter::Buffer> { if constexpr (is_tensor_or_memref_v<decltype(it)>) { return it.buffer; } else { llvm_unreachable("buffer() is only supported for tensors"); } }, storage); } int64_t InterpreterValue::AsInt() const { auto visit = [](auto value) -> int64_t { if constexpr (std::is_integral_v<decltype(value)>) { return static_cast<int64_t>(value); } else { llvm_unreachable("only integral types can be converted to ints"); } }; return std::visit(visit, storage); } uint64_t InterpreterValue::AsUInt() const { auto visit = [](auto value) -> uint64_t { if constexpr (std::is_integral_v<decltype(value)>) { if constexpr (std::is_signed_v<decltype(value)>) { return static_cast<uint64_t>( static_cast<std::make_unsigned_t<decltype(value)>>(value)); } else { return static_cast<uint64_t>(value); } } else { llvm_unreachable("only integral types can be converted to ints"); } }; return std::visit(visit, storage); } double InterpreterValue::AsDouble() const { auto visit = [](auto value) -> int64_t { if constexpr (std::is_floating_point_v<decltype(value)>) { return static_cast<double>(value); } else { llvm_unreachable("only float types can be converted to ints"); } }; return std::visit(visit, storage); } int64_t InterpreterValue::GetByteSizeOfElement() const { return std::visit( [](const auto& it) -> int64_t { using T = std::decay_t<decltype(it)>; if constexpr (is_tensor_or_memref_v<T>) { return sizeof(typename T::element_type); } else { llvm_unreachable("scalars have no element sizes"); } }, storage); } } }
#include "xla/mlir/tools/mlir_interpreter/framework/interpreter_value.h" #include <complex> #include <cstdint> #include <optional> #include <variant> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "llvm/ADT/ArrayRef.h" #include "xla/mlir/tools/mlir_interpreter/framework/tensor_or_memref.h" namespace mlir { namespace interpreter { namespace { using ::testing::ElementsAre; using ::testing::IsEmpty; TEST(InterpreterValueTest, FillUnitTensor) { auto t = TensorOrMemref<int64_t>::Empty({}); t.at({}) = 42; InterpreterValue v{t}; v.Fill([](llvm::ArrayRef<int64_t>) { return InterpreterValue{int64_t{43}}; }); ASSERT_EQ(t.at({}), 43); } TEST(InterpreterValueTest, Fill1DTensor) { auto t = TensorOrMemref<int64_t>::Empty({3}); InterpreterValue v{t}; v.Fill([](llvm::ArrayRef<int64_t> indices) { return InterpreterValue{indices[0]}; }); ASSERT_EQ(t.at(0), 0); ASSERT_EQ(t.at(1), 1); ASSERT_EQ(t.at(2), 2); } TEST(InterpreterValueTest, FillTensorOfVector) { auto t = TensorOrMemref<int64_t>::Empty({4, 2}); t.view.num_vector_dims = 1; InterpreterValue v{t}; v.Fill([](llvm::ArrayRef<int64_t> indices) -> InterpreterValue { EXPECT_EQ(indices.size(), 1); auto r = TensorOrMemref<int64_t>::Empty({2}); r.view.is_vector = true; r.at(0) = indices[0]; r.at(1) = indices[0] * 10; return {r}; }); ASSERT_EQ( v.ToString(), "TensorOrMemref<4xvector<2xi64>>: [[0, 0], [1, 10], [2, 20], [3, 30]]"); } TEST(InterpreterValueTest, FillZeroSizedTensor) { auto t = TensorOrMemref<int64_t>::Empty({0, 1}); InterpreterValue v{t}; bool was_called = false; v.Fill([&](llvm::ArrayRef<int64_t> indices) { was_called = true; return InterpreterValue{indices[0]}; }); EXPECT_FALSE(was_called); } TEST(InterpreterValueTest, TypedAlike) { InterpreterValue v{TensorOrMemref<int32_t>::Empty({})}; auto TypedAlike = v.TypedAlike({1, 2, 3}); ASSERT_TRUE( std::holds_alternative<TensorOrMemref<int32_t>>(TypedAlike.storage)); ASSERT_THAT(TypedAlike.View().sizes, ElementsAre(1, 2, 3)); } TEST(InterpreterValueTest, AsUnitTensor) { InterpreterValue v{42}; InterpreterValue wrapped = v.AsUnitTensor(); ASSERT_THAT(wrapped.View().sizes, IsEmpty()); ASSERT_EQ(std::get<TensorOrMemref<int32_t>>(wrapped.storage).at({}), 42); } TEST(InterpreterValueTest, IsTensor) { ASSERT_FALSE(InterpreterValue{42}.IsTensor()); ASSERT_TRUE(InterpreterValue{TensorOrMemref<int32_t>::Empty({})}.IsTensor()); } TEST(InterpreterValueTest, AsInt) { ASSERT_EQ(InterpreterValue{int64_t{42}}.AsInt(), 42); ASSERT_EQ(InterpreterValue{int32_t{42}}.AsInt(), 42); ASSERT_EQ(InterpreterValue{int16_t{42}}.AsInt(), 42); ASSERT_EQ(InterpreterValue{int8_t{42}}.AsInt(), 42); ASSERT_EQ(InterpreterValue{int8_t{-1}}.AsInt(), -1); } TEST(InterpreterValueTest, AsUInt) { ASSERT_EQ(InterpreterValue{int16_t{-1}}.AsUInt(), 65535); ASSERT_EQ(InterpreterValue{int8_t{-1}}.AsUInt(), 255); } TEST(InterpreterValueTest, CloneTensor) { auto tensor = TensorOrMemref<int64_t>::Empty({3}); tensor.at(0) = 1; tensor.at(1) = 2; tensor.at(2) = 3; InterpreterValue wrapped{tensor}; auto clone = wrapped.Clone(); tensor.at(0) = 4; auto& cloned_tensor = std::get<TensorOrMemref<int64_t>>(clone.storage); ASSERT_EQ(cloned_tensor.at(0), 1); ASSERT_EQ(cloned_tensor.at(1), 2); ASSERT_EQ(cloned_tensor.at(2), 3); } TEST(InterpreterValueTest, CloneWithLayouts) { auto tensor = TensorOrMemref<int64_t>::Empty({3, 5}, {0, 1}); tensor.at({2, 4}) = 42; InterpreterValue wrapped{tensor}; auto clone = wrapped.Clone(); ASSERT_EQ(clone.View().strides, BufferView::GetStridesForLayout({3, 5}, {1, 0})); ASSERT_EQ(clone.ExtractElement({2, 4}).AsInt(), 42); } TEST(InterpreterValueTest, CoerceLayoutNoop) { auto tensor = TensorOrMemref<int64_t>::Empty({3, 5}, {0, 1}); tensor.at({2, 4}) = 42; InterpreterValue wrapped{tensor}; auto coerced = wrapped.CoerceLayout({0, 1}); ASSERT_EQ(tensor.buffer, std::get<TensorOrMemref<int64_t>>(coerced.storage).buffer); } TEST(InterpreterValueTest, CoerceLayout) { auto tensor = TensorOrMemref<int64_t>::Empty({3, 5}); tensor.at({2, 4}) = 42; InterpreterValue wrapped{tensor}; auto clone = wrapped.CoerceLayout({0, 1}); ASSERT_EQ(clone.View().strides, BufferView::GetStridesForLayout({3, 5}, {0, 1})); ASSERT_EQ(clone.ExtractElement({2, 4}).AsInt(), 42); } TEST(InterpreterValueTest, CoerceLayoutSquare) { auto tensor = TensorOrMemref<float>::Empty({2, 2}); tensor.at({0, 0}) = 1; tensor.at({0, 1}) = 2; tensor.at({1, 0}) = 3; tensor.at({1, 1}) = 4; InterpreterValue wrapped{tensor}; auto clone = wrapped.CoerceLayout({0, 1}); auto& cloned_tensor = std::get<TensorOrMemref<float>>(clone.storage); EXPECT_EQ( *reinterpret_cast<float*>(cloned_tensor.buffer->at(0, sizeof(float))), 1); EXPECT_EQ( *reinterpret_cast<float*>(cloned_tensor.buffer->at(1, sizeof(float))), 3); EXPECT_EQ( *reinterpret_cast<float*>(cloned_tensor.buffer->at(2, sizeof(float))), 2); EXPECT_EQ( *reinterpret_cast<float*>(cloned_tensor.buffer->at(3, sizeof(float))), 4); } TEST(InterpreterValueTest, CloneScalar) { InterpreterValue value{42}; auto clone = value.Clone(); ASSERT_THAT(std::get<int32_t>(clone.storage), 42); } TEST(InterpreterValueTest, ToString) { InterpreterValue value{TensorOrMemref<int64_t>::Empty({3})}; ASSERT_EQ(value.ToString(), "TensorOrMemref<3xi64>: [0, 0, 0]"); } TEST(InterpreterValueTest, ToString2d) { InterpreterValue value{TensorOrMemref<int64_t>::Empty({3, 2})}; ASSERT_EQ(value.ToString(), "TensorOrMemref<3x2xi64>: [[0, 0], [0, 0], [0, 0]]"); } TEST(InterpreterValueTest, ToString0d) { InterpreterValue value{TensorOrMemref<int64_t>::Empty({})}; ASSERT_EQ(value.ToString(), "TensorOrMemref<i64>: 0"); } TEST(InterpreterValueTest, ToStringComplex) { InterpreterValue value{std::complex<float>{}}; ASSERT_EQ(value.ToString(), "complex<f32>: 0.000000e+00+0.000000e+00i"); } TEST(CastTest, UnpackTensor) { InterpreterValue value{TensorOrMemref<int8_t>::Empty({1, 1})}; value.InsertElement({0, 0}, {int8_t{1}}); ASSERT_EQ(InterpreterValueCast<int64_t>(value), 1); ASSERT_EQ(InterpreterValueCast<uint8_t>(value), 1); ASSERT_EQ(InterpreterValueCast<float>(value), 1.0f); ASSERT_EQ(InterpreterValueCast<double>(value), 1.0); InterpreterValue non_unit{TensorOrMemref<int8_t>::Empty({2, 2})}; ASSERT_EQ(InterpreterValueDynCast<int64_t>(non_unit), std::nullopt); } TEST(CastTest, IdentityCast) { InterpreterValue value{TensorOrMemref<float>::Empty({1, 1})}; ASSERT_EQ(InterpreterValueCast<InterpreterValue>(value), value); } TEST(CastTest, CastToUnsigned) { InterpreterValue value{int8_t{-1}}; ASSERT_EQ(InterpreterValueCast<uint8_t>(value), 255); ASSERT_EQ(InterpreterValueCast<uint16_t>(value), 65535); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/mlir/tools/mlir_interpreter/framework/interpreter_value.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/mlir/tools/mlir_interpreter/framework/tests/interpreter_value_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
52916fe4-bde7-4bfd-a579-9931b007d93f
cpp
tensorflow/tensorflow
math
third_party/xla/xla/hlo/builder/lib/math.cc
third_party/xla/xla/hlo/builder/lib/math_test.cc
#include "xla/hlo/builder/lib/math.h" #include <algorithm> #include <array> #include <cmath> #include <functional> #include <limits> #include <vector> #include "absl/algorithm/container.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/builder/lib/arithmetic.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/lib/loops.h" #include "xla/hlo/builder/lib/math_impl.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/primitive_util.h" #include "xla/shape.h" #include "xla/status_macros.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { template <typename FP> XlaOp EvaluatePolynomial(XlaOp x, absl::Span<const FP> coefficients) { static_assert(std::is_floating_point<FP>::value, "Template-argument 'FP' must be a floating-point type"); if (coefficients.empty()) { return ScalarLike(x, FP(0.0)); } XlaOp poly = ScalarLike(x, coefficients[0]); for (int i = 1; i < coefficients.size(); ++i) { FP c = coefficients[i]; poly = poly * x + ScalarLike(x, c); } return poly; } template <typename FP> XlaOp EvaluateChebyshevPolynomial(XlaOp x, absl::Span<const FP> coefficients) { static_assert(std::is_floating_point<FP>::value, "Template-argument 'FP' must be a floating-point type"); XlaOp b0 = ScalarLike(x, 0.0); XlaOp b1 = ScalarLike(x, 0.0); XlaOp b2 = ScalarLike(x, 0.0); for (FP c : coefficients) { b2 = b1; b1 = b0; b0 = x * b1 - b2 + ScalarLike(x, c); } return ScalarLike(x, 0.5) * (b0 - b2); } } static XlaOp DoWithUpcastToF32(XlaOp operand, absl::Span<const PrimitiveType> upcast_types, const std::function<XlaOp(XlaOp)>& operation) { auto& b = *operand.builder(); return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(auto shape, b.GetShape(operand)); PrimitiveType elem_ty = shape.element_type(); bool needs_upcast = upcast_types.empty() ? primitive_util::BitWidth(shape.element_type()) <= 16 : absl::c_linear_search(upcast_types, elem_ty); if (needs_upcast) { operand = ConvertElementType(operand, F32); } XlaOp result = operation(operand); if (needs_upcast) { result = ConvertElementType(result, elem_ty); } return result; }); } static absl::Status EnsureOperandIsRealFp(absl::string_view op_name, XlaOp operand) { auto& b = *operand.builder(); TF_ASSIGN_OR_RETURN(auto shape, b.GetShape(operand)); auto elem_ty = shape.element_type(); if (!primitive_util::IsFloatingPointType(elem_ty)) { return InvalidArgument( "Operands to %s must be real-valued floating-point, but got %s", op_name, PrimitiveType_Name(elem_ty)); } return absl::OkStatus(); } XlaOp IsPosInf(XlaOp operand) { auto& b = *operand.builder(); return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("IsPosInf", operand)); TF_ASSIGN_OR_RETURN(auto shape, b.GetShape(operand)); return Eq(operand, MaxValue(&b, shape.element_type())); }); } XlaOp IsNegInf(XlaOp operand) { auto& b = *operand.builder(); return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("IsNegInf", operand)); TF_ASSIGN_OR_RETURN(auto shape, b.GetShape(operand)); return Eq(operand, MinValue(&b, shape.element_type())); }); } XlaOp IsInf(XlaOp operand) { auto& b = *operand.builder(); return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("IsInf", operand)); return IsPosInf(Abs(operand)); }); } XlaOp IsNan(XlaOp operand) { auto& b = *operand.builder(); return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("IsNan", operand)); return Ne(operand, operand); }); } XlaOp IsNegZero(XlaOp operand) { auto& b = *operand.builder(); return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("IsNegZero", operand)); TF_ASSIGN_OR_RETURN(auto shape, b.GetShape(operand)); switch (shape.element_type()) { case F64: return Eq(BitcastConvertType(operand, U64), ConstantR0WithType(&b, U64, uint64_t{1} << 63)); case F32: return Eq(BitcastConvertType(operand, U32), ConstantR0WithType(&b, U32, uint32_t{1} << 31)); case F8E3M4: case F8E4M3: case F8E5M2: case F8E4M3FN: case F8E4M3B11FNUZ: case F8E5M2FNUZ: case F8E4M3FNUZ: case F16: case BF16: return Eq(BitcastConvertType(ConvertElementType(operand, F32), U32), ConstantR0WithType(&b, U32, uint32_t{1} << 31)); default: LOG(FATAL) << "Expected real fp type."; } }); } XlaOp Square(XlaOp operand) { return operand * operand; } XlaOp Reciprocal(XlaOp operand) { return ScalarLike(operand, 1.0) / operand; } static XlaOp ErfcImpl32(XlaOp x) { const double kMaxlog = 88.72283905206835; static const std::array<float, 9> kErfcPCoefficient{ +2.326819970068386E-2, -1.387039388740657E-1, +3.687424674597105E-1, -5.824733027278666E-1, +6.210004621745983E-1, -4.944515323274145E-1, +3.404879937665872E-1, -2.741127028184656E-1, +5.638259427386472E-1, }; static const std::array<float, 8> kErfcRCoefficient{ -1.047766399936249E+1, +1.297719955372516E+1, -7.495518717768503E+0, +2.921019019210786E+0, -1.015265279202700E+0, +4.218463358204948E-1, -2.820767439740514E-1, +5.641895067754075E-1, }; XlaOp abs_x = Abs(x); XlaOp z = Exp(-x * x); XlaOp q = ScalarLike(x, 1) / abs_x; XlaOp y = q * q; XlaOp p = Select(Lt(abs_x, ScalarLike(x, 2.0)), EvaluatePolynomial<float>(y, kErfcPCoefficient), EvaluatePolynomial<float>(y, kErfcRCoefficient)); y = z * q * p; XlaOp y_clamp = Select(Lt(z, ScalarLike(x, -kMaxlog)), ScalarLike(x, 0), y); return Select(Lt(x, ScalarLike(x, 0)), ScalarLike(x, 2.0) - y_clamp, y_clamp); } static XlaOp ErfImpl32Cephes(XlaOp x) { static const std::array<float, 7> kErfTCoefficient{ +7.853861353153693E-5, -8.010193625184903E-4, +5.188327685732524E-3, -2.685381193529856E-2, +1.128358514861418E-1, -3.761262582423300E-1, +1.128379165726710E+0, }; return x * EvaluatePolynomial<float>(x * x, kErfTCoefficient); } static XlaOp ErfcImpl64(XlaOp x) { const double kMaxlog = 7.09782712893383996843E2; static const std::array<double, 9> kErfcPCoefficient{ 2.46196981473530512524E-10, 5.64189564831068821977E-1, 7.46321056442269912687E0, 4.86371970985681366614E1, 1.96520832956077098242E2, 5.26445194995477358631E2, 9.34528527171957607540E2, 1.02755188689515710272E3, 5.57535335369399327526E2}; static const std::array<double, 9> kErfcQCoefficient{ 1.00000000000000000000E0, 1.32281951154744992508E1, 8.67072140885989742329E1, 3.54937778887819891062E2, 9.75708501743205489753E2, 1.82390916687909736289E3, 2.24633760818710981792E3, 1.65666309194161350182E3, 5.57535340817727675546E2}; static const std::array<double, 6> kErfcRCoefficient{ 5.64189583547755073984E-1, 1.27536670759978104416E0, 5.01905042251180477414E0, 6.16021097993053585195E0, 7.40974269950448939160E0, 2.97886665372100240670E0}; static const std::array<double, 7> kErfcSCoefficient{ 1.00000000000000000000E0, 2.26052863220117276590E0, 9.39603524938001434673E0, 1.20489539808096656605E1, 1.70814450747565897222E1, 9.60896809063285878198E0, 3.36907645100081516050E0}; XlaOp z = -x * x; XlaOp abs_x = Abs(x); XlaOp y = Select(Lt(abs_x, ScalarLike(x, 8.0)), Exp(z) * EvaluatePolynomial<double>(abs_x, kErfcPCoefficient) / EvaluatePolynomial<double>(abs_x, kErfcQCoefficient), Exp(z) * EvaluatePolynomial<double>(abs_x, kErfcRCoefficient) / EvaluatePolynomial<double>(abs_x, kErfcSCoefficient)); XlaOp y_clamp = Select(Lt(z, ScalarLike(x, -kMaxlog)), ScalarLike(x, 0), y); return Select(Lt(x, ScalarLike(x, 0)), ScalarLike(x, 2.0) - y_clamp, y_clamp); } static XlaOp ErfImpl64(XlaOp x) { static std::array<double, 5> kErfTCoefficient{ 9.60497373987051638749E0, 9.00260197203842689217E1, 2.23200534594684319226E3, 7.00332514112805075473E3, 5.55923013010394962768E4}; static std::array<double, 6> kErfUCoefficient{ 1.00000000000000000000E0, 3.35617141647503099647E1, 5.21357949780152679795E2, 4.59432382970980127987E3, 2.26290000613890934246E4, 4.92673942608635921086E4}; XlaOp z = x * x; return x * EvaluatePolynomial<double>(z, kErfTCoefficient) / EvaluatePolynomial<double>(z, kErfUCoefficient); } XlaOp Erfc(XlaOp x) { auto& b = *x.builder(); return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("Erfc", x)); TF_ASSIGN_OR_RETURN(auto shape, b.GetShape(x)); if (shape.element_type() == F64) { return Select(Gt(Abs(x), ScalarLike(x, 1)), ErfcImpl64(x), ScalarLike(x, 1) - ErfImpl64(x)); } return DoWithUpcastToF32(x, {}, [](XlaOp x) { return Select(Gt(Abs(x), ScalarLike(x, 1)), ErfcImpl32(x), ScalarLike(x, 1) - ErfImpl32Cephes(x)); }); }); } static XlaOp ErfImpl32(XlaOp x) { static const std::array<float, 5> kAlpha{ 0.00022905065861350646f, 0.0034082910107109506f, 0.050955695062380861f, 0.18520832239976145f, 1.128379143519084f}; static const std::array<float, 7> kBeta{-1.1791602954361697e-7, 0.000023547966471313185f, 0.0010179625278914885f, 0.014070470171167667f, 0.11098505178285362f, 0.49746925110067538f, 1.0f}; constexpr float kErfInvOneMinusHalfULP = 3.7439211627767994f; x = Clamp(ScalarLike(x, -kErfInvOneMinusHalfULP), x, ScalarLike(x, kErfInvOneMinusHalfULP)); auto x2 = x * x; return (x * EvaluatePolynomial<float>(x2, kAlpha)) / EvaluatePolynomial<float>(x2, kBeta); } namespace { XlaOp ErfInv32(XlaOp x) { constexpr int kDegree = 9; constexpr std::array<float, 9> w_less_than_5_constants = { 2.81022636e-08f, 3.43273939e-07f, -3.5233877e-06f, -4.39150654e-06f, 0.00021858087f, -0.00125372503f, -0.00417768164f, 0.246640727f, 1.50140941f}; constexpr std::array<float, 9> w_greater_than_5_constants = { -0.000200214257f, 0.000100950558f, 0.00134934322f, -0.00367342844f, 0.00573950773f, -0.0076224613f, 0.00943887047f, 1.00167406f, 2.83297682f}; auto w = -Log1p(-x * x); auto lt = Lt(w, ScalarLike(x, 5.0)); auto coefficient = [&](int i) { return Select(lt, FullLike(x, w_less_than_5_constants[i]), FullLike(x, w_greater_than_5_constants[i])); }; w = Select(lt, w - ScalarLike(x, 2.5), Sqrt(w) - ScalarLike(x, 3.0)); auto p = coefficient(0); for (int i = 1; i < kDegree; ++i) { p = coefficient(i) + p * w; } XlaOp result = p * x; auto& b = *x.builder(); return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, b.GetShape(x)); return Select(Eq(Abs(x), ScalarLike(x, 1)), x * MaxValue(&b, shape.element_type()), result); }); } XlaOp ErfInv64(XlaOp x) { constexpr std::array<double, 23> w_less_than_6_25_constants = { -3.6444120640178196996e-21, -1.685059138182016589e-19, 1.2858480715256400167e-18, 1.115787767802518096e-17, -1.333171662854620906e-16, 2.0972767875968561637e-17, 6.6376381343583238325e-15, -4.0545662729752068639e-14, -8.1519341976054721522e-14, 2.6335093153082322977e-12, -1.2975133253453532498e-11, -5.4154120542946279317e-11, 1.051212273321532285e-09, -4.1126339803469836976e-09, -2.9070369957882005086e-08, 4.2347877827932403518e-07, -1.3654692000834678645e-06, -1.3882523362786468719e-05, 0.0001867342080340571352, -0.00074070253416626697512, -0.0060336708714301490533, 0.24015818242558961693, 1.6536545626831027356}; constexpr std::array<double, 19> w_less_than_16_constants = { 2.2137376921775787049e-09, 9.0756561938885390979e-08, -2.7517406297064545428e-07, 1.8239629214389227755e-08, 1.5027403968909827627e-06, -4.013867526981545969e-06, 2.9234449089955446044e-06, 1.2475304481671778723e-05, -4.7318229009055733981e-05, 6.8284851459573175448e-05, 2.4031110387097893999e-05, -0.0003550375203628474796, 0.00095328937973738049703, -0.0016882755560235047313, 0.0024914420961078508066, -0.0037512085075692412107, 0.005370914553590063617, 1.0052589676941592334, 3.0838856104922207635, }; constexpr std::array<double, 17> w_greater_than_16_constants = { -2.7109920616438573243e-11, -2.5556418169965252055e-10, 1.5076572693500548083e-09, -3.7894654401267369937e-09, 7.6157012080783393804e-09, -1.4960026627149240478e-08, 2.9147953450901080826e-08, -6.7711997758452339498e-08, 2.2900482228026654717e-07, -9.9298272942317002539e-07, 4.5260625972231537039e-06, -1.9681778105531670567e-05, 7.5995277030017761139e-05, -0.00021503011930044477347, -0.00013871931833623122026, 1.0103004648645343977, 4.8499064014085844221, }; auto w = -Log1p(-x * x); auto lt_6_25 = Lt(w, ScalarLike(x, 6.25)); auto lt_16 = Lt(w, ScalarLike(x, 16)); auto coefficient = [&](int i) { auto c = FullLike(x, w_less_than_6_25_constants[i]); if (i < 19) { c = Select(lt_6_25, c, FullLike(x, w_less_than_16_constants[i])); } if (i < 17) { c = Select(lt_16, c, FullLike(x, w_greater_than_16_constants[i])); } return c; }; auto sqrt_w = Sqrt(w); w = Select(lt_6_25, w - ScalarLike(x, 3.125), sqrt_w - Select(lt_16, ScalarLike(x, 3.25), ScalarLike(x, 5.0))); auto p = coefficient(0); for (int i = 1; i < 17; ++i) { p = coefficient(i) + p * w; } for (int i = 17; i < 19; ++i) { p = Select(lt_16, coefficient(i) + p * w, p); } for (int i = 19; i < 23; ++i) { p = Select(lt_6_25, coefficient(i) + p * w, p); } XlaOp result = p * x; auto& b = *x.builder(); return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, b.GetShape(x)); return Select(Eq(Abs(x), ScalarLike(x, 1)), x * MaxValue(&b, shape.element_type()), result); }); } } XlaOp ErfInv(XlaOp x) { auto& b = *x.builder(); return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("ErfInv", x)); TF_ASSIGN_OR_RETURN(auto shape, b.GetShape(x)); if (shape.element_type() == F64) { return ErfInv64(x); } return DoWithUpcastToF32(x, {}, [](XlaOp x) { return ErfInv32(x); }); }); } namespace { static constexpr double kLanczosGamma = 7; static constexpr double kBaseLanczosCoeff = 0.99999999999980993227684700473478; static constexpr std::array<double, 8> kLanczosCoefficients = { 676.520368121885098567009190444019, -1259.13921672240287047156078755283, 771.3234287776530788486528258894, -176.61502916214059906584551354, 12.507343278686904814458936853, -0.13857109526572011689554707, 9.984369578019570859563e-6, 1.50563273514931155834e-7}; } XlaOp Lgamma(XlaOp input) { auto do_it = [](XlaOp input) { XlaOp one_half = ScalarLike(input, 0.5); XlaOp one = ScalarLike(input, 1); XlaOp pi = ScalarLike(input, M_PI); XlaOp log_pi = ScalarLike(input, std::log(M_PI)); XlaOp log_sqrt_two_pi = ScalarLike(input, (std::log(2) + std::log(M_PI)) / 2); XlaOp lanczos_gamma_plus_one_half = ScalarLike(input, kLanczosGamma + 0.5); XlaOp log_lanczos_gamma_plus_one_half = ScalarLike(input, std::log(kLanczosGamma + 0.5)); XlaOp base_lanczos_coeff = ScalarLike(input, kBaseLanczosCoeff); XlaOp need_to_reflect = Lt(input, one_half); XlaOp z = Select(need_to_reflect, -input, input - one); XlaOp x = base_lanczos_coeff; for (int i = 0, end = kLanczosCoefficients.size(); i < end; ++i) { XlaOp lanczos_coefficient = ScalarLike(input, kLanczosCoefficients[i]); XlaOp index = ScalarLike(input, i); x = x + lanczos_coefficient / (z + index + one); } XlaOp t = lanczos_gamma_plus_one_half + z; XlaOp log_t = log_lanczos_gamma_plus_one_half + Log1p(z / lanczos_gamma_plus_one_half); XlaOp log_y = log_sqrt_two_pi + (z + one_half - t / log_t) * log_t + Log(x); XlaOp abs_input = Abs(input); XlaOp abs_frac_input = abs_input - Floor(abs_input); XlaOp reduced_frac_input = Select(Gt(abs_frac_input, ScalarLike(abs_frac_input, 0.5)), ScalarLike(abs_frac_input, 1) - abs_frac_input, abs_frac_input); XlaOp reflection_denom = Log(Sin(pi * reduced_frac_input)); XlaOp reflection = Select(IsFinite(reflection_denom), log_pi - reflection_denom - log_y, -reflection_denom); XlaOp result = Select(need_to_reflect, reflection, log_y); XlaOp inf_bcast = FullLike(input, std::numeric_limits<float>::infinity()); return Select(IsInf(input), inf_bcast, result); }; auto& b = *input.builder(); return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("Lgamma", input)); return DoWithUpcastToF32(input, {}, do_it); }); } static XlaOp Lbeta(XlaOp a, XlaOp b) { return Lgamma(a) + Lgamma(b) - Lgamma(a + b); } XlaOp Digamma(XlaOp input) { auto do_it = [](XlaOp input) { XlaOp zero = ScalarLike(input, 0); XlaOp one_half = ScalarLike(input, 0.5); XlaOp one = ScalarLike(input, 1); XlaOp pi = ScalarLike(input, M_PI); XlaOp lanczos_gamma = ScalarLike(input, kLanczosGamma); XlaOp lanczos_gamma_plus_one_half = ScalarLike(input, kLanczosGamma + 0.5); XlaOp log_lanczos_gamma_plus_one_half = ScalarLike(input, std::log(kLanczosGamma + 0.5)); XlaOp base_lanczos_coeff = ScalarLike(input, kBaseLanczosCoeff); XlaOp need_to_reflect = Lt(input, one_half); XlaOp z = Select(need_to_reflect, -input, input - one); XlaOp num = zero; XlaOp denom = base_lanczos_coeff; for (int i = 0, end = kLanczosCoefficients.size(); i < end; ++i) { XlaOp lanczos_coefficient = ScalarLike(input, kLanczosCoefficients[i]); XlaOp index = ScalarLike(input, i); num = num - lanczos_coefficient / ((z + index + one) * (z + index + one)); denom = denom + lanczos_coefficient / (z + index + one); } XlaOp t = lanczos_gamma_plus_one_half + z; XlaOp log_t = log_lanczos_gamma_plus_one_half + Log1p(z / lanczos_gamma_plus_one_half); XlaOp y = log_t + num / denom - lanczos_gamma / t; XlaOp reduced_input = input + Abs(Floor(input + ScalarLike(input, 0.5))); XlaOp reflection = y - pi * Cos(pi * reduced_input) / Sin(pi * reduced_input); XlaOp real_result = Select(need_to_reflect, reflection, y); return Select(And(Le(input, zero), Eq(input, Floor(input))), FullLike(input, std::numeric_limits<float>::quiet_NaN()), real_result); }; auto& b = *input.builder(); return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("Digamma", input)); return DoWithUpcastToF32(input, {}, do_it); }); } namespace { enum kIgammaMode { VALUE, DERIVATIVE, SAMPLE_DERIVATIVE }; template <kIgammaMode mode> XlaOp IgammaSeries(XlaOp ax, XlaOp x, XlaOp a, XlaOp enabled, xla::PrimitiveType type) { auto cond = [&](absl::Span<const XlaOp> vals, XlaBuilder* builder) -> absl::StatusOr<XlaOp> { XlaOp enabled = vals[0]; return Any(enabled); }; auto body = [&](absl::Span<const XlaOp> vals, XlaBuilder* builder) -> absl::StatusOr<std::vector<XlaOp>> { XlaOp enabled = vals[0]; XlaOp r = vals[1]; XlaOp c = vals[2]; XlaOp ans = vals[3]; XlaOp x = vals[4]; XlaOp dc_da = vals[5]; XlaOp dans_da = vals[6]; r = r + ScalarLike(r, 1); dc_da = dc_da * (x / r) + (ScalarLike(r, -1) * c * x) / (r * r); dans_da = dans_da + dc_da; c = c * (x / r); ans = ans + c; XlaOp conditional; if (mode == VALUE) { conditional = And(enabled, Gt(c / ans, Epsilon(builder, type))); } else { conditional = And(enabled, Gt(Abs(dc_da / dans_da), Epsilon(builder, type))); } return std::vector<XlaOp>{ conditional, Select(enabled, r, vals[1]), Select(enabled, c, vals[2]), Select(enabled, ans, vals[3]), Select(enabled, x, vals[4]), Select(enabled, dc_da, vals[5]), Select(enabled, dans_da, vals[6]), }; }; auto& b = *ax.builder(); return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { std::vector<XlaOp> vals = { enabled, a, FullLike(a, 1), FullLike(a, 1), x, FullLike(a, 0), FullLike(a, 0), }; TF_ASSIGN_OR_RETURN(vals, WhileLoopHelper(cond, body, vals, "igamma", &b)); XlaOp ans = vals[3]; XlaOp dans_da = vals[6]; if (mode == VALUE) { return (ans * ax) / a; } XlaOp dlogax_da = Log(x) - Digamma(a + ScalarLike(a, 1)); switch (mode) { case DERIVATIVE: return ax * (ans * dlogax_da + dans_da) / a; case SAMPLE_DERIVATIVE: default: return -(dans_da + ans * dlogax_da) * x / a; } }); } template <kIgammaMode mode> XlaOp IgammacContinuedFraction(XlaOp ax, XlaOp x, XlaOp a, XlaOp enabled, xla::PrimitiveType type) { auto cond = [&](absl::Span<const XlaOp> vals, XlaBuilder* builder) -> absl::StatusOr<XlaOp> { XlaOp enabled = vals[0]; XlaOp c = vals[5]; return And(Lt(c, ScalarLike(c, 2000)), Any(enabled)); }; auto body = [&](absl::Span<const XlaOp> vals, XlaBuilder* builder) -> absl::StatusOr<std::vector<XlaOp>> { XlaOp enabled = vals[0]; XlaOp ans = vals[1]; XlaOp t = vals[2]; XlaOp y = vals[3]; XlaOp z = vals[4]; XlaOp c = vals[5]; XlaOp pkm1 = vals[6]; XlaOp qkm1 = vals[7]; XlaOp pkm2 = vals[8]; XlaOp qkm2 = vals[9]; XlaOp dpkm2_da = vals[10]; XlaOp dqkm2_da = vals[11]; XlaOp dpkm1_da = vals[12]; XlaOp dqkm1_da = vals[13]; XlaOp dans_da = vals[14]; c = c + ScalarLike(c, 1); y = y + ScalarLike(y, 1); z = z + ScalarLike(z, 2); XlaOp yc = y * c; XlaOp pk = pkm1 * z - pkm2 * yc; XlaOp qk = qkm1 * z - qkm2 * yc; XlaOp qk_is_nonzero = Ne(qk, ScalarLike(qk, 0)); XlaOp r = pk / qk; t = Select(qk_is_nonzero, Abs((ans - r) / r), FullLike(t, 1)); ans = Select(qk_is_nonzero, r, ans); XlaOp dpk_da = dpkm1_da * z - pkm1 - dpkm2_da * yc + pkm2 * c; XlaOp dqk_da = dqkm1_da * z - qkm1 - dqkm2_da * yc + qkm2 * c; XlaOp dans_da_new = Select(qk_is_nonzero, (dpk_da - ans * dqk_da) / qk, dans_da); XlaOp grad_conditional = Select(qk_is_nonzero, Abs(dans_da_new - dans_da), FullLike(dans_da, 1)); pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; dpkm2_da = dpkm1_da; dqkm2_da = dqkm1_da; dpkm1_da = dpk_da; dqkm1_da = dqk_da; XlaOp rescale = Gt(Abs(pk), Reciprocal(Epsilon(builder, type))); pkm2 = Select(rescale, pkm2 * Epsilon(builder, type), pkm2); pkm1 = Select(rescale, pkm1 * Epsilon(builder, type), pkm1); qkm2 = Select(rescale, qkm2 * Epsilon(builder, type), qkm2); qkm1 = Select(rescale, qkm1 * Epsilon(builder, type), qkm1); dpkm2_da = Select(rescale, dpkm2_da * Epsilon(builder, type), dpkm2_da); dqkm2_da = Select(rescale, dqkm2_da * Epsilon(builder, type), dqkm2_da); dpkm1_da = Select(rescale, dpkm1_da * Epsilon(builder, type), dpkm1_da); dqkm1_da = Select(rescale, dqkm1_da * Epsilon(builder, type), dqkm1_da); XlaOp conditional; if (mode == VALUE) { conditional = And(enabled, Gt(t, Epsilon(builder, type))); } else { conditional = And(enabled, Gt(grad_conditional, Epsilon(builder, type))); } return std::vector<XlaOp>{conditional, Select(enabled, ans, vals[1]), Select(enabled, t, vals[2]), Select(enabled, y, vals[3]), Select(enabled, z, vals[4]), c, Select(enabled, pkm1, vals[6]), Select(enabled, qkm1, vals[7]), Select(enabled, pkm2, vals[8]), Select(enabled, qkm2, vals[9]), Select(enabled, dpkm2_da, vals[10]), Select(enabled, dqkm2_da, vals[11]), Select(enabled, dpkm1_da, vals[12]), Select(enabled, dqkm1_da, vals[13]), Select(enabled, dans_da_new, vals[14])}; }; auto& b = *ax.builder(); return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { XlaOp y = ScalarLike(a, 1) - a; XlaOp z = x + y + ScalarLike(x, 1); XlaOp c = ScalarLike(x, 0); XlaOp pkm2 = FullLike(x, 1); XlaOp qkm2 = x; XlaOp pkm1 = x + ScalarLike(x, 1); XlaOp qkm1 = z * x; XlaOp ans = pkm1 / qkm1; XlaOp t = FullLike(x, 1); XlaOp dpkm2_da = FullLike(x, 0); XlaOp dqkm2_da = FullLike(x, 0); XlaOp dpkm1_da = FullLike(x, 0); XlaOp dqkm1_da = -x; XlaOp dans_da = (dpkm1_da - ans * dqkm1_da) / qkm1; std::vector<XlaOp> vals = {enabled, ans, t, y, z, c, pkm1, qkm1, pkm2, qkm2, dpkm2_da, dqkm2_da, dpkm1_da, dqkm1_da, dans_da}; TF_ASSIGN_OR_RETURN(vals, WhileLoopHelper(cond, body, vals, "igammac", &b)); ans = vals[1]; if (mode == VALUE) { return ans * ax; } dans_da = vals[14]; XlaOp dlogax_da = Log(x) - Digamma(a); switch (mode) { case DERIVATIVE: return ax * (ans * dlogax_da + dans_da); case SAMPLE_DERIVATIVE: default: return -(dans_da + ans * dlogax_da) * x; } }); } } XlaOp Igamma(XlaOp a, XlaOp x) { auto& b = *a.builder(); auto doit = [&b](XlaOp a, XlaOp x, PrimitiveType type) -> XlaOp { XlaOp is_nan = Or(IsNan(a), IsNan(x)); XlaOp x_is_zero = Eq(x, ScalarLike(x, 0)); XlaOp x_is_infinity = Eq(x, ScalarLike(x, std::numeric_limits<float>::infinity())); XlaOp domain_error = Or(Lt(x, ScalarLike(x, 0)), Le(a, ScalarLike(a, 0))); XlaOp use_igammac = And(Gt(x, ScalarLike(x, 1)), Gt(x, a)); XlaOp ax = a * Log(x) - x - Lgamma(a); XlaOp underflow = Lt(ax, -Log(MaxFiniteValue(&b, type))); ax = Exp(ax); XlaOp enabled = Not(Or(Or(Or(x_is_zero, domain_error), underflow), is_nan)); const double nan = std::numeric_limits<double>::quiet_NaN(); XlaOp output = Select( use_igammac, ScalarLike(a, 1) - IgammacContinuedFraction<VALUE>( ax, x, a, And(enabled, use_igammac), type), IgammaSeries<VALUE>(ax, x, a, And(enabled, Not(use_igammac)), type)); output = Select(x_is_zero, ZerosLike(output), output); output = Select(x_is_infinity, FullLike(output, 1), output); output = Select(Or(domain_error, is_nan), FullLike(a, nan), output); return output; }; return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(auto a_shape, b.GetShape(a)); TF_ASSIGN_OR_RETURN(auto x_shape, b.GetShape(x)); if (a_shape != x_shape) { return InvalidArgument( "Arguments to Igamma must have equal shapes and types; got %s and %s", a_shape.ToString(), x_shape.ToString()); } TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("Igamma", a)); PrimitiveType a_x_type = a_shape.element_type(); bool needs_upcast = false; for (PrimitiveType type : {BF16, F16, F8E3M4, F8E4M3, F8E5M2, F8E4M3FN, F8E4M3B11FNUZ, F8E5M2FNUZ, F8E4M3FNUZ}) { if (a_shape.element_type() == type) { needs_upcast = true; break; } } if (needs_upcast) { a = ConvertElementType(a, F32); x = ConvertElementType(x, F32); a_x_type = F32; } XlaOp result = doit(a, x, a_x_type); if (needs_upcast) { result = ConvertElementType(result, a_shape.element_type()); } return result; }); } XlaOp IgammaGradA(XlaOp a, XlaOp x) { auto& b = *a.builder(); auto doit = [&b](XlaOp a, XlaOp x, PrimitiveType type) -> XlaOp { XlaOp is_nan = Or(IsNan(a), IsNan(x)); XlaOp x_is_zero = Eq(x, ScalarLike(x, 0)); XlaOp domain_error = Or(Lt(x, ScalarLike(x, 0)), Le(a, ScalarLike(a, 0))); XlaOp use_igammac = And(Gt(x, ScalarLike(x, 1)), Gt(x, a)); XlaOp ax = a * Log(x) - x - Lgamma(a); XlaOp underflow = Lt(ax, -Log(MaxFiniteValue(&b, type))); ax = Exp(ax); XlaOp enabled = Not(Or(Or(Or(x_is_zero, domain_error), underflow), is_nan)); const double nan = std::numeric_limits<double>::quiet_NaN(); XlaOp output = Select(use_igammac, -IgammacContinuedFraction<DERIVATIVE>( ax, x, a, And(enabled, use_igammac), type), IgammaSeries<DERIVATIVE>( ax, x, a, And(enabled, Not(use_igammac)), type)); output = Select(x_is_zero, ZerosLike(output), output); output = Select(Or(domain_error, is_nan), FullLike(a, nan), output); return output; }; return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(auto a_shape, b.GetShape(a)); TF_ASSIGN_OR_RETURN(auto x_shape, b.GetShape(x)); if (a_shape != x_shape) { return InvalidArgument( "Arguments to IgammaGradA must have equal shapes and types; got %s " "and %s", a_shape.ToString(), x_shape.ToString()); } TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("IgammaGradA", a)); bool needs_upcast = false; for (PrimitiveType type : {BF16, F16, F8E3M4, F8E4M3, F8E5M2, F8E4M3FN, F8E4M3B11FNUZ, F8E5M2FNUZ, F8E4M3FNUZ}) { if (a_shape.element_type() == type) { needs_upcast = true; break; } } if (needs_upcast) { a = ConvertElementType(a, F32); x = ConvertElementType(x, F32); } XlaOp result = doit(a, x, a_shape.element_type()); if (needs_upcast) { result = ConvertElementType(result, a_shape.element_type()); } return result; }); } XlaOp RandomGammaGrad(XlaOp a, XlaOp x) { auto& b = *a.builder(); auto doit = [&b](XlaOp a, XlaOp x, PrimitiveType type) -> XlaOp { XlaOp is_nan = Or(IsNan(a), IsNan(x)); XlaOp x_is_zero = Eq(x, ScalarLike(x, 0)); XlaOp domain_error = Or(Lt(x, ScalarLike(x, 0)), Le(a, ScalarLike(a, 0))); XlaOp use_igammac = And(Gt(x, ScalarLike(x, 1)), Gt(x, a)); XlaOp ax = a * Log(x) - x - Lgamma(a); XlaOp underflow = Lt(ax, -Log(MaxFiniteValue(&b, type))); ax = Exp(ax); XlaOp enabled = Not(Or(Or(Or(x_is_zero, domain_error), underflow), is_nan)); const double nan = std::numeric_limits<double>::quiet_NaN(); XlaOp output = Select(use_igammac, -IgammacContinuedFraction<SAMPLE_DERIVATIVE>( ax, x, a, And(enabled, use_igammac), type), IgammaSeries<SAMPLE_DERIVATIVE>( ax, x, a, And(enabled, Not(use_igammac)), type)); output = Select(x_is_zero, ZerosLike(output), output); output = Select(Or(domain_error, is_nan), FullLike(a, nan), output); return output; }; return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(auto a_shape, b.GetShape(a)); TF_ASSIGN_OR_RETURN(auto x_shape, b.GetShape(x)); if (a_shape != x_shape) { return InvalidArgument( "Arguments to RandomGammaGrad must have equal shapes and types; got " "%s and %s", a_shape.ToString(), x_shape.ToString()); } TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("RandomGammaGrad", a)); bool needs_upcast = a_shape.element_type() == F16 || a_shape.element_type() == BF16; if (needs_upcast) { a = ConvertElementType(a, F32); x = ConvertElementType(x, F32); } XlaOp result = doit(a, x, a_shape.element_type()); if (needs_upcast) { result = ConvertElementType(result, a_shape.element_type()); } return result; }); } XlaOp Igammac(XlaOp a, XlaOp x) { auto& b = *a.builder(); auto doit = [&b](XlaOp a, XlaOp x, PrimitiveType type) -> XlaOp { XlaOp out_of_range = Or(Le(x, ScalarLike(x, 0)), Le(a, ScalarLike(a, 0))); XlaOp use_igamma = Or(Lt(x, ScalarLike(x, 1)), Lt(x, a)); XlaOp ax = a * Log(x) - x - Lgamma(a); XlaOp underflow = Lt(ax, -Log(MaxFiniteValue(&b, type))); XlaOp enabled = Not(Or(out_of_range, underflow)); ax = Exp(ax); XlaOp result = Select(use_igamma, ScalarLike(a, 1) - IgammaSeries<VALUE>( ax, x, a, And(enabled, use_igamma), type), IgammacContinuedFraction<VALUE>( ax, x, a, And(enabled, Not(use_igamma)), type)); XlaOp x_is_infinity = Eq(x, ScalarLike(x, std::numeric_limits<float>::infinity())); result = Select(x_is_infinity, ZerosLike(result), result); return Select(out_of_range, FullLike(a, 1), result); }; return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(auto a_shape, b.GetShape(a)); TF_ASSIGN_OR_RETURN(auto x_shape, b.GetShape(x)); if (a_shape != x_shape) { return InvalidArgument( "Arguments to Igammac must have equal shapes and types; " "got %s and %s", a_shape.ToString(), x_shape.ToString()); } TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("Igammac", a)); PrimitiveType a_x_type = a_shape.element_type(); bool needs_upcast = a_shape.element_type() == F16 || a_shape.element_type() == BF16; if (needs_upcast) { a = ConvertElementType(a, F32); x = ConvertElementType(x, F32); a_x_type = F32; } XlaOp result = doit(a, x, a_x_type); if (needs_upcast) { result = ConvertElementType(result, a_shape.element_type()); } return result; }); } XlaOp RoundToEven(XlaOp x) { auto& b = *x.builder(); return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("RoundToEven", x)); return RoundNearestEven(x); }); } XlaOp Acos(XlaOp x) { XlaBuilder* b = x.builder(); return b->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(auto shape, b->GetShape(x)); if (primitive_util::IsComplexType(shape.element_type())) { auto one = ScalarLike(x, 1); auto imag_one = Complex( Zero(b, primitive_util::ComplexComponentType(shape.element_type())), One(b, primitive_util::ComplexComponentType(shape.element_type()))); auto result = Neg(imag_one * Log(x + imag_one * Sqrt((one + x) * (one - x)))); return result; } return Select(Ne(x, FullLike(x, -1)), ScalarLike(x, 2.0) * Atan2(Sqrt(ScalarLike(x, 1.0) - x * x), ScalarLike(x, 1.0) + x), FullLike(x, M_PI)); }); } XlaOp Asin(XlaOp x) { XlaBuilder* b = x.builder(); auto do_it = [&](XlaOp z) -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(auto shape, b->GetShape(z)); auto elem_ty = shape.element_type(); switch (elem_ty) { case C128: return math_impl::AsinComplex<double>(z); case C64: return math_impl::AsinComplex<float>(z); case F64: return math_impl::AsinReal<double>(z); case F32: return math_impl::AsinReal<float>(z); default: return InvalidArgument("Asin got unsupported element type %s", PrimitiveType_Name(elem_ty)); } }; return DoWithUpcastToF32( x, {}, [&](XlaOp x) { return b->ReportErrorOrReturn(do_it(x)); }); } XlaOp Atan(XlaOp x) { return Atan2(x, ScalarLike(x, 1.0)); } XlaOp Acosh(XlaOp x) { XlaBuilder* b = x.builder(); return b->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(auto shape, b->GetShape(x)); auto one = ScalarLike(x, 1); auto neg_one = ScalarLike(x, -1); auto nan = FullLike(x, std::numeric_limits<float>::quiet_NaN()); auto naive_result = Log(x + Sqrt((x + one) * (x - one))); if (primitive_util::IsComplexType(shape.element_type())) { return naive_result; } auto overflow_result = Log(x) + Log(ScalarLike(x, 2)); auto sqrt_max_value = Sqrt(MaxFiniteValue(b, shape.element_type())); return Select(Lt(x, neg_one), nan, Select(Ge(x, sqrt_max_value), overflow_result, naive_result)); }); } XlaOp Asinh(XlaOp x) { XlaBuilder* b = x.builder(); auto do_it = [&](XlaOp x) -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(auto shape, b->GetShape(x)); auto one = ScalarLike(x, 1); if (primitive_util::IsComplexType(shape.element_type())) { auto x_re = Real(x); auto x_im = Imag(x); auto z = Asin(Complex(x_im, -x_re)); auto z_im = Imag(z); auto on_branch_cut = And(Eq(x_re, ScalarLike(x_re, 0)), Gt(Abs(x_im), ScalarLike(x_im, 1))); return Complex(Select(on_branch_cut, z_im, -z_im), Real(z)); } auto a = Abs(x); auto small_result = Log1p(a + a * a / (one + Sqrt(a * a + one))); auto naive_result = Log(a + Sqrt(a * a + one)); auto overflow_result = Log(Abs(a)) + Log(ScalarLike(a, 2)); auto sqrt_max_value = Sqrt(MaxFiniteValue(b, shape.element_type())); return Sign(x) * Select(Ge(a, sqrt_max_value), overflow_result, Select(Le(a, one), small_result, naive_result)); }; return DoWithUpcastToF32(x, {BF16, F16}, [&](XlaOp x) { return b->ReportErrorOrReturn(do_it(x)); }); } XlaOp Atanh(XlaOp x) { XlaBuilder* b = x.builder(); auto do_it = [&](XlaOp x) -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(auto shape, b->GetShape(x)); auto naive_result = (Log1p(x) - Log1p(-x)) * ScalarLike(x, 0.5); if (primitive_util::IsComplexType(shape.element_type())) { return naive_result; } auto nan = FullLike(x, std::numeric_limits<float>::quiet_NaN()); return Select(Gt(Abs(x), ScalarLike(x, 1)), nan, naive_result); }; return DoWithUpcastToF32(x, {BF16}, [&](XlaOp x) { return b->ReportErrorOrReturn(do_it(x)); }); } XlaOp Cosh(XlaOp x) { XlaBuilder* b = x.builder(); auto do_it = [&](XlaOp x) -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(auto shape, b->GetShape(x)); auto log_one_half = Log(ScalarLike(x, 0.5)); auto result = Exp(x + log_one_half) + Exp(-x + log_one_half); if (primitive_util::IsComplexType(shape.element_type())) { return result; } return Max(result, ScalarLike(result, 1.0)); }; return DoWithUpcastToF32(x, {BF16, F16}, [&](XlaOp x) { return b->ReportErrorOrReturn(do_it(x)); }); } XlaOp Sinh(XlaOp x) { XlaBuilder* b = x.builder(); auto do_it = [&](XlaOp x) -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(auto shape, b->GetShape(x)); auto one_half = ScalarLike(x, 0.5); auto log_one_half = Log(ScalarLike(x, 0.5)); auto large_sinh_result = Exp(x + log_one_half) - Exp(-x + log_one_half); if (primitive_util::IsComplexType(shape.element_type())) { return large_sinh_result; } auto expm1 = Expm1(x); auto one = ScalarLike(x, 1.); auto small_sinh_result = one_half * (expm1 + expm1 / (expm1 + one)); return Select(Lt(Abs(x), one), small_sinh_result, large_sinh_result); }; return DoWithUpcastToF32(x, {BF16, F16}, [&](XlaOp x) { return b->ReportErrorOrReturn(do_it(x)); }); } XlaOp MaybeConjugate(XlaOp x, bool conjugate) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); auto perform_conj = primitive_util::IsComplexType(shape.element_type()) && conjugate; return perform_conj ? Conj(x) : x; }); } XlaOp NextAfter(XlaOp from, XlaOp to) { auto builder = from.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(auto shape, builder->GetShape(from)); int bitwidth = primitive_util::BitWidth(shape.element_type()); auto int_type = primitive_util::UnsignedIntegralTypeForBitWidth(bitwidth); auto from_as_int = BitcastConvertType(from, int_type); auto to_as_int = BitcastConvertType(to, int_type); auto from_is_nan = Ne(from, from); auto to_is_nan = Ne(to, to); auto nan_input = Or(from_is_nan, to_is_nan); auto result_for_nan = Broadcast(ScalarLike(from, std::numeric_limits<double>::quiet_NaN()), shape.dimensions()); result_for_nan = BitcastConvertType(result_for_nan, int_type); const int64_t sign_mask = int64_t{1} << (bitwidth - 1); auto from_abs = And(from_as_int, ScalarLike(from_as_int, ~sign_mask)); auto to_abs = And(to_as_int, ScalarLike(to_as_int, ~sign_mask)); auto from_and_to_are_equal = Eq(from_as_int, to_as_int); auto result_for_equal = to_as_int; auto from_is_zero = Eq(from_abs, ZerosLike(from_abs)); auto to_is_zero = Eq(to_abs, ZerosLike(to_abs)); auto result_for_both_zero = to_as_int; auto from_sign = And(from_as_int, ScalarLike(from_as_int, sign_mask)); auto to_sign = And(to_as_int, ScalarLike(to_as_int, sign_mask)); auto result_for_from_zero_to_non_zero = Or(to_sign, ScalarLike(from_as_int, 1)); auto signs_disagree = Ne(from_sign, to_sign); auto from_magnitude_larger_than_to = Gt(from_abs, to_abs); auto result_has_smaller_magnitude = Or(from_magnitude_larger_than_to, signs_disagree); auto magnitude_adjustment = Select(result_has_smaller_magnitude, Broadcast(ScalarLike(from_as_int, -1), shape.dimensions()), Broadcast(ScalarLike(from_as_int, 1), shape.dimensions())); auto result = Add(from_as_int, magnitude_adjustment); result = Select(from_is_zero, Select(to_is_zero, result_for_both_zero, result_for_from_zero_to_non_zero), result); result = Select(from_and_to_are_equal, result_for_equal, result); result = Select(nan_input, result_for_nan, result); return BitcastConvertType(result, shape.element_type()); }); } static XlaOp I0eImpl32(XlaOp x) { static const std::array<float, 18> kI0eCoeffsA{ -1.30002500998624804212E-8f, 6.04699502254191894932E-8f, -2.67079385394061173391E-7f, 1.11738753912010371815E-6f, -4.41673835845875056359E-6f, 1.64484480707288970893E-5f, -5.75419501008210370398E-5f, 1.88502885095841655729E-4f, -5.76375574538582365885E-4f, 1.63947561694133579842E-3f, -4.32430999505057594430E-3f, 1.05464603945949983183E-2f, -2.37374148058994688156E-2f, 4.93052842396707084878E-2f, -9.49010970480476444210E-2f, 1.71620901522208775349E-1f, -3.04682672343198398683E-1f, 6.76795274409476084995E-1f}; static const std::array<float, 7> kI0eCoeffsB{ 3.39623202570838634515E-9f, 2.26666899049817806459E-8f, 2.04891858946906374183E-7f, 2.89137052083475648297E-6f, 6.88975834691682398426E-5f, 3.36911647825569408990E-3f, 8.04490411014108831608E-1f}; x = Abs(x); auto half = xla::ScalarLike(x, 0.5); auto two = xla::ScalarLike(x, 2.0); auto thirty_two = xla::ScalarLike(x, 32.0); auto result_le_8 = EvaluateChebyshevPolynomial<float>(half * x - two, kI0eCoeffsA); auto result_gt_8 = EvaluateChebyshevPolynomial<float>(thirty_two / x - two, kI0eCoeffsB) / Sqrt(x); return Select(Le(x, xla::ScalarLike(x, 8.0)), result_le_8, result_gt_8); } static XlaOp I0eImpl64(XlaOp x) { static const std::array<double, 30> kI0eCoeffsA{ -4.41534164647933937950E-18, 3.33079451882223809783E-17, -2.43127984654795469359E-16, 1.71539128555513303061E-15, -1.16853328779934516808E-14, 7.67618549860493561688E-14, -4.85644678311192946090E-13, 2.95505266312963983461E-12, -1.72682629144155570723E-11, 9.67580903537323691224E-11, -5.18979560163526290666E-10, 2.65982372468238665035E-9, -1.30002500998624804212E-8, 6.04699502254191894932E-8, -2.67079385394061173391E-7, 1.11738753912010371815E-6, -4.41673835845875056359E-6, 1.64484480707288970893E-5, -5.75419501008210370398E-5, 1.88502885095841655729E-4, -5.76375574538582365885E-4, 1.63947561694133579842E-3, -4.32430999505057594430E-3, 1.05464603945949983183E-2, -2.37374148058994688156E-2, 4.93052842396707084878E-2, -9.49010970480476444210E-2, 1.71620901522208775349E-1, -3.04682672343198398683E-1, 6.76795274409476084995E-1}; static const std::array<double, 25> kI0eCoeffsB{ -7.23318048787475395456E-18, -4.83050448594418207126E-18, 4.46562142029675999901E-17, 3.46122286769746109310E-17, -2.82762398051658348494E-16, -3.42548561967721913462E-16, 1.77256013305652638360E-15, 3.81168066935262242075E-15, -9.55484669882830764870E-15, -4.15056934728722208663E-14, 1.54008621752140982691E-14, 3.85277838274214270114E-13, 7.18012445138366623367E-13, -1.79417853150680611778E-12, -1.32158118404477131188E-11, -3.14991652796324136454E-11, 1.18891471078464383424E-11, 4.94060238822496958910E-10, 3.39623202570838634515E-9, 2.26666899049817806459E-8, 2.04891858946906374183E-7, 2.89137052083475648297E-6, 6.88975834691682398426E-5, 3.36911647825569408990E-3, 8.04490411014108831608E-1}; x = Abs(x); auto half = xla::ScalarLike(x, 0.5); auto two = xla::ScalarLike(x, 2.0); auto thirty_two = xla::ScalarLike(x, 32.0); auto result_le_8 = EvaluateChebyshevPolynomial<double>(half * x - two, kI0eCoeffsA); auto result_gt_8 = EvaluateChebyshevPolynomial<double>(thirty_two / x - two, kI0eCoeffsB) / Sqrt(x); return Select(Le(x, xla::ScalarLike(x, 8.0)), result_le_8, result_gt_8); } XlaOp BesselI0e(XlaOp x) { auto& b = *x.builder(); return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("BesselI0e", x)); TF_ASSIGN_OR_RETURN(auto shape, b.GetShape(x)); if (shape.element_type() == F64) { return I0eImpl64(x); } return DoWithUpcastToF32(x, {BF16, F16}, [](XlaOp x) { return I0eImpl32(x); }); }); } static XlaOp I1eImpl32(XlaOp x) { static const std::array<float, 17> kI1eCoeffsA{ 9.38153738649577178388E-9f, -4.44505912879632808065E-8f, 2.00329475355213526229E-7f, -8.56872026469545474066E-7f, 3.47025130813767847674E-6f, -1.32731636560394358279E-5f, 4.78156510755005422638E-5f, -1.61760815825896745588E-4f, 5.12285956168575772895E-4f, -1.51357245063125314899E-3f, 4.15642294431288815669E-3f, -1.05640848946261981558E-2f, 2.47264490306265168283E-2f, -5.29459812080949914269E-2f, 1.02643658689847095384E-1f, -1.76416518357834055153E-1f, 2.52587186443633654823E-1f}; static const std::array<float, 7> kI1eCoeffsB{ -3.83538038596423702205E-9f, -2.63146884688951950684E-8f, -2.51223623787020892529E-7f, -3.88256480887769039346E-6f, -1.10588938762623716291E-4f, -9.76109749136146840777E-3f, 7.78576235018280120474E-1f}; XlaOp z = Abs(x); auto half = xla::ScalarLike(x, 0.5); auto two = xla::ScalarLike(x, 2.0); auto thirty_two = xla::ScalarLike(x, 32.0); auto result_le_8 = z * EvaluateChebyshevPolynomial<float>(half * z - two, kI1eCoeffsA); auto result_gt_8 = EvaluateChebyshevPolynomial<float>(thirty_two / z - two, kI1eCoeffsB) / Sqrt(z); return Sign(x) * Select(Le(z, xla::ScalarLike(x, 8.0)), result_le_8, result_gt_8); } static XlaOp I1eImpl64(XlaOp x) { static const std::array<double, 29> kI1eCoeffsA{ 2.77791411276104639959E-18, -2.11142121435816608115E-17, 1.55363195773620046921E-16, -1.10559694773538630805E-15, 7.60068429473540693410E-15, -5.04218550472791168711E-14, 3.22379336594557470981E-13, -1.98397439776494371520E-12, 1.17361862988909016308E-11, -6.66348972350202774223E-11, 3.62559028155211703701E-10, -1.88724975172282928790E-9, 9.38153738649577178388E-9, -4.44505912879632808065E-8, 2.00329475355213526229E-7, -8.56872026469545474066E-7, 3.47025130813767847674E-6, -1.32731636560394358279E-5, 4.78156510755005422638E-5, -1.61760815825896745588E-4, 5.12285956168575772895E-4, -1.51357245063125314899E-3, 4.15642294431288815669E-3, -1.05640848946261981558E-2, 2.47264490306265168283E-2, -5.29459812080949914269E-2, 1.02643658689847095384E-1, -1.76416518357834055153E-1, 2.52587186443633654823E-1}; static const std::array<double, 25> kI1eCoeffsB{ 7.51729631084210481353E-18, 4.41434832307170791151E-18, -4.65030536848935832153E-17, -3.20952592199342395980E-17, 2.96262899764595013876E-16, 3.30820231092092828324E-16, -1.88035477551078244854E-15, -3.81440307243700780478E-15, 1.04202769841288027642E-14, 4.27244001671195135429E-14, -2.10154184277266431302E-14, -4.08355111109219731823E-13, -7.19855177624590851209E-13, 2.03562854414708950722E-12, 1.41258074366137813316E-11, 3.25260358301548823856E-11, -1.89749581235054123450E-11, -5.58974346219658380687E-10, -3.83538038596423702205E-9, -2.63146884688951950684E-8, -2.51223623787020892529E-7, -3.88256480887769039346E-6, -1.10588938762623716291E-4, -9.76109749136146840777E-3, 7.78576235018280120474E-1}; XlaOp z = Abs(x); auto half = xla::ScalarLike(x, 0.5); auto two = xla::ScalarLike(x, 2.0); auto thirty_two = xla::ScalarLike(x, 32.0); auto result_le_8 = z * EvaluateChebyshevPolynomial<double>(half * z - two, kI1eCoeffsA); auto result_gt_8 = EvaluateChebyshevPolynomial<double>(thirty_two / z - two, kI1eCoeffsB) / Sqrt(z); return Sign(x) * Select(Le(z, xla::ScalarLike(x, 8.0)), result_le_8, result_gt_8); } XlaOp BesselI1e(XlaOp x) { auto& b = *x.builder(); return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("BesselI1e", x)); TF_ASSIGN_OR_RETURN(auto shape, b.GetShape(x)); if (shape.element_type() == F64) { return I1eImpl64(x); } return DoWithUpcastToF32(x, {BF16, F16}, [](XlaOp x) { return I1eImpl32(x); }); }); } static XlaOp LentzThompsonBarnettAlgorithm( int64_t num_iterations, double small, double threshold, const ForEachIndexBodyFunction& nth_partial_numerator, const ForEachIndexBodyFunction& nth_partial_denominator, absl::Span<const XlaOp> inputs, absl::string_view name) { auto& b = *inputs.front().builder(); return b.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_RET_CHECK(num_iterations < INT32_MAX); enum { kIterationIdx, kValuesUnconvergedIdx, kCIdx, kDIdx, kHIdx, kFirstInputIdx, }; auto while_cond_fn = [num_iterations](absl::Span<const XlaOp> values, XlaBuilder* cond_builder) -> absl::StatusOr<XlaOp> { auto iteration = values[kIterationIdx]; auto iterations_remain_cond = Lt(iteration, ScalarLike(iteration, num_iterations)); auto values_unconverged_cond = values[kValuesUnconvergedIdx]; return And(iterations_remain_cond, values_unconverged_cond); }; auto while_body_fn = [small, threshold, &nth_partial_numerator, &nth_partial_denominator]( absl::Span<const XlaOp> values, XlaBuilder* body_builder) -> absl::StatusOr<std::vector<XlaOp>> { XlaOp iteration = values[kIterationIdx]; TF_ASSIGN_OR_RETURN( std::vector<XlaOp> partial_numerator, nth_partial_numerator(iteration, values.subspan(kFirstInputIdx), body_builder)); TF_RET_CHECK(partial_numerator.size() == 1); TF_ASSIGN_OR_RETURN( std::vector<XlaOp> partial_denominator, nth_partial_denominator(iteration, values.subspan(kFirstInputIdx), body_builder)); TF_RET_CHECK(partial_denominator.size() == 1); auto c = partial_denominator[0] + partial_numerator[0] / values[kCIdx]; auto small_constant = FullLike(c, small); c = Select(Lt(Abs(c), small_constant), small_constant, c); auto d = partial_denominator[0] + partial_numerator[0] * values[kDIdx]; d = Select(Lt(Abs(d), small_constant), small_constant, d); d = Reciprocal(d); auto delta = c * d; auto h = values[kHIdx] * delta; std::vector<XlaOp> updated_values(values.size()); updated_values[kIterationIdx] = Add(iteration, ScalarLike(iteration, 1)); updated_values[kCIdx] = c; updated_values[kDIdx] = d; updated_values[kHIdx] = h; std::copy(values.begin() + kFirstInputIdx, values.end(), updated_values.begin() + kFirstInputIdx); auto tolerance_comparison = Ge(Abs(Sub(delta, FullLike(delta, 1.0))), FullLike(delta, threshold)); updated_values[kValuesUnconvergedIdx] = ReduceAll(tolerance_comparison, ConstantR0<bool>(body_builder, false), CreateScalarOrComputation(PRED, body_builder)); return updated_values; }; TF_ASSIGN_OR_RETURN(std::vector<XlaOp> partial_denominator, nth_partial_denominator(Zero(&b, U32), inputs, &b)); TF_RET_CHECK(partial_denominator.size() == 1); auto h = partial_denominator[0]; auto small_constant = FullLike(h, small); h = Select(Lt(Abs(h), small_constant), small_constant, h); std::vector<XlaOp> values(kFirstInputIdx + inputs.size()); values[kIterationIdx] = One(&b, U32); values[kValuesUnconvergedIdx] = ConstantR0<bool>(&b, true); values[kCIdx] = h; values[kDIdx] = FullLike(h, 0.0); values[kHIdx] = h; std::copy(inputs.begin(), inputs.end(), values.begin() + kFirstInputIdx); TF_ASSIGN_OR_RETURN(values, WhileLoopHelper(while_cond_fn, while_body_fn, values, name, &b)); return values[kHIdx]; }); } XlaOp RegularizedIncompleteBeta(XlaOp a, XlaOp b, XlaOp x) { auto& builder = *x.builder(); return builder.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder.GetShape(a)); TF_ASSIGN_OR_RETURN(Shape b_shape, builder.GetShape(b)); TF_ASSIGN_OR_RETURN(Shape x_shape, builder.GetShape(x)); if (b_shape.element_type() != shape.element_type() || x_shape.element_type() != shape.element_type()) { return InvalidArgument( "Operands to RegularizedIncompleteBeta must have identical types, " "got shapes %s, %s, and %s", shape.ToString(), b_shape.ToString(), x_shape.ToString()); } if (!primitive_util::IsFloatingPointType(shape.element_type())) { return InvalidArgument( "Operands to RegularizedIncompleteBeta must be real-valued " "floating-point, but got %s", PrimitiveType_Name(shape.element_type())); } PrimitiveType element_type = shape.element_type(); if (element_type == F16 || element_type == BF16) { element_type = F32; a = ConvertElementType(a, F32); b = ConvertElementType(b, F32); x = ConvertElementType(x, F32); } auto NthPartialBetaincNumerator = [&](XlaOp iteration, absl::Span<const XlaOp> inputs, XlaBuilder* builder) -> absl::StatusOr<std::vector<XlaOp>> { auto a = inputs[0]; auto b = inputs[1]; auto x = inputs[2]; auto iteration_bcast = Broadcast(iteration, shape.dimensions()); auto iteration_is_even = Eq(iteration_bcast % FullLike(iteration_bcast, 2), FullLike(iteration_bcast, 0)); auto iteration_is_one = Eq(iteration_bcast, FullLike(iteration_bcast, 1)); auto iteration_minus_one = iteration_bcast - FullLike(iteration_bcast, 1); auto m = iteration_minus_one / FullLike(iteration_minus_one, 2); m = ConvertElementType(m, element_type); auto one = FullLike(a, 1.0); auto two = FullLike(a, 2.0); auto even_numerator = -(a + m) * (a + b + m) * x / ((a + two * m) * (a + two * m + one)); auto odd_numerator = m * (b - m) * x / ((a + two * m - one) * (a + two * m)); auto one_numerator = ScalarLike(x, 1.0); auto numerator = Select(iteration_is_even, even_numerator, odd_numerator); return std::vector<XlaOp>{ Select(iteration_is_one, one_numerator, numerator)}; }; auto NthPartialBetaincDenominator = [&shape](XlaOp iteration, absl::Span<const XlaOp> inputs, XlaBuilder* builder) -> absl::StatusOr<std::vector<XlaOp>> { auto x = inputs[2]; auto iteration_bcast = Broadcast(iteration, shape.dimensions()); return std::vector<XlaOp>{ Select(Eq(iteration_bcast, ScalarLike(iteration_bcast, 0)), ScalarLike(x, 0.0), ScalarLike(x, 1.0))}; }; auto result_is_nan = Or(Or(Or(Le(a, ScalarLike(a, 0.0)), Le(b, ScalarLike(b, 0.0))), Lt(x, ScalarLike(x, 0.0))), Gt(x, ScalarLike(x, 1.0))); auto converges_rapidly = Lt(x, (a + FullLike(a, 1.0)) / (a + b + FullLike(b, 2.0))); auto a_orig = a; a = Select(converges_rapidly, a, b); b = Select(converges_rapidly, b, a_orig); x = Select(converges_rapidly, x, Sub(FullLike(x, 1.0), x)); XlaOp continued_fraction; if (element_type == F32) { continued_fraction = LentzThompsonBarnettAlgorithm( 200, std::numeric_limits<float>::epsilon() / 2.0f, std::numeric_limits<float>::epsilon() / 2.0f, NthPartialBetaincNumerator, NthPartialBetaincDenominator, {a, b, x}, "Betainc"); } else { TF_RET_CHECK(element_type == F64); continued_fraction = LentzThompsonBarnettAlgorithm( 600, std::numeric_limits<double>::epsilon() / 2.0f, std::numeric_limits<double>::epsilon() / 2.0f, NthPartialBetaincNumerator, NthPartialBetaincDenominator, {a, b, x}, "Betainc"); } auto lbeta = Lbeta(a, b); auto result = continued_fraction * Exp(Log(x) * a + Log1p(-x) * b - lbeta) / a; result = Select(result_is_nan, NanValue(&builder, element_type), result); auto out = Select(converges_rapidly, result, Sub(FullLike(result, 1.0), result)); return shape.element_type() == element_type ? out : ConvertElementType(out, shape.element_type()); }); } XlaOp Polygamma(XlaOp n, XlaOp x) { auto& builder = *x.builder(); auto doit = [](XlaOp n, XlaOp x, PrimitiveType type) -> XlaOp { XlaOp n_plus_one = n + ScalarLike(n, 1.); XlaOp sign = (ScalarLike(n, 2.) * Rem(n, ScalarLike(n, 2.)) - ScalarLike(n, 1.)); const double nan = std::numeric_limits<double>::quiet_NaN(); XlaOp output = Select(Eq(n, ScalarLike(n, 0.)), Digamma(x), sign * Exp(Lgamma(n_plus_one)) * Zeta(n_plus_one, x)); output = Select(Or(Ne(n, Floor(n)), Lt(n, ScalarLike(n, 0.))), ScalarLike(n, nan), output); return output; }; return builder.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(auto n_shape, builder.GetShape(n)); TF_ASSIGN_OR_RETURN(auto x_shape, builder.GetShape(x)); if (n_shape != x_shape) { return InvalidArgument( "Arguments to Polygamma must have equal shapes and types; " "got %s and %s", n_shape.ToString(), x_shape.ToString()); } TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("Zeta", x)); bool needs_upcast = n_shape.element_type() == F16 || x_shape.element_type() == BF16; if (needs_upcast) { n = ConvertElementType(n, F32); x = ConvertElementType(x, F32); } XlaOp result = doit(n, x, n_shape.element_type()); if (needs_upcast) { result = ConvertElementType(result, n_shape.element_type()); } return result; }); } XlaOp Zeta(XlaOp x, XlaOp q) { auto& builder = *x.builder(); auto doit = [&builder](XlaOp x, XlaOp q, PrimitiveType type) -> XlaOp { static constexpr int M = 12, N = 9; static const std::array<double, M> kZetaCoeffs{ -7.1661652561756670113e18, 1.8152105401943546773e17, -4.5979787224074726105e15, 1.1646782814350067249e14, -2.950130727918164224e12, 7.47242496e10, -1.8924375803183791606e9, 47900160.0, -1209600.0, 30240.0, -720.0, 12.0, }; XlaOp acc = q, neg_power = ScalarLike(q, 0.); XlaOp S = Pow(q, Neg(x)); for (int i = 0; i < N; ++i) { acc = acc + ScalarLike(acc, 1.); neg_power = Pow(acc, Neg(x)); S = S + neg_power; } acc = acc + ScalarLike(acc, 1.); neg_power = Pow(acc, Neg(x)); XlaOp I = neg_power * acc / (x - ScalarLike(acc, 1.)); XlaOp a_inverse_square = Reciprocal(Square(acc)); XlaOp horner_sum = ScalarLike(acc, 0.); XlaOp factor = ScalarLike(acc, 1.); static constexpr int kTwoKMinusOne = 2 * M - 1; for (int i = 0; i < M - 1; ++i) { factor = (x + ScalarLike(x, kTwoKMinusOne - 1 - 2 * i)) * (x + ScalarLike(x, kTwoKMinusOne - 2 - 2 * i)); horner_sum = factor * a_inverse_square * (horner_sum + ScalarLike(acc, 1. / kZetaCoeffs[i])); } XlaOp T = neg_power * (ScalarLike(neg_power, 0.5) + x / acc * (ScalarLike(acc, 1. / kZetaCoeffs[M - 1]) + horner_sum)); XlaOp accurate_result = S + I + T; const double nan = std::numeric_limits<double>::quiet_NaN(); const double inf = std::numeric_limits<double>::infinity(); XlaOp output = Select(Lt(Abs(neg_power), Abs(S) * Epsilon(&builder, type)), S, accurate_result); output = Select(Eq(x, ScalarLike(x, 1.)), ScalarLike(x, inf), output); output = Select(Lt(x, ScalarLike(x, 1.)), ScalarLike(x, nan), output); XlaOp x_domain_error = And(Le(q, ScalarLike(x, 0.)), Ne(x, Floor(x))); output = Select(x_domain_error, ScalarLike(x, nan), output); XlaOp at_pole = And(Le(q, ScalarLike(x, 0.)), Eq(q, Floor(q))); XlaOp x_is_even_int = And(Eq(Rem(x, ScalarLike(x, 2.)), ScalarLike(x, 0.)), Eq(x, Floor(x))); output = Select( at_pole, Select(x_is_even_int, ScalarLike(x, inf), ScalarLike(x, nan)), output); return output; }; return builder.ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(auto x_shape, builder.GetShape(x)); TF_ASSIGN_OR_RETURN(auto q_shape, builder.GetShape(q)); if (x_shape != q_shape) { return InvalidArgument( "Arguments to Zeta must have equal shapes and types; got %s and %s", x_shape.ToString(), q_shape.ToString()); } TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("Zeta", x)); bool needs_upcast = x_shape.element_type() == F16 || x_shape.element_type() == BF16; if (needs_upcast) { x = ConvertElementType(x, F32); q = ConvertElementType(q, F32); } XlaOp result = doit(x, q, x_shape.element_type()); if (needs_upcast) { result = ConvertElementType(result, x_shape.element_type()); } return result; }); } }
#include "xla/hlo/builder/lib/math.h" #include <cmath> #include <complex> #include <functional> #include <limits> #include <memory> #include <string> #include <utility> #include <vector> #include <gtest/gtest.h> #include "xla/array3d.h" #include "xla/error_spec.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/service/service.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/types.h" #include "xla/xla_data.pb.h" namespace xla { namespace { class MathTest : public ClientLibraryTestBase { public: ErrorSpec error_spec_{0.0001}; }; template <typename T> class MathTypedTest : public MathTest { public: void TestLogEdgeCases() { SetFastMathDisabled(true); XlaBuilder b(TestName()); Log(AddParam(LiteralUtil::CreateR1<T>({T{0.0}, T{-0.0}}), &b)); ComputeAndCompareR1<T>(&b, {-std::numeric_limits<T>::infinity(), -std::numeric_limits<T>::infinity()}, {}, error_spec_); } void TestLog1pEdgeCases() { SetFastMathDisabled(true); XlaBuilder b(TestName()); Log1p(AddParam(LiteralUtil::CreateR1<T>({T{0.0}, T{-0.0}, T{-1.0}}), &b)); ComputeAndCompareR1<T>( &b, {T{0.0}, T{-0.0}, -std::numeric_limits<T>::infinity()}, {}, error_spec_); } void TestIsInfOrNan() { SetFastMathDisabled(true); XlaBuilder b(TestName()); auto x = ConstantR1<T>(&b, { T{0}, T{100}, T{-1000}, T{std::numeric_limits<T>::max()}, T{std::numeric_limits<T>::lowest()}, T{std::numeric_limits<float>::infinity()}, T{-std::numeric_limits<float>::infinity()}, T{std::numeric_limits<float>::quiet_NaN()}, T{std::numeric_limits<float>::signaling_NaN()}, }); Tuple(&b, {IsFinite(x), IsInf(x), IsPosInf(x), IsNegInf(x), IsNan(x)}); auto expected = LiteralUtil::MakeTupleOwned( LiteralUtil::CreateR1<bool>( {true, true, true, true, true, false, false, false, false}), LiteralUtil::CreateR1<bool>( {false, false, false, false, false, true, true, false, false}), LiteralUtil::CreateR1<bool>( {false, false, false, false, false, true, false, false, false}), LiteralUtil::CreateR1<bool>( {false, false, false, false, false, false, true, false, false}), LiteralUtil::CreateR1<bool>( {false, false, false, false, false, false, false, true, true})); ComputeAndCompareLiteral(&b, expected, {}); } void TestIsNegZero() { SetFastMathDisabled(true); XlaBuilder b(TestName()); T inf(std::numeric_limits<float>::infinity()); T nan(std::numeric_limits<float>::quiet_NaN()); IsNegZero(AddParam( LiteralUtil::CreateR1<T>({T{-0.0}, T{0}, T{1}, T{-1}, inf, -inf, nan}), &b)); ComputeAndCompareLiteral( &b, LiteralUtil::CreateR1<bool>( {true, false, false, false, false, false, false}), {}, error_spec_); } void TestSqrtPowInequivalence() { SetFastMathDisabled(true); mutable_debug_options()->clear_xla_disable_hlo_passes(); const T inf(std::numeric_limits<float>::infinity()); const T nan(std::numeric_limits<float>::quiet_NaN()); XlaBuilder b(TestName()); auto x = AddParam(LiteralUtil::CreateR1<T>({-inf}), &b); ConcatInDim( &b, {Sqrt(x), Pow(x, ScalarLike(x, 0.5)), Pow(x, ScalarLike(x, 0.3))}, 0); std::vector<T> expected = {nan, inf, inf}; ComputeAndCompareR1<T>(&b, expected, {}, error_spec_); } void TestErfInvEdgeCases() { SetFastMathDisabled(true); XlaBuilder b(TestName()); auto x = AddParam(LiteralUtil::CreateR1<T>({T{-1}, T{1}, T{0}}), &b); ErfInv(x); const T inf(std::numeric_limits<float>::infinity()); std::vector<T> expected = {-inf, inf, T{0}}; ComputeAndCompareR1<T>(&b, expected, {}, error_spec_); } void TestErfEdgeCases() { SetFastMathDisabled(true); const T kErfInvOneMinusHalfULP = T(3.832506856900711); const T inf(std::numeric_limits<float>::infinity()); XlaBuilder b(TestName()); auto x = AddParam(LiteralUtil::CreateR1<T>({T{-inf}, T{inf}, T{-0}, T{0}, T{-kErfInvOneMinusHalfULP}, T{kErfInvOneMinusHalfULP}}), &b); Erf(x); std::vector<T> expected = {T(-1), T(1), T(-0), T(0), T(-1), T(1)}; ComputeAndCompareR1<T>(&b, expected, {}, error_spec_); } }; using TestTypes = ::testing::Types<float #ifndef XLA_BACKEND_DOES_NOT_SUPPORT_FLOAT16 , Eigen::half #endif #ifndef XLA_BACKEND_DOES_NOT_SUPPORT_FLOAT64 , double #endif >; TYPED_TEST_CASE(MathTypedTest, TestTypes); XLA_TYPED_TEST(MathTypedTest, LogEdgeCases) { this->TestLogEdgeCases(); } XLA_TYPED_TEST(MathTypedTest, Log1pEdgeCases) { this->TestLog1pEdgeCases(); } XLA_TYPED_TEST(MathTypedTest, IsInfOrNan) { this->TestIsInfOrNan(); } XLA_TYPED_TEST(MathTypedTest, IsNegZero) { this->TestIsNegZero(); } XLA_TYPED_TEST(MathTypedTest, DISABLED_ON_TPU(SqrtPowInequivalence)) { this->TestSqrtPowInequivalence(); } XLA_TYPED_TEST(MathTypedTest, ErfInvEdgeCases) { this->TestErfInvEdgeCases(); } XLA_TYPED_TEST(MathTypedTest, ErfEdgeCases) { this->TestErfEdgeCases(); } XLA_TEST_F(MathTest, RealFpOnlyOps) { for (int64_t i = PrimitiveType_MIN; i <= PrimitiveType_MAX; ++i) { auto ty = static_cast<PrimitiveType>(i); SCOPED_TRACE(PrimitiveType_Name(ty)); Shape shape; if (ty == U4 || ty == S4) { continue; } if (primitive_util::IsArrayType(ty)) { shape = ShapeUtil::MakeShape(ty, {42}); } else if (ty == PrimitiveType::TUPLE) { shape = ShapeUtil::MakeTupleShape({}); } else if (ty == PrimitiveType::OPAQUE_TYPE) { shape = ShapeUtil::MakeOpaqueShape(); } else if (ty == PrimitiveType::TOKEN) { shape = ShapeUtil::MakeTokenShape(); } else { continue; } for (const auto& test : std::vector<std::pair<std::function<XlaOp(XlaOp)>, std::string>>({ {IsFinite, "is_finite"}, {IsInf, "is_inf"}, {IsPosInf, "is_pos_inf"}, {IsNegInf, "is_neg_inf"}, {IsNan, "is_nan"}, {Erf, "erf"}, {Erfc, "erfc"}, {Lgamma, "lgamma"}, {Digamma, "digamma"}, {RoundToEven, "round_to_even"}, })) { SCOPED_TRACE(test.second); XlaBuilder b(TestName()); XlaOp p = Parameter(&b, 0, shape, "p0"); test.first(p); if (primitive_util::IsFloatingPointType(ty)) { TF_EXPECT_OK(b.first_error()); } else { EXPECT_FALSE(b.first_error().ok()); } } } } XLA_TEST_F(MathTest, SqrtF32) { XlaBuilder builder(TestName()); Literal zero_literal = LiteralUtil::Zero(PrimitiveType::F32); std::unique_ptr<GlobalData> zero_data = client_->TransferToServer(zero_literal).value(); XlaOp zero = Parameter(&builder, 0, zero_literal.shape(), "zero"); Sqrt(zero); ComputeAndCompareR0<float>(&builder, 0.0f, {zero_data.get()}, error_spec_); } XLA_TEST_F(MathTest, SqrtF64) { XlaBuilder builder(TestName()); Literal zero_literal = LiteralUtil::Zero(PrimitiveType::F64); std::unique_ptr<GlobalData> zero_data = client_->TransferToServer(zero_literal).value(); XlaOp zero = Parameter(&builder, 0, zero_literal.shape(), "zero"); Sqrt(zero); ComputeAndCompareR0<double>(&builder, 0.0f, {zero_data.get()}, error_spec_); } #ifndef XLA_BACKEND_DOES_NOT_SUPPORT_FLOAT64 XLA_TEST_F(MathTest, ErfInvF64) { XlaBuilder builder(TestName()); auto x = ConstantR1<double>( &builder, {-0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}); ErfInv(x); std::vector<double> expected = {-1.163087153676674, -0.9061938024368231, -0.732869077959217, -0.5951160814499948, -0.4769362762044698, -0.37080715859355795, -0.27246271472675443, -0.1791434546212916, -0.08885599049425767, 0., 0.08885599049425777, 0.1791434546212916, 0.27246271472675443, 0.37080715859355784, 0.4769362762044698, 0.5951160814499948, 0.732869077959217, 0.9061938024368231, 1.1630871536766736}; ComputeAndCompareR1<double>(&builder, expected, {}, ErrorSpec{1e-15}); } #endif XLA_TEST_F(MathTest, SquareTenValues) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>( &builder, {2.1, -2.6, 2.6, -4.0, 2.1, 2.3, -5.0, -0.9, -2.4, 1.6}); Square(x); std::vector<float> expected = {4.41, 6.76, 6.76, 16., 4.41, 5.29, 25., 0.81, 5.76, 2.56}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, ReciprocalTenValues) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>( &builder, {2.1, -2.6, 2.6, -4.0, 2.1, 2.3, -5.0, -0.9, -2.4, 1.6}); Reciprocal(x); std::vector<float> expected = { 0.47619048, -0.38461538, 0.38461538, -0.25, 0.47619048, 0.43478261, -0.2, -1.11111111, -0.41666667, 0.625}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, SqrtZeroes) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>(&builder, {0.0, -0.0}); Sqrt(x); ComputeAndCompareR1<float>(&builder, {0, 0}, {}, error_spec_); } XLA_TEST_F(MathTest, SqrtSixValues) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>(&builder, {16.0, 1.0, 1024.0, 0.16, 0.2, 12345}); Sqrt(x); std::vector<float> expected = {4, 1, 32, 0.4, 0.4472, 111.1080}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, CbrtSixF32Values) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>(&builder, {8.0, 1.0, 4096.0, -64.0, 1.728, 1331}); Cbrt(x); std::vector<float> expected = {2, 1, 16, -4, 1.2, 11}; ComputeAndCompareR1<float>(&builder, expected, {}, ErrorSpec(0.001)); } XLA_TEST_F(MathTest, CbrtSixF64Values) { XlaBuilder builder(TestName()); auto x = ConstantR1<double>(&builder, {8.0, 1.0, 4096.0, -64.0, 1.728, 1331}); Cbrt(x); std::vector<double> expected = {2, 1, 16, -4, 1.2, 11}; ComputeAndCompareR1<double>(&builder, expected, {}, ErrorSpec(0.001)); } XLA_TEST_F(MathTest, SinhSmallValues) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>(&builder, {1e-3, 1e-5, 1e-7, 1e-9, 1e-11}); Sinh(x); std::vector<float> expected = {1e-3, 1e-5, 1e-7, 1e-9, 1e-11}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, AsinhSmallValues) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>(&builder, {1e-3, 1e-5, 1e-7, 1e-9, 1e-11}); Asinh(x); std::vector<float> expected = {1e-3, 1e-5, 1e-7, 1e-9, 1e-11}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, AtanhSmallValues) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>(&builder, {1e-8, 1e-9, 1e-10, 1e-11}); Atanh(x); std::vector<float> expected = {1e-8, 1e-9, 1e-10, 1e-11}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, Lgamma) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>(&builder, {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.5, 1.5, 2.5, -1.5, -3.5, -5.5}); Lgamma(x); std::vector<float> expected = { 0, 0, static_cast<float>(std::log(2)), static_cast<float>(std::log(6)), static_cast<float>(std::log(24)), static_cast<float>(std::log(120)), static_cast<float>(std::log(M_PI) / 2), static_cast<float>(std::log(M_PI) / 2 - std::log(2)), static_cast<float>(std::log(M_PI) / 2 - std::log(4) + std::log(3)), static_cast<float>(std::log(M_PI) / 2 - std::log(3) + std::log(4)), static_cast<float>(std::log(M_PI) / 2 - std::log(105) + std::log(16)), static_cast<float>(std::log(M_PI) / 2 - std::log(10395) + std::log(64))}; error_spec_ = ErrorSpec{0.001}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } #if !defined(XLA_BACKEND_DOES_NOT_SUPPORT_FLOAT16) XLA_TEST_F(MathTest, LgammaF16) { SetFastMathDisabled(true); XlaBuilder b(TestName()); auto x = ConstantR1<half>(&b, { half(-7360.0), half(-4066.0), half(-5.9605e-08), }); Lgamma(x); std::vector<half> expected = { std::numeric_limits<half>::infinity(), std::numeric_limits<half>::infinity(), half(16.64), }; ComputeAndCompareR1<half>(&b, expected, {}, ErrorSpec{0.1}); } #endif XLA_TEST_F(MathTest, Digamma) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>(&builder, {1.0, 0.5, 1 / 3.0, 0.25, 1 / 6.0, 0.125, 2.0, 3.0, 4.0, 6.0, 8.0, 9.0}); Digamma(x); constexpr double euler_mascheroni = 0.57721566490153286060651209008240243104215933593992; std::vector<float> expected = { static_cast<float>(-euler_mascheroni), static_cast<float>(-2 * std::log(2) - euler_mascheroni), static_cast<float>(-M_PI / 2 / std::sqrt(3) - 3 * std::log(3) / 2 - euler_mascheroni), static_cast<float>(-M_PI / 2 - 3 * std::log(2) - euler_mascheroni), static_cast<float>(-M_PI * std::sqrt(3) / 2 - 2 * std::log(2) - 3 * std::log(3) / 2 - euler_mascheroni), static_cast<float>( -M_PI / 2 - 4 * std::log(2) - (M_PI + std::log(2 + std::sqrt(2)) - std::log(2 - std::sqrt(2))) / std::sqrt(2) - euler_mascheroni), static_cast<float>(1 - euler_mascheroni), static_cast<float>(1.5 - euler_mascheroni), static_cast<float>(11 / 6.0 - euler_mascheroni), static_cast<float>(137 / 60.0 - euler_mascheroni), static_cast<float>(363 / 140.0 - euler_mascheroni), static_cast<float>(761 / 280.0 - euler_mascheroni)}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, Igamma) { XlaBuilder builder(TestName()); auto a = ConstantR3FromArray3D<float>( &builder, {{{0.3760359, 1.62685306, 0.53327996, 1.5111382, 0.3521143}, {1.79378175, 1.05317882, 0.85049253, 1.399534, 0.22073882}, {1.17725309, 0.90727209, 1.32418503, 1.53238533, 0.51984756}}}); auto x = ConstantR3FromArray3D<float>( &builder, {{{0.56420934, 8.97671773, 2.81068609, 4.50655124, 2.88178617}, {1.01795164, 8.86298411, 0.29232942, 8.17661015, 5.67652269}, {1.59959565, 0.54463897, 0.6585252, 9.83192283, 3.93372669}}}); Igamma(a, x); Array3D<float> expected = { {{0.78746926, 0.99940502, 0.98028261, 0.97033807, 0.99054696}, {0.33265522, 0.99983558, 0.32599159, 0.99923275, 0.99980893}, {0.74343963, 0.46703197, 0.33923541, 0.99978511, 0.99460685}}}; ComputeAndCompareR3<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, IgammaSpecialValues) { SetFastMathDisabled(true); XlaBuilder builder(TestName()); const float nan = std::numeric_limits<float>::quiet_NaN(); auto a = ConstantR1<float>(&builder, {nan, nan, 0.53327996, -6.00773744602e+37, -1.3937809742e+31, -23.351348877}); auto x = ConstantR1<float>( &builder, {nan, 8.97671773, nan, nan, 0.0, 6.02455484352e-39}); Igamma(a, x); std::vector<float> expected = {nan, nan, nan, nan, nan, nan}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } #if !defined(XLA_BACKEND_DOES_NOT_SUPPORT_FLOAT16) XLA_TEST_F(MathTest, IgammaF16) { SetFastMathDisabled(true); XlaBuilder builder(TestName()); auto a = ConstantR3FromArray3D<half>( &builder, {{{half(0.37603), half(1.6268), half(0.53327), half(1.5111)}, {half(1.79378), half(1.05317), half(0.85049), half(1.3995)}, {half(1.17725), half(0.90727), half(1.32418), half(1.5323)}}}); Igamma(a, a); Array3D<half> expected = { {{half(0.7068214), half(0.6041154), half(0.67748886), half(0.60799426)}, {half(0.599202), half(0.6288743), half(0.64280254), half(0.6121421)}, {half(0.6220287), half(0.6384635), half(0.6152258), half(0.6072449)}}}; ComputeAndCompareR3<half>(&builder, expected, {}, ErrorSpec{1e-3}); } #endif XLA_TEST_F(MathTest, Igammac) { XlaBuilder builder(TestName()); auto a = ConstantR3FromArray3D<float>( &builder, {{{0.3760359, 1.62685306, 0.53327996, 1.5111382, 0.3521143}, {1.79378175, 1.05317882, 0.85049253, 1.399534, 0.22073882}, {1.17725309, 0.90727209, 1.32418503, 1.53238533, 0.51984756}}}); auto x = ConstantR3FromArray3D<float>( &builder, {{{0.56420934, 8.97671773, 2.81068609, 4.50655124, 2.88178617}, {1.01795164, 8.86298411, 0.29232942, 8.17661015, 5.67652269}, {1.59959565, 0.54463897, 0.6585252, 9.83192283, 3.93372669}}}); Igammac(a, x); Array3D<float> expected = {{{2.12530741e-01, 5.94977775e-04, 1.97173867e-02, 2.96619296e-02, 9.45303689e-03}, {6.67344782e-01, 1.64421996e-04, 6.74008406e-01, 7.67252602e-04, 1.91071108e-04}, {2.56560373e-01, 5.32968026e-01, 6.60764593e-01, 2.14889688e-04, 5.39314824e-03}}}; ComputeAndCompareR3<float>(&builder, expected, {}, error_spec_); } #if !defined(XLA_BACKEND_DOES_NOT_SUPPORT_FLOAT16) XLA_TEST_F(MathTest, IgammacF16) { SetFastMathDisabled(true); XlaBuilder builder(TestName()); auto a = ConstantR3FromArray3D<half>( &builder, {{{half(0.37603), half(1.6268), half(0.53327), half(1.5111)}, {half(1.79378), half(1.05317), half(0.85049), half(1.3995)}, {half(1.17725), half(0.90727), half(1.32418), half(1.5323)}}}); Igammac(a, a); Array3D<half> expected = { {{half(0.29317862), half(0.39588454), half(0.32251117), half(0.39200574)}, {half(0.40079802), half(0.37112573), half(0.35719746), half(0.3878579)}, {half(0.3779713), half(0.36153653), half(0.38477424), half(0.39275512)}}}; ComputeAndCompareR3<half>(&builder, expected, {}, ErrorSpec{1e-4}); } #endif XLA_TEST_F(MathTest, RoundToEven) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>( &builder, {-1.4, -1.5, -2.5, -0.5, 0, 0.5, 1.5, 2.5, 3.5, 4.5}); RoundToEven(x); std::vector<float> expected = {-1.0, -2.0, -2.0, -0.0, 0, 0.0, 2.0, 2.0, 4.0, 4.0}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, ErfRejectsComplexInputs) { XlaBuilder b(TestName()); auto x = ConstantR1<std::complex<float>>(&b, {{0, 0}}); Erf(x); EXPECT_FALSE(b.Build().status().ok()); } XLA_TEST_F(MathTest, ErfcRejectsComplexInputs) { XlaBuilder b(TestName()); auto x = ConstantR1<std::complex<float>>(&b, {{0, 0}}); Erfc(x); EXPECT_FALSE(b.Build().status().ok()); } XLA_TEST_F(MathTest, LgammaRejectsComplexInputs) { XlaBuilder b(TestName()); auto x = ConstantR1<std::complex<float>>(&b, {{0, 0}}); Lgamma(x); EXPECT_FALSE(b.Build().status().ok()); } XLA_TEST_F(MathTest, DigammaRejectsComplexInputs) { XlaBuilder b(TestName()); auto x = ConstantR1<std::complex<float>>(&b, {{0, 0}}); Digamma(x); EXPECT_FALSE(b.Build().status().ok()); } XLA_TEST_F(MathTest, RoundToEvenRejectsComplexInputs) { XlaBuilder b(TestName()); auto x = ConstantR1<std::complex<float>>(&b, {{0, 0}}); RoundToEven(x); EXPECT_FALSE(b.Build().status().ok()); } XLA_TEST_F(MathTest, BesselI0eFloat) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>( &builder, {-20.0, -18.0, -16.0, -14.0, -12.0, -10.0, -8.0, -6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0}); BesselI0e(x); std::vector<float> expected = {0.0897803118848, 0.0947062952128, 0.100544127361, 0.107615251671, 0.116426221213, 0.127833337163, 0.143431781857, 0.16665743264, 0.207001921224, 0.308508322554, 1.0, 0.308508322554, 0.207001921224, 0.16665743264, 0.143431781857, 0.127833337163, 0.116426221213, 0.107615251671, 0.100544127361, 0.0947062952128, 0.0897803118848}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, DISABLED_ON_TPU(BesselI0eDouble)) { XlaBuilder builder(TestName()); auto x = ConstantR1<double>( &builder, {-20.0, -18.0, -16.0, -14.0, -12.0, -10.0, -8.0, -6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0}); BesselI0e(x); std::vector<double> expected = {0.0897803118848, 0.0947062952128, 0.100544127361, 0.107615251671, 0.116426221213, 0.127833337163, 0.143431781857, 0.16665743264, 0.207001921224, 0.308508322554, 1.0, 0.308508322554, 0.207001921224, 0.16665743264, 0.143431781857, 0.127833337163, 0.116426221213, 0.107615251671, 0.100544127361, 0.0947062952128, 0.0897803118848}; ComputeAndCompareR1<double>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, BesselI1eFloat) { XlaBuilder builder(TestName()); auto x = ConstantR1<float>( &builder, {-20.0, -18.0, -16.0, -14.0, -12.0, -10.0, -8.0, -6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0}); BesselI1e(x); std::vector<float> expected = {-0.0875062221833, -0.092036796872, -0.0973496147565, -0.103697667463, -0.11146429929, -0.121262681384, -0.134142493293, -0.152051459309, -0.178750839502, -0.215269289249, 0.0, 0.215269289249, 0.178750839502, 0.152051459309, 0.134142493293, 0.121262681384, 0.11146429929, 0.103697667463, 0.0973496147565, 0.092036796872, 0.0875062221833}; ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, DISABLED_ON_TPU(BesselI1eDouble)) { XlaBuilder builder(TestName()); auto x = ConstantR1<double>( &builder, {-20.0, -18.0, -16.0, -14.0, -12.0, -10.0, -8.0, -6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0}); BesselI1e(x); std::vector<double> expected = {-0.0875062221833, -0.092036796872, -0.0973496147565, -0.103697667463, -0.11146429929, -0.121262681384, -0.134142493293, -0.152051459309, -0.178750839502, -0.215269289249, 0.0, 0.215269289249, 0.178750839502, 0.152051459309, 0.134142493293, 0.121262681384, 0.11146429929, 0.103697667463, 0.0973496147565, 0.092036796872, 0.0875062221833}; ComputeAndCompareR1<double>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, AcosComplexValues) { XlaBuilder builder(TestName()); auto x = ConstantR1<std::complex<float>>( &builder, {{0, 0}, {0, 1}, {1, 1}, {0.8, 0.2}}); Acos(x); std::vector<std::complex<float>> expected = { {1.5707963267948966, 0}, {1.5707963267948966, -0.881373587019543}, {0.9045568943023814, -1.0612750619050357}, {0.7011246914497526, -0.30527648462436596}}; ComputeAndCompareR1<std::complex<float>>(&builder, expected, {}, error_spec_); } XLA_TEST_F(MathTest, ZetaF64) { XlaBuilder builder(TestName()); auto x = ConstantR1<double>(&builder, {2.0}); auto q = ConstantR1<double>(&builder, {1.0}); Zeta(x, q); std::vector<double> expected = {1.64493406684823}; ComputeAndCompareR1<double>(&builder, expected, {}, ErrorSpec{0.00000000000001}); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/lib/math.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/lib/math_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
db56bb06-7c34-4ecb-b2e3-92e681833f69
cpp
tensorflow/tensorflow
tensor
tensorflow/lite/delegates/gpu/cl/tensor.cc
tensorflow/cc/experimental/base/tests/tensor_test.cc
#include "tensorflow/lite/delegates/gpu/cl/tensor.h" #include <cstdint> #include <cstring> #include <memory> #include <utility> #include <vector> #include "absl/strings/str_cat.h" #include "tensorflow/lite/delegates/gpu/cl/buffer.h" #include "tensorflow/lite/delegates/gpu/cl/cl_image_format.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/task/tensor_desc.h" namespace tflite { namespace gpu { namespace cl { namespace { absl::Status AllocateTensorMemoryInternal(const CLContext& context, const TensorDescriptor& descriptor, CLMemory* result) { cl_mem_flags mem_flags = CL_MEM_READ_WRITE; const uint8_t* data_ptr = nullptr; if (!descriptor.GetData().empty()) { data_ptr = descriptor.GetData().data(); mem_flags |= CL_MEM_COPY_HOST_PTR; } std::vector<uint64_t> storage_dims = descriptor.GetStorageDims(); switch (descriptor.GetStorageType()) { case TensorStorageType::BUFFER: case TensorStorageType::IMAGE_BUFFER: { const size_t data_size = storage_dims[0] * descriptor.GetElementSize() * SizeOf(descriptor.GetDataType()); cl_int error_code; cl_mem memory = clCreateBuffer(context.context(), mem_flags, data_size, const_cast<uint8_t*>(data_ptr), &error_code); if (!memory) { return absl::UnknownError( absl::StrCat("Failed to allocate device memory (clCreateBuffer): ", CLErrorCodeToString(error_code))); } *result = CLMemory(memory, true); return absl::OkStatus(); } case TensorStorageType::TEXTURE_2D: { cl_image_desc desc; desc.image_type = CL_MEM_OBJECT_IMAGE2D; desc.image_width = storage_dims[0]; desc.image_height = storage_dims[1]; desc.image_depth = 0; desc.image_row_pitch = 0; desc.image_slice_pitch = 0; desc.num_mip_levels = 0; desc.num_samples = 0; desc.buffer = nullptr; cl_image_format format; format.image_channel_order = CL_RGBA; format.image_channel_data_type = DataTypeToChannelType(descriptor.GetDataType()); cl_int error_code; cl_mem memory = CreateImage2DLegacy(context.context(), mem_flags, &format, &desc, const_cast<uint8_t*>(data_ptr), &error_code); if (error_code != CL_SUCCESS) { return absl::UnknownError( absl::StrCat("Failed to create 2D texture (clCreateImage): ", CLErrorCodeToString(error_code))); } *result = CLMemory(memory, true); return absl::OkStatus(); } case TensorStorageType::TEXTURE_3D: { cl_image_desc desc; desc.image_type = CL_MEM_OBJECT_IMAGE3D; desc.image_width = storage_dims[0]; desc.image_height = storage_dims[1]; desc.image_depth = storage_dims[2]; desc.image_row_pitch = 0; desc.image_slice_pitch = 0; desc.num_mip_levels = 0; desc.num_samples = 0; desc.buffer = nullptr; cl_image_format format; format.image_channel_order = CL_RGBA; format.image_channel_data_type = DataTypeToChannelType(descriptor.GetDataType()); cl_int error_code; cl_mem memory = CreateImage3DLegacy(context.context(), mem_flags, &format, &desc, const_cast<uint8_t*>(data_ptr), &error_code); if (error_code != CL_SUCCESS) { return absl::UnknownError( absl::StrCat("Failed to create 3D texture (clCreateImage): ", CLErrorCodeToString(error_code))); } *result = CLMemory(memory, true); return absl::OkStatus(); } case TensorStorageType::TEXTURE_ARRAY: { cl_image_desc desc; desc.image_type = CL_MEM_OBJECT_IMAGE2D_ARRAY; desc.image_width = storage_dims[0]; desc.image_height = storage_dims[1]; desc.image_depth = 0; desc.image_array_size = storage_dims[2]; desc.image_row_pitch = 0; desc.image_slice_pitch = 0; desc.num_mip_levels = 0; desc.num_samples = 0; desc.buffer = nullptr; cl_image_format format; format.image_channel_order = CL_RGBA; format.image_channel_data_type = DataTypeToChannelType(descriptor.GetDataType()); cl_int error_code; cl_mem memory = clCreateImage(context.context(), mem_flags, &format, &desc, const_cast<uint8_t*>(data_ptr), &error_code); if (error_code != CL_SUCCESS) { return absl::UnknownError( absl::StrCat("Failed to create 2D texture array (clCreateImage): ", CLErrorCodeToString(error_code))); } *result = CLMemory(memory, true); return absl::OkStatus(); } case TensorStorageType::SINGLE_TEXTURE_2D: { const int element_size = descriptor.GetElementSize(); if (element_size > 4) { return absl::InvalidArgumentError(absl::StrCat( "SINGLE_TEXTURE_2D support only channels in range [1-4], but ", element_size, "was provided")); } cl_image_desc desc; desc.image_type = CL_MEM_OBJECT_IMAGE2D; desc.image_width = storage_dims[0]; desc.image_height = storage_dims[1]; desc.image_depth = 0; desc.image_row_pitch = 0; desc.image_slice_pitch = 0; desc.num_mip_levels = 0; desc.num_samples = 0; desc.buffer = nullptr; cl_image_format format; if (context.IsFloatTexture2DSupported(element_size, descriptor.GetDataType())) { format.image_channel_order = ToChannelOrder(element_size); format.image_channel_data_type = DataTypeToChannelType(descriptor.GetDataType()); } else { return absl::InvalidArgumentError( absl::StrCat("This device doesn't support ", element_size, "-channel textures.")); } cl_int error_code; cl_mem memory = CreateImage2DLegacy(context.context(), mem_flags, &format, &desc, const_cast<uint8_t*>(data_ptr), &error_code); if (error_code != CL_SUCCESS) { return absl::UnknownError( absl::StrCat("Failed to create single 2D texture (clCreateImage): ", CLErrorCodeToString(error_code))); } *result = CLMemory(memory, true); return absl::OkStatus(); } default: return absl::InternalError("Unsupported tensor storage type"); } } absl::Status CreateImageBufferFromBuffer(const CLContext& context, cl_mem memory, DataType data_type, int width, cl_mem* result) { cl_image_format format; cl_image_desc desc; std::memset(&desc, 0, sizeof(desc)); desc.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER; desc.image_width = width; desc.mem_object = memory; format.image_channel_data_type = DataTypeToChannelType(data_type); format.image_channel_order = CL_RGBA; cl_int error_code; *result = clCreateImage(context.context(), CL_MEM_READ_WRITE, &format, &desc, nullptr, &error_code); if (error_code != CL_SUCCESS) { return absl::UnknownError( absl::StrCat("Failed to create Image from Buffer (clCreateImage): ", CLErrorCodeToString(error_code))); } return absl::OkStatus(); } absl::Status CreateImage2DFromBuffer(const CLContext& context, cl_mem memory, DataType data_type, int width, int height, int channels, int width_pixel_alignment, cl_mem* result) { if (!context.IsFloatTexture2DSupported(channels, data_type)) { return absl::InvalidArgumentError(absl::StrCat( "This device doesn't support ", channels, "-channel textures.")); } cl_image_desc desc; desc.image_type = CL_MEM_OBJECT_IMAGE2D; desc.image_width = width; desc.image_height = height; desc.image_depth = 0; const size_t width_aligned = AlignByN(width, width_pixel_alignment); desc.image_row_pitch = width_aligned * channels * SizeOf(data_type); desc.image_slice_pitch = 0; desc.num_mip_levels = 0; desc.num_samples = 0; desc.mem_object = memory; cl_image_format format; format.image_channel_order = ToChannelOrder(channels); format.image_channel_data_type = DataTypeToChannelType(data_type); cl_int error_code; *result = CreateImage2DLegacy(context.context(), CL_MEM_READ_WRITE, &format, &desc, nullptr, &error_code); if (error_code != CL_SUCCESS) { return absl::UnknownError( absl::StrCat("Failed to create Image2D from Buffer (clCreateImage): ", CLErrorCodeToString(error_code))); } return absl::OkStatus(); } } Tensor::Tensor(cl_mem memory, bool memory_owner, const TensorDescriptor& descriptor) : memory_(memory), image_buffer_memory_(nullptr), memory_owner_(memory_owner), descriptor_(descriptor) {} Tensor::Tensor(cl_mem memory, bool memory_owner, cl_mem image_buffer_memory, const TensorDescriptor& descriptor) : memory_(memory), image_buffer_memory_(image_buffer_memory), memory_owner_(memory_owner), descriptor_(descriptor) { if (image_buffer_memory && (descriptor.GetStorageType() == TensorStorageType::TEXTURE_2D || descriptor.GetStorageType() == TensorStorageType::SINGLE_TEXTURE_2D)) { buffer_based_ = true; } } Tensor::Tensor(Tensor&& tensor) : memory_(tensor.memory_), image_buffer_memory_(tensor.image_buffer_memory_), memory_owner_(tensor.memory_owner_), buffer_based_(tensor.buffer_based_), descriptor_(std::move(tensor.descriptor_)), aligned_texture_width_(tensor.aligned_texture_width_) { tensor.memory_ = nullptr; tensor.image_buffer_memory_ = nullptr; } Tensor& Tensor::operator=(Tensor&& tensor) { if (this != &tensor) { Release(); std::swap(memory_, tensor.memory_); std::swap(image_buffer_memory_, tensor.image_buffer_memory_); std::swap(memory_owner_, tensor.memory_owner_); std::swap(buffer_based_, tensor.buffer_based_); descriptor_ = std::move(tensor.descriptor_); std::swap(aligned_texture_width_, tensor.aligned_texture_width_); } return *this; } void Tensor::Release() { if (image_buffer_memory_) { clReleaseMemObject(image_buffer_memory_); image_buffer_memory_ = nullptr; } if (memory_owner_ && memory_) { clReleaseMemObject(memory_); memory_ = nullptr; } } absl::Status Tensor::GetGPUResources(const GPUObjectDescriptor* obj_ptr, GPUResourcesWithValue* resources) const { const auto* buffer_desc = dynamic_cast<const BufferDescriptor*>(obj_ptr); if (buffer_desc) { if (descriptor_.GetStorageType() != TensorStorageType::BUFFER && descriptor_.GetStorageType() != TensorStorageType::IMAGE_BUFFER) { return absl::InvalidArgumentError( "Tensor can be used with BufferDescriptor only with " "TensorStorageType::BUFFER/TensorStorageType::IMAGE_BUFFER."); } resources->buffers.push_back({"buffer", memory_}); return absl::OkStatus(); } const auto* tensor_desc = dynamic_cast<const TensorDescriptor*>(obj_ptr); if (!tensor_desc) { return absl::InvalidArgumentError("Expected TensorDescriptor on input."); } tensor_desc->GetGpuResources(descriptor_.GetBHWDCShape(), &resources->generic); if (descriptor_.GetStorageType() == TensorStorageType::BUFFER) { resources->buffers.push_back({"buffer", memory_}); } else if (descriptor_.GetStorageType() == TensorStorageType::TEXTURE_2D || descriptor_.GetStorageType() == TensorStorageType::SINGLE_TEXTURE_2D) { if (obj_ptr->GetAccess() == AccessType::WRITE && tensor_desc->GetUseBufferForWriteOnlyTexture2d()) { resources->AddInt("aligned_texture_width", aligned_texture_width_); resources->buffers.push_back({"buffer", memory_}); } else { cl_mem mem = buffer_based_ ? image_buffer_memory_ : memory_; resources->images2d.push_back({"image2d", mem}); } } else if (descriptor_.GetStorageType() == TensorStorageType::TEXTURE_ARRAY) { resources->image2d_arrays.push_back({"image2d_array", memory_}); } else if (descriptor_.GetStorageType() == TensorStorageType::TEXTURE_3D) { resources->images3d.push_back({"image3d", memory_}); } else if (descriptor_.GetStorageType() == TensorStorageType::IMAGE_BUFFER) { if (obj_ptr->GetAccess() == AccessType::WRITE && tensor_desc->GetUseBufferForWriteOnlyImageBuffer()) { resources->buffers.push_back({"buffer", memory_}); } else { resources->image_buffers.push_back( {"image_buffer", image_buffer_memory_}); } } return absl::OkStatus(); } cl_mem Tensor::GetMemoryPtr() const { if (buffer_based_) { return image_buffer_memory_; } else { return descriptor_.GetStorageType() == TensorStorageType::IMAGE_BUFFER ? image_buffer_memory_ : memory_; } } cl_mem Tensor::GetMemoryPtrForWriting() const { if (buffer_based_) { return image_buffer_memory_; } else { return memory_; } } absl::Status Tensor::CreateFromDescriptor(const TensorDescriptor& desc, CLContext* context) { desc.CopyWithoutData(&descriptor_); memory_owner_ = true; CLMemory memory; RETURN_IF_ERROR(AllocateTensorMemoryInternal(*context, desc, &memory)); memory_ = memory.Release(); if (desc.GetStorageType() == TensorStorageType::IMAGE_BUFFER) { std::vector<uint64_t> storage_dims = descriptor_.GetStorageDims(); RETURN_IF_ERROR( CreateImageBufferFromBuffer(*context, memory_, desc.GetDataType(), storage_dims[0], &image_buffer_memory_)); } return absl::OkStatus(); } absl::Status Tensor::UploadDescriptorData(const TensorDescriptor& desc, CLCommandQueue* queue) { return WriteData(desc.GetData().data(), queue); } absl::Status Tensor::ToDescriptor(TensorDescriptor* desc, CLCommandQueue* queue) const { *desc = descriptor_; std::vector<uint8_t> data(GetMemorySizeInBytes()); RETURN_IF_ERROR(ReadData(data.data(), queue)); desc->SetData(std::move(data)); return absl::OkStatus(); } absl::Status Tensor::WriteData(const void* ptr, CLCommandQueue* queue) { switch (descriptor_.GetStorageType()) { case TensorStorageType::BUFFER: case TensorStorageType::IMAGE_BUFFER: RETURN_IF_ERROR( queue->EnqueueWriteBuffer(memory_, GetMemorySizeInBytes(), ptr)); break; case TensorStorageType::TEXTURE_ARRAY: case TensorStorageType::TEXTURE_2D: case TensorStorageType::TEXTURE_3D: case TensorStorageType::SINGLE_TEXTURE_2D: { cl_mem mem = buffer_based_ ? image_buffer_memory_ : memory_; RETURN_IF_ERROR(queue->EnqueueWriteImage( mem, descriptor_.GetFullTensorRegion(), ptr)); break; } default: return absl::InternalError("Unsupported tensor storage type"); } return absl::OkStatus(); } absl::Status Tensor::ReadData(void* ptr, CLCommandQueue* queue) const { switch (descriptor_.GetStorageType()) { case TensorStorageType::BUFFER: case TensorStorageType::IMAGE_BUFFER: RETURN_IF_ERROR( queue->EnqueueReadBuffer(memory_, GetMemorySizeInBytes(), ptr)); break; case TensorStorageType::TEXTURE_ARRAY: case TensorStorageType::TEXTURE_2D: case TensorStorageType::TEXTURE_3D: case TensorStorageType::SINGLE_TEXTURE_2D: { cl_mem mem = buffer_based_ ? image_buffer_memory_ : memory_; RETURN_IF_ERROR( queue->EnqueueReadImage(mem, descriptor_.GetFullTensorRegion(), ptr)); break; } default: return absl::InternalError("Unsupported tensor storage type"); } return absl::OkStatus(); } absl::Status CreateTensor(const CLContext& context, const TensorDescriptor& descriptor, Tensor* result) { CLMemory mem; RETURN_IF_ERROR(AllocateTensorMemoryInternal(context, descriptor, &mem)); cl_mem memory = mem.Release(); if (descriptor.GetStorageType() == TensorStorageType::IMAGE_BUFFER) { std::vector<uint64_t> storage_dims = descriptor.GetStorageDims(); cl_mem image_memory; RETURN_IF_ERROR( CreateImageBufferFromBuffer(context, memory, descriptor.GetDataType(), storage_dims[0], &image_memory)); *result = Tensor(memory, true, image_memory, descriptor); } else { *result = Tensor(memory, true, descriptor); } return absl::OkStatus(); } absl::Status CreateTensorShared(const CLContext& context, cl_mem memory, const TensorDescriptor& descriptor, Tensor* result) { const bool memory_owner = false; if (descriptor.GetStorageType() == TensorStorageType::IMAGE_BUFFER) { std::vector<uint64_t> storage_dims = descriptor.GetStorageDims(); cl_mem image_memory; RETURN_IF_ERROR( CreateImageBufferFromBuffer(context, memory, descriptor.GetDataType(), storage_dims[0], &image_memory)); *result = Tensor(memory, memory_owner, image_memory, descriptor); } else { *result = Tensor(memory, memory_owner, descriptor); } return absl::OkStatus(); } absl::Status CreateTensorSharedImage2DBuffer(const CLContext& context, cl_mem memory, const TensorDescriptor& descriptor, int width_pixel_alignment, Tensor* result) { std::vector<uint64_t> storage_dims = descriptor.GetStorageDims(); const int width = storage_dims[0]; const int height = storage_dims[1]; const int channels = descriptor.GetElementSize(); cl_mem image_memory; RETURN_IF_ERROR(CreateImage2DFromBuffer( context, memory, descriptor.GetDataType(), width, height, channels, width_pixel_alignment, &image_memory)); *result = Tensor(memory, false, image_memory, descriptor); result->aligned_texture_width_ = AlignByN(width, width_pixel_alignment); return absl::OkStatus(); } absl::Status AllocateTensorMemory(const CLContext& context, const TensorDescriptor& descriptor, CLMemory* result) { return AllocateTensorMemoryInternal(context, descriptor, result); } } } }
#include "tensorflow/cc/experimental/base/public/tensor.h" #include <stddef.h> #include <stdint.h> #include <gtest/gtest.h> #include "absl/types/span.h" #include "tensorflow/c/tf_datatype.h" #include "tensorflow/cc/experimental/base/public/status.h" #include "tensorflow/cc/experimental/base/tests/tensor_types_test_util.h" #include "tensorflow/core/platform/test.h" namespace { using tensorflow::experimental::cc::Status; using tensorflow::experimental::cc::Tensor; using SimpleTypes = ::testing::Types< tensorflow::FloatType, tensorflow::DoubleType, tensorflow::Int32Type, tensorflow::UINT8Type, tensorflow::INT8Type, tensorflow::INT64Type, tensorflow::UINT16Type, tensorflow::UINT32Type, tensorflow::UINT64Type>; template <typename T> class ConstructScalarTensorTest : public ::testing::Test {}; TYPED_TEST_SUITE(ConstructScalarTensorTest, SimpleTypes); TYPED_TEST(ConstructScalarTensorTest, ValidTensorAttributesAfterConstruction) { Status status; TF_DataType dtype = TypeParam::kDType; typename TypeParam::type value = 42; Tensor tensor = Tensor::FromBuffer(dtype, {}, &value, sizeof(value), [](void*, size_t) {}, &status); ASSERT_TRUE(status.ok()) << status.message(); EXPECT_EQ(tensor.dims(), 0); EXPECT_EQ(tensor.dtype(), dtype); EXPECT_EQ(*reinterpret_cast<typename TypeParam::type*>(tensor.data()), 42); EXPECT_EQ(tensor.num_bytes(), sizeof(typename TypeParam::type)); EXPECT_EQ(tensor.num_elements(), 1); } template <typename T> class Construct1DTensorTest : public ::testing::Test {}; TYPED_TEST_SUITE(Construct1DTensorTest, SimpleTypes); TYPED_TEST(Construct1DTensorTest, ValidTensorAttributesAfterConstruction) { Status status; TF_DataType dtype = TypeParam::kDType; std::vector<typename TypeParam::type> value = {42, 100, 0, 1, 4, 29}; std::vector<int64_t> shape; shape.push_back(value.size()); Tensor tensor = Tensor::FromBuffer( dtype, shape, value.data(), value.size() * sizeof(typename TypeParam::type), [](void*, size_t) {}, &status); ASSERT_TRUE(status.ok()) << status.message(); EXPECT_EQ(tensor.dims(), 1); EXPECT_EQ(tensor.dtype(), dtype); absl::Span<const typename TypeParam::type> tensor_view( reinterpret_cast<typename TypeParam::type*>(tensor.data()), value.size()); EXPECT_EQ(tensor_view[0], 42); EXPECT_EQ(tensor_view[1], 100); EXPECT_EQ(tensor_view[2], 0); EXPECT_EQ(tensor_view[3], 1); EXPECT_EQ(tensor_view[4], 4); EXPECT_EQ(tensor_view[5], 29); EXPECT_EQ(tensor.num_bytes(), value.size() * sizeof(typename TypeParam::type)); EXPECT_EQ(tensor.num_elements(), value.size()); } template <typename T> class Construct2DTensorTest : public ::testing::Test {}; TYPED_TEST_SUITE(Construct2DTensorTest, SimpleTypes); TYPED_TEST(Construct2DTensorTest, ValidTensorAttributesAfterConstruction) { Status status; TF_DataType dtype = TypeParam::kDType; std::vector<typename TypeParam::type> value = {42, 100, 0, 1, 4, 29}; std::vector<int64_t> shape({2, 3}); Tensor tensor = Tensor::FromBuffer( dtype, shape, value.data(), value.size() * sizeof(typename TypeParam::type), [](void*, size_t) {}, &status); ASSERT_TRUE(status.ok()) << status.message(); EXPECT_EQ(tensor.dims(), 2); EXPECT_EQ(tensor.dtype(), dtype); absl::Span<const typename TypeParam::type> tensor_view( reinterpret_cast<typename TypeParam::type*>(tensor.data()), value.size()); EXPECT_EQ(tensor_view[0], 42); EXPECT_EQ(tensor_view[1], 100); EXPECT_EQ(tensor_view[2], 0); EXPECT_EQ(tensor_view[3], 1); EXPECT_EQ(tensor_view[4], 4); EXPECT_EQ(tensor_view[5], 29); EXPECT_EQ(tensor.num_bytes(), value.size() * sizeof(typename TypeParam::type)); EXPECT_EQ(tensor.num_elements(), value.size()); } TEST(CPPTensorAPI, ConstructTensorFromBuffer) { bool done = false; Status status; std::vector<int32_t> data_vector({12, 14, 20, 18, 39, 42, 100}); { std::vector<int64_t> shape; shape.push_back(data_vector.size()); Tensor::DeleterCallback callback = [&done](void* data, size_t len) { done = true; }; Tensor tensor = Tensor::FromBuffer(TF_INT32, shape, data_vector.data(), data_vector.size() * sizeof(int32_t), callback, &status); ASSERT_TRUE(status.ok()) << status.message(); } EXPECT_TRUE(done); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/cl/tensor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/cc/experimental/base/tests/tensor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
36f6b8c3-4e4d-44d4-a114-9c8ef199e3e6
cpp
tensorflow/tensorflow
execution_trace_utils
third_party/xla/xla/mlir/tools/mlir_replay/public/execution_trace_utils.cc
third_party/xla/xla/mlir/tools/mlir_replay/public/execution_trace_utils_test.cc
#include "xla/mlir/tools/mlir_replay/public/execution_trace_utils.h" #include <cassert> #include <complex> #include <cstdint> #include <functional> #include <iterator> #include <memory> #include <type_traits> #include <utility> #include <variant> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Casting.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Region.h" #include "mlir/IR/Types.h" #include "mlir/Support/LLVM.h" #include "xla/literal.h" #include "xla/mlir/tools/mlir_interpreter/framework/interpreter_value.h" #include "xla/mlir/tools/mlir_interpreter/framework/tensor_or_memref.h" #include "xla/mlir/tools/mlir_replay/public/execution_trace.pb.h" #include "xla/primitive_util.h" #include "tsl/platform/statusor.h" namespace mlir { namespace interpreter { namespace { struct TraceInterpreterValueVisitor { TracedValue out; void Add(float v) { out.add_floats(v); } void Add(double v) { out.add_doubles(v); } void Add(std::complex<float> v) { out.add_floats(v.real()); out.add_floats(v.imag()); } void Add(std::complex<double> v) { out.add_doubles(v.real()); out.add_doubles(v.imag()); } void Add(int64_t v) { out.add_ints(v); } void Add(int32_t v) { out.add_ints(v); } void Add(int16_t v) { out.add_ints(v); } void Add(int8_t v) { out.add_ints(v); } void Add(uint64_t v) { out.add_uints(v); } void Add(uint32_t v) { out.add_uints(v); } void Add(uint16_t v) { out.add_uints(v); } void Add(uint8_t v) { out.add_uints(v); } void Add(bool v) { out.add_ints(static_cast<int64_t>(v)); } template <typename T> void operator()(T v) { SetElementType<T>(); out.set_is_scalar(true); Add(v); } void operator()(const Tuple& t) { out.set_element_type(TracedValue::TUPLE); for (const auto& v : t.values) { *out.add_tuple_elements() = ValueToTracedValue(*v); } } template <typename T> void operator()(const TensorOrMemref<T>& v) { for (int64_t size : v.view.sizes) { out.add_shape(size); } SetElementType<T>(); for (const auto& index : v.view.Indices()) { Add(v.at(index)); } } template <typename T> void SetElementType() { out.set_element_type(GetElementType(T{})); if constexpr (std::is_same_v<T, bool>) { out.set_bit_width(1); } else { out.set_bit_width(sizeof(T) * 8); } } template <typename T> static TracedValue::ElementType GetElementType(const T&) { if constexpr (std::is_floating_point_v<T>) { return TracedValue::FLOAT; } else if constexpr (std::is_integral_v<T>) { if constexpr (std::is_unsigned_v<T>) { return TracedValue::UNSIGNED; } else { return TracedValue::INTEGRAL; } } else { T{"invalid type"} + 0; return TracedValue::UNKNOWN; } } template <typename T> static TracedValue::ElementType GetElementType(const std::complex<T>&) { return TracedValue::COMPLEX; } }; } void ExecutionTraceListener::BeforeOp(ArrayRef<InterpreterValue> args, Operation* op) { auto* inst = regions_.back()->add_instructions(); inst->set_name(op->getName().getStringRef().str()); for (const auto& arg : args) { *inst->add_args() = ValueToTracedValue(arg); } } void ExecutionTraceListener::AfterOp(ArrayRef<InterpreterValue> results) { auto* traced_results = regions_.back()->mutable_instructions()->rbegin()->mutable_results(); for (const auto& result : results) { *traced_results->Add() = ValueToTracedValue(result); } } void ExecutionTraceListener::EnterRegion(ArrayRef<InterpreterValue> bbargs, Region& region) { if (regions_.empty()) { regions_.push_back(trace_->mutable_trace()); } else { regions_.push_back( regions_.back()->mutable_instructions()->rbegin()->add_regions()); } auto& traced_region = *regions_.back(); traced_region.set_region_number(region.getRegionNumber()); for (const auto& bbarg : bbargs) { *traced_region.add_bbargs() = ValueToTracedValue(bbarg); } } void ExecutionTraceListener::LeaveRegion(ArrayRef<InterpreterValue> yielded) { for (const auto& result : yielded) { *regions_.back()->add_results() = ValueToTracedValue(result); } regions_.pop_back(); } llvm::SmallVector<mlir::Attribute> ValueToAttribute( const InterpreterValue& value, mlir::Type type) { if (std::holds_alternative<Tuple>(value.storage)) { auto types = type.cast<TupleType>().getTypes(); const auto& t = std::get<Tuple>(value.storage); llvm::SmallVector<mlir::Attribute> attrs; for (const auto& [v, ty] : llvm::zip(t.values, types)) { auto attr = ValueToAttribute(*v, ty); assert(attr.size() == 1 && "nested tuples not supported"); attrs.push_back(attr.front()); } return attrs; } if (!value.IsTensor()) { return {cast<DenseElementsAttr>( ValueToAttribute(value.AsUnitTensor(), mlir::RankedTensorType::get({}, type)) .front()) .getValues<mlir::Attribute>()[0]}; } if (!type.isa<ShapedType>()) { return {}; } auto shaped_ty = type.cast<ShapedType>(); return {DispatchScalarType(shaped_ty, [&](auto dummy) -> mlir::Attribute { using T = decltype(dummy); auto& t = std::get<TensorOrMemref<T>>(value.storage); SmallVector<T> vals; for (const auto& index : t.view.Indices()) { vals.push_back(t.at(index)); } auto attr_ty = shaped_ty.cloneWith(t.view.sizes, shaped_ty.getElementType()); if constexpr (std::is_same_v<T, bool>) { return mlir::DenseElementsAttr::get(attr_ty, vals); } else { return mlir::DenseElementsAttr::get<T>(attr_ty, vals); } })}; } namespace { template <typename T> TensorOrMemref<T> ArrayLiteralToTensor(const xla::Literal& literal) { SmallVector<int64_t> layout; if (literal.shape().has_layout()) { llvm::copy(literal.shape().layout().minor_to_major(), std::back_inserter(layout)); } SmallVector<int64_t> shape{literal.shape().dimensions().begin(), literal.shape().dimensions().end()}; auto result = TensorOrMemref<T>::Empty(shape, layout); assert(literal.size_bytes() == result.buffer->GetByteSize() && "expected buffer sizes to match"); memcpy(result.buffer->at(0, 0), literal.untyped_data(), result.buffer->GetByteSize()); return result; } } absl::StatusOr<InterpreterValue> LiteralToValue(const xla::Literal& literal) { if (literal.shape().IsTuple()) { auto elements = literal.Clone().DecomposeTuple(); Tuple result; for (auto& element : elements) { TF_ASSIGN_OR_RETURN(auto converted, LiteralToValue(element)); result.values.push_back( std::make_shared<InterpreterValue>(std::move(converted))); } return {{result}}; } if (literal.shape().IsToken()) { return absl::UnimplementedError("token arguments are not implemented"); } if (literal.shape().IsArray()) { auto type = literal.shape().element_type(); if (xla::primitive_util::IsF8Type(type)) { return absl::UnimplementedError( absl::StrCat(xla::primitive_util::LowercasePrimitiveTypeName(type), " not implemented")); } switch (type) { case xla::PRED: return {{ArrayLiteralToTensor<bool>(literal)}}; case xla::S8: return {{ArrayLiteralToTensor<int8_t>(literal)}}; case xla::S16: return {{ArrayLiteralToTensor<int16_t>(literal)}}; case xla::S32: return {{ArrayLiteralToTensor<int32_t>(literal)}}; case xla::S64: return {{ArrayLiteralToTensor<int64_t>(literal)}}; case xla::U8: return {{ArrayLiteralToTensor<uint8_t>(literal)}}; case xla::U16: return {{ArrayLiteralToTensor<uint16_t>(literal)}}; case xla::U32: return {{ArrayLiteralToTensor<uint32_t>(literal)}}; case xla::U64: return {{ArrayLiteralToTensor<uint64_t>(literal)}}; case xla::F16: return absl::UnimplementedError("F16 not implemented"); case xla::F32: return {{ArrayLiteralToTensor<float>(literal)}}; case xla::BF16: return absl::UnimplementedError("BF16 not implemented"); case xla::F64: return {{ArrayLiteralToTensor<double>(literal)}}; case xla::C64: return {{ArrayLiteralToTensor<std::complex<float>>(literal)}}; case xla::C128: return {{ArrayLiteralToTensor<std::complex<double>>(literal)}}; default: break; } } return absl::InvalidArgumentError("unexpected literal type"); } absl::StatusOr<InterpreterValue> LiteralToValue( const xla::LiteralProto& literal) { TF_ASSIGN_OR_RETURN(auto deserialized, xla::Literal::CreateFromProto(literal)); return LiteralToValue(deserialized); } absl::StatusOr<InterpreterValue> LiteralToValue( const xla::LiteralProto& literal, mlir::Type type) { TF_ASSIGN_OR_RETURN(auto result, LiteralToValue(literal)); return {DispatchScalarType(type, [&](auto dummy) -> InterpreterValue { TensorOrMemref<decltype(dummy)> cast; cast.view = result.View(); cast.buffer = result.GetBuffer(); return {cast}; })}; } TracedValue ValueToTracedValue(const InterpreterValue& value) { TraceInterpreterValueVisitor visitor; std::visit(visitor, value.storage); return visitor.out; } absl::StatusOr<InterpreterValue> TracedValueToValue( const TracedValue& traced_value) { auto extract = [&](auto dummy, auto& elements) -> InterpreterValue { using T = decltype(dummy); if (traced_value.is_scalar()) { return {static_cast<T>(elements[0])}; } auto result = TensorOrMemref<T>::Empty(llvm::to_vector(traced_value.shape())); for (auto [index, element] : llvm::zip(result.view.Indices(), elements)) { result.at(index) = element; } return {result}; }; auto extract_complex = [&](auto& elements) -> InterpreterValue { using T = std::complex<std::decay_t<decltype(elements[0])>>; if (traced_value.is_scalar()) { return {T{elements[0], elements[1]}}; } auto result = TensorOrMemref<T>::Empty(llvm::to_vector(traced_value.shape())); int64_t i = 0; for (auto it = result.view.Indices().begin(), end = result.view.Indices().end(); it != end; ++it, i += 2) { result.at(*it) = {elements[i], elements[i + 1]}; } return {result}; }; switch (traced_value.element_type()) { case TracedValue::UNKNOWN: break; case TracedValue::FLOAT: if (traced_value.bit_width() == 32) { return extract(float{}, traced_value.floats()); } return extract(double{}, traced_value.doubles()); case TracedValue::UNSIGNED: switch (traced_value.bit_width()) { case 1: return extract(bool{}, traced_value.ints()); case 8: return extract(uint8_t{}, traced_value.uints()); case 16: return extract(uint16_t{}, traced_value.uints()); case 32: return extract(uint32_t{}, traced_value.uints()); case 64: return extract(uint64_t{}, traced_value.uints()); } break; case TracedValue::INTEGRAL: switch (traced_value.bit_width()) { case 8: return extract(int8_t{}, traced_value.ints()); case 16: return extract(int16_t{}, traced_value.ints()); case 32: return extract(int32_t{}, traced_value.ints()); case 64: return extract(int64_t{}, traced_value.ints()); } break; case TracedValue::COMPLEX: switch (traced_value.bit_width()) { case 64: return extract_complex(traced_value.floats()); case 128: return extract_complex(traced_value.doubles()); } break; case TracedValue::TUPLE: Tuple result; for (const auto& elem : traced_value.tuple_elements()) { TF_ASSIGN_OR_RETURN(auto converted, TracedValueToValue(elem)); result.values.push_back( std::make_shared<InterpreterValue>(std::move(converted))); } return {{std::move(result)}}; } return absl::InvalidArgumentError("unexpected type: " + traced_value.DebugString()); } llvm::SmallVector<const InstructionTrace*> FindOpExecutionsInTrace( const ExecutionTrace& trace, mlir::Operation* op) { llvm::SmallVector<int64_t> region_indices; llvm::SmallVector<int64_t> op_indices; std::function<void(mlir::Operation*)> get_op_path; get_op_path = [&](mlir::Operation* op) { auto* parent = op->getParentOp(); if (!llvm::isa<func::FuncOp>(parent)) { get_op_path(parent); region_indices.push_back(op->getParentRegion()->getRegionNumber()); } int64_t index = 0; while ((op = op->getPrevNode()) != nullptr) ++index; op_indices.push_back(index); }; get_op_path(op); llvm::SmallVector<const InstructionTrace*> result; std::function<void(const RegionTrace& trace, int index)> step; step = [&](const RegionTrace& trace, int index) { auto& instruction_trace = trace.instructions(op_indices[index]); if (region_indices.size() > index) { for (const auto& region : instruction_trace.regions()) { if (region.region_number() == region_indices[index]) { step(region, index + 1); } } } else { result.push_back(&instruction_trace); } }; step(trace.trace(), 0); return result; } } }
#include "xla/mlir/tools/mlir_replay/public/execution_trace_utils.h" #include <cmath> #include <complex> #include <cstdint> #include <memory> #include <utility> #include <vector> #include <gtest/gtest.h> #include "llvm/ADT/STLExtras.h" #include "mlir/Support/LLVM.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/mlir/tools/mlir_interpreter/framework/interpreter_value.h" #include "xla/mlir/tools/mlir_interpreter/framework/tensor_or_memref.h" #include "tsl/platform/statusor.h" namespace mlir { namespace interpreter { namespace { class TracedValueRoundTripTest : public ::testing::TestWithParam<InterpreterValue> {}; TEST_P(TracedValueRoundTripTest, Run) { auto traced_value = ValueToTracedValue(GetParam()); TF_ASSERT_OK_AND_ASSIGN(auto value, TracedValueToValue(traced_value)); EXPECT_EQ(GetParam(), value) << GetParam().ToString(); } template <typename T> InterpreterValue MakeTensor(ArrayRef<int64_t> shape, ArrayRef<T> values) { auto result = TensorOrMemref<T>::Empty(shape); for (auto [indices, value] : llvm::zip(result.view.Indices(), values)) { result.at(indices) = value; } return {result}; } template <typename T> std::shared_ptr<T> WrapShared(T value) { return std::make_shared<T>(std::move(value)); } INSTANTIATE_TEST_SUITE_P( RoundTrip, TracedValueRoundTripTest, ::testing::ValuesIn(std::vector<InterpreterValue>{ {uint8_t{42}}, {uint16_t{43}}, {uint32_t{44}}, {uint64_t{45}}, {int8_t{-47}}, {int16_t{-48}}, {int32_t{-49}}, {int64_t{-50}}, {float{42.0}}, {double{42.0}}, {std::complex<float>{1.0, 2.0}}, {std::complex<double>{3.0, 4.0}}, {true}, {false}, {MakeTensor<int16_t>({1, 2}, {42, 43})}, {MakeTensor<double>({2, 2}, {1.0, -INFINITY, INFINITY, NAN})}, {MakeTensor<std::complex<double>>({}, {{1.0, 2.0}})}, {Tuple{SmallVector<std::shared_ptr<InterpreterValue>>{ WrapShared(InterpreterValue{42}), WrapShared(InterpreterValue{43.0}), }}}})); class FromLiteralTest : public ::testing::TestWithParam< std::pair<std::shared_ptr<xla::Literal>, InterpreterValue>> {}; TEST_P(FromLiteralTest, Run) { TF_ASSERT_OK_AND_ASSIGN(auto value, LiteralToValue(*GetParam().first)); EXPECT_EQ(value, GetParam().second) << value.ToString() << " vs " << GetParam().second.ToString(); } std::vector<std::pair<std::shared_ptr<xla::Literal>, InterpreterValue>> MakeInputs() { using ::xla::LiteralUtil; return { {WrapShared(LiteralUtil::CreateR2<uint8_t>({{41, 42}})), MakeTensor<uint8_t>({1, 2}, {41, 42})}, {WrapShared(LiteralUtil::CreateR0<uint16_t>(43)), MakeTensor<uint16_t>({}, {43})}, {WrapShared(LiteralUtil::CreateR0<uint32_t>(44)), MakeTensor<uint32_t>({}, {44})}, {WrapShared(LiteralUtil::CreateR0<uint64_t>(45)), MakeTensor<uint64_t>({}, {45})}, {WrapShared(LiteralUtil::CreateR0<int8_t>(46)), MakeTensor<int8_t>({}, {46})}, {WrapShared(LiteralUtil::CreateR0<int16_t>(47)), MakeTensor<int16_t>({}, {47})}, {WrapShared(LiteralUtil::CreateR0<int32_t>(48)), MakeTensor<int32_t>({}, {48})}, {WrapShared(LiteralUtil::CreateR0<int64_t>(49)), MakeTensor<int64_t>({}, {49})}, {WrapShared(LiteralUtil::CreateR0<float>(50.0)), MakeTensor<float>({}, {50.0})}, {WrapShared(LiteralUtil::CreateR0<double>(51.0)), MakeTensor<double>({}, {51.0})}, {WrapShared(LiteralUtil::CreateR0<std::complex<float>>({52.0, 53.0})), MakeTensor<std::complex<float>>({}, {{52.0, 53.0}})}, {WrapShared(LiteralUtil::CreateR0<std::complex<double>>({54.0, 55.0})), MakeTensor<std::complex<double>>({}, {{54.0, 55.0}})}, {WrapShared(LiteralUtil::CreateR1<bool>({true, false})), MakeTensor<bool>({2}, {true, false})}, {WrapShared( LiteralUtil::MakeTupleOwned(LiteralUtil::CreateR0<bool>(true), LiteralUtil::CreateR0<int8_t>(56))), InterpreterValue{Tuple{SmallVector<std::shared_ptr<InterpreterValue>>{ std::make_shared<InterpreterValue>(MakeTensor<bool>({}, {true})), std::make_shared<InterpreterValue>( MakeTensor<int8_t>({}, {56}))}}}}}; } INSTANTIATE_TEST_SUITE_P(Test, FromLiteralTest, ::testing::ValuesIn(MakeInputs())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/mlir/tools/mlir_replay/public/execution_trace_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/mlir/tools/mlir_replay/public/execution_trace_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
346598cf-4ab4-497e-b096-3d2dbd550eb3
cpp
tensorflow/tensorflow
error_util
tensorflow/compiler/mlir/tensorflow/utils/error_util.cc
tensorflow/compiler/mlir/tensorflow/utils/error_util_test.cc
#include "tensorflow/compiler/mlir/tensorflow/utils/error_util.h" #include <string_view> #include "absl/status/status.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/Diagnostics.h" #include "mlir/Support/LLVM.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/util/managed_stack_trace.h" namespace mlir { StatusScopedDiagnosticHandler::StatusScopedDiagnosticHandler( MLIRContext* context, bool propagate, bool filter_stack) : BaseScopedDiagnosticHandler(context, propagate, filter_stack) { if (filter_stack) { this->shouldShowLocFn = [](Location loc) -> bool { if (FileLineColLoc fileLoc = mlir::dyn_cast<FileLineColLoc>(loc)) { return !tensorflow::IsInternalFrameForFilename( fileLoc.getFilename().str()); } else { return true; } }; } setHandler([this](Diagnostic& diag) { return this->handler(&diag); }); } Status StatusScopedDiagnosticHandler::ConsumeStatus() { return BaseScopedDiagnosticHandler::ConsumeStatus(); } Status StatusScopedDiagnosticHandler::Combine(Status status) { absl::Status absl_s = BaseScopedDiagnosticHandler::Combine(status); return absl_s; } }
#include "tensorflow/compiler/mlir/tensorflow/utils/error_util.h" #include "llvm/ADT/Twine.h" #include "mlir/IR/Builders.h" #include "mlir/IR/MLIRContext.h" #include "xla/test.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status_test_util.h" namespace mlir { namespace { using testing::HasSubstr; TEST(ErrorUtilTest, StatusScopedDiagnosticHandler) { MLIRContext context; auto id = StringAttr::get(&context, " auto loc = FileLineColLoc::get(&context, id, 0, 0); { TF_ASSERT_OK( StatusScopedDiagnosticHandler(&context).Combine(absl::OkStatus())); } { StatusScopedDiagnosticHandler handler(&context); emitError(loc) << "Diagnostic message"; ASSERT_TRUE(tensorflow::errors::IsUnknown(handler.ConsumeStatus())); } { Status err = tensorflow::errors::Internal("Passed in error"); ASSERT_TRUE(tensorflow::errors::IsInternal( StatusScopedDiagnosticHandler(&context).Combine(err))); } { auto function = [&]() { emitError(loc) << "Diagnostic message reported"; emitError(loc) << "Second diagnostic message reported"; return tensorflow::errors::Internal("Passed in error"); }; StatusScopedDiagnosticHandler ssdh(&context); Status s = ssdh.Combine(function()); ASSERT_TRUE(tensorflow::errors::IsInternal(s)); EXPECT_THAT(s.message(), HasSubstr("Passed in error")); EXPECT_THAT(s.message(), HasSubstr("Diagnostic message reported")); EXPECT_THAT(s.message(), HasSubstr("Second diagnostic message reported")); } } TEST(ErrorUtilTest, StatusScopedDiagnosticHandlerWithFilter) { MLIRContext context; auto id = StringAttr::get(&context, " auto loc = FileLineColLoc::get(&context, id, 0, 0); auto id2 = StringAttr::get(&context, " auto loc2 = FileLineColLoc::get(&context, id2, 0, 0); auto id3 = StringAttr::get(&context, "python/tensorflow/show_file.py"); auto loc3 = FileLineColLoc::get(&context, id3, 0, 0); auto id_filtered = StringAttr::get(&context, " auto loc_filtered = FileLineColLoc::get(&context, id_filtered, 0, 0); auto id_filtered2 = StringAttr::get(&context, "dir/tensorflow/python/filtered_file_B.py"); auto loc_filtered2 = FileLineColLoc::get(&context, id_filtered2, 0, 0); auto callsite_loc = mlir::CallSiteLoc::get(loc, loc_filtered); auto callsite_loc2 = mlir::CallSiteLoc::get(loc2, loc_filtered2); auto callsite_loc3 = mlir::CallSiteLoc::get(loc_filtered2, loc3); StatusScopedDiagnosticHandler ssdh_filter(&context, false, true); emitError(callsite_loc) << "Error 1"; emitError(callsite_loc2) << "Error 2"; emitError(callsite_loc3) << "Error 3"; Status s_filtered = ssdh_filter.ConsumeStatus(); EXPECT_THAT(s_filtered.message(), HasSubstr("keras")); EXPECT_THAT(s_filtered.message(), HasSubstr("test.py")); EXPECT_THAT(s_filtered.message(), HasSubstr("show_file")); EXPECT_THAT(s_filtered.message(), Not(HasSubstr("filtered_file"))); } TEST(ErrorUtilTest, StatusScopedDiagnosticHandlerWithoutFilter) { MLIRContext context; auto id = StringAttr::get(&context, " auto loc = FileLineColLoc::get(&context, id, 0, 0); auto id_filtered = StringAttr::get(&context, " auto loc_filtered = FileLineColLoc::get(&context, id_filtered, 0, 0); auto id_filtered2 = StringAttr::get(&context, "dir/tensorflow/python/filtered_file_B.py"); auto loc_filtered2 = FileLineColLoc::get(&context, id_filtered2, 0, 0); auto id_filtered3 = StringAttr::get(&context, " auto loc_filtered3 = FileLineColLoc::get(&context, id_filtered3, 0, 0); auto callsite_loc = mlir::CallSiteLoc::get(loc, loc_filtered); auto callsite_loc2 = mlir::CallSiteLoc::get(loc_filtered3, loc_filtered2); StatusScopedDiagnosticHandler ssdh_no_filter(&context, false, false); emitError(callsite_loc) << "Error 1"; emitError(callsite_loc2) << "Error 2"; Status s_no_filter = ssdh_no_filter.ConsumeStatus(); EXPECT_THAT(s_no_filter.message(), HasSubstr("keras")); EXPECT_THAT(s_no_filter.message(), HasSubstr("my_op")); EXPECT_THAT(s_no_filter.message(), HasSubstr("filtered_file_A")); EXPECT_THAT(s_no_filter.message(), HasSubstr("filtered_file_B")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tensorflow/utils/error_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tensorflow/utils/error_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e8206bd6-ec21-4c85-a0fb-f7ed53b0a6be
cpp
tensorflow/tensorflow
type_util
tensorflow/compiler/tf2xla/type_util.cc
tensorflow/compiler/tf2xla/type_util_test.cc
#include "tensorflow/compiler/tf2xla/type_util.h" #include "absl/container/flat_hash_map.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/status.h" namespace tensorflow { Status DataTypeToPrimitiveType(DataType data_type, xla::PrimitiveType* type) { switch (data_type) { case tensorflow::DT_BOOL: *type = xla::PRED; return absl::OkStatus(); case tensorflow::DT_INT4: *type = xla::S4; return absl::OkStatus(); case tensorflow::DT_INT8: case tensorflow::DT_QINT8: *type = xla::S8; return absl::OkStatus(); case tensorflow::DT_INT16: case tensorflow::DT_QINT16: *type = xla::S16; return absl::OkStatus(); case tensorflow::DT_INT32: case tensorflow::DT_QINT32: *type = xla::S32; return absl::OkStatus(); case tensorflow::DT_INT64: *type = xla::S64; return absl::OkStatus(); case tensorflow::DT_UINT4: *type = xla::U4; return absl::OkStatus(); case tensorflow::DT_UINT8: case tensorflow::DT_QUINT8: *type = xla::U8; return absl::OkStatus(); case tensorflow::DT_UINT16: case tensorflow::DT_QUINT16: *type = xla::U16; return absl::OkStatus(); case tensorflow::DT_UINT32: *type = xla::U32; return absl::OkStatus(); case tensorflow::DT_UINT64: *type = xla::U64; return absl::OkStatus(); case tensorflow::DT_FLOAT8_E5M2: *type = xla::F8E5M2; return absl::OkStatus(); case tensorflow::DT_FLOAT8_E4M3FN: *type = xla::F8E4M3FN; return absl::OkStatus(); case tensorflow::DT_BFLOAT16: *type = xla::BF16; return absl::OkStatus(); case tensorflow::DT_HALF: *type = xla::F16; return absl::OkStatus(); case tensorflow::DT_FLOAT: *type = xla::F32; return absl::OkStatus(); case tensorflow::DT_DOUBLE: *type = xla::F64; return absl::OkStatus(); case tensorflow::DT_COMPLEX64: *type = xla::C64; return absl::OkStatus(); case tensorflow::DT_COMPLEX128: *type = xla::C128; return absl::OkStatus(); default: return errors::InvalidArgument( "Unsupported type in DataTypeToPrimitiveType: '", DataTypeString(data_type), "'"); } } absl::StatusOr<DataType> EncodePrimitiveTypeAsDataType( xla::PrimitiveType type) { static const absl::flat_hash_map<xla::PrimitiveType, DataType>& data_type_map = *new absl::flat_hash_map<xla::PrimitiveType, DataType>({ {xla::PRED, DT_BOOL}, {xla::F8E5M2, DT_FLOAT8_E5M2}, {xla::F8E4M3FN, DT_FLOAT8_E4M3FN}, {xla::BF16, DT_BFLOAT16}, {xla::F16, DT_HALF}, {xla::F32, DT_FLOAT}, {xla::F64, DT_DOUBLE}, {xla::C64, DT_COMPLEX64}, {xla::S4, DT_INT4}, {xla::S8, DT_INT8}, {xla::S16, DT_INT16}, {xla::S32, DT_INT32}, {xla::S64, DT_INT64}, {xla::U4, DT_UINT4}, {xla::U8, DT_UINT8}, {xla::U16, DT_UINT16}, {xla::U32, DT_UINT32}, {xla::U64, DT_UINT64}, {xla::C128, DT_COMPLEX128}, }); auto it = data_type_map.find(type); if (it == data_type_map.end()) { return errors::InvalidArgument( "Unsupported type in PrimitiveTypeToDataType ", type); } return it->second; } }
#include "tensorflow/compiler/tf2xla/type_util.h" #include <array> #include "absl/status/statusor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { bool DataTypeSupportsXlaConversion(DataType dt) { switch (dt) { case DataType::DT_STRING: case DataType::DT_RESOURCE: case DataType::DT_VARIANT: case DataType::DT_INVALID: return false; default: break; } return !IsRefType(dt); } TEST(DataTypeToPrimitiveTypeTest, AllDataTypesSupported) { for (int i = tensorflow::DataType_MIN; i < tensorflow::DataType_MAX; ++i) { if (tensorflow::DataType_IsValid(i)) { DataType dt = static_cast<DataType>(i); if (DataTypeSupportsXlaConversion(dt)) { xla::PrimitiveType out_type; EXPECT_TRUE(DataTypeToPrimitiveType(dt, &out_type).ok()); } } } } TEST(EncodePrimitiveTypeAsDataType, AllPrimitiveTypesSupported) { for (int i = tensorflow::DataType_MIN; i < tensorflow::DataType_MAX; ++i) { DataType dt = static_cast<DataType>(i); xla::PrimitiveType xla_type; if (DataTypeToPrimitiveType(dt, &xla_type).ok()) { absl::StatusOr<DataType> data_type_or = EncodePrimitiveTypeAsDataType(xla_type); EXPECT_TRUE(data_type_or.ok()); if (!DataTypeIsQuantized(dt)) { EXPECT_EQ(*data_type_or, dt); } } } } TEST(EncodePrimitiveTypeAsDataType, QuantizedTypesMapToUnquantized) { static std::array<DataType, 5> quantized_inputs = { DT_QINT8, DT_QINT16, DT_QINT32, DT_QUINT8, DT_QUINT16}; static std::array<DataType, 5> expected_outputs = { DT_INT8, DT_INT16, DT_INT32, DT_UINT8, DT_UINT16}; for (int i = 0; i < quantized_inputs.size(); ++i) { xla::PrimitiveType xla_type; EXPECT_TRUE(DataTypeToPrimitiveType(quantized_inputs[i], &xla_type).ok()); absl::StatusOr<DataType> data_type_or = EncodePrimitiveTypeAsDataType(xla_type); EXPECT_TRUE(data_type_or.ok()); EXPECT_EQ(*data_type_or, expected_outputs[i]); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/type_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/type_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
89bd881f-5e83-40d0-a29d-07fe18039cf9
cpp
tensorflow/tensorflow
type_id_registry
third_party/xla/xla/ffi/type_id_registry.cc
third_party/xla/xla/ffi/type_id_registry_test.cc
#include "xla/ffi/type_id_registry.h" #include <atomic> #include <cstdint> #include <string> #include <string_view> #include "absl/base/attributes.h" #include "absl/base/const_init.h" #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "xla/util.h" namespace xla::ffi { ABSL_CONST_INIT absl::Mutex type_registry_mutex(absl::kConstInit); using ExternalTypeIdRegistry = absl::flat_hash_map<std::string, TypeIdRegistry::TypeId>; static ExternalTypeIdRegistry& StaticExternalTypeIdRegistry() { static auto* registry = new ExternalTypeIdRegistry(); return *registry; } TypeIdRegistry::TypeId TypeIdRegistry::GetNextTypeId() { static auto* counter = new std::atomic<int64_t>(1); return TypeId(counter->fetch_add(1)); } absl::StatusOr<TypeIdRegistry::TypeId> TypeIdRegistry::RegisterExternalTypeId( std::string_view name) { absl::MutexLock lock(&type_registry_mutex); auto& registry = StaticExternalTypeIdRegistry(); auto emplaced = registry.emplace(name, TypeId(0)); if (!emplaced.second) { return Internal("Type id %d already registered for type name %s", emplaced.first->second.value(), name); } return emplaced.first->second = GetNextTypeId(); } }
#include "xla/ffi/type_id_registry.h" #include <cstdint> #include "absl/status/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::ffi { namespace { using ::testing::HasSubstr; TEST(TypeIdRegistryTest, RegisterExternalTypeId) { TF_ASSERT_OK_AND_ASSIGN(auto type_id, TypeIdRegistry::RegisterExternalTypeId("foo")); EXPECT_GE(type_id.value(), 0); auto duplicate_type_id = TypeIdRegistry::RegisterExternalTypeId("foo"); EXPECT_THAT(duplicate_type_id.status().message(), HasSubstr("already registered for type name foo")); } TEST(TypeIdRegistryTest, RegisterInternalTypeId) { auto int32_type_id = TypeIdRegistry::GetTypeId<int32_t>(); auto int64_type_id = TypeIdRegistry::GetTypeId<int64_t>(); EXPECT_NE(int32_type_id, int64_type_id); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/ffi/type_id_registry.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/ffi/type_id_registry_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f97dfb87-0805-43bb-806b-b6193861e8fb
cpp
tensorflow/tensorflow
execution_state
third_party/xla/xla/ffi/execution_state.cc
third_party/xla/xla/ffi/execution_state_test.cc
#include "xla/ffi/execution_state.h" #include <utility> #include "absl/status/status.h" #include "xla/ffi/type_id_registry.h" #include "xla/util.h" #include "tsl/platform/logging.h" namespace xla::ffi { ExecutionState::ExecutionState() : type_id_(TypeIdRegistry::kUnknownTypeId), state_(nullptr), deleter_(nullptr) {} ExecutionState::~ExecutionState() { if (deleter_) deleter_(state_); } absl::Status ExecutionState::Set(TypeId type_id, void* state, Deleter<void> deleter) { DCHECK(state && deleter) << "State and deleter must not be null"; if (type_id_ != TypeIdRegistry::kUnknownTypeId) { return FailedPrecondition("State is already set with a type id %d", type_id_.value()); } type_id_ = type_id; state_ = state; deleter_ = std::move(deleter); return absl::OkStatus(); } absl::StatusOr<void*> ExecutionState::Get(TypeId type_id) const { if (type_id_ == TypeIdRegistry::kUnknownTypeId) { return NotFound("State is not set"); } if (type_id_ != type_id) { return InvalidArgument( "Set state type id %d does not match the requested one %d", type_id_.value(), type_id.value()); } return state_; } bool ExecutionState::IsSet() const { return type_id_ != TypeIdRegistry::kUnknownTypeId; } }
#include "xla/ffi/execution_state.h" #include <cstdint> #include <memory> #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::ffi { using TypeId = ExecutionState::TypeId; using ::testing::HasSubstr; TEST(ExecutionStateTest, SetAndGet) { ExecutionState state; EXPECT_FALSE(state.IsSet()); { auto data = state.Get(TypeId(1)); EXPECT_THAT(data.status().message(), HasSubstr("State is not set")); } { auto data = state.Get<int32_t>(); EXPECT_THAT(data.status().message(), HasSubstr("State is not set")); } TF_ASSERT_OK(state.Set(std::make_unique<int32_t>(42))); EXPECT_TRUE(state.IsSet()); TF_ASSERT_OK_AND_ASSIGN(int32_t* data, state.Get<int32_t>()); EXPECT_EQ(*data, 42); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/ffi/execution_state.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/ffi/execution_state_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ead042dd-f68b-44ed-b69a-5679dbf2156e
cpp
tensorflow/tensorflow
execution_context
third_party/xla/xla/ffi/execution_context.cc
third_party/xla/xla/ffi/execution_context_test.cc
#include "xla/ffi/execution_context.h" #include <memory> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" namespace xla::ffi { ExecutionContext::UserData::UserData(void* data, Deleter<void> deleter) : data_(data), deleter_(std::move(deleter)) {} ExecutionContext::UserData::~UserData() { if (deleter_) deleter_(data_); } absl::Status ExecutionContext::Insert(TypeId type_id, void* data, Deleter<void> deleter) { return InsertUserData(type_id, std::make_unique<UserData>(data, std::move(deleter))); } absl::Status ExecutionContext::InsertUserData(TypeId type_id, std::unique_ptr<UserData> data) { if (!data) return absl::InvalidArgumentError("User data must be not null"); auto emplaced = user_data_.emplace(type_id, std::move(data)); if (!emplaced.second) { return absl::AlreadyExistsError( absl::StrCat("User data with type id ", type_id.value(), " already exists in execution context")); } return absl::OkStatus(); } absl::StatusOr<ExecutionContext::UserData*> ExecutionContext::LookupUserData( TypeId type_id) const { auto it = user_data_.find(type_id); if (it == user_data_.end()) { return absl::NotFoundError(absl::StrCat("User data with type id ", type_id.value(), " not found in execution context")); } return it->second.get(); } }
#include "xla/ffi/execution_context.h" #include <cstdint> #include <string> #include "absl/status/status.h" #include "xla/ffi/type_id_registry.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::ffi { struct I32UserData { explicit I32UserData(int32_t value) : value(value) {} int32_t value; }; struct StrUserData { explicit StrUserData(std::string value) : value(value) {} std::string value; }; TEST(ExecutionContextTest, EmplaceUserData) { ExecutionContext context; TF_ASSERT_OK(context.Emplace<I32UserData>(42)); TF_ASSERT_OK(context.Emplace<StrUserData>("hello")); TF_ASSERT_OK_AND_ASSIGN(auto* i32_data, context.Lookup<I32UserData>()); TF_ASSERT_OK_AND_ASSIGN(auto* str_data, context.Lookup<StrUserData>()); ASSERT_NE(i32_data, nullptr); ASSERT_NE(str_data, nullptr); ASSERT_EQ(i32_data->value, 42); ASSERT_EQ(str_data->value, "hello"); } TEST(ExecutionContextTest, InsertUserOwned) { I32UserData user_data(42); ExecutionContext context; TF_ASSERT_OK(context.Insert(&user_data)); TF_ASSERT_OK_AND_ASSIGN(auto* i32_data, context.Lookup<I32UserData>()); ASSERT_EQ(i32_data, &user_data); } TEST(ExecutionContextTest, InsertUserOwnedWithTypeId) { TF_ASSERT_OK_AND_ASSIGN( TypeIdRegistry::TypeId type_id, TypeIdRegistry::RegisterExternalTypeId("I32UserData")); I32UserData user_data(42); ExecutionContext context; TF_ASSERT_OK(context.Insert(type_id, &user_data)); TF_ASSERT_OK_AND_ASSIGN(auto* i32_data, context.Lookup(type_id)); ASSERT_EQ(i32_data, &user_data); } TEST(ExecutionContextTest, UserDataNotFound) { ExecutionContext context; auto i32_data = context.Lookup<I32UserData>(); ASSERT_EQ(i32_data.status().code(), absl::StatusCode::kNotFound); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/ffi/execution_context.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/ffi/execution_context_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
87bbe468-7164-4411-b315-e073e50aa62f
cpp
tensorflow/tensorflow
call_frame
third_party/xla/xla/ffi/call_frame.cc
third_party/xla/xla/ffi/call_frame_test.cc
#include "xla/ffi/call_frame.h" #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <string> #include <type_traits> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/optimization.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/types/span.h" #include "xla/ffi/api/api.h" #include "xla/ffi/api/c_api.h" #include "xla/ffi/api/c_api_internal.h" #include "xla/stream_executor/device_memory.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla::ffi { struct CallFrameBuilder::Buffer { se::DeviceMemoryBase memory; PrimitiveType type; absl::InlinedVector<int64_t, 4> dims; }; CallFrameBuilder::AttributesMap CallFrameBuilder::AttributesBuilder::Build() { return std::move(attrs_); } static CallFrameBuilder::Attribute FromFlatAttribute( CallFrameBuilder::FlatAttribute attr) { return std::visit( [](auto& attr) { return CallFrameBuilder::Attribute{attr}; }, attr); } CallFrameBuilder::AttributesBuilder::AttributesBuilder() = default; CallFrameBuilder::AttributesBuilder::~AttributesBuilder() = default; void CallFrameBuilder::AttributesBuilder::Insert(std::string name, Attribute attr) { attrs_.try_emplace(std::move(name), std::move(attr)); } void CallFrameBuilder::AttributesBuilder::Insert(std::string name, AttributesMap attrs) { attrs_.try_emplace(std::move(name), Dictionary{std::make_shared<AttributesMap>(attrs)}); } void CallFrameBuilder::AttributesBuilder::Append(AttributesMap attrs) { for (auto& [name, attr] : attrs) Insert(name, std::move(attr)); } CallFrameBuilder::CallFrameBuilder(size_t num_args, size_t num_rets) { args_.reserve(num_args); rets_.reserve(num_rets); } CallFrameBuilder::~CallFrameBuilder() = default; void CallFrameBuilder::AddBufferArg(se::DeviceMemoryBase memory, PrimitiveType type, absl::Span<const int64_t> dims) { DCHECK(args_.capacity() > args_.size()) << "CallFrame builder `num_args` argument was too small"; args_.push_back(Buffer{memory, type, {dims.begin(), dims.end()}}); } void CallFrameBuilder::AddTokenArg() { DCHECK(args_.capacity() > args_.size()) << "CallFrame builder `num_args` argument was too small"; args_.push_back(Buffer{se::DeviceMemoryBase(), PrimitiveType::TOKEN, {}}); } void CallFrameBuilder::AddBufferRet(se::DeviceMemoryBase memory, PrimitiveType type, absl::Span<const int64_t> dims) { DCHECK(rets_.capacity() > rets_.size()) << "CallFrame builder `num_rets` argument was too small"; rets_.push_back(Buffer{memory, type, {dims.begin(), dims.end()}}); } void CallFrameBuilder::AddTokenRet() { DCHECK(rets_.capacity() > rets_.size()) << "CallFrame builder `num_rets` argument was too small"; rets_.push_back(Buffer{se::DeviceMemoryBase(), PrimitiveType::TOKEN, {}}); } void CallFrameBuilder::AddAttributes(AttributesMap attrs) { if (ABSL_PREDICT_TRUE(attrs_.empty())) { attrs_ = std::move(attrs); return; } for (auto& [name, attr] : attrs) { attrs_.try_emplace(std::move(name), std::move(attr)); } } CallFrame CallFrameBuilder::Build() { return CallFrame(CallFrame::CreateArgs(args_), CallFrame::CreateRets(rets_), CallFrame::CreateAttrs(attrs_)); } CallFrameBuilder::CallFrameBuilder(CallFrameBuilder&&) = default; CallFrameBuilder& CallFrameBuilder::operator=(CallFrameBuilder&&) = default; struct CallFrame::Buffer { absl::InlinedVector<int64_t, 4> dims; XLA_FFI_Buffer buffer = {XLA_FFI_Buffer_STRUCT_SIZE, nullptr}; }; struct CallFrame::Dictionary { std::unique_ptr<Attributes> attrs; }; struct CallFrame::Array { CallFrameBuilder::Array value; XLA_FFI_Array array = {}; }; struct CallFrame::Scalar { CallFrameBuilder::Scalar value; XLA_FFI_Scalar scalar = {}; }; struct CallFrame::String { std::string value; XLA_FFI_ByteSpan span = {}; }; struct CallFrame::NamedAttribute { String name; Attribute value; }; struct CallFrame::Arguments { std::vector<Buffer> arguments; std::vector<XLA_FFI_ArgType> types; std::vector<void*> args; XLA_FFI_Args ffi_args = {XLA_FFI_Args_STRUCT_SIZE, nullptr}; }; struct CallFrame::Results { std::vector<Buffer> results; std::vector<XLA_FFI_RetType> types; std::vector<void*> rets; XLA_FFI_Rets ffi_rets = {XLA_FFI_Rets_STRUCT_SIZE, nullptr}; }; struct CallFrame::Attributes { std::vector<NamedAttribute> attributes; std::vector<XLA_FFI_ByteSpan*> names; std::vector<XLA_FFI_AttrType> types; std::vector<void*> attrs; XLA_FFI_Attrs ffi_attrs = {XLA_FFI_Attrs_STRUCT_SIZE, nullptr}; }; CallFrame::CallFrame(CallFrame&&) = default; CallFrame& CallFrame::operator=(CallFrame&&) = default; CallFrame::~CallFrame() = default; CallFrame::CallFrame(std::unique_ptr<Arguments> arguments, std::unique_ptr<Results> results, std::shared_ptr<Attributes> attributes) : arguments_(std::move(arguments)), results_(std::move(results)), attributes_(std::move(attributes)) {} XLA_FFI_CallFrame CallFrame::Build(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, XLA_FFI_ExecutionStage stage) { XLA_FFI_CallFrame call_frame = {XLA_FFI_CallFrame_STRUCT_SIZE, nullptr}; call_frame.api = api; call_frame.ctx = ctx; call_frame.stage = stage; call_frame.args = arguments_->ffi_args; call_frame.rets = results_->ffi_rets; call_frame.attrs = attributes_->ffi_attrs; return call_frame; } static XLA_FFI_DataType ToDataType(PrimitiveType primitive_type) { switch (primitive_type) { case PrimitiveType::PRIMITIVE_TYPE_INVALID: case PrimitiveType::PRED: case PrimitiveType::S8: case PrimitiveType::S16: case PrimitiveType::S32: case PrimitiveType::S64: case PrimitiveType::U8: case PrimitiveType::U16: case PrimitiveType::U32: case PrimitiveType::U64: case PrimitiveType::F16: case PrimitiveType::F32: case PrimitiveType::F64: case PrimitiveType::BF16: case PrimitiveType::C64: case PrimitiveType::C128: case PrimitiveType::TOKEN: case PrimitiveType::F8E5M2: case PrimitiveType::F8E4M3: case PrimitiveType::F8E4M3FN: case PrimitiveType::F8E4M3B11FNUZ: case PrimitiveType::F8E5M2FNUZ: case PrimitiveType::F8E4M3FNUZ: case PrimitiveType::F8E3M4: return static_cast<XLA_FFI_DataType>(primitive_type); default: DCHECK(false) << "Unsupported primitive type " << PrimitiveType_Name(primitive_type); return XLA_FFI_DataType_INVALID; } } CallFrame::Buffer CallFrame::ConvertBuffer( const CallFrameBuilder::Buffer& buffer) { Buffer result; result.dims = buffer.dims; result.buffer.data = const_cast<void*>(buffer.memory.opaque()); result.buffer.dtype = ToDataType(buffer.type); result.buffer.rank = result.dims.size(); return result; } std::unique_ptr<CallFrame::Arguments> CallFrame::CreateArgs( absl::Span<const CallFrameBuilder::Buffer> bargs) { size_t num_args = bargs.size(); auto args = std::make_unique<Arguments>(); args->types.resize(num_args, XLA_FFI_ArgType_BUFFER); args->args.resize(num_args, nullptr); args->arguments.reserve(num_args); for (const CallFrameBuilder::Buffer& barg : bargs) { args->arguments.push_back(ConvertBuffer(barg)); } return FixUpArgs(std::move(args)); } std::unique_ptr<CallFrame::Arguments> CallFrame::CopyArgs( const Arguments& args) { auto upd_args = std::make_unique<Arguments>(); upd_args->arguments = args.arguments; upd_args->types = args.types; upd_args->args.resize(args.args.size(), nullptr); return FixUpArgs(std::move(upd_args)); } std::unique_ptr<CallFrame::Arguments> CallFrame::FixUpArgs( std::unique_ptr<Arguments> args) { size_t num_args = args->arguments.size(); DCHECK_EQ(num_args, args->types.size()); DCHECK_EQ(num_args, args->args.size()); for (size_t i = 0; i < num_args; ++i) { args->arguments[i].buffer.dims = args->arguments[i].dims.data(); args->args[i] = &args->arguments[i].buffer; } args->ffi_args.size = num_args; args->ffi_args.types = args->types.data(); args->ffi_args.args = args->args.data(); return args; } std::unique_ptr<CallFrame::Results> CallFrame::CreateRets( absl::Span<const CallFrameBuilder::Buffer> brets) { auto rets = std::make_unique<Results>(); size_t num_rets = brets.size(); rets->types.resize(num_rets, XLA_FFI_RetType_BUFFER); rets->rets.resize(num_rets, nullptr); rets->results.reserve(num_rets); for (const CallFrameBuilder::Buffer& bret : brets) { rets->results.push_back(ConvertBuffer(bret)); } return FixUpRets(std::move(rets)); } std::unique_ptr<CallFrame::Results> CallFrame::CopyRets(const Results& rets) { auto upd_rets = std::make_unique<Results>(); upd_rets->results = rets.results; upd_rets->types = rets.types; upd_rets->rets.resize(rets.rets.size(), nullptr); return FixUpRets(std::move(upd_rets)); } std::unique_ptr<CallFrame::Results> CallFrame::FixUpRets( std::unique_ptr<Results> rets) { size_t num_rets = rets->results.size(); DCHECK_EQ(num_rets, rets->types.size()); DCHECK_EQ(num_rets, rets->rets.size()); for (size_t i = 0; i < num_rets; ++i) { rets->results[i].buffer.dims = rets->results[i].dims.data(); rets->rets[i] = &rets->results[i].buffer; } rets->ffi_rets.size = num_rets; rets->ffi_rets.types = rets->types.data(); rets->ffi_rets.rets = rets->rets.data(); return rets; } struct CallFrame::ConvertAttribute { CallFrame::Attribute operator()(const CallFrameBuilder::Array& array) { return CallFrame::Array{array}; } CallFrame::Attribute operator()(const CallFrameBuilder::Scalar& scalar) { return CallFrame::Scalar{scalar}; } CallFrame::Attribute operator()(const std::string& str) { return CallFrame::String{str}; } CallFrame::Attribute operator()(const CallFrameBuilder::Dictionary& dict) { return CallFrame::Dictionary{CreateAttrs(*dict.attrs)}; } }; struct CallFrame::FixUpAttribute { void operator()(CallFrame::Array& array) { auto visitor = [&](auto& value) { using T = typename std::remove_reference_t<decltype(value)>::value_type; array.array.dtype = internal::NativeTypeToCApiDataType<T>(); array.array.size = value.size(); array.array.data = value.data(); }; std::visit(visitor, array.value); } void operator()(CallFrame::Scalar& scalar) { auto visitor = [&](auto& value) { using T = std::remove_reference_t<decltype(value)>; scalar.scalar.dtype = internal::NativeTypeToCApiDataType<T>(); scalar.scalar.value = &value; }; std::visit(visitor, scalar.value); } void operator()(CallFrame::String& str) { str.span.ptr = str.value.data(); str.span.len = str.value.size(); } void operator()(CallFrame::Dictionary&) {} }; struct CallFrame::AttributeType { XLA_FFI_AttrType operator()(CallFrame::Array&) { return XLA_FFI_AttrType_ARRAY; } XLA_FFI_AttrType operator()(CallFrame::Scalar&) { return XLA_FFI_AttrType_SCALAR; } XLA_FFI_AttrType operator()(CallFrame::String&) { return XLA_FFI_AttrType_STRING; } XLA_FFI_AttrType operator()(CallFrame::Dictionary&) { return XLA_FFI_AttrType_DICTIONARY; } }; struct CallFrame::AttributeStorage { template <typename T> void* operator()(T& value) { return &value; } void* operator()(CallFrame::Array& array) { return &array.array; } void* operator()(CallFrame::Scalar& scalar) { return &scalar.scalar; } void* operator()(CallFrame::String& str) { return &str.span; } void* operator()(CallFrame::Dictionary& dict) { return &dict.attrs->ffi_attrs; } }; std::unique_ptr<CallFrame::Attributes> CallFrame::CreateAttrs( const CallFrameBuilder::AttributesMap& battrs) { auto attrs = std::make_unique<Attributes>(); attrs->attributes.reserve(battrs.size()); for (auto& [name, battr] : battrs) { NamedAttribute attr = {String{name}, std::visit(ConvertAttribute(), battr)}; attrs->attributes.push_back(std::move(attr)); } absl::c_sort(attrs->attributes, [](const NamedAttribute& a, const NamedAttribute& b) { return a.name.value < b.name.value; }); return FixUpAttrs(std::move(attrs)); } std::unique_ptr<CallFrame::Attributes> CallFrame::FixUpAttrs( std::unique_ptr<CallFrame::Attributes> attrs) { size_t num_attrs = attrs->attributes.size(); DCHECK(attrs->names.empty() && attrs->types.empty() && attrs->attrs.empty()); attrs->names.reserve(num_attrs); attrs->types.reserve(num_attrs); attrs->attrs.reserve(num_attrs); for (NamedAttribute& attr : attrs->attributes) { std::invoke(FixUpAttribute{}, attr.name); std::visit(FixUpAttribute{}, attr.value); } for (NamedAttribute& attr : attrs->attributes) { attrs->names.push_back(&attr.name.span); attrs->types.push_back(std::visit(AttributeType(), attr.value)); attrs->attrs.push_back(std::visit(AttributeStorage(), attr.value)); } attrs->ffi_attrs.size = attrs->attributes.size(); attrs->ffi_attrs.names = attrs->names.data(); attrs->ffi_attrs.types = attrs->types.data(); attrs->ffi_attrs.attrs = attrs->attrs.data(); return attrs; } absl::Status CallFrame::UpdateWithBuffers( absl::Span<const se::DeviceMemoryBase> args, absl::Span<const se::DeviceMemoryBase> rets) { if (ABSL_PREDICT_FALSE(args.size() != arguments_->args.size())) { return InvalidArgument("Invalid number of updated arguments: %d vs %d", args.size(), arguments_->args.size()); } if (ABSL_PREDICT_FALSE(rets.size() != results_->rets.size())) { return InvalidArgument("Invalid number of updated results: %d vs %d", rets.size(), results_->rets.size()); } size_t num_args = args.size(); for (size_t i = 0; i < num_args; ++i) { arguments_->arguments[i].buffer.data = const_cast<void*>(args[i].opaque()); } size_t num_rets = rets.size(); for (size_t i = 0; i < num_rets; ++i) { results_->results[i].buffer.data = const_cast<void*>(rets[i].opaque()); } return absl::OkStatus(); } absl::StatusOr<CallFrame> CallFrame::CopyWithBuffers( absl::Span<const se::DeviceMemoryBase> args, absl::Span<const se::DeviceMemoryBase> rets) { CallFrame clone(CopyArgs(*arguments_), CopyRets(*results_), attributes_); TF_RETURN_IF_ERROR(clone.UpdateWithBuffers(args, rets)); return clone; } }
#include "xla/ffi/call_frame.h" #include <cstddef> #include <cstdint> #include <optional> #include <utility> #include <vector> #include "absl/strings/str_cat.h" #include "xla/ffi/api/c_api.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace xla::ffi { TEST(CallFrameTest, UpdateCallFrame) { se::DeviceMemoryBase mem0(reinterpret_cast<void*>(0x12345678), 1024); se::DeviceMemoryBase mem1(reinterpret_cast<void*>(0x87654321), 1024); std::vector<int64_t> dims = {1, 2, 3, 4}; CallFrameBuilder::AttributesBuilder attrs_builder; attrs_builder.Insert("attr1", "value1"); attrs_builder.Insert("attr2", "value2"); CallFrameBuilder builder(1, 1); builder.AddBufferArg(mem0, PrimitiveType::F32, dims); builder.AddBufferRet(mem1, PrimitiveType::F32, dims); builder.AddAttributes(attrs_builder.Build()); std::optional<CallFrame> call_frame = builder.Build(); { XLA_FFI_CallFrame ffi_call_frame = call_frame->Build( nullptr, nullptr, XLA_FFI_ExecutionStage_EXECUTE); EXPECT_EQ(ffi_call_frame.args.size, 1); EXPECT_EQ(ffi_call_frame.args.types[0], XLA_FFI_ArgType_BUFFER); EXPECT_EQ(static_cast<XLA_FFI_Buffer*>(ffi_call_frame.args.args[0])->data, mem0.opaque()); EXPECT_EQ(ffi_call_frame.rets.size, 1); EXPECT_EQ(ffi_call_frame.rets.types[0], XLA_FFI_ArgType_BUFFER); EXPECT_EQ(static_cast<XLA_FFI_Buffer*>(ffi_call_frame.rets.rets[0])->data, mem1.opaque()); EXPECT_EQ(ffi_call_frame.attrs.size, 2); } CallFrame updated_call_frame = std::move(call_frame)->CopyWithBuffers({mem1}, {mem0}).value(); { XLA_FFI_CallFrame ffi_call_frame = updated_call_frame.Build( nullptr, nullptr, XLA_FFI_ExecutionStage_EXECUTE); EXPECT_EQ(ffi_call_frame.args.size, 1); EXPECT_EQ(ffi_call_frame.args.types[0], XLA_FFI_ArgType_BUFFER); EXPECT_EQ(static_cast<XLA_FFI_Buffer*>(ffi_call_frame.args.args[0])->data, mem1.opaque()); EXPECT_EQ(ffi_call_frame.rets.size, 1); EXPECT_EQ(ffi_call_frame.rets.types[0], XLA_FFI_ArgType_BUFFER); EXPECT_EQ(static_cast<XLA_FFI_Buffer*>(ffi_call_frame.rets.rets[0])->data, mem0.opaque()); EXPECT_EQ(ffi_call_frame.attrs.size, 2); } TF_ASSERT_OK(updated_call_frame.UpdateWithBuffers({mem0}, {mem1})); { XLA_FFI_CallFrame ffi_call_frame = updated_call_frame.Build( nullptr, nullptr, XLA_FFI_ExecutionStage_EXECUTE); EXPECT_EQ(ffi_call_frame.args.size, 1); EXPECT_EQ(ffi_call_frame.args.types[0], XLA_FFI_ArgType_BUFFER); EXPECT_EQ(static_cast<XLA_FFI_Buffer*>(ffi_call_frame.args.args[0])->data, mem0.opaque()); EXPECT_EQ(ffi_call_frame.rets.size, 1); EXPECT_EQ(ffi_call_frame.rets.types[0], XLA_FFI_ArgType_BUFFER); EXPECT_EQ(static_cast<XLA_FFI_Buffer*>(ffi_call_frame.rets.rets[0])->data, mem1.opaque()); EXPECT_EQ(ffi_call_frame.attrs.size, 2); } } void BM_AddBufferArg(benchmark::State& state) { size_t num_args = state.range(0); se::DeviceMemoryBase memory(reinterpret_cast<void*>(0x12345678), 1024); std::vector<int64_t> dims = {1, 2, 3, 4}; for (auto _ : state) { CallFrameBuilder builder(num_args, 0); for (size_t i = 0; i < num_args; ++i) { builder.AddBufferArg(memory, PrimitiveType::F32, dims); } CallFrame call_frame = builder.Build(); } } void BM_AddAttributes(benchmark::State& state) { size_t num_attrs = state.range(0); CallFrameBuilder::AttributesMap attrs; for (size_t i = 0; i < num_attrs; ++i) { attrs.try_emplace(absl::StrCat("attr_", i), 42); } for (auto _ : state) { CallFrameBuilder::AttributesBuilder attrs_builder; attrs_builder.Append(attrs); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs_builder.Build()); CallFrame call_frame = builder.Build(); } } void BM_UpdateCallFrame(benchmark::State& state) { size_t num_args = state.range(0); se::DeviceMemoryBase memory(reinterpret_cast<void*>(0x12345678), 1024); std::vector<int64_t> dims = {1, 2, 3, 4}; CallFrameBuilder builder(num_args, 0); for (size_t i = 0; i < num_args; ++i) { builder.AddBufferArg(se::DeviceMemoryBase(nullptr, 1024), PrimitiveType::F32, dims); } CallFrame call_frame = builder.Build(); std::vector<se::DeviceMemoryBase> updated_args(num_args, memory); for (auto _ : state) { auto updated_call_frame = call_frame.CopyWithBuffers(updated_args, {}); benchmark::DoNotOptimize(updated_call_frame); } } void BM_UpdateCallFrameInPlace(benchmark::State& state) { size_t num_args = state.range(0); se::DeviceMemoryBase memory(reinterpret_cast<void*>(0x12345678), 1024); std::vector<int64_t> dims = {1, 2, 3, 4}; CallFrameBuilder builder(num_args, 0); for (size_t i = 0; i < num_args; ++i) { builder.AddBufferArg(se::DeviceMemoryBase(nullptr, 1024), PrimitiveType::F32, dims); } CallFrame call_frame = builder.Build(); std::vector<se::DeviceMemoryBase> updated_args(num_args, memory); for (auto _ : state) { benchmark::DoNotOptimize( call_frame.UpdateWithBuffers(updated_args, {})); } } #define BENCHMARK_SIZES(name) \ BENCHMARK(name)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(16)->Arg(32)->Arg(64) BENCHMARK_SIZES(BM_AddBufferArg); BENCHMARK_SIZES(BM_AddAttributes); BENCHMARK_SIZES(BM_UpdateCallFrame); BENCHMARK_SIZES(BM_UpdateCallFrameInPlace); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/ffi/call_frame.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/ffi/call_frame_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b0083186-28e1-4ea5-95ad-1a8f341b1df3
cpp
tensorflow/tensorflow
hlo_evaluator
third_party/xla/xla/hlo/evaluator/hlo_evaluator.cc
third_party/xla/xla/hlo/evaluator/hlo_evaluator_test.cc
#include "xla/hlo/evaluator/hlo_evaluator.h" #include <algorithm> #include <atomic> #include <cmath> #include <complex> #include <cstddef> #include <cstdint> #include <cstdlib> #include <cstring> #include <functional> #include <iterator> #include <limits> #include <memory> #include <numeric> #include <optional> #include <random> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/internal/endian.h" #include "absl/cleanup/cleanup.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/memory/memory.h" #include "absl/numeric/bits.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "Eigen/Core" #include "xla/array2d.h" #include "xla/comparison_util.h" #include "xla/hlo/evaluator/hlo_evaluator_typed_visitor.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/index_util.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/service/call_graph.h" #include "xla/service/compilation_environments.h" #include "xla/service/cpu/runtime_single_threaded_matmul.h" #include "xla/service/hlo_module_config.h" #include "xla/service/logical_buffer.h" #include "xla/service/pattern_matcher.h" #include "xla/service/shape_inference.h" #include "xla/service/tuple_points_to_analysis.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/cpu_info.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using primitive_util::NativeTypeOf; template <typename OperandT> absl::StatusOr<Literal> Compare(const Shape& shape, Comparison comparison, LiteralSlice lhs_literal, LiteralSlice rhs_literal) { auto populate = [&](auto compare_op) -> absl::StatusOr<Literal> { Literal result(shape); TF_RETURN_IF_ERROR(result.PopulateParallel<bool>( [&](absl::Span<const int64_t> multi_index, int ) { auto lhs = lhs_literal.Get<OperandT>(multi_index); auto rhs = rhs_literal.Get<OperandT>(multi_index); if constexpr (is_specialized_floating_point_v<OperandT>) { if (comparison.IsTotalOrder()) { return compare_op(ToSignMagnitude(lhs), ToSignMagnitude(rhs)); } } return compare_op(lhs, rhs); })); return std::move(result); }; switch (comparison.GetDirection()) { case ComparisonDirection::kEq: return populate([](auto lhs, auto rhs) { return lhs == rhs; }); case ComparisonDirection::kNe: return populate([](auto lhs, auto rhs) { return lhs != rhs; }); case ComparisonDirection::kGe: if constexpr (!is_complex_v<OperandT>) { return populate([](auto lhs, auto rhs) { return lhs >= rhs; }); } break; case ComparisonDirection::kGt: if constexpr (!is_complex_v<OperandT>) { return populate([](auto lhs, auto rhs) { return lhs > rhs; }); } break; case ComparisonDirection::kLe: if constexpr (!is_complex_v<OperandT>) { return populate([](auto lhs, auto rhs) { return lhs <= rhs; }); } break; case ComparisonDirection::kLt: if constexpr (!is_complex_v<OperandT>) { return populate([](auto lhs, auto rhs) { return lhs < rhs; }); } break; } LOG(FATAL) << "unhandled direction for conversion to Comparison: " << comparison.ToString(); } std::optional<bool> GetInstructionStaticValueAsBool( const HloInstruction* instruction) { HloEvaluator evaluator; absl::StatusOr<Literal> static_value = evaluator.Evaluate(instruction, {}, true); if (static_value.ok()) { return static_value->GetFirstElement<bool>(); } return std::nullopt; } template <PrimitiveType kType> struct PopulateParallelImpl { using NativeT = NativeTypeOf<kType>; static absl::Status Run( Literal& literal, absl::FunctionRef<Literal(absl::Span<const int64_t>, int)> literal_generator) { return literal.PopulateParallel<NativeT>( [&literal_generator](absl::Span<const int64_t> output_index, int thread_id) { return literal_generator(output_index, thread_id) .template Get<NativeT>({}); }); } }; template <PrimitiveType kType> struct PopulateImpl { using NativeT = NativeTypeOf<kType>; static absl::Status Run( Literal& literal, absl::FunctionRef<Literal(absl::Span<const int64_t>)> literal_generator) { return literal.Populate<NativeT>( [&literal_generator](absl::Span<const int64_t> output_index) { return literal_generator(output_index).template Get<NativeT>({}); }); } }; template <template <PrimitiveType> typename Trait, typename F> absl::Status Apply(Literal& literal, F&& literal_generator) { return primitive_util::PrimitiveTypeSwitch<absl::Status>( [&, literal_generator = std::forward<F>(literal_generator)]( auto primitive_type_constant) -> absl::Status { if constexpr (primitive_util::IsArrayType(primitive_type_constant)) { return Trait<primitive_type_constant>::Run( literal, std::move(literal_generator)); } LOG(FATAL) << "Unhandled primitive type " << literal.shape().element_type(); }, literal.shape().element_type()); } absl::Status MakeEvalErrorDueToParamOrInfeed( const HloInstruction& eval_instruction) { absl::Status error = absl::FailedPreconditionError(absl::StrCat( "Failed to evaluate instruction (", eval_instruction.name(), ") since it depends on infeed or parameters to its parent computation (", eval_instruction.parent()->name(), ").")); std::string error_payload; error_payload.resize(sizeof(internal::EvalErrorDetail)); absl::little_endian::Store32( const_cast<char*>(error_payload.data()), static_cast<uint32_t>( internal::EvalErrorDetail::kDynamicValueDependence)); error.SetPayload(internal::kEvalErrorDetailUrl, absl::Cord(error_payload)); return error; } struct DynamicOrStaticInteger { std::optional<int64_t> static_value; bool is_dynamic() const { return !static_value.has_value(); } std::string ToString() const { return is_dynamic() ? std::string("DYNAMIC") : absl::StrCat(*static_value); } }; std::optional<DynamicOrStaticInteger> GetInstructionValueAsInteger( const HloInstruction* instruction, HloEvaluator::PrecomputedAnalyses precomputed_analyses) { HloEvaluator evaluator; absl::StatusOr<Literal> static_value = evaluator.Evaluate(instruction, precomputed_analyses, true); if (static_value.ok()) { if (instruction->shape().element_type() == PrimitiveType::PRED) { return DynamicOrStaticInteger{ static_cast<int64_t>(static_value->GetFirstElement<bool>())}; } else { return DynamicOrStaticInteger{static_value->GetFirstInteger()}; } } std::optional<internal::EvalErrorDetail> eval_error_detail = internal::ParseEvalErrorDetail(static_value.status()); if (eval_error_detail.has_value() && *eval_error_detail == internal::EvalErrorDetail::kDynamicValueDependence) { return DynamicOrStaticInteger{std::nullopt}; } return std::nullopt; } struct ParamIndexAndValue { std::optional<int64_t> param_index; std::optional<DynamicOrStaticInteger> value; bool IsValid() const { return param_index.has_value() || value.has_value(); } std::string ToString() const { return absl::StrCat( "param_index:", !param_index.has_value() ? std::string("UNKNOWN") : absl::StrCat(*param_index), ",", "value:", !value.has_value() ? std::string("UNKONWN") : value->ToString()); } }; std::optional<ParamIndexAndValue> TryParsingInstructionAsParameterAndInteger( const HloInstruction* instruction, HloEvaluator::PrecomputedAnalyses precomputed_analyses) { if (instruction->opcode() == HloOpcode::kCopy) { return TryParsingInstructionAsParameterAndInteger(instruction->operand(0), precomputed_analyses); } if (instruction->opcode() == HloOpcode::kCopyDone) { return TryParsingInstructionAsParameterAndInteger( instruction->operand(0)->operand(1), precomputed_analyses); } ParamIndexAndValue result; if (Match(instruction, match::GetTupleElement().WithOperand( 0, match::Parameter().WithParameterNum(0)))) { result.param_index = instruction->tuple_index(); } std::optional<DynamicOrStaticInteger> integer_value = GetInstructionValueAsInteger(instruction, precomputed_analyses); result.value = std::move(integer_value); if (!result.IsValid()) { return std::nullopt; } return std::optional<ParamIndexAndValue>(std::move(result)); } struct WhileCondComparison { ComparisonDirection comparison_direction; ParamIndexAndValue lhs; ParamIndexAndValue rhs; std::string ToString() const { return absl::StrCat("WhileCondComparison{", "LHS:{", lhs.ToString(), "},RHS:{", rhs.ToString(), "}}"); } }; using WhileCondComparisonOrNoOp = std::variant<WhileCondComparison, ParamIndexAndValue>; std::optional<ParamIndexAndValue> ParseComparisonOperand( const HloInstruction* operand, HloEvaluator::PrecomputedAnalyses precomputed_analyses) { if (operand->opcode() == HloOpcode::kCopy || operand->opcode() == HloOpcode::kCopyStart || operand->opcode() == HloOpcode::kCopyDone) { return ParseComparisonOperand(operand->operand(0), precomputed_analyses); } std::optional<int64_t> param_index; if (Match(operand, match::GetTupleElement().WithOperand( 0, match::Parameter().WithParameterNum(0)))) { param_index = operand->tuple_index(); } std::optional<DynamicOrStaticInteger> operand_value = GetInstructionValueAsInteger(operand, precomputed_analyses); if (!param_index.has_value() && !operand_value.has_value()) { return std::nullopt; } return ParamIndexAndValue{param_index, operand_value}; } std::optional<WhileCondComparisonOrNoOp> PatternMatchLoopCondComparison( const HloInstruction* comparison, HloEvaluator::PrecomputedAnalyses precomputed_analyses) { CHECK_EQ(comparison->opcode(), HloOpcode::kCompare); std::optional<ParamIndexAndValue> lhs = ParseComparisonOperand(comparison->operand(0), precomputed_analyses); std::optional<ParamIndexAndValue> rhs = ParseComparisonOperand(comparison->operand(1), precomputed_analyses); if (!lhs.has_value() || !rhs.has_value()) { return std::nullopt; } return WhileCondComparison{comparison->comparison_direction(), *std::move(lhs), *std::move(rhs)}; } std::optional<WhileCondComparisonOrNoOp> PatternMatchLoopCondRoot( const HloInstruction* loop_cond_root, HloEvaluator::PrecomputedAnalyses precomputed_analyses) { if (loop_cond_root->opcode() == HloOpcode::kCopy) { return PatternMatchLoopCondRoot(loop_cond_root->operand(0), precomputed_analyses); } if (loop_cond_root->opcode() == HloOpcode::kCopyDone) { return PatternMatchLoopCondRoot(loop_cond_root->operand(0)->operand(1), precomputed_analyses); } if (loop_cond_root->opcode() == HloOpcode::kCompare) { return PatternMatchLoopCondComparison(loop_cond_root, precomputed_analyses); } if (Match(loop_cond_root, match::GetTupleElement().WithOperand( 0, match::Parameter().WithParameterNum(0)))) { if (loop_cond_root->shape().element_type() != PrimitiveType::PRED && loop_cond_root->shape().rank() != 0) { return std::nullopt; } return ParamIndexAndValue{{loop_cond_root->tuple_index()}}; } if (Match(loop_cond_root, match::GetTupleElement().WithOperand( 0, match::Call().WithNumOperands(1).WithOperand( 0, match::Parameter().WithParameterNum(0))))) { const HloInstruction* call_instruction = loop_cond_root->operand(0); const HloComputation* to_apply = call_instruction->to_apply(); const HloInstruction* to_apply_root = to_apply->root_instruction(); if (Match(to_apply_root, match::Tuple())) { return PatternMatchLoopCondRoot( to_apply_root->operand(loop_cond_root->tuple_index()), precomputed_analyses); } } if (Match(loop_cond_root, match::GetTupleElement().WithOperand(0, match::Tuple()))) { const HloInstruction* new_cond_root = loop_cond_root->operand(0)->operand(loop_cond_root->tuple_index()); return PatternMatchLoopCondRoot(new_cond_root, precomputed_analyses); } return std::nullopt; } std::optional<DynamicOrStaticInteger> PatternMatchInductionVarUpdate( const HloInstruction* induction_var_update, int64_t tuple_index, HloEvaluator::PrecomputedAnalyses precomputed_analyses) { if (induction_var_update->opcode() == HloOpcode::kCopy) { return PatternMatchInductionVarUpdate(induction_var_update->operand(0), tuple_index, precomputed_analyses); } if (induction_var_update->opcode() == HloOpcode::kCopyDone) { return PatternMatchInductionVarUpdate( induction_var_update->operand(0)->operand(1), tuple_index, precomputed_analyses); } std::optional<ParamIndexAndValue> update_param_index_and_value = TryParsingInstructionAsParameterAndInteger(induction_var_update, precomputed_analyses); if (update_param_index_and_value.has_value()) { if (update_param_index_and_value->param_index.has_value()) { if (*update_param_index_and_value->param_index == tuple_index) { VLOG(3) << "PatternMatchInductionVarUpdate, pattern: [induc_var]."; return DynamicOrStaticInteger{0}; } else { VLOG(3) << "PatternMatchInductionVarUpdate, induction variable is set to " "another parameter value. Parsed update: " << update_param_index_and_value->ToString(); return std::nullopt; } } if (update_param_index_and_value->value.has_value() && !update_param_index_and_value->value->is_dynamic()) { VLOG(3) << "PatternMatchInductionVarUpdate, induction variable is set to " "a constant. Parsed update: " << update_param_index_and_value->ToString(); return std::nullopt; } } if (induction_var_update->opcode() != HloOpcode::kAdd && induction_var_update->opcode() != HloOpcode::kSubtract) { return std::nullopt; } bool negate_update = induction_var_update->opcode() == HloOpcode::kSubtract; const HloInstruction* update_lhs = induction_var_update->operand(0); VLOG(3) << "PatternMatchInductionVarUpdate, LHS: " << update_lhs->ToString(); std::optional<ParamIndexAndValue> update_lhs_param_index_and_value = TryParsingInstructionAsParameterAndInteger(update_lhs, precomputed_analyses); const HloInstruction* update_rhs = induction_var_update->operand(1); VLOG(3) << "PatternMatchInductionVarUpdate, RHS: " << update_rhs->ToString(); std::optional<ParamIndexAndValue> update_rhs_param_index_and_value = TryParsingInstructionAsParameterAndInteger(update_rhs, precomputed_analyses); if (!update_lhs_param_index_and_value.has_value() || !update_lhs_param_index_and_value->value.has_value() || !update_rhs_param_index_and_value.has_value() || !update_rhs_param_index_and_value->value.has_value()) { VLOG(3) << "PatternMatchInductionVarUpdate, failed to parse operands. " "Induction var update instruction: " << induction_var_update->ToString(); return std::nullopt; } VLOG(3) << "update_lhs: " << update_lhs->ToString(); VLOG(3) << "update_rhs: " << update_rhs->ToString(); if (update_lhs_param_index_and_value->param_index.has_value() && *update_lhs_param_index_and_value->param_index == tuple_index && update_lhs_param_index_and_value->value->is_dynamic()) { if (update_rhs_param_index_and_value->value->is_dynamic()) { return update_rhs_param_index_and_value->value; } int64_t update_value = *update_rhs_param_index_and_value->value->static_value; return negate_update ? DynamicOrStaticInteger{-update_value} : DynamicOrStaticInteger{update_value}; } if (update_rhs_param_index_and_value->param_index.has_value() && *update_rhs_param_index_and_value->param_index == tuple_index && update_rhs_param_index_and_value->value->is_dynamic() && !negate_update) { return update_lhs_param_index_and_value->value; } VLOG(3) << "Failed to pattern match induction variable update."; return std::nullopt; } std::optional<DynamicOrStaticInteger> PatternMatchInductionVarUpdateFromLoopBodyRoot( const HloInstruction* loop_body_root, int64_t tuple_index, HloEvaluator::PrecomputedAnalyses precomputed_analyses) { if (loop_body_root->opcode() != HloOpcode::kTuple || loop_body_root->operand_count() <= tuple_index) { return std::nullopt; } const HloInstruction* induction_var_update = loop_body_root->operand(tuple_index); return PatternMatchInductionVarUpdate(induction_var_update, tuple_index, precomputed_analyses); } std::optional<bool> PatternMatchLoopCondVarOverride( const HloInstruction* loop_body_root, int64_t tuple_index) { if (!Match(loop_body_root, match::Tuple()) || loop_body_root->operand_count() <= tuple_index) { return std::nullopt; } const HloInstruction* cond_var_override = loop_body_root->operand(tuple_index); return GetInstructionStaticValueAsBool(cond_var_override); } std::optional<DynamicOrStaticInteger> EvaluateWhileLoopParamInitValue( const HloInstruction* param_instruction, int64_t tuple_index) { if (param_instruction->opcode() != HloOpcode::kTuple) { return std::nullopt; } const HloInstruction* element_instruction = param_instruction->operand(tuple_index); return GetInstructionValueAsInteger(element_instruction, {}); } } namespace internal { constexpr absl::string_view kEvalErrorDetailUrl = "EvalErrorDetailUrl"; std::optional<EvalErrorDetail> ParseEvalErrorDetail(const absl::Status& error) { auto error_detail = error.GetPayload(kEvalErrorDetailUrl); if (!error_detail.has_value() || error_detail->empty()) { return std::nullopt; } return static_cast<EvalErrorDetail>( absl::little_endian::Load32(error_detail->Flatten().data())); } } std::optional<ParsedWhileLoop> HandleNoopLoopCondition( const ParamIndexAndValue& parameter_index_and_value, const HloInstruction* while_operand, const HloComputation* while_body) { CHECK(parameter_index_and_value.param_index.has_value()); int64_t loop_cond_var_index = *parameter_index_and_value.param_index; std::optional<DynamicOrStaticInteger> noop_value = EvaluateWhileLoopParamInitValue(while_operand, loop_cond_var_index); if (noop_value.has_value()) { if (noop_value->is_dynamic()) { return kParsedDynamicWhileLoop; } else if (*noop_value->static_value == 0) { return ParsedWhileLoop{ ParsedStaticWhileLoop{0, loop_cond_var_index, 0, 0, 0}}; } std::optional<bool> updated_loop_cond_var = PatternMatchLoopCondVarOverride( while_body->root_instruction(), loop_cond_var_index); if (updated_loop_cond_var.has_value()) { if (!*updated_loop_cond_var) { return ParsedWhileLoop{ ParsedStaticWhileLoop{1, loop_cond_var_index, 0, 1, 1}}; } else { return ParsedWhileLoop{ ParsedStaticWhileLoop{-1, loop_cond_var_index, 0, 0, 1}}; } } } return std::nullopt; } int64_t ComputeTripCountFromComparison(int64_t init, int64_t bound, int64_t update, bool comparison_with_equal) { if (comparison_with_equal && init > bound) { return 0; } if (!comparison_with_equal && init >= bound) { return 0; } int64_t distance = bound - init; int64_t trip_count = (distance + update - 1) / update; CHECK_GE(trip_count, 0); if (comparison_with_equal && (bound - init) % update == 0) { trip_count += 1; } return trip_count; } std::optional<ParsedWhileLoop> HandleStaticLoopComparison( int64_t lhs, int64_t rhs, Comparison::Direction comparison_direction) { if ((comparison_direction == Comparison::Direction::kLt && lhs < rhs) || (comparison_direction == Comparison::Direction::kLe && lhs <= rhs) || (comparison_direction == Comparison::Direction::kGt && lhs > rhs) || (comparison_direction == Comparison::Direction::kGe && lhs >= rhs) || (comparison_direction == Comparison::Direction::kEq && lhs == rhs) || (comparison_direction == Comparison::Direction::kNe && lhs != rhs)) { return ParsedWhileLoop{ParsedStaticWhileLoop{-1, -1, 0, 0, 1}}; } return ParsedWhileLoop{ParsedStaticWhileLoop{0, -1, 0, 0, 0}}; } std::optional<ParsedWhileLoop> PatternMatchParseWhileLoop( const HloInstruction* while_op, HloEvaluator::PrecomputedAnalyses precomputed_analyses) { VLOG(3) << "PatternMatchParseWhileLoop, while_op: " << while_op->name(); const HloComputation* while_cond = while_op->while_condition(); const HloComputation* while_body = while_op->while_body(); const HloInstruction* while_operand = while_op->operand(0); std::optional<WhileCondComparisonOrNoOp> loop_comparison_or_noop = PatternMatchLoopCondRoot(while_cond->root_instruction(), precomputed_analyses); if (!loop_comparison_or_noop.has_value()) { return std::nullopt; } if (loop_comparison_or_noop->index() == 1) { return HandleNoopLoopCondition( std::get<ParamIndexAndValue>(*loop_comparison_or_noop), while_operand, while_body); } CHECK_EQ(loop_comparison_or_noop->index(), 0); WhileCondComparison loop_comparison = std::get<WhileCondComparison>(*loop_comparison_or_noop); CHECK(loop_comparison.lhs.IsValid() && loop_comparison.rhs.IsValid()); if (while_operand->opcode() != HloOpcode::kTuple) { return std::nullopt; } if (!loop_comparison.lhs.value.has_value() || !loop_comparison.rhs.value.has_value()) { return std::nullopt; } CHECK(loop_comparison.lhs.value.has_value()); CHECK(loop_comparison.rhs.value.has_value()); VLOG(3) << loop_comparison.ToString(); if (loop_comparison.lhs.value->is_dynamic() && loop_comparison.rhs.value->is_dynamic()) { VLOG(3) << "Both operands of the loop condition comparison are dynamic."; return std::nullopt; } CHECK(!loop_comparison.lhs.value->is_dynamic() || !loop_comparison.rhs.value->is_dynamic()); if (!loop_comparison.lhs.value->is_dynamic() && !loop_comparison.rhs.value->is_dynamic()) { int64_t lhs_value = *loop_comparison.lhs.value->static_value; int64_t rhs_value = *loop_comparison.rhs.value->static_value; Comparison::Direction comparison_direction = loop_comparison.comparison_direction; return HandleStaticLoopComparison(lhs_value, rhs_value, comparison_direction); } std::optional<DynamicOrStaticInteger> induction_var_init; std::optional<DynamicOrStaticInteger> induction_var_update; bool lhs_is_induction_var = true; if (loop_comparison.lhs.value->is_dynamic()) { if (loop_comparison.lhs.param_index.has_value()) { VLOG(3) << "Comparison LHS is induction variable."; induction_var_init = EvaluateWhileLoopParamInitValue( while_operand, *loop_comparison.lhs.param_index); induction_var_update = PatternMatchInductionVarUpdateFromLoopBodyRoot( while_body->root_instruction(), *loop_comparison.lhs.param_index, precomputed_analyses); lhs_is_induction_var = true; } } else { CHECK(loop_comparison.rhs.value->is_dynamic()); if (loop_comparison.rhs.param_index.has_value()) { VLOG(3) << "Comparison RHS is induction variable."; induction_var_init = EvaluateWhileLoopParamInitValue( while_operand, *loop_comparison.rhs.param_index); induction_var_update = PatternMatchInductionVarUpdateFromLoopBodyRoot( while_body->root_instruction(), *loop_comparison.rhs.param_index, precomputed_analyses); lhs_is_induction_var = false; } } if (!induction_var_init.has_value() || !induction_var_update.has_value()) { return std::nullopt; } VLOG(3) << "induction_var_init: " << induction_var_init->ToString(); VLOG(3) << "induction_var_update: " << induction_var_update->ToString(); if (induction_var_init->is_dynamic() || induction_var_update->is_dynamic()) { return kParsedDynamicWhileLoop; } int64_t init_value = *induction_var_init->static_value; int64_t update_value = *induction_var_update->static_value; Comparison::Direction comparison_direction = loop_comparison.comparison_direction; ParsedWhileLoop parsed_static_while_loop = ParsedWhileLoop{ ParsedStaticWhileLoop{0, -1, init_value, update_value, -1}}; if (lhs_is_induction_var) { CHECK(loop_comparison.rhs.value.has_value() && !loop_comparison.rhs.value->is_dynamic()); int64_t bound = *loop_comparison.rhs.value->static_value; parsed_static_while_loop.static_while_loop->induction_var_index = *loop_comparison.lhs.param_index; parsed_static_while_loop.static_while_loop->loop_bound = bound; if (update_value > 0 && (comparison_direction == Comparison::Direction::kLt || comparison_direction == Comparison::Direction::kLe)) { int64_t trip_count = ComputeTripCountFromComparison( init_value, bound, update_value, comparison_direction == Comparison::Direction::kLe); parsed_static_while_loop.static_while_loop->trip_count = trip_count; return parsed_static_while_loop; } if (update_value < 0 && (comparison_direction == Comparison::Direction::kGt || comparison_direction == Comparison::Direction::kGe)) { int64_t trip_count = ComputeTripCountFromComparison( bound, init_value, -update_value, comparison_direction == Comparison::Direction::kGe); parsed_static_while_loop.static_while_loop->trip_count = trip_count; return parsed_static_while_loop; } return std::nullopt; } CHECK(loop_comparison.lhs.value.has_value() && !loop_comparison.lhs.value->is_dynamic()); int64_t bound = *loop_comparison.lhs.value->static_value; parsed_static_while_loop.static_while_loop->induction_var_index = *loop_comparison.rhs.param_index; parsed_static_while_loop.static_while_loop->loop_bound = bound; if (update_value > 0 && (comparison_direction == Comparison::Direction::kGt || comparison_direction == Comparison::Direction::kGe)) { int64_t trip_count = ComputeTripCountFromComparison( init_value, bound, update_value, comparison_direction == Comparison::Direction::kGe); parsed_static_while_loop.static_while_loop->trip_count = trip_count; return parsed_static_while_loop; } if (update_value < 0 && (comparison_direction == Comparison::Direction::kLt || comparison_direction == Comparison::Direction::kLe)) { int64_t trip_count = ComputeTripCountFromComparison( bound, init_value, -update_value, comparison_direction == Comparison::Direction::kLe); parsed_static_while_loop.static_while_loop->trip_count = trip_count; return parsed_static_while_loop; } return std::nullopt; } HloEvaluator::HloEvaluator(int64_t max_loop_iterations) : max_loop_iterations_(max_loop_iterations) { for (int i = PrimitiveType_MIN; i < PrimitiveType_ARRAYSIZE; ++i) { if (!primitive_util::IsArrayType(PrimitiveType{i})) { continue; } primitive_util::PrimitiveTypeSwitch<void>( [&](auto primitive_type) { if constexpr (primitive_util::IsArrayType(primitive_type)) { using NativeT = primitive_util::NativeTypeOf<primitive_type>; if constexpr (primitive_util::IsSignedIntegralType( primitive_type)) { typed_visitors_[primitive_type] = std::make_unique<HloEvaluatorTypedVisitor<NativeT, int64_t>>( this); } else if constexpr (primitive_util::IsUnsignedIntegralType( primitive_type)) { typed_visitors_[primitive_type] = std::make_unique<HloEvaluatorTypedVisitor<NativeT, uint64_t>>( this); } else if constexpr (primitive_util::IsFloatingPointType( primitive_type) && sizeof(NativeT) < sizeof(float)) { typed_visitors_[primitive_type] = std::make_unique<HloEvaluatorTypedVisitor<NativeT, float>>( this); } else { typed_visitors_[primitive_type] = std::make_unique<HloEvaluatorTypedVisitor<NativeT>>(this); } } }, PrimitiveType{i}); } typed_visitors_[TUPLE] = std::make_unique<ConstFunctionVisitor>([](const HloInstruction*) { return Unimplemented( "HloEvaluatorTypedVisitor: unhandled primitive type: TUPLE."); }); typed_visitors_[OPAQUE_TYPE] = std::make_unique<ConstFunctionVisitor>([](const HloInstruction*) { return Unimplemented( "HloEvaluatorTypedVisitor: unhandled primitive type: OPAQUE_TYPE."); }); typed_visitors_[TOKEN] = std::make_unique<ConstFunctionVisitor>([](const HloInstruction*) { return Unimplemented( "HloEvaluatorTypedVisitor: unhandled primitive type: TOKEN."); }); } absl::StatusOr<Literal> HloEvaluator::Evaluate( const HloComputation& computation, absl::Span<const Literal* const> arg_literals) { CHECK(computation.parent() != nullptr); XLA_VLOG_LINES( 2, "HloEvaluator::Evaluate computation:\n" + computation.ToString()); OnEvaluateComputation(computation); if (arg_literals.size() != computation.num_parameters()) { return InvalidArgument( "Expected %d argument%s, but got %d.", computation.num_parameters(), computation.num_parameters() == 1 ? "" : "s", arg_literals.size()); } for (int64_t i = 0; i < arg_literals.size(); ++i) { const auto& computation_shape = computation.parameter_instruction(i)->shape(); const auto& arg_shape = arg_literals[i]->shape(); if (!Shape::Equal().MinorToMajorOnlyInLayout()(computation_shape, arg_shape)) { return InvalidArgument( "Shape mismatch at parameter %d. Computation expected %s, but arg " "was %s.", i, ShapeUtil::HumanStringWithLayout(computation_shape), ShapeUtil::HumanStringWithLayout(arg_shape)); } } evaluated_.clear(); arg_literals_.clear(); call_graph_cache_.reset(); tuple_points_to_analysis_cache_.reset(); for (const auto& literal_ptr : arg_literals) { arg_literals_.push_back(&*literal_ptr); } if (computation.parent()->config().seed()) { seed_ = computation.parent()->config().seed(); } else { static std::atomic<uint64_t> global_seed{std::random_device()()}; seed_ = global_seed.fetch_add(1); } engine_.seed(seed_); TF_RETURN_IF_ERROR(computation.Accept(this)); const Literal& result = GetEvaluatedLiteralFor(computation.root_instruction()); if (VLOG_IS_ON(100)) { for (const HloInstruction* instr : computation.instructions()) { VLOG(100) << instr->name() << " = " << GetEvaluatedLiteralFor(instr); } } if (!result.IsKnown()) { return MakeEvalErrorDueToParamOrInfeed(*computation.root_instruction()); } return result.Clone(); } absl::StatusOr<Literal> HloEvaluator::Evaluate( const HloInstruction* instruction, PrecomputedAnalyses precomputed_analyses, bool recursively_evaluate_nonconstant_operands) { arg_literals_.clear(); evaluated_.clear(); call_graph_cache_.reset(); tuple_points_to_analysis_cache_.reset(); auto enable_partial_evaluation_cleanup = absl::MakeCleanup([this] { enable_partial_evaluation_ = false; }); enable_partial_evaluation_ = recursively_evaluate_nonconstant_operands; TF_RETURN_IF_ERROR( EvaluateInternal(instruction, precomputed_analyses, {}, recursively_evaluate_nonconstant_operands)); const Literal& result = GetEvaluatedLiteralFor(instruction); if (!result.IsKnown()) { return MakeEvalErrorDueToParamOrInfeed(*instruction); } return result.Clone(); } bool HloEvaluator::TryEvaluate(const HloInstruction* instruction, Literal* result, bool recursively_evaluate_nonconstant_operands) { CHECK(result != nullptr); auto result_or = Evaluate(instruction, {}, recursively_evaluate_nonconstant_operands); if (!result_or.ok()) { VLOG(1) << "TryEvaluate failed:" << result_or.status(); return false; } *result = std::move(result_or).value(); return true; } absl::StatusOr<Literal> HloEvaluator::EvaluateWithSubstitutions( const HloInstruction* instruction, const absl::flat_hash_map<const HloInstruction*, const LiteralBase*>& substitutions) { std::vector<std::unique_ptr<HloInstruction>> owned_operands; for (const HloInstruction* operand : instruction->operands()) { auto it = substitutions.find(operand); if (it == substitutions.end()) { owned_operands.push_back(operand->Clone()); } else { owned_operands.push_back( HloInstruction::CreateConstant(it->second->Clone())); } } std::vector<HloInstruction*> operands; operands.reserve(owned_operands.size()); for (auto& operand : owned_operands) { operands.push_back(operand.get()); } std::unique_ptr<HloInstruction> cloned_instruction = instruction->CloneWithNewOperands(instruction->shape(), operands); auto result = Evaluate(cloned_instruction.get()); return result; } absl::StatusOr<Literal> HloEvaluator::EvaluateElementwiseBinaryOp( HloOpcode opcode, const Literal& lhs, const Literal& rhs) { std::unique_ptr<HloInstruction> lhs_instr = HloInstruction::CreateConstant(lhs.Clone()); std::unique_ptr<HloInstruction> rhs_instr = HloInstruction::CreateConstant(rhs.Clone()); std::unique_ptr<HloInstruction> cloned_instruction = HloInstruction::CreateBinary(lhs.shape(), opcode, lhs_instr.get(), rhs_instr.get()); auto result = Evaluate(cloned_instruction.get()); return result; } absl::StatusOr<Literal> HloEvaluator::EvaluateElementwiseTernaryOp( HloOpcode opcode, const Literal& lhs, const Literal& rhs, const Literal& ehs) { std::unique_ptr<HloInstruction> lhs_instr = HloInstruction::CreateConstant(lhs.Clone()); std::unique_ptr<HloInstruction> rhs_instr = HloInstruction::CreateConstant(rhs.Clone()); std::unique_ptr<HloInstruction> ehs_instr = HloInstruction::CreateConstant(ehs.Clone()); TF_ASSIGN_OR_RETURN(auto output_shape, ShapeInference::InferTernaryOpShape( opcode, lhs.shape(), rhs.shape(), ehs.shape())); std::unique_ptr<HloInstruction> cloned_instruction = HloInstruction::CreateTernary(output_shape, opcode, lhs_instr.get(), rhs_instr.get(), ehs_instr.get()); return Evaluate(cloned_instruction.get()); } absl::StatusOr<Literal> HloEvaluator::EvaluateElementwiseCompareOp( ComparisonDirection direction, const Literal& lhs, const Literal& rhs) { std::unique_ptr<HloInstruction> lhs_instr = HloInstruction::CreateConstant(lhs.Clone()); std::unique_ptr<HloInstruction> rhs_instr = HloInstruction::CreateConstant(rhs.Clone()); std::unique_ptr<HloInstruction> cloned_instruction = HloInstruction::CreateCompare( ShapeUtil::ChangeElementType(lhs.shape(), PRED), lhs_instr.get(), rhs_instr.get(), direction); auto result = Evaluate(cloned_instruction.get()); return result; } absl::StatusOr<Literal> HloEvaluator::EvaluateElementwiseUnaryOp( HloOpcode opcode, const Literal& operand) { std::unique_ptr<HloInstruction> operand_instr = HloInstruction::CreateConstant(operand.Clone()); TF_ASSIGN_OR_RETURN(Shape inferred_shape, ShapeInference::InferUnaryOpShape( opcode, operand.shape())); std::unique_ptr<HloInstruction> cloned_instruction = HloInstruction::CreateUnary(inferred_shape, opcode, operand_instr.get()); auto result = Evaluate(cloned_instruction.get()); return result; } absl::StatusOr<Literal> HloEvaluator::EvaluateDotOp( const DotDimensionNumbers& dim_numbers, const PrecisionConfig& precision_config, const Literal& lhs, const Literal& rhs) { std::unique_ptr<HloInstruction> lhs_instr = HloInstruction::CreateConstant(lhs.Clone()); std::unique_ptr<HloInstruction> rhs_instr = HloInstruction::CreateConstant(rhs.Clone()); TF_ASSIGN_OR_RETURN( Shape dot_shape, ShapeInference::InferDotOpShape(lhs.shape(), rhs.shape(), dim_numbers, std::nullopt)); std::unique_ptr<HloInstruction> cloned_instruction = HloInstruction::CreateDot(dot_shape, lhs_instr.get(), rhs_instr.get(), dim_numbers, precision_config); return Evaluate(cloned_instruction.get()); } absl::Status HloEvaluator::EvaluateParameterFromCallerArgument( const HloInstruction* parameter, const ShapeIndex& shape_index, PrecomputedAnalyses analyses) { CHECK(!evaluated_.contains(parameter)); const HloComputation* parent_computation = parameter->parent(); std::vector<HloInstruction*> computation_callers = analyses.call_graph->GetComputationCallers(parent_computation); if (computation_callers.size() != 1) { return tsl::errors::FailedPrecondition( "The computation ", parent_computation->name(), " is called by ", computation_callers.size(), " callers and thus its argument value " "cannot be determined statically."); } const HloInstruction* computation_caller = computation_callers[0]; const HloInstruction* caller_operand = computation_caller->operand(0); if (computation_caller->opcode() != HloOpcode::kWhile && computation_caller->opcode() != HloOpcode::kCall) { return tsl::errors::FailedPrecondition( "The computation ", parent_computation->name(), " is called by ", "instruction ", computation_caller->name(), ", which is not yet supported."); } if (computation_caller->opcode() == HloOpcode::kWhile) { HloComputation* while_body = computation_caller->while_body(); TF_ASSIGN_OR_RETURN( const LogicalBuffer* logical_buffer, analyses.tuple_points_to->GetBufferDefinedAt( while_body->parameter_instruction(parameter->parameter_number()), shape_index)); const TuplePointsToAnalysis::BufferAliasVector& buffer_aliases = analyses.tuple_points_to->GetBufferAliases(*logical_buffer); bool unchanged_in_return = false; for (const BufferAlias& buffer_alias : buffer_aliases) { if (buffer_alias.instruction() == while_body->root_instruction() && buffer_alias.index() == shape_index) { unchanged_in_return = true; } } if (!unchanged_in_return) { return MakeEvalErrorDueToParamOrInfeed(*parameter); } } TF_RETURN_IF_ERROR( EvaluateInternal(caller_operand, analyses, shape_index, true)); const Literal& caller_operand_literal = GetEvaluatedLiteralFor(caller_operand); evaluated_[parameter] = Literal::CreateFromShapeWithUnknownLeafArrays(parameter->shape()); TF_RETURN_IF_ERROR(evaluated_[parameter].CopyFrom( caller_operand_literal, shape_index, shape_index)); return absl::OkStatus(); } std::vector<int64_t> HloEvaluator::GetS64Indices( absl::Span<HloInstruction* const> start_indices) { auto get_first_s64 = [&](const Literal& index) -> int64_t { return primitive_util::PrimitiveTypeSwitch<int64_t>( [&](auto primitive_type_constant) -> int64_t { if constexpr (primitive_util::IsIntegralType( primitive_type_constant)) { return static_cast<int64_t>( index.GetFirstElement<NativeTypeOf<primitive_type_constant>>()); } LOG(FATAL) << "GetS64Indices: unhandled primitive type for " << PrimitiveType_Name(index.shape().element_type()); }, index.shape().element_type()); }; std::vector<int64_t> start; start.reserve(start_indices.size()); for (HloInstruction* index : start_indices) { start.push_back(get_first_s64(GetEvaluatedLiteralFor(index))); } return start; } DimensionVector HloEvaluator::MakeDimMultipliers(const Shape& shape) { DimensionVector v(shape.rank()); int64_t scale = 1; for (auto dim : LayoutUtil::MinorToMajor(shape)) { v[dim] = scale; scale *= shape.dimensions(dim); } return v; } absl::Status HloEvaluator::EvaluateInternal( const HloInstruction* instruction, PrecomputedAnalyses precomputed_analyses, const ShapeIndex& shape_index, bool recursively_evaluate_nonconstant_operands) { if (IsAlreadyEvaluated(instruction, shape_index)) { return absl::OkStatus(); } if (!recursively_evaluate_nonconstant_operands) { if (!hlo_query::AllOperandsAreConstants(*instruction)) { return absl::FailedPreconditionError( absl::StrCat("Not all operands are constants. Instruction: ", instruction->ToString())); } } else { if (instruction->opcode() == HloOpcode::kGetTupleElement) { ShapeIndex new_shape_index = shape_index; new_shape_index.push_front(instruction->tuple_index()); TF_RETURN_IF_ERROR(EvaluateInternal( instruction->operand(0), precomputed_analyses, new_shape_index, true)); } else if (instruction->opcode() == HloOpcode::kTuple && !shape_index.empty()) { ShapeIndex new_shape_index = shape_index; int64_t tuple_index = new_shape_index.front(); new_shape_index.pop_front(); TF_RETURN_IF_ERROR( EvaluateInternal(instruction->operand(tuple_index), precomputed_analyses, new_shape_index, true)); } else if (instruction->opcode() == HloOpcode::kParameter) { CallGraph* call_graph = (precomputed_analyses.call_graph != nullptr) ? precomputed_analyses.call_graph : std::invoke([this, instruction]() -> CallGraph* { call_graph_cache_ = CallGraph::Build(instruction->GetModule()); return call_graph_cache_.get(); }); TuplePointsToAnalysis* tuple_points_to_analysis = (precomputed_analyses.tuple_points_to != nullptr) ? precomputed_analyses.tuple_points_to : std::invoke([this, instruction]() -> TuplePointsToAnalysis* { absl::StatusOr<std::unique_ptr<TuplePointsToAnalysis>> tuple_points_to_analysis = TuplePointsToAnalysis::Run(instruction->GetModule()); if (!tuple_points_to_analysis.ok()) { return nullptr; } tuple_points_to_analysis_cache_ = *std::move(tuple_points_to_analysis); return tuple_points_to_analysis_cache_.get(); }); if (call_graph && tuple_points_to_analysis) { absl::Status argument_eval_status = EvaluateParameterFromCallerArgument( instruction, shape_index, {tuple_points_to_analysis, call_graph}); if (!argument_eval_status.ok()) { VLOG(4) << "Failed to evaluate parameter " << instruction->name() << " from caller. Reason: " << argument_eval_status.message(); } else { VLOG(4) << "Successfully evaluated parameter: " << instruction->name(); } } } else { for (HloInstruction* operand : instruction->operands()) { TF_RETURN_IF_ERROR(EvaluateInternal( operand, precomputed_analyses, {}, true)); if ((!GetEvaluatedLiteralFor(operand).IsKnown() && instruction->opcode() != HloOpcode::kCopy && instruction->opcode() != HloOpcode::kCopyStart && instruction->opcode() != HloOpcode::kCopyDone && instruction->opcode() != HloOpcode::kAsyncStart && instruction->opcode() != HloOpcode::kAsyncUpdate && instruction->opcode() != HloOpcode::kAsyncDone && instruction->opcode() != HloOpcode::kWhile)) { evaluated_[instruction] = Literal::CreateFromShapeWithUnknownLeafArrays( instruction->shape()); return absl::OkStatus(); } } } } visitor_shape_index_ = shape_index; TF_RETURN_IF_ERROR(Preprocess(instruction)); TF_RETURN_IF_ERROR(instruction->Visit(this)); TF_RETURN_IF_ERROR(Postprocess(instruction)); return absl::OkStatus(); } absl::Status HloEvaluator::HandleBitcast(const HloInstruction* bitcast) { const Literal& operand_literal = GetEvaluatedLiteralFor(bitcast->operand(0)); Literal result(bitcast->shape()); TF_RET_CHECK(operand_literal.size_bytes() >= result.size_bytes()); memcpy(result.untyped_data(), operand_literal.untyped_data(), result.size_bytes()); evaluated_[bitcast] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleBitcastConvert(const HloInstruction* convert) { const HloInstruction* operand = convert->operand(0); TF_ASSIGN_OR_RETURN( Literal result, GetEvaluatedLiteralFor(operand).BitcastConvert(convert->shape())); evaluated_[convert] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleGetDimensionSize( const HloInstruction* get_dimension_size) { const HloInstruction* operand = get_dimension_size->operand(0); int64_t dim = get_dimension_size->dimension(); if (dynamic_dimension_inference_ == nullptr) { return InvalidArgument( "Evaluator cannot evaluate get_dimension_size without " "set_dynamic_dimension_inference."); } const HloInstruction* dynamic_size = dynamic_dimension_inference_->GetDynamicSize(operand, {}, dim); if (dynamic_size != nullptr) { evaluated_[get_dimension_size] = GetEvaluatedLiteralFor(dynamic_size).Clone(); return absl::OkStatus(); } const Shape& shape = get_dimension_size->operand(0)->shape(); Literal output(ShapeUtil::MakeShape(S32, {})); output.PopulateWithValue( static_cast<int32_t>(shape.dimensions(get_dimension_size->dimension()))); evaluated_[get_dimension_size] = std::move(output); return absl::OkStatus(); } absl::Status HloEvaluator::HandleSetDimensionSize( const HloInstruction* set_dimension_size) { const Literal& operand_literal = GetEvaluatedLiteralFor(set_dimension_size->operand(0)); Literal result(set_dimension_size->shape()); memcpy(result.untyped_data(), operand_literal.untyped_data(), operand_literal.size_bytes()); const Literal& size_literal = GetEvaluatedLiteralFor(set_dimension_size->operand(1)); result.SetDynamicSize(set_dimension_size->dimension(), size_literal.Get<int32_t>({})); evaluated_[set_dimension_size] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleParameter(const HloInstruction* parameter) { if (!IsAlreadyEvaluated(parameter, visitor_shape_index_)) { if (!enable_partial_evaluation_) { return tsl::errors::FailedPrecondition( "Failed to evaluate instruction since its operands are unknown " "or undetermined and partial evaluation is not enabled."); } evaluated_[parameter] = Literal::CreateFromShapeWithUnknownLeafArrays(parameter->shape()); return absl::OkStatus(); } if (!arg_literals_.empty()) { CHECK_LT(parameter->parameter_number(), arg_literals_.size()); #ifndef NDEBUG const Literal* input_literal = arg_literals_[parameter->parameter_number()]; VLOG(2) << "Parameter evaluated to: " << input_literal->ToString(); DCHECK(Shape::Equal().MinorToMajorOnlyInLayout()(parameter->shape(), input_literal->shape())) << "parameter shape is: " << ShapeUtil::HumanStringWithLayout(parameter->shape()) << ", but input literal shape is: " << ShapeUtil::HumanStringWithLayout(input_literal->shape()); #endif } return absl::OkStatus(); } absl::Status HloEvaluator::HandleInfeed(const HloInstruction* infeed) { if (!enable_partial_evaluation_) { return tsl::errors::FailedPrecondition( "Failed to evaluate instruction since its operands are unknown " "or undetermined and partial evaluation is not enabled."); } evaluated_[infeed] = Literal::CreateFromShapeWithUnknownLeafArrays(infeed->shape()); return absl::OkStatus(); } absl::Status HloEvaluator::HandleConstant(const HloInstruction*) { return absl::OkStatus(); } absl::Status HloEvaluator::HandleReshape(const HloInstruction* reshape) { TF_ASSIGN_OR_RETURN(evaluated_[reshape], GetEvaluatedLiteralFor(reshape->operand(0)) .Reshape(reshape->shape().dimensions())); return absl::OkStatus(); } absl::Status HloEvaluator::HandleTranspose(const HloInstruction* transpose) { evaluated_[transpose] = GetEvaluatedLiteralFor(transpose->operand(0)) .Transpose(transpose->dimensions()); return absl::OkStatus(); } absl::Status HloEvaluator::HandleConcatenate( const HloInstruction* concatenate) { absl::Span<HloInstruction* const> operands(concatenate->operands()); const Shape& reference_shape = operands[0]->shape(); CHECK(reference_shape.IsArray()); const int64_t rank = reference_shape.rank(); const int64_t concat_dim = concatenate->dimensions()[0]; CHECK_GE(concat_dim, 0); CHECK_LT(concat_dim, rank); DimensionVector concat_dimensions(reference_shape.dimensions().begin(), reference_shape.dimensions().end()); for (int64_t i = 1; i < operands.size(); ++i) { const Shape& operand_shape = operands[i]->shape(); CHECK(operand_shape.IsArray()); concat_dimensions[concat_dim] += ShapeUtil::GetDimension(operand_shape, concat_dim); } auto result_literal = LiteralUtil::CreateFromDimensions( reference_shape.element_type(), concat_dimensions); DimensionVector source_indices(rank, 0); DimensionVector dest_indices(concat_dimensions.size(), 0); for (auto operand : operands) { const Shape& operand_shape = operand->shape(); TF_RETURN_IF_ERROR(result_literal.CopySliceFrom( GetEvaluatedLiteralFor(operand), source_indices, dest_indices, operand_shape.dimensions())); dest_indices[concat_dim] += ShapeUtil::GetDimension(operand_shape, concat_dim); } evaluated_[concatenate] = std::move(result_literal); return absl::OkStatus(); } absl::Status HloEvaluator::HandleIsFinite(const HloInstruction* is_finite) { auto operand = is_finite->operand(0); auto elem_ty = operand->shape().element_type(); return primitive_util::PrimitiveTypeSwitch<absl::Status>( [&](auto primitive_type_constant) -> absl::Status { if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; auto result_or = ElementWiseUnaryOpImpl<bool, NativeT>( is_finite, [](NativeT elem_operand) { return Eigen::numext::isfinite(elem_operand); }, GetEvaluatedLiteralFor(operand)); TF_ASSIGN_OR_RETURN(evaluated_[is_finite], std::move(result_or)); return absl::OkStatus(); } return InvalidArgument( "expected element type in shape to be floating point, but got: %s", PrimitiveType_Name(elem_ty)); }, elem_ty); } absl::Status HloEvaluator::HandleReal(const HloInstruction* real) { auto operand = real->operand(0); return primitive_util::PrimitiveTypeSwitch<absl::Status>( [&](auto primitive_type_constant) -> absl::Status { if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; auto result_or = ElementWiseUnaryOpImpl<NativeT, NativeT>( real, [](NativeT elem_operand) { return elem_operand; }, GetEvaluatedLiteralFor(operand)); TF_ASSIGN_OR_RETURN(evaluated_[real], std::move(result_or)); return absl::OkStatus(); } if constexpr (primitive_util::IsComplexType(primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; auto result_or = ElementWiseUnaryOpImpl<typename NativeT::value_type, NativeT>( real, [](NativeT elem_operand) { return std::real(elem_operand); }, GetEvaluatedLiteralFor(operand)); TF_ASSIGN_OR_RETURN(evaluated_[real], std::move(result_or)); return absl::OkStatus(); } LOG(FATAL) << "HandleReal: unknown/unhandled primitive type: " << PrimitiveType_Name(operand->shape().element_type()); }, operand->shape().element_type()); } absl::Status HloEvaluator::HandleImag(const HloInstruction* imag) { auto operand = imag->operand(0); return primitive_util::PrimitiveTypeSwitch<absl::Status>( [&](auto primitive_type_constant) -> absl::Status { if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; auto result_or = ElementWiseUnaryOpImpl<NativeT, NativeT>( imag, [](NativeT elem_operand) { return NativeT(0); }, GetEvaluatedLiteralFor(operand)); TF_ASSIGN_OR_RETURN(evaluated_[imag], std::move(result_or)); return absl::OkStatus(); } if constexpr (primitive_util::IsComplexType(primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; auto result_or = ElementWiseUnaryOpImpl<typename NativeT::value_type, NativeT>( imag, [](NativeT elem_operand) { return std::imag(elem_operand); }, GetEvaluatedLiteralFor(operand)); TF_ASSIGN_OR_RETURN(evaluated_[imag], std::move(result_or)); return absl::OkStatus(); } LOG(FATAL) << "HandleImag: unknown/unhandled primitive type: " << PrimitiveType_Name(operand->shape().element_type()); }, operand->shape().element_type()); } absl::Status HloEvaluator::HandleComplex(const HloInstruction* complex) { const Literal& real = GetEvaluatedLiteralFor(complex->operand(0)); const Literal& imag = GetEvaluatedLiteralFor(complex->operand(1)); TF_RET_CHECK(ShapeUtil::Compatible(real.shape(), imag.shape())); Literal result(complex->shape()); return primitive_util::PrimitiveTypeSwitch<absl::Status>( [&](auto primitive_type_constant) -> absl::Status { if constexpr (primitive_util::IsComplexType(primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; TF_RETURN_IF_ERROR(result.Populate<NativeT>( [&](absl::Span<const int64_t> multi_index) { return NativeT( real.Get<typename NativeT::value_type>(multi_index), imag.Get<typename NativeT::value_type>(multi_index)); })); evaluated_[complex] = std::move(result); return absl::OkStatus(); } LOG(FATAL) << "HandleComplex: unknown/unhandled primitive type: " << PrimitiveType_Name(complex->shape().element_type()); }, complex->shape().element_type()); } absl::Status HloEvaluator::HandleCompare(const HloInstruction* compare) { ComparisonDirection direction = compare->comparison_direction(); ComparisonOrder order = compare->comparison_order(); auto lhs = compare->operand(0); auto rhs = compare->operand(1); DCHECK(ShapeUtil::SameDimensions(compare->shape(), rhs->shape()) && ShapeUtil::SameDimensions(lhs->shape(), rhs->shape())); TF_RET_CHECK(lhs->shape().element_type() == rhs->shape().element_type()); auto element_type = lhs->shape().element_type(); Comparison comparison(direction, element_type, order); const Literal& lhs_literal = GetEvaluatedLiteralFor(lhs); const Literal& rhs_literal = GetEvaluatedLiteralFor(rhs); return primitive_util::PrimitiveTypeSwitch<absl::Status>( [&](auto primitive_type_constant) -> absl::Status { if constexpr (primitive_util::IsArrayType(primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; TF_ASSIGN_OR_RETURN(evaluated_[compare], Compare<NativeT>(compare->shape(), comparison, lhs_literal, rhs_literal)); return absl::OkStatus(); } LOG(FATAL) << "HandleCompare: unknown primitive type: " << PrimitiveType_Name(element_type); }, element_type); } absl::Status HloEvaluator::HandleTuple(const HloInstruction* tuple) { std::vector<const Literal*> operand_literals; std::vector<Literal> operand_literal_values; if (!visitor_shape_index_.empty()) { int64_t tuple_index = visitor_shape_index_.front(); operand_literal_values.resize(tuple->operand_count()); for (int operand_index = 0; operand_index < tuple->operand_count(); ++operand_index) { if (operand_index == tuple_index) { operand_literals.push_back( &GetEvaluatedLiteralFor(tuple->operand(operand_index))); } else { operand_literal_values[operand_index] = Literal::CreateFromShapeWithUndeterminedLeafArrays( ShapeUtil::GetSubshape(tuple->shape(), {operand_index})); operand_literals.push_back(&operand_literal_values[operand_index]); } } } else { for (auto operand : tuple->operands()) { operand_literals.push_back(&GetEvaluatedLiteralFor(operand)); } } std::vector<const Shape*> element_shapes; element_shapes.reserve(operand_literals.size()); for (const auto* element : operand_literals) { element_shapes.push_back(&element->shape()); } Literal new_result = Literal::CreateFromShapeWithUndeterminedLeafArrays( ShapeUtil::MakeTupleShapeWithPtrs(element_shapes)); for (int i = 0, end = operand_literals.size(); i < end; ++i) { TF_RETURN_IF_ERROR( new_result.CopyFrom(*operand_literals[i], {i})); } if (evaluated_.contains(tuple)) { CHECK(new_result.IsDetermined(visitor_shape_index_)); TF_RETURN_IF_ERROR( evaluated_[tuple].CopyFrom(std::move(new_result), visitor_shape_index_, visitor_shape_index_)); } else { evaluated_[tuple] = std::move(new_result); } return absl::OkStatus(); } namespace { template <typename ToType, typename FromType> struct TypeConverter { static inline ToType GetAs(FromType value) { return static_cast<ToType>(value); } }; template <typename FromType> struct TypeConverter<float, FromType> { static inline float GetAs(FromType value) { return static_cast<float>(value.real()); } }; template <typename ComplexType> class FftTransform { public: explicit FftTransform(const HloInstruction* fft) : fft_type_(fft->fft_type()), fft_rank_(fft->fft_length().size()), fft_lengths_(fft->fft_length()) { absl::c_reverse(fft_lengths_); } absl::Status ComputeFft(const HloInstruction* fft, const Literal& input_literal, Literal* output_literal) { const Shape& input_shape = input_literal.shape(); const Shape& output_shape = fft->shape(); TF_RETURN_IF_ERROR(CheckParameters(input_shape, output_shape)); const auto fft_strides = ComputeStrides(fft_lengths_); const int64_t fft_size = fft_strides[fft_rank_]; if (fft_size > 0) { std::vector<ComplexType> data(fft_size); int64_t buffer_size = 0; for (auto len : fft_lengths_) { int64_t size = absl::has_single_bit(static_cast<uint64_t>(len)) ? len * 2 : len; buffer_size = std::max(buffer_size, size); } std::vector<ComplexType> buffer(buffer_size); const auto input_lengths = GetDimensionLengths(input_literal); const auto output_lengths = GetDimensionLengths(*output_literal); const auto input_strides = ComputeStrides(input_lengths, input_literal); const auto output_strides = ComputeStrides(output_lengths, *output_literal); auto base_case = [&](int64_t axis, int64_t output_index, int64_t input_index, bool within_src_bounds) { if (axis == fft_rank_ - 1) { CHECK(within_src_bounds); bool input_is_zero = CopyDataFromInput( input_literal, input_index, fft_size, fft_lengths_, fft_strides, input_lengths, input_strides, absl::MakeSpan(data)); if (!input_is_zero) { Sweep(fft_lengths_, fft_strides, absl::MakeSpan(data), absl::MakeSpan(buffer)); } CopyDataToOutput(absl::MakeSpan(data), output_index, fft_lengths_, fft_strides, output_lengths, output_strides, output_literal); return true; } return false; }; GenerateIndices(output_lengths, output_strides, input_lengths, input_strides, input_shape.rank(), 0, 0, base_case); } return absl::OkStatus(); } private: static bool GatherToBuffer(absl::Span<ComplexType> data, int64_t length, int64_t start, int64_t stride, bool expand_input, absl::Span<ComplexType> buffer) { CHECK_GE(buffer.size(), length); bool input_is_zero = true; const int64_t ub = expand_input ? length / 2 + 1 : length; CHECK_GE(data.size(), start + (ub - 1) * stride); for (int64_t k = 0; k < ub; k++) { ComplexType value = data[start + k * stride]; input_is_zero &= value == ComplexType(0.0, 0.0); buffer[k] = value; if (expand_input) { if (k > 0 && k < (length - ub + 1)) { buffer[length - k] = std::conj(value); } } } return input_is_zero; } static inline ComplexType Twiddle(int64_t k, int64_t length, bool inverse) { auto coeff = std::exp(ComplexType(0.0, -2.0 * M_PI * k / length)); return inverse ? std::conj(coeff) : coeff; } static void NaiveDft1D(int64_t length, int64_t start, int64_t stride, bool inverse, bool contract_output, bool expand_input, absl::Span<ComplexType> data, absl::Span<ComplexType> buffer) { const bool input_is_zero = GatherToBuffer(data, length, start, stride, expand_input, buffer); if (!input_is_zero) { const int64_t ub = contract_output ? length / 2 + 1 : length; for (int64_t k = 0; k < ub; k++) { ComplexType value = ComplexType(0.0, 0.0); for (int n = 0; n < length; n++) { value += buffer[n] * Twiddle(n * k, length, inverse); } data[start + k * stride] = inverse ? value / ComplexType(length, 0.0) : value; } } } static void Fft1D(int64_t length, int64_t start, int64_t stride, bool inverse, bool contract_output, bool expand_input, absl::Span<ComplexType> data, absl::Span<ComplexType> buffer) { CHECK(absl::has_single_bit(static_cast<uint64_t>(length))); const bool input_is_zero = GatherToBuffer(data, length, start, stride, expand_input, buffer); if (!input_is_zero) { auto generate_twiddles = [](int64_t length, bool inverse) { std::vector<ComplexType> twiddles; twiddles.reserve(length / 2); for (int64_t k = 0; k < length / 2; k++) { twiddles.push_back(Twiddle(k, length, inverse)); } return twiddles; }; int64_t in_base = length; int64_t out_base = 0; for (int64_t num_blocks = 1; num_blocks < length; num_blocks *= 2) { std::swap(in_base, out_base); auto twiddles = generate_twiddles(num_blocks * 2, inverse); const int64_t block_size = length / num_blocks; const int64_t next_iteration_block_size = block_size / 2; for (int64_t block = 0; block < num_blocks; block++) { const int64_t in_offset = in_base + block * block_size; const int64_t out_offset = out_base + block * next_iteration_block_size; for (int64_t pair = 0; pair < block_size / 2; pair++) { const ComplexType even = buffer[in_offset + pair]; const ComplexType odd = buffer[in_offset + block_size / 2 + pair]; const ComplexType twiddled_odd = twiddles[block] * odd; buffer[out_offset + pair] = even + twiddled_odd; buffer[out_offset + length / 2 + pair] = even - twiddled_odd; } } } const int64_t ub = contract_output ? length / 2 + 1 : length; for (int64_t k = 0; k < ub; k++) { ComplexType value = buffer[out_base + k]; data[start + k * stride] = inverse ? value / ComplexType(length, 0.0) : value; } } } static void Dft1D(int64_t length, int64_t start, int64_t stride, bool inverse, bool contract_output, bool expand_input, absl::Span<ComplexType> data, absl::Span<ComplexType> buffer) { if (absl::has_single_bit(static_cast<uint64_t>(length))) { Fft1D(length, start, stride, inverse, contract_output, expand_input, data, buffer); } else { NaiveDft1D(length, start, stride, inverse, contract_output, expand_input, data, buffer); } } static std::vector<int64_t> GetDimensionLengths(const Literal& literal) { auto dimensions = literal.shape().dimensions(); return std::vector<int64_t>(dimensions.rbegin(), dimensions.rend()); } static std::vector<int64_t> ComputeStrides( const absl::Span<const int64_t> lengths, const Layout& layout) { const int64_t num_dimensions = lengths.size(); CHECK_EQ(num_dimensions, layout.minor_to_major_size()); std::vector<int64_t> strides(num_dimensions + 1); int64_t stride = 1; for (int64_t i = 0; i < num_dimensions; i++) { const int64_t index = (num_dimensions - 1) - layout.minor_to_major(i); strides[index] = stride; stride *= lengths[index]; } strides[num_dimensions] = stride; return strides; } static std::vector<int64_t> ComputeStrides( const absl::Span<const int64_t> lengths) { return ComputeStrides(lengths, LayoutUtil::GetDefaultLayoutForRank(lengths.size())); } static std::vector<int64_t> ComputeStrides( const absl::Span<const int64_t> lengths, const Literal& literal) { return literal.shape().has_layout() ? ComputeStrides(lengths, literal.shape().layout()) : ComputeStrides(lengths); } void Sweep(const absl::Span<const int64_t> fft_lengths, const absl::Span<const int64_t> fft_strides, absl::Span<ComplexType> data, absl::Span<ComplexType> buffer) { const bool inverse = fft_type_ == FftType::IFFT || fft_type_ == FftType::IRFFT; const bool input_is_truncated = fft_type_ == FftType::IRFFT; const bool output_is_truncated = fft_type_ == FftType::RFFT; std::function<void(int64_t, int64_t, int64_t)> sweep = [&](int64_t sweep_axis, int64_t axis, int64_t start) { if (axis < 0) { const int64_t length = fft_lengths[sweep_axis]; const int64_t stride = fft_strides[sweep_axis]; const bool expand_input = input_is_truncated && sweep_axis == 0; const bool contract_oputput = output_is_truncated && sweep_axis == 0; Dft1D(length, start, stride, inverse, contract_oputput, expand_input, data, buffer); } else if (axis == sweep_axis) { sweep(sweep_axis, axis - 1, start); } else { const int64_t length = fft_lengths[axis]; const bool is_truncated = input_is_truncated || output_is_truncated; const int64_t ub = is_truncated && axis == 0 ? (length / 2) + 1 : length; for (int64_t i = 0; i < ub; i++) { sweep(sweep_axis, axis - 1, start + i * fft_strides[axis]); } } }; if (input_is_truncated) { for (int64_t sweep_axis = fft_rank_ - 1; sweep_axis >= 0; sweep_axis--) { sweep(sweep_axis, fft_rank_ - 1, 0); } } else { for (int64_t sweep_axis = 0; sweep_axis < fft_rank_; sweep_axis++) { sweep(sweep_axis, fft_rank_ - 1, 0); } } } template <typename BaseFn> static void GenerateIndices(const absl::Span<const int64_t> dst_lengths, const absl::Span<const int64_t> dst_strides, const absl::Span<const int64_t> src_lengths, const absl::Span<const int64_t> src_strides, int64_t rank, int64_t dst_start, int64_t src_start, BaseFn&& base) { CHECK_EQ(dst_lengths.size() + 1, dst_strides.size()); CHECK_GE(dst_lengths.size(), rank); CHECK_EQ(src_lengths.size() + 1, src_strides.size()); CHECK_GE(src_lengths.size(), rank); std::function<void(int64_t, int64_t, int64_t, bool)> generate = [&](int64_t axis, int64_t dst_index, int64_t src_index, bool within_src_bounds) { if (!base(axis, dst_index, src_index, within_src_bounds)) { for (int64_t i = 0; i < dst_lengths[axis]; i++) { within_src_bounds &= i < src_lengths[axis]; generate(axis - 1, dst_index, src_index, within_src_bounds); dst_index += dst_strides[axis]; src_index += src_strides[axis]; } } }; generate(rank - 1, dst_start, src_start, true); } template <typename InputType> bool CopyDataFromInput(const Literal& input_literal, int64_t input_start, int64_t fft_size, const absl::Span<const int64_t> fft_lengths, const absl::Span<const int64_t> fft_strides, const absl::Span<const int64_t> input_lengths, const absl::Span<const int64_t> input_strides, absl::Span<ComplexType> data) { CHECK_GE(data.size(), fft_size); const bool input_is_truncated = fft_type_ == FftType::IRFFT; bool input_is_zero = true; const InputType* input_data = input_literal.data<InputType>().data(); auto base_case = [&](int64_t axis, int64_t dst_index, int64_t src_index, bool within_src_bounds) { if (axis == 0) { const int64_t length = fft_lengths[axis]; const int64_t ub = input_is_truncated ? (length / 2) + 1 : length; for (int64_t i = 0; i < ub; i++) { ComplexType value = ComplexType(0); if (within_src_bounds && i < input_lengths[axis]) { value = TypeConverter<ComplexType, InputType>::GetAs( input_data[src_index + i * input_strides[axis]]); input_is_zero &= value == ComplexType(0.0, 0.0); } data[dst_index + i * fft_strides[axis]] = value; } return true; } return false; }; GenerateIndices(fft_lengths, fft_strides, input_lengths, input_strides, fft_rank_, 0, input_start, base_case); return input_is_zero; } template <typename OutputType> void CopyDataToOutput(const absl::Span<ComplexType> data, int64_t output_start, const absl::Span<const int64_t> fft_lengths, const absl::Span<const int64_t> fft_strides, const absl::Span<const int64_t> output_lengths, const absl::Span<const int64_t> output_strides, Literal* output_literal) { const bool output_is_truncated = fft_type_ == FftType::RFFT; OutputType* output_data = output_literal->data<OutputType>().data(); auto base_case = [&](int64_t axis, int64_t dst_index, int64_t src_index, bool within_src_bounds) { if (axis == 0) { const int64_t length = fft_lengths[axis]; const int64_t ub = output_is_truncated ? (length / 2) + 1 : length; for (int64_t i = 0; i < output_lengths[axis]; i++) { OutputType value = OutputType(0); if (within_src_bounds && i < ub) { value = TypeConverter<OutputType, ComplexType>::GetAs( data[src_index + i * fft_strides[axis]]); } output_data[dst_index + i * output_strides[axis]] = value; } return true; } return false; }; GenerateIndices(output_lengths, output_strides, fft_lengths, fft_strides, fft_rank_, output_start, 0, base_case); } bool CopyDataFromInput(const Literal& input_literal, int64_t input_start, int64_t fft_size, const absl::Span<const int64_t> fft_lengths, const absl::Span<const int64_t> fft_strides, const absl::Span<const int64_t> input_lengths, const absl::Span<const int64_t> input_strides, absl::Span<ComplexType> data) { const bool input_is_float = fft_type_ == FftType::RFFT; if (input_is_float) { return CopyDataFromInput<float>(input_literal, input_start, fft_size, fft_lengths, fft_strides, input_lengths, input_strides, data); } else { return CopyDataFromInput<complex64>(input_literal, input_start, fft_size, fft_lengths, fft_strides, input_lengths, input_strides, data); } } void CopyDataToOutput(const absl::Span<ComplexType> data, int64_t output_start, const absl::Span<const int64_t> fft_lengths, const absl::Span<const int64_t> fft_strides, const absl::Span<const int64_t> output_lengths, const absl::Span<const int64_t> output_strides, Literal* output_literal) { const bool output_is_float = fft_type_ == FftType::IRFFT; if (output_is_float) { CopyDataToOutput<float>(data, output_start, fft_lengths, fft_strides, output_lengths, output_strides, output_literal); } else { CopyDataToOutput<complex64>(data, output_start, fft_lengths, fft_strides, output_lengths, output_strides, output_literal); } } absl::Status CheckParameters(const Shape& input_shape, const Shape& output_shape) { if (fft_rank_ <= 0) { return InvalidArgument("Zero or negative FFT rank."); } if (*absl::c_min_element(fft_lengths_) < 0) { return InvalidArgument("Negative FFT length."); } TF_CHECK_OK(ShapeUtil::ValidateShape(input_shape)); if (!input_shape.IsArray()) { return Unimplemented("Only array input shapes are supported."); } auto input_elt_type = input_shape.element_type(); if (fft_type_ == FftType::RFFT && input_elt_type != PrimitiveType::F32) { return InvalidArgument("Invalid input type: %d, must be %d (float).", input_elt_type, PrimitiveType::F32); } if (fft_type_ != FftType::RFFT && input_elt_type != PrimitiveType::C64) { return InvalidArgument("Invalid input type: %d, must be %d (complex64).", input_elt_type, PrimitiveType::C64); } const int64_t input_rank = input_shape.rank(); if (input_rank < fft_rank_) { return InvalidArgument("Input shape rank is smaller than FFT rank."); } TF_CHECK_OK(ShapeUtil::ValidateShape(output_shape)); if (!output_shape.IsArray()) { return Unimplemented("Only array output shapes are supported."); } auto output_elt_type = output_shape.element_type(); if (fft_type_ == FftType::IRFFT && output_elt_type != PrimitiveType::F32) { return InvalidArgument("Invalid output type: %d, must be %d (float).", output_elt_type, PrimitiveType::F32); } if (fft_type_ != FftType::IRFFT && output_elt_type != PrimitiveType::C64) { return InvalidArgument("Invalid output type: %d, must be %d (complex64).", output_elt_type, PrimitiveType::C64); } const int64_t output_rank = output_shape.rank(); if (output_rank < fft_rank_) { return InvalidArgument("Output shape rank is smaller than FFT rank."); } if (input_rank != output_rank) { return InvalidArgument( "Ranks of input shape and output shape do not match."); } for (int64_t dim = 0; dim < input_rank - fft_rank_; dim++) { if (ShapeUtil::GetDimension(input_shape, dim) != ShapeUtil::GetDimension(output_shape, dim)) { return InvalidArgument( "Higher dimension lengths of input shape and output shape do not " "match."); } } return absl::OkStatus(); } private: const FftType fft_type_; const int64_t fft_rank_; std::vector<int64_t> fft_lengths_; }; } absl::Status HloEvaluator::HandleFft(const HloInstruction* fft) { const Literal& input_literal = GetEvaluatedLiteralFor(fft->operand(0)); Literal output_literal = Literal::CreateFromShape(fft->shape()); FftTransform<complex128> transform(fft); TF_RETURN_IF_ERROR(transform.ComputeFft(fft, input_literal, &output_literal)); evaluated_[fft] = std::move(output_literal); return absl::OkStatus(); } ShapeUtil::IndexIterationSpace IterationSpaceForOutputBatchIndices( const Shape& output_shape, const GatherDimensionNumbers& dim_numbers) { int64_t output_rank = output_shape.dimensions_size(); std::vector<int64_t> index_base(output_rank, 0); std::vector<int64_t> index_count; index_count.reserve(output_rank); for (int64_t i = 0; i < output_rank; i++) { bool is_output_batch_dim = !absl::c_binary_search(dim_numbers.offset_dims(), i); index_count.push_back(is_output_batch_dim ? output_shape.dimensions(i) : 1); } return {std::move(index_base), std::move(index_count), std::vector<int64_t>(output_rank, 1)}; } ShapeUtil::IndexIterationSpace IterationSpaceForOutputOffsetIndices( int64_t output_rank, absl::Span<const int64_t> slice_sizes, const GatherDimensionNumbers& dim_numbers) { std::vector<int64_t> index_base(output_rank, 0); std::vector<int64_t> index_count(output_rank, 1); int64_t slice_sizes_idx = 0; for (int64_t i = 0; i < output_rank; i++) { bool is_output_window_dim = absl::c_binary_search(dim_numbers.offset_dims(), i); if (is_output_window_dim) { while (absl::c_binary_search(dim_numbers.collapsed_slice_dims(), slice_sizes_idx)) { slice_sizes_idx++; } index_count[i] = slice_sizes[slice_sizes_idx++]; } } return {std::move(index_base), std::move(index_count), std::vector<int64_t>(output_rank, 1)}; } class OutputBatchIndexToInputIndex { public: explicit OutputBatchIndexToInputIndex( const GatherDimensionNumbers* dim_numbers, const Shape& input_shape, const Shape& output_shape, const Literal* start_indices) : dim_numbers_(*dim_numbers), start_indices_(*start_indices) { for (int64_t i = 0; i < output_shape.dimensions_size(); i++) { output_dim_is_batch_dims_.push_back( !absl::c_binary_search(dim_numbers_.offset_dims(), i)); } for (int64_t i = 0; i < input_shape.dimensions_size(); i++) { int64_t index_of_input_dim_in_index_vector = std::distance(dim_numbers_.start_index_map().begin(), absl::c_find(dim_numbers_.start_index_map(), i)); if (index_of_input_dim_in_index_vector == dim_numbers_.start_index_map_size()) { input_dim_value_to_index_vector_.push_back(-1); } else { input_dim_value_to_index_vector_.push_back( index_of_input_dim_in_index_vector); } } index_vector_index_.resize(start_indices_.shape().dimensions_size()); input_index_.resize(input_shape.dimensions_size()); int64_t index_vector_size = start_indices_.shape().dimensions(dim_numbers_.index_vector_dim()); index_vector_.resize(index_vector_size); } absl::StatusOr<absl::Span<const int64_t>> operator()( absl::Span<const int64_t> output_index) { PropagateOutputIndexGatherDimsToIndexVectorIndex(output_index); TF_RETURN_IF_ERROR(FetchIndexVector()); PropagateIndexVectorToInputIndex(); return absl::Span<const int64_t>(input_index_); } private: void PropagateOutputIndexGatherDimsToIndexVectorIndex( absl::Span<const int64_t> output_index) { int64_t index_vector_index_i = 0; for (int64_t i = 0, e = output_index.size(); i < e; i++) { if (!output_dim_is_batch_dims_[i]) { continue; } if (index_vector_index_i == dim_numbers_.index_vector_dim()) { index_vector_index_i++; } index_vector_index_[index_vector_index_i++] = output_index[i]; } } absl::Status FetchIndexVector() { int64_t index_vector_dim = dim_numbers_.index_vector_dim(); for (int64_t i = 0, e = index_vector_.size(); i < e; i++) { index_vector_index_[index_vector_dim] = i; auto start_index = start_indices_.GetIntegralAsS64(index_vector_index_); TF_RET_CHECK(start_index.has_value()); index_vector_[i] = *start_index; } return absl::OkStatus(); } void PropagateIndexVectorToInputIndex() { for (int64_t i = 0, e = input_index_.size(); i < e; i++) { if (input_dim_value_to_index_vector_[i] != -1) { input_index_[i] = index_vector_[input_dim_value_to_index_vector_[i]]; } } } std::vector<int64_t> input_dim_value_to_index_vector_; std::vector<bool> output_dim_is_batch_dims_; std::vector<int64_t> index_vector_index_; std::vector<int64_t> index_vector_; std::vector<int64_t> input_index_; const GatherDimensionNumbers& dim_numbers_; const Literal& start_indices_; }; class OutputOffsetIndexToInputIndex { public: explicit OutputOffsetIndexToInputIndex( const GatherDimensionNumbers& dim_numbers, const Shape& input_shape, const Shape& output_shape) { std::vector<int64_t> window_index_to_output_index; int64_t output_index_count = 0; for (int64_t i = 0; i < output_shape.dimensions_size(); i++) { if (absl::c_binary_search(dim_numbers.offset_dims(), i)) { window_index_to_output_index.push_back(output_index_count++); } else { output_index_count++; } } int64_t window_dim_count = 0; for (int64_t i = 0; i < input_shape.dimensions_size(); i++) { if (absl::c_binary_search(dim_numbers.collapsed_slice_dims(), i)) { input_dim_value_to_output_index_.push_back(-1); } else { input_dim_value_to_output_index_.push_back( window_index_to_output_index[window_dim_count++]); } } input_index_.resize(input_shape.dimensions_size()); } absl::StatusOr<absl::Span<const int64_t>> operator()( absl::Span<const int64_t> output_index) { PropagateOutputIndexWindowDimsToInputIndex(output_index); return absl::Span<const int64_t>(input_index_); } int64_t input_dim_value_to_output_index(int64_t input_dim) { return input_dim_value_to_output_index_[input_dim]; } private: void PropagateOutputIndexWindowDimsToInputIndex( absl::Span<const int64_t> output_index) { for (int64_t i = 0, e = input_index_.size(); i < e; i++) { if (input_dim_value_to_output_index_[i] != -1) { input_index_[i] = output_index[input_dim_value_to_output_index_[i]]; } } } std::vector<int64_t> input_dim_value_to_output_index_; std::vector<int64_t> input_index_; }; static absl::StatusOr<std::reference_wrapper<const Literal>> ReshapedGatherIndices(int64_t index_vector_dim, const Literal& start_indices, Literal* reshaped_start_indices) { if (start_indices.shape().dimensions_size() != index_vector_dim) { return std::cref(start_indices); } std::vector<int64_t> new_shape(start_indices.shape().dimensions().begin(), start_indices.shape().dimensions().end()); new_shape.push_back(1); if (start_indices.shape().is_dynamic()) { TF_ASSIGN_OR_RETURN(*reshaped_start_indices, start_indices.ToStatic().Reshape(new_shape)); } else { TF_ASSIGN_OR_RETURN(*reshaped_start_indices, start_indices.Reshape(new_shape)); } return std::cref(*reshaped_start_indices); } absl::Status HloEvaluator::HandleGather(const HloInstruction* gather) { Literal result = Literal::CreateFromShape(gather->shape()); const Shape& shape = gather->shape(); const GatherDimensionNumbers& dim_numbers = gather->gather_dimension_numbers(); const Literal& operand = GetEvaluatedLiteralFor(gather->operand(0)); Literal reshaped_start_indices; TF_ASSIGN_OR_RETURN( const Literal& start_indices, ReshapedGatherIndices(dim_numbers.index_vector_dim(), GetEvaluatedLiteralFor(gather->operand(1)), &reshaped_start_indices)); ShapeUtil::IndexIterationSpace start_indices_iteration_space = IterationSpaceForOutputBatchIndices(shape, dim_numbers); ShapeUtil::IndexIterationSpace offset_indices_iteration_space = IterationSpaceForOutputOffsetIndices( shape.dimensions_size(), gather->gather_slice_sizes(), dim_numbers); std::vector<int64_t> input_index(operand.shape().dimensions_size()); std::vector<int64_t> output_index(gather->shape().dimensions_size()); std::vector<int64_t> input_index_clamped(operand.shape().dimensions_size()); OutputBatchIndexToInputIndex output_batch_index_to_input_index( &gather->gather_dimension_numbers(), operand.shape(), shape, &start_indices); OutputOffsetIndexToInputIndex output_offset_index_to_input_index( gather->gather_dimension_numbers(), operand.shape(), shape); const Shape& operand_shape = operand.shape(); if (ShapeUtil::IsZeroElementArray(operand_shape)) { evaluated_[gather] = std::move(result); return absl::OkStatus(); } auto gather_inner_loop_body = [&](absl::Span<const int64_t> output_window_index, absl::Span<const int64_t> input_gather_index, absl::Span<const int64_t> output_gather_index) -> absl::StatusOr<bool> { TF_ASSIGN_OR_RETURN( absl::Span<const int64_t> input_window_index, output_offset_index_to_input_index(output_window_index)); for (int i = 0, e = output_index.size(); i < e; i++) { output_index[i] = output_gather_index[i] + output_window_index[i]; DCHECK_LT(output_index[i], shape.dimensions(i)); } for (int i = 0, e = input_gather_index.size(); i < e; i++) { int64_t output_dim = output_offset_index_to_input_index.input_dim_value_to_output_index(i); int64_t output_dim_size = output_dim == -1 ? 1 : shape.dimensions(output_dim); input_index_clamped[i] = std::min(operand_shape.dimensions(i) - output_dim_size, std::max(int64_t{0}, input_gather_index[i])); } for (int i = 0, e = input_index.size(); i < e; i++) { input_index[i] = input_index_clamped[i] + input_window_index[i]; DCHECK_GE(input_index[i], 0); DCHECK_LT(input_index[i], operand_shape.dimensions(i)); } result.CopyElementFrom(operand, input_index, output_index); return true; }; auto gather_outer_loop_body = [&](absl::Span<const int64_t> output_gather_index) -> absl::StatusOr<bool> { TF_ASSIGN_OR_RETURN(absl::Span<const int64_t> input_gather_index, output_batch_index_to_input_index(output_gather_index)); TF_RETURN_IF_ERROR(ShapeUtil::ForEachIndexWithStatus( shape, offset_indices_iteration_space, std::bind(gather_inner_loop_body, std::placeholders::_1, input_gather_index, output_gather_index))); return true; }; TF_RETURN_IF_ERROR(ShapeUtil::ForEachIndexWithStatus( shape, start_indices_iteration_space, gather_outer_loop_body)); evaluated_[gather] = std::move(result); return absl::OkStatus(); } namespace { absl::StatusOr<std::reference_wrapper<const Literal>> ReshapedScatterIndices( int64_t index_vector_dim, const Literal& indices, Literal* reshaped_indices) { if (indices.shape().dimensions_size() != index_vector_dim) { return std::cref(indices); } std::vector<int64_t> new_shape(indices.shape().dimensions().begin(), indices.shape().dimensions().end()); new_shape.push_back(1); if (indices.shape().is_dynamic()) { TF_ASSIGN_OR_RETURN(*reshaped_indices, indices.ToStatic().Reshape(new_shape)); } else { TF_ASSIGN_OR_RETURN(*reshaped_indices, indices.Reshape(new_shape)); } return std::cref(*reshaped_indices); } template <bool kForUpdateWindowIndices> ShapeUtil::IndexIterationSpace GetIterationSpaceImpl( absl::Span<const int64_t> updates_dims, const ScatterDimensionNumbers& dim_numbers) { int64_t updates_rank = updates_dims.size(); std::vector<int64_t> index_base(updates_rank, 0); std::vector<int64_t> index_count(updates_rank, 1); for (int64_t i = 0; i < updates_rank; i++) { if (kForUpdateWindowIndices) { bool is_update_window_dim = absl::c_binary_search(dim_numbers.update_window_dims(), i); if (is_update_window_dim) { index_count[i] = updates_dims[i]; } } else { bool is_update_scatter_dim = !absl::c_binary_search(dim_numbers.update_window_dims(), i); if (is_update_scatter_dim) { index_count[i] = updates_dims[i]; } } } return {std::move(index_base), std::move(index_count), std::vector<int64_t>(updates_rank, 1)}; } ShapeUtil::IndexIterationSpace IterationSpaceForUpdateScatterIndices( absl::Span<const int64_t> updates_dims, const ScatterDimensionNumbers& dim_numbers) { return GetIterationSpaceImpl<false>(updates_dims, dim_numbers); } ShapeUtil::IndexIterationSpace IterationSpaceForUpdateWindowIndices( absl::Span<const int64_t> updates_dims, const ScatterDimensionNumbers& dim_numbers) { return GetIterationSpaceImpl<true>(updates_dims, dim_numbers); } class UpdateScatterIndexToInputIndex { public: explicit UpdateScatterIndexToInputIndex( const ScatterDimensionNumbers& dim_numbers, int64_t input_rank, int64_t updates_rank, const Literal* scatter_indices) : dim_numbers_(dim_numbers), scatter_indices_(*scatter_indices) { for (int64_t i = 0; i < updates_rank; i++) { update_dim_is_scatter_dims_.push_back( !absl::c_binary_search(dim_numbers_.update_window_dims(), i)); } for (int64_t i = 0; i < input_rank; i++) { int64_t index_of_input_dim_in_index_vector = FindIndex(dim_numbers_.scatter_dims_to_operand_dims(), i); if (index_of_input_dim_in_index_vector == dim_numbers_.scatter_dims_to_operand_dims_size()) { input_dim_value_to_index_vector_.push_back(-1); } else { input_dim_value_to_index_vector_.push_back( index_of_input_dim_in_index_vector); } } index_vector_index_.resize(scatter_indices_.shape().dimensions_size()); input_index_.resize(input_rank); int64_t index_vector_size = scatter_indices_.shape().dimensions(dim_numbers_.index_vector_dim()); index_vector_.resize(index_vector_size); } absl::StatusOr<absl::Span<const int64_t>> operator()( absl::Span<const int64_t> update_index) { PropagateUpdateIndexScatterDimsToIndexVectorIndex(update_index); TF_RETURN_IF_ERROR(FetchIndexVector()); PropagateIndexVectorToInputIndex(); return absl::Span<const int64_t>(input_index_); } private: void PropagateUpdateIndexScatterDimsToIndexVectorIndex( absl::Span<const int64_t> update_index) { int64_t index_vector_index_i = 0; for (int64_t i = 0, e = update_index.size(); i < e; i++) { if (!update_dim_is_scatter_dims_[i]) { continue; } if (index_vector_index_i == dim_numbers_.index_vector_dim()) { index_vector_index_i++; } index_vector_index_[index_vector_index_i++] = update_index[i]; } } absl::Status FetchIndexVector() { int64_t index_vector_dim = dim_numbers_.index_vector_dim(); for (int64_t i = 0, e = index_vector_.size(); i < e; i++) { index_vector_index_[index_vector_dim] = i; index_vector_[i] = *scatter_indices_.GetIntegralAsS64(index_vector_index_); } return absl::OkStatus(); } void PropagateIndexVectorToInputIndex() { for (int64_t i = 0, e = input_index_.size(); i < e; i++) { if (input_dim_value_to_index_vector_[i] != -1) { input_index_[i] = index_vector_[input_dim_value_to_index_vector_[i]]; } } } std::vector<int64_t> input_dim_value_to_index_vector_; std::vector<bool> update_dim_is_scatter_dims_; std::vector<int64_t> index_vector_index_; std::vector<int64_t> index_vector_; std::vector<int64_t> input_index_; const ScatterDimensionNumbers& dim_numbers_; const Literal& scatter_indices_; }; class UpdateWindowIndexToInputIndex { public: explicit UpdateWindowIndexToInputIndex( const ScatterDimensionNumbers& dim_numbers, int64_t input_rank, int64_t update_rank) { std::vector<int64_t> window_index_to_update_index; int64_t update_index_count = 0; for (int64_t i = 0; i < update_rank; i++) { if (absl::c_binary_search(dim_numbers.update_window_dims(), i)) { window_index_to_update_index.push_back(update_index_count++); } else { update_index_count++; } } int64_t window_dim_count = 0; for (int64_t i = 0; i < input_rank; i++) { if (absl::c_binary_search(dim_numbers.inserted_window_dims(), i)) { input_dim_value_to_update_index_.push_back(-1); } else { input_dim_value_to_update_index_.push_back( window_index_to_update_index[window_dim_count++]); } } input_index_.resize(input_rank); } absl::StatusOr<absl::Span<const int64_t>> operator()( absl::Span<const int64_t> update_index) { PropagateUpdateIndexWindowDimsToInputIndex(update_index); return absl::Span<const int64_t>(input_index_); } int64_t input_dim_value_to_update_index(int64_t input_dim) { return input_dim_value_to_update_index_[input_dim]; } private: void PropagateUpdateIndexWindowDimsToInputIndex( absl::Span<const int64_t> update_index) { for (int64_t i = 0, e = input_index_.size(); i < e; i++) { if (input_dim_value_to_update_index_[i] != -1) { input_index_[i] = update_index[input_dim_value_to_update_index_[i]]; } } } std::vector<int64_t> input_dim_value_to_update_index_; std::vector<int64_t> input_index_; }; } absl::Status HloEvaluator::HandleScatter(const HloInstruction* hlo) { auto* scatter = DynCast<HloScatterInstruction>(hlo); const ScatterDimensionNumbers& dim_numbers = scatter->scatter_dimension_numbers(); absl::InlinedVector<const Literal*, 1> operands; operands.reserve(scatter->scatter_operand_count()); for (const HloInstruction* operand_inst : scatter->scatter_operands()) { operands.push_back(&GetEvaluatedLiteralFor(operand_inst)); } Literal reshaped_scatter_indices; TF_ASSIGN_OR_RETURN( const Literal& scatter_indices, ReshapedScatterIndices(dim_numbers.index_vector_dim(), GetEvaluatedLiteralFor(scatter->scatter_indices()), &reshaped_scatter_indices)); absl::InlinedVector<const Literal*, 1> updates; updates.reserve(operands.size()); for (const HloInstruction* updates_inst : scatter->scatter_updates()) { updates.push_back(&GetEvaluatedLiteralFor(updates_inst)); } auto updates_dims = updates[0]->shape().dimensions(); auto operand_dims = operands[0]->shape().dimensions(); ShapeUtil::IndexIterationSpace scatter_indices_iteration_space = IterationSpaceForUpdateScatterIndices(updates_dims, dim_numbers); ShapeUtil::IndexIterationSpace window_indices_iteration_space = IterationSpaceForUpdateWindowIndices(updates_dims, dim_numbers); std::vector<int64_t> input_index(operand_dims.size()); std::vector<int64_t> update_index(updates_dims.size()); UpdateScatterIndexToInputIndex update_scatter_index_to_input_index( scatter->scatter_dimension_numbers(), operand_dims.size(), updates_dims.size(), &scatter_indices); UpdateWindowIndexToInputIndex update_window_index_to_input_index( scatter->scatter_dimension_numbers(), operand_dims.size(), updates_dims.size()); Literal result = operands.size() > 1 ? LiteralUtil::MakeTuple(operands) : operands[0]->Clone(); auto maybe_slice = [](MutableLiteralBase& literal, int idx) { if (literal.shape().IsTuple()) { return MutableBorrowingLiteral(&literal, {idx}); } DCHECK_EQ(idx, 0); return MutableBorrowingLiteral(&literal); }; HloEvaluator embedded_evaluator; auto scatter_inner_loop_body = [&](absl::Span<const int64_t> update_window_index, absl::Span<const int64_t> input_scatter_index, absl::Span<const int64_t> update_scatter_index) -> absl::StatusOr<bool> { TF_ASSIGN_OR_RETURN( absl::Span<const int64_t> input_window_index, update_window_index_to_input_index(update_window_index)); for (int i = 0, e = update_index.size(); i < e; i++) { update_index[i] = update_scatter_index[i] + update_window_index[i]; DCHECK_LT(update_index[i], updates_dims[i]); } for (int i = 0, e = input_scatter_index.size(); i < e; i++) { int64_t update_dim = update_window_index_to_input_index.input_dim_value_to_update_index(i); int64_t update_dim_size = update_dim == -1 ? 1 : updates_dims[update_dim]; if ((input_scatter_index[i] < 0) || (input_scatter_index[i] > operand_dims[i] - update_dim_size)) { return true; } } for (int i = 0, e = input_index.size(); i < e; i++) { input_index[i] = input_scatter_index[i] + input_window_index[i]; } absl::InlinedVector<Literal, 2> to_apply_args; to_apply_args.reserve(operands.size() + updates.size()); for (int i = 0, n = operands.size(); i < n; ++i) { to_apply_args.push_back( LiteralUtil::GetScalarLiteral(maybe_slice(result, i), input_index)); } for (int i = 0, n = operands.size(); i < n; ++i) { to_apply_args.push_back( LiteralUtil::GetScalarLiteral(*updates[i], update_index)); } Literal updated_result = embedded_evaluator.Evaluate(*scatter->to_apply(), to_apply_args) .value(); embedded_evaluator.ResetVisitStates(); for (int i = 0, n = operands.size(); i < n; ++i) { auto result_slice = maybe_slice(result, i); LiteralUtil::SetScalarLiteral(result_slice, input_index, maybe_slice(updated_result, i)); } return true; }; auto scatter_outer_loop_body = [&](absl::Span<const int64_t> update_scatter_index) -> absl::StatusOr<bool> { TF_ASSIGN_OR_RETURN( absl::Span<const int64_t> input_scatter_index, update_scatter_index_to_input_index(update_scatter_index)); TF_RETURN_IF_ERROR(ShapeUtil::ForEachIndexWithStatus( updates[0]->shape(), window_indices_iteration_space, [&](absl::Span<const int64_t> update_window_index) { return scatter_inner_loop_body( update_window_index, input_scatter_index, update_scatter_index); })); return true; }; TF_RETURN_IF_ERROR(ShapeUtil::ForEachIndexWithStatus( updates[0]->shape(), scatter_indices_iteration_space, scatter_outer_loop_body)); evaluated_[scatter] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleBroadcast(const HloInstruction* broadcast) { const Literal& operand = GetEvaluatedLiteralFor(broadcast->operand(0)); TF_RET_CHECK(broadcast->shape().element_type() == operand.shape().element_type()) << " broadcast from a different data type is not supported"; TF_RET_CHECK(broadcast->dimensions().size() == operand.shape().rank()) << "broadcast dimensions is of size: " << broadcast->dimensions().size() << " and rank of operand_to_broadcast is: " << operand.shape().rank(); for (int64_t i = 0; i < broadcast->dimensions().size(); ++i) { auto operand_dim_size = operand.shape().dimensions(i); auto broadcast_dim_size = broadcast->shape().dimensions(broadcast->dimensions(i)); TF_RET_CHECK(operand_dim_size == broadcast_dim_size) << absl::StreamFormat( "Operand dimension %d is broadcast to output dimension %d, but the " "sizes of these two dims do not match (%d vs %d): %s", i, broadcast->dimensions(i), operand_dim_size, broadcast_dim_size, broadcast->ToString()); } TF_ASSIGN_OR_RETURN( evaluated_[broadcast], operand.Broadcast(broadcast->shape(), broadcast->dimensions())); return absl::OkStatus(); } absl::Status HloEvaluator::HandleAfterAll(const HloInstruction* after_all) { evaluated_[after_all] = LiteralUtil::CreateToken(); return absl::OkStatus(); } absl::Status HloEvaluator::HandleAddDependency( const HloInstruction* add_dependency) { evaluated_[add_dependency] = GetEvaluatedLiteralFor(add_dependency->operand(0)).Clone(); return absl::OkStatus(); } absl::Status HloEvaluator::HandleGetTupleElement( const HloInstruction* get_tuple_element) { const auto result_shape = get_tuple_element->shape(); const int64_t index = get_tuple_element->tuple_index(); auto operand = get_tuple_element->operand(0); TF_ASSIGN_OR_RETURN( auto inferred_return_shape, ShapeInference::InferGetTupleElementShape(operand->shape(), index)); TF_RET_CHECK(ShapeUtil::Compatible(result_shape, inferred_return_shape)) << "return shape set to: " << ShapeUtil::HumanString(result_shape) << " but is inferred to be: " << ShapeUtil::HumanString(inferred_return_shape); const Literal& operand_tuple_literal = GetEvaluatedLiteralFor(operand); evaluated_[get_tuple_element] = Literal(ShapeUtil::GetTupleElementShape(operand->shape(), index)); return evaluated_[get_tuple_element].CopyFrom(operand_tuple_literal, {}, {index}); } absl::Status HloEvaluator::HandleCopy(const HloInstruction* copy) { if (copy->shape().element_type() != copy->operand(0)->shape().element_type()) { TF_ASSIGN_OR_RETURN(Literal result, GetEvaluatedLiteralFor(copy->operand(0)) .Convert(copy->shape().element_type())); TF_RET_CHECK(ShapeUtil::Compatible(copy->shape(), result.shape())); evaluated_[copy] = std::move(result); } else { TF_RET_CHECK( ShapeUtil::Compatible(copy->shape(), copy->operand(0)->shape())); evaluated_[copy] = GetEvaluatedLiteralFor(copy->operand(0)).Clone(); } return absl::OkStatus(); } absl::Status HloEvaluator::HandleAsyncStart(const HloInstruction* async_start) { std::vector<const Literal*> arg_literals; arg_literals.reserve(async_start->operands().size()); for (auto operand : async_start->operands()) { const Literal& arg_literal = GetEvaluatedLiteralFor(operand); arg_literals.push_back(&arg_literal); } std::unique_ptr<HloEvaluator> embedded_evaluator = CreateEmbedded(max_loop_iterations_); embedded_evaluator->set_dynamic_dimension_inference( dynamic_dimension_inference_); TF_ASSIGN_OR_RETURN( Literal result, embedded_evaluator->Evaluate(*async_start->async_wrapped_computation(), arg_literals)); evaluated_[async_start] = Literal(async_start->shape()); for (int i = 0; i < arg_literals.size(); ++i) { TF_RETURN_IF_ERROR(evaluated_[async_start].CopyFrom( *arg_literals[i], {0, i}, {})); } TF_RETURN_IF_ERROR(evaluated_[async_start].MoveFrom( std::move(result), {1})); return absl::OkStatus(); } absl::Status HloEvaluator::HandleAsyncUpdate( const HloInstruction* async_update) { const Literal& operand_tuple_literal = GetEvaluatedLiteralFor(async_update->operand(0)); evaluated_[async_update] = Literal(async_update->shape()); TF_RETURN_IF_ERROR(evaluated_[async_update].CopyFrom(operand_tuple_literal, {}, {})); return absl::OkStatus(); } absl::Status HloEvaluator::HandleAsyncDone(const HloInstruction* async_done) { const Literal& operand_tuple_literal = GetEvaluatedLiteralFor(async_done->operand(0)); evaluated_[async_done] = Literal(async_done->shape()); TF_RETURN_IF_ERROR(evaluated_[async_done].CopyFrom(operand_tuple_literal, {}, {1})); return absl::OkStatus(); } absl::Status HloEvaluator::HandleCopyStart(const HloInstruction* copy_start) { if (copy_start->user_count() != 1 || copy_start->users().at(0)->opcode() != HloOpcode::kCopyDone) { return absl::FailedPreconditionError( absl::StrCat("Cannot evaluate a kCopyStart that doesn't have a single " "kCopyDone user. Instruction: ", copy_start->ToString())); } const Literal context_literal = LiteralUtil::CreateR0<uint32_t>(0); evaluated_[copy_start] = LiteralUtil::MakeTuple( {&GetEvaluatedLiteralFor(copy_start->operand(0)), &GetEvaluatedLiteralFor(copy_start->operand(0)), &context_literal}); return absl::OkStatus(); } absl::Status HloEvaluator::HandleCopyDone(const HloInstruction* copy_done) { const HloInstruction* operand = copy_done->operand(0); if (operand->opcode() != HloOpcode::kCopyStart) { return absl::FailedPreconditionError( absl::StrCat("Cannot evaluate a kCopyDone that doesn't have a " "kCopyStart as operand. Instruction: ", copy_done->ToString())); } const Literal& operand_tuple_literal = GetEvaluatedLiteralFor(operand); evaluated_[copy_done] = Literal(ShapeUtil::GetTupleElementShape(operand->shape(), 0)); TF_RETURN_IF_ERROR(evaluated_[copy_done].CopyFrom(operand_tuple_literal, {}, {0})); return absl::OkStatus(); } absl::Status HloEvaluator::HandleCall(const HloInstruction* call) { auto* computation = call->to_apply(); auto operands = call->operands(); std::vector<const Literal*> arg_literals; arg_literals.reserve(operands.size()); for (auto operand : operands) { const Literal& arg_literal = GetEvaluatedLiteralFor(operand); arg_literals.push_back(&arg_literal); } std::unique_ptr<HloEvaluator> embedded_evaluator = CreateEmbedded(max_loop_iterations_); embedded_evaluator->set_dynamic_dimension_inference( dynamic_dimension_inference_); TF_ASSIGN_OR_RETURN(Literal result, embedded_evaluator->Evaluate(*computation, arg_literals)); evaluated_[call] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleFusion(const HloInstruction* fusion) { HloModuleConfig config; HloModule empty_hlo_module("EmptyModuleForFusion", config, std::make_unique<CompilationEnvironments>( fusion->GetModule()->comp_envs())); HloCloneContext context(&empty_hlo_module); auto cloned_fused_computation = fusion->fused_instructions_computation()->Clone( "clone_with_layout", &context); for (auto* instruction : cloned_fused_computation->instructions()) { if (!LayoutUtil::HasLayout(instruction->shape())) { LayoutUtil::SetToDefaultLayout(instruction->mutable_shape()); } } auto readded_computation = empty_hlo_module.AddEntryComputation(std::move(cloned_fused_computation)); auto operands = fusion->operands(); std::vector<const Literal*> arg_literals; arg_literals.reserve(operands.size()); for (auto operand : operands) { const Literal& arg_literal = GetEvaluatedLiteralFor(operand); arg_literals.push_back(&arg_literal); } std::unique_ptr<HloEvaluator> embedded_evaluator = CreateEmbedded(max_loop_iterations_); embedded_evaluator->set_dynamic_dimension_inference( dynamic_dimension_inference_); TF_ASSIGN_OR_RETURN(Literal result, embedded_evaluator->Evaluate( *readded_computation, arg_literals)); evaluated_[fusion] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleConditional( const HloInstruction* conditional) { const auto& branch_index_literal = GetEvaluatedLiteralFor(conditional->operand(0)); int branch_index; if (conditional->operand(0)->shape().element_type() == PRED) { branch_index = branch_index_literal.Get<bool>({}) ? 0 : 1; } else { branch_index = branch_index_literal.Get<int32_t>({}); if (branch_index < 0 || branch_index >= conditional->branch_count()) { branch_index = conditional->branch_count() - 1; } } const auto& branch_computation_arg = GetEvaluatedLiteralFor(conditional->operand(1 + branch_index)); std::unique_ptr<HloEvaluator> embedded_evaluator = CreateEmbedded(max_loop_iterations_); embedded_evaluator->set_dynamic_dimension_inference( dynamic_dimension_inference_); TF_ASSIGN_OR_RETURN(Literal result, embedded_evaluator->Evaluate( *conditional->branch_computation(branch_index), {&branch_computation_arg})); evaluated_[conditional] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleConvert(const HloInstruction* convert) { const HloInstruction* operand = convert->operand(0); TF_RET_CHECK(ShapeUtil::SameDimensions(operand->shape(), convert->shape())); TF_ASSIGN_OR_RETURN(Literal result, GetEvaluatedLiteralFor(operand).Convert( convert->shape().element_type())); evaluated_[convert] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleDynamicSlice( const HloInstruction* dynamic_slice) { auto operand = dynamic_slice->operand(0); auto start_indices = dynamic_slice->operand(1); auto result_shape = dynamic_slice->shape(); TF_ASSIGN_OR_RETURN( auto inferred_return_shape, ShapeInference::InferDynamicSliceShape( operand->shape(), Cast<HloDynamicSliceInstruction>(dynamic_slice)->index_shapes(), dynamic_slice->dynamic_slice_sizes())); TF_RET_CHECK(ShapeUtil::Compatible(result_shape, inferred_return_shape)) << "return shape is set to: " << ShapeUtil::HumanString(result_shape) << " but is inferred to be: " << ShapeUtil::HumanString(inferred_return_shape); TF_RET_CHECK( primitive_util::IsIntegralType(start_indices->shape().element_type())); const Literal& operand_literal = GetEvaluatedLiteralFor(operand); std::vector<int64_t> start = GetS64Indices(absl::MakeConstSpan(dynamic_slice->operands()).subspan(1)); for (int64_t i = 0; i < start.size(); ++i) { start[i] = std::min<int64_t>( std::max(int64_t{0}, start[i]), operand_literal.shape().dimensions(i) - result_shape.dimensions(i)); } std::vector<int64_t> operand_index(start.size()); Literal result(result_shape); const size_t element_byte_size = primitive_util::ByteWidth(result_shape.element_type()); auto* operand_base = static_cast<const char*>(operand_literal.untyped_data()); auto func = [&](void* dest, absl::Span<const int64_t> result_index) { for (int64_t i = 0; i < operand_index.size(); ++i) { CHECK_GE(result_index[i] + start[i], 0); operand_index[i] = result_index[i] + start[i]; } auto* src = operand_base + (element_byte_size * IndexUtil::MultidimensionalIndexToLinearIndex( operand_literal.shape(), operand_index)); std::memcpy(dest, src, element_byte_size); return true; }; TF_RETURN_IF_ERROR(result.PopulateInplace(func)); evaluated_[dynamic_slice] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleDynamicUpdateSlice(const HloInstruction* dus) { auto operand = dus->operand(0); auto update = dus->operand(1); auto start_indices = dus->operand(2); auto result_shape = dus->shape(); TF_ASSIGN_OR_RETURN( auto inferred_return_shape, ShapeInference::InferDynamicUpdateSliceShape( operand->shape(), update->shape(), Cast<HloDynamicUpdateSliceInstruction>(dus)->index_shapes())); TF_RET_CHECK(ShapeUtil::Compatible(result_shape, inferred_return_shape)) << "return shape is set to: " << ShapeUtil::HumanString(result_shape) << " but is inferred to be: " << ShapeUtil::HumanString(inferred_return_shape); TF_RET_CHECK( primitive_util::IsIntegralType(start_indices->shape().element_type())); TF_RET_CHECK(ShapeUtil::Compatible(result_shape, operand->shape())); const Literal& operand_literal = GetEvaluatedLiteralFor(operand); const Literal& update_literal = GetEvaluatedLiteralFor(update); auto result = operand_literal.Clone(); const auto rank = result.shape().rank(); std::vector<int64_t> start = GetS64Indices(absl::MakeConstSpan(dus->operands()).subspan(2)); for (int64_t i = 0; i < rank; ++i) { start[i] = std::min<int64_t>( std::max<int64_t>(0, start[i]), result.shape().dimensions(i) - update_literal.shape().dimensions(i)); } std::vector<int64_t> result_index(rank, 0); auto func = [&](absl::Span<const int64_t> update_index) { std::transform(update_index.begin(), update_index.end(), start.begin(), result_index.begin(), std::plus<int64_t>()); result.CopyElementFrom(update_literal, update_index, result_index); return true; }; std::vector<int64_t> base(update_literal.shape().dimensions_size(), 0); std::vector<int64_t> step(update_literal.shape().dimensions_size(), 1); ShapeUtil::ForEachIndexNoStatus(update_literal.shape(), base, update_literal.shape().dimensions(), step, func); evaluated_[dus] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleSelect(const HloInstruction* select) { const auto& pred = GetEvaluatedLiteralFor(select->operand(0)); const auto& on_true = GetEvaluatedLiteralFor(select->operand(1)); const auto& on_false = GetEvaluatedLiteralFor(select->operand(2)); if (ShapeUtil::IsScalar(pred.shape())) { if (pred.Get<bool>({})) { evaluated_[select] = on_true.Clone(); } else { evaluated_[select] = on_false.Clone(); } return absl::OkStatus(); } return DefaultAction(select); } namespace { absl::StatusOr<Literal> CreateScalarLiteral(int64_t value, PrimitiveType element_type) { return primitive_util::PrimitiveTypeSwitch<absl::StatusOr<Literal>>( [&](auto primitive_type_constant) -> absl::StatusOr<Literal> { if constexpr (primitive_util::IsIntegralType(primitive_type_constant)) { return LiteralUtil::CreateR0( static_cast<NativeTypeOf<primitive_type_constant>>(value)); } return InvalidArgument("Unsupported element type."); }, element_type); } absl::StatusOr<Literal> TryParseAndEvaluateWhileInductionVar( const HloInstruction* while_hlo) { std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_hlo, {}); if (!parsed_while_loop.has_value() || parsed_while_loop->is_dynamic()) { return FailedPrecondition( "Cannot evaluate a while loop's induction variable since the loop " "does not match a known loop pattern or the loop is not static."); } int64_t induction_var_value = parsed_while_loop->static_while_loop->induction_var_init_value + parsed_while_loop->static_while_loop->trip_count * parsed_while_loop->static_while_loop->step_size; Shape result_shape = while_hlo->shape().tuple_shapes( parsed_while_loop->static_while_loop->induction_var_index); TF_ASSIGN_OR_RETURN( Literal result, CreateScalarLiteral(induction_var_value, result_shape.element_type())); std::vector<Literal*> while_result_element_ptrs; while_result_element_ptrs.reserve(while_hlo->shape().tuple_shapes_size()); std::vector<Literal> while_result_elements( while_hlo->shape().tuple_shapes_size()); for (int i = 0; i < while_hlo->shape().tuple_shapes_size(); ++i) { if (i == parsed_while_loop->static_while_loop->induction_var_index) { while_result_element_ptrs.push_back(&result); } else { const Shape& shape = while_hlo->shape().tuple_shapes(i); while_result_elements[i] = Literal::CreateFromShapeWithUnknownLeafArrays(shape); while_result_element_ptrs.push_back(&while_result_elements[i]); } } return LiteralUtil::MakeTuple(while_result_element_ptrs); } } absl::Status HloEvaluator::HandleWhile(const HloInstruction* while_hlo) { const HloComputation* cond_comp = while_hlo->while_condition(); const HloComputation* body_comp = while_hlo->while_body(); auto lcv = GetEvaluatedLiteralFor(while_hlo->operand(0)).Clone(); if (!lcv.IsKnown()) { std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_hlo, {}); evaluated_[while_hlo] = Literal::CreateFromShapeWithUnknownLeafArrays(while_hlo->shape()); if (!parsed_while_loop.has_value() || parsed_while_loop->is_dynamic() || visitor_shape_index_.size() != 1 || parsed_while_loop->static_while_loop->induction_var_index != visitor_shape_index_[0]) { return absl::OkStatus(); } Shape induction_var_shape = ShapeUtil::GetSubshape(while_hlo->shape(), visitor_shape_index_); int64_t trip_count = parsed_while_loop->static_while_loop->trip_count; TF_ASSIGN_OR_RETURN( Literal induction_var_val, CreateScalarLiteral(trip_count, induction_var_shape.element_type())); TF_RETURN_IF_ERROR(evaluated_[while_hlo].CopyFrom( induction_var_val, visitor_shape_index_, {})); return absl::OkStatus(); } bool keep_going = true; int64_t iteration_count = 0; std::unique_ptr<HloEvaluator> cond_evaluator = CreateEmbedded(max_loop_iterations_); cond_evaluator->set_dynamic_dimension_inference(dynamic_dimension_inference_); std::unique_ptr<HloEvaluator> loop_body_evaluator = CreateEmbedded(max_loop_iterations_); loop_body_evaluator->set_dynamic_dimension_inference( dynamic_dimension_inference_); while (keep_going) { if (max_loop_iterations_ >= 0 && iteration_count++ > max_loop_iterations_) { absl::StatusOr<Literal> result = TryParseAndEvaluateWhileInductionVar(while_hlo); if (result.ok()) { lcv = std::move(result).value(); break; } else { return InvalidArgument("Loop %s exceeded loop iteration limit (%d).", while_hlo->name(), max_loop_iterations_); } } TF_ASSIGN_OR_RETURN(auto cond_val, cond_evaluator->Evaluate(*cond_comp, {&lcv})); keep_going = cond_val.GetFirstElement<bool>(); if (keep_going) { TF_ASSIGN_OR_RETURN(auto body_val, loop_body_evaluator->Evaluate(*body_comp, {&lcv})); VLOG(3) << "Loop iteration result: " << body_val.ToString(); lcv = std::move(body_val); cond_evaluator->ResetVisitStates(); loop_body_evaluator->ResetVisitStates(); } } evaluated_[while_hlo] = std::move(lcv); return absl::OkStatus(); } namespace { template <typename NativeT> Literal ExtractLiteralFromIndexPositions(const Literal& from, absl::Span<int64_t const> indices) { absl::InlinedVector<NativeT, 10> values; for (int64_t index : indices) { values.push_back(from.Get<NativeT>({index})); } return LiteralUtil::CreateR1<NativeT>(values); } absl::StatusOr<Literal> ExtractFromIndexPositions( const Literal& from, absl::Span<int64_t const> indices) { PrimitiveType type = from.shape().element_type(); return primitive_util::PrimitiveTypeSwitch<absl::StatusOr<Literal>>( [&](auto primitive_type_constant) -> absl::StatusOr<Literal> { if constexpr (primitive_util::IsArrayType(primitive_type_constant)) { return ExtractLiteralFromIndexPositions< NativeTypeOf<primitive_type_constant>>(from, indices); } return InvalidArgument("Unsupported type for Sort: %s", PrimitiveType_Name(type)); }, type); } void IterateThroughWindow( const Shape& window_shape, const Window& window, const Shape& base_shape, const absl::Span<const int64_t> window_count_index, const std::function<void(absl::Span<const int64_t>)>& f) { const int64_t rank = base_shape.rank(); DimensionVector window_index(rank); std::fill(window_index.begin(), window_index.end(), 0); do { DimensionVector base_index(rank); bool out_of_bound = false; for (int64_t i = 0; i < rank; ++i) { base_index[i] = window_count_index[i] * window.dimensions(i).stride() + window_index[i] * window.dimensions(i).window_dilation() - window.dimensions(i).padding_low(); if (base_index[i] % window.dimensions(i).base_dilation() != 0) { out_of_bound = true; break; } base_index[i] /= window.dimensions(i).base_dilation(); if (base_index[i] < 0 || base_index[i] >= base_shape.dimensions(i)) { out_of_bound = true; break; } } if (!out_of_bound) { f(base_index); } } while (IndexUtil::BumpIndices(window_shape, absl::MakeSpan(window_index))); } template <typename Fp, typename Uint, typename ResultT> absl::StatusOr<Literal> StochasticConvertOp(const Literal& operand_literal, const Literal& random_literal, const Shape& result_shape) { std::function<ResultT(Fp, Uint)> stochastic_convert_op = [](Fp operand, Uint random) -> ResultT { bool is_negative = static_cast<bool>(Eigen::numext::signbit(operand)); if (Eigen::numext::isinf(operand)) { return is_negative ? std::numeric_limits<ResultT>::min() : std::numeric_limits<ResultT>::max(); } if (Eigen::numext::isnan(operand)) { return static_cast<ResultT>(0); } if (operand >= static_cast<Fp>(std::numeric_limits<ResultT>::max())) { return std::numeric_limits<ResultT>::max(); } if (operand <= static_cast<Fp>(std::numeric_limits<ResultT>::min())) { return std::numeric_limits<ResultT>::min(); } operand = Eigen::numext::abs(operand); auto truncated = static_cast<ResultT>(operand); Fp fractional = operand - static_cast<Fp>(truncated); if (fractional == Fp{0}) { return is_negative ? -truncated : truncated; } auto fixed_fractional = static_cast<Uint>(std::ldexp( static_cast<double>(fractional), std::numeric_limits<Uint>::digits)); if (random < fixed_fractional) { if (truncated == std::numeric_limits<ResultT>::max()) { return std::numeric_limits<ResultT>::min(); } truncated++; } return is_negative ? -truncated : truncated; }; Literal result(result_shape); TF_RETURN_IF_ERROR( result.Populate<ResultT>([&](absl::Span<const int64_t> multi_index) { return stochastic_convert_op(operand_literal.Get<Fp>(multi_index), random_literal.Get<Uint>(multi_index)); })); return std::move(result); } template <PrimitiveType operand_type, PrimitiveType random_type, PrimitiveType result_type> absl::StatusOr<Literal> StochasticConvertOp(const Literal& operand_literal, const Literal& random_literal, const Shape& result_shape) { return StochasticConvertOp< typename primitive_util::PrimitiveTypeToNative<operand_type>::type, typename primitive_util::PrimitiveTypeToNative<random_type>::type, typename primitive_util::PrimitiveTypeToNative<result_type>::type>( operand_literal, random_literal, result_shape); } template <PrimitiveType operand_type, PrimitiveType random_type> absl::StatusOr<Literal> StochasticConvertOp(const Literal& operand_literal, const Literal& random_literal, const Shape& result_shape) { return primitive_util::PrimitiveTypeSwitch<absl::StatusOr<Literal>>( [&](auto primitive_type_constant) -> absl::StatusOr<Literal> { if constexpr (primitive_util::IsSignedIntegralType( primitive_type_constant)) { return StochasticConvertOp<operand_type, random_type, primitive_type_constant>( operand_literal, random_literal, result_shape); } return Unimplemented( "Stochastically converting from type %s to type %s is not " "implemented.", PrimitiveType_Name(operand_literal.shape().element_type()), PrimitiveType_Name(result_shape.element_type())); }, result_shape.element_type()); } absl::StatusOr<Literal> StochasticConvertOp(const Literal& operand_literal, const Literal& random_literal, const Shape& result_shape) { return primitive_util::PrimitiveTypeSwitch<absl::StatusOr<Literal>>( [&](auto primitive_type_constant) -> absl::StatusOr<Literal> { if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { return StochasticConvertOp< primitive_type_constant, primitive_util::UnsignedIntegralTypeForBitWidth( primitive_util::BitWidth(primitive_type_constant))>( operand_literal, random_literal, result_shape); } return Unimplemented( "Stochastically converting from type %s to type %s is not " "implemented.", PrimitiveType_Name(operand_literal.shape().element_type()), PrimitiveType_Name(result_shape.element_type())); }, operand_literal.shape().element_type()); } } absl::Status HloEvaluator::HandleReverse(const HloInstruction* reverse) { const Shape& result_shape = reverse->shape(); const auto reverse_dimensions = reverse->dimensions(); auto operand = reverse->operand(0); TF_ASSIGN_OR_RETURN( auto inferred_return_shape, ShapeInference::InferReverseShape(operand->shape(), reverse_dimensions)); TF_RET_CHECK(ShapeUtil::Compatible(result_shape, inferred_return_shape)) << "return shape set to: " << ShapeUtil::HumanString(result_shape) << " but is inferred to be: " << ShapeUtil::HumanString(inferred_return_shape); const Literal& operand_literal = GetEvaluatedLiteralFor(operand); Literal result(result_shape); const size_t element_byte_size = primitive_util::ByteWidth(result_shape.element_type()); auto* operand_base = static_cast<const char*>(operand_literal.untyped_data()); TF_RETURN_IF_ERROR(result.PopulateInplaceParallel( [&](void* dest, absl::Span<const int64_t> out_index, int) { std::vector<int64_t> from_index(out_index.begin(), out_index.end()); for (const int64_t dim : reverse_dimensions) { from_index[dim] = result_shape.dimensions(dim) - 1 - out_index[dim]; } auto* src = operand_base + (element_byte_size * IndexUtil::MultidimensionalIndexToLinearIndex( operand_literal.shape(), from_index)); std::memcpy(dest, src, element_byte_size); })); evaluated_[reverse] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleSelectAndScatter( const HloInstruction* select_and_scatter) { auto operand = select_and_scatter->operand(0); auto source = select_and_scatter->operand(1); const Window& window = select_and_scatter->window(); const Literal& init_literal = GetEvaluatedLiteralFor(select_and_scatter->operand(2)); TF_RET_CHECK(ShapeUtil::IsScalar(init_literal.shape())); TF_ASSIGN_OR_RETURN(Literal result, init_literal.Broadcast(select_and_scatter->shape(), {})); std::vector<int64_t> window_dimension_sizes; for (const auto& window_dimension : window.dimensions()) { window_dimension_sizes.push_back(window_dimension.size()); } const Shape window_shape = ShapeUtil::MakeShape( operand->shape().element_type(), window_dimension_sizes); const HloComputation* select = select_and_scatter->select(); const HloComputation* scatter = select_and_scatter->scatter(); const Literal& operand_literal = GetEvaluatedLiteralFor(operand); const Literal& source_literal = GetEvaluatedLiteralFor(source); int64_t rank = operand_literal.shape().rank(); HloEvaluator embedded_evaluator(max_loop_iterations_); DimensionVector source_index(rank, 0); do { std::optional<Literal> selected_val; std::optional<DimensionVector> selected_index; IterateThroughWindow( window_shape, window, operand_literal.shape(), source_index, [&](absl::Span<const int64_t> operand_index) { auto curr_val = LiteralUtil::GetScalarLiteral(operand_literal, operand_index); if (!selected_val.has_value()) { selected_val.emplace(curr_val.Clone()); selected_index.emplace(operand_index.begin(), operand_index.end()); } Literal computed_result = embedded_evaluator .Evaluate(*select, {&selected_val.value(), &curr_val}) .value(); bool selected = !computed_result.Get<bool>({}); if (selected) { *selected_val = std::move(curr_val); selected_index.emplace(operand_index.begin(), operand_index.end()); } embedded_evaluator.ResetVisitStates(); }); IterateThroughWindow( window_shape, window, operand_literal.shape(), source_index, [&](absl::Span<const int64_t> operand_index) { if (std::equal(operand_index.begin(), operand_index.end(), selected_index->begin())) { auto source = LiteralUtil::GetScalarLiteral(source_literal, source_index); auto scattered = LiteralUtil::GetScalarLiteral(result, operand_index); Literal computed_result = embedded_evaluator.Evaluate(*scatter, {&source, &scattered}) .value(); LiteralUtil::SetScalarLiteral(result, operand_index, computed_result); embedded_evaluator.ResetVisitStates(); } }); } while ( IndexUtil::BumpIndices(source->shape(), absl::MakeSpan(source_index))); evaluated_[select_and_scatter] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleSlice(const HloInstruction* slice) { auto operand = slice->operand(0); const Shape& shape = slice->shape(); TF_ASSIGN_OR_RETURN(auto inferred_return_shape, ShapeInference::InferSliceShape( operand->shape(), slice->slice_starts(), slice->slice_limits(), slice->slice_strides())); TF_RET_CHECK(ShapeUtil::Compatible(shape, inferred_return_shape)) << "return shape set to: " << ShapeUtil::HumanString(shape) << " but is inferred to be: " << ShapeUtil::HumanString(inferred_return_shape); const int64_t rank = operand->shape().rank(); const Literal& operand_literal = GetEvaluatedLiteralFor(operand); const size_t element_byte_size = primitive_util::ByteWidth(shape.element_type()); auto* operand_base = static_cast<const char*>(operand_literal.untyped_data()); auto func = [&](void* dest, absl::Span<const int64_t> out_index, int) { DimensionVector operand_index(rank); for (int64_t i = 0; i < rank; ++i) { operand_index[i] = slice->slice_starts(i) + out_index[i] * slice->slice_strides(i); } auto* src = operand_base + (element_byte_size * IndexUtil::MultidimensionalIndexToLinearIndex( operand_literal.shape(), operand_index)); std::memcpy(dest, src, element_byte_size); }; Literal result(shape); TF_RETURN_IF_ERROR(result.PopulateInplaceParallel(func)); evaluated_[slice] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleSort(const HloInstruction* sort) { TF_RET_CHECK(sort->operand_count() >= 1) << "Expected at least 1 operand for sort"; for (int64_t i = 1; i < sort->operand_count(); ++i) { TF_RET_CHECK(ShapeUtil::SameDimensions(sort->operand(0)->shape(), sort->operand(i)->shape())) << "All Sort operands must have the same dimensions"; } if (VLOG_IS_ON(3)) { for (int64_t i = 0; i < sort->operand_count(); ++i) { VLOG(3) << "HandleSort operand " << i << " literal: " << GetEvaluatedLiteralFor(sort->operand(i)).ToString(); } } Shape key_shape = sort->operand(0)->shape(); auto rank = key_shape.rank(); std::vector<Literal> result_literals; result_literals.reserve(sort->operand_count()); for (int64_t i = 0; i < sort->operand_count(); ++i) { result_literals.emplace_back(sort->operand(i)->shape()); } std::vector<int64_t> zero_base(rank, 0); std::vector<int64_t> increment(rank, 1); int64_t sort_dim = sort->dimensions(0); int64_t sort_dim_elements = key_shape.dimensions(sort_dim); TF_RET_CHECK(sort_dim >= 0 && sort_dim < increment.size()) << "Unexpected out-of-bound sort dimension " << sort_dim << " accessing increment of size " << increment.size(); increment[sort_dim] = sort_dim_elements; auto comparator = [sort](absl::Span<const Literal> literals_to_sort, int64_t a, int64_t b, HloEvaluator* embedded_evaluator) -> absl::StatusOr<bool> { absl::InlinedVector<Literal, 8> literals; literals.reserve(2 * sort->operand_count()); for (int64_t i = 0; i < sort->operand_count(); ++i) { literals.push_back( LiteralUtil::GetScalarLiteral(literals_to_sort[i], {a})); literals.push_back( LiteralUtil::GetScalarLiteral(literals_to_sort[i], {b})); } absl::InlinedVector<const Literal*, 8> literal_ptrs; absl::c_transform(literals, std::back_inserter(literal_ptrs), [](const Literal& literal) { return &literal; }); TF_ASSIGN_OR_RETURN( auto computed_result, embedded_evaluator->Evaluate(*sort->to_apply(), literal_ptrs)); embedded_evaluator->ResetVisitStates(); return computed_result.Get<bool>({}); }; auto less_than = [&comparator](absl::Span<const Literal> literals_to_sort, int64_t a, int64_t b, HloEvaluator* embedded_evaluator) -> absl::StatusOr<bool> { TF_ASSIGN_OR_RETURN(bool a_is_smaller, comparator(literals_to_sort, a, b, embedded_evaluator)); #ifndef NDEBUG TF_ASSIGN_OR_RETURN(bool b_is_smaller, comparator(literals_to_sort, b, a, embedded_evaluator)); TF_RET_CHECK(!(b_is_smaller && a_is_smaller)); TF_ASSIGN_OR_RETURN(bool b_is_reflexive, comparator(literals_to_sort, b, b, embedded_evaluator)); TF_RET_CHECK(!b_is_reflexive); TF_ASSIGN_OR_RETURN(bool a_is_reflexive, comparator(literals_to_sort, a, a, embedded_evaluator)); TF_RET_CHECK(!a_is_reflexive); #endif return a_is_smaller; }; std::function<absl::Status(absl::Span<const Literal>, absl::Span<int64_t>, absl::Span<int64_t>, absl::Span<int64_t>, std::vector<int64_t>&, HloEvaluator*)> merge = [&](absl::Span<const Literal> literals_to_sort, absl::Span<int64_t> lhs, absl::Span<int64_t> rhs, absl::Span<int64_t> output, std::vector<int64_t>& tmp, HloEvaluator* embedded_evaluator) -> absl::Status { tmp.clear(); tmp.reserve(output.size()); while (!lhs.empty() && !rhs.empty()) { TF_ASSIGN_OR_RETURN(bool rhs_is_smaller, less_than(literals_to_sort, rhs.front(), lhs.front(), embedded_evaluator)); if (rhs_is_smaller) { tmp.push_back(rhs.front()); rhs.remove_prefix(1); } else { tmp.push_back(lhs.front()); lhs.remove_prefix(1); } } absl::c_copy(lhs, std::back_inserter(tmp)); absl::c_copy(rhs, std::back_inserter(tmp)); absl::c_copy(tmp, output.begin()); return absl::OkStatus(); }; auto* env = tsl::Env::Default(); const int max_parallelism = tsl::port::MaxParallelism(); constexpr size_t kMinElementsPerThread{1024}; const size_t useful_parallelism = std::min<size_t>( sort_dim_elements / kMinElementsPerThread, max_parallelism); const size_t work_per_thread = useful_parallelism > 1 ? sort_dim_elements / useful_parallelism : std::numeric_limits<size_t>::max(); std::function<absl::Status(absl::Span<const Literal>, absl::Span<int64_t>, std::vector<int64_t>*, HloEvaluator*)> mergesort = [&merge, &mergesort, &less_than, this, env, work_per_thread]( absl::Span<const Literal> literals_to_sort, absl::Span<int64_t> to_sort, std::vector<int64_t>* scratch, HloEvaluator* embedded_evaluator) -> absl::Status { if (to_sort.size() < 2) { return absl::OkStatus(); } size_t halfway = to_sort.size() / 2; auto lhs = to_sort.subspan(0, halfway); auto rhs = to_sort.subspan(halfway); std::unique_ptr<HloEvaluator> thread_local_embedded_evaluator; if (embedded_evaluator == nullptr) { thread_local_embedded_evaluator = CreateEmbedded(max_loop_iterations_); embedded_evaluator = thread_local_embedded_evaluator.get(); } constexpr size_t kMinElementsForMergesort{9}; if (to_sort.size() >= kMinElementsForMergesort) { std::unique_ptr<std::vector<int64_t>> thread_local_scratch; if (!scratch) { thread_local_scratch = std::make_unique<std::vector<int64_t>>(); scratch = thread_local_scratch.get(); } absl::Status lhs_status; if (to_sort.size() >= work_per_thread) { std::unique_ptr<tsl::Thread> thread = absl::WrapUnique(env->StartThread( tsl::ThreadOptions(), "XLA_mergesort", [literals_to_sort, lhs, &mergesort, &lhs_status] { lhs_status = mergesort(literals_to_sort, lhs, nullptr, nullptr); })); TF_RETURN_IF_ERROR( mergesort(literals_to_sort, rhs, scratch, embedded_evaluator)); thread.reset(); } else { TF_RETURN_IF_ERROR( mergesort(literals_to_sort, rhs, scratch, embedded_evaluator)); lhs_status = mergesort(literals_to_sort, lhs, scratch, embedded_evaluator); } TF_RETURN_IF_ERROR(lhs_status); TF_RETURN_IF_ERROR(merge(literals_to_sort, lhs, rhs, to_sort, *scratch, embedded_evaluator)); } else { for (auto i = to_sort.begin(); i != to_sort.end(); ++i) { auto len = i - to_sort.begin(); auto ub = to_sort.begin(); auto needle = *i; while (len != 0) { auto half_len = len / 2; auto midpoint = ub + half_len; TF_ASSIGN_OR_RETURN(bool is_smaller, less_than(literals_to_sort, needle, *midpoint, embedded_evaluator)); if (is_smaller) { len = half_len; } else { ub = midpoint + 1; len -= half_len + 1; } } std::rotate(ub, i, i + 1); } } return absl::OkStatus(); }; TF_RETURN_IF_ERROR(ShapeUtil::ForEachIndexWithStatus( key_shape, zero_base, key_shape.dimensions(), increment, [&](absl::Span<const int64_t> indices) -> absl::StatusOr<bool> { std::vector<int64_t> limit_indices(indices.begin(), indices.end()); absl::c_for_each(limit_indices, [](int64_t& index) { ++index; }); limit_indices[sort_dim] = sort_dim_elements; std::vector<Literal> literals_to_sort; literals_to_sort.reserve(sort->operand_count()); for (int64_t i = 0; i < sort->operand_count(); ++i) { TF_ASSIGN_OR_RETURN(auto literal_to_sort, GetEvaluatedLiteralFor(sort->operand(i)) .Slice(indices, limit_indices) .Reshape({sort_dim_elements})); literals_to_sort.push_back(std::move(literal_to_sort)); } std::vector<int64_t> indices_to_sort(sort_dim_elements); std::iota(indices_to_sort.begin(), indices_to_sort.end(), 0); TF_RETURN_IF_ERROR(mergesort(literals_to_sort, absl::MakeSpan(indices_to_sort), nullptr, nullptr)); std::vector<int64_t> slice_dimensions(rank, 1); slice_dimensions[sort_dim] = sort_dim_elements; std::vector<int64_t> start_indices(rank, 0); for (int64_t i = 0; i < sort->operand_count(); ++i) { TF_ASSIGN_OR_RETURN( Literal sorted_literal, ExtractFromIndexPositions(literals_to_sort[i], indices_to_sort)); TF_ASSIGN_OR_RETURN(auto sorted_literal_reshaped, sorted_literal.Reshape(slice_dimensions)); TF_RETURN_IF_ERROR(result_literals[i].CopySliceFrom( sorted_literal_reshaped, start_indices, indices, slice_dimensions)); } return true; })); if (sort->operand_count() == 1) { evaluated_[sort] = std::move(result_literals[0]); } else { std::vector<const Literal*> literal_ptrs; absl::c_transform(result_literals, std::back_inserter(literal_ptrs), [](const Literal& literal) { return &literal; }); Literal result_tuple = LiteralUtil::MakeTuple(literal_ptrs); VLOG(3) << "HandleSort result_tuple: " << result_tuple.ToString(); evaluated_[sort] = std::move(result_tuple); } return absl::OkStatus(); } absl::Status HloEvaluator::HandleStochasticConvert( const HloInstruction* stochastic_convert) { const HloInstruction* operand = stochastic_convert->operand(0); const HloInstruction* random = stochastic_convert->operand(1); const Shape& result_shape = stochastic_convert->shape(); TF_RET_CHECK(ShapeUtil::SameDimensions(operand->shape(), random->shape())); TF_RET_CHECK(ShapeUtil::SameDimensions(operand->shape(), result_shape)); const Literal& operand_literal = GetEvaluatedLiteralFor(operand); const Literal& random_literal = GetEvaluatedLiteralFor(random); TF_ASSIGN_OR_RETURN( evaluated_[stochastic_convert], StochasticConvertOp(operand_literal, random_literal, result_shape)); return absl::OkStatus(); } static bool IsScalarAdd(HloComputation* computation) { HloInstruction* instruction = computation->root_instruction(); if (instruction->opcode() == HloOpcode::kAdd && computation->num_parameters() == 2) { const HloInstruction* lhs = instruction->operand(0); const HloInstruction* rhs = instruction->operand(1); return lhs->opcode() == HloOpcode::kParameter && ShapeUtil::IsScalar(lhs->shape()) && rhs->opcode() == HloOpcode::kParameter && ShapeUtil::IsScalar(rhs->shape()) && lhs != rhs; } return false; } static absl::StatusOr<bool> PerformReductionStep( bool is_tuple, absl::Span<const int64_t> input_index, absl::Span<const int64_t> output_index, absl::Span<const Literal* const> input_args, absl::Span<Literal> results, HloComputation* computation, HloEvaluator* embedded_evaluator) { int num_args = results.size(); absl::InlinedVector<Literal, 1> arg_values; arg_values.reserve(num_args); absl::InlinedVector<Literal, 1> accumulators; accumulators.reserve(num_args); for (int64_t i = 0; i < num_args; ++i) { arg_values.emplace_back( ShapeUtil::MakeShape(input_args[i]->shape().element_type(), {})); accumulators.emplace_back( ShapeUtil::MakeShape(input_args[i]->shape().element_type(), {})); arg_values[i].CopyElementFrom(*input_args[i], input_index, {}); accumulators[i].CopyElementFrom(results[i], output_index, {}); } absl::InlinedVector<Literal*, 2> embedded_operands; for (Literal& accumulator : accumulators) { embedded_operands.push_back(&accumulator); } for (Literal& local_input : arg_values) { embedded_operands.push_back(&local_input); } TF_ASSIGN_OR_RETURN( Literal computed_result, embedded_evaluator->Evaluate(*computation, embedded_operands)); embedded_evaluator->ResetVisitStates(); if (is_tuple) { std::vector<Literal> computed_results = computed_result.DecomposeTuple(); for (int64_t i = 0; i < num_args; ++i) { results[i].CopyElementFrom(computed_results[i], {}, output_index); } } else { results[0].CopyElementFrom(computed_result, {}, output_index); } return true; } static absl::StatusOr<bool> GenerateReduceOutputElement( bool is_tuple, bool use_fast_path, absl::Span<const int64_t> output_index, absl::Span<const Literal* const> init_values, absl::Span<const Literal* const> input_args, absl::Span<Literal> results, HloComputation* function, HloEvaluator* embedded_evaluator, absl::Span<const int64_t> arg_dim_steps, absl::Span<const int64_t> arg_dim_counts, absl::Span<const int64_t> result_to_arg_index) { bool use_fast_add = use_fast_path && ShapeUtil::ElementIsFloating(init_values[0]->shape()) && IsScalarAdd(function) && !is_tuple; const Shape& arg_shape = input_args[0]->shape(); absl::Span<const int64_t> arg_dimensions = arg_shape.dimensions(); std::vector<int64_t> base(arg_dimensions.size()); for (int64_t i = 0; i < output_index.size(); ++i) { base[result_to_arg_index[i]] = output_index[i]; } for (int64_t i = 0; i < results.size(); ++i) { results[i].CopyElementFrom(*init_values[i], {}, output_index); } if (use_fast_add) { double computed_result = *init_values[0]->GetAsDouble({}); const Literal* input_arg0 = input_args[0]; const Shape& shape = input_arg0->shape(); absl::Span<const int64_t> minor_to_major = LayoutUtil::MinorToMajor(shape); static constexpr int kChunkSize = 512; int64_t linear_indices[kChunkSize]; int n_linear_indices = 0; auto reduction_step = [&](absl::Span<const int64_t> input_index) -> bool { linear_indices[n_linear_indices++] = IndexUtil::MultidimensionalIndexToLinearIndex(shape, minor_to_major, input_index); if (n_linear_indices == kChunkSize) { computed_result += *input_arg0->GetSumAsDouble( absl::MakeConstSpan(linear_indices, n_linear_indices)); n_linear_indices = 0; } return true; }; ShapeUtil::ForEachIndexNoStatus(arg_shape, base, arg_dim_counts, arg_dim_steps, reduction_step); if (n_linear_indices > 0) { computed_result += *input_arg0->GetSumAsDouble( absl::MakeConstSpan(linear_indices, n_linear_indices)); } TF_RETURN_IF_ERROR(results[0].SetFromDouble(output_index, computed_result)); return true; } TF_RETURN_IF_ERROR(ShapeUtil::ForEachIndexWithStatus( arg_shape, base, arg_dim_counts, arg_dim_steps, [&](absl::Span<const int64_t> input_index) { return PerformReductionStep(is_tuple, input_index, output_index, input_args, results, function, embedded_evaluator); })); return true; } absl::Status HloEvaluator::HandleReduce(const HloInstruction* hlo) { const HloReduceInstruction* reduce = Cast<HloReduceInstruction>(hlo); int64_t num_args = reduce->inputs().size(); absl::Span<const int64_t> dimensions_to_reduce(reduce->dimensions()); HloComputation* function = reduce->to_apply(); absl::InlinedVector<const Shape*, 1> operand_shapes; for (const HloInstruction* operand : reduce->operands()) { operand_shapes.push_back(&operand->shape()); } TF_ASSIGN_OR_RETURN(auto inferred_return_shape, ShapeInference::InferReduceShape( operand_shapes, dimensions_to_reduce, function->ComputeProgramShape())); TF_RET_CHECK(ShapeUtil::CompatibleIgnoringFpPrecision(reduce->shape(), inferred_return_shape)) << "return shape is set to: " << ShapeUtil::HumanString(reduce->shape()) << " but is inferred to be: " << ShapeUtil::HumanString(inferred_return_shape); absl::InlinedVector<const Literal*, 1> input_args(num_args); absl::InlinedVector<const Literal*, 1> init_values(num_args); for (int64_t i = 0; i < num_args; ++i) { input_args[i] = &GetEvaluatedLiteralFor(reduce->inputs()[i]); VLOG(3) << "HandleReduce arg_literal: " << input_args[i]->ToString(); init_values[i] = &GetEvaluatedLiteralFor(reduce->init_values()[i]); VLOG(3) << "HandleReduce init_literal: " << init_values[i]->ToString(); TF_RET_CHECK(ShapeUtil::IsScalar(init_values[i]->shape())); } const Shape& arg_shape = input_args[0]->shape(); const Shape& out_shape = inferred_return_shape; bool is_tuple = out_shape.IsTuple(); const Shape& output_shape = inferred_return_shape.IsTuple() ? inferred_return_shape.tuple_shapes(0) : inferred_return_shape; absl::Span<const int64_t> arg_dimensions = arg_shape.dimensions(); std::vector<int64_t> arg_dim_steps(arg_dimensions.size()); std::vector<int64_t> arg_dim_counts(arg_dimensions.size()); for (const int64_t dim : dimensions_to_reduce) { arg_dim_steps[dim] = 1; arg_dim_counts[dim] = arg_dimensions[dim]; } std::vector<int64_t> result_to_arg_index; for (int64_t i = 0; i < arg_dimensions.size(); ++i) { if (arg_dim_steps[i] == 0) { result_to_arg_index.push_back(i); } } const int num_threads = ShapeUtil::GetForEachIndexParallelThreadCount() + 1; std::vector<std::unique_ptr<HloEvaluator>> embedded_evaluators; embedded_evaluators.reserve(num_threads); for (int i = 0; i < num_threads; ++i) { embedded_evaluators.push_back(CreateEmbedded(max_loop_iterations_)); } absl::InlinedVector<Literal, 1> results(num_args); for (int64_t i = 0; i < num_args; ++i) { results[i] = Literal(is_tuple ? out_shape.tuple_shapes(i) : out_shape); } TF_RETURN_IF_ERROR(ShapeUtil::ForEachIndexParallelWithStatus( output_shape, [&](absl::Span<const int64_t> output_index, int thread_id) { return GenerateReduceOutputElement( is_tuple, use_fast_path_reduce_, output_index, init_values, input_args, absl::Span<Literal>(results), function, embedded_evaluators[thread_id + 1].get(), arg_dim_steps, arg_dim_counts, result_to_arg_index); })); if (is_tuple) { Literal tuple_result(inferred_return_shape); for (int64_t i = 0; i < num_args; ++i) { TF_CHECK_OK(tuple_result.MoveFrom(std::move(results[i]), {i})); } evaluated_[reduce] = std::move(tuple_result); } else { CHECK_EQ(results.size(), 1); evaluated_[reduce] = std::move(results[0]); } if (!ShapeUtil::Compatible(reduce->shape(), inferred_return_shape)) { TF_ASSIGN_OR_RETURN(evaluated_[reduce], evaluated_[reduce].ConvertToShape(reduce->shape())); } return absl::OkStatus(); } absl::Status HloEvaluator::HandleReduceWindow(const HloInstruction* hlo) { auto* reduce_window = Cast<HloReduceWindowInstruction>(hlo); const Window& window = reduce_window->window(); HloComputation* function = reduce_window->to_apply(); TF_ASSIGN_OR_RETURN(auto inferred_return_shape, ShapeInference::InferReduceWindowShape( reduce_window->input_shapes(), reduce_window->init_value_shapes(), window, function->ComputeProgramShape())); TF_RET_CHECK( ShapeUtil::Compatible(reduce_window->shape(), inferred_return_shape)) << "return shape is set to: " << ShapeUtil::HumanStringWithLayout(reduce_window->shape()) << " but is inferred to be: " << ShapeUtil::HumanStringWithLayout(inferred_return_shape); absl::InlinedVector<const Literal*, 2> input_literal_vec, init_literal_vec; auto input_arrays = reduce_window->inputs(); auto init_values = reduce_window->init_values(); int64_t num_args = input_arrays.size(); for (int i = 0; i < num_args; ++i) { const Literal& input_literal = GetEvaluatedLiteralFor(input_arrays[i]); VLOG(3) << "HandleReduceWindow arg_literal: " << input_literal.ToString(); input_literal_vec.push_back(&input_literal); const Literal& init_literal = GetEvaluatedLiteralFor(init_values[i]); VLOG(3) << "HandleReduceWindow init_literal: " << init_literal.ToString(); TF_RET_CHECK(ShapeUtil::IsScalar(init_literal.shape())); init_literal_vec.push_back(&init_literal); } absl::InlinedVector<int64_t, 2> window_dimension_sizes; for (const auto& window_dimension : window.dimensions()) { window_dimension_sizes.push_back(window_dimension.size()); } const Shape window_shape = ShapeUtil::MakeShape( input_arrays[0]->shape().element_type(), window_dimension_sizes); const int num_threads = ShapeUtil::GetForEachIndexParallelThreadCount() + 1; std::vector<std::unique_ptr<HloEvaluator>> embedded_evaluators; embedded_evaluators.reserve(num_threads); for (int i = 0; i < num_threads; ++i) { embedded_evaluators.push_back(CreateEmbedded(max_loop_iterations_)); } auto evaluate_impl = [&init_literal_vec, &window_shape, &window, &input_literal_vec, &embedded_evaluators, function, &inferred_return_shape]( absl::Span<const int64_t> output_index, int thread_id) -> absl::InlinedVector<Literal, 2> { const int embedded_evaluator_index = thread_id + 1; CHECK_GE(embedded_evaluator_index, 0); CHECK_LT(embedded_evaluator_index, embedded_evaluators.size()); HloEvaluator& embedded_evaluator = *embedded_evaluators[embedded_evaluator_index]; absl::InlinedVector<Literal, 2> computed_result; computed_result.reserve(init_literal_vec.size()); for (const auto* init : init_literal_vec) { computed_result.push_back(init->Clone()); } IterateThroughWindow( window_shape, window, input_literal_vec[0]->shape(), output_index, [&](absl::Span<const int64_t> operand_index) -> void { absl::InlinedVector<const Literal*, 2> args; for (auto& curr_result_val : computed_result) { VLOG(2) << "Pushing:" << curr_result_val.ToString() << "\n"; args.push_back(&curr_result_val); } absl::InlinedVector<Literal, 2> curr_val_literal_vec; curr_val_literal_vec.reserve(input_literal_vec.size()); for (const auto* input_literal : input_literal_vec) { curr_val_literal_vec.push_back(Literal(ShapeUtil::MakeShape( input_literal->shape().element_type(), {}))); curr_val_literal_vec.back().CopyElementFrom(*input_literal, operand_index, {}); VLOG(2) << "Pushing:" << curr_val_literal_vec.back().ToString() << "\n"; args.push_back(&curr_val_literal_vec.back()); } computed_result[0] = embedded_evaluator.Evaluate(*function, args).value(); VLOG(2) << "Computed result:" << computed_result[0].ToString() << "\n"; embedded_evaluator.ResetVisitStates(); if (inferred_return_shape.IsTuple()) { auto decomposed = computed_result[0].DecomposeTuple(); computed_result.clear(); computed_result.reserve(decomposed.size()); for (int i = 0; i < decomposed.size(); ++i) { computed_result.push_back(std::move(decomposed[i])); } } }); VLOG(2) << "Final result size:" << computed_result.size() << "\n"; for (const auto& res : computed_result) { VLOG(2) << res.ToString() << "\n"; } return computed_result; }; Literal result(inferred_return_shape); if (inferred_return_shape.IsTuple()) { absl::InlinedVector<Literal, 1> results(num_args); for (int64_t i = 0; i < num_args; ++i) { results[i] = Literal(inferred_return_shape.tuple_shapes(i)); } ShapeUtil::ForEachIndexParallel( inferred_return_shape.tuple_shapes(0), [&results, &evaluate_impl](absl::Span<const int64_t> output_index, int thread_id) -> bool { absl::InlinedVector<Literal, 2> computed_result_vec = evaluate_impl(output_index, thread_id); for (int i = 0; i < computed_result_vec.size(); ++i) { results[i].CopyElementFrom(computed_result_vec[i], {}, output_index); } return true; }); result = Literal::MoveIntoTuple(absl::MakeSpan(results)); VLOG(2) << "Final result is:" << result.ToString() << "\n"; } else { TF_RETURN_IF_ERROR(Apply<PopulateParallelImpl>( result, [&evaluate_impl](absl::Span<const int64_t> output_index, int thread_id) { return std::move(evaluate_impl(output_index, thread_id)[0]); })); } VLOG(2) << "Final result is:" << result.ToString() << "\n"; evaluated_[reduce_window] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleMap(const HloInstruction* map) { auto operands = map->operands(); const HloComputation* computation = map->to_apply(); Literal result(map->shape()); HloEvaluator embedded_evaluator(max_loop_iterations_); TF_RETURN_IF_ERROR( Apply<PopulateImpl>(result, [&](absl::Span<const int64_t> multi_index) { std::vector<Literal> arg_literals; arg_literals.reserve(operands.size()); for (auto operand : operands) { const Literal& arg_literal = GetEvaluatedLiteralFor(operand); arg_literals.push_back( LiteralUtil::GetScalarLiteral(arg_literal, multi_index)); } Literal computed_result = embedded_evaluator.Evaluate(*computation, arg_literals).value(); embedded_evaluator.ResetVisitStates(); return computed_result; })); evaluated_[map] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleCustomCall(const HloInstruction* custom_call) { if (!custom_call_handler_) { return DefaultAction(custom_call); } std::vector<const Literal*> operands; operands.reserve(custom_call->operand_count()); for (const HloInstruction* operand : custom_call->operands()) { operands.push_back(&GetEvaluatedLiteralFor(operand)); } TF_ASSIGN_OR_RETURN( auto output, custom_call_handler_(custom_call, absl::MakeSpan(operands))); evaluated_[custom_call] = std::move(output); return absl::OkStatus(); } absl::Status HloEvaluator::Preprocess(const HloInstruction* hlo) { VLOG(3) << "About to visit HLO: " << hlo->ToString(); if (!enable_partial_evaluation_) { for (const HloInstruction* operand : hlo->operands()) { if (!IsAlreadyEvaluated(operand) || !GetEvaluatedLiteralFor(operand).IsKnown()) { return tsl::errors::FailedPrecondition( "Failed to evaluate instruction since its operands are unknown " "or undetermined and partial evaluation is not enabled."); } } } return ShapeUtil::ValidateShape(hlo->shape()); } absl::Status HloEvaluator::Postprocess(const HloInstruction* hlo) { VLOG(3) << "Finished visiting " << hlo->ToString() << "; evaluated value is: " << GetEvaluatedLiteralFor(hlo).ToString(); auto evaluated_shape = GetEvaluatedLiteralFor(hlo).shape(); xla::Shape hlo_shape = hlo->shape(); if (hlo_shape.IsArray() && !hlo_shape.has_layout()) { *hlo_shape.mutable_layout() = LayoutUtil::GetDefaultLayoutForShape(hlo_shape); } if (evaluated_shape.has_layout() && hlo_shape.has_layout() && !Layout::Equal().MinorToMajorOnly()(evaluated_shape.layout(), hlo_shape.layout())) { evaluated_.at(hlo) = evaluated_.at(hlo).Relayout(hlo_shape); } return absl::OkStatus(); } namespace { template <typename T> std::unique_ptr<Array2D<T>> MatmulArray2DImpl( const Array2D<T>& lhs, const Array2D<T>& rhs, const std::function<void(const void* run_options_ptr, T* out, T* lhs, T* rhs, int64_t m, int64_t n, int64_t k, int32_t transpose_lhs, int32_t transpose_rhs)>& impl_fn) { CHECK_EQ(lhs.width(), rhs.height()); int m = lhs.height(); int n = rhs.width(); int k = lhs.width(); auto result = std::make_unique<Array2D<T>>(m, n); impl_fn( nullptr, result->data(), rhs.data(), lhs.data(), n, m, k, 0, 0); return result; } } std::unique_ptr<Array2D<Eigen::half>> HloEvaluator::MatmulArray2D( const Array2D<Eigen::half>& lhs, const Array2D<Eigen::half>& rhs) { return MatmulArray2DImpl<Eigen::half>( lhs, rhs, __xla_cpu_runtime_EigenSingleThreadedMatMulF16); } std::unique_ptr<Array2D<float>> HloEvaluator::MatmulArray2D( const Array2D<float>& lhs, const Array2D<float>& rhs) { return MatmulArray2DImpl<float>( lhs, rhs, __xla_cpu_runtime_EigenSingleThreadedMatMulF32); } std::unique_ptr<Array2D<double>> HloEvaluator::MatmulArray2D( const Array2D<double>& lhs, const Array2D<double>& rhs) { return MatmulArray2DImpl<double>( lhs, rhs, __xla_cpu_runtime_EigenSingleThreadedMatMulF64); } std::unique_ptr<Array2D<std::complex<float>>> HloEvaluator::MatmulArray2D( const Array2D<std::complex<float>>& lhs, const Array2D<std::complex<float>>& rhs) { return MatmulArray2DImpl<std::complex<float>>( lhs, rhs, __xla_cpu_runtime_EigenSingleThreadedMatMulC64); } std::unique_ptr<Array2D<std::complex<double>>> HloEvaluator::MatmulArray2D( const Array2D<std::complex<double>>& lhs, const Array2D<std::complex<double>>& rhs) { return MatmulArray2DImpl<std::complex<double>>( lhs, rhs, __xla_cpu_runtime_EigenSingleThreadedMatMulC128); } std::unique_ptr<Array2D<int32_t>> HloEvaluator::MatmulArray2D( const Array2D<int32_t>& lhs, const Array2D<int32_t>& rhs) { return MatmulArray2DImpl<int32_t>( lhs, rhs, __xla_cpu_runtime_EigenSingleThreadedMatMulS32); } std::unique_ptr<Array2D<uint8_t>> HloEvaluator::MatmulArray2D( const Array2D<uint8_t>& lhs, const Array2D<uint8_t>& rhs) { return MatmulArray2DImpl<uint8_t>( lhs, rhs, __xla_cpu_runtime_EigenSingleThreadedMatMulU8); } std::unique_ptr<Array2D<float>> Array2DF8E5M2ToF32( const Array2D<tsl::float8_e5m2>& input) { auto result = std::make_unique<Array2D<float>>(input.height(), input.width()); for (int64_t rowno = 0; rowno < input.height(); ++rowno) { for (int64_t colno = 0; colno < input.width(); ++colno) { (*result)(rowno, colno) = static_cast<float>(input(rowno, colno)); } } return result; } std::unique_ptr<Array2D<float>> Array2DF8E4M3FNToF32( const Array2D<tsl::float8_e4m3fn>& input) { auto result = std::make_unique<Array2D<float>>(input.height(), input.width()); for (int64_t rowno = 0; rowno < input.height(); ++rowno) { for (int64_t colno = 0; colno < input.width(); ++colno) { (*result)(rowno, colno) = static_cast<float>(input(rowno, colno)); } } return result; } std::unique_ptr<Array2D<tsl::float8_e5m2>> Array2DF32ToF8E5M2( const Array2D<float>& input) { auto result = std::make_unique<Array2D<tsl::float8_e5m2>>(input.height(), input.width()); for (int64_t rowno = 0; rowno < input.height(); ++rowno) { for (int64_t colno = 0; colno < input.width(); ++colno) { (*result)(rowno, colno) = static_cast<tsl::float8_e5m2>(input(rowno, colno)); } } return result; } std::unique_ptr<Array2D<tsl::float8_e4m3fn>> Array2DF32ToF8E4M3FN( const Array2D<float>& input) { auto result = std::make_unique<Array2D<tsl::float8_e4m3fn>>(input.height(), input.width()); for (int64_t rowno = 0; rowno < input.height(); ++rowno) { for (int64_t colno = 0; colno < input.width(); ++colno) { (*result)(rowno, colno) = static_cast<tsl::float8_e4m3fn>(input(rowno, colno)); } } return result; } static bool promote_f8_to_f32 = true; std::unique_ptr<Array2D<tsl::float8_e5m2>> HloEvaluator::MatmulArray2D( const Array2D<tsl::float8_e5m2>& lhs, const Array2D<tsl::float8_e5m2>& rhs) { if (promote_f8_to_f32) { auto lhs_float = Array2DF8E5M2ToF32(lhs); auto rhs_float = Array2DF8E5M2ToF32(rhs); auto result = MatmulArray2D(*lhs_float, *rhs_float); return Array2DF32ToF8E5M2(*result); } else { return MatmulArray2DImpl<tsl::float8_e5m2>( lhs, rhs, __xla_cpu_runtime_EigenSingleThreadedMatMulF8E5M2); } } std::unique_ptr<Array2D<tsl::float8_e4m3fn>> HloEvaluator::MatmulArray2D( const Array2D<tsl::float8_e4m3fn>& lhs, const Array2D<tsl::float8_e4m3fn>& rhs) { if (promote_f8_to_f32) { auto lhs_float = Array2DF8E4M3FNToF32(lhs); auto rhs_float = Array2DF8E4M3FNToF32(rhs); auto result = MatmulArray2D(*lhs_float, *rhs_float); return Array2DF32ToF8E4M3FN(*result); } else { return MatmulArray2DImpl<tsl::float8_e4m3fn>( lhs, rhs, __xla_cpu_runtime_EigenSingleThreadedMatMulF8E4M3FN); } } }
#include "xla/hlo/evaluator/hlo_evaluator.h" #include <array> #include <complex> #include <cstdint> #include <initializer_list> #include <limits> #include <memory> #include <numeric> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/internal/endian.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/array4d.h" #include "xla/client/xla_builder.h" #include "xla/comparison_util.h" #include "xla/debug_options_flags.h" #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/permutation_util.h" #include "xla/primitive_util.h" #include "xla/service/call_graph.h" #include "xla/service/dynamic_dimension_inference.h" #include "xla/service/hlo_element_type_converter.h" #include "xla/service/hlo_module_config.h" #include "xla/service/shape_inference.h" #include "xla/service/tuple_points_to_analysis.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_utils.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace xla { namespace { static std::array<bool, 2> use_bf16_params{true, false}; class HloEvaluatorTest : public HloTestBase { public: HloEvaluatorTest() : use_bfloat16_(false) { InitializeFftData(); } absl::StatusOr<Literal> Evaluate( absl::Span<const Literal* const> arg_literals = {}) { if (use_bfloat16_) { HloElementTypeConverter(F32, BF16).Run(m_.get()).value(); } return evaluator_.Evaluate(*m_->entry_computation(), arg_literals); } Literal EvaluateWithModule( HloModule* module, absl::Span<const Literal* const> arg_literals = {}) { if (use_bfloat16_) { HloElementTypeConverter(F32, BF16).Run(m_.get()).value(); } return evaluator_.Evaluate(*module->entry_computation(), arg_literals) .value(); } void TestUnaryOp(HloOpcode opcode, Literal expected, Literal input, float aabs = 0) { HloComputation::Builder b(TestName()); auto c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(input))); b.AddInstruction(HloInstruction::CreateUnary(expected.shape(), opcode, c1)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto element_type = expected.shape().element_type(); if (element_type == F32 || element_type == F64) { ErrorSpec error(aabs); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, error)); } else { EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } } void TestBinaryOp(HloOpcode opcode, Literal expected, Literal lhs, Literal rhs) { HloComputation::Builder b(TestName()); auto c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs))); auto c2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs))); b.AddInstruction( HloInstruction::CreateBinary(expected.shape(), opcode, c1, c2)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } void TestTernaryOp(HloOpcode opcode, Literal expected, Literal src0, Literal src1, Literal src2) { HloComputation::Builder b(TestName()); auto operand0 = b.AddInstruction(HloInstruction::CreateConstant(std::move(src0))); auto operand1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(src1))); auto operand2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(src2))); b.AddInstruction(HloInstruction::CreateTernary( expected.shape(), opcode, operand0, operand1, operand2)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } void TestEvaluateInstruction(HloInstruction* instruction, const Literal& expected) { TF_ASSERT_OK_AND_ASSIGN(Literal result, evaluator_.Evaluate(instruction)); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } void TestEvaluationFailure(HloInstruction* instruction) { absl::StatusOr<Literal> result = evaluator_.Evaluate(instruction); EXPECT_TRUE(!result.ok()); } void TestRecursivelyEvaluateInstruction(HloInstruction* instruction, const Literal& expected) { TF_ASSERT_OK_AND_ASSIGN( Literal result, evaluator_.Evaluate( instruction, {}, true)); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } void TestRecursiveEvaluationFailure(HloInstruction* instruction) { absl::StatusOr<Literal> result = evaluator_.Evaluate(instruction, {}, true); EXPECT_TRUE(!result.ok()); } std::unique_ptr<HloComputation> MaxComputationScalarF32() { HloComputation::Builder max_computation("max"); Shape scalar_shape = ShapeUtil::MakeShape(F32, {}); auto param_lhs = max_computation.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "lhs")); auto param_rhs = max_computation.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "rhs")); max_computation.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kMaximum, param_lhs, param_rhs)); return max_computation.Build(); } void ReduceWindowMaxIotaTest(int window_size, int padding, int stride, int window_dilation, int base_dilation, const Literal& expected) { HloComputation::Builder b(TestName()); auto arg_array = std::make_unique<Array2D<float>>(4, 4); arg_array->FillIota(0); auto arg_literal = LiteralUtil::CreateR2FromArray2D<float>(*arg_array); HloInstruction* arg_instruction = b.AddInstruction( HloInstruction::CreateConstant(std::move(arg_literal))); auto init_value = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.f))); auto max_func = m_->AddEmbeddedComputation(MaxComputationScalarF32()); Window window; WindowDimension dim; dim.set_size(window_size); dim.set_stride(stride); dim.set_padding_low(padding); dim.set_padding_high(padding); dim.set_window_dilation(window_dilation); dim.set_base_dilation(base_dilation); *window.add_dimensions() = dim; *window.add_dimensions() = dim; int dim0 = expected.shape().dimensions(0); int dim1 = expected.shape().dimensions(1); Shape shape = ShapeUtil::MakeShape(F32, {dim0, dim1}); b.AddInstruction(HloInstruction::CreateReduceWindow( shape, arg_instruction, init_value, window, max_func)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } protected: explicit HloEvaluatorTest(bool use_bfloat16) : use_bfloat16_(use_bfloat16) { InitializeFftData(); } void InitializeFftData(); HloEvaluator evaluator_; const bool use_bfloat16_; std::unique_ptr<HloModule> m_ = CreateNewVerifiedModule(); ErrorSpec fft_error_ = ErrorSpec(1e-4, 1e-5); Literal fft_c64x2x4x8_; Literal fft_c64x2x4x8_1d_; Literal fft_c64x2x4x8_2d_; Literal fft_c64x2x4x8_3d_; }; class HloEvaluatorBf16Test : public ::testing::WithParamInterface<bool>, public HloEvaluatorTest { protected: HloEvaluatorBf16Test() : HloEvaluatorTest(GetParam()) {} }; INSTANTIATE_TEST_SUITE_P(HloEvaluatorTest_Instantiation, HloEvaluatorBf16Test, ::testing::ValuesIn(use_bf16_params)); TEST_P(HloEvaluatorBf16Test, DoesClamp) { auto low = LiteralUtil::CreateR2<float>({{0.f, 2.f}, {2.f, 4.f}}); auto value = LiteralUtil::CreateR2<float>({{0.f, 5.f}, {0.f, 4.f}}); auto high = LiteralUtil::CreateR2<float>({{2.f, 4.f}, {4.f, 4.f}}); Shape shape = low.shape(); HloComputation::Builder b(TestName()); auto c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(low))); auto c2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(value))); auto c3 = b.AddInstruction(HloInstruction::CreateConstant(std::move(high))); b.AddInstruction( HloInstruction::CreateTernary(shape, HloOpcode::kClamp, c1, c2, c3)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<float>({{0, 4}, {2, 4}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DoesClampInt64) { auto ones = [](int bits) { return (int64_t{1} << bits) - 1; }; auto low = LiteralUtil::CreateR2<int64_t>({{0, ones(54)}, {ones(54), ones(58)}}); auto value = LiteralUtil::CreateR2<int64_t>({{0, ones(56)}, {0, ones(58)}}); auto high = LiteralUtil::CreateR2<int64_t>( {{ones(54), ones(55)}, {ones(56), ones(58)}}); Shape shape = low.shape(); HloComputation::Builder b(TestName()); auto c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(low))); auto c2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(value))); auto c3 = b.AddInstruction(HloInstruction::CreateConstant(std::move(high))); b.AddInstruction( HloInstruction::CreateTernary(shape, HloOpcode::kClamp, c1, c2, c3)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<int64_t>({{0, ones(55)}, {ones(54), ones(58)}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DISABLED_DoesClampSpecialBroadcast) { auto low = LiteralUtil::CreateR0<float>(0.f); auto value = LiteralUtil::CreateR2<float>({{-1.f, 0.f}, {1.f, 2.f}}); auto high = LiteralUtil::CreateR0<float>(1.f); Shape shape = value.shape(); HloComputation::Builder b(TestName()); auto c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(low))); auto c2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(value))); auto c3 = b.AddInstruction(HloInstruction::CreateConstant(std::move(high))); b.AddInstruction( HloInstruction::CreateTernary(shape, HloOpcode::kClamp, c1, c2, c3)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<float>({{0, 0}, {1, 1}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DoesSelect) { auto pred = LiteralUtil::CreateR2<bool>({{true, false}, {false, true}}); auto on_true = LiteralUtil::CreateR2<float>({{2.f, 4.f}, {4.f, 4.f}}); auto on_false = LiteralUtil::CreateR2<float>({{0.f, 5.f}, {0.f, 4.f}}); Shape shape = on_true.shape(); HloComputation::Builder b(TestName()); auto c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(pred))); auto c2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(on_true))); auto c3 = b.AddInstruction(HloInstruction::CreateConstant(std::move(on_false))); b.AddInstruction( HloInstruction::CreateTernary(shape, HloOpcode::kSelect, c1, c2, c3)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({})); auto expected = LiteralUtil::CreateR2<float>({{2, 5}, {0, 4}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, DoesAdd) { auto lhs = LiteralUtil::CreateR2<int64_t>({{1, 0}, {-100, 4}}); auto rhs = LiteralUtil::CreateR2<int64_t>({{2, 4}, {4, 4}}); auto expected = LiteralUtil::CreateR2<int64_t>({{3, 4}, {-96, 8}}); TestBinaryOp(HloOpcode::kAdd, std::move(expected), std::move(lhs), std::move(rhs)); } TEST_P(HloEvaluatorBf16Test, DoesAnd) { auto lhs = LiteralUtil::CreateR2<int64_t>({{1, 0}, {-100, 4}}); auto rhs = LiteralUtil::CreateR2<int64_t>({{2, 4}, {4, 4}}); auto expected = LiteralUtil::CreateR2<int64_t>({{0, 0}, {4, 4}}); TestBinaryOp(HloOpcode::kAnd, std::move(expected), std::move(lhs), std::move(rhs)); } TEST_F(HloEvaluatorTest, DoesOr) { auto lhs = LiteralUtil::CreateR2<int64_t>({{1, 0}, {-100, 4}}); auto rhs = LiteralUtil::CreateR2<int64_t>({{2, 4}, {4, 4}}); auto expected = LiteralUtil::CreateR2<int64_t>({{3, 4}, {-100, 4}}); TestBinaryOp(HloOpcode::kOr, std::move(expected), std::move(lhs), std::move(rhs)); } TEST_F(HloEvaluatorTest, DoesXor) { auto lhs = LiteralUtil::CreateR2<int64_t>({{1, 0}, {-100, 4}}); auto rhs = LiteralUtil::CreateR2<int64_t>({{2, 4}, {4, 4}}); auto expected = LiteralUtil::CreateR2<int64_t>({{3, 4}, {-104, 0}}); TestBinaryOp(HloOpcode::kXor, std::move(expected), std::move(lhs), std::move(rhs)); } TEST_F(HloEvaluatorTest, DoesMultiply) { auto lhs = LiteralUtil::CreateR2<int32_t>({{-1, 0}, {-100, 4}}); auto rhs = LiteralUtil::CreateR2<int32_t>( {{std::numeric_limits<int32_t>::min(), 4}, {4, 4}}); auto expected = LiteralUtil::CreateR2<int32_t>( {{std::numeric_limits<int32_t>::min(), 0}, {-400, 16}}); TestBinaryOp(HloOpcode::kMultiply, std::move(expected), std::move(lhs), std::move(rhs)); } TEST_F(HloEvaluatorTest, DoesDivideInt64) { auto lhs = LiteralUtil::CreateR2<int64_t>({{1, 0}, {-100, 4}}); auto rhs = LiteralUtil::CreateR2<int64_t>({{2, 4}, {4, 4}}); auto expected = LiteralUtil::CreateR2<int64_t>({{0, 0}, {-25, 1}}); TestBinaryOp(HloOpcode::kDivide, std::move(expected), std::move(lhs), std::move(rhs)); } TEST_F(HloEvaluatorTest, DoesClampS64) { auto low = LiteralUtil::CreateR1<int64_t>( {-8616761059752331528LL, 6780561065411491190LL, -8616761059752331528LL}); auto value = LiteralUtil::CreateR1<int64_t>( {-6780561065411491190LL, 6780561065411491180LL, 4241131823772864090LL}); auto high = LiteralUtil::CreateR1<int64_t>( {-6780561065411491180LL, 8616761059752331528LL, 3832151243857508051LL}); auto expected = LiteralUtil::CreateR1<int64_t>( {-6780561065411491190LL, 6780561065411491190LL, 3832151243857508051LL}); TestTernaryOp(HloOpcode::kClamp, std::move(expected), std::move(low), std::move(value), std::move(high)); } TEST_P(HloEvaluatorBf16Test, DoesDivideDouble) { auto lhs = LiteralUtil::CreateR2<double>({{1.0, 0.0}, {-100.0, 4.0}}); auto rhs = LiteralUtil::CreateR2<double>({{2.2, 4.0}, {4.0, 4.0}}); auto expected = LiteralUtil::CreateR2<double>({{0.45454545454545453, 0}, {-25, 1}}); TestBinaryOp(HloOpcode::kDivide, std::move(expected), std::move(lhs), std::move(rhs)); } TEST_F(HloEvaluatorTest, DoesAbsR2) { auto operand = LiteralUtil::CreateR2<int64_t>({{1, -20}, {-100, 4}}); auto expected = LiteralUtil::CreateR2<int64_t>({{1, 20}, {100, 4}}); TestUnaryOp(HloOpcode::kAbs, std::move(expected), std::move(operand)); } TEST_P(HloEvaluatorBf16Test, DoesAbsR0) { auto operand = LiteralUtil::CreateR0<float>(-1.0f); auto expected = LiteralUtil::CreateR0<float>(1.0f); TestUnaryOp(HloOpcode::kAbs, std::move(expected), std::move(operand)); } TEST_P(HloEvaluatorBf16Test, DoesAbsR1WithZeroSize) { auto operand = LiteralUtil::CreateR1<float>({}); auto expected = LiteralUtil::CreateR1<float>({}); TestUnaryOp(HloOpcode::kAbs, std::move(expected), std::move(operand)); } TEST_F(HloEvaluatorTest, DoesAbsC128) { auto x = LiteralUtil::CreateR0<complex128>({1, 2}); auto expected_real = LiteralUtil::CreateR0<double>(2.23607); TestUnaryOp(HloOpcode::kAbs, std::move(expected_real), std::move(x), 3e-06); } TEST_F(HloEvaluatorTest, DoesNegateR2) { auto operand = LiteralUtil::CreateR2<int32_t>( {{0, std::numeric_limits<int32_t>::min()}, {-1, 4}}); auto expected = LiteralUtil::CreateR2<int32_t>( {{0, std::numeric_limits<int>::min()}, {1, -4}}); TestUnaryOp(HloOpcode::kNegate, std::move(expected), std::move(operand)); } TEST_P(HloEvaluatorBf16Test, DoesCosR2) { auto operand = LiteralUtil::CreateR2<float>({{0, M_PI}, {-M_PI, 2 * M_PI}}); auto expected = LiteralUtil::CreateR2<float>({{1, -1}, {-1, 1}}); TestUnaryOp(HloOpcode::kCos, std::move(expected), std::move(operand), use_bfloat16_ ? 0.031250 : 9.5367431640625E-7); } TEST_P(HloEvaluatorBf16Test, DoesSinR2) { auto operand = LiteralUtil::CreateR2<float>({{0, M_PI}, {-M_PI, 2 * M_PI}}); auto expected = LiteralUtil::CreateR2<float>({{0, 0}, {0, 0}}); TestUnaryOp(HloOpcode::kSin, std::move(expected), std::move(operand), use_bfloat16_ ? 0.031250 : 9.5367431640625E-7); } TEST_P(HloEvaluatorBf16Test, DoesTanR2) { auto operand = LiteralUtil::CreateR2<float>({{0, M_PI}, {-M_PI, 2 * M_PI}}); auto expected = LiteralUtil::CreateR2<float>({{0, 0}, {0, 0}}); TestUnaryOp(HloOpcode::kTan, std::move(expected), std::move(operand), use_bfloat16_ ? 0.031250 : 9.5367431640625E-7); } TEST_F(HloEvaluatorTest, DoesNotR2) { auto operand = LiteralUtil::CreateR2<int32_t>({{0, std::numeric_limits<int>::min()}, {-1, std::numeric_limits<int>::max()}}); auto expected = LiteralUtil::CreateR2<int32_t>({{-1, std::numeric_limits<int>::max()}, {0, std::numeric_limits<int>::min()}}); TestUnaryOp(HloOpcode::kNot, std::move(expected), std::move(operand)); } TEST_F(HloEvaluatorTest, DoesRealC128) { auto x = LiteralUtil::CreateR1<complex128>({{1, 0}, {-100, 4}}); auto expected_real = LiteralUtil::CreateR1<double>({1, -100}); TestUnaryOp(HloOpcode::kReal, std::move(expected_real), std::move(x)); } TEST_F(HloEvaluatorTest, DoesImagC128) { auto x = LiteralUtil::CreateR1<complex128>({{1, 0}, {-100, 4}}); auto expected_imag = LiteralUtil::CreateR1<double>({0, 4}); TestUnaryOp(HloOpcode::kImag, std::move(expected_imag), std::move(x)); } TEST_P(HloEvaluatorBf16Test, DoesImagF32AndBf16) { auto x = LiteralUtil::CreateR1<float>({1, -100}); auto expected_imag = LiteralUtil::CreateR1<float>({0, 0}); TestUnaryOp(HloOpcode::kImag, std::move(expected_imag), std::move(x)); } TEST_F(HloEvaluatorTest, DoesImagF64) { auto x = LiteralUtil::CreateR1<double>({1, -100}); auto expected_imag = LiteralUtil::CreateR1<double>({0, 0}); TestUnaryOp(HloOpcode::kImag, std::move(expected_imag), std::move(x)); } TEST_F(HloEvaluatorTest, DoesTraverseInstructions) { auto lhs = LiteralUtil::CreateR2<int64_t>({{1, 0}, {-100, 4}}); auto rhs = LiteralUtil::CreateR2<int64_t>({{2, 4}, {4, 4}}); auto rhs2 = LiteralUtil::CreateR2<int64_t>({{1, -20}, {-100, 4}}); std::vector<const Literal*> args = {&lhs, &rhs, &rhs2}; Shape shape = ShapeUtil::MakeShape(S64, {2, 2}); HloComputation::Builder b(TestName()); auto param_lhs = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "lhs")); auto param_rhs = b.AddInstruction(HloInstruction::CreateParameter(1, shape, "rhs")); auto lhs_instruction = b.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, param_lhs, param_rhs)); auto param_rhs2 = b.AddInstruction(HloInstruction::CreateParameter(2, shape, "rhs2")); b.AddInstruction(HloInstruction::CreateBinary(shape, HloOpcode::kAdd, lhs_instruction, param_rhs2)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate(args)); auto expected = LiteralUtil::CreateR2<int64_t>({{4, -16}, {-196, 12}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, DoesReshape) { HloComputation::Builder b(TestName()); const int64_t dimensions[] = {11, 8, 7, 5, 9}; TF_ASSERT_OK_AND_ASSIGN(auto literal, LiteralUtil::CreateRandomLiteral<F32>( ShapeUtil::MakeShape(F32, dimensions), 0.0, 1.0)); auto literal_clone = literal.Clone(); HloInstruction* literal_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(literal))); Shape shape = ShapeUtil::MakeShape(F32, {8, 7, 11, 9, 5}); const int64_t permutation[] = {1, 2, 0, 4, 3}; b.AddInstruction( HloInstruction::CreateTranspose(shape, literal_instruction, permutation)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({})); using NativeT = typename primitive_util::PrimitiveTypeToNative<F32>::type; result.EachCell<NativeT>( [&](absl::Span<const int64_t> indices, NativeT value) { std::vector<int64_t> rindexes = PermuteInverse(indices, permutation); EXPECT_NEAR(value, literal_clone.Get<NativeT>(rindexes), 0.031250); }); } TEST_F(HloEvaluatorTest, DoesBroadcast) { HloComputation::Builder b(TestName()); auto input_literal = LiteralUtil::CreateR2<int32_t>({{1, 2}, {3, 4}, {5, 6}}); auto output_literal = LiteralUtil::CreateR3<int32_t>( {{{1, 2}, {3, 4}, {5, 6}}, {{1, 2}, {3, 4}, {5, 6}}}); HloInstruction* literal_instruction = b.AddInstruction( HloInstruction::CreateConstant(std::move(input_literal))); b.AddInstruction(HloInstruction::CreateBroadcast( output_literal.shape(), literal_instruction, {1, 2})); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({})); EXPECT_TRUE(LiteralTestUtil::Equal(result, output_literal)); } TEST_F(HloEvaluatorTest, DoesBroadcastScalar) { HloComputation::Builder b(TestName()); auto input_literal = LiteralUtil::CreateR0<int32_t>(111); auto output_literal = LiteralUtil::CreateR2<int32_t>( {{111, 111}, {111, 111}, {111, 111}, {111, 111}, {111, 111}, {111, 111}}); HloInstruction* literal_instruction = b.AddInstruction( HloInstruction::CreateConstant(std::move(input_literal))); b.AddInstruction(HloInstruction::CreateBroadcast( output_literal.shape(), literal_instruction, {})); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({})); EXPECT_TRUE(LiteralTestUtil::Equal(result, output_literal)); } TEST_F(HloEvaluatorTest, DoesConcatenateSimple) { HloComputation::Builder b(TestName()); HloInstruction* operand1 = b.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<int64_t>({{-1, -2}, {100, 200}}))); HloInstruction* operand2 = b.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<int64_t>({{-2, -3}, {-100, -200}}))); std::vector<HloInstruction*> operands = {operand1, operand2}; Shape shape = ShapeUtil::MakeShape(S64, {4, 2}); b.AddInstruction(HloInstruction::CreateConcatenate(shape, operands, 0)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<int64_t>( {{-1, -2}, {100, 200}, {-2, -3}, {-100, -200}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, ConcatenateHandlesShapeWithZeroElement) { HloComputation::Builder b(TestName()); HloInstruction* operand1 = b.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<int64_t>({100, 200}))); HloInstruction* operand2 = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<int64_t>({}))); std::vector<HloInstruction*> operands = {operand1, operand2}; Shape shape = ShapeUtil::MakeShape(S64, {2}); b.AddInstruction(HloInstruction::CreateConcatenate(shape, operands, 0)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR1<int64_t>({100, 200}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, ConvertWithSameLayout) { HloComputation::Builder b(TestName()); auto input_literal = LiteralUtil::CreateR2<int32_t>({{1, 2}, {3, 4}, {5, 6}}); auto expected = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}, {5.0, 6.0}}); ASSERT_TRUE(LayoutUtil::LayoutsInShapesEqual(input_literal.shape(), expected.shape())); HloInstruction* constant = b.AddInstruction( HloInstruction::CreateConstant(std::move(input_literal))); b.AddInstruction(HloInstruction::CreateConvert(expected.shape(), constant)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); EXPECT_TRUE(LiteralTestUtil::Equal(result, expected)); } TEST_P(HloEvaluatorBf16Test, ConvertWithDifferentLayout) { HloComputation::Builder b(TestName()); auto input_literal = LiteralUtil::CreateR2WithLayout<int32_t>( {{1, 2}, {3, 4}, {5, 6}}, LayoutUtil::MakeLayout({0, 1})); auto expected = LiteralUtil::CreateR2WithLayout<float>( {{1.0, 2.0}, {3.0, 4.0}, {5.0, 6.0}}, LayoutUtil::MakeLayout({1, 0})); ASSERT_FALSE(LayoutUtil::LayoutsInShapesEqual(input_literal.shape(), expected.shape())); HloInstruction* constant = b.AddInstruction( HloInstruction::CreateConstant(std::move(input_literal))); b.AddInstruction(HloInstruction::CreateConvert(expected.shape(), constant)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); EXPECT_TRUE(LiteralTestUtil::Equal(result, expected)); } PaddingConfig CreatePaddingConfig( std::initializer_list<std::array<int64_t, 3>> padding_dimensions) { PaddingConfig padding_config; for (auto& paddings_per_dim : padding_dimensions) { auto dimension = padding_config.add_dimensions(); dimension->set_edge_padding_low(paddings_per_dim[0]); dimension->set_edge_padding_high(paddings_per_dim[1]); dimension->set_interior_padding(paddings_per_dim[2]); } return padding_config; } TEST_F(HloEvaluatorTest, Pad2DIntegerArrayWithZeroDimension) { auto operand = LiteralUtil::CreateR2<int32_t>({{}, {}}); HloComputation::Builder b(TestName()); auto operand_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(operand))); constexpr int32_t kPadValue = 10; auto pad_value = LiteralUtil::CreateR0<int32_t>(kPadValue); auto padding_value_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(pad_value))); auto padding_config = CreatePaddingConfig({{{1, 0, 2}}, {{0, 2, 1}}}); Shape shape = ShapeUtil::MakeShape(S32, {5, 2}); b.AddInstruction(HloInstruction::CreatePad( shape, operand_instruction, padding_value_instruction, padding_config)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<int32_t>( {{10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, Pad4DFloatArrayWithInteriorPadding) { HloComputation::Builder b(TestName()); Array4D<float> input_array(3, 2, 1, 1, {1, 2, 3, 4, 5, 6}); auto input = LiteralUtil::CreateR4FromArray4D<float>(input_array); HloInstruction* input_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(input))); constexpr float kPadValue = 1.5; auto pad_value = LiteralUtil::CreateR0<float>(kPadValue); HloInstruction* pad_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(pad_value))); Shape shape = ShapeUtil::MakeShape(F32, {8, 5, 1, 1}); auto r4_padding_on_dim0_dim1 = CreatePaddingConfig({{{1, 0, 2}}, {{0, 2, 1}}, {{0, 0, 0}}, {{0, 0, 0}}}); b.AddInstruction(HloInstruction::CreatePad( shape, input_instruction, pad_instruction, r4_padding_on_dim0_dim1)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected_array = std::make_unique<Array4D<float>>(8, 5, 1, 1); expected_array->Fill(kPadValue); (*expected_array)(1, 0, 0, 0) = 1.0f; (*expected_array)(1, 2, 0, 0) = 2.0f; (*expected_array)(4, 0, 0, 0) = 3.0f; (*expected_array)(4, 2, 0, 0) = 4.0f; (*expected_array)(7, 0, 0, 0) = 5.0f; (*expected_array)(7, 2, 0, 0) = 6.0f; auto expected = LiteralUtil::CreateR4FromArray4D<float>(*expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, NegativePadding2D) { HloComputation::Builder b(TestName()); auto input_array = std::make_unique<Array2D<float>>(4, 3); input_array->FillUnique(1.0f); auto input = LiteralUtil::CreateR2FromArray2D<float>(*input_array); HloInstruction* input_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(input))); auto pad_value_instruction = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.718f))); auto r2_padding_on_dim0_dim1 = CreatePaddingConfig({{{-1, -2, 0}}, {{-2, 4, 0}}}); Shape shape = ShapeUtil::MakeShape(F32, {1, 5}); b.AddInstruction(HloInstruction::CreatePad(shape, input_instruction, pad_value_instruction, r2_padding_on_dim0_dim1)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected_array = std::make_unique<Array2D<float>>(1, 5); (*expected_array)(0, 0) = 7.0f; (*expected_array)(0, 1) = 2.718f; (*expected_array)(0, 2) = 2.718f; (*expected_array)(0, 3) = 2.718f; (*expected_array)(0, 4) = 2.718f; auto expected = LiteralUtil::CreateR2FromArray2D<float>(*expected_array); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, ErrorSpec(0.031250))); } TEST_P(HloEvaluatorBf16Test, NegativeAndInteriorPadding2D) { HloComputation::Builder b(TestName()); auto input_array = std::make_unique<Array2D<float>>(4, 3); input_array->FillUnique(1.0f); auto input = LiteralUtil::CreateR2FromArray2D<float>(*input_array); HloInstruction* input_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(input))); auto pad_value_instruction = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.718f))); PaddingConfig padding_config = MakeNoPaddingConfig(2); auto r2_padding_on_dim0_dim1 = CreatePaddingConfig({{{-2, -5, 1}}, {{-2, 4, 2}}}); Shape shape = ShapeUtil::MakeShape(F32, {0, 9}); b.AddInstruction(HloInstruction::CreatePad(shape, input_instruction, pad_value_instruction, r2_padding_on_dim0_dim1)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected_array = std::make_unique<Array2D<float>>(0, 9); auto expected = LiteralUtil::CreateR2FromArray2D<float>(*expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, Pad2DFloatArrayDifferentTypes) { HloComputation::Builder b(TestName()); b.AddInstruction(HloInstruction::CreatePad( ShapeUtil::MakeShape(BF16, {5, 2}), b.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<bfloat16>({{}, {}}))), b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(10.0f))), CreatePaddingConfig({{{1, 0, 2}}, {{0, 2, 1}}}))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); bfloat16 bf16_c(10.0f); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<bfloat16>({{bf16_c, bf16_c}, {bf16_c, bf16_c}, {bf16_c, bf16_c}, {bf16_c, bf16_c}, {bf16_c, bf16_c}}), result)); } TEST_P(HloEvaluatorBf16Test, DotRank2AndRank1) { HloComputation::Builder b(TestName()); auto lhs_array = std::make_unique<Array2D<float>>(4, 1); lhs_array->FillUnique(1.0f); auto lhs_literal = LiteralUtil::CreateR2FromArray2D<float>(*lhs_array); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); auto rhs_literal = LiteralUtil::CreateR2<float>({{1, 2}}); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Shape shape = ShapeUtil::MakeShape(F32, {4, 2}); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); b.AddInstruction(HloInstruction::CreateDot(shape, lhs_instruction, rhs_instruction, dot_dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected_array = Array2D<float>({ {1.f, 2.f}, {2.f, 4.f}, {3.f, 6.f}, {4.f, 8.f}, }); auto expected = LiteralUtil::CreateR2FromArray2D<float>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DotRank1AndRank2) { HloComputation::Builder b(TestName()); auto lhs_literal = LiteralUtil::CreateR1<float>({1, 2, 3}); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); auto rhs_array = std::make_unique<Array2D<float>>(3, 2); rhs_array->FillUnique(1.0f); auto rhs_literal = LiteralUtil::CreateR2FromArray2D<float>(*rhs_array); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Shape shape = ShapeUtil::MakeShape(F32, {2}); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(0); dot_dnums.add_rhs_contracting_dimensions(0); b.AddInstruction(HloInstruction::CreateDot(shape, lhs_instruction, rhs_instruction, dot_dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR1<float>({22.f, 28.f}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DotRank2AndRank2) { HloComputation::Builder b(TestName()); auto lhs_array = std::make_unique<Array2D<float>>(4, 3); lhs_array->FillUnique(1.0f); auto lhs_literal = LiteralUtil::CreateR2FromArray2D<float>(*lhs_array); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); auto rhs_array = std::make_unique<Array2D<float>>(3, 2); rhs_array->FillUnique(1.0f); auto rhs_literal = LiteralUtil::CreateR2FromArray2D<float>(*rhs_array); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Shape shape = ShapeUtil::MakeShape(F32, {4, 2}); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); b.AddInstruction(HloInstruction::CreateDot(shape, lhs_instruction, rhs_instruction, dot_dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected_array = Array2D<float>({ {22.f, 28.f}, {58.f, 76.f}, {94.f, 124.f}, {130.f, 172.f}, }); auto expected = LiteralUtil::CreateR2FromArray2D<float>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DotRank4AndRank4) { HloComputation::Builder b(TestName()); auto lhs_array = std::make_unique<Array4D<float>>(2, 2, 3, 1); lhs_array->FillIota(1.0f); auto lhs_literal = LiteralUtil::CreateR4FromArray4D<float>(*lhs_array); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); auto rhs_array = std::make_unique<Array4D<float>>(2, 2, 3, 1); rhs_array->FillIota(2.0f); auto rhs_literal = LiteralUtil::CreateR4FromArray4D<float>(*rhs_array); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Shape shape = ShapeUtil::MakeShape(F32, {2, 1, 1}); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_batch_dimensions(0); dot_dnums.add_rhs_batch_dimensions(0); dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_lhs_contracting_dimensions(2); dot_dnums.add_rhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(2); b.AddInstruction(HloInstruction::CreateDot(shape, lhs_instruction, rhs_instruction, dot_dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); float expected_1 = 0; for (float i = 1.0f; i < 7.0f; ++i) { expected_1 += i * i + i; } float expected_2 = 0; for (float i = 7.0f; i < 13.0f; ++i) { expected_2 += i * i + i; } auto expected_array = Array3D<float>({{{expected_1}}, {{expected_2}}}); auto expected = LiteralUtil::CreateR3FromArray3D<float>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, SimpleConv1D) { HloComputation::Builder b(TestName()); Array3D<float> lhs_array = {{{1, 2, 3}}}; auto lhs_literal = LiteralUtil::CreateR3FromArray3D<float>(lhs_array); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); Array3D<float> rhs_array = {{{3.f, 4.f}}}; auto rhs_literal = LiteralUtil::CreateR3FromArray3D<float>(rhs_array); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Window window; WindowDimension dim; dim.set_size(2); dim.set_stride(1); dim.set_padding_low(0); dim.set_padding_high(1); dim.set_window_dilation(1); dim.set_base_dilation(1); *window.add_dimensions() = dim; ConvolutionDimensionNumbers dnums; dnums.set_input_batch_dimension(0); dnums.set_output_batch_dimension(0); dnums.set_input_feature_dimension(1); dnums.set_output_feature_dimension(1); dnums.add_input_spatial_dimensions(2); dnums.add_output_spatial_dimensions(2); dnums.set_kernel_output_feature_dimension(0); dnums.set_kernel_input_feature_dimension(1); dnums.add_kernel_spatial_dimensions(2); Shape shape = ShapeUtil::MakeShape(F32, {1, 1, 3}); b.AddInstruction(HloInstruction::CreateConvolve( shape, lhs_instruction, rhs_instruction, 1, 1, window, dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); Array3D<float> expected_array = {{{11.f, 18.f, 9.f}}}; auto expected = LiteralUtil::CreateR3FromArray3D<float>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, Simple4x4Conv2DWith2x2Kernel) { HloComputation::Builder b(TestName()); Array4D<float> lhs_array(1, 1, 4, 4); lhs_array.FillWithYX(Array2D<float>({ {1, 2, 3, 4 }, {5, 6, 7, 8 }, {9, 10, 11, 12}, {13, 14, 15, 16}, })); auto lhs_literal = LiteralUtil::CreateR4FromArray4D<float>(lhs_array); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); Array4D<float> rhs_array(1, 1, 2, 2); rhs_array.FillWithYX(Array2D<float>({ {5, 6}, {7, 8}, })); auto rhs_literal = LiteralUtil::CreateR4FromArray4D<float>(rhs_array); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Window window; WindowDimension dim; dim.set_size(2); dim.set_stride(1); dim.set_padding_low(0); dim.set_padding_high(1); dim.set_window_dilation(1); dim.set_base_dilation(1); *window.add_dimensions() = dim; *window.add_dimensions() = dim; ConvolutionDimensionNumbers dnums = XlaBuilder::CreateDefaultConvDimensionNumbers(2); Shape shape = ShapeUtil::MakeShape(F32, {1, 1, 4, 4}); b.AddInstruction(HloInstruction::CreateConvolve( shape, lhs_instruction, rhs_instruction, 1, 1, window, dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); Array4D<float> expected_array(1, 1, 4, 4); expected_array.FillWithYX(Array2D<float>({ {100, 126, 152, 76}, {204, 230, 256, 124}, {308, 334, 360, 172}, {149, 160, 171, 80}, })); auto expected = LiteralUtil::CreateR4FromArray4D<float>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, Conv2DGeneralDimensionsReversed) { HloComputation::Builder b(TestName()); Array4D<float> input({ {{{1, 2, 3, 4}}, {{5, 6, 7, 8}}, {{9, 10, 11, 12}}}, {{{13, 14, 15, 16}}, {{17, 18, 19, 20}}, {{21, 22, 23, 24}}} }); Array4D<float> weight({{ {{1, 7, 13}, {4, 10, 16}}, {{2, 8, 14}, {5, 11, 17}}, {{3, 9, 15}, {6, 12, 18}} }}); auto lhs_literal = LiteralUtil::CreateR4FromArray4D<float>(input); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); auto rhs_literal = LiteralUtil::CreateR4FromArray4D<float>(weight); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); rhs_instruction = b.AddInstruction(HloInstruction::CreateReverse( rhs_instruction->shape(), rhs_instruction, {3, 1})); Window window; WindowDimension dim; dim.set_size(3); dim.set_stride(1); dim.set_padding_low(0); dim.set_padding_high(0); dim.set_window_dilation(1); dim.set_base_dilation(1); dim.set_window_reversal(true); *window.add_dimensions() = dim; *window.add_dimensions() = dim; ConvolutionDimensionNumbers dnums; dnums.set_input_batch_dimension(2); dnums.set_output_batch_dimension(2); dnums.set_input_feature_dimension(0); dnums.set_output_feature_dimension(0); dnums.add_input_spatial_dimensions(1); dnums.add_output_spatial_dimensions(1); dnums.add_input_spatial_dimensions(3); dnums.add_output_spatial_dimensions(3); dnums.set_kernel_output_feature_dimension(0); dnums.set_kernel_input_feature_dimension(2); dnums.add_kernel_spatial_dimensions(3); dnums.add_kernel_spatial_dimensions(1); Shape shape = ShapeUtil::MakeShape(F32, {1, 1, 1, 2}); b.AddInstruction(HloInstruction::CreateConvolve( shape, lhs_instruction, rhs_instruction, 1, 1, window, dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); Array4D<float> expected_array({{{{2514, 2685}}}}); Array4D<float> expected_array_bf16({{{{2512, 2688}}}}); auto expected = LiteralUtil::CreateR4FromArray4D<float>( use_bfloat16_ ? expected_array_bf16 : expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, Conv2DGeneralDimensions) { HloComputation::Builder b(TestName()); Array4D<float> input({ {{{1, 2, 3, 4}}, {{5, 6, 7, 8}}, {{9, 10, 11, 12}}}, {{{13, 14, 15, 16}}, {{17, 18, 19, 20}}, {{21, 22, 23, 24}}} }); Array4D<float> weight({{ {{1, 7, 13}, {4, 10, 16}}, {{2, 8, 14}, {5, 11, 17}}, {{3, 9, 15}, {6, 12, 18}} }}); auto lhs_literal = LiteralUtil::CreateR4FromArray4D<float>(input); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); auto rhs_literal = LiteralUtil::CreateR4FromArray4D<float>(weight); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Window window; WindowDimension dim; dim.set_size(3); dim.set_stride(1); dim.set_padding_low(0); dim.set_padding_high(0); dim.set_window_dilation(1); dim.set_base_dilation(1); *window.add_dimensions() = dim; *window.add_dimensions() = dim; ConvolutionDimensionNumbers dnums; dnums.set_input_batch_dimension(2); dnums.set_output_batch_dimension(2); dnums.set_input_feature_dimension(0); dnums.set_output_feature_dimension(0); dnums.add_input_spatial_dimensions(1); dnums.add_output_spatial_dimensions(1); dnums.add_input_spatial_dimensions(3); dnums.add_output_spatial_dimensions(3); dnums.set_kernel_output_feature_dimension(0); dnums.set_kernel_input_feature_dimension(2); dnums.add_kernel_spatial_dimensions(3); dnums.add_kernel_spatial_dimensions(1); Shape shape = ShapeUtil::MakeShape(F32, {1, 1, 1, 2}); b.AddInstruction(HloInstruction::CreateConvolve( shape, lhs_instruction, rhs_instruction, 1, 1, window, dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); Array4D<float> expected_array({{{{2514, 2685}}}}); Array4D<float> expected_array_bf16({{{{2512, 2688}}}}); auto expected = LiteralUtil::CreateR4FromArray4D<float>( use_bfloat16_ ? expected_array_bf16 : expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DilatedBaseConv2DWithHighPadding) { HloComputation::Builder b(TestName()); Array4D<float> lhs_array(1, 1, 4, 4); lhs_array.FillWithYX(Array2D<float>({ {1, 2, 3, 4 }, {5, 6, 7, 8 }, {9, 10, 11, 12}, {13, 14, 15, 16}, })); auto lhs_literal = LiteralUtil::CreateR4FromArray4D<float>(lhs_array); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); Array4D<float> rhs_array(1, 1, 2, 2); rhs_array.FillWithYX(Array2D<float>({ {5, 6}, {7, 8}, })); auto rhs_literal = LiteralUtil::CreateR4FromArray4D<float>(rhs_array); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Window window; WindowDimension dim; dim.set_size(2); dim.set_stride(1); dim.set_padding_low(0); dim.set_padding_high(1); dim.set_window_dilation(1); dim.set_base_dilation(2); *window.add_dimensions() = dim; *window.add_dimensions() = dim; ConvolutionDimensionNumbers dnums = XlaBuilder::CreateDefaultConvDimensionNumbers(2); Shape shape = ShapeUtil::MakeShape(F32, {1, 1, 7, 7}); b.AddInstruction(HloInstruction::CreateConvolve( shape, lhs_instruction, rhs_instruction, 1, 1, window, dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); Array4D<float> expected_array(1, 1, 7, 7); expected_array.FillWithYX(Array2D<float>({ {5, 12, 10, 18, 15, 24, 20}, {35, 48, 42, 56, 49, 64, 56}, {25, 36, 30, 42, 35, 48, 40}, {63, 80, 70, 88, 77, 96, 84}, {45, 60, 50, 66, 55, 72, 60}, {91, 112, 98, 120, 105, 128, 112}, {65, 84, 70, 90, 75, 96, 80}, })); auto expected = LiteralUtil::CreateR4FromArray4D<float>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DilatedBaseConv2DWithLowAndHighPadding) { HloComputation::Builder b(TestName()); Array4D<float> lhs_array(1, 1, 4, 4); lhs_array.FillWithYX(Array2D<float>({ {1, 2, 3, 4 }, {5, 6, 7, 8 }, {9, 10, 11, 12}, {13, 14, 15, 16}, })); auto lhs_literal = LiteralUtil::CreateR4FromArray4D<float>(lhs_array); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); Array4D<float> rhs_array(1, 1, 2, 2); rhs_array.FillWithYX(Array2D<float>({ {5, 6}, {7, 8}, })); auto rhs_literal = LiteralUtil::CreateR4FromArray4D<float>(rhs_array); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Window window; WindowDimension dim; dim.set_size(2); dim.set_stride(1); dim.set_padding_low(1); dim.set_padding_high(1); dim.set_window_dilation(1); dim.set_base_dilation(2); *window.add_dimensions() = dim; *window.add_dimensions() = dim; ConvolutionDimensionNumbers dnums = XlaBuilder::CreateDefaultConvDimensionNumbers(2); Shape shape = ShapeUtil::MakeShape(F32, {1, 1, 8, 8}); b.AddInstruction(HloInstruction::CreateConvolve( shape, lhs_instruction, rhs_instruction, 1, 1, window, dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); Array4D<float> expected_array(1, 1, 8, 8); expected_array.FillWithYX(Array2D<float>({ {8, 7, 16, 14, 24, 21, 32, 28}, {6, 5, 12, 10, 18, 15, 24, 20}, {40, 35, 48, 42, 56, 49, 64, 56}, {30, 25, 36, 30, 42, 35, 48, 40}, {72, 63, 80, 70, 88, 77, 96, 84}, {54, 45, 60, 50, 66, 55, 72, 60}, {104, 91, 112, 98, 120, 105, 128, 112}, {78, 65, 84, 70, 90, 75, 96, 80}, })); auto expected = LiteralUtil::CreateR4FromArray4D<float>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DilatedWindowAndBaseConv2DWithDifferentLowAndHighPaddingAndStrides) { HloComputation::Builder b(TestName()); Array4D<float> lhs_array(1, 1, 4, 4); lhs_array.FillWithYX(Array2D<float>({ {1, 2, 3, 4 }, {5, 6, 7, 8 }, {9, 10, 11, 12}, {13, 14, 15, 16}, })); auto lhs_literal = LiteralUtil::CreateR4FromArray4D<float>(lhs_array); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); Array4D<float> rhs_array(1, 1, 2, 3); rhs_array.FillWithYX(Array2D<float>({ {5, 6, 7}, {8, 9, 10}, })); auto rhs_literal = LiteralUtil::CreateR4FromArray4D<float>(rhs_array); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Window window; WindowDimension dim; dim.set_size(2); dim.set_stride(1); dim.set_padding_low(2); dim.set_padding_high(2); dim.set_window_dilation(2); dim.set_base_dilation(2); *window.add_dimensions() = dim; dim.set_size(3); dim.set_stride(3); dim.set_padding_low(2); dim.set_padding_high(-1); dim.set_window_dilation(1); dim.set_base_dilation(3); *window.add_dimensions() = dim; ConvolutionDimensionNumbers dnums = XlaBuilder::CreateDefaultConvDimensionNumbers(2); Shape shape = ShapeUtil::MakeShape(F32, {1, 1, 9, 3}); b.AddInstruction(HloInstruction::CreateConvolve( shape, lhs_instruction, rhs_instruction, 1, 1, window, dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); Array4D<float> expected_array(1, 1, 9, 3); expected_array.FillWithYX(Array2D<float>({ {10, 20, 30}, {0, 0, 0}, {57, 74, 91}, {0, 0, 0}, {125, 142, 159}, {0, 0, 0}, {193, 210, 227}, {0, 0, 0}, {91, 98, 105}, })); auto expected = LiteralUtil::CreateR4FromArray4D<float>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, Conv2DGroupedConvolution) { HloComputation::Builder b(TestName()); std::vector<int64_t> input_dims = {1, 2, 2, 4}; std::vector<int64_t> filter_dims = {2, 2, 2, 8}; Shape input_shape = ShapeUtil::MakeShapeWithType<float>(input_dims); Shape filter_shape = ShapeUtil::MakeShapeWithType<float>(filter_dims); ConvolutionDimensionNumbers dnums; dnums.set_input_batch_dimension(0); dnums.set_output_batch_dimension(0); dnums.add_input_spatial_dimensions(1); dnums.add_output_spatial_dimensions(1); dnums.add_input_spatial_dimensions(2); dnums.add_output_spatial_dimensions(2); dnums.set_input_feature_dimension(3); dnums.set_output_feature_dimension(3); dnums.add_kernel_spatial_dimensions(0); dnums.add_kernel_spatial_dimensions(1); dnums.set_kernel_input_feature_dimension(2); dnums.set_kernel_output_feature_dimension(3); Window window; WindowDimension dim; dim.set_size(2); dim.set_stride(1); dim.set_padding_low(0); dim.set_padding_high(0); dim.set_window_dilation(1); dim.set_base_dilation(1); *window.add_dimensions() = dim; *window.add_dimensions() = dim; std::vector<float> input_elems(ShapeUtil::ElementsIn(input_shape)); std::iota(input_elems.begin(), input_elems.end(), -7); auto input_r1 = LiteralUtil::CreateR1<float>(input_elems); auto input_r4 = input_r1.Reshape(input_dims).value(); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(input_r4))); std::vector<float> filter_elems(ShapeUtil::ElementsIn(filter_shape)); std::iota(filter_elems.begin(), filter_elems.end(), -31); auto filter_r1 = LiteralUtil::CreateR1<float>(filter_elems); auto filter_r4 = filter_r1.Reshape(filter_dims).value(); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(filter_r4))); Shape shape = ShapeUtil::MakeShape(F32, {1, 1, 1, 8}); b.AddInstruction(HloInstruction::CreateConvolve( shape, lhs_instruction, rhs_instruction, 2, 1, window, dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); Array4D<float> expected_array(1, 1, 1, 8); expected_array.FillWithYX( Array2D<float>({{668, 664, 660, 656, 668, 680, 692, 704}})); auto expected = LiteralUtil::CreateR4FromArray4D<float>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } void HloEvaluatorTest::InitializeFftData() { fft_c64x2x4x8_ = LiteralUtil::CreateR3<complex64>({ {{{0.0, 0.0}, {1.0, 0.0}, {2.0, 0.0}, {3.0, 0.0}, {4.0, 0.0}, {5.0, 0.0}, {6.0, 0.0}, {7.0, 0.0}}, {{0.0, 0.0}, {0.0, 1.0}, {0.0, 2.0}, {0.0, 3.0}, {0.0, 4.0}, {0.0, 5.0}, {0.0, 6.0}, {0.0, 7.0}}, {{0.0, 7.0}, {1.0, 6.0}, {2.0, 5.0}, {3.0, 4.0}, {4.0, 3.0}, {5.0, 2.0}, {6.0, 1.0}, {7.0, 0.0}}, {{7.0, 0.0}, {6.0, 1.0}, {5.0, 2.0}, {4.0, 3.0}, {3.0, 4.0}, {2.0, 5.0}, {1.0, 6.0}, {0.0, 7.0}}}, {{{-4.0, 0.0}, {-3.0, 0.0}, {-2.0, 0.0}, {-1.0, 0.0}, {1.0, 0.0}, {2.0, 0.0}, {3.0, 0.0}, {4.0, 0.0}}, {{0.0, -4.0}, {0.0, -3.0}, {0.0, -2.0}, {0.0, -1.0}, {0.0, 1.0}, {0.0, 2.0}, {0.0, 3.0}, {0.0, 4.0}}, {{3.5, 3.5}, {-1.707107, -0.707107}, {-1.0, -0.0}, {-0.707107, 0.292893}, {-0.5, 0.5}, {-0.292893, 0.707107}, {0.0, 1.0}, {0.707107, 1.707107}}, {{3.5, 3.5}, {1.707107, 0.707107}, {1.0, 0.0}, {0.707107, -0.292893}, {0.5, -0.5}, {0.292893, -0.707107}, {-0.0, -1.0}, {-0.707107, -1.707107}}} }); fft_c64x2x4x8_1d_ = LiteralUtil::CreateR3<complex64>({ {{{28.0, 0.0}, {-4.0, 9.656854}, {-4.0, 4.0}, {-4.0, 1.656854}, {-4.0, 0.0}, {-4.0, -1.656854}, {-4.0, -4.0}, {-4.0, -9.656854}}, {{0.0, 28.0}, {-9.656854, -4.0}, {-4.0, -4.0}, {-1.656854, -4.0}, {0.0, -4.0}, {1.656854, -4.0}, {4.0, -4.0}, {9.656854, -4.0}}, {{28.0, 28.0}, {5.656854, 13.656854}, {0.0, 8.0}, {-2.343146, 5.656854}, {-4.0, 4.0}, {-5.656854, 2.343146}, {-8.0, -0.0}, {-13.656854, -5.656854}}, {{28.0, 28.0}, {-5.656854, -13.656854}, {-0.0, -8.0}, {2.343146, -5.656854}, {4.0, -4.0}, {5.656854, -2.343146}, {8.0, 0.0}, {13.656854, 5.656854}}}, {{{0.0, 0.0}, {-5.0, 12.071068}, {-4.0, 4.0}, {-5.0, 2.071068}, {-4.0, 0.0}, {-5.0, -2.071068}, {-4.0, -4.0}, {-5.0, -12.071068}}, {{0.0, 0.0}, {-12.071068, -5.0}, {-4.0, -4.0}, {-2.071068, -5.0}, {0.0, -4.0}, {2.071068, -5.0}, {4.0, -4.0}, {12.071068, -5.0}}, {{0.0, 7.0}, {1.0, 6.0}, {2.0, 5.0}, {3.0, 4.0}, {4.0, 3.0}, {5.0, 2.0}, {6.0, 1.0}, {7.0, 0.0}}, {{7.0, 0.0}, {6.0, 1.0}, {5.0, 2.0}, {4.0, 3.0}, {3.0, 4.0}, {2.0, 5.0}, {1.0, 6.0}, {0.0, 7.0}}} }); fft_c64x2x4x8_2d_ = LiteralUtil::CreateR3<complex64>({ {{{84.0, 84.0}, {-13.656854, 5.656854}, {-8.0, 0.0}, {-5.656854, -2.343146}, {-4.0, -4.0}, {-2.343146, -5.656854}, {0.0, -8.0}, {5.656854, -13.656854}}, {{0.0, 0.0}, {0.0, -0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{28.0, -28.0}, {16.970562, 40.970562}, {0.0, 24.0}, {-7.029438, 16.970562}, {-12.0, 12.0}, {-16.970562, 7.029438}, {-24.0, 0.0}, {-40.970562, -16.970562}}, {{0.0, -56.0}, {-19.313708, -8.0}, {-8.0, -8.0}, {-3.313708, -8.0}, {0.0, -8.0}, {3.313708, -8.0}, {8.0, -8.0}, {19.313708, -8.0}}}, {{{7.0, 7.0}, {-10.071068, 14.071068}, {-1.0, 7.0}, {-0.071068, 4.071068}, {3.0, 3.0}, {4.071068, -0.071068}, {7.0, -1.0}, {14.071068, -10.071068}}, {{0.0, 0.0}, {-12.0, 24.142136}, {-12.0, 8.0}, {-16.0, 4.142136}, {-16.0, 0.0}, {-20.0, -4.142136}, {-20.0, -8.0}, {-24.0, -24.142136}}, {{-7.0, 7.0}, {2.071068, 22.071068}, {-3.0, 11.0}, {-3.928932, 8.071068}, {-3.0, 3.0}, {-4.071068, -0.071068}, {-3.0, -5.0}, {-10.071068, -14.071068}}, {{0.0, -14.0}, {0.0, -12.0}, {0.0, -10.0}, {0.0, -8.0}, {0.0, -6.0}, {0.0, -4.0}, {0.0, -2.0}, {0.0, 0.0}}} }); fft_c64x2x4x8_3d_ = LiteralUtil::CreateR3<complex64>({ {{{91.0, 91.0}, {-23.727922, 19.727922}, {-9.0, 7.0}, {-5.727922, 1.727922}, {-1.0, -1.0}, {1.727922, -5.727922}, {7.0, -9}, {19.727922, -23.727922}}, {{0.0, 0.0}, {-12.0, 24.142136}, {-12.0, 8.0}, {-16.0, 4.142136}, {-16.0, 0.0}, {-20.0, -4.142136}, {-20.0, -8.0}, {-24.0, -24.142136}}, {{21.0, -21.0}, {19.041630, 63.041630}, {-3.0, 35.0}, {-10.958370, 25.041630}, {-15.0, 15.0}, {-21.041630, 6.958370}, {-27.0, -5.0}, {-51.041630, -31.041630}}, {{0.0, -70.0}, {-19.313708, -20.0}, {-8.0, -18.0}, {-3.313708, -16.0}, {0.0, -14.0}, {3.313708, -12.0}, {8.0, -10.0}, {19.313708, -8.0}}}, {{{77.0, 77.0}, {-3.585786, -8.414214}, {-7.0, -7.0}, {-5.585786, -6.414214}, {-7.0, -7.0}, {-6.414214, -5.585786}, {-7.0, -7.0}, {-8.414214, -3.585786}}, {{0.0, 0.0}, {12.0, -24.142136}, {12.0, -8.0}, {16.0, -4.142136}, {16.0, 0.0}, {20.0, 4.142136}, {20.0, 8.0}, {24.0, 24.142136}}, {{35.0, -35.0}, {14.899494, 18.899494}, {3.0, 13.0}, {-3.100506, 8.899494}, {-9.0, 9.0}, {-12.899494, 7.100506}, {-21.0, 5.0}, {-30.899494, -2.899494}}, {{0.0, -42.0}, {-19.313708, 4.0}, {-8.0, 2.0}, {-3.313708, 0.0}, {0.0, -2.0}, {3.313708, -4.0}, {8.0, -6.0}, {19.313708, -8.0}}} }); } TEST_F(HloEvaluatorTest, 1D_FFT_4_on_c64x4) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[4] parameter(0) ROOT fft = c64[4] fft(operand), fft_type=FFT, fft_length={4} } )"; auto input = LiteralUtil::CreateR1<complex64>( {{1.0, 0.0}, {2.0, 0.0}, {3.0, 0.0}, {4.0, 0.0}}); auto expected = LiteralUtil::CreateR1<complex64>( {{10.0, 0.0}, {-2.0, 2.0}, {-2.0, 0.0}, {-2.0, -2.0}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_IFFT_4_on_c64x4) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[4] parameter(0) ROOT ifft = c64[4] fft(operand), fft_type=IFFT, fft_length={4} } )"; auto input = LiteralUtil::CreateR1<complex64>( {{10.0, 0.0}, {-2.0, 2.0}, {-2.0, 0.0}, {-2.0, -2.0}}); auto expected = LiteralUtil::CreateR1<complex64>( {{1.0, 0.0}, {2.0, 0.0}, {3.0, 0.0}, {4.0, 0.0}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_RFFT_4_on_f32x4) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = f32[4] parameter(0) ROOT rfft = c64[3] fft(operand), fft_type=RFFT, fft_length={4} } )"; auto input = LiteralUtil::CreateR1<float>({1.0, 2.0, 3.0, 4.0}); auto expected = LiteralUtil::CreateR1<complex64>({{10.0, 0.0}, {-2.0, 2.0}, {-2.0, 0.0}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_IRFFT_4_on_c64x3) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[3] parameter(0) ROOT irfft = f32[4] fft(operand), fft_type=IRFFT, fft_length={4} } )"; auto input = LiteralUtil::CreateR1<complex64>({{10.0, 0.0}, {-2.0, 2.0}, {-2.0, 0.0}}); auto expected = LiteralUtil::CreateR1<float>({1.0, 2.0, 3.0, 4.0}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_FFT_8_on_c64x2x4x8) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[2, 4, 8] parameter(0) ROOT fft = c64[2, 4, 8] fft(operand), fft_type=FFT, fft_length={8} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&fft_c64x2x4x8_})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), fft_c64x2x4x8_1d_.shape())); EXPECT_TRUE(LiteralTestUtil::Near(fft_c64x2x4x8_1d_, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_IFFT_8_on_c64x2x4x8) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[2, 4, 8] parameter(0) ROOT ifft = c64[2, 4, 8] fft(operand), fft_type=IFFT, fft_length={8} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&fft_c64x2x4x8_1d_})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), fft_c64x2x4x8_.shape())); EXPECT_TRUE(LiteralTestUtil::Near(fft_c64x2x4x8_, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_RFFT_8_on_f32x8) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = f32[8] parameter(0) ROOT rfft = c64[5] fft(operand), fft_type=RFFT, fft_length={8} } )"; auto input = LiteralUtil::CreateR1<float>({1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2, 8.1}); auto expected = LiteralUtil::CreateR1<complex64>({{39.6, 0.0}, {-3.6, 8.691169}, {-3.6, 3.6}, {-3.6, 1.491169}, {-3.6, 0.0}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_IRFFT_8_on_c64x5) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[5] parameter(0) ROOT irfft = f32[8] fft(operand), fft_type=IRFFT, fft_length={8} } )"; auto input = LiteralUtil::CreateR1<complex64>({{39.6, 0.0}, {-3.6, 8.691169}, {-3.6, 3.6}, {-3.6, 1.491169}, {-3.6, 0.0}}); auto expected = LiteralUtil::CreateR1<float>({1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2, 8.1}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_RFFT_9_on_f32x9) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = f32[9] parameter(0) ROOT rfft = c64[5] fft(operand), fft_type=RFFT, fft_length={9} } )"; auto input = LiteralUtil::CreateR1<float>( {1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2, 8.1, 9.9}); auto expected = LiteralUtil::CreateR1<complex64>({{49.5, 0.0}, {-3.360560, 11.705792}, {-3.893717, 5.712929}, {-4.5, 3.117691}, {-4.895723, 1.021942}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_IRFFT_9_on_c64x5) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[5] parameter(0) ROOT irfft = f32[9] fft(operand), fft_type=IRFFT, fft_length={9} } )"; auto input = LiteralUtil::CreateR1<complex64>({{49.5, 0.0}, {-3.360560, 11.705792}, {-3.893717, 5.712929}, {-4.5, 3.117691}, {-4.895723, 1.021942}}); auto expected = LiteralUtil::CreateR1<float>( {1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2, 8.1, 9.9}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 2D_FFT_4x8_on_c64x2x4x8) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[2, 4, 8] parameter(0) ROOT fft = c64[2, 4, 8] fft(operand), fft_type=FFT, fft_length={4, 8} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&fft_c64x2x4x8_})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), fft_c64x2x4x8_2d_.shape())); EXPECT_TRUE(LiteralTestUtil::Near(fft_c64x2x4x8_2d_, result, fft_error_)); } TEST_F(HloEvaluatorTest, 2D_IFFT_4x8_on_c64x2x4x8) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[2, 4, 8] parameter(0) ROOT ifft = c64[2, 4, 8] fft(operand), fft_type=IFFT, fft_length={4, 8} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&fft_c64x2x4x8_2d_})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), fft_c64x2x4x8_.shape())); EXPECT_TRUE(LiteralTestUtil::Near(fft_c64x2x4x8_, result, fft_error_)); } TEST_F(HloEvaluatorTest, 2D_RFFT_3x8_on_f32x3x8) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = f32[3, 8] parameter(0) ROOT rfft = c64[3, 5] fft(operand), fft_type=RFFT, fft_length={3, 8} } )"; auto input = LiteralUtil::CreateR2<float>({{1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2, 8.1}, {8.1, 7.2, 6.3, 5.4, 4.5, 3.6, 2.7, 1.8}, {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8}}); auto expected = LiteralUtil::CreateR2<complex64>({{{118.8, 0.0}, {-4.4, 10.622540}, {-4.4, 4.4}, {-4.4, 1.822540}, {-4.4, 0.0}}, {{0.0, 0.0}, {-19.926162, 0.797280}, {-10.128203, -3.728203}, {-6.069756, -5.602720}, {-3.2, -6.928203}}, {{0.0, 0.0}, {13.526162, 14.653687}, {3.728203, 10.128203}, {-0.330244, 8.253687}, {-3.2, 6.928203}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 2D_IRFFT_3x8_on_c64x3x5) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[3, 5] parameter(0) ROOT irfft = f32[3, 8] fft(operand), fft_type=IRFFT, fft_length={3, 8} } )"; auto input = LiteralUtil::CreateR2<complex64>({{{118.8, 0.0}, {-4.4, 10.622540}, {-4.4, 4.4}, {-4.4, 1.822540}, {-4.4, 0.0}}, {{0.0, 0.0}, {-19.926162, 0.797280}, {-10.128203, -3.728203}, {-6.069756, -5.602720}, {-3.2, -6.928203}}, {{0.0, 0.0}, {13.526162, 14.653687}, {3.728203, 10.128203}, {-0.330244, 8.253687}, {-3.2, 6.928203}}}); auto expected = LiteralUtil::CreateR2<float>({{1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2, 8.1}, {8.1, 7.2, 6.3, 5.4, 4.5, 3.6, 2.7, 1.8}, {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 2D_RFFT_3x9_on_f32x3x9) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = f32[3, 9] parameter(0) ROOT rfft = c64[3, 5] fft(operand), fft_type=RFFT, fft_length={3, 9} } )"; auto input = LiteralUtil::CreateR2<float>( {{1.9, 2.8, 3.7, 4.6, 5.5, 6.4, 7.3, 8.2, 9.1}, {9.1, 8.2, 7.3, 6.4, 5.5, 4.6, 3.7, 2.8, 1.9}, {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9}}); auto expected = LiteralUtil::CreateR2<complex64>({{{148.5, 0.0}, {-4.95, 13.600013}, {-4.95, 5.899180}, {-4.95, 2.857884}, {-4.95, 0.872819}}, {{0.0, 0.0}, {-25.014467, 2.096690}, {-12.888800, -3.503916}, {-8.1, -5.715768}, {-4.974333, -7.159452}}, {{0.0, 0.0}, {17.814467, 17.685147}, {5.688800, 12.084542}, {0.9, 9.872690}, {-2.225667, 8.429006}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 2D_IRFFT_3x9_on_c64x3x5) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[3, 5] parameter(0) ROOT irfft = f32[3, 9] fft(operand), fft_type=IRFFT, fft_length={3, 9} } )"; auto input = LiteralUtil::CreateR2<complex64>({{{148.5, 0.0}, {-4.95, 13.600013}, {-4.95, 5.899180}, {-4.95, 2.857884}, {-4.95, 0.872819}}, {{0.0, 0.0}, {-25.014467, 2.096690}, {-12.888800, -3.503916}, {-8.1, -5.715768}, {-4.974333, -7.159452}}, {{0.0, 0.0}, {17.814467, 17.685147}, {5.688800, 12.084542}, {0.9, 9.872690}, {-2.225667, 8.429006}}}); auto expected = LiteralUtil::CreateR2<float>( {{1.9, 2.8, 3.7, 4.6, 5.5, 6.4, 7.3, 8.2, 9.1}, {9.1, 8.2, 7.3, 6.4, 5.5, 4.6, 3.7, 2.8, 1.9}, {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_FFT_2x4x8_on_c64x2x4x8) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[2, 4, 8] parameter(0) ROOT fft = c64[2, 4, 8] fft(operand), fft_type=FFT, fft_length={2, 4, 8} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&fft_c64x2x4x8_})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), fft_c64x2x4x8_3d_.shape())); EXPECT_TRUE(LiteralTestUtil::Near(fft_c64x2x4x8_3d_, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_IFFT_2x4x8_on_c64x2x4x8) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[2, 4, 8] parameter(0) ROOT ifft = c64[2, 4, 8] fft(operand), fft_type=IFFT, fft_length={2, 4, 8} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&fft_c64x2x4x8_3d_})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), fft_c64x2x4x8_.shape())); EXPECT_TRUE(LiteralTestUtil::Near(fft_c64x2x4x8_, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_RFFT_3x3x4_on_f32x3x3x4) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = f32[3, 3, 4] parameter(0) ROOT rfft = c64[3, 3, 3] fft(operand), fft_type=RFFT, fft_length={3, 3, 4} } )"; auto input = LiteralUtil::CreateR3<float>( {{{1.8, 2.7, 3.6, 4.5}, {8.1, 7.2, 6.3, 5.4}, {1.1, 2.2, 3.3, 4.4}}, {{5.4, 6.3, 7.2, 8.1}, {4.5, 3.6, 2.7, 1.8}, {5.5, 6.6, 7.7, 8.8}}, {{-1.8, -2.7, -3.6, -4.5}, {-5.4, -6.3, -7.2, -8.1}, {1.9, 2.9, 3.9, 4.9}}}); auto expected = LiteralUtil::CreateR3<complex64>( {{{{92.8, 0.0}, {-2.8, 2.8}, {-2.8, 0.0}}, {{-5.9, 35.160631}, {-11.519100, -8.919100}, {-1.3, -10.219100}}, {{-5.9, -35.160631}, {8.919100, 11.519100}, {-1.3, 10.219100}}}, {{{29.5, -81.579593}, {1.390897, 5.190897}, {-1.9, 3.290897}}, {{-25.1, -49.017038}, {1.044486, 4.844486}, {-1.9, 2.944486}}, {{11.8, 27.712813}, {1.517691, 4.717691}, {-1.6, 3.117691}}}, {{{29.5, 81.579593}, {-5.190897, -1.390897}, {-1.9, -3.290897}}, {{11.8, -27.712813}, {-4.717691, -1.517691}, {-1.6, -3.117691}}, {{-25.1, 49.017038}, {-4.844486, -1.044486}, {-1.9, -2.944486}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_IRFFT_3x3x4_on_c64x3x3x3) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[3, 3, 3] parameter(0) ROOT irfft = f32[3, 3, 4] fft(operand), fft_type=IRFFT, fft_length={3, 3, 4} } )"; auto input = LiteralUtil::CreateR3<complex64>( {{{{92.8, 0.0}, {-2.8, 2.8}, {-2.8, 0.0}}, {{-5.9, 35.160631}, {-11.519100, -8.919100}, {-1.3, -10.219100}}, {{-5.9, -35.160631}, {8.919100, 11.519100}, {-1.3, 10.219100}}}, {{{29.5, -81.579593}, {1.390897, 5.190897}, {-1.9, 3.290897}}, {{-25.1, -49.017038}, {1.044486, 4.844486}, {-1.9, 2.944486}}, {{11.8, 27.712813}, {1.517691, 4.717691}, {-1.6, 3.117691}}}, {{{29.5, 81.579593}, {-5.190897, -1.390897}, {-1.9, -3.290897}}, {{11.8, -27.712813}, {-4.717691, -1.517691}, {-1.6, -3.117691}}, {{-25.1, 49.017038}, {-4.844486, -1.044486}, {-1.9, -2.944486}}}}); auto expected = LiteralUtil::CreateR3<float>( {{{1.8, 2.7, 3.6, 4.5}, {8.1, 7.2, 6.3, 5.4}, {1.1, 2.2, 3.3, 4.4}}, {{5.4, 6.3, 7.2, 8.1}, {4.5, 3.6, 2.7, 1.8}, {5.5, 6.6, 7.7, 8.8}}, {{-1.8, -2.7, -3.6, -4.5}, {-5.4, -6.3, -7.2, -8.1}, {1.9, 2.9, 3.9, 4.9}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_RFFT_3x3x5_on_f32x3x3x5) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = f32[3, 3, 5] parameter(0) ROOT rfft = c64[3, 3, 3] fft(operand), fft_type=RFFT, fft_length={3, 3, 5} } )"; auto input = LiteralUtil::CreateR3<float>({{{1.8, 2.7, 3.6, 4.5, 5.4}, {8.1, 7.2, 6.3, 5.4, 4.5}, {1.1, 2.2, 3.3, 4.4, 5.5}}, {{5.4, 6.3, 7.2, 8.1, 9.0}, {4.5, 3.6, 2.7, 1.8, 0.9}, {5.5, 6.6, 7.7, 8.8, 9.9}}, {{-1.8, -2.7, -3.6, -4.5, -5.4}, {-5.4, -6.3, -7.2, -8.1, -9.0}, {1.9, 2.9, 3.9, 4.9, 5.9}}}); auto expected = LiteralUtil::CreateR3<complex64>( {{{{119.5, 0.0}, {-3.5, 4.817337}, {-3.5, 1.137219}}, {{-5.75, 56.724664}, {-19.206730, -10.537254}, {-5.775483, -12.245880}}, {{-5.75, -56.724664}, {15.956730, 15.010495}, {2.525483, 13.301869}}}, {{{39.25, -106.088112}, {3.286913, 7.382528}, {-1.038404, 4.885305}}, {{-29.0, -64.951905}, {2.690922, 6.949515}, {-1.179098, 4.452292}}, {{16.75, 30.743902}, {3.363918, 6.649878}, {-0.733751, 4.546954}}}, {{{39.25, 106.088112}, {-8.036913, -0.844714}, {-3.711596, -3.341936}}, {{16.75, -30.743902}, {-7.363918, -1.144350}, {-3.266249, -3.247275}}, {{-29.0, 64.951905}, {-7.440922, -0.411701}, {-3.570902, -2.908924}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_IRFFT_3x3x5_on_c64x3x3x3) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[3, 3, 3] parameter(0) ROOT irfft = f32[3, 3, 5] fft(operand), fft_type=IRFFT, fft_length={3, 3, 5} } )"; auto input = LiteralUtil::CreateR3<complex64>( {{{{119.5, 0.0}, {-3.5, 4.817337}, {-3.5, 1.137219}}, {{-5.75, 56.724664}, {-19.206730, -10.537254}, {-5.775483, -12.245880}}, {{-5.75, -56.724664}, {15.956730, 15.010495}, {2.525483, 13.301869}}}, {{{39.25, -106.088112}, {3.286913, 7.382528}, {-1.038404, 4.885305}}, {{-29.0, -64.951905}, {2.690922, 6.949515}, {-1.179098, 4.452292}}, {{16.75, 30.743902}, {3.363918, 6.649878}, {-0.733751, 4.546954}}}, {{{39.25, 106.088112}, {-8.036913, -0.844714}, {-3.711596, -3.341936}}, {{16.75, -30.743902}, {-7.363918, -1.144350}, {-3.266249, -3.247275}}, {{-29.0, 64.951905}, {-7.440922, -0.411701}, {-3.570902, -2.908924}}}}); auto expected = LiteralUtil::CreateR3<float>({{{1.8, 2.7, 3.6, 4.5, 5.4}, {8.1, 7.2, 6.3, 5.4, 4.5}, {1.1, 2.2, 3.3, 4.4, 5.5}}, {{5.4, 6.3, 7.2, 8.1, 9.0}, {4.5, 3.6, 2.7, 1.8, 0.9}, {5.5, 6.6, 7.7, 8.8, 9.9}}, {{-1.8, -2.7, -3.6, -4.5, -5.4}, {-5.4, -6.3, -7.2, -8.1, -9.0}, {1.9, 2.9, 3.9, 4.9, 5.9}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_FFT_8_on_c64x2x4x8_with_layout) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[2, 4, 8]{0, 2, 1} parameter(0) ROOT fft = c64[2, 4, 8]{1, 2, 0} fft(operand), fft_type=FFT, fft_length={8} } )"; auto input = fft_c64x2x4x8_.Relayout(LayoutUtil::MakeLayout({0, 2, 1})); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), fft_c64x2x4x8_1d_.shape())); EXPECT_TRUE(LiteralTestUtil::Near(fft_c64x2x4x8_1d_, result, fft_error_)); } TEST_F(HloEvaluatorTest, 2D_FFT_4x8_on_c64x2x4x8_with_layout) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[2, 4, 8]{2, 0, 1} parameter(0) ROOT fft = c64[2, 4, 8]{1, 0, 2} fft(operand), fft_type=FFT, fft_length={4, 8} } )"; auto input = fft_c64x2x4x8_.Relayout(LayoutUtil::MakeLayout({2, 0, 1})); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), fft_c64x2x4x8_2d_.shape())); EXPECT_TRUE(LiteralTestUtil::Near(fft_c64x2x4x8_2d_, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_FFT_2x4x8_on_c64x2x4x8_with_layout) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[2, 4, 8]{1, 2, 0} parameter(0) ROOT fft = c64[2, 4, 8]{0, 2, 1} fft(operand), fft_type=FFT, fft_length={2, 4, 8} } )"; auto input = fft_c64x2x4x8_.Relayout(LayoutUtil::MakeLayout({1, 2, 0})); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), fft_c64x2x4x8_3d_.shape())); EXPECT_TRUE(LiteralTestUtil::Near(fft_c64x2x4x8_3d_, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_FFT_0_on_c64x1x1x1x1) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[1, 1, 1, 1] parameter(0) ROOT fft = c64[1, 1, 1, 1] fft(operand), fft_type=FFT, fft_length={0} } )"; auto input = LiteralUtil::CreateR4<complex64>({{{{{42.24, 24.42}}}}}); auto expected = LiteralUtil::CreateR4<complex64>({{{{{0.0, 0.0}}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_FFT_1_on_c64x1x1x1x0) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[1, 1, 1, 0] parameter(0) ROOT fft = c64[1, 1, 1, 0] fft(operand), fft_type=FFT, fft_length={1} } )"; TF_ASSERT_OK_AND_ASSIGN( auto input, LiteralUtil::CreateR4<complex64>({{{{}}}}).Reshape({1, 1, 1, 0})); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), input.shape())); EXPECT_TRUE(LiteralTestUtil::Near(input, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_FFT_1_on_c64x1x1x1x1) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[1, 1, 1, 1] parameter(0) ROOT fft = c64[1, 1, 1, 1] fft(operand), fft_type=FFT, fft_length={1} } )"; auto input = LiteralUtil::CreateR4<complex64>({{{{{42.24, 24.42}}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), input.shape())); EXPECT_TRUE(LiteralTestUtil::Near(input, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_FFT_1x0x1_on_c64x1x1x1x1) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[1, 1, 1, 1] parameter(0) ROOT fft = c64[1, 1, 1, 1] fft(operand), fft_type=FFT, fft_length={1, 0, 1} } )"; auto input = LiteralUtil::CreateR4<complex64>({{{{{42.24, 24.42}}}}}); auto expected = LiteralUtil::CreateR4<complex64>({{{{{0.0, 0.0}}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_FFT_1x1x1_on_c64x0x1x0x1) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[0, 1, 0, 1] parameter(0) ROOT fft = c64[0, 1, 0, 1] fft(operand), fft_type=FFT, fft_length={1, 1, 1} } )"; TF_ASSERT_OK_AND_ASSIGN( auto input, LiteralUtil::CreateR4<complex64>({{{{}}}}).Reshape({0, 1, 0, 1})); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), input.shape())); EXPECT_TRUE(LiteralTestUtil::Near(input, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_FFT_1x1x1_on_c64x1x1x1x1) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[1, 1, 1, 1] parameter(0) ROOT fft = c64[1, 1, 1, 1] fft(operand), fft_type=FFT, fft_length={1, 1, 1} } )"; auto input = LiteralUtil::CreateR4<complex64>({{{{{42.24, 24.42}}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), input.shape())); EXPECT_TRUE(LiteralTestUtil::Near(input, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_FFT_3x1x1_on_c64x1x3x1x1) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[1, 3, 1, 1] parameter(0) ROOT fft = c64[1, 3, 1, 1] fft(operand), fft_type=FFT, fft_length={3, 1, 1} } )"; auto input = LiteralUtil::CreateR4<complex64>( {{{{{42.24, 24.42}}}, {{{-42.24, 24.42}}}, {{{42.24, -24.42}}}}}); auto expected = LiteralUtil::CreateR4<complex64>({{{{{42.24, 24.42}}}, {{{84.5367, 97.5818}}}, {{{-0.0566792, -48.7418}}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_IFFT_3x1x1_on_c64x1x3x1x1) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[1, 3, 1, 1] parameter(0) ROOT ifft = c64[1, 3, 1, 1] fft(operand), fft_type=IFFT, fft_length={3, 1, 1} } )"; auto input = LiteralUtil::CreateR4<complex64>({{{{{42.24, 24.42}}}, {{{84.5367, 97.5818}}}, {{{-0.0566792, -48.7418}}}}}); auto expected = LiteralUtil::CreateR4<complex64>( {{{{{42.24, 24.42}}}, {{{-42.24, 24.42}}}, {{{42.24, -24.42}}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_FFT_5_on_c64x5) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[5] parameter(0) ROOT fft = c64[5] fft(operand), fft_type=FFT, fft_length={5} } )"; auto input = LiteralUtil::CreateR1<complex64>( {{1.0, 5.0}, {2.0, 4.0}, {3.0, 3.0}, {4.0, 2.0}, {5.0, 1.0}}); auto expected = LiteralUtil::CreateR1<complex64>({{15.0, 15.0}, {0.940955, 5.94095}, {-1.6877, 3.3123}, {-3.3123, 1.6877}, {-5.94095, -0.940955}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_IFFT_5_on_c64x5) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[5] parameter(0) ROOT ifft = c64[5] fft(operand), fft_type=IFFT, fft_length={5} } )"; auto input = LiteralUtil::CreateR1<complex64>({{15.0, 15.0}, {0.940955, 5.94095}, {-1.6877, 3.3123}, {-3.3123, 1.6877}, {-5.94095, -0.940955}}); auto expected = LiteralUtil::CreateR1<complex64>( {{1.0, 5.0}, {2.0, 4.0}, {3.0, 3.0}, {4.0, 2.0}, {5.0, 1.0}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_FFT_4_on_zero_c64x4) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[4] parameter(0) ROOT fft = c64[4] fft(operand), fft_type=FFT, fft_length={4} } )"; auto input = LiteralUtil::CreateR1<complex64>( {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), input.shape())); EXPECT_TRUE(LiteralTestUtil::Near(input, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_FFT_3x3x4_on_zero_c64x3x3x4) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[3, 3, 4] parameter(0) ROOT fft = c64[3, 3, 4] fft(operand), fft_type=FFT, fft_length={3, 3, 4} } )"; auto input = LiteralUtil::CreateR3<complex64>( {{{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}, {{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}, {{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), input.shape())); EXPECT_TRUE(LiteralTestUtil::Near(input, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_IFFT_3x3x4_on_zero_c64x3x3x4) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[3, 3, 4] parameter(0) ROOT ifft = c64[3, 3, 4] fft(operand), fft_type=IFFT, fft_length={3, 3, 4} } )"; auto input = LiteralUtil::CreateR3<complex64>( {{{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}, {{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}, {{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), input.shape())); EXPECT_TRUE(LiteralTestUtil::Near(input, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_RFFT_3x3x4_on_zero_f32x3x3x4) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = f32[3, 3, 4] parameter(0) ROOT rfft = c64[3, 3, 3] fft(operand), fft_type=RFFT, fft_length={3, 3, 4} } )"; auto input = LiteralUtil::CreateR3<float>( {{{0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}}, {{0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}}, {{0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}}}); auto expected = LiteralUtil::CreateR3<complex64>( {{{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}, {{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}, {{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_IRFFT_3x3x4_on_zero_c64x3x3x3) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[3, 3, 3] parameter(0) ROOT irfft = f32[3, 3, 4] fft(operand), fft_type=IRFFT, fft_length={3, 3, 4} } )"; auto input = LiteralUtil::CreateR3<complex64>( {{{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}, {{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}, {{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}}); auto expected = LiteralUtil::CreateR3<float>( {{{0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}}, {{0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}}, {{0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 2D_IRFFT_3x4_on_c64x3x3) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[3, 3] parameter(0) ROOT irfft = f32[3, 4] fft(operand), fft_type=IRFFT, fft_length={3, 4} } )"; auto input = LiteralUtil::CreateR2<complex64>({{{0.0, 0.0}, {1.0, 0.0}, {2.0, 0.0}}, {{3.0, 0.0}, {4.0, 0.0}, {5.0, 0.0}}, {{6.0, 0.0}, {7.0, 0.0}, {8.0, 0.0}}}); auto expected = LiteralUtil::CreateR2<float>({{4.0, -0.5, 0.0, -0.5}, {-1.5, 0.433013, 0.0, -0.433013}, {-1.5, -0.433013, 0.0, 0.433013}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } class HloEvaluatorPreciseReduceTest : public HloTestBase {}; TEST_F(HloEvaluatorPreciseReduceTest, AddReductionPrecisionTest) { auto m = CreateNewVerifiedModule(); HloComputation::Builder b(TestName()); constexpr int kNumElements = 1 << 25; std::vector<float> v(kNumElements, 1.0f); HloInstruction* arg_instruction = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<float>(v))); HloInstruction* init_value = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.f))); HloComputation::Builder add_computation("add"); Shape scalar_shape = ShapeUtil::MakeShape(F32, {}); auto param_lhs = add_computation.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "lhs")); auto param_rhs = add_computation.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "rhs")); add_computation.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, param_lhs, param_rhs)); auto add_func = m->AddEmbeddedComputation(add_computation.Build()); HloInstruction* reduce_instruction = b.AddInstruction( HloInstruction::CreateReduce(scalar_shape, arg_instruction, init_value, {0}, add_func)); m->AddEntryComputation(b.Build()); HloEvaluator hlo_eval; Literal result = hlo_eval.Evaluate(reduce_instruction).value(); LiteralTestUtil::ExpectR0Equal<float>(kNumElements, result); } void BM_ReducePrecisely(::testing::benchmark::State& state) { HloComputation::Builder b("BM_ReducePrecisely"); HloModuleConfig config; config.set_debug_options(GetDebugOptionsFromFlags()); HloModule module("BM_ReducePrecisely", config); constexpr int kNumElements = 1 << 25; std::vector<float> v(kNumElements, 1.0f); HloInstruction* arg_instruction = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<float>(v))); auto init_value = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.f))); HloComputation::Builder add_computation("add"); Shape scalar_shape = ShapeUtil::MakeShape(F32, {}); auto param_lhs = add_computation.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "lhs")); auto param_rhs = add_computation.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "rhs")); add_computation.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, param_lhs, param_rhs)); auto add_func = module.AddEmbeddedComputation(add_computation.Build()); HloInstruction* reduce_instruction = b.AddInstruction( HloInstruction::CreateReduce(scalar_shape, arg_instruction, init_value, {0}, add_func)); module.AddEntryComputation(b.Build()); for (auto s : state) { HloEvaluator hlo_eval; hlo_eval.Evaluate(reduce_instruction).value(); } } BENCHMARK(BM_ReducePrecisely); TEST_P(HloEvaluatorBf16Test, ReduceAdd) { HloComputation::Builder b(TestName()); auto arg_array = std::make_unique<Array2D<float>>(2, 3); arg_array->FillUnique(1.0f); auto arg_literal = LiteralUtil::CreateR2FromArray2D<float>(*arg_array); HloInstruction* arg_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(arg_literal))); auto init_value = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.f))); HloComputation::Builder add_computation("add"); Shape scalar_shape = ShapeUtil::MakeShape(F32, {}); auto param_lhs = add_computation.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "lhs")); auto param_rhs = add_computation.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "rhs")); add_computation.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, param_lhs, param_rhs)); auto add_func = m_->AddEmbeddedComputation(add_computation.Build()); Shape shape = ShapeUtil::MakeShape(F32, {2}); b.AddInstruction( HloInstruction::CreateReduce(shape, arg_instruction, init_value, {1}, add_func)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR1<float>({6, 18}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, ReduceWindowMax) { HloComputation::Builder b(TestName()); auto arg_array = std::make_unique<Array2D<float>>(2, 3); arg_array->FillUnique(1.0f); auto arg_literal = LiteralUtil::CreateR2FromArray2D<float>(*arg_array); HloInstruction* arg_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(arg_literal))); auto init_value = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.f))); auto max_func = m_->AddEmbeddedComputation(MaxComputationScalarF32()); Window window; WindowDimension dim; dim.set_size(2); dim.set_stride(1); dim.set_padding_low(0); dim.set_padding_high(0); dim.set_window_dilation(1); dim.set_base_dilation(1); *window.add_dimensions() = dim; *window.add_dimensions() = dim; Shape shape = ShapeUtil::MakeShape(F32, {1, 2}); b.AddInstruction(HloInstruction::CreateReduceWindow( shape, arg_instruction, init_value, window, max_func)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<float>({{6, 7}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, ReduceWindowMaxIotaWindowDilation) { auto expected = LiteralUtil::CreateR2<float>({{10, 11}, {14, 15}}); ReduceWindowMaxIotaTest( 2, 0, 1, 2, 1, expected); } TEST_P(HloEvaluatorBf16Test, ReduceWindowMaxIotaStrideWindowDilation) { auto expected = LiteralUtil::CreateR2<float>({{10}}); ReduceWindowMaxIotaTest( 2, 0, 2, 2, 1, expected); } TEST_P(HloEvaluatorBf16Test, ReduceWindowMaxIotaBaseDilation) { auto expected = LiteralUtil::CreateR2<float>({{0, 1, 1, 2, 2, 3}, {4, 5, 5, 6, 6, 7}, {4, 5, 5, 6, 6, 7}, {8, 9, 9, 10, 10, 11}, {8, 9, 9, 10, 10, 11}, {12, 13, 13, 14, 14, 15}}); ReduceWindowMaxIotaTest( 2, 0, 1, 1, 2, expected); } TEST_P(HloEvaluatorBf16Test, ReduceWindowMaxIotaStrideBaseDilation) { auto expected = LiteralUtil::CreateR2<float>({{0, 1, 2}, {4, 5, 6}, {8, 9, 10}}); ReduceWindowMaxIotaTest( 2, 0, 2, 1, 2, expected); } TEST_P(HloEvaluatorBf16Test, ReduceWindowMaxIotaStrideBothDilation) { auto expected = LiteralUtil::CreateR2<float>({{5, 6, 7}, {9, 10, 11}, {13, 14, 15}}); ReduceWindowMaxIotaTest( 2, 0, 2, 2, 2, expected); } TEST_P(HloEvaluatorBf16Test, ReduceWindowMaxIotaPaddingStrideBaseDilation) { auto expected = LiteralUtil::CreateR2<float>({{0, 2, 3}, {8, 10, 11}, {12, 14, 15}}); ReduceWindowMaxIotaTest( 3, 1, 3, 1, 2, expected); } TEST_P(HloEvaluatorBf16Test, ReduceWindowAdd) { HloComputation::Builder b(TestName()); auto arg_array = std::make_unique<Array2D<float>>(2, 3); arg_array->FillUnique(1.0f); auto arg_literal = LiteralUtil::CreateR2FromArray2D<float>(*arg_array); HloInstruction* arg_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(arg_literal))); auto init_value = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.f))); HloComputation::Builder add_computation("add"); Shape scalar_shape = ShapeUtil::MakeShape(F32, {}); auto param_lhs = add_computation.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "lhs")); auto param_rhs = add_computation.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "rhs")); add_computation.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, param_lhs, param_rhs)); auto add_func = m_->AddEmbeddedComputation(add_computation.Build()); Window window; WindowDimension dim; dim.set_size(1); dim.set_stride(1); dim.set_padding_low(0); dim.set_padding_high(0); dim.set_window_dilation(1); dim.set_base_dilation(1); *window.add_dimensions() = dim; dim.set_size(2); dim.set_stride(1); dim.set_padding_low(1); dim.set_padding_high(0); dim.set_window_dilation(1); dim.set_base_dilation(1); *window.add_dimensions() = dim; Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); b.AddInstruction(HloInstruction::CreateReduceWindow( shape, arg_instruction, init_value, window, add_func)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<float>({{1, 3, 5}, {5, 11, 13}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, ReduceWindowAdd6D) { HloComputation::Builder b(TestName()); std::vector<int64_t> input_dims(6, 4); Literal arg_literal = LiteralUtil::CreateFullWithDescendingLayout<float>(input_dims, 1.0f); HloInstruction* arg_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(arg_literal))); auto init_value = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.f))); HloComputation::Builder add_computation("add"); Shape scalar_shape = ShapeUtil::MakeShape(F32, {}); auto param_lhs = add_computation.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "lhs")); auto param_rhs = add_computation.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "rhs")); add_computation.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, param_lhs, param_rhs)); auto add_func = m_->AddEmbeddedComputation(add_computation.Build()); Window window; WindowDimension trivial_dim; trivial_dim.set_size(1); trivial_dim.set_stride(1); trivial_dim.set_padding_low(0); trivial_dim.set_padding_high(0); trivial_dim.set_window_dilation(1); trivial_dim.set_base_dilation(1); WindowDimension active_dim; active_dim.set_size(2); active_dim.set_stride(1); active_dim.set_padding_low(0); active_dim.set_padding_high(0); active_dim.set_window_dilation(1); active_dim.set_base_dilation(1); *window.add_dimensions() = trivial_dim; *window.add_dimensions() = active_dim; *window.add_dimensions() = active_dim; *window.add_dimensions() = active_dim; *window.add_dimensions() = trivial_dim; *window.add_dimensions() = trivial_dim; Shape shape = ShapeUtil::MakeShape(F32, {4, 3, 3, 3, 4, 4}); b.AddInstruction(HloInstruction::CreateReduceWindow( shape, arg_instruction, init_value, window, add_func)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); std::vector<int64_t> output_dims = {4, 3, 3, 3, 4, 4}; Literal result_literal = LiteralUtil::CreateFullWithDescendingLayout<float>(output_dims, 8.0f); EXPECT_TRUE(LiteralTestUtil::Equal(result_literal, result)); } TEST_P(HloEvaluatorBf16Test, Min3In5Stride2Tuple) { HloComputation::Builder builder("main"); auto input1 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({10000, 1000, 100, 10, 1}))); auto input2 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({10000, 1000, 100, 10, 1}))); HloComputation::Builder bcompute("ComputeFunction"); auto shape1 = ShapeUtil::MakeShape(F32, {}); auto shape2 = ShapeUtil::MakeShape(F32, {}); auto p2 = bcompute.AddInstruction(HloInstruction::CreateParameter(0, shape1, "x0")); auto p3 = bcompute.AddInstruction(HloInstruction::CreateParameter(1, shape2, "x1")); auto p4 = bcompute.AddInstruction(HloInstruction::CreateParameter(2, shape1, "y0")); auto p5 = bcompute.AddInstruction(HloInstruction::CreateParameter(3, shape2, "y1")); std::vector<HloInstruction*> compute_vec = { bcompute.AddInstruction( HloInstruction::CreateBinary(shape1, HloOpcode::kMinimum, p2, p4)), bcompute.AddInstruction( HloInstruction::CreateBinary(shape2, HloOpcode::kMinimum, p3, p5))}; bcompute.AddInstruction(HloInstruction::CreateTuple(compute_vec)); auto compute_tuple = m_->AddEmbeddedComputation(bcompute.Build()); std::vector<HloInstruction*> input_vec = {input1, input2}; auto init1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::MaxValue(F32))); auto init2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::MaxValue(F32))); std::vector<HloInstruction*> init_vec = {init1, init2}; auto padding = std::pair<int64_t, int64_t>(0, 0); TF_ASSERT_OK_AND_ASSIGN(auto window, ShapeInference::InferWindowFromDimensions( {3}, {2}, absl::MakeSpan(&padding, 1), {}, {})); std::vector<const Shape*> input_shapes = {&input1->shape(), &input2->shape()}; std::vector<const Shape*> init_shapes = {&init1->shape(), &init2->shape()}; TF_ASSERT_OK_AND_ASSIGN(Shape shape, ShapeInference::InferReduceWindowShape( input_shapes, init_shapes, window, compute_tuple->ComputeProgramShape())); builder.AddInstruction(HloInstruction::CreateReduceWindow( shape, input_vec, init_vec, window, compute_tuple)); auto r1 = LiteralUtil::CreateR1<float>({100, 1}); auto expected = LiteralUtil::MakeTuple({&r1, &r1}); m_->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, Min3In5Stride2TupleDiffInput) { HloComputation::Builder builder("main"); auto input1 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({10000, 1000, 100, 10, 1}))); auto input2 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<int>({15, 28, 300, 107, 12}))); HloComputation::Builder bcompute("ComputeFunction"); auto shape1 = ShapeUtil::MakeShape(F32, {}); auto shape2 = ShapeUtil::MakeShape(S32, {}); auto p2 = bcompute.AddInstruction(HloInstruction::CreateParameter(0, shape1, "x0")); auto p3 = bcompute.AddInstruction(HloInstruction::CreateParameter(1, shape2, "x1")); auto p4 = bcompute.AddInstruction(HloInstruction::CreateParameter(2, shape1, "y0")); auto p5 = bcompute.AddInstruction(HloInstruction::CreateParameter(3, shape2, "y1")); std::vector<HloInstruction*> compute_vec = { bcompute.AddInstruction( HloInstruction::CreateBinary(shape1, HloOpcode::kMinimum, p2, p4)), bcompute.AddInstruction( HloInstruction::CreateBinary(shape2, HloOpcode::kMinimum, p3, p5))}; bcompute.AddInstruction(HloInstruction::CreateTuple(compute_vec)); auto compute_tuple = m_->AddEmbeddedComputation(bcompute.Build()); std::vector<HloInstruction*> input_vec = {input1, input2}; auto init1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::MaxValue(F32))); auto init2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::MaxValue(S32))); std::vector<HloInstruction*> init_vec = {init1, init2}; auto padding = std::pair<int64_t, int64_t>(0, 0); TF_ASSERT_OK_AND_ASSIGN(auto window, ShapeInference::InferWindowFromDimensions( {3}, {2}, absl::MakeSpan(&padding, 1), {}, {})); std::vector<const Shape*> input_shapes = {&input1->shape(), &input2->shape()}; std::vector<const Shape*> init_shapes = {&init1->shape(), &init2->shape()}; TF_ASSERT_OK_AND_ASSIGN(Shape shape, ShapeInference::InferReduceWindowShape( input_shapes, init_shapes, window, compute_tuple->ComputeProgramShape())); builder.AddInstruction(HloInstruction::CreateReduceWindow( shape, input_vec, init_vec, window, compute_tuple)); auto r1 = LiteralUtil::CreateR1<float>({100, 1}); auto r2 = LiteralUtil::CreateR1<int>({15, 12}); auto expected = LiteralUtil::MakeTuple({&r1, &r2}); m_->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, StridedSlice) { HloComputation::Builder b(TestName()); auto operand_array = std::make_unique<Array2D<float>>(3, 5); operand_array->FillUnique(1.0f); auto operand_literal = LiteralUtil::CreateR2FromArray2D<float>(*operand_array); HloInstruction* operand = b.AddInstruction( HloInstruction::CreateConstant(std::move(operand_literal))); Shape shape = ShapeUtil::MakeShape(F32, {2, 1}); b.AddInstruction(HloInstruction::CreateSlice(shape, operand, {0, 2}, {3, 5}, {2, 3})); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<float>({ {3}, {19}, }); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DynamicSlice) { HloComputation::Builder b(TestName()); auto operand_array = std::make_unique<Array2D<float>>(2, 4); operand_array->FillUnique(1.0f); auto operand_literal = LiteralUtil::CreateR2FromArray2D<float>(*operand_array); HloInstruction* operand = b.AddInstruction( HloInstruction::CreateConstant(std::move(operand_literal))); auto zero = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(0))); auto one = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(1))); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); b.AddInstruction( HloInstruction::CreateDynamicSlice(shape, operand, {zero, one}, {2, 3})); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<float>({ {2, 3, 4}, {6, 7, 8}, }); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DynamicSliceModSlice) { HloComputation::Builder b(TestName()); auto operand_array = std::make_unique<Array2D<float>>(2, 4); operand_array->FillUnique(1.0f); auto operand_literal = LiteralUtil::CreateR2FromArray2D<float>(*operand_array); HloInstruction* operand = b.AddInstruction( HloInstruction::CreateConstant(std::move(operand_literal))); auto two = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(2))); auto one = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(1))); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); b.AddInstruction( HloInstruction::CreateDynamicSlice(shape, operand, {two, one}, {2, 3})); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<float>({ {2, 3, 4}, {6, 7, 8}, }); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DynamicSliceUpdate) { HloComputation::Builder b(TestName()); auto operand_array = std::make_unique<Array2D<double>>(2, 3); operand_array->FillUnique(1.0); auto operand_literal = LiteralUtil::CreateR2FromArray2D<double>(*operand_array); HloInstruction* operand = b.AddInstruction( HloInstruction::CreateConstant(std::move(operand_literal))); auto zero = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(0))); auto one = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(1))); auto update = b.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<double>({{-2.0, -3.0}, {-6.0, -7.0}}))); Shape shape = ShapeUtil::MakeShape(F64, {2, 3}); b.AddInstruction(HloInstruction::CreateDynamicUpdateSlice( shape, operand, update, {zero, one})); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<double>({ {1, -2, -3}, {5, -6, -7}, }); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, SetAndGetTuples) { HloComputation::Builder b(TestName()); auto operand_array = std::make_unique<Array2D<double>>(2, 3); operand_array->FillUnique(1.0); auto operand_literal2 = LiteralUtil::CreateR2FromArray2D<double>(*operand_array); HloInstruction* operand2 = b.AddInstruction( HloInstruction::CreateConstant(std::move(operand_literal2))); HloInstruction* operand1 = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<int64_t>({0, 1}))); auto tuple = b.AddInstruction(HloInstruction::CreateTuple({operand1, operand2})); Shape shape = ShapeUtil::MakeShape(F64, {2, 3}); b.AddInstruction(HloInstruction::CreateGetTupleElement(shape, tuple, 1)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<double>({ {1, 2, 3}, {5, 6, 7}, }); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, SetAndGetNestedTuples) { HloComputation::Builder b(TestName()); auto operand_array = std::make_unique<Array2D<double>>(2, 3); operand_array->FillUnique(1.0); HloInstruction* operand2 = b.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2FromArray2D<double>(*operand_array))); HloInstruction* operand1 = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<int64_t>({0, 1}))); auto tuple1 = b.AddInstruction(HloInstruction::CreateTuple({operand1, operand2})); auto tuple2 = b.AddInstruction(HloInstruction::CreateTuple({operand2, operand2})); auto outer_tuple = b.AddInstruction(HloInstruction::CreateTuple({tuple1, tuple2})); b.AddInstruction( HloInstruction::CreateGetTupleElement(tuple2->shape(), outer_tuple, 1)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto result_inner_literal = LiteralUtil::CreateR2FromArray2D<double>(*operand_array); auto expected = LiteralUtil::MakeTuple({&result_inner_literal, &result_inner_literal}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, Reverse) { HloComputation::Builder b(TestName()); Array4D<float> input({ {{{1.0f}, {2.0f}}, {{3.0f}, {4.0f}}, {{5.0f}, {6.0f}}}, {{{7.0f}, {8.0f}}, {{9.0f}, {10.0f}}, {{11.0f}, {12.0f}}}, {{{13.0f}, {14.0f}}, {{15.0f}, {16.0f}}, {{17.0f}, {18.0f}}}, {{{19.0f}, {20.0f}}, {{21.0f}, {22.0f}}, {{23.0f}, {24.0f}}}, }); auto operand_literal = LiteralUtil::CreateR4FromArray4D<float>(input); HloInstruction* operand = b.AddInstruction( HloInstruction::CreateConstant(std::move(operand_literal))); const Shape shape = ShapeUtil::MakeShape(F32, {4, 3, 2, 1}); b.AddInstruction(HloInstruction::CreateReverse(shape, operand, {0, 1})); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR4FromArray4D<float>({ {{{23.0f}, {24.0f}}, {{21.0f}, {22.0f}}, {{19.0f}, {20.0f}}}, {{{17.0f}, {18.0f}}, {{15.0f}, {16.0f}}, {{13.0f}, {14.0f}}}, {{{11.0f}, {12.0f}}, {{9.0f}, {10.0f}}, {{7.0f}, {8.0f}}}, {{{5.0f}, {6.0f}}, {{3.0f}, {4.0f}}, {{1.0f}, {2.0f}}}, }); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, EvaluateWithSubstitutions) { HloComputation::Builder b(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {4}); HloInstruction* param0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "param0")); HloInstruction* square = b.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, param0, param0)); HloInstruction* add = b.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, param0, square)); HloEvaluator evaluator; Literal param0_literal = LiteralUtil::CreateR1<float>({1, 2, 3, 4}); Literal square_literal = LiteralUtil::CreateR1<float>({10, 20, 30, 40}); TF_ASSERT_OK_AND_ASSIGN( Literal result, evaluator.EvaluateWithSubstitutions( add, {{param0, &param0_literal}, {square, &square_literal}})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR1<float>({11, 22, 33, 44}), result)); } TEST_P(HloEvaluatorBf16Test, EvaluateWithSubstitutionsWithConstantOperand) { HloComputation::Builder b(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {4}); HloInstruction* param0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "param0")); HloInstruction* square = b.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, param0, param0)); HloInstruction* constant = b.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1, 2, 3, 4}))); HloInstruction* add = b.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, constant, square)); HloEvaluator evaluator; Literal square_literal = LiteralUtil::CreateR1<float>({10, 20, 30, 40}); TF_ASSERT_OK_AND_ASSIGN( Literal result, evaluator.EvaluateWithSubstitutions(add, {{square, &square_literal}})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR1<float>({11, 22, 33, 44}), result)); } TEST_F(HloEvaluatorTest, EvaluateWithSubstitutionsLiteralBase) { HloComputation::Builder b(TestName()); Shape shape = ShapeUtil::MakeShape(S64, {3}); HloInstruction* param0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "param0")); HloInstruction* square = b.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, param0, param0)); int64_t int64_values[] = {1, 2, 3}; const Shape literal_shape = ShapeUtil::MakeShape(S64, {3}); BorrowingLiteral literal(reinterpret_cast<const char*>(int64_values), literal_shape); HloEvaluator evaluator; TF_ASSERT_OK_AND_ASSIGN(Literal result, evaluator.EvaluateWithSubstitutions( square, {{param0, &literal}})); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int64_t>({1, 4, 9}), result)); } TEST_F(HloEvaluatorTest, EvaluateGather_TensorFlowGatherV1) { const char* hlo_text = R"( HloModule TensorFlowGatherV1 ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) ROOT gather = s32[2,3] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1, 3} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal start_indices = LiteralUtil::CreateR1<int32_t>({0, 2}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &start_indices})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {7, 8, 9}}), result)); } TEST_F(HloEvaluatorTest, EvaluateGather_TensorFlowGatherV2) { const char* hlo_text = R"( HloModule TensorFlowGatherV2 ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) ROOT gather = s32[3,2] gather(operand, indices), offset_dims={0}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=1, slice_sizes={3, 1} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal start_indices = LiteralUtil::CreateR1<int32_t>({0, 2}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &start_indices})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{1, 3}, {4, 6}, {7, 9}}), result)); } TEST_F(HloEvaluatorTest, EvaluateGather_TensorFlowGatherMultipleBatchDims) { const char* hlo_text = R"( HloModule TensorFlowGatherMultipleBatchDims ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2,2] parameter(1) ROOT gather = s32[2,3,2] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=2, slice_sizes={3, 1} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal start_indices = LiteralUtil::CreateR2<int32_t>({{0, 2}, {2, 1}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &start_indices})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR3<int32_t>( {{{1, 3}, {4, 6}, {7, 9}}, {{3, 2}, {6, 5}, {9, 8}}}), result)); } TEST_F(HloEvaluatorTest, EvaluateGather_TensorFlowGatherNd) { const char* hlo_text = R"( HloModule TensorFlowGatherNd ENTRY main { operand = s32[3,3,2] parameter(0) indices = s32[2,2] parameter(1) ROOT gather = s32[2,2] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0,1}, start_index_map={0,1}, index_vector_dim=1, slice_sizes={1,1,2} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR3<int32_t>({{{-1, 1}, {-2, 2}, {-3, 3}}, {{-4, 4}, {-5, 5}, {-6, 6}}, {{-7, 7}, {-8, 8}, {-9, 9}}}); Literal start_indices = LiteralUtil::CreateR2<int32_t>({{0, 0}, {1, 0}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &start_indices})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{-1, 1}, {-4, 4}}), result)); } TEST_F(HloEvaluatorTest, EvaluateGather_TensorFlowGatherNdNonDefaultIndexVectorDim) { const char* hlo_text = R"( HloModule TensorFlowGatherNd ENTRY main { operand = s32[3,3,2] parameter(0) indices = s32[2,2] parameter(1) ROOT gather = s32[2,2] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0,1}, start_index_map={0,1}, index_vector_dim=0, slice_sizes={1,1,2} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR3<int32_t>({{{-1, 1}, {-2, 2}, {-3, 3}}, {{-4, 4}, {-5, 5}, {-6, 6}}, {{-7, 7}, {-8, 8}, {-9, 9}}}); Literal start_indices = LiteralUtil::CreateR2<int32_t>({{0, 0}, {1, 0}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &start_indices})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{-2, 2}, {-1, 1}}), result)); } TEST_F(HloEvaluatorTest, EvaluateGather_DynamicSlice) { const char* hlo_text = R"( HloModule DynamicSlice ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) ROOT gather = s32[1,1] gather(operand, indices), offset_dims={0,1}, collapsed_slice_dims={}, start_index_map={0,1}, index_vector_dim=0, slice_sizes={1,1} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal start_indices = LiteralUtil::CreateR1<int32_t>({1, 1}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &start_indices})); EXPECT_TRUE( LiteralTestUtil::Equal(LiteralUtil::CreateR2<int32_t>({{5}}), result)); } TEST_F(HloEvaluatorTest, EvaluateGather_BatchDynamicSlice) { const char* hlo_text = R"( HloModule BatchDynamicSlice ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2,2] parameter(1) ROOT gather = s32[2,1,1] gather(operand, indices), offset_dims={1,2}, collapsed_slice_dims={}, start_index_map={0,1}, index_vector_dim=0, slice_sizes={1,1} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal start_indices = LiteralUtil::CreateR2<int32_t>({{2, 1}, {1, 1}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &start_indices})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR3<int32_t>({{{8}}, {{5}}}), result)); } TEST_F(HloEvaluatorTest, EvaluateGather_ZeroDimBounds) { const char* hlo_text = R"( HloModule TensorFlowGatherV1 ENTRY main { operand = s32[3,0] parameter(0) indices = s32[2] parameter(1) ROOT gather = s32[2,0] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1, 0} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{}, {}, {}}); Literal start_indices = LiteralUtil::CreateR1<int32_t>({0, 2}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &start_indices})); EXPECT_TRUE( LiteralTestUtil::Equal(LiteralUtil::CreateR2<int32_t>({{}, {}}), result)); } TEST_F(HloEvaluatorTest, EvaluateGather_NoOutputWindowDims) { const std::string hlo_text = R"( HloModule GatherXd ENTRY main { operand = s32[3] parameter(0) indices = s32[2,2,1] parameter(1) ROOT gather = s32[2,2] gather(operand, indices), offset_dims={}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=2, slice_sizes={1} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR1<int32_t>({0, 1, 2}); Literal start_indices = LiteralUtil::CreateR3<int32_t>({{{0}, {1}}, {{2}, {1}}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &start_indices})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{0, 1}, {2, 1}}), result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_TensorFlowScatterV1_Update) { const char* hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) updates = s32[2,3] parameter(2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=update_s32, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({0, 2}); Literal updates = LiteralUtil::CreateR2<int32_t>({{10, 20, 30}, {70, 80, 90}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{10, 20, 30}, {4, 5, 6}, {70, 80, 90}}), result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_TensorFlowScatterV2_Update) { const char* hlo_text = R"( HloModule TensorFlowScatterV2 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) updates = s32[3,2] parameter(2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=update_s32, update_window_dims={0}, inserted_window_dims={1}, scatter_dims_to_operand_dims={1}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({0, 2}); Literal updates = LiteralUtil::CreateR2<int32_t>({{10, 30}, {40, 60}, {70, 90}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{10, 2, 30}, {40, 5, 60}, {70, 8, 90}}), result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_TensorFlowScatter_Add) { const char* hlo_text = R"( HloModule TensorFlowScatter add_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(s32[] lhs, s32[] rhs) } ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) updates = s32[2,3] parameter(2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=add_s32, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({0, 2}); Literal updates = LiteralUtil::CreateR2<int32_t>({{10, 20, 30}, {70, 80, 90}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{11, 22, 33}, {4, 5, 6}, {77, 88, 99}}), result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_TensorFlowScatter_Mul) { const char* hlo_text = R"( HloModule TensorFlowScatter mul_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT mul = s32[] multiply(s32[] lhs, s32[] rhs) } ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) updates = s32[2,3] parameter(2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=mul_s32, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({0, 2}); Literal updates = LiteralUtil::CreateR2<int32_t>({{10, 20, 30}, {70, 80, 90}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE( LiteralTestUtil::Equal(LiteralUtil::CreateR2<int32_t>( {{10, 40, 90}, {4, 5, 6}, {490, 640, 810}}), result)); } TEST_P(HloEvaluatorBf16Test, EvaluateScatter_TensorFlowScatter_F32) { const char* hlo_text = R"( HloModule TensorFlowScatter add_f32 (lhs: f32[], rhs: f32[]) -> f32[] { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(f32[] lhs, f32[] rhs) } ENTRY main { operand = f32[3,3] parameter(0) indices = s32[2] parameter(1) updates = f32[2,3] parameter(2) ROOT scatter = f32[3,3] scatter(operand, indices, updates), to_apply=add_f32, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<float>( {{1.1, 2.2, 3.3}, {4.4, 5.5, 6.6}, {7.7, 8.8, 9.9}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({2, 1}); Literal updates = LiteralUtil::CreateR2<float>({{0.4, 1.1, 0.7}, {2.3, 3.1, 1.6}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Near( LiteralUtil::CreateR2<float>( {{1.1, 2.2, 3.3}, {6.7, 8.6, 8.2}, {8.1, 9.9, 10.6}}), result, ErrorSpec{0.1, 0.01})); } TEST_F(HloEvaluatorTest, EvaluateScatter_TensorFlowScatter_RepeatedIndices) { const char* hlo_text = R"( HloModule TensorFlowScatter add_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(s32[] lhs, s32[] rhs) } ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) updates = s32[2,3] parameter(2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=add_s32, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({1, 1}); Literal updates = LiteralUtil::CreateR2<int32_t>({{10, 20, 30}, {70, 80, 90}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {84, 105, 126}, {7, 8, 9}}), result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_TensorFlowScatter_MultipleBatchDims) { const char* hlo_text = R"( HloModule TensorFlowScatterMultipleBatchDims add_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(s32[] lhs, s32[] rhs) } ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2,2] parameter(1) updates = s32[2,3,2] parameter(2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=add_s32, update_window_dims={1}, inserted_window_dims={1}, scatter_dims_to_operand_dims={1}, index_vector_dim=2 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR2<int32_t>({{0, 2}, {2, 1}}); Literal updates = LiteralUtil::CreateR3<int32_t>( {{{10, 30}, {40, 60}, {70, 90}}, {{5, 5}, {5, 5}, {5, 5}}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE( LiteralTestUtil::Equal(LiteralUtil::CreateR2<int32_t>( {{11, 7, 38}, {44, 10, 71}, {77, 13, 104}}), result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_TensorFlowScatterNd) { const char* hlo_text = R"( HloModule TensorFlowScatterNd update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[3,3,2] parameter(0) indices = s32[2,2] parameter(1) updates = s32[2,2] parameter(2) ROOT scatter = s32[3,3,2] scatter(operand, indices, updates), to_apply=update_s32, update_window_dims={1}, inserted_window_dims={0,1}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR3<int32_t>({{{-1, 1}, {-2, 2}, {-3, 3}}, {{-4, 4}, {-5, 5}, {-6, 6}}, {{-7, 7}, {-8, 8}, {-9, 9}}}); Literal scatter_indices = LiteralUtil::CreateR2<int32_t>({{0, 0}, {1, 0}}); Literal updates = LiteralUtil::CreateR2<int32_t>({{-10, 10}, {-40, 40}}); Literal expected = LiteralUtil::CreateR3<int32_t>({{{-10, 10}, {-2, 2}, {-3, 3}}, {{-40, 40}, {-5, 5}, {-6, 6}}, {{-7, 7}, {-8, 8}, {-9, 9}}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_TensorFlowScatterNd_NonDefaultIndexVectorDim) { const char* hlo_text = R"( HloModule TensorFlowScatterNdNonDefaultIndexVectorDim update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[3,3,2] parameter(0) indices = s32[2,2] parameter(1) updates = s32[2,2] parameter(2) ROOT scatter = s32[3,3,2] scatter(operand, indices, updates), to_apply=update_s32, update_window_dims={1}, inserted_window_dims={0,1}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=0 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR3<int32_t>({{{-1, 1}, {-2, 2}, {-3, 3}}, {{-4, 4}, {-5, 5}, {-6, 6}}, {{-7, 7}, {-8, 8}, {-9, 9}}}); Literal scatter_indices = LiteralUtil::CreateR2<int32_t>({{0, 0}, {1, 0}}); Literal updates = LiteralUtil::CreateR2<int32_t>({{-10, 10}, {-20, 20}}); Literal expected = LiteralUtil::CreateR3<int32_t>({{{-20, 20}, {-10, 10}, {-3, 3}}, {{-4, 4}, {-5, 5}, {-6, 6}}, {{-7, 7}, {-8, 8}, {-9, 9}}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_DynamicUpdateSlice) { const char* hlo_text = R"( HloModule DynamicUpdateSlice update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) updates = s32[1,1] parameter(2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=update_s32, update_window_dims={0,1}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=0 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({1, 1}); Literal updates = LiteralUtil::CreateR2<int32_t>({{10}}); Literal expected = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 10, 6}, {7, 8, 9}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_BatchDynamicUpdateSlice) { const char* hlo_text = R"( HloModule BatchDynamicUpdateSlice update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2,2] parameter(1) updates = s32[2,1,1] parameter(2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=update_s32, update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=0 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR2<int32_t>({{2, 1}, {1, 1}}); Literal updates = LiteralUtil::CreateR3<int32_t>({{{10}}, {{20}}}); Literal expected = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 20, 6}, {7, 10, 9}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_ZeroDimBounds) { const char* hlo_text = R"( HloModule TensorFlowScatter_ZeroDimBounds update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[3,0] parameter(0) indices = s32[2] parameter(1) updates = s32[2,0] parameter(2) ROOT scatter = s32[3,0] scatter(operand, indices, updates), to_apply=update_s32, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{}, {}, {}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({0, 2}); Literal updates = LiteralUtil::CreateR2<int32_t>({{}, {}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Equal(operand, result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_NoUpdateWindowDims) { const std::string hlo_text = R"( HloModule Scatter_NoUpdateWindowDims add_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(s32[] lhs, s32[] rhs) } ENTRY main { operand = s32[3] parameter(0) indices = s32[2,2,1] parameter(1) updates = s32[2,2] parameter(2) ROOT scatter = s32[3] scatter(operand, indices, updates), to_apply=add_s32, update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=2 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR1<int32_t>({0, 1, 2}); Literal scatter_indices = LiteralUtil::CreateR3<int32_t>({{{0}, {1}}, {{2}, {1}}}); Literal updates = LiteralUtil::CreateR2<int32_t>({{10, 20}, {30, 40}}); Literal expected = LiteralUtil::CreateR1<int32_t>({10, 61, 32}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_NegativeIndices) { const char* hlo_text = R"( HloModule TensorFlowScatter_NegativeIndices add_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(s32[] lhs, s32[] rhs) } ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) updates = s32[2,3] parameter(2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=add_s32, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({-1, 2}); Literal updates = LiteralUtil::CreateR2<int32_t>({{10, 20, 30}, {70, 80, 90}}); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {77, 88, 99}}), EvaluateWithModule(module.get(), {&operand, &scatter_indices, &updates}))); } TEST_F(HloEvaluatorTest, EvaluateScatter_OobIndices) { const std::string hlo_text = R"( HloModule BatchDynamicUpdateSlice update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[3,3]{1,0} parameter(0) indices = s32[6,2]{1,0} parameter(1) updates = s32[6,1,1]{2,1,0} parameter(2) ROOT scatter = s32[3,3]{1,0} scatter(operand, indices, updates), to_apply=update_s32, update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR2<int32_t>( {{2, 7}, {2, 1}, {1, 1}, {5, 1}, {2147483647, 1}, {1, 2}}); Literal updates = LiteralUtil::CreateR3<int32_t>( {{{10}}, {{20}}, {{30}}, {{40}}, {{50}}, {{60}}}); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 30, 60}, {7, 20, 9}}), EvaluateWithModule(module.get(), {&operand, &scatter_indices, &updates}))); } TEST_F(HloEvaluatorTest, EvaluateScatter_OobUpdateWindow) { const char* hlo_text = R"( HloModule TensorFlowScatterNd_OobUpdateWindow update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[3,3,2] parameter(0) indices = s32[1,2] parameter(1) updates = s32[1,2,2] parameter(2) ROOT scatter = s32[3,3,2] scatter(operand, indices, updates), to_apply=update_s32, update_window_dims={1,2}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR3<int32_t>({{{-1, 1}, {-2, 2}, {-3, 3}}, {{-4, 4}, {-5, 5}, {-6, 6}}, {{-7, 7}, {-8, 8}, {-9, 9}}}); Literal scatter_indices = LiteralUtil::CreateR2<int32_t>({{0, 2}}); Literal updates = LiteralUtil::CreateR3<int32_t>({{{-10, 10}, {-40, 40}}}); Literal expected = operand.Clone(); EXPECT_TRUE(LiteralTestUtil::Equal( expected, EvaluateWithModule(module.get(), {&operand, &scatter_indices, &updates}))); } TEST_F(HloEvaluatorTest, EvaluateScatter_Multioutput) { const char* hlo_text = R"( HloModule MultioutputScatter update { lhs0 = s32[] parameter(0) lhs1 = f32[] parameter(1) rhs0 = s32[] parameter(2) rhs1 = f32[] parameter(3) ROOT tuple = (s32[], f32[]) tuple(rhs0, rhs1) } ENTRY main { operand0 = s32[3,3,2] parameter(0) operand1 = f32[3,3,2] parameter(1) indices = s32[2,2] parameter(2) updates0 = s32[2,2] parameter(3) updates1 = f32[2,2] parameter(4) ROOT scatter = (s32[3,3,2], f32[3,3,2]) scatter(operand0, operand1, indices, updates0, updates1), to_apply=update, update_window_dims={1}, inserted_window_dims={0,1}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand0 = LiteralUtil::CreateR3<int32_t>({{{-1, 1}, {-2, 2}, {-3, 3}}, {{-4, 4}, {-5, 5}, {-6, 6}}, {{-7, 7}, {-8, 8}, {-9, 9}}}); Literal operand1 = LiteralUtil::CreateR3<float>({{{-2, 2}, {-3, 3}, {-4, 4}}, {{-5, 5}, {-6, 6}, {-7, 7}}, {{-8, 8}, {-9, 9}, {-10, 10}}}); Literal scatter_indices = LiteralUtil::CreateR2<int32_t>({{0, 0}, {1, 0}}); Literal updates0 = LiteralUtil::CreateR2<int32_t>({{-10, 10}, {-40, 40}}); Literal updates1 = LiteralUtil::CreateR2<float>({{-11, 11}, {-41, 41}}); Literal expected = LiteralUtil::MakeTupleOwned( LiteralUtil::CreateR3<int32_t>({{{-10, 10}, {-2, 2}, {-3, 3}}, {{-40, 40}, {-5, 5}, {-6, 6}}, {{-7, 7}, {-8, 8}, {-9, 9}}}), LiteralUtil::CreateR3<float>({{{-11, 11}, {-3, 3}, {-4, 4}}, {{-41, 41}, {-6, 6}, {-7, 7}}, {{-8, 8}, {-9, 9}, {-10, 10}}})); TF_ASSERT_OK_AND_ASSIGN( Literal result, Evaluate({&operand0, &operand1, &scatter_indices, &updates0, &updates1})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, DoesCompareBF16) { auto lhs = LiteralUtil::CreateR2<bfloat16>( {{bfloat16(0.25), bfloat16(0.35), bfloat16(0.125)}, {bfloat16(-0.25), bfloat16(-0.35), bfloat16(-0.125)}}); auto rhs = LiteralUtil::CreateR2<bfloat16>( {{bfloat16(0.5), bfloat16(0.125), bfloat16(0.125)}, {bfloat16(0.25), bfloat16(-0.375), bfloat16(-0.127)}}); auto expected = LiteralUtil::CreateR2<bool>({{false, true, true}, {false, true, true}}); HloComputation::Builder b(TestName()); auto c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs))); auto c2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs))); b.AddInstruction(HloInstruction::CreateCompare(expected.shape(), c1, c2, ComparisonDirection::kGe)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, Bf16Reduction) { const std::string hlo_text = R"( HloModule Bf16Reduction add_bf16 (lhs: bf16[], rhs: bf16[]) -> bf16[] { lhs = bf16[] parameter(0) rhs = bf16[] parameter(1) ROOT add = bf16[] add(bf16[] lhs, bf16[] rhs) } ENTRY main { arg0 = bf16[4]{0} parameter(0) init = bf16[] constant(0) ROOT %reduce = bf16[] reduce(arg0, init), dimensions={0}, to_apply=add_bf16 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal arg = LiteralUtil::CreateR1<bfloat16>( {bfloat16(1.0f), bfloat16(3.0f), bfloat16(-2.0f), bfloat16(42.0f)}); Literal expected = LiteralUtil::CreateR0<bfloat16>(bfloat16(44.0f)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&arg})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, MixedPrecisionReduction) { const std::string hlo_text = R"( HloModule MixedPrecisionReduction add_f32 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY main { arg0 = f32[4]{0} parameter(0) init = f32[] constant(0) ROOT %reduce = bf16[] reduce(arg0, init), dimensions={0}, to_apply=add_f32 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal arg = LiteralUtil::CreateR1<float>({1.0f, 3.0f, -2.0f, 42.0f}); Literal expected = LiteralUtil::CreateR0<bfloat16>(bfloat16(44.0f)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&arg})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, DontFailOnCallUnimplementedOps) { const std::string hlo_text = R"( HloModule DontFailOnCall call { token0 = token[] after-all() constant = u32[3]{0} constant({1,2,3}) ROOT outfeed = token[] outfeed(constant, token0), outfeed_shape=u32[3]{0} } ENTRY main { ROOT result = token[] call(), to_apply=call } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); auto statusor = Evaluate(); EXPECT_FALSE(statusor.status().ok()); } TEST_F(HloEvaluatorTest, DontFailOnFusionWithUnimplementedOps) { const std::string hlo_text = R"( HloModule DontFailOnFusion fused_computation { token0 = token[] after-all() constant = u32[3]{0} constant({1,2,3}) ROOT outfeed = token[] outfeed(constant, token0), outfeed_shape=u32[3]{0} } ENTRY main { ROOT result = token[] fusion(), kind=kLoop, calls=fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); auto statusor = Evaluate(); EXPECT_FALSE(statusor.status().ok()); } TEST_P(HloEvaluatorBf16Test, SliceWithDifferentLayout) { const std::string hlo_text = R"( HloModule SliceWithDifferentLayout ENTRY main { arg = f32[2,2,2]{0,1,2} parameter(0) ROOT %slice = f32[2,2,2]{1,0,2} slice(f32[2,2,2]{0,1,2} %arg), slice={[0:2], [0:2], [0:2]} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal arg = LiteralUtil::CreateR3WithLayout<float>( {{{1.0f, 2.0f}, {3.0f, 4.0f}}, {{5.0f, 6.0f}, {7.0f, 8.0f}}}, LayoutUtil::MakeLayout({0, 1, 2})); TF_ASSERT_OK_AND_ASSIGN(Literal actual, Evaluate({&arg})); EXPECT_TRUE(LiteralTestUtil::Equal(arg, actual)); } TEST_P(HloEvaluatorBf16Test, Bitcast) { const absl::string_view hlo_text_base = R"( HloModule Bitcast ENTRY main { param = %s[32,121]{1,0} parameter(0) ROOT bitcast = %s[121,32,1]{0,1,2} bitcast(%s[32,121]{1,0} param) } )"; std::string hlo_text; if (use_bfloat16_) { hlo_text = absl::StrFormat(hlo_text_base, "bf16", "bf16", "bf16"); } else { hlo_text = absl::StrFormat(hlo_text_base, "f32", "f32", "f32"); } TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); auto args = MakeFakeArguments(m_.get()).value(); TF_ASSERT_OK_AND_ASSIGN(Literal actual, Evaluate({&args[0]})); if (use_bfloat16_) { EXPECT_TRUE( absl::c_equal(args[0].data<bfloat16>(), actual.data<bfloat16>())); } else { EXPECT_TRUE(absl::c_equal(args[0].data<float>(), actual.data<float>())); } } TEST_F(HloEvaluatorTest, Int32Overflow) { const absl::string_view hlo_text = R"( HloModule Test ENTRY main { c1 = s32[] constant(1073741824) sum = s32[] add(c1, c1) c2 = s32[] constant(-2147483648) sub = s32[] subtract(c2, c1) c3 = u32[] constant(4294967295) c4 = u32[] constant(33) mul = s32[] multiply(c1, c1) pow = u32[] power(c3, c4) ROOT tuple = (s32[], s32[], s32[], u32[]) tuple(sum, sub, mul, pow) } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(auto literal, Evaluate({})); std::vector<Literal> actual = literal.DecomposeTuple(); ASSERT_EQ(actual.size(), 4); uint32_t pow30 = uint32_t{1} << 30; uint32_t pow31 = uint32_t{1} << 31; EXPECT_EQ(actual[0].GetFirstElement<int32_t>(), static_cast<int32_t>(pow31)); EXPECT_EQ(actual[1].GetFirstElement<int32_t>(), static_cast<int32_t>(-(pow31 + pow30))); EXPECT_EQ(actual[2].GetFirstElement<int32_t>(), static_cast<int32_t>(pow31 * pow31)); EXPECT_EQ(actual[3].GetFirstElement<uint32_t>(), uint32_t{4294967295}); } TEST_F(HloEvaluatorTest, GetDimensionSize) { const absl::string_view hlo_text = R"( HloModule Test ENTRY main { size = s32[] parameter(0) data = s32[4] parameter(1) data_dynamic = s32[<=4] set-dimension-size(data, size), dimensions={0} sum = s32[<=4] add(data_dynamic, data) ROOT dynamic_size = s32[] get-dimension-size(sum), dimensions={0} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(DynamicDimensionInference dynamic_dimension_inference, DynamicDimensionInference::Run(m_.get())); evaluator_.set_dynamic_dimension_inference(&dynamic_dimension_inference); Literal size_arg = LiteralUtil::CreateR0<int32_t>(3); Literal data_arg = LiteralUtil::CreateR1<int32_t>({1, 2, 3, 4}); TF_ASSERT_OK_AND_ASSIGN(Literal actual, Evaluate({&size_arg, &data_arg})); EXPECT_EQ(actual.GetFirstElement<int32_t>(), static_cast<int32_t>(3)); } TEST_F(HloEvaluatorTest, EvaluateWithWrongInputShapes) { const absl::string_view hlo_text = R"( HloModule Test ENTRY main { p0 = s32[1] parameter(0) ROOT sum = s32[1] add(p0, p0) } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal input_wrong_shape = LiteralUtil::CreateR1<int32_t>({0, 1}); EXPECT_EQ( HloEvaluator().Evaluate(*m_, {&input_wrong_shape}).status().message(), "Shape mismatch at parameter 0. Computation expected s32[1]{0}, " "but arg was s32[2]{0}."); EXPECT_EQ(HloEvaluator() .Evaluate(*m_->entry_computation(), {&input_wrong_shape}) .status() .message(), "Shape mismatch at parameter 0. Computation expected s32[1]{0}, " "but arg was s32[2]{0}."); } TEST_F(HloEvaluatorTest, EvaluateWithWrongNumberOfInputs) { const absl::string_view hlo_text = R"( HloModule Test ENTRY main { p0 = s32[1] parameter(0) ROOT sum = s32[1] add(p0, p0) } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal input = LiteralUtil::CreateR1<int32_t>({0}); EXPECT_EQ(HloEvaluator().Evaluate(*m_, {&input, &input}).status().message(), "Expected 1 argument, but got 2."); EXPECT_EQ(HloEvaluator() .Evaluate(*m_->entry_computation(), {&input, &input}) .status() .message(), "Expected 1 argument, but got 2."); } TEST_F(HloEvaluatorTest, PreserveFusionInputLayout) { const absl::string_view hlo_text = R"( HloModule FusionInputLayout fused_computation { param_0 = f32[20,20]{0,1} parameter(0) ROOT bitcast = f32[20,20]{1,0} bitcast(param_0) } ENTRY kernel_entry { parameter.0 = f32[20,20]{0,1} parameter(0) ROOT fusion = f32[20,20]{1,0} fusion(parameter.0), kind=kLoop, calls=fused_computation })"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); auto args = MakeFakeArguments(m_.get()).value(); TF_ASSERT_OK_AND_ASSIGN(Literal actual, Evaluate({&args[0]})); EXPECT_TRUE(absl::c_equal(args[0].data<float>(), actual.data<float>())); } TEST_F(HloEvaluatorTest, PreserveFusionOutputLayout) { const absl::string_view hlo_text = R"( HloModule FusionOutputLayout fused_computation { param_0 = f32[20,20]{1,0} parameter(0) ROOT bitcast = f32[20,20]{0,1} bitcast(param_0) } ENTRY kernel_entry { parameter.0 = f32[20,20]{1,0} parameter(0) ROOT fusion = f32[20,20]{0,1} fusion(parameter.0), kind=kLoop, calls=fused_computation })"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); auto args = MakeFakeArguments(m_.get()).value(); TF_ASSERT_OK_AND_ASSIGN(Literal actual, Evaluate({&args[0]})); EXPECT_TRUE(absl::c_equal(args[0].data<float>(), actual.data<float>())); } TEST_F(HloEvaluatorTest, PreserveMOFusionOutputLayout) { const absl::string_view hlo_text = R"( HloModule MOFusionOutputLayout fused_computation { param_0 = f32[20,20]{1,0} parameter(0) bitcast = f32[20,20]{0,1} bitcast(param_0) ROOT tuple = (f32[20,20]{0,1}) tuple(bitcast) } ENTRY kernel_entry { parameter.0 = f32[20,20]{1,0} parameter(0) ROOT fusion = (f32[20,20]{0,1}) fusion(parameter.0), kind=kLoop, calls=fused_computation })"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); auto args = MakeFakeArguments(m_.get()).value(); TF_ASSERT_OK_AND_ASSIGN(Literal actual_tuple, Evaluate({&args[0]})); std::vector<Literal> actual_literals = actual_tuple.DecomposeTuple(); EXPECT_TRUE( absl::c_equal(args[0].data<float>(), actual_literals[0].data<float>())); } TEST_F(HloEvaluatorTest, EvaluateCustomCall_NoHandler) { const absl::string_view hlo_text = R"( HloModule EvaluateCustomCall_NoHandler ENTRY kernel_entry { parameter.0 = u32[2,2]{1,0} parameter(0) ROOT test_root = (u32[2,2]{1,0}) custom-call(parameter.0), custom_call_target="_my_custom_call" } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); auto args = MakeFakeArguments(m_.get()).value(); EXPECT_EQ(HloEvaluator().Evaluate(*m_, {&args[0]}).status().code(), ::tsl::error::UNIMPLEMENTED); } TEST_F(HloEvaluatorTest, EvaluateCustomCall_HandlerError) { const absl::string_view hlo_text = R"( HloModule EvaluateCustomCall_HandlerError ENTRY kernel_entry { parameter.0 = u32[2,2]{1,0} parameter(0) ROOT test_root = (u32[2,2]{1,0}) custom-call(parameter.0), custom_call_target="_my_custom_call" } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); auto args = MakeFakeArguments(m_.get()).value(); HloEvaluator evaluator; evaluator.set_custom_call_handler([](const HloInstruction* custom_call, absl::Span<const Literal*> operands) { return Internal("Test error"); }); EXPECT_EQ(evaluator.Evaluate(*m_, {&args[0]}).status().code(), ::tsl::error::INTERNAL); } TEST_F(HloEvaluatorTest, EvaluateCustomCall_ManyInputs) { const absl::string_view hlo_text = R"( HloModule EvaluateCustomCall_ManyInputs ENTRY kernel_entry { parameter.0 = u32[1]{0} parameter(0) parameter.1 = u32[1]{0} parameter(1) ROOT test_root = u32[1]{0} custom-call(parameter.0, parameter.1), custom_call_target="_my_custom_call" } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); auto args = MakeFakeArguments(m_.get()).value(); HloEvaluator evaluator; evaluator.set_custom_call_handler([](const HloInstruction* custom_call, absl::Span<const Literal*> operands) { EXPECT_EQ(HloOpcode::kCustomCall, custom_call->opcode()); EXPECT_EQ("_my_custom_call", custom_call->custom_call_target()); EXPECT_EQ(2, custom_call->operand_count()); EXPECT_EQ(2, operands.size()); auto output = Literal::CreateFromShape(custom_call->shape()); auto operand0_data = operands[0]->data<uint32_t>(); auto operand1_data = operands[1]->data<uint32_t>(); auto output_data = output.data<uint32_t>(); output_data[0] = operand0_data[0] + operand1_data[0]; return output; }); TF_ASSERT_OK_AND_ASSIGN( Literal actual_literal, evaluator.Evaluate(*m_->entry_computation(), {&args[0], &args[1]})); auto arg0_data = args[0].data<uint32_t>(); auto arg1_data = args[1].data<uint32_t>(); std::vector<uint32_t> expected_data = {arg0_data[0] + arg1_data[0]}; EXPECT_TRUE(absl::c_equal(expected_data, actual_literal.data<uint32_t>())); } TEST_F(HloEvaluatorTest, EvaluateCustomCallInFusion) { const absl::string_view hlo_text = R"( fusion1 { p = f32[] parameter(0) ROOT c = f32[] custom-call(p), custom_call_target="__cchandler1" } ENTRY e { p = f32[] parameter(0) ROOT f = f32[] fusion(p), kind=kCustom, calls=fusion1 })"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); auto input = LiteralUtil::CreateR0<float>(0); HloEvaluator evaluator; evaluator.set_custom_call_handler([](const HloInstruction* custom_call, absl::Span<const Literal*> operands) { return LiteralUtil::CreateR0<float>(1 - operands[0]->GetFirstElement<float>()); }); TF_ASSERT_OK_AND_ASSIGN(auto output, evaluator.Evaluate(*m_, {&input})); EXPECT_EQ(output, LiteralUtil::CreateR0<float>(1)); } TEST_F(HloEvaluatorTest, IsFiniteF16) { const absl::string_view hlo_text = R"( HloModule test ENTRY IsFiniteTest { c = f16[6] constant({nan, 7, nan, -1, inf, -inf}) ROOT is-finite = pred[6] is-finite(c) })"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN( Literal actual_literal, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_THAT(actual_literal.data<bool>(), ::testing::ElementsAre(false, true, false, true, false, false)); } TEST_F(HloEvaluatorTest, IsFiniteBf16) { const absl::string_view hlo_text = R"( HloModule test ENTRY IsFiniteTest { c = bf16[6] constant({nan, 7, nan, -1, inf, -inf}) ROOT is-finite = pred[6] is-finite(c) })"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN( Literal actual_literal, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_THAT(actual_literal.data<bool>(), ::testing::ElementsAre(false, true, false, true, false, false)); } TEST_F(HloEvaluatorTest, ZeroSizedIotaWithHugeDimension) { const absl::string_view hlo_text = R"( HloModule test ENTRY t { ROOT i = f32[1000000000000, 0] iota(), iota_dimension=0 })"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN( Literal actual_literal, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_THAT(actual_literal.data<float>(), ::testing::IsEmpty()); } TEST_F(HloEvaluatorTest, CopyStartCopyDone) { const absl::string_view hlo_text = R"( HloModule test ENTRY CopyStartCopyDone { init = f32[] constant(42.0) copy-start = (f32[]{:S(1)}, f32[], u32[]) copy-start(init) ROOT copy-done = f32[] copy-done(copy-start) } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal expected = LiteralUtil::CreateR0<float>(42.0f); TF_ASSERT_OK_AND_ASSIGN( Literal result, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, CopyDifferentTypes) { TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(R"( HloModule test ENTRY CopyDifferentTypes { c = bf16[3] constant({1, 2, 3}) ROOT copy = f32[3] copy(bf16[3] c) } )")); TF_ASSERT_OK_AND_ASSIGN( Literal result, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR1<float>({1.f, 2.f, 3.f}), result)); } TEST_F(HloEvaluatorTest, AsyncOps) { const absl::string_view hlo_text = R"( HloModule test ENTRY AsyncOps { init = f32[] constant(42.0) async-start = ((f32[]), f32[], u32[]) negate-start(init) async-update = ((f32[]), f32[], u32[]) negate-update(async-start) ROOT async-done = f32[] negate-done(async-update) } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal expected = LiteralUtil::CreateR0<float>(-42.0f); TF_ASSERT_OK_AND_ASSIGN( Literal result, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, MapBF16) { const absl::string_view hlo_text = R"( HloModule test map_computation { p = bf16[] parameter(0) add = bf16[] add(p, p) ROOT conv = f32[] convert(add) } ENTRY CopyStartCopyDone { c = bf16[3] constant({1, 2, 3}) ROOT map = f32[3] map(c), to_apply=map_computation } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal expected = LiteralUtil::CreateR1<float>({2.f, 4.f, 6.f}); TF_ASSERT_OK_AND_ASSIGN( Literal result, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, MapS16) { const absl::string_view hlo_text = R"( HloModule test map_computation { p = s16[] parameter(0) add = s16[] add(p, p) ROOT conv = f32[] convert(add) } ENTRY CopyStartCopyDone { c = s16[3] constant({1, 2, 3}) ROOT map = f32[3] map(c), to_apply=map_computation } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal expected = LiteralUtil::CreateR1<float>({2.f, 4.f, 6.f}); TF_ASSERT_OK_AND_ASSIGN( Literal result, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, MapU16) { const absl::string_view hlo_text = R"( HloModule test map_computation { p = u16[] parameter(0) add = u16[] add(p, p) ROOT conv = f32[] convert(add) } ENTRY CopyStartCopyDone { c = u16[3] constant({1, 2, 3}) ROOT map = f32[3] map(c), to_apply=map_computation } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal expected = LiteralUtil::CreateR1<float>({2.f, 4.f, 6.f}); TF_ASSERT_OK_AND_ASSIGN( Literal result, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, MapMixed) { const absl::string_view hlo_text = R"( HloModule test map_computation { p0 = u16[] parameter(0) p1 = f32[] parameter(1) c0 = f32[] convert(p0) ROOT add = f32[] add(c0, p1) } ENTRY CopyStartCopyDone { c0 = u16[3] constant({1, 2, 3}) c1 = f32[3] constant({1.5, 2.5, 3.5}) ROOT map = f32[3] map(c0, c1), to_apply=map_computation } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal expected = LiteralUtil::CreateR1<float>({2.5f, 4.5f, 6.5f}); TF_ASSERT_OK_AND_ASSIGN( Literal result, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, DotUpcast) { const absl::string_view hlo_text = R"( HloModule test ENTRY DotUpcast { l = s16[4,3]{1,0} parameter(0) r = s8[3,2]{1,0} parameter(1) ROOT result = s32[4,2] dot(l, r), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; auto lhs_array = std::make_unique<Array2D<int16_t>>(4, 3); lhs_array->FillUnique(1); auto lhs_literal = LiteralUtil::CreateR2FromArray2D<int16_t>(*lhs_array); auto rhs_array = std::make_unique<Array2D<int8_t>>(3, 2); rhs_array->FillUnique(1); auto rhs_literal = LiteralUtil::CreateR2FromArray2D<int8_t>(*rhs_array); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&lhs_literal, &rhs_literal})); auto expected_array = Array2D<int32_t>({{22, 28}, {58, 76}, {94, 124}, {130, 172}}); auto expected = LiteralUtil::CreateR2FromArray2D<int32_t>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, SortC64) { const absl::string_view hlo_text = R"( HloModule m sort_lt_comparator { parameter.0 = c64[] parameter(0) real.0 = f32[] real(parameter.0) parameter.1 = c64[] parameter(1) real.1 = f32[] real(parameter.1) ROOT compare = pred[] compare(real.0, real.1), direction=LT } ENTRY main { c = c64[3] constant({(2, 0), (4, 0), (6, 0)}) ROOT sort = c64[3]{0} sort(c), dimensions={0}, to_apply=sort_lt_comparator } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal expected = LiteralUtil::CreateR1<std::complex<float>>({2.f, 4.f, 6.f}); TF_ASSERT_OK_AND_ASSIGN( Literal result, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, ConvertC128ToC64) { const absl::string_view hlo_text = R"( HloModule m ENTRY main { c = c128[3] constant({(2, 0), (4, 0), (6, 0)}) ROOT sort = c64[3]{0} convert(c) } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal expected = LiteralUtil::CreateR1<std::complex<float>>({2.f, 4.f, 6.f}); TF_ASSERT_OK_AND_ASSIGN( Literal result, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, RecursivelyEvaluateNonConstantOperands) { Literal c0_literal = LiteralUtil::CreateR2<float>({{0.f, 2.f}, {2.f, 4.f}}); Literal c1_literal = LiteralUtil::CreateR2<float>({{0.f, 5.f}, {0.f, 4.f}}); Literal c2_literal = LiteralUtil::CreateR2<float>({{2.f, 4.f}, {4.f, 4.f}}); Shape shape = c0_literal.shape(); HloComputation::Builder b(TestName()); HloInstruction* c0 = b.AddInstruction(HloInstruction::CreateConstant(std::move(c0_literal))); HloInstruction* c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(c1_literal))); HloInstruction* c2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(c2_literal))); HloInstruction* add0 = b.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, c0, c1)); HloInstruction* add1 = b.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, c1, c2)); HloInstruction* add2 = b.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, add0, add1)); m_->AddEntryComputation(b.Build()); Literal expected = LiteralUtil::CreateR2<float>({{2, 16}, {6, 16}}); TestRecursivelyEvaluateInstruction(add2, expected); } TEST_F(HloEvaluatorTest, GetTupleElementOnPartiallyKnownTupleSucceeds) { Literal c0_literal = LiteralUtil::CreateR2<float>({{0.f, 2.f}, {2.f, 4.f}}); Shape shape = c0_literal.shape(); HloComputation::Builder b(TestName()); HloInstruction* c0 = b.AddInstruction(HloInstruction::CreateConstant(std::move(c0_literal))); HloInstruction* p0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "param.0")); HloInstruction* p1 = b.AddInstruction(HloInstruction::CreateParameter(1, shape, "param.1")); HloInstruction* tuple = b.AddInstruction(HloInstruction::CreateTuple({p0, p1, c0})); HloInstruction* gte = b.AddInstruction(HloInstruction::CreateGetTupleElement(tuple, 2)); m_->AddEntryComputation(b.Build()); Literal expected = LiteralUtil::CreateR2<float>({{0.f, 2.f}, {2.f, 4.f}}); TestRecursivelyEvaluateInstruction(gte, expected); } TEST_F(HloEvaluatorTest, InfeedFailure) { HloComputation::Builder b(TestName()); HloInstruction* token = b.AddInstruction(HloInstruction::CreateToken()); HloInstruction* infeed = b.AddInstruction(HloInstruction::CreateInfeed( ShapeUtil::MakeShape(F32, {4, 4}), token, "")); m_->AddEntryComputation(b.Build()); TestRecursiveEvaluationFailure(infeed); } TEST_F(HloEvaluatorTest, GetUnknownTupleElementFails) { Literal c0_literal = LiteralUtil::CreateR2<float>({{0.f, 2.f}, {2.f, 4.f}}); Shape shape = c0_literal.shape(); HloComputation::Builder b(TestName()); HloInstruction* c0 = b.AddInstruction(HloInstruction::CreateConstant(std::move(c0_literal))); HloInstruction* p0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "param.0")); HloInstruction* p1 = b.AddInstruction(HloInstruction::CreateParameter(1, shape, "param.1")); HloInstruction* tuple = b.AddInstruction(HloInstruction::CreateTuple({p0, p1, c0})); HloInstruction* gte = b.AddInstruction(HloInstruction::CreateGetTupleElement(tuple, 0)); m_->AddEntryComputation(b.Build()); TestRecursiveEvaluationFailure(gte); } TEST_F(HloEvaluatorTest, GetTupleElementFromNestedTupleSucceeds) { Literal c0_literal = LiteralUtil::CreateR2<float>({{0.f, 2.f}, {2.f, 4.f}}); Shape shape = c0_literal.shape(); HloComputation::Builder b(TestName()); HloInstruction* c0 = b.AddInstruction(HloInstruction::CreateConstant(std::move(c0_literal))); HloInstruction* p0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "param.0")); HloInstruction* p1 = b.AddInstruction(HloInstruction::CreateParameter(1, shape, "param.1")); HloInstruction* tuple0 = b.AddInstruction(HloInstruction::CreateTuple({p0, c0})); HloInstruction* tuple1 = b.AddInstruction(HloInstruction::CreateTuple({tuple0, p1})); HloInstruction* gte0 = b.AddInstruction(HloInstruction::CreateGetTupleElement(tuple1, 0)); HloInstruction* gte1 = b.AddInstruction(HloInstruction::CreateGetTupleElement(gte0, 1)); m_->AddEntryComputation(b.Build()); Literal expected = LiteralUtil::CreateR2<float>({{0.f, 2.f}, {2.f, 4.f}}); TestRecursivelyEvaluateInstruction(gte1, expected); } TEST_F(HloEvaluatorTest, GetTupleElementInterleavedWithTupleSucceeds) { Literal c0_literal = LiteralUtil::CreateR2<float>({{0.f, 2.f}, {2.f, 4.f}}); Shape shape = c0_literal.shape(); HloComputation::Builder b(TestName()); HloInstruction* c0 = b.AddInstruction(HloInstruction::CreateConstant(std::move(c0_literal))); HloInstruction* p0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "param.0")); HloInstruction* p1 = b.AddInstruction(HloInstruction::CreateParameter(1, shape, "param.1")); HloInstruction* p2 = b.AddInstruction(HloInstruction::CreateParameter(2, shape, "param.2")); HloInstruction* tuple0 = b.AddInstruction(HloInstruction::CreateTuple({p0, c0})); HloInstruction* tuple1 = b.AddInstruction(HloInstruction::CreateTuple({tuple0, p1})); HloInstruction* gte0 = b.AddInstruction(HloInstruction::CreateGetTupleElement(tuple1, 0)); HloInstruction* tuple2 = b.AddInstruction(HloInstruction::CreateTuple({gte0, p2})); HloInstruction* gte1 = b.AddInstruction(HloInstruction::CreateGetTupleElement(tuple2, 0)); HloInstruction* gte2 = b.AddInstruction(HloInstruction::CreateGetTupleElement(gte1, 1)); m_->AddEntryComputation(b.Build()); Literal expected = LiteralUtil::CreateR2<float>({{0.f, 2.f}, {2.f, 4.f}}); TestRecursivelyEvaluateInstruction(gte2, expected); } TEST_F(HloEvaluatorTest, ParameterThroughCallSucceeds) { constexpr absl::string_view kHloModule = R"( HloModule parameter_through_call %identity { ROOT %param = s32[] parameter(0) } ENTRY parameter_through_call { %constant = s32[] constant(42) ROOT %call = s32[] call(s32[] %constant), to_apply=%identity } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); const HloInstruction* parameter_instruction = nullptr; for (const auto* computation : hlo_module->computations()) { for (const auto* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kParameter) { parameter_instruction = instruction; } } } ASSERT_NE(parameter_instruction, nullptr); Literal expected = LiteralUtil::CreateR0<int32_t>(42); TF_ASSERT_OK_AND_ASSIGN( Literal result, evaluator_.Evaluate(parameter_instruction, {}, true)); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, ParameterThroughCallSucceedsWithPrecomputation) { constexpr absl::string_view kHloModule = R"( HloModule parameter_through_call %identity { ROOT %param = s32[] parameter(0) } ENTRY parameter_through_call { %constant = s32[] constant(42) ROOT %call = s32[] call(s32[] %constant), to_apply=%identity } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); const HloInstruction* parameter_instruction = nullptr; for (const auto* computation : hlo_module->computations()) { for (const auto* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kParameter) { parameter_instruction = instruction; } } } ASSERT_NE(parameter_instruction, nullptr); Literal expected = LiteralUtil::CreateR0<int32_t>(42); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<TuplePointsToAnalysis> tuple_points_to, TuplePointsToAnalysis::Run(hlo_module.get())); std::unique_ptr<CallGraph> call_graph = CallGraph::Build(hlo_module.get()); TF_ASSERT_OK_AND_ASSIGN( Literal result, evaluator_.Evaluate(parameter_instruction, {tuple_points_to.get(), call_graph.get()}, true)); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } class PatternMatchParseWhileLoopTest : public HloTestBase {}; TEST_F(PatternMatchParseWhileLoopTest, LoopBoundDefinedInsideOfCond) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %while_condition { %param = (s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %loop_bound = s32[] constant(5) ROOT result = pred[] compare(%gte.0, %loop_bound), direction=LT } %while_body { %param = (s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = f32[1024, 1024] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.1, f32[1024, 1024] %gte.2) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %constant.0 = s32[] constant(0) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((s32[], f32[1024, 1024], f32[1024, 1024]) %while), index=2 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_op); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 5); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 5); } TEST_F(PatternMatchParseWhileLoopTest, LoopBoundDefinedInsideOfCondWithPrecomputation) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %while_condition { %param = (s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %loop_bound = s32[] constant(5) ROOT result = pred[] compare(%gte.0, %loop_bound), direction=LT } %while_body { %param = (s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = f32[1024, 1024] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.1, f32[1024, 1024] %gte.2) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %constant.0 = s32[] constant(0) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((s32[], f32[1024, 1024], f32[1024, 1024]) %while), index=2 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<TuplePointsToAnalysis> tuple_points_to, TuplePointsToAnalysis::Run(hlo_module.get())); std::unique_ptr<CallGraph> call_graph = CallGraph::Build(hlo_module.get()); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop( while_op, {tuple_points_to.get(), call_graph.get()}); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 5); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 5); } TEST_F(PatternMatchParseWhileLoopTest, LoopBoundDefinedOutsideOfCond) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %while_condition { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 ROOT result = pred[] compare(%gte.0, %gte.1), direction=LT } %while_body { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.2, f32[1024, 1024] %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %constant.0 = s32[] constant(0) %constant.1 = s32[] constant(10) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %constant.1, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %while), index=3 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_op); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 10); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 10); } TEST_F(PatternMatchParseWhileLoopTest, LoopBoundComputedOutsideOfCond) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %while_condition { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 ROOT result = pred[] compare(%gte.0, %gte.1), direction=LT } %while_body { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.2, f32[1024, 1024] %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %constant.0 = s32[] constant(0) %constant.1 = s32[] constant(10) %constant.2 = s32[] constant(4) %loop_bound = s32[] multiply(s32[] %constant.1, s32[] %constant.2) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %loop_bound, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %while), index=3 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_op); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 40); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 40); } TEST_F(PatternMatchParseWhileLoopTest, StepSizeNotOne) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %while_condition { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 ROOT result = pred[] compare(%gte.0, %gte.1), direction=LT } %while_body { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.2, f32[1024, 1024] %gte.3) %constant = s32[] constant(4) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %constant.0 = s32[] constant(0) %constant.1 = s32[] constant(10) %constant.2 = s32[] constant(4) %loop_bound = s32[] multiply(s32[] %constant.1, s32[] %constant.2) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %loop_bound, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %while), index=3 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_op); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 10); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 4); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 40); } TEST_F(PatternMatchParseWhileLoopTest, RecursiveCond) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %compute_pred { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %compare = pred[] compare(gte.0, %gte.1), direction=LT ROOT %tuple = (pred[]) tuple(pred[] %compare) } %while_condition { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %call = (pred[]) call((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %param), to_apply=%compute_pred ROOT %gte.4 = pred[] get-tuple-element((pred[]) %call), index=0 } %while_body { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.2, f32[1024, 1024] %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %constant.0 = s32[] constant(0) %loop_bound = s32[] constant(10) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %loop_bound, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %while), index=3 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_op); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 10); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 10); } TEST_F(PatternMatchParseWhileLoopTest, RecursiveCondGetTupleElement) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %compute_pred { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %compare = pred[] compare(gte.0, %gte.1), direction=LT ROOT %tuple = (pred[]) tuple(pred[] %compare) } %get_tuple_element { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %call = (pred[]) call((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %param), to_apply=%compute_pred %gte.4 = pred[] get-tuple-element((pred[]) %call), index=0 ROOT %tuple.1 = (pred[]) tuple(pred[] %gte.4) } %while_condition { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %call = (pred[]) call((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %param), to_apply=%get_tuple_element ROOT %gte.4 = pred[] get-tuple-element((pred[]) %call), index=0 } %while_body { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.2, f32[1024, 1024] %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %constant.0 = s32[] constant(0) %loop_bound = s32[] constant(10) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %loop_bound, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %while), index=3 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_op); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 10); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 10); } TEST_F(PatternMatchParseWhileLoopTest, LoopBoundDependsOnAnotherLoop) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %compute_pred.0 { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %compare = pred[] compare(gte.0, %gte.1), direction=LT ROOT %tuple = (pred[]) tuple(pred[] %compare) } %while_condition.0 { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %call = (pred[]) call((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %param), to_apply=%compute_pred.0 ROOT %gte.4 = pred[] get-tuple-element((pred[]) %call), index=0 } %while_body.0 { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.2, f32[1024, 1024] %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } %compute_pred.1 { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %compare = pred[] compare(gte.0, %gte.1), direction=LT ROOT %tuple = (pred[]) tuple(pred[] %compare) } %while_condition.1 { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %call = (pred[]) call((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %param), to_apply=%compute_pred.1 ROOT %gte.4 = pred[] get-tuple-element((pred[]) %call), index=0 } %while_body.1 { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.2, f32[1024, 1024] %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %param.2 = f32[1024, 1024] parameter(1) %constant.0 = s32[] constant(0) %loop_bound = s32[] constant(10) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init.0 = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %loop_bound, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while.0 = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init.0), condition=%while_condition.0, body=%while_body.0 %result.0 = f32[1024, 1024] get-tuple-element((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %while.0), index=3 %new_loop_bound = s32[] get-tuple-element((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %while.0), index=0 %while_init.1 = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %new_loop_bound, f32[1024, 1024] %param.2, f32[1024, 1024] %result.0) %while.1 = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init.1), condition=%while_condition.1, body=%while_body.1 ROOT %result.1 = f32[1024, 1024] get-tuple-element((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %while.1), index=3 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_op); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 10); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 10); } TEST_F(PatternMatchParseWhileLoopTest, DynamicLoop) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %while_condition { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 ROOT result = pred[] compare(%gte.0, %gte.1), direction=LT } %while_body { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.2, f32[1024, 1024] %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %param.2 = s32[] parameter(1) %loop_bound = s32[] constant(10) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %param.2, s32[] %loop_bound, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %while), index=3 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_op); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_TRUE(parsed_while_loop->is_dynamic()); } TEST_F(PatternMatchParseWhileLoopTest, BooleanCond) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %while_condition { %param = (pred[], f32[1024, 1024], f32[1024, 1024]) parameter(0) ROOT %gte.0 = pred[] get-tuple-element(%param), index=0 } %while_body { %param = (pred[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = pred[] get-tuple-element(%param), index=0 %gte.1 = f32[1024, 1024] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.1, f32[1024, 1024] %gte.2) %new_loop_cond = pred[] constant(false) ROOT %loop_result = (pred[], f32[1024, 1024], f32[1024, 1024]) tuple(%new_loop_cond, %gte.1, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %constant.0 = pred[] constant(true) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (pred[], f32[1024, 1024], f32[1024, 1024]) tuple(pred[] %constant.0, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (pred[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((pred[], f32[1024, 1024], f32[1024, 1024]) %while), index=2 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_op); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 1); } TEST_F(PatternMatchParseWhileLoopTest, NestedLoop) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %nested_while_condition { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 ROOT result = pred[] compare(%gte.0, %gte.1), direction=LT } %nested_while_body { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.2, f32[1024, 1024] %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } %while_condition { %param = (s32[], s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 ROOT result = pred[] compare(%gte.0, %gte.1), direction=LT } %while_body { %param = (s32[], s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = s32[] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %gte.4 = f32[1024, 1024] get-tuple-element(%param), index=4 %constant.4 = s32[] constant(0) %nested_while_init = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.4, s32[] %gte.2, f32[1024, 1024] %gte.3, f32[1024, 1024] %gte.4) %nested_while = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%nested_while_init), condition=%nested_while_condition, body=%nested_while_body %nested_while_result = f32[1024, 1024] get-tuple-element((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %nested_while), index=3 %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %gte.3, %nested_while_result) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %param.2 = s32[] parameter(1) %constant.0 = s32[] constant(0) %constant.2 = s32[] constant(4) %loop_bound = s32[] multiply(s32[] %param.2, s32[] %constant.2) %constant.3 = s32[] constant(5) %nested_loop_bound = s32[] multiply(s32[] %constant.3, s32[] %constant.2) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %loop_bound, s32[] %nested_loop_bound, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (s32[], s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((s32[], s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %while), index=4 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); CHECK_EQ(while_op->opcode(), HloOpcode::kWhile); HloComputation* while_body = while_op->while_body(); HloInstruction* nested_while = while_body->root_instruction()->mutable_operand(4)->mutable_operand(0); CHECK_EQ(nested_while->opcode(), HloOpcode::kWhile); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(nested_while); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 20); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 20); } TEST_F(PatternMatchParseWhileLoopTest, CopiedLoopCond) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %while_condition { %param = (s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %copy.0 = s32[] copy(s32[] %gte.0) %loop_bound = s32[] constant(5) %result = pred[] compare(%gte.0, %loop_bound), direction=LT ROOT %copy.1 = pred[] copy(pred[] %result) } %while_body { %param = (s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = f32[1024, 1024] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.1, f32[1024, 1024] %gte.2) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %constant.0 = s32[] constant(0) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((s32[], f32[1024, 1024], f32[1024, 1024]) %while), index=2 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_op); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 5); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 5); } TEST_F(HloEvaluatorTest, DotTraced) { const absl::string_view hlo_text = R"( HloModule test ENTRY DotUpcast { l = s16[4,3]{1,0} parameter(0) r = s8[3,2]{1,0} parameter(1) ROOT result = s32[4,2] dot(l, r), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; auto lhs_array = std::make_unique<Array2D<int16_t>>(4, 3); lhs_array->FillUnique(1); auto lhs_literal = LiteralUtil::CreateR2FromArray2D<int16_t>(*lhs_array); auto rhs_array = std::make_unique<Array2D<int8_t>>(3, 2); rhs_array->FillUnique(1); auto rhs_literal = LiteralUtil::CreateR2FromArray2D<int8_t>(*rhs_array); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); absl::flat_hash_set<std::array<int64_t, 3>> macs_traced; auto mac_handler = [&macs_traced](int64_t result_index, int64_t lhs_index, int64_t rhs_index) -> void { macs_traced.insert( std::array<int64_t, 3>{result_index, lhs_index, rhs_index}); }; evaluator_.set_trace_mac_handler(mac_handler); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&lhs_literal, &rhs_literal})); auto expected_array = Array2D<int32_t>({{22, 28}, {58, 76}, {94, 124}, {130, 172}}); auto expected = LiteralUtil::CreateR2FromArray2D<int32_t>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); const absl::flat_hash_set<std::array<int64_t, 3>> macs_expected = { {1, 0, 1}, {0, 0, 0}, {2, 4, 2}, {5, 6, 1}, {2, 5, 4}, {4, 7, 2}, {2, 3, 0}, {5, 7, 3}, {5, 8, 5}, {4, 6, 0}, {6, 9, 0}, {7, 10, 3}, {7, 11, 5}, {1, 1, 3}, {0, 2, 4}, {3, 4, 3}, {1, 2, 5}, {7, 9, 1}, {6, 10, 2}, {6, 11, 4}, {3, 5, 5}, {4, 8, 4}, {0, 1, 2}, {3, 3, 1}}; EXPECT_EQ(macs_traced, macs_expected); } TEST_F(HloEvaluatorTest, SimpleConvTraced) { HloComputation::Builder b(TestName()); Array4D<float> lhs_array(1, 1, 4, 4); lhs_array.FillWithYX(Array2D<float>({ {1, 2, 3, 4 }, {5, 6, 7, 8 }, {9, 10, 11, 12}, {13, 14, 15, 16}, })); auto lhs_literal = LiteralUtil::CreateR4FromArray4D<float>(lhs_array); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); Array4D<float> rhs_array(1, 1, 2, 2); rhs_array.FillWithYX(Array2D<float>({ {5, 6}, {7, 8}, })); auto rhs_literal = LiteralUtil::CreateR4FromArray4D<float>(rhs_array); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Window window; WindowDimension dim; dim.set_size(2); dim.set_stride(1); dim.set_padding_low(0); dim.set_padding_high(1); dim.set_window_dilation(1); dim.set_base_dilation(1); *window.add_dimensions() = dim; *window.add_dimensions() = dim; ConvolutionDimensionNumbers dnums = XlaBuilder::CreateDefaultConvDimensionNumbers(2); Shape shape = ShapeUtil::MakeShape(F32, {1, 1, 4, 4}); b.AddInstruction(HloInstruction::CreateConvolve( shape, lhs_instruction, rhs_instruction, 1, 1, window, dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); absl::flat_hash_set<std::array<int64_t, 3>> macs_traced; auto mac_handler = [&macs_traced](int64_t result_index, int64_t lhs_index, int64_t rhs_index) -> void { macs_traced.insert( std::array<int64_t, 3>{result_index, lhs_index, rhs_index}); }; evaluator_.set_trace_mac_handler(mac_handler); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); Array4D<float> expected_array(1, 1, 4, 4); expected_array.FillWithYX(Array2D<float>({ {100, 126, 152, 76}, {204, 230, 256, 124}, {308, 334, 360, 172}, {149, 160, 171, 80}, })); auto expected = LiteralUtil::CreateR4FromArray4D<float>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); const absl::flat_hash_set<std::array<int64_t, 3>> macs_expected = { {10, 14, 2}, {7, 7, 0}, {11, 15, 2}, {4, 4, 0}, {3, 7, 2}, {5, 9, 2}, {8, 9, 1}, {12, 12, 0}, {6, 10, 2}, {5, 6, 1}, {13, 14, 1}, {15, 15, 0}, {11, 11, 0}, {0, 5, 3}, {10, 10, 0}, {2, 7, 3}, {13, 13, 0}, {1, 6, 3}, {0, 0, 0}, {4, 9, 3}, {8, 12, 2}, {8, 13, 3}, {9, 9, 0}, {6, 7, 1}, {9, 13, 2}, {2, 6, 2}, {0, 1, 1}, {6, 6, 0}, {5, 10, 3}, {10, 15, 3}, {14, 14, 0}, {7, 11, 2}, {0, 4, 2}, {10, 11, 1}, {6, 11, 3}, {2, 2, 0}, {3, 3, 0}, {9, 14, 3}, {12, 13, 1}, {1, 5, 2}, {5, 5, 0}, {14, 15, 1}, {1, 1, 0}, {2, 3, 1}, {4, 5, 1}, {4, 8, 2}, {9, 10, 1}, {8, 8, 0}, {1, 2, 1}, }; EXPECT_EQ(macs_traced, macs_expected); } TEST(EvalErrorTest, OK) { EXPECT_EQ(std::nullopt, internal::ParseEvalErrorDetail(absl::OkStatus())); } TEST(EvalErrorTest, NoPayload) { EXPECT_EQ(std::nullopt, internal::ParseEvalErrorDetail(absl::InternalError("hmm"))); } TEST(EvalErrorTest, Payload) { absl::Status s = absl::InternalError("hmm"); std::string payload; payload.resize(sizeof(internal::EvalErrorDetail)); absl::little_endian::Store32( const_cast<char*>(payload.data()), static_cast<uint32_t>( internal::EvalErrorDetail::kDynamicValueDependence)); s.SetPayload(internal::kEvalErrorDetailUrl, absl::Cord(payload)); EXPECT_EQ(internal::ParseEvalErrorDetail(s), internal::EvalErrorDetail::kDynamicValueDependence); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/evaluator/hlo_evaluator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/evaluator/hlo_evaluator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9d971230-2c49-4826-81f8-9511039c41a5
cpp
tensorflow/tensorflow
auto_sharding
third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding.cc
third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_test.cc
#include "xla/hlo/experimental/auto_sharding/auto_sharding.h" #include <algorithm> #include <climits> #include <cstddef> #include <cstdint> #include <cstdlib> #include <functional> #include <iterator> #include <limits> #include <memory> #include <numeric> #include <optional> #include <queue> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/btree_set.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_cost_graph.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_device_mesh.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_memory.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_option.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_solver.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_strategy.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_util.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_wrapper.h" #include "xla/hlo/experimental/auto_sharding/cluster_environment.h" #include "xla/hlo/experimental/auto_sharding/matrix.h" #include "xla/hlo/experimental/auto_sharding/metrics.h" #include "xla/hlo/experimental/auto_sharding/profiling_result.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/transforms/hlo_constant_splitter.h" #include "xla/hlo/utils/hlo_live_range.h" #include "xla/hlo/utils/hlo_sharding_util.h" #include "xla/service/buffer_value.h" #include "xla/service/call_graph.h" #include "xla/service/computation_layout.h" #include "xla/service/dump.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_buffer.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_memory_scheduler.h" #include "xla/service/hlo_value.h" #include "xla/service/optimize_input_output_buffer_alias.h" #include "xla/service/sharding_propagation.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace spmd { namespace { constexpr double kSaltiplier = 0.0; } std::vector<double> CommunicationReshardingCostVector( const StrategyGroup& strategy_group, const Shape& operand_shape, const HloSharding& required_sharding, const ClusterEnvironment& cluster_env) { CHECK(!strategy_group.is_tuple) << "Only works with strategy vector."; std::vector<double> ret; ret.reserve(strategy_group.GetStrategies().size()); auto required_sharding_for_resharding = required_sharding.IsTileMaximal() ? HloSharding::Replicate() : required_sharding; for (const ShardingStrategy& x : strategy_group.GetStrategies()) { ret.push_back(cluster_env.ReshardingCost(operand_shape, x.output_sharding, required_sharding_for_resharding)); } return ret; } double ComputeMemoryReshardingCost(const Shape& shape, const HloSharding& src_sharding, const HloSharding& dst_sharding, const DeviceMesh& device_mesh) { int64_t src_n_dim = NumTileDimensions(src_sharding); int64_t dst_n_dim = NumTileDimensions(dst_sharding); int64_t src_sharded_bytes = ByteSizeOfShapeWithSharding(shape, src_sharding); double result = std::max(src_sharded_bytes, ByteSizeOfShapeWithSharding(shape, dst_sharding)); if (src_n_dim != dst_n_dim && src_n_dim != -1 && dst_n_dim != -1) { absl::StatusOr<Shape> inter_shape = ComputeIntermediateShape( src_sharding, dst_sharding, shape, device_mesh); if (inter_shape.ok()) { std::optional<HloSharding> src_inter_sharding = hlo_sharding_util::ReshapeSharding(shape, *inter_shape, src_sharding); std::optional<HloSharding> dst_inter_sharding = hlo_sharding_util::ReshapeSharding(shape, *inter_shape, dst_sharding); if (!src_inter_sharding.has_value() || !dst_inter_sharding.has_value()) { src_inter_sharding = HloSharding::Replicate(); dst_inter_sharding = HloSharding::Replicate(); } result = std::max( result, static_cast<double>(std::max( ByteSizeOfShapeWithSharding(*inter_shape, src_inter_sharding), ByteSizeOfShapeWithSharding(*inter_shape, dst_inter_sharding)))); } } return result - src_sharded_bytes; } std::vector<double> MemoryReshardingCostVector( const StrategyGroup& strategy_group, const Shape& operand_shape, const HloSharding& required_sharding, const ClusterEnvironment& cluster_env) { CHECK(!strategy_group.is_tuple) << "Only works with strategy vector."; std::vector<double> ret; ret.reserve(strategy_group.GetStrategies().size()); auto required_sharding_for_resharding = required_sharding.IsTileMaximal() ? HloSharding::Replicate() : required_sharding; CHECK_OK(required_sharding.Validate(operand_shape)) << strategy_group.ToString(); for (const ShardingStrategy& x : strategy_group.GetStrategies()) { ret.push_back(ComputeMemoryReshardingCost(operand_shape, x.output_sharding, required_sharding_for_resharding, cluster_env.device_mesh_)); } return ret; } std::unique_ptr<StrategyGroup> CreateLeafStrategyGroupWithoutInNodes( const size_t instruction_id, StrategyGroups& strategy_groups) { auto strategy_group = std::make_unique<StrategyGroup>(); strategy_group->is_tuple = false; strategy_group->node_idx = strategy_groups.size(); strategy_groups.push_back(strategy_group.get()); strategy_group->instruction_id = instruction_id; return strategy_group; } std::unique_ptr<StrategyGroup> CreateLeafStrategyGroup( const size_t instruction_id, const HloInstruction* ins, const StrategyMap& strategy_map, StrategyGroups& strategy_groups) { auto strategy_group = CreateLeafStrategyGroupWithoutInNodes(instruction_id, strategy_groups); for (int64_t i = 0; i < ins->operand_count(); ++i) { strategy_group->in_nodes.push_back(strategy_map.at(ins->operand(i)).get()); } return strategy_group; } std::unique_ptr<StrategyGroup> CreateTupleStrategyGroup( const size_t instruction_id) { auto strategy_group = std::make_unique<StrategyGroup>(); strategy_group->is_tuple = true; strategy_group->node_idx = -1; strategy_group->instruction_id = instruction_id; return strategy_group; } std::pair<ReshardingCosts, ReshardingCosts> GenerateReshardingCostsAndMissingShardingsForAllOperands( const HloInstruction* ins, const HloSharding& output_sharding, const StrategyMap& strategy_map, const ClusterEnvironment& cluster_env, const CallGraph& call_graph, InputShardings& input_shardings) { ReshardingCosts communication_resharding_costs; ReshardingCosts memory_resharding_costs; if (input_shardings.shardings.empty() && ins->operand_count() > 0) { input_shardings.shardings.resize(ins->operand_count()); } for (int64_t k = 0; k < ins->operand_count(); ++k) { const HloInstruction* operand = ins->operand(k); const Shape& operand_shape = operand->shape(); const StrategyGroup& operand_strategy_group = *strategy_map.at(operand); const auto& operand_strategies = operand_strategy_group.GetStrategies(); const std::vector<double> zeros(operand_strategies.size(), 0.0); if (operand_shape.IsToken() || operand_shape.rank() == 0) { communication_resharding_costs.push_back(zeros); memory_resharding_costs.push_back(zeros); if (!input_shardings.shardings[k].has_value()) { input_shardings.shardings[k] = HloSharding::Replicate(); } } else { std::optional<HloSharding> cur_input_sharding; CHECK_EQ(input_shardings.shardings.size(), ins->operand_count()); if (input_shardings.shardings[k].has_value()) { cur_input_sharding = input_shardings.shardings[k]; } else { cur_input_sharding = GetInputSharding( ins, k, output_sharding, call_graph, cluster_env.NumDevices()); } bool is_sharding_default_replicated = false; if (!cur_input_sharding.has_value()) { if ((ins->opcode() == HloOpcode::kGather && k == 0) || (ins->opcode() == HloOpcode::kScatter && k != 0)) { is_sharding_default_replicated = true; cur_input_sharding = HloSharding::Replicate(); } else if (ins->opcode() == HloOpcode::kCustomCall) { is_sharding_default_replicated = true; cur_input_sharding = HloSharding::Replicate(); } else if (ins->opcode() == HloOpcode::kRngBitGenerator) { cur_input_sharding = HloSharding::Replicate(); } } CHECK(cur_input_sharding.has_value()); if (!input_shardings.shardings[k].has_value()) { input_shardings.shardings[k] = cur_input_sharding; } if (ins->opcode() == HloOpcode::kGather && k == 0 && is_sharding_default_replicated) { VLOG(2) << "Zeroing out operand 0 resharding costs for gather sharding " << output_sharding.ToString(); communication_resharding_costs.push_back(zeros); memory_resharding_costs.push_back(zeros); input_shardings.shardings[k] = std::nullopt; } else { communication_resharding_costs.push_back( CommunicationReshardingCostVector( operand_strategy_group, operand_shape, *cur_input_sharding, cluster_env)); memory_resharding_costs.push_back( MemoryReshardingCostVector(operand_strategy_group, operand_shape, *cur_input_sharding, cluster_env)); } } } return std::make_pair(communication_resharding_costs, memory_resharding_costs); } std::tuple<ReshardingCosts, ReshardingCosts, InputShardings> GenerateReshardingCostsAndShardingsForAllOperands( const HloInstruction* ins, const HloSharding& output_sharding, const StrategyMap& strategy_map, const ClusterEnvironment& cluster_env, const CallGraph& call_graph) { InputShardings input_shardings_optional; std::pair<ReshardingCosts, ReshardingCosts> resharding_costs = GenerateReshardingCostsAndMissingShardingsForAllOperands( ins, output_sharding, strategy_map, cluster_env, call_graph, input_shardings_optional); for (const auto& sharding_optional : input_shardings_optional.shardings) { CHECK(sharding_optional.has_value()); } return {resharding_costs.first, resharding_costs.second, input_shardings_optional}; } void FollowArrayOrTokenStrategyGroup( const StrategyGroup& src_strategy_group, const Shape& shape, const size_t instruction_id, const ClusterEnvironment& cluster_env, const StableMap<NodeIdx, std::vector<ShardingStrategy>>& pretrimmed_strategy_map, StrategyGroup& strategy_group) { CHECK(shape.IsArray() || shape.IsToken()); std::vector<ShardingStrategy> pretrimmed_strategies; auto pretrimmed_strategy_map_it = pretrimmed_strategy_map.find(src_strategy_group.node_idx); if (pretrimmed_strategy_map_it != pretrimmed_strategy_map.end()) { pretrimmed_strategies = pretrimmed_strategy_map_it->second; } else { strategy_group.following = &src_strategy_group; } const auto& src_strategies = src_strategy_group.GetStrategies(); for (int64_t sid = 0; sid < src_strategies.size() + pretrimmed_strategies.size(); ++sid) { const HloSharding* output_spec; if (sid < src_strategies.size()) { output_spec = &src_strategies[sid].output_sharding; } else { output_spec = &pretrimmed_strategies[sid - src_strategies.size()].output_sharding; VLOG(1) << "Adding outspec from the trimmed strategy map: " << output_spec->ToString(); } const std::string name = ToStringSimple(*output_spec); double compute_cost = 0, communication_cost = 0; double memory_cost = ByteSizeOfShapeWithSharding(shape, *output_spec); size_t num_in_nodes = strategy_group.in_nodes.size(); InputShardings input_shardings{name, {num_in_nodes, *output_spec}}; ReshardingCosts communication_resharding_costs; ReshardingCosts memory_resharding_costs; for (size_t i = 0; i < strategy_group.in_nodes.size(); ++i) { communication_resharding_costs.push_back( CommunicationReshardingCostVector(*strategy_group.in_nodes[i], shape, *output_spec, cluster_env)); memory_resharding_costs.push_back(MemoryReshardingCostVector( *strategy_group.in_nodes[i], shape, *output_spec, cluster_env)); } strategy_group.AddStrategy( ShardingStrategy({*output_spec, compute_cost, communication_cost, memory_cost, communication_resharding_costs, memory_resharding_costs}), input_shardings); } } std::unique_ptr<StrategyGroup> HandlePartialReduce( const HloInstruction* ins, const size_t instruction_id, StrategyGroups& strategy_groups, const ClusterEnvironment& cluster_env, StrategyMap& strategy_map, const CallGraph& call_graph) { absl::StatusOr<int64_t> reduction_dim = GetPartialReduceReductionDim(ins); CHECK_OK(reduction_dim); const Shape& shape = ins->shape(); const HloInstruction* operand = ins->operand(0); const StrategyGroup* src_strategy_group = strategy_map.at(operand).get(); std::unique_ptr<StrategyGroup> strategy_group = CreateTupleStrategyGroup(instruction_id); int64_t output_size = shape.tuple_shapes_size(); for (size_t i = 0; i < output_size; ++i) { std::unique_ptr<StrategyGroup> child_strategy_group = CreateLeafStrategyGroupWithoutInNodes(instruction_id, strategy_groups); child_strategy_group->in_nodes.push_back(src_strategy_group); child_strategy_group->following = src_strategy_group; for (const auto& src_strategy : src_strategy_group->GetStrategies()) { const HloSharding& input_spec = src_strategy.output_sharding; if (input_spec.IsManual() || input_spec.IsManualSubgroup()) { continue; } HloSharding output_spec = input_spec; if (!(input_spec.IsReplicated() || input_spec.IsTileMaximal())) { output_spec = hlo_sharding_util::PartiallyReplicateTiledShardingOnDims( input_spec, {*reduction_dim}); } std::string name = ToStringSimple(output_spec); InputShardings input_shardings = {std::move(name)}; for (int64_t k = 0; k < output_size * 2; ++k) { if (k < output_size) { input_shardings.shardings.push_back(input_spec); } else { input_shardings.shardings.push_back(HloSharding::Replicate()); } } double compute_cost = 0, communication_cost = 0; double memory_cost = ByteSizeOfShapeWithSharding( ins->shape().tuple_shapes(i), output_spec); std::pair<ReshardingCosts, ReshardingCosts> resharding_costs = GenerateReshardingCostsAndMissingShardingsForAllOperands( ins, output_spec, strategy_map, cluster_env, call_graph, input_shardings); child_strategy_group->AddStrategy( ShardingStrategy({std::move(output_spec), compute_cost, communication_cost, memory_cost, std::move(resharding_costs.first), std::move(resharding_costs.second)}), std::move(input_shardings)); } strategy_group->AddChild(std::move(child_strategy_group)); } return strategy_group; } std::unique_ptr<StrategyGroup> MaybeFollowInsStrategyGroup( const StrategyGroup& src_strategy_group, const Shape& shape, const size_t instruction_id, StrategyGroups& strategy_groups, const ClusterEnvironment& cluster_env, const StableMap<NodeIdx, std::vector<ShardingStrategy>>& pretrimmed_strategy_map) { const auto& children = src_strategy_group.GetChildren(); std::unique_ptr<StrategyGroup> strategy_group; if (src_strategy_group.is_tuple) { CHECK(shape.IsTuple()); CHECK_EQ(shape.tuple_shapes_size(), children.size()); strategy_group = CreateTupleStrategyGroup(instruction_id); for (size_t i = 0; i < children.size(); ++i) { auto child_strategies = MaybeFollowInsStrategyGroup( *children[i], shape.tuple_shapes(i), instruction_id, strategy_groups, cluster_env, pretrimmed_strategy_map); child_strategies->tuple_element_idx = i; strategy_group->AddChild(std::move(child_strategies)); } } else { strategy_group = CreateLeafStrategyGroupWithoutInNodes(instruction_id, strategy_groups); strategy_group->in_nodes.push_back(&src_strategy_group); FollowArrayOrTokenStrategyGroup(src_strategy_group, shape, instruction_id, cluster_env, pretrimmed_strategy_map, *strategy_group); } return strategy_group; } absl::StatusOr<std::unique_ptr<StrategyGroup>> FollowReduceStrategy( const HloInstruction* ins, const Shape& output_shape, const HloInstruction* operand, const HloInstruction* unit, const size_t instruction_id, StrategyMap& strategy_map, StrategyGroups& strategy_groups, const ClusterEnvironment& cluster_env, const bool allow_mixed_mesh_shape, const bool crash_at_error) { std::unique_ptr<StrategyGroup> strategy_group; if (output_shape.IsTuple()) { strategy_group = CreateTupleStrategyGroup(instruction_id); for (size_t i = 0; i < ins->shape().tuple_shapes_size(); ++i) { TF_ASSIGN_OR_RETURN( std::unique_ptr<StrategyGroup> child_strategy, FollowReduceStrategy( ins, ins->shape().tuple_shapes().at(i), ins->operand(i), ins->operand(i + ins->shape().tuple_shapes_size()), instruction_id, strategy_map, strategy_groups, cluster_env, allow_mixed_mesh_shape, crash_at_error)); child_strategy->tuple_element_idx = i; strategy_group->AddChild(std::move(child_strategy)); } } else if (output_shape.IsArray()) { strategy_group = CreateLeafStrategyGroup(instruction_id, ins, strategy_map, strategy_groups); const StrategyGroup* src_strategy_group = strategy_map.at(operand).get(); strategy_group->following = src_strategy_group; std::vector<int64_t> op_dim_to_output_dim = GetDimensionMapping(ins->dimensions(), operand->shape().rank()); CHECK_EQ(ins->dimensions().size() + output_shape.rank(), operand->shape().rank()) << "Invalid kReduce: output size + reduced dimensions size != op count"; for (const auto& src_strategy : src_strategy_group->GetStrategies()) { const HloSharding& input_sharding = src_strategy.output_sharding; const auto& tensor_dim_to_mesh = cluster_env.GetTensorDimToMeshDimWrapper( operand->shape(), input_sharding, true, crash_at_error); if (tensor_dim_to_mesh.size() != operand->shape().rank()) { return absl::InvalidArgumentError( "Cannot generate tensor dim to mesh dim mapping"); } std::vector<int64_t> all_reduce_dims; for (int64_t op_dim = 0; op_dim < operand->shape().rank(); ++op_dim) { int64_t mesh_dim = tensor_dim_to_mesh[op_dim]; if (mesh_dim == -1) { continue; } if (op_dim_to_output_dim[op_dim] == -1) { all_reduce_dims.push_back(mesh_dim); } } std::unique_ptr<HloInstruction> operand_clone = operand->Clone(); std::unique_ptr<HloInstruction> unit_clone = unit->Clone(); std::unique_ptr<HloInstruction> new_reduce = HloInstruction::CreateReduce( output_shape, operand_clone.get(), unit_clone.get(), ins->dimensions(), ins->to_apply()); operand_clone->set_sharding(src_strategy.output_sharding); if (!new_reduce->ReplaceOperandWith(0, operand_clone.get()).ok()) { continue; } CHECK(InferReduceShardingFromOperand(new_reduce.get(), false, true)); HloSharding output_spec = new_reduce->sharding(); new_reduce.reset(); operand_clone.reset(); unit_clone.reset(); const std::string name = ToStringSimple(output_spec); double compute_cost = 0, communication_cost = 0; double memory_cost = ByteSizeOfShapeWithSharding(output_shape, output_spec); for (int64_t mesh_dim : all_reduce_dims) { communication_cost += cluster_env.AllReduceCost(memory_cost, mesh_dim); } ReshardingCosts communication_resharding_costs; ReshardingCosts memory_resharding_costs; for (int64_t k = 0; k < ins->operand_count(); ++k) { const HloInstruction* cur_operand = ins->operand(k); const auto& operand_strategy_group = *strategy_map.at(cur_operand); const auto& operand_strategies = operand_strategy_group.GetStrategies(); if (ToString(cur_operand->shape().dimensions()) == ToString(operand->shape().dimensions())) { communication_resharding_costs.push_back( CommunicationReshardingCostVector(operand_strategy_group, cur_operand->shape(), input_sharding, cluster_env)); memory_resharding_costs.push_back(MemoryReshardingCostVector( operand_strategy_group, cur_operand->shape(), input_sharding, cluster_env)); } else { const std::vector<double> zeros(operand_strategies.size(), 0); communication_resharding_costs.push_back(zeros); memory_resharding_costs.push_back(zeros); } } const ShardingStrategy strategy = ShardingStrategy( {output_spec, compute_cost, communication_cost, memory_cost, communication_resharding_costs, memory_resharding_costs}); strategy_group->AddStrategy(strategy, {name, {input_sharding}}); } } else { LOG(FATAL) << "Unhandled kReduce shape: " << ins->shape().ToString(); } return strategy_group; } std::vector<size_t> FindReplicateStrategyIndices( const std::vector<ShardingStrategy>& strategies) { std::vector<size_t> indices; for (size_t i = 0; i < strategies.size(); i++) { if (strategies.at(i).output_sharding.IsReplicated()) { indices.push_back(i); } } return indices; } std::tuple<ReshardingCosts, ReshardingCosts, InputShardings> ReshardingCostsForTupleOperand(const HloInstruction* operand, const StrategyGroup& operand_strategy_vector) { ReshardingCosts communication_resharding_costs; ReshardingCosts memory_resharding_costs; std::vector<HloSharding> tuple_element_shardings; for (size_t tuple_element_idx = 0; tuple_element_idx < operand->shape().tuple_shapes_size(); tuple_element_idx++) { const StrategyGroup& tuple_element_strategy_group = *operand_strategy_vector.GetChildren()[tuple_element_idx]; const auto& tuple_element_strategies = tuple_element_strategy_group.GetStrategies(); std::vector<size_t> indices = FindReplicateStrategyIndices(tuple_element_strategies); CHECK_GT(indices.size(), 0) << "There is no replicated strategy in instruction " << operand->ToString() << ".\nStrategies:\n" << tuple_element_strategy_group.ToString(); memory_resharding_costs.push_back( std::vector<double>(tuple_element_strategies.size(), 0)); communication_resharding_costs.push_back( std::vector<double>(tuple_element_strategies.size(), kInfinityCost)); tuple_element_shardings.push_back(HloSharding::Replicate()); for (const size_t i : indices) { communication_resharding_costs.back().at(i) = 0.0; } } return { communication_resharding_costs, memory_resharding_costs, {{}, {HloSharding::Tuple(operand->shape(), tuple_element_shardings)}}}; } ReshardingCosts CreateZeroReshardingCostsForAllOperands( const HloInstruction* ins, const StrategyMap& strategy_map) { ReshardingCosts resharding_costs; for (size_t i = 0; i < ins->operand_count(); ++i) { const HloInstruction* operand = ins->operand(i); const StrategyGroup& operand_strategy_group = *strategy_map.at(operand); if (operand->shape().IsTuple()) { if (ins->opcode() == HloOpcode::kConditional || ins->opcode() == HloOpcode::kOutfeed) { resharding_costs.push_back(std::vector<double>(1, 0)); } else { CHECK_EQ(ins->operand_count(), 0) << "Do not support instructions with more than one tuple " "operand."; for (size_t tuple_element_idx = 0; tuple_element_idx < operand->shape().tuple_shapes_size(); tuple_element_idx++) { const StrategyGroup& tuple_element_strategy_group = *operand_strategy_group.GetChildren().at(tuple_element_idx); resharding_costs.push_back(std::vector<double>( tuple_element_strategy_group.GetStrategies().size(), 0)); } } } else { const auto& strategies = operand_strategy_group.GetStrategies(); resharding_costs.push_back(std::vector<double>(strategies.size(), 0)); } } return resharding_costs; } void GenerateOutfeedStrategy(const HloInstruction* ins, const Shape& shape, const ClusterEnvironment& cluster_env, const StrategyMap& strategy_map, const double replicated_penalty, StrategyGroup& strategy_group) { HloSharding output_spec = HloSharding::Replicate(); ReshardingCosts communication_resharding_costs; ReshardingCosts memory_resharding_costs; InputShardings input_shardings = {"R"}; const int tuple_size = ins->operand(0)->shape().tuple_shapes_size(); const auto& operand_strategy_group = strategy_map.at(ins->operand(0)); const auto& operand_children = operand_strategy_group->GetChildren(); if (ins->has_sharding()) { std::vector<Shape> operand_shapes(ins->operand_count()); for (int i = 0; i < ins->operand_count(); ++i) { operand_shapes[i] = ins->operand(i)->shape(); } auto all_operands_tuple_shape = ShapeUtil::MakeTupleShape(operand_shapes); auto get_input_sharding = [&](int index) { auto sharding = ins->sharding(); if (sharding.IsTuple()) { return (index >= 0) ? sharding.GetSubSharding(all_operands_tuple_shape, {0, static_cast<int64_t>(index)}) : sharding.GetSubSharding(all_operands_tuple_shape, {1}); } else { return sharding; } }; for (size_t i = 0; i < tuple_size; ++i) { const StrategyGroup& child = *operand_children[i]; const Shape& tuple_shape = ins->operand(0)->shape().tuple_shapes(i); const HloSharding& input_sharding = get_input_sharding(i); input_shardings.shardings.push_back(input_sharding); communication_resharding_costs.push_back( CommunicationReshardingCostVector(child, tuple_shape, input_sharding, cluster_env)); memory_resharding_costs.push_back(MemoryReshardingCostVector( child, tuple_shape, input_sharding, cluster_env)); } const HloSharding& input_sharding = get_input_sharding(-1); input_shardings.shardings.push_back(input_sharding); } else { for (size_t i = 0; i < tuple_size; ++i) { const StrategyGroup& child = *operand_children[i]; const std::vector<double> zeros(child.GetStrategies().size(), 0); communication_resharding_costs.push_back(zeros); memory_resharding_costs.push_back(zeros); } } communication_resharding_costs.push_back({}); memory_resharding_costs.push_back({}); double memory_cost = ByteSizeOfShapeWithSharding(shape, output_spec); strategy_group.AddStrategy( ShardingStrategy({HloSharding::Replicate(), replicated_penalty, 0, memory_cost, std::move(communication_resharding_costs), std::move(memory_resharding_costs)}), input_shardings); } double ComputeCommunicationCost(const HloInstruction* ins, const InputShardings& operand_shardings, const ClusterEnvironment& cluster_env) { switch (ins->opcode()) { case HloOpcode::kGather: { if (operand_shardings.shardings[0].has_value() && !operand_shardings.shardings[0]->IsReplicated()) { auto mesh_shape = cluster_env.device_mesh_.dimensions(); auto mesh_dim = std::distance( mesh_shape.begin(), std::max_element(mesh_shape.begin(), mesh_shape.end())); return cluster_env.AllReduceCost(ByteSizeOfShape(ins->shape()), mesh_dim); } return 0; } default: LOG(FATAL) << "Unhandled instruction " << ins->ToString(); } } void AddReplicatedStrategy( const HloInstruction* ins, const Shape& shape, const ClusterEnvironment& cluster_env, const StrategyMap& strategy_map, const double replicated_penalty, absl::flat_hash_set<int64_t> operands_to_consider_all_strategies_for, StrategyGroup& strategy_group) { HloSharding replicated_strategy = HloSharding::Replicate(); HloSharding output_spec = replicated_strategy; double memory_cost = ByteSizeOfShapeWithSharding(shape, output_spec); CHECK_LE(operands_to_consider_all_strategies_for.size(), 1); if (!operands_to_consider_all_strategies_for.empty()) { int64_t operand_to_consider_all_strategies_for = *operands_to_consider_all_strategies_for.begin(); auto operand = ins->operand(operand_to_consider_all_strategies_for); CHECK(!operand->shape().IsTuple()); const auto& operand_strategy_group = strategy_map.at(operand).get(); const auto& operand_strategies = operand_strategy_group->GetStrategies(); InputShardings input_shardings = {"R"}; input_shardings.shardings.resize(ins->operand_count()); std::vector<InputShardings> possible_input_shardings( operand_strategies.size(), input_shardings); std::vector<ReshardingCosts> possible_communication_resharding_costs( operand_strategies.size(), ReshardingCosts(ins->operand_count())); std::vector<ReshardingCosts> possible_memory_resharding_costs( operand_strategies.size(), ReshardingCosts(ins->operand_count())); for (int64_t k = 0; k < ins->operand_count(); ++k) { const HloInstruction* operand = ins->operand(k); const Shape& operand_shape = operand->shape(); CHECK(!operand_shape.IsTuple()); const StrategyGroup& operand_strategy_group = *strategy_map.at(operand); if (k == operand_to_consider_all_strategies_for) { CHECK_EQ(possible_input_shardings.size(), operand_strategies.size()); for (size_t j = 0; j < possible_input_shardings.size(); ++j) { const auto& operand_sharding = operand_strategies[j].output_sharding; possible_input_shardings[j].shardings[k] = operand_sharding; possible_communication_resharding_costs[j][k] = CommunicationReshardingCostVector(operand_strategy_group, operand_shape, operand_sharding, cluster_env); possible_memory_resharding_costs[j][k] = MemoryReshardingCostVector(operand_strategy_group, operand_shape, operand_sharding, cluster_env); } } else { for (size_t j = 0; j < possible_input_shardings.size(); ++j) { possible_input_shardings[j].shardings[k] = replicated_strategy; possible_communication_resharding_costs[j][k] = CommunicationReshardingCostVector( operand_strategy_group, operand_shape, replicated_strategy, cluster_env); possible_memory_resharding_costs[j][k] = MemoryReshardingCostVector(operand_strategy_group, operand_shape, replicated_strategy, cluster_env); } } } for (size_t j = 0; j < possible_input_shardings.size(); ++j) { double communication_cost = ComputeCommunicationCost( ins, possible_input_shardings[j], cluster_env); strategy_group.AddStrategy( ShardingStrategy( {replicated_strategy, replicated_penalty, communication_cost, memory_cost, std::move(possible_communication_resharding_costs[j]), std::move(possible_memory_resharding_costs[j])}), std::move(possible_input_shardings[j])); } } else { ReshardingCosts communication_resharding_costs; ReshardingCosts memory_resharding_costs; InputShardings input_shardings = {"R"}; if (ins->operand_count() > 0 && ins->operand(0)->shape().IsTuple()) { CHECK_EQ(ins->operand_count(), 1) << "Do not support instructions with more than one tuple " "operand. If this CHECK fails, we will need to fix " "b/233412625."; std::tie(communication_resharding_costs, memory_resharding_costs, input_shardings) = ReshardingCostsForTupleOperand(ins->operand(0), *strategy_map.at(ins->operand(0))); } else { for (int64_t k = 0; k < ins->operand_count(); ++k) { const HloInstruction* operand = ins->operand(k); const Shape& operand_shape = operand->shape(); const StrategyGroup& operand_strategy_group = *strategy_map.at(operand); const auto& operand_strategies = operand_strategy_group.GetStrategies(); if (ins->opcode() == HloOpcode::kConditional) { std::vector<double> zeros(operand_strategies.size(), 0); communication_resharding_costs.push_back(zeros); memory_resharding_costs.push_back(zeros); } else { communication_resharding_costs.push_back( CommunicationReshardingCostVector(operand_strategy_group, operand_shape, output_spec, cluster_env)); memory_resharding_costs.push_back(MemoryReshardingCostVector( operand_strategy_group, operand_shape, output_spec, cluster_env)); input_shardings.shardings.push_back(output_spec); } } } strategy_group.AddStrategy( ShardingStrategy({HloSharding::Replicate(), replicated_penalty, 0, memory_cost, std::move(communication_resharding_costs), std::move(memory_resharding_costs)}), input_shardings); } } double ComputeSortCommunicationCost(const int64_t sort_dim, const int64_t operand_sharded_dim, const int64_t mesh_sharding_dim, const Shape& shape, const ClusterEnvironment& cluster_env) { if (sort_dim == operand_sharded_dim) { return cluster_env.AllToAllCost(ByteSizeOfShape(shape), mesh_sharding_dim); } return 0; } void EnumerateAll1DPartition( const HloInstruction* ins, const Shape& shape, const DeviceMesh& device_mesh, const ClusterEnvironment& cluster_env, const StrategyMap& strategy_map, const bool only_allow_divisible, bool allow_shardings_small_dims_across_many_devices, const std::string& suffix, const CallGraph& call_graph, StrategyGroup& strategy_group) { for (int64_t i = 0; i < shape.rank(); ++i) { for (int64_t j = 0; j < device_mesh.num_dimensions(); ++j) { bool small_dims_sharding_check = !allow_shardings_small_dims_across_many_devices && shape.dimensions(i) < device_mesh.dim(j); bool divisibility_check = (only_allow_divisible && !IsDivisible(shape.dimensions(i), device_mesh.dim(j))); if (device_mesh.dim(j) == 1 || small_dims_sharding_check || divisibility_check) { continue; } const std::string name = absl::StrFormat("S%d @ %d", i, j) + suffix; HloSharding output_spec = Tile(shape, {i}, {j}, device_mesh); double compute_cost = 0, communication_cost = 0; double memory_cost = ByteSizeOfShapeWithSharding(shape, output_spec); ReshardingCosts communication_resharding_costs; ReshardingCosts memory_resharding_costs; InputShardings input_shardings = {name}; if (ins->opcode() == HloOpcode::kConditional) { communication_resharding_costs = CreateZeroReshardingCostsForAllOperands(ins, strategy_map); memory_resharding_costs = CreateZeroReshardingCostsForAllOperands(ins, strategy_map); } else if (ins->operand_count() > 0 && ins->operand(0)->shape().IsTuple()) { CHECK_EQ(ins->operand_count(), 1) << "Do not support instructions with more than one tuple " "operand."; std::tie(communication_resharding_costs, memory_resharding_costs, input_shardings) = ReshardingCostsForTupleOperand(ins->operand(0), *strategy_map.at(ins->operand(0))); } else if (ins->opcode() == HloOpcode::kRngBitGenerator && ins->operand(0)->shape().IsArray()) { input_shardings.shardings.push_back(HloSharding::Replicate()); std::tie(communication_resharding_costs, memory_resharding_costs) = GenerateReshardingCostsAndMissingShardingsForAllOperands( ins, output_spec, strategy_map, cluster_env, call_graph, input_shardings); } else { std::tie(communication_resharding_costs, memory_resharding_costs, input_shardings) = GenerateReshardingCostsAndShardingsForAllOperands( ins, output_spec, strategy_map, cluster_env, call_graph); } if (ins->opcode() == HloOpcode::kSort) { auto sort_ins = xla::DynCast<HloSortInstruction>(ins); CHECK(sort_ins); communication_cost = ComputeSortCommunicationCost( sort_ins->sort_dimension(), i, j, shape, cluster_env); } else if (IsTopKCustomCall(ins)) { communication_cost = ComputeSortCommunicationCost( ins->operand(0)->shape().rank() - 1, i, j, shape, cluster_env); } strategy_group.AddStrategy( ShardingStrategy({output_spec, compute_cost, communication_cost, memory_cost, std::move(communication_resharding_costs), std::move(memory_resharding_costs)}), input_shardings); } } } void BuildStrategyAndCostForOp(const HloInstruction* ins, const Shape& shape, const DeviceMesh& device_mesh, const ClusterEnvironment& cluster_env, const StrategyMap& strategy_map, const CallGraph& call_graph, absl::Span<const int64_t> tensor_dims, StrategyGroup& strategy_group); void EnumerateAllPartition( const HloInstruction* ins, const Shape& shape, const DeviceMesh& device_mesh, const ClusterEnvironment& cluster_env, const StrategyMap& strategy_map, bool only_allow_divisible, bool allow_shardings_small_dims_across_many_devices, const CallGraph& call_graph, const int64_t partition_dimensions, const std::vector<int64_t>& tensor_dims, StrategyGroup& strategy_group) { const auto tensor_dims_size = tensor_dims.size(); if (tensor_dims_size == partition_dimensions) { BuildStrategyAndCostForOp(ins, shape, device_mesh, cluster_env, strategy_map, call_graph, tensor_dims, strategy_group); return; } for (int64_t i = 0; i < shape.rank(); ++i) { auto tensor_it = std::find(tensor_dims.begin(), tensor_dims.end(), i); if (tensor_it != tensor_dims.end()) { continue; } if (!allow_shardings_small_dims_across_many_devices && shape.dimensions(i) < device_mesh.dim(tensor_dims_size)) { continue; } if (only_allow_divisible && !IsDivisible(shape.dimensions(i), device_mesh.dim(tensor_dims_size))) { continue; } std::vector<int64_t> next_tensor_dims = tensor_dims; next_tensor_dims.push_back(i); EnumerateAllPartition( ins, shape, device_mesh, cluster_env, strategy_map, only_allow_divisible, allow_shardings_small_dims_across_many_devices, call_graph, partition_dimensions, next_tensor_dims, strategy_group); } } void BuildStrategyAndCostForOp(const HloInstruction* ins, const Shape& shape, const DeviceMesh& device_mesh, const ClusterEnvironment& cluster_env, const StrategyMap& strategy_map, const CallGraph& call_graph, absl::Span<const int64_t> tensor_dims, StrategyGroup& strategy_group) { std::vector<int64_t> mesh_dims(tensor_dims.size()); std::iota(mesh_dims.begin(), mesh_dims.end(), 0); const std::string name = absl::StrFormat("S{%s} @ {%s}", absl::StrJoin(tensor_dims, ","), absl::StrJoin(mesh_dims, ",")); HloSharding output_spec = Tile(shape, tensor_dims, mesh_dims, device_mesh); double compute_cost = 0, communication_cost = 0; double memory_cost = ByteSizeOfShapeWithSharding(shape, output_spec); InputShardings input_shardings = {name}; ReshardingCosts communication_resharding_costs; ReshardingCosts memory_resharding_costs; if (ins->opcode() == HloOpcode::kConditional) { communication_resharding_costs = CreateZeroReshardingCostsForAllOperands(ins, strategy_map); memory_resharding_costs = CreateZeroReshardingCostsForAllOperands(ins, strategy_map); } else if (ins->operand_count() > 0 && ins->operand(0)->shape().IsTuple()) { CHECK_EQ(ins->operand_count(), 1) << "Do not support instructions with more than one tuple " "operand. If this CHECK fails, we will need to fix " "b/233412625."; std::tie(communication_resharding_costs, memory_resharding_costs, input_shardings) = ReshardingCostsForTupleOperand(ins->operand(0), *strategy_map.at(ins->operand(0))); } else { std::tie(communication_resharding_costs, memory_resharding_costs, input_shardings) = GenerateReshardingCostsAndShardingsForAllOperands( ins, output_spec, strategy_map, cluster_env, call_graph); } int64_t sort_or_topk_dim = -1; if (ins->opcode() == HloOpcode::kSort) { auto sort_ins = xla::DynCast<HloSortInstruction>(ins); CHECK(sort_ins); sort_or_topk_dim = sort_ins->sort_dimension(); } else if (IsTopKCustomCall(ins)) { sort_or_topk_dim = ins->operand(0)->shape().rank() - 1; } if (sort_or_topk_dim != -1) { if (auto index = GetIndex(tensor_dims, sort_or_topk_dim); index != -1) { communication_cost = ComputeSortCommunicationCost( sort_or_topk_dim, sort_or_topk_dim, index, shape, cluster_env); } } strategy_group.AddStrategy( ShardingStrategy({output_spec, compute_cost, communication_cost, memory_cost, std::move(communication_resharding_costs), std::move(memory_resharding_costs)}), input_shardings); } void EnumerateAll1DPartitionReshape(const HloInstruction* ins, const DeviceMesh& device_mesh, const ClusterEnvironment& cluster_env, const StrategyMap& strategy_map, bool only_allow_divisible, const std::string& suffix, StrategyGroup& strategy_group) { const HloInstruction* operand = ins->operand(0); const Shape& operand_shape = operand->shape(); const StrategyGroup& operand_strategy_group = *strategy_map.at(operand); for (int64_t i = 0; i < ins->shape().rank(); ++i) { for (int64_t j = 0; j < device_mesh.num_dimensions(); ++j) { if (device_mesh.dim(j) == 1 || (only_allow_divisible && !IsDivisible(ins->shape().dimensions(i), device_mesh.dim(j)))) { continue; } HloSharding output_spec = Tile(ins->shape(), {i}, {j}, device_mesh); std::optional<HloSharding> input_spec = hlo_sharding_util::ReshapeSharding(ins->shape(), operand_shape, output_spec); if (!input_spec.has_value()) { continue; } if (cluster_env.IsDeviceMesh1D() && VectorGreaterThanOneElementCount( input_spec->tile_assignment().dimensions()) > 1) { continue; } const std::string name = absl::StrFormat("S%d @ %d", i, j) + suffix; double compute_cost = 0, communication_cost = 0; double memory_cost = ByteSizeOfShapeWithSharding(ins->shape(), output_spec); ReshardingCosts communication_resharding_costs{ CommunicationReshardingCostVector( operand_strategy_group, operand_shape, *input_spec, cluster_env)}; ReshardingCosts memory_resharding_costs{MemoryReshardingCostVector( operand_strategy_group, operand_shape, *input_spec, cluster_env)}; strategy_group.AddStrategy( ShardingStrategy({output_spec, compute_cost, communication_cost, memory_cost, std::move(communication_resharding_costs), std::move(memory_resharding_costs)}), {name, {*input_spec}}); } } } int64_t MaxNumTiles(const StrategyMap& strategy_map, const HloInstruction* ins) { const StrategyGroup* strategy_group = strategy_map.at(ins).get(); while (strategy_group->following != nullptr) { strategy_group = strategy_group->following; } int64_t max_num_tiles = -1; for (const ShardingStrategy& strategy : strategy_group->GetStrategies()) { max_num_tiles = std::max(max_num_tiles, strategy.output_sharding.NumTiles()); } return max_num_tiles; } std::pair<int64_t, bool> ChooseOperandToFollow( const StrategyMap& strategy_map, const InstructionDepthMap& depth_map, const AliasMap& alias_map, const int64_t max_depth, const HloInstruction* ins) { auto it = alias_map.find(ins); if (it != alias_map.end()) { for (int64_t i = 0; i < ins->operand_count(); ++i) { const HloInstruction* operand = ins->operand(i); if (operand == it->second) { return {i, false}; } } } std::optional<int64_t> follow_idx; bool tie = false; double max_priority = -1e20; double depth_normalizer = 0.1 / max_depth; double range_delta = 4 * depth_normalizer; for (int64_t i = 0; i < ins->operand_count(); ++i) { const HloInstruction* operand = ins->operand(i); double priority = MaxNumTiles(strategy_map, operand) + depth_map.at(operand) * depth_normalizer; if (priority > max_priority + range_delta) { follow_idx = i; tie = false; max_priority = priority; } else if (priority >= max_priority - range_delta) { tie = true; } } CHECK(follow_idx.has_value()); return {*follow_idx, tie}; } bool AllowTieFollowing(const HloInstruction* ins) { if (ins->opcode() == HloOpcode::kCompare || ins->opcode() == HloOpcode::kAnd) { return false; } if (ins->operand_count() == 3) { return false; } return true; } void FillAllStrategiesForArray( const HloInstruction* ins, const Shape& shape, const ClusterEnvironment& cluster_env, const StrategyMap& strategy_map, const AutoShardingOption& option, const double replicated_penalty, const CallGraph& call_graph, const bool only_allow_divisible, const bool create_replicated_strategies, const bool create_partially_replicated_strategies, StrategyGroup& strategy_group) { if (create_partially_replicated_strategies || cluster_env.IsDeviceMesh1D()) { EnumerateAll1DPartition( ins, shape, cluster_env.device_mesh_, cluster_env, strategy_map, only_allow_divisible, option.allow_shardings_small_dims_across_many_devices, "", call_graph, strategy_group); } if (cluster_env.IsDeviceMesh2D()) { EnumerateAllPartition(ins, shape, cluster_env.device_mesh_, cluster_env, strategy_map, only_allow_divisible, option.allow_shardings_small_dims_across_many_devices, call_graph, 2, {}, strategy_group); } if (cluster_env.IsDeviceMesh3D()) { EnumerateAllPartition(ins, shape, cluster_env.device_mesh_, cluster_env, strategy_map, only_allow_divisible, option.allow_shardings_small_dims_across_many_devices, call_graph, 3, {}, strategy_group); } if (option.allow_mixed_mesh_shape && cluster_env.IsDeviceMesh2D()) { for (size_t i = 0; i < strategy_group.GetStrategies().size(); ++i) { strategy_group.GetStrategy(i).compute_cost += replicated_penalty * 0.8; } EnumerateAll1DPartition( ins, shape, cluster_env.device_mesh_1d_, cluster_env, strategy_map, only_allow_divisible, option.allow_shardings_small_dims_across_many_devices, " 1d", call_graph, strategy_group); } if (create_replicated_strategies || strategy_group.GetStrategies().empty()) { AddReplicatedStrategy(ins, shape, cluster_env, strategy_map, replicated_penalty, {}, strategy_group); } } absl::StatusOr<std::unique_ptr<StrategyGroup>> CreateAllStrategiesGroup( const HloInstruction* ins, const Shape& shape, const size_t instruction_id, StrategyGroups& strategy_groups, const ClusterEnvironment& cluster_env, const StrategyMap& strategy_map, const AutoShardingOption& option, const double replicated_penalty, const CallGraph& call_graph, const bool only_allow_divisible, const bool create_replicated_strategies, const bool create_partially_replicated_strategies) { std::unique_ptr<StrategyGroup> strategy_group; if (shape.IsTuple()) { strategy_group = CreateTupleStrategyGroup(instruction_id); for (size_t i = 0; i < shape.tuple_shapes_size(); ++i) { auto child_strategies = CreateAllStrategiesGroup( ins, shape.tuple_shapes(i), instruction_id, strategy_groups, cluster_env, strategy_map, option, replicated_penalty, call_graph, only_allow_divisible, create_replicated_strategies, create_partially_replicated_strategies) .value(); child_strategies->tuple_element_idx = i; strategy_group->AddChild(std::move(child_strategies)); } } else if (shape.IsArray()) { strategy_group = CreateLeafStrategyGroup(instruction_id, ins, strategy_map, strategy_groups); FillAllStrategiesForArray( ins, shape, cluster_env, strategy_map, option, replicated_penalty, call_graph, only_allow_divisible, create_replicated_strategies, create_partially_replicated_strategies, *strategy_group); } else if (shape.IsToken()) { strategy_group = CreateLeafStrategyGroup(instruction_id, ins, strategy_map, strategy_groups); AddReplicatedStrategy(ins, shape, cluster_env, strategy_map, replicated_penalty, {}, *strategy_group); } else { LOG(FATAL) << "Unsupported instruction shape: " << shape.DebugString(); } return strategy_group; } bool ShardingIsConsistent(const HloSharding& partial_sharding, const HloSharding& complete_sharding, bool strict) { if (partial_sharding.tile_assignment().num_dimensions() > complete_sharding.tile_assignment().num_dimensions()) { return false; } for (size_t i = 0; i < partial_sharding.tile_assignment().num_dimensions(); ++i) { if (strict && partial_sharding.tile_assignment().dim(i) > 1 && partial_sharding.tile_assignment().dim(i) == complete_sharding.tile_assignment().dim(i)) { return true; } if (!strict && partial_sharding.tile_assignment().dim(i) > 1 && complete_sharding.tile_assignment().dim(i) > 1) { return true; } } return false; } void TrimOrGenerateStrategiesBasedOnExistingSharding( const Shape& output_shape, const StrategyMap& strategy_map, const std::vector<HloInstruction*>& instructions, const HloSharding& existing_sharding, const ClusterEnvironment& cluster_env, StableMap<int64_t, std::vector<ShardingStrategy>>& pretrimmed_strategy_map, const CallGraph& call_graph, const bool strict, StrategyGroup& strategy_group) { if (strategy_group.is_tuple) { for (size_t i = 0; i < strategy_group.GetChildren().size(); ++i) { TrimOrGenerateStrategiesBasedOnExistingSharding( output_shape.tuple_shapes(i), strategy_map, instructions, existing_sharding.tuple_elements().at(i), cluster_env, pretrimmed_strategy_map, call_graph, strict, strategy_group.GetChild(i)); } } else { if (existing_sharding.IsUnknown()) { return; } if (spmd::ShardingIsComplete(existing_sharding, cluster_env.device_mesh_.num_elements())) { strategy_group.following = nullptr; std::vector<std::pair<ShardingStrategy, InputShardings>> new_strategies; const auto& strategy_input_shardings = strategy_group.GetStrategyInputShardings(); for (size_t iid = 0; iid < strategy_input_shardings.size(); ++iid) { const InputShardings& input_shardings = strategy_input_shardings[iid]; const ShardingStrategy& strategy = strategy_group.GetStrategyForInputShardings(iid); if (strategy.output_sharding == existing_sharding) { VLOG(1) << "Keeping strategy: " << strategy.ToString(); new_strategies.push_back({strategy, input_shardings}); } } if (!new_strategies.empty()) { pretrimmed_strategy_map[strategy_group.node_idx] = strategy_group.GetStrategies(); strategy_group.ClearStrategies(); for (const auto& [strategy, input_shardings] : new_strategies) { strategy_group.AddStrategy(strategy, input_shardings); } } else { VLOG(1) << "Generate a new strategy based on user sharding."; std::string name = ToStringSimple(existing_sharding); ReshardingCosts communication_resharding_costs; ReshardingCosts memory_resharding_costs; InputShardings input_shardings = {name}; if (!strategy_group.in_nodes.empty()) { HloInstruction* ins = instructions.at(strategy_group.instruction_id); for (size_t i = 0; i < strategy_group.in_nodes.size(); i++) { HloInstruction* operand = instructions.at(strategy_group.in_nodes.at(i)->instruction_id); std::optional<HloSharding> input_sharding = ShardingPropagation::GetShardingFromUser( *operand, *ins, 10, true, call_graph, nullptr); StrategyGroup* operand_strategy_group = strategy_map.at(operand).get(); Shape operand_shape = operand->shape(); if (ins->opcode() == HloOpcode::kGetTupleElement) { if (input_sharding && input_sharding->IsTuple()) { input_sharding = input_sharding->GetSubSharding( operand->shape(), {ins->tuple_index()}); } operand_strategy_group = &operand_strategy_group->GetChild(ins->tuple_index()); operand_shape = operand->shape().tuple_shapes(ins->tuple_index()); } if (!input_sharding) { if (existing_sharding.Validate(operand_shape).ok()) { input_sharding = existing_sharding; } else { input_sharding = HloSharding::Replicate(); } } CHECK(input_sharding.has_value()); input_shardings.shardings.push_back(*input_sharding); communication_resharding_costs.push_back( CommunicationReshardingCostVector( *operand_strategy_group, operand_shape, *input_sharding, cluster_env)); memory_resharding_costs.push_back(MemoryReshardingCostVector( *operand_strategy_group, operand_shape, *input_sharding, cluster_env)); } } double memory_cost = ByteSizeOfShapeWithSharding(output_shape, existing_sharding); if (!strategy_group.GetStrategies().empty()) { pretrimmed_strategy_map[strategy_group.node_idx] = strategy_group.GetStrategies(); } strategy_group.ClearStrategies(); strategy_group.AddStrategy( ShardingStrategy({existing_sharding, 0, 0, memory_cost, communication_resharding_costs, memory_resharding_costs}), input_shardings); } if (strategy_group.GetStrategies().size() == 1) { for (auto& operand_communication_resharding_costs : strategy_group.GetStrategy(0).communication_resharding_costs) { if (operand_communication_resharding_costs.size() == 1 && operand_communication_resharding_costs[0] >= kInfinityCost) { operand_communication_resharding_costs[0] = 0; } } } } else if (!strategy_group.following) { std::vector<std::pair<ShardingStrategy, InputShardings>> new_vector; const auto& strategy_input_shardings = strategy_group.GetStrategyInputShardings(); for (size_t iid = 0; iid < strategy_input_shardings.size(); ++iid) { const InputShardings& input_shardings = strategy_input_shardings[iid]; const ShardingStrategy& strategy = strategy_group.GetStrategyForInputShardings(iid); if (strategy.output_sharding.IsReplicated() || ShardingIsConsistent(existing_sharding, strategy.output_sharding, strict) || (VectorGreaterThanOneElementCount( strategy.output_sharding.tile_assignment().dimensions()) == 1 && spmd::ShardingIsComplete( strategy.output_sharding, cluster_env.original_device_mesh_.num_elements()))) { new_vector.push_back({strategy, input_shardings}); } } if (!new_vector.empty() && new_vector.size() != strategy_group.GetStrategies().size()) { strategy_group.following = nullptr; strategy_group.ClearStrategies(); for (const auto& [strategy, input_shardings] : new_vector) { strategy_group.AddStrategy(strategy, input_shardings); } } } } } void CheckMemoryCosts(const StrategyGroup& strategy_group, const Shape& shape) { if (strategy_group.is_tuple) { for (size_t i = 0; i < strategy_group.GetChildren().size(); i++) { CheckMemoryCosts(*strategy_group.GetChildren()[i], shape.tuple_shapes().at(i)); } } else { double full_mem = 0.0; for (const ShardingStrategy& strategy : strategy_group.GetStrategies()) { if (strategy.output_sharding.IsReplicated()) { full_mem = strategy.memory_cost; size_t size = ByteSizeOfShape(shape); CHECK_EQ(strategy.memory_cost, size); } } for (const ShardingStrategy& strategy : strategy_group.GetStrategies()) { if (!strategy.output_sharding.IsReplicated() && full_mem > 0.0) { CHECK_GE(strategy.memory_cost * strategy.output_sharding.NumTiles(), full_mem); } } } } void RemoveShardingsWhereSmallDimsShardedAcrossManyDevices( const Shape& shape, const bool instruction_has_user_sharding, StrategyGroup& strategy_group) { if (strategy_group.is_tuple) { const auto& children = strategy_group.GetChildren(); for (size_t i = 0; i < children.size(); i++) { RemoveShardingsWhereSmallDimsShardedAcrossManyDevices( shape.tuple_shapes().at(i), instruction_has_user_sharding, *children[i]); } return; } if (instruction_has_user_sharding && strategy_group.GetStrategies().size() == 1) { return; } std::vector<int> invalid_strategy_indices; for (size_t sid = 0; sid < strategy_group.GetStrategies().size(); ++sid) { const ShardingStrategy& strategy = strategy_group.GetStrategy(sid); if (strategy.output_sharding.IsReplicated()) { continue; } const auto& tile_assignment = strategy.output_sharding.tile_assignment(); for (int64_t i = 0; i < shape.rank(); ++i) { if (tile_assignment.dim(i) > 1 && tile_assignment.dim(i) > shape.dimensions(i)) { invalid_strategy_indices.push_back(sid); break; } } } if (invalid_strategy_indices.size() < strategy_group.GetStrategies().size()) { for (size_t sid : invalid_strategy_indices) { ShardingStrategy& strategy = strategy_group.GetStrategy(sid); VLOG(1) << "Removing invalid strategy: " << strategy.ToString(); strategy.compute_cost = kInfinityCost; } } } void ScaleCostsWithExecutionCounts(const int64_t execution_count, StrategyGroup& strategy_group) { if (strategy_group.is_tuple) { for (const auto& child : strategy_group.GetChildren()) { ScaleCostsWithExecutionCounts(execution_count, *child); } } else { for (size_t sid = 0; sid < strategy_group.GetStrategies().size(); ++sid) { ShardingStrategy& strategy = strategy_group.GetStrategy(sid); strategy.compute_cost *= execution_count; strategy.communication_cost *= execution_count; for (auto i = 0; i < strategy.communication_resharding_costs.size(); ++i) { for (auto j = 0; j < strategy.communication_resharding_costs[i].size(); ++j) { strategy.communication_resharding_costs[i][j] *= execution_count; } } } } } std::unique_ptr<StrategyGroup> CreateElementwiseOperatorStrategies( const size_t instruction_id, const HloInstruction* ins, const StrategyMap& strategy_map, const ClusterEnvironment& cluster_env, const InstructionDepthMap& depth_map, const AliasMap& alias_map, const StableMap<int64_t, std::vector<ShardingStrategy>>& pretrimmed_strategy_map, const int64_t max_depth, StrategyGroups& strategy_groups, AssociativeDotPairs& associative_dot_pairs) { std::unique_ptr<StrategyGroup> strategy_group = CreateLeafStrategyGroup( instruction_id, ins, strategy_map, strategy_groups); int64_t follow_idx; bool tie; std::tie(follow_idx, tie) = ChooseOperandToFollow(strategy_map, depth_map, alias_map, max_depth, ins); if (!tie || AllowTieFollowing(ins)) { strategy_group->following = strategy_map.at(ins->operand(follow_idx)).get(); } else { strategy_group->following = nullptr; } for (int64_t i = 0; i < ins->operand_count(); ++i) { if (strategy_group->following != nullptr && i != follow_idx) { continue; } StrategyGroup* src_strategy_group = strategy_map.at(ins->operand(i)).get(); CHECK(!src_strategy_group->is_tuple); FollowArrayOrTokenStrategyGroup(*src_strategy_group, ins->shape(), instruction_id, cluster_env, pretrimmed_strategy_map, *strategy_group); } if (ins->opcode() == HloOpcode::kAdd) { if (ins->operand(0)->opcode() == HloOpcode::kDot && ins->operand(1)->opcode() == HloOpcode::kDot) { associative_dot_pairs.push_back({strategy_map.at(ins->operand(0)).get(), strategy_map.at(ins->operand(1)).get()}); } } return strategy_group; } std::unique_ptr<StrategyGroup> HandleManuallyShardedInstruction( const HloInstruction* ins, const Shape& shape, const size_t instruction_id, StrategyGroups& strategy_groups, StrategyMap& strategy_map) { std::unique_ptr<StrategyGroup> strategy_group; if (shape.IsTuple()) { strategy_group = CreateTupleStrategyGroup(instruction_id); for (size_t i = 0; i < shape.tuple_shapes_size(); ++i) { std::unique_ptr<StrategyGroup> child_strategies = HandleManuallyShardedInstruction(ins, shape.tuple_shapes(i), instruction_id, strategy_groups, strategy_map); child_strategies->tuple_element_idx = i; strategy_group->AddChild(std::move(child_strategies)); } } else if (shape.IsToken() || shape.IsArray()) { strategy_group = CreateLeafStrategyGroup(instruction_id, ins, strategy_map, strategy_groups); ReshardingCosts communication_resharding_costs; ReshardingCosts memory_resharding_costs; InputShardings input_shardings = {"MANUAL"}; if (ins->operand_count() > 0 && ins->operand(0)->shape().IsTuple()) { CHECK_EQ(ins->operand_count(), 1) << "Do not support instructions with more than one tuple " "operand. If this CHECK fails, we will need to fix " "b/233412625."; std::tie(communication_resharding_costs, memory_resharding_costs, input_shardings) = ReshardingCostsForTupleOperand(ins->operand(0), *strategy_map.at(ins->operand(0))); } else { for (int64_t k = 0; k < ins->operand_count(); ++k) { const HloInstruction* operand = ins->operand(k); const StrategyGroup& operand_strategy_group = *strategy_map.at(operand); const auto& strategies = operand_strategy_group.GetStrategies(); const std::vector<double> zeros(strategies.size(), 0); communication_resharding_costs.push_back(zeros); memory_resharding_costs.push_back(zeros); } } strategy_group->AddStrategy( ShardingStrategy({HloSharding::Replicate(), 0, 0, static_cast<double>(ShapeUtil::ByteSizeOf(shape)), std::move(communication_resharding_costs), std::move(memory_resharding_costs)}), std::move(input_shardings)); } else { LOG(FATAL) << "Unsupported instruction shape: " << shape.DebugString(); } return strategy_group; } std::unique_ptr<StrategyGroup> CreateReshapeStrategies( const size_t instruction_id, const HloInstruction* ins, const StrategyMap& strategy_map, const ClusterEnvironment& cluster_env, const bool only_allow_divisible, const double replicated_penalty, const AutoShardingOption& option, StrategyGroups& strategy_groups, const CallGraph& call_graph) { std::unique_ptr<StrategyGroup> strategy_group = CreateLeafStrategyGroup( instruction_id, ins, strategy_map, strategy_groups); const HloInstruction* operand = ins->operand(0); const StrategyGroup& operand_strategy_group = *strategy_map.at(operand); CHECK(!operand_strategy_group.is_tuple); for (const ShardingStrategy& operand_strategy : operand_strategy_group.GetStrategies()) { std::optional<HloSharding> output_sharding = hlo_sharding_util::ReshapeSharding(operand->shape(), ins->shape(), operand_strategy.output_sharding); if (!output_sharding.has_value() || !IsValidTileAssignment(*output_sharding) || !TileAssignmentMatchesMesh(*output_sharding, cluster_env.device_mesh_)) { continue; } const std::string name = ToStringSimple(*output_sharding); double compute_cost = 0, communication_cost = 0; double memory_cost = ByteSizeOfShapeWithSharding(ins->shape(), output_sharding); std::vector<double> communication_resharding_costs = CommunicationReshardingCostVector( operand_strategy_group, operand->shape(), operand_strategy.output_sharding, cluster_env); std::vector<double> memory_resharding_costs = MemoryReshardingCostVector( operand_strategy_group, operand->shape(), operand_strategy.output_sharding, cluster_env); strategy_group->AddStrategy( ShardingStrategy({*output_sharding, compute_cost, communication_cost, memory_cost, {communication_resharding_costs}, {memory_resharding_costs}}), {name, {operand_strategy.output_sharding}}); } if (strategy_group->GetStrategies().empty()) { VLOG(2) << "Enumerating all strategies for reshape"; FillAllStrategiesForArray( ins, ins->shape(), cluster_env, strategy_map, option, replicated_penalty, call_graph, only_allow_divisible, true, true, *strategy_group); } return strategy_group; } absl::StatusOr<AutoShardingSolverOutput> CreateAutoShardingSolverRequestAndCallSolver( const HloModule& hlo_module, const HloLiveRange& hlo_live_range, const StrategyMap& strategy_map, const StrategyGroups& strategy_groups, const CostGraph& cost_graph, const AliasSet& alias_set, const std::vector<std::pair<LivenessIdx, LivenessIdx>>& node_intervals, const std::vector<std::pair<LivenessIdx, LivenessIdx>>& edge_intervals, const std::vector<absl::btree_set<int64_t>>& node_groups, const std::vector<absl::btree_set<int64_t>>& edge_groups, const std::vector<NodeStrategyIdx>& s_hint, const bool compute_iis, const int64_t solver_timeout_in_seconds, const AutoShardingOption& option, std::optional<double> max_cost, absl::string_view request_name, const absl::flat_hash_map<std::string, HloSharding>& sharding_propagation_solution, bool deterministic_mode) { AutoShardingSolverRequest request; request.set_module_name(hlo_module.name()); request.set_num_nodes(strategy_groups.size()); request.set_memory_budget(option.memory_budget_per_device); request.mutable_s_len()->Add(cost_graph.node_lens_.begin(), cost_graph.node_lens_.end()); request.mutable_s_follow()->Add(cost_graph.follow_idx_.begin(), cost_graph.follow_idx_.end()); request.mutable_s_hint()->Add(s_hint.begin(), s_hint.end()); request.mutable_solver_timeout()->set_solver_timeout_in_seconds( solver_timeout_in_seconds); if (option.memory_overbudget_coeff >= 0.0) { request.mutable_overbudget_coeff()->set_coeff( option.memory_overbudget_coeff); } request.set_crash_at_infinity_costs_check(!option.try_multiple_mesh_shapes); request.set_compute_iis(compute_iis); request.set_saltiplier(kSaltiplier); request.set_deterministic_mode(deterministic_mode); request.set_request_name(std::string(request_name)); request.set_enable_memory_edge_costs(option.model_resharding_memory_costs); request.set_enable_output( option.preserve_shardings == AutoShardingOption::PreserveShardingsType::kRemoveAllShardings); if (max_cost) { request.mutable_max_cost()->set_coeff(*max_cost); } for (const auto& [edge, edge_cost] : cost_graph.edge_costs_) { const auto normalized_edge_cost = Normalize(edge_cost); AutoShardingSolverRequest_Pair raw_edge; raw_edge.set_first(edge.first); raw_edge.set_second(edge.second); *request.add_edges() = raw_edge; AutoShardingSolverRequest_Costs rij; AutoShardingSolverRequest_Costs mij; for (NodeStrategyIdx i = 0; i < edge_cost.n_; i++) { for (NodeStrategyIdx j = 0; j < edge_cost.m_; j++) { rij.add_costs(normalized_edge_cost(i, j).communication_cost); mij.add_costs(normalized_edge_cost(i, j).memory_cost); } } request.mutable_resharding_costs()->Add(std::move(rij)); request.mutable_memory_edge_costs()->Add(std::move(mij)); } const HloInstructionSequence& sequence = hlo_live_range.flattened_instruction_sequence(); const std::vector<HloInstruction*>& instructions = sequence.instructions(); int num_nodes_without_default = 0; for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { const StrategyGroup* strategy_group = strategy_groups[node_idx]; const auto instruction = instructions.at(strategy_group->instruction_id); const auto instruction_name = instruction->name(); const auto opcode = HloOpcodeString(instruction->opcode()); request.add_instruction_names( absl::StrCat(instruction_name, " (id: ", node_idx, ")")); request.add_opcodes(std::string(opcode)); request.add_metadata_source_files(instruction->metadata().source_file()); AutoShardingSolverRequest_Costs ci, di, mi, pi; AutoShardingSolverRequest_Names strategy_names; std::optional<HloSharding> default_strategy; auto iter = sharding_propagation_solution.find(instruction_name); if (iter != sharding_propagation_solution.end()) { default_strategy = iter->second; if (strategy_group->tuple_element_idx) { const auto& tuple_elements = iter->second.tuple_elements(); CHECK_LT(*strategy_group->tuple_element_idx, tuple_elements.size()); default_strategy = tuple_elements.at(*strategy_group->tuple_element_idx); } } for (auto j = 0; j < strategy_group->GetStrategies().size(); ++j) { const ShardingStrategy& strategy = strategy_group->GetStrategies()[j]; const HloSharding& sharding = strategy.output_sharding; ci.add_costs(strategy.compute_cost); di.add_costs(strategy.communication_cost + cost_graph.extra_node_costs_[node_idx][j]); mi.add_costs(strategy.memory_cost); pi.add_costs(default_strategy && sharding == *default_strategy ? 0 : 1); strategy_names.add_names(sharding.ToString()); } if (option.use_sharding_propagation_for_default_shardings && *std::min_element(pi.costs().begin(), pi.costs().end()) > 0) { LOG(WARNING) << "No default strategy for {node_idx " << node_idx << ", instruction ID " << strategy_group->instruction_id << ", instruction name " << instruction_name << "}"; ++num_nodes_without_default; } request.mutable_computation_costs()->Add(std::move(ci)); request.mutable_communication_costs()->Add(std::move(di)); request.mutable_memory_costs()->Add(std::move(mi)); request.mutable_departure_costs()->Add(std::move(pi)); request.mutable_strategy_names()->Add(std::move(strategy_names)); } LOG(INFO) << "Total nodes without default: " << num_nodes_without_default; std::vector<std::pair<NodeIdx, NodeIdx>> new_followers; for (const auto& pair : alias_set) { const StrategyGroup* src_strategy_group = strategy_groups[pair.first]; const StrategyGroup* dst_strategy_group = strategy_groups[pair.second]; const auto& src_strategies = src_strategy_group->GetStrategies(); const auto& dst_strategies = dst_strategy_group->GetStrategies(); Matrix<double> raw_cost(src_strategies.size(), dst_strategies.size()); for (NodeStrategyIdx i = 0; i < src_strategies.size(); ++i) { for (NodeStrategyIdx j = 0; j < dst_strategies.size(); ++j) { if (src_strategies[i].output_sharding == dst_strategies[j].output_sharding) { raw_cost(i, j) = 0.0; } else { raw_cost(i, j) = 1.0; } } } NodeIdx idx_a = pair.first; NodeIdx idx_b = pair.second; std::vector<NodeStrategyIdx> row_indices; std::vector<NodeStrategyIdx> col_indices; if (request.s_follow(idx_a) >= 0) { row_indices = cost_graph.reindexing_vector_.at(idx_a); idx_a = request.s_follow(idx_a); } else { row_indices.assign(request.s_len(idx_a), 0); std::iota(row_indices.begin(), row_indices.end(), 0); } if (request.s_follow(idx_b) >= 0) { col_indices = cost_graph.reindexing_vector_.at(idx_b); idx_b = request.s_follow(idx_b); } else { col_indices.assign(request.s_len(idx_b), 0); std::iota(col_indices.begin(), col_indices.end(), 0); } CHECK_EQ(request.s_len(idx_a), row_indices.size()); CHECK_EQ(request.s_len(idx_b), col_indices.size()); AutoShardingSolverRequest_Costs vij; for (NodeStrategyIdx i : row_indices) { for (NodeStrategyIdx j : col_indices) { vij.add_costs(raw_cost(i, j)); } } bool convertible = (row_indices.size() == col_indices.size()); for (NodeStrategyIdx i = 0; i < row_indices.size() && convertible; ++i) { if (vij.costs(i * col_indices.size() + i) != 0.0) convertible = false; } if (convertible && option.allow_alias_to_follower_conversion) { new_followers.push_back({idx_a, idx_b}); } else { AutoShardingSolverRequest_Pair alias; alias.set_first(idx_a); alias.set_second(idx_b); *request.add_aliases() = alias; request.mutable_value_costs()->Add(std::move(vij)); } } auto s_follow = request.mutable_s_follow(); for (auto [follower, followee] : new_followers) { while (s_follow->at(follower) >= 0) follower = s_follow->at(follower); while (s_follow->at(followee) >= 0) followee = s_follow->at(followee); if (follower != followee) s_follow->Set(follower, followee); } for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { if (s_follow->at(node_idx) < 0) continue; while (s_follow->at(s_follow->at(node_idx)) >= 0) { s_follow->Set(node_idx, s_follow->at(s_follow->at(node_idx))); } } for (const auto& interval : node_intervals) { AutoShardingSolverRequest_Pair pair; pair.set_first(interval.first); pair.set_second(interval.second); *request.add_node_intervals() = std::move(pair); } for (const auto& interval : edge_intervals) { AutoShardingSolverRequest_Pair pair; pair.set_first(interval.first); pair.set_second(interval.second); *request.add_edge_intervals() = std::move(pair); } for (const auto& reduced_group : node_groups) { AutoShardingSolverRequest_Group group; group.mutable_prims()->Add(reduced_group.begin(), reduced_group.end()); *request.add_node_groups() = std::move(group); } for (const auto& reduced_group : edge_groups) { AutoShardingSolverRequest_Group group; group.mutable_prims()->Add(reduced_group.begin(), reduced_group.end()); *request.add_edge_groups() = std::move(group); } PopulateTemporalValues(cost_graph, request); return FormulateAndSolveMIPFromSolverRequest(request); } void CheckHloSharding( const HloInstructionSequence& sequence, const absl::flat_hash_set<const HloInstruction*>& instructions_to_shard, const size_t total_num_devices) { const std::vector<HloInstruction*>& instructions = sequence.instructions(); std::vector<std::pair<size_t, std::string>> size_string; for (const HloInstruction* ins : instructions) { if (!instructions_to_shard.contains(ins) || !ins->has_sharding()) { continue; } if (!ins->shape().IsTuple() && ins->opcode() != HloOpcode::kGetTupleElement) { double size = ByteSizeOfShape(ins->shape()) / 1024 / 1024 / 1024; if ((!spmd::ShardingIsComplete(ins->sharding(), total_num_devices) || ins->sharding().IsReplicated()) && size > 1) { LOG(INFO) << "Instruction is not fully sharded: (" << size << " GB) " << ins->ToString(); } else if (!ins->has_sharding()) { LOG(INFO) << "Instruction does not have sharding: " << ins->name(); } for (const auto& op : ins->operands()) { if (op->has_sharding()) { if (op->sharding().IsReplicated() || ins->sharding().IsReplicated()) { continue; } const std::vector<int64_t> ins_sharded_dims = VectorGreaterThanOneElementIndices( ins->sharding().tile_assignment().dimensions(), ins->sharding().ReplicateOnLastTileDim()); const std::vector<int64_t> op_sharded_dims = VectorGreaterThanOneElementIndices( op->sharding().tile_assignment().dimensions(), op->sharding().ReplicateOnLastTileDim()); bool not_consistent = false; if (ins_sharded_dims.size() != op_sharded_dims.size()) { not_consistent = true; } else { for (size_t i = 0; i < ins_sharded_dims.size(); i++) { if (op->shape().dimensions().at(op_sharded_dims.at(i)) != ins->shape().dimensions().at(ins_sharded_dims.at(i))) { not_consistent = true; } } } if (not_consistent) { size_t op_size = ByteSizeOfShape(op->shape()) / (1024.0 * 1024 * 1024); std::string str = absl::StrCat("Shardings not consistent (op size ", op_size, " GB):", ins->ToString(), "\n Operand: ", op->ToString()); size_string.push_back({op_size, std::move(str)}); } } else { LOG(INFO) << "Instruction " << op->name() << " does not have sharding."; } } } } struct { bool operator()(const std::pair<size_t, std::string>& a, const std::pair<size_t, std::string>& b) const { return a.first > b.first; } } MemLarger; std::sort(size_string.begin(), size_string.end(), MemLarger); size_t k = 10; k = std::min(k, size_string.size()); for (size_t t = 0; t < k; ++t) { LOG(INFO) << size_string.at(t).second; } } void SetHloSharding( const HloInstructionSequence& sequence, const absl::flat_hash_set<const HloInstruction*>& instructions_to_shard, const StrategyMap& strategy_map, const CostGraph& cost_graph, absl::Span<const NodeStrategyIdx> s_val, bool last_iteration) { if (!last_iteration) { LOG(INFO) << "Skip setting shardings (since not the last iteration)"; } const std::vector<HloInstruction*>& instructions = sequence.instructions(); for (HloInstruction* inst : instructions) { if (!instructions_to_shard.contains(inst)) { continue; } if (inst->opcode() == HloOpcode::kOutfeed || inst->opcode() == HloOpcode::kRecv || inst->opcode() == HloOpcode::kRecvDone || inst->opcode() == HloOpcode::kSend || inst->opcode() == HloOpcode::kSendDone) { continue; } auto iter = strategy_map.find(inst); if (iter == strategy_map.end()) { continue; } const StrategyGroup* strategy_group = iter->second.get(); if (strategy_group->is_tuple) { const Shape& out_shape = inst->shape(); ShapeTree<HloSharding> output_tuple_sharding(out_shape, Undefined()); std::vector<HloSharding> output_flattened_shardings; std::function<void(const StrategyGroup*)> extract_tuple_shardings; bool set_tuple_sharding = true; extract_tuple_shardings = [&](const StrategyGroup* strategy_group) { if (strategy_group->is_tuple) { for (const auto& child_strategies : strategy_group->GetChildren()) { extract_tuple_shardings(child_strategies.get()); } } else { NodeIdx node_idx = strategy_group->node_idx; NodeStrategyIdx stra_idx = s_val[node_idx]; const auto& strategy = strategy_group->GetStrategies()[stra_idx]; if (strategy.output_sharding.IsReplicated() && !last_iteration) { set_tuple_sharding = false; } output_flattened_shardings.push_back(strategy.output_sharding); } }; extract_tuple_shardings(strategy_group); int i = 0; for (auto& leaf : output_tuple_sharding.leaves()) { leaf.second = output_flattened_shardings[i++]; } if (set_tuple_sharding) { inst->set_sharding(HloSharding::Tuple(output_tuple_sharding)); } } else { const HloSharding& sharding_spec = GetShardingStrategy(inst, strategy_map, cost_graph, s_val) .output_sharding; if (IsUndefined(sharding_spec)) { continue; } if (sharding_spec.IsReplicated() && !last_iteration) { VLOG(5) << "skip setting shardings for inst " << inst->name(); } else { inst->set_sharding(sharding_spec); } } } } absl::Status InsertReshardReshapes( const HloInstructionSequence& sequence, const absl::flat_hash_set<const HloInstruction*>& instructions_to_shard, const StrategyMap& strategy_map, const CostGraph& cost_graph, absl::Span<const NodeStrategyIdx> s_val, const ClusterEnvironment& cluster_env, bool crash_at_error, bool insert_resharding_reshapes_for_non_dot_ops, absl::flat_hash_map<std::string, std::vector<HloSharding>>& preserve_shardings) { const std::vector<HloInstruction*>& instructions = sequence.instructions(); const DeviceMesh& device_mesh = cluster_env.device_mesh_; ReshardingCache resharding_cache_entity; ReshardingCache* resharding_cache = &resharding_cache_entity; for (HloInstruction* inst : instructions) { if (!instructions_to_shard.contains(inst) || spmd::IsSPMDShardToFullShapeCustomCall(inst)) { continue; } if (inst->opcode() == HloOpcode::kDot || inst->opcode() == HloOpcode::kConvolution) { const HloInstruction* lhs = inst->operand(0); const HloInstruction* rhs = inst->operand(1); const HloSharding& lhs_sharding = lhs->sharding(); const HloSharding& rhs_sharding = rhs->sharding(); std::vector<int64_t> lhs_con_dims; std::vector<int64_t> rhs_con_dims; if (inst->opcode() == HloOpcode::kDot) { const DotDimensionNumbers& dot_dnums = inst->dot_dimension_numbers(); lhs_con_dims.push_back(dot_dnums.lhs_contracting_dimensions()[0]); rhs_con_dims.push_back(dot_dnums.rhs_contracting_dimensions()[0]); } else { const ConvolutionDimensionNumbers& conv_dnums = inst->convolution_dimension_numbers(); lhs_con_dims.push_back(conv_dnums.input_feature_dimension()); rhs_con_dims.push_back(conv_dnums.kernel_input_feature_dimension()); } const std::vector<int64_t>& lhs_tensor_dim_to_mesh_dim = cluster_env.GetTensorDimToMeshDimWrapper( lhs->shape(), lhs_sharding, true, crash_at_error); const std::vector<int64_t>& rhs_tensor_dim_to_mesh_dim = cluster_env.GetTensorDimToMeshDimWrapper( rhs->shape(), rhs_sharding, true, crash_at_error); if (lhs_tensor_dim_to_mesh_dim.size() != lhs->shape().rank() || rhs_tensor_dim_to_mesh_dim.size() != rhs->shape().rank()) { return absl::InvalidArgumentError( "Cannot generate tensor dim to mesh dim mapping"); } const InputShardings& input_shardings = GetInputShardings(inst, strategy_map, cost_graph, s_val); if (absl::StrContains(input_shardings.name, "allreduce") && std::any_of(lhs_con_dims.begin(), lhs_con_dims.end(), [&lhs_tensor_dim_to_mesh_dim](int64_t dim) { return lhs_tensor_dim_to_mesh_dim[dim] == -1; }) && std::any_of(rhs_con_dims.begin(), rhs_con_dims.end(), [&rhs_tensor_dim_to_mesh_dim](int64_t dim) { return rhs_tensor_dim_to_mesh_dim[dim] == -1; })) { } else { CHECK(input_shardings.shardings.size() == 2) << "Dot op requires both operands to have input shardings, " "but get instruction: " << inst->ToString() << ", input shardings : " << input_shardings.ToString(); if (input_shardings.shardings[0].has_value()) { TF_RETURN_IF_ERROR(FixMixedMeshShapeResharding( inst, 0, *input_shardings.shardings[0], device_mesh, resharding_cache)); } if (input_shardings.shardings[1].has_value()) { TF_RETURN_IF_ERROR(FixMixedMeshShapeResharding( inst, 1, *input_shardings.shardings[1], device_mesh, resharding_cache)); } } } if (!insert_resharding_reshapes_for_non_dot_ops) { continue; } if (inst->opcode() == HloOpcode::kOutfeed || inst->opcode() == HloOpcode::kSendDone || inst->opcode() == HloOpcode::kSend || inst->opcode() == HloOpcode::kRecv || inst->opcode() == HloOpcode::kRecvDone) { } else { if (inst->shape().IsTuple()) { if (absl::c_any_of( inst->shape().tuple_shapes(), [](const Shape& shape) { return shape.IsTuple(); })) { continue; } switch (inst->opcode()) { case HloOpcode::kReduce: case HloOpcode::kCustomCall: case HloOpcode::kRngBitGenerator: case HloOpcode::kSort: { for (size_t i = 0; i < inst->shape().tuple_shapes_size(); ++i) { const InputShardings& input_shardings = GetInputShardingsForTuple(inst, {static_cast<int64_t>(i)}, strategy_map, cost_graph, s_val); if (input_shardings.shardings.size() > i && input_shardings.shardings[i].has_value()) { TF_RETURN_IF_ERROR(FixMixedMeshShapeResharding( inst, i, *input_shardings.shardings[i], device_mesh, resharding_cache)); } } break; } case HloOpcode::kTuple: { for (size_t i = 0; i < inst->shape().tuple_shapes_size(); ++i) { const InputShardings& input_shardings = GetInputShardingsForTuple(inst, {static_cast<int64_t>(i)}, strategy_map, cost_graph, s_val); CHECK_EQ(input_shardings.shardings.size(), 1); CHECK(input_shardings.shardings[0].has_value()); TF_RETURN_IF_ERROR(FixMixedMeshShapeResharding( inst, i, *input_shardings.shardings[0], device_mesh, resharding_cache)); } break; } case HloOpcode::kGetTupleElement: { std::vector<std::optional<HloSharding>> dst_shardings( inst->shape().tuple_shapes_size(), std::nullopt); for (size_t i = 0; i < inst->shape().tuple_shapes_size(); ++i) { CHECK(!inst->shape().tuple_shapes(i).IsTuple()) << "We currently do not support ops with nested tuples as " "output. See b/332951306."; const InputShardings& input_shardings = GetInputShardingsForTuple(inst, {static_cast<int64_t>(i)}, strategy_map, cost_graph, s_val); if (!input_shardings.shardings.empty() && input_shardings.shardings[0].has_value()) { dst_shardings[i] = *input_shardings.shardings[0]; } } TF_RETURN_IF_ERROR( FixMixedMeshShapeReshardingGetTupleElementWithTupleOutput( inst, dst_shardings, device_mesh)); break; } case HloOpcode::kWhile: case HloOpcode::kInfeed: case HloOpcode::kOptimizationBarrier: case HloOpcode::kConditional: case HloOpcode::kParameter: { break; } default: LOG(FATAL) << "Unhandled instruction: " + inst->ToString(); } } else { const InputShardings& input_shardings = GetInputShardings(inst, strategy_map, cost_graph, s_val); if (input_shardings.shardings.empty()) { continue; } if (inst->opcode() == HloOpcode::kGetTupleElement) { TF_RETURN_IF_ERROR(FixMixedMeshShapeReshardingGetTupleElement( inst, inst->sharding(), device_mesh, preserve_shardings)); continue; } for (size_t i = 0; i < inst->operand_count(); ++i) { if (input_shardings.shardings.size() > i && input_shardings.shardings[i].has_value()) { TF_RETURN_IF_ERROR(FixMixedMeshShapeResharding( inst, i, *input_shardings.shardings[i], device_mesh, resharding_cache)); } } } } } return absl::OkStatus(); } absl::Status SetHloShardingPostProcessing( const HloInstructionSequence& sequence, const absl::flat_hash_set<const HloInstruction*>& instructions_to_shard, absl::flat_hash_map<std::string, std::vector<HloSharding>>& preserve_shardings) { for (HloInstruction* inst : sequence.instructions()) { if (!instructions_to_shard.contains(inst) || spmd::IsSPMDShardToFullShapeCustomCall(inst)) { continue; } auto preserved_sharding_iter = preserve_shardings.find(inst->name()); if (preserved_sharding_iter == preserve_shardings.end()) { continue; } const std::vector<HloSharding>& preserved_sharding = preserved_sharding_iter->second; if (inst->opcode() == HloOpcode::kOutfeed || inst->opcode() == HloOpcode::kSendDone) { if (preserved_sharding.size() <= 1) { CHECK_EQ(preserved_sharding.size(), 1); inst->set_sharding(preserved_sharding[0]); continue; } std::vector<Shape> tuple_elements_shape( inst->operand(0)->shape().tuple_shapes().begin(), inst->operand(0)->shape().tuple_shapes().end()); tuple_elements_shape.push_back(inst->operand(1)->shape()); Shape output_tuple_sharding_shape = ShapeUtil::MakeTupleShape(tuple_elements_shape); ShapeTree<HloSharding> output_tuple_sharding(output_tuple_sharding_shape, Undefined()); size_t i = 0; for (std::pair<ShapeIndex, HloSharding>& leaf : output_tuple_sharding.leaves()) { leaf.second = preserved_sharding.at(i++); } inst->set_sharding(HloSharding::Tuple(output_tuple_sharding)); } else if (inst->opcode() == HloOpcode::kSend || inst->opcode() == HloOpcode::kRecv || inst->opcode() == HloOpcode::kRecvDone) { if (preserved_sharding.size() > 1) { inst->set_sharding( HloSharding::Tuple(inst->shape(), preserved_sharding)); continue; } if (preserved_sharding.size() != 1) { return absl::InternalError( absl::StrCat("An empty sharding was preserved for ", inst->name(), ". This should be reported as a bug.")); } inst->set_sharding(preserved_sharding[0]); } } return absl::OkStatus(); } std::string PrintLivenessSet(const LivenessSet& liveness_set) { std::string str("Liveness Set\n"); for (LivenessIdx time_idx = 0; time_idx < liveness_set.size(); ++time_idx) { std::vector<std::string> names; names.reserve(liveness_set[time_idx].size()); for (const HloValue* value : liveness_set[time_idx]) { names.push_back(absl::StrCat(value->instruction()->name(), value->index().ToString())); } std::sort(names.begin(), names.end()); absl::StrAppend(&str, "Time ", time_idx, ": ", absl::StrJoin(names, ", "), "\n"); } return str; } std::string PrintInstructions(const HloInstructionSequence& sequence) { std::string str; const std::vector<HloInstruction*>& instructions = sequence.instructions(); for (size_t i = 0; i < instructions.size(); ++i) { absl::StrAppend(&str, "Instruction ", i, ": ", instructions[i]->ToString(), "\n"); } return str; } std::string PrintStrategyMap(const StrategyMap& strategy_map, const HloInstructionSequence& sequence) { std::string str("Strategy Map\n"); const std::vector<HloInstruction*>& instructions = sequence.instructions(); for (size_t i = 0; i < instructions.size(); ++i) { absl::StrAppend(&str, "Instruction ", i, ": ", instructions[i]->ToString(), "\n", strategy_map.at(instructions[i])->ToString()); } return str; } std::string PrintAutoShardingSolution(const HloInstructionSequence& sequence, const LivenessSet& liveness_set, const StrategyMap& strategy_map, const StrategyGroups& strategy_groups, const CostGraph& cost_graph, absl::Span<const NodeStrategyIdx> s_val, const double objective) { std::string str("=== Auto sharding strategy ===\n"); const std::vector<HloInstruction*>& instructions = sequence.instructions(); size_t N = strategy_groups.size(); for (NodeIdx node_idx = 0; node_idx < N; ++node_idx) { const StrategyGroup& strategy_group = *strategy_groups[node_idx]; absl::StrAppend( &str, node_idx, " ", ToAdaptiveString(instructions[strategy_group.instruction_id]), " "); NodeStrategyIdx stra_idx = cost_graph.RemapIndex(node_idx, s_val[node_idx]); const ShardingStrategy& strategy = strategy_group.GetStrategies()[stra_idx]; absl::StrAppend(&str, strategy.ToString()); if (cost_graph.follow_idx_[node_idx] >= 0) { absl::StrAppend(&str, " follow ", cost_graph.follow_idx_[node_idx]); } absl::StrAppend(&str, "\n"); } return str; } std::string PrintSolutionMemoryUsage(const LivenessSet& liveness_set, const StrategyMap& strategy_map, const CostGraph& cost_graph, absl::Span<const NodeStrategyIdx> s_val) { std::string str("=== Memory ===\n"); std::vector<std::pair<LivenessIdx, double>> time_memory_usage; std::function<double(const StrategyGroup&)> calculate_memory_usage; calculate_memory_usage = [&](const StrategyGroup& strategy_group) { if (strategy_group.is_tuple) { double m = 0.0; for (const auto& child : strategy_group.GetChildren()) { m += calculate_memory_usage(*child); } return m; } NodeIdx ins_idx = strategy_group.node_idx; NodeStrategyIdx stra_idx = cost_graph.RemapIndex(ins_idx, s_val[ins_idx]); const auto& strategies = strategy_group.GetStrategies(); const ShardingStrategy& strategy = strategies[stra_idx]; return strategy.memory_cost; }; for (LivenessIdx time_idx = 0; time_idx < liveness_set.size(); ++time_idx) { double mem = 0.0; for (const auto& val : liveness_set.at(time_idx)) { const HloInstruction* ins = val->instruction(); auto tmp = calculate_memory_usage(*strategy_map.at(ins)); mem += tmp; if (VLOG_IS_ON(6) && tmp / (1024 * 1024) > 1) { absl::StrAppend(&str, " ", ins->name(), ": mem += ", tmp / (1024 * 1024), " MB; mem=", mem / (1024 * 1024), " MB\n"); } } time_memory_usage.push_back({time_idx, mem}); if (VLOG_IS_ON(6)) { absl::StrAppend(&str, "Time ", time_idx, ": ", mem / (1024 * 1024), " MB\n"); } } struct { bool operator()(std::pair<LivenessIdx, double> a, std::pair<LivenessIdx, double> b) const { return a.second > b.second; } } TimeMemLarger; std::sort(time_memory_usage.begin(), time_memory_usage.end(), TimeMemLarger); absl::StrAppend(&str, "Using memory costs from ShardingStrategy, the max memory " "consumption is ", time_memory_usage.front().second / (1024 * 1024 * 1024), " GB at time ", time_memory_usage.front().first, "\n"); size_t k = 3; k = std::min(k, time_memory_usage.size()); std::vector<std::pair<std::string, double>> instruction_mem; for (LivenessIdx time_idx = 0; time_idx < k; time_idx++) { for (const auto& val : liveness_set[time_memory_usage.at(time_idx).first]) { const HloInstruction* ins = val->instruction(); auto mem = calculate_memory_usage(*strategy_map.at(ins)); if (mem > 100 * 1024 * 1024) { instruction_mem.push_back( {absl::StrCat(ins->name(), val->index().ToString()), mem}); } } } struct { bool operator()(std::pair<std::string, double> a, std::pair<std::string, double> b) const { return a.second > b.second; } } NameMemLarger; std::sort(instruction_mem.begin(), instruction_mem.end(), NameMemLarger); size_t top_tensors = 10; top_tensors = std::min(top_tensors, instruction_mem.size()); absl::StrAppend(&str, "Top ", top_tensors, " largest tensors:\n"); for (size_t i = 0; i < top_tensors; i++) { absl::StrAppend( &str, "instruction name: ", instruction_mem.at(i).first, " memory usage: ", instruction_mem.at(i).second / (1024 * 1024 * 1024), "GB\n"); } return str; } absl::Status SaveShardingForInstruction( const HloInstruction* inst, bool save_for_copy_users, absl::flat_hash_map<std::string, std::vector<HloSharding>>& preserve_shardings) { auto save_sharding = [&preserve_shardings](const HloInstruction* inst) -> absl::Status { if (!inst->has_sharding()) { return absl::OkStatus(); } if (inst->sharding().IsUnknown() && (inst->sharding().IsShardLike() || inst->sharding().IsShardAs())) { return absl::UnimplementedError( "Auto-sharding currently does not support shard_as/shard_like " "sharding annotations"); } if (!inst->sharding().IsTuple()) { preserve_shardings[inst->name()] = {inst->sharding()}; } else { preserve_shardings[inst->name()] = inst->sharding().tuple_elements(); } return absl::OkStatus(); }; TF_RETURN_IF_ERROR(save_sharding(inst)); if (save_for_copy_users) { for (const auto user : inst->users()) { if (user->opcode() == HloOpcode::kCopy) { TF_RETURN_IF_ERROR(save_sharding(user)); } } } return absl::OkStatus(); } void CheckUserShardingPreservation( HloModule* module, const absl::flat_hash_map<std::string, std::vector<HloSharding>>& preserve_shardings) { for (const auto computation : module->computations()) { for (const auto inst : computation->instructions()) { if (preserve_shardings.find(inst->name()) == preserve_shardings.end()) { continue; } if (!inst->has_sharding()) { LOG(FATAL) << "User sharding is not preserved! Instruction with name " << inst->name() << " should be: " << preserve_shardings.at(inst->name())[0].ToString() << "\nbut it's empty."; } else if (!inst->sharding().IsTuple() && !preserve_shardings.at(inst->name())[0].IsUnknown() && preserve_shardings.at(inst->name())[0] != inst->sharding()) { LOG(FATAL) << "User sharding is not preserved! Instruction with name " << inst->name() << " should be: " << preserve_shardings.at(inst->name())[0].ToString() << "\nbut it's: " << inst->sharding().ToString(); } else if (inst->sharding().IsTuple()) { const std::vector<HloSharding>* preserve_shardings_tuple = &preserve_shardings.at(inst->name()); for (size_t i = 0; i < inst->shape().tuple_shapes_size(); i++) { if (!preserve_shardings_tuple->at(i).IsUnknown() && preserve_shardings_tuple->at(i) != inst->sharding().tuple_elements().at(i)) { LOG(FATAL) << "Tuple sharding is not preserved! Instruction " "with name " << inst->name() << " " << i << "th tuple element " << " should be: " << preserve_shardings_tuple->at(i).ToString() << "\nbut it's: " << inst->sharding().tuple_elements().at(i).ToString(); } } } } } } int64_t MemoryBudgetLowerBound( const HloModule& module, const absl::flat_hash_set<const HloInstruction*>& instructions_to_shard, const LivenessSet& liveness_set, const HloAliasAnalysis& alias_analysis, const int64_t num_devices, const absl::flat_hash_map<std::string, std::vector<HloSharding>>& preserved_shardings) { auto get_value_sharding = [](const HloValue* value) -> HloSharding { return !value->index().empty() ? value->instruction()->sharding().GetSubSharding( value->instruction()->shape(), value->index()) : value->instruction()->sharding(); }; absl::flat_hash_map<HloBuffer::Id, const HloValue*> buffer_to_sharded_value_mapping; bool vlog_is_on_5 = VLOG_IS_ON(5); for (const HloBuffer& buffer : alias_analysis.buffers()) { for (const HloValue* value : buffer.values()) { if (value->instruction()->has_sharding()) { if (vlog_is_on_5) { const HloSharding& this_value_sharding = get_value_sharding(value); auto iter = buffer_to_sharded_value_mapping.find(buffer.id()); if (iter != buffer_to_sharded_value_mapping.end()) { const HloSharding& buffer_value_sharding = get_value_sharding(iter->second); if (this_value_sharding != buffer_value_sharding) { VLOG(1) << "We have a situation where two HloValues alias, but " "they have different shardings. This can happen in the " "presence of user-specified shardings, and is expected. " "This, however, means that the memory budget estimate " "is not very accurate. The aliasing HLOs are " << value->ToShortString() << " and " << iter->second->ToShortString(); } } } buffer_to_sharded_value_mapping[buffer.id()] = value; } } } int64_t max_memory_usage = 0; absl::flat_hash_map<const HloValue*, int64_t> value_to_memory_size_mapping; for (LivenessIdx time_idx = 0; time_idx < liveness_set.size(); ++time_idx) { int64_t memory_usage = 0; for (const HloValue* value : liveness_set[time_idx]) { if (value->instruction()->shape().IsTuple() && value->index().empty()) { continue; } if (!instructions_to_shard.contains(value->instruction())) { memory_usage += ShapeUtil::ByteSizeOf(value->shape()); continue; } auto iter1 = value_to_memory_size_mapping.find(value); if (iter1 != value_to_memory_size_mapping.end()) { memory_usage += iter1->second; continue; } std::optional<HloSharding> optional_sharding = std::nullopt; const HloBuffer& buffer = alias_analysis.GetBufferContainingValue(*value); auto iter2 = buffer_to_sharded_value_mapping.find(buffer.id()); if (iter2 != buffer_to_sharded_value_mapping.end()) { if (preserved_shardings.find(value->instruction()->name()) != preserved_shardings.end()) { optional_sharding = get_value_sharding(iter2->second); } else { const HloSharding& value_sharding = get_value_sharding(iter2->second); if (!value_sharding.IsTiled() || value_sharding.TotalNumTiles() == num_devices) { optional_sharding = value_sharding; } } } const Shape& shape = ShapeUtil::GetSubshape(value->instruction()->shape(), value->index()); int64_t value_memory_usage = ByteSizeOfShapeIfShardedAcrossDevices( shape, num_devices, optional_sharding); value_to_memory_size_mapping[value] = value_memory_usage; memory_usage += value_memory_usage; } max_memory_usage = std::max(max_memory_usage, memory_usage); } return max_memory_usage; } void RecoverShardingsFromPartialMesh( const HloInstructionSequence& sequence, const absl::flat_hash_map<std::string, std::vector<HloSharding>>& preserve_shardings) { const std::vector<HloInstruction*>& instructions = sequence.instructions(); for (HloInstruction* ins : instructions) { auto preserved_sharding_iter = preserve_shardings.find(ins->name()); if (preserved_sharding_iter != preserve_shardings.end()) { const auto& preserved_sharding = preserved_sharding_iter->second; if (ins->shape().IsTuple() || (ins->opcode() == HloOpcode::kOutfeed && preserved_sharding.size() > 1)) { Shape output_tuple_sharding_shape = ins->shape(); if (ins->opcode() == HloOpcode::kOutfeed) { std::vector<Shape> tuple_elements_shape( ins->operand(0)->shape().tuple_shapes().begin(), ins->operand(0)->shape().tuple_shapes().end()); tuple_elements_shape.push_back(ins->operand(1)->shape()); output_tuple_sharding_shape = ShapeUtil::MakeTupleShape(tuple_elements_shape); } ShapeTree<HloSharding> output_tuple_sharding( output_tuple_sharding_shape, Undefined()); size_t i = 0; for (auto& leaf : output_tuple_sharding.leaves()) { leaf.second = preserved_sharding.at(i++); } ins->set_sharding(HloSharding::Tuple(output_tuple_sharding)); } else { ins->set_sharding(preserved_sharding.at(0)); } } } } void FindReplicateSet( HloInstruction* cur, const AliasMap& alias_map, const CostGraph& cost_graph, absl::Span<const NodeStrategyIdx> s_val, const StrategyMap& strategy_map, const ShardingStrategy& strategy, const HloInstruction* output, const bool do_all_gather_after_backward, HloInstruction*& transpose_inst, InstructionSet& replicated_set, InstructionSet& boundary_set, InstructionSet& consumer_set, ConstInstructionSet& visited) { visited.insert(cur); InstructionSet users = UsersWithAlias(cur, alias_map, output); for (HloInstruction* consumer : users) { const HloInstruction* shape_inst = cur; if (consumer->opcode() == HloOpcode::kTranspose && (transpose_inst == nullptr || DimensionsEqual(transpose_inst->shape(), consumer->shape()))) { shape_inst = consumer; transpose_inst = consumer; } if (consumer->opcode() == HloOpcode::kTuple || (do_all_gather_after_backward && IsParameterConvert(consumer)) || GetShardingStrategy(consumer, strategy_map, cost_graph, s_val) .output_sharding != strategy.output_sharding || !DimensionsEqual(consumer->shape(), shape_inst->shape())) { boundary_set.insert(cur); return; } } replicated_set.insert(cur); for (HloInstruction* consumer : users) { if (!visited.contains(consumer)) { consumer_set.insert(consumer); FindReplicateSet(consumer, alias_map, cost_graph, s_val, strategy_map, strategy, output, do_all_gather_after_backward, transpose_inst, replicated_set, boundary_set, consumer_set, visited); } } for (size_t i = 0; i < cur->operand_count(); ++i) { HloInstruction* operand = cur->mutable_operand(i); if (!visited.contains(operand) && !IsAlwaysReplicated(operand) && GetShardingStrategy(operand, strategy_map, cost_graph, s_val) .output_sharding == strategy.output_sharding && DimensionsEqual(operand->shape(), cur->shape())) { FindReplicateSet(operand, alias_map, cost_graph, s_val, strategy_map, strategy, output, do_all_gather_after_backward, transpose_inst, replicated_set, boundary_set, consumer_set, visited); } } } absl::Status GenerateReduceScatter( const HloInstructionSequence& sequence, const AliasMap& alias_map, const InstructionDepthMap& depth_map, const StrategyMap& strategy_map, const CostGraph& cost_graph, absl::Span<const NodeStrategyIdx> s_val, const ClusterEnvironment& cluster_env, const AutoShardingOption& option) { const std::vector<HloInstruction*>& instructions = sequence.instructions(); const HloInstruction* output = instructions.back(); bool do_all_gather_after_backward = true; bool use_all_reduce_for_grad_acc = option.reduce_scatter_grad_acc_friendly; std::vector<HloInstruction*> insert_all_gather; ConstInstructionSet modified; for (HloInstruction* inst : instructions) { if (!HasReduceScatterOpportunity(inst, strategy_map, cost_graph, s_val, modified)) { continue; } const ShardingStrategy& strategy = GetShardingStrategy(inst, strategy_map, cost_graph, s_val); const InputShardings& input_shardings = GetInputShardings(inst, strategy_map, cost_graph, s_val); if (!absl::StrContains(input_shardings.name, "allreduce")) { continue; } InstructionSet replicated_set; InstructionSet boundary_set; InstructionSet consumer_set; ConstInstructionSet visited; HloInstruction* transpose_inst = nullptr; visited.insert(output); FindReplicateSet(inst, alias_map, cost_graph, s_val, strategy_map, strategy, output, do_all_gather_after_backward, transpose_inst, replicated_set, boundary_set, consumer_set, visited); TryReduceWithCommonAncestor(replicated_set, boundary_set, consumer_set, alias_map); std::vector<HloInstruction*> need_all_gather; for (HloInstruction* node : boundary_set) { if (consumer_set.contains(node)) { if (AllUsersAreReduce(node)) { replicated_set.insert(node); } else { need_all_gather.push_back(node); } } } if (do_all_gather_after_backward && need_all_gather.size() == 1) { HloInstruction* point = need_all_gather.front(); std::vector<HloInstruction*> path; HloInstruction* root = point; while (true) { path.push_back(root); if (root->opcode() == HloOpcode::kGetTupleElement) { root = root->mutable_operand(0); } else { break; } } if (root->opcode() == HloOpcode::kParameter) { for (auto x : path) { replicated_set.erase(x); boundary_set.erase(x); } need_all_gather.clear(); for (auto x : replicated_set) { auto iter = alias_map.find(x); if (iter != alias_map.end() && iter->second == root) { boundary_set.insert(x); need_all_gather.push_back(x); break; } } } } int num_replicated_parameters = 0; for (const HloInstruction* node : replicated_set) { if (node->opcode() == HloOpcode::kParameter) { num_replicated_parameters++; } } for (const HloInstruction* to_split : need_all_gather) { if (to_split->users().size() == 1 && to_split->users().front() == output && alias_map.contains(to_split)) { num_replicated_parameters++; } } VLOG(10) << inst->ToString(HloPrintOptions::ShortParsable()) << "\n"; VLOG(10) << "replicated set (#parameter: " << num_replicated_parameters << "):\n"; for (auto x : replicated_set) { VLOG(10) << " " << x->ToString(HloPrintOptions::ShortParsable()) << "\n"; } VLOG(10) << "boundary set (#incompatible: " << need_all_gather.size() << "):\n"; for (auto x : boundary_set) { VLOG(10) << " " << x->ToString(HloPrintOptions::ShortParsable()) << " " << absl::c_linear_search(need_all_gather, x) << "\n"; } if (num_replicated_parameters >= 1 && need_all_gather.size() <= 1 && replicated_set.size() >= 5) { HloSharding output_spec = GetReduceScatterOutput(inst, input_shardings, strategy, cluster_env); if (IsUndefined(output_spec)) { continue; } VLOG(10) << "SET: " << output_spec.ToString(); if (absl::StartsWith(input_shardings.name, "RR = RS x SR")) { replicated_set.erase(inst); } if (use_all_reduce_for_grad_acc) { UseAllReduceForGradAcc(replicated_set, inst); } for (HloInstruction* to_split : replicated_set) { SetSharding(to_split, output_spec, inst, transpose_inst, modified); } if (!option.reduce_scatter_aggressive_partition) { for (HloInstruction* to_split : need_all_gather) { SetSharding(to_split, output_spec, inst, transpose_inst, modified); if (!do_all_gather_after_backward && to_split->users().size() == 1 && to_split->users().front() == output && alias_map.contains(to_split)) { SetSharding(alias_map.at(to_split), output_spec, inst, transpose_inst, modified); insert_all_gather.push_back(alias_map.at(to_split)); } else { insert_all_gather.push_back(to_split); } } } else { for (HloInstruction* to_split : need_all_gather) { SetSharding(to_split, output_spec, inst, transpose_inst, modified); if (to_split->users().size() == 1 && to_split->users().front() == output && alias_map.contains(to_split)) { HloInstruction* param = alias_map.at(to_split); HloInstruction* cur = param; while (cur->users().size() == 1) { CHECK(cur->shape().IsArray()); SetSharding(cur, output_spec, inst, transpose_inst, modified); cur = cur->users().front(); } SetSharding(cur, output_spec, inst, transpose_inst, modified); CHECK(!cur->users().empty()); HloInstruction* first_user = nullptr; int64_t min_depth = ((int64_t)1) << 50; for (const auto& x : cur->users()) { auto iter = depth_map.find(x); if (iter == depth_map.end()) { LOG(FATAL) << "ERROR: " << x->ToString(); } if (x->opcode() != HloOpcode::kConvolution && x->opcode() != HloOpcode::kDot) { continue; } if (iter->second < min_depth) { first_user = x; min_depth = iter->second; } } if (first_user != nullptr) { HloInstruction* identity = inst->parent()->AddInstruction( HloInstruction::CreateCustomCall(cur->shape(), {cur}, kIdentityMarker)); SetSharding(identity, output_spec, inst, transpose_inst, modified); ReplaceOperand(first_user, cur, identity); } } } } } VLOG(10) << "-----------------------done\n"; } for (HloInstruction* inst : insert_all_gather) { HloInstruction* replace_with = inst->parent()->AddInstruction( HloInstruction::CreateReshape(inst->shape(), inst)); replace_with->set_sharding( GetShardingStrategy(inst, strategy_map, cost_graph, s_val) .output_sharding); TF_RETURN_IF_ERROR(inst->ReplaceAllUsesWith(replace_with)); } return absl::OkStatus(); } HloSharding GetReduceScatterOutput(const HloInstruction* ins, const InputShardings& input_shardings, const ShardingStrategy& strategy, const ClusterEnvironment& cluster_env) { const DeviceMesh& device_mesh = cluster_env.device_mesh_; const DeviceMesh& device_mesh_1d = cluster_env.device_mesh_1d_; if (ins->opcode() == HloOpcode::kDot) { const DotDimensionNumbers& dot_dnums = ins->dot_dimension_numbers(); int64_t space_base_dim = dot_dnums.lhs_batch_dimensions_size(); if (absl::StartsWith(input_shardings.name, "SR = SS x SR") || absl::StartsWith(input_shardings.name, "RS = RS x SS")) { int mesh_dim0, mesh_dim1; std::tie(mesh_dim0, mesh_dim1) = ParseMeshDims(input_shardings.name); if (!IsDivisible(ins, device_mesh, {space_base_dim, space_base_dim + 1}, {mesh_dim0, mesh_dim1})) { return Undefined(); } return Tile(ins->shape(), {space_base_dim, space_base_dim + 1}, {mesh_dim0, mesh_dim1}, device_mesh); } if (absl::StartsWith(input_shardings.name, "SbR = SbSk x SbSk")) { int mesh_dim0, mesh_dim1; std::tie(mesh_dim0, mesh_dim1) = ParseMeshDims(input_shardings.name); if (!IsDivisible(ins, device_mesh, {0, space_base_dim}, {mesh_dim0, mesh_dim1})) { return Undefined(); } return Tile(ins->shape(), {0, space_base_dim}, {mesh_dim0, mesh_dim1}, device_mesh); } if (absl::StartsWith(input_shardings.name, "RR = RS x SR")) { int mesh_dim = absl::StrContains(input_shardings.name, "{0}") ? 0 : 1; if (!IsDivisible(ins, device_mesh, {space_base_dim}, {mesh_dim})) { return Undefined(); } return Tile(ins->shape(), {space_base_dim}, {mesh_dim}, device_mesh); } if (absl::StartsWith(input_shardings.name, "R = Sk x Sk")) { int mesh_dim = 0; if (!IsDivisible(ins, device_mesh_1d, {space_base_dim}, {mesh_dim})) { return Undefined(); } return Tile(ins->shape(), {space_base_dim}, {mesh_dim}, device_mesh_1d); } } else if (ins->opcode() == HloOpcode::kConvolution) { const ConvolutionDimensionNumbers& conv_dnums = ins->convolution_dimension_numbers(); int out_batch_dim = conv_dnums.output_batch_dimension(); int out_out_channel_dim = conv_dnums.output_feature_dimension(); if (absl::StartsWith(input_shardings.name, "SR = SS x SR") || absl::StartsWith(input_shardings.name, "RS = RS x SS")) { int mesh_dim0, mesh_dim1; std::tie(mesh_dim0, mesh_dim1) = ParseMeshDims(input_shardings.name); if (!IsDivisible(ins, device_mesh, {out_batch_dim, out_out_channel_dim}, {mesh_dim0, mesh_dim1})) { return Undefined(); } return Tile(ins->shape(), {out_batch_dim, out_out_channel_dim}, {mesh_dim0, mesh_dim1}, device_mesh); } if (absl::StartsWith(input_shardings.name, "R = Sk x Sk")) { int mesh_dim = 0; if (!IsDivisible(ins, device_mesh_1d, {out_batch_dim}, {mesh_dim})) { return Undefined(); } return Tile(ins->shape(), {out_batch_dim}, {mesh_dim}, device_mesh_1d); } } else if (ins->opcode() == HloOpcode::kReduce) { CHECK_EQ(ins->shape().rank(), 1); int mesh_dim; if (absl::StrContains(input_shardings.name, "allreduce @ [0]")) { mesh_dim = 0; } else { mesh_dim = 1; } if (strategy.output_sharding.IsReplicated()) { if (absl::StrContains(input_shardings.name, "1d")) { if (!IsDivisible(ins, device_mesh_1d, {0}, {mesh_dim})) { return Undefined(); } return Tile(ins->shape(), {0}, {mesh_dim}, device_mesh_1d); } if (!IsDivisible(ins, device_mesh, {0}, {mesh_dim})) { return Undefined(); } return Tile(ins->shape(), {0}, {mesh_dim}, device_mesh); } if (!IsDivisible(ins, device_mesh_1d, {0}, {0})) { return Undefined(); } auto tile_assignment = strategy.output_sharding.tile_assignment().Reshape( {cluster_env.total_devices_}); return HloSharding::Tile(std::move(tile_assignment)); } else { LOG(FATAL) << "Invalid instruction: " << ins->ToString(); } return Undefined(); } bool HasReduceScatterOpportunity(const HloInstruction* inst, const StrategyMap& strategy_map, const CostGraph& cost_graph, absl::Span<const NodeStrategyIdx> s_val, const ConstInstructionSet& modified) { for (const HloInstruction* operand : inst->operands()) { if (modified.contains(operand)) { return false; } } if (modified.contains(inst)) { return false; } if (inst->opcode() == HloOpcode::kReduce && inst->shape().rank() == 1) { return true; } if (inst->opcode() == HloOpcode::kDot) { if (GetShardingStrategy(inst->operand(0), strategy_map, cost_graph, s_val) .output_sharding.IsReplicated() && GetShardingStrategy(inst->operand(1), strategy_map, cost_graph, s_val) .output_sharding.IsReplicated()) { return false; } return true; } if (inst->opcode() == HloOpcode::kConvolution) { return true; } return false; } } absl::StatusOr<AutoShardingImplementation::SaveShardingAnnotationsResult> AutoShardingImplementation::SaveAndRemoveShardingAnnotation( HloModule* module, const absl::flat_hash_set<const HloInstruction*>& instructions_to_shard, const absl::flat_hash_set<std::string>& replicated_small_tensors, const absl::flat_hash_set<absl::string_view>& execution_threads) { absl::flat_hash_map<std::string, std::vector<HloSharding>> preserved_shardings; absl::flat_hash_set<HloInstruction*> keep_inst; for (const HloComputation* computation : module->computations(execution_threads)) { for (const auto inst : computation->instructions()) { if (inst->opcode() == HloOpcode::kOutfeed || inst->opcode() == HloOpcode::kRecv || inst->opcode() == HloOpcode::kRecvDone || inst->opcode() == HloOpcode::kSend || inst->opcode() == HloOpcode::kSendDone) { TF_RETURN_IF_ERROR(spmd::SaveShardingForInstruction( inst, false, preserved_shardings)); continue; } if (spmd::IsInstructionBeforeSPMDFullToShardShapeCustomCall(inst) || spmd::IsSPMDShardToFullShapeCustomCall(inst)) { TF_RETURN_IF_ERROR(spmd::SaveShardingForInstruction( inst, false, preserved_shardings)); } if (inst->has_sharding() && spmd::IsShardingMisaligned(inst->sharding(), inst->shape()) && !instructions_to_shard.contains(inst)) { LOG(WARNING) << "Instruction " << inst->name() << " has a user sharding annotation that is misaligned. Shape: " << inst->shape().ToString() << ". Sharding:" << inst->sharding().ToString(); } } } if (option_.preserve_shardings == AutoShardingOption::PreserveShardingsType::kKeepAllShardings) { for (const HloComputation* computation : module->computations(execution_threads)) { for (const auto inst : computation->instructions()) { TF_RETURN_IF_ERROR(spmd::SaveShardingForInstruction( inst, true, preserved_shardings)); } } return SaveShardingAnnotationsResult{preserved_shardings, false}; } bool module_is_changed = false; for (HloComputation* computation : module->computations(execution_threads)) { bool is_entry_computation = computation->IsEntryComputation(); for (HloInstruction* ins : computation->instructions()) { if (replicated_small_tensors.count(ins->name())) { keep_inst.insert(ins); TF_RETURN_IF_ERROR(spmd::SaveShardingForInstruction( ins, false, preserved_shardings)); continue; } if (option_.preserve_shardings == AutoShardingOption::PreserveShardingsType:: kKeepInputOutputShardings && is_entry_computation && (ins->opcode() == HloOpcode::kParameter || ins->IsRoot())) { keep_inst.insert(ins); TF_RETURN_IF_ERROR(spmd::SaveShardingForInstruction( ins, ins->opcode() == HloOpcode::kParameter, preserved_shardings)); continue; } if (ins->opcode() == HloOpcode::kCopy && keep_inst.find(ins->operand(0)) != keep_inst.end()) { continue; } if (ins->opcode() == HloOpcode::kOutfeed || ins->opcode() == HloOpcode::kSend || ins->opcode() == HloOpcode::kSendDone || spmd::IsInstructionBeforeSPMDFullToShardShapeCustomCall(ins) || spmd::IsSPMDShardToFullShapeCustomCall(ins) || !instructions_to_shard.contains(ins)) { continue; } if (ins->has_sharding()) { module_is_changed |= true; ins->clear_sharding(); } } } return SaveShardingAnnotationsResult{preserved_shardings, module_is_changed}; } absl::Status AutoShardingImplementation::CanonicalizeLayouts( HloModule* module) { if (!module->layout_canonicalization_callback()) { LOG(INFO) << "There is no registered layout_canonicalization_callback."; return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(auto layouts, module->layout_canonicalization_callback()(*module)); std::vector<Shape>& argument_shapes = layouts.first; Shape& result_shape = layouts.second; ComputationLayout entry_computation_layout = module->config().entry_computation_layout(); TF_RETURN_IF_ERROR( entry_computation_layout.mutable_result_layout()->CopyLayoutFromShape( result_shape)); CHECK_NE(entry_computation_layout.parameter_count(), 0); CHECK_EQ(argument_shapes.size(), entry_computation_layout.parameter_count()); for (int32_t i = 0; i < entry_computation_layout.parameter_count(); i++) { TF_RETURN_IF_ERROR(entry_computation_layout.mutable_parameter_layout(i) ->CopyLayoutFromShape(argument_shapes.at(i))); } *module->mutable_config().mutable_entry_computation_layout() = entry_computation_layout; return absl::OkStatus(); } absl::flat_hash_set<const HloInstruction*> ComputeInstructionsToShard( const HloModule& module, const HloInstructionSequence& sequence) { std::queue<const HloInstruction*> queue; for (HloInstruction* instruction : sequence.instructions()) { if (spmd::IsSPMDFullToShardShapeCustomCall(instruction)) { for (const HloInstruction* user : instruction->users()) { if (spmd::IsSPMDShardToFullShapeCustomCall(user)) { continue; } queue.push(user); } } } absl::flat_hash_set<const HloInstruction*> visited; while (!queue.empty()) { const HloInstruction* instruction = queue.front(); queue.pop(); if (visited.contains(instruction)) { continue; } visited.insert(instruction); for (const HloComputation* computation : instruction->called_computations()) { for (const HloInstruction* parameter : computation->parameter_instructions()) { if (spmd::IsSPMDShardToFullShapeCustomCall(parameter) || spmd::IsSPMDFullToShardShapeCustomCall(parameter) || parameter == instruction || visited.contains(parameter)) { continue; } queue.push(parameter); } } for (const HloInstruction* user : instruction->users()) { if (spmd::IsSPMDShardToFullShapeCustomCall(user) || spmd::IsSPMDFullToShardShapeCustomCall(user) || visited.contains(user)) { continue; } queue.push(user); } for (const HloInstruction* operand : instruction->operands()) { if (spmd::IsSPMDShardToFullShapeCustomCall(operand) || spmd::IsSPMDFullToShardShapeCustomCall(operand) || operand == instruction || visited.contains(operand)) { continue; } queue.push(operand); } } absl::flat_hash_set<const HloInstruction*> to_shard; for (HloInstruction* instruction : sequence.instructions()) { if (!visited.contains(instruction) && !spmd::IsSPMDFullToShardShapeCustomCall(instruction)) { if (HloCollectiveInstruction::ClassOf(instruction)) { LOG(FATAL) << "The module contains collective ops not contained within " "a graph surrounded by SPMDFullToShardShape and " "SPMDShardToFullShape custom calls. This case is not yet " "supported."; } to_shard.insert(instruction); } } return to_shard; } AutoShardingImplementation::AutoShardingImplementation( const AutoShardingOption& option) : option_(option) {} std::pair<int64_t, int64_t> ReduceMemoryTerms( int64_t num_primitives, const std::vector<std::pair<spmd::LivenessIdx, spmd::LivenessIdx>>& intervals, std::vector<std::pair<spmd::LivenessIdx, spmd::LivenessIdx>>& reduced_intervals, std::vector<absl::btree_set<int64_t>>& reduced_groups) { int64_t num_lives = 0; for (const auto& interval : intervals) { if (interval.first > interval.second) continue; num_lives = std::max(num_lives, interval.second + 1); } auto Intervals = [intervals](int64_t prim_idx) -> std::pair<int64_t, int64_t> { return intervals.at(prim_idx); }; spmd::MemoryTermReducer reducer; auto num_terms = reducer.Reduce(num_lives, num_primitives, std::move(Intervals)); reduced_intervals = reducer.GetReducedIntervals(); reduced_groups = reducer.GetReducedGroups(); return num_terms; } absl::StatusOr<bool> AutoShardingImplementation::RunAutoSharding( HloModule* module, const absl::flat_hash_set<std::string>& replicated_small_tensors, const absl::flat_hash_set<absl::string_view>& execution_threads, const absl::flat_hash_map<std::string, HloSharding>& sharding_propagation_solution) { if (!option_.enable) { return false; } bool module_is_changed = false; bool set_to_memory_lower_bound = (option_.memory_budget_per_device == 0); absl::flat_hash_map<const HloInstruction*, std::vector<int64_t>> unspecified_dims; TF_ASSIGN_OR_RETURN( bool changed, ProcessShardingInstruction( module, execution_threads, true, &unspecified_dims, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, true)); DumpHloModuleIfEnabled(*module, "after_spmd_calls"); if (changed) { module_is_changed = true; VLOG(3) << "CustomCalls with custom_call_target=Sharding are removed and " "their shardings are moved to their input ops."; } else { VLOG(3) << "This workload does not have CustomCalls with " "custom_call_target=Sharding."; } auto size_fn = [](const BufferValue& buffer) { return spmd::ByteSizeOfShape(buffer.shape()); }; TF_ASSIGN_OR_RETURN( HloSchedule schedule, ScheduleModule(module, size_fn, ComputationSchedulerToModuleScheduler(DFSMemoryScheduler), execution_threads)); const HloComputation* entry_computation = module->entry_computation(); std::unique_ptr<HloAliasAnalysis> alias_analysis = HloAliasAnalysis::Run(module).value(); std::unique_ptr<HloModule> module_clone = module->Clone(""); TF_RETURN_IF_ERROR( spmd::EnsureEntryComputationLayoutHasShapeLayouts(module_clone.get())); OptimizeInputOutputBufferAlias input_output_buffer_alias_optimizer( true); CHECK_OK(input_output_buffer_alias_optimizer.Run(module_clone.get())); const HloInputOutputAliasConfig& input_output_alias_config = module_clone->input_output_alias_config(); spmd::AliasMap alias_map = spmd::BuildAliasMap(module, input_output_alias_config); TF_ASSIGN_OR_RETURN( std::unique_ptr<HloLiveRange> hlo_live_range, HloLiveRange::Run(schedule, *alias_analysis, entry_computation)); absl::flat_hash_map<const HloValue*, HloLiveRange::TimeBound>& buffer_live_ranges = hlo_live_range->buffer_live_ranges(); spmd::LivenessSet liveness_set(hlo_live_range->schedule_end_time() + 1); for (const auto& [hlo_value, live_range] : buffer_live_ranges) { for (spmd::LivenessIdx i = live_range.start; i <= live_range.end; ++i) { liveness_set[i].push_back(hlo_value); } } VLOG(10) << hlo_live_range->ToString(); XLA_VLOG_LINES(10, spmd::PrintLivenessSet(liveness_set)); const HloInstructionSequence& sequence = hlo_live_range->flattened_instruction_sequence(); const absl::flat_hash_set<const HloInstruction*>& instructions_to_shard = ComputeInstructionsToShard(*module, sequence); TF_ASSIGN_OR_RETURN(SaveShardingAnnotationsResult saved_sharding_result, SaveAndRemoveShardingAnnotation( module, instructions_to_shard, replicated_small_tensors, execution_threads)); absl::flat_hash_map<std::string, std::vector<HloSharding>> preserve_shardings = std::move(saved_sharding_result.preserved_shardings); module_is_changed |= saved_sharding_result.module_is_changed; absl::flat_hash_map<const HloInstruction*, int64_t> instruction_execution_counts = spmd::ComputeInstructionExecutionCounts( module, option_.loop_iteration_count_estimate); spmd::DeviceMesh original_device_mesh(option_.device_mesh_shape); original_device_mesh.SetValues(option_.device_mesh_ids); const int64_t original_memory_budget = option_.memory_budget_per_device; std::vector<std::vector<int64_t>> partial_mesh_shapes; if (option_.solve_nd_sharding_iteratively) { partial_mesh_shapes = spmd::DecomposeMeshShapes(option_.device_mesh_shape, option_.device_mesh_alpha, option_.device_mesh_beta); } else { partial_mesh_shapes = {option_.device_mesh_shape}; } std::unique_ptr<CallGraph> call_graph = CallGraph::Build(module); HloCostAnalysis::Options hlo_cost_analysis_options{ .shape_size = [](const Shape& shape) { return spmd::ByteSizeOfShape(shape); }}; HloCostAnalysis hlo_cost_analysis(hlo_cost_analysis_options); CHECK_OK(module->entry_computation()->Accept(&hlo_cost_analysis)); for (size_t mesh_idx = 0; mesh_idx < partial_mesh_shapes.size(); ++mesh_idx) { const std::vector<int64_t>& mesh_shape = partial_mesh_shapes[mesh_idx]; LOG(INFO) << "Processing partial mesh shape: " << spmd::ToString(mesh_shape); spmd::DeviceMesh device_mesh(mesh_shape); if (mesh_idx != partial_mesh_shapes.size() - 1) { device_mesh.FillIota(0); TF_ASSIGN_OR_RETURN( bool changed, spmd::AdjustShardingsWithPartialMeshShape( sequence.instructions(), instructions_to_shard, mesh_shape, original_device_mesh, !option_.try_multiple_mesh_shapes)); LOG(INFO) << "Shardings are adjusted based on current partial mesh shape: " << changed; } else { device_mesh.SetValues(option_.device_mesh_ids); } spmd::ProfilingResult prof_result; spmd::ClusterEnvironment cluster_env( original_device_mesh, device_mesh, option_.device_mesh_alpha, option_.device_mesh_beta, prof_result, option_); XLA_VLOG_LINES(6, module->ToString()); const int64_t memory_lower_bound = spmd::MemoryBudgetLowerBound( *module, instructions_to_shard, liveness_set, *alias_analysis, device_mesh.num_elements(), preserve_shardings); const float memory_lower_bound_gb = static_cast<float>(memory_lower_bound) / (1024 * 1024 * 1024); LOG(INFO) << "Memory consumption lower bound is " << memory_lower_bound_gb << " GB."; if (set_to_memory_lower_bound) { LOG(INFO) << "--xla_tpu_auto_spmd_partitioning_memory_budget_gb is 0, and " "--xla_tpu_auto_spmd_partitioning_memory_budget_ratio is " << option_.memory_budget_ratio << ", so setting option.memory_budget_per_device to " << memory_lower_bound_gb << " x " << option_.memory_budget_ratio << " = " << memory_lower_bound_gb * option_.memory_budget_ratio << " GB"; option_.memory_budget_per_device = memory_lower_bound * std::abs(option_.memory_budget_ratio); if (option_.memory_budget_ratio < 0) { option_.memory_overbudget_coeff = -1.0; } } else if (option_.memory_budget_per_device > 0) { option_.memory_budget_per_device = original_memory_budget * original_device_mesh.num_elements() / device_mesh.num_elements(); LOG(INFO) << "Setting option.memory_budget_per_device to " << option_.memory_budget_per_device; } spmd::InstructionDepthMap ins_depth_map; ins_depth_map = spmd::BuildInstructionDepthMap(sequence); spmd::StrategyMap strategy_map; spmd::StrategyGroups strategy_groups; spmd::AssociativeDotPairs associative_dot_pairs; TF_ASSIGN_OR_RETURN( std::tie(strategy_map, strategy_groups, associative_dot_pairs), BuildStrategyAndCost(sequence, module, instructions_to_shard, instruction_execution_counts, ins_depth_map, alias_map, cluster_env, option_, *call_graph, hlo_cost_analysis, option_.try_multiple_mesh_shapes)); spmd::AliasSet alias_set = spmd::BuildAliasSet(module, input_output_alias_config, strategy_map); TF_RETURN_IF_ERROR(RemoveFollowersIfMismatchedStrategies( alias_set, strategy_groups, sequence, !option_.try_multiple_mesh_shapes)); XLA_VLOG_LINES(8, PrintStrategyMap(strategy_map, sequence)); spmd::CostGraph cost_graph(strategy_groups, associative_dot_pairs); cost_graph.Simplify(option_.simplify_graph); std::vector<absl::flat_hash_set<spmd::EdgeIdx>> node_to_edges( strategy_groups.size()); spmd::EdgeIdx edge_idx = 0; for (const auto& [edge, _] : cost_graph.edge_costs_) { node_to_edges[edge.second].insert(edge_idx); ++edge_idx; } const absl::flat_hash_map<const HloValue*, HloLiveRange::TimeBound>& buffer_live_ranges = hlo_live_range->buffer_live_ranges(); absl::flat_hash_map<spmd::NodeIdx, HloLiveRange::TimeBound> node_to_time_bound; absl::flat_hash_map<spmd::EdgeIdx, HloLiveRange::TimeBound> edge_to_time_bound; for (const auto& [value, time_bound] : buffer_live_ranges) { const HloInstruction* instruction = value->instruction(); const ShapeIndex& index = value->index(); if (instruction->shape().IsTuple() && index.empty()) continue; const spmd::StrategyGroup* strategy_group = strategy_map.at(instruction).get(); const spmd::NodeIdx node_idx = strategy_group->GetSubStrategyGroup(index)->node_idx; if (node_idx < 0) continue; node_to_time_bound[node_idx] = time_bound; for (const spmd::EdgeIdx edge_idx : node_to_edges[node_idx]) { edge_to_time_bound[edge_idx] = time_bound; } } std::vector<std::pair<spmd::LivenessIdx, spmd::LivenessIdx>> node_intervals, edge_intervals; for (spmd::NodeIdx node_idx = 0; node_idx < strategy_groups.size(); ++node_idx) { std::pair<spmd::LivenessIdx, spmd::LivenessIdx> interval; if (auto time_bound = node_to_time_bound.find(node_idx); time_bound != node_to_time_bound.end()) { interval.first = time_bound->second.start; interval.second = time_bound->second.end; } else { interval.first = std::numeric_limits<int64_t>::max(); interval.second = 0; } node_intervals.push_back(std::move(interval)); } for (spmd::EdgeIdx edge_idx = 0; edge_idx < cost_graph.edge_costs_.size(); ++edge_idx) { std::pair<spmd::LivenessIdx, spmd::LivenessIdx> interval; if (auto time_bound = edge_to_time_bound.find(edge_idx); time_bound != edge_to_time_bound.end()) { interval.first = time_bound->second.start; interval.second = time_bound->second.end; } else { interval.first = std::numeric_limits<int64_t>::max(); interval.second = 0; } edge_intervals.push_back(std::move(interval)); } const absl::Time term_reduction_start_time = absl::Now(); std::vector<std::pair<spmd::LivenessIdx, spmd::LivenessIdx>> reduced_node_intervals, reduced_edge_intervals; std::vector<absl::btree_set<int64_t>> reduced_node_groups, reduced_edge_groups; auto num_node_terms = ReduceMemoryTerms(strategy_groups.size(), node_intervals, reduced_node_intervals, reduced_node_groups); auto num_edge_terms = ReduceMemoryTerms(cost_graph.edge_costs_.size(), edge_intervals, reduced_edge_intervals, reduced_edge_groups); const absl::Time term_reduction_end_time = absl::Now(); const auto term_reduction_duration = term_reduction_end_time - term_reduction_start_time; LOG(INFO) << "Memory Term Reducer took " << absl::ToInt64Milliseconds(term_reduction_duration) << " ms and reduced the number of terms from " << num_node_terms.first + num_edge_terms.first << " to " << num_node_terms.second + num_edge_terms.second; std::string request_name = absl::StrCat("mesh_idx_", mesh_idx); TF_ASSIGN_OR_RETURN( spmd::AutoShardingSolverOutput output, Solve(*module, *hlo_live_range, strategy_map, strategy_groups, cost_graph, alias_set, reduced_node_intervals, reduced_edge_intervals, reduced_node_groups, reduced_edge_groups, option_, request_name, sharding_propagation_solution)); if (mesh_idx == partial_mesh_shapes.size() - 1) { this->solver_optimal_objective_value_ = output.cost; } else { TF_RET_CHECK(output.is_optimal) << "The solver did not find an optimal solution for a partial mesh " << "shape."; } XLA_VLOG_LINES(5, PrintAutoShardingSolution( sequence, liveness_set, strategy_map, strategy_groups, cost_graph, output.s_val, output.cost)); XLA_VLOG_LINES(6, PrintSolutionMemoryUsage(liveness_set, strategy_map, cost_graph, output.s_val)); if (option_.prefer_reduce_scatter) { TF_RETURN_IF_ERROR(GenerateReduceScatter( sequence, alias_map, ins_depth_map, strategy_map, cost_graph, output.s_val, cluster_env, option_)); } SetHloSharding(sequence, instructions_to_shard, strategy_map, cost_graph, output.s_val, (mesh_idx == partial_mesh_shapes.size() - 1)); if (mesh_idx == partial_mesh_shapes.size() - 1) { TF_RETURN_IF_ERROR(spmd::SetHloShardingPostProcessing( sequence, instructions_to_shard, preserve_shardings)); TF_RETURN_IF_ERROR(InsertReshardReshapes( sequence, instructions_to_shard, strategy_map, cost_graph, output.s_val, cluster_env, !option_.try_multiple_mesh_shapes, option_.insert_resharding_reshapes_for_non_dot_ops, preserve_shardings)); } else { spmd::RecoverShardingsFromPartialMesh(sequence, preserve_shardings); } } if (VLOG_IS_ON(1)) { spmd::CheckHloSharding(sequence, instructions_to_shard, original_device_mesh.num_elements()); } module_is_changed = true; if (VLOG_IS_ON(1)) { spmd::CheckUserShardingPreservation(module, preserve_shardings); } TF_RETURN_IF_ERROR(CanonicalizeLayouts(module)); for (HloInstruction* instruction : sequence.instructions()) { if (!instructions_to_shard.contains(instruction)) { instruction->set_sharding( HloSharding::Single(instruction->shape(), HloSharding::Manual())); } } for (HloInstruction* instruction : sequence.instructions()) { if (spmd::IsSPMDFullToShardShapeCustomCall(instruction)) { CHECK(instruction->has_sharding()); CHECK(instruction->sharding().IsManual()); CHECK(instruction->operand(0)->has_sharding()); CHECK(!instruction->operand(0)->sharding().IsManual()); } else if (spmd::IsSPMDShardToFullShapeCustomCall(instruction)) { CHECK(instruction->has_sharding()); CHECK(!instruction->sharding().IsManual()); CHECK(instruction->operand(0)->has_sharding()); CHECK(instruction->operand(0)->sharding().IsManual()) << instruction->ToString(); } } return module_is_changed; } bool ModuleIsManuallyPartitioned(const HloModule* module) { for (const HloComputation* computation : module->computations()) { for (const HloInstruction* instruction : computation->instructions()) { if (spmd::IsSPMDFullToShardShapeCustomCall(instruction) || spmd::IsSPMDShardToFullShapeCustomCall(instruction)) { return true; } } } return false; } bool IsSmallTensor(const HloInstruction* ins, const AutoShardingOption& option) { return spmd::ByteSizeOfShape(ins->shape()) <= option.small_tensor_byte_size; } bool HasUnsupportedNestedTuples(const HloModule& module) { for (const auto* computation : module.computations()) { for (const auto* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kConditional) { for (const HloInstruction* operand : instruction->operands()) { if (ShapeUtil::IsNestedTuple(operand->shape())) { return true; } } } } } return false; } std::unique_ptr<HloModule> CloneModule(const HloModule* module) { auto module_clone = module->Clone(""); module_clone->set_layout_canonicalization_callback( module->layout_canonicalization_callback()); return module_clone; } absl::Status MoveComputationsFromModuleToModule(HloModule* from_module, HloModule* to_module) { TF_RETURN_IF_ERROR(from_module->RemoveUnusedComputations()); const std::vector<HloComputation*>& original_module_computations = to_module->MakeComputationSorted(); const std::vector<HloComputation*>& clone_module_computations = from_module->MakeComputationSorted(); if (original_module_computations.size() != clone_module_computations.size()) { return absl::InternalError( "The cloned and the original modules do not have the same number " "of computations. This is a bug and should be reported."); } absl::flat_hash_map<HloComputation*, HloComputation*> computation_replacements; for (size_t i = 0; i < original_module_computations.size(); ++i) { HloComputation* original_computation = original_module_computations[i]; HloComputation* new_computation = clone_module_computations[i]; computation_replacements[original_computation] = new_computation; } to_module->ReplaceComputations(computation_replacements); to_module->MoveComputationsFrom(from_module); *to_module->mutable_config().mutable_entry_computation_layout() = from_module->entry_computation_layout(); to_module->input_output_alias_config() = from_module->input_output_alias_config(); to_module->buffer_donor_config() = from_module->buffer_donor_config(); return absl::OkStatus(); } AutoSharding::AutoSharding(const AutoShardingOption& option) : option_(option) {} absl::Time DumpModuleAndRecordPassStart(const HloModule* module) { XLA_VLOG_LINES(6, absl::StrCat("Before auto sharding:\n", module->ToString())); DumpHloModuleIfEnabled(*module, "before_auto_spmd_sharding"); #if !defined(__APPLE__) metrics::RecordAutoShardingInvocations(); #endif return absl::Now(); } void RecordPassEndAndDumpModule(absl::Time start_time, const HloModule* module) { absl::Time end_time = absl::Now(); absl::Duration duration = end_time - start_time; LOG(INFO) << "Auto Sharding took " << absl::ToInt64Seconds(duration) << " seconds"; #if !defined(__APPLE__) metrics::RecordAutoShardingCompilationTime( absl::ToInt64Microseconds(duration)); #endif XLA_VLOG_LINES(6, absl::StrCat("After auto sharding:\n", module->ToString())); DumpHloModuleIfEnabled(*module, "after_auto_spmd_sharding"); } absl::StatusOr<bool> AutoSharding::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { if (!option_.enable) { return false; } LOG(INFO) << "Starting the auto sharding pass"; if (HasUnsupportedNestedTuples(*module)) { LOG(FATAL) << "The input module contains nested tuples " "which we do not currently support well. See b/332951306 to " "track progress on this."; return false; } absl::Time start_time = DumpModuleAndRecordPassStart(module); TF_RETURN_IF_ERROR(module->RemoveUnusedComputations()); TF_RETURN_IF_ERROR(option_.CheckAndSetup()); LOG(INFO) << "AutoShardingOptions:\n" << option_.ToString(); absl::flat_hash_set<std::string> replicated_small_tensors; if (option_.small_tensor_byte_size > 0) { for (auto computation : module->computations()) { for (auto instruction : computation->instructions()) { if (!instruction->has_sharding() && IsSmallTensor(instruction, option_)) { VLOG(1) << "Replicated small tensor: " << instruction->name(); instruction->set_sharding( instruction->shape().IsTuple() ? HloSharding::SingleTuple(instruction->shape(), HloSharding::Replicate()) : HloSharding::Replicate()); replicated_small_tensors.insert(std::string(instruction->name())); } } } } bool module_is_manually_partitioned = ModuleIsManuallyPartitioned(module); if (module_is_manually_partitioned) { HloConstantSplitter constant_splitter( option_.enable_expression_constant_splitter, spmd::OpEncountersShardToFull); CHECK_OK(constant_splitter.Run(module, execution_threads)); CHECK_OK(HloDCE().Run(module, execution_threads)); } std::vector<std::vector<int64_t>> mesh_shapes; if (option_.try_multiple_mesh_shapes || module_is_manually_partitioned) { mesh_shapes = spmd::InferOrEnumerateMeshShapesToTry( *module, Product(option_.device_mesh_shape), option_.device_mesh_shape.size(), false); } else { mesh_shapes.push_back(option_.device_mesh_shape); } CHECK(option_.try_multiple_mesh_shapes || mesh_shapes.size() == 1) << "Auto-sharding cannot infer a single appropriate mesh shape for this " "HLO, and AutoShardingption::try_multiple_mesh_shapes is set to " "false. Please re-run with the option set to true."; if (module->entry_computation()->num_parameters() > 0) { HloInstruction* parameter_instruction = module->entry_computation()->parameter_instruction(0); if (parameter_instruction->shape().IsTuple() && parameter_instruction->has_sharding()) { CHECK_EQ(module->entry_computation()->num_parameters(), 1); parameter_instruction->set_sharding( spmd::ReplaceGivenShardingsWithUnknownForTuple( parameter_instruction->sharding(), parameter_instruction->shape(), module->config() .allow_spmd_sharding_propagation_to_parameters())); } } HloInstruction* root_instruction = module->entry_computation()->root_instruction(); if (root_instruction->shape().IsTuple() && root_instruction->has_sharding()) { root_instruction->set_sharding( spmd::ReplaceGivenShardingsWithUnknownForTuple( root_instruction->sharding(), root_instruction->shape(), module->config().allow_spmd_sharding_propagation_to_output())); } absl::flat_hash_map<std::string, HloSharding> sharding_propagation_solution; if (option_.use_sharding_propagation_for_default_shardings) { std::unique_ptr<HloModule> module_with_default_solution = CloneModule(module); ShardingPropagation sharding_propagation( true, false, module->config().allow_spmd_sharding_propagation_to_output(), module->config().allow_spmd_sharding_propagation_to_parameters(), false, nullptr); CHECK_OK(sharding_propagation.Run(module_with_default_solution.get(), execution_threads)); VLOG(6) << module_with_default_solution->ToString(); for (const auto computation : module_with_default_solution->computations()) { for (const auto instruction : computation->instructions()) { if (instruction->has_sharding()) { sharding_propagation_solution.insert( {std::string(instruction->name()), instruction->sharding()}); } } } } bool module_is_changed = false; VLOG(1) << "Original mesh shape " << spmd::ToString(option_.device_mesh_shape); double min_objective_value = std::numeric_limits<double>::max(); int min_mesh_shape_index = -1; std::unique_ptr<HloModule> min_mesh_shape_module; for (size_t i = 0; i < mesh_shapes.size(); ++i) { VLOG(1) << "Trying mesh shape " << spmd::ToString(mesh_shapes[i]); AutoShardingOption this_option = option_; this_option.device_mesh_shape = mesh_shapes[i]; if (this_option.device_mesh_shape.size() != this_option.device_mesh_alpha.size()) { this_option.device_mesh_alpha.clear(); this_option.device_mesh_beta.clear(); TF_RETURN_IF_ERROR(this_option.CheckAndSetup()); } auto pass = std::make_unique<AutoShardingImplementation>(this_option); std::unique_ptr<HloModule> module_clone = CloneModule(module); absl::StatusOr<bool> pass_result = pass->RunAutoSharding(module_clone.get(), replicated_small_tensors, execution_threads, sharding_propagation_solution); if (!pass_result.ok()) { VLOG(1) << "Mesh shape " << spmd::ToString(mesh_shapes[i]) << " led to the following error: " << pass_result.status().message(); continue; } double this_mesh_objective_value = pass->GetSolverOptimalObjectiveValue(); VLOG(1) << "Mesh shape " << spmd::ToString(mesh_shapes[i]) << " has objective value " << this_mesh_objective_value; if (this_mesh_objective_value >= 0 && min_objective_value > this_mesh_objective_value) { min_mesh_shape_index = i; min_mesh_shape_module = std::move(module_clone); min_objective_value = this_mesh_objective_value; CHECK_OK(pass_result); module_is_changed = *pass_result; } } std::string trying_to_find = option_.try_multiple_mesh_shapes ? "a device mesh (and the corresponding shardings)" : "shardings"; CHECK_GE(min_mesh_shape_index, 0) << "The auto-sharding pass could not find " << trying_to_find << " that works for this input. This could be the result of a low memory " "budget (please refer to the " "`--xla_tpu_auto_spmd_partitioning_memory_budget_ratio` flag to set a " "higher budget). If you think you have set a reasonably large memory " "budget, please report this as a bug."; solver_optimal_objective_value_ = min_objective_value; if (module_is_changed) { VLOG(1) << "Choosing mesh shape " << spmd::ToString(mesh_shapes[min_mesh_shape_index]) << " which had the minimal solver objective value of " << min_objective_value; chosen_mesh_shape_ = mesh_shapes[min_mesh_shape_index]; TF_RETURN_IF_ERROR(MoveComputationsFromModuleToModule( min_mesh_shape_module.get(), module)); } RecordPassEndAndDumpModule(start_time, module); return module_is_changed; } }
#include "xla/hlo/experimental/auto_sharding/auto_sharding.h" #include <cstddef> #include <cstdint> #include <memory> #include <numeric> #include <string> #include <tuple> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_cost_graph.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_device_mesh.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_option.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_strategy.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_util.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/utils/hlo_live_range.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/buffer_value.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_memory_scheduler.h" #include "xla/service/hlo_parser.h" #include "xla/service/hlo_value.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace op = xla::testing::opcode_matchers; namespace xla { namespace spmd { namespace { using ::testing::Contains; using ::testing::Each; using ::testing::ElementsAre; using ::testing::ElementsAreArray; using ::testing::Eq; using ::testing::FieldsAre; using ::testing::IsEmpty; using ::testing::IsFalse; using ::testing::IsTrue; using ::testing::Not; using ::testing::Pair; using ::testing::ResultOf; using ::testing::UnorderedElementsAre; TEST(DeviceMeshTest, IotaDeviceMesh2DStartsWith0) { DeviceMesh device_mesh({2, 4}); device_mesh.FillIota(0); EXPECT_TRUE(device_mesh.is_iota); EXPECT_THAT(device_mesh.dimensions(), ElementsAre(2, 4)); EXPECT_EQ(device_mesh.num_elements(), 8); } TEST(DeviceMeshTest, IotaDeviceMesh3DStartsWithNonZero) { DeviceMesh device_mesh({2, 4, 8}); device_mesh.FillIota(55); EXPECT_TRUE(device_mesh.is_iota); EXPECT_THAT(device_mesh.dimensions(), ElementsAre(2, 4, 8)); EXPECT_EQ(device_mesh.num_elements(), 64); } TEST(DeviceMeshTest, ExplicitSetValuesInferIotaIotaValues) { DeviceMesh device_mesh({2, 4, 8}); std::vector<int64_t> device_mesh_values(64); absl::c_iota(device_mesh_values, 34); device_mesh.SetValues(device_mesh_values); EXPECT_TRUE(device_mesh.is_iota); EXPECT_THAT(device_mesh.dimensions(), ElementsAre(2, 4, 8)); EXPECT_EQ(device_mesh.num_elements(), 64); } TEST(DeviceMeshTest, ExplicitSetValuesInferIotaNonIotaValues) { DeviceMesh device_mesh({2, 4, 8}); std::vector<int64_t> device_mesh_values(64); absl::c_iota(device_mesh_values, 34); device_mesh_values[54] = 54; device_mesh.SetValues(device_mesh_values); EXPECT_FALSE(device_mesh.is_iota); EXPECT_THAT(device_mesh.dimensions(), ElementsAre(2, 4, 8)); EXPECT_EQ(device_mesh.num_elements(), 64); } TEST(DeviceMeshTest, ReshapeTestWithoutIota) { DeviceMesh device_mesh({2, 4, 8}); std::vector<int64_t> device_mesh_values(64); absl::c_iota(device_mesh_values, 34); device_mesh_values[54] = 54; device_mesh.SetValues(device_mesh_values); EXPECT_FALSE(device_mesh.is_iota); EXPECT_THAT(device_mesh.dimensions(), ElementsAre(2, 4, 8)); EXPECT_EQ(device_mesh.num_elements(), 64); device_mesh.Reshape({2, 32}); EXPECT_FALSE(device_mesh.is_iota); EXPECT_THAT(device_mesh.dimensions(), ElementsAre(2, 32)); EXPECT_EQ(device_mesh.num_elements(), 64); } TEST(DeviceMeshTest, ReshapeTestWithIota) { DeviceMesh device_mesh({2, 4, 8}); std::vector<int64_t> device_mesh_values(64); absl::c_iota(device_mesh_values, 34); device_mesh.SetValues(device_mesh_values); EXPECT_TRUE(device_mesh.is_iota); EXPECT_THAT(device_mesh.dimensions(), ElementsAre(2, 4, 8)); EXPECT_EQ(device_mesh.num_elements(), 64); device_mesh.Reshape({2, 32}); EXPECT_TRUE(device_mesh.is_iota); EXPECT_THAT(device_mesh.dimensions(), ElementsAre(2, 32)); EXPECT_EQ(device_mesh.num_elements(), 64); } class AutoShardingTest : public HloTestBase { protected: const absl::string_view kDotHloString = R"( HloModule module ENTRY matmul { parameter.1 = f32[32,64]{1,0} parameter(0) parameter.2 = f32[64,128]{1,0} parameter(1) ROOT root = f32[32,128]{1,0} dot(parameter.1, parameter.2), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; const absl::string_view kAddHloString = R"( HloModule module ENTRY %elementwise { %param0 = f32[16,32,64]{2,1,0} parameter(0) %param1 = f32[16,32,64]{2,1,0} parameter(1) ROOT root = f32[16,32,64]{2,1,0} add(%param0, %param1) })"; void RunMatMulAutoShardingWithOptions( AutoShardingOption option, size_t expected_num_tiles, size_t expected_sharded_dimensions = 1) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kDotHloString)); RunAutoShardingWithOptions(module.get(), option, expected_num_tiles, expected_sharded_dimensions); } void RunAddAutoShardingWithOptions(AutoShardingOption option, size_t expected_num_tiles, size_t expected_sharded_dimensions = 1) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kAddHloString)); RunAutoShardingWithOptions(module.get(), option, expected_num_tiles, expected_sharded_dimensions); } void RunAutoShardingWithOptions(HloModule* module, AutoShardingOption option, size_t expected_num_tiles, size_t expected_sharded_dimensions = 1) { TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module)); EXPECT_TRUE(changed); auto* root = FindInstruction(module, "root"); ASSERT_NE(root, nullptr); EXPECT_EQ(root->sharding().NumTiles(), expected_num_tiles); EXPECT_EQ(VectorGreaterThanOneElementCount( root->sharding().tile_assignment().dimensions(), root->sharding().ReplicateOnLastTileDim()), expected_sharded_dimensions); } void RunMatMulAutoShardingWithOptionsExpectFail(AutoShardingOption option) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kDotHloString)); RunAutoShardingWithOptionsExpectFail(module.get(), option); } void RunAutoShardingWithOptionsExpectFail(HloModule* module, AutoShardingOption option) { EXPECT_FALSE(AutoSharding(option).Run(module).ok()); } void RunMatMulAutoShardingWithOptionsNoDeviceIds( AutoShardingOption option, std::vector<int64_t> expected_tile, bool expected_last_dim_replicate = false) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kDotHloString)); RunAutoShardingWithOptionsNoDeviceIds(module.get(), option, expected_tile, expected_last_dim_replicate); } void RunAutoShardingWithOptionsNoDeviceIds(HloModule* module, AutoShardingOption option, std::vector<int64_t> expected_tile, bool expected_last_dim_replicate) { TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module)); EXPECT_TRUE(changed); HloInstruction* root = FindInstruction(module, "root"); ASSERT_NE(root, nullptr); EXPECT_EQ(root->sharding().ReplicateOnLastTileDim(), expected_last_dim_replicate); EXPECT_THAT(root->sharding().tile_assignment().dimensions(), ElementsAreArray(expected_tile)); } }; TEST_F(AutoShardingTest, MatmulMeshShape1DMeshShape) { AutoShardingOption option; option.enable = true; option.device_mesh_shape = {4}; RunMatMulAutoShardingWithOptions(option, 4); option.device_mesh_shape = {8}; RunMatMulAutoShardingWithOptions(option, 8); } TEST_F(AutoShardingTest, MatmulMeshShape1DMeshShapeIds) { AutoShardingOption option; option.enable = true; option.device_mesh_shape = {4}; option.device_mesh_ids = {0, 1, 2, 3}; RunMatMulAutoShardingWithOptions(option, 4); option.device_mesh_shape = {8}; option.device_mesh_ids = {0, 1, 2, 3, 4, 5, 6, 7}; RunMatMulAutoShardingWithOptions(option, 8); } TEST_F(AutoShardingTest, MatmulMeshShape1DAllOptions) { AutoShardingOption option; option.enable = true; option.device_mesh_shape = {4}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0}; option.device_mesh_beta = {1.0}; RunMatMulAutoShardingWithOptions(option, 4); option.device_mesh_shape = {8}; option.device_mesh_ids = {0, 1, 2, 3, 4, 5, 6, 7}; option.device_mesh_alpha = {1.0}; option.device_mesh_beta = {1.0}; RunMatMulAutoShardingWithOptions(option, 8); } TEST_F(AutoShardingTest, MatmulMeshShape2DAllOptions) { AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; option.allow_mixed_mesh_shape = false; RunMatMulAutoShardingWithOptions(option, 4, 2); option.enable = true; option.device_mesh_shape = {1, 4}; RunMatMulAutoShardingWithOptions(option, 4); option.enable = true; option.device_mesh_shape = {4, 1}; RunMatMulAutoShardingWithOptions(option, 4); } TEST_F(AutoShardingTest, MatmulMeshShape2DNoAlphaBeta) { AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.allow_mixed_mesh_shape = false; RunMatMulAutoShardingWithOptions(option, 4, 2); option.enable = true; option.device_mesh_shape = {1, 4}; RunMatMulAutoShardingWithOptions(option, 4); option.enable = true; option.device_mesh_shape = {4, 1}; RunMatMulAutoShardingWithOptions(option, 4); } TEST_F(AutoShardingTest, MatmulMeshShape2DNoAlphaBetaMeshIds) { AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.allow_mixed_mesh_shape = false; RunMatMulAutoShardingWithOptions(option, 4, 2); option.enable = true; option.device_mesh_shape = {1, 4}; RunMatMulAutoShardingWithOptions(option, 4); option.enable = true; option.device_mesh_shape = {4, 1}; RunMatMulAutoShardingWithOptions(option, 4); } TEST_F(AutoShardingTest, MatmulMeshShape2DNoMeshIds) { AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; option.allow_mixed_mesh_shape = false; RunMatMulAutoShardingWithOptions(option, 4, 2); option.enable = true; option.device_mesh_shape = {1, 4}; RunMatMulAutoShardingWithOptions(option, 4); option.enable = true; option.device_mesh_shape = {4, 1}; RunMatMulAutoShardingWithOptions(option, 4); } TEST_F(AutoShardingTest, MatmulMeshShape3DAllOptions) { AutoShardingOption option; option.enable = true; option.allow_mixed_mesh_shape = false; option.allow_recompute_heavy_op = false; option.device_mesh_shape = {2, 2, 2}; option.device_mesh_ids = {0, 1, 2, 3, 4, 5, 6, 7}; option.device_mesh_alpha = {1.0, 1.0, 1.0}; option.device_mesh_beta = {0.01, 0.5, 1.0}; RunMatMulAutoShardingWithOptionsNoDeviceIds(option, {2, 2, 2}, true); } TEST_F(AutoShardingTest, Matmul3DMeshShape2DSharding) { AutoShardingOption option; option.enable = true; option.allow_mixed_mesh_shape = false; option.device_mesh_shape = {1, 2, 2}; RunMatMulAutoShardingWithOptions(option, 4, 2); option.device_mesh_shape = {2, 1, 2}; RunMatMulAutoShardingWithOptions(option, 4, 2); option.device_mesh_shape = {2, 2, 1}; RunMatMulAutoShardingWithOptions(option, 4, 2); } TEST_F(AutoShardingTest, AddMeshShape3DAllOptions) { AutoShardingOption option; option.enable = true; option.allow_mixed_mesh_shape = false; option.device_mesh_shape = {1, 2, 4}; option.device_mesh_ids = {0, 1, 2, 3, 4, 5, 6, 7}; option.device_mesh_alpha = {1.0, 1.0, 1.0}; option.device_mesh_beta = {0.01, 0.5, 1.0}; RunAddAutoShardingWithOptions(option, 8, 2); option.device_mesh_shape = {4, 1, 2}; RunAddAutoShardingWithOptions(option, 8, 2); option.device_mesh_shape = {1, 4, 2}; RunAddAutoShardingWithOptions(option, 8, 2); } TEST_F(AutoShardingTest, AddMeshShape3DNoAlphaBeta) { AutoShardingOption option; option.enable = true; option.allow_mixed_mesh_shape = false; option.device_mesh_shape = {1, 2, 4}; option.device_mesh_ids = {0, 1, 2, 3, 4, 5, 6, 7}; RunAddAutoShardingWithOptions(option, 8, 2); option.device_mesh_shape = {4, 1, 2}; RunAddAutoShardingWithOptions(option, 8, 2); option.device_mesh_shape = {1, 4, 2}; RunAddAutoShardingWithOptions(option, 8, 2); } TEST_F(AutoShardingTest, AddMeshShape3DNoAlphaBetaMeshIds) { AutoShardingOption option; option.allow_mixed_mesh_shape = false; option.enable = true; option.device_mesh_shape = {1, 2, 4}; RunAddAutoShardingWithOptions(option, 8, 2); option.device_mesh_shape = {4, 1, 2}; RunAddAutoShardingWithOptions(option, 8, 2); option.device_mesh_shape = {1, 4, 2}; RunAddAutoShardingWithOptions(option, 8, 2); } TEST_F(AutoShardingTest, AddMeshShape3DNoMeshIds) { AutoShardingOption option; option.allow_mixed_mesh_shape = false; option.enable = true; option.device_mesh_shape = {1, 2, 4}; option.device_mesh_alpha = {1.0, 1.0, 1.0}; option.device_mesh_beta = {0.01, 0.5, 1.0}; RunAddAutoShardingWithOptions(option, 8, 2); option.device_mesh_shape = {4, 1, 2}; RunAddAutoShardingWithOptions(option, 8, 2); option.device_mesh_shape = {1, 4, 2}; RunAddAutoShardingWithOptions(option, 8, 2); } TEST_F(AutoShardingTest, MatMulMeshShape2D) { AutoShardingOption option; option.allow_mixed_mesh_shape = false; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; RunMatMulAutoShardingWithOptions(option, 4, 2); } TEST_F(AutoShardingTest, AddMeshShape2D) { AutoShardingOption option; option.allow_mixed_mesh_shape = false; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; RunAddAutoShardingWithOptions(option, 4, 2); } TEST_F(AutoShardingTest, AddMeshShape3D) { AutoShardingOption option; option.enable = true; option.allow_mixed_mesh_shape = false; option.device_mesh_shape = {2, 2, 2}; option.device_mesh_alpha = {1.0, 1.0, 1.0}; option.device_mesh_beta = {0.01, 0.5, 1.0}; RunAddAutoShardingWithOptions(option, 2); } TEST_F(AutoShardingTest, LargeSize) { AutoShardingOption option; option.enable = true; option.device_mesh_shape = {1, 2, 4, 7}; option.device_mesh_alpha = {1.0, 1.0, 1.0, 1.0}; option.device_mesh_beta = {1.0, 1.0, 1.0, 1.0}; option.memory_budget_per_device = (8192 + 8192 * 2 + 8192 * 4 / 8); RunMatMulAutoShardingWithOptions(option, 56, 1); } TEST_F(AutoShardingTest, InvalidOptions) { AutoShardingOption option; option.enable = true; option.device_mesh_shape = {1, 2, 4}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 0.5}; EXPECT_FALSE(option.CheckAndSetup().ok()); RunMatMulAutoShardingWithOptionsExpectFail(option); AutoShardingOption empty_option; empty_option.enable = true; EXPECT_FALSE(empty_option.CheckAndSetup().ok()); RunMatMulAutoShardingWithOptionsExpectFail(empty_option); AutoShardingOption option_with_non_positive_mesh; option_with_non_positive_mesh.enable = true; option_with_non_positive_mesh.device_mesh_shape = {0, 4}; EXPECT_FALSE(option_with_non_positive_mesh.CheckAndSetup().ok()); RunMatMulAutoShardingWithOptionsExpectFail(option_with_non_positive_mesh); option_with_non_positive_mesh.device_mesh_shape = {-1, 4}; EXPECT_FALSE(option_with_non_positive_mesh.CheckAndSetup().ok()); RunMatMulAutoShardingWithOptionsExpectFail(option_with_non_positive_mesh); AutoShardingOption option_not_compatible; option_not_compatible.enable = true; option_not_compatible.device_mesh_shape = {4, 8}; option_not_compatible.device_mesh_ids = {1, 2, 3, 4}; EXPECT_FALSE(option_not_compatible.CheckAndSetup().ok()); RunMatMulAutoShardingWithOptionsExpectFail(option_not_compatible); } TEST_F(AutoShardingTest, MemoryBudgetTest) { auto compute_memory_budget_lower_bound = [](const HloModule& module, int64_t num_devices, const absl::flat_hash_map<std::string, std::vector<HloSharding>>& preserved_shardings = {}) -> absl::StatusOr<int64_t> { auto size_fn = [](const BufferValue& buffer) { return spmd::ByteSizeOfShape(buffer.shape()); }; TF_ASSIGN_OR_RETURN(HloSchedule schedule, ScheduleModule(&module, size_fn, ComputationSchedulerToModuleScheduler( DFSMemoryScheduler), {})); const HloComputation* entry_computation = module.entry_computation(); std::unique_ptr<HloAliasAnalysis> alias_analysis = HloAliasAnalysis::Run(&module).value(); TF_ASSIGN_OR_RETURN( std::unique_ptr<HloLiveRange> hlo_live_range, HloLiveRange::Run(schedule, *alias_analysis, entry_computation)); absl::flat_hash_map<const HloValue*, HloLiveRange::TimeBound>& buffer_live_ranges = hlo_live_range->buffer_live_ranges(); spmd::LivenessSet liveness_set(hlo_live_range->schedule_end_time() + 1); for (const auto& [hlo_value, live_range] : buffer_live_ranges) { for (spmd::LivenessIdx i = live_range.start; i <= live_range.end; ++i) { liveness_set[i].push_back(hlo_value); } } absl::flat_hash_set<const HloInstruction*> instructions_to_shard( module.entry_computation()->instructions().begin(), module.entry_computation()->instructions().end()); return spmd::MemoryBudgetLowerBound(module, instructions_to_shard, liveness_set, *alias_analysis, num_devices, preserved_shardings); }; constexpr absl::string_view kHloString = R"( HloModule module ENTRY %elementwise { %param0 = f32[16384,16384]{0,1} parameter(0) %param1 = f32[16384,16384]{0,1} parameter(1) %add = f32[16384,16384]{0,1} add(%param0, %param1) ROOT %copy = f32[16384,16384]{0,1} copy(%add) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN(HloSharding partial_sharding, ParseSharding("{devices=[64,1]<=[64]}")); TF_ASSERT_OK_AND_ASSIGN( int64_t partial_mesh_64x1_budget_lower_bound, compute_memory_budget_lower_bound(*module, 64)); for (HloInstruction* ins : module->entry_computation()->instructions()) { ins->set_sharding(partial_sharding); } TF_ASSERT_OK_AND_ASSIGN( int64_t full_mesh_64x8_budget_lower_bound, compute_memory_budget_lower_bound(*module, 512)); CHECK_LT(full_mesh_64x8_budget_lower_bound, partial_mesh_64x1_budget_lower_bound) << "The memory budget lower bound per device should be lower with a " "larger number of devices. Instead, the bound was " << partial_mesh_64x1_budget_lower_bound << " bytes for 64 devices and " << full_mesh_64x8_budget_lower_bound << " bytes for 512 devices."; } TEST_F(AutoShardingTest, DISABLED_ElementWiseOperator) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %elementwise { %param0 = f32[128,128]{0,1} parameter(0) %param1 = f32[128,128]{0,1} parameter(1) %add = f32[128,128]{0,1} add(%param0, %param1) ROOT %copy = f32[128,128]{0,1} copy(%add) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); auto* instruction = FindInstruction(module.get(), "param0"); ASSERT_NE(instruction, nullptr); EXPECT_THAT(instruction, op::Sharding("{devices=[2,2]0,2,1,3}")); } TEST_F(AutoShardingTest, NDIterativeSolveTest) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %elementwise { param = s32[512,3084]{1,0} parameter(0), sharding={devices=[256,1]<=[16,16]T(1,0)} sharding_call = s32[512,3084]{1,0} custom-call(param), custom_call_target="Sharding", sharding={devices=[256,1]<=[256]} ROOT slice = s32[512,2048]{1,0} slice(sharding_call), slice={[0:512], [0:2048]} })"; AutoShardingOption option; option.enable = true; option.solve_nd_sharding_iteratively = true; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings; option.device_mesh_shape = {16, 16}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); HloInstruction* slice = FindInstruction(module.get(), "slice"); EXPECT_NE(slice, nullptr); EXPECT_THAT(slice, op::Sharding("{devices=[256,1]<=[256]}")); } TEST_F(AutoShardingTest, SliceDeviceMeshTest) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %elementwise { param = s32[512,3084]{1,0} parameter(0) slice = s32[512,2048]{1,0} slice(param), slice={[0:512], [0:2048]} ROOT copy = s32[512,2048]{1,0} copy(slice) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN( bool changed, AutoSharding( {.enable = true, .device_mesh_shape = {2, 2}, .device_mesh_alpha = {1.0, 1.0}, .device_mesh_beta = {0.01, 1.0}}) .Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* slice = FindInstruction(module.get(), "slice"); ASSERT_NE(slice, nullptr); EXPECT_THAT( slice, AnyOf(op::Sharding("{devices=[4,1]0,1,2,3}"), op::Sharding("{devices=[2,1,2]0,1,2,3 last_tile_dim_replicate}"), op::Sharding("{devices=[2,1,2]0,2,1,3 last_tile_dim_replicate}"))); } TEST_F(AutoShardingTest, SliceInvalidStrategyFollowingTest) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %elementwise { param = s32[512,2084]{1,0} parameter(0) slice = s32[32,2048]{1,0} slice(param), slice={[0:32], [0:2048]} ROOT copy = s32[32,2048]{1,0} copy(slice) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN( bool changed, AutoSharding( {.enable = true, .device_mesh_shape = {64, 1}, .device_mesh_alpha = {1.0, 1.0}, .device_mesh_beta = {0.01, 1.0}}) .Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* slice = FindInstruction(module.get(), "slice"); ASSERT_NE(slice, nullptr); EXPECT_THAT(slice, op::Sharding("{replicated}")); } TEST_F(AutoShardingTest, SliceForcedInvalidStrategyFollowingTest) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %elementwise { param = s32[512,2084]{1,0} parameter(0), sharding={devices=[64,1]<=[64]} slice = s32[32,2048]{1,0} slice(param), slice={[0:32], [0:2048]} ROOT copy = s32[32,2048]{1,0} copy(slice) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN( bool changed, AutoSharding( {.enable = true, .device_mesh_shape = {64, 1}, .device_mesh_alpha = {1.0, 1.0}, .device_mesh_beta = {0.01, 1.0}}) .Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* slice = FindInstruction(module.get(), "slice"); ASSERT_NE(slice, nullptr); EXPECT_THAT(slice, op::Sharding("{devices=[64,1]<=[64]}")); } TEST_F(AutoShardingTest, IotaPartiallyReplicatedShardingTest) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %elementwise { iota1 = s32[11,1026]{1,0} iota(), iota_dimension=1 param1 = s32[11,1026]{1,0} parameter(0), sharding={devices=[1,16,16]<=[16,16]T(1,0) last_tile_dim_replicate} copy1 = s32[11,1026]{1,0} copy(iota1) ROOT add1 = s32[11,1026]{1,0} add(copy1, param1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN( bool changed, AutoSharding( { .enable = true, .preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings, .allow_mixed_mesh_shape = false, .only_allow_divisible_input_output = false, .device_mesh_shape = {16, 16}, .device_mesh_alpha = {1.0, 1.0}, .device_mesh_beta = {0.01, 1.0}}) .Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* iota = FindInstruction(module.get(), "iota1"); ASSERT_NE(iota, nullptr); EXPECT_THAT( iota, op::Sharding( "{devices=[1,16,16]<=[16,16]T(1,0) last_tile_dim_replicate}")); } TEST_F(AutoShardingTest, SliceMixedUserShardingTest) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %elementwise { param = s32[512,3084]{1,0} parameter(0), sharding={devices=[4,1]0,2,1,3} slice = s32[512,2048]{1,0} slice(param), slice={[0:512], [0:2048]} ROOT copy = s32[512,2048]{1,0} copy(slice) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN( bool changed, AutoSharding( { .enable = true, .preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings, .solve_nd_sharding_iteratively = true, .device_mesh_shape = {2, 2}, .device_mesh_ids = {0, 2, 1, 3}, .device_mesh_alpha = {1.0, 1.0}, .device_mesh_beta = {0.01, 1.0}}) .Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); std::vector<HloInstruction*> instructions = module->entry_computation()->MakeInstructionPostOrder(); EXPECT_THAT(instructions, Each(ResultOf( [](const HloInstruction* ins) { return ins->has_sharding(); }, IsTrue()))); EXPECT_THAT(instructions, Each(op::Sharding("{devices=[4,1]0,2,1,3}"))); } TEST_F(AutoShardingTest, SlicedTensorDimensionShardedTest) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %slicemodule { param = s32[512,3084]{1,0} parameter(0), sharding={devices=[1,4]0,2,1,3} slice = s32[512,2048]{1,0} slice(param), slice={[0:512], [0:2048]}, sharding={devices=[1,4]0,2,1,3} ROOT copy = s32[512,2048]{1,0} copy(slice) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN( bool changed, AutoSharding( { .enable = true, .preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings, .solve_nd_sharding_iteratively = true, .device_mesh_shape = {2, 2}, .device_mesh_ids = {0, 2, 1, 3}, .device_mesh_alpha = {1.0, 1.0}, .device_mesh_beta = {0.01, 1.0}}) .Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); std::vector<HloInstruction*> instructions = module->entry_computation()->MakeInstructionPostOrder(); EXPECT_THAT(instructions, Not(Contains(ResultOf( [](const HloInstruction* ins) { return ins->opcode(); }, Eq(HloOpcode::kReshape))))); } TEST_F(AutoShardingTest, UserShardingTest) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %elementwise { concatenate.76306 = bf16[1,4096,8,256]{3,2,1,0} parameter(0) constant.15158 = bf16[] constant(0) pad.70 = bf16[1,4352,8,256]{3,2,1,0} pad(concatenate.76306, constant.15158), padding=0_0x0_256x0_0x0_0, sharding={devices=[1,1,128,1]<=[128]} ROOT copy.45 = bf16[1,4352,8,256]{3,2,1,0} copy(pad.70) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN( bool changed, AutoSharding( AutoShardingOption{ .enable = true, .preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings, .device_mesh_shape = {128, 1}, .device_mesh_alpha = {1.0, 1.0}, .device_mesh_beta = {0.01, 1.0}}) .Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); } TEST_F(AutoShardingTest, AllowShardingsSmallDimsAcrossManyDevicesForFollowersTest) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %elementwise { parameter.1 = bf16[8,1024]{1,0} parameter(0), sharding={devices=[16,16]<=[256]} add.1 = bf16[8,1024]{1,0} add(parameter.1, parameter.1) ROOT copy.45 = bf16[8,1024]{1,0} copy(add.1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN( bool changed, AutoSharding( AutoShardingOption{ .enable = true, .preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings, .solve_nd_sharding_iteratively = false, .only_allow_divisible_input_output = false, .device_mesh_shape = {16, 16}, .device_mesh_alpha = {1.0, 1.0}, .device_mesh_beta = {0.01, 1.0}, .allow_shardings_small_dims_across_many_devices = true}) .Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* add1 = FindInstruction(module.get(), "add.1"); EXPECT_THAT(add1, op::Sharding("{devices=[16,16]<=[256]}")); TF_ASSERT_OK_AND_ASSIGN(module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN( changed, AutoSharding( AutoShardingOption{ .enable = true, .preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings, .solve_nd_sharding_iteratively = false, .only_allow_divisible_input_output = false, .device_mesh_shape = {16, 16}, .device_mesh_alpha = {1.0, 1.0}, .device_mesh_beta = {0.01, 1.0}, .allow_shardings_small_dims_across_many_devices = false}) .Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); add1 = FindInstruction(module.get(), "add.1"); EXPECT_THAT(add1, Not(op::Sharding("{devices=[16,16]<=[256]}"))); } TEST_F(AutoShardingTest, AllowShardingsSmallDimsAcrossManyDevicesForSourcesTest) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %elementwise { parameter.1 = bf16[8,1024]{1,0} parameter(0) add.1 = bf16[8,1024]{1,0} add(parameter.1, parameter.1), sharding={devices=[16,1,16]<=[256] last_tile_dim_replicate} ROOT copy.45 = bf16[8,1024]{1,0} copy(add.1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN( bool changed, AutoSharding( AutoShardingOption{ .enable = true, .preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings, .allow_replicated_parameters = false, .allow_mixed_mesh_shape = false, .solve_nd_sharding_iteratively = false, .only_allow_divisible_input_output = false, .device_mesh_shape = {16, 16}, .device_mesh_alpha = {1.0, 1.0}, .device_mesh_beta = {0.01, 1.0}, .allow_shardings_small_dims_across_many_devices = true}) .Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* parameter1 = FindInstruction(module.get(), "parameter.1"); EXPECT_THAT( parameter1, op::Sharding("{devices=[16,1,16]<=[256] last_tile_dim_replicate}")); TF_ASSERT_OK_AND_ASSIGN(module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN( changed, AutoSharding( AutoShardingOption{ .enable = true, .preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings, .allow_replicated_parameters = false, .allow_mixed_mesh_shape = false, .solve_nd_sharding_iteratively = false, .only_allow_divisible_input_output = false, .device_mesh_shape = {16, 16}, .device_mesh_alpha = {1.0, 1.0}, .device_mesh_beta = {0.01, 1.0}, .allow_shardings_small_dims_across_many_devices = false}) .Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); parameter1 = FindInstruction(module.get(), "parameter.1"); EXPECT_THAT( parameter1, Not(op::Sharding("{devices=[16,1,16]<=[256] last_tile_dim_replicate}"))); } TEST_F(AutoShardingTest, RngBitGeneratorArrayInput) { constexpr absl::string_view kHloString = R"( HloModule rng_bit_generator ENTRY %RngBitGenerator (p0: u64[2]) -> (u64[2], u32[16,16]) { %p0 = u64[2]{0} parameter(0) ROOT %rand = (u64[2]{0}, u32[16,16]{1,0}) rng-bit-generator(u64[2]{0} %p0), algorithm=rng_three_fry })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {1.0, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* instruction = FindInstruction(module.get(), "p0"); ASSERT_NE(instruction, nullptr); EXPECT_THAT(instruction, op::Sharding("{replicated}")); } TEST_F(AutoShardingTest, SPMDShardToFullShapeWithConstantTest) { constexpr absl::string_view kHloString = R"( HloModule rng_bit_generator add.6.clone { y.13 = bf16[]{:T(256)} parameter(1) x.13 = bf16[]{:T(256)} parameter(0) ROOT add.9011 = bf16[]{:T(256)} add(x.13, y.13) } ENTRY main { input.1 = bf16[512,512]{1,0} parameter(0) constant.1 = bf16[] constant(16.7) broadcast.1 = bf16[128,128]{1,0} broadcast(constant.1), dimensions={} broadcast.2 = bf16[512,512]{1,0} broadcast(constant.1), dimensions={} custom-call.1 = bf16[512,512]{1,0} custom-call(input.1), custom_call_target="Sharding", sharding={devices=[4,4]<=[16]} custom-call.2 = bf16[128,128]{1,0} custom-call(custom-call.1), custom_call_target="SPMDFullToShardShape", sharding={manual} all-reduce.1 = bf16[128,128]{1,0} all-reduce(custom-call.2), channel_id=621, replica_groups={{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}}, use_global_device_ids=true, to_apply=add.6.clone, frontend_attributes={from-cross-replica-sharding="true"}, backend_config={"flag_configs":[],"barrier_config":{"barrier_type":"CUSTOM","id":"9"},"scoped_memory_configs":[],"compute_type":"COMPUTE_TYPE_DEFAULT","device_type":"DEVICE_TYPE_INVALID","used_scoped_memory_configs":[]} add.1 = bf16[128,128]{1,0} add(bf16[128,128]{1,0} all-reduce.1, bf16[128,128]{1,0} broadcast.1) custom-call.3 = bf16[512,512]{1,0} custom-call(add.1), custom_call_target="SPMDShardToFullShape", sharding={devices=[4,1,4]<=[16]last_tile_dim_replicate} add.2 = bf16[512,512]{1,0} add(bf16[512,512]{1,0} custom-call.3, bf16[512,512]{1,0} broadcast.2) ROOT copy.1 = bf16[512,512]{1,0} copy(add.2) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kRemoveAllShardings; option.enable = true; option.device_mesh_shape = {4, 4}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {1.0, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* custom_call2 = FindInstruction(module.get(), "custom-call.2"); ASSERT_NE(custom_call2, nullptr); EXPECT_THAT(custom_call2, op::Sharding("{manual}")); const HloInstruction* custom_call3 = FindInstruction(module.get(), "custom-call.3"); ASSERT_NE(custom_call3, nullptr); EXPECT_THAT(custom_call3, op::Sharding("{devices=[4,1,4]<=[16]last_tile_dim_replicate}")); const HloInstruction* custom_call1 = custom_call2->operand(0); ASSERT_NE(custom_call1, nullptr); EXPECT_THAT(custom_call1, op::Sharding("{devices=[4,4]<=[16]}")); std::vector<const HloInstruction*> instructions( module->entry_computation()->instructions().begin(), module->entry_computation()->instructions().end()); EXPECT_THAT( module->entry_computation()->instructions(), Contains(ResultOf( "opcode", [](const HloInstruction* ins) { return ins->opcode(); }, Eq(HloOpcode::kConstant))) .Times(2)); } TEST_F(AutoShardingTest, SPMDShardToFullShapeMultipleValidMeshShapeTest) { constexpr absl::string_view kHloString = R"( HloModule rng_bit_generator add.6.clone { y.13 = bf16[]{:T(256)} parameter(1) x.13 = bf16[]{:T(256)} parameter(0) ROOT add.9011 = bf16[]{:T(256)} add(x.13, y.13) } ENTRY main { input.1 = bf16[512,512]{1,0} parameter(0) custom-call.1 = bf16[512,512]{1,0} custom-call(input.1), custom_call_target="Sharding", sharding={devices=[4,4]<=[16]} custom-call.2 = bf16[128,128]{1,0} custom-call(custom-call.1), custom_call_target="SPMDFullToShardShape", sharding={manual} all-reduce.1 = bf16[128,128]{1,0} all-reduce(custom-call.2), channel_id=621, replica_groups={{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}}, use_global_device_ids=true, to_apply=add.6.clone, frontend_attributes={from-cross-replica-sharding="true"}, backend_config={"flag_configs":[],"barrier_config":{"barrier_type":"CUSTOM","id":"9"},"scoped_memory_configs":[],"compute_type":"COMPUTE_TYPE_DEFAULT","device_type":"DEVICE_TYPE_INVALID","used_scoped_memory_configs":[]} reshape.1 = bf16[64,2,128]{2,1,0} reshape(bf16[128,128]{1,0} all-reduce.1) reshape.2 = bf16[64,256]{1,0} reshape(bf16[64,2,128]{2,1,0} reshape.1) custom-call.3 = bf16[512,512]{1,0} custom-call(reshape.2), custom_call_target="SPMDShardToFullShape", sharding={devices=[8,2]<=[16]} ROOT copy.1 = copy(custom-call.3) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kRemoveAllShardings; option.enable = true; option.try_multiple_mesh_shapes = false; option.device_mesh_shape = {4, 4}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {1.0, 1.0}; EXPECT_DEATH(auto status = AutoSharding(option).Run(module.get()), "Auto-sharding cannot infer a single appropriate mesh shape for " "this HLO, and AutoShardingption::try_multiple_mesh_shapes is " "set to false. Please re-run with the option set to true."); } TEST_F(AutoShardingTest, RngBitGeneratorTupleInput) { constexpr absl::string_view kHloString = R"( HloModule rng_bit_generator ENTRY %RngBitGenerator { param.0 = u32[2]{0:T(128)} parameter(0) param.1 = u32[2]{0:T(128)} parameter(1) tuple.3 = (u32[2]{0:T(128)}, u32[2]{0:T(128)}) tuple(param.0, param.1) ROOT rng-bit-generator = u32[100,100]{1,0:T(8,128)} rng-bit-generator(tuple.3), algorithm=rng_default })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* param0 = FindInstruction(module.get(), "param.0"); const HloInstruction* param1 = FindInstruction(module.get(), "param.1"); ASSERT_NE(param0, nullptr); ASSERT_NE(param0, nullptr); EXPECT_THAT(param0, op::Sharding("{replicated}")); EXPECT_THAT(param1, op::Sharding("{replicated}")); } TEST_F(AutoShardingTest, DotMixedMeshStrategies) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry { %param0 = f32[8192,23]{1,0} parameter(0), sharding={devices=[4,1]0,1,2,3} %param1 = f32[23,23]{1,0} parameter(1) %dot = f32[8192,23]{1,0} dot(%param0, %param1), lhs_contracting_dims={1}, rhs_contracting_dims={1} ROOT %copy = f32[8192,23]{1,0} copy(%dot) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; option.solve_nd_sharding_iteratively = false; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(2) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* param0 = FindInstruction(module.get(), "param0"); const HloInstruction* param1 = FindInstruction(module.get(), "param1"); const HloInstruction* dot = FindInstruction(module.get(), "dot"); ASSERT_NE(param0, nullptr); ASSERT_NE(param1, nullptr); ASSERT_NE(dot, nullptr); EXPECT_THAT(param0, op::Sharding("{devices=[4,1]0,1,2,3}")); EXPECT_THAT(param1, op::Sharding("{replicated}")); EXPECT_THAT(dot, AnyOf(op::Sharding("{devices=[4,1]0,1,2,3}"), op::Sharding("{devices=[2,2]<=[4]}"))); } TEST_F(AutoShardingTest, DotInsertReshardingReshapes) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry { %param0 = f32[256,256]{1,0} parameter(0), sharding={devices=[2,1,2]0,1,2,3 last_tile_dim_replicate} %param1 = f32[256,256]{1,0} parameter(1), sharding={devices=[2,2]0,1,2,3} %dot = f32[256,256]{1,0} dot(%param0, %param1), lhs_contracting_dims={1}, rhs_contracting_dims={1}, sharding={devices=[2,2]0,1,2,3} ROOT %copy = f32[256,256]{1,0} copy(%dot) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(2) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* param0 = FindInstruction(module.get(), "param0"); const HloInstruction* param1 = FindInstruction(module.get(), "param1"); const HloInstruction* dot = FindInstruction(module.get(), "dot"); ASSERT_NE(param0, nullptr); ASSERT_NE(param1, nullptr); ASSERT_NE(dot, nullptr); EXPECT_EQ(dot->operand(0), param0); EXPECT_NE(dot->operand(1), param1); } TEST_F(AutoShardingTest, DotLHSTwoNonContractingDims) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry { %param0 = f32[4,256,64]{2,1,0} parameter(0) %param1 = f32[64,32]{0,1} parameter(1) %dot = f32[4,256,32]{2,1,0} dot(f32[4,256,64]{2,1,0} %param0, f32[64,32]{0,1} %param1), lhs_contracting_dims={2}, rhs_contracting_dims={0} ROOT %copy = f32[4,256,32]{2,1,0} copy(%dot) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; option.allow_mixed_mesh_shape = false; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(2) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* param0 = FindInstruction(module.get(), "param0"); const HloInstruction* param1 = FindInstruction(module.get(), "param1"); const HloInstruction* dot = FindInstruction(module.get(), "dot"); ASSERT_NE(param0, nullptr); ASSERT_NE(param1, nullptr); ASSERT_NE(dot, nullptr); EXPECT_THAT( std::make_tuple(param0, param1, dot), AnyOf( FieldsAre( op::Sharding( "{devices=[1,2,1,2]0,1,2,3 last_tile_dim_replicate}"), op::Sharding("{devices=[1,2,2]0,2,1,3 last_tile_dim_replicate}"), op::Sharding("{devices=[1,2,2]0,1,2,3}")), FieldsAre( op::Sharding( "{devices=[1,2,1,2]0,2,1,3 last_tile_dim_replicate}"), op::Sharding("{devices=[1,2,2]0,1,2,3 last_tile_dim_replicate}"), op::Sharding("{devices=[1,2,2]0,2,1,3}")), FieldsAre( op::Sharding( "{devices=[2,1,1,2]0,1,2,3 last_tile_dim_replicate}"), op::Sharding("{devices=[1,2,2]0,2,1,3 last_tile_dim_replicate}"), op::Sharding("{devices=[2,1,2]0,1,2,3}")), FieldsAre( op::Sharding( "{devices=[2,1,1,2]0,2,1,3 last_tile_dim_replicate}"), op::Sharding("{devices=[1,2,2]0,1,2,3 last_tile_dim_replicate}"), op::Sharding("{devices=[2,1,2]0,2,1,3}")))); } TEST_F(AutoShardingTest, DotRHSTwoNonContractingDims) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry { %param0 = f32[4,256,32]{2,1,0} parameter(0) %param1 = f32[4,256,4,8]{1,3,2,0} parameter(1) %dot = f32[32,4,8]{2,1,0} dot(f32[4,256,32]{2,1,0} %param0, f32[4,256,4,8]{1,3,2,0} %param1), lhs_contracting_dims={0,1}, rhs_contracting_dims={0,1} ROOT %copy = f32[32,4,8]{2,1,0} copy(%dot) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; option.allow_mixed_mesh_shape = false; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(2) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* param0 = FindInstruction(module.get(), "param0"); const HloInstruction* param1 = FindInstruction(module.get(), "param1"); const HloInstruction* dot = FindInstruction(module.get(), "dot"); ASSERT_NE(param0, nullptr); ASSERT_NE(param1, nullptr); ASSERT_NE(dot, nullptr); EXPECT_THAT( std::make_tuple(param0, param1, dot), AnyOf( FieldsAre(op::Sharding( "{devices=[1,1,2,2]0,1,2,3 last_tile_dim_replicate}"), op::Sharding( "{devices=[1,1,2,1,2]0,2,1,3 last_tile_dim_replicate}"), op::Sharding("{devices=[2,2,1]0,1,2,3}")), FieldsAre(op::Sharding( "{devices=[1,1,2,2]0,1,2,3 last_tile_dim_replicate}"), op::Sharding( "{devices=[1,1,1,2,2]0,2,1,3 last_tile_dim_replicate}"), op::Sharding("{devices=[2,1,2]0,1,2,3}")), FieldsAre(op::Sharding( "{devices=[1,1,2,2]0,2,1,3 last_tile_dim_replicate}"), op::Sharding( "{devices=[1,1,1,2,2]0,1,2,3 last_tile_dim_replicate}"), op::Sharding("{devices=[2,1,2]0,2,1,3}")), FieldsAre(op::Sharding( "{devices=[1,1,2,2]0,2,1,3 last_tile_dim_replicate}"), op::Sharding( "{devices=[1,1,2,1,2]0,1,2,3 last_tile_dim_replicate}"), op::Sharding("{devices=[2,2,1]0,2,1,3}")))); } TEST_F(AutoShardingTest, DotTwoContractingDims) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry { %param0 = f32[4,256,64]{2,1,0} parameter(0) %param1 = f32[4,256,32]{2,1,0} parameter(1) %dot = f32[64,32]{1,0} dot(f32[4,256,64]{2,1,0} %param0, f32[4,256,32]{2,1,0} %param1), lhs_contracting_dims={0,1}, rhs_contracting_dims={0,1} ROOT %copy = f32[64,32]{1,0} copy(%dot) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; option.allow_mixed_mesh_shape = false; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(2) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* param0 = FindInstruction(module.get(), "param0"); const HloInstruction* param1 = FindInstruction(module.get(), "param1"); const HloInstruction* dot = FindInstruction(module.get(), "dot"); ASSERT_NE(param0, nullptr); ASSERT_NE(param1, nullptr); ASSERT_NE(dot, nullptr); EXPECT_THAT( std::make_tuple(param0, param1, dot), AnyOf(FieldsAre(op::Sharding( "{devices=[1,1,2,2]0,2,1,3 last_tile_dim_replicate}"), op::Sharding( "{devices=[1,1,2,2]0,1,2,3 last_tile_dim_replicate}"), op::Sharding("{devices=[2,2]0,2,1,3}")), FieldsAre(op::Sharding( "{devices=[1,1,2,2]0,1,2,3 last_tile_dim_replicate}"), op::Sharding( "{devices=[1,1,2,2]0,2,1,3 last_tile_dim_replicate}"), op::Sharding("{devices=[2,2]0,1,2,3}")))); } TEST_F(AutoShardingTest, TwoMatmulWithoutDotReplicationEnabled) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY twomatmul { parameter.1 = f32[64,64]{1,0} parameter(0) parameter.2 = f32[64,128]{1,0} parameter(1) dot.4 = f32[64,128]{1,0} dot(parameter.1, parameter.2), lhs_contracting_dims={1}, rhs_contracting_dims={0} parameter.3 = f32[128,64]{1,0} parameter(2) ROOT dot.5 = f32[64,64]{1,0} dot(dot.4, parameter.3), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.allow_recompute_heavy_op = false; option.allow_mixed_mesh_shape = false; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* param1 = FindInstruction(module.get(), "parameter.1"); ASSERT_NE(param1, nullptr); EXPECT_THAT(param1, op::Sharding("{devices=[2,1,2]0,2,1,3 last_tile_dim_replicate}")); const HloInstruction* param2 = FindInstruction(module.get(), "parameter.2"); ASSERT_NE(param2, nullptr); EXPECT_THAT(param2, op::Sharding("{devices=[1,2,2]0,1,2,3 last_tile_dim_replicate}")); const HloInstruction* param3 = FindInstruction(module.get(), "parameter.3"); ASSERT_NE(param3, nullptr); EXPECT_THAT(param3, op::Sharding("{devices=[2,1,2]0,1,2,3 last_tile_dim_replicate}")); const HloInstruction* dot4 = FindInstruction(module.get(), "dot.4"); ASSERT_NE(dot4, nullptr); EXPECT_THAT(dot4, op::Sharding("{devices=[2,2]0,2,1,3}")); const HloInstruction* dot5 = FindInstruction(module.get(), "dot.5"); ASSERT_NE(dot5, nullptr); EXPECT_THAT(dot5, op::Sharding("{devices=[2,1,2]0,2,1,3 last_tile_dim_replicate}")); } TEST_F(AutoShardingTest, TwoMatmulWithDotReplicationEnabled) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY twomatmul { parameter.1 = f32[64,64]{1,0} parameter(0) parameter.2 = f32[64,128]{1,0} parameter(1) dot.4 = f32[64,128]{1,0} dot(parameter.1, parameter.2), lhs_contracting_dims={1}, rhs_contracting_dims={0} parameter.3 = f32[128,64]{1,0} parameter(2) ROOT dot.5 = f32[64,64]{1,0} dot(dot.4, parameter.3), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.allow_recompute_heavy_op = true; option.allow_mixed_mesh_shape = false; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* param1 = FindInstruction(module.get(), "parameter.1"); const HloInstruction* param2 = FindInstruction(module.get(), "parameter.2"); const HloInstruction* param3 = FindInstruction(module.get(), "parameter.3"); const HloInstruction* dot4 = FindInstruction(module.get(), "dot.4"); const HloInstruction* dot5 = FindInstruction(module.get(), "dot.5"); ASSERT_NE(param1, nullptr); ASSERT_NE(param2, nullptr); ASSERT_NE(param3, nullptr); ASSERT_NE(dot4, nullptr); ASSERT_NE(dot5, nullptr); EXPECT_THAT( std::make_tuple(param1, param2, param3, dot4, dot5), AnyOf( FieldsAre( op::Sharding("{replicated}"), op::Sharding("{replicated}"), op::Sharding("{devices=[1,2,2]0,1,2,3 last_tile_dim_replicate}"), op::Sharding("{replicated}"), op::Sharding("{devices=[2,2]0,2,1,3}")), FieldsAre( op::Sharding("{replicated}"), op::Sharding("{replicated}"), op::Sharding("{devices=[1,2,2]0,2,1,3 last_tile_dim_replicate}"), op::Sharding("{replicated}"), op::Sharding("{devices=[2,2]0,1,2,3}")))); } TEST_F(AutoShardingTest, ProcessCustomCallShardings) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry { %param0 = f32[6,3] parameter(0) %copy = f32[6,3] copy(%param0) %annotate = f32[6,3] custom-call(%copy), custom_call_target="Sharding", backend_config="unspecified_dims=[1]", sharding={devices=[2,1,2]0,2,1,3 last_tile_dim_replicate} %copy.2 = f32[6,3] copy(%annotate) ROOT %copy.3 = f32[6,3] copy(%copy.2) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); EXPECT_TRUE(changed); auto* copy = FindInstruction(module.get(), "copy"); ASSERT_NE(copy, nullptr); EXPECT_TRUE(copy->has_sharding()); EXPECT_THAT(copy, op::Sharding("{devices=[2,1,2]0,2,1,3 last_tile_dim_replicate}")); } TEST_F(AutoShardingTest, SaveAndRemoveShardingAnnotationKeepAll) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry (param0: f32[4,256,64], param1: f32[4,256,32]) -> f32[64,32] { %param0 = f32[4,256,64]{2,1,0} parameter(0), sharding={devices=[1,1,2,2]0,1,2,3 last_tile_dim_replicate} %param1 = f32[4,256,32]{2,1,0} parameter(1), sharding={devices=[1,1,2,2]0,2,1,3 last_tile_dim_replicate} %dot = f32[64,32]{1,0} dot(f32[4,256,64]{2,1,0} %param0, f32[4,256,32]{2,1,0} %param1), lhs_contracting_dims={0,1}, rhs_contracting_dims={0,1}, sharding={devices=[2,2]0,1,2,3} ROOT %copy = f32[64,32]{1,0} copy(f32[64,32]{1,0} %dot), sharding={devices=[2,2]0,1,2,3} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings; absl::flat_hash_set<const HloInstruction*> instructions_to_shard( module->entry_computation()->instructions().begin(), module->entry_computation()->instructions().end()); TF_ASSERT_OK_AND_ASSIGN( AutoShardingImplementation::SaveShardingAnnotationsResult saved_shardings_result, AutoShardingImplementation(option).SaveAndRemoveShardingAnnotation( module.get(), instructions_to_shard, {}, {})); absl::flat_hash_map<std::string, std::vector<HloSharding>> saved_shardings = saved_shardings_result.preserved_shardings; EXPECT_FALSE(saved_shardings_result.module_is_changed); std::vector<HloInstruction*> instructions = module->entry_computation()->MakeInstructionPostOrder(); EXPECT_THAT(instructions, Each(ResultOf( [](const HloInstruction* ins) { return ins->has_sharding(); }, IsTrue()))); auto verified_parse_sharding = [](const absl::string_view sharding_str) { absl::StatusOr<HloSharding> sharding = ParseSharding(sharding_str); CHECK_OK(sharding); return *sharding; }; EXPECT_THAT( saved_shardings, UnorderedElementsAre( Pair("param0", ElementsAre(verified_parse_sharding( "{devices=[1,1,2,2]0,1,2,3 last_tile_dim_replicate}"))), Pair("param1", ElementsAre(verified_parse_sharding( "{devices=[1,1,2,2]0,2,1,3 last_tile_dim_replicate}"))), Pair("dot", ElementsAre(verified_parse_sharding("{devices=[2,2]0,1,2,3}"))), Pair("copy", ElementsAre(verified_parse_sharding( "{devices=[2,2]0,1,2,3}"))))); } TEST_F(AutoShardingTest, SaveAndRemoveShardingAnnotationKeepInputOutputSmallTensor) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry (param0: f32[4,256,64], param1: f32[4,256,32]) -> f32[64,32] { %param0 = f32[4,256,64]{2,1,0} parameter(0), sharding={devices=[2,2,1]0,1,2,3} %param1 = f32[4,256,32]{2,1,0} parameter(1), sharding={devices=[2,2,1]0,1,2,3} %dot = f32[64,32]{1,0} dot(f32[4,256,64]{2,1,0} %param0, f32[4,256,32]{2,1,0} %param1), lhs_contracting_dims={0,1}, rhs_contracting_dims={0,1}, sharding={replicated} ROOT %copy = f32[64,32]{1,0} copy(f32[64,32]{1,0} %dot), sharding={devices=[2,2]0,1,2,3} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepInputOutputShardings; absl::flat_hash_set<const HloInstruction*> instructions_to_shard( module->entry_computation()->instructions().begin(), module->entry_computation()->instructions().end()); TF_ASSERT_OK_AND_ASSIGN( AutoShardingImplementation::SaveShardingAnnotationsResult saved_shardings_result, AutoShardingImplementation(option).SaveAndRemoveShardingAnnotation( module.get(), instructions_to_shard, {"dot"}, {})); absl::flat_hash_map<std::string, std::vector<HloSharding>> saved_shardings = saved_shardings_result.preserved_shardings; EXPECT_FALSE(saved_shardings_result.module_is_changed); std::vector<HloInstruction*> instructions = module->entry_computation()->MakeInstructionPostOrder(); EXPECT_THAT(instructions, Each(ResultOf( [](const HloInstruction* ins) { return ins->has_sharding(); }, IsTrue()))); auto verified_parse_sharding = [](const absl::string_view sharding_str) { absl::StatusOr<HloSharding> sharding = ParseSharding(sharding_str); CHECK_OK(sharding); return *sharding; }; EXPECT_THAT( saved_shardings, UnorderedElementsAre( Pair("param0", ElementsAre(verified_parse_sharding( "{devices=[2,2,1]0,1,2,3}"))), Pair("param1", ElementsAre(verified_parse_sharding( "{devices=[2,2,1]0,1,2,3}"))), Pair("dot", ElementsAre(verified_parse_sharding("{replicated}"))), Pair("copy", ElementsAre(verified_parse_sharding( "{devices=[2,2]0,1,2,3}"))))); } TEST_F(AutoShardingTest, SaveAndRemoveShardingAnnotationKeepInputOutput) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry (param0: f32[4,256,64], param1: f32[4,256,32]) -> f32[64,32] { %param0 = f32[4,256,64]{2,1,0} parameter(0), sharding={devices=[1,1,2,2]0,1,2,3 last_tile_dim_replicate} %param1 = f32[4,256,32]{2,1,0} parameter(1), sharding={devices=[1,1,2,2]0,2,1,3 last_tile_dim_replicate} %param0_copy = f32[4,256,64]{2,1,0} copy(param0), sharding={devices=[1,1,2,2]0,1,2,3 last_tile_dim_replicate} %param1_copy = f32[4,256,32]{2,1,0} copy(param1), sharding={devices=[1,1,2,2]0,2,1,3 last_tile_dim_replicate} %dot = f32[64,32]{1,0} dot(f32[4,256,64]{2,1,0} %param0_copy, f32[4,256,32]{2,1,0} %param1_copy), lhs_contracting_dims={0,1}, rhs_contracting_dims={0,1}, sharding={devices=[2,2]0,1,2,3} ROOT %copy = f32[64,32]{1,0} copy(f32[64,32]{1,0} %dot), sharding={devices=[2,2]0,1,2,3} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepInputOutputShardings; absl::flat_hash_set<const HloInstruction*> instructions_to_shard( module->entry_computation()->instructions().begin(), module->entry_computation()->instructions().end()); TF_ASSERT_OK_AND_ASSIGN( AutoShardingImplementation::SaveShardingAnnotationsResult saved_shardings_result, AutoShardingImplementation(option).SaveAndRemoveShardingAnnotation( module.get(), instructions_to_shard, {}, {})); absl::flat_hash_map<std::string, std::vector<HloSharding>> saved_shardings = saved_shardings_result.preserved_shardings; EXPECT_TRUE(saved_shardings_result.module_is_changed); const HloInstruction* dot = FindInstruction(module.get(), "dot"); ASSERT_NE(dot, nullptr); EXPECT_FALSE(dot->has_sharding()); const HloInstruction* param0 = FindInstruction(module.get(), "param0"); ASSERT_NE(param0, nullptr); EXPECT_TRUE(param0->has_sharding()); EXPECT_THAT( param0, op::Sharding("{devices=[1,1,2,2]0,1,2,3 last_tile_dim_replicate}")); const HloInstruction* param0_copy = FindInstruction(module.get(), "param0_copy"); ASSERT_NE(param0_copy, nullptr); EXPECT_TRUE(param0_copy->has_sharding()); EXPECT_THAT( param0_copy, op::Sharding("{devices=[1,1,2,2]0,1,2,3 last_tile_dim_replicate}")); const HloInstruction* param1 = FindInstruction(module.get(), "param1"); ASSERT_NE(param1, nullptr); EXPECT_TRUE(param1->has_sharding()); EXPECT_THAT( param1, op::Sharding("{devices=[1,1,2,2]0,2,1,3 last_tile_dim_replicate}")); const HloInstruction* param1_copy = FindInstruction(module.get(), "param1_copy"); ASSERT_NE(param1_copy, nullptr); EXPECT_TRUE(param1_copy->has_sharding()); EXPECT_THAT( param1_copy, op::Sharding("{devices=[1,1,2,2]0,2,1,3 last_tile_dim_replicate}")); const HloInstruction* copy = FindInstruction(module.get(), "copy"); ASSERT_NE(copy, nullptr); EXPECT_TRUE(copy->has_sharding()); EXPECT_THAT(copy, op::Sharding("{devices=[2,2]0,1,2,3}")); EXPECT_THAT( saved_shardings, UnorderedElementsAre(Pair("param0", ElementsAre(param0->sharding())), Pair("param0_copy", ElementsAre(param0->sharding())), Pair("param1", ElementsAre(param1->sharding())), Pair("param1_copy", ElementsAre(param1->sharding())), Pair("copy", ElementsAre(copy->sharding())))); } TEST_F(AutoShardingTest, SaveAndRemoveShardingAnnotationRemoveAll) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry (param0: f32[4,256,64], param1: f32[4,256,32]) -> f32[64,32] { %param0 = f32[4,256,64]{2,1,0} parameter(0), sharding={devices=[1,1,2,2]0,1,2,3 last_tile_dim_replicate} %param1 = f32[4,256,32]{2,1,0} parameter(1), sharding={devices=[1,1,2,2]0,2,1,3 last_tile_dim_replicate} %dot = f32[64,32]{1,0} dot(f32[4,256,64]{2,1,0} %param0, f32[4,256,32]{2,1,0} %param1), lhs_contracting_dims={0,1}, rhs_contracting_dims={0,1}, sharding={devices=[2,2]0,1,2,3} ROOT %copy = f32[64,32]{1,0} copy(f32[64,32]{1,0} %dot), sharding={devices=[2,2]0,1,2,3} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kRemoveAllShardings; absl::flat_hash_set<const HloInstruction*> instructions_to_shard( module->entry_computation()->instructions().begin(), module->entry_computation()->instructions().end()); TF_ASSERT_OK_AND_ASSIGN( AutoShardingImplementation::SaveShardingAnnotationsResult saved_shardings_result, AutoShardingImplementation(option).SaveAndRemoveShardingAnnotation( module.get(), instructions_to_shard, {}, {})); absl::flat_hash_map<std::string, std::vector<HloSharding>> saved_shardings = saved_shardings_result.preserved_shardings; EXPECT_TRUE(saved_shardings_result.module_is_changed); EXPECT_THAT(saved_shardings, IsEmpty()); std::vector<HloInstruction*> instructions = module->entry_computation()->MakeInstructionPostOrder(); EXPECT_THAT(instructions, Each(ResultOf( [](const HloInstruction* ins) { return ins->has_sharding(); }, IsFalse()))); } TEST_F(AutoShardingTest, SaveAndRemoveShardingAnnotationRemoveAllSmallTensor) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry (param0: f32[4,256,64], param1: f32[4,256,32]) -> f32[64,32] { %param0 = f32[4,256,64]{2,1,0} parameter(0), sharding={devices=[2,2,1]0,1,2,3} %param1 = f32[4,256,32]{2,1,0} parameter(1), sharding={devices=[2,2,1]0,1,2,3} %dot = f32[64,32]{1,0} dot(f32[4,256,64]{2,1,0} %param0, f32[4,256,32]{2,1,0} %param1), lhs_contracting_dims={0,1}, rhs_contracting_dims={0,1}, sharding={replicated} ROOT %copy = f32[64,32]{1,0} copy(f32[64,32]{1,0} %dot), sharding={replicated} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kRemoveAllShardings; absl::flat_hash_set<const HloInstruction*> instructions_to_shard( module->entry_computation()->instructions().begin(), module->entry_computation()->instructions().end()); TF_ASSERT_OK_AND_ASSIGN( AutoShardingImplementation::SaveShardingAnnotationsResult saved_shardings_result, AutoShardingImplementation(option).SaveAndRemoveShardingAnnotation( module.get(), instructions_to_shard, {"dot", "copy"}, {})); absl::flat_hash_map<std::string, std::vector<HloSharding>> saved_shardings = saved_shardings_result.preserved_shardings; EXPECT_TRUE(saved_shardings_result.module_is_changed); const HloInstruction* param0 = FindInstruction(module.get(), "param0"); ASSERT_NE(param0, nullptr); EXPECT_FALSE(param0->has_sharding()); const HloInstruction* param1 = FindInstruction(module.get(), "param1"); ASSERT_NE(param1, nullptr); EXPECT_FALSE(param1->has_sharding()); const HloInstruction* dot = FindInstruction(module.get(), "dot"); ASSERT_NE(dot, nullptr); EXPECT_TRUE(dot->has_sharding()); EXPECT_TRUE(dot->sharding().IsReplicated()); const HloInstruction* copy = FindInstruction(module.get(), "copy"); ASSERT_NE(copy, nullptr); EXPECT_TRUE(copy->has_sharding()); EXPECT_TRUE(copy->sharding().IsReplicated()); EXPECT_THAT( saved_shardings, UnorderedElementsAre(Pair("dot", ElementsAre(dot->sharding())), Pair("copy", ElementsAre(copy->sharding())))); } TEST_F(AutoShardingTest, TupleReduceTest) { constexpr absl::string_view kHloString = R"( HloModule module %func (lhs_value: f32[], lhs_index: s32[], rhs_value: f32[], rhs_index: s32[]) -> (f32[], s32[]) { %lhs_value = f32[] parameter(0) %rhs_value = f32[] parameter(2) %compare.a = pred[] compare(f32[] %lhs_value, f32[] %rhs_value), direction=GE %select.a = f32[] select(pred[] %compare.a, f32[] %lhs_value, f32[] %rhs_value) %compare.b = pred[] compare(f32[] %lhs_value, f32[] %rhs_value), direction=EQ %lhs_index = s32[] parameter(1) %rhs_index = s32[] parameter(3) %minimum = s32[] minimum(s32[] %lhs_index, s32[] %rhs_index) %select.b = s32[] select(pred[] %compare.a, s32[] %lhs_index, s32[] %rhs_index) %select.c = s32[] select(pred[] %compare.b, s32[] %minimum, s32[] %select.b) ROOT %tuple = (f32[], s32[]) tuple(f32[] %select.a, s32[] %select.c) } ENTRY %entry { %param0 = f32[1,16,40]{2,1,0} parameter(0) %iota = s32[1,16,40]{2,1,0} iota(), iota_dimension=2 %constant.a = f32[] constant(-inf) %constant.b = s32[] constant(0) %reduce = (f32[1,16]{1,0}, s32[1,16]{1,0}) reduce(f32[1,16,40]{2,1,0} %param0, s32[1,16,40]{2,1,0} %iota, f32[] %constant.a, s32[] %constant.b), dimensions={2}, to_apply=%func })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); EXPECT_TRUE(changed); const HloInstruction* reduce = FindInstruction(module.get(), "reduce"); ASSERT_NE(reduce, nullptr); EXPECT_THAT( reduce, AnyOf(op::Sharding("{{devices=[1,2,2]0,1,2,3 last_tile_dim_replicate}, " "{devices=[1,2,2]0,1,2,3 last_tile_dim_replicate}}"), op::Sharding("{{devices=[1,2,2]0,2,1,3 last_tile_dim_replicate}, " "{devices=[1,2,2]0,2,1,3 last_tile_dim_replicate}}"), op::Sharding("{{devices=[1,4]0,1,2,3}, " "{devices=[1,4]0,1,2,3}}"))); const HloSharding& sharding = reduce->sharding(); TF_EXPECT_OK(sharding.Validate(reduce->shape(), 4)); } TEST_F(AutoShardingTest, ReduceTest) { constexpr absl::string_view kHloString = R"( HloModule module %func (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(f32[] %x, f32[] %y) } ENTRY %entry { %param0 = f32[1,16,128]{2,1,0} parameter(0) %param1 = f32[] parameter(1) %reduce = f32[1,16]{1,0} reduce(f32[1,16,128]{2,1,0} %param0, f32[] %param1), dimensions={2}, to_apply=%func })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); EXPECT_TRUE(changed); const HloInstruction* reduce = FindInstruction(module.get(), "reduce"); const HloInstruction* param0 = FindInstruction(module.get(), "param0"); ASSERT_NE(reduce, nullptr); auto reduce_matcher1 = op::Sharding("{devices=[1,2,2]0,1,2,3 last_tile_dim_replicate}"); auto param0_matcher1 = op::Sharding("{devices=[1,2,1,2]0,1,2,3 last_tile_dim_replicate}"); auto reduce_matcher2 = op::Sharding("{devices=[1,2,2]0,2,1,3 last_tile_dim_replicate}"); auto param0_matcher2 = op::Sharding("{devices=[1,2,1,2]0,2,1,3 last_tile_dim_replicate}"); auto reduce_matcher3 = op::Sharding("{devices=[1,4]0,1,2,3}"); auto param0_matcher3 = op::Sharding("{devices=[1,4,1]0,1,2,3}"); EXPECT_TRUE( (Matches(param0_matcher1)(param0) && Matches(reduce_matcher1)(reduce)) || (Matches(param0_matcher2)(param0) && Matches(reduce_matcher2)(reduce)) || (Matches(param0_matcher3)(param0) && Matches(reduce_matcher3)(reduce))); const HloSharding& sharding = reduce->sharding(); TF_EXPECT_OK(sharding.Validate(reduce->shape(), 4)); } TEST_F(AutoShardingTest, ScatterTest2D) { constexpr absl::string_view kHloString = R"( HloModule module region { Arg_0 = s32[] parameter(0) ROOT Arg_1 = s32[] parameter(1) } ENTRY %Scatter { call = s32[4,128]{1,0} parameter(0) clamp = s32[4,2]{1,0} parameter(1) broadcast = s32[4,8]{1,0} parameter(2) ROOT scatter = s32[4,128]{1,0} scatter(call, clamp, broadcast), update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=1, indices_are_sorted=true, unique_indices=true, to_apply=region } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; option.memory_budget_per_device = 1185; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* scatter = FindInstruction(module.get(), "scatter"); ASSERT_NE(scatter, nullptr); EXPECT_EQ(scatter->sharding().NumTiles(), 4); TF_EXPECT_OK(scatter->sharding().Validate(scatter->shape(), 4)); } TEST_F(AutoShardingTest, ScatterTest3D) { constexpr absl::string_view kHloString = R"( HloModule module region { Arg_0 = f32[] parameter(0) ROOT Arg_1 = f32[] parameter(1) } ENTRY %Scatter { call = f32[4,128,128]{2,1,0} parameter(0) clamp = s32[4,3]{1,0} parameter(1) multiply = f32[4,8,8]{2,1,0} parameter(2) ROOT scatter = f32[4,128,128]{2,1,0} scatter(call, clamp, multiply), update_window_dims={1,2}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0,1,2}, index_vector_dim=1, indices_are_sorted=true, unique_indices=true, to_apply=region } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; option.memory_budget_per_device = 4 * 2 * (4 * 128 * 128 / 4) + 48 + 1024 + 1; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* scatter = FindInstruction(module.get(), "scatter"); ASSERT_NE(scatter, nullptr); EXPECT_EQ(scatter->sharding().NumTiles(), 4); TF_EXPECT_OK(scatter->sharding().Validate(scatter->shape(), 4)); } TEST_F(AutoShardingTest, GatherTest) { const char* const hlo_string = R"( HloModule module ENTRY %module { parameter.0 = s32[262144,2]{1,0} parameter(0), sharding={devices=[16,1,16]<=[256] last_tile_dim_replicate} parameter.1 = f32[512,712,4096]{2,1,0} parameter(1), sharding={devices=[16,1,16]<=[256]} ROOT gather = f32[262144,4096]{1,0} gather(parameter.1, parameter.0), offset_dims={1}, collapsed_slice_dims={0,1}, start_index_map={0,1}, index_vector_dim=1, slice_sizes={1,1,4096} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {16, 16}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(0) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* gather = FindInstruction(module.get(), "gather"); ASSERT_NE(gather, nullptr); EXPECT_THAT(gather, op::Sharding("{devices=[16,16]<=[256]}")); } TEST_F(AutoShardingTest, GatherTest2) { const char* const hlo_string = R"( HloModule module ENTRY %module { data = f32[1000]{0} parameter(0), sharding={replicated} indices = s32[512,1280,8,1]{3,2,1,0} parameter(1), sharding={devices=[256,1,1,1]<=[256]} ROOT gather = f32[512,1280,8,1]{3,2,1,0} gather(data, indices), offset_dims={3}, collapsed_slice_dims={}, start_index_map={0}, index_vector_dim=3, slice_sizes={1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {256, 1}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(0) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* gather = FindInstruction(module.get(), "gather"); ASSERT_NE(gather, nullptr); EXPECT_THAT(gather, op::Sharding("{devices=[256,1,1,1]<=[256]}")); } TEST_F(AutoShardingTest, GatherTestNoReshard) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry { data = s8[1000,128]{1,0} parameter(0) indices = s32[8,1,1]{2,1,0} parameter(1) gather = s8[8,1,128]{2,1,0} gather(data, indices), offset_dims={2}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=2, slice_sizes={1,128} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {1, 1, 8}; option.device_mesh_ids = {0, 1, 2, 3, 4, 5, 6, 7}; option.device_mesh_alpha = {1.0, 1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* gather = FindInstruction(module.get(), "gather"); const HloInstruction* data = FindInstruction(module.get(), "data"); ASSERT_NE(gather, nullptr); ASSERT_NE(data, nullptr); EXPECT_THAT(gather, AnyOf(op::Sharding("{devices=[1,1,8]<=[8]}"), op::Sharding("{devices=[8,1,1]<=[8]}"))); EXPECT_THAT(data, AnyOf(op::Sharding("{devices=[1,8]<=[8]}"), op::Sharding("{devices=[8,1]<=[8]}"))); TF_EXPECT_OK(gather->sharding().Validate(gather->shape(), 8)); EXPECT_EQ(data, gather->operand(0)); } TEST_F(AutoShardingTest, GatherConvTest) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry { %param0 = f32[1024,1024]{0,1} parameter(0) %param1 = s32[128,1024,1]{2,1,0} parameter(1) %gather = f32[128,1024,1024]{2,1,0} gather(f32[1024,1024]{0,1} %param0, s32[128,1024,1]{2,1,0} %param1), offset_dims={2}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=2, slice_sizes={1,1024} %param2 = f32[1024,1024]{1,0} parameter(2), sharding={replicated} %reshape = f32[1024,1024,1]{2,1,0} reshape(param2) ROOT convolution = f32[128,1024,1024]{2,1,0} convolution(gather, reshape), window={size=1}, dim_labels=b0f_io0->b0f })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepInputOutputShardings; option.device_mesh_shape = {4, 1}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); EXPECT_TRUE(changed); const HloInstruction* gather = FindInstruction(module.get(), "gather"); const HloInstruction* conv = FindInstruction(module.get(), "convolution"); ASSERT_NE(gather, nullptr); ASSERT_NE(conv, nullptr); const HloSharding& gather_sharding = gather->sharding(); EXPECT_EQ(gather_sharding.NumTiles(), 4); EXPECT_OK(gather_sharding.Validate(gather->shape(), 4)); const HloSharding& conv_sharding = conv->sharding(); EXPECT_EQ(conv_sharding.NumTiles(), 4); EXPECT_OK(conv_sharding.Validate(conv->shape(), 4)); } TEST_F(AutoShardingTest, AutoShardingKeepUserShardingInputOutput) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry (param0: f32[4,256,64], param1: f32[4,256,32]) -> f32[64,32] { %param0 = f32[4,256,64]{2,1,0} parameter(0), sharding={devices=[1,1,2,2]0,1,2,3 last_tile_dim_replicate} %param1 = f32[4,256,32]{2,1,0} parameter(1), sharding={devices=[1,1,2,2]0,2,1,3 last_tile_dim_replicate} %dot = f32[64,32]{1,0} dot(f32[4,256,64]{2,1,0} %param0, f32[4,256,32]{2,1,0} %param1), lhs_contracting_dims={0,1}, rhs_contracting_dims={0,1}, sharding={devices=[2,2]0,1,2,3} ROOT %copy = f32[64,32]{1,0} copy(f32[64,32]{1,0} %dot), sharding={devices=[2,2]0,1,2,3} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); auto* dot = FindInstruction(module.get(), "dot"); dot->clear_sharding(); EXPECT_FALSE(dot->has_sharding()); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepInputOutputShardings; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); EXPECT_TRUE(changed); auto* dot_after = FindInstruction(module.get(), "dot"); ASSERT_NE(dot_after, nullptr); EXPECT_THAT(dot_after, op::Sharding("{devices=[2,2]0,1,2,3}")); auto sharding = dot_after->sharding(); TF_EXPECT_OK(sharding.Validate(dot_after->shape(), 4)); } TEST_F(AutoShardingTest, AutoShardingKeepUserShardingAdd) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %elementwise { %param0 = f32[128,128]{0,1} parameter(0) %param1 = f32[128,128]{0,1} parameter(1) %add = f32[128,128]{0,1} add(%param0, %param1), sharding={devices=[2,1,2]0,1,2,3 last_tile_dim_replicate} ROOT %copy = f32[128,128]{0,1} copy(%add) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.allow_mixed_mesh_shape = false; option.device_mesh_shape = {2, 2}; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); EXPECT_TRUE(changed); LOG(INFO) << module->ToString(); const HloInstruction* param0_after = FindInstruction(module.get(), "param0"); ASSERT_NE(param0_after, nullptr); EXPECT_THAT(param0_after, op::Sharding("{devices=[2,1,2]0,1,2,3 last_tile_dim_replicate}")); const HloInstruction* param1_after = FindInstruction(module.get(), "param1"); ASSERT_NE(param1_after, nullptr); EXPECT_THAT(param1_after, op::Sharding("{devices=[2,1,2]0,1,2,3 last_tile_dim_replicate}")); const HloInstruction* add_after = FindInstruction(module.get(), "add"); ASSERT_NE(add_after, nullptr); EXPECT_THAT(add_after, op::Sharding("{devices=[2,1,2]0,1,2,3 last_tile_dim_replicate}")); } TEST_F(AutoShardingTest, AutoShardingKeepUserShardingDot) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry (param0: f32[4,256,64], param1: f32[4,256,32]) -> f32[64,32] { %param0 = f32[4,256,64]{2,1,0} parameter(0), sharding={devices=[1,1,2,2]0,1,2,3 last_tile_dim_replicate} %param1 = f32[4,256,32]{2,1,0} parameter(1), sharding={devices=[1,1,2,2]0,2,1,3 last_tile_dim_replicate} %dot = f32[64,32]{1,0} dot(f32[4,256,64]{2,1,0} %param0, f32[4,256,32]{2,1,0} %param1), lhs_contracting_dims={0,1}, rhs_contracting_dims={0,1}, sharding={devices=[2,2]0,1,2,3} ROOT %copy = f32[64,32]{1,0} copy(f32[64,32]{1,0} %dot), sharding={devices=[2,2]0,1,2,3} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); HloInstruction* param0 = FindInstruction(module.get(), "param0"); param0->clear_sharding(); EXPECT_FALSE(param0->has_sharding()); HloInstruction* param1 = FindInstruction(module.get(), "param1"); param1->clear_sharding(); EXPECT_FALSE(param1->has_sharding()); HloInstruction* copy = FindInstruction(module.get(), "copy"); copy->clear_sharding(); EXPECT_FALSE(copy->has_sharding()); AutoShardingOption option; option.enable = true; option.allow_mixed_mesh_shape = false; option.device_mesh_shape = {2, 2}; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); EXPECT_TRUE(changed); const HloInstruction* param0_after = FindInstruction(module.get(), "param0"); ASSERT_NE(param0_after, nullptr); EXPECT_THAT( param0_after, op::Sharding("{devices=[1,1,2,2]0,1,2,3 last_tile_dim_replicate}")); const HloInstruction* param1_after = FindInstruction(module.get(), "param1"); ASSERT_NE(param1_after, nullptr); EXPECT_THAT( param1_after, op::Sharding("{devices=[1,1,2,2]0,2,1,3 last_tile_dim_replicate}")); const HloInstruction* copy_after = FindInstruction(module.get(), "copy"); ASSERT_NE(copy_after, nullptr); EXPECT_THAT(copy_after, op::Sharding("{devices=[2,2]0,1,2,3}")); } TEST_F(AutoShardingTest, ENABLEDAutoShardingKeepUserShardingTupleReduce) { constexpr absl::string_view kHloString = R"( HloModule module %func (lhs_value: f32[], lhs_index: s32[], rhs_value: f32[], rhs_index: s32[]) -> (f32[], s32[]) { %lhs_value = f32[] parameter(0) %rhs_value = f32[] parameter(2) %compare.a = pred[] compare(f32[] %lhs_value, f32[] %rhs_value), direction=GE %select.a = f32[] select(pred[] %compare.a, f32[] %lhs_value, f32[] %rhs_value) %compare.b = pred[] compare(f32[] %lhs_value, f32[] %rhs_value), direction=EQ %lhs_index = s32[] parameter(1) %rhs_index = s32[] parameter(3) %minimum = s32[] minimum(s32[] %lhs_index, s32[] %rhs_index) %select.b = s32[] select(pred[] %compare.a, s32[] %lhs_index, s32[] %rhs_index) %select.c = s32[] select(pred[] %compare.b, s32[] %minimum, s32[] %select.b) ROOT %tuple = (f32[], s32[]) tuple(f32[] %select.a, s32[] %select.c) } ENTRY %entry { %param0 = f32[1,16,40]{2,1,0} parameter(0) %iota = s32[1,16,40]{2,1,0} iota(), iota_dimension=2 %constant.a = f32[] constant(-inf) %constant.b = s32[] constant(0) %reduce = (f32[1,16]{1,0}, s32[1,16]{1,0}) reduce(f32[1,16,40]{2,1,0} %param0, s32[1,16,40]{2,1,0} %iota, f32[] %constant.a, s32[] %constant.b), dimensions={2}, to_apply=%func, sharding={{devices=[1,2,2]0,1,2,3 last_tile_dim_replicate}, {devices=[1,2,2]0,1,2,3 last_tile_dim_replicate}} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); EXPECT_TRUE(changed); auto* reduce = FindInstruction(module.get(), "reduce"); ASSERT_NE(reduce, nullptr); EXPECT_THAT(reduce, op::Sharding( "{{devices=[1,2,2]0,1,2,3 last_tile_dim_replicate}, " "{devices=[1,2,2]0,1,2,3 last_tile_dim_replicate}}")); auto sharding = reduce->sharding(); TF_EXPECT_OK(sharding.Validate(reduce->shape(), 4)); auto* param0 = FindInstruction(module.get(), "param0"); ASSERT_NE(param0, nullptr); EXPECT_FALSE(param0->sharding().IsReplicated()); } TEST_F(AutoShardingTest, GetTupleElementUserShardingsParameter) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %tupleparameter { %param0 = f32[32,64]{1,0} parameter(0) %param1 = f32[32,64]{1,0} parameter(1), sharding={devices=[2,2]<=[4]} %tuple1 = (f32[32,64]{1,0}, f32[32,64]{1,0}) tuple(f32[32,64]{1,0} %param0, f32[32,64]{1,0} %param1) %first = f32[32,64]{1,0} get-tuple-element((f32[32,64]{1,0}, f32[32,64]{1,0}) %tuple1), index=0 %second = f32[32,64]{1,0} get-tuple-element((f32[32,64]{1,0}, f32[32,64]{1,0}) %tuple1), index=1, sharding={devices=[4,1]<=[4]} ROOT root = f32[32,64]{1,0} add(%first, %second) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* param1 = FindInstruction(module.get(), "param1"); ASSERT_NE(param1, nullptr); EXPECT_THAT(param1, op::Sharding("{devices=[2,2]<=[4]}")); const HloInstruction* second = FindInstruction(module.get(), "root"); ASSERT_NE(second, nullptr); EXPECT_THAT(second, op::Sharding("{devices=[4,1]<=[4]}")); } TEST_F(AutoShardingTest, TupleParameter) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %tupleparameter { %tuple_param = (f32[16,32,64]{2,1,0}, f32[16,32,64]{2,1,0}) parameter(0) %first = f32[16,32,64]{2,1,0} get-tuple-element((f32[16,32,64]{2,1,0}, f32[16,32,64]{2,1,0}) %tuple_param), index=0 %second = f32[16,32,64]{2,1,0} get-tuple-element((f32[16,32,64]{2,1,0}, f32[16,32,64]{2,1,0}) %tuple_param), index=1 ROOT root = f32[16,32,64]{2,1,0} add(%first, %second) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* tuple_param = FindInstruction(module.get(), "tuple_param"); const HloInstruction* first = FindInstruction(module.get(), "first"); const HloInstruction* second = FindInstruction(module.get(), "second"); const HloInstruction* root = FindInstruction(module.get(), "root"); ASSERT_NE(tuple_param, nullptr); ASSERT_NE(first, nullptr); ASSERT_NE(second, nullptr); ASSERT_NE(root, nullptr); ASSERT_TRUE(tuple_param->has_sharding()); ASSERT_TRUE(first->has_sharding()); ASSERT_TRUE(second->has_sharding()); ASSERT_TRUE(root->has_sharding()); EXPECT_EQ(first->sharding(), second->sharding()); EXPECT_EQ(first->sharding(), root->sharding()); ASSERT_TRUE(tuple_param->sharding().IsTuple()); ASSERT_EQ(tuple_param->sharding().tuple_elements().size(), 2); EXPECT_EQ(tuple_param->sharding().tuple_elements()[0], first->sharding()); EXPECT_EQ(tuple_param->sharding().tuple_elements()[1], second->sharding()); TF_EXPECT_OK(tuple_param->sharding().Validate(tuple_param->shape(), 4)); } TEST_F(AutoShardingTest, GetTupleElementWithUserShardingTest) { constexpr absl::string_view kHloString = R"( HloModule module %while_cond { %param0 = (u32[],f32[16,256,256]{2,1,0},f32[16,256,256]{2,1,0}) parameter(0) %count = u32[] get-tuple-element((u32[],f32[16,256,256]{2,1,0},f32[16,256,256]{2,1,0}) %param0), index=0 %limit = u32[] constant(2) ROOT %lt = pred[] compare(%count, %limit), direction=LT } %while_body { %param0 = (u32[],f32[16,256,256]{2,1,0},f32[16,256,256]{2,1,0}) parameter(0) %count = u32[] get-tuple-element((u32[],f32[16,256,256]{2,1,0},f32[16,256,256]{2,1,0}) %param0), index=0 %v1 = f32[16,256,256]{2,1,0} get-tuple-element((u32[],f32[16,256,256]{2,1,0},f32[16,256,256]{2,1,0}) %param0), index=1 %v2 = f32[16,256,256]{2,1,0} get-tuple-element((u32[],f32[16,256,256]{2,1,0},f32[16,256,256]{2,1,0}) %param0), index=2 %dot = f32[16,256,256]{2,1,0} dot(f32[16,256,256]{2,1,0} %v1, f32[16,256,256]{2,1,0} %v2), lhs_contracting_dims={2}, rhs_contracting_dims={2}, lhs_batch_dims={0}, rhs_batch_dims={0} %dot_tanh = f32[16,256,256]{2,1,0} tanh(f32[16,256,256]{2,1,0} %dot) %dot_cos = f32[16,256,256]{2,1,0} cosine(f32[16,256,256]{2,1,0} %dot) ROOT %result = (u32[],f32[16,256,256]{2,1,0},f32[16,256,256]{2,1,0}) tuple(%count, %dot_tanh, %dot_cos) } ENTRY %entry (param0: f32[16,256,256], param1: f32[16,256,256]) -> f32[16,256,256] { %param0 = f32[16,256,256]{2,1,0} parameter(0), sharding={devices=[2,1,2]0,1,2,3} %param1 = f32[16,256,256]{2,1,0} parameter(1), sharding={devices=[2,1,2]0,1,2,3} %zero = u32[] constant(0) %init = (u32[], f32[16,256,256], f32[16,256,256]) tuple(%zero, %param0, %param1) %while.1 = (u32[],f32[16,256,256]{2,1,0},f32[16,256,256]{2,1,0}) while(%init), body=%while_body, condition=%while_cond %tuple1 = f32[16,256,256]{2,1,0} get-tuple-element((u32[], f32[16,256,256]{2,1,0}, f32[16,256,256]{2,1,0}) %while.1), index=1, sharding={devices=[2,2,1]0,2,1,3} ROOT %tanh = f32[16,256,256]{2,1,0} tanh(f32[16,256,256]{2,1,0} %tuple1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings; option.enable = true; option.device_mesh_shape = {2, 1, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); EXPECT_TRUE(changed); } TEST_F(AutoShardingTest, While) { constexpr absl::string_view kHloString = R"( HloModule module %cond { %vars.cond = (u32[], bf16[2,2048,768], bf16[128,512,2048], bf16[128,512,768], s32[]) parameter(0) %count.cond = u32[] get-tuple-element(%vars.cond), index=0 %limit = u32[] constant(2) ROOT %lt = pred[] compare(%count.cond, %limit), direction=LT } %body { %param = (u32[], bf16[2,2048,768], bf16[128,512,2048], bf16[128,512,768], s32[]) parameter(0) %i0 = s32[] constant(0) %count = u32[] get-tuple-element(%param), index=0 %gte0 = bf16[2,2048,768]{2,1,0} get-tuple-element(%param), index=1 %index = s32[] get-tuple-element(%param), index=4 %ds = bf16[1,2048,768]{2,1,0} dynamic-slice(%gte0, s32[] %index, s32[] %i0, s32[] %i0), dynamic_slice_sizes={1,2048,768} %rhs = bf16[2048,768]{1,0} reshape(%ds) %lhs = bf16[128,512,2048]{2,1,0} get-tuple-element(%param), index=2 %dot = bf16[128,512,768]{2,1,0} dot(bf16[128,512,2048]{2,1,0} %lhs, bf16[2048,768]{1,0} %rhs), lhs_contracting_dims={2}, rhs_contracting_dims={0} ROOT %tuple = (u32[], bf16[2,2048,768], bf16[128,512,2048], bf16[128,512,768], s32[]) tuple(%count, %gte0, %lhs, %dot, index) } ENTRY %entry { %p0 = bf16[2048,768] parameter(0) %p1 = bf16[128,512,2048] parameter(1) %p2 = bf16[128,512,768] parameter(2) %reshape0 = bf16[1,2048,768] reshape(%p0) %concat0 = bf16[2,2048,768] concatenate(%reshape0, %reshape0), dimensions={0} %zero = u32[] constant(0) %p3 = s32[] parameter(3) %init = (u32[], bf16[2,2048,768], bf16[128,512,2048], bf16[128,512,768], s32[]) tuple(%zero, %concat0, %p1, %p2, %p3) %while = (u32[], bf16[2, 2048, 768], bf16[128,512,2048], bf16[128,512,768], s32[]) while(%init), body=%body, condition=%cond ROOT %result = bf16[128,512,768] get-tuple-element(%while), index=3 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(0) << module->ToString(); EXPECT_TRUE(changed); auto* while_op = FindInstruction(module.get(), "while"); ASSERT_NE(while_op, nullptr); for (size_t i = 0; i < while_op->while_body() ->root_instruction() ->sharding() .tuple_elements() .size(); i++) { const HloSharding& root_sharding = while_op->while_body() ->root_instruction() ->sharding() .tuple_elements() .at(i); EXPECT_EQ(while_op->while_body() ->parameter_instruction(0) ->sharding() .tuple_elements() .at(i) .ToString(), root_sharding.ToString()); EXPECT_EQ(while_op->while_condition() ->parameter_instruction(0) ->sharding() .tuple_elements() .at(i) .ToString(), root_sharding.ToString()); } } TEST_F(AutoShardingTest, DynamicSlice) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry { %param0 = s32[] parameter(0) %arg_tuple = (s32[], f32[4,256,1024]{2,1,0}, f32[2]{0}, f32[2]{0}, f32[2]{0}, f32[2]{0}, f32[2]{0}, f32[2]{0}, f32[2,4,256,1024]{3,2,1,0}, f32[2,4096]{1,0}, f32[2,1024,4096]{2,1,0}, f32[2,1024]{1,0}, f32[2,4096,1024]{2,1,0}, f32[2,1024]{1,0}, f32[2,1024]{1,0}, f32[2,1024]{1,0}, f32[2,1024]{1,0}, f32[2,4,256]{2,1,0}, f32[2,1024,4,256]{3,2,1,0}, f32[2,256]{1,0}, f32[2,1024]{1,0}, f32[2,1024,4,256]{3,2,1,0}, f32[2,4,256]{2,1,0}, f32[2,1024,4,256]{3,2,1,0}, f32[2,4,256]{2,1,0}, f32[2,1024,4,256]{3,2,1,0}, f32[2,4096]{1,0}, f32[2,1024,4096]{2,1,0}, f32[2,1024]{1,0}, f32[2,4096,1024]{2,1,0}, f32[2,1024]{1,0}, f32[2,1024]{1,0}, f32[2,1024]{1,0}, f32[2,1024]{1,0}, f32[2,4,256]{2,1,0}, f32[2,1024,4,256]{3,2,1,0}, f32[2,256]{1,0}, f32[2,1024]{1,0}, f32[2,1024,4,256]{3,2,1,0}, f32[2,4,256]{2,1,0}, f32[2,1024,4,256]{3,2,1,0}, f32[2,4,256]{2,1,0}, f32[2,1024,4,256]{3,2,1,0}, f32[4,1,256,256]{3,2,1,0}, f32[4,256,1]{2,1,0}, f32[4,256,1]{2,1,0}, f32[4,256,1]{2,1,0}, f32[4,256,1]{2,1,0}, f32[4,256,1]{2,1,0}, f32[], f32[], f32[4,256,1]{2,1,0}, f32[], f32[]) parameter(1) %constant.a = s32[] constant(2) %constant.b = s32[] constant(0) %compare = pred[] compare(s32[] %param0, s32[] %constant.b), direction=LT %add = s32[] add(s32[] %param0, s32[] %constant.a) %select = s32[] select(pred[] %compare, s32[] %add, s32[] %param0) %get-tuple-element = f32[2,1024]{1,0} get-tuple-element((s32[], f32[4,256,1024]{2,1,0}, f32[2]{0}, f32[2]{0}, f32[2]{0}, f32[2]{0}, f32[2]{0}, f32[2]{0}, f32[2,4,256,1024]{3,2,1,0}, f32[2,4096]{1,0}, f32[2,1024,4096]{2,1,0}, f32[2,1024]{1,0}, f32[2,4096,1024]{2,1,0}, f32[2,1024]{1,0}, f32[2,1024]{1,0}, f32[2,1024]{1,0}, f32[2,1024]{1,0}, f32[2,4,256]{2,1,0}, f32[2,1024,4,256]{3,2,1,0}, f32[2,256]{1,0}, f32[2,1024]{1,0}, f32[2,1024,4,256]{3,2,1,0}, f32[2,4,256]{2,1,0}, f32[2,1024,4,256]{3,2,1,0}, f32[2,4,256]{2,1,0}, f32[2,1024,4,256]{3,2,1,0}, f32[2,4096]{1,0}, f32[2,1024,4096]{2,1,0}, f32[2,1024]{1,0}, f32[2,4096,1024]{2,1,0}, f32[2,1024]{1,0}, f32[2,1024]{1,0}, f32[2,1024]{1,0}, f32[2,1024]{1,0}, f32[2,4,256]{2,1,0}, f32[2,1024,4,256]{3,2,1,0}, f32[2,256]{1,0}, f32[2,1024]{1,0}, f32[2,1024,4,256]{3,2,1,0}, f32[2,4,256]{2,1,0}, f32[2,1024,4,256]{3,2,1,0}, f32[2,4,256]{2,1,0}, f32[2,1024,4,256]{3,2,1,0}, f32[4,1,256,256]{3,2,1,0}, f32[4,256,1]{2,1,0}, f32[4,256,1]{2,1,0}, f32[4,256,1]{2,1,0}, f32[4,256,1]{2,1,0}, f32[4,256,1]{2,1,0}, f32[], f32[], f32[4,256,1]{2,1,0}, f32[], f32[]) %arg_tuple), index=16 ROOT %dynamic-slice = f32[1,1024]{1,0} dynamic-slice(f32[2,1024]{1,0} %get-tuple-element, s32[] %select, s32[] %constant.b), dynamic_slice_sizes={1,1024} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(0) << module->ToString(); EXPECT_TRUE(changed); } TEST_F(AutoShardingTest, Alias) { constexpr absl::string_view kHloString = R"( HloModule module, input_output_alias={ {0}: (0, {}, may-alias), {1}: (1, {}, may-alias), {2}: (2, {}, may-alias), {3}: (3, {}, may-alias)} ENTRY %entry { param.0 = u32[] parameter(0) param.1 = f32[32]{0} parameter(1) param.2 = f32[32]{0} parameter(2) param.3 = f32[1000]{0} parameter(3) ROOT tuple = (u32[], f32[32]{0}, f32[32]{0}, f32[1000]{0}) tuple(param.0, param.1, param.2, param.3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(0) << module->ToString(); EXPECT_TRUE(changed); } TEST_F(AutoShardingTest, AliasTupleParameter) { constexpr absl::string_view kHloString = R"( HloModule module, input_output_alias={ {0}: (0, {0}, may-alias), {1}: (0, {1}, may-alias), {2}: (0, {2}, may-alias), {3}: (0, {3}, may-alias)} ENTRY %entry { arg_tuple.1 = (u32[], f32[32]{0}, f32[32]{0}, f32[1000]{0}) parameter(0) get-tuple-element.0 = u32[] get-tuple-element(arg_tuple.1), index=0 get-tuple-element.1 = f32[32]{0} get-tuple-element(arg_tuple.1), index=1 get-tuple-element.2 = f32[32]{0} get-tuple-element(arg_tuple.1), index=2 get-tuple-element.3 = f32[1000]{0} get-tuple-element(arg_tuple.1), index=3 ROOT tuple = (u32[], f32[32]{0}, f32[32]{0}, f32[1000]{0}) tuple(get-tuple-element.0, get-tuple-element.1, get-tuple-element.2, get-tuple-element.3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(0) << module->ToString(); EXPECT_TRUE(changed); } TEST_F(AutoShardingTest, JaxRandomUniform) { constexpr absl::string_view kHloString = R"( HloModule module clone { lhs.1 = u32[] parameter(0) rhs.1 = u32[] parameter(2) or.2 = u32[] or(lhs.1, rhs.1) lhs.0 = u32[] parameter(1) rhs.0 = u32[] parameter(3) or.3 = u32[] or(lhs.0, rhs.0) ROOT tuple.23 = (u32[], u32[]) tuple(or.2, or.3) } ENTRY %entry { shift-left = u32[2,2]{1,0} parameter(0) select = u32[2,2]{1,0} parameter(1) constant.a = u32[] parameter(2) reduce = (u32[2]{0}, u32[2]{0}) reduce(shift-left, select, constant.a, constant.a), dimensions={1}, to_apply=clone rng-bit-generator = u32[8,512]{1,0} rng-bit-generator(reduce), algorithm=rng_default constant.b = u32[] constant(9) broadcast.a = u32[8,512]{1,0} broadcast(constant.b), dimensions={}, sharding={replicated} shift-right-logical = u32[8,512]{1,0} shift-right-logical(rng-bit-generator, broadcast.a) constant.c = u32[] constant(1065353216) broadcast.b = u32[8,512]{1,0} broadcast(constant.c), dimensions={}, sharding={replicated} or = u32[8,512]{1,0} or(shift-right-logical, broadcast.b) bitcast-convert = f32[8,512]{1,0} bitcast-convert(or) constant.d = f32[] constant(1) broadcast.c = f32[8,512]{1,0} broadcast(constant.d), dimensions={}, sharding={replicated} subtract = f32[8,512]{1,0} subtract(bitcast-convert, broadcast.c) constant.e = f32[] constant(0) broadcast.d = f32[8,512]{1,0} broadcast(constant.e), dimensions={}, sharding={replicated} ROOT maximum = f32[8,512]{1,0} maximum(subtract, broadcast.d) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(0) << module->ToString(); EXPECT_TRUE(changed); EXPECT_TRUE(module->entry_computation()->root_instruction()->has_sharding()); auto* tuple_operand = FindInstruction(module.get(), "reduce"); ASSERT_NE(tuple_operand, nullptr); EXPECT_THAT(tuple_operand, op::Sharding("{{replicated}, {replicated}}")); } TEST_F(AutoShardingTest, Reshape) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry { %param.0 = bf16[24,2048,2048]{2,1,0} parameter(0) %param.1 = s32[] parameter(1) %param.2 = bf16[512,1024,2048]{2,1,0} parameter(2) %constant = s32[] constant(0) %dynamic-slice = bf16[1,2048,2048]{2,1,0} dynamic-slice(bf16[24,2048,2048]{2,1,0} %param.0, s32[] %param.1, s32[] %constant, s32[] %constant), dynamic_slice_sizes={1,2048,2048} %reshape = bf16[2048,16,128]{2,1,0} reshape(bf16[1,2048,2048]{2,1,0} %dynamic-slice) %dot = bf16[512,1024,16,128]{3,2,1,0} dot(bf16[512,1024,2048]{2,1,0} %param.2, bf16[2048,16,128]{2,1,0} %reshape), lhs_contracting_dims={2}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {64, 1}; option.device_mesh_ids.resize(64); std::iota(option.device_mesh_ids.begin(), option.device_mesh_ids.end(), 0); option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(1) << module->ToString(); EXPECT_TRUE(changed); } TEST_F(AutoShardingTest, ReshapeWithInvalidUserSharding) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry { %param.0 = bf16[24,16,16]{2,1,0} parameter(0), sharding={devices=[32,1,1]<=[32]} %reshape = bf16[1,24,16,16]{3,2,1,0} reshape(%param.0) %copy = bf16[1,24,16,16]{3,2,1,0} copy(%reshape) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {32, 1}; option.device_mesh_ids.resize(32); std::iota(option.device_mesh_ids.begin(), option.device_mesh_ids.end(), 0); option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); EXPECT_TRUE(changed); VLOG(1) << module->ToString(); HloInstruction* reshape = FindInstruction(module.get(), "reshape"); EXPECT_THAT(reshape, op::Sharding("{devices=[1,32,1,1]<=[32]}")); } TEST_F(AutoShardingTest, Broadcast) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry { %param.0 = s32[32]{0} parameter(0) ROOT broadcast = s32[512,1024,1024,32]{3,2,1,0} broadcast(s32[32]{0} %param.0), dimensions={3} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {1, 1, 64}; option.memory_budget_per_device = 1025 * 1024 * 1024; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(1) << module->ToString(); EXPECT_TRUE(changed); } TEST_F(AutoShardingTest, TestReshardingCostsForUserAnnotatedSharding) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry { %param0 = f32[256,256] parameter(0) %param1 = f32[256,256] parameter(1) %dot = f32[256,256] dot(%param0, %param1), lhs_contracting_dims={1}, rhs_contracting_dims={1} ROOT %result = f32[256,256] tanh(%dot), sharding={devices=[1,4]0,1,2,3} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_beta = {1, 1}; option.device_mesh_alpha = {1, 1}; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings; AutoSharding pass(option); TF_ASSERT_OK_AND_ASSIGN(bool changed, pass.Run(module.get())); EXPECT_TRUE(changed); LOG(INFO) << module->ToString(); EXPECT_GT(pass.GetSolverOptimalObjectiveValue(), 0); } TEST_F(AutoShardingTest, AllowAliasToFollowerConversion) { constexpr absl::string_view kHloString = R"( HloModule module, input_output_alias={ {0}: (0, {}, may-alias), {1}: (1, {}, may-alias), {2}: (2, {}, may-alias), {3}: (3, {}, may-alias)} ENTRY %entry { param.0 = u32[] parameter(0) param.1 = f32[32]{0} parameter(1) param.2 = f32[32]{0} parameter(2) param.3 = f32[32000]{0} parameter(3) ROOT tuple.61 = (u32[], f32[32]{0}, f32[32]{0}, f32[32000]{0}) tuple(param.0, param.1, param.2, param.3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; option.allow_alias_to_follower_conversion = true; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(0) << module->ToString(); EXPECT_TRUE(changed); } TEST_F(AutoShardingTest, DisallowAliasToFollowerConversion) { constexpr absl::string_view kHloString = R"( HloModule module, input_output_alias={ {0}: (0, {}, may-alias), {1}: (1, {}, may-alias), {2}: (2, {}, may-alias), {3}: (3, {}, may-alias)} ENTRY %entry { param.0 = u32[] parameter(0) param.1 = f32[32]{0} parameter(1) param.2 = f32[32]{0} parameter(2) param.3 = f32[32000]{0} parameter(3) ROOT tuple.61 = (u32[], f32[32]{0}, f32[32]{0}, f32[32000]{0}) tuple(param.0, param.1, param.2, param.3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; option.allow_alias_to_follower_conversion = false; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(0) << module->ToString(); EXPECT_TRUE(changed); } TEST_F(AutoShardingTest, BufferDonorConfigPreservation) { constexpr absl::string_view kHloString = R"( HloModule Module, buffer_donor={ (0, {0}), (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 ROOT %out = (f32[], f32[]) tuple(%p0, %p1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; const HloBufferDonorConfig buffer_donor_config_before = module->buffer_donor_config(); TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); EXPECT_TRUE(changed); const HloBufferDonorConfig& buffer_donor_config_after = module->buffer_donor_config(); EXPECT_EQ(buffer_donor_config_before.ToString(), buffer_donor_config_after.ToString()); } TEST_F(AutoShardingTest, InputOutputAliasConfigPreservation) { constexpr absl::string_view kHloString = R"( HloModule Module, input_output_alias={ {0}: (0, {0}, must-alias), {1}: (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 ROOT %out = (f32[], f32[]) tuple(%p0, %p1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; const HloInputOutputAliasConfig input_output_alias_config_before = module->input_output_alias_config(); TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); EXPECT_TRUE(changed); const HloInputOutputAliasConfig& input_output_alias_config_after = module->input_output_alias_config(); EXPECT_EQ(input_output_alias_config_before.ToString(), input_output_alias_config_after.ToString()); } TEST_F(AutoShardingTest, SliceAliasTest) { const char* const kHloString = R"( HloModule module %branch0 { %branch0_param = f32[256,256]{1,0} parameter(0) ROOT %slice0 = f32[16,16]{1,0} slice(f32[256,256]{1,0} %branch0_param), slice={[16:32], [16:32]} } %branch1 { %branch1_param = f32[256,256]{1,0} parameter(0) ROOT %slice1 = f32[16,16]{1,0} slice(f32[256,256]{1,0} %branch1_param), slice={[0:16], [0:16]} } ENTRY %entry { %entry_param0 = f32[256,256]{1,0} parameter(0), sharding={devices=[32,1]<=[32]} %entry_param1 = s32[] parameter(1) ROOT %conditional = f32[16,16]{1,0} conditional(s32[] %entry_param1, f32[256,256]{1,0} %entry_param0, f32[256,256]{1,0} %entry_param0), branch_computations={%branch0, %branch1} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings; option.enable = true; option.device_mesh_shape = {32, 1}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); ASSERT_TRUE(changed); VLOG(5) << module->ToString(); const HloInstruction* branch0_param = FindInstruction(module.get(), "branch0_param"); const HloInstruction* slice0 = FindInstruction(module.get(), "slice0"); const HloInstruction* branch1_param = FindInstruction(module.get(), "branch1_param"); const HloInstruction* slice1 = FindInstruction(module.get(), "slice1"); ASSERT_NE(branch0_param, nullptr); ASSERT_NE(slice0, nullptr); ASSERT_NE(branch1_param, nullptr); ASSERT_NE(slice1, nullptr); ASSERT_TRUE(branch0_param->has_sharding()); ASSERT_TRUE(slice0->has_sharding()); ASSERT_TRUE(branch1_param->has_sharding()); ASSERT_TRUE(slice1->has_sharding()); EXPECT_THAT(branch0_param, op::Sharding("{devices=[32,1]<=[32]}")); EXPECT_THAT(slice0, op::Sharding("{replicated}")); EXPECT_THAT(branch1_param, op::Sharding("{devices=[32,1]<=[32]}")); EXPECT_THAT(slice1, op::Sharding("{replicated}")); } TEST_F(AutoShardingTest, CrashIfAskedToRespectShardAsShardLike) { const char* const kHloString = R"( HloModule module ENTRY matmul { param1 = f32[32,64]{1,0} parameter(0) param2 = f32[64,128]{1,0} parameter(1) custom-call1 = f32[32,64]{1,0} custom-call(param1), custom_call_target="Sharding", custom_call_has_side_effect=true, sharding={unknown shard_as 0} custom-call2 = f32[64,128]{1,0} custom-call(param2), custom_call_target="Sharding", custom_call_has_side_effect=true, sharding={unknown shard_as 0} ROOT root = f32[32,128]{1,0} dot(custom-call1, custom-call2), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings; option.enable = true; option.device_mesh_shape = {4, 1}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; EXPECT_DEATH( absl::StatusOr<bool> status = AutoSharding(option).Run(module.get()), "The auto-sharding pass could not find shardings that works for this " "input."); } TEST_F(AutoShardingTest, IgnoreShardAsShardLike) { const char* const kHloString = R"( HloModule module ENTRY matmul { param1 = f32[32,64]{1,0} parameter(0) param2 = f32[64,128]{1,0} parameter(1) custom-call1 = f32[32,64]{1,0} custom-call(param1), custom_call_target="Sharding", custom_call_has_side_effect=true, sharding={unknown shard_as 0} custom-call2 = f32[64,128]{1,0} custom-call(param2), custom_call_target="Sharding", custom_call_has_side_effect=true, sharding={unknown shard_as 0} ROOT root = f32[32,128]{1,0} dot(custom-call1, custom-call2), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kRemoveAllShardings; option.enable = true; option.device_mesh_shape = {4, 1}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); EXPECT_TRUE(changed); } TEST(NormalizeTest, NormalizeHandlesNegativeCosts) { EdgeReshardingCostMatrix edge_cost(2, 2); edge_cost(0, 0).communication_cost = -100; edge_cost(0, 1).communication_cost = 200; edge_cost(1, 0).communication_cost = 300; edge_cost(1, 1).communication_cost = 400; const EdgeReshardingCostMatrix normalized_edge_cost = Normalize(edge_cost); EXPECT_EQ(normalized_edge_cost(0, 0).communication_cost, 0); EXPECT_EQ(normalized_edge_cost(0, 1).communication_cost, 300); EXPECT_EQ(normalized_edge_cost(1, 0).communication_cost, 400); EXPECT_EQ(normalized_edge_cost(1, 1).communication_cost, 500); } TEST(NormalizeTest, NormalizeHandlesPositiveCosts) { EdgeReshardingCostMatrix edge_cost(2, 2); edge_cost(0, 0).communication_cost = 100; edge_cost(0, 1).communication_cost = 200; edge_cost(1, 0).communication_cost = 300; edge_cost(1, 1).communication_cost = 400; const EdgeReshardingCostMatrix normalized_edge_cost = Normalize(edge_cost); EXPECT_EQ(normalized_edge_cost(0, 0).communication_cost, 100); EXPECT_EQ(normalized_edge_cost(0, 1).communication_cost, 200); EXPECT_EQ(normalized_edge_cost(1, 0).communication_cost, 300); EXPECT_EQ(normalized_edge_cost(1, 1).communication_cost, 400); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bfb29bf7-6eab-4ad7-a819-b0a239d934ec
cpp
tensorflow/tensorflow
auto_sharding_solver
third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_solver.cc
third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_solver_test.cc
#include "xla/hlo/experimental/auto_sharding/auto_sharding_solver.h" #include <algorithm> #include <cmath> #include <cstddef> #include <cstdint> #include <functional> #include <limits> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/container/btree_set.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding.pb.h" #ifdef PLATFORM_GOOGLE #include "file/base/options.h" #endif #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_memory.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_strategy.h" #include "xla/status_macros.h" #include "xla/util.h" #include "tsl/platform/fingerprint.h" #include "tsl/platform/hash.h" #include "tsl/platform/types.h" #include "ortools/linear_solver/linear_solver.h" #include "ortools/linear_solver/linear_solver.pb.h" #ifdef PLATFORM_GOOGLE #include "file/base/helpers.h" #include "util/task/status.pb.h" #endif namespace xla { namespace spmd { using ::operations_research::MPConstraint; using ::operations_research::MPSolver; using ::operations_research::MPVariable; constexpr double kMaxCostEpsilon = 1.0001; constexpr double kMemoryMultiplier = 1e6; constexpr double kMaxCostValue = 1e18; bool AutoShardingSolverOutput::operator==( const AutoShardingSolverOutput& other) const { return s_val == other.s_val && cost == other.cost && is_optimal == other.is_optimal && peak_times == other.peak_times; } void PrintLargestInstructions( const std::vector<NodeStrategyIdx>& chosen_strategy, const AutoShardingSolverRequest& request) { if (!request.node_intervals().empty()) return; std::vector<std::pair<LivenessIdx, double>> time_memory_usage; for (LivenessIdx time_idx = 0; time_idx < request.live_size(); ++time_idx) { double mem = 0.0; for (NodeIdx node_idx : request.live(time_idx).nodes()) { mem += request.memory_costs(node_idx).costs(chosen_strategy[node_idx]); } time_memory_usage.push_back({time_idx, mem}); } struct { bool operator()(std::pair<LivenessIdx, double> a, std::pair<LivenessIdx, double> b) const { return a.second > b.second; } } MemLarger; std::sort(time_memory_usage.begin(), time_memory_usage.end(), MemLarger); LOG(INFO) << "using m[] and L[], max memory usage: " << time_memory_usage.front().second / (1024 * 1024 * 1024) << " GB at time " << time_memory_usage.front().first; size_t k = 3; k = std::min(k, time_memory_usage.size()); std::vector<std::pair<NodeIdx, double>> instruction_mem; absl::flat_hash_set<NodeIdx> instruction_set; for (auto usage_idx = 0; usage_idx < k; ++usage_idx) { LivenessIdx time_idx = time_memory_usage.at(usage_idx).first; for (NodeIdx node_idx : request.live(time_idx).nodes()) { double mem = request.memory_costs(node_idx).costs(chosen_strategy[node_idx]); if (mem > 100 * 1024 * 1024 && instruction_set.find(node_idx) == instruction_set.end()) { instruction_mem.push_back({node_idx, mem}); instruction_set.insert(node_idx); } } } std::sort(instruction_mem.begin(), instruction_mem.end(), MemLarger); size_t top_tensors = 10; top_tensors = std::min(top_tensors, instruction_mem.size()); VLOG(1) << "Top " << top_tensors << " largest tensors:"; for (size_t i = 0; i < top_tensors; ++i) { VLOG(1) << "instruction name: " << request.instruction_names(instruction_mem.at(i).first) << " memory usage: " << instruction_mem.at(i).second / (1024 * 1024 * 1024) << "GB"; } } absl::StatusOr<AutoShardingSolverOutput> SolveAndExtractSolution( const AutoShardingSolverRequest& request, const std::vector<std::vector<MPVariable*>>& s, const std::vector<std::vector<MPVariable*>>& e, const MPVariable* overbudget_var, const MPVariable* makespan_var, MPSolver& solver); double MinimumMemoryBudgetRequired(const AutoShardingSolverRequest& request) { double min_memory_budget_required_estimate = 0.0; for (LivenessIdx time_idx = 0; time_idx < request.live_size(); ++time_idx) { double min_memory_budget_required_estimate_local = 0.0; for (NodeIdx node_idx : request.live(time_idx).nodes()) { const auto& m = request.memory_costs(node_idx).costs(); const double fixed_memory_cost = *std::min_element(m.begin(), m.end()); min_memory_budget_required_estimate_local += fixed_memory_cost; } min_memory_budget_required_estimate = std::max(min_memory_budget_required_estimate, min_memory_budget_required_estimate_local); } return min_memory_budget_required_estimate; } double MaxCoeff( const tsl::protobuf::RepeatedPtrField<AutoShardingSolverRequest_Costs>& cost_mat) { double max_coeff = 0.0; for (auto& costs : cost_mat) { for (auto& cost : costs.costs()) { if (cost < kInfinityCost) { max_coeff = std::max(max_coeff, cost); } } } return max_coeff; } void ScaleCoeffs( double scaling_factor, tsl::protobuf::RepeatedPtrField<AutoShardingSolverRequest_Costs>* cost_mat) { for (auto& costs : *cost_mat) { for (auto& cost : *costs.mutable_costs()) { if (cost < kInfinityCost) { cost = floor(cost * scaling_factor); } } } } AutoShardingSolverRequest ScaleRequest( const AutoShardingSolverRequest& request) { if (!request.has_coeff_limit()) return request; VLOG(0) << "Scaling request by coefficient limit: " << request.coeff_limit().coeff(); double max_coeff = 0.0; max_coeff = std::max(max_coeff, MaxCoeff(request.communication_costs())); max_coeff = std::max(max_coeff, MaxCoeff(request.computation_costs())); max_coeff = std::max(max_coeff, MaxCoeff(request.resharding_costs())); if (max_coeff <= request.coeff_limit().coeff()) return request; const double scaling_factor = request.coeff_limit().coeff() / max_coeff; AutoShardingSolverRequest scaled_request = request; ScaleCoeffs(scaling_factor, scaled_request.mutable_communication_costs()); ScaleCoeffs(scaling_factor, scaled_request.mutable_computation_costs()); ScaleCoeffs(scaling_factor, scaled_request.mutable_resharding_costs()); return scaled_request; } std::optional<std::pair<int64_t, int64_t>> ReduceMemoryTerms( const AutoShardingSolverRequest& request, MPSolver& solver, int64_t num_lives, int64_t num_primitives, const std::function< tsl::protobuf::RepeatedField<int64_t>(int64_t)>& live, const tsl::protobuf::RepeatedPtrField< AutoShardingSolverRequest_Pair>& intervals, const tsl::protobuf::RepeatedPtrField< AutoShardingSolverRequest_Group>& groups, const tsl::protobuf::RepeatedPtrField< AutoShardingSolverRequest_Costs>& memory_costs, std::string_view prim_type, std::vector<std::vector<MPVariable*>>& prim_vars, std::vector<std::pair<int64_t, int64_t>>& reduced_intervals, std::vector<MPVariable*>& group_vars, absl::flat_hash_set<int64_t>& reduced_times) { const absl::Time term_reduction_start_time = absl::Now(); std::optional<std::pair<int64_t, int64_t>> num_terms = std::nullopt; std::vector<absl::btree_set<int64_t>> reduced_groups; if (groups.empty()) { for (const auto& interval : intervals) { if (interval.first() > interval.second()) continue; num_lives = std::max(num_lives, interval.second() + 1); } auto Intervals = [intervals](int64_t prim_idx) -> std::pair<int64_t, int64_t> { return {intervals.at(prim_idx).first(), intervals.at(prim_idx).second()}; }; MemoryTermReducer reducer; num_terms = intervals.empty() ? reducer.Reduce(num_lives, num_primitives, live) : reducer.Reduce(num_lives, num_primitives, std::move(Intervals)); reduced_intervals = reducer.GetReducedIntervals(); reduced_groups = reducer.GetReducedGroups(); } else { for (const auto& interval : intervals) { reduced_intervals.push_back({interval.first(), interval.second()}); } for (const auto& group : groups) { reduced_groups.push_back({group.prims().begin(), group.prims().end()}); } } solver.MakeNumVarArray(reduced_groups.size(), 0.0, MPSolver::infinity(), absl::StrCat("group_", prim_type), &group_vars); for (int64_t group_idx = 0; group_idx < group_vars.size(); ++group_idx) { MPConstraint* constraint = solver.MakeRowConstraint( -MPSolver::infinity(), 0.0, absl::StrCat("group_", prim_type, "[", group_idx, "]")); constraint->SetCoefficient(group_vars[group_idx], -1.0); for (const int64_t prim_idx : reduced_groups[group_idx]) { for (int64_t j = 0; j < prim_vars[prim_idx].size(); ++j) { double memory_cost = memory_costs.at(prim_idx).costs(j); memory_cost /= request.memory_budget() / kMemoryMultiplier; const double accumulated_coefficient = constraint->GetCoefficient(prim_vars[prim_idx][j]); constraint->SetCoefficient(prim_vars[prim_idx][j], accumulated_coefficient + memory_cost); } } } const absl::flat_hash_set<int64_t> times = MemoryTermReducer::GetReducedTimes( num_primitives, reduced_intervals, reduced_groups); reduced_times.insert(times.begin(), times.end()); const absl::Time term_reduction_end_time = absl::Now(); if (num_terms) { const auto term_reduction_duration = term_reduction_end_time - term_reduction_start_time; LOG(INFO) << "Memory Term Reducer for " << prim_type << "s took " << absl::ToInt64Milliseconds(term_reduction_duration) << " ms and reduced the number of terms from " << num_terms->first << " to " << num_terms->second; } return num_terms; } void AddMemoryTerms( const AutoShardingSolverRequest& request, MPSolver& solver, int64_t num_primitives, const std::vector<std::pair<int64_t, int64_t>>& intervals, const tsl::protobuf::RepeatedPtrField< AutoShardingSolverRequest_Costs>& memory_costs, const MPVariable* overbudget_var, const absl::flat_hash_set<int64_t>& reduced_times, std::vector<std::vector<MPVariable*>>& prim_vars, std::vector<MPVariable*>& group_vars, absl::flat_hash_map<LivenessIdx, MPConstraint*>& constraints) { for (int64_t prim_idx = 0; prim_idx < intervals.size(); ++prim_idx) { for (int64_t time_idx = intervals[prim_idx].first; time_idx <= intervals[prim_idx].second; ++time_idx) { if (!reduced_times.contains(time_idx)) continue; if (!constraints.contains(time_idx)) { MPConstraint* constraint = solver.MakeRowConstraint(-MPSolver::infinity(), kMemoryMultiplier, absl::StrCat("mem[", time_idx, "]")); if (overbudget_var) { constraint->SetCoefficient(overbudget_var, -kMemoryMultiplier); } constraints[time_idx] = constraint; } MPConstraint* constraint = constraints[time_idx]; if (prim_idx >= num_primitives) { constraint->SetCoefficient(group_vars[prim_idx - num_primitives], 1.0); continue; } for (int64_t j = 0; j < prim_vars[prim_idx].size(); ++j) { double memory_cost = memory_costs.at(prim_idx).costs(j); memory_cost /= request.memory_budget() / kMemoryMultiplier; const double accumulated_coefficient = constraint->GetCoefficient(prim_vars[prim_idx][j]); constraint->SetCoefficient(prim_vars[prim_idx][j], accumulated_coefficient + memory_cost); } } } } absl::StatusOr<AutoShardingSolverOutput> FormulateAndSolveMIPFromSolverRequest( const AutoShardingSolverRequest& unscaled_request) { const absl::Time start_time = absl::Now(); const AutoShardingSolverRequest& request = ScaleRequest(unscaled_request); const size_t num_edges = request.edges_size(); const int num_workers = 32; #ifdef PLATFORM_GOOGLE std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SAT")); #else std::unique_ptr<MPSolver> solver( std::make_unique<MPSolver>("", MPSolver::SAT_INTEGER_PROGRAMMING)); #endif CHECK(solver); solver->MutableObjective()->SetMinimization(); std::string solver_parameter_str; if (solver->ProblemType() == operations_research::MPSolver::SAT_INTEGER_PROGRAMMING) { solver_parameter_str = absl::StrCat("num_workers:", num_workers); if (request.deterministic_mode()) { absl::StrAppend( &solver_parameter_str, ",share_binary_clauses:false,random_seed:1,interleave_search:true"); } if (request.has_solver_timeout()) { absl::StrAppend(&solver_parameter_str, ",max_deterministic_time:", request.solver_timeout().solver_timeout_in_seconds()); } solver->SetSolverSpecificParametersAsString(solver_parameter_str); } std::vector<std::vector<MPVariable*>> s(request.num_nodes()); std::vector<std::vector<MPVariable*>> e(num_edges); MPVariable* overbudget_var = nullptr; MPVariable* makespan_var = nullptr; size_t unique_nodes = 0; for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { if (request.s_follow(node_idx) < 0) { unique_nodes += 1; solver->MakeBoolVarArray(request.s_len(node_idx), absl::StrCat("s[", node_idx, "]"), &s[node_idx]); } } for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { if (request.s_follow(node_idx) >= 0) { CHECK_EQ(request.s_len(node_idx), request.s_len(request.s_follow(node_idx))); s[node_idx] = s[request.s_follow(node_idx)]; } } size_t unique_edges = 0; std::vector<EdgeIdx> e_follow(num_edges, -1); absl::flat_hash_map<std::pair<NodeIdx, NodeIdx>, EdgeIdx> edge_map; for (EdgeIdx edge_idx = 0; edge_idx < num_edges; ++edge_idx) { const auto& raw_edge = request.edges(edge_idx); const std::pair<NodeIdx, NodeIdx> edge(raw_edge.first(), raw_edge.second()); auto followed_edge = edge; if (int f = request.s_follow(edge.first); f >= 0) followed_edge.first = f; if (int f = request.s_follow(edge.second); f >= 0) followed_edge.second = f; if (const auto& it = edge_map.find(followed_edge); it != edge_map.end()) { e[edge_idx] = e[it->second]; e_follow[edge_idx] = it->second; continue; } unique_edges += 1; solver->MakeBoolVarArray( request.s_len(edge.first) * request.s_len(edge.second), absl::StrCat("e[", edge.first, ",", edge.second, "]"), &e[edge_idx]); edge_map.insert({followed_edge, edge_idx}); } if (request.memory_budget() > 0 && request.has_overbudget_coeff()) { overbudget_var = solver->MakeNumVar(0.0, MPSolver::infinity(), "overbudget"); } if (request.has_makespan_coeff()) { makespan_var = CreateMakespanVar(request, e, *solver); } absl::flat_hash_set<MPVariable*> infinity_vars; for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { for (NodeStrategyIdx j = 0; j < s[node_idx].size(); ++j) { double coefficient = request.computation_costs(node_idx).costs(j) + request.communication_costs(node_idx).costs(j); if (coefficient >= kInfinityCost) { infinity_vars.insert(s[node_idx][j]); continue; } if (request.minimize_departures()) continue; double accumulated_coefficient = solver->MutableObjective()->GetCoefficient(s[node_idx][j]); solver->MutableObjective()->SetCoefficient( s[node_idx][j], accumulated_coefficient + coefficient); } } for (EdgeIdx edge_idx = 0; edge_idx < num_edges; ++edge_idx) { for (EdgeStrategyIdx j = 0; j < e[edge_idx].size(); ++j) { double coefficient = request.resharding_costs(edge_idx).costs(j); if (coefficient >= kInfinityCost) { infinity_vars.insert(e[edge_idx][j]); continue; } if (request.minimize_departures()) continue; double accumulated_coefficient = solver->MutableObjective()->GetCoefficient(e[edge_idx][j]); solver->MutableObjective()->SetCoefficient( e[edge_idx][j], accumulated_coefficient + coefficient); } } LOG(INFO) << "Number of infinity terms: " << infinity_vars.size(); const NodeStrategies shaved_strategies = StrategyShaver(request).FindShavedStrategies(); for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { if (s[node_idx].empty() || request.s_follow(node_idx) >= 0) continue; bool all_infinity = true; for (NodeStrategyIdx j = 0; j < s[node_idx].size(); ++j) { if (infinity_vars.contains(s[node_idx][j]) || shaved_strategies.contains({node_idx, j})) { MPConstraint* constraint = solver->MakeRowConstraint( 0.0, 0.0, absl::StrCat("infinitycost: s[", node_idx, "][", j, "] = 0")); constraint->SetCoefficient(s[node_idx][j], 1.0); } else { all_infinity = false; } } if (all_infinity) { LOG(FATAL) << "All of s[" << node_idx << "][*] have infinity costs"; } } for (EdgeIdx edge_idx = 0; edge_idx < num_edges; ++edge_idx) { if (e[edge_idx].empty() || e_follow[edge_idx] >= 0) continue; bool all_infinity = true; for (EdgeStrategyIdx j = 0; j < e[edge_idx].size(); ++j) { if (infinity_vars.contains(e[edge_idx][j])) { MPConstraint* constraint = solver->MakeRowConstraint( 0.0, 0.0, absl::StrCat("infinitycost: e[", edge_idx, "][", j, "] = 0")); constraint->SetCoefficient(e[edge_idx][j], 1.0); } else { all_infinity = false; } } if (all_infinity) { auto err_msg = absl::StrCat("All of e[", request.edges(edge_idx).first(), "][", request.edges(edge_idx).second(), "][*] have infinity costs"); if (request.crash_at_infinity_costs_check()) { LOG(FATAL) << err_msg; } else { LOG(WARNING) << err_msg; return absl::InternalError(err_msg); } } } for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { if (request.s_follow(node_idx) >= 0) continue; MPConstraint* constraint = solver->MakeRowConstraint( 1.0, 1.0, absl::StrCat("sum(s[", node_idx, "][j] for j = [0 .. ", s[node_idx].size(), ")) = 1")); for (NodeStrategyIdx j = 0; j < s[node_idx].size(); ++j) { constraint->SetCoefficient(s[node_idx][j], 1.0); } } if (request.memory_budget() > 0) { auto LiveNodes = [request](int64_t live_idx) -> tsl::protobuf::RepeatedField<int64_t> { return request.live(live_idx).nodes(); }; auto LiveEdges = [request](int64_t live_idx) -> tsl::protobuf::RepeatedField<int64_t> { return request.live_edges(live_idx).edges(); }; std::vector<std::pair<int64_t, int64_t>> reduced_intervals_nodes, reduced_intervals_edges; absl::flat_hash_set<int64_t> reduced_times; std::vector<MPVariable*> group_node_vars, group_edge_vars; std::optional<std::pair<int64_t, int64_t>> num_node_terms, num_edge_terms; num_node_terms = ReduceMemoryTerms( request, *solver, request.live_size(), request.num_nodes(), std::move(LiveNodes), request.node_intervals(), request.node_groups(), request.memory_costs(), "node", s, reduced_intervals_nodes, group_node_vars, reduced_times); if (request.enable_memory_edge_costs()) { num_edge_terms = ReduceMemoryTerms( request, *solver, request.live_edges_size(), request.edges_size(), std::move(LiveEdges), request.edge_intervals(), request.edge_groups(), request.memory_edge_costs(), "edge", e, reduced_intervals_edges, group_edge_vars, reduced_times); } absl::flat_hash_map<LivenessIdx, MPConstraint*> constraints; AddMemoryTerms(request, *solver, request.num_nodes(), reduced_intervals_nodes, request.memory_costs(), overbudget_var, reduced_times, s, group_node_vars, constraints); if (request.enable_memory_edge_costs()) { AddMemoryTerms(request, *solver, request.edges_size(), reduced_intervals_edges, request.memory_edge_costs(), overbudget_var, reduced_times, e, group_edge_vars, constraints); } if (overbudget_var && !request.minimize_departures()) { solver->MutableObjective()->SetCoefficient( overbudget_var, request.overbudget_coeff().coeff() * request.memory_budget()); } LOG(INFO) << "Minimum memory budget estimate: " << MinimumMemoryBudgetRequired(request); LOG(INFO) << "Using memory budget: " << static_cast<double>(request.memory_budget()); } for (EdgeIdx edge_idx = 0; edge_idx < num_edges; ++edge_idx) { if (e_follow[edge_idx] >= 0) continue; const auto& edge = request.edges(edge_idx); for (NodeStrategyIdx p = 0; p < s[edge.first()].size(); ++p) { for (NodeStrategyIdx q = 0; q < s[edge.second()].size(); ++q) { const EdgeStrategyIdx j = p * s[edge.second()].size() + q; MPConstraint* constraint = solver->MakeRowConstraint( -1.0, MPSolver::infinity(), absl::StrCat("edge[", edge_idx, "][", j, "]")); double coeff = (s[edge.first()][p] == s[edge.second()][q]) ? 2.0 : 1.0; constraint->SetCoefficient(s[edge.first()][p], -coeff); constraint->SetCoefficient(s[edge.second()][q], -coeff); constraint->SetCoefficient(e[edge_idx][j], 1.0); } } } absl::flat_hash_set<std::pair<NodeIdx, NodeIdx>> alias_set; for (auto alias_idx = 0; alias_idx < request.aliases_size(); ++alias_idx) { const auto& raw_alias = request.aliases(alias_idx); const std::pair<NodeIdx, NodeIdx> alias(raw_alias.first(), raw_alias.second()); if (alias_set.contains(alias)) continue; alias_set.insert(alias); const auto& value_costs = request.value_costs(alias_idx).costs(); for (NodeStrategyIdx p = 0; p < s[alias.first].size(); ++p) { for (NodeStrategyIdx q = 0; q < s[alias.second].size(); ++q) { if (value_costs[p * s[alias.second].size() + q] > 0.5) { MPConstraint* constraint = solver->MakeRowConstraint( -MPSolver::infinity(), 1, absl::StrCat("s[", alias.first, "][", p, "] + s[", alias.second, "][", q, "] <= 1")); constraint->SetCoefficient(s[alias.first][p], 1.0); constraint->SetCoefficient(s[alias.second][q], 1.0); } } } } if (request.has_max_departures()) { MPConstraint* constraint = solver->MakeRowConstraint( 0, request.max_departures().coeff(), absl::StrCat("departures <= ", request.max_departures().coeff())); for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { for (NodeStrategyIdx j = 0; j < s[node_idx].size(); ++j) { double accumulated_coefficient = constraint->GetCoefficient(s[node_idx][j]); double departure_cost = request.departure_costs(node_idx).costs(j); constraint->SetCoefficient(s[node_idx][j], accumulated_coefficient + departure_cost); } } } if (request.minimize_departures()) { for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { for (NodeStrategyIdx j = 0; j < s[node_idx].size(); ++j) { double accumulated_coefficient = solver->MutableObjective()->GetCoefficient(s[node_idx][j]); double departure_cost = request.departure_costs(node_idx).costs(j); solver->MutableObjective()->SetCoefficient( s[node_idx][j], accumulated_coefficient + departure_cost); } } } if (request.has_max_cost() && request.max_cost().coeff() < kMaxCostValue) { double max_cost = kMaxCostEpsilon * request.max_cost().coeff(); max_cost -= solver->Objective().offset(); MPConstraint* cost_constraint = solver->MakeRowConstraint( -MPSolver::infinity(), max_cost, "cost_constraint"); for (const auto [var, coeff] : solver->Objective().terms()) { cost_constraint->SetCoefficient(var, coeff); } } if (!request.s_hint().empty() && !request.deterministic_mode() && (!request.has_max_cost() || request.max_cost().coeff() < kMaxCostValue)) { std::vector<std::pair<const MPVariable*, double>> hint; for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { if (request.s_follow(node_idx) >= 0) continue; for (NodeStrategyIdx j = 0; j < s[node_idx].size(); ++j) { double hint_val = (request.s_hint(node_idx) == j) ? 1.0 : 0.0; hint.push_back({s[node_idx][j], hint_val}); } } solver->SetHint(hint); } #ifdef PLATFORM_GOOGLE bool dump_model = false; if (dump_model) { operations_research::MPModelProto model_proto; solver->ExportModelToProto(&model_proto); auto write_status = file::SetTextProto( absl::StrCat("/tmp/model_", solver->NumVariables(), ".proto"), model_proto, file::Defaults()); if (!write_status.ok()) { LOG(ERROR) << write_status.message(); } } bool dump_solver_request = false; if (dump_solver_request) { uint64_t solver_request_fprint = tsl::Fingerprint64(unscaled_request.SerializeAsString()); std::string request_dump_path = absl::StrCat("/tmp/solver_request_", unscaled_request.request_name(), "_", solver_request_fprint, ".proto"); auto write_status = file::SetBinaryProto( request_dump_path, unscaled_request, file::Defaults()); VLOG(5) << "Dumped solver request to " << request_dump_path; if (!write_status.ok()) { LOG(ERROR) << write_status.message(); } } #endif if (request.enable_output()) { solver->EnableOutput(); } VLOG(0) << "Starting solver " << solver->ProblemType() << "\n" << "Solver parameter string: " << solver_parameter_str << "\n" << "Number of workers: " << num_workers << "\n" << "Number of threads: " << solver->GetNumThreads() << "\n" << "Time limit: " << solver->time_limit() << "\n" << "Request valid: " << ValidateRequest(request).ok() << "\n" << "Aliases: " << request.aliases_size() << "\n" << "Unique nodes: " << unique_nodes << "\n" << "Unique edges: " << unique_edges << "\n" << "Total instructions: " << request.num_nodes() << "\n" << "Total edges: " << request.edges_size() << "\n" << "Memory budget: " << request.memory_budget() / (1024 * 1024 * 1024) << "GB\n" << "Number variables for ILP: " << solver->NumVariables() << "\n" << "Number of ILP constraints: " << solver->NumConstraints() << "\n" << "Deterministic mode: " << request.deterministic_mode() << "\n" << "Module name: " << request.module_name(); if (request.has_max_cost()) { VLOG(0) << "Max cost: " << request.max_cost().coeff(); } auto result = SolveAndExtractSolution(request, s, e, overbudget_var, makespan_var, *solver); if (result.ok()) { const AutoShardingEvaluation evaluation = Evaluate(unscaled_request, *result); LOG(INFO) << "*** Total costs for the (unscaled) solver request ***"; LOG(INFO) << "Total Communication Cost: " << evaluation.total.communication_cost << " (lower bound: " << evaluation.lower_bound.communication_cost << ")"; LOG(INFO) << "Total Computation Cost: " << evaluation.total.computation_cost << " (lower bound: " << evaluation.lower_bound.computation_cost << ")"; LOG(INFO) << "Total Resharding Cost: " << evaluation.total.resharding_cost << " (lower bound: " << evaluation.lower_bound.resharding_cost << ")"; LOG(INFO) << "Total Overbudget Cost: " << evaluation.total.overbudget_cost << " (lower bound: " << evaluation.lower_bound.overbudget_cost << ")"; LOG(INFO) << "Total Makespan Cost: " << evaluation.total.makespan_cost << " (lower bound: " << evaluation.lower_bound.makespan_cost << ")"; LOG(INFO) << "Total Cost: " << evaluation.total.cost() << " (lower bound: " << evaluation.lower_bound.cost() << ")"; LOG(INFO) << "Total Departures: " << evaluation.total_departures; LOG(INFO) << "Total Makespan: " << evaluation.total_makespan; LOG(INFO) << "Total Violations: " << evaluation.violation_codes.size(); } const absl::Time end_time = absl::Now(); const auto duration = end_time - start_time; LOG(INFO) << "Solver took " << absl::ToInt64Milliseconds(duration) << " ms"; return result; } std::vector<NodeStrategyIdx> GetChosenNodeStrategy( const AutoShardingSolverRequest& request, const std::vector<std::vector<MPVariable*>>& s) { std::vector<NodeStrategyIdx> chosen_node_strategy(request.num_nodes(), -1); for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { for (NodeStrategyIdx j = 0; j < s[node_idx].size(); ++j) { if (s[node_idx][j]->solution_value() > 0.5) { chosen_node_strategy[node_idx] = j; break; } } } return chosen_node_strategy; } absl::StatusOr<AutoShardingSolverOutput> SolveAndExtractSolution( const AutoShardingSolverRequest& request, const std::vector<std::vector<MPVariable*>>& s, const std::vector<std::vector<MPVariable*>>& e, const MPVariable* overbudget_var, const MPVariable* makespan_var, MPSolver& solver) { auto status = solver.Solve(); LOG(INFO) << "Solver absl::Status: " << status; bool is_optimal = false; if (status == operations_research::MPSolver::INFEASIBLE) { LOG(ERROR) << "MPSolver could not find any feasible solution."; #ifdef PLATFORM_GOOGLE if (request.compute_iis()) { operations_research::MPModelRequest model_request; solver.ExportModelToProto(model_request.mutable_model()); if (solver.ProblemType() == operations_research::MPSolver::SAT_INTEGER_PROGRAMMING) { model_request.set_solver_type( operations_research::MPModelRequest::SAT_INTEGER_PROGRAMMING); } else if (solver.ProblemType() == operations_research::MPSolver:: SCIP_MIXED_INTEGER_PROGRAMMING) { model_request.set_solver_type(operations_research::MPModelRequest:: SCIP_MIXED_INTEGER_PROGRAMMING); } model_request.set_solver_time_limit_seconds(100); auto iis = MPSolver::ComputeIrreducibleInfeasibleSubset(model_request); LOG(INFO) << iis.status().DebugString(); LOG(INFO) << "Infeasible constraints: "; for (int index : iis.constraint_index()) { LOG(INFO) << " - " << model_request.model().constraint(index).name(); } for (int index : iis.general_constraint_index()) { LOG(INFO) << " - " << model_request.model().general_constraint(index).DebugString(); } } #endif return absl::InternalError( "MPSolver could not find any feasible solution."); } else if (status == operations_research::MPSolver::MODEL_INVALID) { LOG(FATAL) << "The MIP fed to the solver is invalid. This is most likely a " "bug and should be reported."; return absl::InternalError("Invalid MIP."); } else if (status == operations_research::MPSolver::NOT_SOLVED) { LOG(WARNING) << "Solver timeout; no solution was produced"; return absl::InternalError("Solver timed out."); } else if (status != operations_research::MPSolver::OPTIMAL) { LOG(WARNING) << "Solver timeout; moving forward with a suboptimal solution"; } else { is_optimal = true; } operations_research::MPModelProto model_proto; solver.ExportModelToProto(&model_proto); uint64_t model_fprint = tsl::Fingerprint64(model_proto.SerializeAsString()); operations_research::MPSolutionResponse response; solver.FillSolutionResponseProto(&response); response.clear_solve_info(); uint64_t solution_fprint = tsl::Fingerprint64(response.SerializeAsString()); LOG(INFO) << "Objective value: " << solver.Objective().Value() << " Model fingerprint: " << model_fprint << " Solution fingerprint: " << solution_fprint; if (solver.Objective().Value() >= kInfinityCost) { LOG(WARNING) << "Objective (" << solver.Objective().Value() << ") is larger than kInfinityCost. It means the solver " "chooses a solution with kInfinityCost and there may be " "numerical issues when the solver considering other costs."; } if (VLOG_IS_ON(10)) { VLOG(10) << "MODEL:"; XLA_VLOG_LINES(10, model_proto.DebugString()); VLOG(10) << "RESPONSE:"; XLA_VLOG_LINES(10, response.DebugString()); } size_t num_edges = request.edges_size(); double unsalted_objective = 0.0; const std::vector<NodeStrategyIdx> chosen_node_strategy = GetChosenNodeStrategy(request, s); for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { const NodeStrategyIdx j = chosen_node_strategy[node_idx]; unsalted_objective += request.computation_costs(node_idx).costs(j) + request.communication_costs(node_idx).costs(j); } const auto chosen_edge_strategy = [&](EdgeIdx edge_idx) { const auto& edge = request.edges(edge_idx); return chosen_node_strategy[edge.first()] * request.s_len(edge.second()) + chosen_node_strategy[edge.second()]; }; for (EdgeIdx edge_idx = 0; edge_idx < num_edges; ++edge_idx) { const EdgeStrategyIdx j = chosen_edge_strategy(edge_idx); unsalted_objective += request.resharding_costs(edge_idx).costs(j); } if (overbudget_var) { unsalted_objective += request.overbudget_coeff().coeff() * overbudget_var->solution_value() * request.memory_budget(); } if (makespan_var) { unsalted_objective += request.makespan_coeff().coeff() * makespan_var->solution_value(); } LOG(INFO) << "Unsalted objective value: " << unsalted_objective; LOG(INFO) << "N = " << request.num_nodes(); if (request.memory_budget() < 0) { LOG(INFO) << "memory budget: -1"; } else { LOG(INFO) << "memory budget: " << request.memory_budget() / (1024 * 1024 * 1024) << " GB"; } PrintLargestInstructions(chosen_node_strategy, request); return AutoShardingSolverOutput{.s_val = std::move(chosen_node_strategy), .cost = solver.Objective().Value(), .is_optimal = is_optimal}; } bool CostComponents::operator==(const CostComponents& other) const { return communication_cost == other.communication_cost && computation_cost == other.computation_cost && resharding_cost == other.resharding_cost && overbudget_cost == other.overbudget_cost && makespan_cost == other.makespan_cost; } double CostComponents::cost() const { return communication_cost + computation_cost + resharding_cost + overbudget_cost + makespan_cost; } bool AutoShardingEvaluation::operator==( const AutoShardingEvaluation& other) const { return violation_codes == other.violation_codes && total == other.total && lower_bound == other.lower_bound && total_departures == other.total_departures; } AutoShardingEvaluation Evaluate(const AutoShardingSolverRequest& request, const AutoShardingSolverOutput& result) { const auto& c = request.computation_costs(); const auto& d = request.communication_costs(); const auto& r = request.resharding_costs(); const auto& v = request.value_costs(); const auto& p = request.departure_costs(); const std::vector<NodeStrategyIdx>& s_val = result.s_val; const auto e_val = [&](EdgeIdx edge_idx) { const auto& edge = request.edges(edge_idx); return s_val[edge.first()] * request.s_len(edge.second()) + s_val[edge.second()]; }; AutoShardingEvaluation evaluation; for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { NodeIdx s_follow = request.s_follow(node_idx); if (s_follow >= 0 && s_val[node_idx] != s_val[s_follow]) { evaluation.violation_codes.insert(kFollowerViolationCode); } } for (auto alias_idx = 0; alias_idx < request.aliases_size(); ++alias_idx) { const auto& alias = request.aliases(alias_idx); NodeStrategyIdx p = s_val[alias.first()], q = s_val[alias.second()]; if (v.at(alias_idx).costs(p * request.s_len(alias.second()) + q) > 0.5) { evaluation.violation_codes.insert(kAliasViolationCode); } } for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { NodeStrategyIdx strat_idx = s_val[node_idx]; const double node_cost = c.at(node_idx).costs(strat_idx) + d.at(node_idx).costs(strat_idx); if (node_cost >= kInfinityCost) { evaluation.violation_codes.insert(kInfiniteCostViolationCode); } } for (EdgeIdx edge_idx = 0; edge_idx < request.edges_size(); ++edge_idx) { if (r.at(edge_idx).costs(e_val(edge_idx)) >= kInfinityCost) { evaluation.violation_codes.insert(kInfiniteCostViolationCode); } } for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { evaluation.total_departures += p.at(node_idx).costs(s_val[node_idx]); if (request.has_max_departures() && evaluation.total_departures > request.max_departures().coeff()) { evaluation.violation_codes.insert(kMaxDeparturesViolationCode); } } if (request.memory_budget() > 0) { double total_overbudget = 0.0; double lower_bound_overbudget = 0.0; std::vector<double> total_memory_costs, lower_bound_memory_costs; if (request.node_intervals().empty()) { total_memory_costs.resize(request.live_size(), 0.0); lower_bound_memory_costs.resize(request.live_size(), 0.0); for (LivenessIdx time_idx = 0; time_idx < request.live_size(); ++time_idx) { for (NodeIdx node_idx : request.live(time_idx).nodes()) { const auto& m = request.memory_costs(node_idx).costs(); total_memory_costs[time_idx] += m[s_val[node_idx]]; lower_bound_memory_costs[time_idx] += *std::min_element(m.begin(), m.end()); } if (!request.live_edges().empty() && request.enable_memory_edge_costs()) { for (EdgeIdx edge_idx : request.live_edges(time_idx).edges()) { const auto& m = request.memory_edge_costs(edge_idx).costs(); total_memory_costs[time_idx] += m[e_val(edge_idx)]; lower_bound_memory_costs[time_idx] += *std::min_element(m.begin(), m.end()); } } } } else { std::vector<double> total_node_group_costs, total_edge_group_costs, lower_bound_node_group_costs, lower_bound_edge_group_costs; for (const auto& group : request.node_groups()) { double total_group_cost = 0.0; double lower_bound_group_cost = 0.0; for (const NodeIdx node_idx : group.prims()) { const auto& m = request.memory_costs(node_idx).costs(); total_group_cost += m[s_val[node_idx]]; lower_bound_group_cost += *std::min_element(m.begin(), m.end()); } total_node_group_costs.push_back(total_group_cost); lower_bound_node_group_costs.push_back(lower_bound_group_cost); } for (const auto& group : request.edge_groups()) { double total_group_cost = 0.0; double lower_bound_group_cost = 0.0; for (const EdgeIdx edge_idx : group.prims()) { const auto& m = request.memory_edge_costs(edge_idx).costs(); total_group_cost += m[e_val(edge_idx)]; lower_bound_group_cost += *std::min_element(m.begin(), m.end()); } total_edge_group_costs.push_back(total_group_cost); lower_bound_edge_group_costs.push_back(lower_bound_group_cost); } for (NodeIdx node_idx = 0; node_idx < request.node_intervals_size(); ++node_idx) { const auto& interval = request.node_intervals(node_idx); if (interval.first() > interval.second()) continue; while (total_memory_costs.size() <= interval.second()) { total_memory_costs.push_back(0.0); lower_bound_memory_costs.push_back(0.0); } double total_memory_cost = 0.0, lower_bound_memory_cost = 0.0; if (node_idx < request.num_nodes()) { const auto& m = request.memory_costs(node_idx).costs(); total_memory_cost = m[s_val[node_idx]]; lower_bound_memory_cost = *std::min_element(m.begin(), m.end()); } else { int64_t group_idx = node_idx - request.num_nodes(); total_memory_cost = total_node_group_costs[group_idx]; lower_bound_memory_cost = lower_bound_node_group_costs[group_idx]; } for (LivenessIdx time_idx = interval.first(); time_idx <= interval.second(); ++time_idx) { total_memory_costs[time_idx] += total_memory_cost; lower_bound_memory_costs[time_idx] += lower_bound_memory_cost; } } if (request.enable_memory_edge_costs()) { for (EdgeIdx edge_idx = 0; edge_idx < request.edge_intervals_size(); ++edge_idx) { const auto& interval = request.edge_intervals(edge_idx); if (interval.first() > interval.second()) continue; while (total_memory_costs.size() <= interval.second()) { total_memory_costs.push_back(0.0); lower_bound_memory_costs.push_back(0.0); } double total_memory_cost = 0.0, lower_bound_memory_cost = 0.0; if (edge_idx < request.edges_size()) { const auto& m = request.memory_edge_costs(edge_idx).costs(); total_memory_cost = m[e_val(edge_idx)]; lower_bound_memory_cost = *std::min_element(m.begin(), m.end()); } else { int64_t group_idx = edge_idx - request.edges_size(); total_memory_cost = total_edge_group_costs[group_idx]; lower_bound_memory_cost = lower_bound_edge_group_costs[group_idx]; } for (LivenessIdx time_idx = interval.first(); time_idx <= interval.second(); ++time_idx) { total_memory_costs[time_idx] += total_memory_cost; lower_bound_memory_costs[time_idx] += lower_bound_memory_cost; } } } } for (LivenessIdx time_idx = 0; time_idx < total_memory_costs.size(); ++time_idx) { if (request.has_overbudget_coeff()) { total_overbudget = std::max(total_overbudget, total_memory_costs[time_idx] - request.memory_budget()); lower_bound_overbudget = std::max( lower_bound_overbudget, lower_bound_memory_costs[time_idx] - request.memory_budget()); } else if (total_memory_costs[time_idx] > request.memory_budget()) { evaluation.violation_codes.insert(kMemoryViolationCode); } } if (request.has_overbudget_coeff()) { evaluation.total.overbudget_cost = request.overbudget_coeff().coeff() * total_overbudget; evaluation.lower_bound.overbudget_cost = request.overbudget_coeff().coeff() * lower_bound_overbudget; } } for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { evaluation.total.communication_cost += d.at(node_idx).costs(s_val[node_idx]); evaluation.total.computation_cost += c.at(node_idx).costs(s_val[node_idx]); evaluation.lower_bound.communication_cost += *std::min_element( d.at(node_idx).costs().begin(), d.at(node_idx).costs().end()); evaluation.lower_bound.computation_cost += *std::min_element( c.at(node_idx).costs().begin(), c.at(node_idx).costs().end()); } for (EdgeIdx edge_idx = 0; edge_idx < request.edges_size(); ++edge_idx) { evaluation.total.resharding_cost += r.at(edge_idx).costs(e_val(edge_idx)); evaluation.lower_bound.resharding_cost += *std::min_element( r.at(edge_idx).costs().begin(), r.at(edge_idx).costs().end()); } evaluation.total_makespan = EvaluateMakespan(request, result, evaluation); return evaluation; } absl::Status ValidateRequest(const AutoShardingSolverRequest& request) { const int num_nodes = request.num_nodes(); const int num_edges = request.edges_size(); TF_RET_CHECK(num_nodes == request.computation_costs_size()); TF_RET_CHECK(num_nodes == request.communication_costs_size()); TF_RET_CHECK(num_nodes == request.memory_costs_size()); TF_RET_CHECK(num_edges == request.resharding_costs_size()); for (NodeIdx u = 0; u < num_nodes; ++u) { const int num_strategies = request.computation_costs(u).costs_size(); TF_RET_CHECK(num_strategies >= 1); TF_RET_CHECK(num_strategies == request.communication_costs(u).costs_size()); TF_RET_CHECK(num_strategies == request.memory_costs(u).costs_size()); for (NodeStrategyIdx strategy = 0; strategy < num_strategies; ++strategy) { TF_RET_CHECK(request.computation_costs(u).costs(strategy) >= 0.0); TF_RET_CHECK(request.communication_costs(u).costs(strategy) >= 0.0); TF_RET_CHECK(request.memory_costs(u).costs(strategy) >= 0.0); } } absl::btree_set<std::pair<int, int>> edges_seen; for (EdgeIdx e = 0; e < num_edges; ++e) { const int u = request.edges(e).first(); const int v = request.edges(e).second(); TF_RET_CHECK(u >= 0); TF_RET_CHECK(u < num_nodes); TF_RET_CHECK(v >= 0); TF_RET_CHECK(v < num_nodes); TF_RET_CHECK(u < v); TF_RET_CHECK(edges_seen.count({u, v}) == 0); edges_seen.insert({u, v}); const int num_strategies = request.resharding_costs(e).costs_size(); const int num_u_strategies = request.computation_costs(u).costs_size(); const int num_v_strategies = request.computation_costs(v).costs_size(); CHECK_EQ(num_strategies, num_u_strategies * num_v_strategies); } return absl::OkStatus(); } } }
#include "xla/hlo/experimental/auto_sharding/auto_sharding_solver.h" #include <cstdint> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding.pb.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_strategy.h" #include "tsl/platform/platform.h" #include "tsl/platform/statusor.h" namespace xla { namespace spmd { namespace { using CostMatrix = std::vector<std::vector<double>>; using NodeMatrix = std::vector<std::vector<int64_t>>; using EdgeMatrix = std::vector<std::vector<int64_t>>; void AddCosts(proto2::RepeatedPtrField<AutoShardingSolverRequest_Costs>* costs, const CostMatrix& cost_matrix) { for (const auto& cost_row : cost_matrix) { AutoShardingSolverRequest_Costs cost; cost.mutable_costs()->Add(cost_row.begin(), cost_row.end()); costs->Add(std::move(cost)); } } void AddNodes(proto2::RepeatedPtrField<AutoShardingSolverRequest_Nodes>* nodes, const NodeMatrix& node_matrix) { for (const auto& node_row : node_matrix) { AutoShardingSolverRequest_Nodes node; node.mutable_nodes()->Add(node_row.begin(), node_row.end()); nodes->Add(std::move(node)); } } void AddEdges(proto2::RepeatedPtrField<AutoShardingSolverRequest_Edges>* edges, const EdgeMatrix& edge_matrix) { for (const auto& edge_row : edge_matrix) { AutoShardingSolverRequest_Edges edge; edge.mutable_edges()->Add(edge_row.begin(), edge_row.end()); edges->Add(std::move(edge)); } } void AddIntervals( proto2::RepeatedPtrField<AutoShardingSolverRequest_Pair>* pairs, const std::vector<std::pair<int64_t, int64_t>>& intervals) { for (const auto& interval : intervals) { AutoShardingSolverRequest_Pair pair; pair.set_first(interval.first); pair.set_second(interval.second); pairs->Add(std::move(pair)); } } void AddGroups( proto2::RepeatedPtrField<AutoShardingSolverRequest_Group>* groups, const std::vector<std::vector<int64_t>>& reduced_groups) { for (const auto& reduced_group : reduced_groups) { AutoShardingSolverRequest_Group group; group.mutable_prims()->Add(reduced_group.begin(), reduced_group.end()); groups->Add(std::move(group)); } } AutoShardingSolverRequest DefaultAutoShardingSolverRequest() { const auto s_len = {4, 3, 4, 4, 3}; const auto s_follow = {-1, -1, -1, 2, -1}; AutoShardingSolverRequest_Pair edge1, edge2; edge1.set_first(0); edge1.set_second(2); edge2.set_first(1); edge2.set_second(2); const auto edges = {edge1, edge2}; const NodeMatrix live = {{1, 0}, {1, 0}, {1, 2, 0}, {1, 2, 3, 0}, {1, 3, 0}}; const CostMatrix c = {{10, 11, 12, 13}, {20, 21, 22}, {30, 31, 32, 33}, {40, 41, 42, 43}, {50, 51, 52}}; const CostMatrix d = {{100, 110, 120, 130}, {200, 210, 220}, {300, 310, 320, 330}, {400, 410, 420, 430}, {500, 510, 520}}; const CostMatrix m = {{100000, 110000, 990000, 130000}, {200000, 210000, 220000}, {300000, 310000, 320000, 330000}, {400000, 410000, 420000, 430000}, {500000, 510000, 520000}}; const CostMatrix p = {{1.0, 0.0, 1.0, 1.0}, {1.0, 0.0, 1.0}, {1.0, 0.0, 1.0, 1.0}, {1.0, 0.0, 1.0, 1.0}, {1.0, 0.0, 1.0}}; const CostMatrix r = {{1000, 1100, 1200, 1300, 2000, 2100, 2200, 2300, 3000, 3100, 3200, 3300, 4000, 4100, 4200, 4300}, {5000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 7300}}; const CostMatrix t = {{73000, 72000, 71000, 70000, 63000, 62000, 61000, 60000, 53000, 52000, 51000, 50000, 43000, 42000, 41000, 40000}, {33000, 32000, 31000, 30000, 23000, 22000, 21000, 20000, 13000, 12000, 11000, 10000}}; AutoShardingSolverRequest_Pair alias; alias.set_first(1); alias.set_second(4); const auto aliases = {alias}; const CostMatrix v = {{0, 1, 1, 1, 0, 1, 1, 1, 0}}; const std::vector<std::string> instruction_names = {"A", "B", "C", "D", "E"}; const std::vector<std::string> metadata_source_files = {"attention.py", "convolution.py", "layers.py", "logits.py", "pipeline.py"}; AutoShardingSolverRequest request; request.set_num_nodes(5); request.set_memory_budget(1500000); request.mutable_s_len()->Add(s_len.begin(), s_len.end()); request.mutable_s_follow()->Add(s_follow.begin(), s_follow.end()); request.mutable_edges()->Add(edges.begin(), edges.end()); AddNodes(request.mutable_live(), live); AddCosts(request.mutable_computation_costs(), c); AddCosts(request.mutable_communication_costs(), d); AddCosts(request.mutable_memory_costs(), m); AddCosts(request.mutable_departure_costs(), p); AddCosts(request.mutable_resharding_costs(), r); AddCosts(request.mutable_duration_costs(), t); request.mutable_aliases()->Add(aliases.begin(), aliases.end()); AddCosts(request.mutable_value_costs(), v); request.mutable_instruction_names()->Add(instruction_names.begin(), instruction_names.end()); request.mutable_metadata_source_files()->Add(metadata_source_files.begin(), metadata_source_files.end()); return request; } AutoShardingSolverRequest AutoShardingSolverRequestWithEquivalences() { const auto s_len = {4, 3, 7, 7, 3}; const auto s_follow = {-1, -1, -1, 2, -1}; AutoShardingSolverRequest_Pair edge1, edge2; edge1.set_first(0); edge1.set_second(2); edge2.set_first(1); edge2.set_second(2); const auto edges = {edge1, edge2}; const NodeMatrix live = {{1, 0}, {1, 0}, {1, 2, 0}, {1, 2, 3, 0}, {1, 3, 0}}; const CostMatrix c = {{10, 10, 10, 10}, {20, 20, 20}, {30, 30, 31, 30, 30, 30, 30}, {40, 40, 40, 40, 40, 40, 40}, {50, 50, 50}}; const CostMatrix d = {{100, 100, 100, 100}, {200, 200, 200}, {300, 300, 300, 300, 300, 300, 300}, {400, 400, 400, 400, 400, 400, 410}, {500, 500, 500}}; const CostMatrix m = {{10000, 10000, 10000, 10000}, {20000, 20000, 20000}, {30000, 30000, 30000, 31000, 30000, 30000, 30000}, {40000, 40000, 40000, 40000, 40000, 40000, 40000}, {50000, 50000, 50000}}; const CostMatrix p = {{1.0, 0.0, 1.0, 1.0}, {1.0, 0.0, 1.0}, {1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0}, {1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0}, {1.0, 0.0, 1.0}}; const CostMatrix r = {{1000, 1000, 1000, 1000, 1000, 1000, 1000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 3000, 3000, 3000, 3000, 3100, 3000, 3000, 4000, 4000, 4000, 4000, 4000, 4000, 4000}, {5000, 5000, 5000, 5000, 5000, 5000, 5000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 7000, 7000, 7000, 7000, 7000, 7000, 7000}}; const CostMatrix t = {{70000, 70000, 70000, 70000, 70000, 70000, 70000, 60000, 60000, 60000, 60000, 60000, 60000, 60000, 50000, 50000, 50000, 50000, 50000, 50000, 50000, 40000, 40000, 40000, 40000, 40000, 40000, 40000}, {30000, 30000, 30000, 30000, 30000, 30000, 30000, 20000, 20000, 20000, 20000, 20000, 20000, 20000, 10000, 10000, 10000, 10000, 10000, 10000, 10000}}; AutoShardingSolverRequest_Pair alias; alias.set_first(2); alias.set_second(4); const auto aliases = {alias}; const CostMatrix v = {{0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0}}; const std::vector<std::string> instruction_names = {"A", "B", "C", "D", "E"}; AutoShardingSolverRequest request; request.set_num_nodes(5); request.set_memory_budget(1500000); request.mutable_s_len()->Add(s_len.begin(), s_len.end()); request.mutable_s_follow()->Add(s_follow.begin(), s_follow.end()); request.mutable_edges()->Add(edges.begin(), edges.end()); AddNodes(request.mutable_live(), live); AddCosts(request.mutable_computation_costs(), c); AddCosts(request.mutable_communication_costs(), d); AddCosts(request.mutable_memory_costs(), m); AddCosts(request.mutable_departure_costs(), p); AddCosts(request.mutable_resharding_costs(), r); AddCosts(request.mutable_duration_costs(), t); request.mutable_aliases()->Add(aliases.begin(), aliases.end()); AddCosts(request.mutable_value_costs(), v); request.mutable_instruction_names()->Add(instruction_names.begin(), instruction_names.end()); return request; } TEST(FormulateAndSolveMIPFromSolverRequestTest, SolvesOptimally) { const AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 0, 0, 0}; const double objective_value = 7650.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, SolvesOverbudget) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.set_memory_budget(100000); request.mutable_overbudget_coeff()->set_coeff(10.0); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 0, 0, 0}; const double objective_value = 9007650.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, SolvesMaxDepartures) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_max_departures()->set_coeff(3.0); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 1, 1, 0}; const double objective_value = 7872.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, MinimizesDepartures) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.set_minimize_departures(true); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 1, 0, 0, 1}; const double objective_value = 3.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, AvoidsInfiniteNodeCosts) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_computation_costs(0)->set_costs(0, kInfinityCost); request.mutable_computation_costs(0)->set_costs(1, kInfinityCost); request.mutable_computation_costs(0)->set_costs(2, kInfinityCost); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {3, 0, 0, 0, 0}; const double objective_value = 10683.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, AvoidsInfiniteEdgeCosts) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_resharding_costs(0)->set_costs(0, kInfinityCost); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 1, 1, 0}; const double objective_value = 7872.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, HandlesFollowedEdges) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); AutoShardingSolverRequest_Pair edge; edge.set_first(1); edge.set_second(3); *request.mutable_edges()->Add() = edge; const CostMatrix r = {{5000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 7300}}; AddCosts(request.mutable_resharding_costs(), r); const CostMatrix t = {{50000, 51000, 52000, 53000, 60000, 61000, 62000, 63000, 70000, 71000, 72000, 73000}}; AddCosts(request.mutable_duration_costs(), t); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 0, 0, 0}; const double objective_value = 12650.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, HandlesCollapsedEdge) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); AutoShardingSolverRequest_Pair edge; edge.set_first(2); edge.set_second(3); *request.mutable_edges()->Add() = edge; const CostMatrix r = {{9000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 7300, 8000, 8100, 8200, 8300}}; AddCosts(request.mutable_resharding_costs(), r); const CostMatrix t = {{50000, 51000, 52000, 53000, 60000, 61000, 62000, 63000, 70000, 71000, 72000, 73000, 80000, 81000, 82000, 83000}}; AddCosts(request.mutable_duration_costs(), t); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 1, 1, 0}; const double objective_value = 13972.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, UsesHint) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const auto s_hint = {1, 0, 0, 0, 0}; request.mutable_s_hint()->Add(s_hint.begin(), s_hint.end()); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 0, 0, 0}; const double objective_value = 7650.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, HonorsMaxCost) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_max_cost()->set_coeff(7600.0); const absl::StatusOr<AutoShardingSolverOutput> result = FormulateAndSolveMIPFromSolverRequest(request); EXPECT_TRUE(absl::IsInternal(result.status())); } TEST(FormulateAndSolveMIPFromSolverRequestTest, HandlesExtremelyHighMaxCost) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_max_cost()->set_coeff(1e19); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 0, 0, 0}; const double objective_value = 7650.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, HandlesMemoryEdgeCosts) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const EdgeMatrix live_edges = {{}, {0}, {0, 1}, {1}, {}}; const CostMatrix memory_edge_costs = {{1000000, 1100, 1200, 1300, 2000, 2100, 2200, 2300, 3000, 3100, 3200, 3300, 4000, 4100, 4200, 4300}, {5000000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 7300}}; AddEdges(request.mutable_live_edges(), live_edges); AddCosts(request.mutable_memory_edge_costs(), memory_edge_costs); request.set_enable_memory_edge_costs(true); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 1, 1, 0}; const double objective_value = 7872.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, HandlesIntervals) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<std::pair<int64_t, int64_t>> node_intervals = {{0, 4}, {0, 4}, {2, 3}, {3, 4}, {100, -1}}; const std::vector<std::pair<int64_t, int64_t>> edge_intervals = {{1, 2}, {2, 3}}; const CostMatrix memory_edge_costs = {{1000000, 1100, 1200, 1300, 2000, 2100, 2200, 2300, 3000, 3100, 3200, 3300, 4000, 4100, 4200, 4300}, {5000000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 7300}}; request.clear_live(); AddIntervals(request.mutable_node_intervals(), node_intervals); AddIntervals(request.mutable_edge_intervals(), edge_intervals); AddCosts(request.mutable_memory_edge_costs(), memory_edge_costs); request.set_enable_memory_edge_costs(true); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 1, 1, 0}; const double objective_value = 7872.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, HandlesReducedIntervalsAndGroups) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<std::pair<int64_t, int64_t>> node_intervals = {{5, -1}, {5, -1}, {2, 3}, {3, 4}, {100, -1}, {0, 4}}; const std::vector<std::pair<int64_t, int64_t>> edge_intervals = {{1, 2}, {2, 3}}; const std::vector<std::vector<int64_t>> node_groups = {{0, 1}}; const std::vector<std::vector<int64_t>> edge_groups = {}; const CostMatrix memory_edge_costs = {{1000000, 1100, 1200, 1300, 2000, 2100, 2200, 2300, 3000, 3100, 3200, 3300, 4000, 4100, 4200, 4300}, {5000000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 7300}}; request.clear_live(); AddIntervals(request.mutable_node_intervals(), node_intervals); AddIntervals(request.mutable_edge_intervals(), edge_intervals); AddGroups(request.mutable_node_groups(), node_groups); AddGroups(request.mutable_edge_groups(), edge_groups); AddCosts(request.mutable_memory_edge_costs(), memory_edge_costs); request.set_enable_memory_edge_costs(true); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 1, 1, 0}; const double objective_value = 7872.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, HandlesReducedIntervalsAndGroupsNoMemoryEdgeCosts) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<std::pair<int64_t, int64_t>> node_intervals = {{5, -1}, {5, -1}, {2, 3}, {3, 4}, {100, -1}, {0, 4}}; const std::vector<std::vector<int64_t>> node_groups = {{0, 1}}; request.clear_live(); AddIntervals(request.mutable_node_intervals(), node_intervals); AddGroups(request.mutable_node_groups(), node_groups); request.set_enable_memory_edge_costs(false); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 0, 0, 0}; const double objective_value = 7650.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, HandlesGroupsWithTinyMemoryCosts) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<std::pair<int64_t, int64_t>> node_intervals = {{5, -1}, {5, -1}, {2, 3}, {3, 4}, {100, -1}, {0, 4}}; const std::vector<std::pair<int64_t, int64_t>> edge_intervals = {{1, 2}, {2, 3}}; const std::vector<std::vector<int64_t>> node_groups = {{0, 1}}; const std::vector<std::vector<int64_t>> edge_groups = {}; const CostMatrix memory_costs = {{1, 1, 1, 1}, {2, 2, 2}, {300, 300, 300, 300, 300, 300, 300}, {4000, 4000, 4000, 4000, 4000, 4000, 4000}, {50000, 50000, 50000}}; const CostMatrix memory_edge_costs = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}; request.clear_live(); request.clear_memory_costs(); AddIntervals(request.mutable_node_intervals(), node_intervals); AddIntervals(request.mutable_edge_intervals(), edge_intervals); AddGroups(request.mutable_node_groups(), node_groups); AddGroups(request.mutable_edge_groups(), edge_groups); AddCosts(request.mutable_memory_costs(), memory_costs); AddCosts(request.mutable_memory_edge_costs(), memory_edge_costs); request.set_enable_memory_edge_costs(true); request.set_memory_budget(4321); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 0, 0, 0}; const double objective_value = 7650.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, SolvesWithEquivalences) { const AutoShardingSolverRequest request = AutoShardingSolverRequestWithEquivalences(); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 5, 5, 1}; const double objective_value = 7650.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(AutoShardingEvaluatorTest, NoViolations) { const AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<NodeStrategyIdx> s_val = {3, 1, 2, 2, 1}; const double objective_value = 12149.0; const AutoShardingSolverOutput output = {s_val, objective_value}; const AutoShardingEvaluation evaluation = Evaluate(request, output); AutoShardingEvaluation expected_evaluation; expected_evaluation.total.computation_cost = 159.0; expected_evaluation.total.communication_cost = 1590.0; expected_evaluation.total.resharding_cost = 10400.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, EvaluatesOverbudget) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.set_memory_budget(100000); request.mutable_overbudget_coeff()->set_coeff(10.0); const std::vector<NodeStrategyIdx> s_val = {2 , 1, 2, 2, 1}; const double objective_value = 11138.0; const AutoShardingSolverOutput output = {s_val, objective_value}; const AutoShardingEvaluation evaluation = Evaluate(request, output); AutoShardingEvaluation expected_evaluation; expected_evaluation.total.computation_cost = 158.0; expected_evaluation.total.communication_cost = 1580.0; expected_evaluation.total.resharding_cost = 9400.0; expected_evaluation.total.overbudget_cost = 18400000.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.lower_bound.overbudget_cost = 9000000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, EvaluatesOverbudgetWithIntervals) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<std::pair<int64_t, int64_t>> node_intervals = {{0, 4}, {0, 4}, {2, 3}, {3, 4}, {100, -1}}; request.set_memory_budget(100000); request.mutable_overbudget_coeff()->set_coeff(10.0); request.clear_live(); AddIntervals(request.mutable_node_intervals(), node_intervals); const std::vector<NodeStrategyIdx> s_val = {2 , 1, 2, 2, 1}; const double objective_value = 11138.0; const AutoShardingSolverOutput output = {s_val, objective_value}; const AutoShardingEvaluation evaluation = Evaluate(request, output); AutoShardingEvaluation expected_evaluation; expected_evaluation.total.computation_cost = 158.0; expected_evaluation.total.communication_cost = 1580.0; expected_evaluation.total.resharding_cost = 9400.0; expected_evaluation.total.overbudget_cost = 18400000.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.lower_bound.overbudget_cost = 9000000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, EvaluatesOverbudgetWithReducedIntervalsAndGroups) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<std::pair<int64_t, int64_t>> node_intervals = {{5, -1}, {5, -1}, {2, 3}, {3, 4}, {100, -1}, {0, 4}}; const std::vector<std::vector<int64_t>> node_groups = {{0, 1}}; request.set_memory_budget(100000); request.mutable_overbudget_coeff()->set_coeff(10.0); request.clear_live(); AddIntervals(request.mutable_node_intervals(), node_intervals); AddGroups(request.mutable_node_groups(), node_groups); const std::vector<NodeStrategyIdx> s_val = {2 , 1, 2, 2, 1}; const double objective_value = 11138.0; const AutoShardingSolverOutput output = {s_val, objective_value}; const AutoShardingEvaluation evaluation = Evaluate(request, output); AutoShardingEvaluation expected_evaluation; expected_evaluation.total.computation_cost = 158.0; expected_evaluation.total.communication_cost = 1580.0; expected_evaluation.total.resharding_cost = 9400.0; expected_evaluation.total.overbudget_cost = 18400000.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.lower_bound.overbudget_cost = 9000000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, ViolatesFollower) { const AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<NodeStrategyIdx> s_val = {3, 1, 2, 1 , 1}; const double objective_value = 12138.0; const AutoShardingSolverOutput output = {s_val, objective_value}; const AutoShardingEvaluation evaluation = Evaluate(request, output); AutoShardingEvaluation expected_evaluation; expected_evaluation.violation_codes = {kFollowerViolationCode}; expected_evaluation.total.computation_cost = 158.0; expected_evaluation.total.communication_cost = 1580.0; expected_evaluation.total.resharding_cost = 10400.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.total_departures = 2.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, ViolatesAlias) { const AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<NodeStrategyIdx> s_val = {3, 1, 2, 2, 0 }; const double objective_value = 12138.0; const AutoShardingSolverOutput output = {s_val, objective_value}; const AutoShardingEvaluation evaluation = Evaluate(request, output); AutoShardingEvaluation expected_evaluation; expected_evaluation.violation_codes = {kAliasViolationCode}; expected_evaluation.total.computation_cost = 158.0; expected_evaluation.total.communication_cost = 1580.0; expected_evaluation.total.resharding_cost = 10400.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.total_departures = 4.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, ViolatesMemory) { const AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<NodeStrategyIdx> s_val = {2 , 1, 2, 2, 1}; const double objective_value = 11138.0; const AutoShardingSolverOutput output = {s_val, objective_value}; const AutoShardingEvaluation evaluation = Evaluate(request, output); AutoShardingEvaluation expected_evaluation; expected_evaluation.violation_codes = {kMemoryViolationCode}; expected_evaluation.total.computation_cost = 158.0; expected_evaluation.total.communication_cost = 1580.0; expected_evaluation.total.resharding_cost = 9400.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, ViolatesInfiniteCostForNode) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_computation_costs(0)->set_costs(0, kInfinityCost); request.mutable_computation_costs(0)->set_costs(1, kInfinityCost); request.mutable_computation_costs(0)->set_costs(2, kInfinityCost); const std::vector<NodeStrategyIdx> s_val = {0 , 1, 2, 2, 1}; const double objective_value = 1e+20; const AutoShardingSolverOutput output = {s_val, objective_value}; const AutoShardingEvaluation evaluation = Evaluate(request, output); AutoShardingEvaluation expected_evaluation; expected_evaluation.violation_codes = {kInfiniteCostViolationCode}; expected_evaluation.total.computation_cost = 1e+20; expected_evaluation.total.communication_cost = 1560.0; expected_evaluation.total.resharding_cost = 7400.0; expected_evaluation.lower_bound.computation_cost = 153.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, ViolatesInfiniteCostForEdge) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_resharding_costs(0)->set_costs(2, kInfinityCost); const std::vector<NodeStrategyIdx> s_val = {0, 1, 2, 2, 1}; const double objective_value = 1e+20; const AutoShardingSolverOutput output = {s_val, objective_value}; const AutoShardingEvaluation evaluation = Evaluate(request, output); AutoShardingEvaluation expected_evaluation; expected_evaluation.violation_codes = {kInfiniteCostViolationCode}; expected_evaluation.total.computation_cost = 156.0; expected_evaluation.total.communication_cost = 1560.0; expected_evaluation.total.resharding_cost = 1e+20; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, ViolatesMaxDepartures) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_max_departures()->set_coeff(2.0); const std::vector<NodeStrategyIdx> s_val = {3, 1, 2, 2, 1}; const double objective_value = 12149.0; const AutoShardingSolverOutput output = {s_val, objective_value}; const AutoShardingEvaluation evaluation = Evaluate(request, output); AutoShardingEvaluation expected_evaluation; expected_evaluation.violation_codes = {kMaxDeparturesViolationCode}; expected_evaluation.total.computation_cost = 159.0; expected_evaluation.total.communication_cost = 1590.0; expected_evaluation.total.resharding_cost = 10400.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(ScaleRequest, ScalesProperly) { AutoShardingSolverRequest unscaled_request; const CostMatrix c = {{10000000, 11000000, 12000000, 13000000}, {20000000, 21000000, 22000000}, {30000000, 31000000, 32000000, 33000000}, {40000000, 41000000, 42000000, 43000000}, {50000000, 51000000, 52000000, 53000000}}; const CostMatrix d = {{100000000, 110000000, 120000000, 130000000}, {200000000, 210000000, 220000000}, {300000000, 310000000, 320000000, 330000000}, {400000000, 410000000, 420000000, 430000000}, {500000000, 510000000, 520000000}}; const CostMatrix r = {{1000000000, 1100000000, 1200000000, 1300000000, 2000000000, 2100000000, 2200000000, 2300000000, 3000000000, 3100000000, 3200000000, 3300000000, 4000000000, 4100000000, 4200000000, 4300000000}, {5000000000, 5100000000, 5200000000, 5300000000, 6000000000, 6100000000, 6200000000, 6300000000, 7000000000, 7100000000, 7200000000, 10000000000000}}; AddCosts(unscaled_request.mutable_computation_costs(), c); AddCosts(unscaled_request.mutable_communication_costs(), d); AddCosts(unscaled_request.mutable_resharding_costs(), r); unscaled_request.mutable_coeff_limit()->set_coeff(1e7); AutoShardingSolverRequest request = ScaleRequest(unscaled_request); AutoShardingSolverRequest expected_request; const CostMatrix expected_c = {{10, 11, 12, 13}, {20, 21, 22}, {30, 31, 32, 33}, {40, 41, 42, 43}, {50, 51, 52, 53}}; const CostMatrix expected_d = {{100, 110, 120, 130}, {200, 210, 220}, {300, 310, 320, 330}, {400, 410, 420, 430}, {500, 510, 520}}; const CostMatrix expected_r = {{1000, 1100, 1200, 1300, 2000, 2100, 2200, 2300, 3000, 3100, 3200, 3300, 4000, 4100, 4200, 4300}, {5000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 10000000}}; AddCosts(expected_request.mutable_computation_costs(), expected_c); AddCosts(expected_request.mutable_communication_costs(), expected_d); AddCosts(expected_request.mutable_resharding_costs(), expected_r); expected_request.mutable_coeff_limit()->set_coeff(1e7); EXPECT_THAT(request, ::testing::EqualsProto(expected_request)); } TEST(ScaleRequest, SkipsScaling) { AutoShardingSolverRequest unscaled_request; const CostMatrix c = {{10, 11, 12, 13}, {20, 21, 22}, {30, 31, 32, 33}, {40, 41, 42, 43}, {50, 51, 52, 53}}; const CostMatrix d = {{100, 110, 120, 130}, {200, 210, 220}, {300, 310, 320, 330}, {400, 410, 420, 430}, {500, 510, 520}}; const CostMatrix r = {{1000, 1100, 1200, 1300, 2000, 2100, 2200, 2300, 3000, 3100, 3200, 3300, 4000, 4100, 4200, 4300}, {5000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 10000000}}; AddCosts(unscaled_request.mutable_computation_costs(), c); AddCosts(unscaled_request.mutable_communication_costs(), d); AddCosts(unscaled_request.mutable_resharding_costs(), r); unscaled_request.mutable_coeff_limit()->set_coeff(1e7); AutoShardingSolverRequest request = ScaleRequest(unscaled_request); AutoShardingSolverRequest expected_request; const CostMatrix expected_c = {{10, 11, 12, 13}, {20, 21, 22}, {30, 31, 32, 33}, {40, 41, 42, 43}, {50, 51, 52, 53}}; const CostMatrix expected_d = {{100, 110, 120, 130}, {200, 210, 220}, {300, 310, 320, 330}, {400, 410, 420, 430}, {500, 510, 520}}; const CostMatrix expected_r = {{1000, 1100, 1200, 1300, 2000, 2100, 2200, 2300, 3000, 3100, 3200, 3300, 4000, 4100, 4200, 4300}, {5000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 10000000}}; AddCosts(expected_request.mutable_computation_costs(), expected_c); AddCosts(expected_request.mutable_communication_costs(), expected_d); AddCosts(expected_request.mutable_resharding_costs(), expected_r); expected_request.mutable_coeff_limit()->set_coeff(1e7); EXPECT_THAT(request, ::testing::EqualsProto(expected_request)); } TEST(StableMap, IterationOrderDeterminism){ StableMap<int, int> map; std::vector<int> insertion_order = {6, 3, 1, 2, 4, 5, 10, 0, 7, 9, 8}; for (int key : insertion_order) { map[key] = key; } std::vector<int> iteration_order; for (const auto& [key, value] : map) { iteration_order.push_back(key); } EXPECT_THAT(iteration_order, ::testing::ElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)); } TEST(ValidateRequest, AcceptsAutoShardingSolverRequest) { CHECK_OK(ValidateRequest(DefaultAutoShardingSolverRequest())); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_solver.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_solver_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
37814792-efdc-4cb3-a712-b3397f948e72
cpp
tensorflow/tensorflow
auto_sharding_memory
third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_memory.cc
third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_memory_test.cc
#include "xla/hlo/experimental/auto_sharding/auto_sharding_memory.h" #include <algorithm> #include <cstdint> #include <functional> #include <limits> #include <optional> #include <utility> #include <vector> #include "absl/container/btree_map.h" #include "absl/container/btree_set.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "tsl/platform/protobuf.h" namespace xla { namespace spmd { namespace { using PrimIdx = int64_t; using LiveIdx = int64_t; using GroupIdx = int64_t; using PrimPair = std::pair<PrimIdx, PrimIdx>; using Interval = std::pair<LiveIdx, LiveIdx>; using ActivePrim = std::pair<Interval, PrimIdx>; bool IsValid(const Interval& interval) { return interval.first <= interval.second; } int64_t length(const Interval& interval) { return interval.second - interval.first + 1; } } std::pair<int64_t, int64_t> MemoryTermReducer::Reduce( int64_t num_lives, int64_t num_primitives, const std::function< tsl::protobuf::RepeatedField<int64_t>(int64_t)>& live, int64_t max_iterations) { LOG(INFO) << "Memory Term Reducer beginning to reduce number of terms ..."; reduced_live_.clear(); reduced_intervals_.clear(); reduced_groups_.clear(); int64_t num_terms = 0; reduced_intervals_.reserve(num_primitives); for (PrimIdx prim_idx = 0; prim_idx < num_primitives; ++prim_idx) { reduced_intervals_.push_back({std::numeric_limits<LiveIdx>::max(), 0}); } for (LiveIdx live_idx = 0; live_idx < num_lives; ++live_idx) { for (const PrimIdx prim_idx : live(live_idx)) { Interval& interval = reduced_intervals_[prim_idx]; interval.first = std::min(interval.first, live_idx); interval.second = std::max(interval.second, live_idx); ++num_terms; } } Reduce(num_lives, num_primitives, max_iterations); int64_t num_reduced_terms = 0; reduced_live_.resize(num_lives); for (PrimIdx prim_idx = 0; prim_idx < reduced_intervals_.size(); ++prim_idx) { const Interval& interval = reduced_intervals_[prim_idx]; for (LiveIdx live_idx = interval.first; live_idx <= interval.second; ++live_idx) { reduced_live_[live_idx].push_back(prim_idx); ++num_reduced_terms; } } for (const auto& group : reduced_groups_) num_reduced_terms += group.size(); LOG(INFO) << "Memory Term Reducer finished reducing the number of terms."; return {num_terms, num_reduced_terms}; } std::pair<int64_t, int64_t> MemoryTermReducer::Reduce( int64_t num_lives, int64_t num_primitives, const std::function<std::pair<int64_t, int64_t>(int64_t)>& intervals, int64_t max_iterations) { LOG(INFO) << "Memory Term Reducer beginning to reduce number of terms ..."; reduced_live_.clear(); reduced_intervals_.clear(); reduced_groups_.clear(); int64_t num_terms = 0; reduced_intervals_.reserve(num_primitives); for (PrimIdx prim_idx = 0; prim_idx < num_primitives; ++prim_idx) { reduced_intervals_.push_back(intervals(prim_idx)); const Interval& interval = reduced_intervals_.back(); if (IsValid(interval)) num_terms += length(interval); } Reduce(num_lives, num_primitives, max_iterations); int64_t num_reduced_terms = 0; for (PrimIdx prim_idx = 0; prim_idx < reduced_intervals_.size(); ++prim_idx) { const Interval& interval = reduced_intervals_[prim_idx]; if (IsValid(interval)) num_reduced_terms += length(interval); } for (const auto& group : reduced_groups_) num_reduced_terms += group.size(); LOG(INFO) << "Memory Term Reducer finished reducing the number of terms."; return {num_terms, num_reduced_terms}; } void MemoryTermReducer::Reduce(int64_t num_lives, int64_t num_primitives, int64_t max_iterations) { std::vector<absl::btree_set<PrimIdx>> enter(num_lives), evict(num_lives); for (PrimIdx prim_idx = 0; prim_idx < num_primitives; ++prim_idx) { const Interval& interval = reduced_intervals_[prim_idx]; if (!IsValid(interval)) continue; enter[interval.first].insert(prim_idx); evict[interval.second].insert(prim_idx); } auto Splits = [this](PrimIdx large_idx, PrimIdx small_idx) -> bool { const Interval& large = reduced_intervals_[large_idx]; const Interval& small = reduced_intervals_[small_idx]; return large.first < small.first && large.second > small.second; }; auto CalcOverlap = [this, Splits]( int64_t prim0_idx, int64_t prim1_idx) -> std::optional<Interval> { if (prim0_idx == prim1_idx) return std::nullopt; const Interval& interval0 = reduced_intervals_[prim0_idx]; const Interval& interval1 = reduced_intervals_[prim1_idx]; if (!IsValid(interval0) || !IsValid(interval1)) return std::nullopt; if (Splits(prim0_idx, prim1_idx)) return std::nullopt; if (Splits(prim1_idx, prim0_idx)) return std::nullopt; return Interval(std::max(interval0.first, interval1.first), std::min(interval0.second, interval1.second)); }; auto MergeIntoGroup = [num_primitives, this]( PrimIdx prim_idx, absl::btree_set<PrimIdx>& reduced_group) { if (prim_idx < num_primitives) { reduced_group.insert(prim_idx); } else { const auto& group = reduced_groups_[prim_idx - num_primitives]; reduced_group.insert(group.begin(), group.end()); } }; auto CalcNumTerms = [num_primitives, this]( PrimIdx prim_idx, std::optional<Interval> overlap = std::nullopt) { int64_t num_terms = length(reduced_intervals_[prim_idx]); if (overlap) num_terms -= length(*overlap); if (prim_idx >= num_primitives && num_terms > 0) { num_terms += reduced_groups_[prim_idx - num_primitives].size(); } return num_terms; }; auto UpdatePrimitive = [this, &enter, &evict]( PrimIdx prim_idx, const Interval& overlap) mutable { Interval& interval = reduced_intervals_[prim_idx]; enter[interval.first].erase(prim_idx); evict[interval.second].erase(prim_idx); if (auto& t = interval.first; t == overlap.first) t = overlap.second + 1; if (auto& t = interval.second; t == overlap.second) t = overlap.first - 1; if (!IsValid(interval)) return; enter[interval.first].insert(prim_idx); evict[interval.second].insert(prim_idx); }; auto SweepAndMerge = [&num_lives, &enter, &evict, &CalcOverlap, &CalcNumTerms, &MergeIntoGroup, &UpdatePrimitive, this]() -> bool { absl::btree_set<ActivePrim> actives; absl::btree_multimap<int64_t, PrimPair> overlaps; for (LiveIdx live_idx = 0; live_idx < num_lives; ++live_idx) { for (const PrimIdx prim_idx : enter[live_idx]) { actives.insert({reduced_intervals_[prim_idx], prim_idx}); } for (const PrimIdx prim_idx : evict[live_idx]) { auto active = actives.find({reduced_intervals_[prim_idx], prim_idx}); if (++active == actives.end()) continue; std::optional<Interval> overlap = CalcOverlap(prim_idx, active->second); if (!overlap) continue; overlaps.insert({-length(*overlap), {prim_idx, active->second}}); } for (const PrimIdx prim_idx : evict[live_idx]) { actives.erase({reduced_intervals_[prim_idx], prim_idx}); } } bool changed = false; for (const auto& [_, prim_pair] : overlaps) { const PrimIdx prim0_idx = prim_pair.first, prim1_idx = prim_pair.second; const std::optional<Interval> overlap = CalcOverlap(prim0_idx, prim1_idx); if (!overlap) continue; absl::btree_set<PrimIdx> reduced_group; MergeIntoGroup(prim0_idx, reduced_group); MergeIntoGroup(prim1_idx, reduced_group); if (CalcNumTerms(prim0_idx) + CalcNumTerms(prim1_idx) <= CalcNumTerms(prim0_idx, overlap) + CalcNumTerms(prim1_idx, overlap) + length(*overlap) + reduced_group.size()) { continue; } enter[overlap->first].insert(reduced_intervals_.size()); evict[overlap->second].insert(reduced_intervals_.size()); reduced_intervals_.push_back({overlap->first, overlap->second}); reduced_groups_.push_back(reduced_group); UpdatePrimitive(prim0_idx, *overlap); UpdatePrimitive(prim1_idx, *overlap); changed = true; } return changed; }; for (int64_t iteration = 0; iteration < max_iterations; ++iteration) { if (!SweepAndMerge()) break; } for (GroupIdx group_idx = reduced_groups_.size() - 1; group_idx >= 0; --group_idx) { if (IsValid(reduced_intervals_[num_primitives + group_idx])) continue; reduced_intervals_.erase(reduced_intervals_.begin() + num_primitives + group_idx); reduced_groups_.erase(reduced_groups_.begin() + group_idx); } } const std::vector<std::vector<int64_t>>& MemoryTermReducer::GetReducedLive() const { return reduced_live_; } const std::vector<std::pair<int64_t, int64_t>>& MemoryTermReducer::GetReducedIntervals() const { return reduced_intervals_; } const std::vector<absl::btree_set<int64_t>>& MemoryTermReducer::GetReducedGroups() const { return reduced_groups_; } absl::flat_hash_set<int64_t> MemoryTermReducer::GetReducedTimes( int64_t num_primitives) { return GetReducedTimes(num_primitives, reduced_intervals_, reduced_groups_); } absl::flat_hash_set<int64_t> MemoryTermReducer::GetReducedTimes( int64_t num_primitives, const std::vector<std::pair<int64_t, int64_t>>& reduced_intervals, const std::vector<absl::btree_set<int64_t>>& reduced_groups) { std::vector<std::pair<int64_t, int64_t>> intervals; for (int64_t reduced_interval_idx = 0; reduced_interval_idx < reduced_intervals.size(); ++reduced_interval_idx) { const Interval& reduced_interval = reduced_intervals[reduced_interval_idx]; if (reduced_interval_idx < num_primitives) { intervals.push_back(reduced_interval); continue; } const GroupIdx group_idx = reduced_interval_idx - num_primitives; for (const PrimIdx prim_idx : reduced_groups[group_idx]) { Interval& interval = intervals[prim_idx]; if (!IsValid(interval)) { interval.first = reduced_interval.first; interval.second = reduced_interval.second; continue; } interval.first = std::min(interval.first, reduced_interval.first); interval.second = std::max(interval.second, reduced_interval.second); } } absl::btree_set<std::pair<int64_t, bool>> times; for (const Interval& interval : intervals) { if (!IsValid(interval)) continue; times.insert({interval.first, false}); times.insert({interval.second, true}); } int64_t last_entering_time = -1; absl::flat_hash_set<int64_t> reduced_times; for (const auto& time : times) { if ( time.second) { reduced_times.insert(last_entering_time); } else { last_entering_time = time.first; } } reduced_times.insert(last_entering_time); return reduced_times; } } }
#include "xla/hlo/experimental/auto_sharding/auto_sharding_memory.h" #include <cstdint> #include <functional> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/container/btree_set.h" #include "absl/container/flat_hash_set.h" namespace xla { namespace spmd { namespace { std::function<tsl::protobuf::RepeatedField<int64_t>(int64_t)> Convert(const std::vector<std::vector<int64_t>>& live) { return [live](int64_t live_idx) { return ::proto2::RepeatedField<int64_t>(live[live_idx].begin(), live[live_idx].end()); }; } std::function<std::pair<int64_t, int64_t>(int64_t)> Convert( const std::vector<std::pair<int64_t, int64_t>>& intervals) { return [intervals](int64_t prim_idx) { return intervals[prim_idx]; }; } TEST(AutoShardingMemoryTest, WithoutOverlap) { const int num_primitives = 2; const std::vector<std::vector<int64_t>> live = {{0 }, {0 }, {0 }, { 1}, { 1}, { 1}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{0 }, {0 }, {0 }, { 1}, { 1}, { 1}}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 2}, {3, 5}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {}; const std::pair<int64_t, int64_t> expected_num_terms = {6, 6}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0, 3}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, PartialOverlap) { const int num_primitives = 2; const std::vector<std::vector<int64_t>> live = {{0 }, {0, 1}, {0, 1}, {0, 1}, {0, 1}, { 1}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{0 }, { 2}, { 2}, { 2}, { 2}, { 1 }}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 0}, {5, 5}, {1, 4}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}}; const std::pair<int64_t, int64_t> expected_num_terms = {10, 8}; const absl::flat_hash_set<int64_t> expected_reduced_times = {1}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, PartialOverlapReversed) { const int num_primitives = 2; const std::vector<std::vector<int64_t>> live = {{ 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0 }}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{ 1 }, { 2}, { 2}, { 2}, { 2}, {0 }}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{5, 5}, {0, 0}, {1, 4}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}}; const std::pair<int64_t, int64_t> expected_num_terms = {10, 8}; const absl::flat_hash_set<int64_t> expected_reduced_times = {1}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, DoesNotSplitPrimitive) { const int num_primitives = 2; const std::vector<std::vector<int64_t>> live = {{0 }, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0 }}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{0 }, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0 }}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 5}, {1, 4}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {}; const std::pair<int64_t, int64_t> expected_num_terms = {10, 10}; const absl::flat_hash_set<int64_t> expected_reduced_times = {1}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, OnePrimitiveVanishes) { const int num_primitives = 2; const std::vector<std::vector<int64_t>> live = {{0 }, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{0 }, { 2}, { 2}, { 2}, { 2}, { 2}}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 0}, {6, 0}, {1, 5}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}}; const std::pair<int64_t, int64_t> expected_num_terms = {11, 8}; const absl::flat_hash_set<int64_t> expected_reduced_times = {1}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, BothPrimitivesVanish) { const int num_primitives = 2; const std::vector<std::vector<int64_t>> live = {{0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{2}, {2}, {2}, {2}, {2}, {2}}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{6, -1}, {6, -1}, {0, 5}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}}; const std::pair<int64_t, int64_t> expected_num_terms = {12, 8}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, OneGroupingPreventsAnother) { const int num_primitives = 3; const std::vector<std::vector<int64_t>> live = {{0, 1 }, {0, 1 }, {0, 1 }, {0, 1 }, {0, 1, 2}, { 1, 2}, { 1, 2}, { 1, 2}, { 2}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{ 3}, { 3}, { 3}, { 3}, { 2, 3}, {1, 2 }, {1, 2 }, {1, 2 }, { 2 }}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{5, -1}, {5, 7}, {4, 8}, {0, 4}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}}; const std::pair<int64_t, int64_t> expected_num_terms = {18, 15}; const absl::flat_hash_set<int64_t> expected_reduced_times = {4}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, TwoGroups) { const int num_primitives = 3; const std::vector<std::vector<int64_t>> live = {{0, 1 }, {0, 1 }, {0, 1 }, {0, 2}, {0, 2}, {0, 2}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{3}, {3}, {3}, {4}, {4}, {4}}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{6, 2}, {3, -1}, {6, 2}, {0, 2}, {3, 5}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {0, 2}}; const std::pair<int64_t, int64_t> expected_num_terms = {12, 10}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0, 3}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, TwoGroupsMutuallyExclusive) { const int num_primitives = 4; const std::vector<std::vector<int64_t>> live = {{0 }, {0, 1 }, {0, 1 }, {0, 1 }, { 2, 3}, { 2, 3}, { 2, 3}, { 3}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{0 }, { 4}, { 4}, { 4}, { 5}, { 5}, { 5}, { 3 }}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 0}, {4, 0}, {7, 3}, {7, 7}, {1, 3}, {4, 6}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {2, 3}}; const std::pair<int64_t, int64_t> expected_num_terms = {14, 12}; const absl::flat_hash_set<int64_t> expected_reduced_times = {1, 4}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, MergingPrimitivesWouldNotReduceTerms) { const int num_primitives = 2; const std::vector<std::vector<int64_t>> live = {{0, 1}, {0, 1}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{0, 1}, {0, 1}}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 1}, {0, 1}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {}; const std::pair<int64_t, int64_t> expected_num_terms = {4, 4}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, AllPrimitivesVanish) { const int num_primitives = 3; const std::vector<std::vector<int64_t>> live = {{0, 1, 2}, {0, 1, 2}, {0, 1, 2}, {0, 1, 2}, {0, 1, 2}, {0, 1, 2}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{3}, {3}, {3}, {3}, {3}, {3}}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{6, -1}, {6, -1}, {6, -1}, {0, 5}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1, 2}}; const std::pair<int64_t, int64_t> expected_num_terms = {18, 9}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, MergingGroupsWouldNotReduceTerms) { const int num_primitives = 4; const std::vector<std::vector<int64_t>> live = {{0, 1 }, {0, 1 }, {0, 1 }, {0, 1, 2, 3}, {0, 1, 2, 3}, {0, 1, 2, 3}, {0, 1, 2, 3}, { 2, 3}, { 2, 3}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{4 }, {4 }, {4 }, {4, 5}, {4, 5}, {4, 5}, {4, 5}, { 5}, { 5}}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{7, -1}, {7, -1}, {9, 2}, {9, 2}, {0, 6}, {3, 8}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {2, 3}}; const std::pair<int64_t, int64_t> expected_num_terms = {26, 17}; const absl::flat_hash_set<int64_t> expected_reduced_times = {3}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, ExampleFromDocumentation) { const int num_primitives = 4; const std::vector<std::vector<int64_t>> live = {{0 }, {0, 1 }, {0, 1 }, {0, 1 }, {0, 1 }, {0, 1, 2, 3}, {0, 1, 2, 3}, {0, 1, 2, 3}, {0, 1, 2, 3}, {0, 1, 2, 3}, { 2, 3}, { 2, 3}, { 2, 3}, { 3}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{0 }, { 4}, { 4}, { 4}, { 4}, { 6}, { 6}, { 6}, { 6}, { 6}, { 5}, { 5}, { 5}, { 3 }}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 0}, {10, 0}, {13, 4}, {13, 13}, {1, 4}, {10, 12}, {5, 9}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {2, 3}, {0, 1, 2, 3}}; const std::pair<int64_t, int64_t> expected_num_terms = {36, 22}; const absl::flat_hash_set<int64_t> expected_reduced_times = {5}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, MergesWithRightmost) { const int num_primitives = 3; const std::vector<std::vector<int64_t>> live = {{0, 2}, {0, 2}, {0, 2}, { 1, 2}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{ 3}, { 3}, { 3}, {1, 2 }}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{3, -1}, {3, 3}, {3, 3}, {0, 2}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 2}}; const std::pair<int64_t, int64_t> expected_num_terms = {8, 7}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0, 3}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, ExampleFromDocumentationUsingIntervals) { const int num_primitives = 4; const std::vector<std::pair<int64_t, int64_t>> intervals = {{0, 9}, {1, 9}, {5, 12}, {5, 13}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(14, num_primitives, Convert(intervals)); const std::vector<std::vector<int64_t>> expected_reduced_live = {}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 0}, {10, 0}, {13, 4}, {13, 13}, {1, 4}, {10, 12}, {5, 9}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {2, 3}, {0, 1, 2, 3}}; const std::pair<int64_t, int64_t> expected_num_terms = {36, 22}; const absl::flat_hash_set<int64_t> expected_reduced_times = {5}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, InvalidIntervals) { const int num_primitives = 3; const std::vector<std::pair<int64_t, int64_t>> intervals = {{0, 4}, {9223372036854775807, 0}, {9223372036854775807, 0}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(5, num_primitives, Convert(intervals)); const std::vector<std::vector<int64_t>> expected_reduced_live = {}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 4}, {9223372036854775807, 0}, {9223372036854775807, 0}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {}; const std::pair<int64_t, int64_t> expected_num_terms = {5, 5}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, OneIterationOnly) { const int num_primitives = 4; const std::vector<std::pair<int64_t, int64_t>> intervals = {{0, 9}, {1, 9}, {5, 12}, {5, 13}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(14, num_primitives, Convert(intervals), 1); const std::vector<std::vector<int64_t>> expected_reduced_live = {}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 0}, {10, 0}, {13, 4}, {13, 13}, {1, 9}, {5, 12}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {2, 3}}; const std::pair<int64_t, int64_t> expected_num_terms = {36, 23}; const absl::flat_hash_set<int64_t> expected_reduced_times = {5}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, StairsBottomLeft) { const int num_primitives = 4; const std::vector<std::pair<int64_t, int64_t>> intervals = {{0, 13}, {0, 10}, {0, 7}, {0, 4}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(14, num_primitives, Convert(intervals), 1); const std::vector<std::vector<int64_t>> expected_reduced_live = {}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{11, 13}, {11, -1}, {5, 7}, {5, -1}, {0, 10}, {0, 4}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {2, 3}}; const std::pair<int64_t, int64_t> expected_num_terms = {38, 26}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, StairsTopLeft) { const int num_primitives = 4; const std::vector<std::pair<int64_t, int64_t>> intervals = {{0, 4}, {0, 7}, {0, 10}, {0, 13}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(14, num_primitives, Convert(intervals), 1); const std::vector<std::vector<int64_t>> expected_reduced_live = {}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{5, -1}, {5, 7}, {11, -1}, {11, 13}, {0, 10}, {0, 4}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{2, 3}, {0, 1}}; const std::pair<int64_t, int64_t> expected_num_terms = {38, 26}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, StairsTopRight) { const int num_primitives = 4; const std::vector<std::pair<int64_t, int64_t>> intervals = {{9, 13}, {6, 13}, {3, 13}, {0, 13}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(14, num_primitives, Convert(intervals), 1); const std::vector<std::vector<int64_t>> expected_reduced_live = {}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{14, 8}, {6, 8}, {14, 2}, {0, 2}, {3, 13}, {9, 13}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{2, 3}, {0, 1}}; const std::pair<int64_t, int64_t> expected_num_terms = {38, 26}; const absl::flat_hash_set<int64_t> expected_reduced_times = {9}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, StairsBottomRight) { const int num_primitives = 4; const std::vector<std::pair<int64_t, int64_t>> intervals = {{0, 13}, {3, 13}, {6, 13}, {9, 13}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(14, num_primitives, Convert(intervals), 1); const std::vector<std::vector<int64_t>> expected_reduced_live = {}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 2}, {14, 2}, {6, 8}, {14, 8}, {3, 13}, {9, 13}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {2, 3}}; const std::pair<int64_t, int64_t> expected_num_terms = {38, 26}; const absl::flat_hash_set<int64_t> expected_reduced_times = {9}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_memory.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_memory_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e9469ed1-6c77-4323-9ef8-b4a9ff678ff6
cpp
tensorflow/tensorflow
type_to_shape
third_party/xla/xla/hlo/translate/mhlo_to_hlo/type_to_shape.cc
third_party/xla/xla/hlo/translate/mhlo_to_hlo/type_to_shape_test.cc
#include "xla/hlo/translate/mhlo_to_hlo/type_to_shape.h" #include <algorithm> #include <cstdint> #include <numeric> #include <optional> #include <tuple> #include <utility> #include <vector> #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/LogicalResult.h" #include "mlir/Dialect/SparseTensor/IR/Enums.h" #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Diagnostics.h" #include "mlir/IR/Location.h" #include "mlir/Support/DebugStringHelper.h" #include "mlir/Support/LLVM.h" #include "stablehlo/dialect/StablehloOps.h" #include "xla/mlir/utils/type_util.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" using ::int64_t; using mlir::MemRefType; using mlir::RankedTensorType; using mlir::ShapedType; using mlir::VectorType; using mlir::mhlo::TypeExtensionsAttr; using xla::PrimitiveType; namespace xla { std::optional<std::tuple<DimLevelType, bool, bool>> ConvertDimLevelType( mlir::sparse_tensor::LevelType lt) { auto f = mlir::sparse_tensor::getLevelFormat(lt); if (!f) return std::nullopt; bool unique = mlir::sparse_tensor::isUniqueLT(lt); bool ordered = mlir::sparse_tensor::isOrderedLT(lt); switch (*f) { case mlir::sparse_tensor::LevelFormat::Singleton: return std::make_tuple(DimLevelType::DIM_SINGLETON, unique, ordered); case mlir::sparse_tensor::LevelFormat::Compressed: return std::make_tuple(DimLevelType::DIM_COMPRESSED, unique, ordered); case mlir::sparse_tensor::LevelFormat::Dense: return std::make_tuple(DimLevelType::DIM_DENSE, unique, ordered); case mlir::sparse_tensor::LevelFormat::LooseCompressed: return std::make_tuple(DimLevelType::DIM_LOOSE_COMPRESSED, unique, ordered); default: return std::nullopt; } } Shape TypeToShape(mlir::Type type) { PrimitiveType ptype = ConvertMlirTypeToPrimitiveType(type); if (ptype != PrimitiveType::PRIMITIVE_TYPE_INVALID) return ShapeUtil::MakeShape(ptype, {}); if (type.isIntOrFloat()) { auto* context = type.getContext(); mlir::emitError(mlir::UnknownLoc::get(context)) << "lowering should have been handled by primitive type lowering for " << debugString(type); } else if (auto v = mlir::dyn_cast<mlir::VectorType>(type)) { llvm::SmallVector<int64_t, 4> span(v.getShape().begin(), v.getShape().end()); mlir::Type element_type = v.getElementType(); PrimitiveType primitive_type = ConvertMlirTypeToPrimitiveType(element_type); if (primitive_type != PrimitiveType::PRIMITIVE_TYPE_INVALID) return ShapeUtil::MakeShape(primitive_type, span); } else if (auto m = mlir::dyn_cast<mlir::MemRefType>(type)) { llvm::SmallVector<int64_t, 6> span(m.getShape().begin(), m.getShape().end()); mlir::Type element_type = m.getElementType(); if (auto v = mlir::dyn_cast<mlir::VectorType>(element_type)) { element_type = v.getElementType(); span.insert(span.end(), v.getShape().begin(), v.getShape().end()); } PrimitiveType primitive_type = ConvertMlirTypeToPrimitiveType(element_type); if (primitive_type == PrimitiveType::PRIMITIVE_TYPE_INVALID) return {}; if (m.getLayout().isIdentity()) return ShapeUtil::MakeShape(primitive_type, span); llvm::SmallVector<int64_t, 4> strides; int64_t offset; if (failed(mlir::getStridesAndOffset(m, strides, offset))) return {}; llvm::SmallVector<std::pair<int64_t, int>, 4> strides_with_indices; for (const auto& e : llvm::enumerate(strides)) { strides_with_indices.push_back({e.value(), e.index()}); } std::stable_sort(strides_with_indices.begin(), strides_with_indices.end()); llvm::SmallVector<int64_t, 4> minor_to_major; int64_t stride = 1; for (const auto& pr : strides_with_indices) { minor_to_major.push_back(pr.second); if (stride != pr.first && m.getShape()[pr.second] != 1) return {}; stride *= m.getShape()[pr.second]; } llvm::SmallVector<int64_t, 4> dimensions(m.getShape().begin(), m.getShape().end()); return ::xla::ShapeUtil::MakeShapeWithDenseLayout( primitive_type, dimensions, minor_to_major); } else if (auto t = mlir::dyn_cast<mlir::RankedTensorType>(type)) { int64_t rank = t.getRank(); llvm::SmallVector<int64_t, 4> bounds; if (auto extn = mlir::dyn_cast_or_null<TypeExtensionsAttr>(t.getEncoding())) { bounds = llvm::to_vector<4>(extn.getBounds()); } else { bounds.assign(rank, ShapedType::kDynamic); } llvm::SmallVector<int64_t, 4> shape(rank, mlir::ShapedType::kDynamic); std::vector<bool> is_dynamic(rank, false); for (int64_t dim = 0; dim < rank; ++dim) { int64_t size = t.getDimSize(dim); if (size == ShapedType::kDynamic) { shape[dim] = bounds[dim] != ShapedType::kDynamic ? bounds[dim] : Shape::kUnboundedSize; is_dynamic[dim] = true; } else { if (bounds[dim] != ShapedType::kDynamic) return {}; shape[dim] = size; } } PrimitiveType primitive_type = ConvertMlirTypeToPrimitiveType(t.getElementType()); if (primitive_type == PrimitiveType::PRIMITIVE_TYPE_INVALID) return {}; if (auto sparse = mlir::sparse_tensor::getSparseTensorEncoding(type)) { if (!t.hasStaticShape()) return {}; if (sparse.getPosWidth() != 32 || sparse.getCrdWidth() != 32) return {}; llvm::SmallVector<DimLevelType, 3> lvl_types; llvm::SmallVector<bool, 3> level_unique; llvm::SmallVector<bool, 3> level_ordered; for (auto lt : sparse.getLvlTypes()) { auto new_lt = ConvertDimLevelType(lt); if (!new_lt) return {}; lvl_types.push_back(std::get<0>(*new_lt)); level_unique.push_back(std::get<1>(*new_lt)); level_ordered.push_back(std::get<2>(*new_lt)); } std::vector<int64_t> ordering(rank); std::iota(ordering.rbegin(), ordering.rend(), 0); auto dimToLvl = sparse.getDimToLvl() ? sparse.getDimToLvl() : mlir::AffineMap::getMultiDimIdentityMap( rank, sparse.getContext()); auto final_ordering = mlir::applyPermutationMap( dimToLvl, llvm::ArrayRef<int64_t>(ordering)); auto sparse_shape = ::xla::ShapeUtil::MakeShapeWithSparseLayout( primitive_type, shape, final_ordering, lvl_types, level_unique, level_ordered); return sparse_shape; } return ShapeUtil::MakeShape(primitive_type, shape, is_dynamic); } else if (auto tuple_type = mlir::dyn_cast<mlir::TupleType>(type)) { llvm::SmallVector<Shape, 4> shapes; shapes.reserve(tuple_type.size()); for (mlir::Type sub_type : tuple_type.getTypes()) { shapes.push_back(TypeToShape(sub_type)); } return ShapeUtil::MakeTupleShape(shapes); } else if (mlir::isa<mlir::mhlo::TokenType>(type) || mlir::isa<mlir::stablehlo::TokenType>(type)) { return ShapeUtil::MakeTokenShape(); } else if (auto bundle_type = mlir::dyn_cast<mlir::mhlo::AsyncBundleType>(type)) { auto tuple_type = mlir::TupleType::get(type.getContext(), bundle_type.getTypes()); return TypeToShape(tuple_type); } return {}; } }
#include "xla/hlo/translate/mhlo_to_hlo/type_to_shape.h" #include <iostream> #include <utility> #include "absl/status/statusor.h" #include "llvm/ADT/SmallVector.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/translate/hlo_to_mhlo/hlo_utils.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/xla_data.pb.h" #include "tsl/platform/protobuf.h" using mlir::Builder; using mlir::MemRefType; using mlir::MLIRContext; using mlir::RankedTensorType; using mlir::UnrankedTensorType; using mlir::VectorType; namespace xla { namespace { class ProtoStringMatcher { public: explicit ProtoStringMatcher(const tsl::protobuf::Message& expected) : expected_(expected.SerializeAsString()) {} template <typename Message> bool MatchAndExplain(const Message& p, testing::MatchResultListener*) const { return p.SerializeAsString() == expected_; } void DescribeTo(::std::ostream* os) const { *os << expected_; } void DescribeNegationTo(::std::ostream* os) const { *os << "not equal to expected message: " << expected_; } private: const std::string expected_; }; inline ::testing::PolymorphicMatcher<ProtoStringMatcher> EqualsProto( const tsl::protobuf::Message& x) { return ::testing::MakePolymorphicMatcher(ProtoStringMatcher(x)); } TEST(TypeToShapeTest, ConvertBasicTypesToTypes) { MLIRContext context; Builder b(&context); EXPECT_TRUE( ShapeUtil::IsScalarWithElementType(TypeToShape(b.getF32Type()), F32)); EXPECT_THAT( TypeToShape(VectorType::get({8, 128}, b.getIntegerType(32))).ToProto(), EqualsProto( ShapeUtil::MakeShape(PrimitiveType::S32, {8, 128}).ToProto())); EXPECT_THAT( TypeToShape(VectorType::get({8, 128}, b.getF32Type())).ToProto(), EqualsProto( ShapeUtil::MakeShape(PrimitiveType::F32, {8, 128}).ToProto())); EXPECT_THAT( TypeToShape(VectorType::get({8, 128}, b.getIntegerType(17))).ToProto(), EqualsProto(Shape().ToProto())); } TEST(TypeToShapeTest, ConvertMemRefTypeToTypes) { MLIRContext context; Builder b(&context); EXPECT_THAT( TypeToShape(MemRefType::get({8, 128}, b.getF32Type())).ToProto(), EqualsProto( ShapeUtil::MakeShape(PrimitiveType::F32, {8, 128}).ToProto())); EXPECT_THAT( TypeToShape(MemRefType::get({100, 13, 210}, b.getF32Type())).ToProto(), EqualsProto( ShapeUtil::MakeShape(PrimitiveType::F32, {100, 13, 210}).ToProto())); EXPECT_THAT( TypeToShape(MemRefType::get({100, 13, 210}, VectorType::get({8, 128}, b.getF32Type()))) .ToProto(), EqualsProto( ShapeUtil::MakeShape(PrimitiveType::F32, {100, 13, 210, 8, 128}) .ToProto())); } TEST(TypeToShapeTest, ConvertTensorTypeToTypes) { mlir::MLIRContext context; context.loadDialect<mlir::mhlo::MhloDialect>(); Builder b(&context); EXPECT_THAT( TypeToShape(RankedTensorType::get({8, 128}, b.getF32Type())).ToProto(), EqualsProto( ShapeUtil::MakeShape(PrimitiveType::F32, {8, 128}).ToProto())); llvm::SmallVector<int64_t, 4> bounds = {8, mlir::ShapedType::kDynamic}; auto extensions = mlir::mhlo::TypeExtensionsAttr::get(&context, bounds); EXPECT_THAT( TypeToShape(RankedTensorType::get({mlir::ShapedType::kDynamic, 128}, b.getF32Type(), extensions)) .ToProto(), EqualsProto( ShapeUtil::MakeShape(PrimitiveType::F32, {8, 128}, {true, false}) .ToProto())); EXPECT_THAT( TypeToShape(RankedTensorType::get({mlir::ShapedType::kDynamic, 784}, b.getF32Type())) .ToProto(), EqualsProto(ShapeUtil::MakeShape(PrimitiveType::F32, {Shape::kUnboundedSize, 784}, {true, false}) .ToProto())); EXPECT_THAT(TypeToShape(UnrankedTensorType::get(b.getF32Type())).ToProto(), EqualsProto(Shape().ToProto())); EXPECT_THAT( TypeToShape(RankedTensorType::get( {8, 128}, VectorType::get({16, 16}, b.getF32Type()))) .ToProto(), EqualsProto(Shape().ToProto())); } TEST(TypeToShapeTest, ConvertMemRefToShape) { Shape shape = ShapeUtil::MakeShapeWithDenseLayout(PrimitiveType::F32, {10, 20, 30}, {2, 0, 1}); MLIRContext context; mlir::Builder builder(&context); absl::StatusOr<mlir::Type> mlir_type = ConvertShapeToType<MemRefType>(shape, builder); ASSERT_TRUE(mlir_type.ok()); mlir::Type type = std::move(mlir_type).value(); Shape converted = TypeToShape(type); EXPECT_TRUE(ShapeUtil::Equal( converted, ShapeUtil::MakeShapeWithDenseLayout(PrimitiveType::F32, {10, 20, 30}, {2, 0, 1}))); EXPECT_TRUE(ShapeUtil::Equal(converted, shape)); } TEST(TypeToShapeTest, ConvertMemRefToShape2) { Shape shape = ShapeUtil::MakeShapeWithDenseLayout(PrimitiveType::C64, {2, 4, 3, 3}, {2, 3, 1, 0}); MLIRContext context; mlir::Builder builder(&context); absl::StatusOr<mlir::Type> mlir_type = ConvertShapeToType<MemRefType>(shape, builder); ASSERT_TRUE(mlir_type.ok()); mlir::Type type = std::move(mlir_type).value(); Shape converted = TypeToShape(type); EXPECT_TRUE(ShapeUtil::Equal( converted, ShapeUtil::MakeShapeWithDenseLayout( PrimitiveType::C64, {2, 4, 3, 3}, {2, 3, 1, 0}))); EXPECT_TRUE(ShapeUtil::Equal(converted, shape)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/translate/mhlo_to_hlo/type_to_shape.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/translate/mhlo_to_hlo/type_to_shape_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
598c730c-79a4-40bf-874a-24f60c51c13a
cpp
tensorflow/tensorflow
mlir_hlo_to_hlo
third_party/xla/xla/hlo/translate/mhlo_to_hlo/mlir_hlo_to_hlo.cc
third_party/xla/xla/hlo/translate/mhlo_to_hlo/mlir_hlo_to_hlo_test.cc
#include "xla/hlo/translate/mhlo_to_hlo/mlir_hlo_to_hlo.h" #include <algorithm> #include <cassert> #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Casting.h" #include "llvm/Support/LogicalResult.h" #include "llvm/Support/raw_ostream.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/Shape/IR/Shape.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/BuiltinAttributeInterfaces.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Diagnostics.h" #include "mlir/IR/Location.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/Operation.h" #include "mlir/IR/TypeUtilities.h" #include "mlir/IR/UseDefLists.h" #include "mlir/IR/Value.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "mlir/Transforms/RegionUtils.h" #include "stablehlo/dialect/Base.h" #include "xla/array.h" #include "xla/comparison_util.h" #include "xla/debug_options_flags.h" #include "xla/hlo/builder/lib/approx_topk.h" #include "xla/hlo/builder/lib/approx_topk_shape.h" #include "xla/hlo/builder/lib/matrix.h" #include "xla/hlo/builder/lib/slicing.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/hlo/builder/xla_computation.h" #include "xla/hlo/ir/dynamic_parameter_binding.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/translate/mhlo_to_hlo/attribute_exporter.h" #include "xla/hlo/translate/mhlo_to_hlo/layout_util.h" #include "xla/hlo/translate/mhlo_to_hlo/location_exporter.h" #include "xla/hlo/translate/mhlo_to_hlo/module_attributes_exporter.h" #include "xla/hlo/translate/mhlo_to_hlo/stack_frame_index_builder.h" #include "xla/hlo/translate/mhlo_to_hlo/type_to_shape.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/mlir/utils/error_util.h" #include "xla/mlir/utils/type_util.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" #include "xla/mlir_hlo/mhlo/transforms/passes.h" #include "xla/primitive_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" #include "tsl/platform/types.h" using ::int64_t; using ::tsl::int16; using ::tsl::int32; using ::tsl::int8; using ::tsl::StatusOr; using ::tsl::uint16; using ::tsl::uint32; using ::tsl::uint64; using ::tsl::uint8; constexpr char kJaxBufferDonor[] = "jax.buffer_donor"; constexpr char kResultLayout[] = "result_layout"; constexpr char kSourceLayout[] = "source_layout"; constexpr char kAggregateToTopk[] = "aggregate_to_topk"; constexpr char kApiVersion[] = "api_version"; constexpr char kApproxTopK[] = "ApproxTopK"; constexpr char kBackendConfig[] = "backend_config"; constexpr char kCallTargetName[] = "call_target_name"; constexpr char kCalledComputations[] = "called_computations"; constexpr char kHasSideEffect[] = "has_side_effect"; constexpr char kIsFallback[] = "is_fallback"; constexpr char kRecallTarget[] = "recall_target"; constexpr char kReductionDim[] = "reduction_dim"; constexpr char kReductionInputSizeOverride[] = "reduction_input_size_override"; constexpr char kTopK[] = "top_k"; constexpr char kMhloCrossProgramPrefetches[] = "mhlo.cross_program_prefetches"; constexpr char kMhloFrontendAttributes[] = "mhlo.frontend_attributes"; constexpr char kMhloInputOutputAlias[] = "mhlo.input_output_alias"; constexpr char kMhloIsDynamic[] = "mhlo.is_dynamic"; constexpr char kMhloLiteral[] = "mhlo.literal"; constexpr char kMhloParameterReplication[] = "mhlo.parameter_replication"; constexpr char kMhloReplication[] = "mhlo.is_same_data_across_replicas"; constexpr char kMhloSharding[] = "mhlo.sharding"; constexpr char kMhloSpmdOutputSharding[] = "mhlo.spmd_output_sharding"; constexpr char kMhloSpmdParametersShardings[] = "mhlo.spmd_parameters_shardings"; constexpr char kMhloUseAutoSpmdPartitioning[] = "mhlo.use_auto_spmd_partitioning"; constexpr char kMhloXlaEntryComputationParameterLayouts[] = "mhlo.xla_entry_computation_parameter_layouts"; constexpr char kMhloXlaEntryComputationParameterTiles[] = "mhlo.xla_entry_computation_parameter_tiles"; constexpr char kMhloXlaEntryComputationResultLayout[] = "mhlo.xla_entry_computation_result_layout"; constexpr char kMhloXlaEntryComputationResultTiles[] = "mhlo.xla_entry_computation_result_tiles"; constexpr char kArgEmptyTuple[] = "arg_empty_tuple"; constexpr char kArgPrefix[] = "Arg_"; constexpr char kArgTuple[] = "arg_tuple"; constexpr char kDefaultLayoutAttrName[] = "xla_shape"; constexpr char kExecutionThread[] = "execution_thread"; constexpr char kLayout[] = "layout"; constexpr char kMain[] = "main"; constexpr char kRegionPrefix[] = "region_"; constexpr char kTfAliasingOutput[] = "tf.aliasing_output"; template <typename T> T Unwrap(T t) { return t; } template <typename T> T* Unwrap(const std::unique_ptr<T>& t) { return t.get(); } static mlir::LogicalResult GetXlaOp( mlir::Value val, const llvm::DenseMap<mlir::Value, xla::XlaOp>& val_map, xla::XlaOp* result, mlir::Operation* op) { auto iter = val_map.find(val); if (iter == val_map.end()) { return op->emitOpError( "requires all operands to be defined in the parent region for export"); } *result = iter->second; return mlir::success(); } bool IsBoundedOrStatic(mlir::Type ty) { auto ranked_ty = mlir::dyn_cast_or_null<mlir::RankedTensorType>(ty); if (!ranked_ty) return false; if (ranked_ty.hasStaticShape()) return true; auto encoding = mlir::dyn_cast_or_null<mlir::mhlo::TypeExtensionsAttr>( ranked_ty.getEncoding()); if (!encoding || encoding.getBounds().empty()) return false; int64_t rank = ranked_ty.getRank(); for (int64_t dim = 0; dim < rank; ++dim) { if (ranked_ty.isDynamicDim(dim) && encoding.getBounds()[dim] == mlir::ShapedType::kDynamic) return false; } return true; } template <typename T> xla::Array<T> ArrayFromDenseElementsAttr(mlir::DenseElementsAttr dense_attr) { constexpr xla::PrimitiveType type = xla::primitive_util::NativeToPrimitiveType<T>(); xla::Shape shape = xla::TypeToShape(dense_attr.getType()); xla::Array<T> array(shape.dimensions()); if constexpr (!xla::primitive_util::IsSubByteNonPredType(type)) { array.SetValues(dense_attr.getValues<T>()); } else { auto values = dense_attr.getValues<llvm::APInt>(); for (int i = 0; i < values.size(); i++) { if constexpr (xla::primitive_util::IsUnsignedIntegralType(type)) { array.data()[i] = T{values[i].getZExtValue()}; } else { static_assert(xla::primitive_util::IsSignedIntegralType(type)); array.data()[i] = T{values[i].getSExtValue()}; } } } return array; } absl::StatusOr<xla::Literal> CreateArrayLiteralFromAttr(mlir::ElementsAttr attr, xla::Layout layout) { auto dense_attr = mlir::dyn_cast<mlir::DenseElementsAttr>(attr); if (!dense_attr) return tsl::errors::Unimplemented("Only dense elements attr are supported"); xla::Shape shape = xla::TypeToShape(dense_attr.getType()); return xla::primitive_util::PrimitiveTypeSwitch<absl::StatusOr<xla::Literal>>( [&](auto primitive_type_constant) -> absl::StatusOr<xla::Literal> { if constexpr (xla::primitive_util::IsArrayType( primitive_type_constant)) { using cpp_type = xla::primitive_util::NativeTypeOf<primitive_type_constant>; xla::Array<cpp_type> source_data = ArrayFromDenseElementsAttr<cpp_type>(dense_attr); return xla::LiteralUtil::CreateFromArrayWithLayout(source_data, layout); } return tsl::errors::Internal(absl::StrCat( "Unsupported type: ", xla::PrimitiveType_Name(shape.element_type()))); }, shape.element_type()); } static int ConvertAPInt(llvm::APInt i) { return i.getSExtValue(); } static uint32_t Convertuint32_t(uint32_t i) { return i; } static uint64_t Convertuint64_t(uint64_t i) { return i; } static double ConvertAPFloat(llvm::APFloat value) { const auto& semantics = value.getSemantics(); bool losesInfo = false; if (&semantics != &llvm::APFloat::IEEEdouble()) value.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, &losesInfo); return value.convertToDouble(); } static inline bool Convertbool(bool value) { return value; } static absl::string_view ConvertStringRef(mlir::StringRef value) { return {value.data(), value.size()}; } static std::vector<int64_t> ConvertDenseIntAttr( mlir::DenseIntElementsAttr attr) { auto values = attr.getValues<int64_t>(); return {values.begin(), values.end()}; } static std::vector<int64_t> ConvertDenseIntAttr( std::optional<mlir::DenseIntElementsAttr> attr) { if (!attr) return {}; return ConvertDenseIntAttr(*attr); } static std::vector<int64_t> Convert_broadcast_dimensions( std::optional<mlir::DenseIntElementsAttr> broadcast_dimensions) { if (!broadcast_dimensions.has_value()) return {}; return ConvertDenseIntAttr(*broadcast_dimensions); } static std::vector<xla::CrossProgramPrefetch> Convert_cross_program_prefetches( mlir::ArrayAttr prefetches) { std::vector<xla::CrossProgramPrefetch> cross_program_prefetches; for (auto prefetch : prefetches) { auto cpp = mlir::cast<mlir::mhlo::CrossProgramPrefetchAttr>(prefetch); xla::CrossProgramPrefetch xla_cpp; xla_cpp.set_parameter(cpp.getParameter()); for (auto index : cpp.getIndices()) xla_cpp.add_index(index); cross_program_prefetches.push_back(xla_cpp); } return cross_program_prefetches; } static xla::FftType Convert_fft_type(mlir::mhlo::FftType fft_type) { xla::FftType fft_type_enum; if (!FftType_Parse(std::string(mlir::mhlo::stringifyFftType(fft_type)), &fft_type_enum)) return xla::FftType::FFT; return fft_type_enum; } static std::vector<std::pair<int64_t, int64_t>> Convert_padding( std::optional<mlir::DenseIntElementsAttr> padding) { return xla::ConvertNx2Attribute(padding).value(); } static std::optional<bool> Convert_use_global_device_ids( std::optional<bool> use_global_device_ids) { if (!use_global_device_ids) return {}; return *use_global_device_ids; } static std::vector<std::pair<int64_t, int64_t>> Convert_source_target_pairs( std::optional<mlir::DenseIntElementsAttr> source_target_pairs) { return xla::ConvertNx2Attribute(source_target_pairs).value(); } static std::vector<xla::ReplicaGroup> Convert_replica_groups( mlir::DenseIntElementsAttr groups) { return xla::ConvertReplicaGroups(groups).value(); } static void SetLayout(xla::Shape& shape, mlir::DenseIntElementsAttr layout) { if (shape.IsArray()) { shape.mutable_layout()->clear_minor_to_major(); for (auto l : layout) { shape.mutable_layout()->mutable_minor_to_major()->push_back( l.getSExtValue()); } } else if (shape.IsToken()) { assert(layout.empty() && "Invalid layout for token type"); } else { assert(!shape.IsTuple() && "Exporting layout for tuples is not implemented yet"); assert(false && "Exporting unknown type with layout"); } } static void SetLayout(xla::Shape& shape, mlir::ArrayAttr layouts) { if (shape.IsTuple()) { for (int i = 0; i < shape.tuple_shapes_size(); ++i) { SetLayout(*shape.mutable_tuple_shapes(i), mlir::cast<mlir::DenseIntElementsAttr>(layouts[i])); } } else { assert(layouts.size() == 1); SetLayout(shape, mlir::cast<mlir::DenseIntElementsAttr>(layouts[0])); } } static std::vector<xla::Shape> ConvertTypesToShapesWithLayout( mlir::TypeRange value_types, mlir::ArrayAttr layouts) { std::vector<xla::Shape> shapes_with_layout; for (auto [type, layout] : llvm::zip(value_types, layouts)) { xla::Shape shape = xla::TypeToShape(type); SetLayout(shape, mlir::cast<mlir::DenseIntElementsAttr>(layout)); shapes_with_layout.push_back(std::move(shape)); } return shapes_with_layout; } static xla::TriangularSolveOptions::Transpose Convert_transpose_a( mlir::mhlo::Transpose transpose) { return xla::ConvertTranspose(mlir::mhlo::stringifyTranspose(transpose)) .value(); } static xla::Layout ExtractLayout( mlir::Operation* op, int rank, llvm::StringRef attr_name = kDefaultLayoutAttrName) { if (auto attr = op->getAttrOfType<mlir::DenseIntElementsAttr>(attr_name)) { llvm::SmallVector<int64_t, 4> minor_to_major; DCHECK_EQ(rank, attr.size()); minor_to_major.reserve(attr.size()); for (const llvm::APInt& i : attr) { minor_to_major.push_back(i.getZExtValue()); } return xla::LayoutUtil::MakeLayout(minor_to_major); } return xla::LayoutUtil::MakeDescendingLayout(rank); } static mlir::FailureOr<xla::Shape> ExtractXlaShape(mlir::Operation* op) { if (auto attr = op->getAttrOfType<mlir::StringAttr>(kDefaultLayoutAttrName)) { return *xla::ParseShape( absl::string_view(attr.getValue().data(), attr.getValue().size())); } else { std::vector<xla::Shape> subshapes; for (auto [index, result] : llvm::enumerate(op->getResults())) { subshapes.push_back(xla::TypeToShape(result.getType())); if (subshapes.back().element_type() == xla::PRIMITIVE_TYPE_INVALID) { return op->emitError() << "result #" << index << " type is not supported"; } } if (subshapes.size() > 1) { return xla::ShapeUtil::MakeTupleShape(subshapes); } return subshapes[0]; } } #define I64_ELEMENTS_ATTR_TO_VECTOR(attribute) \ static std::vector<int64_t> Convert_##attribute( \ std::optional<mlir::DenseIntElementsAttr> attribute) { \ return ConvertDenseIntAttr(attribute); \ } I64_ELEMENTS_ATTR_TO_VECTOR(broadcast_sizes); I64_ELEMENTS_ATTR_TO_VECTOR(permutation); I64_ELEMENTS_ATTR_TO_VECTOR(start_indices); I64_ELEMENTS_ATTR_TO_VECTOR(limit_indices); I64_ELEMENTS_ATTR_TO_VECTOR(strides); I64_ELEMENTS_ATTR_TO_VECTOR(slice_sizes); I64_ELEMENTS_ATTR_TO_VECTOR(fft_length); I64_ELEMENTS_ATTR_TO_VECTOR(dimensions); I64_ELEMENTS_ATTR_TO_VECTOR(window_strides); I64_ELEMENTS_ATTR_TO_VECTOR(lhs_dilation); I64_ELEMENTS_ATTR_TO_VECTOR(rhs_dilation); #undef I64_ELEMENTS_ATTR_TO_VECTOR #define BOOL_ELEMENTS_ATTR_TO_VECTOR(attribute) \ static std::vector<bool> Convert_##attribute( \ std::optional<mlir::DenseElementsAttr> attribute) { \ if (!attribute) return {}; \ auto values = attribute->getValues<bool>(); \ return {values.begin(), values.end()}; \ } BOOL_ELEMENTS_ATTR_TO_VECTOR(window_reversal); #undef BOOL_ELEMENTS_ATTR_TO_VECTOR static std::vector<int64_t> Convert_ArrayRef(llvm::ArrayRef<int64_t> values) { return {values.begin(), values.end()}; } static std::unique_ptr<xla::PrecisionConfig> Convert_precision_config( std::optional<mlir::ArrayAttr> optional_precision_config_attr) { if (!optional_precision_config_attr.has_value()) return nullptr; auto precision_config = std::make_unique<xla::PrecisionConfig>(); for (auto attr : optional_precision_config_attr.value()) { xla::PrecisionConfig::Precision p; auto operand_precision = mlir::mhlo::stringifyPrecision( mlir::cast<mlir::mhlo::PrecisionAttr>(attr).getValue()) .str(); if (xla::PrecisionConfig::Precision_Parse(operand_precision, &p)) { precision_config->add_operand_precision(p); } else { auto* context = attr.getContext(); mlir::emitError(mlir::UnknownLoc::get(context)) << "unexpected operand precision " << operand_precision; return nullptr; } } return precision_config; } static xla::DotDimensionNumbers Convert_dot_dimension_numbers( mlir::mhlo::DotDimensionNumbersAttr dot_dimension_numbers_attr) { xla::DotDimensionNumbers dot_dimension_numbers; auto rhs_contracting_dimensions = dot_dimension_numbers_attr.getRhsContractingDimensions(); auto lhs_contracting_dimensions = dot_dimension_numbers_attr.getLhsContractingDimensions(); auto rhs_batch_dimensions = dot_dimension_numbers_attr.getRhsBatchingDimensions(); auto lhs_batch_dimensions = dot_dimension_numbers_attr.getLhsBatchingDimensions(); for (const auto& val : rhs_contracting_dimensions) { dot_dimension_numbers.add_rhs_contracting_dimensions(val); } for (const auto& val : lhs_contracting_dimensions) { dot_dimension_numbers.add_lhs_contracting_dimensions(val); } for (const auto& val : rhs_batch_dimensions) { dot_dimension_numbers.add_rhs_batch_dimensions(val); } for (const auto& val : lhs_batch_dimensions) { dot_dimension_numbers.add_lhs_batch_dimensions(val); } return dot_dimension_numbers; } static xla::SparsityDescriptor Convert_sparsity_descriptor( mlir::mhlo::SparsityDescriptorAttr sparsity_attr, bool is_lhs) { xla::SparsityDescriptor sparsity_descriptor; sparsity_descriptor.set_type(xla::SPARSITY_STRUCTURED_N_M); sparsity_descriptor.set_index(is_lhs ? 0 : 1); sparsity_descriptor.set_dimension(sparsity_attr.getDimension()); sparsity_descriptor.set_n(sparsity_attr.getN()); sparsity_descriptor.set_m(sparsity_attr.getM()); return sparsity_descriptor; } xla::ChannelHandle Convert_channel_handle(mlir::mhlo::ChannelHandleAttr attr) { xla::ChannelHandle channel_handle; channel_handle.set_handle(attr.getHandle()); channel_handle.set_type( static_cast<xla::ChannelHandle::ChannelType>(attr.getType())); return channel_handle; } std::optional<xla::ChannelHandle> Convert_channel_handle( std::optional<mlir::mhlo::ChannelHandleAttr> attr) { if (!attr.has_value()) return std::nullopt; return Convert_channel_handle(attr.value()); } static xla::ComparisonDirection Convert_comparison_direction( llvm::StringRef comparison_direction_string) { return xla::StringToComparisonDirection(comparison_direction_string.str()) .value(); } static xla::GatherDimensionNumbers Convert_dimension_numbers( mlir::mhlo::GatherDimensionNumbersAttr input) { xla::GatherDimensionNumbers output; auto offset_dims = input.getOffsetDims(); std::copy( offset_dims.begin(), offset_dims.end(), tsl::protobuf::RepeatedFieldBackInserter(output.mutable_offset_dims())); auto collapsed_slice_dims = input.getCollapsedSliceDims(); std::copy(collapsed_slice_dims.begin(), collapsed_slice_dims.end(), tsl::protobuf::RepeatedFieldBackInserter( output.mutable_collapsed_slice_dims())); auto operand_batching_dims = input.getOperandBatchingDims(); std::copy(operand_batching_dims.begin(), operand_batching_dims.end(), tsl::protobuf::RepeatedFieldBackInserter( output.mutable_operand_batching_dims())); auto start_indices_batching_dims = input.getStartIndicesBatchingDims(); std::copy(start_indices_batching_dims.begin(), start_indices_batching_dims.end(), tsl::protobuf::RepeatedFieldBackInserter( output.mutable_start_indices_batching_dims())); auto start_index_map = input.getStartIndexMap(); std::copy(start_index_map.begin(), start_index_map.end(), tsl::protobuf::RepeatedFieldBackInserter( output.mutable_start_index_map())); output.set_index_vector_dim(input.getIndexVectorDim()); return output; } static xla::ScatterDimensionNumbers Convert_scatter_dimension_numbers( mlir::mhlo::ScatterDimensionNumbersAttr input) { xla::ScatterDimensionNumbers output; auto update_window_dims = input.getUpdateWindowDims(); std::copy(update_window_dims.begin(), update_window_dims.end(), tsl::protobuf::RepeatedFieldBackInserter( output.mutable_update_window_dims())); auto inserted_window_dims = input.getInsertedWindowDims(); std::copy(inserted_window_dims.begin(), inserted_window_dims.end(), tsl::protobuf::RepeatedFieldBackInserter( output.mutable_inserted_window_dims())); auto input_batching_dims = input.getInputBatchingDims(); std::copy(input_batching_dims.begin(), input_batching_dims.end(), tsl::protobuf::RepeatedFieldBackInserter( output.mutable_input_batching_dims())); auto scatter_indices_batching_dims = input.getScatterIndicesBatchingDims(); std::copy(scatter_indices_batching_dims.begin(), scatter_indices_batching_dims.end(), tsl::protobuf::RepeatedFieldBackInserter( output.mutable_scatter_indices_batching_dims())); auto scatter_dims_to_operand_dims = input.getScatterDimsToOperandDims(); std::copy(scatter_dims_to_operand_dims.begin(), scatter_dims_to_operand_dims.end(), tsl::protobuf::RepeatedFieldBackInserter( output.mutable_scatter_dims_to_operand_dims())); output.set_index_vector_dim(input.getIndexVectorDim()); return output; } static std::optional<xla::OpSharding> CreateOpShardingFromAttribute( mlir::Operation* op) { auto shardingAttr = op->getAttrOfType<mlir::StringAttr>(kMhloSharding); if (!shardingAttr) return std::nullopt; return xla::ConvertSharding(shardingAttr.getValue()); } void ConstructFrontendAttributesFromAttribute( const mlir::DictionaryAttr& frontend_attributes_dict, xla::FrontendAttributes& frontend_attributes) { for (const auto& attr : frontend_attributes_dict) if (auto value_str_attr = mlir::dyn_cast<mlir::StringAttr>(attr.getValue())) frontend_attributes.mutable_map()->insert( {attr.getName().str(), value_str_attr.getValue().str()}); } static xla::FrontendAttributes CreateXlaFrontendAttributesFromOp( mlir::Operation* op) { xla::FrontendAttributes frontend_attributes; auto frontend_attributes_dict = op->getAttrOfType<mlir::DictionaryAttr>(kMhloFrontendAttributes); if (!frontend_attributes_dict) return frontend_attributes; ConstructFrontendAttributesFromAttribute(frontend_attributes_dict, frontend_attributes); return frontend_attributes; } static void ExtractFrontendAttributesFromFunction( mlir::func::FuncOp function, llvm::SmallVectorImpl<std::optional<xla::FrontendAttributes>>* fe_attrs) { fe_attrs->resize(function.getNumArguments(), std::nullopt); for (int i = 0, end = function.getNumArguments(); i < end; ++i) if (auto fe_attr = function.getArgAttrOfType<mlir::DictionaryAttr>( i, kMhloFrontendAttributes)) { xla::FrontendAttributes frontend_attributes; ConstructFrontendAttributesFromAttribute(fe_attr, frontend_attributes); (*fe_attrs)[i] = frontend_attributes; } } static bool SomeOptionalShardingsAreSet( llvm::ArrayRef<std::optional<xla::OpSharding>> shardings) { return llvm::any_of(shardings, [](const std::optional<xla::OpSharding>& sharding) { return sharding.has_value(); }); } static void ExtractShardingsFromFunction( mlir::func::FuncOp function, llvm::SmallVectorImpl<std::optional<xla::OpSharding>>* arg_shardings, llvm::SmallVectorImpl<std::optional<xla::OpSharding>>* ret_shardings) { arg_shardings->resize(function.getNumArguments(), std::optional<xla::OpSharding>()); for (int i = 0, end = function.getNumArguments(); i < end; ++i) if (auto sharding = function.getArgAttrOfType<mlir::StringAttr>(i, kMhloSharding)) (*arg_shardings)[i] = xla::ConvertSharding(sharding.getValue()); ret_shardings->resize(function.getNumResults(), std::optional<xla::OpSharding>()); for (int i = 0, end = function.getNumResults(); i < end; ++i) if (auto sharding = function.getResultAttrOfType<mlir::StringAttr>(i, kMhloSharding)) (*ret_shardings)[i] = xla::ConvertSharding(sharding.getValue()); } std::optional<xla::OpSharding> CreateTupleSharding( llvm::ArrayRef<std::optional<xla::OpSharding>> tuple_shardings) { if (tuple_shardings.empty() || !SomeOptionalShardingsAreSet(tuple_shardings)) { return std::nullopt; } xla::OpSharding sharding; sharding.set_type(xla::OpSharding::TUPLE); for (const std::optional<xla::OpSharding>& tuple_sharding : tuple_shardings) { if (tuple_sharding) { *sharding.add_tuple_shardings() = *tuple_sharding; } else { xla::OpSharding fallback_sharding; fallback_sharding.set_type(xla::OpSharding::REPLICATED); *sharding.add_tuple_shardings() = fallback_sharding; } } return sharding; } xla::XlaOp CreateTupleIfMultipleOps( xla::XlaBuilder* builder, llvm::ArrayRef<xla::XlaOp> ops, llvm::ArrayRef<std::optional<xla::OpSharding>> shardings) { if (ops.size() == 1) { return ops[0]; } xla::XlaScopedShardingAssignment scoped_sharding( builder, CreateTupleSharding(shardings)); return Tuple(builder, ops); } llvm::SmallVector<std::optional<xla::OpSharding>> GetResultShardings( std::optional<xla::OpSharding> op_sharding, int64_t num_results) { if (!op_sharding) { return {}; } llvm::SmallVector<std::optional<xla::OpSharding>> res_shardings; res_shardings.reserve(num_results); if (op_sharding->type() == xla::OpSharding::TUPLE) { assert(op_sharding->tuple_shardings_size() == num_results); res_shardings.assign(op_sharding->tuple_shardings().begin(), op_sharding->tuple_shardings().end()); } else { res_shardings.append(num_results, op_sharding); } return res_shardings; } llvm::SmallVector<std::optional<xla::OpSharding>> GetXlaOpShardings( llvm::ArrayRef<xla::XlaOp> xla_ops) { llvm::SmallVector<std::optional<xla::OpSharding>> shardings; shardings.reserve(xla_ops.size()); for (const xla::XlaOp& xla_op : xla_ops) { auto sharding = xla_op.builder()->GetOpSharding(xla_op); assert(sharding.ok() && "can't find XlaOp for argument"); shardings.push_back(*sharding); } return shardings; } namespace mlir { namespace { class ConvertToHloModule { public: using ValueLoweringMap = llvm::DenseMap<Value, xla::XlaOp>; using FunctionLoweringMap = llvm::DenseMap<mlir::func::FuncOp, xla::XlaComputation>; explicit ConvertToHloModule(mlir::ModuleOp module, xla::XlaBuilder& module_builder, MlirToHloConversionOptions options) : module_(module), module_builder_(module_builder), options_(options) {} LogicalResult Run() { auto main = module_.lookupSymbol<mlir::func::FuncOp>(kMain); if (!main) return module_.emitError( "conversion requires module with `main` function"); for (auto func : module_.getOps<func::FuncOp>()) { if (func.empty()) continue; if (failed(RunOnFunction(func))) return failure(); } return success(); } LogicalResult RunOnFunction(mlir::func::FuncOp f); ::xla::HloModuleProto ConsumeMainProto() { auto main = module_.lookupSymbol<mlir::func::FuncOp>(kMain); CHECK(main) << "requires module to have main function"; return lowered_computation_[main].proto(); } LogicalResult LowerRegionAsComputation( mlir::Region* region, xla::XlaComputation* func, llvm::ArrayRef<mlir::Value> implicit_operands = {}, llvm::ArrayRef<mlir::Value> implicit_results = {}, bool ensure_single_arg = false, llvm::ArrayRef<std::optional<xla::OpSharding>> arg_shardings = {}, llvm::ArrayRef<std::optional<xla::OpSharding>> ret_shardings = {}); LogicalResult LowerBasicBlockAsFunction( Block* block, xla::XlaBuilder* builder, bool is_entry_function, bool ensure_single_arg, const std::vector<bool>& entry_args_same_across_replicas, llvm::ArrayRef<std::optional<xla::OpSharding>> arg_shardings, llvm::ArrayRef<std::optional<xla::OpSharding>> ret_shardings, llvm::ArrayRef<std::optional<xla::FrontendAttributes>> fe_attrs, xla::XlaComputation* result, llvm::ArrayRef<mlir::Value> implicit_operands = {}, llvm::ArrayRef<mlir::Value> implicit_results = {}); LogicalResult LowerCast(mlir::Operation* inst, const MlirToHloConversionOptions& options, ConvertToHloModule::ValueLoweringMap* value_lowering); LogicalResult LowerCompositeCall( mlir::Operation* inst, xla::XlaBuilder* module_builder, xla::XlaBuilder* builder, ConvertToHloModule::ValueLoweringMap* value_lowering, xla::XlaOp* return_value); LogicalResult LowerConstant( mlir::Operation* inst, xla::XlaBuilder* builder, ConvertToHloModule::ValueLoweringMap* value_lowering, ElementsAttr const_attr); LogicalResult LowerFunctionCall( mlir::func::CallOp call_op, xla::XlaBuilder* builder, ConvertToHloModule::ValueLoweringMap* value_lowering); LogicalResult LowerInfeed( mlir::Operation* inst, xla::XlaBuilder* builder, ConvertToHloModule::ValueLoweringMap* value_lowering); LogicalResult LowerReturn( Operation* inst, bool is_entry_function, llvm::ArrayRef<std::optional<xla::OpSharding>> ret_shardings, llvm::ArrayRef<mlir::Value> implicit_results, xla::XlaBuilder* builder, ConvertToHloModule::ValueLoweringMap* value_lowering, xla::XlaOp* return_value, const MlirToHloConversionOptions& options); LogicalResult PropagateLayouts(const MlirToHloConversionOptions& options, mlir::Operation* inst, xla::XlaOp xla_op); func::FuncOp LookUpSymbol(FlatSymbolRefAttr symbol) { return module_.lookupSymbol<mlir::func::FuncOp>(symbol); } xla::XlaComputation& GetLoweredComputation(func::FuncOp func) { return lowered_computation_[func]; } LogicalResult Lower( mlir::Operation* inst, bool is_entry_function, llvm::ArrayRef<std::optional<xla::OpSharding>> ret_shardings, llvm::ArrayRef<mlir::Value> implicit_results, xla::XlaBuilder* builder, ConvertToHloModule::ValueLoweringMap* value_lowering, xla::XlaOp* return_value); const MlirToHloConversionOptions& GetOptions() const { return options_; } xla::StackFrameIndexProto BuildStackFramesIndexProto() { return stack_frame_indexes_builder_.Build(); } private: LogicalResult SetEntryTupleShapesAndLeafReplication( Block* block, const std::vector<bool>& entry_args_same_across_replicas, llvm::SmallVectorImpl<xla::Shape>* arg_shapes, std::vector<bool>* leaf_replication); LogicalResult SetEntryTupleShardings( Block* block, xla::XlaBuilder* builder, llvm::ArrayRef<std::optional<xla::OpSharding>> arg_shardings, llvm::SmallVectorImpl<xla::Shape>* arg_shapes); mlir::ModuleOp module_; xla::XlaBuilder& module_builder_; mlir::StackFrameIndexBuilder stack_frame_indexes_builder_; FunctionLoweringMap lowered_computation_; size_t region_id_ = 0; MlirToHloConversionOptions options_; }; } } namespace { struct OpLoweringContext { llvm::DenseMap<mlir::Value, xla::XlaOp>* values; mlir::ConvertToHloModule* converter; xla::XlaBuilder* builder; mlir::StackFrameIndexBuilder* frame_index_builder; }; mlir::LogicalResult GetTuple(mlir::Operation* op, mlir::Operation::operand_range values, OpLoweringContext ctx, llvm::SmallVectorImpl<xla::XlaOp>& results) { results.reserve(values.size()); for (mlir::Value value : values) { if (failed(GetXlaOp(value, *ctx.values, &results.emplace_back(), op))) return mlir::failure(); } return mlir::success(); } mlir::LogicalResult GetXlaOps(mlir::Operation* op, llvm::ArrayRef<mlir::Value> values, OpLoweringContext ctx, llvm::SmallVectorImpl<xla::XlaOp>& results) { results.reserve(values.size()); for (mlir::Value value : values) { if (failed(GetXlaOp(value, *ctx.values, &results.emplace_back(), op))) return mlir::failure(); } return mlir::success(); } bool SimplyReturnedOp(mlir::Operation* op) { for (auto operand : op->getOperands()) { if (!llvm::isa<mlir::BlockArgument>(operand)) return false; } auto users = op->getUsers(); if (users.empty()) return false; auto first_user = *users.begin(); for (auto user : users) { if (first_user != user) return false; } if (llvm::isa<mlir::func::ReturnOp>(first_user)) return true; return false; } void BuildGetTupleElementsForTupleResults(mlir::Operation* op, xla::XlaOp tuple, OpLoweringContext ctx, unsigned num_implicit_results = 0) { const std::optional<xla::OpSharding>& sharding = ctx.builder->sharding(); if (sharding.has_value()) { bool is_tuple_sharding = sharding->type() == xla::OpSharding::TUPLE; assert(!is_tuple_sharding || (op->getNumResults() + num_implicit_results == sharding->tuple_shardings_size())); for (auto [index, result] : llvm::enumerate(op->getResults())) { xla::XlaScopedShardingAssignment scoped_sharding( ctx.builder, is_tuple_sharding ? sharding->tuple_shardings(index) : sharding); (*ctx.values)[result] = xla::GetTupleElement(tuple, index); } } else { xla::XlaScopedShardingAssignment scoped_sharding(ctx.builder, std::nullopt); for (auto [index, result] : llvm::enumerate(op->getResults())) { (*ctx.values)[result] = xla::GetTupleElement(tuple, index); } } } } namespace mlir { namespace mhlo { namespace { LogicalResult ExportXlaOp(CollectiveBroadcastOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaOp operand; if (failed(GetXlaOp(op.getOperand(), value_map, &operand, op))) return failure(); value_map[op->getResult(0)] = xla::CollectiveBroadcast( operand, Convert_replica_groups(op.getReplicaGroups()), Convert_channel_handle(op.getChannelHandle())); return success(); } LogicalResult ExportXlaOp(CompositeOp, OpLoweringContext) { return failure(); } LogicalResult ExportXlaOp(DynamicBroadcastInDimOp op, OpLoweringContext ctx) { return failure(); } LogicalResult ExportXlaOp(DynamicConvOp op, OpLoweringContext ctx) { return failure(); } LogicalResult ExportXlaOp(DynamicGatherOp op, OpLoweringContext ctx) { return failure(); } LogicalResult ExportXlaOp(DynamicIotaOp op, OpLoweringContext ctx) { return failure(); } LogicalResult ExportXlaOp(DynamicPadOp op, OpLoweringContext ctx) { return failure(); } LogicalResult ExportXlaOp(DynamicReshapeOp op, OpLoweringContext ctx) { auto resultType = mlir::dyn_cast<RankedTensorType>(op.getResult().getType()); if (!resultType) return op->emitOpError() << "expected ranked result"; auto resultBounds = hlo::encodingToBounds(resultType.getEncoding()); if (resultBounds.empty()) return op->emitOpError() << "expected bounded result"; auto shapeType = mlir::dyn_cast<RankedTensorType>(op.getOutputShape().getType()); if (!shapeType || !shapeType.getElementType().isInteger(32)) return op->emitOpError() << "expected output shape to be tensor<Nxi32>"; auto& value_map = *ctx.values; xla::XlaOp operand; xla::XlaOp outputShape; if (failed(GetXlaOp(op.getOperand(), value_map, &operand, op))) return failure(); if (failed(GetXlaOp(op.getOutputShape(), value_map, &outputShape, op))) return failure(); SmallVector<xla::XlaOp> dimSizes; SmallVector<int64_t> newSizeBounds; std::vector<bool> dimsAreDynamic; for (auto i = 0; i < resultType.getRank(); ++i) { auto runtimeSizeX1 = xla::Slice(outputShape, {i}, {i + 1}, {1}); dimSizes.push_back(xla::Reshape(runtimeSizeX1, {})); auto dimSize = resultType.getDimSize(i); auto dimBound = resultBounds[i]; if (!hlo::isStaticDimSize(dimSize) && !hlo::isStaticDimSize(dimBound)) return op->emitOpError() << "unbounded dynamism is not supported"; newSizeBounds.push_back(hlo::isStaticDimSize(dimSize) ? dimSize : dimBound); dimsAreDynamic.push_back(!hlo::isStaticDimSize(dimSize)); } value_map[op] = xla::DynamicReshape(operand, dimSizes, newSizeBounds, dimsAreDynamic); return success(); } LogicalResult ExportXlaOp(RealDynamicSliceOp op, OpLoweringContext ctx) { return failure(); } mlir::LogicalResult ExportXlaOp(mlir::mhlo::CopyOp op, OpLoweringContext ctx) { if (op.getCrossProgramPrefetchIndex() && !SimplyReturnedOp(op)) return op->emitOpError() << "synchronous CopyOp should not include " "cross_program_prefetch_index attribute."; auto& value_map = *ctx.values; auto result = op.getResult(); xla::XlaOp xla_arg_0; if (failed( GetXlaOp(*op.getODSOperands(0).begin(), value_map, &xla_arg_0, op))) return mlir::failure(); auto xla_result = xla::Copy(Unwrap(xla_arg_0)); value_map[result] = xla_result; return mlir::success(); } LogicalResult ExportXlaOp(AddDependencyOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaOp token; xla::XlaOp operand; if (failed(GetXlaOp(op.getToken(), value_map, &token, op))) return failure(); if (failed(GetXlaOp(op.getOperand(), value_map, &operand, op))) return failure(); auto operand_shape = ctx.builder->GetShape(operand).value(); value_map[op] = xla::internal::XlaBuilderFriend::BuildAddDependency( ctx.builder, operand, token, operand_shape); return success(); } LogicalResult ExportXlaOp(AllGatherOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; SmallVector<xla::XlaOp> operands; if (failed(GetTuple(op.getOperation(), op.getOperands(), ctx, operands))) { return failure(); } mlir::FailureOr<xla::Shape> shape_or = ExtractXlaShape(op.getOperation()); if (failed(shape_or)) return failure(); auto all_gather_dim = op.getAllGatherDim(); int64_t shard_count = 0; for (size_t i = 0; i < operands.size(); ++i) { TensorType operand_type = mlir::cast<TensorType>(op.getOperand(i).getType()); TensorType result_type = mlir::cast<TensorType>(op.getType(i)); if (!operand_type.hasStaticShape() || !result_type.hasStaticShape()) return failure(); if (i == 0) { shard_count = result_type.getDimSize(all_gather_dim) / operand_type.getDimSize(all_gather_dim); } } if (shape_or->IsTuple()) { std::optional<xla::Layout> layout = std::nullopt; if (shape_or->has_layout()) { layout = shape_or->layout(); } auto tuple = xla::AllGatherTuple( operands, all_gather_dim, shard_count, Convert_replica_groups(op.getReplicaGroups()), Convert_channel_handle(op.getChannelHandle()), layout, Convert_use_global_device_ids(op.getUseGlobalDeviceIds())); BuildGetTupleElementsForTupleResults(op, tuple, ctx); } else { value_map[op->getResults()[0]] = xla::AllGather( operands[0], all_gather_dim, shard_count, Convert_replica_groups(op.getReplicaGroups()), Convert_channel_handle(op.getChannelHandle()), std::nullopt, Convert_use_global_device_ids(op.getUseGlobalDeviceIds())); } return success(); } LogicalResult ExportXlaOp(AllReduceOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaComputation computation; if (failed(ctx.converter->LowerRegionAsComputation(&op.getComputation(), &computation))) { return failure(); } SmallVector<xla::XlaOp> operands; if (failed(GetTuple(op.getOperation(), op.getOperands(), ctx, operands))) return failure(); mlir::FailureOr<xla::Shape> shape_or = ExtractXlaShape(op.getOperation()); if (failed(shape_or)) return failure(); if (shape_or->IsTuple()) { std::optional<xla::Shape> shape_with_layout = std::nullopt; if (shape_or->has_layout()) shape_with_layout = shape_or.value(); auto tuple = xla::AllReduceTuple( operands, computation, Convert_replica_groups(op.getReplicaGroups()), Convert_channel_handle(op.getChannelHandle()), shape_with_layout, Convert_use_global_device_ids(op.getUseGlobalDeviceIds())); BuildGetTupleElementsForTupleResults(op, tuple, ctx); } else { value_map[op->getResults()[0]] = xla::AllReduce( operands[0], computation, Convert_replica_groups(op.getReplicaGroups()), Convert_channel_handle(op.getChannelHandle()), std::nullopt, Convert_use_global_device_ids(op.getUseGlobalDeviceIds())); } return success(); } LogicalResult ExportXlaOp(AllToAllOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; SmallVector<xla::XlaOp> operands; if (failed(GetTuple(op.getOperation(), op.getOperands(), ctx, operands))) { return failure(); } mlir::FailureOr<xla::Shape> shape_or = ExtractXlaShape(op.getOperation()); if (failed(shape_or)) return failure(); if (shape_or->IsTuple()) { std::optional<xla::Layout> layout = std::nullopt; if (shape_or->has_layout()) { layout = shape_or->layout(); } auto tuple = xla::AllToAllTuple( operands, Convert_replica_groups(op.getReplicaGroups()), layout, Convert_channel_handle(op.getChannelHandle())); BuildGetTupleElementsForTupleResults(op, tuple, ctx); } else { std::optional<uint64_t> splitDimension = op.getSplitDimension(); std::optional<uint64_t> concatDimension = op.getConcatDimension(); std::optional<uint64_t> splitCount = op.getSplitCount(); value_map[op->getResults()[0]] = xla::AllToAll( operands[0], *splitDimension, *concatDimension, *splitCount, Convert_replica_groups(op.getReplicaGroups()), std::nullopt, Convert_channel_handle(op.getChannelHandle())); } return success(); } LogicalResult ExportXlaOp(ReduceScatterOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaOp operand; if (failed(GetXlaOp(op.getOperand(), value_map, &operand, op))) return failure(); TensorType operand_type = mlir::cast<TensorType>(op.getOperand().getType()); TensorType result_type = op.getType(); if (!operand_type.hasStaticShape() || !result_type.hasStaticShape()) return failure(); auto scatter_dim = op.getScatterDimension(); int64_t shard_count = operand_type.getDimSize(scatter_dim) / result_type.getDimSize(scatter_dim); xla::XlaComputation computation; if (failed(ctx.converter->LowerRegionAsComputation(&op.getComputation(), &computation))) { return failure(); } value_map[op] = xla::ReduceScatter( operand, computation, scatter_dim, shard_count, Convert_replica_groups(op.getReplicaGroups()), Convert_channel_handle(op.getChannelHandle()), std::nullopt, Convert_use_global_device_ids(op.getUseGlobalDeviceIds())); return success(); } LogicalResult ExportXlaOp(AsyncStartOp op, OpLoweringContext ctx) { for (auto* user : op.getResult().getUsers()) { if (!isa<AsyncUpdateOp, AsyncDoneOp>(user)) { return op.emitOpError() << "Users of AsyncStart's return value must be " << "async_update or async_done"; } } auto& value_map = *ctx.values; Value result = op.getResult(); llvm::SmallVector<xla::XlaOp> operands; if (failed(GetTuple(op, op.getInputs(), ctx, operands))) return failure(); mlir::func::FuncOp callee = ctx.converter->LookUpSymbol( FlatSymbolRefAttr::get(op->getContext(), op.getCalledComputation())); auto all_gather_op = dyn_cast_or_null<AllGatherOp>(callee.getBody().front().front()); if (all_gather_op && SimplyReturnedOp(all_gather_op)) { TensorType operand_type = mlir::cast<TensorType>(all_gather_op.getOperand(0).getType()); TensorType result_type = mlir::cast<TensorType>(all_gather_op.getType(0)); if (!operand_type.hasStaticShape() || !result_type.hasStaticShape()) return failure(); if (operands.size() != 1) return failure(); auto all_gather_dim = all_gather_op.getAllGatherDim(); int64_t shard_count = result_type.getDimSize(all_gather_dim) / operand_type.getDimSize(all_gather_dim); value_map[result] = xla::internal::XlaBuilderFriend::BuildAllGatherStart( ctx.builder, operands[0], all_gather_dim, shard_count, Convert_replica_groups(all_gather_op.getReplicaGroups()), Convert_channel_handle(all_gather_op.getChannelHandle()), ExtractLayout(all_gather_op, mlir::cast<RankedTensorType>(result_type).getRank()), Convert_use_global_device_ids(all_gather_op.getUseGlobalDeviceIds())); return success(); } auto all_reduce_op = dyn_cast_or_null<AllReduceOp>(callee.getBody().front().front()); if (all_reduce_op && SimplyReturnedOp(all_reduce_op)) { xla::XlaComputation computation; if (failed(ctx.converter->LowerRegionAsComputation( &all_reduce_op.getComputation(), &computation))) { return failure(); } if (operands.size() != 1) return failure(); value_map[result] = xla::internal::XlaBuilderFriend::BuildAllReduceStart( ctx.builder, operands[0], computation, Convert_replica_groups(all_reduce_op.getReplicaGroups()), Convert_channel_handle(all_reduce_op.getChannelHandle()), std::nullopt, Convert_use_global_device_ids(all_reduce_op.getUseGlobalDeviceIds())); return success(); } auto collective_permute_op = dyn_cast_or_null<CollectivePermuteOp>(callee.getBody().front().front()); if (collective_permute_op && SimplyReturnedOp(collective_permute_op)) { value_map[result] = xla::internal::XlaBuilderFriend::BuildCollectivePermuteStart( ctx.builder, operands[0], Convert_source_target_pairs( collective_permute_op.getSourceTargetPairs()), Convert_channel_handle(collective_permute_op.getChannelHandle())); return mlir::success(); } auto copy_op = dyn_cast_or_null<CopyOp>(callee.getBody().front().front()); if (copy_op && SimplyReturnedOp(copy_op)) { std::optional<int> cross_program_prefetch_index = copy_op.getCrossProgramPrefetchIndex() ? std::make_optional(*copy_op.getCrossProgramPrefetchIndex()) : std::nullopt; value_map[result] = xla::internal::XlaBuilderFriend::BuildCopyStart( ctx.builder, operands[0], cross_program_prefetch_index); return mlir::success(); } auto send_op = dyn_cast_or_null<SendOp>(callee.getBody().front().front()); if (send_op && SimplyReturnedOp(send_op)) { xla::XlaOp operand; if (operands.size() == 2) operand = operands[0]; else operand = Tuple(ctx.builder, absl::Span<const xla::XlaOp>(operands).subspan( 0, operands.size() - 1)); xla::XlaOp token = operands[operands.size() - 1]; value_map[result] = xla::internal::XlaBuilderFriend::BuildSend( ctx.builder, operand, token, Convert_channel_handle(send_op.getChannelHandle()), send_op.getIsHostTransfer()); return mlir::success(); } auto recv_op = dyn_cast_or_null<RecvOp>(callee.getBody().front().front()); if (recv_op && SimplyReturnedOp(recv_op)) { auto result_types = mlir::cast<AsyncBundleType>(result.getType()).getTypes()[1]; mlir::Type received_type = mlir::TupleType::get(op->getContext(), {}); if (isa<TupleType>(result_types)) { received_type = mlir::cast<TupleType>(result_types).getType(0); } value_map[result] = xla::internal::XlaBuilderFriend::BuildRecv( ctx.builder, operands[0], xla::TypeToShape(received_type), Convert_channel_handle(recv_op.getChannelHandle()), recv_op.getIsHostTransfer()); return mlir::success(); } if (failed(ctx.converter->RunOnFunction(callee))) return failure(); xla::XlaComputation& computation = ctx.converter->GetLoweredComputation(callee); computation.mutable_proto()->mutable_computations(0)->set_execution_thread( op.getExecutionThread().str()); auto [xla_op, computation_id] = xla::internal::XlaBuilderFriend::BuildAsyncStart( ctx.builder, operands, op.getExecutionThread().str(), computation, xla::TypeToShape(result.getType())); value_map[result] = xla_op; computation.mutable_proto()->mutable_computations(0)->set_id(computation_id); return success(); } LogicalResult ExportXlaOp(AsyncUpdateOp op, OpLoweringContext ctx) { if (!isa<AsyncStartOp, AsyncUpdateOp>(op.getBundle().getDefiningOp())) { auto theerror = op.emitError() << "Defining op of AsyncUpdate's operand must be " << "async_start or async_update"; if (op.getBundle().getDefiningOp()) { return theerror << ", but got " << op.getBundle().getDefiningOp()->getName(); } else { return theerror << "."; } } for (auto* user : op.getResult().getUsers()) { if (!isa<AsyncUpdateOp, AsyncDoneOp>(user)) { return op.emitOpError() << "Users of AsyncUpdate's return value must be " << "async_update or async_done"; } } auto& value_map = *ctx.values; Value result = op.getResult(); xla::XlaOp operand; if (failed(GetXlaOp(op.getBundle(), value_map, &operand, op))) return failure(); value_map[result] = xla::internal::XlaBuilderFriend::BuildAsyncUpdate( ctx.builder, operand, xla::TypeToShape(result.getType())); return success(); } LogicalResult ExportXlaOp(AsyncDoneOp op, OpLoweringContext ctx) { if (!isa<AsyncStartOp, AsyncUpdateOp>(op.getBundle().getDefiningOp())) { auto theerror = op.emitError() << "Defining op of AsyncDone's operand must be " << "async_start or async_update"; if (op.getBundle().getDefiningOp()) return theerror << ", but got " << op.getBundle().getDefiningOp()->getName(); return theerror << "."; } auto& value_map = *ctx.values; xla::XlaOp operand; if (failed(GetXlaOp(op.getBundle(), value_map, &operand, op))) return failure(); Operation* start = op; while (start != nullptr && !isa<AsyncStartOp>(start)) { start = start->getOperand(0).getDefiningOp(); if (start == nullptr || !isa<AsyncStartOp, AsyncUpdateOp>(start)) { return op.emitError() << "Defining op of AsyncDone's operand must be " << "async_start or async_update"; } } if (!isa<AsyncStartOp>(start)) { return op.emitError() << "Could not find async chain start"; } mlir::func::FuncOp callee = ctx.converter->LookUpSymbol(FlatSymbolRefAttr::get( op->getContext(), cast<AsyncStartOp>(start).getCalledComputation())); auto all_gather_op = dyn_cast_or_null<AllGatherOp>(callee.getBody().front().front()); if (all_gather_op && SimplyReturnedOp(all_gather_op)) { value_map[op.getResult(0)] = xla::internal::XlaBuilderFriend::BuildAllGatherDone( ctx.builder, operand, xla::TypeToShape(all_gather_op.getType(0))); return success(); } auto all_reduce_op = dyn_cast_or_null<AllReduceOp>(callee.getBody().front().front()); if (all_reduce_op && SimplyReturnedOp(all_reduce_op)) { value_map[op.getResult(0)] = xla::internal::XlaBuilderFriend::BuildAllReduceDone( ctx.builder, operand, xla::TypeToShape(all_reduce_op.getType(0))); return success(); } auto collective_permute_op = dyn_cast_or_null<CollectivePermuteOp>(callee.getBody().front().front()); if (collective_permute_op && SimplyReturnedOp(collective_permute_op)) { value_map[op.getResult(0)] = xla::internal::XlaBuilderFriend::BuildCollectivePermuteDone( ctx.builder, operand, xla::TypeToShape(collective_permute_op.getType())); return success(); } auto copy_op = dyn_cast_or_null<CopyOp>(callee.getBody().front().front()); if (copy_op && SimplyReturnedOp(copy_op)) { value_map[op.getResult(0)] = xla::internal::XlaBuilderFriend::BuildCopyDone( ctx.builder, operand, xla::TypeToShape(copy_op.getType())); return success(); } auto send_op = dyn_cast_or_null<SendOp>(callee.getBody().front().front()); if (send_op && SimplyReturnedOp(send_op)) { value_map[op.getResult(0)] = xla::internal::XlaBuilderFriend::BuildSendDone( ctx.builder, operand, Convert_channel_handle(send_op.getChannelHandle()), send_op.getIsHostTransfer()); return success(); } auto recv_op = dyn_cast_or_null<RecvOp>(callee.getBody().front().front()); if (recv_op && SimplyReturnedOp(recv_op)) { auto result_types = mlir::cast<AsyncBundleType>(op.getBundle().getType()).getTypes()[1]; mlir::Type received_type = mlir::TupleType::get(op->getContext(), {}); if (isa<TupleType>(result_types)) { received_type = mlir::cast<TupleType>(result_types).getType(0); } xla::XlaOp xla_recv = xla::internal::XlaBuilderFriend::BuildRecvDone( ctx.builder, operand, xla::TypeToShape(received_type), Convert_channel_handle(recv_op.getChannelHandle()), recv_op.getIsHostTransfer()); if (op.getNumResults() == 1) { value_map[op.getResult(0)] = xla_recv; } else { BuildGetTupleElementsForTupleResults(op, xla_recv, ctx); } return success(); } std::vector<xla::Shape> subshapes; for (const auto& item : op.getResults().getType()) { subshapes.push_back(xla::TypeToShape(item)); } xla::Shape data_shape = xla::ShapeUtil::MakeTupleShape(subshapes); xla::XlaOp exportedOp = xla::internal::XlaBuilderFriend::BuildAsyncDone( ctx.builder, operand, data_shape); if (op.getNumResults() == 1) { value_map[op.getResult(0)] = exportedOp; } else { BuildGetTupleElementsForTupleResults(op, exportedOp, ctx); } return success(); } LogicalResult ExportXlaOp(BitcastConvertOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaOp operand; if (failed(GetXlaOp(op.getOperand(), value_map, &operand, op))) return failure(); value_map[op] = xla::BitcastConvertType( operand, xla::ConvertMlirTypeToPrimitiveType(getElementTypeOrSelf(op.getType()))); return success(); } LogicalResult ExportXlaOp(BroadcastInDimOp op, OpLoweringContext ctx) { auto type = mlir::dyn_cast<RankedTensorType>(op.getType()); if (!type) return failure(); auto& value_map = *ctx.values; xla::XlaOp operand; if (failed(GetXlaOp(op.getOperand(), value_map, &operand, op))) return failure(); value_map[op] = BroadcastInDim(operand, Convert_ArrayRef(type.getShape()), Convert_broadcast_dimensions(op.getBroadcastDimensions())); return success(); } LogicalResult ExportXlaOp(StochasticConvertOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaOp operand, random; if (failed(GetXlaOp(op.getOperand(), value_map, &operand, op))) return failure(); if (failed(GetXlaOp(op.getRandom(), value_map, &random, op))) return failure(); value_map[op] = xla::StochasticConvertType( operand, random, xla::ConvertMlirTypeToPrimitiveType(getElementTypeOrSelf(op.getType()))); return success(); } LogicalResult ExportXlaOp(CosineOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; auto result = op.getResult(); xla::XlaOp arg; if (failed(GetXlaOp(*op.getODSOperands(0).begin(), value_map, &arg, op))) return mlir::failure(); auto xla_result = xla::Cos(Unwrap(arg)); value_map[result] = xla_result; return mlir::success(); } LogicalResult ExportXlaOp(TanOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; auto result = op.getResult(); xla::XlaOp arg; if (failed(GetXlaOp(*op.getODSOperands(0).begin(), value_map, &arg, op))) return mlir::failure(); auto xla_result = xla::Tan(Unwrap(arg)); value_map[result] = xla_result; return mlir::success(); } LogicalResult ExportXlaOp(DotOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaOp lhs, rhs; if (failed(GetXlaOp(op.getLhs(), value_map, &lhs, op))) return mlir::failure(); if (failed(GetXlaOp(op.getRhs(), value_map, &rhs, op))) return mlir::failure(); xla::PrimitiveType preferred_element_type = xla::ConvertMlirTypeToPrimitiveType(getElementTypeOrSelf(op.getType())); value_map[op] = xla::Dot( lhs, rhs, Unwrap(Convert_precision_config(op.getPrecisionConfig())), preferred_element_type); return mlir::success(); } LogicalResult ExportXlaOp(DotGeneralOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaOp lhs, rhs; if (failed(GetXlaOp(op.getLhs(), value_map, &lhs, op))) return mlir::failure(); if (failed(GetXlaOp(op.getRhs(), value_map, &rhs, op))) return mlir::failure(); xla::PrimitiveType preferred_element_type = xla::ConvertMlirTypeToPrimitiveType(getElementTypeOrSelf(op.getType())); auto precision_config = Convert_precision_config(op.getPrecisionConfig()); if (op.getAlgorithmAttr()) { absl::StatusOr<xla::PrecisionConfig::Algorithm> algorithm = xla::ConvertDotAlgorithm(op.getAlgorithmAttr()); if (!algorithm.ok()) { return op.emitError(algorithm.status().ToString()); } precision_config->set_algorithm(algorithm.value()); } auto xlaOp = xla::DotGeneral( lhs, rhs, Convert_dot_dimension_numbers(op.getDotDimensionNumbers()), Unwrap(precision_config), preferred_element_type); value_map[op] = xlaOp; return mlir::success(); } LogicalResult ExportXlaOp(SparseDotOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaOp lhs, rhs; if (failed(GetXlaOp(op.getLhs(), value_map, &lhs, op))) return mlir::failure(); if (failed(GetXlaOp(op.getRhs(), value_map, &rhs, op))) return mlir::failure(); xla::PrimitiveType preferred_element_type = xla::ConvertMlirTypeToPrimitiveType(getElementTypeOrSelf(op.getType())); llvm::SmallVector<xla::XlaOp> sparse_meta; if (failed(GetTuple(op, op.getMeta(), ctx, sparse_meta))) return failure(); std::vector<xla::SparsityDescriptor> sparsity; if (op.getLhsSparsity().has_value()) { sparsity.push_back( Convert_sparsity_descriptor(*op.getLhsSparsity(), true)); } if (op.getRhsSparsity().has_value()) { sparsity.push_back( Convert_sparsity_descriptor(*op.getRhsSparsity(), false)); } value_map[op] = xla::SparseDot(lhs, rhs, absl::MakeSpan(sparse_meta), sparsity, Convert_dot_dimension_numbers(op.getDotDimensionNumbers()), Unwrap(Convert_precision_config(op.getPrecisionConfig())), preferred_element_type); return mlir::success(); } LogicalResult ExportXlaOp(DomainOp op, OpLoweringContext ctx) { auto& valueMap = *ctx.values; xla::Shape shape = xla::TypeToShape(op.getResult().getType()); xla::XlaOp operand; if (failed(GetXlaOp(op.getOperand(), valueMap, &operand, op))) return failure(); auto entry = xla::ConvertSharding(op.getEntryMetadata()); if (!entry) return failure(); auto exit = xla::ConvertSharding(op.getExitMetadata()); if (!exit) return failure(); valueMap[op] = xla::internal::XlaBuilderFriend::BuildDomain( ctx.builder, operand, *exit, *entry, shape); return success(); } LogicalResult ExportXlaOp(IfOp op, OpLoweringContext ctx) { xla::XlaComputation true_branch; xla::XlaComputation false_branch; auto& value_map = *ctx.values; llvm::SetVector<mlir::Value> implicit_true_operand_set, implicit_false_operand_set; getUsedValuesDefinedAbove(op.getTrueBranch(), op.getTrueBranch(), implicit_true_operand_set); getUsedValuesDefinedAbove(op.getFalseBranch(), op.getFalseBranch(), implicit_false_operand_set); llvm::SmallVector<mlir::Value> implicit_true_operands = implicit_true_operand_set.takeVector(); llvm::SmallVector<mlir::Value> implicit_false_operands = implicit_false_operand_set.takeVector(); llvm::SmallVector<std::optional<xla::OpSharding>> ret_shardings = GetResultShardings(ctx.builder->sharding(), op->getNumResults()); llvm::SmallVector<xla::XlaOp> true_args; if (failed(GetXlaOps(op, implicit_true_operands, ctx, true_args))) return failure(); llvm::SmallVector<xla::XlaOp> false_args; if (failed(GetXlaOps(op, implicit_false_operands, ctx, false_args))) return failure(); llvm::SmallVector<std::optional<xla::OpSharding>> true_arg_shardings, false_arg_shardings; if (!ret_shardings.empty()) { true_arg_shardings = GetXlaOpShardings(true_args); false_arg_shardings = GetXlaOpShardings(false_args); } if (failed(ctx.converter->LowerRegionAsComputation( &op.getTrueBranch(), &true_branch, implicit_true_operands, {}, true, true_arg_shardings, ret_shardings)) || failed(ctx.converter->LowerRegionAsComputation( &op.getFalseBranch(), &false_branch, implicit_false_operands, {}, true, false_arg_shardings, ret_shardings))) { return failure(); } xla::XlaOp pred; if (failed(GetXlaOp(op.getPred(), value_map, &pred, op))) return failure(); xla::XlaOp true_arg = CreateTupleIfMultipleOps(ctx.builder, true_args, true_arg_shardings); xla::XlaOp false_arg = CreateTupleIfMultipleOps(ctx.builder, false_args, false_arg_shardings); auto ifop = xla::Conditional(pred, true_arg, true_branch, false_arg, false_branch); if (op.getNumResults() == 1) { value_map[op.getResult(0)] = ifop; } else { BuildGetTupleElementsForTupleResults(op, ifop, ctx); } return success(); } LogicalResult ExportXlaOp(CaseOp op, OpLoweringContext ctx) { llvm::DenseMap<mlir::Value, xla::XlaOp>& value_map = *ctx.values; MutableArrayRef<Region> branches = op.getBranches(); llvm::SmallVector<xla::XlaOp, 4> branch_operands(branches.size()); std::vector<xla::XlaComputation> computations(branches.size()); std::vector<xla::XlaComputation*> computations_p(branches.size()); for (unsigned i = 0; i < branches.size(); ++i) { llvm::SetVector<mlir::Value> implicit_operand_set; getUsedValuesDefinedAbove(branches[i], branches[i], implicit_operand_set); llvm::SmallVector<mlir::Value> implicit_operands = implicit_operand_set.takeVector(); llvm::SmallVector<std::optional<xla::OpSharding>> ret_shardings = GetResultShardings(ctx.builder->sharding(), op->getNumResults()); llvm::SmallVector<xla::XlaOp> args; if (failed(GetXlaOps(op, implicit_operands, ctx, args))) return failure(); llvm::SmallVector<std::optional<xla::OpSharding>> arg_shardings; if (!ret_shardings.empty()) { arg_shardings = GetXlaOpShardings(args); } branch_operands[i] = CreateTupleIfMultipleOps(ctx.builder, args, arg_shardings); computations_p[i] = &computations[i]; if (failed(ctx.converter->LowerRegionAsComputation( &branches[i], computations_p[i], implicit_operands, {}, true, arg_shardings, ret_shardings))) return failure(); } xla::XlaOp index; if (failed(GetXlaOp(op.getIndex(), value_map, &index, op))) return failure(); xla::XlaOp caseop = xla::Conditional(index, computations_p, branch_operands); if (op.getNumResults() == 1) { value_map[op.getResult(0)] = caseop; } else { BuildGetTupleElementsForTupleResults(op, caseop, ctx); } return success(); } mlir::LogicalResult ExportXlaOp(mlir::mhlo::CompareOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaOp lhs, rhs; if (failed(GetXlaOp(op.getLhs(), value_map, &lhs, op))) return mlir::failure(); if (failed(GetXlaOp(op.getRhs(), value_map, &rhs, op))) return mlir::failure(); auto dir = Convert_comparison_direction( mlir::mhlo::stringifyComparisonDirection(op.getComparisonDirection())); auto type_attr = op.getCompareTypeAttr(); xla::XlaOp xla_result; if (type_attr && type_attr.getValue() != mlir::mhlo::ComparisonType::NOTYPE) { auto type = xla::StringToComparisonType( stringifyComparisonType(type_attr.getValue()).str()) .value(); xla_result = xla::Compare(lhs, rhs, {}, dir, type); } else { xla_result = xla::Compare(lhs, rhs, dir); } value_map[op] = xla_result; return mlir::success(); } LogicalResult ExportXlaOp(ConstantOp op, OpLoweringContext ctx) { return failure(); } LogicalResult ExportXlaOp(mlir::mhlo::ConvolutionOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaOp lhs, rhs; if (failed(GetXlaOp(op.getLhs(), value_map, &lhs, op))) return mlir::failure(); if (failed(GetXlaOp(op.getRhs(), value_map, &rhs, op))) return mlir::failure(); xla::PrimitiveType preferred_element_type = xla::ConvertMlirTypeToPrimitiveType(getElementTypeOrSelf(op.getType())); xla::XlaOp xla_result = xla::ConvGeneralDilated( lhs, rhs, Convert_window_strides(op.getWindowStrides()), Convert_padding(op.getPadding()), Convert_lhs_dilation(op.getLhsDilation()), Convert_rhs_dilation(op.getRhsDilation()), xla::ConvertConvDimensionNumbers(op.getDimensionNumbers()), Convertuint64_t(op.getFeatureGroupCount()), Convertuint64_t(op.getBatchGroupCount()), Unwrap(Convert_precision_config(op.getPrecisionConfig())), preferred_element_type, Convert_window_reversal(op.getWindowReversal())); value_map[op] = xla_result; return mlir::success(); } LogicalResult ExportXlaOp(ConvertOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaOp operand; if (failed(GetXlaOp(op.getOperand(), value_map, &operand, op))) return failure(); value_map[op] = xla::ConvertElementType( operand, xla::ConvertMlirTypeToPrimitiveType(getElementTypeOrSelf(op.getType()))); return success(); } LogicalResult ExportXlaOp(CustomCallOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; llvm::SmallVector<xla::XlaOp> args; if (failed(GetTuple(op, op.getInputs(), ctx, args))) return failure(); if (op.getCallTargetName() == kApproxTopK) { auto isSupportedAttrName = [](NamedAttribute attr) { auto name = attr.getName(); return name == kCallTargetName || name == kBackendConfig || name == kApiVersion || name == kCalledComputations || name == kHasSideEffect; }; for (const auto& attr : op->getAttrs()) { if (!isSupportedAttrName(attr)) return op.emitOpError() << attr.getName().getValue() << " is not a supported attribute for ApproxTopK"; } auto backend_config = mlir::dyn_cast_or_null<mlir::DictionaryAttr>(op.getBackendConfigAttr()); if (!backend_config) return op.emitOpError() << "Missing backend_config attribute"; for (auto attr : backend_config) { auto name = attr.getName(); if (!(name == kTopK || name == kReductionDim || name == kRecallTarget || name == kAggregateToTopk || name == kReductionInputSizeOverride || name == kIsFallback)) return op.emitOpError() << name.getValue() << " is not a supported backend_config" << " attribute for ApproxTopK"; } auto checkI64Attr = [&](const std::string& attr_name) -> mlir::LogicalResult { if (!backend_config.contains(attr_name)) return op.emitOpError() << "Missing " << attr_name << " attribute in backend_config"; auto attr = backend_config.getAs<IntegerAttr>(attr_name); if (!attr || !attr.getType().isInteger(64)) return op.emitOpError() << attr_name << " attribute in backend_config must be of i64 type"; return success(); }; auto checkF32Attr = [&](const std::string& attr_name) -> mlir::LogicalResult { if (!backend_config.contains(attr_name)) return op.emitOpError() << "Missing " << attr_name << " attribute in backend_config"; auto attr = backend_config.getAs<FloatAttr>(attr_name); if (!attr || !attr.getType().isF32()) return op.emitOpError() << attr_name << " attribute in backend_config must be of f32 type"; return success(); }; auto checkBoolAttr = [&](const std::string& attr_name) -> mlir::LogicalResult { if (!backend_config.contains(attr_name)) return op.emitOpError() << "Missing " << attr_name << " attribute in backend_config"; auto attr = backend_config.getAs<BoolAttr>(attr_name); if (!attr) return op.emitOpError() << attr_name << " attribute in backend_config must be of bool type"; return success(); }; if (failed(checkI64Attr(kTopK))) return failure(); if (failed(checkI64Attr(kReductionDim))) return failure(); if (failed(checkF32Attr(kRecallTarget))) return failure(); if (failed(checkBoolAttr(kAggregateToTopk))) return failure(); if (failed(checkI64Attr(kReductionInputSizeOverride))) return failure(); bool has_is_fallback = backend_config.contains(kIsFallback); if (has_is_fallback && !backend_config.getAs<BoolAttr>(kIsFallback)) return op.emitOpError() << "is_fallback attribute in backend_config must be of bool type"; int64_t top_k = backend_config.getAs<IntegerAttr>(kTopK).getInt(); int64_t reduction_dim = backend_config.getAs<IntegerAttr>(kReductionDim).getInt(); float recall_target = backend_config.getAs<FloatAttr>(kRecallTarget) .getValue() .convertToFloat(); bool aggregate_to_topk = backend_config.getAs<BoolAttr>(kAggregateToTopk).getValue(); int64_t reduction_input_size_override = backend_config.getAs<IntegerAttr>(kReductionInputSizeOverride).getInt(); bool is_fallback = has_is_fallback && backend_config.getAs<BoolAttr>(kIsFallback).getValue(); if (args.size() % 2 != 0) { return op.emitOpError() << "ApproxTopK takes an even number of operands."; } auto num_inputs = args.size() / 2; absl::Span<const xla::XlaOp> inputs(args.begin(), num_inputs); absl::Span<const xla::XlaOp> init_values(args.begin() + num_inputs, num_inputs); if (num_inputs != op.getNumResults()) { return op.emitOpError() << "num_results does not match num_inputs"; } SmallVector<RankedTensorType> input_types, init_value_types, result_types; for (size_t i = 0; i < num_inputs; ++i) { auto input_type = mlir::dyn_cast<RankedTensorType>(op.getOperand(i).getType()); if (!input_type) return failure(); input_types.push_back(input_type); auto init_value_type = mlir::dyn_cast<RankedTensorType>( op.getOperand(num_inputs + i).getType()); if (!init_value_type) return failure(); init_value_types.push_back(init_value_type); auto result_type = mlir::dyn_cast<RankedTensorType>(op.getResult(i).getType()); if (!result_type) return failure(); result_types.push_back(result_type); } for (size_t i = 0; i < inputs.size(); ++i) { if (input_types[0].getShape() != input_types[i].getShape()) { return op.emitOpError() << "input shape mismatch at position " << i; } if (init_value_types[i].getElementType() != input_types[i].getElementType()) { return op.emitOpError() << "input and init_value element type mismatch at position " << i; } if (input_types[i].getElementType() != result_types[i].getElementType()) { return op.emitOpError() << "result element type mismatch at position " << i; } for (size_t j = 0; j < input_types[i].getRank(); ++j) { if (j == reduction_dim) { auto reduction_output_size = xla::ApproxTopKReductionOutputSize( input_types[i].getShape()[j], input_types[i].getRank(), top_k, recall_target, aggregate_to_topk, reduction_input_size_override); if (!reduction_output_size.ok()) return failure(); if (result_types[i].getShape()[j] != reduction_output_size->first) return op.emitOpError() << "ApproxTopK aggregates to k=" << reduction_output_size->first << ", but got " << result_types[i].getShape()[j]; continue; } if (input_types[i].getShape()[j] != result_types[i].getShape()[j]) { return op.emitOpError() << "result shape mismatch at position " << i << ", index " << j; } } } auto called_computations = op.getCalledComputations(); if (called_computations.size() != 1) { return op.emitOpError() << "ApproxTopK takes exactly 1 called_computation."; } mlir::func::FuncOp callee = ctx.converter->LookUpSymbol( mlir::cast<FlatSymbolRefAttr>(op.getCalledComputations()[0])); mlir::FunctionType callee_type = callee.getFunctionType(); SmallVector<Type, 4> expected_callee_input_types; for (unsigned i = 0; i < num_inputs; ++i) { auto scalar = RankedTensorType::get({}, input_types[i].getElementType()); expected_callee_input_types.push_back(scalar); expected_callee_input_types.push_back(scalar); } FunctionType expected_callee_type = mlir::FunctionType::get( op->getContext(), expected_callee_input_types, RankedTensorType::get({}, IntegerType::get(op->getContext(), 1))); if (callee_type != expected_callee_type) { return op.emitOpError() << "called_computation type does not match the expected type. Got " << callee_type << " expected " << expected_callee_type; } if (failed(ctx.converter->RunOnFunction(callee))) return failure(); xla::XlaComputation& comparator = ctx.converter->GetLoweredComputation(callee); if (reduction_dim < 0 || reduction_dim > input_types[0].getRank()) return op.emitOpError() << "reduction_dim out of range"; if (recall_target <= 0 || recall_target > 1.0) return op.emitOpError() << "recall_target out of range"; if (reduction_input_size_override >= 0 && reduction_input_size_override < input_types[0].getShape()[reduction_dim]) return op.emitOpError() << "reduction_input_size_override out of range"; xla::XlaOp cc_op; if (is_fallback) { cc_op = xla::ApproxTopKFallback( ctx.builder, inputs, init_values, top_k, reduction_dim, comparator, recall_target, aggregate_to_topk, reduction_input_size_override); } else { cc_op = xla::ApproxTopK(ctx.builder, inputs, init_values, top_k, reduction_dim, comparator, recall_target, aggregate_to_topk, reduction_input_size_override); } BuildGetTupleElementsForTupleResults(op, cc_op, ctx); return success(); } if (op.getCalledComputations().size() > 1) return op.emitOpError() << "cannot export with more than one called computations"; if (!op.getCalledComputations().empty() && op.getOperandLayouts() && op.getResultLayouts()) { return op.emitOpError() << "cannot export if both called computation and " "layouts are specified"; } auto xla_api_version = xla::ConvertCustomCallApiVersion(op.getApiVersion()); if (!xla_api_version.ok()) return failure(); std::string backend_config; if (*xla_api_version == xla::CustomCallApiVersion::API_VERSION_TYPED_FFI) { if (auto dict = mlir::dyn_cast_or_null<mlir::DictionaryAttr>( op.getBackendConfig().value_or(mlir::Attribute()))) { llvm::raw_string_ostream(backend_config) << dict; } } else { if (auto str = mlir::dyn_cast_or_null<mlir::StringAttr>( op.getBackendConfig().value_or(mlir::Attribute()))) { llvm::raw_string_ostream(backend_config) << str.strref(); } } absl::StatusOr<xla::Literal> literal; const xla::Literal* literal_ptr = nullptr; auto literal_attr = op->getAttrOfType<DenseElementsAttr>(kMhloLiteral); if (literal_attr) { literal = CreateArrayLiteralFromAttr(literal_attr, {}); if (!literal.ok()) return failure(); literal_ptr = &*literal; } auto aliasInfo = xla::ConvertOutputOperandAliasing(op.getOutputOperandAliases()); auto output_operand_aliasing = absl::MakeSpan(*aliasInfo); auto custom_call_schedule = xla::ConvertCustomCallSchedule(op.getCustomCallSchedule()); if (!custom_call_schedule.ok()) return failure(); std::string call_target_name(op.getCallTargetName()); xla::Shape result_shape; if (op->getNumResults() == 1) { result_shape = xla::TypeToShape(op.getResult(0).getType()); } else { std::vector<xla::Shape> subshapes; for (const auto& item : op.getResults().getType()) { subshapes.push_back(xla::TypeToShape(item)); } result_shape = xla::ShapeUtil::MakeTupleShape(subshapes); } xla::XlaOp custom_call; if (op.getCalledComputations().size() == 1) { mlir::func::FuncOp callee = ctx.converter->LookUpSymbol( mlir::cast<FlatSymbolRefAttr>(op.getCalledComputations()[0])); if (failed(ctx.converter->RunOnFunction(callee))) return failure(); xla::XlaComputation& computation = ctx.converter->GetLoweredComputation(callee); custom_call = xla::CustomCallWithComputation( ctx.builder, call_target_name, args, computation, result_shape, backend_config, op.getHasSideEffect(), output_operand_aliasing, literal_ptr, *custom_call_schedule, *xla_api_version); } else if (op.getOperandLayouts() && op.getResultLayouts()) { auto operand_shapes_with_layout = ConvertTypesToShapesWithLayout( op.getOperandTypes(), op.getOperandLayouts().value()); SetLayout(result_shape, op.getResultLayouts().value()); custom_call = xla::CustomCallWithLayout( ctx.builder, call_target_name, args, result_shape, operand_shapes_with_layout, backend_config, op.getHasSideEffect(), output_operand_aliasing, literal_ptr, *custom_call_schedule, *xla_api_version); } else { custom_call = xla::CustomCall( ctx.builder, call_target_name, args, result_shape, backend_config, op.getHasSideEffect(), output_operand_aliasing, literal_ptr, *custom_call_schedule, *xla_api_version); } if (op->getNumResults() == 1) { value_map[op.getResult(0)] = custom_call; } else { BuildGetTupleElementsForTupleResults(op, custom_call, ctx); } return success(); } LogicalResult ExportXlaOp(InfeedOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaOp token; if (failed(GetXlaOp(op.getToken(), value_map, &token, op))) return failure(); auto result_types = op.getResultTypes(); auto num_results = op.getNumResults(); xla::Shape token_shape = xla::TypeToShape(result_types[num_results - 1]); std::vector<xla::Shape> subshapes; for (const auto& item : llvm::enumerate(result_types)) { if (item.index() == num_results - 1) break; subshapes.push_back(xla::TypeToShape(item.value())); } xla::Shape data_shape = xla::ShapeUtil::MakeTupleShape(subshapes); auto xla_result = xla::InfeedWithToken(token, data_shape, std::string(op.getInfeedConfig())); ctx.builder->ClearSharding(); if (!subshapes.empty()) { auto data_tuple_element = xla::GetTupleElement(xla_result, 0); for (const auto& item : llvm::enumerate(op.getResults())) { if (item.index() == num_results - 1) break; value_map[item.value()] = xla::GetTupleElement(data_tuple_element, item.index()); } } value_map[op.getResult(num_results - 1)] = xla::GetTupleElement(xla_result, 1); return success(); } LogicalResult ExportXlaOp(IotaOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; value_map[op] = xla::Iota(ctx.builder, xla::TypeToShape(op.getType()), op.getIotaDimension()); return success(); } LogicalResult ExportXlaOp(MapOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaComputation computation; if (failed(ctx.converter->LowerRegionAsComputation(&op.getComputation(), &computation))) { return failure(); } llvm::SmallVector<xla::XlaOp> operands; if (failed(GetTuple(op, op.getInputs(), ctx, operands))) return failure(); value_map[op] = xla::Map(ctx.builder, operands, computation, Convert_dimensions(op.getDimensions())); return success(); } LogicalResult ExportXlaOp(OutfeedOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; llvm::SmallVector<xla::XlaOp> operands; if (failed(GetTuple(op, op.getInputs(), ctx, operands))) return failure(); const auto sharding = ctx.builder->sharding(); xla::XlaOp operand; if (sharding.has_value() && sharding->tuple_shardings_size() != operands.size()) { xla::XlaScopedShardingAssignment scoped_sharding(ctx.builder, std::nullopt); operand = Tuple(ctx.builder, operands); } else { operand = Tuple(ctx.builder, operands); } std::vector<xla::Shape> subshapes; for (auto operand : op.getInputs()) subshapes.push_back(xla::TypeToShape(operand.getType())); xla::Shape shape_with_layout = xla::ShapeUtil::MakeTupleShape(subshapes); xla::XlaOp token; if (failed(GetXlaOp(op.getToken(), value_map, &token, op))) return failure(); value_map[op] = xla::OutfeedWithToken(operand, token, shape_with_layout, std::string(op.getOutfeedConfig())); return success(); } LogicalResult ExportXlaOp(PartitionIdOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::Shape shape = xla::TypeToShape(op.getResult().getType()); value_map[op] = xla::internal::XlaBuilderFriend::BuildPartitionId(ctx.builder, shape); return success(); } LogicalResult ExportXlaOp(PadOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::PaddingConfig padding_config; auto edge_padding_low = ConvertDenseIntAttr(op.getEdgePaddingLow()); auto edge_padding_high = ConvertDenseIntAttr(op.getEdgePaddingHigh()); auto interior_padding = ConvertDenseIntAttr(op.getInteriorPadding()); for (int64_t i = 0, end = edge_padding_low.size(); i < end; ++i) { auto* dims = padding_config.add_dimensions(); dims->set_edge_padding_low(edge_padding_low[i]); dims->set_edge_padding_high(edge_padding_high[i]); dims->set_interior_padding(interior_padding[i]); } xla::XlaOp operand, padding_value; if (failed(GetXlaOp(op.getOperand(), value_map, &operand, op))) return failure(); if (failed(GetXlaOp(op.getPaddingValue(), value_map, &padding_value, op))) return failure(); value_map[op] = xla::Pad(operand, padding_value, padding_config); return success(); } LogicalResult ExportXlaOp(RecvOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaOp token; if (failed(GetXlaOp(op.getToken(), value_map, &token, op))) return failure(); auto result_types = op.getResultTypes(); auto num_results = op.getNumResults(); xla::Shape token_shape = xla::TypeToShape(result_types[num_results - 1]); std::vector<xla::Shape> subshapes; for (const auto& item : llvm::enumerate(result_types)) { if (item.index() == num_results - 1) break; subshapes.push_back(xla::TypeToShape(item.value())); } xla::Shape data_shape; if (subshapes.size() == 1) data_shape = subshapes[0]; else data_shape = xla::ShapeUtil::MakeTupleShape(subshapes); token = xla::internal::XlaBuilderFriend::BuildRecv( ctx.builder, token, data_shape, Convert_channel_handle(op.getChannelHandle()), op.getIsHostTransfer()); xla::XlaOp xla_result = xla::internal::XlaBuilderFriend::BuildRecvDone( ctx.builder, token, data_shape, Convert_channel_handle(op.getChannelHandle()), op.getIsHostTransfer()); auto data_tuple_element = xla::GetTupleElement(xla_result, 0); if (subshapes.size() == 1) { value_map[op.getResult(0)] = data_tuple_element; } else { for (const auto& item : llvm::enumerate(op.getResults())) { if (item.index() == num_results - 1) break; value_map[item.value()] = xla::GetTupleElement(data_tuple_element, item.index()); } } value_map[op.getResult(num_results - 1)] = xla::GetTupleElement(xla_result, 1); return success(); } LogicalResult ExportXlaOp(ReduceOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaComputation body; if (failed(ctx.converter->LowerRegionAsComputation(&op.getBody(), &body))) { return failure(); } llvm::SmallVector<xla::XlaOp> operands, init_values; if (failed(GetTuple(op, op.getInputs(), ctx, operands)) || failed(GetTuple(op, op.getInitValues(), ctx, init_values))) { return failure(); } xla::XlaOp result = xla::Reduce(ctx.builder, operands, init_values, body, Convert_broadcast_dimensions(op.getDimensions())); if (op.getNumResults() == 1) { value_map[op.getResult(0)] = result; } else { BuildGetTupleElementsForTupleResults(op, result, ctx); } return success(); } LogicalResult ExportXlaOp(ReduceWindowOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaComputation body; if (failed(ctx.converter->LowerRegionAsComputation(&op.getBody(), &body))) { return failure(); } llvm::SmallVector<xla::XlaOp> operands, init_values; if (failed(GetTuple(op, op.getInputs(), ctx, operands)) || failed(GetTuple(op, op.getInitValues(), ctx, init_values))) { return failure(); } xla::XlaOp result = xla::ReduceWindowWithGeneralPadding( operands, init_values, body, ConvertDenseIntAttr(op.getWindowDimensions()), ConvertDenseIntAttr(op.getWindowStrides()), ConvertDenseIntAttr(op.getBaseDilations()), ConvertDenseIntAttr(op.getWindowDilations()), Convert_padding(op.getPadding())); if (op.getNumResults() == 1) { value_map[op.getResult(0)] = result; } else { BuildGetTupleElementsForTupleResults(op, result, ctx); } return success(); } LogicalResult ExportXlaOp(ReshapeOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaOp operand; if (failed(GetXlaOp(op.getOperand(), value_map, &operand, op))) return failure(); value_map[op] = xla::Reshape(operand, xla::TypeToShape(op.getType()).dimensions()); return success(); } LogicalResult ExportXlaOp(ReturnOp op, OpLoweringContext ctx) { return failure(); } LogicalResult ExportXlaOp(RngBitGeneratorOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; auto results = op.getResults(); auto xla_arg_1 = value_map[*op.getODSOperands(0).begin()]; auto xla_result = xla::RngBitGenerator( static_cast<xla::RandomAlgorithm>(op.getRngAlgorithm()), Unwrap(xla_arg_1), xla::TypeToShape(results[1].getType())); BuildGetTupleElementsForTupleResults(op, xla_result, ctx); return mlir::success(); } LogicalResult ExportXlaOp(XlaRngGetAndUpdateStateOp op, OpLoweringContext ctx) { (*ctx.values)[op.getResult()] = xla::internal::XlaBuilderFriend::BuildRngGetAndUpdateState( ctx.builder, static_cast<int64_t>(op.getDelta()), xla::TypeToShape(op.getType())); return mlir::success(); } LogicalResult ExportXlaOp(BatchNormGradOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaOp operand, scale, mean, variance, grad_output; if (failed(GetXlaOp(op.getOperand(), value_map, &operand, op))) return failure(); if (failed(GetXlaOp(op.getScale(), value_map, &scale, op))) return failure(); if (failed(GetXlaOp(op.getMean(), value_map, &mean, op))) return failure(); if (failed(GetXlaOp(op.getVariance(), value_map, &variance, op))) return failure(); if (failed(GetXlaOp(op.getGradOutput(), value_map, &grad_output, op))) return failure(); auto xla_result = xla::BatchNormGrad(operand, scale, mean, variance, grad_output, ConvertAPFloat(op.getEpsilon()), op.getFeatureIndex()); BuildGetTupleElementsForTupleResults(op, xla_result, ctx); return mlir::success(); } LogicalResult ExportXlaOp(BatchNormTrainingOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaOp operand, scale, offset; if (failed(GetXlaOp(op.getOperand(), value_map, &operand, op))) return failure(); if (failed(GetXlaOp(op.getScale(), value_map, &scale, op))) return failure(); if (failed(GetXlaOp(op.getOffset(), value_map, &offset, op))) return failure(); auto xla_result = xla::BatchNormTraining(operand, scale, offset, ConvertAPFloat(op.getEpsilon()), op.getFeatureIndex()); BuildGetTupleElementsForTupleResults(op, xla_result, ctx); return mlir::success(); } LogicalResult ExportXlaOp(RngOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaOp a, b; if (failed(GetXlaOp(op.getA(), value_map, &a, op))) return failure(); if (failed(GetXlaOp(op.getB(), value_map, &b, op))) return failure(); if (op.getRngDistribution() == RngDistribution::UNIFORM) { value_map[op] = xla::RngUniform(a, b, xla::TypeToShape(op.getType())); return success(); } else if (op.getRngDistribution() == RngDistribution::NORMAL) { value_map[op] = xla::RngNormal(a, b, xla::TypeToShape(op.getType())); return success(); } return failure(); } LogicalResult ExportXlaOp(ScatterOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaComputation update_computation; if (failed(ctx.converter->LowerRegionAsComputation(&op.getUpdateComputation(), &update_computation))) { return failure(); } xla::ScatterDimensionNumbers dimension_numbers = Convert_scatter_dimension_numbers(op.getScatterDimensionNumbers()); llvm::SmallVector<xla::XlaOp> operands; llvm::SmallVector<xla::XlaOp> updates; if (failed(GetTuple(op, op.getInputs(), ctx, operands))) return failure(); if (failed(GetTuple(op, op.getUpdates(), ctx, updates))) return failure(); xla::XlaOp scatter_indices; if (failed(GetXlaOp(op.getScatterIndices(), value_map, &scatter_indices, op))) return failure(); auto scatter_op = xla::Scatter( operands, scatter_indices, updates, update_computation, dimension_numbers, op.getIndicesAreSorted(), op.getUniqueIndices()); if (op->getNumResults() == 1) { value_map[op.getResult(0)] = scatter_op; return success(); } BuildGetTupleElementsForTupleResults(op, scatter_op, ctx); return success(); } LogicalResult ExportXlaOp(SelectAndScatterOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaComputation select; xla::XlaComputation scatter; if (failed( ctx.converter->LowerRegionAsComputation(&op.getSelect(), &select)) || failed(ctx.converter->LowerRegionAsComputation(&op.getScatter(), &scatter))) { return failure(); } xla::XlaOp operand, source, init_value; if (failed(GetXlaOp(op.getOperand(), value_map, &operand, op))) return failure(); if (failed(GetXlaOp(op.getSource(), value_map, &source, op))) return failure(); if (failed(GetXlaOp(op.getInitValue(), value_map, &init_value, op))) return failure(); value_map[op] = xla::SelectAndScatterWithGeneralPadding( operand, select, ConvertDenseIntAttr(op.getWindowDimensions()), ConvertDenseIntAttr(op.getWindowStrides()), Convert_padding(op.getPadding()), source, init_value, scatter); return success(); } LogicalResult ExportXlaOp(SendOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; llvm::SmallVector<xla::XlaOp> operands; if (failed(GetTuple(op, op.getInputs(), ctx, operands))) return failure(); xla::XlaOp operand; if (operands.size() == 1) operand = operands[0]; else operand = Tuple(ctx.builder, operands); xla::XlaOp token; if (failed(GetXlaOp(op.getToken(), value_map, &token, op))) return failure(); token = xla::internal::XlaBuilderFriend::BuildSend( ctx.builder, operand, token, Convert_channel_handle(op.getChannelHandle()), op.getIsHostTransfer()); value_map[op] = xla::internal::XlaBuilderFriend::BuildSendDone( ctx.builder, token, Convert_channel_handle(op.getChannelHandle()), op.getIsHostTransfer()); return success(); } mlir::LogicalResult ExportXlaOp(mlir::mhlo::SetDimensionSizeOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; auto result = op.getResult(); xla::XlaOp array; if (failed(GetXlaOp(op.getOperand(), value_map, &array, op))) return mlir::failure(); auto dimension = Convertuint64_t(op.getDimension()); auto shape_or = ctx.builder->GetShapePtr(array); if (!shape_or.ok()) { return op.emitError(shape_or.status().ToString()); } xla::XlaOp xla_result; if (auto constant = llvm::dyn_cast_or_null<mlir::mhlo::ConstantOp>( op.getSize().getDefiningOp()); constant != nullptr) { auto value = constant.getValue(); auto values = value.getValues<mlir::IntegerAttr>(); if ((*values.begin()).getValue().getSExtValue() == shape_or.value()->dimensions(dimension)) { xla_result = xla::RemoveDynamicDimension(array, dimension); } } if (!xla_result.valid()) { xla::XlaOp dynamic_size; if (failed(GetXlaOp(op.getSize(), value_map, &dynamic_size, op))) return mlir::failure(); xla_result = xla::SetDimensionSize(array, dynamic_size, dimension); } value_map[result] = xla_result; return mlir::success(); } mlir::LogicalResult ExportXlaOp(mlir::mhlo::SineOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; auto result = op.getResult(); xla::XlaOp arg; if (failed(GetXlaOp(*op.getODSOperands(0).begin(), value_map, &arg, op))) return mlir::failure(); auto xla_result = xla::Sin(Unwrap(arg)); value_map[result] = xla_result; return mlir::success(); } LogicalResult ExportXlaOp(SortOp op, OpLoweringContext ctx) { xla::XlaComputation comparator; if (failed(ctx.converter->LowerRegionAsComputation(&op.getComparator(), &comparator))) return failure(); llvm::SmallVector<xla::XlaOp> operands; if (failed(GetTuple(op, op.getInputs(), ctx, operands))) return failure(); auto sorted = xla::Sort(operands, comparator, op.getDimension(), op.getIsStable()); auto& value_map = *ctx.values; auto shape_or = sorted.builder()->GetShape(sorted); if (!shape_or.ok()) { return op.emitError(shape_or.status().ToString()); } xla::Shape& shape = shape_or.value(); if (!shape.IsTuple()) { value_map[op.getResult(0)] = sorted; return success(); } BuildGetTupleElementsForTupleResults(op, sorted, ctx); return success(); } LogicalResult ExportXlaOp(SubtractOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; auto result = op.getResult(); xla::XlaOp lhs; if (failed(GetXlaOp(*op.getODSOperands(0).begin(), value_map, &lhs, op))) return mlir::failure(); xla::XlaOp rhs; if (failed(GetXlaOp(*op.getODSOperands(1).begin(), value_map, &rhs, op))) return mlir::failure(); auto xla_result = xla::Sub(Unwrap(lhs), Unwrap(rhs)); value_map[result] = xla_result; return mlir::success(); } LogicalResult ExportXlaOp(TraceOp op, OpLoweringContext ctx) { return success(); } LogicalResult ExportXlaOp(WhileOp op, OpLoweringContext ctx) { xla::XlaComputation condition; xla::XlaComputation body; llvm::SmallVector<std::optional<xla::OpSharding>> res_shardings = GetResultShardings(ctx.builder->sharding(), op->getNumResults()); llvm::SetVector<mlir::Value> implicit_operand_set; getUsedValuesDefinedAbove(op->getRegions(), implicit_operand_set); llvm::SmallVector<mlir::Value> implicit_operands = implicit_operand_set.takeVector(); llvm::SmallVector<xla::XlaOp> implicit_args; if (failed(GetXlaOps(op, implicit_operands, ctx, implicit_args))) return failure(); llvm::SmallVector<std::optional<xla::OpSharding>> implicit_shardings; if (!implicit_args.empty() && !res_shardings.empty()) { implicit_shardings = GetXlaOpShardings(implicit_args); res_shardings.append(implicit_shardings.begin(), implicit_shardings.end()); if (std::optional<xla::OpSharding> new_sharding = CreateTupleSharding(res_shardings)) { ctx.builder->SetSharding(*new_sharding); } } if (failed(ctx.converter->LowerRegionAsComputation( &op.getBody(), &body, implicit_operands, implicit_operands, true, res_shardings, res_shardings)) || failed(ctx.converter->LowerRegionAsComputation( &op.getCond(), &condition, implicit_operands, {}, true, res_shardings))) { return failure(); } llvm::SmallVector<xla::XlaOp> operands; if (failed(GetTuple(op, op.getOperands(), ctx, operands))) return failure(); operands.append(implicit_args.begin(), implicit_args.end()); xla::XlaOp operand = operands[0]; if (operands.size() > 1) operand = Tuple(ctx.builder, operands); xla::XlaOp whileop = xla::While(condition, body, operand); auto& value_map = *ctx.values; auto shape_or = whileop.builder()->GetShape(whileop); if (!shape_or.ok()) { return op.emitError(shape_or.status().ToString()); } xla::Shape& shape = shape_or.value(); if (!shape.IsTuple()) { value_map[op.getResult(0)] = whileop; return success(); } BuildGetTupleElementsForTupleResults( op, whileop, ctx, implicit_args.size()); return success(); } LogicalResult ExportXlaOp(OptimizationBarrierOp op, OpLoweringContext ctx) { llvm::SmallVector<xla::XlaOp> operands; if (failed(GetTuple(op, op.getOperands(), ctx, operands))) return failure(); if (operands.empty()) return success(); auto& value_map = *ctx.values; if (operands.size() == 1) { value_map[op.getOperation()->getResult(0)] = xla::OptimizationBarrier(operands[0]); } else { auto result = xla::OptimizationBarrier(Tuple(ctx.builder, operands)); BuildGetTupleElementsForTupleResults(op, result, ctx); } return success(); } LogicalResult ExportXlaOp(FusionOp op, OpLoweringContext ctx) { if (!op.getFusionKind()) { op.emitOpError() << "requires fusion kind for HLO translation"; return failure(); } xla::XlaComputation fused_computation; if (failed(ctx.converter->LowerRegionAsComputation(&op.getFusedComputation(), &fused_computation))) return failure(); auto& values = *ctx.values; auto aliasInfo = xla::ConvertOutputOperandAliasing(op.getOutputOperandAliases()); auto output_operand_aliasing = absl::MakeSpan(*aliasInfo); llvm::SmallVector<xla::XlaOp, 4> operands; for (auto operand : op.getInputs()) operands.push_back(values[operand]); auto fusion_kind_string = mlir::mhlo::stringifyFusionKind(op.getFusionKind().value()); xla::XlaOp fusion = xla::internal::XlaBuilderFriend::BuildFusion( ctx.builder, operands, absl::string_view(fusion_kind_string.data(), fusion_kind_string.size()), fused_computation, output_operand_aliasing); if (op.getNumResults() == 1) { values[op.getResult(0)] = fusion; } else { BuildGetTupleElementsForTupleResults(op, fusion, ctx); } return success(); } LogicalResult ExportXlaOp(BitcastOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaOp operand; if (failed(GetXlaOp(op.getOperand(), value_map, &operand, op))) return failure(); xla::XlaOp bitcast = xla::internal::XlaBuilderFriend::BuildBitcast( ctx.builder, operand, xla::TypeToShape(op.getType())); value_map[op] = bitcast; if (ctx.converter->GetOptions().propagate_bitcast_layouts_to_backend_config) { xla::HloInstructionProto* bitcast_proto = xla::internal::XlaBuilderFriend::GetInstruction(bitcast); xla::HloInstructionProto* operand_proto = xla::internal::XlaBuilderFriend::GetInstruction(operand); xla::LayoutProto result_layout = ExtractLayout(op, bitcast_proto->shape().dimensions_size(), kResultLayout) .ToProto(); xla::LayoutProto source_layout = ExtractLayout(op, operand_proto->shape().dimensions_size(), kSourceLayout) .ToProto(); xla::gpu::BitcastBackendConfig bitcast_config; *bitcast_config.mutable_source_layout() = source_layout; *bitcast_config.mutable_result_layout() = result_layout; *bitcast_proto->mutable_backend_config() = bitcast_config.SerializeAsString(); } return success(); } LogicalResult ExportXlaOp(UniformQuantizeOp op, OpLoweringContext ctx) { return failure(); } LogicalResult ExportXlaOp(UniformDequantizeOp op, OpLoweringContext ctx) { return failure(); } LogicalResult ExportXlaOp(TopKOp op, OpLoweringContext ctx) { auto& value_map = *ctx.values; xla::XlaOp operand; if (failed(GetXlaOp(op.getOperand(), value_map, &operand, op))) return failure(); auto topk = xla::TopK(operand, op.getK(), op.getLargest()); BuildGetTupleElementsForTupleResults(op, topk, ctx); return success(); } LogicalResult ExportXlaOp(MinimumBroadcastShapesOp op, OpLoweringContext ctx) { return failure(); } } } } #include "xla/hlo/translate/mhlo_to_hlo/operator_writers.inc" namespace mlir { namespace { LogicalResult ConvertLayout(mlir::Operation* op, const mlir::ArrayAttr& layout, xla::ShapeProto* shape) { if (shape->element_type() == xla::TUPLE) { auto subshapes = shape->mutable_tuple_shapes(); size_t subshapes_data_size = subshapes->size(); if (!subshapes->empty() && subshapes->Mutable(subshapes->size() - 1)->element_type() == xla::TOKEN) subshapes_data_size = subshapes->size() - 1; if (layout.size() != subshapes_data_size) { op->emitOpError() << "Expected layout of size " << layout.size() << ", but found " << subshapes->size(); return failure(); } for (int i = 0; i < subshapes_data_size; i++) { mlir::Attribute child = layout[i]; if (mlir::isa<mlir::UnitAttr>(child)) { continue; } mlir::ArrayAttr c = mlir::dyn_cast<mlir::ArrayAttr>(child); if (!c) { op->emitOpError() << "Type Error: Expected layout array attribute"; return failure(); } if (failed(ConvertLayout(op, c, subshapes->Mutable(i)))) { return failure(); } } } else { int rank = shape->dimensions().size(); if (rank) { if (layout.size() != rank) { return failure(); } std::vector<int64_t> array(rank); for (int i = 0; i < rank; i++) { mlir::IntegerAttr attr = mlir::dyn_cast<mlir::IntegerAttr>(layout[i]); if (!attr) { op->emitOpError() << "Type Error: Expected layout integer attribute"; return failure(); } array[i] = attr.getInt(); } *shape->mutable_layout() = xla::LayoutUtil::MakeLayout(array).ToProto(); } } return success(); } LogicalResult ConvertInfeedtLayout(mlir::Operation* op, const mlir::ArrayAttr& layout, xla::ShapeProto* shape, int64_t layout_index = 0) { if (shape->element_type() != xla::TUPLE) { mlir::ArrayAttr child_layout = mlir::dyn_cast<mlir::ArrayAttr>(layout[layout_index]); if (!child_layout) { op->emitOpError() << "Type Error: Expected layout array attribute"; return failure(); } int rank = shape->dimensions().size(); if (rank) { if (child_layout.size() != rank) { return failure(); } std::vector<int64_t> array(rank); for (int i = 0; i < rank; i++) { mlir::IntegerAttr attr = mlir::dyn_cast<mlir::IntegerAttr>(child_layout[i]); if (!attr) { op->emitOpError() << "Type Error: Expected layout integer attribute"; return failure(); } array[i] = attr.getInt(); } *shape->mutable_layout() = xla::LayoutUtil::MakeLayout(array).ToProto(); } return success(); } auto subshapes = shape->mutable_tuple_shapes(); auto datashape = subshapes->Mutable(0); if (datashape->element_type() == xla::TUPLE) { auto data_subshapes = datashape->mutable_tuple_shapes(); if (layout.size() != data_subshapes->size()) { op->emitOpError() << "Expected " << data_subshapes->size() << " layout attribute(s) for infeed data, but found " << layout.size(); return failure(); } for (int i = 0; i < data_subshapes->size(); i++) { if (failed( ConvertInfeedtLayout(op, layout, data_subshapes->Mutable(i), i))) return failure(); } } else { if (layout.size() != subshapes->size()) { op->emitOpError() << "Expected " << subshapes->size() << " layout attribute(s) for infeed data, but found " << layout.size(); return failure(); } for (int i = 0; i < subshapes->size(); i++) { if (failed(ConvertInfeedtLayout(op, layout, subshapes->Mutable(i), i))) return failure(); } } return success(); } LogicalResult ExportXlaOperatorWrapped(mlir::Operation* inst, OpLoweringContext ctx) { auto op = dyn_cast<mlir::mhlo::AddOp>(inst); if (op && mlir::cast<mlir::TensorType>(op.getResult().getType()) .getElementType() .isSignlessInteger(1)) { auto& value_map = *ctx.values; auto result = op.getResult(); xla::XlaOp xla_arg_0; if (failed(GetXlaOp(op.getLhs(), value_map, &xla_arg_0, op))) return mlir::failure(); xla::XlaOp xla_arg_1; if (failed(GetXlaOp(op.getRhs(), value_map, &xla_arg_1, op))) return mlir::failure(); auto xla_result = xla::Xor(Unwrap(xla_arg_0), Unwrap(xla_arg_1)); value_map[result] = xla_result; return mlir::success(); } return ExportXlaOperator(inst, ctx); } LogicalResult ConvertToHloModule::PropagateLayouts( const MlirToHloConversionOptions& options, mlir::Operation* inst, xla::XlaOp xla_op) { if (options.propagate_layouts) { auto* shape = xla::internal::XlaBuilderFriend::GetInstruction(xla_op) ->mutable_shape(); mlir::FailureOr<xla::Shape> mlir_shape_or = ExtractXlaShape(inst); if (failed(mlir_shape_or)) return failure(); *shape = mlir_shape_or->ToProto(); } return success(); } LogicalResult ConvertToHloModule::LowerCast( mlir::Operation* inst, const MlirToHloConversionOptions& options, ConvertToHloModule::ValueLoweringMap* value_lowering) { auto cast_op = cast<mlir::tensor::CastOp>(inst); Value operand = cast_op.getOperand(); auto ty = mlir::dyn_cast<ShapedType>(operand.getType()); if (!ty || !IsBoundedOrStatic(ty)) { inst->emitOpError() << "requires static or bounded operand for HLO translation"; return failure(); } xla::XlaOp xla_operand; auto& value_map = *value_lowering; if (failed(GetXlaOp(operand, value_map, &xla_operand, cast_op))) return failure(); value_map[cast_op.getResult()] = xla_operand; if (failed(PropagateLayouts(options, inst, xla_operand))) { return failure(); } return success(); } LogicalResult ConvertToHloModule::LowerCompositeCall( mlir::Operation* inst, xla::XlaBuilder* module_builder, xla::XlaBuilder* builder, ConvertToHloModule::ValueLoweringMap* value_lowering, xla::XlaOp* return_value) { auto& value_map = *value_lowering; SmallVector<xla::XlaOp, 1> operands; for (const Value& val : inst->getOperands()) { xla::XlaOp operand; if (failed(GetXlaOp(val, value_map, &operand, inst))) { return failure(); } operands.push_back(operand); } auto composite_op = cast<mhlo::CompositeOp>(inst); xla::XlaComputation computation; if (failed(LowerBasicBlockAsFunction( &module_ .lookupSymbol<mlir::func::FuncOp>(composite_op.getDecomposition()) .getBody() .front(), module_builder_ .CreateSubBuilder(composite_op.getDecomposition().str()) .get(), false, false, {}, {}, {}, {}, &computation, {}))) { return failure(); } std::string composite_attributes; llvm::raw_string_ostream(composite_attributes) << composite_op.getCompositeAttributes(); xla::XlaOp composite_call = xla::CompositeCall( builder, computation, operands, composite_op.getName().str(), composite_attributes, composite_op.getVersion()); unsigned num_results = composite_op.getNumResults(); if (num_results > 1) { for (unsigned i = 0; i != num_results; ++i) { value_map[composite_op.getResult(i)] = xla::GetTupleElement(composite_call, i); } } else if (num_results == 1) { value_map[composite_op.getResult(0)] = composite_call; } *return_value = composite_call; return success(); } LogicalResult ConvertToHloModule::LowerConstant( mlir::Operation* inst, xla::XlaBuilder* builder, ConvertToHloModule::ValueLoweringMap* value_lowering, ElementsAttr const_attr) { if (!mlir::isa<ShapedType>(inst->getResult(0).getType())) { return inst->emitError( "expected shaped type during constant mhlo -> hlo translation"); } mlir::FailureOr<xla::Shape> shape_or = ExtractXlaShape(inst); if (failed(shape_or)) return failure(); auto literal_or = CreateArrayLiteralFromAttr(const_attr, shape_or->layout()); if (!literal_or.ok()) return inst->emitError(literal_or.status().ToString()); xla::XlaScopedShardingAssignment scoped_sharding( builder, CreateOpShardingFromAttribute(inst)); auto constant = xla::ConstantLiteral(builder, literal_or.value()); auto& value_map = *value_lowering; value_map[inst->getResult(0)] = constant; return success(); } LogicalResult ConvertToHloModule::LowerInfeed( mlir::Operation* inst, xla::XlaBuilder* builder, ConvertToHloModule::ValueLoweringMap* value_lowering) { mlir::ArrayAttr layout = inst->getAttrOfType<mlir::ArrayAttr>(kLayout); if (!layout) return success(); auto num_results = inst->getNumResults(); bool propagate_layout_to_data_tuple = true; for (unsigned i = 0; i < num_results; i++) { auto iter = value_lowering->find(inst->getResult(i)); if (iter == value_lowering->end()) { inst->emitOpError() << "inst's result value at index " << i << " has no match in value_lowering"; return failure(); } auto xla_gte_op = iter->second; xla::HloInstructionProto* get_tuple_element_proto = xla::internal::XlaBuilderFriend::GetInstruction(xla_gte_op); assert(xla::StringToHloOpcode(get_tuple_element_proto->opcode()).value() == xla::HloOpcode::kGetTupleElement && "The token-result of mhlo.InfeedOp should be mapped to a " "xla::HloOpcode::kGetTupleElement"); if (i == num_results - 1) { xla::HloInstructionProto* xla_infeed_op_proto = xla::internal::XlaBuilderFriend::GetInstructionByHandle( xla_gte_op.builder(), get_tuple_element_proto->operand_ids(0)); assert(xla::StringToHloOpcode(xla_infeed_op_proto->opcode()).value() == xla::HloOpcode::kInfeed && "Expected xla::HloOpcode::kInfeed op"); auto* shape = xla_infeed_op_proto->mutable_shape(); if (failed(ConvertInfeedtLayout(inst, layout, shape))) return failure(); continue; } auto* shape = get_tuple_element_proto->mutable_shape(); if (failed(ConvertInfeedtLayout(inst, layout, shape, i))) return failure(); if (propagate_layout_to_data_tuple) { xla::HloInstructionProto* data_tuple_proto = xla::internal::XlaBuilderFriend::GetInstructionByHandle( xla_gte_op.builder(), get_tuple_element_proto->operand_ids(0)); auto* data_tuple_shape = data_tuple_proto->mutable_shape(); assert(xla::StringToHloOpcode(data_tuple_proto->opcode()).value() == xla::HloOpcode::kGetTupleElement && "Expected a xla:tupleOp for all the data results."); if (failed(ConvertInfeedtLayout(inst, layout, data_tuple_shape))) return failure(); } propagate_layout_to_data_tuple = false; } return success(); } LogicalResult ConvertToHloModule::LowerReturn( Operation* inst, bool is_entry_function, llvm::ArrayRef<std::optional<xla::OpSharding>> ret_shardings, llvm::ArrayRef<mlir::Value> implicit_results, xla::XlaBuilder* builder, ConvertToHloModule::ValueLoweringMap* value_lowering, xla::XlaOp* return_value, const MlirToHloConversionOptions& options) { unsigned num_return_values = inst->getNumOperands() + implicit_results.size(); std::optional<xla::OpSharding> ret_tuple_sharding = CreateTupleSharding(ret_shardings); auto& value_map = *value_lowering; if ((options_.return_tuple && is_entry_function) || num_return_values != 1) { std::vector<xla::XlaOp> returns; returns.reserve(num_return_values); for (Value ret : inst->getOperands()) { xla::XlaOp& operand = returns.emplace_back(); if (failed(GetXlaOp(ret, value_map, &operand, inst))) return failure(); } for (Value ret : implicit_results) { xla::XlaOp& operand = returns.emplace_back(); if (failed(GetXlaOp(ret, value_map, &operand, inst))) return failure(); } if (is_entry_function && ret_tuple_sharding) { assert(implicit_results.empty() && "entry functions shouldn't have implicit results"); for (OpOperand& ret : inst->getOpOperands()) { unsigned index = ret.getOperandNumber(); xla::Shape return_shape = xla::TypeToShape(ret.get().getType()); absl::StatusOr<xla::XlaOp> reshape = ReshapeWithCorrectRepresentationAndSharding( builder, returns[index], return_shape, options_.layout_preference_fn, options_.shape_representation_fn, ret_shardings[index], false); if (!reshape.ok()) return inst->emitError() << reshape.status().message(); returns[index] = reshape.value(); } } xla::XlaScopedShardingAssignment scoped_sharding(builder, ret_tuple_sharding); *return_value = xla::Tuple(builder, returns); return success(); } if (num_return_values == 1) { Value ret = implicit_results.empty() ? inst->getOperand(0) : implicit_results.front(); xla::XlaOp operand; if (failed(GetXlaOp(ret, value_map, &operand, inst))) return failure(); if (ret_tuple_sharding) { auto tuple = Tuple(builder, {operand}); builder->SetSharding(*ret_shardings[0]); *return_value = GetTupleElement(tuple, 0); builder->ClearSharding(); } else { *return_value = operand; } } return success(); } LogicalResult ConvertToHloModule::Lower( mlir::Operation* inst, bool is_entry_function, llvm::ArrayRef<std::optional<xla::OpSharding>> ret_shardings, llvm::ArrayRef<mlir::Value> implicit_results, xla::XlaBuilder* builder, ConvertToHloModule::ValueLoweringMap* value_lowering, xla::XlaOp* return_value) { if (inst->getDialect() != inst->getContext()->getLoadedDialect<mlir::mhlo::MhloDialect>() && !mlir::isa<mlir::func::ConstantOp, mlir::arith::ConstantOp, mlir::func::CallOp, mlir::tensor::CastOp, mlir::func::ReturnOp>(inst)) { inst->emitOpError("unsupported op for export to XLA"); return failure(); } *return_value = xla::XlaOp(); if (succeeded(ExportXlaOperatorWrapped( inst, {value_lowering, this, builder, &stack_frame_indexes_builder_}))) { if (inst->getNumResults() == 1) { auto iter = value_lowering->find(inst->getResult(0)); if (iter == value_lowering->end()) { inst->emitOpError( "inst has a result, but it's not found in value_lowering"); return failure(); } if (failed(PropagateLayouts(options_, inst, iter->second))) { return failure(); } } if (isa<mhlo::InfeedOp>(inst)) { return LowerInfeed(inst, builder, value_lowering); } return success(); } if (auto call_op = dyn_cast<mlir::func::CallOp>(inst)) { return LowerFunctionCall(call_op, builder, value_lowering); } if (isa<mlir::tensor::CastOp>(inst)) { return LowerCast(inst, options_, value_lowering); } if (auto composite_op = dyn_cast<mhlo::CompositeOp>(inst)) { return LowerCompositeCall(inst, &module_builder_, builder, value_lowering, return_value); } ElementsAttr const_attr; if (matchPattern(inst, m_Constant(&const_attr))) { return LowerConstant(inst, builder, value_lowering, const_attr); } if (isa<mhlo::ReturnOp, mlir::func::ReturnOp>(inst)) { return LowerReturn(inst, is_entry_function, ret_shardings, implicit_results, builder, value_lowering, return_value, options_); } inst->emitOpError() << "can't be translated to XLA HLO"; return failure(); } LogicalResult ConvertToHloModule::LowerFunctionCall( mlir::func::CallOp call_op, xla::XlaBuilder* builder, ConvertToHloModule::ValueLoweringMap* value_lowering) { auto& value_map = *value_lowering; mlir::func::FuncOp callee = module_.lookupSymbol<mlir::func::FuncOp>(call_op.getCallee()); if (failed(RunOnFunction(callee))) return failure(); std::vector<xla::XlaOp> operands; for (auto operand : call_op.getOperands()) { xla::XlaOp xla_operand; if (failed(GetXlaOp(operand, value_map, &xla_operand, call_op))) return failure(); operands.push_back(xla_operand); } xla::FrontendAttributes fe_attrs = CreateXlaFrontendAttributesFromOp(call_op); xla::XlaScopedFrontendAttributesAssignment assignment(builder, fe_attrs); xla::XlaOp call_result = xla::Call(builder, lowered_computation_[callee], operands); unsigned num_results = call_op.getNumResults(); if (num_results > 1) { for (unsigned i = 0; i != num_results; ++i) { value_map[call_op.getResult(i)] = xla::GetTupleElement(call_result, i); } } else if (num_results == 1) { value_map[call_op.getResult(0)] = call_result; } return success(); } LogicalResult ConvertToHloModule::RunOnFunction(mlir::func::FuncOp f) { if (lowered_computation_.count(f)) return success(); if (!llvm::hasSingleElement(f)) { return f.emitError("only single block Function supported"); } std::unique_ptr<xla::XlaBuilder> builder_up; bool entry_function = f.getName() == kMain; if (!entry_function) builder_up = module_builder_.CreateSubBuilder(f.getName().str()); auto& builder = entry_function ? module_builder_ : *builder_up; xla::XlaComputation computation; std::vector<bool> entry_args_same_across_replicas; llvm::SmallVector<std::optional<xla::OpSharding>, 4> arg_shardings; llvm::SmallVector<std::optional<xla::OpSharding>, 4> ret_shardings; llvm::SmallVector<std::optional<xla::FrontendAttributes>, 4> arg_fe_attrs; if (entry_function) { bool any_arg_replicated = false; entry_args_same_across_replicas.reserve(f.getNumArguments()); for (int64_t i = 0; i < f.getNumArguments(); ++i) { auto attr = f.getArgAttrOfType<mlir::BoolAttr>(i, kMhloReplication); entry_args_same_across_replicas.push_back(attr != nullptr && attr.getValue()); any_arg_replicated |= entry_args_same_across_replicas.back(); auto buffer_donor = f.getArgAttrOfType<mlir::BoolAttr>(i, kJaxBufferDonor); if (buffer_donor) { if (options_.use_tuple_args) { builder.AddBufferDonor(0, {i}); } else { builder.AddBufferDonor(i, {}); } } auto aliasing_output = f.getArgAttrOfType<mlir::IntegerAttr>(i, kTfAliasingOutput); if (!aliasing_output) continue; xla::ShapeIndex output_index; if ((options_.return_tuple && entry_function) || f.getNumResults() != 1) { output_index = {aliasing_output.getInt()}; } else { if (aliasing_output.getInt() != 0) { return f.emitError( "Aliasing output must be 0 if only one output exists"); } output_index = {}; } if (options_.use_tuple_args) { builder.SetUpAlias(output_index, 0, {i}); } else { builder.SetUpAlias(output_index, i, {}); } } if (!any_arg_replicated) entry_args_same_across_replicas.clear(); ExtractShardingsFromFunction(f, &arg_shardings, &ret_shardings); ExtractFrontendAttributesFromFunction(f, &arg_fe_attrs); } if (failed(LowerBasicBlockAsFunction(&f.front(), &builder, entry_function, false, entry_args_same_across_replicas, arg_shardings, ret_shardings, arg_fe_attrs, &computation))) { return failure(); } if (auto execution_thread = f->getAttrOfType<mlir::StringAttr>(kExecutionThread)) { computation.mutable_proto()->mutable_computations(0)->set_execution_thread( execution_thread.str()); } for (int i = 0; i < f.getNumArguments(); ++i) { if (auto pr = f.getArgAttrOfType<mlir::ArrayAttr>(i, kMhloParameterReplication)) { for (auto b : pr.getValue()) for (auto& instr : *computation.mutable_proto() ->mutable_computations(0) ->mutable_instructions()) if (instr.parameter_number() == i) instr.mutable_parameter_replication() ->add_replicated_at_leaf_buffers( mlir::cast<mlir::BoolAttr>(b).getValue()); } } lowered_computation_[f] = std::move(computation); return success(); } LogicalResult ConvertToHloModule::SetEntryTupleShapesAndLeafReplication( Block* block, const std::vector<bool>& entry_args_same_across_replicas, llvm::SmallVectorImpl<xla::Shape>* arg_shapes, std::vector<bool>* leaf_replication) { arg_shapes->reserve(block->getNumArguments()); leaf_replication->reserve(block->getNumArguments()); for (BlockArgument& arg : block->getArguments()) { arg_shapes->push_back(xla::TypeToShape(arg.getType())); xla::Shape& arg_shape = arg_shapes->back(); auto layout_preference_status = options_.layout_preference_fn ? options_.layout_preference_fn(arg_shape) : XlaLayoutPreference::kNoPreference; if (!layout_preference_status.ok()) return block->getParentOp()->emitError() << layout_preference_status.status().message(); auto arg_shape_status = options_.shape_representation_fn ? options_.shape_representation_fn( arg_shape, false, layout_preference_status.value()) : arg_shape; if (!arg_shape_status.ok()) return block->getParentOp()->emitError() << arg_shape_status.status().message(); arg_shape = std::move(arg_shape_status.value()); if (entry_args_same_across_replicas.empty()) continue; for (int i = 0, e = xla::ShapeUtil::GetLeafCount(arg_shape); i < e; ++i) leaf_replication->push_back( entry_args_same_across_replicas[arg.getArgNumber()]); } return success(); } LogicalResult ConvertToHloModule::SetEntryTupleShardings( Block* block, xla::XlaBuilder* builder, llvm::ArrayRef<std::optional<xla::OpSharding>> arg_shardings, llvm::SmallVectorImpl<xla::Shape>* arg_shapes) { if (!arg_shardings.empty() && SomeOptionalShardingsAreSet(arg_shardings)) { xla::OpSharding sharding; sharding.set_type(xla::OpSharding::TUPLE); for (const auto& arg_sharding : llvm::enumerate(arg_shardings)) { if (arg_sharding.value().has_value()) { auto hlo_sharding = xla::HloSharding::FromProto(*arg_sharding.value()); if (!hlo_sharding.ok()) return block->getParentOp()->emitError() << hlo_sharding.status().message(); auto status = RewriteLayoutWithShardedShape( hlo_sharding.value(), false, options_.layout_preference_fn, options_.shape_representation_fn, &(*arg_shapes)[arg_sharding.index()]); if (!status.ok()) return block->getParentOp()->emitError() << status.message(); *sharding.add_tuple_shardings() = *arg_sharding.value(); } else { xla::OpSharding fallback_sharding; fallback_sharding.set_type(xla::OpSharding::REPLICATED); *sharding.add_tuple_shardings() = fallback_sharding; } } builder->SetSharding(sharding); } return success(); } namespace { xla::OpMetadata GetOpNameMetadataFromLocation(Value value) { xla::OpMetadata m; m.set_op_name(mhlo::GetDebugNameFromLocation(value.getLoc())); return m; } } LogicalResult ConvertToHloModule::LowerBasicBlockAsFunction( Block* block, xla::XlaBuilder* builder, bool is_entry_function, bool ensure_single_arg, const std::vector<bool>& entry_args_same_across_replicas, llvm::ArrayRef<std::optional<xla::OpSharding>> arg_shardings, llvm::ArrayRef<std::optional<xla::OpSharding>> ret_shardings, llvm::ArrayRef<std::optional<xla::FrontendAttributes>> fe_attrs, xla::XlaComputation* result, llvm::ArrayRef<mlir::Value> implicit_operands, llvm::ArrayRef<mlir::Value> implicit_results) { ValueLoweringMap lowering; if (is_entry_function && options_.use_tuple_args) { llvm::SmallVector<xla::Shape, 4> arg_shapes; std::vector<bool> leaf_replication; if (failed(SetEntryTupleShapesAndLeafReplication( block, entry_args_same_across_replicas, &arg_shapes, &leaf_replication))) return failure(); if (failed( SetEntryTupleShardings(block, builder, arg_shardings, &arg_shapes))) return failure(); xla::Shape input_shape = xla::ShapeUtil::MakeTupleShape(arg_shapes); auto tuple = xla::Parameter(builder, 0, input_shape, kArgTuple, leaf_replication); builder->ClearSharding(); for (BlockArgument& arg : block->getArguments()) { xla::XlaScopedShardingAssignment scoped_sharding( builder, arg_shardings.empty() ? std::nullopt : arg_shardings[arg.getArgNumber()]); lowering[arg] = xla::GetTupleElement(tuple, arg.getArgNumber()); } } else { if (ensure_single_arg) { llvm::SmallVector<xla::Shape, 4> arg_shapes; auto args_size = block->getNumArguments() + implicit_operands.size(); arg_shapes.reserve(args_size); for (BlockArgument& arg : block->getArguments()) arg_shapes.push_back(xla::TypeToShape(arg.getType())); for (Value implicit_operand : implicit_operands) arg_shapes.push_back(xla::TypeToShape(implicit_operand.getType())); if (args_size > 1) { xla::XlaScopedShardingAssignment scoped_sharding( builder, arg_shardings.empty() ? std::nullopt : CreateTupleSharding(arg_shardings)); auto tuple = xla::Parameter( builder, 0, xla::ShapeUtil::MakeTupleShape(arg_shapes), kArgTuple); for (BlockArgument& arg : block->getArguments()) { auto num = arg.getArgNumber(); xla::XlaScopedShardingAssignment scoped_sharding( builder, arg_shardings.empty() ? std::nullopt : arg_shardings[num]); lowering[arg] = xla::GetTupleElement(tuple, num); } for (auto [implicit_index, implicit_operand] : llvm::enumerate(implicit_operands)) { int64_t arg_index = block->getNumArguments() + implicit_index; xla::XlaScopedShardingAssignment scoped_sharding( builder, arg_shardings.empty() ? std::nullopt : arg_shardings[arg_index]); lowering[implicit_operand] = xla::GetTupleElement(tuple, arg_index); } } else if (args_size == 1) { xla::XlaScopedShardingAssignment scoped_sharding( builder, arg_shardings.empty() ? std::nullopt : arg_shardings.front()); mlir::Value arg = implicit_operands.empty() ? block->getArgument(0) : implicit_operands.front(); xla::XlaScopedOpMetadataAssignment op_metadata( builder, GetOpNameMetadataFromLocation(arg)); lowering[arg] = xla::Parameter(builder, 0, arg_shapes[0], kArgPrefix); } else { xla::Parameter(builder, 0, xla::ShapeUtil::MakeTupleShape(arg_shapes), kArgEmptyTuple); } } else { for (BlockArgument& arg : block->getArguments()) { auto num = arg.getArgNumber(); xla::Shape shape = xla::TypeToShape(arg.getType()); xla::XlaScopedShardingAssignment scoped_sharding( builder, arg_shardings.empty() ? std::nullopt : arg_shardings[num]); if (!fe_attrs.empty() && fe_attrs[num]) { builder->SetFrontendAttributes(*fe_attrs[num]); } xla::XlaScopedOpMetadataAssignment op_metadata( builder, GetOpNameMetadataFromLocation(arg)); if (entry_args_same_across_replicas.empty()) { lowering[arg] = xla::Parameter(builder, num, shape, absl::StrCat(kArgPrefix, num)); } else { lowering[arg] = xla::Parameter( builder, num, shape, absl::StrCat(kArgPrefix, num), std::vector<bool>(entry_args_same_across_replicas[num], xla::ShapeUtil::GetLeafCount(shape))); } builder->ClearFrontendAttributes(); } } } xla::XlaOp return_value; for (auto& inst : *block) if (failed(Lower(&inst, is_entry_function, ret_shardings, implicit_results, builder, &lowering, &return_value))) return failure(); auto computation_or = return_value.valid() ? builder->Build(return_value) : builder->Build(); if (!computation_or.ok()) { block->back().emitError() << computation_or.status().message(); return failure(); } *result = std::move(computation_or.value()); return success(); } LogicalResult ConvertToHloModule::LowerRegionAsComputation( mlir::Region* region, xla::XlaComputation* func, llvm::ArrayRef<mlir::Value> implicit_operands, llvm::ArrayRef<mlir::Value> implicit_results, bool ensure_single_arg, llvm::ArrayRef<std::optional<xla::OpSharding>> arg_shardings, llvm::ArrayRef<std::optional<xla::OpSharding>> ret_shardings) { std::unique_ptr<xla::XlaBuilder> builder = module_builder_.CreateSubBuilder( absl::StrCat(kRegionPrefix, region_id_++)); return LowerBasicBlockAsFunction( &region->front(), builder.get(), false, ensure_single_arg, {}, arg_shardings, ret_shardings, {}, func, implicit_operands, implicit_results); } absl::Status PrepareForExport(mlir::ModuleOp module) { bool hasShapeOps = false; module.walk([&](Operation* op) { hasShapeOps |= isa<shape::ShapeDialect>(op->getDialect()); return hasShapeOps ? WalkResult::interrupt() : WalkResult::advance(); }); mlir::PassManager pm(module.getContext()); pm.addNestedPass<mlir::func::FuncOp>(mhlo::createPrepareForExportPass()); if (hasShapeOps) { pm.addNestedPass<mlir::func::FuncOp>( mhlo::createSymbolicShapeOptimizationPass()); pm.addNestedPass<mlir::func::FuncOp>(mhlo::createShapeLegalizeToHloPass()); } mlir::BaseScopedDiagnosticHandler handler(module.getContext()); (void)pm.run(module); absl::Status s = handler.ConsumeStatus(); if (!s.ok()) { s = absl::Status( s.code(), absl::StrCat("Unable to prepare for XLA export: ", s.message())); } return s; } } absl::Status ConvertMlirHloToHlo(mlir::ModuleOp module, xla::HloProto* hlo_proto, MlirToHloConversionOptions options) { mlir::PassManager pm(module->getContext()); pm.addPass(mlir::mhlo::createStablehloLegalizeToHloPass()); if (failed(pm.run(module))) { return tsl::errors::Internal("Unable to convert StableHLO to MHLO"); } TF_RETURN_IF_ERROR(PrepareForExport(module)); mlir::BaseScopedDiagnosticHandler diag_handler(module.getContext()); xla::XlaBuilder module_builder(kMain); ConvertToHloModule converter(module, module_builder, options); if (failed(converter.Run())) return diag_handler.ConsumeStatus(); xla::HloModuleProto hlo_module = converter.ConsumeMainProto(); StringRef module_name = module.getName() ? *module.getName() : kMain; hlo_module.set_name(module_name.str()); if (auto cross_program_prefetches = module->getAttrOfType<mlir::ArrayAttr>(kMhloCrossProgramPrefetches)) { for (const auto& prefetch : Convert_cross_program_prefetches(cross_program_prefetches)) { *hlo_module.add_cross_program_prefetches() = std::move(prefetch); } } if (auto is_dynamic = module->getAttrOfType<mlir::BoolAttr>(kMhloIsDynamic)) { hlo_module.set_is_dynamic(is_dynamic.getValue()); } if (auto frontend_attributes = module->getAttrOfType<DictionaryAttr>(kMhloFrontendAttributes)) { ConstructFrontendAttributesFromAttribute( frontend_attributes, *hlo_module.mutable_frontend_attributes()); } if (auto use_auto_spmd_partitioning = module->getAttrOfType<mlir::BoolAttr>(kMhloUseAutoSpmdPartitioning)) { hlo_module.set_use_auto_spmd_partitioning( use_auto_spmd_partitioning.getValue()); } if (auto spmd_output_sharding = module->getAttrOfType<mlir::StringAttr>(kMhloSpmdOutputSharding)) { *hlo_module.mutable_spmd_output_sharding() = *xla::ConvertSharding(spmd_output_sharding.getValue()); } if (auto input_output_alias = module->getAttrOfType<mlir::ArrayAttr>(kMhloInputOutputAlias)) { if (std::optional<xla::HloInputOutputAliasProto> input_output_alias_proto = xla::ConvertInputOutputAlias(input_output_alias.getValue())) { *hlo_module.mutable_input_output_alias() = *input_output_alias_proto; } } if (auto spmd_parameters_sharding = module->getAttrOfType<mlir::ArrayAttr>( kMhloSpmdParametersShardings)) { for (const auto& sharding : spmd_parameters_sharding.getValue()) { *hlo_module.add_spmd_parameters_shardings() = *xla::ConvertSharding( mlir::cast<mlir::StringAttr>(sharding).getValue()); } } if (auto xla_entry_computation_parameter_layout = module->getAttrOfType<mlir::ArrayAttr>( kMhloXlaEntryComputationParameterLayouts)) { auto status = mhlo::ExportModuleEntryComputationParameterLayouts( xla_entry_computation_parameter_layout, hlo_module); if (!status.ok()) return status; } if (auto xla_entry_computation_parameter_tiles = module->getAttrOfType<mlir::ArrayAttr>( kMhloXlaEntryComputationParameterTiles)) { auto status = mhlo::ExportModuleEntryComputationParameterTiles( xla_entry_computation_parameter_tiles, hlo_module); if (!status.ok()) return status; } if (auto xla_entry_computation_result_layout = module->getAttrOfType<mlir::ArrayAttr>( kMhloXlaEntryComputationResultLayout)) { auto status = mhlo::ExportModuleEntryComputationResultLayout( xla_entry_computation_result_layout, hlo_module); if (!status.ok()) return status; } if (auto xla_entry_computation_result_tiles = module->getAttrOfType<mlir::ArrayAttr>( kMhloXlaEntryComputationResultTiles)) { auto status = mhlo::ExportModuleEntryComputationResultTiles( xla_entry_computation_result_tiles, hlo_module); if (!status.ok()) return status; } xla::StackFrameIndexProto stack_frame_index = converter.BuildStackFramesIndexProto(); hlo_module.mutable_stack_frame_index()->Swap(&stack_frame_index); hlo_proto->mutable_hlo_module()->Swap(&hlo_module); return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<xla::HloModule>> ConvertMlirHloToHloModule( mlir::ModuleOp module, MlirToHloConversionOptions options) { xla::HloProto hlo_proto; TF_RETURN_IF_ERROR(ConvertMlirHloToHlo(module, &hlo_proto, options)); const xla::HloModuleProto& module_proto = hlo_proto.hlo_module(); TF_ASSIGN_OR_RETURN(xla::HloModuleConfig config, xla::HloModule::CreateModuleConfigFromProto( module_proto, xla::GetDebugOptionsFromFlags())); mhlo::ExportHloModuleConfig(config, module); return xla::HloModule::CreateFromProto(module_proto, config); } absl::Status BuildHloFromMlirHlo(mlir::Block& block, xla::XlaBuilder& builder, llvm::ArrayRef<xla::XlaOp> xla_params, std::vector<xla::XlaOp>& returns, MlirToHloConversionOptions options) { auto module = block.getParentOp()->getParentOfType<mlir::ModuleOp>(); TF_RETURN_IF_ERROR(PrepareForExport(module)); options.return_tuple = false; options.use_tuple_args = false; ConvertToHloModule converter(module, builder, options); ConvertToHloModule::ValueLoweringMap lowering; if (xla_params.size() != block.getArguments().size()) return tsl::errors::Internal("xla_params size (", xla_params.size(), ") != block arguments size (", block.getArguments().size(), ")"); for (BlockArgument& arg : block.getArguments()) { auto num = arg.getArgNumber(); lowering[arg] = xla_params[num]; } mlir::BaseScopedDiagnosticHandler diag_handler(module.getContext()); for (auto& inst : block) { if (isa<mhlo::ReturnOp, mlir::func::ReturnOp>(inst)) { returns.resize(inst.getNumOperands()); for (OpOperand& ret : inst.getOpOperands()) { unsigned index = ret.getOperandNumber(); xla::XlaOp operand; if (failed(GetXlaOp(ret.get(), lowering, &operand, &inst))) return diag_handler.ConsumeStatus(); returns[index] = operand; } } else { xla::XlaOp return_value; if (failed(converter.Lower(&inst, true, {}, {}, &builder, &lowering, &return_value))) return diag_handler.ConsumeStatus(); } } return absl::OkStatus(); } absl::Status ConvertMlirHloToHlo(mlir::ModuleOp module, ::xla::HloProto* hlo_proto, bool use_tuple_args, bool return_tuple, MlirToHloConversionOptions options) { options.use_tuple_args = use_tuple_args; options.return_tuple = return_tuple; return ConvertMlirHloToHlo(module, hlo_proto, options); } }
#include "xla/hlo/translate/mhlo_to_hlo/mlir_hlo_to_hlo.h" #include <string> #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/Shape/IR/Shape.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Parser/Parser.h" #include "stablehlo/dialect/Register.h" #include "xla/mlir/utils/error_util.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/test.h" namespace mlir { namespace { using testing::_; using testing::AllOf; using testing::HasSubstr; using tsl::testing::StatusIs; TEST(ConvertMlirHloToHloModuleTest, PropagatesDiagnostics) { const std::string mlir_source = R"mlir( func.func @main(%arg0: tensor<?xf32>, %arg1: tensor<1xindex>, %arg2: tensor<1xindex>, %arg3: tensor<1xindex>) -> tensor<?xf32> { %0 = shape.const_shape [14, 1] : tensor<2xindex> %1 = "stablehlo.real_dynamic_slice"(%arg0, %arg1, %arg2, %arg3) : (tensor<?xf32>, tensor<1xindex>, tensor<1xindex>, tensor<1xindex>) -> tensor<?xf32> func.return %1 : tensor<?xf32> } )mlir"; mlir::DialectRegistry registry; registry.insert<mlir::func::FuncDialect, mlir::shape::ShapeDialect>(); mlir::stablehlo::registerAllDialects(registry); mlir::MLIRContext context(registry); mlir::OwningOpRef<mlir::ModuleOp> module; { mlir::BaseScopedDiagnosticHandler handler(&context); module = mlir::parseSourceString<mlir::ModuleOp>(mlir_source, &context); TF_ASSERT_OK(handler.ConsumeStatus()); } ASSERT_THAT(ConvertMlirHloToHloModule(*module), StatusIs(_, AllOf(HasSubstr("Unable to prepare for XLA export"), HasSubstr("real_dynamic_slice")))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/translate/mhlo_to_hlo/mlir_hlo_to_hlo.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/translate/mhlo_to_hlo/mlir_hlo_to_hlo_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bf1418cd-bbf0-470c-baf8-5dfca9a1e659
cpp
tensorflow/tensorflow
hlo_pass_pipeline
third_party/xla/xla/hlo/pass/hlo_pass_pipeline.cc
third_party/xla/xla/hlo/pass/hlo_pass_pipeline_test.cc
#include "xla/hlo/pass/hlo_pass_pipeline.h" #include <functional> #include <string> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "xla/service/dump.h" #include "xla/service/hlo_graph_dumper.h" #include "xla/service/hlo_proto_util.h" #include "xla/status_macros.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/profiler/lib/scoped_annotation.h" namespace xla { namespace { void RecordPassStartMetadata(HloModule& module, const std::string& pass_name, const std::string& pipeline_name) { module.metadata()->RecordPassStart(); TF_CHECK_OK(module.metadata()->set_current_pass_name(pass_name)); TF_CHECK_OK(module.metadata()->set_current_pass_pipeline_name(pipeline_name)); } void RecordPassStartMetadata(HloModuleGroup& module_group, const std::string& pass_name, const std::string& pipeline_name) { for (HloModule* module : module_group.modules()) { RecordPassStartMetadata(*module, pass_name, pipeline_name); } } absl::Status AttemptRecordPassEndMetadata(HloModule& module, const std::string& pass_name, bool module_changed) { TF_RETURN_IF_ERROR( module.metadata()->set_current_pass_module_id(module.unique_id())); TF_RETURN_IF_ERROR( module.metadata()->set_current_pass_module_changed(module_changed)); TF_RETURN_IF_ERROR(module.metadata()->RecordPassEnd()); return absl::OkStatus(); } void RecordPassEndMetadata(HloModule& module, const std::string& pass_name, bool module_changed) { absl::Status status = AttemptRecordPassEndMetadata(module, pass_name, module_changed); if (!status.ok()) { LOG(FATAL) << status; } } absl::Status AttemptRecordPassEndMetadata(HloModuleGroup& module_group, const std::string& pass_name, bool module_changed) { for (HloModule* module : module_group.modules()) { for (HloModule* other_module : module_group.modules()) { TF_RETURN_IF_ERROR( module->metadata()->add_current_pass_module_group_module_id( other_module->unique_id())); } TF_RETURN_IF_ERROR( AttemptRecordPassEndMetadata(*module, pass_name, module_changed)); } return absl::OkStatus(); } void RecordPassEndMetadata(HloModuleGroup& module_group, const std::string& pass_name, bool module_changed) { absl::Status status = AttemptRecordPassEndMetadata(module_group, pass_name, module_changed); if (!status.ok()) { LOG(FATAL) << status; } } } template <typename HloT> absl::Status HloPassPipeline::RunInvariantCheckers( HloT* hlo, absl::string_view after_pass_name, const absl::flat_hash_set<absl::string_view>& execution_threads) { for (auto& invariant_checker : invariant_checkers_) { VLOG(1) << " Invariant checker " << invariant_checker->name(); absl::StatusOr<bool> changed_status = RunHelper(invariant_checker.get(), hlo, execution_threads); VLOG(1) << " Invariant checker done " << invariant_checker->name(); if (!changed_status.ok()) { VLOG(2) << "Failed invariant check:"; XLA_VLOG_LINES(2, hlo->ToString()); return tsl::errors::CreateWithUpdatedMessage( changed_status.status(), absl::StrCat(changed_status.status().message(), "\n\nFailed after ", after_pass_name)); } TF_RET_CHECK(!changed_status.value()) << "invariant checkers must not change the graph"; } return absl::OkStatus(); } namespace { std::string UniqueId(const HloModule& mod) { return std::to_string(mod.unique_id()); } std::string UniqueId(const HloModuleGroup& group) { return absl::StrJoin(group.modules(), "-", [](std::string* out, const HloModule* mod) { out->append(std::to_string(mod->unique_id())); }); } } template <typename HloT> absl::StatusOr<bool> HloPassPipeline::RunPassesInternal( HloT* hlo, const DebugOptions& debug_options, const absl::flat_hash_set<absl::string_view>& execution_threads) { auto passes = GetEnabledPasses(debug_options); std::string dump_regex = debug_options.xla_dump_hlo_pass_re(); static constexpr absl::string_view kPipelineStart = "pipeline-start"; static constexpr absl::string_view kPipelineEnd = "pipeline-end"; std::string pipeline_name = std::string(name()); tsl::profiler::ScopedAnnotation annotation{[&] { return absl::StrFormat("XlaPassPipeline:#name=%s,module=%s,program_id=%s#", pipeline_name, hlo->name(), UniqueId(*hlo)); }}; TF_RETURN_IF_ERROR( RunInvariantCheckers(hlo, kPipelineStart, execution_threads)); RecordPassStartMetadata(*hlo, std::string(kPipelineStart), pipeline_name); MaybeDumpHloAndSaveFilenames(*hlo, kPipelineStart, passes.empty() ? kPipelineEnd : passes.front()->name()); RecordPassEndMetadata(*hlo, std::string(kPipelineStart), false); bool changed = false; for (int i = 0; i < passes.size(); i++) { HloPassInterface* pass = passes[i]; std::string pass_name = std::string(pass->name()); XLA_SCOPED_LOGGING_TIMER(absl::StrCat("HLO pass: ", pass_name)); tsl::profiler::ScopedAnnotation annotation{[&] { return absl::StrFormat("XlaPass:#name=%s,module=%s,program_id=%s#", pass_name, hlo->name(), UniqueId(*hlo)); }}; VLOG(1) << " HLO pass " << pass_name; VLOG(2) << " Module hash " << absl::HashOf(*hlo); if (!pass->IsPassPipeline()) { compilation_stats_->StartPass(pass_name); } RecordPassStartMetadata(*hlo, pass_name, pipeline_name); auto status_or_changed = RunHelper(pass, hlo, execution_threads); if (auto status = status_or_changed.status(); !status.ok()) { compilation_stats_->RecordPassError( pass_name, absl::StatusCodeToString(status.code())); } TF_ASSIGN_OR_RETURN(bool pass_changed, status_or_changed); if (!dump_regex.empty() && (pass_changed || dump_regex != ".*")) { MaybeDumpHloAndSaveFilenames(*hlo, pass_name, i + 1 >= passes.size() ? kPipelineEnd : passes[i + 1]->name()); } RecordPassEndMetadata(*hlo, pass_name, pass_changed); changed |= pass_changed; if (pass_changed) { VLOG(3) << " Pass caused changes " << pass_name; auto status = RunInvariantCheckers(hlo, pass_name, execution_threads); if (!status.ok()) { compilation_stats_->RecordPassError( pass_name, absl::StatusCodeToString(status.code())); } TF_RETURN_IF_ERROR(status); } if (!pass->IsPassPipeline()) { compilation_stats_->EndPass(pass_name); } } return changed; } std::vector<HloPassInterface*> HloPassPipeline::GetEnabledPasses( const DebugOptions& debug_options) { if (debug_options.xla_disable_all_hlo_passes()) { VLOG(1) << "*All* passes disabled by --xla_disable_all_hlo_passes."; return {}; } absl::flat_hash_set<std::string> disabled_pass_names( debug_options.xla_disable_hlo_passes().begin(), debug_options.xla_disable_hlo_passes().end()); absl::flat_hash_set<std::string> enabled_pass_names( debug_options.xla_enable_hlo_passes_only().begin(), debug_options.xla_enable_hlo_passes_only().end()); if (!disabled_pass_names.empty()) { VLOG(1) << "Passes disabled by --xla_disable_hlo_passes: " << absl::StrJoin(disabled_pass_names, ", "); } if (!enabled_pass_names.empty()) { VLOG(1) << "Passes enabled by --xla_enable_hlo_passes_only: " << absl::StrJoin(enabled_pass_names, ", "); } CHECK(disabled_pass_names.empty() || enabled_pass_names.empty()); if (disabled_pass_names.contains(name())) { VLOG(1) << "Disable the full pass: " << name(); return {}; } if (enabled_pass_names.contains(name())) { VLOG(1) << "Enable the full pass: " << name(); enabled_pass_names.clear(); } std::vector<HloPassInterface*> enabled_passes; if (!enabled_pass_names.empty()) { for (auto& pass : passes_) { if (enabled_pass_names.contains(pass->name())) { enabled_passes.push_back(pass.get()); } } } else { for (auto& pass : passes_) { if (!disabled_pass_names.contains(pass->name())) { enabled_passes.push_back(pass.get()); } } } return enabled_passes; } void HloPassPipeline::MaybeDumpHloAndSaveFilenames( HloModule& module, absl::string_view after_pass_name, absl::string_view before_pass_name) { for (const std::string& filename : DumpHloModuleBetweenPassesIfEnabled( name(), before_pass_name, after_pass_name, module)) { absl::Status status = module.metadata()->add_current_pass_dump_filename(filename); if (!status.ok()) { LOG(FATAL) << status; } } } void HloPassPipeline::MaybeDumpHloAndSaveFilenames( HloModuleGroup& module_group, absl::string_view after_pass_name, absl::string_view before_pass_name) { for (HloModule* module : module_group.modules()) { MaybeDumpHloAndSaveFilenames(*module, after_pass_name, before_pass_name); } } absl::StatusOr<bool> HloPassPipeline::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { run_called_ = true; VLOG(1) << "Running HLO pass pipeline on module " << module->name() << ": " << name(); return RunPassesInternal(module, module->config().debug_options(), execution_threads); } absl::StatusOr<bool> HloPassPipeline::RunOnModuleGroup( HloModuleGroup* module_group, const absl::flat_hash_set<absl::string_view>& execution_threads) { run_called_ = true; VLOG(1) << "Running HLO pass pipeline on module group " << module_group->name() << ": " << name(); if (module_group->modules().empty()) { VLOG(1) << "Module group is empty. Nothing to do."; return false; } return RunPassesInternal(module_group, module_group->module(0).config().debug_options(), execution_threads); } }
#include "xla/hlo/pass/hlo_pass_pipeline.h" #include <algorithm> #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_module_group.h" #include "xla/hlo/pass/hlo_pass_interface.h" #include "xla/service/hlo_parser.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using ::testing::ElementsAre; using ::testing::SizeIs; using ::testing::StrEq; class HloPassPipelineTest : public HloTestBase { protected: absl::StatusOr<HloModuleGroup> ParseModuleGroup( absl::Span<const std::string> hlo_strings) { HloModuleGroup group(TestName()); for (const std::string& hlo_string : hlo_strings) { TF_ASSIGN_OR_RETURN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_string)); group.push_back(std::move(module)); } return std::move(group); } }; class FooToBarModulePass : public HloModulePass { absl::string_view name() const override { return "foo2bar"; } using HloPassInterface::Run; absl::StatusOr<bool> Run(HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override { bool changed = false; for (HloComputation* computation : module->computations(execution_threads)) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->name() == "foo") { instruction->SetAndSanitizeName("bar"); changed = true; } } } return changed; } }; class ReverseStringModulePass : public HloModulePass { absl::string_view name() const override { return "reverse"; } using HloPassInterface::Run; absl::StatusOr<bool> Run(HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override { bool changed = false; for (HloComputation* computation : module->computations(execution_threads)) { HloInstruction* root = computation->root_instruction(); std::string name(root->name()); std::reverse(name.begin(), name.end()); root->SetAndSanitizeName(name); changed = true; } return changed; } }; class BazToQuxModuleGroupPass : public HloModuleGroupPass { absl::string_view name() const override { return "baz2qux"; } using HloPassInterface::RunOnModuleGroup; absl::StatusOr<bool> RunOnModuleGroup( HloModuleGroup* module_group, const absl::flat_hash_set<absl::string_view>& execution_threads) override { bool changed = false; for (HloModule* module : module_group->modules()) { for (HloComputation* computation : module->computations(execution_threads)) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->name() == "baz") { instruction->SetAndSanitizeName("qux"); changed = true; } } } } return changed; } }; class BarBlowerUpper : public HloModulePass { absl::string_view name() const override { return "bar-blower-upper"; } using HloPassInterface::Run; absl::StatusOr<bool> Run(HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override { for (HloComputation* computation : module->computations(execution_threads)) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->name() == "bar") { return Internal("Module has instruction named bar"); } } } return false; } }; TEST_F(HloPassPipelineTest, ModulePassChanged) { const std::string module_str = R"( HloModule ModulePassChanged ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) ROOT foo = f32[] multiply(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(module_str)); HloPassPipeline pipeline(TestName()); pipeline.AddPass<FooToBarModulePass>(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->name(), "foo"); TF_ASSERT_OK_AND_ASSIGN(bool changed, pipeline.Run(module.get())); EXPECT_TRUE(changed); EXPECT_EQ(root->name(), "bar"); } TEST_F(HloPassPipelineTest, ModulePassUnchanged) { const std::string module_str = R"( HloModule ModulePassUnchanged ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) ROOT blahblah = f32[] multiply(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(module_str)); HloPassPipeline pipeline(TestName()); pipeline.AddPass<FooToBarModulePass>(); TF_ASSERT_OK_AND_ASSIGN(bool changed, pipeline.Run(module.get())); EXPECT_FALSE(changed); } TEST_F(HloPassPipelineTest, ModulePassChangedForParallelThread) { const std::string module_str = R"( HloModule ModulePassChanged %async_builder { %p0 = f32[10] parameter(0) %p1 = f32[10] parameter(1) ROOT %foo = add(%p0, %p1) }, execution_thread="parallel_thread" ENTRY %Entry (p0: f32[10], p1: f32[10]) -> f32[10] { %p0 = f32[10] parameter(0) %p1 = f32[10] parameter(1) %async-start = ((f32[10], f32[10]), f32[10], s32[]) async-start(f32[10] %p0, f32[10] %p1), async_execution_thread="parallel_thread",calls=%async_builder ROOT %baz = f32[10]{0} async-done(((f32[10], f32[10]), f32[10], s32[]) %async-start), async_execution_thread="parallel_thread", calls=%async_builder } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(module_str)); HloPassPipeline pipeline(TestName()); pipeline.AddPass<ReverseStringModulePass>(); HloInstruction* main_root = module->entry_computation()->root_instruction(); HloInstruction* parallel_thread_root = main_root->async_wrapped_computation()->root_instruction(); EXPECT_EQ(main_root->name(), "baz"); EXPECT_EQ(parallel_thread_root->name(), "foo"); TF_ASSERT_OK_AND_ASSIGN(bool changed, pipeline.Run(module.get(), {"parallel_thread"})); EXPECT_TRUE(changed); EXPECT_EQ(main_root->name(), "baz"); EXPECT_EQ(parallel_thread_root->name(), "oof"); } TEST_F(HloPassPipelineTest, ModulePassChangedForAllexecution_threads) { const std::string module_str = R"( HloModule ModulePassChanged %async_builder { %p0 = f32[10] parameter(0) %p1 = f32[10] parameter(1) ROOT %foo = add(%p0, %p1) }, execution_thread="parallel_thread" ENTRY %Entry (p0: f32[10], p1: f32[10]) -> f32[10] { %p0 = f32[10] parameter(0) %p1 = f32[10] parameter(1) %async-start = ((f32[10], f32[10]), f32[10], s32[]) async-start(f32[10] %p0, f32[10] %p1), async_execution_thread="parallel_thread",calls=%async_builder ROOT %baz = f32[10]{0} async-done(((f32[10], f32[10]), f32[10], s32[]) %async-start), async_execution_thread="parallel_thread", calls=%async_builder } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(module_str)); HloPassPipeline pipeline(TestName()); pipeline.AddPass<ReverseStringModulePass>(); HloInstruction* main_root = module->entry_computation()->root_instruction(); HloInstruction* parallel_thread_root = main_root->async_wrapped_computation()->root_instruction(); EXPECT_EQ(main_root->name(), "baz"); EXPECT_EQ(parallel_thread_root->name(), "foo"); TF_ASSERT_OK_AND_ASSIGN(bool changed, pipeline.Run(module.get())); EXPECT_TRUE(changed); EXPECT_EQ(main_root->name(), "zab"); EXPECT_EQ(parallel_thread_root->name(), "oof"); } TEST_F(HloPassPipelineTest, MixedPipeline) { const std::string module_0_str = R"( HloModule MixedPipeline.1 ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) ROOT baz = f32[] multiply(a, b) } )"; const std::string module_1_str = R"( HloModule MixedPipeline.0 ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) ROOT foo = f32[] multiply(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(HloModuleGroup module_group, ParseModuleGroup({module_0_str, module_1_str})); HloPassPipeline pipeline(TestName()); pipeline.AddPass<BazToQuxModuleGroupPass>(); pipeline.AddPass<FooToBarModulePass>(); HloInstruction* root0 = module_group.module(0).entry_computation()->root_instruction(); HloInstruction* root1 = module_group.module(1).entry_computation()->root_instruction(); EXPECT_EQ(root0->name(), "baz"); EXPECT_EQ(root1->name(), "foo"); TF_ASSERT_OK_AND_ASSIGN(bool changed, pipeline.RunOnModuleGroup(&module_group)); EXPECT_TRUE(changed); EXPECT_EQ(root0->name(), "qux"); EXPECT_EQ(root1->name(), "bar"); } TEST_F(HloPassPipelineTest, InvariantChecker) { const std::string module_str = R"( HloModule InvariantChecker ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) ROOT foo = f32[] multiply(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(module_str)); { HloPassPipeline pipeline(TestName()); pipeline.AddInvariantChecker<BarBlowerUpper>(); TF_ASSERT_OK_AND_ASSIGN(bool changed, pipeline.Run(module.get())); EXPECT_FALSE(changed); } { HloPassPipeline pipeline(TestName()); pipeline.AddInvariantChecker<BarBlowerUpper>(); pipeline.AddPass<FooToBarModulePass>(); absl::Status status = pipeline.Run(module.get()).status(); ASSERT_IS_NOT_OK(status); EXPECT_THAT(status.message(), ::testing::HasSubstr("Module has instruction named bar")); EXPECT_THAT(status.message(), ::testing::HasSubstr("Failed after foo2bar")); } { HloPassPipeline pipeline(TestName()); pipeline.AddInvariantChecker<BarBlowerUpper>(); absl::Status status = pipeline.Run(module.get()).status(); ASSERT_IS_NOT_OK(status); EXPECT_THAT(status.message(), ::testing::HasSubstr("Module has instruction named bar")); EXPECT_THAT(status.message(), ::testing::HasSubstr("Failed after pipeline-start")); } } TEST_F(HloPassPipelineTest, ModuleGroupPassOnModule) { const std::string module_str = R"( HloModule ModuleGroupPassOnModule ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) ROOT foo = f32[] multiply(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(module_str)); HloPassPipeline pipeline(TestName()); pipeline.AddPass<BazToQuxModuleGroupPass>(); absl::Status status = pipeline.Run(module.get()).status(); ASSERT_IS_NOT_OK(status); EXPECT_THAT( status.message(), ::testing::HasSubstr("Module group pass cannot be run on a module")); } TEST_F(HloPassPipelineTest, SetHloModuleMetadata) { HloModuleGroup module_group(TestName()); module_group.push_back(CreateNewVerifiedModule()); module_group.push_back(CreateNewVerifiedModule()); HloPassPipeline pipeline(TestName()); pipeline.AddPass<BazToQuxModuleGroupPass>(); pipeline.AddPass<FooToBarModulePass>(); TF_ASSERT_OK(pipeline.RunOnModuleGroup(&module_group).status()); ASSERT_THAT(module_group.modules(), SizeIs(2)); std::vector<std::string> pass_names = {"pipeline-start", "baz2qux", "foo2bar"}; std::string pipeline_name = std::string(pipeline.name()); for (const HloModule* module : module_group.modules()) { const HloModuleMetadataProto& metadata = module->metadata().proto(); EXPECT_EQ(metadata.canonical_module_id(), module->unique_id()); EXPECT_EQ(metadata.module_group_name(), module_group.name()); ASSERT_THAT(metadata.pass_metadata(), SizeIs(3)); for (int pass = 0; pass < metadata.pass_metadata().size(); pass++) { const HloPassMetadata& pass_metadata = metadata.pass_metadata(pass); EXPECT_NE(pass_metadata.pass_id(), 0); EXPECT_THAT(pass_metadata.pass_name(), StrEq(pass_names[pass])); EXPECT_THAT(pass_metadata.pipeline_name(), StrEq(pipeline_name)); EXPECT_FALSE(pass_metadata.module_changed()); EXPECT_EQ(pass_metadata.module_id(), module->unique_id()); EXPECT_THAT(pass_metadata.module_group_module_ids(), ElementsAre(module_group.module(0).unique_id(), module_group.module(1).unique_id())); EXPECT_GT(pass_metadata.start_timestamp_usec(), 0); EXPECT_LE(pass_metadata.start_timestamp_usec(), pass_metadata.end_timestamp_usec()); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/pass/hlo_pass_pipeline.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/pass/hlo_pass_pipeline_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4db71c48-fba5-4815-b48c-8072b4eda2f0
cpp
tensorflow/tensorflow
backend_config
third_party/xla/xla/hlo/ir/backend_config.cc
third_party/xla/xla/hlo/ir/backend_config_test.cc
#include "xla/hlo/ir/backend_config.h" #include <memory> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/human_readable_json.h" #include "tsl/platform/protobuf.h" namespace xla { std::unique_ptr<tsl::protobuf::Message> CloneBackendConfigProto( const tsl::protobuf::Message* proto) { if (proto == nullptr) { return nullptr; } std::unique_ptr<tsl::protobuf::Message> result(proto->New()); result->CopyFrom(*proto); return result; } absl::StatusOr<std::string> BackendConfigToRawString( const tsl::protobuf::Message& proto) { return tsl::ProtoToHumanReadableJson(proto, true); } const std::string& BackendConfigWrapper::GetRawStringWithoutMutex() const { if (proto_ && raw_string_.empty()) { raw_string_ = BackendConfigToRawString(*proto_).value(); } static const std::string* kEmptyString = new std::string(); return raw_string_.empty() ? *kEmptyString : raw_string_; } absl::Status BackendConfigWrapper::GetProto( tsl::protobuf::Message* output_proto) const { output_proto->Clear(); absl::WriterMutexLock lock{&mutex_}; if (proto_ != nullptr) { if (proto_->GetDescriptor() != output_proto->GetDescriptor()) { return Internal("Mismatched backend config descriptors."); } output_proto->CopyFrom(*proto_); return absl::OkStatus(); } if (raw_string_.empty()) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(tsl::HumanReadableJsonToProto(raw_string_, output_proto)); proto_ = CloneBackendConfigProto(output_proto); return absl::OkStatus(); } BackendConfigWrapper& BackendConfigWrapper::operator=( BackendConfigWrapper&& other) { std::unique_ptr<tsl::protobuf::Message> temp_proto; std::string temp_string; { absl::MutexLock other_lock{&other.mutex_}; temp_proto = std::move(other.proto_); temp_string = std::move(other.raw_string_); } absl::MutexLock this_lock{&mutex_}; proto_ = std::move(temp_proto); raw_string_ = std::move(temp_string); return *this; } bool BackendConfigWrapper::operator==(const BackendConfigWrapper& other) const { tsl::protobuf::Message* this_proto = nullptr; { absl::MutexLock this_lock{&mutex_}; this_proto = proto_.get(); } const std::string* other_raw_string = nullptr; { absl::MutexLock other_lock{&other.mutex_}; if (this_proto != nullptr && other.proto_ != nullptr) { using ::tsl::protobuf::util::MessageDifferencer; return MessageDifferencer::Equals(*this_proto, *other.proto_); } other_raw_string = &other.GetRawStringWithoutMutex(); } return GetRawString() == *other_raw_string; } }
#include "xla/hlo/ir/backend_config.h" #include <memory> #include <string> #include <thread> #include <utility> #include <vector> #include "absl/strings/string_view.h" #include "absl/synchronization/notification.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/test.h" namespace xla { namespace { const int kNumThreads = 100; const int kNumRepetitions = 100; constexpr absl::string_view kRawString = R"({"operation_queue_id":"0","wait_on_operation_queues":[],"fusion_backend_config":{"kind":"__triton_gemm","triton_gemm_config":{"block_m":"256","block_n":"256","block_k":"32","split_k":"1","num_stages":"1","num_warps":"16","num_ctas":"1"}},"force_earliest_schedule":false})"; template <typename Input, typename CheckFn> void RunThreaded(Input input, CheckFn check_fn) { for (int i = 0; i < kNumRepetitions; ++i) { BackendConfigWrapper source(input); absl::Notification all_threads_created; std::vector<std::unique_ptr<std::thread>> threads; for (int i = 0; i < kNumThreads; ++i) { threads.emplace_back(std::make_unique<std::thread>([&] { all_threads_created.WaitForNotification(); check_fn(source); })); } all_threads_created.Notify(); for (int i = 0; i < kNumThreads; ++i) { threads[i]->join(); } } } TEST(BackendConfigWrapperTest, ConcurrentGetProto) { RunThreaded(std::string{kRawString}, [](BackendConfigWrapper& source) { gpu::GpuBackendConfig proto; TF_EXPECT_OK(source.GetProto(&proto)); EXPECT_TRUE(proto.has_fusion_backend_config()); BackendConfigWrapper wrapped(proto); EXPECT_TRUE(wrapped == source); }); } TEST(BackendConfigWrapperTest, ConcurrentGetRawString) { BackendConfigWrapper source_json(std::string{kRawString}); gpu::GpuBackendConfig proto; TF_EXPECT_OK(source_json.GetProto(&proto)); RunThreaded(proto, [](BackendConfigWrapper& source) { std::string raw_string = source.GetRawString(); EXPECT_EQ(raw_string, kRawString); BackendConfigWrapper wrapped(raw_string); EXPECT_TRUE(wrapped == source); }); } TEST(BackendConfigWrapperTest, AssignmentToNonEmptyIsOK) { BackendConfigWrapper a(std::string{kRawString}); BackendConfigWrapper b(std::string{kRawString}); a = std::move(b); EXPECT_TRUE(a == BackendConfigWrapper(std::string{kRawString})); } TEST(BackendConfigWrapperTest, AssignmentDoesNotDeadlock) { BackendConfigWrapper source; BackendConfigWrapper& ref = source; source = std::move(ref); } TEST(BackendConfigWrapperTest, SelfComparisonDoesNotDeadlock) { BackendConfigWrapper source(std::string{kRawString}); EXPECT_TRUE(source == source); } TEST(BackendConfigWrapperTest, ComparisonDoesNotDeadlock) { BackendConfigWrapper source_json(std::string{kRawString}); gpu::GpuBackendConfig proto; TF_EXPECT_OK(source_json.GetProto(&proto)); RunThreaded(std::string{kRawString}, [&proto](BackendConfigWrapper& source) { BackendConfigWrapper other_first(proto); EXPECT_TRUE(other_first == source); BackendConfigWrapper other_second(proto); EXPECT_TRUE(source == other_second); }); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/backend_config.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/backend_config_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
af3f2af3-6f07-4e3c-b1f8-a9fbaaa3332c
cpp
tensorflow/tensorflow
hlo_opcode
third_party/xla/xla/hlo/ir/hlo_opcode.cc
third_party/xla/xla/service/hlo_opcode_test.cc
#include "xla/hlo/ir/hlo_opcode.h" #include <optional> #include <string> #include "absl/container/flat_hash_map.h" #include "xla/util.h" namespace xla { absl::string_view HloOpcodeString(HloOpcode opcode) { switch (opcode) { #define CASE_OPCODE_STRING(enum_name, opcode_name, ...) \ case HloOpcode::enum_name: \ return opcode_name; HLO_OPCODE_LIST(CASE_OPCODE_STRING) #undef CASE_OPCODE_STRING } } absl::StatusOr<HloOpcode> StringToHloOpcode(absl::string_view opcode_name) { static auto* opcode_map = new absl::flat_hash_map<std::string, HloOpcode>({ #define STRING_TO_OPCODE_ENTRY(enum_name, opcode_name, ...) \ {opcode_name, HloOpcode::enum_name}, HLO_OPCODE_LIST(STRING_TO_OPCODE_ENTRY) #undef STRING_TO_OPCODE_ENTRY }); auto it = opcode_map->find(opcode_name); if (it == opcode_map->end()) { return InvalidArgument("Unknown opcode: %s", opcode_name); } return it->second; } bool HloOpcodeIsComparison(HloOpcode opcode) { return opcode == HloOpcode::kCompare; } bool HloOpcodeIsVariadic(HloOpcode opcode) { switch (opcode) { #define CASE_IS_VARIADIC(enum_name, opcode_name, arity, ...) \ case HloOpcode::enum_name: \ return arity == kHloOpcodeIsVariadic; HLO_OPCODE_LIST(CASE_IS_VARIADIC) #undef CASE_IS_VARIADIC } } std::optional<int> HloOpcodeArity(HloOpcode opcode) { switch (opcode) { #define CASE_ARITY(enum_name, opcode_name, arity, ...) \ case HloOpcode::enum_name: \ return arity == kHloOpcodeIsVariadic ? std::nullopt \ : std::make_optional(arity); HLO_OPCODE_LIST(CASE_ARITY) #undef CASE_ARITY } } bool HloOpcodeIsAsync(HloOpcode opcode) { return opcode == HloOpcode::kAsyncStart || opcode == HloOpcode::kAsyncUpdate || opcode == HloOpcode::kAsyncDone; } }
#include "xla/hlo/ir/hlo_opcode.h" #include "xla/test.h" #include "xla/types.h" namespace xla { namespace { TEST(HloOpcodeTest, StringifyMultiply) { ASSERT_EQ("multiply", HloOpcodeString(HloOpcode::kMultiply)); } TEST(HloOpcodeTest, OpcodeProperties) { #define SOME_LIST(X) \ X(One) \ X(Two) \ X(Three) EXPECT_EQ(3, HLO_XLIST_LENGTH(SOME_LIST)); #undef SOME_LIST for (int i = 0; i < HloOpcodeCount(); ++i) { auto opcode = static_cast<HloOpcode>(i); EXPECT_EQ(opcode, StringToHloOpcode(HloOpcodeString(opcode)).value()); switch (opcode) { case HloOpcode::kCompare: EXPECT_TRUE(HloOpcodeIsComparison(opcode)); break; default: EXPECT_FALSE(HloOpcodeIsComparison(opcode)); } switch (opcode) { case HloOpcode::kAfterAll: case HloOpcode::kAllGather: case HloOpcode::kAllGatherStart: case HloOpcode::kAllReduce: case HloOpcode::kAsyncStart: case HloOpcode::kReduceScatter: case HloOpcode::kAllReduceStart: case HloOpcode::kAllToAll: case HloOpcode::kCall: case HloOpcode::kCollectiveBroadcast: case HloOpcode::kCollectivePermute: case HloOpcode::kCollectivePermuteStart: case HloOpcode::kConcatenate: case HloOpcode::kConditional: case HloOpcode::kCustomCall: case HloOpcode::kDot: case HloOpcode::kDynamicSlice: case HloOpcode::kDynamicUpdateSlice: case HloOpcode::kDynamicReshape: case HloOpcode::kFusion: case HloOpcode::kMap: case HloOpcode::kReduce: case HloOpcode::kRng: case HloOpcode::kScatter: case HloOpcode::kSort: case HloOpcode::kTuple: case HloOpcode::kReduceWindow: EXPECT_TRUE(HloOpcodeIsVariadic(opcode)); break; default: EXPECT_FALSE(HloOpcodeIsVariadic(opcode)); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/hlo_opcode.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_opcode_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0bc63f44-f8b9-4765-a91f-c9b302a20911
cpp
tensorflow/tensorflow
hlo_schedule
third_party/xla/xla/hlo/ir/hlo_schedule.cc
third_party/xla/xla/service/hlo_schedule_test.cc
#include "xla/hlo/ir/hlo_schedule.h" #include <cstdint> #include <ostream> #include <queue> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/map_util.h" #include "xla/status_macros.h" #include "xla/tsl/lib/gtl/map_util.h" #include "xla/util.h" namespace xla { absl::StatusOr<HloSchedule> HloSchedule::CreateFromProto( const HloModule* module, const HloScheduleProto& proto) { absl::flat_hash_map<int64_t, const HloComputation*> id_to_computation; for (const HloComputation* computation : module->computations()) { id_to_computation[computation->unique_id()] = computation; } HloSchedule schedule(module); for (const auto& id_sequence : proto.sequences()) { int64_t computation_id = id_sequence.first; auto comp_it = id_to_computation.find(computation_id); if (comp_it == id_to_computation.end()) { continue; } const HloComputation* computation = comp_it->second; absl::flat_hash_map<int64_t, HloInstruction*> id_to_instruction; for (HloInstruction* instruction : computation->instructions()) { id_to_instruction[instruction->unique_id()] = instruction; } HloInstructionSequence& sequence = schedule.GetOrCreateSequence(computation); for (const int64_t instruction_id : id_sequence.second.instruction_ids()) { auto instr_it = id_to_instruction.find(instruction_id); TF_RET_CHECK(instr_it != id_to_instruction.end()) << "No instruction exists in HLO computation " << computation->name() << " with id " << instruction_id; sequence.push_back(instr_it->second); } } TF_RETURN_IF_ERROR(schedule.Verify()); return std::move(schedule); } absl::StatusOr<HloScheduleProto> HloSchedule::ToProto() const { TF_RETURN_IF_ERROR(Verify()); HloScheduleProto proto; for (const auto& id_sequence : sequences_) { int64_t computation_id = id_sequence.first; const HloInstructionSequence& sequence = id_sequence.second; HloScheduleProto::InstructionSequence& proto_sequence = (*proto.mutable_sequences())[computation_id]; proto_sequence.mutable_instruction_ids()->Reserve(sequence.size()); for (const int64_t id : sequence.ids()) { proto_sequence.add_instruction_ids(id); } } return std::move(proto); } void HloSchedule::set_sequence(const HloComputation* computation, absl::Span<HloInstruction* const> sequence) { set_sequence(computation, HloInstructionSequence(sequence)); } void HloSchedule::set_sequence(const HloComputation* computation, HloInstructionSequence sequence) { CHECK(computation->parent() == module_); sequences_[computation->unique_id()] = std::move(sequence); execution_threads_[computation->unique_id()] = std::string(computation->execution_thread()); } HloInstructionSequence& HloSchedule::GetOrCreateSequence( const HloComputation* computation) { auto it = sequences_.find(computation->unique_id()); if (it == sequences_.end()) { CHECK(computation->parent() == module_); execution_threads_[computation->unique_id()] = std::string(computation->execution_thread()); return sequences_[computation->unique_id()]; } else { return it->second; } } const HloInstructionSequence& HloSchedule::sequence( const HloComputation* computation) const { return sequences_.at(computation->unique_id()); } absl::Status HloSchedule::UpdateComputationSchedule( const HloComputation* computation) { absl::flat_hash_map<int, HloInstruction*> id_to_instruction; for (HloInstruction* instruction : computation->instructions()) { InsertOrDie(&id_to_instruction, instruction->unique_id(), instruction); } absl::flat_hash_set<int> ids_in_schedule; for (int id : sequences_.at(computation->unique_id()).ids()) { InsertOrDie(&ids_in_schedule, id); } absl::flat_hash_map<const HloInstruction*, std::vector<HloInstruction*>> new_instruction_uses; absl::flat_hash_map<const HloInstruction*, int> unscheduled_operand_count; std::queue<HloInstruction*> worklist; for (HloInstruction* instruction : computation->instructions()) { if (!ids_in_schedule.contains(instruction->unique_id())) { if (instruction->operands().empty()) { worklist.push(instruction); } else { for (const HloInstruction* operand : instruction->operands()) { new_instruction_uses[operand].push_back(instruction); } unscheduled_operand_count[instruction] = instruction->operand_count(); } } } HloInstructionSequence new_sequence; auto schedule_worklist = [&]() { while (!worklist.empty()) { HloInstruction* instruction = worklist.front(); worklist.pop(); new_sequence.push_back(instruction); std::vector<HloInstruction*>* new_users = tsl::gtl::FindOrNull(new_instruction_uses, instruction); if (new_users != nullptr) { for (HloInstruction* new_user : *new_users) { unscheduled_operand_count.at(new_user)--; CHECK_GE(unscheduled_operand_count.at(new_user), 0); if (unscheduled_operand_count.at(new_user) == 0) { worklist.push(new_user); } } } } }; schedule_worklist(); for (int id : sequences_.at(computation->unique_id()).ids()) { auto it = id_to_instruction.find(id); if (it == id_to_instruction.end()) { continue; } worklist.push(it->second); schedule_worklist(); } set_sequence(computation, std::move(new_sequence)); return absl::OkStatus(); } absl::Status HloSchedule::Update( const absl::flat_hash_set<absl::string_view>& execution_threads) { std::vector<HloComputation*> nonfusion_computations = module_->MakeNonfusionComputations(execution_threads); for (const HloComputation* computation : nonfusion_computations) { if (!is_computation_scheduled(computation)) { GetOrCreateSequence(computation); TF_RETURN_IF_ERROR(UpdateComputationSchedule(computation)); } } auto sum_of_sequences_for_threads = [&]() -> int64_t { if (execution_threads.empty()) { return sequences_.size(); } int64_t sequences_num_for_threads = 0; for (const auto& [thread_name, sequence_num] : num_sequences_by_execution_thread()) { sequences_num_for_threads += execution_threads.contains(thread_name) ? sequence_num : 0; } return sequences_num_for_threads; }; int64_t sequence_sum = sum_of_sequences_for_threads(); if (sequence_sum > nonfusion_computations.size()) { absl::flat_hash_set<int64_t> nonfusion_computations_ids; for (const HloComputation* computation : nonfusion_computations) { nonfusion_computations_ids.insert(computation->unique_id()); } for (auto it = sequences_.begin(); it != sequences_.end();) { std::string sequence_thread_name = tsl::gtl::FindWithDefault( execution_threads_, it->first, HloInstruction::kMainExecutionThread); bool is_thread_included = execution_threads.empty() || execution_threads.contains(sequence_thread_name); if (!nonfusion_computations_ids.contains(it->first) && is_thread_included) { execution_threads_.erase(it->first); sequences_.erase(it++); } else { ++it; } } } sequence_sum = sum_of_sequences_for_threads(); CHECK_EQ(sequence_sum, nonfusion_computations.size()); for (const HloComputation* computation : nonfusion_computations) { TF_RETURN_IF_ERROR(UpdateComputationSchedule(computation)); } TF_RETURN_IF_ERROR(Verify()); return absl::OkStatus(); } absl::flat_hash_map<std::string, int64_t> HloSchedule::num_sequences_by_execution_thread() const { absl::flat_hash_map<std::string, int64_t> sequence_num_by_execution_threads; for (const auto& id_sequence_item : sequences_) { ++sequence_num_by_execution_threads[tsl::gtl::FindWithDefault( execution_threads_, id_sequence_item.first, HloInstruction::kMainExecutionThread)]; } return sequence_num_by_execution_threads; } absl::Status HloSchedule::Verify() const { VLOG(2) << "VerifySchedule()"; XLA_VLOG_LINES(2, ToString()); absl::flat_hash_map<std::string, int64_t> sequence_num_by_execution_threads = num_sequences_by_execution_thread(); for (const auto& [thread_name, sequence_size] : sequence_num_by_execution_threads) { std::vector<HloComputation*> nonfusion_computations = module_->MakeNonfusionComputations({thread_name}); TF_RET_CHECK(nonfusion_computations.size() == sequence_size) << "For thread " << thread_name << ", schedule has " << sequence_size << " sequences, but module has " << nonfusion_computations.size() << " non-fusion computations for thread " << thread_name; for (const HloComputation* computation : nonfusion_computations) { TF_RET_CHECK(sequences_.contains(computation->unique_id())) << "Computation " << computation->name() << " missing from HLO schedule."; } for (const HloComputation* computation : nonfusion_computations) { absl::flat_hash_map<const HloInstruction*, int> instruction_position; int pos = 0; for (const HloInstruction* instruction : sequence(computation).instructions()) { TF_RET_CHECK(instruction_position.insert({instruction, pos}).second) << "Instruction " << instruction->name() << " appears more than once in the schedule"; pos++; } TF_RET_CHECK(instruction_position.size() == computation->instruction_count()) << "Schedule for computation " << computation->name() << " has " << instruction_position.size() << " instructions, expected " << computation->instruction_count(); for (const HloInstruction* instruction : computation->instructions()) { TF_RET_CHECK(instruction_position.contains(instruction)) << "Instruction " << instruction->name() << " is not in schedule"; } for (const HloInstruction* instruction : computation->instructions()) { for (const HloInstruction* operand : instruction->operands()) { TF_RET_CHECK(instruction_position.at(operand) < instruction_position.at(instruction)) << "Instruction " << instruction->name() << " is not scheduled after its operand " << operand->name(); } for (const HloInstruction* pred : instruction->control_predecessors()) { TF_RET_CHECK(instruction_position.at(pred) < instruction_position.at(instruction)) << "Instruction " << instruction->name() << " is not scheduled after its control predecessor " << pred->name(); } } } } return absl::OkStatus(); } namespace { const HloComputation* IdToComputation(const HloModule* module, int64_t id) { for (const HloComputation* computation : module->computations()) { if (computation->unique_id() == id) { return computation; } } return nullptr; } } std::string HloSchedule::ToString() const { std::vector<std::string> pieces; pieces.push_back("HloSchedule"); std::vector<int64_t> sorted_ids; for (const auto& id_sequence : sequences_) { sorted_ids.push_back(id_sequence.first); } absl::c_sort(sorted_ids); for (const int64_t id : sorted_ids) { const HloComputation* computation = IdToComputation(module_, id); const HloInstructionSequence& sequence = sequences_.at(id); if (computation == nullptr) { pieces.push_back(absl::StrFormat( "computation with id %d (no longer in HLO module):", id)); for (int id : sequence.ids()) { pieces.push_back(absl::StrCat(" ", id)); } } else { pieces.push_back(absl::StrFormat("computation %s:", computation->name())); for (const HloInstruction* instruction : sequence.instructions()) { pieces.push_back(absl::StrCat(" ", instruction->name())); } } } return absl::StrJoin(pieces, "\n"); } std::ostream& operator<<(std::ostream& out, const HloSchedule& schedule) { return out << schedule.ToString(); } }
#include "xla/hlo/ir/hlo_schedule.h" #include <memory> #include <string> #include <vector> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/log/log.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_memory_scheduler.h" #include "xla/service/hlo_ordering.h" #include "xla/shape_util.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class HloScheduleTest : public HloTestBase {}; TEST_F(HloScheduleTest, UpdateScheduleUnchangedModule) { const std::string module_str = R"( HloModule UpdateScheduleUnchanged ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) c = f32[] constant(42.0) sum = f32[] add(a, b) neg = f32[] negate(c) ROOT root = f32[] multiply(sum, neg) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape()); })); const auto& entry_schedule = schedule.sequence(module->entry_computation()).instructions(); EXPECT_EQ(entry_schedule.size(), 6); TF_ASSERT_OK(schedule.Update()); TF_ASSERT_OK(schedule.Verify()); EXPECT_EQ(entry_schedule, schedule.sequence(module->entry_computation()).instructions()); } TEST_F(HloScheduleTest, UpdateScheduleWithNewInstructions) { const std::string module_str = R"( HloModule UpdateScheduleWithNewInstructions ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) c = f32[] constant(42.0) sum = f32[] add(a, b) neg = f32[] negate(c) ROOT root = f32[] multiply(sum, neg) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape()); })); HloComputation* entry = module->entry_computation(); const Shape shape = entry->root_instruction()->shape(); HloInstruction* constant = entry->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0))); HloInstruction* sub = entry->AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kSubtract, constant, entry->root_instruction())); entry->set_root_instruction(sub); auto in_schedule = [&](const HloInstruction* hlo) { return absl::c_linear_search(schedule.sequence(entry).instructions(), hlo); }; EXPECT_EQ(schedule.sequence(entry).size(), 6); EXPECT_FALSE(in_schedule(constant)); EXPECT_FALSE(in_schedule(sub)); ASSERT_IS_NOT_OK(schedule.Verify()); TF_ASSERT_OK(schedule.Update()); TF_ASSERT_OK(schedule.Verify()); EXPECT_EQ(schedule.sequence(entry).size(), 8); EXPECT_TRUE(in_schedule(constant)); EXPECT_TRUE(in_schedule(sub)); } TEST_F(HloScheduleTest, UpdateScheduleWithAddedAndDeletedInstruction) { const std::string module_str = R"( HloModule UpdateScheduleWithAddedAndDeletedInstruction ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) c = f32[] constant(42.0) sum = f32[] add(a, b) neg = f32[] negate(c) ROOT root = f32[] multiply(sum, neg) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape()); })); HloComputation* entry = module->entry_computation(); HloInstruction* constant = entry->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0))); HloInstruction* new_root = entry->AddInstruction( HloInstruction::CreateBinary(constant->shape(), HloOpcode::kSubtract, constant, entry->parameter_instruction(0))); entry->set_root_instruction(new_root); HloDCE dce; TF_ASSERT_OK(dce.Run(module.get()).status()); EXPECT_EQ(schedule.sequence(entry).size(), 6); ASSERT_IS_NOT_OK(schedule.Verify()); TF_ASSERT_OK(schedule.Update()); TF_ASSERT_OK(schedule.Verify()); EXPECT_EQ(schedule.sequence(entry).size(), 4); } TEST_F(HloScheduleTest, UpdateScheduleWithCompletelyReplacedModule) { const std::string module_str = R"( HloModule UpdateScheduleWithCompletelyReplacedModule ENTRY main { a = f32[] constant(42.0) b = f32[] constant(123.0) ROOT sum = f32[] add(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape()); })); HloComputation* entry = module->entry_computation(); HloInstruction* constant = entry->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); HloInstruction* new_root = entry->AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kNegate, constant)); entry->set_root_instruction(new_root); HloDCE dce; TF_ASSERT_OK(dce.Run(module.get()).status()); EXPECT_EQ(schedule.sequence(entry).size(), 3); ASSERT_IS_NOT_OK(schedule.Verify()); TF_ASSERT_OK(schedule.Update()); TF_ASSERT_OK(schedule.Verify()); EXPECT_EQ(schedule.sequence(entry).size(), 2); } TEST_F(HloScheduleTest, UpdateScheduleWithMultipleComputations) { const std::string module_str = R"( HloModule UpdateScheduleWithMultipleComputations %Body (param.1: (s32[], token[])) -> (s32[], token[]) { %param.1 = (s32[], token[]) parameter(0) %get-tuple-element.1 = s32[] get-tuple-element((s32[], token[]) %param.1), index=0 %constant.1 = s32[] constant(1) %add = s32[] add(s32[] %get-tuple-element.1, s32[] %constant.1) %get-tuple-element.2 = token[] get-tuple-element((s32[], token[]) %param.1), index=1 %after-all = token[] after-all(token[] %get-tuple-element.2) ROOT %tuple = (s32[], token[]) tuple(s32[] %add, token[] %after-all) } %Cond (param: (s32[], token[])) -> pred[] { %param = (s32[], token[]) parameter(0) %get-tuple-element = s32[] get-tuple-element((s32[], token[]) %param), index=0 %constant = s32[] constant(42) ROOT %less-than = pred[] compare(s32[] %get-tuple-element, s32[] %constant), direction=LT } ENTRY %WhileLoop () -> s32[] { %zero = s32[] constant(0) %init_token = token[] after-all() %init_tuple = (s32[], token[]) tuple(s32[] %zero, token[] %init_token) %while = (s32[], token[]) while((s32[], token[]) %init_tuple), condition=%Cond, body=%Body ROOT %root = s32[] get-tuple-element((s32[], token[]) %while), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape(), sizeof(void*)); })); const HloInstruction* xla_while = module->entry_computation()->root_instruction()->operand(0); HloComputation* body = xla_while->while_body(); HloComputation* cond = xla_while->while_condition(); cond->set_root_instruction(cond->AddInstruction( HloInstruction::CreateUnary(ShapeUtil::MakeShape(PRED, {}), HloOpcode::kNot, cond->root_instruction()))); body->set_root_instruction(body->parameter_instruction(0)); HloDCE dce; TF_ASSERT_OK(dce.Run(module.get()).status()); EXPECT_EQ(schedule.sequence(body).size(), 7); EXPECT_EQ(schedule.sequence(cond).size(), 4); ASSERT_IS_NOT_OK(schedule.Verify()); TF_ASSERT_OK(schedule.Update()); TF_ASSERT_OK(schedule.Verify()); EXPECT_EQ(schedule.sequence(body).size(), 1); EXPECT_EQ(schedule.sequence(cond).size(), 5); } TEST_F(HloScheduleTest, UpdateScheduleComputationRemoved) { const std::string module_str = R"( HloModule UpdateScheduleWithMultipleComputations %Body (param.1: (s32[], token[])) -> (s32[], token[]) { %param.1 = (s32[], token[]) parameter(0) %get-tuple-element.1 = s32[] get-tuple-element((s32[], token[]) %param.1), index=0 %constant.1 = s32[] constant(1) %add = s32[] add(s32[] %get-tuple-element.1, s32[] %constant.1) %get-tuple-element.2 = token[] get-tuple-element((s32[], token[]) %param.1), index=1 %after-all = token[] after-all(token[] %get-tuple-element.2) ROOT %tuple = (s32[], token[]) tuple(s32[] %add, token[] %after-all) } %Cond (param: (s32[], token[])) -> pred[] { %param = (s32[], token[]) parameter(0) %get-tuple-element = s32[] get-tuple-element((s32[], token[]) %param), index=0 %constant = s32[] constant(42) ROOT %less-than = pred[] compare(s32[] %get-tuple-element, s32[] %constant), direction=LT } ENTRY %WhileLoop () -> s32[] { %zero = s32[] constant(0) %init_token = token[] after-all() %init_tuple = (s32[], token[]) tuple(s32[] %zero, token[] %init_token) %while = (s32[], token[]) while((s32[], token[]) %init_tuple), condition=%Cond, body=%Body ROOT %root = s32[] get-tuple-element((s32[], token[]) %while), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape(), sizeof(void*)); })); HloInstruction* xla_while = module->entry_computation()->root_instruction()->mutable_operand(0); HloInstruction* init = xla_while->mutable_operand(0); TF_ASSERT_OK(xla_while->ReplaceAllUsesWith(init)); HloDCE dce; ASSERT_EQ(module->computation_count(), 3); TF_ASSERT_OK(dce.Run(module.get()).status()); ASSERT_EQ(module->computation_count(), 1); ASSERT_IS_NOT_OK(schedule.Verify()); TF_ASSERT_OK(schedule.Update()); TF_ASSERT_OK(schedule.Verify()); } TEST_F(HloScheduleTest, UpdateScheduleComputationRemovedWithMultiThreads) { const std::string module_str = R"( HloModule UpdateScheduleWithMultipleComputations %Body (param.1: (s32[], token[])) -> (s32[], token[]) { %param.1 = (s32[], token[]) parameter(0) %get-tuple-element.1 = s32[] get-tuple-element((s32[], token[]) %param.1), index=0 %constant.1 = s32[] constant(1) %add = s32[] add(s32[] %get-tuple-element.1, s32[] %constant.1) %get-tuple-element.2 = token[] get-tuple-element((s32[], token[]) %param.1), index=1 %after-all = token[] after-all(token[] %get-tuple-element.2) ROOT %tuple = (s32[], token[]) tuple(s32[] %add, token[] %after-all) } %Cond (param: (s32[], token[])) -> pred[] { %param = (s32[], token[]) parameter(0) %get-tuple-element = s32[] get-tuple-element((s32[], token[]) %param), index=0 %constant = s32[] constant(42) ROOT %less-than = pred[] compare(s32[] %get-tuple-element, s32[] %constant), direction=LT } %async_builder { %p0 = f32[10] parameter(0) %p1 = f32[10] parameter(1) ROOT %foo = add(%p0, %p1) }, execution_thread="parallel_thread" ENTRY %WhileLoop () -> (s32[], f32[10]) { %p0 = f32[10] parameter(0) %p1 = f32[10] parameter(1) %zero = s32[] constant(0) %init_token = token[] after-all() %init_tuple = (s32[], token[]) tuple(s32[] %zero, token[] %init_token) %while = (s32[], token[]) while((s32[], token[]) %init_tuple), condition=%Cond, body=%Body %async-start = ((f32[10], f32[10]), f32[10], s32[]) async-start(f32[10] %p0, f32[10] %p1), async_execution_thread="parallel_thread",calls=%async_builder %async-done = f32[10]{0} async-done(((f32[10], f32[10]), f32[10], s32[]) %async-start), async_execution_thread="parallel_thread", calls=%async_builder %main_res = s32[] get-tuple-element((s32[], token[]) %while), index=0 ROOT %res = tuple(%main_res, %async-done) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf( buffer.shape(), sizeof(void*)); }, {}, {HloInstruction::kMainExecutionThread})); HloInstruction* xla_while = module->entry_computation() ->root_instruction() ->mutable_operand(0) ->mutable_operand(0); HloInstruction* init = xla_while->mutable_operand(0); TF_ASSERT_OK(xla_while->ReplaceAllUsesWith(init)); HloDCE dce; ASSERT_EQ(module->computation_count(), 4); TF_ASSERT_OK(dce.Run(module.get()).status()); ASSERT_EQ(module->computation_count(), 2); ASSERT_IS_NOT_OK(schedule.Verify()); TF_ASSERT_OK(schedule.Update({HloInstruction::kMainExecutionThread})); TF_ASSERT_OK(schedule.Verify()); ASSERT_EQ(module->MakeNonfusionComputations({"parallel_thread"}).size(), 1); ASSERT_FALSE(schedule.is_computation_scheduled( module->MakeNonfusionComputations({"parallel_thread"}).front())); } TEST_F(HloScheduleTest, UpdateScheduleAddComputation) { const std::string module_str = R"( HloModule UpdateScheduleWithMultipleComputations %Body (param.1: (s32[], token[])) -> (s32[], token[]) { %param.1 = (s32[], token[]) parameter(0) %get-tuple-element.1 = s32[] get-tuple-element((s32[], token[]) %param.1), index=0 %constant.1 = s32[] constant(1) %add = s32[] add(s32[] %get-tuple-element.1, s32[] %constant.1) %get-tuple-element.2 = token[] get-tuple-element((s32[], token[]) %param.1), index=1 %after-all = token[] after-all(token[] %get-tuple-element.2) ROOT %tuple = (s32[], token[]) tuple(s32[] %add, token[] %after-all) } %Cond (param: (s32[], token[])) -> pred[] { %param = (s32[], token[]) parameter(0) %get-tuple-element = s32[] get-tuple-element((s32[], token[]) %param), index=0 %constant = s32[] constant(42) ROOT %less-than = pred[] compare(s32[] %get-tuple-element, s32[] %constant), direction=LT } %async_builder { %p0 = f32[10] parameter(0) %p1 = f32[10] parameter(1) ROOT %foo = add(%p0, %p1) }, execution_thread="parallel_thread" ENTRY %WhileLoop () -> (s32[], f32[10]) { %p0 = f32[10] parameter(0) %p1 = f32[10] parameter(1) %zero = s32[] constant(0) %init_token = token[] after-all() %init_tuple = (s32[], token[]) tuple(s32[] %zero, token[] %init_token) %while = (s32[], token[]) while((s32[], token[]) %init_tuple), condition=%Cond, body=%Body %async-start = ((f32[10], f32[10]), f32[10], s32[]) async-start(f32[10] %p0, f32[10] %p1), async_execution_thread="parallel_thread",calls=%async_builder %async-done = f32[10]{0} async-done(((f32[10], f32[10]), f32[10], s32[]) %async-start), async_execution_thread="parallel_thread", calls=%async_builder %main_res = s32[] get-tuple-element((s32[], token[]) %while), index=0 ROOT %res = tuple(%main_res, %async-done) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf( buffer.shape(), sizeof(void*)); }, {}, {HloInstruction::kMainExecutionThread})); HloComputation* entry_computation = module->entry_computation(); HloComputation::Builder comp_builder("fusion_computation"); HloInstruction* entry_comp_parameter_0 = entry_computation->parameter_instruction(0); HloInstruction* entry_comp_parameter_1 = entry_computation->parameter_instruction(1); std::vector<HloInstruction*> instructions_in_new_computation; HloInstruction* added_instruction = entry_computation->AddInstruction(HloInstruction::CreateBinary( entry_comp_parameter_0->shape(), HloOpcode::kMultiply, entry_comp_parameter_0, entry_comp_parameter_1)); instructions_in_new_computation.push_back(added_instruction); HloInstruction* call = entry_computation->CreateCallInstruction(instructions_in_new_computation); Shape completion_sflag_shape = ShapeUtil::MakeScalarShape(U32); TF_ASSERT_OK_AND_ASSIGN( HloInstruction * async_done, entry_computation->CreateAsyncInstructions( call, {completion_sflag_shape}, entry_computation->execution_thread(), true, true)); HloInstruction* result_2 = entry_computation->root_instruction()->mutable_operand(1); HloInstruction* modified_result_2 = entry_computation->AddInstruction(HloInstruction::CreateBinary( result_2->shape(), HloOpcode::kAdd, async_done, result_2)); TF_ASSERT_OK(result_2->ReplaceAllUsesWith(modified_result_2)); auto added_computation_name = async_done->operand(0)->called_computations()[0]->name(); ASSERT_FALSE(schedule.is_computation_scheduled( module->GetComputationWithName(added_computation_name))); ASSERT_IS_NOT_OK(schedule.Verify()); TF_ASSERT_OK(schedule.Update({HloInstruction::kMainExecutionThread})); TF_ASSERT_OK(schedule.Verify()); ASSERT_TRUE(schedule.is_computation_scheduled( module->GetComputationWithName(added_computation_name))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/hlo_schedule.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_schedule_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
576c35e6-cf82-4d5a-afeb-c1c2dc9dbaaf
cpp
tensorflow/tensorflow
hlo_module_metadata
third_party/xla/xla/hlo/ir/hlo_module_metadata.cc
third_party/xla/xla/service/hlo_module_metadata_test.cc
#include "xla/hlo/ir/hlo_module_metadata.h" #include <algorithm> #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "xla/util.h" #include "tsl/platform/env.h" #include "tsl/platform/protobuf.h" namespace xla { absl::StatusOr<HloPassMetadata*> HloModuleMetadata::GetCurrentHloPassMetadata() { if (running_passes_.empty()) { return NotFound( "HloPassMetadata for currently running pass not found, either because " "the pass did not call RecordPassStart or because a pass is " "creating/switching modules without using " "HloModuleGroup::ReplaceModule."); } return running_passes_.back(); } absl::Status HloModuleMetadata::MutateCurrentHloPassMetadata( absl::FunctionRef<void(HloPassMetadata*)> mutator) { TF_ASSIGN_OR_RETURN(HloPassMetadata * pass_metadata, GetCurrentHloPassMetadata()); mutator(pass_metadata); return absl::OkStatus(); } void HloModuleMetadata::RecordPassStart() { HloPassMetadata* pass_metadata = module_metadata_.add_pass_metadata(); pass_metadata->set_pass_id(next_pass_id_++); pass_metadata->set_start_timestamp_usec(env_->NowMicros()); running_passes_.push_back(pass_metadata); } absl::Status HloModuleMetadata::RecordPassEnd() { TF_ASSIGN_OR_RETURN(HloPassMetadata * pass_metadata, GetCurrentHloPassMetadata()); pass_metadata->set_end_timestamp_usec(env_->NowMicros()); running_passes_.pop_back(); return absl::OkStatus(); } void HloModuleMetadata::set_prepartitioning_metadata( const HloModuleMetadata& prepartitioning_metadata) { module_metadata_.set_original_module_id( prepartitioning_metadata.proto().canonical_module_id()); prepartitioning_metadata_ = prepartitioning_metadata.proto(); prepartitioning_metadata_->clear_pass_metadata(); absl::flat_hash_set<HloPassMetadata*> running_passes( prepartitioning_metadata.running_passes_.begin(), prepartitioning_metadata.running_passes_.end()); for (const HloPassMetadata& pass_metadata : prepartitioning_metadata.proto().pass_metadata()) { if (running_passes.contains(&pass_metadata)) { HloPassMetadata* added_pass_metadata = module_metadata_.add_pass_metadata(); *added_pass_metadata = pass_metadata; running_passes_.push_back(added_pass_metadata); next_pass_id_ = std::max(next_pass_id_, static_cast<int64_t>(added_pass_metadata->pass_id()) + 1); } else { *prepartitioning_metadata_->add_pass_metadata() = pass_metadata; } } } absl::Status HloModuleMetadata::set_custom_metadata( const ::tsl::protobuf::Message& message) { TF_ASSIGN_OR_RETURN(HloPassMetadata * pass_metadata, GetCurrentHloPassMetadata()); if (!pass_metadata->mutable_custom_metadata()->PackFrom(message)) { LOG(WARNING) << "failed to pack custom metadata for " << pass_metadata->pass_id(); return Internal("failed to pack custom metadata"); }; return absl::OkStatus(); } }
#include "xla/hlo/ir/hlo_module_metadata.h" #include "xla/test.h" #include "xla/test_helpers.h" namespace xla { namespace { using ::testing::ElementsAre; using ::testing::Property; using ::testing::StrEq; class TestEnv : public tsl::EnvWrapper { public: TestEnv() : EnvWrapper(Env::Default()) {} uint64_t NowMicros() const override { return current_micros_; } void SetCurrentMicros(uint64_t micros) { current_micros_ = micros; } private: uint64_t current_micros_ = 1; }; TEST(HloModuleMetadata, RecordsPassStart) { TestEnv env; HloModuleMetadata module_metadata(&env); env.SetCurrentMicros(1234); module_metadata.RecordPassStart(); EXPECT_THAT( module_metadata.proto().pass_metadata(), ElementsAre(Property(&HloPassMetadata::start_timestamp_usec, 1234))); } TEST(HloModuleMetadata, RecordsPassEnd) { TestEnv env; HloModuleMetadata module_metadata(&env); module_metadata.RecordPassStart(); env.SetCurrentMicros(4321); EXPECT_IS_OK(module_metadata.RecordPassEnd()); EXPECT_THAT( module_metadata.proto().pass_metadata(), ElementsAre(Property(&HloPassMetadata::end_timestamp_usec, 4321))); } TEST(HloModuleMetadata, RecordsPassEndInNestedMetadata) { TestEnv env; HloModuleMetadata module_metadata(&env); module_metadata.RecordPassStart(); module_metadata.RecordPassStart(); env.SetCurrentMicros(111); EXPECT_IS_OK(module_metadata.RecordPassEnd()); EXPECT_THAT(module_metadata.proto().pass_metadata(), ElementsAre(Property(&HloPassMetadata::end_timestamp_usec, 0), Property(&HloPassMetadata::end_timestamp_usec, 111))); env.SetCurrentMicros(222); EXPECT_IS_OK(module_metadata.RecordPassEnd()); EXPECT_THAT(module_metadata.proto().pass_metadata(), ElementsAre(Property(&HloPassMetadata::end_timestamp_usec, 222), Property(&HloPassMetadata::end_timestamp_usec, 111))); } TEST(HloModuleMetadata, RecordPassEndReturnsNotFound) { HloModuleMetadata module_metadata(tsl::Env::Default()); EXPECT_EQ(module_metadata.RecordPassEnd().code(), tsl::error::NOT_FOUND); module_metadata.RecordPassStart(); EXPECT_IS_OK(module_metadata.RecordPassEnd()); EXPECT_EQ(module_metadata.RecordPassEnd().code(), tsl::error::NOT_FOUND); } TEST(HloModuleMetadata, SetsHloPassMetadataFields) { HloModuleMetadata module_metadata(tsl::Env::Default()); module_metadata.RecordPassStart(); EXPECT_IS_OK(module_metadata.set_current_pass_name("fake name")); EXPECT_THAT( module_metadata.proto().pass_metadata(), ElementsAre(Property(&HloPassMetadata::pass_name, StrEq("fake name")))); } TEST(HloModuleMetadata, SetsHloPassMetadataFieldsInNestedMetadata) { HloModuleMetadata module_metadata(tsl::Env::Default()); module_metadata.RecordPassStart(); module_metadata.RecordPassStart(); EXPECT_IS_OK(module_metadata.set_current_pass_name("fake name")); EXPECT_THAT( module_metadata.proto().pass_metadata(), ElementsAre(Property(&HloPassMetadata::pass_name, StrEq("")), Property(&HloPassMetadata::pass_name, StrEq("fake name")))); } TEST(HloModuleMetadata, SetterReturnsNotFound) { HloModuleMetadata module_metadata(tsl::Env::Default()); EXPECT_EQ(module_metadata.set_current_pass_name("fake name").code(), tsl::error::NOT_FOUND); } TEST(HloModuleMetadata, CopiesRunningPrepartitioningPasses) { HloModuleMetadata old_module_metadata(tsl::Env::Default()); old_module_metadata.RecordPassStart(); EXPECT_IS_OK(old_module_metadata.set_current_pass_name("outer pass")); old_module_metadata.RecordPassStart(); EXPECT_IS_OK(old_module_metadata.set_current_pass_name("finished pass")); EXPECT_IS_OK(old_module_metadata.RecordPassEnd()); old_module_metadata.RecordPassStart(); EXPECT_IS_OK(old_module_metadata.set_current_pass_name("inner pass")); HloModuleMetadata new_module_metadata(tsl::Env::Default()); new_module_metadata.set_prepartitioning_metadata(old_module_metadata); EXPECT_THAT( new_module_metadata.proto().pass_metadata(), ElementsAre(Property(&HloPassMetadata::pass_name, StrEq("outer pass")), Property(&HloPassMetadata::pass_name, StrEq("inner pass")))); EXPECT_THAT(new_module_metadata.prepartitioning_metadata()->pass_metadata(), ElementsAre(Property(&HloPassMetadata::pass_name, StrEq("finished pass")))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/hlo_module_metadata.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_module_metadata_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
23a79605-f8d1-470f-b2fc-6fc4ba7ce262
cpp
tensorflow/tensorflow
hlo_dfs_reachability
third_party/xla/xla/hlo/ir/hlo_dfs_reachability.cc
third_party/xla/xla/service/hlo_dfs_reachability_test.cc
#include "xla/hlo/ir/hlo_dfs_reachability.h" #include <cstddef> #include <memory> #include <vector> #include "absl/algorithm/container.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallVector.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" namespace xla { bool HloDfsReachability::IsPresent(const HloInstruction* instruction) const { return instruction_to_idx_.contains(instruction); } bool HloDfsReachability::IsReachable(const HloInstruction* from, const HloInstruction* to) const { if (from == to) { return true; } if (to->operand_count() == 0 && from->control_predecessors().empty()) { return false; } size_t target_node_idx = instruction_to_idx_.at(from); size_t dfs_root_idx = instruction_to_idx_.at(to); if (dfs_root_idx < target_node_idx) { return false; } llvm::SmallVector<const HloInstruction*> stack{to}; llvm::BitVector visited_idxs(1 + (dfs_root_idx - target_node_idx)); visited_idxs.set(dfs_root_idx - target_node_idx); auto check_and_enqueue = [&](const HloInstruction* instr) { if (instr == from) { return true; } size_t instr_idx = instruction_to_idx_.at(instr); if (instr_idx < target_node_idx) { return false; } size_t visited_idx = instr_idx - target_node_idx; if (visited_idxs.test(visited_idx)) { return false; } visited_idxs.set(visited_idx); stack.push_back(instr); return false; }; while (!stack.empty()) { const HloInstruction* instr = stack.pop_back_val(); if (absl::c_any_of(instr->operands(), check_and_enqueue) || absl::c_any_of(instr->control_predecessors(), check_and_enqueue)) { return true; } } return false; } bool HloDfsReachability::IsConnected(const HloInstruction* a, const HloInstruction* b) const { return IsReachable(a, b) || IsReachable(b, a); } std::unique_ptr<HloDfsReachability> HloDfsReachability::Build( const HloComputation* computation) { auto res = std::make_unique<HloDfsReachability>(); HloComputation::ChannelDependencies empty_channel_dependencies; std::vector<HloInstruction*> instructions = computation->MakeInstructionPostOrder(empty_channel_dependencies); res->instruction_to_idx_.reserve(instructions.size()); for (size_t i = 0; i < instructions.size(); ++i) { res->instruction_to_idx_[instructions[i]] = i; } return res; } }
#include "xla/hlo/ir/hlo_dfs_reachability.h" #include <cstddef> #include <memory> #include <string> #include <string_view> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/service/computation_placer.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/status.h" #include "tsl/platform/test_benchmark.h" namespace xla { namespace { class HloDfsReachabilityTest : public HloTestBase {}; TEST_F(HloDfsReachabilityTest, NonTrivialReachability) { Shape r0f32 = ShapeUtil::MakeShape(F32, {}); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0f))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( r0f32, HloOpcode::kAdd, constant1, constant2)); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kNegate, constant2)); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kExp, negate)); auto mul = builder.AddInstruction( HloInstruction::CreateBinary(r0f32, HloOpcode::kMultiply, add, exp)); auto copy = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kCopy, exp)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build(mul)); TF_CHECK_OK(add->AddControlDependencyTo(exp)); auto reachability = HloDfsReachability::Build(computation); EXPECT_TRUE(reachability->IsReachable(constant1, constant1)); EXPECT_FALSE(reachability->IsReachable(constant1, constant2)); EXPECT_TRUE(reachability->IsReachable(constant1, add)); EXPECT_FALSE(reachability->IsReachable(constant1, negate)); EXPECT_TRUE(reachability->IsReachable(constant1, exp)); EXPECT_TRUE(reachability->IsReachable(constant1, mul)); EXPECT_TRUE(reachability->IsReachable(constant1, copy)); EXPECT_FALSE(reachability->IsReachable(constant2, constant1)); EXPECT_TRUE(reachability->IsReachable(constant2, constant2)); EXPECT_TRUE(reachability->IsReachable(constant2, add)); EXPECT_TRUE(reachability->IsReachable(constant2, negate)); EXPECT_TRUE(reachability->IsReachable(constant2, exp)); EXPECT_TRUE(reachability->IsReachable(constant2, mul)); EXPECT_TRUE(reachability->IsReachable(constant2, copy)); EXPECT_FALSE(reachability->IsReachable(exp, constant1)); EXPECT_FALSE(reachability->IsReachable(exp, constant2)); EXPECT_FALSE(reachability->IsReachable(exp, add)); EXPECT_FALSE(reachability->IsReachable(exp, negate)); EXPECT_TRUE(reachability->IsReachable(exp, exp)); EXPECT_TRUE(reachability->IsReachable(exp, mul)); EXPECT_TRUE(reachability->IsReachable(exp, copy)); EXPECT_FALSE(reachability->IsReachable(mul, constant1)); EXPECT_FALSE(reachability->IsReachable(mul, constant2)); EXPECT_FALSE(reachability->IsReachable(mul, add)); EXPECT_FALSE(reachability->IsReachable(mul, negate)); EXPECT_FALSE(reachability->IsReachable(mul, exp)); EXPECT_TRUE(reachability->IsReachable(mul, mul)); EXPECT_FALSE(reachability->IsReachable(mul, copy)); EXPECT_TRUE(reachability->IsConnected(constant1, copy)); EXPECT_TRUE(reachability->IsConnected(copy, constant1)); EXPECT_FALSE(reachability->IsConnected(negate, add)); EXPECT_FALSE(reachability->IsConnected(add, negate)); } TEST_F(HloDfsReachabilityTest, ChannelReachability) { const Shape shape = ShapeUtil::MakeShape(F32, {5, 7}); HloComputation::Builder builder("ChannelReachability"); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "param")); auto token0 = builder.AddInstruction(HloInstruction::CreateToken()); auto send = builder.AddInstruction(HloInstruction::CreateSend(param, token0, 1)); auto send_done = builder.AddInstruction(HloInstruction::CreateSendDone(send)); auto token1 = builder.AddInstruction(HloInstruction::CreateToken()); auto recv = builder.AddInstruction(HloInstruction::CreateRecv(shape, token1, 1)); auto recv_done = builder.AddInstruction(HloInstruction::CreateRecvDone(recv)); auto module = CreateNewVerifiedModule(); module->mutable_config().set_use_spmd_partitioning(false); module->mutable_config().set_static_device_assignment(DeviceAssignment(1, 2)); auto computation = module->AddEntryComputation(builder.Build(recv_done)); auto reachability = HloDfsReachability::Build(computation); EXPECT_FALSE(reachability->IsReachable(param, recv_done)); EXPECT_FALSE(reachability->IsReachable(send, recv)); EXPECT_FALSE(reachability->IsReachable(send_done, recv)); } class HloDfsReachabilityBenchmark { public: HloDfsReachabilityBenchmark(int size, std::string_view name) : name_(name) { Shape r0f32 = ShapeUtil::MakeShape(F32, {}); auto builder = HloComputation::Builder(name); HloInstruction* constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0f))); HloInstruction* prev = constant; for (int i = 1; i < size; ++i) { prev = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kExp, prev)); } HloModuleConfig hlo_config; module_ = std::make_unique<HloModule>(name_, hlo_config); computation_ = module_->AddEntryComputation(builder.Build(prev)); } std::unique_ptr<HloDfsReachability> Build() { return HloDfsReachability::Build(computation_); } const HloComputation* computation() { return computation_; } private: std::unique_ptr<HloModule> module_; HloComputation* computation_; const std::string name_; }; void BM_HloDfsReachabilityBuild(benchmark::State& state) { int num_nodes = state.range(0); HloDfsReachabilityBenchmark bm(num_nodes, state.name()); while (state.KeepRunningBatch(num_nodes)) { benchmark::DoNotOptimize(bm.Build()); } } void BM_HloDfsReachabilityCheck(benchmark::State& state) { size_t size = state.range(0); HloDfsReachabilityBenchmark bm(size, state.name()); auto reachability = bm.Build(); auto instrs = bm.computation()->MakeInstructionPostOrder(); size_t i = 0; for (auto s : state) { size_t from = i % size; size_t to = (++i + size / 2) % size; reachability->IsReachable(instrs[from], instrs[to]); } } #define BM_ARGS Arg(1)->Arg(64)->Arg(128)->Arg(256)->Range(512, 256 * 1024) BENCHMARK(BM_HloDfsReachabilityBuild)->BM_ARGS; BENCHMARK(BM_HloDfsReachabilityCheck)->BM_ARGS; } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/hlo_dfs_reachability.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_dfs_reachability_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f6581bd4-a731-48f5-97bf-4572aa575fb6
cpp
tensorflow/tensorflow
collective_device_list
third_party/xla/xla/hlo/ir/collective_device_list.cc
third_party/xla/xla/hlo/ir/collective_device_list_test.cc
#include "xla/hlo/ir/collective_device_list.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" #include "tsl/platform/protobuf.h" namespace xla { std::string ReplicaGroupsToString( absl::Span<const ReplicaGroup> replica_groups) { std::vector<std::string> replica_group_str; replica_group_str.reserve(replica_groups.size()); for (const ReplicaGroup& group : replica_groups) { replica_group_str.push_back( absl::StrCat("{", absl::StrJoin(group.replica_ids(), ","), "}")); } return absl::StrCat("{", absl::StrJoin(replica_group_str, ","), "}"); } int64_t IotaReplicaGroupList::num_replica_groups() const { DCHECK_GE(num_replica_groups_, 0); return num_replica_groups_; } int64_t IotaReplicaGroupList::num_devices_per_group() const { DCHECK_GE(num_devices_per_group_, 0); return num_devices_per_group_; } std::string IotaReplicaGroupList::ToString() const { return iota_tile_assignment_.ToString(); } IotaReplicaGroupListProto IotaReplicaGroupList::ToProto() const { IotaReplicaGroupListProto proto; proto.set_num_replica_groups(num_replica_groups_); proto.set_num_devices_per_group(num_devices_per_group_); proto.mutable_iota_reshape_dims()->Assign( iota_tile_assignment_.reshape_dims().begin(), iota_tile_assignment_.reshape_dims().end()); proto.mutable_iota_transpose_perm()->Assign( iota_tile_assignment_.transpose_perm().begin(), iota_tile_assignment_.transpose_perm().end()); return proto; } IotaReplicaGroupList IotaReplicaGroupList::FromProto( const IotaReplicaGroupListProto& proto) { return IotaReplicaGroupList( proto.num_replica_groups(), proto.num_devices_per_group(), std::vector<int64_t>(proto.iota_reshape_dims().begin(), proto.iota_reshape_dims().end()), std::vector<int>(proto.iota_transpose_perm().begin(), proto.iota_transpose_perm().end())); } CollectiveDeviceList::CollectiveDeviceList( tsl::protobuf::RepeatedPtrField<ReplicaGroup>::const_iterator start, tsl::protobuf::RepeatedPtrField<ReplicaGroup>::const_iterator end) { replica_groups_shared_ = std::make_shared<std::vector<ReplicaGroup>>(start, end); replica_groups_ = replica_groups_shared_.get(); } CollectiveDeviceList::CollectiveDeviceList( absl::Span<const ReplicaGroup> replica_groups) { replica_groups_shared_ = std::make_shared<std::vector<ReplicaGroup>>( replica_groups.begin(), replica_groups.end()); replica_groups_ = replica_groups_shared_.get(); } CollectiveDeviceList::CollectiveDeviceList( absl::Span<const std::vector<int64_t>> replica_groups) { auto rg_list = std::make_shared<std::vector<ReplicaGroup>>(); rg_list->reserve(replica_groups.size()); for (auto g : replica_groups) { auto& group = rg_list->emplace_back(); *group.mutable_replica_ids() = {g.begin(), g.end()}; } replica_groups_shared_ = std::move(rg_list); replica_groups_ = replica_groups_shared_.get(); } CollectiveDeviceList::CollectiveDeviceList() { replica_groups_shared_ = std::make_shared<std::vector<ReplicaGroup>>(); replica_groups_ = replica_groups_shared_.get(); } void CollectiveDeviceList::MaybeMaterializeFullReplicaGroupList() const { if (replica_groups_ != nullptr) { VLOG(10) << "Replica group list already materialized."; return; } DCHECK(iota_replica_group_list_.has_value()); VLOG(10) << "Materializing full replica group list"; auto rg_list = std::make_shared<std::vector<ReplicaGroup>>(); const int64_t num_replica_groups = iota_replica_group_list_->num_replica_groups(); rg_list->reserve(num_replica_groups); auto array = iota_replica_group_list_->ToArray(); DCHECK_EQ(array.num_dimensions(), 2); const int64_t num_devices_per_group = iota_replica_group_list_->num_devices_per_group(); DCHECK_EQ(array.end() - array.begin(), num_devices_per_group * num_replica_groups); for (auto it = array.begin(), end = array.end(); it != end; it += num_devices_per_group) { *rg_list->emplace_back().mutable_replica_ids() = { it, it + num_devices_per_group}; } replica_groups_shared_ = std::move(rg_list); replica_groups_ = replica_groups_shared_.get(); } const std::vector<ReplicaGroup>& CollectiveDeviceList::replica_groups() const { MaybeMaterializeFullReplicaGroupList(); return *replica_groups_; } std::string CollectiveDeviceList::ToString() const { if (iota_replica_group_list_.has_value()) { return iota_replica_group_list_->ToString(); } return ReplicaGroupsToString(replica_groups()); } CollectiveDeviceListProto CollectiveDeviceList::ToProto() const { CollectiveDeviceListProto proto; if (iota_replica_group_list_.has_value()) { *(proto.mutable_iota_replica_group_list()) = iota_replica_group_list_->ToProto(); return proto; } proto.mutable_replica_groups()->Assign(replica_groups().begin(), replica_groups().end()); return proto; } CollectiveDeviceList CollectiveDeviceList::FromProto( const CollectiveDeviceListProto& proto) { if (proto.has_iota_replica_group_list()) { return CollectiveDeviceList( IotaReplicaGroupList::FromProto(proto.iota_replica_group_list())); } if (proto.replica_groups_size() > 0) { return CollectiveDeviceList(proto.replica_groups().begin(), proto.replica_groups().end()); } return CollectiveDeviceList(); } CollectiveDeviceList CollectiveDeviceList::FromProto( const HloInstructionProto& proto) { if (proto.replica_groups_size() > 0) { VLOG(10) << "Creating collective device list from proto using legacy " "replica groups field."; return CollectiveDeviceList(proto.replica_groups().begin(), proto.replica_groups().end()); } if (!proto.has_collective_device_list()) { return CollectiveDeviceList(); } return FromProto(proto.collective_device_list()); } }
#include "xla/hlo/ir/collective_device_list.h" #include <cstdint> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/service/hlo.pb.h" #include "xla/xla_data.pb.h" namespace xla { CollectiveDeviceListProto CreateDeviceListProto( const std::vector<std::vector<int64_t>>& replica_groups) { CollectiveDeviceListProto proto; for (const auto& group : replica_groups) { auto* replica_group = proto.add_replica_groups(); for (const auto& replica : group) { replica_group->add_replica_ids(replica); } } return proto; } TEST(CollectiveDeviceListTest, DefaultListToString) { CollectiveDeviceList list({{1, 2}, {3, 4}}); ASSERT_EQ(list.ToString(), "{{1,2},{3,4}}"); } TEST(CollectiveDeviceListTest, DefaultListToString2) { CollectiveDeviceList list({{1, 2, 3, 4, 5, 6, 7}}); EXPECT_EQ(list.ToString(), "{{1,2,3,4,5,6,7}}"); } TEST(CollectiveDeviceListTest, DefaultListToProto) { CollectiveDeviceList list({{1, 2}, {3, 4}}); CollectiveDeviceListProto proto = list.ToProto(); EXPECT_THAT(proto.replica_groups().size(), 2); EXPECT_THAT(proto.replica_groups(0).replica_ids(), testing::ElementsAre(1, 2)); EXPECT_THAT(proto.replica_groups(1).replica_ids(), testing::ElementsAre(3, 4)); EXPECT_FALSE(proto.has_iota_replica_group_list()); } TEST(CollectiveDeviceListTest, DefaultListToProto2) { CollectiveDeviceList list({{1, 2, 3, 4, 5, 6, 7}}); CollectiveDeviceListProto proto = list.ToProto(); EXPECT_THAT(proto.replica_groups().size(), 1); EXPECT_THAT(proto.replica_groups(0).replica_ids(), testing::ElementsAre(1, 2, 3, 4, 5, 6, 7)); EXPECT_FALSE(proto.has_iota_replica_group_list()); } TEST(CollectiveDeviceListTest, DefaultListFromProto) { HloInstructionProto initial_proto; *(initial_proto.mutable_collective_device_list()) = CreateDeviceListProto({{1, 2}, {3, 4}}); CollectiveDeviceList list = CollectiveDeviceList::FromProto(initial_proto); EXPECT_EQ(list.replica_groups().size(), 2); EXPECT_THAT(list.replica_groups()[0].replica_ids(), testing::ElementsAre(1, 2)); EXPECT_THAT(list.replica_groups()[1].replica_ids(), testing::ElementsAre(3, 4)); EXPECT_FALSE(list.iota_replica_group_list().has_value()); } TEST(CollectiveDeviceListTest, DefaultListFromProto2) { HloInstructionProto initial_proto; *(initial_proto.mutable_collective_device_list()) = CreateDeviceListProto({{1, 2, 3, 4, 5, 6, 7}}); CollectiveDeviceList list = CollectiveDeviceList::FromProto(initial_proto); EXPECT_EQ(list.replica_groups().size(), 1); EXPECT_THAT(list.replica_groups()[0].replica_ids(), testing::ElementsAre(1, 2, 3, 4, 5, 6, 7)); EXPECT_FALSE(list.iota_replica_group_list().has_value()); } TEST(CollectiveDeviceListTest, IotaListToString) { CollectiveDeviceList list(IotaReplicaGroupList(2, 10)); EXPECT_EQ(list.ToString(), "[2,10]<=[20]"); } TEST(CollectiveDeviceListTest, IotaListToString2) { CollectiveDeviceList list(IotaReplicaGroupList(2, 10, {4, 5}, {1, 0})); EXPECT_EQ(list.ToString(), "[2,10]<=[4,5]T(1,0)"); } TEST(CollectiveDeviceListTest, IotaListToProto) { CollectiveDeviceList list(IotaReplicaGroupList(2, 10)); CollectiveDeviceListProto proto = list.ToProto(); EXPECT_EQ(proto.iota_replica_group_list().num_replica_groups(), 2); EXPECT_EQ(proto.iota_replica_group_list().num_devices_per_group(), 10); EXPECT_THAT(proto.iota_replica_group_list().iota_reshape_dims(), testing::ElementsAre(20)); EXPECT_THAT(proto.iota_replica_group_list().iota_transpose_perm(), testing::ElementsAre(0)); EXPECT_THAT(proto.replica_groups_size(), 0); } TEST(CollectiveDeviceListTest, IotaListToProto2) { CollectiveDeviceList list(IotaReplicaGroupList(2, 10, {4, 5}, {1, 0})); CollectiveDeviceListProto proto = list.ToProto(); EXPECT_EQ(proto.iota_replica_group_list().num_replica_groups(), 2); EXPECT_EQ(proto.iota_replica_group_list().num_devices_per_group(), 10); EXPECT_THAT(proto.iota_replica_group_list().iota_reshape_dims(), testing::ElementsAre(4, 5)); EXPECT_THAT(proto.iota_replica_group_list().iota_transpose_perm(), testing::ElementsAre(1, 0)); EXPECT_THAT(proto.replica_groups_size(), 0); } TEST(CollectiveDeviceListTest, IotaListFromProto) { HloInstructionProto initial_proto; CollectiveDeviceListProto device_group; IotaReplicaGroupListProto* iota_replica_group_list = device_group.mutable_iota_replica_group_list(); iota_replica_group_list->set_num_replica_groups(2); iota_replica_group_list->set_num_devices_per_group(10); iota_replica_group_list->add_iota_reshape_dims(20); iota_replica_group_list->add_iota_transpose_perm(0); *(initial_proto.mutable_collective_device_list()) = device_group; CollectiveDeviceList list = CollectiveDeviceList::FromProto(initial_proto); EXPECT_TRUE(list.iota_replica_group_list().has_value()); EXPECT_EQ(list.iota_replica_group_list()->num_replica_groups(), 2); EXPECT_EQ(list.iota_replica_group_list()->num_devices_per_group(), 10); EXPECT_THAT(list.iota_replica_group_list()->reshape_dims(), testing::ElementsAre(20)); EXPECT_THAT(list.iota_replica_group_list()->transpose_perm(), testing::ElementsAre(0)); } TEST(CollectiveDeviceListTest, IotaListFromProto2) { HloInstructionProto initial_proto; CollectiveDeviceListProto device_group; IotaReplicaGroupListProto* iota_replica_group_list = device_group.mutable_iota_replica_group_list(); iota_replica_group_list->set_num_replica_groups(2); iota_replica_group_list->set_num_devices_per_group(10); iota_replica_group_list->add_iota_reshape_dims(4); iota_replica_group_list->add_iota_reshape_dims(5); iota_replica_group_list->add_iota_transpose_perm(1); iota_replica_group_list->add_iota_transpose_perm(0); *(initial_proto.mutable_collective_device_list()) = device_group; CollectiveDeviceList list = CollectiveDeviceList::FromProto(initial_proto); EXPECT_TRUE(list.iota_replica_group_list().has_value()); EXPECT_EQ(list.iota_replica_group_list()->num_replica_groups(), 2); EXPECT_EQ(list.iota_replica_group_list()->num_devices_per_group(), 10); EXPECT_THAT(list.iota_replica_group_list()->reshape_dims(), testing::ElementsAre(4, 5)); EXPECT_THAT(list.iota_replica_group_list()->transpose_perm(), testing::ElementsAre(1, 0)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/collective_device_list.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/collective_device_list_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0ec28ff5-400f-4eb8-b45c-475999016815
cpp
tensorflow/tensorflow
hlo_module_group
third_party/xla/xla/hlo/ir/hlo_module_group.cc
third_party/xla/xla/service/hlo_module_group_test.cc
#include "xla/hlo/ir/hlo_module_group.h" #include <memory> #include <ostream> #include <sstream> #include <string> #include <utility> #include <vector> namespace xla { HloModuleGroup::HloModuleGroup(std::unique_ptr<HloModule> module) : name_(module->name()) { push_back(std::move(module)); } HloModuleGroup::HloModuleGroup(absl::string_view name, absl::Span<std::unique_ptr<HloModule>> modules) : name_(name) { for (auto& module : modules) { push_back(std::move(module)); } } HloModuleGroup::HloModuleGroup( absl::string_view name, std::vector<std::unique_ptr<HloModule>>&& modules) : name_(name) { for (auto& module : modules) { push_back(std::move(module)); } } std::vector<std::unique_ptr<HloModule>> HloModuleGroup::ConsumeModules() { std::vector<std::unique_ptr<HloModule>> ret_modules = std::move(modules_); modules_.clear(); module_ptrs_.clear(); return ret_modules; } std::string HloModuleGroup::ToString() const { std::ostringstream s; s << "HloModuleGroup " << name() << "\n\n"; for (const HloModule* module : modules()) { s << module->ToString() << "\n"; } return s.str(); } HloModuleGroupProto HloModuleGroup::ToProto() const { HloModuleGroupProto proto; proto.set_name(name()); for (const HloModule* module : modules()) { *proto.add_hlo_modules() = module->ToProto(); } return proto; } absl::StatusOr<HloModuleGroup> HloModuleGroup::CreateFromProto( const HloModuleGroupProto& proto, absl::Span<const HloModuleConfig> module_configs) { TF_RET_CHECK(!proto.name().empty()) << "Module group name cannot be empty"; TF_RET_CHECK(proto.hlo_modules_size() > 0) << "Module group must have at least one HLO module"; TF_RET_CHECK(proto.hlo_modules_size() == module_configs.size()); std::vector<std::unique_ptr<HloModule>> modules; for (int i = 0; i < proto.hlo_modules_size(); ++i) { const HloModuleProto& module_proto = proto.hlo_modules(i); TF_ASSIGN_OR_RETURN( std::unique_ptr<HloModule> module, HloModule::CreateFromProto(module_proto, module_configs[i])); modules.push_back(std::move(module)); } return HloModuleGroup(proto.name(), absl::MakeSpan(modules)); } void HloModuleGroup::push_back(std::unique_ptr<HloModule> module) { module->metadata()->set_module_group_name(name()); modules_.push_back(std::move(module)); module_ptrs_.push_back(modules_.back().get()); } void HloModuleGroup::ReplaceModule(int index, std::unique_ptr<HloModule> module) { modules_.at(index)->MoveMetadataToModule(module.get()); modules_.at(index) = std::move(module); module_ptrs_.at(index) = modules_.at(index).get(); } std::ostream& operator<<(std::ostream& out, const HloModuleGroup& group) { out << group.ToString(); return out; } }
#include "xla/hlo/ir/hlo_module_group.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_module_group_metadata.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" namespace xla { namespace { namespace op = ::xla::testing::opcode_matchers; using ::testing::Property; using ::testing::StrEq; class HloModuleGroupTest : public HloTestBase { protected: HloModuleGroupTest() = default; }; TEST_F(HloModuleGroupTest, SingleModule) { const std::string text = R"( HloModule simple_module ENTRY %entry (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(text)); HloModuleGroup group(std::move(module)); EXPECT_EQ(group.modules().size(), 1); EXPECT_THAT( group.module(0).entry_computation()->instructions(), ::testing::ElementsAre(op::Parameter(), op::Parameter(), op::Add())); TF_ASSERT_OK_AND_ASSIGN(HloModuleGroup group_copy, HloModuleGroup::CreateFromProto( group.ToProto(), {group.module(0).config()})); EXPECT_EQ(group_copy.modules().size(), 1); EXPECT_THAT( group_copy.module(0).entry_computation()->instructions(), ::testing::ElementsAre(op::Parameter(), op::Parameter(), op::Add())); std::vector<std::unique_ptr<HloModule>> modules = group.ConsumeModules(); EXPECT_EQ(modules.size(), 1); EXPECT_EQ(group.modules().size(), 0); } TEST_F(HloModuleGroupTest, MultipleModules) { const std::string text_0 = R"( HloModule module0 ENTRY %entry (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } )"; const std::string text_1 = R"( HloModule module1 ENTRY %entry (a: f32[]) -> f32[] { ROOT %a = f32[] parameter(0) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module_0, ParseAndReturnVerifiedModule(text_0)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module_1, ParseAndReturnVerifiedModule(text_1)); std::vector<std::unique_ptr<HloModule>> modules; modules.push_back(std::move(module_0)); modules.push_back(std::move(module_1)); HloModuleGroup group(TestName(), absl::MakeSpan(modules)); EXPECT_EQ(group.modules().size(), 2); EXPECT_THAT( group.module(0).entry_computation()->instructions(), ::testing::ElementsAre(op::Parameter(), op::Parameter(), op::Add())); EXPECT_THAT(group.module(1).entry_computation()->instructions(), ::testing::ElementsAre(op::Parameter())); TF_ASSERT_OK_AND_ASSIGN(HloModuleGroup group_copy, HloModuleGroup::CreateFromProto( group.ToProto(), {group.module(0).config(), group.module(1).config()})); EXPECT_EQ(group_copy.modules().size(), 2); } TEST_F(HloModuleGroupTest, BuildModuleGroupByPushBack) { const std::string text_0 = R"( HloModule module0 ENTRY %entry (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } )"; const std::string text_1 = R"( HloModule module1 ENTRY %entry (a: f32[]) -> f32[] { ROOT %a = f32[] parameter(0) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module_0, ParseAndReturnVerifiedModule(text_0)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module_1, ParseAndReturnVerifiedModule(text_1)); HloModuleGroup group(TestName()); group.push_back(std::move(module_0)); group.push_back(std::move(module_1)); EXPECT_EQ(group.modules().size(), 2); EXPECT_THAT( group.module(0).entry_computation()->instructions(), ::testing::ElementsAre(op::Parameter(), op::Parameter(), op::Add())); EXPECT_THAT(group.module(1).entry_computation()->instructions(), ::testing::ElementsAre(op::Parameter())); } TEST_F(HloModuleGroupTest, ModuleGroupCompanionOrder) { constexpr char text[] = R"( HloModule module_%d while_cond { param = s32[] parameter(0) ROOT p = pred[] constant(true) } while_body { param = s32[] parameter(0) token.s = token[] after-all() token.r = token[] after-all() send = (s32[], u32[], token[]) send(param, token.s), channel_id=%d send-done = token[] send-done(send), channel_id=%d recv = (s32[], u32[], token[]) recv(token.r), channel_id=%d recv-done = (s32[], token[]) recv-done(recv), channel_id=%d ROOT data = s32[] get-tuple-element(recv-done), index=0 } ENTRY entry { while_init = s32[] constant(1) ROOT while = s32[] while(while_init), condition=while_cond, body=while_body } )"; const int64_t kTrialCount = 5; const int64_t kDeviceCount = 10; std::vector<int64_t> companion_order; for (int64_t t = 0; t < kTrialCount; ++t) { HloModuleGroup group(TestName()); for (int64_t i = 0; i < kDeviceCount; ++i) { const int64_t send_channel = i; const int64_t recv_channel = i == 0 ? kDeviceCount - 1 : i - 1; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(absl::StrFormat( text, i, send_channel, send_channel, recv_channel, recv_channel))); group.push_back(std::move(module)); } ASSERT_EQ(group.modules().size(), kDeviceCount); TF_ASSERT_OK_AND_ASSIGN(auto metadata, HloModuleGroupMetadata::Build(group.modules())); ASSERT_EQ(metadata->companion_sets().size(), 1); std::vector<int64_t> module_ids; const auto& companion_sets = *metadata->companion_sets()[0]; module_ids.reserve(companion_sets.size()); for (HloInstruction* companion : companion_sets) { module_ids.push_back(metadata->GetModuleId(companion->GetModule())); } if (t == 0) { companion_order = module_ids; } else { EXPECT_TRUE(absl::c_equal(companion_order, module_ids)); } } } TEST_F(HloModuleGroupTest, ReplaceModuleMetadata) { auto old_module = CreateNewVerifiedModule(); int old_module_id = old_module->unique_id(); old_module->metadata()->RecordPassStart(); TF_EXPECT_OK(old_module->metadata()->set_current_pass_name("fake pass")); HloModuleGroup group(std::move(old_module)); EXPECT_EQ(group.module(0).metadata()->proto().module_group_name(), group.name()); auto new_module = CreateNewVerifiedModule(); group.ReplaceModule(0, std::move(new_module)); EXPECT_NE(group.module(0).unique_id(), old_module_id); const HloModuleMetadataProto& module_metadata = group.module(0).metadata()->proto(); EXPECT_EQ(module_metadata.canonical_module_id(), old_module_id); const HloPassMetadata& pass_metadata = *module_metadata.pass_metadata().rbegin(); EXPECT_THAT(pass_metadata, Property(&HloPassMetadata::pass_name, StrEq("fake pass"))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/hlo_module_group.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_module_group_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ec92ce8c-32f6-44bf-8aec-55c051a57685
cpp
tensorflow/tensorflow
hlo_reachability
third_party/xla/xla/hlo/ir/hlo_reachability.cc
third_party/xla/xla/service/hlo_reachability_test.cc
#include "xla/hlo/ir/hlo_reachability.h" #include <memory> #include <queue> #include <vector> #include "absl/algorithm/container.h" #include "xla/hlo/ir/hlo_instruction.h" namespace xla { HloReachabilityMap::HloReachabilityMap( absl::Span<const HloInstruction* const> instructions) : bit_sets_(instructions.size(), BitSet(instructions.size())) { indices_.reserve(instructions.size()); for (size_t i = 0; i < instructions.size(); ++i) { bit_sets_[i].Set(i); indices_[GetKey(instructions[i])] = i; } } bool HloReachabilityMap::SetReachabilityToUnion( absl::Span<const HloInstruction* const> inputs, const HloInstruction* instruction) { Index index = GetIndex(instruction); BitSet& bit_set = bit_sets_[index]; tmp_bit_set_ = bit_set; SetReachabilityToUnionHelper(inputs, index); return bit_set != tmp_bit_set_; } void HloReachabilityMap::FastSetReachabilityToUnion( absl::Span<const HloInstruction* const> inputs, const HloInstruction* instruction) { SetReachabilityToUnionHelper(inputs, GetIndex(instruction)); } void HloReachabilityMap::FastSetReachabilityToUnion( absl::Span<const Index> input_indices, Index index) { SetReachabilityToUnionHelper(input_indices, index); } void HloReachabilityMap::SetReachabilityToUnionHelper( absl::Span<const HloInstruction* const> inputs, Index index) { absl::InlinedVector<Index, 16> input_indices; input_indices.reserve(inputs.size()); for (const HloInstruction* input : inputs) { input_indices.push_back(GetIndex(input)); } SetReachabilityToUnionHelper(input_indices, index); } void HloReachabilityMap::SetReachabilityToUnionHelper( absl::Span<const Index> input_indices, Index index) { BitSet& bit_set = bit_sets_[index]; if (!absl::c_linear_search(input_indices, index)) { bit_set.SetToZero(); } bit_set.Set(index); for (Index input_index : input_indices) { if (input_index != index) { bit_set |= bit_sets_[input_index]; } } } void HloReachabilityMap::Replace(const HloInstruction* original, const HloInstruction* replacement) { if (GetKey(original) != GetKey(replacement)) { indices_[GetKey(replacement)] = GetIndex(original); indices_.erase(GetKey(original)); } } std::unique_ptr<HloReachabilityMap> HloReachabilityMap::BuildWithRestrictions( const HloComputation* computation, absl::FunctionRef<void(const HloInstruction*, std::vector<HloInstruction*>*)> add_dependencies) { const auto& all = computation->MakeInstructionPostOrder(); auto result = std::make_unique<HloReachabilityMap>(all); std::vector<HloInstruction*> inputs; for (const HloInstruction* hlo : all) { inputs.clear(); add_dependencies(hlo, &inputs); result->FastSetReachabilityToUnion(inputs, hlo); } return result; } std::unique_ptr<HloReachabilityMap> HloReachabilityMap::Build( const HloComputation* computation) { HloComputation::ChannelDependencies channel_dependencies = computation->ComputeChannelDependencies(); std::vector<HloInstruction*> instructions = computation->MakeInstructionPostOrder(channel_dependencies); auto result = std::make_unique<HloReachabilityMap>(instructions); auto get_bit_set = [&](const HloInstruction* instruction) -> BitSet& { return result->bit_sets_[result->GetIndex(instruction)]; }; for (const HloInstruction* instruction : instructions) { BitSet& bit_set = get_bit_set(instruction); auto add_dependencies = [&](const HloInstruction* instruction) { for (const HloInstruction* operand : instruction->operands()) { bit_set |= get_bit_set(operand); } for (const HloInstruction* predecessor : instruction->control_predecessors()) { bit_set |= get_bit_set(predecessor); } }; add_dependencies(instruction); auto it = channel_dependencies.find(instruction); if (it != channel_dependencies.end()) { absl::c_for_each(it->second, add_dependencies); } } return result; } void HloReachabilityMap::UpdateReachabilityThroughInstruction( const HloInstruction* instruction) { std::queue<const HloInstruction*> worklist; worklist.push(instruction); std::vector<HloInstruction*> inputs; while (!worklist.empty()) { const HloInstruction* item = worklist.front(); worklist.pop(); inputs.assign(item->operands().begin(), item->operands().end()); inputs.insert(inputs.end(), item->control_predecessors().begin(), item->control_predecessors().end()); if (SetReachabilityToUnion(inputs, item)) { for (const HloInstruction* user : item->users()) { worklist.push(user); } for (const HloInstruction* succ : item->control_successors()) { worklist.push(succ); } } } } }
#include "xla/hlo/ir/hlo_reachability.h" #include <memory> #include <set> #include <string> #include <string_view> #include "absl/random/random.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/service/computation_placer.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/status.h" #include "tsl/platform/test_benchmark.h" namespace xla { namespace { class HloReachabilityTest : public HloTestBase {}; TEST_F(HloReachabilityTest, Reachability) { auto builder = HloComputation::Builder(TestName()); auto a = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0f))); auto b = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0f))); auto c = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0f))); auto d = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0f))); auto e = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0f))); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); HloReachabilityMap reachability({a, b, c, d, e}); reachability.SetReachable(a, a); EXPECT_TRUE(reachability.SetReachabilityToUnion({a}, b)); EXPECT_TRUE(reachability.SetReachabilityToUnion({a}, c)); EXPECT_TRUE(reachability.SetReachabilityToUnion({b, c}, d)); EXPECT_TRUE(reachability.SetReachabilityToUnion({c}, e)); EXPECT_TRUE(reachability.IsReachable(a, a)); EXPECT_TRUE(reachability.IsReachable(a, b)); EXPECT_TRUE(reachability.IsReachable(a, c)); EXPECT_TRUE(reachability.IsReachable(a, d)); EXPECT_TRUE(reachability.IsReachable(a, e)); EXPECT_FALSE(reachability.IsReachable(b, a)); EXPECT_TRUE(reachability.IsReachable(b, b)); EXPECT_FALSE(reachability.IsReachable(b, c)); EXPECT_TRUE(reachability.IsReachable(b, d)); EXPECT_FALSE(reachability.IsReachable(b, e)); EXPECT_FALSE(reachability.IsReachable(e, a)); EXPECT_FALSE(reachability.IsReachable(e, b)); EXPECT_FALSE(reachability.IsReachable(e, c)); EXPECT_FALSE(reachability.IsReachable(e, d)); EXPECT_TRUE(reachability.IsReachable(e, e)); EXPECT_FALSE(reachability.SetReachabilityToUnion({a}, b)); EXPECT_FALSE(reachability.SetReachabilityToUnion({b, c}, d)); } TEST_F(HloReachabilityTest, NonTrivialReachability) { Shape r0f32 = ShapeUtil::MakeShape(F32, {}); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0f))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( r0f32, HloOpcode::kAdd, constant1, constant2)); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kNegate, constant2)); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kExp, negate)); auto mul = builder.AddInstruction( HloInstruction::CreateBinary(r0f32, HloOpcode::kMultiply, add, exp)); auto copy = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kCopy, exp)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build(mul)); TF_CHECK_OK(add->AddControlDependencyTo(exp)); auto reachability = HloReachabilityMap::Build(computation); EXPECT_TRUE(reachability->IsReachable(constant1, constant1)); EXPECT_FALSE(reachability->IsReachable(constant1, constant2)); EXPECT_TRUE(reachability->IsReachable(constant1, add)); EXPECT_FALSE(reachability->IsReachable(constant1, negate)); EXPECT_TRUE(reachability->IsReachable(constant1, exp)); EXPECT_TRUE(reachability->IsReachable(constant1, mul)); EXPECT_TRUE(reachability->IsReachable(constant1, copy)); EXPECT_FALSE(reachability->IsReachable(constant2, constant1)); EXPECT_TRUE(reachability->IsReachable(constant2, constant2)); EXPECT_TRUE(reachability->IsReachable(constant2, add)); EXPECT_TRUE(reachability->IsReachable(constant2, negate)); EXPECT_TRUE(reachability->IsReachable(constant2, exp)); EXPECT_TRUE(reachability->IsReachable(constant2, mul)); EXPECT_TRUE(reachability->IsReachable(constant2, copy)); EXPECT_FALSE(reachability->IsReachable(exp, constant1)); EXPECT_FALSE(reachability->IsReachable(exp, constant2)); EXPECT_FALSE(reachability->IsReachable(exp, add)); EXPECT_FALSE(reachability->IsReachable(exp, negate)); EXPECT_TRUE(reachability->IsReachable(exp, exp)); EXPECT_TRUE(reachability->IsReachable(exp, mul)); EXPECT_TRUE(reachability->IsReachable(exp, copy)); EXPECT_FALSE(reachability->IsReachable(mul, constant1)); EXPECT_FALSE(reachability->IsReachable(mul, constant2)); EXPECT_FALSE(reachability->IsReachable(mul, add)); EXPECT_FALSE(reachability->IsReachable(mul, negate)); EXPECT_FALSE(reachability->IsReachable(mul, exp)); EXPECT_TRUE(reachability->IsReachable(mul, mul)); EXPECT_FALSE(reachability->IsReachable(mul, copy)); EXPECT_TRUE(reachability->IsConnected(constant1, copy)); EXPECT_TRUE(reachability->IsConnected(copy, constant1)); EXPECT_FALSE(reachability->IsConnected(negate, add)); EXPECT_FALSE(reachability->IsConnected(add, negate)); ASSERT_IS_OK(add->RemoveControlDependencyTo(exp)); reachability->UpdateReachabilityThroughInstruction(exp); EXPECT_TRUE(reachability->IsReachable(constant1, constant1)); EXPECT_FALSE(reachability->IsReachable(constant1, constant2)); EXPECT_TRUE(reachability->IsReachable(constant1, add)); EXPECT_FALSE(reachability->IsReachable(constant1, negate)); EXPECT_FALSE(reachability->IsReachable(constant1, exp)); EXPECT_TRUE(reachability->IsReachable(constant1, mul)); EXPECT_FALSE(reachability->IsReachable(constant1, copy)); ASSERT_IS_OK(constant2->ReplaceUseWith(negate, constant1)); reachability->UpdateReachabilityThroughInstruction(negate); EXPECT_FALSE(reachability->IsReachable(constant2, constant1)); EXPECT_TRUE(reachability->IsReachable(constant2, constant2)); EXPECT_TRUE(reachability->IsReachable(constant2, add)); EXPECT_FALSE(reachability->IsReachable(constant2, negate)); EXPECT_FALSE(reachability->IsReachable(constant2, exp)); EXPECT_TRUE(reachability->IsReachable(constant2, mul)); EXPECT_FALSE(reachability->IsReachable(constant2, copy)); } TEST_F(HloReachabilityTest, ChannelReachability) { const Shape shape = ShapeUtil::MakeShape(F32, {5, 7}); HloComputation::Builder builder("ChannelReachability"); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "param")); auto token0 = builder.AddInstruction(HloInstruction::CreateToken()); auto send = builder.AddInstruction(HloInstruction::CreateSend(param, token0, 1)); auto send_done = builder.AddInstruction(HloInstruction::CreateSendDone(send)); auto token1 = builder.AddInstruction(HloInstruction::CreateToken()); auto recv = builder.AddInstruction(HloInstruction::CreateRecv(shape, token1, 1)); auto recv_done = builder.AddInstruction(HloInstruction::CreateRecvDone(recv)); auto module = CreateNewVerifiedModule(); module->mutable_config().set_use_spmd_partitioning(false); module->mutable_config().set_static_device_assignment(DeviceAssignment(1, 2)); auto computation = module->AddEntryComputation(builder.Build(recv_done)); auto reachability = HloReachabilityMap::Build(computation); EXPECT_FALSE(reachability->IsReachable(param, recv_done)); EXPECT_FALSE(reachability->IsReachable(send, recv)); EXPECT_FALSE(reachability->IsReachable(send_done, recv)); } TEST_F(HloReachabilityTest, ReplaceInstructions) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test ENTRY entry { p0 = f32[28,28]{1,0} parameter(0) ROOT add = f32[28,28]{1,0} add(p0, p0) })") .value(); auto computation = module->entry_computation(); auto reachability = HloReachabilityMap::Build(computation); auto* add = module->entry_computation()->root_instruction(); auto* p0 = add->operand(0); EXPECT_TRUE(reachability->IsReachable(p0, add)); reachability->Replace(add, add); EXPECT_TRUE(reachability->IsReachable(p0, add)); auto* fusion = computation->AddInstruction(HloInstruction::CreateFusion( add->shape(), HloInstruction::FusionKind::kLoop, add)); EXPECT_FALSE(reachability->IsPresent(fusion)); EXPECT_TRUE(reachability->IsReachable(p0, add)); reachability->Replace(add, fusion); EXPECT_FALSE(reachability->IsPresent(add)); EXPECT_TRUE(reachability->IsReachable(p0, fusion)); } } class HloReachabilityMapBitSetBenchmark { public: explicit HloReachabilityMapBitSetBenchmark(int size) : a_(size), b_(size) { absl::BitGen gen; for (int i = 0; i < size; ++i) { if (absl::Bernoulli(gen, 0.5)) a_.Set(i); if (absl::Bernoulli(gen, 0.5)) b_.Set(i); } } void Union() { a_ |= b_; } private: HloReachabilityMap::BitSet a_; HloReachabilityMap::BitSet b_; }; namespace { void BM_HloReachabilityBitSetUnion(benchmark::State& state) { HloReachabilityMapBitSetBenchmark bm(state.range(0)); for (auto s : state) { bm.Union(); } } #define BM_ARGS Arg(1)->Arg(64)->Arg(128)->Arg(256)->Range(512, 256 * 1024) BENCHMARK(BM_HloReachabilityBitSetUnion)->BM_ARGS; class HloReachabilityBenchmark { public: HloReachabilityBenchmark(int size, std::string_view name) : name_(name) { Shape r0f32 = ShapeUtil::MakeShape(F32, {}); auto builder = HloComputation::Builder(name); HloInstruction* constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0f))); HloInstruction* prev = constant; for (int i = 1; i < size; ++i) { prev = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kExp, prev)); } HloModuleConfig hlo_config; module_ = std::make_unique<HloModule>(name_, hlo_config); computation_ = module_->AddEntryComputation(builder.Build(prev)); } std::unique_ptr<HloReachabilityMap> Build() { return HloReachabilityMap::Build(computation_); } private: std::unique_ptr<HloModule> module_; HloComputation* computation_; const std::string name_; }; void BM_HloReachabilityBuild(benchmark::State& state) { HloReachabilityBenchmark bm(state.range(0), state.name()); for (auto s : state) { benchmark::DoNotOptimize(bm.Build()); } } BENCHMARK(BM_HloReachabilityBuild)->BM_ARGS; } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/hlo_reachability.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_reachability_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
30284e41-2319-4f52-8b80-30cb28be38ab
cpp
tensorflow/tensorflow
dynamic_parameter_binding
third_party/xla/xla/hlo/ir/dynamic_parameter_binding.cc
third_party/xla/xla/service/dynamic_parameter_binding_test.cc
#include "xla/hlo/ir/dynamic_parameter_binding.h" #include <optional> #include <ostream> #include <string> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "tsl/platform/errors.h" namespace xla { absl::Status DynamicParameterBinding::Bind( const DynamicSizeParameter& dynamic_parameter, const DynamicDimension& dynamic_dimension) { auto result = bindings_.emplace(dynamic_dimension, dynamic_parameter); TF_RET_CHECK(result.second); return absl::OkStatus(); } std::optional<DynamicParameterBinding::DynamicSizeParameter> DynamicParameterBinding::GetBinding( const DynamicDimension& dynamic_dimension) const { auto param_iter = bindings_.find(dynamic_dimension); if (param_iter == bindings_.end()) { return std::nullopt; } return param_iter->second; } std::string DynamicParameterBinding::ToString() const { std::vector<std::string> pieces; pieces.push_back("DynamicParameterBinding: "); for (const auto& binding : bindings_) { const DynamicDimension& dynamic_dimension = binding.first; const DynamicSizeParameter& dynamic_param = binding.second; pieces.push_back(absl::StrFormat( " -- Input param number %lld at %s has dim %lld as dynamic" " dimension, which is represented by param number %lld at " "%s", dynamic_dimension.parameter_num, dynamic_dimension.parameter_index.ToString(), dynamic_dimension.dimension, dynamic_param.parameter_num, dynamic_param.parameter_index.ToString())); } return absl::StrJoin(pieces, "\n"); } absl::Status DynamicParameterBinding::ForEachBinding(BindingFn fn) const { for (const auto& binding : bindings_) { TF_RETURN_IF_ERROR(fn(binding.second, binding.first)); } return absl::OkStatus(); } absl::Status DynamicParameterBinding::Verify( const HloComputation& computation) const { return ForEachBinding([&](const DynamicSizeParameter& dynamic_parameter, const DynamicDimension& dynamic_dimension) -> absl::Status { TF_RET_CHECK(dynamic_parameter.parameter_num >= 0 && dynamic_parameter.parameter_num < computation.num_parameters()); TF_RET_CHECK(dynamic_dimension.parameter_num < computation.num_parameters()); TF_RET_CHECK(ShapeUtil::IndexIsValid( computation.parameter_instruction(dynamic_parameter.parameter_num) ->shape(), dynamic_parameter.parameter_index)); TF_RET_CHECK(ShapeUtil::IndexIsValid( computation.parameter_instruction(dynamic_dimension.parameter_num) ->shape(), dynamic_dimension.parameter_index)); TF_RET_CHECK( dynamic_dimension.dimension < ShapeUtil::GetSubshape( computation.parameter_instruction(dynamic_dimension.parameter_num) ->shape(), dynamic_dimension.parameter_index) .rank()); return absl::OkStatus(); }); } std::ostream& operator<<(std::ostream& out, const DynamicParameterBinding& binding) { out << binding.ToString(); return out; } }
#include "xla/hlo/ir/dynamic_parameter_binding.h" #include <memory> #include <optional> #include <string> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using DynamicParameterBindingTest = HloTestBase; TEST_F(DynamicParameterBindingTest, SimpleBinding) { const std::string module_str = R"( HloModule TEST ENTRY main { a = f32[] parameter(0) b = f32[10] parameter(1) ROOT root = (f32[], f32[10]) tuple(%a, %b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); DynamicParameterBinding binding; TF_EXPECT_OK( binding.Bind(DynamicParameterBinding::DynamicSizeParameter{0, {}}, DynamicParameterBinding::DynamicDimension{1, {}, 0})); auto test = [&](const DynamicParameterBinding& binding) { std::optional<DynamicParameterBinding::DynamicSizeParameter> param = binding.GetBinding( DynamicParameterBinding::DynamicDimension{1, {}, 0}); EXPECT_TRUE(param); EXPECT_EQ(param->parameter_num, 0); EXPECT_EQ(param->parameter_index, ShapeIndex({})); TF_EXPECT_OK(binding.Verify(*module->entry_computation())); }; test(binding); } TEST_F(DynamicParameterBindingTest, TupleBinding) { const std::string module_str = R"( HloModule TEST ENTRY main { param = (f32[], f32[10]) parameter(0) gte1 = f32[] get-tuple-element(%param), index=0 gte2 = f32[10] get-tuple-element(%param), index=1 ROOT root = (f32[], f32[10]) tuple(%gte1, %gte2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); DynamicParameterBinding binding; TF_EXPECT_OK( binding.Bind(DynamicParameterBinding::DynamicSizeParameter{0, {0}}, DynamicParameterBinding::DynamicDimension{0, {1}, 0})); auto test = [&](const DynamicParameterBinding& binding) { std::optional<DynamicParameterBinding::DynamicSizeParameter> param = binding.GetBinding( DynamicParameterBinding::DynamicDimension{0, {1}, 0}); EXPECT_TRUE(param); EXPECT_EQ(param->parameter_num, 0); EXPECT_EQ(param->parameter_index, ShapeIndex({0})); TF_EXPECT_OK(binding.Verify(*module->entry_computation())); }; test(binding); } TEST_F(DynamicParameterBindingTest, TupleBindingWithMultiDimension) { const std::string module_str = R"( HloModule TEST ENTRY main { param = (f32[], f32[10, 10]) parameter(0) gte1 = f32[] get-tuple-element(%param), index=0 gte2 = f32[10, 10] get-tuple-element(%param), index=1 ROOT root = (f32[], f32[10, 10]) tuple(%gte1, %gte2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); DynamicParameterBinding binding; TF_EXPECT_OK( binding.Bind(DynamicParameterBinding::DynamicSizeParameter{0, {0}}, DynamicParameterBinding::DynamicDimension{0, {1}, 0})); TF_EXPECT_OK( binding.Bind(DynamicParameterBinding::DynamicSizeParameter{0, {0}}, DynamicParameterBinding::DynamicDimension{0, {1}, 1})); auto test = [&](const DynamicParameterBinding& binding) { std::optional<DynamicParameterBinding::DynamicSizeParameter> param = binding.GetBinding( DynamicParameterBinding::DynamicDimension{0, {1}, 0}); EXPECT_TRUE(param); EXPECT_EQ(param->parameter_num, 0); EXPECT_EQ(param->parameter_index, ShapeIndex({0})); std::optional<DynamicParameterBinding::DynamicSizeParameter> param2 = binding.GetBinding( DynamicParameterBinding::DynamicDimension{0, {1}, 0}); EXPECT_TRUE(param2); EXPECT_EQ(param2->parameter_num, 0); EXPECT_EQ(param2->parameter_index, ShapeIndex({0})); TF_EXPECT_OK(binding.Verify(*module->entry_computation())); }; test(binding); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/dynamic_parameter_binding.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/dynamic_parameter_binding_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
382f3e30-b23c-401e-9945-f8020eb0786a
cpp
tensorflow/tensorflow
hlo_computation
third_party/xla/xla/hlo/ir/hlo_computation.cc
third_party/xla/xla/service/hlo_computation_test.cc
#include "xla/hlo/ir/hlo_computation.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <iterator> #include <memory> #include <optional> #include <ostream> #include <queue> #include <stack> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/ptrvec.h" #include "xla/map_util.h" #include "xla/printer.h" #include "xla/service/mapped_ptr_container_sorter.h" #include "xla/service/name_uniquer.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tsl/lib/gtl/iterator_range.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" namespace xla { using absl::StrCat; enum class VisitState { kNew = 0, kVisiting = 1, kVisited = 2 }; static std::ostream& operator<<(std::ostream& os, const VisitState& state) { switch (state) { case VisitState::kNew: os << "new"; break; case VisitState::kVisiting: os << "visiting"; break; case VisitState::kVisited: os << "visited"; break; } return os; } class HloComputation::VisitMap { public: VisitMap() = default; explicit VisitMap(int capacity) : size_(capacity) { int num_words = (capacity + 31) / 32; bits_.resize(num_words); bit_ptr_ = bits_.empty() ? nullptr : bits_.data(); } using Handle = uint32_t; VisitState GetState(Handle h) const { DCHECK_LT(h, size_); uint32_t word = (h / 32); uint32_t shift = (h % 32) << 1; return static_cast<VisitState>((bit_ptr_[word] >> shift) & 0x3); } void SetState(Handle h, VisitState new_state) { DCHECK_LT(h, size_); uint32_t word = (h / 32); uint32_t shift = (h % 32) << 1; uint64_t mask = ~(3ull << shift); uint64_t val = static_cast<uint64_t>(new_state); bit_ptr_[word] = (bit_ptr_[word] & mask) | (val << shift); } private: absl::InlinedVector<uint64_t, 1> bits_; uint64_t* bit_ptr_ = nullptr; int size_ = 0; }; std::unique_ptr<HloComputation> HloComputation::Builder::Build( HloInstruction* root_instruction) { int parameter_count = 0; for (auto& instruction : instructions_) { if (instruction->opcode() == HloOpcode::kParameter) { parameter_count++; } } HloInstruction* root = root_instruction ? root_instruction : last_added_instruction(); CHECK_NE(nullptr, root); return absl::WrapUnique( new HloComputation(name_, parameter_count, &instructions_, root)); } HloComputation::HloComputation( const std::string& name, int parameter_count, std::vector<std::unique_ptr<HloInstruction>>* instructions, HloInstruction* root_instruction) : unique_id_(-1), root_instruction_(root_instruction), instruction_count_(0), name_(NameUniquer::GetSanitizedName(name)) { param_instructions_.resize(parameter_count, nullptr); bool root_found = false; for (auto& instruction : *instructions) { if (instruction->opcode() == HloOpcode::kParameter) { int64_t param_no = instruction->parameter_number(); CHECK(param_no >= 0 && param_no < parameter_count) << "\nERROR: invalid parameter number. Expected [0, " << parameter_count << "), got " << param_no; CHECK(param_instructions_[param_no] == nullptr) << "\nERROR: parameter number " << param_no << " already allocated in this computation"; param_instructions_[param_no] = instruction.get(); } root_found |= instruction.get() == root_instruction_; AddInstructionInternal(std::move(instruction)); } CHECK(root_found) << "\nERROR: root instruction is not present in computation."; root_instruction_->MarkAsRoot(); } HloComputation::~HloComputation() { if (FusionInstruction() != nullptr) { CHECK(FusionInstruction()->fused_instructions_computation() == this); FusionInstruction()->ClearCalledComputations(); } if (IsAsyncComputation()) { CHECK(async_start_->async_wrapped_computation() == this); async_start_->ClearCalledComputations(); } Cleanup(); for (const auto& i : instructions_) { delete i.inst(); } } void HloComputation::SetInstruction(HloInstruction* instruction, InstructionType type) { static_assert(alignof(HloInstruction) == kInstructionTypeMask + 1, "HloInstruction should be aligned as a QWORD"); DCHECK(type != InstructionType::kUnset) << "Set instruction must be called with a valid type, not kUnset."; DCHECK(instruction_type() == InstructionType::kUnset || instruction_type() == type) << "Unexpected instruction type. Current type is " << static_cast<int>(instruction_type()) << " and it cannot be reset to " << static_cast<int>(type); if (instruction == nullptr) { type = instruction_type(); } instruction_and_type_ = reinterpret_cast<uintptr_t>(instruction) | static_cast<uintptr_t>(type); } HloInstruction* HloComputation::AddInstruction( std::unique_ptr<HloInstruction> instruction, absl::string_view new_name) { CHECK(instruction->opcode() != HloOpcode::kParameter) << "Parameter instructions cannot be added to a computation after " << "it has been built"; if (!new_name.empty()) { instruction->SetAndSanitizeName(new_name); } return AddInstructionInternal(std::move(instruction)); } HloInstruction* HloComputation::AddInstruction( std::unique_ptr<HloInstruction> instruction, const OpMetadata* metadata) { if (metadata != nullptr) { instruction->set_metadata(*metadata); } return AddInstruction(std::move(instruction)); } HloInstruction* HloComputation::AddInstruction( std::unique_ptr<HloInstruction> instruction, const OpMetadata* metadata, const FrontendAttributes* frontend_attributes) { if (metadata != nullptr) { instruction->set_metadata(*metadata); } if (frontend_attributes != nullptr) { instruction->set_frontend_attributes(*frontend_attributes); } return AddInstruction(std::move(instruction)); } HloInstruction* HloComputation::AddInstructionInternal( std::unique_ptr<HloInstruction> instruction) { if (parent() != nullptr) { instruction->UniquifyName(&parent()->instruction_name_uniquer()); instruction->SetUniqueId(parent()->NewUniqueInstructionId()); } instruction->set_parent(this); HloInstruction* pinst = instruction.release(); HloInstructionInfo info; info.opcode_ = pinst->opcode(); info.inst_ = pinst; VLOG(2) << "Adding instruction " << pinst << " " << pinst->name() << " from computation " << name() << " opcode " << info.opcode(); uint32_t index = instructions_.size(); instruction_count_++; pinst->index_in_parent_ = index; instructions_.push_back(info); return pinst; } HloInstruction* HloComputation::AddParameter( std::unique_ptr<HloInstruction> instruction) { CHECK(instruction->opcode() == HloOpcode::kParameter); CHECK(!IsFusionComputation() || FusionInstruction()->operand_count() == param_instructions_.size()); instruction->set_parent(this); param_instructions_.push_back(instruction.get()); AddInstructionInternal(std::move(instruction)); return instructions_.back().get(); } HloInstruction* HloComputation::AddEntryComputationParameter( std::unique_ptr<HloInstruction> instruction) { CHECK_EQ(instruction->opcode(), HloOpcode::kParameter); CHECK_EQ(instruction->parameter_number(), num_parameters()); CHECK(parent()->entry_computation() == this); HloModuleConfig config = parent()->config(); config.mutable_entry_computation_layout()->add_parameter_layout( ShapeLayout(instruction->shape())); parent()->set_config(config); instruction->set_parent(this); param_instructions_.push_back(instruction.get()); AddInstructionInternal(std::move(instruction)); return instructions_.back().get(); } absl::Status HloComputation::ReplaceEntryComputationParameter( int64_t param_no, HloInstruction* old_instruction, std::unique_ptr<HloInstruction> instruction) { CHECK_GE(param_no, 0); CHECK_LT(param_no, param_instructions_.size()); CHECK_EQ(instruction->opcode(), HloOpcode::kParameter); CHECK(parent()->entry_computation() == this); HloModuleConfig config = parent()->config(); *config.mutable_entry_computation_layout()->mutable_parameter_layout( param_no) = ShapeLayout(instruction->shape()); parent()->set_config(config); instruction->set_parent(this); param_instructions_[param_no] = instruction.get(); AddInstructionInternal(std::move(instruction)); return ForceRemoveInstruction(old_instruction); } absl::Status HloComputation::RemoveParameter(int64_t param_no) { CHECK_GE(param_no, 0); CHECK_LT(param_no, param_instructions_.size()); HloInstruction* param_instruction = param_instructions_[param_no]; auto param_instruction_iterator = param_instructions_.begin() + param_no; param_instructions_.erase(param_instruction_iterator); TF_RETURN_IF_ERROR(ForceRemoveInstruction(param_instruction)); while (param_no < param_instructions_.size()) { param_instruction = param_instructions_[param_no]; HloInstruction* new_instr = AddInstructionInternal(HloInstruction::CreateParameter( param_no, param_instruction->shape(), StrCat("param_", param_no))); TF_RETURN_IF_ERROR(param_instruction->ReplaceAllUsesWith(new_instr)); param_instructions_[param_no] = new_instr; TF_RETURN_IF_ERROR(ForceRemoveInstruction(param_instruction)); param_no++; } return absl::OkStatus(); } HloInstruction* HloComputation::ReplaceParameter( int64_t param_no, std::unique_ptr<HloInstruction> instruction) { CHECK_GE(param_no, 0); CHECK_LT(param_no, param_instructions_.size()); CHECK(instruction->opcode() == HloOpcode::kParameter); CHECK(!IsFusionComputation() || FusionInstruction()->operand_count() == param_instructions_.size()); instruction->set_parent(this); HloInstruction* new_instruction = AddInstructionInternal(std::move(instruction)); HloInstruction* old_instruction = param_instructions_[param_no]; TF_CHECK_OK( old_instruction->ReplaceAllUsesWithDifferentShape(new_instruction)); param_instructions_[param_no] = new_instruction; TF_CHECK_OK(ForceRemoveInstruction(old_instruction)); return new_instruction; } absl::Status HloComputation::RemoveUnusedParametersFromFusedComputation() { return RemoveUnusedParametersImpl(false); } absl::Status HloComputation::RemoveUnusedParametersFromAnyComputation() { return RemoveUnusedParametersImpl(true); } absl::Status HloComputation::RemoveUnusedParametersImpl(bool allow_non_fusion) { CHECK(allow_non_fusion || IsFusionComputation()); int64_t removed = 0; for (int64_t i = 0; i < param_instructions_.size(); ++i) { HloInstruction* param_instruction = param_instructions_[i]; if (param_instruction->IsDead()) { TF_RETURN_IF_ERROR( RemoveInstructionImpl(param_instruction, allow_non_fusion)); ++removed; continue; } if (removed > 0) { const int64_t param_no = i - removed; HloInstruction* new_instr = AddInstructionInternal( HloInstruction::CreateParameter(param_no, param_instruction->shape(), StrCat("param_", param_no))); TF_RETURN_IF_ERROR(param_instruction->ReplaceAllUsesWith(new_instr)); param_instructions_[param_no] = new_instr; TF_RETURN_IF_ERROR( RemoveInstructionImpl(param_instruction, allow_non_fusion)); } } param_instructions_.resize(param_instructions_.size() - removed); return absl::OkStatus(); } bool HloComputation::IsSafelyRemovable(const HloInstruction* instruction, bool ignore_control_dependency) { if (!ignore_control_dependency && instruction->HasControlDependencies()) { return false; } if (instruction->opcode() == HloOpcode::kParameter && !IsFusionComputation()) { return false; } return true; } bool HloComputation::HasSideEffect() const { for (auto* instruction : instructions()) { if (instruction->HasSideEffect()) { return true; } } return false; } bool HloComputation::IsMarkedAsDead(const HloInstruction* inst) { return inst->IsMarkedAsDead(); } absl::Status HloComputation::RemoveInstructionAndUnusedOperands( HloInstruction* instruction, std::optional<absl::FunctionRef<void(HloInstruction*)>> cleanup, bool ignore_control_dependencies) { TF_RET_CHECK(root_instruction() != instruction); TF_RET_CHECK(instruction->IsDead()); TF_RET_CHECK(IsSafelyRemovable(instruction, ignore_control_dependencies)) << "Cannot remove instruction: " << instruction->ToString(); absl::flat_hash_set<HloInstruction*> removed; std::queue<HloInstruction*> worklist; worklist.push(instruction); std::vector<HloInstruction*> parameters_to_be_removed; while (!worklist.empty()) { HloInstruction* item = worklist.front(); worklist.pop(); if (removed.contains(item) || !item->IsDead() || !IsSafelyRemovable(item, ignore_control_dependencies) || (item->HasSideEffect() && item != instruction)) { continue; } if (ignore_control_dependencies) { TF_RETURN_IF_ERROR(item->SafelyDropAllControlDependencies()); } else if (item->HasControlDependencies()) { continue; } for (int i = 0; i < item->operand_count(); ++i) { worklist.push(item->mutable_operand(i)); } if (cleanup != std::nullopt) { (*cleanup)(item); } if (item->opcode() == HloOpcode::kParameter) { parameters_to_be_removed.push_back(item); } else { TF_RETURN_IF_ERROR(RemoveInstruction(item)); } removed.insert(item); } std::sort(parameters_to_be_removed.begin(), parameters_to_be_removed.end(), [](HloInstruction* a, HloInstruction* b) { return a->parameter_number() > b->parameter_number(); }); for (HloInstruction* param : parameters_to_be_removed) { int64_t parameter_number = param->parameter_number(); TF_RETURN_IF_ERROR(RemoveParameter(parameter_number)); if (FusionInstruction() != nullptr) { auto operand = FusionInstruction()->mutable_operand(parameter_number); FusionInstruction()->RemoveOperandAt(parameter_number); FusionInstruction()->DetachFrom(operand); if (operand->IsDead() && operand->parent()->IsSafelyRemovable( operand, ignore_control_dependencies)) { TF_RETURN_IF_ERROR( operand->parent()->RemoveInstructionAndUnusedOperands( operand, cleanup, ignore_control_dependencies)); } } } return absl::OkStatus(); } absl::Status HloComputation::RemoveInstruction(HloInstruction* instruction) { return RemoveInstructionImpl(instruction, false); } absl::Status HloComputation::ForceRemoveInstruction( HloInstruction* instruction) { return RemoveInstructionImpl(instruction, true); } absl::Status HloComputation::RemoveInstructionImpl(HloInstruction* instruction, bool ignore_safety_check) { VLOG(2) << "Removing instruction " << instruction << " " << instruction->name() << " from computation " << name(); TF_RET_CHECK(ignore_safety_check || IsSafelyRemovable(instruction)) << "cannot remove instruction: " << instruction->ToString(); TF_RET_CHECK(instruction->IsDead()) << "instruction " << instruction->name() << " is live and cannot be removed"; TF_RET_CHECK(instruction->control_predecessors().empty()) << "instruction " << instruction->name() << " has control predecessors and cannot be removed"; TF_RET_CHECK(instruction->control_successors().empty()) << "instruction " << instruction->name() << " has control successors and cannot be removed"; HloInstructionInfo* info = &instructions_[instruction->index_in_parent_]; DCHECK_EQ(info->inst(), instruction); info->inst()->set_parent(nullptr); to_be_deleted_.push_back(info->inst()); to_be_deleted_.back()->DetachFromOperandsAndUsers(); to_be_deleted_.back()->RemoveAllOperands(); to_be_deleted_.back()->ClearCalledComputations(); to_be_deleted_.back()->MarkAsDead(); info->inst_ = nullptr; instruction->index_in_parent_ = ~0u; instruction_count_--; DCHECK_EQ(instructions_.size() - to_be_deleted_.size(), instruction_count()) << "instructions_.size(): " << instructions_.size() << ", to_be_deleted_.size(): " << to_be_deleted_.size(); return absl::OkStatus(); } void HloComputation::Cleanup() { if (to_be_deleted_.empty()) return; DCHECK_GT(instruction_count(), 0); auto is_marked_for_removal = [](const HloInstructionInfo& info) { return info.inst() == nullptr; }; auto marked_it = absl::c_find_if(instructions_, is_marked_for_removal); DCHECK(marked_it < instructions_.end()); for (auto it = marked_it + 1; it < instructions_.end(); ++it) { if (is_marked_for_removal(*it)) continue; HloInstruction* unmarked_instruction = it->inst(); unmarked_instruction->index_in_parent_ = std::distance(instructions_.begin(), marked_it); *marked_it++ = std::move(*it); } DCHECK(marked_it < instructions_.end()); DCHECK_EQ(std::distance(marked_it, instructions_.end()), to_be_deleted_.size()); DCHECK_EQ(instructions_.size() - to_be_deleted_.size(), instruction_count()) << "instructions_.size(): " << instructions_.size() << ", to_be_deleted_.size(): " << to_be_deleted_.size(); for (HloInstruction* marked_instruction : to_be_deleted_) { delete marked_instruction; } to_be_deleted_.clear(); instructions_.resize(instruction_count()); } void HloComputation::set_root_instruction(HloInstruction* new_root_instruction, bool accept_different_shape) { if (!IsFusionComputation() && !accept_different_shape) { CHECK(ShapeUtil::Compatible(new_root_instruction->shape(), root_instruction_->shape())) << new_root_instruction->shape() << " is incompatible with " << root_instruction_->shape(); } bool root_found = false; for (auto& instruction : instructions_) { if (new_root_instruction == instruction.get()) { root_found = true; break; } } DCHECK(root_found); if (parent() && parent()->has_entry_computation() && parent()->entry_computation() == this) { if (!Shape::Equal().IgnoreLayout()(new_root_instruction->shape(), root_instruction_->shape())) { parent()->input_output_alias_config() = HloInputOutputAliasConfig(new_root_instruction->shape()); } } root_instruction_->MarkAsNonRoot(); new_root_instruction->MarkAsRoot(); root_instruction_ = new_root_instruction; } void HloComputation::ComputeInstructionPostOrder( HloInstruction* root, const ChannelDependencies& channel_dependencies, VisitMap& visited, std::vector<HloInstruction*>& post_order, std::vector<HloInstruction*>* dfs_stack_scratch) const { ForEachInstructionPostOrderImpl( [&post_order](HloInstruction* hlo) { post_order.push_back(hlo); }, root, channel_dependencies, visited, dfs_stack_scratch); } void HloComputation::ForEachInstructionPostOrderImpl( absl::FunctionRef<void(HloInstruction*)> func, HloInstruction* root, const ChannelDependencies& channel_dependencies, VisitMap& visited, std::vector<HloInstruction*>* dfs_stack_scratch) const { bool has_channel_dependencies = !channel_dependencies.empty(); auto* dfs_stack = dfs_stack_scratch; dfs_stack->clear(); auto dfs_stack_push = [&](HloInstruction* instr) { VisitState state = visited.GetState(instr->index_in_parent_); if (state != VisitState::kVisited) dfs_stack->push_back(instr); }; dfs_stack_push(root); while (!dfs_stack->empty()) { HloInstruction* current = dfs_stack->back(); DCHECK_EQ(current->parent(), this) << "Instruction " << current->name() << " is not in the current computation (" << name() << ")."; VisitMap::Handle h = current->index_in_parent_; VisitState state = visited.GetState(h); if (state == VisitState::kNew) { visited.SetState(h, VisitState::kVisiting); } else { dfs_stack->pop_back(); if (state != VisitState::kVisited) { visited.SetState(h, VisitState::kVisited); func(current); } continue; } if (has_channel_dependencies && current != root) { auto it = channel_dependencies.find(current); if (it != channel_dependencies.end()) { absl::c_for_each(it->second, dfs_stack_push); } } const HloInstruction::InstructionVector& operands = current->operands(); absl::c_for_each(tsl::gtl::make_range(operands.rbegin(), operands.rend()), dfs_stack_push); absl::c_for_each(current->control_predecessors(), dfs_stack_push); } } HloComputation::ChannelDependencies HloComputation::ComputeChannelDependencies() const { if (parent() && parent()->config().has_static_device_assignment() && (parent()->config().static_device_assignment().computation_count() == 1 || parent()->config().use_spmd_partitioning())) { return {}; } using Instructions = absl::InlinedVector<HloInstruction*, 1>; absl::flat_hash_map<int64_t, Instructions> channel_groups; ChannelDependencies dependencies; for (const auto& inst : instructions_with_info()) { switch (inst.opcode()) { case HloOpcode::kAllReduce: case HloOpcode::kAllGather: case HloOpcode::kAllToAll: case HloOpcode::kCollectiveBroadcast: case HloOpcode::kCollectivePermute: case HloOpcode::kReduceScatter: { HloInstruction* instruction = inst.inst(); std::optional<int64_t> channel_id = instruction->channel_id(); if (channel_id) { Instructions& group = channel_groups[*channel_id]; for (const HloInstruction* group_inst : group) { dependencies[group_inst].push_back(instruction); } dependencies[instruction] = group; group.push_back(instruction); } break; } default: break; } } return dependencies; } std::vector<HloInstruction*> HloComputation::MakeInstructionPostOrderFrom( HloInstruction& postorder_root) const { std::vector<HloInstruction*> post_order; VisitMap visited(instructions_.size()); std::vector<HloInstruction*> dfs_stack_scratch; ComputeInstructionPostOrder(&postorder_root, ComputeChannelDependencies(), visited, post_order, &dfs_stack_scratch); return post_order; } std::vector<HloInstruction*> HloComputation::MakeInstructionPostOrder() const { return MakeInstructionPostOrder(ComputeChannelDependencies()); } std::vector<HloInstruction*> HloComputation::MakeInstructionPostOrder( const ChannelDependencies& channel_dependencies) const { std::vector<HloInstruction*> post_order; post_order.reserve(instruction_count()); VisitMap visited(instructions_.size()); std::vector<HloInstruction*> dfs_stack_scratch; dfs_stack_scratch.reserve(instruction_count()); for (const auto& instruction : instructions()) { if (instruction->users().empty()) { ComputeInstructionPostOrder(instruction, channel_dependencies, visited, post_order, &dfs_stack_scratch); } } CHECK_EQ(instruction_count(), post_order.size()) << "number of instructions does not match post order size"; return post_order; } std::vector<HloInstruction*> HloComputation::MakeInstructionPostOrderWithReshapeFirst() const { std::vector<HloInstruction*> frontier_std; std::vector<HloInstruction*> frontier_reshapes; std::vector<HloInstruction*> sorted; absl::flat_hash_map<int, uint32_t> visitations; sorted.reserve(instruction_count()); visitations.reserve(instruction_count()); auto pop_frontier_element = [&frontier_std, &frontier_reshapes]() mutable { if (!frontier_std.empty()) { HloInstruction* const to_return = frontier_std.back(); frontier_std.pop_back(); return to_return; } if (!frontier_reshapes.empty()) { HloInstruction* const to_return = frontier_reshapes.back(); frontier_reshapes.pop_back(); return to_return; } return static_cast<HloInstruction*>(nullptr); }; auto add_to_frontier = [&frontier_std, &frontier_reshapes]( HloInstruction* const instruction_to_add) mutable { if (instruction_to_add->opcode() == HloOpcode::kReshape) { frontier_reshapes.push_back(instruction_to_add); } else { frontier_std.push_back(instruction_to_add); } }; bool found_root_instruction = false; for (HloInstruction* const inst : instructions()) { if (inst->user_count() == 0) { if (inst == root_instruction()) { found_root_instruction = true; } add_to_frontier(inst); } } CHECK(found_root_instruction); while (HloInstruction* const inst = pop_frontier_element()) { sorted.push_back(inst); for (HloInstruction* const child : inst->operands()) { visitations[child->unique_id()]++; if (child->user_count() == visitations[child->unique_id()]) { add_to_frontier(child); } } } std::reverse(sorted.begin(), sorted.end()); CHECK_EQ(sorted.size(), instruction_count()); return sorted; } void HloComputation::ForEachInstructionPostOrder( absl::FunctionRef<void(HloInstruction*)> func) const { VisitMap visited(instructions_.size()); std::vector<HloInstruction*> dfs_stack_scratch; dfs_stack_scratch.reserve(instruction_count()); auto channel_dependencies = ComputeChannelDependencies(); for (const auto& instruction : instructions()) { if (instruction->users().empty()) { ForEachInstructionPostOrderImpl(func, instruction, channel_dependencies, visited, &dfs_stack_scratch); } } } std::vector<HloComputation*> HloComputation::MakeEmbeddedComputationsList() const { absl::flat_hash_set<HloComputation*> visited; std::vector<HloComputation*> post_order; using ComputationIter = std::pair<HloComputation*, InstructionList::const_iterator>; std::stack<ComputationIter, absl::InlinedVector<ComputationIter, 8>> st; for (const HloInstructionInfo& instruction : instructions_with_info()) { using PtrVec = PtrVec<HloComputation*>; auto process_called_computations = [&](const PtrVec& called_computations) { if (called_computations.empty()) return; std::reverse_iterator<PtrVec::const_iterator> i( called_computations.end()); std::reverse_iterator<PtrVec::const_iterator> rend( called_computations.begin()); for (; i != rend; ++i) { HloComputation* called_computation = *i; if (visited.insert(called_computation).second) { st.emplace(called_computation, called_computation->instructions_.cbegin()); } } }; process_called_computations(instruction->called_computations()); while (!st.empty()) { auto& cur = st.top(); HloComputation* computation = cur.first; if (cur.second == computation->instructions_.cend()) { st.pop(); post_order.push_back(computation); } else { if (cur.second->inst() == nullptr) { ++cur.second; } else { HloOpcode opcode = cur.second->opcode(); HloInstruction* next_instruction = cur.second->get(); ++cur.second; if (HloInstruction::MightHaveCalledComputations(opcode)) { process_called_computations( next_instruction->called_computations()); } else { DCHECK(next_instruction->called_computations().empty()); } } } } } return post_order; } void HloComputation::Print(Printer* printer, const HloPrintOptions& options) const { Print(printer, options, {}); } void HloComputation::Print( Printer* printer, const HloPrintOptions& options, absl::Span<const HloInstruction* const> instruction_order) const { if (!instruction_order.empty()) { CHECK_EQ(instruction_order.size(), instruction_count()); } const std::string tab(2 * options.indent_amount(), ' '); printer->Append(tab); if (!options.is_in_nested_computation()) { if (options.print_percent()) { printer->Append("%"); } if (options.print_ids()) { printer->Append(name()); printer->Append(" "); } } if (options.print_program_shape()) { ShapeUtil::PrintHumanString(printer, ComputeProgramShape(options.print_ids())); printer->Append(" "); } printer->Append("{\n"); { HloPrintOptions new_options = HloPrintOptions(options) .set_indent_amount(options.indent_amount() + 1) .set_is_in_nested_computation(true); CanonicalNameMap name_map; name_map.Reserve(instruction_count()); auto print_one = [&](const HloInstruction* instruction) { DCHECK_EQ(this, instruction->parent()); printer->Append(tab); printer->Append(" "); if (instruction == root_instruction_) { printer->Append("ROOT "); } instruction->PrintWithCanonicalNameMap(printer, new_options, &name_map); printer->Append("\n"); }; if (instruction_order.empty()) { ForEachInstructionPostOrder(print_one); } else { for (const HloInstruction* const instruction : instruction_order) { print_one(instruction); } } } printer->Append(tab); printer->Append("}"); if (options.print_ids() && !IsMainThread()) { printer->Append(", execution_thread=\""); printer->Append(execution_thread()); printer->Append("\""); } if (options.print_name_after_closing_brace() && instruction_count() > 5) { printer->Append(" printer->Append(name()); } } std::string HloComputation::ToString() const { return ToString(HloPrintOptions::Default()); } std::string HloComputation::ToString(const HloPrintOptions& options) const { return ToString(options, MakeInstructionPostOrder()); } std::string HloComputation::ToString( const HloPrintOptions& options, absl::Span<const HloInstruction* const> instruction_order) const { StringPrinter printer; Print(&printer, options, instruction_order); return std::move(printer).ToString(); } absl::Cord HloComputation::ToCord( const HloPrintOptions& options, absl::Span<const HloInstruction* const> instruction_order) const { CordPrinter printer; Print(&printer, options, instruction_order); return std::move(printer).ToCord(); } HloComputationProto HloComputation::ToProto() const { HloComputationProto proto; CHECK(unique_id_ != -1) << "This computation does not have a valid id. Please make sure the " "computation is inside a module before dumping it."; proto.set_id(unique_id_); proto.set_name(name_); for (const HloInstruction* instruction : MakeInstructionPostOrder()) { HloInstructionProto instruction_proto = instruction->ToProto(); proto.add_instructions()->Swap(&instruction_proto); } proto.set_root_id(root_instruction()->unique_id()); *proto.mutable_program_shape() = ComputeProgramShape().ToProto(); proto.set_is_fusion_computation(IsFusionComputation()); proto.set_execution_thread(IsMainThread() ? "" : std::string(execution_thread())); return proto; } absl::StatusOr<std::unique_ptr<HloComputation>> HloComputation::CreateFromProto( const HloComputationProto& proto, const absl::flat_hash_map<int64_t, HloComputation*>& computation_map, bool prohibit_empty_literal) { absl::flat_hash_map<int64_t, HloInstruction*> instruction_map; absl::flat_hash_map<HloInstruction*, int64_t> to_proto_id; std::vector<std::unique_ptr<HloInstruction>> instructions; int64_t parameter_count = 0; for (const HloInstructionProto& instruction_proto : proto.instructions()) { TF_ASSIGN_OR_RETURN(std::unique_ptr<HloInstruction> instruction, HloInstruction::CreateFromProto( instruction_proto, instruction_map, computation_map, prohibit_empty_literal)); if (instruction->opcode() == HloOpcode::kParameter) { parameter_count++; } TF_RET_CHECK(!ContainsKey(instruction_map, instruction_proto.id())); instruction_map[instruction_proto.id()] = instruction.get(); to_proto_id[instruction.get()] = instruction_proto.id(); instructions.push_back(std::move(instruction)); } TF_RET_CHECK(proto.root_id() != -1); TF_RET_CHECK(ContainsKey(instruction_map, proto.root_id())); HloInstruction* root = instruction_map.at(proto.root_id()); absl::c_sort(instructions, [&](const std::unique_ptr<HloInstruction>& a, const std::unique_ptr<HloInstruction>& b) { return to_proto_id[a.get()] < to_proto_id[b.get()]; }); TF_RETURN_IF_ERROR([&]() -> absl::Status { std::vector<bool> parameters_seen(parameter_count); int parameters_seen_count = 0; for (auto& instruction : instructions) { if (instruction->opcode() == HloOpcode::kParameter) { int64_t param_no = instruction->parameter_number(); TF_RET_CHECK(param_no >= 0 && param_no < parameter_count) << "Invalid parameter number. Expected [0, " << parameter_count << "), got " << param_no; TF_RET_CHECK(!parameters_seen[param_no]) << "Parameter number " << param_no << " already allocated in this computation"; parameters_seen[param_no] = true; parameters_seen_count++; } } TF_RET_CHECK(parameters_seen_count == parameter_count) << "Not all parameters in range [0, " << parameter_count << ") were referenced"; return absl::OkStatus(); }()); auto computation = absl::WrapUnique( new HloComputation(proto.name(), parameter_count, &instructions, root)); computation->unique_id_ = proto.id(); if (proto.is_fusion_computation()) { computation->instruction_and_type_ = static_cast<uintptr_t>(InstructionType::kFusion); } if (!proto.execution_thread().empty()) { computation->SetExecutionThread(proto.execution_thread()); } return std::move(computation); } void HloComputation::AppendInstructionsIntoCalledComputation( absl::Span<HloInstruction* const> instructions_to_append, HloInstruction* caller) { HloInstruction* root = instructions_to_append.front(); TF_CHECK_OK(caller->CopyAllControlDepsFrom(root)); TF_CHECK_OK(root->DropAllControlDeps()); TF_CHECK_OK(root->ReplaceAllUsesWith(caller)); if (root == root_instruction()) { set_root_instruction(caller); } TF_CHECK_OK(RemoveInstruction(root)); for (size_t i = 1; i < instructions_to_append.size(); ++i) { HloInstruction* instruction = instructions_to_append[i]; caller->AppendInstructionIntoCalledComputation(instruction); if (instruction->IsDead()) { TF_CHECK_OK(RemoveInstruction(instruction)); } } } HloInstruction* HloComputation::CreateFusionInstruction( absl::Span<HloInstruction* const> instructions_to_fuse, HloInstruction::FusionKind fusion_kind) { HloInstruction* root = instructions_to_fuse.front(); HloInstruction* fusion_instruction = AddInstruction( HloInstruction::CreateFusion(root->shape(), fusion_kind, root)); AppendInstructionsIntoCalledComputation(instructions_to_fuse, fusion_instruction); return fusion_instruction; } HloInstruction* HloComputation::CreateCallInstruction( absl::Span<HloInstruction* const> instructions_to_call) { HloInstruction* root = instructions_to_call.front(); HloInstruction* call_instruction = AddInstruction( HloInstruction::CreateCall(root->shape(), root), root->name()); AppendInstructionsIntoCalledComputation(instructions_to_call, call_instruction); return call_instruction; } HloInstruction* HloComputation::CreateCompositeCallInstruction( absl::Span<HloInstruction* const> instructions_to_call, const std::string& name, const std::string& attributes, int64_t version) { HloInstruction* root = instructions_to_call.front(); HloInstruction* call_instruction = AddInstruction(HloInstruction::CreateCompositeCall( root->shape(), root, name, attributes, version), root->name()); AppendInstructionsIntoCalledComputation(instructions_to_call, call_instruction); return call_instruction; } absl::StatusOr<HloInstruction*> HloComputation::CreateAsyncInstructions( HloInstruction* instruction, absl::Span<const Shape> context_shapes, absl::string_view async_execution_thread, bool replace, bool override_names) { HloInstruction* async_start; HloInstruction* async_done; if (instruction->opcode() == HloOpcode::kCopy) { std::vector<Shape> context_shapes_tuple; context_shapes_tuple.reserve(context_shapes.size() + 2); Shape instruction_shape_destination = instruction->shape(); context_shapes_tuple.push_back(instruction_shape_destination); Shape instruction_shape_source = instruction->operand(0)->shape(); context_shapes_tuple.push_back(instruction_shape_source); context_shapes_tuple.insert(context_shapes_tuple.end(), context_shapes.begin(), context_shapes.end()); async_start = AddInstruction(HloInstruction::CreateCopyStart( ShapeUtil::MakeTupleShape(context_shapes_tuple), instruction->mutable_operand(0))); async_done = AddInstruction(HloInstruction::CreateUnary( instruction_shape_destination, HloOpcode::kCopyDone, async_start)); } else { Builder builder("async_computation"); std::vector<HloInstruction*> parameters(instruction->operand_count()); std::vector<Shape> parameter_shapes(instruction->operand_count()); for (int i = 0; i < instruction->operand_count(); ++i) { const Shape& parameter_shape = instruction->operand(i)->shape(); parameters[i] = builder.AddInstruction(HloInstruction::CreateParameter( i, parameter_shape, absl::StrCat("param_", i))); parameter_shapes[i] = parameter_shape; } HloInstruction* root = builder.AddInstruction( instruction->CloneWithNewOperands(instruction->shape(), parameters)); if (override_names) { parent()->SetAndUniquifyInstrName( root, absl::StrCat(instruction->name(), ".cloned")); } HloComputation* async_computation = parent_->AddEmbeddedComputation(builder.Build(root)); std::vector<Shape> start_shapes = { ShapeUtil::MakeTupleShape(parameter_shapes), root->shape()}; for (const Shape& context_shape : context_shapes) { start_shapes.push_back(context_shape); } async_start = AddInstruction(HloInstruction::CreateAsyncStart( ShapeUtil::MakeTupleShape(start_shapes), instruction->operands(), async_computation, async_execution_thread)); async_done = AddInstruction( HloInstruction::CreateAsyncDone(root->shape(), async_start)); if (override_names) { parent()->SetAndUniquifyInstrName( async_start, absl::StrCat(root->name(), ".call-start")); parent()->SetAndUniquifyInstrName( async_done, absl::StrCat(root->name(), ".call-done")); } } async_start->set_metadata(instruction->metadata()); async_start->CopyBackendConfigFrom(instruction); async_done->set_metadata(instruction->metadata()); async_done->CopyBackendConfigFrom(instruction); for (HloInstruction* control_pred : instruction->control_predecessors()) { TF_RETURN_IF_ERROR(control_pred->AddControlDependencyTo(async_start)); } for (HloInstruction* control_successor : instruction->control_successors()) { TF_RETURN_IF_ERROR(async_done->AddControlDependencyTo(control_successor)); } if (replace) { TF_RETURN_IF_ERROR(instruction->DropAllControlDeps()); TF_RETURN_IF_ERROR(ReplaceInstruction(instruction, async_done)); } return async_done; } absl::StatusOr<HloInstruction*> HloComputation::DeepCopyHelper( HloInstruction* instruction, ShapeIndex* index, absl::FunctionRef<HloInstruction*(HloInstruction* leaf, const ShapeIndex& leaf_index, HloComputation* computation)> copy_leaf) { if (instruction->shape().IsTuple()) { std::vector<HloInstruction*> elements; for (int64_t i = 0; i < ShapeUtil::TupleElementCount(instruction->shape()); i++) { HloInstruction* gte = AddInstruction(HloInstruction::CreateGetTupleElement( ShapeUtil::GetTupleElementShape(instruction->shape(), i), instruction, i)); index->push_back(i); TF_ASSIGN_OR_RETURN(HloInstruction * element, DeepCopyHelper(gte, index, copy_leaf)); elements.push_back(element); index->pop_back(); } return AddInstruction(HloInstruction::CreateTuple(elements)); } if (instruction->shape().IsToken()) { return instruction; } TF_RET_CHECK(instruction->shape().IsArray()); return copy_leaf(instruction, *index, this); } absl::StatusOr<HloInstruction*> HloComputation::DeepCopyInstruction( HloInstruction* instruction, const ShapeTree<bool>* indices_to_copy, ShapeTree<HloInstruction*>* copies_added) { if (instruction->parent() != this) { return FailedPrecondition( "Can't deep copy instruction %s: instruction is not in computation %s", instruction->name(), name()); } if (indices_to_copy != nullptr && !ShapeUtil::Compatible(instruction->shape(), indices_to_copy->shape())) { return FailedPrecondition( "Can't deep copy instruction %s: given shape tree of indices to copy " "has incompatible shapes: %s vs. %s", instruction->name(), ShapeUtil::HumanString(instruction->shape()), ShapeUtil::HumanString(indices_to_copy->shape())); } ShapeIndex index; auto copy_leaf = [indices_to_copy, copies_added]( HloInstruction* leaf, const ShapeIndex& leaf_index, HloComputation* computation) { if (indices_to_copy == nullptr || indices_to_copy->element(leaf_index)) { HloInstruction* copy = computation->AddInstruction( HloInstruction::CreateUnary(leaf->shape(), HloOpcode::kCopy, leaf)); if (copies_added != nullptr) { *copies_added->mutable_element(leaf_index) = copy; } return copy; } return leaf; }; return DeepCopyHelper(instruction, &index, copy_leaf); } absl::StatusOr<HloInstruction*> HloComputation::DeepCopyInstructionWithCustomCopier( HloInstruction* instruction, absl::FunctionRef<HloInstruction*(HloInstruction* leaf, const ShapeIndex& leaf_index, HloComputation* computation)> copy_leaf) { if (instruction->parent() != this) { return FailedPrecondition( "Can't deep copy instruction %s: instruction is not in computation %s", instruction->name(), name()); } ShapeIndex index; return DeepCopyHelper(instruction, &index, copy_leaf); } ProgramShape HloComputation::ComputeProgramShape(bool include_ids) const { ProgramShape program_shape; for (auto* param_instruction : param_instructions_) { *program_shape.add_parameters() = param_instruction->shape(); *program_shape.add_parameter_names() = std::string(PrintName(param_instruction->name(), include_ids)); } *program_shape.mutable_result() = root_instruction_->shape(); return program_shape; } bool HloComputation::EqualInternal( const HloComputation& other, bool is_layout_sensitive, std::optional< absl::FunctionRef<bool(const HloComputation*, const HloComputation*)>> computations_comparator, bool ignore_channel_id_values, bool ignore_execution_thread) const { if (this == &other) { return true; } absl::flat_hash_set<std::pair<const HloInstruction*, const HloInstruction*>> visited; std::vector<std::pair<const HloInstruction*, const HloInstruction*>> worklist; worklist.push_back({root_instruction(), other.root_instruction()}); while (!worklist.empty()) { auto pair = worklist.back(); worklist.pop_back(); if (visited.contains(pair)) { continue; } visited.emplace(pair); auto operands_eq = [](const HloInstruction*, const HloInstruction*) { return true; }; auto comp_eq = [&](const HloComputation* a, const HloComputation* b) { return a->EqualInternal(*b, is_layout_sensitive, computations_comparator, ignore_channel_id_values, ignore_execution_thread); }; bool identical_ignoring_operands = ignore_channel_id_values ? pair.first->IdenticalIgnoringChannelIdValues( *pair.second, operands_eq, (computations_comparator ? *computations_comparator : comp_eq), is_layout_sensitive) : pair.first->Identical( *pair.second, operands_eq, (computations_comparator ? *computations_comparator : comp_eq), is_layout_sensitive); if (!identical_ignoring_operands) { return false; } for (size_t i = 0; i < pair.first->operands().size(); ++i) { worklist.push_back({pair.first->operand(i), pair.second->operand(i)}); } } if (!ignore_execution_thread) { return execution_thread() == other.execution_thread(); } return true; } absl::Status HloComputation::ReplaceWithNewInstruction( HloInstruction* old_instruction, std::unique_ptr<HloInstruction> new_instruction) { return ReplaceInstruction(old_instruction, AddInstruction(std::move(new_instruction))); } absl::Status HloComputation::ReplaceWithNewEntryComputationParameter( HloInstruction* old_instruction, std::unique_ptr<HloInstruction> new_instruction) { return ReplaceInstruction(old_instruction, AddEntryComputationParameter( std::move(new_instruction))); } absl::StatusOr<bool> HloComputation::ReplaceInstruction( HloInstruction* old_instruction, HloInstruction* new_instruction, bool preserve_sharding, bool relay_control_dependency, bool remove_unused_operands) { TF_RET_CHECK( ShapeUtil::Compatible(old_instruction->shape(), new_instruction->shape())) << absl::StreamFormat( "\"%s\" (%s) vs \"%s\" (%s)", old_instruction->name(), old_instruction->shape().ToString(true), new_instruction->name(), new_instruction->shape().ToString(true)); return ReplaceInstructionWithDifferentShape( old_instruction, new_instruction, preserve_sharding, relay_control_dependency, remove_unused_operands); } absl::Status HloComputation::ReplaceInstruction( HloInstruction* old_instruction, HloInstruction* new_instruction) { TF_ASSIGN_OR_RETURN(bool changed, ReplaceInstruction(old_instruction, new_instruction, false)); DCHECK(changed); return absl::OkStatus(); } absl::StatusOr<bool> HloComputation::ReplaceInstructionWithDifferentShape( HloInstruction* old_instruction, HloInstruction* new_instruction, bool preserve_sharding, bool relay_control_dependency, bool remove_unused_operands) { if (preserve_sharding && new_instruction->has_sharding() && old_instruction->has_sharding() && !new_instruction->has_compatible_sharding(old_instruction)) { VLOG(10) << "Skipping replacement due to incompatible sharding"; return false; } if (relay_control_dependency) { TF_RETURN_IF_ERROR( new_instruction->CopyAllControlDepsFrom(old_instruction)); TF_RETURN_IF_ERROR(old_instruction->DropAllControlDeps()); } else if (old_instruction->HasControlDependencies()) { VLOG(10) << "Skipping replacement because old instruction has " "control dependencies"; return false; } VLOG(10) << "transformed " << old_instruction->ToString() << " to " << new_instruction->ToString(); bool overwrite_op_name = new_instruction->metadata().op_name().empty() && !old_instruction->metadata().op_name().empty(); if (overwrite_op_name) { new_instruction->set_metadata(old_instruction->metadata()); } if (new_instruction->frontend_attributes().map().empty()) { new_instruction->set_frontend_attributes( old_instruction->frontend_attributes()); } if (auto old_original_value = old_instruction->original_value()) { if (new_instruction->opcode() != HloOpcode::kFusion) { if (ShapeUtil::Compatible(old_instruction->shape(), new_instruction->shape())) { new_instruction->set_original_value(old_original_value); } else { LOG(WARNING) << "Expect the new instruction to have the same shape with the old " "instruction when copying over original_value\n"; } } } if (!new_instruction->has_sharding()) { new_instruction->copy_sharding(old_instruction); } TF_RETURN_IF_ERROR( old_instruction->ReplaceAllUsesWithDifferentShape(new_instruction)); if (old_instruction->opcode() == new_instruction->opcode() && (old_instruction->opcode() != HloOpcode::kCustomCall || old_instruction->custom_call_target() == new_instruction->custom_call_target())) { new_instruction->SetAndSanitizeName(old_instruction->name()); } if (remove_unused_operands) { TF_RETURN_IF_ERROR(RemoveInstructionAndUnusedOperands( old_instruction, std::nullopt, relay_control_dependency)); } else { TF_RETURN_IF_ERROR(RemoveInstruction(old_instruction)); } return true; } absl::Status HloComputation::ReplaceInstructionWithDifferentShape( HloInstruction* old_instruction, HloInstruction* new_instruction) { TF_ASSIGN_OR_RETURN(bool changed, ReplaceInstructionWithDifferentShape( old_instruction, new_instruction, false)); DCHECK(changed); return absl::OkStatus(); } std::vector<HloInstruction*> HloComputation::CollectUnreachableRoots() const { std::vector<HloInstruction*> unreachable_roots; for (auto* instruction : instructions()) { if (instruction->IsDead() && instruction->control_successors().empty()) { unreachable_roots.push_back(instruction); } } VLOG(3) << "Unreachable roots:" << absl::StrJoin(unreachable_roots, "\n\t", [](std::string* out, const HloInstruction* hlo) { absl::StrAppend(out, hlo->ToString()); }); return unreachable_roots; } absl::Status HloComputation::AcceptWithOperandOrder( DfsHloVisitor* visitor, const HloInstruction::CompareFunction& operand_order) const { for (HloInstruction* root : CollectUnreachableRoots()) { TF_RETURN_IF_ERROR( root->AcceptWithOperandOrder(visitor, operand_order, false)); } return root_instruction()->AcceptWithOperandOrder(visitor, operand_order, true); } std::unique_ptr<HloComputation> HloComputation::Clone( const std::string& suffix, HloCloneContext* context) { return CloneWithReplacements( nullptr, {}, context, suffix); } std::unique_ptr<HloComputation> HloComputation::CloneWithReplacementPairs( std::pair<const HloInstruction*, std::unique_ptr<HloInstruction>> r1, HloCloneContext* context, const std::string& suffix) { absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloInstruction>> replacements; replacements.emplace(std::move(r1)); return CloneWithReplacements(&replacements, {}, context, suffix); } std::unique_ptr<HloComputation> HloComputation::CloneWithReplacementPairs( std::pair<const HloInstruction*, std::unique_ptr<HloInstruction>> r1, std::pair<const HloInstruction*, std::unique_ptr<HloInstruction>> r2, HloCloneContext* context, const std::string& suffix) { absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloInstruction>> replacements; replacements.emplace(std::move(r1)); replacements.emplace(std::move(r2)); return CloneWithReplacements(&replacements, {}, context, suffix); } std::unique_ptr<HloComputation> HloComputation::CloneWithReplacementPairs( std::pair<const HloInstruction*, std::unique_ptr<HloInstruction>> r1, std::pair<const HloInstruction*, std::unique_ptr<HloInstruction>> r2, std::pair<const HloInstruction*, std::unique_ptr<HloInstruction>> r3, HloCloneContext* context, const std::string& suffix) { absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloInstruction>> replacements; replacements.emplace(std::move(r1)); replacements.emplace(std::move(r2)); replacements.emplace(std::move(r3)); return CloneWithReplacements(&replacements, {}, context, suffix); } namespace { void SortClonedInstructions( const HloCloneContext& context, absl::FunctionRef<const HloInstruction*(const HloInstruction*)> replace, const HloComputation& computation, const HloComputation::InstructionList& ordered_instructions, std::vector<std::unique_ptr<HloInstruction>>& unordered_instructions) { using InstructionSorter = MappedPtrContainerSorter<HloInstruction>; auto instruction_mapper = [&context, replace](const HloInstruction* i) { return context.FindInstruction(replace(i)); }; size_t num_mapped_instructions = 0; size_t mapped_index_of_last_parameter_plus_one = 0; for (const auto& instruction : ordered_instructions) { if (!instruction_mapper(instruction.get())) { continue; } ++num_mapped_instructions; if (!dynamic_cast<const HloParameterInstruction*>(instruction.get())) { continue; } mapped_index_of_last_parameter_plus_one = num_mapped_instructions; } auto unmapped_ptr_index = [num_mapped_instructions, mapped_index_of_last_parameter_plus_one](const HloInstruction* i) { if (dynamic_cast<const HloParameterInstruction*>(i)) { if (num_mapped_instructions > 0 && mapped_index_of_last_parameter_plus_one > 0) { return mapped_index_of_last_parameter_plus_one - 1; } return InstructionSorter::IndexBeforeMappedElementsFn()(i); } return InstructionSorter::IndexAfterMappedElementsFn()(i); }; auto status = InstructionSorter::Sort(instruction_mapper, unmapped_ptr_index, ordered_instructions, unordered_instructions); if (!status.ok()) { LOG(ERROR) << "Failed to reorder instructions while cloning computation: " << computation.name() << "; " << status; } } void SortClonedInstructionUsersAndControlLists( const HloCloneContext& context, absl::FunctionRef<const HloInstruction*(const HloInstruction*)> replace, const HloComputation::InstructionList& sorted_instructions) { auto instruction_mapper = [&context, replace](const HloInstruction* i) { return context.FindInstruction(replace(i)); }; for (const HloInstructionInfo& instruction : sorted_instructions) { HloInstruction* cloned_instruction = context.FindInstruction(replace(instruction.get())); if (!cloned_instruction) { continue; } cloned_instruction->SortInstructionUsersAndControlLists(instruction_mapper, *instruction); } } } std::unique_ptr<HloComputation> HloComputation::CloneWithReplacements( const absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloInstruction>>* replacements, absl::Span<const HloInstruction* const> extra_parameters, HloCloneContext* context, const std::string& suffix, const HloInstruction* new_root) { std::unique_ptr<HloCloneContext> context_ptr; if (context == nullptr) { context_ptr = std::make_unique<HloCloneContext>(parent(), suffix); context = context_ptr.get(); } return CloneInContext(*context, replacements, extra_parameters, suffix, new_root); } std::unique_ptr<HloComputation> HloComputation::CloneInContext( HloCloneContext& context, const absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloInstruction>>* replacements, absl::Span<const HloInstruction* const> extra_parameters, const std::string& suffix, const HloInstruction* new_root) const { if (new_root == nullptr) { new_root = root_instruction(); } auto replace = [&](const HloInstruction* instr) { if (!replacements) return instr; auto it = replacements->find(instr); return it != replacements->end() ? it->second.get() : instr; }; VLOG(1) << "Cloning " << name() << " --> " << suffix << "\n"; std::vector<const HloInstruction*> postorder; absl::flat_hash_map<const HloInstruction*, VisitState> visited; std::vector<const HloInstruction*> dfs_stack; for (const auto& instr : instructions()) { const HloInstruction* new_instr = replace(instr); if (!new_instr) { continue; } dfs_stack.clear(); dfs_stack.push_back(new_instr); while (!dfs_stack.empty()) { auto* cur = dfs_stack.back(); auto it = visited.find(cur); if (it != visited.end()) { dfs_stack.pop_back(); if (it->second == VisitState::kVisited) { continue; } CHECK_EQ(it->second, VisitState::kVisiting); postorder.push_back(cur); it->second = VisitState::kVisited; continue; } visited.insert({cur, VisitState::kVisiting}); for (HloInstruction* operand : cur->operands()) { const HloInstruction* new_operand = replace(operand); if (new_operand) { dfs_stack.emplace_back(new_operand); } } } } std::vector<std::unique_ptr<HloInstruction>> instructions; for (const auto& instr : extra_parameters) { CHECK_EQ(instr->opcode(), HloOpcode::kParameter) << "Only parameter instructions are allowed in 'extra_parameters'"; instructions.emplace_back(instr->Clone()); } for (auto instr : postorder) { std::vector<HloInstruction*> new_operands; for (auto operand : instr->operands()) { auto replaced_operand = replace(operand); CHECK_NE(replaced_operand, nullptr) << "replacements map tried to eliminate a used instruction " << operand->ToString() << ", used by " << instr->ToString(); new_operands.push_back(context.GetInstruction(replaced_operand)); } std::unique_ptr<HloInstruction> new_instr = instr->CloneWithNewOperands(instr->shape(), new_operands, &context); if (instr->opcode() == HloOpcode::kParameter && instr->parameter_replicated_at_leaf_buffers().has_value()) { new_instr->set_parameter_replicated_at_leaf_buffers( instr->parameter_replicated_at_leaf_buffers().value()); } instructions.push_back(std::move(new_instr)); } SortClonedInstructions(context, replace, *this, instructions_, instructions); Builder builder(suffix.empty() ? std::string(name()) : absl::StrCat(name(), ".", suffix)); for (auto& instr : instructions) { builder.AddInstruction(std::move(instr)); } auto result = builder.Build( context.GetInstruction(replace(new_root))); for (auto instr : postorder) { HloInstruction* new_instr = context.GetInstruction(instr); for (auto successor : instr->control_successors()) { auto replaced_successor = replace(successor); if (replaced_successor != nullptr) { TF_CHECK_OK(new_instr->AddControlDependencyTo( context.GetInstruction(replaced_successor))); } } } SortClonedInstructionUsersAndControlLists(context, replace, instructions_); context.MapComputation(this, result.get()); result->SetExecutionThread(execution_thread()); return result; } void HloComputation::UniquifyName(NameUniquer* name_uniquer) { name_ = name_uniquer->GetUniqueName(name_); } void HloComputation::UniquifyName(HloModule* module) { UniquifyName(&module->computation_name_uniquer()); } HloInstruction* HloComputation::GetInstructionWithName(absl::string_view name) { auto instructions_in_computation = instructions(); auto it = absl::c_find_if( instructions_in_computation, [&](HloInstruction* instr) { return instr->name() == name; }); return it == instructions_in_computation.end() ? nullptr : *it; } bool HloComputation::IsEntryComputation() const { return parent()->entry_computation() == this; } bool HloComputation::CanExpandIntoSingleInstruction() const { return absl::c_all_of( instructions(), [root = root_instruction()](const HloInstruction* instr) { return root == instr || instr->opcode() == HloOpcode::kParameter; }); } }
#include "xla/hlo/ir/hlo_computation.h" #include <cstdint> #include <memory> #include <string> #include <string_view> #include <vector> #include <gmock/gmock.h> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal_util.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace m = match; namespace op = xla::testing::opcode_matchers; using ::testing::ElementsAre; using ::testing::UnorderedElementsAre; class HloComputationTest : public HloTestBase { protected: HloComputationTest() {} std::unique_ptr<HloComputation> CreateNegateComputation() { auto builder = HloComputation::Builder("Negate"); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32_, "param0")); builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, param)); return builder.Build(); } std::unique_ptr<HloComputation> CreateMapComputation( HloComputation* map_computation) { auto builder = HloComputation::Builder("Map"); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32_, "param0")); builder.AddInstruction( HloInstruction::CreateMap(r0f32_, {param}, map_computation)); return builder.Build(); } Shape r0f32_ = ShapeUtil::MakeShape(F32, {}); }; TEST_F(HloComputationTest, GetEmbeddedComputationsEmpty) { auto module = CreateNewVerifiedModule(); auto negate_computation = module->AddEntryComputation(CreateNegateComputation()); EXPECT_TRUE(negate_computation->MakeEmbeddedComputationsList().empty()); } TEST_F(HloComputationTest, GetEmbeddedComputationsOneComputation) { auto module = CreateNewVerifiedModule(); auto negate_computation = module->AddEmbeddedComputation(CreateNegateComputation()); auto map_computation = module->AddEntryComputation(CreateMapComputation(negate_computation)); EXPECT_TRUE(negate_computation->MakeEmbeddedComputationsList().empty()); EXPECT_THAT(map_computation->MakeEmbeddedComputationsList(), ElementsAre(negate_computation)); } TEST_F(HloComputationTest, GetEmbeddedComputationsDiamond) { auto module = CreateNewVerifiedModule(); auto negate_computation = module->AddEmbeddedComputation(CreateNegateComputation()); auto map1_computation = module->AddEmbeddedComputation(CreateMapComputation(negate_computation)); auto map2_computation = module->AddEmbeddedComputation(CreateMapComputation(negate_computation)); auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32_, "param0")); auto map1 = builder.AddInstruction( HloInstruction::CreateMap(r0f32_, {param}, map1_computation)); auto map2 = builder.AddInstruction( HloInstruction::CreateMap(r0f32_, {param}, map2_computation)); builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, map1, map2)); auto computation = module->AddEntryComputation(builder.Build()); auto embedded_computations = computation->MakeEmbeddedComputationsList(); EXPECT_EQ(3, embedded_computations.size()); EXPECT_EQ(negate_computation, *embedded_computations.begin()); EXPECT_THAT(embedded_computations, UnorderedElementsAre(negate_computation, map1_computation, map2_computation)); } TEST_F(HloComputationTest, PostOrderSingleton) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_THAT(computation->MakeInstructionPostOrder(), ElementsAre(constant)); } TEST_F(HloComputationTest, PostOrderSimple) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto negate1 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, constant)); auto negate2 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, negate1)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_THAT(computation->MakeInstructionPostOrder(), ElementsAre(constant, negate1, negate2)); } TEST_F(HloComputationTest, PostOrderDisconnectedInstructions) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto constant3 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto constant4 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_THAT(computation->MakeInstructionPostOrder(), UnorderedElementsAre(constant1, constant2, constant3, constant4)); } TEST_F(HloComputationTest, PostOrderWithReshapeFirst) { const std::string& hlo_string = R"( HloModule test ENTRY %entry { parameter.0 = f32[3] parameter(0) broadcast.0 = f32[1, 3] broadcast(f32[3] parameter.0), dimensions={1} reshape.0 = f32[3, 1] reshape(f32[3] parameter.0) ROOT tuple.0 = (f32[1, 3], f32[3, 1]) tuple(f32[1, 3] broadcast.0, f32[3, 1] reshape.0) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); HloComputation* entry_computation = FindComputation(hlo_module.get(), "entry"); HloInstruction* parameter_0 = FindInstruction(hlo_module.get(), "parameter.0"); HloInstruction* broadcast_0 = FindInstruction(hlo_module.get(), "broadcast.0"); HloInstruction* reshape_0 = FindInstruction(hlo_module.get(), "reshape.0"); HloInstruction* tuple_0 = FindInstruction(hlo_module.get(), "tuple.0"); EXPECT_THAT(entry_computation->MakeInstructionPostOrder(), ElementsAre(parameter_0, broadcast_0, reshape_0, tuple_0)); EXPECT_THAT(entry_computation->MakeInstructionPostOrderWithReshapeFirst(), ElementsAre(parameter_0, reshape_0, broadcast_0, tuple_0)); } TEST_F(HloComputationTest, PostOrderWithMultipleRoots) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto constant3 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto add1 = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant1, constant2)); auto add2 = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant2, constant3)); auto add3 = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant1, constant3)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); auto post_order = computation->MakeInstructionPostOrder(); EXPECT_EQ(6, post_order.size()); EXPECT_THAT(post_order, UnorderedElementsAre(constant1, constant2, constant3, add1, add2, add3)); } TEST_F(HloComputationTest, VisitWithMultipleRoots) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto constant3 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); builder.AddInstruction(HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, constant1, constant2)); builder.AddInstruction(HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, constant2, constant3)); builder.AddInstruction(HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, constant1, constant3)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); class TestVisitor : public DfsHloVisitorWithDefault { public: explicit TestVisitor(HloComputation* computation) : computation_(computation) {} absl::Status DefaultAction(HloInstruction* hlo_instruction) override { EXPECT_FALSE(visited_set_.contains(hlo_instruction)); visited_set_.insert(hlo_instruction); last_visited_ = hlo_instruction; return absl::OkStatus(); } absl::Status FinishVisit(HloInstruction* root) override { EXPECT_EQ(computation_->root_instruction(), root); ++finish_visit_calls_; return absl::OkStatus(); } HloComputation* computation_; absl::flat_hash_set<HloInstruction*> visited_set_; int64_t finish_visit_calls_ = 0; HloInstruction* last_visited_ = nullptr; }; TestVisitor visitor(computation); EXPECT_IS_OK(computation->Accept(&visitor)); EXPECT_EQ(6, visitor.visited_set_.size()); EXPECT_EQ(1, visitor.finish_visit_calls_); EXPECT_EQ(computation->root_instruction(), visitor.last_visited_); } TEST_F(HloComputationTest, DeepCopyArray) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1.0, 2.0, 3.0}))); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); auto copy = computation->DeepCopyInstruction(constant).value(); EXPECT_THAT(copy, GmockMatch(m::Copy(m::Op().Is(constant)))); } TEST_F(HloComputationTest, DeepCopyTuple) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1.0, 2.0, 3.0}))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); auto tuple_copy = computation->DeepCopyInstruction(tuple).value(); EXPECT_THAT(tuple_copy, GmockMatch(m::Tuple( m::Copy(m::GetTupleElement(m::Op().Is(tuple))), m::Copy(m::GetTupleElement(m::Op().Is(tuple)))))); EXPECT_EQ(0, tuple_copy->operand(0)->operand(0)->tuple_index()); EXPECT_EQ(1, tuple_copy->operand(1)->operand(0)->tuple_index()); } TEST_F(HloComputationTest, DeepCopyArrayAtIndices) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1.0, 2.0, 3.0}))); auto computation = builder.Build(); { ShapeTree<bool> indices_to_copy(constant->shape(), true); EXPECT_THAT( computation->DeepCopyInstruction(constant, &indices_to_copy).value(), GmockMatch(m::Copy(m::Op().Is(constant)))); } { ShapeTree<bool> indices_to_copy(constant->shape(), false); EXPECT_EQ( computation->DeepCopyInstruction(constant, &indices_to_copy).value(), constant); } } TEST_F(HloComputationTest, DeepCopyTupleAtIndices) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1.0, 2.0, 3.0}))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto computation = builder.Build(); { ShapeTree<bool> indices_to_copy(tuple->shape(), true); ShapeTree<HloInstruction*> copies_added(tuple->shape(), nullptr); HloInstruction* deep_copy = computation->DeepCopyInstruction(tuple, &indices_to_copy, &copies_added) .value(); EXPECT_THAT(deep_copy, GmockMatch(m::Tuple( m::Copy(m::GetTupleElement(m::Op().Is(tuple))) .Is(copies_added.element({0})), m::Copy(m::GetTupleElement(m::Op().Is(tuple))) .Is(copies_added.element({1}))))); } { ShapeTree<bool> indices_to_copy(tuple->shape(), false); ShapeTree<HloInstruction*> copies_added(tuple->shape(), nullptr); HloInstruction* deep_copy = computation->DeepCopyInstruction(tuple, &indices_to_copy, &copies_added) .value(); EXPECT_THAT(deep_copy, GmockMatch(m::Tuple(m::GetTupleElement(m::Op().Is(tuple)), m::GetTupleElement(m::Op().Is(tuple))))); EXPECT_TRUE(copies_added.element({}) == nullptr); EXPECT_TRUE(copies_added.element({0}) == nullptr); EXPECT_TRUE(copies_added.element({1}) == nullptr); } { ShapeTree<bool> indices_to_copy(tuple->shape(), false); *indices_to_copy.mutable_element({0}) = true; ShapeTree<HloInstruction*> copies_added(tuple->shape(), nullptr); HloInstruction* deep_copy = computation->DeepCopyInstruction(tuple, &indices_to_copy, &copies_added) .value(); EXPECT_THAT(deep_copy, GmockMatch(m::Tuple( m::Copy(m::GetTupleElement(m::Op().Is(tuple))), m::GetTupleElement(m::Op().Is(tuple))))); EXPECT_TRUE(copies_added.element({}) == nullptr); EXPECT_TRUE(copies_added.element({0}) != nullptr); EXPECT_TRUE(copies_added.element({1}) == nullptr); } } TEST_F(HloComputationTest, DeepCopyToken) { auto builder = HloComputation::Builder(TestName()); auto token = builder.AddInstruction(HloInstruction::CreateToken()); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); auto copy = computation->DeepCopyInstruction(token).value(); EXPECT_THAT(copy, GmockMatch(m::AfterAll())); } TEST_F(HloComputationTest, DeepCopyTokenTuple) { auto builder = HloComputation::Builder(TestName()); auto token = builder.AddInstruction(HloInstruction::CreateToken()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0))); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({token, constant})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); auto copy = computation->DeepCopyInstruction(tuple).value(); EXPECT_THAT(copy, GmockMatch(m::Tuple( m::GetTupleElement(m::Op().Is(tuple)), m::Copy(m::GetTupleElement(m::Op().Is(tuple)))))); } TEST_F(HloComputationTest, CycleDetection) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, constant)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, negate, negate)); auto module = CreateNewUnverifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); ASSERT_IS_OK(add->AddControlDependencyTo(negate)); auto instructions = computation->MakeInstructionPostOrder(); EXPECT_EQ(3, instructions.size()); FunctionVisitor visitor( [](HloInstruction* instruction) { return absl::OkStatus(); }); auto visit_status = computation->Accept(&visitor); ASSERT_FALSE(visit_status.ok()); ASSERT_THAT(visit_status.message(), ::testing::ContainsRegex("cycle is detecte")); } TEST_F(HloComputationTest, RemoveInstructionWithDuplicateOperand) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto dead_negate = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, constant)); auto dead_add = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, dead_negate, dead_negate)); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, constant)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(4, computation->instruction_count()); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Negate(m::Op().Is(constant)))); EXPECT_EQ(negate, computation->root_instruction()); ASSERT_IS_OK(computation->RemoveInstructionAndUnusedOperands(dead_add)); EXPECT_EQ(2, computation->instruction_count()); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Negate(m::Op().Is(constant)))); EXPECT_EQ(negate, computation->root_instruction()); } TEST_F(HloComputationTest, RemoveSeveralUnusedFusionParameters) { const char* const kHloModule = R"( HloModule test f { p0 = f32[] parameter(0) p1 = f32[] parameter(1) p2 = f32[] parameter(2) add = f32[] add(p0, p2) ROOT neg = f32[] negate(p1) } ENTRY main { param0 = f32[] parameter(0) param1 = f32[] parameter(1) param2 = f32[] parameter(2) ROOT res = f32[] fusion(param0, param1, param2), kind=kLoop, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule(kHloModule)); auto root = module->entry_computation()->root_instruction(); auto dead_add = FindInstruction(module.get(), "add"); ASSERT_IS_OK(root->fused_instructions_computation() ->RemoveInstructionAndUnusedOperands(dead_add)); root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Fusion(m::Parameter(1)))); EXPECT_THAT(root->fused_expression_root(), GmockMatch(m::Negate(m::Parameter(0)))); } TEST_F(HloComputationTest, ReplaceParameter) { const char* const kHloModule = R"( HloModule ModuleWithWhile body { p_body = (f32[2], s32[]) parameter(0) val = f32[2] get-tuple-element(p_body), index=0 const = s32[] constant(-1) ROOT root = (f32[2], s32[]) tuple(val, const) } condition { p_cond = (f32[2], s32[]) parameter(0) gte = s32[] get-tuple-element(p_cond), index=1 const = s32[] constant(42) ROOT result = pred[] compare(gte, const), direction=EQ } ENTRY entry { param.1 = s32[] parameter(0) const = f32[2] constant({0,1}) while_init = (f32[2], s32[]) tuple(const, param.1) while = (f32[2], s32[]) while(while_init), condition=condition, body=body ROOT out = s32[] get-tuple-element(while), index=1 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule(kHloModule)); HloComputation* body = module->GetComputationWithName("body"); Shape new_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(S32, {2}), ShapeUtil::MakeShape(S32, {})}); body->ReplaceParameter( 0, HloInstruction::CreateParameter(0, new_param_shape, "new_p_body")); EXPECT_TRUE(ShapeUtil::Equal(body->parameter_instruction(0)->shape(), new_param_shape)); } TEST_F(HloComputationTest, CloneWithControlDependency) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0f))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant1, constant2)); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32_, "param0")); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, param)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build(add)); TF_CHECK_OK(negate->AddControlDependencyTo(add)); auto clone = computation->Clone(); auto cloned_add = clone->root_instruction(); EXPECT_EQ(cloned_add->opcode(), HloOpcode::kAdd); auto predecessors = cloned_add->control_predecessors(); EXPECT_EQ(1, predecessors.size()); EXPECT_EQ(HloOpcode::kNegate, predecessors[0]->opcode()); auto successors = predecessors[0]->control_successors(); EXPECT_THAT(successors, ::testing::ElementsAre(cloned_add)); } TEST_F(HloComputationTest, CloneWithReplacements) { auto builder = HloComputation::Builder(TestName()); Shape r0s64 = ShapeUtil::MakeShape(S64, {}); Shape r0s32 = ShapeUtil::MakeShape(S32, {}); Shape r0u32 = ShapeUtil::MakeShape(U32, {}); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32_, "p.0.lhs")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, r0f32_, "p.0.rhs")); auto param2 = builder.AddInstruction(HloInstruction::CreateParameter(2, r0s64, "p.1")); auto lt = builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), param0, param1, ComparisonDirection::kLt)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build(lt)); absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloInstruction>> replacements; replacements.emplace(param2, HloInstruction::CreateParameter(2, r0s32, "p.1")); auto param3 = HloInstruction::CreateParameter(3, r0u32, "p.2"); std::vector<const HloInstruction*> extra_parameters{param3.get()}; auto clone = computation->CloneWithReplacements(&replacements, extra_parameters); ASSERT_EQ(clone->num_parameters(), 4); EXPECT_TRUE( ShapeUtil::Equal(clone->parameter_instruction(0)->shape(), r0f32_)); EXPECT_TRUE( ShapeUtil::Equal(clone->parameter_instruction(1)->shape(), r0f32_)); EXPECT_TRUE( ShapeUtil::Equal(clone->parameter_instruction(2)->shape(), r0s32)); EXPECT_TRUE( ShapeUtil::Equal(clone->parameter_instruction(3)->shape(), r0u32)); } TEST_F(HloComputationTest, CloneInContext) { HloComputation::Builder builder(TestName()); Shape r0s64 = ShapeUtil::MakeShape(S64, {}); Shape r0s32 = ShapeUtil::MakeShape(S32, {}); Shape r0u32 = ShapeUtil::MakeShape(U32, {}); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32_, "p.0.lhs")); HloInstruction* param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, r0f32_, "p.0.rhs")); HloInstruction* param2 = builder.AddInstruction(HloInstruction::CreateParameter(2, r0s64, "p.1")); HloInstruction* lt = builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), param0, param1, ComparisonDirection::kLt)); std::unique_ptr<VerifiedHloModule> module = CreateNewVerifiedModule(); const HloComputation& computation = *module->AddEntryComputation(builder.Build(lt)); absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloInstruction>> replacements; replacements.emplace(param2, HloInstruction::CreateParameter(2, r0s32, "p.1")); std::unique_ptr<HloInstruction> param3 = HloInstruction::CreateParameter(3, r0u32, "p.2"); std::vector<const HloInstruction*> extra_parameters = {param3.get()}; HloCloneContext clone_context(module.get()); std::unique_ptr<HloComputation> clone = computation.CloneInContext( clone_context, &replacements, extra_parameters); ASSERT_EQ(clone->num_parameters(), 4); EXPECT_TRUE( ShapeUtil::Equal(clone->parameter_instruction(0)->shape(), r0f32_)); EXPECT_TRUE( ShapeUtil::Equal(clone->parameter_instruction(1)->shape(), r0f32_)); EXPECT_TRUE( ShapeUtil::Equal(clone->parameter_instruction(2)->shape(), r0s32)); EXPECT_TRUE( ShapeUtil::Equal(clone->parameter_instruction(3)->shape(), r0u32)); } TEST_F(HloComputationTest, Stringification) { const Shape s1 = ShapeUtil::MakeShape(F32, {5, 10}); const Shape s2 = ShapeUtil::MakeShape(F32, {20, 10}); const Shape s2t = ShapeUtil::MakeShape(F32, {10, 20}); const Shape sout = ShapeUtil::MakeShape(F32, {5, 20}); HloComputation::Builder builder("TransposeDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, s1, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, s2, "y")); HloInstruction* reshape = builder.AddInstruction(HloInstruction::CreateTranspose(s2t, y, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); PrecisionConfig precision_config; precision_config.mutable_operand_precision()->Resize( 2, PrecisionConfig::DEFAULT); builder.AddInstruction( HloInstruction::CreateDot(sout, x, reshape, dot_dnums, precision_config)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); computation->SetExecutionThread("MainThread"); auto options = HloPrintOptions().set_print_metadata(false); const std::string expected_computation = R"(%TransposeDot (x: f32[5,10], y: f32[20,10]) -> f32[5,20] { %x = f32[5,10]{1,0} parameter(0) %y = f32[20,10]{1,0} parameter(1) %transpose = f32[10,20]{1,0} transpose(f32[20,10]{1,0} %y), dimensions={1,0} ROOT %dot = f32[5,20]{1,0} dot(f32[5,10]{1,0} %x, f32[10,20]{1,0} %transpose), lhs_contracting_dims={1}, rhs_contracting_dims={0} }, execution_thread="MainThread")"; EXPECT_EQ(computation->ToString(options), expected_computation); } TEST_F(HloComputationTest, StringificationIndent) { const Shape s1 = ShapeUtil::MakeShape(F32, {5, 10}); const Shape s2 = ShapeUtil::MakeShape(F32, {20, 10}); const Shape s2t = ShapeUtil::MakeShape(F32, {10, 20}); const Shape sout = ShapeUtil::MakeShape(F32, {5, 20}); HloComputation::Builder builder("TransposeDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, s1, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, s2, "y")); HloInstruction* reshape = builder.AddInstruction(HloInstruction::CreateTranspose(s2t, y, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); PrecisionConfig precision_config; precision_config.mutable_operand_precision()->Resize( 2, PrecisionConfig::DEFAULT); builder.AddInstruction( HloInstruction::CreateDot(sout, x, reshape, dot_dnums, precision_config)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); computation->SetExecutionThread("MainThread"); auto options = HloPrintOptions().set_print_metadata(false).set_indent_amount(2); const std::string expected_computation = R"( %TransposeDot (x: f32[5,10], y: f32[20,10]) -> f32[5,20] { %x = f32[5,10]{1,0} parameter(0) %y = f32[20,10]{1,0} parameter(1) %transpose = f32[10,20]{1,0} transpose(f32[20,10]{1,0} %y), dimensions={1,0} ROOT %dot = f32[5,20]{1,0} dot(f32[5,10]{1,0} %x, f32[10,20]{1,0} %transpose), lhs_contracting_dims={1}, rhs_contracting_dims={0} }, execution_thread="MainThread")"; EXPECT_EQ(computation->ToString(options), expected_computation); } TEST_F(HloComputationTest, StringificationCanonical) { const Shape s1 = ShapeUtil::MakeShape(F32, {5, 10}); const Shape s2 = ShapeUtil::MakeShape(F32, {20, 10}); const Shape s2t = ShapeUtil::MakeShape(F32, {10, 20}); const Shape sout = ShapeUtil::MakeShape(F32, {5, 20}); HloComputation::Builder builder("TransposeDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, s1, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, s2, "y")); HloInstruction* reshape = builder.AddInstruction(HloInstruction::CreateTranspose(s2t, y, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); PrecisionConfig precision_config; precision_config.mutable_operand_precision()->Resize( 2, PrecisionConfig::DEFAULT); builder.AddInstruction( HloInstruction::CreateDot(sout, x, reshape, dot_dnums, precision_config)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); computation->SetExecutionThread("MainThread"); auto options = HloPrintOptions().set_print_metadata(false); const std::string expected_computation1 = R"(%TransposeDot (x: f32[5,10], y: f32[20,10]) -> f32[5,20] { %x = f32[5,10]{1,0} parameter(0) %y = f32[20,10]{1,0} parameter(1) %transpose = f32[10,20]{1,0} transpose(f32[20,10]{1,0} %y), dimensions={1,0} ROOT %dot = f32[5,20]{1,0} dot(f32[5,10]{1,0} %x, f32[10,20]{1,0} %transpose), lhs_contracting_dims={1}, rhs_contracting_dims={0} }, execution_thread="MainThread")"; EXPECT_EQ(computation->ToString(options), expected_computation1); options = HloPrintOptions().Canonical(); const std::string expected_computation2 = R"(TransposeDot { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) tmp_2 = f32[10,20]{1,0} transpose(f32[20,10]{1,0} tmp_1), dimensions={1,0} ROOT tmp_3 = f32[5,20]{1,0} dot(f32[5,10]{1,0} tmp_0, f32[10,20]{1,0} tmp_2), lhs_contracting_dims={1}, rhs_contracting_dims={0} }, execution_thread="MainThread")"; EXPECT_EQ(computation->ToString(options), expected_computation2); } std::unique_ptr<HloComputation> MakeAddNComputation( int n, std::string name = "add_n") { auto builder = HloComputation::Builder(name); auto result = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "x_value")); auto one = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); for (int i = 0; i < n; ++i) { result = builder.AddInstruction(HloInstruction::CreateBinary( one->shape(), HloOpcode::kAdd, result, one)); } return builder.Build(); } TEST_F(HloComputationTest, DeepEquality) { auto computation_a = MakeAddNComputation(200000); auto computation_b = MakeAddNComputation(200000); EXPECT_TRUE(*computation_a == *computation_b); auto computation_c = MakeAddNComputation(199999); EXPECT_FALSE(*computation_a == *computation_c); EXPECT_FALSE(*computation_c == *computation_b); } TEST_F(HloComputationTest, InstructionPostOrderWithAllReduce) { const char* const hlo_string = R"( HloModule Module add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY entry { param = f32[128] parameter(0), sharding={maximal device=0} crs0 = f32[128] all-reduce(param), replica_groups={{0}}, channel_id=1, to_apply=add, sharding={maximal device=0} crs1 = f32[128] all-reduce(param), replica_groups={{0}}, channel_id=1, to_apply=add, sharding={maximal device=1} add = f32[128] add(crs0, crs0), sharding={maximal device=0} ROOT t = (f32[128], f32[128]) tuple(add, crs1) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_THAT(module->entry_computation()->MakeInstructionPostOrder(), ElementsAre(op::Parameter(), op::AllReduce(), op::AllReduce(), op::Add(), op::Tuple())); } TEST_F(HloComputationTest, ComparisonWithCustomComparator) { std::string_view mod_txt = R"( HloModule Module region_X { Arg_0.5 = s32[] parameter(0) Arg_1.6 = s32[] parameter(1) ROOT add.7 = s32[] add(Arg_0.5, Arg_1.6) } region_Y { Arg_0.5 = s32[] parameter(0) Ar_1.6 = s32[] parameter(1) ROOT add.7 = s32[] add(Arg_0.5, Ar_1.6) } region_A { Arg_0.5 = s32[] parameter(0) Arg_1.6 = s32[] parameter(1) ROOT add.7 = s32[] multiply(Arg_0.5, Arg_1.6) } region_B { Arg_0.5 = s32[] parameter(0) Ar_1.6 = s32[] parameter(1) ROOT add.7 = s32[] add(Arg_0.5, Ar_1.6) } main.15 { Arg_0.1 = s32[10]{0} parameter(0) constant.3 = s32[] constant(0) rd1 = s32[] reduce(Arg_0.1, constant.3), dimensions={0}, to_apply=region_X Arg_1.2 = s32[15]{0} parameter(1) rd2 = s32[] reduce(Arg_1.2, constant.3), dimensions={0}, to_apply=region_Y ROOT multiply.14 = s32[] multiply(rd1, rd2) } ENTRY main.16 { Arg_0.1 = s32[10]{0} parameter(0) constant.3 = s32[] constant(0) rd1 = s32[] reduce(Arg_0.1, constant.3), dimensions={0}, to_apply=region_A Arg_1.2 = s32[15]{0} parameter(1) rd2 = s32[] reduce(Arg_1.2, constant.3), dimensions={0}, to_apply=region_B ROOT multiply.14 = s32[] multiply(rd1, rd2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(mod_txt)); absl::flat_hash_map<std::string_view, std::string_view> replace_map; replace_map["region_X"] = "region_A"; replace_map["region_Y"] = "region_B"; auto compare_func = [&replace_map](const HloComputation* a, const HloComputation* b) { return (a->name() == b->name() || replace_map[a->name()] == b->name()); }; HloComputation *comp_a = nullptr, *comp_b = nullptr; for (auto comp : module->computations()) { if (comp->name() == "main.15") { comp_a = comp; } if (comp->name() == "main.16") { comp_b = comp; } } EXPECT_FALSE(comp_a->Equal(*comp_b, false)); EXPECT_TRUE(comp_a->Equal(*comp_b, false, compare_func)); } TEST_F(HloComputationTest, CloneWrappedAsyncInstructionSameWrappedFunc) { const char* const hlo_string = R"( HloModule Module add (lhs: u32[], rhs: u32[]) -> u32[] { lhs = u32[] parameter(0) rhs = u32[] parameter(1) ROOT add = u32[] add(u32[] lhs, u32[] rhs) } async_wrapped (async_param.1: u32[8]) -> u32[4] { async_param.1 = u32[8]{0} parameter(0) ROOT reduce-scatter.1 = u32[4]{0} reduce-scatter(u32[8]{0} async_param.1), replica_groups={}, dimensions={0}, to_apply=add } ENTRY main (data: u32[8]) -> u32[4] { data = u32[8]{0} parameter(0) reduce-scatter-start = ((u32[8]{0}), u32[4]{0}) async-start(u32[8]{0} data), calls=async_wrapped, backend_config={"is_sync":false} ROOT reduce-scatter-done = u32[4]{0} async-done(((u32[8]{0}), u32[4]{0}) reduce-scatter-start), calls=async_wrapped })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* start = FindInstruction(module.get(), "reduce-scatter-start"); HloInstruction* done = FindInstruction(module.get(), "reduce-scatter-done"); EXPECT_EQ(start->async_wrapped_computation(), done->async_wrapped_computation()); std::unique_ptr<HloInstruction> cloned_start = start->Clone(); std::unique_ptr<HloInstruction> cloned_done = done->CloneWithNewOperands(done->shape(), {cloned_start.get()}); EXPECT_EQ(cloned_start.get()->async_wrapped_computation(), cloned_done.get()->async_wrapped_computation()); } TEST_F(HloComputationTest, CompositeCall) { const char* const hlo_string = R"( HloModule Module add (x: f32[]) -> f32[] { %x = f32[] parameter(0) %constant = f32[] constant(2) ROOT %z = f32[] add(f32[] %x, f32[] %constant) } ENTRY %CallR0F32AddScalar.v2 () -> f32[] { %constant.1 = f32[] constant(42) ROOT %call = f32[] call(f32[] %constant.1), to_apply=add, is_composite=true, frontend_attributes={ composite.attributes={n = 1 : i32, tensor = dense<1> : tensor<i32>}, composite.name="foo.bar", composite.version="1" } })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* composite_call = FindInstruction(module.get(), "call"); EXPECT_EQ(composite_call->opcode(), HloOpcode::kCall); EXPECT_TRUE(composite_call->is_composite()); EXPECT_EQ(composite_call->frontend_attributes().map().size(), 3); } TEST_F(HloComputationTest, CloneComputationWithAsyncInstructions) { constexpr std::string_view hlo = R"( HloModule main comp.0 { ROOT custom-call.0 = () custom-call(), custom_call_target="foo" } ENTRY main { in.0 = () parameter(0) call.0 = () call(), to_apply=comp.0 ROOT out.0 = () tuple() })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo)); HloComputation* comp0 = FindComputation(module.get(), "comp.0"); HloInstruction* custom_call = FindInstruction(module.get(), "custom-call.0"); TF_ASSERT_OK(comp0->CreateAsyncInstructions( custom_call, {ShapeUtil::MakeScalarShape(U32)}, HloInstruction::kMainExecutionThread, true, true)); HloComputation* comp1 = module->AddEmbeddedComputation(comp0->Clone()); HloComputation* comp2 = module->AddEmbeddedComputation(comp0->Clone()); EXPECT_NE(comp0->root_instruction()->name(), comp1->root_instruction()->name()); EXPECT_NE(comp0->root_instruction()->operand(0)->name(), comp1->root_instruction()->operand(0)->name()); EXPECT_NE(comp1->root_instruction()->name(), comp2->root_instruction()->name()); EXPECT_NE(comp1->root_instruction()->operand(0)->name(), comp2->root_instruction()->operand(0)->name()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/hlo_computation.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_computation_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fc21e004-d9cf-4df2-88e5-7f58d4352930
cpp
tensorflow/tensorflow
tile_assignment
third_party/xla/xla/hlo/ir/tile_assignment.cc
third_party/xla/xla/tests/tile_assignment_test.cc
#include "xla/hlo/ir/tile_assignment.h" #include <cstdint> #include <cstring> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/types/span.h" #include "xla/array.h" #include "xla/util.h" namespace xla { namespace { void CanonicalizeIotaDims(absl::Span<int64_t>& dims, absl::Span<int>& perm) { DCHECK_EQ(dims.size(), perm.size()); if (dims.size() <= 1) { return; } absl::InlinedVector<int, 6> old_to_new_dims(dims.size()); while (true) { bool changed = false; int new_ndims = 0; for (int i = 0; i < dims.size(); ++i) { if (dims[i] == 1) { old_to_new_dims[i] = -1; } else { old_to_new_dims[i] = new_ndims; ++new_ndims; } } if (new_ndims != dims.size()) { for (int i = 0, new_idx = 0; i < dims.size(); ++i) { int new_dim = old_to_new_dims[i]; if (new_dim >= 0) { dims[new_dim] = dims[i]; } int new_perm_dim = old_to_new_dims[perm[i]]; if (new_perm_dim >= 0) { perm[new_idx] = new_perm_dim; ++new_idx; DCHECK_LE(new_idx, new_ndims); } } perm = perm.subspan(0, new_ndims); dims = dims.subspan(0, new_ndims); } for (int i = 1, base = 0, n = dims.size(); i < n; ++i) { const int base_dim = perm[base]; const int dim = perm[i]; if (base_dim + (i - base) == dim) { dims[base_dim] *= dims[dim]; dims[dim] = 1; changed = true; } else { base = i; } } if (!changed) { break; } } } enum class TransposeKind { kNoop, kReshape, kTranspose, }; TransposeKind GetTransposeKind(absl::Span<const int64_t> dims, absl::Span<const int> perm) { TransposeKind kind = TransposeKind::kNoop; int prev_non_one_dim = -1; for (int i = 0; i < perm.size(); ++i) { const auto& d = perm[i]; if (dims[d] == 1) { if (d != i && dims[i] != 1) kind = TransposeKind::kReshape; continue; } if (d <= prev_non_one_dim) return TransposeKind::kTranspose; prev_non_one_dim = d; } return kind; } std::pair<absl::InlinedVector<int64_t, 6>, absl::InlinedVector<int, 6>> FullyDecanonicalize(absl::Span<const int64_t> reshape_dims, absl::Span<const int> transpose_perm) { absl::InlinedVector<int64_t, 6> new_reshape_dims; absl::InlinedVector<int, 6> old_to_new_dims(reshape_dims.size() + 1); for (int i = 0, n = reshape_dims.size(); i < n; ++i) { int64_t dim_size = reshape_dims[i]; while (dim_size % 2 == 0) { new_reshape_dims.push_back(2); dim_size /= 2; } for (int i = 3; i * i <= dim_size; i += 2) { while (dim_size % i == 0) { new_reshape_dims.push_back(i); dim_size /= i; } } if (dim_size > 1) { CHECK_GT(dim_size, 2); new_reshape_dims.push_back(dim_size); } old_to_new_dims[i + 1] = new_reshape_dims.size(); } absl::InlinedVector<int, 6> new_transpose_perm; new_transpose_perm.reserve(new_reshape_dims.size()); for (int i = 0; i < transpose_perm.size(); ++i) { const int old_dim = transpose_perm[i]; for (int j = old_to_new_dims[old_dim], n = old_to_new_dims[old_dim + 1]; j < n; ++j) { new_transpose_perm.push_back(j); } } return std::make_pair(std::move(new_reshape_dims), std::move(new_transpose_perm)); } } IotaTileAssignment IotaTileAssignment::Create( absl::Span<const int64_t> dims) { return IotaTileAssignment(dims, {Product(dims)}, {0}); } IotaTileAssignment IotaTileAssignment::Create( absl::Span<const int64_t> dims, absl::Span<const int64_t> reshape_dims, absl::Span<const int> transpose_perm) { absl::InlinedVector<int64_t, 6> canonicalized_dims(reshape_dims.begin(), reshape_dims.end()); absl::InlinedVector<int, 6> canonicalized_perm(transpose_perm.begin(), transpose_perm.end()); auto dims_span = absl::MakeSpan(canonicalized_dims); auto perm_span = absl::MakeSpan(canonicalized_perm); CanonicalizeIotaDims(dims_span, perm_span); if (dims_span.empty()) { canonicalized_dims[0] = 1; dims_span = absl::MakeSpan(canonicalized_dims.data(), 1); canonicalized_perm[0] = 0; perm_span = absl::MakeSpan(canonicalized_perm.data(), 1); } return IotaTileAssignment(dims, dims_span, perm_span); } Array<int64_t> IotaTileAssignment::ToArray() const { Array<int64_t> array(reshape_dims()); array.FillIota(0); array.TransposeDimensions(transpose_perm()); array.Reshape(dims()); return array; } IotaTileAssignment::IotaTileAssignment(const IotaTileAssignment& other) : IotaTileAssignment(other.ndims_, other.reshape_ndims_) { std::memcpy(storage_.get(), other.storage_.get(), size_bytes()); } IotaTileAssignment& IotaTileAssignment::operator=( const IotaTileAssignment& other) { const int new_size = other.size_bytes(); if (size_bytes() != new_size) { storage_.reset(new char[new_size]); } ndims_ = other.ndims_; reshape_ndims_ = other.reshape_ndims_; std::memcpy(storage_.get(), other.storage_.get(), new_size); return *this; } IotaTileAssignment::IotaTileAssignment(absl::Span<const int64_t> dims, absl::Span<const int64_t> reshape_dims, absl::Span<const int> transpose_perm) : IotaTileAssignment(dims.size(), reshape_dims.size()) { DCHECK_EQ(reshape_dims.size(), transpose_perm.size()); std::memcpy(dims_ptr(), dims.data(), ndims_ * sizeof(int64_t)); DCHECK_EQ(num_elements(), Product(reshape_dims)); std::memcpy(reshape_dims_ptr(), reshape_dims.data(), reshape_ndims_ * sizeof(int64_t)); std::memcpy(transpose_perm_ptr(), transpose_perm.data(), reshape_ndims_ * sizeof(int)); } IotaTileAssignment::IotaTileAssignment(int ndims, int reshape_ndims) : ndims_(ndims), reshape_ndims_(reshape_ndims), storage_(new char[size_bytes()]) {} std::optional<IotaTileAssignment> IotaTileAssignment::Transpose( absl::Span<const int> perm) const { DCHECK_EQ(ndims_, perm.size()); auto dims = this->dims(); const TransposeKind kind = GetTransposeKind(dims, perm); if (kind == TransposeKind::kNoop) return *this; absl::InlinedVector<int64_t, 6> new_dims(ndims_); for (int64_t i = 0; i < ndims_; ++i) { new_dims[i] = dims[perm[i]]; } if (kind == TransposeKind::kReshape) { return IotaTileAssignment::Create(new_dims, reshape_dims(), transpose_perm()); } if (reshape_ndims_ == 1) { return IotaTileAssignment::Create(new_dims, dims, perm); } bool is_pure_transpose = true; absl::InlinedVector<int64_t, 6> non_one_dims; absl::InlinedVector<int, 6> one_to_non_one(ndims_); non_one_dims.reserve(ndims_); auto reshape_dims = this->reshape_dims(); auto transpose_perm = this->transpose_perm(); for (int i = 0; i < ndims_; ++i) { const int64_t dim = dims[i]; if (dim == 1) { one_to_non_one[i] = -1; continue; } if (non_one_dims.size() >= reshape_ndims_ || reshape_dims[transpose_perm[non_one_dims.size()]] != dim) { is_pure_transpose = false; } one_to_non_one[i] = non_one_dims.size(); non_one_dims.push_back(dims[i]); } if (is_pure_transpose) { CHECK_EQ(reshape_ndims_, non_one_dims.size()); absl::InlinedVector<int, 6> new_perm; new_perm.reserve(non_one_dims.size()); for (int i = 0; i < ndims_; ++i) { if (dims[perm[i]] == 1) continue; new_perm.push_back(transpose_perm[one_to_non_one[perm[i]]]); } CHECK_EQ(reshape_ndims_, new_perm.size()); return IotaTileAssignment::Create(new_dims, reshape_dims, new_perm); } auto [decanonicalized_reshape_dims, decanonicalized_transpose_perm] = FullyDecanonicalize(reshape_dims, transpose_perm); CHECK_LE(non_one_dims.size(), decanonicalized_reshape_dims.size()); absl::InlinedVector<absl::InlinedVector<int, 2>, 6> grouped_reshape_dims( non_one_dims.size()); int transpose_perm_idx = 0; for (int i = 0, n = non_one_dims.size(), dn = decanonicalized_reshape_dims.size(); i < n && transpose_perm_idx < dn; ++i) { int reshape_dim_idx = decanonicalized_transpose_perm[transpose_perm_idx]; int64_t cand = decanonicalized_reshape_dims[reshape_dim_idx]; int64_t target = non_one_dims[i]; while (target % cand == 0) { target /= cand; grouped_reshape_dims[i].push_back(reshape_dim_idx); if (++transpose_perm_idx >= dn) { break; } reshape_dim_idx = decanonicalized_transpose_perm[transpose_perm_idx]; cand = decanonicalized_reshape_dims[reshape_dim_idx]; } if (target != 1) { return std::nullopt; } } absl::InlinedVector<int, 6> flattened_transpose_perm; flattened_transpose_perm.reserve(reshape_ndims_); for (int i = 0; i < perm.size(); ++i) { const int dim = perm[i]; if (one_to_non_one[dim] < 0) { continue; } auto& group = grouped_reshape_dims[one_to_non_one[dim]]; flattened_transpose_perm.insert(flattened_transpose_perm.end(), group.begin(), group.end()); } CHECK_EQ(flattened_transpose_perm.size(), decanonicalized_transpose_perm.size()); return IotaTileAssignment::Create(new_dims, decanonicalized_reshape_dims, flattened_transpose_perm); } void IotaTileAssignment::Print(Printer* printer) const { printer->Append("["); AppendJoin(printer, dims(), ","); printer->Append("]<=["); AppendJoin(printer, reshape_dims(), ","); printer->Append("]"); if (reshape_ndims_ > 1) { printer->Append("T("); AppendJoin(printer, transpose_perm(), ","); printer->Append(")"); } } std::string IotaTileAssignment::ToString() const { StringPrinter printer; Print(&printer); return std::move(printer).ToString(); } int64_t IotaTileAssignment::value_at(absl::Span<const int64_t> index) const { DCHECK_EQ(index.size(), ndims_); int64_t linear_index = index[0]; auto dims = this->dims(); for (int64_t i = 1; i < ndims_; ++i) { linear_index *= dims[i]; linear_index += index[i]; } auto reshape_dims = this->reshape_dims(); auto transpose_perm = this->transpose_perm(); absl::InlinedVector<int64_t, 6> reshape_index(reshape_ndims_); for (int64_t i = reshape_ndims_ - 1; i >= 0; --i) { int dim = transpose_perm[i]; int dim_size = reshape_dims[dim]; reshape_index[dim] = linear_index % dim_size; linear_index /= dim_size; } int64_t value = reshape_index[0]; for (int64_t i = 1; i < reshape_ndims_; ++i) { value *= reshape_dims[i]; value += reshape_index[i]; } return value; } bool TileAssignment::operator==(const TileAssignment& other) const { if (iota_ && other.iota_) { return *iota_ == *other.iota_; } return array() == other.array(); } int64_t TileAssignment::operator()(absl::Span<const int64_t> indexes) const { return array_ ? (*array_)(indexes) : iota_->value_at(indexes); } absl::Span<const int64_t> TileAssignment::dimensions() const { return array_ ? array_->dimensions() : iota_->dims(); } int64_t TileAssignment::num_dimensions() const { return array_ ? array_->num_dimensions() : iota_->ndims(); } int64_t TileAssignment::dim(int64_t n) const { return array_ ? array_->dim(n) : iota_->dim(n); } int64_t TileAssignment::num_elements() const { return array_ ? array_->num_elements() : iota_->num_elements(); } int64_t TileAssignment::first() const { return array_ ? *array_->begin() : 0; } void TileAssignment::Each( absl::FunctionRef<void(absl::Span<const int64_t>, int64_t)> f) const { MaybeMaterializeFullArray(); array_->Each(f); } absl::Status TileAssignment::EachStatus( absl::FunctionRef<absl::Status(absl::Span<const int64_t>, int64_t)> f) const { MaybeMaterializeFullArray(); return array_->EachStatus(f); } [[nodiscard]] TileAssignment TileAssignment::Reshape( absl::Span<const int64_t> new_dimensions) const { if (iota_) { CHECK_EQ(Product(new_dimensions), iota_->num_elements()); return TileAssignment( IotaTileAssignment(new_dimensions, iota_->reshape_dims(), iota_->transpose_perm()), nullptr); } auto reshaped = std::make_shared<Array<int64_t>>(*array_); reshaped->Reshape(new_dimensions); return TileAssignment(std::move(reshaped)); } [[nodiscard]] TileAssignment TileAssignment::Transpose( absl::Span<const int> perm) const { const TransposeKind kind = GetTransposeKind(dimensions(), perm); if (kind == TransposeKind::kNoop) { return *this; } if (iota_) { auto transposed = iota_->Transpose(perm); if (transposed) { return TileAssignment(std::move(*transposed)); } } auto cloned_array = shared_array_clone(); cloned_array->TransposeDimensions(perm); return TileAssignment(std::move(cloned_array)); } void TileAssignment::Print(Printer* printer) const { if (iota_) { printer->Append("devices="); iota_->Print(printer); } else { printer->Append("devices=["); AppendJoin(printer, array().dimensions(), ","); printer->Append("]"); AppendJoin(printer, array(), ","); } } std::string TileAssignment::ToString() const { StringPrinter printer; Print(&printer); return std::move(printer).ToString(); } bool TileAssignment::UsesDevice(int64_t device) const { return iota_ ? device < iota_->num_elements() : absl::c_linear_search(array(), device); } const Array<int64_t>& TileAssignment::array() const { MaybeMaterializeFullArray(); return *array_; } const std::shared_ptr<const Array<int64_t>>& TileAssignment::shared_array() const { MaybeMaterializeFullArray(); return shared_array_; } std::shared_ptr<Array<int64_t>> TileAssignment::shared_array_clone() const { MaybeMaterializeFullArray(); return std::make_shared<Array<int64_t>>(*array_); } void TileAssignment::MaybeMaterializeFullArray() const { if (array_ == nullptr) { DCHECK(shared_array_ == nullptr); DCHECK(iota_.has_value()); auto full = std::make_shared<Array<int64_t>>(iota_->ToArray()); shared_array_ = std::move(full); array_ = shared_array_.get(); } } }
#include "xla/hlo/ir/tile_assignment.h" #include <memory> #include <vector> #include "absl/hash/hash.h" #include "xla/array3d.h" #include "xla/test.h" namespace xla { namespace { using ::testing::ElementsAre; std::vector<int64_t> ToVectorUsingEach(const TileAssignment& tile) { std::vector<int64_t> result; result.reserve(tile.num_elements()); tile.Each([&](absl::Span<const int64_t> index, int64_t device) { result.push_back(device); }); return result; } TEST(TileAssignmentTest, Replicated) { TileAssignment tile; EXPECT_EQ(tile.num_dimensions(), 1); EXPECT_EQ(tile.dim(0), 0); } TEST(TileAssignmentTest, Maximal) { TileAssignment tile(5); EXPECT_EQ(tile.num_dimensions(), 1); EXPECT_EQ(tile.dim(0), 1); EXPECT_EQ(tile(0), 5); EXPECT_EQ(tile({0}), 5); EXPECT_FALSE(tile.iota()); EXPECT_TRUE(tile.UsesDevice(5)); EXPECT_EQ(tile.first(), 5); EXPECT_FALSE(tile.UsesDevice(0)); EXPECT_THAT(ToVectorUsingEach(tile), ElementsAre(5)); } TEST(TileAssignmentTest, V1V2Equivalence) { Array3D<int64_t> array( {{{0, 8, 4, 12}, {1, 9, 5, 13}}, {{2, 10, 6, 14}, {3, 11, 7, 15}}}); TileAssignment v1(std::make_shared<const Array<int64_t>>(array)); TileAssignment v2({2, 2, 4}, {2, 2, 4}, {2, 1, 0}); EXPECT_EQ(v1, v2); EXPECT_EQ(v2, v1); EXPECT_EQ(v1.first(), 0); EXPECT_EQ(v2.first(), 0); EXPECT_NE(v1.iota().has_value(), v2.iota().has_value()); EXPECT_EQ(absl::HashOf(v1), absl::HashOf(v2)); } TEST(TileAssignmentTest, CopyConstruction) { TileAssignment tile({2, 2, 4}, {2, 2, 4}, {2, 1, 0}); TileAssignment copied(tile); EXPECT_EQ(tile, copied); EXPECT_EQ(tile.iota().has_value(), copied.iota().has_value()); EXPECT_EQ(absl::HashOf(tile), absl::HashOf(copied)); } TEST(TileAssignmentTest, CopyAssignment) { TileAssignment tile({2, 2, 4}, {2, 2, 4}, {2, 1, 0}); TileAssignment copied = tile; EXPECT_EQ(tile, copied); EXPECT_EQ(tile.iota().has_value(), copied.iota().has_value()); EXPECT_EQ(absl::HashOf(tile), absl::HashOf(copied)); } class FormattedTileAssignmentTest : public ::testing::TestWithParam<bool> { protected: bool ShouldConvertToV1() { return GetParam(); } }; TEST_P(FormattedTileAssignmentTest, TrivialIotaTile) { TileAssignment tile({4, 4, 2}); EXPECT_EQ(tile.ToString(), "devices=[4,4,2]<=[32]"); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } EXPECT_EQ(tile, TileAssignment({4, 4, 2})); EXPECT_EQ(tile.num_dimensions(), 3); EXPECT_EQ(tile.dim(0), 4); EXPECT_EQ(tile.dim(1), 4); EXPECT_EQ(tile.dim(2), 2); EXPECT_EQ(tile(0, 0, 0), 0); EXPECT_EQ(tile({3, 2, 1}), 29); EXPECT_EQ(tile.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(tile.UsesDevice(0)); EXPECT_TRUE(tile.UsesDevice(31)); EXPECT_FALSE(tile.UsesDevice(32)); EXPECT_THAT( ToVectorUsingEach(tile), ElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31)); } TEST_P(FormattedTileAssignmentTest, TransposedIotaTile) { TileAssignment tile({4, 4, 2}, {2, 4, 4}, {2, 1, 0}); EXPECT_EQ(tile.ToString(), "devices=[4,4,2]<=[2,4,4]T(2,1,0)"); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } EXPECT_EQ(tile, TileAssignment({4, 4, 2}, {2, 4, 4}, {2, 1, 0})); EXPECT_EQ(tile.num_dimensions(), 3); EXPECT_EQ(tile.dim(0), 4); EXPECT_EQ(tile.dim(1), 4); EXPECT_EQ(tile.dim(2), 2); EXPECT_EQ(tile(0, 0, 0), 0); EXPECT_EQ(tile({3, 2, 1}), 27); EXPECT_EQ(tile.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(tile.UsesDevice(0)); EXPECT_TRUE(tile.UsesDevice(31)); EXPECT_FALSE(tile.UsesDevice(32)); EXPECT_THAT( ToVectorUsingEach(tile), ElementsAre(0, 16, 4, 20, 8, 24, 12, 28, 1, 17, 5, 21, 9, 25, 13, 29, 2, 18, 6, 22, 10, 26, 14, 30, 3, 19, 7, 23, 11, 27, 15, 31)); } TEST_P(FormattedTileAssignmentTest, NonCanonicalTransposedIotaTile) { TileAssignment tile({4, 8}, {2, 4, 4}, {1, 2, 0}); EXPECT_EQ(tile.ToString(), "devices=[4,8]<=[2,16]T(1,0)"); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } EXPECT_EQ(tile, TileAssignment({4, 8}, {2, 16}, {1, 0})); EXPECT_EQ(tile.num_dimensions(), 2); EXPECT_EQ(tile.dim(0), 4); EXPECT_EQ(tile.dim(1), 8); EXPECT_EQ(tile(0, 0), 0); EXPECT_EQ(tile({3, 2}), 13); EXPECT_EQ(tile.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(tile.UsesDevice(0)); EXPECT_TRUE(tile.UsesDevice(31)); EXPECT_FALSE(tile.UsesDevice(32)); EXPECT_THAT( ToVectorUsingEach(tile), ElementsAre(0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31)); } TEST_P(FormattedTileAssignmentTest, ReshapeTrivalIotaTile) { TileAssignment tile({4, 4, 2}); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } TileAssignment reshaped = tile.Reshape({2, 8, 2}); EXPECT_NE(reshaped, tile); EXPECT_EQ(reshaped, TileAssignment({2, 8, 2})); EXPECT_EQ(reshaped.num_dimensions(), 3); EXPECT_EQ(reshaped.dim(0), 2); EXPECT_EQ(reshaped.dim(1), 8); EXPECT_EQ(reshaped.dim(2), 2); EXPECT_EQ(reshaped(0, 0, 0), 0); EXPECT_EQ(reshaped({1, 3, 1}), 23); EXPECT_EQ(reshaped.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(reshaped.UsesDevice(0)); EXPECT_TRUE(reshaped.UsesDevice(31)); EXPECT_FALSE(reshaped.UsesDevice(32)); EXPECT_THAT( ToVectorUsingEach(reshaped), ElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31)); } TEST_P(FormattedTileAssignmentTest, ReshapeTransposedIotaTile) { TileAssignment tile({4, 4, 2}, {2, 4, 4}, {2, 1, 0}); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } TileAssignment reshaped = tile.Reshape({2, 2, 4, 2}); EXPECT_NE(reshaped, tile); EXPECT_EQ(reshaped, TileAssignment({2, 2, 4, 2}, {2, 4, 4}, {2, 1, 0})); EXPECT_EQ(reshaped.num_dimensions(), 4); EXPECT_EQ(reshaped.dim(0), 2); EXPECT_EQ(reshaped.dim(1), 2); EXPECT_EQ(reshaped.dim(2), 4); EXPECT_EQ(reshaped.dim(3), 2); EXPECT_EQ(reshaped(0, 0, 0, 0), 0); EXPECT_EQ(reshaped({1, 1, 2, 1}), 27); EXPECT_EQ(reshaped.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(reshaped.UsesDevice(0)); EXPECT_TRUE(reshaped.UsesDevice(31)); EXPECT_FALSE(reshaped.UsesDevice(32)); EXPECT_THAT( ToVectorUsingEach(reshaped), ElementsAre(0, 16, 4, 20, 8, 24, 12, 28, 1, 17, 5, 21, 9, 25, 13, 29, 2, 18, 6, 22, 10, 26, 14, 30, 3, 19, 7, 23, 11, 27, 15, 31)); } TEST_P(FormattedTileAssignmentTest, TransposeTrivalIotaTile) { TileAssignment tile({4, 4, 2}); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } TileAssignment xposed = tile.Transpose({2, 0, 1}); EXPECT_NE(xposed, tile); EXPECT_EQ(xposed, TileAssignment({2, 4, 4}, {16, 2}, {1, 0})); EXPECT_EQ(xposed.num_dimensions(), 3); EXPECT_EQ(xposed.dim(0), 2); EXPECT_EQ(xposed.dim(1), 4); EXPECT_EQ(xposed.dim(2), 4); EXPECT_EQ(xposed(0, 0, 0), 0); EXPECT_EQ(xposed({1, 3, 1}), 27); EXPECT_EQ(xposed.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(xposed.UsesDevice(0)); EXPECT_TRUE(xposed.UsesDevice(31)); EXPECT_FALSE(xposed.UsesDevice(32)); EXPECT_THAT( ToVectorUsingEach(xposed), ElementsAre(0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31)); } TEST_P(FormattedTileAssignmentTest, TransposeTransposedIotaTile) { TileAssignment tile({4, 4, 2}, {2, 4, 4}, {2, 1, 0}); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } TileAssignment xposed = tile.Transpose({0, 2, 1}); EXPECT_NE(xposed, tile); EXPECT_EQ(xposed, TileAssignment({4, 2, 4}, {8, 4}, {1, 0})); EXPECT_EQ(xposed.num_dimensions(), 3); EXPECT_EQ(xposed.dim(0), 4); EXPECT_EQ(xposed.dim(1), 2); EXPECT_EQ(xposed.dim(2), 4); EXPECT_EQ(xposed(0, 0, 0), 0); EXPECT_EQ(xposed({3, 0, 3}), 15); EXPECT_EQ(xposed.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(xposed.UsesDevice(0)); EXPECT_TRUE(xposed.UsesDevice(31)); EXPECT_FALSE(xposed.UsesDevice(32)); EXPECT_THAT( ToVectorUsingEach(xposed), ElementsAre(0, 4, 8, 12, 16, 20, 24, 28, 1, 5, 9, 13, 17, 21, 25, 29, 2, 6, 10, 14, 18, 22, 26, 30, 3, 7, 11, 15, 19, 23, 27, 31)); } TEST_P(FormattedTileAssignmentTest, TransposeIotaTileWithDegernateDims) { TileAssignment tile({4, 4, 1}, {4, 4}, {1, 0}); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } TileAssignment xposed = tile.Transpose({1, 2, 0}); EXPECT_NE(xposed, tile); EXPECT_EQ(xposed, TileAssignment({4, 1, 4})); EXPECT_EQ(xposed.num_dimensions(), 3); EXPECT_EQ(xposed.dim(0), 4); EXPECT_EQ(xposed.dim(1), 1); EXPECT_EQ(xposed.dim(2), 4); EXPECT_EQ(xposed(0, 0, 0), 0); EXPECT_EQ(xposed({2, 0, 3}), 11); EXPECT_EQ(xposed.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(xposed.UsesDevice(0)); EXPECT_TRUE(xposed.UsesDevice(15)); EXPECT_FALSE(xposed.UsesDevice(16)); EXPECT_THAT( ToVectorUsingEach(xposed), ElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)); } TEST_P(FormattedTileAssignmentTest, TransposeIotaTileSplittingCanonicalizedReshapeDims) { TileAssignment tile({8, 2, 16}, {16, 16}, {1, 0}); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } TileAssignment xposed = tile.Transpose({0, 2, 1}); EXPECT_NE(xposed, tile); EXPECT_EQ(xposed, TileAssignment({8, 16, 2}, {16, 8, 2}, {1, 0, 2})); EXPECT_EQ(xposed.num_dimensions(), 3); EXPECT_EQ(xposed.dim(0), 8); EXPECT_EQ(xposed.dim(1), 16); EXPECT_EQ(xposed.dim(2), 2); EXPECT_EQ(xposed(0, 0, 0), 0); EXPECT_EQ(xposed({2, 7, 1}), 117); EXPECT_EQ(xposed.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(xposed.UsesDevice(0)); EXPECT_TRUE(xposed.UsesDevice(255)); EXPECT_FALSE(xposed.UsesDevice(256)); EXPECT_THAT( ToVectorUsingEach(xposed), ElementsAre( 0, 1, 16, 17, 32, 33, 48, 49, 64, 65, 80, 81, 96, 97, 112, 113, 128, 129, 144, 145, 160, 161, 176, 177, 192, 193, 208, 209, 224, 225, 240, 241, 2, 3, 18, 19, 34, 35, 50, 51, 66, 67, 82, 83, 98, 99, 114, 115, 130, 131, 146, 147, 162, 163, 178, 179, 194, 195, 210, 211, 226, 227, 242, 243, 4, 5, 20, 21, 36, 37, 52, 53, 68, 69, 84, 85, 100, 101, 116, 117, 132, 133, 148, 149, 164, 165, 180, 181, 196, 197, 212, 213, 228, 229, 244, 245, 6, 7, 22, 23, 38, 39, 54, 55, 70, 71, 86, 87, 102, 103, 118, 119, 134, 135, 150, 151, 166, 167, 182, 183, 198, 199, 214, 215, 230, 231, 246, 247, 8, 9, 24, 25, 40, 41, 56, 57, 72, 73, 88, 89, 104, 105, 120, 121, 136, 137, 152, 153, 168, 169, 184, 185, 200, 201, 216, 217, 232, 233, 248, 249, 10, 11, 26, 27, 42, 43, 58, 59, 74, 75, 90, 91, 106, 107, 122, 123, 138, 139, 154, 155, 170, 171, 186, 187, 202, 203, 218, 219, 234, 235, 250, 251, 12, 13, 28, 29, 44, 45, 60, 61, 76, 77, 92, 93, 108, 109, 124, 125, 140, 141, 156, 157, 172, 173, 188, 189, 204, 205, 220, 221, 236, 237, 252, 253, 14, 15, 30, 31, 46, 47, 62, 63, 78, 79, 94, 95, 110, 111, 126, 127, 142, 143, 158, 159, 174, 175, 190, 191, 206, 207, 222, 223, 238, 239, 254, 255)); } TEST_P(FormattedTileAssignmentTest, TransposeIotaTileSplittingBothCanonicalizedReshapeDimsAndTileDims) { TileAssignment tile({14, 3, 5}, {6, 5, 7}, {2, 0, 1}); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } TileAssignment xposed = tile.Transpose({1, 0, 2}); EXPECT_NE(xposed, tile); EXPECT_EQ(xposed, TileAssignment({3, 14, 5}, {2, 3, 5, 7}, {1, 3, 0, 2})); EXPECT_EQ(xposed.num_dimensions(), 3); EXPECT_EQ(xposed.dim(0), 3); EXPECT_EQ(xposed.dim(1), 14); EXPECT_EQ(xposed.dim(2), 5); EXPECT_EQ(xposed(0, 0, 0), 0); EXPECT_EQ(xposed({2, 11, 3}), 201); EXPECT_EQ(xposed.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(xposed.UsesDevice(0)); EXPECT_TRUE(xposed.UsesDevice(209)); EXPECT_FALSE(xposed.UsesDevice(210)); EXPECT_THAT( ToVectorUsingEach(xposed), ElementsAre( 0, 7, 14, 21, 28, 105, 112, 119, 126, 133, 1, 8, 15, 22, 29, 106, 113, 120, 127, 134, 2, 9, 16, 23, 30, 107, 114, 121, 128, 135, 3, 10, 17, 24, 31, 108, 115, 122, 129, 136, 4, 11, 18, 25, 32, 109, 116, 123, 130, 137, 5, 12, 19, 26, 33, 110, 117, 124, 131, 138, 6, 13, 20, 27, 34, 111, 118, 125, 132, 139, 35, 42, 49, 56, 63, 140, 147, 154, 161, 168, 36, 43, 50, 57, 64, 141, 148, 155, 162, 169, 37, 44, 51, 58, 65, 142, 149, 156, 163, 170, 38, 45, 52, 59, 66, 143, 150, 157, 164, 171, 39, 46, 53, 60, 67, 144, 151, 158, 165, 172, 40, 47, 54, 61, 68, 145, 152, 159, 166, 173, 41, 48, 55, 62, 69, 146, 153, 160, 167, 174, 70, 77, 84, 91, 98, 175, 182, 189, 196, 203, 71, 78, 85, 92, 99, 176, 183, 190, 197, 204, 72, 79, 86, 93, 100, 177, 184, 191, 198, 205, 73, 80, 87, 94, 101, 178, 185, 192, 199, 206, 74, 81, 88, 95, 102, 179, 186, 193, 200, 207, 75, 82, 89, 96, 103, 180, 187, 194, 201, 208, 76, 83, 90, 97, 104, 181, 188, 195, 202, 209)); } TEST_P(FormattedTileAssignmentTest, TransposeIotaTileGroupingCanonicalizedReshapeDims) { TileAssignment tile({1, 4, 16}, {4, 4, 4}, {1, 0, 2}); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } TileAssignment xposed = tile.Transpose({2, 0, 1}); EXPECT_NE(xposed, tile); EXPECT_EQ(xposed, TileAssignment({16, 1, 4}, {4, 4, 4}, {0, 2, 1})); EXPECT_EQ(xposed.num_dimensions(), 3); EXPECT_EQ(xposed.dim(0), 16); EXPECT_EQ(xposed.dim(1), 1); EXPECT_EQ(xposed.dim(2), 4); EXPECT_EQ(xposed(0, 0, 0), 0); EXPECT_EQ(xposed({7, 0, 3}), 31); EXPECT_EQ(xposed.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(xposed.UsesDevice(0)); EXPECT_TRUE(xposed.UsesDevice(63)); EXPECT_FALSE(xposed.UsesDevice(64)); EXPECT_THAT(ToVectorUsingEach(xposed), ElementsAre(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15, 16, 20, 24, 28, 17, 21, 25, 29, 18, 22, 26, 30, 19, 23, 27, 31, 32, 36, 40, 44, 33, 37, 41, 45, 34, 38, 42, 46, 35, 39, 43, 47, 48, 52, 56, 60, 49, 53, 57, 61, 50, 54, 58, 62, 51, 55, 59, 63)); } TEST_P(FormattedTileAssignmentTest, TransposeNoopIotaTile) { TileAssignment tile({4, 4}, {4, 4}, {1, 0}); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } TileAssignment xposed = tile.Transpose({0, 1}); EXPECT_EQ(xposed, tile); EXPECT_EQ(xposed.num_dimensions(), 2); EXPECT_EQ(xposed.dim(0), 4); EXPECT_EQ(xposed.dim(1), 4); EXPECT_EQ(xposed(0, 0), 0); EXPECT_EQ(xposed({2, 3}), 14); EXPECT_EQ(xposed.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(xposed.UsesDevice(0)); EXPECT_TRUE(xposed.UsesDevice(15)); EXPECT_FALSE(xposed.UsesDevice(16)); EXPECT_THAT( ToVectorUsingEach(xposed), ElementsAre(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15)); } TEST_P(FormattedTileAssignmentTest, TransposeNoopIotaTileWithDegernateDims) { TileAssignment tile({1, 4, 1, 1, 4, 1}, {4, 4}, {1, 0}); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } TileAssignment xposed = tile.Transpose({1, 5, 0, 4, 3, 2}); EXPECT_NE(xposed, tile); EXPECT_EQ(xposed.num_dimensions(), 6); EXPECT_EQ(xposed.dim(0), 4); EXPECT_EQ(xposed.dim(1), 1); EXPECT_EQ(xposed.dim(2), 1); EXPECT_EQ(xposed.dim(3), 4); EXPECT_EQ(xposed.dim(4), 1); EXPECT_EQ(xposed.dim(5), 1); EXPECT_EQ(xposed(0, 0, 0, 0, 0, 0), 0); EXPECT_EQ(xposed({2, 0, 0, 3, 0, 0}), 14); EXPECT_EQ(xposed.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(xposed.UsesDevice(0)); EXPECT_TRUE(xposed.UsesDevice(15)); EXPECT_FALSE(xposed.UsesDevice(16)); EXPECT_THAT( ToVectorUsingEach(xposed), ElementsAre(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15)); } INSTANTIATE_TEST_SUITE_P(All, FormattedTileAssignmentTest, ::testing::Bool()); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/tile_assignment.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tests/tile_assignment_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7484ff92-acf1-42ef-86b8-36fb3c19fc85
cpp
tensorflow/tensorflow
hlo_instruction
third_party/xla/xla/hlo/ir/hlo_instruction.cc
third_party/xla/xla/service/hlo_instruction_test.cc
#include "xla/hlo/ir/hlo_instruction.h" #include <algorithm> #include <climits> #include <cstddef> #include <cstdint> #include <functional> #include <iostream> #include <iterator> #include <memory> #include <optional> #include <ostream> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/optimization.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/log/check.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/strings/ascii.h" #include "absl/strings/escaping.h" #include "absl/strings/match.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/backend_config.h" #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/dfs_hlo_visitor.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_domain_metadata.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_op_metadata.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_original_value.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/ir/hlo_sharding_metadata.h" #include "xla/hlo/ir/ptrvec.h" #include "xla/layout.h" #include "xla/literal.h" #include "xla/map_util.h" #include "xla/primitive_util.h" #include "xla/printer.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_lexer.h" #include "xla/service/mapped_ptr_container_sorter.h" #include "xla/service/name_uniquer.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/sort_json.h" #include "xla/status_macros.h" #include "xla/tsl/lib/gtl/iterator_range.h" #include "xla/tsl/lib/gtl/map_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { using absl::CEscape; using absl::StrAppend; using absl::StrCat; using absl::StrJoin; const HloInstruction::Rare* const HloInstruction::kEmptyRare = new HloInstruction::Rare; namespace { template <typename T> absl::Status EraseElementFromVector(PtrVec<T>* container, T value) { auto it = std::find(container->begin(), container->end(), value); TF_RET_CHECK(it != container->end()); container->erase(it); return absl::OkStatus(); } } HloInstruction::Users::~Users() = default; void HloInstruction::Users::Clear() { users_.clear(); user_map_.reset(nullptr); DCHECK(CheckInvariants()); } bool HloInstruction::Users::Contains(const HloInstruction* instruction) const { if (user_map_ == nullptr) { return std::find(users_.begin(), users_.end(), instruction) != users_.end(); } else { return user_map_->contains(instruction); } } void HloInstruction::Users::AddUser(HloInstruction* user) { if (!Contains(user)) { if (user_map_ == nullptr && users_.size() >= kMapThreshold) { user_map_ = std::make_unique<absl::flat_hash_map<const HloInstruction*, int64_t>>( users_.size()); RebuildMap(); DCHECK(CheckInvariants()); } if (user_map_ != nullptr) { user_map_->emplace(user, users_.size()); } users_.push_back(user); DCHECK(CheckInvariants()); } } int64_t HloInstruction::Users::UserId(HloInstruction* user) { if (user_map_ == nullptr) { auto it = std::find(users_.begin(), users_.end(), user); CHECK(it != users_.end()); return it - users_.begin(); } else { auto result = user_map_->find(user); CHECK(result != user_map_->end()); return result->second; } } void HloInstruction::Users::MaybeRemoveUser(HloInstruction* user) { if (Contains(user)) { RemoveUser(user); DCHECK(CheckInvariants()); } } void HloInstruction::Users::RemoveUser(HloInstruction* user) { const int64_t index = UserId(user); CHECK_EQ(users_[index], user); HloInstruction* last = users_.back(); if (user_map_ != nullptr) { (*user_map_)[last] = index; user_map_->erase(user); } users_[index] = last; users_.pop_back(); DCHECK(CheckInvariants()); } void HloInstruction::Users::SortInstructionUsers( const MappedPtrContainerSorter<HloInstruction>::MapPtrFn& map_fn, const Users& sorted_instruction_users) { using Sorter = MappedPtrContainerSorter<HloInstruction>; auto status = Sorter::Sort(map_fn, Sorter::IndexAfterMappedElementsFn(), sorted_instruction_users.users_, users_); if (!status.ok()) { LOG(ERROR) << "Failed to sort instruction users: " << status; } if (user_map_ != nullptr) { user_map_->clear(); RebuildMap(); } DCHECK(CheckInvariants()); } void HloInstruction::Users::RebuildMap() { for (uint64_t i = 0; i < users_.size(); ++i) { (*user_map_)[users_[i]] = i; } } bool HloInstruction::Users::CheckInvariants() { if (user_map_ != nullptr) { CHECK_EQ(users_.size(), user_map_->size()); } return true; } void HloInstruction::AppendComputation(HloComputation* computation) { mutable_rare()->called_computations.push_back(computation); } HloInstruction* HloInstruction::AddInstruction( std::unique_ptr<HloInstruction> derived_instruction) { HloInstruction* derived = parent()->AddInstruction(std::move(derived_instruction)); const bool has_prior_sharding = derived->has_sharding(); SetupDerivedInstruction(derived); if (!has_prior_sharding && (derived->opcode() == HloOpcode::kReshape || derived->opcode() == HloOpcode::kTranspose)) { derived->clear_sharding(); } return derived; } absl::StatusOr<std::unique_ptr<HloInstruction>> HloInstruction::CreateFromProto( const HloInstructionProto& proto, const absl::flat_hash_map<int64_t, HloInstruction*>& instruction_map, const absl::flat_hash_map<int64_t, HloComputation*>& computation_map, bool prohibit_empty_literal) { TF_RET_CHECK(!proto.opcode().empty()); HloOpcode opcode; auto opcode_or = StringToHloOpcode(proto.opcode()); std::optional<ComparisonDirection> comparison_direction; if (opcode_or.ok()) { opcode = std::move(opcode_or).value(); } else { if (proto.opcode() == "equal-to") { comparison_direction = ComparisonDirection::kEq; } else if (proto.opcode() == "not-equal-to") { comparison_direction = ComparisonDirection::kNe; } else if (proto.opcode() == "greater-than-or-equal-to") { comparison_direction = ComparisonDirection::kGe; } else if (proto.opcode() == "greater-than") { comparison_direction = ComparisonDirection::kGt; } else if (proto.opcode() == "less-than-or-equal-to") { comparison_direction = ComparisonDirection::kLe; } else if (proto.opcode() == "less-than") { comparison_direction = ComparisonDirection::kLt; } if (comparison_direction) { opcode = HloOpcode::kCompare; } else { return InvalidArgument("Unknown opcode: %s", proto.opcode()); } } TF_RET_CHECK(proto.has_shape()); std::unique_ptr<HloInstruction> instruction; const auto operands = [&instruction_map, &proto](int index) { return instruction_map.at(proto.operand_ids(index)); }; const auto all_operands = [&instruction_map, &proto]() { std::vector<HloInstruction*> result(proto.operand_ids_size()); std::transform(proto.operand_ids().begin(), proto.operand_ids().end(), result.begin(), [&instruction_map](int64_t operand_id) { return instruction_map.at(operand_id); }); return result; }; const auto output_to_operand_aliasing = [&proto]() { std::vector<std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>> output_to_operand_aliasing; for (const auto& aliasing : proto.output_operand_aliasing()) { output_to_operand_aliasing.emplace_back( ShapeIndex(aliasing.output_shape_index().begin(), aliasing.output_shape_index().end()), std::make_pair(aliasing.operand_index(), ShapeIndex(aliasing.operand_shape_index().begin(), aliasing.operand_shape_index().end()))); } return output_to_operand_aliasing; }; const auto computations = [&computation_map, &proto](int index) { return computation_map.at(proto.called_computation_ids(index)); }; const auto all_computations = [&computation_map, &proto]() { std::vector<HloComputation*> result(proto.called_computation_ids_size()); std::transform(proto.called_computation_ids().begin(), proto.called_computation_ids().end(), result.begin(), [&computation_map](int64_t computation_id) { return computation_map.at(computation_id); }); return result; }; TF_RET_CHECK( absl::c_all_of(proto.operand_ids(), [&](int64_t id) { return instruction_map.contains(id); })) << proto.name() << " instruction contains invalid operand id(s)"; TF_RET_CHECK( absl::c_all_of(proto.called_computation_ids(), [&](int64_t id) { return computation_map.contains(id); })) << proto.name() << " instruction references invalid computation id(s)"; Shape shape(proto.shape()); TF_RETURN_IF_ERROR(ShapeUtil::ValidateShapeWithOptionalLayout(shape)); std::optional<int> arity = HloOpcodeArity(opcode); if (arity) { TF_RET_CHECK(proto.operand_ids_size() == *arity) << proto.opcode() << " instruction should have " << *arity << " operands but sees " << proto.operand_ids_size(); } switch (opcode) { case HloOpcode::kBatchNormTraining: instruction = CreateBatchNormTraining(shape, operands(0), operands(1), operands(2), proto.epsilon(), proto.feature_index()); break; case HloOpcode::kBatchNormInference: instruction = CreateBatchNormInference( shape, operands(0), operands(1), operands(2), operands(3), operands(4), proto.epsilon(), proto.feature_index()); break; case HloOpcode::kBatchNormGrad: instruction = CreateBatchNormGrad(shape, operands(0), operands(1), operands(2), operands(3), operands(4), proto.epsilon(), proto.feature_index()); break; case HloOpcode::kFft: { std::vector<int64_t> fft_length(proto.fft_length().begin(), proto.fft_length().end()); instruction = CreateFft(shape, operands(0), proto.fft_type(), absl::Span<const int64_t>(fft_length)); break; } case HloOpcode::kAsyncStart: { TF_RET_CHECK(proto.called_computation_ids_size() == 1) << "Async start instruction should have 1 called computation but " "sees " << proto.called_computation_ids_size(); instruction = CreateAsyncStart(shape, all_operands(), computations(0), proto.async_execution_thread().empty() ? kMainExecutionThread : proto.async_execution_thread()); break; } case HloOpcode::kAsyncUpdate: { TF_RET_CHECK(proto.operand_ids_size() == 1) << "Async update requires one singular operand"; HloInstruction* prev_op = operands(0); TF_RET_CHECK(prev_op->IsAsynchronous()) << "Async update requires its operand to be an asynchronous op"; if (!proto.async_execution_thread().empty()) { TF_RET_CHECK(proto.async_execution_thread() == prev_op->async_execution_thread()) << "Async update should have " << prev_op->async_execution_thread() << " async_execution_thread, but sees " << proto.async_execution_thread(); } if (!proto.called_computation_ids().empty()) { TF_RET_CHECK(computations(0) == prev_op->async_wrapped_computation()) << "Async update should have " << prev_op->async_wrapped_computation()->name() << " async_wrapped_computation, but sees " << computations(0)->name(); } instruction = CreateAsyncUpdate(shape, prev_op); break; } case HloOpcode::kAsyncDone: { TF_RET_CHECK(proto.operand_ids_size() == 1) << "Async done requires one singular operand"; HloInstruction* prev_op = operands(0); TF_RET_CHECK(prev_op->IsAsynchronous()) << "Async done requires its operand to be an asynchronous op"; if (!proto.async_execution_thread().empty()) { TF_RET_CHECK(proto.async_execution_thread() == prev_op->async_execution_thread()) << "Async done should have " << prev_op->async_execution_thread() << " async_execution_thread, but sees " << proto.async_execution_thread(); } if (!proto.called_computation_ids().empty()) { TF_RET_CHECK(computations(0) == prev_op->async_wrapped_computation()) << "Async done should have " << prev_op->async_wrapped_computation()->name() << " async_wrapped_computation, but sees " << computations(0)->name(); } instruction = CreateAsyncDone(shape, prev_op); break; } case HloOpcode::kCopyStart: { std::optional<int> cross_program_prefetch_index; if (proto.optional_cross_program_prefetch_index_case() == HloInstructionProto::kCrossProgramPrefetchIndex) { cross_program_prefetch_index = std::make_optional(proto.cross_program_prefetch_index()); } else if (proto.is_cross_program_prefetch()) { cross_program_prefetch_index = 0; } instruction = CreateCopyStart(shape, operands(0), cross_program_prefetch_index); break; } case HloOpcode::kCompare: { if (!comparison_direction) { TF_ASSIGN_OR_RETURN( comparison_direction, StringToComparisonDirection(proto.comparison_direction())); } auto comparison_type_str = proto.comparison_type(); if (!comparison_type_str.empty()) { TF_ASSIGN_OR_RETURN(auto comparison_type, StringToComparisonType(comparison_type_str)); instruction = CreateCompare(shape, operands(0), operands(1), *comparison_direction, comparison_type); } else { instruction = CreateCompare(shape, operands(0), operands(1), *comparison_direction); } break; } case HloOpcode::kTriangularSolve: { instruction = CreateTriangularSolve(shape, operands(0), operands(1), proto.triangular_solve_options()); break; } case HloOpcode::kCholesky: { instruction = CreateCholesky(shape, operands(0), proto.cholesky_options()); break; } case HloOpcode::kSend: instruction = CreateSend(operands(0), operands(1), proto.channel_id(), proto.is_host_transfer()); break; case HloOpcode::kSendDone: TF_RET_CHECK(DynCast<HloSendInstruction>(operands(0)) != nullptr) << "SendDone must take the context operand from Send"; instruction = CreateSendDone(operands(0), proto.is_host_transfer()); break; case HloOpcode::kRecv: instruction = CreateRecv(shape.tuple_shapes(0), operands(0), proto.channel_id(), proto.is_host_transfer()); break; case HloOpcode::kRecvDone: TF_RET_CHECK(DynCast<HloRecvInstruction>(operands(0)) != nullptr) << "RecvDone must take the context operand from Recv"; instruction = CreateRecvDone(operands(0), proto.is_host_transfer()); break; case HloOpcode::kReverse: instruction = CreateReverse(shape, operands(0), std::vector<int64_t>(proto.dimensions().begin(), proto.dimensions().end())); break; case HloOpcode::kConcatenate: TF_RET_CHECK(proto.dimensions_size() == 1) << "Concatenate instruction should have 1 dimension but sees " << proto.dimensions_size(); instruction = CreateConcatenate(shape, all_operands(), proto.dimensions(0)); break; case HloOpcode::kConditional: { TF_RET_CHECK(proto.called_computation_ids_size() > 0) << "conditional should have at least 1 called computation"; if (operands(0)->shape().element_type() == PRED) { TF_RET_CHECK(proto.called_computation_ids_size() == 2) << "conditional should have exactly 2 called computations but got " << proto.called_computation_ids_size(); } TF_RET_CHECK(proto.operand_ids_size() == proto.called_computation_ids_size() + 1) << "conditional should have one branch_index operand plus one " "operand per called computation but got " << proto.operand_ids_size() << " operands for " << proto.called_computation_ids_size() << " branch computations"; auto cond_operands = all_operands(); instruction = CreateConditional(shape, cond_operands[0], all_computations(), absl::MakeSpan(cond_operands).subspan(1)); break; } case HloOpcode::kReduce: TF_RET_CHECK(proto.operand_ids_size() % 2 == 0) << "Reduce instruction should have an even number of operands but " "sees " << proto.operand_ids_size(); TF_RET_CHECK(proto.called_computation_ids_size() == 1) << "Reduce instruction should have 1 called computation but sees " << proto.called_computation_ids_size(); { const auto reduce_operands = all_operands(); auto inputs = absl::MakeSpan(reduce_operands) .subspan(0, reduce_operands.size() / 2); auto init_values = absl::MakeSpan(reduce_operands) .subspan(reduce_operands.size() / 2, reduce_operands.size()); instruction = CreateReduce(shape, inputs, init_values, std::vector<int64_t>(proto.dimensions().begin(), proto.dimensions().end()), computations(0)); } break; case HloOpcode::kSort: { TF_RET_CHECK(proto.operand_ids_size() >= 1) << "Sort instruction should have at least 1 operand but has " << proto.operand_ids_size(); TF_RET_CHECK(proto.dimensions().size() == 1) << "Sort instruction should have 1 dimension"; TF_RET_CHECK(proto.called_computation_ids_size() == 1) << "Sort instruction should one called computation but sees " << proto.called_computation_ids_size(); auto sort_operands = all_operands(); instruction = CreateSort(shape, proto.dimensions(0), all_operands(), computations(0), proto.is_stable()); break; } case HloOpcode::kTopK: { TF_RET_CHECK(proto.operand_ids_size() == 1) << "TopK instruction should have exactly 1 operand but has " << proto.operand_ids_size(); instruction = CreateTopK(shape, all_operands()[0], proto.k(), proto.largest()); break; } case HloOpcode::kTranspose: instruction = CreateTranspose(shape, operands(0), std::vector<int64_t>(proto.dimensions().begin(), proto.dimensions().end())); break; case HloOpcode::kBroadcast: instruction = CreateBroadcast(shape, operands(0), std::vector<int64_t>(proto.dimensions().begin(), proto.dimensions().end())); break; case HloOpcode::kMap: TF_RET_CHECK(proto.called_computation_ids_size() == 1) << "Map instruction should have 1 called computation but sees " << proto.called_computation_ids_size(); instruction = CreateMap(shape, all_operands(), computations(0)); break; case HloOpcode::kSlice: { std::vector<int64_t> slice_starts, slice_limits, slice_strides; for (const HloInstructionProto::SliceDimensions& slice_dimensions : proto.slice_dimensions()) { slice_starts.push_back(slice_dimensions.start()); slice_limits.push_back(slice_dimensions.limit()); slice_strides.push_back(slice_dimensions.stride()); } instruction = CreateSlice(shape, operands(0), slice_starts, slice_limits, slice_strides); break; } case HloOpcode::kConstant: { if (proto.has_literal()) { TF_ASSIGN_OR_RETURN( auto literal, Literal::CreateFromProto(proto.literal(), prohibit_empty_literal)); instruction = CreateConstant(std::move(literal)); TF_RET_CHECK(Shape::Equal().MinorToMajorOnlyInLayout()( instruction->shape(), shape)) << instruction->shape().ToString(true) << " vs " << shape.ToString(true); *instruction->mutable_shape() = shape; } else { instruction = std::make_unique<HloConstantInstruction>(shape); } break; } case HloOpcode::kFusion: { TF_RET_CHECK(!proto.fusion_kind().empty()); TF_ASSIGN_OR_RETURN(FusionKind fusion_kind, StringToFusionKind(proto.fusion_kind())); TF_RET_CHECK(proto.called_computation_ids_size() == 1) << "Expect 1 called computation for fusion instruction but sees " << proto.called_computation_ids_size(); const int64_t fusion_id = proto.called_computation_ids(0); auto* fused_computation = tsl::gtl::FindPtrOrNull(computation_map, fusion_id); TF_RET_CHECK(fused_computation != nullptr) << "No fusion computation with id " << fusion_id; instruction = CreateFusion(shape, fusion_kind, all_operands(), fused_computation); auto fusion_instr = DynCast<HloFusionInstruction>(instruction.get()); fusion_instr->set_output_to_operand_aliasing( output_to_operand_aliasing()); break; } case HloOpcode::kRng: instruction = CreateRng(shape, proto.distribution(), all_operands()); break; case HloOpcode::kRngBitGenerator: instruction = CreateRngBitGenerator(shape, operands(0), proto.rng_algorithm()); break; case HloOpcode::kRngGetAndUpdateState: instruction = CreateRngGetAndUpdateState(shape, proto.delta()); break; case HloOpcode::kParameter: instruction = CreateParameter(proto.parameter_number(), shape, proto.name()); if (!proto.parameter_replication().replicated_at_leaf_buffers().empty()) { instruction->set_parameter_replicated_at_leaf_buffers( proto.parameter_replication().replicated_at_leaf_buffers()); } break; case HloOpcode::kGetTupleElement: instruction = CreateGetTupleElement(shape, operands(0), proto.tuple_index()); break; case HloOpcode::kReducePrecision: instruction = CreateReducePrecision( shape, operands(0), proto.exponent_bits(), proto.mantissa_bits()); break; case HloOpcode::kInfeed: { TF_RET_CHECK(shape.IsTuple() && (ShapeUtil::TupleElementCount(shape) == 2)) << "Infeed should have a tuple shape with 2 operands, but has: " << shape; const Shape& data_shape = ShapeUtil::GetTupleElementShape(shape, 0); instruction = CreateInfeed(data_shape, operands(0), proto.infeed_config()); } break; case HloOpcode::kOutfeed: { Shape outfeed_shape(proto.outfeed_shape()); TF_RETURN_IF_ERROR( ShapeUtil::ValidateShapeWithOptionalLayout(outfeed_shape)); instruction = CreateOutfeed(outfeed_shape, operands(0), operands(1), proto.outfeed_config()); break; } case HloOpcode::kAllGather: case HloOpcode::kAllGatherStart: { std::optional<int64_t> channel_id; if (proto.channel_id() > 0) { channel_id = proto.channel_id(); } TF_RET_CHECK(proto.dimensions_size() == 1) << "AllGather cannot have more than 1 all-gather dimensions"; int64_t all_gather_dimension = proto.dimensions(0); if (opcode == HloOpcode::kAllGather) { instruction = CreateAllGather( shape, all_operands(), all_gather_dimension, CollectiveDeviceList::FromProto(proto), proto.constrain_layout(), channel_id, proto.use_global_device_ids()); } else { instruction = CreateAllGatherStart( shape, all_operands(), all_gather_dimension, CollectiveDeviceList::FromProto(proto), proto.constrain_layout(), channel_id, proto.use_global_device_ids()); } break; } case HloOpcode::kAllReduce: case HloOpcode::kAllReduceStart: case HloOpcode::kReduceScatter: { TF_RET_CHECK(proto.called_computation_ids_size() == 1) << "AllReduce should have 1 called computation but sees " << proto.called_computation_ids_size(); TF_RET_CHECK(proto.channel_id() <= 0 || proto.all_reduce_id() <= 0) << "AllReduce cannot have both channel_id() and all_reduce_id()"; std::optional<int64_t> channel_id; if (proto.channel_id() > 0) { channel_id = proto.channel_id(); } if (proto.all_reduce_id() > 0) { channel_id = proto.all_reduce_id(); } CollectiveDeviceList device_list = CollectiveDeviceList::FromProto(proto); if (opcode == HloOpcode::kAllReduce) { instruction = CreateAllReduce(shape, all_operands(), computations(0), device_list, proto.constrain_layout(), channel_id, proto.use_global_device_ids()); } else if (opcode == HloOpcode::kReduceScatter) { TF_RET_CHECK(proto.dimensions_size() == 1) << "ReduceScatter cannot have more than 1 scatter dimensions"; int64_t scatter_dimension = proto.dimensions(0); instruction = CreateReduceScatter( shape, all_operands(), computations(0), device_list, proto.constrain_layout(), channel_id, proto.use_global_device_ids(), scatter_dimension); } else { instruction = CreateAllReduceStart(shape, all_operands(), computations(0), device_list, proto.constrain_layout(), channel_id, proto.use_global_device_ids()); } break; } case HloOpcode::kAllToAll: { std::optional<int64_t> channel_id; if (proto.channel_id() > 0) { channel_id = proto.channel_id(); } std::optional<int64_t> split_dimension; if (proto.dimensions_size() > 0) { TF_RET_CHECK(proto.dimensions_size() == 1) << "AllToAll cannot have more than 1 dimension (split dimension)"; TF_RET_CHECK(all_operands().size() == 1) << "AllToAll must have a single operand when the split dimension " "is specified"; split_dimension = proto.dimensions(0); } instruction = CreateAllToAll( shape, all_operands(), CollectiveDeviceList::FromProto(proto), proto.constrain_layout(), channel_id, split_dimension); break; } case HloOpcode::kCollectiveBroadcast: { std::optional<int64_t> channel_id; if (proto.channel_id() > 0) { channel_id = proto.channel_id(); } instruction = CreateCollectiveBroadcast( shape, all_operands(), CollectiveDeviceList::FromProto(proto), false, channel_id); break; } case HloOpcode::kCollectivePermute: case HloOpcode::kCollectivePermuteStart: { TF_RET_CHECK(proto.operand_ids().size() == 1 || proto.operand_ids().size() == 4); std::vector<std::pair<int64_t, int64_t>> source_target_pairs( proto.source_target_pairs_size()); std::optional<int64_t> channel_id; if (proto.channel_id() > 0) { channel_id = proto.channel_id(); } for (int i = 0; i < source_target_pairs.size(); ++i) { source_target_pairs[i].first = proto.source_target_pairs(i).source(); source_target_pairs[i].second = proto.source_target_pairs(i).target(); } if (proto.dynamic_slice_sizes_size() == 0) { if (opcode == HloOpcode::kCollectivePermute) { instruction = CreateCollectivePermute( shape, operands(0), source_target_pairs, channel_id); } else if (opcode == HloOpcode::kCollectivePermuteStart) { instruction = CreateCollectivePermuteStart( shape, operands(0), source_target_pairs, channel_id); } else { LOG(FATAL) << "Expect CollectivePermute or CollectivePermuteStart, " << "but got " << opcode; } } else { std::vector<std::vector<int64_t>> slice_sizes; HloInstruction* input = operands(0); HloInstruction* input_start_indices = operands(2); if (input->shape().IsTuple() && input->shape().tuple_shapes_size() > 1) { slice_sizes.resize(input->shape().tuple_shapes_size()); } else { slice_sizes.resize(1); } int proto_index = 0; if (input->shape().IsTuple()) { if (input_start_indices->shape() .tuple_shapes(0) .tuple_shapes(0) .IsArray()) { slice_sizes.resize(input->shape().tuple_shapes_size()); for (int i = 0; i < input->shape().tuple_shapes_size(); ++i) { slice_sizes[i].resize( input->shape().tuple_shapes(i).dimensions_size()); for (int j = 0; j < input->shape().tuple_shapes(i).dimensions_size(); ++j) { CHECK_GE(proto.dynamic_slice_sizes_size(), proto_index); slice_sizes[i][j] = proto.dynamic_slice_sizes(proto_index); proto_index += 1; } } } else { slice_sizes.resize( input->shape().tuple_shapes_size() * ShapeUtil::TupleElementCount( input_start_indices->shape().tuple_shapes(0))); int slice_sizes_count = 0; for (int i = 0; i < input->shape().tuple_shapes_size(); ++i) { for (int j = 0; j < ShapeUtil::TupleElementCount( input_start_indices->shape().tuple_shapes(i)); ++j) { slice_sizes[slice_sizes_count].resize( input->shape().tuple_shapes(i).rank()); for (int k = 0; k < input->shape().tuple_shapes(i).rank(); ++k) { CHECK_GE(proto.dynamic_slice_sizes_size(), proto_index); slice_sizes[slice_sizes_count][k] = proto.dynamic_slice_sizes(proto_index); proto_index += 1; } slice_sizes_count += 1; } } } } else { slice_sizes.resize( ShapeUtil::TupleElementCount(input_start_indices->shape())); if (input_start_indices->shape().tuple_shapes(0).IsTuple()) { for (int i = 0; i < ShapeUtil::TupleElementCount(input_start_indices->shape()); ++i) { slice_sizes[i].resize(input->shape().dimensions_size()); for (int j = 0; j < input->shape().dimensions_size(); ++j) { slice_sizes[i][j] = proto.dynamic_slice_sizes(proto_index); proto_index += 1; } } } else { slice_sizes.resize(1); slice_sizes[0].resize(input->shape().dimensions_size()); for (int j = 0; j < input->shape().dimensions_size(); ++j) { slice_sizes[0][j] = proto.dynamic_slice_sizes(proto_index); proto_index += 1; } } } if (opcode == HloOpcode::kCollectivePermute) { instruction = CreateCollectivePermute( shape, operands(0), operands(1), operands(2), operands(3), source_target_pairs, slice_sizes, channel_id); } else if (opcode == HloOpcode::kCollectivePermuteStart) { instruction = CreateCollectivePermuteStart( shape, operands(0), operands(1), operands(2), operands(3), source_target_pairs, slice_sizes, channel_id); } else { LOG(FATAL) << "Expect CollectivePermute or CollectivePermuteStart, " << "but got " << opcode; } } break; } case HloOpcode::kReplicaId: { instruction = CreateReplicaId(shape); break; } case HloOpcode::kPartitionId: { instruction = CreatePartitionId(shape); break; } case HloOpcode::kConvolution: { TF_RET_CHECK(proto.has_window()); TF_RET_CHECK(proto.has_convolution_dimension_numbers()); TF_RET_CHECK(absl::c_all_of(proto.precision_config().operand_precision(), PrecisionConfig::Precision_IsValid)); PrecisionConfig precision_config = proto.precision_config(); precision_config.mutable_operand_precision()->Resize( proto.operand_ids_size(), PrecisionConfig::DEFAULT); instruction = CreateConvolve( shape, operands(0), operands(1), std::max<int64_t>(proto.feature_group_count(), 1), std::max<int64_t>(proto.batch_group_count(), 1), proto.window(), proto.convolution_dimension_numbers(), precision_config); break; } case HloOpcode::kReduceWindow: TF_RET_CHECK(proto.operand_ids_size() % 2 == 0) << "Reduce window should have an even number of operands but " "sees " << proto.operand_ids_size(); TF_RET_CHECK(proto.called_computation_ids_size() == 1) << "ReduceWindow should have 1 called computation but sees " << proto.called_computation_ids_size(); { const auto reduce_operands = all_operands(); auto inputs = absl::MakeSpan(reduce_operands) .subspan(0, reduce_operands.size() / 2); auto init_values = absl::MakeSpan(reduce_operands) .subspan(reduce_operands.size() / 2, reduce_operands.size()); instruction = CreateReduceWindow(shape, inputs, init_values, proto.window(), computations(0)); } break; case HloOpcode::kSelectAndScatter: TF_RET_CHECK(proto.called_computation_ids_size() == 2) << "SelectAndScatter should have 2 called computations but sees " << proto.called_computation_ids_size(); instruction = CreateSelectAndScatter(shape, operands(0), computations(0), proto.window(), operands(1), operands(2), computations(1)); break; case HloOpcode::kCustomCall: { if (proto.constrain_layout()) { std::vector<Shape> operand_shapes; const auto& operand_shapes_with_layout = proto.operand_shapes_with_layout(); operand_shapes.reserve(operand_shapes_with_layout.size()); for (const ShapeProto& shape_proto : operand_shapes_with_layout) { operand_shapes.emplace_back(shape_proto); } instruction = CreateCustomCall(shape, all_operands(), proto.custom_call_target(), operand_shapes, proto.backend_config()); } else { if (proto.called_computation_ids_size() == 1) { instruction = CreateCustomCall(shape, all_operands(), computations(0), proto.custom_call_target(), proto.backend_config()); } else if (proto.called_computation_ids_size() > 1) { instruction = CreateCustomCall( shape, all_operands(), all_computations(), proto.custom_call_target(), proto.backend_config()); } else { instruction = CreateCustomCall(shape, all_operands(), proto.custom_call_target(), proto.backend_config()); } } auto custom_call_instr = Cast<HloCustomCallInstruction>(instruction.get()); if (proto.has_window()) { custom_call_instr->set_window(proto.window()); } if (proto.has_literal()) { TF_ASSIGN_OR_RETURN( auto literal, Literal::CreateFromProto(proto.literal(), prohibit_empty_literal)); custom_call_instr->set_literal(std::move(literal)); } if (proto.has_convolution_dimension_numbers()) { custom_call_instr->set_convolution_dimension_numbers( proto.convolution_dimension_numbers()); } custom_call_instr->set_feature_group_count(std::max( static_cast<int64_t>(proto.feature_group_count()), int64_t{1})); custom_call_instr->set_batch_group_count(std::max( static_cast<int64_t>(proto.batch_group_count()), int64_t{1})); custom_call_instr->set_custom_call_has_side_effect( proto.custom_call_has_side_effect()); custom_call_instr->set_padding_type(proto.padding_type()); TF_RET_CHECK(absl::c_all_of(proto.precision_config().operand_precision(), PrecisionConfig::Precision_IsValid)); PrecisionConfig precision_config = proto.precision_config(); precision_config.mutable_operand_precision()->Resize( proto.operand_ids_size(), PrecisionConfig::DEFAULT); *custom_call_instr->mutable_precision_config() = precision_config; custom_call_instr->set_output_to_operand_aliasing( output_to_operand_aliasing()); custom_call_instr->set_custom_call_schedule(proto.custom_call_schedule()); custom_call_instr->set_api_version(proto.custom_call_api_version()); break; } case HloOpcode::kPad: TF_RET_CHECK(proto.has_padding_config()); instruction = CreatePad(shape, operands(0), operands(1), proto.padding_config()); break; case HloOpcode::kDynamicSlice: { std::vector<int64_t> slice_sizes(proto.dynamic_slice_sizes_size()); absl::c_copy(proto.dynamic_slice_sizes(), slice_sizes.begin()); TF_RET_CHECK(proto.operand_ids_size() >= 1) << "DynamicSlice instruction should have at least 1 operands but " "sees " << proto.operand_ids_size(); if (proto.operand_ids_size() != 2 || operands(1)->shape().rank() != 1) { auto expected_operands = 1 + operands(0)->shape().rank(); TF_RET_CHECK(proto.operand_ids_size() == expected_operands) << "DynamicSlice instruction should have " << expected_operands << " operands, but has " << proto.operand_ids_size(); } const auto& operand_vector = all_operands(); instruction = CreateDynamicSlice( shape, operands(0), absl::MakeSpan(operand_vector).subspan(1), slice_sizes); break; } case HloOpcode::kDynamicUpdateSlice: { TF_RET_CHECK(proto.operand_ids_size() >= 2) << "DynamicUpdateSlice instruction should have at least 2 operands " "but sees " << proto.operand_ids_size(); if (proto.operand_ids_size() != 3 || operands(2)->shape().rank() != 1) { auto expected_operands = 2 + operands(0)->shape().rank(); TF_RET_CHECK(proto.operand_ids_size() == expected_operands) << "DynamicUpdateSlice instruction should have " << expected_operands << " operands, but has " << proto.operand_ids_size(); } const auto& operand_vector = all_operands(); instruction = CreateDynamicUpdateSlice(shape, operands(0), operands(1), absl::MakeSpan(operand_vector).subspan(2)); break; } case HloOpcode::kGather: { TF_RET_CHECK(proto.has_gather_dimension_numbers()) << "Gather instruction should have GatherDimensionNumbers set."; auto gather_dimension_numbers = std::make_unique<GatherDimensionNumbers>( proto.gather_dimension_numbers()); std::vector<int64_t> gather_slice_sizes; const auto& slice_sizes = proto.gather_slice_sizes(); gather_slice_sizes.reserve(slice_sizes.size()); for (int64_t bound : slice_sizes) { gather_slice_sizes.push_back(bound); } instruction = CreateGather(shape, operands(0), operands(1), *gather_dimension_numbers, gather_slice_sizes, proto.indices_are_sorted()); break; } case HloOpcode::kScatter: { TF_RET_CHECK(proto.has_scatter_dimension_numbers()) << "Scatter instruction should have ScatterDimensionNumbers set."; TF_RET_CHECK(proto.called_computation_ids_size() == 1) << "Scatter instruction should have 1 called computation but sees " << proto.called_computation_ids_size(); auto scatter_dimension_numbers = std::make_unique<ScatterDimensionNumbers>( proto.scatter_dimension_numbers()); auto operands = all_operands(); auto operand_span = absl::MakeConstSpan(operands); auto input_count = operands.size() / 2; instruction = CreateScatter(shape, operand_span.first(input_count), operands[input_count], operand_span.last(input_count), computations(0), *scatter_dimension_numbers, proto.indices_are_sorted(), proto.unique_indices()); break; } case HloOpcode::kIota: TF_RET_CHECK(proto.dimensions_size() == 1) << "Iota instruction should have 1 dimension but sees " << proto.dimensions_size(); instruction = CreateIota(shape, proto.dimensions(0)); break; case HloOpcode::kDot: { int expected_operands = HloDotInstruction::kOperands + proto.dot_sparsity_size(); TF_RET_CHECK(proto.dot_sparsity_size() <= HloDotInstruction::kOperands) << "Too many sparse dot descriptors: " << proto.dot_sparsity_size(); TF_RET_CHECK(proto.operand_ids_size() == expected_operands) << proto.opcode() << " instruction should have " << expected_operands << " operands but sees " << proto.operand_ids_size(); TF_RET_CHECK(proto.has_dot_dimension_numbers()) << "Dot instruction should have dot_dimension_numbers."; TF_RET_CHECK(absl::c_all_of(proto.precision_config().operand_precision(), PrecisionConfig::Precision_IsValid)); PrecisionConfig precision_config = proto.precision_config(); precision_config.mutable_operand_precision()->Resize( HloDotInstruction::kOperands, PrecisionConfig::DEFAULT); std::vector<SparsityDescriptor> sparsity(proto.dot_sparsity().begin(), proto.dot_sparsity().end()); auto operand_vector = all_operands(); instruction = std::make_unique<HloDotInstruction>( shape, operands(0), operands(1), proto.dot_dimension_numbers(), precision_config, std::move(sparsity), absl::MakeSpan(operand_vector).subspan(HloDotInstruction::kOperands)); break; } case HloOpcode::kDomain: { std::shared_ptr<const HloSharding> entry_hlo_sharding; std::shared_ptr<const HloSharding> exit_hlo_sharding; if (proto.has_domain_entry_sharding()) { TF_ASSIGN_OR_RETURN( HloSharding sharding, HloSharding::FromProto(proto.domain_entry_sharding())); entry_hlo_sharding = std::make_shared<const HloSharding>(sharding); } if (proto.has_domain_exit_sharding()) { TF_ASSIGN_OR_RETURN( HloSharding sharding, HloSharding::FromProto(proto.domain_exit_sharding())); exit_hlo_sharding = std::make_shared<const HloSharding>(sharding); } instruction = std::make_unique<HloDomainInstruction>( shape, operands(0), std::make_unique<ShardingMetadata>(entry_hlo_sharding), std::make_unique<ShardingMetadata>(exit_hlo_sharding)); break; } case HloOpcode::kGetDimensionSize: TF_RET_CHECK(proto.dimensions_size() == 1); instruction = CreateGetDimensionSize(shape, operands(0), proto.dimensions(0)); break; case HloOpcode::kSetDimensionSize: TF_RET_CHECK(proto.dimensions_size() == 1); instruction = CreateSetDimensionSize(shape, operands(0), operands(1), proto.dimensions(0)); break; case HloOpcode::kReshape: { int64_t inferred_dimension = -1; if (!proto.dimensions().empty()) { inferred_dimension = proto.dimensions()[0]; } TF_RET_CHECK(shape.IsArray() && operands(0)->shape().IsArray() && (operands(0)->shape().is_unbounded_dynamic() || ShapeUtil::StaticExtentProduct(shape) == ShapeUtil::StaticExtentProduct(operands(0)->shape()))) << "shape: " << ShapeUtil::HumanString(shape) << " operand: " << ShapeUtil::HumanString(operands(0)->shape()); instruction = CreateReshape(shape, operands(0), inferred_dimension); break; } case HloOpcode::kDynamicReshape: { TF_RET_CHECK(shape.IsArray() && operands(0)->shape().IsArray() && ShapeUtil::StaticExtentProduct(shape) == ShapeUtil::StaticExtentProduct(operands(0)->shape())) << "shape: " << ShapeUtil::HumanString(shape) << " operand: " << ShapeUtil::HumanString(operands(0)->shape()); const auto& operand_vector = all_operands(); instruction = CreateDynamicReshape( shape, operands(0), absl::MakeSpan(operand_vector).subspan(1)); break; } case HloOpcode::kCall: { TF_RET_CHECK(proto.called_computation_ids_size() == 1) << "Call should have 1 called computation but has " << proto.called_computation_ids_size(); TF_RET_CHECK(!proto.has_precision_config()) << instruction->opcode() << proto.name(); TF_RET_CHECK(!proto.has_dot_dimension_numbers()) << instruction->opcode(); if (proto.is_composite()) { TF_RET_CHECK(proto.has_frontend_attributes()) << "A composite call op must have frontend attributes"; auto map = proto.frontend_attributes().map(); auto name = map.find("composite.name"); TF_RET_CHECK(name != map.end() && !name->second.empty()) << "A composite call op must have frontend attributes with key " "composite.name whose value is non-empty"; auto attributes = map.find("composite.attributes"); TF_RET_CHECK(attributes == map.end() || !attributes->second.empty()) << "A composite call op must have frontend attributes with key " "composite.attributes whose value is default: {} or non-empty"; auto version_str = map.find("composite.version"); int64_t version = 0; TF_RET_CHECK( version_str == map.end() || (absl::SimpleAtoi(version_str->second, &version) && version >= 0)) << "A composite call op must have frontend attributes with a " "composite.version whose value is a non-negative integer but " "got: " << version_str->second; instruction = CreateCompositeCall( shape, all_operands(), computation_map.at(proto.called_computation_ids()[0]), name->second, attributes == map.end() ? "{}" : attributes->second, version); instruction->set_output_to_operand_aliasing( output_to_operand_aliasing()); } else { instruction = std::make_unique<HloCallInstruction>( shape, all_operands(), computation_map.at(proto.called_computation_ids()[0])); instruction->set_output_to_operand_aliasing( output_to_operand_aliasing()); } break; } default: { instruction = absl::WrapUnique(new HloInstruction(opcode, shape)); if (instruction->opcode() == HloOpcode::kWhile) { TF_RET_CHECK(proto.called_computation_ids_size() == 2) << "While should have 2 called computation but has " << proto.called_computation_ids_size(); computation_map.at(proto.called_computation_ids(0)) ->SetWhileCallInstruction(instruction.get()); } for (const int64_t operand_id : proto.operand_ids()) { instruction->AppendOperand(instruction_map.at(operand_id)); } for (const int64_t computation_id : proto.called_computation_ids()) { instruction->AppendComputation(computation_map.at(computation_id)); } if (instruction->opcode() == HloOpcode::kWhile) { instruction->while_body()->SetWhileCallInstruction(instruction.get()); } TF_RET_CHECK(!proto.has_precision_config()) << instruction->opcode() << proto.DebugString(); TF_RET_CHECK(!proto.has_dot_dimension_numbers()) << instruction->opcode(); break; } } for (const int64_t predecessor_id : proto.control_predecessor_ids()) { TF_RET_CHECK(ContainsKey(instruction_map, predecessor_id)) << "No instruction with id " << predecessor_id; TF_RETURN_IF_ERROR(instruction_map.at(predecessor_id) ->AddControlDependencyTo(instruction.get())); } TF_RET_CHECK(!proto.name().empty()); instruction->SetAndSanitizeName(proto.name()); *instruction->metadata_ = proto.metadata(); instruction->backend_config_ = BackendConfigWrapper(proto.backend_config()); TF_RET_CHECK(proto.id() >= 0) << "Instruction with negative id: " << proto.id(); TF_RET_CHECK(proto.id() <= INT_MAX) << "Instruction with id > INT_MAX: " << proto.id(); instruction->unique_id_ = proto.id(); if (proto.has_sharding()) { TF_ASSIGN_OR_RETURN(HloSharding sharding, HloSharding::FromProto(proto.sharding())); sharding = sharding.NormalizeTupleSharding(instruction->shape()); instruction->set_sharding(sharding); } if (proto.has_frontend_attributes()) { instruction->set_frontend_attributes(proto.frontend_attributes()); } if (proto.has_statistics_viz()) { instruction->set_statistics_viz(proto.statistics_viz()); } if (proto.has_original_value()) { const xla::OriginalValueProto& original_value_proto = proto.original_value(); auto original_value = std::make_shared<OriginalValue>(shape); for (const auto& leaf : original_value_proto.leaves()) { *original_value->mutable_element(ShapeIndex(leaf.leaf_shape_index())) = { leaf.instruction_name(), ShapeIndex(leaf.shape_index())}; } instruction->set_original_value(original_value); } return std::move(instruction); } std::unique_ptr<HloInstruction> HloInstruction::CreateParameter( int64_t parameter_number, const Shape& shape, absl::string_view name) { return std::make_unique<HloParameterInstruction>(parameter_number, shape, name); } std::unique_ptr<HloInstruction> HloInstruction::CreateConstant( Literal literal) { return std::make_unique<HloConstantInstruction>(std::move(literal)); } std::unique_ptr<HloInstruction> HloInstruction::CreateIota( const Shape& shape, int64_t iota_dimension) { return std::make_unique<HloIotaInstruction>(shape, iota_dimension); } std::unique_ptr<HloInstruction> HloInstruction::CreateTopK( const Shape& shape, HloInstruction* input, int64_t k, bool largest) { return std::make_unique<HloTopKInstruction>(shape, input, k, largest); } std::unique_ptr<HloInstruction> HloInstruction::CreateGetTupleElement(const Shape& shape, HloInstruction* operand, int64_t index) { return std::make_unique<HloGetTupleElementInstruction>(shape, operand, index); } std::unique_ptr<HloInstruction> HloInstruction::CreateGetTupleElement(HloInstruction* operand, int64_t index) { return std::make_unique<HloGetTupleElementInstruction>( operand->shape().tuple_shapes(index), operand, index); } std::unique_ptr<HloInstruction> HloInstruction::CreateRng( const Shape& shape, RandomDistribution distribution, absl::Span<HloInstruction* const> parameters) { return std::make_unique<HloRngInstruction>(shape, distribution, parameters); } std::unique_ptr<HloInstruction> HloInstruction::CreateRngGetAndUpdateState(const Shape& shape, int64_t delta) { return std::make_unique<HloRngGetAndUpdateStateInstruction>(shape, delta); } std::unique_ptr<HloInstruction> HloInstruction::CreateRngBitGenerator(const Shape& shape, HloInstruction* state, RandomAlgorithm algorithm) { return std::make_unique<HloRngBitGeneratorInstruction>(shape, state, algorithm); } std::unique_ptr<HloInstruction> HloInstruction::CreateNary( const Shape& shape, HloOpcode opcode, absl::Span<HloInstruction* const> operands) { if (opcode == HloOpcode::kCopy) { CHECK(!shape.IsOpaque()); } auto instruction = absl::WrapUnique(new HloInstruction(opcode, shape)); for (auto operand : operands) { instruction->AppendOperand(operand); } return instruction; } std::unique_ptr<HloInstruction> HloInstruction::CreateUnary( const Shape& shape, HloOpcode opcode, HloInstruction* operand) { switch (opcode) { case HloOpcode::kAbs: case HloOpcode::kAllGatherDone: case HloOpcode::kAllReduceDone: case HloOpcode::kRoundNearestAfz: case HloOpcode::kRoundNearestEven: case HloOpcode::kBitcast: case HloOpcode::kCeil: case HloOpcode::kCollectivePermuteDone: case HloOpcode::kCopy: case HloOpcode::kCopyDone: case HloOpcode::kCos: case HloOpcode::kOptimizationBarrier: case HloOpcode::kClz: case HloOpcode::kErf: case HloOpcode::kExp: case HloOpcode::kExpm1: case HloOpcode::kFloor: case HloOpcode::kImag: case HloOpcode::kIsFinite: case HloOpcode::kLog: case HloOpcode::kLog1p: case HloOpcode::kNot: case HloOpcode::kNegate: case HloOpcode::kPopulationCount: case HloOpcode::kReal: case HloOpcode::kRsqrt: case HloOpcode::kLogistic: case HloOpcode::kSign: case HloOpcode::kSin: case HloOpcode::kSqrt: case HloOpcode::kCbrt: case HloOpcode::kTanh: case HloOpcode::kTan: break; default: LOG(FATAL) << "Invalid unary instruction opcode " << opcode; } return CreateNary(shape, opcode, {operand}); } std::unique_ptr<HloInstruction> HloInstruction::CreateBinary( const Shape& shape, HloOpcode opcode, HloInstruction* lhs, HloInstruction* rhs) { switch (opcode) { case HloOpcode::kAdd: case HloOpcode::kAtan2: case HloOpcode::kDivide: case HloOpcode::kComplex: case HloOpcode::kMaximum: case HloOpcode::kMinimum: case HloOpcode::kMultiply: case HloOpcode::kPower: case HloOpcode::kRemainder: case HloOpcode::kSubtract: case HloOpcode::kAnd: case HloOpcode::kOr: case HloOpcode::kXor: case HloOpcode::kShiftLeft: case HloOpcode::kShiftRightArithmetic: case HloOpcode::kShiftRightLogical: case HloOpcode::kStochasticConvert: break; default: LOG(FATAL) << "Invalid binary instruction opcode " << opcode; } return CreateNary(shape, opcode, {lhs, rhs}); } std::unique_ptr<HloInstruction> HloInstruction::CreateTernary( const Shape& shape, HloOpcode opcode, HloInstruction* lhs, HloInstruction* rhs, HloInstruction* ehs) { switch (opcode) { case HloOpcode::kClamp: case HloOpcode::kSelect: break; default: LOG(FATAL) << "Invalid ternary instruction opcode " << opcode; } return CreateNary(shape, opcode, {lhs, rhs, ehs}); } std::unique_ptr<HloInstruction> HloInstruction::CreateVariadic( const Shape& shape, HloOpcode opcode, absl::Span<HloInstruction* const> operands) { CHECK_EQ(HloOpcode::kTuple, opcode); return CreateNary(shape, opcode, operands); } std::unique_ptr<HloInstruction> HloInstruction::CreateMap( const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* map_computation) { return std::make_unique<HloMapInstruction>(shape, operands, map_computation); } std::unique_ptr<HloInstruction> HloInstruction::CreateConvolve( const Shape& shape, HloInstruction* lhs, HloInstruction* rhs, int64_t feature_group_count, int64_t batch_group_count, const Window& window, const ConvolutionDimensionNumbers& dimension_numbers, const PrecisionConfig& precision_config) { return std::make_unique<HloConvolutionInstruction>( shape, lhs, rhs, feature_group_count, batch_group_count, window, dimension_numbers, precision_config); } std::unique_ptr<HloInstruction> HloInstruction::CreateFft( const Shape& shape, HloInstruction* operand, FftType fft_type, absl::Span<const int64_t> fft_length) { return std::make_unique<HloFftInstruction>(shape, operand, fft_type, fft_length); } std::unique_ptr<HloInstruction> HloInstruction::CreateAsyncStart( const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* async_computation, absl::string_view async_execution_thread) { return std::make_unique<HloAsyncStartInstruction>( HloOpcode::kAsyncStart, shape, operands, async_computation, async_execution_thread); } std::unique_ptr<HloInstruction> HloInstruction::CreateAsyncUpdate( const Shape& shape, HloInstruction* operand) { return std::make_unique<HloAsyncInstruction>(HloOpcode::kAsyncUpdate, shape, operand); } std::unique_ptr<HloInstruction> HloInstruction::CreateAsyncDone( const Shape& shape, HloInstruction* operand) { return std::make_unique<HloAsyncInstruction>(HloOpcode::kAsyncDone, shape, operand); } std::unique_ptr<HloInstruction> HloInstruction::CreateCopyStart( const Shape& shape, HloInstruction* operand, std::optional<int> cross_program_prefetch) { return std::make_unique<HloCopyStartInstruction>(shape, operand, cross_program_prefetch); } std::unique_ptr<HloInstruction> HloInstruction::CreateCompare( const Shape& shape, HloInstruction* lhs, HloInstruction* rhs, ComparisonDirection direction, std::optional<Comparison::Type> type) { return std::make_unique<HloCompareInstruction>(shape, lhs, rhs, direction, type); } std::unique_ptr<HloInstruction> HloInstruction::CreateTriangularSolve(const Shape& shape, HloInstruction* a, HloInstruction* b, const TriangularSolveOptions& options) { return std::make_unique<HloTriangularSolveInstruction>(shape, a, b, options); } std::unique_ptr<HloInstruction> HloInstruction::CreateCholesky( const Shape& shape, HloInstruction* a, const CholeskyOptions& options) { return std::make_unique<HloCholeskyInstruction>(shape, a, options); } std::unique_ptr<HloInstruction> HloInstruction::CreateDot( const Shape& shape, HloInstruction* lhs, HloInstruction* rhs, const DotDimensionNumbers& dimension_numbers, const PrecisionConfig& precision_config, std::vector<SparsityDescriptor> sparsity, absl::Span<HloInstruction* const> sparse_meta) { return std::make_unique<HloDotInstruction>(shape, lhs, rhs, dimension_numbers, precision_config, std::move(sparsity), sparse_meta); } std::unique_ptr<HloInstruction> HloInstruction::CreateReducePrecision(const Shape& shape, HloInstruction* operand, const int exponent_bits, const int mantissa_bits) { return std::make_unique<HloReducePrecisionInstruction>( shape, operand, exponent_bits, mantissa_bits); } std::unique_ptr<HloInstruction> HloInstruction::CreateAllGather( const Shape& shape, absl::Span<HloInstruction* const> operands, int64_t all_gather_dimension, const CollectiveDeviceList& device_list, bool constrain_layout, const std::optional<int64_t>& channel_id, bool use_global_device_ids) { return std::make_unique<HloAllGatherInstruction>( HloOpcode::kAllGather, shape, operands, all_gather_dimension, device_list, constrain_layout, channel_id, use_global_device_ids); } std::unique_ptr<HloInstruction> HloInstruction::CreateAllGather( const Shape& shape, absl::Span<HloInstruction* const> operands, int64_t all_gather_dimension, absl::Span<const ReplicaGroup> replica_groups, bool constrain_layout, const std::optional<int64_t>& channel_id, bool use_global_device_ids) { return CreateAllGather(shape, operands, all_gather_dimension, CollectiveDeviceList(replica_groups), constrain_layout, channel_id, use_global_device_ids); } std::unique_ptr<HloInstruction> HloInstruction::CreateAllGatherStart(const Shape& shape, absl::Span<HloInstruction* const> operands, int64_t all_gather_dimension, const CollectiveDeviceList& device_list, bool constrain_layout, const std::optional<int64_t>& channel_id, bool use_global_device_ids) { return std::make_unique<HloAllGatherInstruction>( HloOpcode::kAllGatherStart, shape, operands, all_gather_dimension, device_list, constrain_layout, channel_id, use_global_device_ids); } std::unique_ptr<HloInstruction> HloInstruction::CreateAllGatherStart( const Shape& shape, absl::Span<HloInstruction* const> operands, int64_t all_gather_dimension, absl::Span<const ReplicaGroup> replica_groups, bool constrain_layout, const std::optional<int64_t>& channel_id, bool use_global_device_ids) { return CreateAllGatherStart(shape, operands, all_gather_dimension, CollectiveDeviceList(replica_groups), constrain_layout, channel_id, use_global_device_ids); } std::unique_ptr<HloInstruction> HloInstruction::CreateAllReduce( const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* reduce_computation, const CollectiveDeviceList& device_list, bool constrain_layout, const std::optional<int64_t>& channel_id, bool use_global_device_ids) { return std::make_unique<HloAllReduceInstruction>( HloOpcode::kAllReduce, shape, operands, reduce_computation, device_list, constrain_layout, channel_id, use_global_device_ids); } std::unique_ptr<HloInstruction> HloInstruction::CreateAllReduce( const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* reduce_computation, absl::Span<const ReplicaGroup> replica_groups, bool constrain_layout, const std::optional<int64_t>& channel_id, bool use_global_device_ids) { return CreateAllReduce(shape, operands, reduce_computation, CollectiveDeviceList(replica_groups), constrain_layout, channel_id, use_global_device_ids); } std::unique_ptr<HloInstruction> HloInstruction::CreateReduceScatter( const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* reduce_computation, const CollectiveDeviceList& device_list, bool constrain_layout, const std::optional<int64_t>& channel_id, bool use_global_device_ids, int64_t scatter_dimension) { return std::make_unique<HloReduceScatterInstruction>( shape, operands, reduce_computation, device_list, constrain_layout, channel_id, use_global_device_ids, scatter_dimension); } std::unique_ptr<HloInstruction> HloInstruction::CreateReduceScatter( const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* reduce_computation, absl::Span<const ReplicaGroup> replica_groups, bool constrain_layout, const std::optional<int64_t>& channel_id, bool use_global_device_ids, int64_t scatter_dimension) { return CreateReduceScatter( shape, operands, reduce_computation, CollectiveDeviceList(replica_groups), constrain_layout, channel_id, use_global_device_ids, scatter_dimension); } std::unique_ptr<HloInstruction> HloInstruction::CreateAllReduceStart(const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* reduce_computation, const CollectiveDeviceList& device_list, bool constrain_layout, const std::optional<int64_t>& channel_id, bool use_global_device_ids) { return std::make_unique<HloAllReduceInstruction>( HloOpcode::kAllReduceStart, shape, operands, reduce_computation, device_list, constrain_layout, channel_id, use_global_device_ids); } std::unique_ptr<HloInstruction> HloInstruction::CreateAllReduceStart( const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* reduce_computation, absl::Span<const ReplicaGroup> replica_groups, bool constrain_layout, const std::optional<int64_t>& channel_id, bool use_global_device_ids) { return CreateAllReduceStart( shape, operands, reduce_computation, CollectiveDeviceList(replica_groups), constrain_layout, channel_id, use_global_device_ids); } std::unique_ptr<HloInstruction> HloInstruction::CreateAllToAll( const Shape& shape, absl::Span<HloInstruction* const> operands, const CollectiveDeviceList& device_list, bool constrain_layout, const std::optional<int64_t>& channel_id, const std::optional<int64_t>& split_dimension) { return std::make_unique<HloAllToAllInstruction>(shape, operands, device_list, constrain_layout, channel_id, split_dimension); } std::unique_ptr<HloInstruction> HloInstruction::CreateAllToAll( const Shape& shape, absl::Span<HloInstruction* const> operands, absl::Span<const ReplicaGroup> replica_groups, bool constrain_layout, const std::optional<int64_t>& channel_id, const std::optional<int64_t>& split_dimension) { return CreateAllToAll(shape, operands, CollectiveDeviceList(replica_groups), constrain_layout, channel_id, split_dimension); } std::unique_ptr<HloInstruction> HloInstruction::CreateCollectiveBroadcast( const Shape& shape, absl::Span<HloInstruction* const> operands, const CollectiveDeviceList& device_list, bool constrain_layout, const std::optional<int64_t>& channel_id) { return std::make_unique<HloCollectiveBroadcastInstruction>( HloOpcode::kCollectiveBroadcast, shape, operands, device_list, constrain_layout, channel_id); } std::unique_ptr<HloInstruction> HloInstruction::CreateCollectiveBroadcast( const Shape& shape, absl::Span<HloInstruction* const> operands, absl::Span<const ReplicaGroup> replica_groups, bool constrain_layout, const std::optional<int64_t>& channel_id) { return CreateCollectiveBroadcast(shape, operands, CollectiveDeviceList(replica_groups), constrain_layout, channel_id); } std::unique_ptr<HloInstruction> HloInstruction::CreateCollectivePermute( const Shape& shape, HloInstruction* operand, const std::vector<std::pair<int64_t, int64_t>>& source_target_pairs, const std::optional<int64_t>& channel_id) { return std::make_unique<HloCollectivePermuteInstruction>( HloOpcode::kCollectivePermute, shape, operand, source_target_pairs, channel_id); } std::unique_ptr<HloInstruction> HloInstruction::CreateCollectivePermute( const Shape& shape, HloInstruction* input, HloInstruction* output, HloInstruction* input_start_indices, HloInstruction* output_start_indices, absl::Span<const std::pair<int64_t, int64_t>> source_target_pairs, absl::Span<const std::vector<int64_t>> slice_sizes, const std::optional<int64_t>& channel_id) { return std::make_unique<HloCollectivePermuteInstruction>( HloOpcode::kCollectivePermute, shape, input, output, input_start_indices, output_start_indices, source_target_pairs, slice_sizes, channel_id); } std::unique_ptr<HloInstruction> HloInstruction::CreateCollectivePermuteStart( const Shape& shape, HloInstruction* operand, const std::vector<std::pair<int64_t, int64_t>>& source_target_pairs, const std::optional<int64_t>& channel_id) { return std::make_unique<HloCollectivePermuteInstruction>( HloOpcode::kCollectivePermuteStart, shape, operand, source_target_pairs, channel_id); } std::unique_ptr<HloInstruction> HloInstruction::CreateCollectivePermuteStart( const Shape& shape, HloInstruction* input, HloInstruction* output, HloInstruction* input_start_indices, HloInstruction* output_start_indices, absl::Span<const std::pair<int64_t, int64_t>> source_target_pairs, absl::Span<const std::vector<int64_t>> slice_sizes, const std::optional<int64_t>& channel_id) { return std::make_unique<HloCollectivePermuteInstruction>( HloOpcode::kCollectivePermuteStart, shape, input, output, input_start_indices, output_start_indices, source_target_pairs, slice_sizes, channel_id); } std::unique_ptr<HloInstruction> HloInstruction::CreateReplicaId( const Shape& shape) { CHECK(Shape::Equal().IgnoreLayout()(shape, ShapeUtil::MakeShape(U32, {}))) << "HloInstruction replica-id must have a shape of u32[], but " << shape.ToString() << " is specified"; return absl::WrapUnique(new HloInstruction(HloOpcode::kReplicaId, shape)); } std::unique_ptr<HloInstruction> HloInstruction::CreatePartitionId( const Shape& shape) { CHECK(Shape::Equal().IgnoreLayout()(shape, ShapeUtil::MakeShape(U32, {}))) << "HloInstruction partition-id must have a shape of u32[], but " << shape.ToString() << " is specified"; return absl::WrapUnique(new HloInstruction(HloOpcode::kPartitionId, shape)); } std::unique_ptr<HloInstruction> HloInstruction::CreateInfeed( const Shape& infeed_shape, HloInstruction* token_operand, const std::string& config) { return std::make_unique<HloInfeedInstruction>(infeed_shape, token_operand, config); } std::unique_ptr<HloInstruction> HloInstruction::CreateOutfeed( const Shape& outfeed_shape, HloInstruction* operand, HloInstruction* token_operand, absl::string_view outfeed_config) { return std::make_unique<HloOutfeedInstruction>(outfeed_shape, operand, token_operand, outfeed_config); } std::unique_ptr<HloInstruction> HloInstruction::CreateSend( HloInstruction* operand, HloInstruction* token, int64_t channel_id, bool is_host_transfer) { return std::make_unique<HloSendInstruction>(operand, token, channel_id, is_host_transfer); } std::unique_ptr<HloInstruction> HloInstruction::CreateSendDone( HloInstruction* operand, bool is_host_transfer) { auto send_operand = DynCast<HloSendInstruction>(operand); CHECK(send_operand != nullptr) << "SendDone must take the context operand from Send"; return std::make_unique<HloSendDoneInstruction>(send_operand, is_host_transfer); } std::unique_ptr<HloInstruction> HloInstruction::CreateSendDone( HloInstruction* operand, int64_t channel_id, bool is_host_transfer) { return std::make_unique<HloSendDoneInstruction>(operand, channel_id, is_host_transfer); } std::unique_ptr<HloInstruction> HloInstruction::CreateRecv( const Shape& shape, HloInstruction* token, int64_t channel_id, bool is_host_transfer) { return std::make_unique<HloRecvInstruction>(shape, token, channel_id, is_host_transfer); } std::unique_ptr<HloInstruction> HloInstruction::CreateRecvDone( HloInstruction* operand, bool is_host_transfer) { auto recv_operand = DynCast<HloRecvInstruction>(operand); CHECK(recv_operand != nullptr) << "RecvDone must take the context operand from Recv"; return std::make_unique<HloRecvDoneInstruction>(recv_operand, is_host_transfer); } std::unique_ptr<HloInstruction> HloInstruction::CreateRecvDone( HloInstruction* operand, int64_t channel_id, bool is_host_transfer) { return std::make_unique<HloRecvDoneInstruction>(operand, channel_id, is_host_transfer); } std::unique_ptr<HloInstruction> HloInstruction::CreateReverse( const Shape& shape, HloInstruction* operand, absl::Span<const int64_t> dimensions) { return std::make_unique<HloReverseInstruction>(shape, operand, dimensions); } std::unique_ptr<HloInstruction> HloInstruction::CreateAfterAll( absl::Span<HloInstruction* const> operands) { CHECK(!operands.empty()); auto instruction = absl::WrapUnique( new HloInstruction(HloOpcode::kAfterAll, ShapeUtil::MakeTokenShape())); for (auto operand : operands) { instruction->AppendOperand(operand); } return instruction; } std::unique_ptr<HloInstruction> HloInstruction::CreateToken() { return absl::WrapUnique( new HloInstruction(HloOpcode::kAfterAll, ShapeUtil::MakeTokenShape())); } std::unique_ptr<HloInstruction> HloInstruction::CreateAddDependency(HloInstruction* data_operand, HloInstruction* token_operand) { auto instruction = absl::WrapUnique( new HloInstruction(HloOpcode::kAddDependency, data_operand->shape())); instruction->AppendOperand(data_operand); instruction->AppendOperand(token_operand); return instruction; } std::unique_ptr<HloInstruction> HloInstruction::CreateWhile( const Shape& shape, HloComputation* condition, HloComputation* body, HloInstruction* init) { auto instruction = absl::WrapUnique(new HloInstruction(HloOpcode::kWhile, shape)); instruction->AppendOperand(init); instruction->AppendComputation(body); instruction->AppendComputation(condition); body->SetWhileCallInstruction(instruction.get()); return instruction; } std::unique_ptr<HloInstruction> HloInstruction::CreateConditional( const Shape& shape, HloInstruction* pred, HloInstruction* true_computation_arg, HloComputation* true_computation, HloInstruction* false_computation_arg, HloComputation* false_computation) { auto instruction = absl::WrapUnique(new HloInstruction(HloOpcode::kConditional, shape)); instruction->AppendOperand(pred); instruction->AppendOperand(true_computation_arg); instruction->AppendOperand(false_computation_arg); instruction->AppendComputation(true_computation); instruction->AppendComputation(false_computation); true_computation->SetConditionalCallInstruction(instruction.get()); false_computation->SetConditionalCallInstruction(instruction.get()); return instruction; } std::unique_ptr<HloInstruction> HloInstruction::CreateConditional( const Shape& shape, HloInstruction* branch_index, absl::Span<HloComputation* const> branch_computations, absl::Span<HloInstruction* const> branch_computation_args) { auto instruction = absl::WrapUnique(new HloInstruction(HloOpcode::kConditional, shape)); instruction->AppendOperand(branch_index); CHECK_EQ(branch_computations.size(), branch_computation_args.size()); for (int i = 0; i < branch_computations.size(); ++i) { instruction->AppendComputation(branch_computations[i]); instruction->AppendOperand(branch_computation_args[i]); branch_computations[i]->SetConditionalCallInstruction(instruction.get()); } return instruction; } std::unique_ptr<HloInstruction> HloInstruction::CreateSlice( const Shape& shape, HloInstruction* operand, absl::Span<const int64_t> start_indices, absl::Span<const int64_t> limit_indices, absl::Span<const int64_t> strides) { return std::make_unique<HloSliceInstruction>(shape, operand, start_indices, limit_indices, strides); } std::unique_ptr<HloInstruction> HloInstruction::CreateDynamicSlice( const Shape& shape, HloInstruction* operand, absl::Span<HloInstruction* const> start_indices, absl::Span<const int64_t> slice_sizes) { return std::make_unique<HloDynamicSliceInstruction>( shape, operand, start_indices, slice_sizes); } std::unique_ptr<HloInstruction> HloInstruction::CreateDynamicUpdateSlice( const Shape& shape, HloInstruction* operand, HloInstruction* update, absl::Span<HloInstruction* const> start_indices) { return std::make_unique<HloDynamicUpdateSliceInstruction>( shape, operand, update, start_indices); } std::unique_ptr<HloInstruction> HloInstruction::CreateConcatenate( const Shape& shape, absl::Span<HloInstruction* const> operands, int64_t dimension) { return std::make_unique<HloConcatenateInstruction>(shape, operands, dimension); } std::unique_ptr<HloInstruction> HloInstruction::CreateConvert( const Shape& shape, HloInstruction* operand) { auto instruction = absl::WrapUnique(new HloInstruction(HloOpcode::kConvert, shape)); instruction->AppendOperand(operand); return instruction; } std::unique_ptr<HloInstruction> HloInstruction::CreateBitcastConvert(const Shape& shape, HloInstruction* operand) { auto instruction = absl::WrapUnique(new HloInstruction(HloOpcode::kBitcastConvert, shape)); instruction->AppendOperand(operand); return instruction; } std::unique_ptr<HloInstruction> HloInstruction::CreateStochasticConvert(const Shape& shape, HloInstruction* operand, HloInstruction* random) { auto instruction = absl::WrapUnique( new HloInstruction(HloOpcode::kStochasticConvert, shape)); instruction->AppendOperand(operand); instruction->AppendOperand(random); return instruction; } std::unique_ptr<HloInstruction> HloInstruction::CreateBitcast( const Shape& shape, HloInstruction* operand) { auto instruction = absl::WrapUnique(new HloInstruction(HloOpcode::kBitcast, shape)); instruction->AppendOperand(operand); return instruction; } std::unique_ptr<HloInstruction> HloInstruction::CreateReduce( const Shape& shape, HloInstruction* operand, HloInstruction* init_value, absl::Span<const int64_t> dimensions_to_reduce, HloComputation* reduce_computation) { return absl::WrapUnique(new HloReduceInstruction( shape, {operand, init_value}, dimensions_to_reduce, reduce_computation)); } std::unique_ptr<HloInstruction> HloInstruction::CreateReduce( const Shape& shape, absl::Span<HloInstruction* const> operands, absl::Span<HloInstruction* const> init_values, absl::Span<const int64_t> dimensions_to_reduce, HloComputation* reduce_computation) { std::vector<HloInstruction*> all_args; all_args.reserve(operands.size() * 2); all_args.insert(all_args.end(), operands.begin(), operands.end()); all_args.insert(all_args.end(), init_values.begin(), init_values.end()); return std::make_unique<HloReduceInstruction>( shape, all_args, dimensions_to_reduce, reduce_computation); } std::unique_ptr<HloInstruction> HloInstruction::CreateReduce( const Shape& shape, HloInstruction* tuple_of_instructions, absl::Span<HloInstruction* const> init_values, absl::Span<const int64_t> dimensions_to_reduce, HloComputation* reduce_computation) { if (!tuple_of_instructions->shape().IsTuple()) { CHECK_EQ(init_values.size(), 1) << "The first input has to be a tuple, or the number of init values " "has to be one."; return CreateReduce(shape, tuple_of_instructions, init_values[0], dimensions_to_reduce, reduce_computation); } absl::InlinedVector<HloInstruction*, 4> inputs; for (int idx = 0; idx < tuple_of_instructions->shape().tuple_shapes_size(); idx++) { std::unique_ptr<HloInstruction> gte = HloInstruction::CreateGetTupleElement(tuple_of_instructions, idx); inputs.push_back( tuple_of_instructions->parent()->AddInstruction(std::move(gte))); } return CreateReduce(shape, inputs, init_values, dimensions_to_reduce, reduce_computation); } std::unique_ptr<HloInstruction> HloInstruction::CreateReduceWindow( const Shape& shape, HloInstruction* operand, HloInstruction* init_value, const Window& window, HloComputation* reduce_computation) { return std::make_unique<HloReduceWindowInstruction>( shape, operand, init_value, window, reduce_computation); } std::unique_ptr<HloInstruction> HloInstruction::CreateReduceWindow( const Shape& shape, absl::Span<HloInstruction* const> operands, absl::Span<HloInstruction* const> init_values, const Window& window, HloComputation* reduce_computation) { return std::make_unique<HloReduceWindowInstruction>( shape, operands, init_values, window, reduce_computation); } std::unique_ptr<HloInstruction> HloInstruction::CreateBatchNormTraining(const Shape& shape, HloInstruction* operand, HloInstruction* scale, HloInstruction* offset, float epsilon, int64_t feature_index) { return std::make_unique<HloBatchNormTrainingInstruction>( shape, operand, scale, offset, epsilon, feature_index); } std::unique_ptr<HloInstruction> HloInstruction::CreateBatchNormInference( const Shape& shape, HloInstruction* operand, HloInstruction* scale, HloInstruction* offset, HloInstruction* mean, HloInstruction* variance, float epsilon, int64_t feature_index) { return std::make_unique<HloBatchNormInferenceInstruction>( shape, operand, scale, offset, mean, variance, epsilon, feature_index); } std::unique_ptr<HloInstruction> HloInstruction::CreateBatchNormGrad(const Shape& shape, HloInstruction* operand, HloInstruction* scale, HloInstruction* mean, HloInstruction* variance, HloInstruction* grad_output, float epsilon, int64_t feature_index) { return std::make_unique<HloBatchNormGradInstruction>( shape, operand, scale, mean, variance, grad_output, epsilon, feature_index); } std::unique_ptr<HloInstruction> HloInstruction::CreateSelectAndScatter( const Shape& shape, HloInstruction* operand, HloComputation* select, const Window& window, HloInstruction* source, HloInstruction* init_value, HloComputation* scatter) { return std::make_unique<HloSelectAndScatterInstruction>( shape, operand, select, window, source, init_value, scatter); } std::unique_ptr<HloInstruction> HloInstruction::CreateBroadcast( const Shape& shape, HloInstruction* operand, absl::Span<const int64_t> broadcast_dimensions) { return std::make_unique<HloBroadcastInstruction>(shape, operand, broadcast_dimensions); } std::unique_ptr<HloInstruction> HloInstruction::CreateGetDimensionSize(const Shape& shape, HloInstruction* operand, int64_t dimension) { return std::make_unique<HloGetDimensionSizeInstruction>(shape, operand, dimension); } std::unique_ptr<HloInstruction> HloInstruction::CreateSetDimensionSize(const Shape& shape, HloInstruction* operand, HloInstruction* val, int64_t dimension) { return std::make_unique<HloSetDimensionSizeInstruction>(shape, operand, val, dimension); } std::unique_ptr<HloInstruction> HloInstruction::CreateBroadcastSequence( const Shape& output_shape, HloInstruction* operand, absl::FunctionRef<HloInstruction*(std::unique_ptr<HloInstruction>)> adder) { CHECK(ShapeUtil::IsScalar(operand->shape()) || operand->shape().rank() == output_shape.rank()); Shape broadcast_shape = ShapeUtil::ChangeElementType( output_shape, operand->shape().element_type()); if (ShapeUtil::IsScalar(operand->shape())) { auto broadcast = HloInstruction::CreateBroadcast(broadcast_shape, operand, {}); broadcast->set_metadata(operand->metadata()); if (operand->has_sharding()) { broadcast->copy_sharding(operand); } broadcast->set_frontend_attributes(operand->frontend_attributes()); broadcast->set_statistics_viz(operand->statistics_viz()); return broadcast; } std::vector<int64_t> broadcast_dimensions; std::vector<int64_t> reshaped_dimensions; for (int i = 0; i < operand->shape().rank(); i++) { if (operand->shape().dimensions(i) == output_shape.dimensions(i)) { broadcast_dimensions.push_back(i); reshaped_dimensions.push_back(operand->shape().dimensions(i)); } else { CHECK_EQ(operand->shape().dimensions(i), 1) << "An explicit broadcast sequence requires the broadcasted " "dimensions to be trivial; operand: " << operand->ToString() << "; output_shape: " << output_shape; } } HloInstruction* reshaped_operand = adder(HloInstruction::CreateReshape( ShapeUtil::MakeShape(operand->shape().element_type(), reshaped_dimensions), operand)); reshaped_operand->set_metadata(operand->metadata()); if (operand->has_sharding()) { reshaped_operand->copy_sharding(operand); } reshaped_operand->set_frontend_attributes(operand->frontend_attributes()); reshaped_operand->set_statistics_viz(operand->statistics_viz()); auto broadcast = HloInstruction::CreateBroadcast( broadcast_shape, reshaped_operand, broadcast_dimensions); broadcast->set_metadata(operand->metadata()); if (operand->has_sharding()) { broadcast->copy_sharding(operand); } broadcast->set_frontend_attributes(operand->frontend_attributes()); broadcast->set_statistics_viz(operand->statistics_viz()); return broadcast; } std::unique_ptr<HloInstruction> HloInstruction::CreatePad( const Shape& shape, HloInstruction* operand, HloInstruction* padding_value, const PaddingConfig& padding_config) { return std::make_unique<HloPadInstruction>(shape, operand, padding_value, padding_config); } std::unique_ptr<HloInstruction> HloInstruction::CreateReshape( const Shape& shape, HloInstruction* operand, int64_t inferred_dimension) { CHECK(operand->shape().is_unbounded_dynamic() || ShapeUtil::StaticExtentProduct(shape) == ShapeUtil::StaticExtentProduct(operand->shape())) << "shape: " << ShapeUtil::HumanString(shape) << " operand: " << ShapeUtil::HumanString(operand->shape()); return std::make_unique<HloReshapeInstruction>(shape, operand, inferred_dimension); } std::unique_ptr<HloInstruction> HloInstruction::CreateDynamicReshape( const Shape& shape, HloInstruction* data_operand, absl::Span<HloInstruction* const> dim_sizes) { CHECK_EQ(ShapeUtil::StaticExtentProduct(shape), ShapeUtil::StaticExtentProduct(data_operand[0].shape())) << "shape: " << ShapeUtil::HumanString(shape) << " operand: " << ShapeUtil::HumanString(data_operand[0].shape()); CHECK_EQ(shape.rank(), dim_sizes.size()); return std::make_unique<HloDynamicReshapeInstruction>(shape, data_operand, dim_sizes); } std::unique_ptr<HloInstruction> HloInstruction::CreateTranspose( const Shape& shape, HloInstruction* operand, absl::Span<const int64_t> dimensions) { return std::make_unique<HloTransposeInstruction>(shape, operand, dimensions); } std::unique_ptr<HloInstruction> HloInstruction::CreateSort( const Shape& shape, int64_t dimension, absl::Span<HloInstruction* const> operands, HloComputation* compare, bool is_stable) { return std::make_unique<HloSortInstruction>(shape, dimension, operands, compare, is_stable); } std::unique_ptr<HloInstruction> HloInstruction::CreateFusion( const Shape& shape, FusionKind fusion_kind, HloInstruction* fused_root, absl::string_view prefix) { return std::make_unique<HloFusionInstruction>(shape, fusion_kind, fused_root, prefix); } std::unique_ptr<HloInstruction> HloInstruction::CreateFusion( const Shape& shape, FusionKind fusion_kind, absl::Span<HloInstruction* const> operands, HloComputation* fusion_computation, absl::string_view prefix) { return std::make_unique<HloFusionInstruction>(shape, fusion_kind, operands, fusion_computation, prefix); } void HloInstruction::set_single_sharding(const HloSharding& sharding) { CHECK(!sharding.IsTuple()) << sharding; if (shape().IsTuple()) { set_sharding(HloSharding::Tuple(sharding.GetAsShapeTree(shape()))); } else { set_sharding(sharding); } } void HloInstruction::SetupDerivedInstruction( HloInstruction* derived_instruction) const { if (sharding_ != nullptr && ShapeUtil::CompatibleKind(shape_, derived_instruction->shape())) { derived_instruction->set_sharding(*sharding_); } else if (!ShapeUtil::CompatibleKind(shape_, derived_instruction->shape())) { derived_instruction->clear_sharding(); } derived_instruction->set_metadata(*metadata_); if (has_rare()) { derived_instruction->set_frontend_attributes(frontend_attributes()); derived_instruction->set_statistics_viz(statistics_viz()); } else if (derived_instruction->has_rare()) { derived_instruction->mutable_rare()->frontend_attributes.Clear(); derived_instruction->mutable_rare()->statistics_viz.Clear(); } if (opcode() == derived_instruction->opcode() && has_backend_config()) { derived_instruction->CopyBackendConfigFrom(this); } } bool HloInstruction::HasSideEffectNoRecurse() const { switch (opcode_) { case HloOpcode::kSend: case HloOpcode::kSendDone: case HloOpcode::kRecv: case HloOpcode::kRecvDone: case HloOpcode::kRng: case HloOpcode::kRngGetAndUpdateState: case HloOpcode::kInfeed: case HloOpcode::kOutfeed: case HloOpcode::kAllReduceStart: case HloOpcode::kAllReduceDone: case HloOpcode::kAllGatherStart: case HloOpcode::kAllGatherDone: case HloOpcode::kCollectiveBroadcast: case HloOpcode::kCollectivePermuteStart: case HloOpcode::kCollectivePermuteDone: return true; case HloOpcode::kAllToAll: case HloOpcode::kAllGather: case HloOpcode::kAllReduce: case HloOpcode::kReduceScatter: if (Cast<HloCollectiveInstruction>(this)->constrain_layout()) { return true; } [[fallthrough]]; case HloOpcode::kCollectivePermute: return Cast<HloChannelInstruction>(this)->channel_id().has_value() && !GetModule()->config().use_spmd_partitioning(); case HloOpcode::kCustomCall: return Cast<HloCustomCallInstruction>(this) ->custom_call_has_side_effect(); default: return false; } } bool HloInstruction::HasSideEffect() const { if (HasSideEffectNoRecurse()) { return true; } for (const auto& computation : called_computations()) { if (computation->HasSideEffect()) { return true; } } return false; } std::unique_ptr<HloInstruction> HloInstruction::CreateCall( const Shape& shape, HloInstruction* called_computation_root) { return std::make_unique<HloCallInstruction>(shape, called_computation_root); } std::unique_ptr<HloInstruction> HloInstruction::CreateCall( const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* computation) { return std::make_unique<HloCallInstruction>(shape, operands, computation); } std::unique_ptr<HloInstruction> HloInstruction::CreateCompositeCall(const Shape& shape, HloInstruction* decomposition_root, const std::string& name, const std::string& attributes, int64_t version) { return std::make_unique<HloCallInstruction>(shape, decomposition_root, name, attributes, version); } std::unique_ptr<HloInstruction> HloInstruction::CreateCompositeCall(const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* decomposition, const std::string& name, const std::string& attributes, int64_t version) { return std::make_unique<HloCallInstruction>(shape, operands, decomposition, name, attributes, version); } std::unique_ptr<HloInstruction> HloInstruction::CreateCustomCall( const Shape& shape, absl::Span<HloInstruction* const> operands, absl::string_view custom_call_target, std::string opaque, CustomCallApiVersion api_version) { return std::make_unique<HloCustomCallInstruction>( shape, operands, custom_call_target, std::move(opaque), api_version); } std::unique_ptr<HloInstruction> HloInstruction::CreateCustomCall( const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* to_apply, absl::string_view custom_call_target, std::string opaque, CustomCallApiVersion api_version) { return std::make_unique<HloCustomCallInstruction>( shape, operands, to_apply, custom_call_target, std::move(opaque), api_version); } std::unique_ptr<HloInstruction> HloInstruction::CreateCustomCall( const Shape& shape, absl::Span<HloInstruction* const> operands, absl::Span<HloComputation* const> called_computations, absl::string_view custom_call_target, std::string opaque, CustomCallApiVersion api_version) { return std::make_unique<HloCustomCallInstruction>( shape, operands, called_computations, custom_call_target, std::move(opaque), api_version); } std::unique_ptr<HloInstruction> HloInstruction::CreateCustomCall( const Shape& shape, absl::Span<HloInstruction* const> operands, absl::string_view custom_call_target, absl::Span<const Shape> operand_shapes_with_layout, std::string opaque, CustomCallApiVersion api_version) { return std::make_unique<HloCustomCallInstruction>( shape, operands, custom_call_target, std::move(opaque), operand_shapes_with_layout, api_version); } std::unique_ptr<HloInstruction> HloInstruction::CreateTuple( absl::Span<HloInstruction* const> elements) { std::vector<const Shape*> element_shapes; element_shapes.reserve(elements.size()); for (auto element : elements) { element_shapes.push_back(&element->shape()); } Shape tuple_shape = ShapeUtil::MakeTupleShapeWithPtrs(element_shapes); return CreateVariadic(tuple_shape, HloOpcode::kTuple, elements); } std::unique_ptr<HloInstruction> HloInstruction::CreateGather( const Shape& shape, HloInstruction* operand, HloInstruction* start_indices, const GatherDimensionNumbers& gather_dim_numbers, absl::Span<const int64_t> slice_sizes, bool indices_are_sorted) { return std::make_unique<HloGatherInstruction>(shape, operand, start_indices, gather_dim_numbers, slice_sizes, indices_are_sorted); } std::unique_ptr<HloInstruction> HloInstruction::CreateScatter( const Shape& shape, HloInstruction* operand, HloInstruction* scatter_indices, HloInstruction* updates, HloComputation* update_computation, const ScatterDimensionNumbers& scatter_dim_numbers, bool indices_are_sorted, bool unique_indices) { return absl::WrapUnique(new HloScatterInstruction( shape, {operand, scatter_indices, updates}, update_computation, scatter_dim_numbers, indices_are_sorted, unique_indices)); } std::unique_ptr<HloInstruction> HloInstruction::CreateScatter( const Shape& shape, absl::Span<HloInstruction* const> operands, HloInstruction* scatter_indices, absl::Span<HloInstruction* const> updates, HloComputation* update_computation, const ScatterDimensionNumbers& scatter_dim_numbers, bool indices_are_sorted, bool unique_indices) { absl::InlinedVector<HloInstruction*, 3> args; args.reserve(operands.size() + updates.size() + 1); absl::c_copy(operands, std::back_inserter(args)); args.push_back(scatter_indices); absl::c_copy(updates, std::back_inserter(args)); return std::make_unique<HloScatterInstruction>( shape, args, update_computation, scatter_dim_numbers, indices_are_sorted, unique_indices); } std::unique_ptr<HloInstruction> HloInstruction::CreateDomain( const Shape& shape, HloInstruction* operand, std::unique_ptr<DomainMetadata> operand_side_metadata, std::unique_ptr<DomainMetadata> user_side_metadata) { return std::make_unique<HloDomainInstruction>( shape, operand, std::move(operand_side_metadata), std::move(user_side_metadata)); } bool HloInstruction::IsThreadIncluded( absl::string_view execution_thread, const absl::flat_hash_set<absl::string_view>& execution_threads_set) { return execution_threads_set.empty() || execution_threads_set.contains(execution_thread); } void HloInstruction::AddSuffixToInstructionName( const absl::string_view suffix) { const std::string dot_suffix = absl::StrCat(".", suffix); size_t index = name().rfind(dot_suffix); if (index == std::string::npos) { this->name_ = absl::StrCat(name(), dot_suffix); } else { auto after_suffix = name().substr(index + dot_suffix.size()); if (after_suffix.empty()) { this->name_ = absl::StrCat(name(), "2"); } else { int64_t numeric_suffix; if (absl::SimpleAtoi(after_suffix, &numeric_suffix)) { this->name_ = StrCat(name().substr(0, index), dot_suffix, numeric_suffix + 1); } else { this->name_ = absl::StrCat(name(), dot_suffix); } } } } std::unique_ptr<HloInstruction> HloInstruction::CloneWithNewOperands( const Shape& shape, absl::Span<HloInstruction* const> new_operands, HloCloneContext* context) const { return CloneWithNewOperands(shape, new_operands, "", context); } std::unique_ptr<HloInstruction> HloInstruction::CloneWithNewOperands( const Shape& shape, absl::Span<HloInstruction* const> new_operands, const std::string& suffix, HloCloneContext* context) const { VLOG(3) << "CloneWithNewOperands:\n " << ToString(); VLOG(3) << " new operands:"; for (const HloInstruction* new_operand : new_operands) { VLOG(3) << " %" << new_operand->name(); } std::unique_ptr<HloInstruction> clone; switch (opcode_) { case HloOpcode::kBatchNormTraining: case HloOpcode::kBatchNormInference: case HloOpcode::kBatchNormGrad: case HloOpcode::kFft: case HloOpcode::kCompare: case HloOpcode::kAsyncStart: case HloOpcode::kAsyncUpdate: case HloOpcode::kAsyncDone: case HloOpcode::kCopyStart: case HloOpcode::kSend: case HloOpcode::kSendDone: case HloOpcode::kRecv: case HloOpcode::kRecvDone: case HloOpcode::kReverse: case HloOpcode::kConcatenate: case HloOpcode::kReduce: case HloOpcode::kTranspose: case HloOpcode::kBroadcast: case HloOpcode::kReshape: case HloOpcode::kDynamicReshape: case HloOpcode::kMap: case HloOpcode::kSlice: case HloOpcode::kConstant: case HloOpcode::kFusion: case HloOpcode::kRng: case HloOpcode::kRngBitGenerator: case HloOpcode::kRngGetAndUpdateState: case HloOpcode::kParameter: case HloOpcode::kGetTupleElement: case HloOpcode::kReducePrecision: case HloOpcode::kAllGather: case HloOpcode::kAllGatherStart: case HloOpcode::kAllReduce: case HloOpcode::kReduceScatter: case HloOpcode::kAllReduceStart: case HloOpcode::kAllToAll: case HloOpcode::kCollectiveBroadcast: case HloOpcode::kCollectivePermute: case HloOpcode::kCollectivePermuteStart: case HloOpcode::kInfeed: case HloOpcode::kOutfeed: case HloOpcode::kConvolution: case HloOpcode::kCustomCall: case HloOpcode::kReduceWindow: case HloOpcode::kSelectAndScatter: case HloOpcode::kPad: case HloOpcode::kDynamicSlice: case HloOpcode::kSort: case HloOpcode::kGather: case HloOpcode::kScatter: case HloOpcode::kIota: case HloOpcode::kDot: case HloOpcode::kDomain: case HloOpcode::kGetDimensionSize: case HloOpcode::kSetDimensionSize: case HloOpcode::kTriangularSolve: case HloOpcode::kCholesky: case HloOpcode::kTopK: clone = CloneWithNewOperandsImpl(shape, new_operands, context); break; case HloOpcode::kAbs: case HloOpcode::kAllGatherDone: case HloOpcode::kAllReduceDone: case HloOpcode::kRoundNearestAfz: case HloOpcode::kRoundNearestEven: case HloOpcode::kBitcast: case HloOpcode::kCeil: case HloOpcode::kClz: case HloOpcode::kCollectivePermuteDone: case HloOpcode::kCopy: case HloOpcode::kOptimizationBarrier: case HloOpcode::kCopyDone: case HloOpcode::kCos: case HloOpcode::kErf: case HloOpcode::kExp: case HloOpcode::kExpm1: case HloOpcode::kImag: case HloOpcode::kIsFinite: case HloOpcode::kFloor: case HloOpcode::kLog: case HloOpcode::kLog1p: case HloOpcode::kNot: case HloOpcode::kNegate: case HloOpcode::kPopulationCount: case HloOpcode::kReal: case HloOpcode::kRsqrt: case HloOpcode::kLogistic: case HloOpcode::kSign: case HloOpcode::kSin: case HloOpcode::kSqrt: case HloOpcode::kCbrt: case HloOpcode::kTan: case HloOpcode::kTanh: CHECK_EQ(new_operands.size(), 1); clone = CreateUnary(shape, opcode_, new_operands[0]); break; case HloOpcode::kAdd: case HloOpcode::kAtan2: case HloOpcode::kComplex: case HloOpcode::kDivide: case HloOpcode::kMultiply: case HloOpcode::kSubtract: case HloOpcode::kMaximum: case HloOpcode::kMinimum: case HloOpcode::kPower: case HloOpcode::kRemainder: case HloOpcode::kAnd: case HloOpcode::kOr: case HloOpcode::kXor: case HloOpcode::kShiftLeft: case HloOpcode::kShiftRightArithmetic: case HloOpcode::kShiftRightLogical: CHECK_EQ(new_operands.size(), 2); clone = CreateBinary(shape, opcode_, new_operands[0], new_operands[1]); break; case HloOpcode::kClamp: case HloOpcode::kSelect: CHECK_EQ(new_operands.size(), 3); clone = CreateTernary(shape, opcode_, new_operands[0], new_operands[1], new_operands[2]); break; case HloOpcode::kCall: clone = CreateCall(shape, new_operands, to_apply()); break; case HloOpcode::kConvert: CHECK_EQ(new_operands.size(), 1); clone = CreateConvert(shape, new_operands[0]); break; case HloOpcode::kBitcastConvert: CHECK_EQ(new_operands.size(), 1); clone = CreateBitcastConvert(shape, new_operands[0]); break; case HloOpcode::kStochasticConvert: CHECK_EQ(new_operands.size(), 2); clone = CreateStochasticConvert(shape, new_operands[0], new_operands[1]); break; case HloOpcode::kDynamicUpdateSlice: clone = CreateDynamicUpdateSlice(shape, new_operands[0], new_operands[1], new_operands.subspan(2)); break; case HloOpcode::kTuple: clone = CreateTuple(new_operands); *clone->mutable_shape() = shape; break; case HloOpcode::kWhile: CHECK_EQ(new_operands.size(), 1); clone = CreateWhile(shape, while_condition(), while_body(), new_operands[0]); while_body()->SetWhileCallInstruction(const_cast<HloInstruction*>(this)); break; case HloOpcode::kConditional: CHECK_EQ(new_operands.size(), branch_count() + 1); clone = CreateConditional(shape, new_operands[0], absl::MakeSpan(branch_computations()), new_operands.subspan(1)); break; case HloOpcode::kAfterAll: if (new_operands.empty()) { clone = CreateToken(); } else { clone = CreateAfterAll(new_operands); } break; case HloOpcode::kAddDependency: CHECK_EQ(new_operands.size(), 2); clone = CreateAddDependency(new_operands[0], new_operands[1]); break; case HloOpcode::kReplicaId: CHECK_EQ(new_operands.size(), 0); clone = CreateReplicaId(shape); break; case HloOpcode::kPartitionId: CHECK_EQ(new_operands.size(), 0); clone = CreatePartitionId(shape); break; default: CHECK(0) << "Unsupported opcode: " << opcode_; } SetupDerivedInstruction(clone.get()); clone->set_parent(parent_); clone->backend_config_ = BackendConfigWrapper(backend_config_); clone->SetAndSanitizeName(name()); if (context != nullptr) { context->MapInstruction(this, clone.get()); clone->ReplaceCalledComputations([&](HloComputation* callee) { return callee->parent() != context->module() ? context->module()->DeepCloneComputation(callee, context) : callee; }); if (opcode() == HloOpcode::kWhile) { clone->while_body()->SetWhileCallInstruction(clone.get()); } } if (!suffix.empty()) { clone->AddSuffixToInstructionName(suffix); } return clone; } void HloInstruction::DetachFromOperandsAndUsers() { if (cleaned_up_) { return; } cleaned_up_ = true; for (int64_t operand_num = 0; operand_num < operand_count(); ++operand_num) { HloInstruction* operand = operands_[operand_num]; if (operand == nullptr) { continue; } operand->users_.MaybeRemoveUser(this); operands_[operand_num] = nullptr; } for (auto& user : this->users()) { for (int i = 0; i < user->operand_count(); ++i) { if (user->operands_[i] == this) { user->operands_[i] = nullptr; } } } } std::unique_ptr<HloInstruction> HloInstruction::CloneWithNewShape( const Shape& shape, const std::string& suffix, HloCloneContext* context) const { std::unique_ptr<HloInstruction> clone = CloneWithNewOperands(shape, operands_, context); if (suffix.empty()) { clone->name_.assign(name().begin(), name().end()); } else { clone->AddSuffixToInstructionName(suffix); } return clone; } std::unique_ptr<HloInstruction> HloInstruction::Clone( const std::string& suffix, HloCloneContext* context) const { std::unique_ptr<HloInstruction> clone = CloneWithNewShape(shape_, suffix, context); return clone; } std::pair<const HloInstruction*, ShapeIndex> HloInstruction::LatestNonGteAncestorAndIndex() const { const HloInstruction* hlo = this; ShapeIndex index; while (hlo->opcode() == HloOpcode::kGetTupleElement) { index.push_back(hlo->tuple_index()); hlo = hlo->operand(0); } std::reverse(index.begin(), index.end()); return {hlo, index}; } const HloInstruction* HloInstruction::LatestNonGteAncestor() const { const HloInstruction* hlo = this; while (hlo->opcode() == HloOpcode::kGetTupleElement) { hlo = hlo->operand(0); } return hlo; } const HloInstruction* HloInstruction::operand(int64_t i) const { return operands_[i]; } HloInstruction* HloInstruction::mutable_operand(int64_t i) { CHECK(operands_[i] != nullptr); return operands_[i]; } int64_t HloInstruction::operand_index(const HloInstruction* target) const { for (int64_t i = 0; i < operand_count(); ++i) { if (target == operand(i)) { return i; } } LOG(FATAL) << "target was not an operand: " << target->ToString(); } std::vector<int64_t> HloInstruction::operand_indices( const HloInstruction* target) const { std::vector<int64_t> indices; for (int64_t i = 0; i < operand_count(); ++i) { if (target == operand(i)) { indices.push_back(i); } } if (indices.empty()) { LOG(FATAL) << "target was not an operand: " << target->ToString(); } return indices; } HloInstruction::InstructionVector HloInstruction::unique_operands() const { InstructionVector unique; absl::flat_hash_set<const HloInstruction*> seen; for (HloInstruction* operand : operands()) { if (seen.insert(operand).second) { unique.push_back(operand); } } return unique; } absl::Status HloInstruction::AddControlDependencyTo( HloInstruction* instruction) { TF_RET_CHECK(instruction->parent() == parent()); if (!absl::c_linear_search(control_successors(), instruction)) { mutable_rare()->control_successors.push_back(instruction); TF_RET_CHECK(!absl::c_linear_search( instruction->rare()->control_predecessors, this)); instruction->mutable_rare()->control_predecessors.push_back(this); } return absl::OkStatus(); } absl::Status HloInstruction::RemoveControlDependencyTo( HloInstruction* instruction) { TF_RET_CHECK(instruction->parent() == parent()); if (has_rare()) { TF_RETURN_IF_ERROR(EraseElementFromVector( &mutable_rare()->control_successors, instruction)); } if (instruction->has_rare()) { TF_RETURN_IF_ERROR(EraseElementFromVector( &instruction->mutable_rare()->control_predecessors, this)); } return absl::OkStatus(); } absl::Status HloInstruction::DropAllControlDeps() { if (has_rare()) { for (auto* ctrl_succ : rare()->control_successors) { TF_RETURN_IF_ERROR(EraseElementFromVector( &ctrl_succ->mutable_rare()->control_predecessors, this)); } for (auto* ctrl_pred : rare()->control_predecessors) { TF_RETURN_IF_ERROR(EraseElementFromVector( &ctrl_pred->mutable_rare()->control_successors, this)); } Rare* r = mutable_rare(); r->control_successors.clear(); r->control_predecessors.clear(); } return absl::OkStatus(); } absl::Status HloInstruction::SafelyDropAllControlDependencies() { if (has_rare()) { for (HloInstruction* predecessor : rare()->control_predecessors) { for (HloInstruction* successor : rare()->control_successors) { TF_RETURN_IF_ERROR(predecessor->AddControlDependencyTo(successor)); } } } TF_RETURN_IF_ERROR(DropAllControlDeps()); return absl::OkStatus(); } bool HloInstruction::HasControlDependencies() const { const Rare* r = rare(); return (!r->control_predecessors.empty() || !r->control_successors.empty()); } absl::Status HloInstruction::CopyAllControlDepsTo(HloInstruction* start, HloInstruction* end) const { for (auto* ctrl_pred : control_predecessors()) { TF_RETURN_IF_ERROR(ctrl_pred->AddControlDependencyTo(start)); } for (auto* ctrl_succ : control_successors()) { TF_RETURN_IF_ERROR(end->AddControlDependencyTo(ctrl_succ)); } return absl::OkStatus(); } bool HloInstruction::IdenticalInternal( const HloInstruction& other, absl::FunctionRef<bool(const HloInstruction*, const HloInstruction*)> eq_operands, absl::FunctionRef<bool(const HloComputation*, const HloComputation*)> eq_computations, bool layout_sensitive, bool sharding_sensitive, bool ignore_channel_id_values, bool ignore_commutative_operand_order) const { if (this == &other) { return true; } if (opcode() != other.opcode()) { return false; } if (!(layout_sensitive ? ShapeUtil::Equal(shape(), other.shape()) : ShapeUtil::Compatible(shape(), other.shape()))) { return false; } if (sharding_sensitive && has_sharding() && other.has_sharding() && sharding() != other.sharding()) { return false; } if (operands().size() != other.operands().size()) { return false; } if (ignore_commutative_operand_order && HloOpcodeIsBinaryCommutative(opcode())) { CHECK_EQ(operand_count(), 2); if (!(eq_operands(operand(0), other.operand(0)) && eq_operands(operand(1), other.operand(1))) && !(eq_operands(operand(0), other.operand(1)) && eq_operands(operand(1), other.operand(0)))) { return false; } } else { for (size_t i = 0; i < operands().size(); ++i) { if (!eq_operands(operand(i), other.operand(i))) { return false; } } } if (backend_config_ != other.backend_config_) { return false; } if (ignore_channel_id_values) { if (auto channel_inst = DynCast<HloChannelInstruction>(this)) { return channel_inst->IdenticalSlowPathIgnoringChannelIdValues( other, eq_computations); } } return IdenticalSlowPath(other, eq_computations); } void HloInstruction::AppendOperand(HloInstruction* operand) { if (operand->parent() != nullptr) { DCHECK(!operand->parent()->IsMarkedAsDead(operand)) << "Operand " << operand->name() << " is already marked dead"; } operands_.push_back(operand); operand->AddUser(this); } void HloInstruction::RemoveOperandsAtAscendingIndices( absl::Span<const int> ascending_indices) { if (ascending_indices.empty()) { return; } int next_index = 0; int removed_count = 0; for (int to_remove : ascending_indices) { while (next_index < to_remove) { operands_[next_index - removed_count] = operands_[next_index]; ++next_index; } CHECK_LT(to_remove, operands_.size()); ++removed_count; ++next_index; } while (next_index < operands_.size()) { operands_[next_index - removed_count] = operands_[next_index]; ++next_index; } CHECK_EQ(removed_count, ascending_indices.size()); operands_.resize(operands_.size() - removed_count); } bool HloInstruction::HasConstantOperand() const { for (const HloInstruction* operand : operands_) { if (operand->IsConstant()) { return true; } } return false; } bool HloInstruction::IdenticalSlowPath( const HloInstruction& other, absl::FunctionRef<bool(const HloComputation*, const HloComputation*)> eq_computations) const { switch (opcode()) { case HloOpcode::kAbs: case HloOpcode::kAllGatherDone: case HloOpcode::kAllReduceDone: case HloOpcode::kAtan2: case HloOpcode::kAdd: case HloOpcode::kBitcast: case HloOpcode::kBitcastConvert: case HloOpcode::kCeil: case HloOpcode::kClamp: case HloOpcode::kClz: case HloOpcode::kCollectivePermuteDone: case HloOpcode::kComplex: case HloOpcode::kConvert: case HloOpcode::kCopy: case HloOpcode::kCopyStart: case HloOpcode::kCopyDone: case HloOpcode::kCos: case HloOpcode::kDivide: case HloOpcode::kDynamicUpdateSlice: case HloOpcode::kErf: case HloOpcode::kExp: case HloOpcode::kExpm1: case HloOpcode::kFloor: case HloOpcode::kImag: case HloOpcode::kIsFinite: case HloOpcode::kLog: case HloOpcode::kLog1p: case HloOpcode::kAnd: case HloOpcode::kNot: case HloOpcode::kOr: case HloOpcode::kXor: case HloOpcode::kMaximum: case HloOpcode::kMinimum: case HloOpcode::kMultiply: case HloOpcode::kNegate: case HloOpcode::kOptimizationBarrier: case HloOpcode::kPartitionId: case HloOpcode::kPopulationCount: case HloOpcode::kPower: case HloOpcode::kReal: case HloOpcode::kRemainder: case HloOpcode::kReshape: case HloOpcode::kDynamicReshape: case HloOpcode::kReplicaId: case HloOpcode::kRoundNearestAfz: case HloOpcode::kRoundNearestEven: case HloOpcode::kRsqrt: case HloOpcode::kSelect: case HloOpcode::kShiftLeft: case HloOpcode::kShiftRightArithmetic: case HloOpcode::kShiftRightLogical: case HloOpcode::kLogistic: case HloOpcode::kSign: case HloOpcode::kSin: case HloOpcode::kSqrt: case HloOpcode::kStochasticConvert: case HloOpcode::kCbrt: case HloOpcode::kSubtract: case HloOpcode::kTan: case HloOpcode::kTanh: case HloOpcode::kTuple: return true; case HloOpcode::kAfterAll: case HloOpcode::kAddDependency: return false; case HloOpcode::kCall: return eq_computations(to_apply(), other.to_apply()); case HloOpcode::kConditional: for (int j = 0; j < branch_count(); ++j) { if (!eq_computations(branch_computation(j), other.branch_computation(j))) { return false; } } return true; case HloOpcode::kWhile: return (eq_computations(while_body(), other.while_body()) && eq_computations(while_condition(), other.while_condition())); case HloOpcode::kAsyncStart: case HloOpcode::kAsyncUpdate: case HloOpcode::kAsyncDone: case HloOpcode::kBatchNormTraining: case HloOpcode::kBatchNormInference: case HloOpcode::kBatchNormGrad: case HloOpcode::kFft: case HloOpcode::kCompare: case HloOpcode::kSend: case HloOpcode::kSendDone: case HloOpcode::kRecv: case HloOpcode::kRecvDone: case HloOpcode::kReverse: case HloOpcode::kConcatenate: case HloOpcode::kReduce: case HloOpcode::kSort: case HloOpcode::kTranspose: case HloOpcode::kBroadcast: case HloOpcode::kMap: case HloOpcode::kSlice: case HloOpcode::kConstant: case HloOpcode::kIota: case HloOpcode::kFusion: case HloOpcode::kRng: case HloOpcode::kRngBitGenerator: case HloOpcode::kRngGetAndUpdateState: case HloOpcode::kParameter: case HloOpcode::kGetTupleElement: case HloOpcode::kReducePrecision: case HloOpcode::kInfeed: case HloOpcode::kOutfeed: case HloOpcode::kAllGather: case HloOpcode::kAllGatherStart: case HloOpcode::kAllReduce: case HloOpcode::kReduceScatter: case HloOpcode::kAllReduceStart: case HloOpcode::kAllToAll: case HloOpcode::kCollectiveBroadcast: case HloOpcode::kCollectivePermute: case HloOpcode::kCollectivePermuteStart: case HloOpcode::kConvolution: case HloOpcode::kCustomCall: case HloOpcode::kReduceWindow: case HloOpcode::kSelectAndScatter: case HloOpcode::kPad: case HloOpcode::kDynamicSlice: case HloOpcode::kGather: case HloOpcode::kScatter: case HloOpcode::kDot: case HloOpcode::kDomain: case HloOpcode::kGetDimensionSize: case HloOpcode::kSetDimensionSize: case HloOpcode::kTriangularSolve: case HloOpcode::kCholesky: case HloOpcode::kTopK: LOG(FATAL) << "Base class impl called for opcode with subclass: " << opcode(); } return false; } absl::Status HloInstruction::ReplaceUseWith(HloInstruction* user, HloInstruction* new_producer) { TF_RET_CHECK( ShapeUtil::CompatibleIgnoringFpPrecision(shape(), new_producer->shape())) << "this shape: " << ShapeUtil::HumanString(shape()) << ", replacement shape: " << ShapeUtil::HumanString(new_producer->shape()); return ReplaceUseWithDifferentShape(user, new_producer); } absl::Status HloInstruction::ReplaceUseWithDifferentShape( HloInstruction* user, HloInstruction* new_producer) { VLOG(3) << "Replacing uses of " << name() << " in " << user->name() << " with " << new_producer->name(); RemoveUser(user); TF_RET_CHECK(absl::c_count(user->operands_, this) >= 0); std::replace(user->operands_.begin(), user->operands_.end(), this, new_producer); new_producer->AddUser(user); if (user->opcode() == HloOpcode::kFusion) { TF_RETURN_IF_ERROR( Cast<HloFusionInstruction>(user)->DeduplicateFusionOperands()); } return absl::OkStatus(); } absl::Status HloInstruction::ReplaceUseWith(HloInstruction* user, int operand_number, HloInstruction* new_producer) { TF_RET_CHECK( ShapeUtil::CompatibleIgnoringFpPrecision(shape(), new_producer->shape())) << "this shape: " << ShapeUtil::HumanString(shape()) << ", replacement shape: " << ShapeUtil::HumanString(new_producer->shape()); return ReplaceUseWithDifferentShape(user, operand_number, new_producer); } absl::Status HloInstruction::ReplaceUseWithDifferentShape( HloInstruction* user, int operand_number, HloInstruction* new_producer) { VLOG(3) << "Replacing operand " << operand_number << " of " << name() << " in " << user->name() << " with " << new_producer->name(); if (absl::c_count(user->operands_, this) == 1) { RemoveUser(user); } TF_RET_CHECK(user->operand(operand_number) == this) << "Expected operand " << operand_number << " of " << user->ToString() << " to be equal to " << ToString(); user->operands_[operand_number] = new_producer; new_producer->AddUser(user); return absl::OkStatus(); } absl::Status HloInstruction::ReplaceOperandWith(int64_t operand_num, HloInstruction* new_operand) { auto old_operand = operand(operand_num); TF_RET_CHECK(ShapeUtil::CompatibleIgnoringFpPrecision(old_operand->shape(), new_operand->shape())) << old_operand->shape() << " is not compatible with " << new_operand->shape(); return ReplaceOperandWithDifferentShape(operand_num, new_operand); } absl::Status HloInstruction::ReplaceOperandWithDifferentShape( int64_t operand_num, HloInstruction* new_operand) { TF_RET_CHECK(operand_num >= 0); TF_RET_CHECK(operand_num < operand_count()); HloInstruction* old_operand = mutable_operand(operand_num); if (old_operand == new_operand) { return absl::OkStatus(); } operands_[operand_num] = new_operand; VLOG(3) << "Replacing operand " << operand_num << " of " << name() << " with " << new_operand->name() << ", was " << old_operand->name(); if (!absl::c_linear_search(operands_, old_operand)) { old_operand->RemoveUser(this); } new_operand->AddUser(this); return absl::OkStatus(); } absl::Status HloInstruction::Defuse() { if (opcode() != HloOpcode::kFusion) { return absl::OkStatus(); } VLOG(2) << "Defusing instruction: " << ToString(); HloComputation* fused_computation = fused_instructions_computation(); absl::flat_hash_map<const HloInstruction*, HloInstruction*> defused_instructions; for (int64_t i = 0; i < operand_count(); ++i) { defused_instructions[fused_computation->parameter_instruction(i)] = mutable_operand(i); } for (HloInstruction* fused_instruction : fused_computation->MakeInstructionPostOrder()) { if (fused_instruction->opcode() == HloOpcode::kParameter) { continue; } std::vector<HloInstruction*> new_operands; for (HloInstruction* operand : fused_instruction->operands()) { new_operands.push_back(defused_instructions.at(operand)); } HloInstruction* defused_instruction = parent()->AddInstruction(fused_instruction->CloneWithNewOperands( fused_instruction->shape(), new_operands)); defused_instructions[fused_instruction] = defused_instruction; } TF_RETURN_IF_ERROR( ReplaceAllUsesWith(defused_instructions.at(fused_expression_root()))); HloModule* module = GetModule(); TF_RETURN_IF_ERROR(parent()->RemoveInstruction(this)); return module->RemoveEmbeddedComputation(fused_computation); } absl::StatusOr<HloInstruction*> HloInstruction::UnfuseInstruction( HloInstruction* instruction) { CHECK_EQ(opcode(), HloOpcode::kFusion); std::vector<HloInstruction*> new_operands; for (int64_t operand_num = 0; operand_num < instruction->operand_count(); ++operand_num) { HloInstruction* operand = instruction->mutable_operand(operand_num); if (operand->opcode() == HloOpcode::kParameter) { HloInstruction* extracted_operand = mutable_operand(operand->parameter_number()); new_operands.push_back(extracted_operand); } else if (operand->opcode() == HloOpcode::kConstant) { HloInstruction* cloned_constant = AddInstruction(operand->Clone()); new_operands.push_back(cloned_constant); } else if (operand->opcode() == HloOpcode::kBroadcast && operand->operand(0)->opcode() == HloOpcode::kConstant) { HloInstruction* cloned_constant = AddInstruction(operand->operand(0)->Clone()); new_operands.push_back(AddInstruction( operand->CloneWithNewOperands(operand->shape(), {cloned_constant}))); } else { return InvalidArgument( "Unsupported operand type for unfusing: %s. Currently only " "parameters and constants are supported.", operand->ToString()); } } HloInstruction* unfused_instruction = AddInstruction( instruction->CloneWithNewOperands(instruction->shape(), new_operands)); HloComputation* fusion_computation = fused_instructions_computation(); HloInstruction* new_parameter = AddFusionOperand(unfused_instruction); TF_RETURN_IF_ERROR(instruction->ReplaceAllUsesWith(new_parameter)); TF_RETURN_IF_ERROR( fusion_computation->RemoveInstructionAndUnusedOperands(instruction)); return unfused_instruction; } absl::Status HloInstruction::ReplaceUsesWith( absl::Span<HloInstruction* const> users, HloInstruction* new_producer) { TF_RET_CHECK( ShapeUtil::CompatibleIgnoringFpPrecision(shape(), new_producer->shape())) << shape() << " is not compatible with " << new_producer->shape(); return ReplaceAllUsesWithDifferentShape(users, new_producer); } absl::Status HloInstruction::ReplaceAllUsesWithDifferentShape( absl::Span<HloInstruction* const> users, HloInstruction* new_producer) { std::vector<HloInstruction*> users_vector(users.begin(), users.end()); for (HloInstruction* user : users_vector) { TF_RETURN_IF_ERROR(ReplaceUseWithDifferentShape(user, new_producer)); } if (parent_ && parent_->root_instruction() == this) { parent_->set_root_instruction(new_producer, true); } return absl::OkStatus(); } absl::Status HloInstruction::ReplaceAllUsesWith(HloInstruction* new_producer, absl::string_view trigger) { auto print_options = HloPrintOptions::ShortParsable() .set_print_operand_shape(true) .set_print_extra_attributes(false); TF_RET_CHECK( ShapeUtil::CompatibleIgnoringFpPrecision(shape(), new_producer->shape())) << "The shape doesn't match when replacing '" << ToString(print_options) << "' with '" << new_producer->ToString(print_options) << "'. " << shape() << " is not compatible with " << new_producer->shape() << "\n '" << trigger << "' triggered this wrong replacement."; return ReplaceAllUsesWithDifferentShape(new_producer); } absl::Status HloInstruction::ReplaceAllUsesWithDifferentShape( HloInstruction* new_producer) { bool new_producer_is_user = false; std::vector<HloInstruction*> users_vector(users().begin(), users().end()); for (HloInstruction* user : users_vector) { if (user == new_producer) { new_producer_is_user = true; } else { std::replace(user->operands_.begin(), user->operands_.end(), this, new_producer); new_producer->AddUser(user); if (user->opcode() == HloOpcode::kFusion) { TF_RETURN_IF_ERROR( Cast<HloFusionInstruction>(user)->DeduplicateFusionOperands()); } } } users_.Clear(); if (new_producer_is_user) { AddUser(new_producer); } if (parent_ && parent_->root_instruction() == this) { parent_->set_root_instruction(new_producer, true); } return absl::OkStatus(); } bool HloInstruction::IsEffectiveBitcast() const { return opcode_ == HloOpcode::kBitcast || (opcode_ == HloOpcode::kTranspose && ShapeUtil::TransposeIsBitcast(operand(0)->shape(), shape(), dimensions())); } HloComputation* HloInstruction::to_apply() const { if (has_to_apply()) { CHECK_EQ(called_computations().size(), 1) << "Expected a to_apply computation for " << opcode(); return called_computations()[0]; } LOG(FATAL) << "Invalid opcode for to_apply(): " << opcode(); } void HloInstruction::set_to_apply(HloComputation* computation) { if (has_to_apply()) { CHECK_EQ(called_computations().size(), 1) << "Expected a to_apply computation for " << opcode(); rare_->called_computations[0] = computation; return; } LOG(FATAL) << "Invalid opcode for to_apply(): " << opcode(); } bool HloInstruction::has_to_apply() const { switch (opcode_) { case HloOpcode::kAllReduce: case HloOpcode::kAllReduceStart: case HloOpcode::kCall: case HloOpcode::kMap: case HloOpcode::kReduce: case HloOpcode::kReduceScatter: case HloOpcode::kReduceWindow: case HloOpcode::kScatter: case HloOpcode::kSort: return true; case HloOpcode::kCustomCall: return called_computations().size() == 1; default: return false; } } HloComputation* HloInstruction::while_condition() const { CHECK_EQ(HloOpcode::kWhile, opcode_); return called_computations()[kConditionComputationIndex]; } HloComputation* HloInstruction::while_body() const { CHECK_EQ(HloOpcode::kWhile, opcode_); return called_computations()[kBodyComputationIndex]; } void HloInstruction::set_while_condition(HloComputation* computation) { CHECK_EQ(HloOpcode::kWhile, opcode_); rare_->called_computations[kConditionComputationIndex] = computation; } void HloInstruction::set_while_body(HloComputation* computation) { CHECK_EQ(HloOpcode::kWhile, opcode_); rare_->called_computations[kBodyComputationIndex] = computation; } HloInstruction* HloInstruction::while_init() const { CHECK_EQ(HloOpcode::kWhile, opcode_); return operands_[0]; } HloComputation* HloInstruction::true_computation() const { CHECK_EQ(HloOpcode::kConditional, opcode_); CHECK_EQ(PRED, operand(0)->shape().element_type()); return called_computations()[kTrueComputationIndex]; } HloComputation* HloInstruction::false_computation() const { CHECK_EQ(HloOpcode::kConditional, opcode_); CHECK_EQ(PRED, operand(0)->shape().element_type()); return called_computations()[kFalseComputationIndex]; } const PtrVec<HloComputation*>& HloInstruction::branch_computations() const { CHECK(HloOpcode::kConditional == opcode_); return called_computations(); } int32_t HloInstruction::branch_count() const { CHECK(HloOpcode::kConditional == opcode_); return called_computations().size(); } HloComputation* HloInstruction::branch_computation(int32_t b) const { CHECK_EQ(HloOpcode::kConditional, opcode_); CHECK_GE(b, 0); CHECK_LT(b, called_computations().size()); return called_computations()[b]; } int32_t HloInstruction::branch_index(HloComputation* computation) const { CHECK_EQ(HloOpcode::kConditional, opcode_); CHECK_NE(computation, nullptr); for (int32_t idx = 0; idx < branch_count(); idx++) { if (branch_computation(idx) == computation) { return idx; } } LOG(FATAL) << absl::StrFormat("Conditional %s does not contain branch %s", name(), computation->name()); } void HloInstruction::set_branch_computation(int b, HloComputation* computation) { CHECK_EQ(HloOpcode::kConditional, opcode_); rare_->called_computations[b] = computation; } std::string HloInstruction::SignatureString() const { std::string operands = StrJoin(operands_, ", ", [](std::string* out, HloInstruction* operand) { StrAppend(out, ShapeUtil::HumanString(operand->shape())); }); return StrCat("(", operands, ") -> ", ShapeUtil::HumanString(shape())); } absl::string_view PrintName(absl::string_view name, bool print_ids) { if (print_ids) { return name; } else { auto dot_position = name.find_first_of('.'); return name.substr(0, dot_position); } } namespace { using DFSStack = absl::InlinedVector<std::pair<int, HloInstruction*>, 16>; void PrintNameInternal(Printer* printer, absl::string_view name, const HloPrintOptions& options) { if (options.print_percent()) { printer->Append("%"); } printer->Append(PrintName(name, options.print_ids())); } std::string PrintCycle(const HloInstruction* child, DFSStack* dfs_stack, bool ignore_control_predecessors) { absl::flat_hash_set<const HloInstruction*> subgraph; while (!dfs_stack->empty() && dfs_stack->back().second != child) { subgraph.insert(dfs_stack->back().second); dfs_stack->pop_back(); } absl::flat_hash_set<const HloInstruction*> visited; absl::InlinedVector<const HloInstruction*, 16> dfs; dfs.push_back(child); std::string result; while (!dfs.empty() && result.empty()) { bool found_next_instr = false; auto process_users_or_successors = [&](const std::vector<HloInstruction*>& users_or_successors) { for (const auto& user : users_or_successors) { if (user == child) { dfs.push_back(child); result = "\n\nDirected cycle:\n " + absl::StrJoin( dfs, "\n ", [](std::string* out, const HloInstruction* instr) { absl::StrAppend(out, instr->name()); }); return; } if (!subgraph.contains(user) || visited.contains(user)) { continue; } visited.insert(user); dfs.push_back(user); found_next_instr = true; } }; const HloInstruction* back = dfs.back(); process_users_or_successors(back->users()); if (!ignore_control_predecessors) { process_users_or_successors(back->control_successors()); } if (!found_next_instr) { dfs.pop_back(); } } return result; } } void HloInstruction::Print(Printer* printer, const HloPrintOptions& options) const { CanonicalNameMap new_map; PrintWithCanonicalNameMap(printer, options, &new_map); } std::string HloInstruction::ToString(const HloPrintOptions& options) const { StringPrinter printer; Print(&printer, options); return std::move(printer).ToString(); } std::string HloInstruction::ToString() const { return ToString(HloPrintOptions::Default()); } bool HloInstruction::IsOpElementwise(HloOpcode opcode) { switch (opcode) { case HloOpcode::kAbs: case HloOpcode::kRoundNearestAfz: case HloOpcode::kRoundNearestEven: case HloOpcode::kCeil: case HloOpcode::kClz: case HloOpcode::kConvert: case HloOpcode::kBitcastConvert: case HloOpcode::kCopy: case HloOpcode::kCos: case HloOpcode::kErf: case HloOpcode::kExp: case HloOpcode::kExpm1: case HloOpcode::kFloor: case HloOpcode::kImag: case HloOpcode::kIsFinite: case HloOpcode::kLog: case HloOpcode::kLog1p: case HloOpcode::kNot: case HloOpcode::kNegate: case HloOpcode::kPopulationCount: case HloOpcode::kReal: case HloOpcode::kReducePrecision: case HloOpcode::kRsqrt: case HloOpcode::kLogistic: case HloOpcode::kSign: case HloOpcode::kSin: case HloOpcode::kSqrt: case HloOpcode::kCbrt: case HloOpcode::kTan: case HloOpcode::kTanh: return true; case HloOpcode::kAdd: case HloOpcode::kAtan2: case HloOpcode::kCompare: case HloOpcode::kComplex: case HloOpcode::kDivide: case HloOpcode::kMaximum: case HloOpcode::kMinimum: case HloOpcode::kMultiply: case HloOpcode::kPower: case HloOpcode::kRemainder: case HloOpcode::kSubtract: case HloOpcode::kAnd: case HloOpcode::kOr: case HloOpcode::kXor: case HloOpcode::kShiftLeft: case HloOpcode::kShiftRightArithmetic: case HloOpcode::kShiftRightLogical: case HloOpcode::kStochasticConvert: return true; case HloOpcode::kSelect: case HloOpcode::kClamp: return true; default: return false; } } bool HloInstruction::IsElementwiseImpl( const std::optional<int64_t>& operand_idx) const { if (opcode_ == HloOpcode::kDynamicUpdateSlice) { return operand_idx.has_value() && operand_idx.value() == 0; } if (opcode_ == HloOpcode::kBitcastConvert && primitive_util::BitWidth(shape_.element_type()) != primitive_util::BitWidth(operands_[0]->shape().element_type())) { return false; } return IsOpElementwise(opcode_); } bool HloInstruction::IsCrossModuleAllReduce() const { if (opcode() == HloOpcode::kAllReduce || opcode() == HloOpcode::kAllReduceStart) { return channel_id() != std::nullopt; } else if (opcode() == HloOpcode::kAllReduceDone) { CHECK_EQ(operand_count(), 1); const HloInstruction* operand = this->operand(0); CHECK_EQ(operand->opcode(), HloOpcode::kAllReduceStart); return operand->channel_id() != std::nullopt; } return false; } bool HloInstruction::IsCrossReplicaAllReduce() const { if (opcode() == HloOpcode::kAllReduce || opcode() == HloOpcode::kAllReduceStart) { return channel_id() == std::nullopt; } else if (opcode() == HloOpcode::kAllReduceDone) { CHECK_EQ(operand_count(), 1); const HloInstruction* operand = this->operand(0); CHECK_EQ(operand->opcode(), HloOpcode::kAllReduceStart); return operand->channel_id() == std::nullopt; } return false; } void HloInstruction::PrintWithCanonicalNameMap( Printer* printer, const HloPrintOptions& options, CanonicalNameMap* canonical_name_map) const { if (options.canonicalize_instruction_names()) { if (options.is_in_nested_computation()) { DCHECK(!options.print_percent()); printer->Append(canonical_name_map->LookupOrInsert(unique_id())); printer->Append(" = "); } } else { PrintNameInternal(printer, name(), options); printer->Append(" = "); } if (options.print_result_shape()) { if (options.include_layout_in_shapes()) { ShapeUtil::PrintHumanStringWithLayout(printer, shape()); } else { ShapeUtil::PrintHumanString(printer, shape()); } printer->Append(" "); } if (options.syntax_sugar_async_ops() && HloOpcodeIsAsync(opcode()) && (async_wrapped_computation() && async_wrapped_computation()->CanExpandIntoSingleInstruction())) { absl::string_view suffix = [&]() { switch (opcode()) { case HloOpcode::kAsyncStart: return "-start"; case HloOpcode::kAsyncUpdate: return "-update"; default: CHECK(opcode() == HloOpcode::kAsyncDone) << "Unexpected async opcode: " << opcode(); return "-done"; } }(); printer->Append(HloOpcodeString(async_wrapped_opcode())); printer->Append(suffix); } else { printer->Append(HloOpcodeString(opcode())); } printer->Append("("); PrintOperandsWithCanonicalNameMap(printer, options, canonical_name_map); printer->Append(")"); AttributePrinter attr_printer([printer]() { printer->Append(", "); return printer; }); PrintExtraAttributes(attr_printer, options); if (original_value_) { printer->Append(", origin={"); printer->Append(OriginalValueToString(*original_value())); printer->Append("}"); } if (options.print_metadata() && (!metadata_->op_type().empty() || !metadata_->op_name().empty() || !metadata_->source_file().empty() || !metadata_->scheduling_name().empty())) { printer->Append(", metadata={"); printer->Append(xla::OpMetadataToString( *metadata_, options.print_metadata_only_op_name())); printer->Append("}"); } if (options.print_backend_config() && !backend_config_.empty()) { absl::string_view config = backend_config_.GetRawString(); std::string sorted_config; if (options.sort_backend_config()) { sorted_config = SortJson(config).value_or(std::string(config)); config = sorted_config; } printer->Append(", backend_config="); if (LexesAsJsonDict(config)) { printer->Append(config); } else { printer->Append("\""); printer->Append(CEscape(config)); printer->Append("\""); } } } void HloInstruction::PrintOperandsWithCanonicalNameMap( Printer* printer, const HloPrintOptions& options, CanonicalNameMap* canonical_name_map) const { if (operands_.empty()) return; absl::Span<HloInstruction* const> slice(operands_); constexpr int64_t kMaxOperandsToShowIfCompact = 4; if (options.compact_operands() && slice.size() > kMaxOperandsToShowIfCompact) { slice.remove_suffix(slice.size() - kMaxOperandsToShowIfCompact); } auto print_one = [&](const HloInstruction* operand) { if (operand == nullptr) { printer->Append("null "); return; } bool add_space = false; if (options.print_operand_shape()) { if (options.include_layout_in_shapes()) { ShapeUtil::PrintHumanStringWithLayout(printer, operand->shape()); } else { ShapeUtil::PrintHumanString(printer, operand->shape()); } add_space = true; } if (options.canonicalize_instruction_names()) { if (options.is_in_nested_computation()) { DCHECK(!options.print_percent()); if (add_space) printer->Append(" "); printer->Append( canonical_name_map->LookupOrInsert(operand->unique_id())); } } else if (options.print_operand_names()) { if (add_space) printer->Append(" "); PrintNameInternal(printer, operand->name(), options); } }; print_one(slice[0]); for (int64_t i = 1; i < slice.size(); ++i) { if (options.print_operand_index_annotation_interval() != 0 && i % options.print_operand_index_annotation_interval() == 0) { printer->Append(absl::StrFormat(", ", i)); } else { printer->Append(", "); } print_one(slice[i]); } const int64_t remaining = operands_.size() - slice.size(); if (remaining > 0) { printer->Append(", ...(+"); printer->Append(remaining); printer->Append(")"); } } namespace { bool IsSequentialCall(HloOpcode opcode) { switch (opcode) { case HloOpcode::kCall: case HloOpcode::kConditional: case HloOpcode::kWhile: return true; default: return false; } } } void HloInstruction::PrintExtraAttributes( AttributePrinter& printer, const HloPrintOptions& options) const { if (options.print_extra_attributes()) { PrintExtraAttributesImpl(printer, options); } const auto subcomputation_mode = options.print_subcomputation_mode(); if (subcomputation_mode == HloPrintOptions::PrintSubcomputationMode::kNameOnly) { if (opcode() == HloOpcode::kWhile) { printer.Next([this, &options](Printer* printer) { printer->Append("condition="); PrintNameInternal(printer, while_condition()->name(), options); }); printer.Next([this, &options](Printer* printer) { printer->Append("body="); PrintNameInternal(printer, while_body()->name(), options); }); } else if (opcode() == HloOpcode::kSelectAndScatter) { printer.Next([this, &options](Printer* printer) { printer->Append("select="); PrintNameInternal(printer, select()->name(), options); }); printer.Next([this, &options](Printer* printer) { printer->Append("scatter="); PrintNameInternal(printer, scatter()->name(), options); }); } else if (opcode() == HloOpcode::kConditional) { if (operand(0)->shape().element_type() == PRED) { printer.Next([this, &options](Printer* printer) { printer->Append("true_computation="); PrintNameInternal(printer, true_computation()->name(), options); }); printer.Next([this, &options](Printer* printer) { printer->Append("false_computation="); PrintNameInternal(printer, false_computation()->name(), options); }); } else { printer.Next([this, &options](Printer* printer) { printer->Append("branch_computations={"); AppendJoin(printer, branch_computations(), ", ", [&](Printer* printer, const HloComputation* computation) { PrintNameInternal(printer, computation->name(), options); }); printer->Append("}"); }); } } else if (opcode() == HloOpcode::kCall || opcode() == HloOpcode::kMap || opcode() == HloOpcode::kReduceWindow || opcode() == HloOpcode::kReduce || opcode() == HloOpcode::kAllReduce || opcode() == HloOpcode::kReduceScatter || opcode() == HloOpcode::kAllReduceStart || opcode() == HloOpcode::kScatter || opcode() == HloOpcode::kTopK || opcode() == HloOpcode::kSort) { if (!called_computations().empty()) { printer.Next([this, &options](Printer* printer) { printer->Append("to_apply="); PrintNameInternal(printer, to_apply()->name(), options); }); } if (opcode() == HloOpcode::kCall && is_composite()) { printer.Next( [](Printer* printer) { printer->Append("is_composite=true"); }); } } else if (opcode() == HloOpcode::kCustomCall) { if (!called_computations().empty()) { printer.Next([this, &options](Printer* printer) { printer->Append("called_computations={"); AppendJoin(printer, called_computations(), ", ", [&](Printer* printer, const HloComputation* computation) { PrintNameInternal(printer, computation->name(), options); }); printer->Append("}"); }); } } else if (HloOpcodeIsAsync(opcode())) { if (opcode() == HloOpcode::kAsyncStart && (!options.syntax_sugar_async_ops() || (async_wrapped_computation() && !async_wrapped_computation()->CanExpandIntoSingleInstruction()))) { printer.Next([this, &options](Printer* printer) { printer->Append("calls="); PrintNameInternal(printer, async_wrapped_computation()->name(), options); }); } } else if (!called_computations().empty()) { printer.Next([this, &options](Printer* printer) { printer->Append("calls="); AppendJoin(printer, called_computations(), ", ", [&](Printer* printer, const HloComputation* computation) { PrintNameInternal(printer, computation->name(), options); }); }); } } else if ((subcomputation_mode == HloPrintOptions::PrintSubcomputationMode::kFullBodies) || (subcomputation_mode == HloPrintOptions::PrintSubcomputationMode:: kNonSequentialBodies && !IsSequentialCall(opcode()))) { HloPrintOptions new_options = options; new_options.set_is_in_nested_computation(true); switch (opcode()) { case HloOpcode::kWhile: printer.Next([this, &new_options](Printer* printer) { printer->Append("condition=\n"); while_condition()->Print(printer, new_options); }); printer.Next([this, &new_options](Printer* printer) { printer->Append("body=\n"); while_body()->Print(printer, new_options); }); break; case HloOpcode::kSelectAndScatter: printer.Next([this, &new_options](Printer* printer) { printer->Append("select=\n"); select()->Print(printer, new_options); }); printer.Next([this, &new_options](Printer* printer) { printer->Append("scatter=\n"); scatter()->Print(printer, new_options); }); break; case HloOpcode::kConditional: if (operand(0)->shape().element_type() == PRED) { printer.Next([this, &new_options](Printer* printer) { printer->Append("true_computation=\n"); true_computation()->Print(printer, new_options); }); printer.Next([this, &new_options](Printer* printer) { printer->Append("false_computation=\n"); false_computation()->Print(printer, new_options); }); } else { printer.Next([this, &new_options](Printer* printer) { printer->Append("branch_computations={\n"); AppendJoin( printer, branch_computations(), ",\n", [&](Printer* printer, const HloComputation* computation) { computation->Print(printer, new_options); }); printer->Append("\n}"); }); } break; case HloOpcode::kCall: case HloOpcode::kMap: case HloOpcode::kReduceWindow: case HloOpcode::kReduce: case HloOpcode::kAllReduce: case HloOpcode::kAllReduceStart: case HloOpcode::kScatter: case HloOpcode::kSort: case HloOpcode::kTopK: if (!called_computations().empty()) { printer.Next([this, &new_options](Printer* printer) { printer->Append("to_apply=\n"); to_apply()->Print(printer, new_options); }); } if (opcode() == HloOpcode::kCall && is_composite()) { printer.Next( [](Printer* printer) { printer->Append("is_composite=true"); }); } break; default: if (!called_computations().empty()) { printer.Next([this, &new_options](Printer* printer) { printer->Append("calls=\n"); AppendJoin( printer, called_computations(), ", ", [&](Printer* printer, const HloComputation* computation) { computation->Print(printer, new_options); }); }); } break; } } if (has_sharding()) { printer.Next([this, &options](Printer* printer) { printer->Append("sharding="); sharding().Print(printer, options.print_metadata()); }); } if (!frontend_attributes().map().empty()) { printer.Next([this](Printer* printer) { AppendCat(printer, "frontend_attributes=", FrontendAttributesToString(frontend_attributes())); }); } if (opcode() != HloOpcode::kCall) { CHECK(!is_composite()) << "Only kCall instructions should have is_composite set"; } if (options.print_control_dependencies() && !control_predecessors().empty()) { printer.Next([this, &options](Printer* printer) { printer->Append("control-predecessors={"); AppendJoin(printer, control_predecessors(), ", ", [&](Printer* printer, HloInstruction* pre) { PrintNameInternal(printer, pre->name(), options); }); printer->Append("}"); }); } if (!statistics_viz().statistics().empty()) { printer.Next([this](Printer* printer) { AppendCat(printer, "statistics=", StatisticsVizToString(statistics_viz())); }); } } std::vector<std::string> HloInstruction::ExtraAttributesToString( const HloPrintOptions& options) const { class MultiStringPrinter : public Printer { public: void Append(const absl::AlphaNum& a) override { if (strings_.empty()) { strings_.push_back({}); } absl::StrAppend(&strings_.back(), a); } void Next() { strings_.push_back({}); } std::vector<std::string> ConsumeStrings() && { return std::move(strings_); } private: std::vector<std::string> strings_; } multi_string_printer; AttributePrinter attr_printer([&multi_string_printer] { multi_string_printer.Next(); return &multi_string_printer; }); PrintExtraAttributes(attr_printer, options); return std::move(multi_string_printer).ConsumeStrings(); } std::string FrontendAttributesToString( const FrontendAttributes& frontend_attributes) { std::vector<std::pair<std::string, std::string>> sorted_attributes( frontend_attributes.map().begin(), frontend_attributes.map().end()); absl::c_sort(sorted_attributes); const auto formatter = [](std::string* out, const std::pair<std::string, std::string>& item) { if (LexesAsJsonDict(item.second)) { absl::StrAppend(out, item.first, "=", item.second); } else { absl::StrAppend(out, item.first, "=\"", item.second, "\""); } }; return absl::StrFormat("{%s}", absl::StrJoin(sorted_attributes, ",", formatter)); } std::string HloInstruction::ToShortString() const { return StrCat("%", name(), " = ", HloOpcodeString(opcode()), "(", StrJoin(operands_, ", ", [](std::string* out, HloInstruction* operand) { StrAppend(out, "%", operand->name()); }), ")"); } HloInstructionProto HloInstruction::ToProto() const { HloInstructionProto proto; CHECK(unique_id_ != -1) << "This instruction does not have a valid id. Please make sure the " "instruction is inside a module before dumping it."; proto.set_id(unique_id_); proto.set_name(name_); *proto.mutable_opcode() = std::string(HloOpcodeString(opcode_)); *proto.mutable_shape() = shape_.ToProto(); for (const HloInstruction* operand : operands_) { proto.add_operand_ids(operand->unique_id()); } for (const HloInstruction* control : control_predecessors()) { proto.add_control_predecessor_ids(control->unique_id()); } *proto.mutable_metadata() = *metadata_; proto.set_backend_config(backend_config_.GetRawString()); if (opcode() != HloOpcode::kFusion) { for (const HloComputation* computation : called_computations()) { proto.add_called_computation_ids(computation->unique_id()); } } if (has_sharding()) { *proto.mutable_sharding() = sharding().ToProto(); } *proto.mutable_frontend_attributes() = frontend_attributes(); proto.set_is_composite(is_composite()); *proto.mutable_statistics_viz() = statistics_viz(); if (original_value_) { *proto.mutable_original_value() = OriginalValueToProto(*original_value_); } return proto; } std::string HloInstruction::ToCategory() const { if (opcode() == HloOpcode::kTranspose || opcode() == HloOpcode::kCopy || opcode() == HloOpcode::kReshape || opcode() == HloOpcode::kDynamicReshape) { return "data formatting"; } if (IsElementwise()) { return "non-fusion elementwise"; } return std::string(HloOpcodeString(opcode())); } bool HloInstruction::IsFused() const { return parent_ != nullptr && parent_->IsFusionComputation(); } bool HloInstruction::IsCustomCall(absl::string_view target) const { return opcode() == HloOpcode::kCustomCall && custom_call_target() == target; } bool HloInstruction::IsCustomCall( absl::Span<const absl::string_view> targets) const { return opcode() == HloOpcode::kCustomCall && absl::c_linear_search(targets, custom_call_target()); } bool HloInstruction::IsInputFusion() const { return opcode() == HloOpcode::kFusion && fusion_kind() == FusionKind::kInput; } bool HloInstruction::IsLoopFusion() const { return opcode() == HloOpcode::kFusion && fusion_kind() == FusionKind::kLoop; } bool HloInstruction::IsOutputFusion() const { return opcode() == HloOpcode::kFusion && fusion_kind() == FusionKind::kOutput; } bool HloInstruction::IsCustomFusion() const { return opcode() == HloOpcode::kFusion && fusion_kind() == FusionKind::kCustom; } bool HloInstruction::IsFusible() const { switch (opcode_) { case HloOpcode::kDomain: case HloOpcode::kParameter: case HloOpcode::kWhile: case HloOpcode::kConditional: case HloOpcode::kCall: return false; case HloOpcode::kFusion: case HloOpcode::kMap: case HloOpcode::kReduce: case HloOpcode::kReduceWindow: return true; case HloOpcode::kRng: return user_count() <= 1; default: return !HasSideEffect(); } } HloInstruction::HloInstruction(HloOpcode opcode, const Shape& shape) : unique_id_(-1), index_in_parent_(~0u), opcode_(opcode), is_default_config_(false), cleaned_up_(false), marked_as_dead_(false), is_root_(false), shape_(shape), name_(HloOpcodeString(opcode)) { TF_DCHECK_OK(ShapeUtil::ValidateShapeWithOptionalLayout(shape_)); } template <typename HloInstructionPtr> absl::Status HloInstruction::Visit( DfsHloVisitorBase<HloInstructionPtr>* visitor) { switch (opcode_) { case HloOpcode::kAbs: return visitor->HandleAbs(this); case HloOpcode::kAtan2: return visitor->HandleAtan2(this); case HloOpcode::kRoundNearestAfz: return visitor->HandleRound(this); case HloOpcode::kRoundNearestEven: return visitor->HandleRoundNearestEven(this); case HloOpcode::kBatchNormTraining: return visitor->HandleBatchNormTraining(this); case HloOpcode::kBatchNormInference: return visitor->HandleBatchNormInference(this); case HloOpcode::kBatchNormGrad: return visitor->HandleBatchNormGrad(this); case HloOpcode::kErf: return visitor->HandleErf(this); case HloOpcode::kLogistic: return visitor->HandleLogistic(this); case HloOpcode::kSign: return visitor->HandleSign(this); case HloOpcode::kConstant: return visitor->HandleConstant(this); case HloOpcode::kGetTupleElement: return visitor->HandleGetTupleElement(this); case HloOpcode::kParameter: return visitor->HandleParameter(this); case HloOpcode::kCompare: return visitor->HandleCompare(this); case HloOpcode::kComplex: return visitor->HandleComplex(this); case HloOpcode::kAdd: return visitor->HandleAdd(this); case HloOpcode::kDivide: return visitor->HandleDivide(this); case HloOpcode::kSubtract: return visitor->HandleSubtract(this); case HloOpcode::kMaximum: return visitor->HandleMaximum(this); case HloOpcode::kMinimum: return visitor->HandleMinimum(this); case HloOpcode::kAnd: return visitor->HandleAnd(this); case HloOpcode::kOr: return visitor->HandleOr(this); case HloOpcode::kXor: return visitor->HandleXor(this); case HloOpcode::kShiftLeft: return visitor->HandleShiftLeft(this); case HloOpcode::kShiftRightArithmetic: return visitor->HandleShiftRightArithmetic(this); case HloOpcode::kShiftRightLogical: return visitor->HandleShiftRightLogical(this); case HloOpcode::kConcatenate: return visitor->HandleConcatenate(this); case HloOpcode::kConvert: return visitor->HandleConvert(this); case HloOpcode::kBitcastConvert: return visitor->HandleBitcastConvert(this); case HloOpcode::kStochasticConvert: return visitor->HandleStochasticConvert(this); case HloOpcode::kCopy: return visitor->HandleCopy(this); case HloOpcode::kMultiply: return visitor->HandleMultiply(this); case HloOpcode::kDot: return visitor->HandleDot(this); case HloOpcode::kPower: return visitor->HandlePower(this); case HloOpcode::kRemainder: return visitor->HandleRemainder(this); case HloOpcode::kSelect: return visitor->HandleSelect(this); case HloOpcode::kConvolution: return visitor->HandleConvolution(this); case HloOpcode::kFft: return visitor->HandleFft(this); case HloOpcode::kAllGather: return visitor->HandleAllGather(this); case HloOpcode::kAllGatherStart: return visitor->HandleAllGatherStart(this); case HloOpcode::kAllGatherDone: return visitor->HandleAllGatherDone(this); case HloOpcode::kAllReduce: return visitor->HandleAllReduce(this); case HloOpcode::kReduceScatter: return visitor->HandleReduceScatter(this); case HloOpcode::kAllReduceStart: return visitor->HandleAllReduceStart(this); case HloOpcode::kAllReduceDone: return visitor->HandleAllReduceDone(this); case HloOpcode::kAllToAll: return visitor->HandleAllToAll(this); case HloOpcode::kCollectiveBroadcast: return visitor->HandleCollectiveBroadcast(this); case HloOpcode::kCollectivePermute: return visitor->HandleCollectivePermute(this); case HloOpcode::kCollectivePermuteStart: return visitor->HandleCollectivePermuteStart(this); case HloOpcode::kCollectivePermuteDone: return visitor->HandleCollectivePermuteDone(this); case HloOpcode::kReplicaId: return visitor->HandleReplicaId(this); case HloOpcode::kPartitionId: return visitor->HandlePartitionId(this); case HloOpcode::kTuple: return visitor->HandleTuple(this); case HloOpcode::kMap: return visitor->HandleMap(this); case HloOpcode::kClamp: return visitor->HandleClamp(this); case HloOpcode::kReduce: return visitor->HandleReduce(this); case HloOpcode::kReduceWindow: return visitor->HandleReduceWindow(this); case HloOpcode::kSelectAndScatter: return visitor->HandleSelectAndScatter(this); case HloOpcode::kNegate: return visitor->HandleNegate(this); case HloOpcode::kExp: return visitor->HandleExp(this); case HloOpcode::kExpm1: return visitor->HandleExpm1(this); case HloOpcode::kFloor: return visitor->HandleFloor(this); case HloOpcode::kCeil: return visitor->HandleCeil(this); case HloOpcode::kClz: return visitor->HandleClz(this); case HloOpcode::kLog: return visitor->HandleLog(this); case HloOpcode::kLog1p: return visitor->HandleLog1p(this); case HloOpcode::kTan: return visitor->HandleTan(this); case HloOpcode::kTanh: return visitor->HandleTanh(this); case HloOpcode::kCos: return visitor->HandleCos(this); case HloOpcode::kSin: return visitor->HandleSin(this); case HloOpcode::kSqrt: return visitor->HandleSqrt(this); case HloOpcode::kCbrt: return visitor->HandleCbrt(this); case HloOpcode::kRsqrt: return visitor->HandleRsqrt(this); case HloOpcode::kReal: return visitor->HandleReal(this); case HloOpcode::kImag: return visitor->HandleImag(this); case HloOpcode::kIsFinite: return visitor->HandleIsFinite(this); case HloOpcode::kNot: return visitor->HandleNot(this); case HloOpcode::kPopulationCount: return visitor->HandlePopulationCount(this); case HloOpcode::kBitcast: return visitor->HandleBitcast(this); case HloOpcode::kBroadcast: return visitor->HandleBroadcast(this); case HloOpcode::kPad: return visitor->HandlePad(this); case HloOpcode::kReshape: return visitor->HandleReshape(this); case HloOpcode::kDynamicReshape: return visitor->HandleDynamicReshape(this); case HloOpcode::kTranspose: return visitor->HandleTranspose(this); case HloOpcode::kReverse: return visitor->HandleReverse(this); case HloOpcode::kReducePrecision: return visitor->HandleReducePrecision(this); case HloOpcode::kSlice: return visitor->HandleSlice(this); case HloOpcode::kDynamicSlice: return visitor->HandleDynamicSlice(this); case HloOpcode::kDynamicUpdateSlice: return visitor->HandleDynamicUpdateSlice(this); case HloOpcode::kSort: return visitor->HandleSort(this); case HloOpcode::kInfeed: return visitor->HandleInfeed(this); case HloOpcode::kOutfeed: return visitor->HandleOutfeed(this); case HloOpcode::kRng: return visitor->HandleRng(this); case HloOpcode::kRngBitGenerator: return visitor->HandleRngBitGenerator(this); case HloOpcode::kRngGetAndUpdateState: return visitor->HandleRngGetAndUpdateState(this); case HloOpcode::kWhile: return visitor->HandleWhile(this); case HloOpcode::kFusion: return visitor->HandleFusion(this); case HloOpcode::kCall: return visitor->HandleCall(this); case HloOpcode::kConditional: return visitor->HandleConditional(this); case HloOpcode::kCustomCall: return visitor->HandleCustomCall(this); case HloOpcode::kAsyncStart: return visitor->HandleAsyncStart(this); case HloOpcode::kAsyncUpdate: return visitor->HandleAsyncUpdate(this); case HloOpcode::kAsyncDone: return visitor->HandleAsyncDone(this); case HloOpcode::kCopyStart: return visitor->HandleCopyStart(this); case HloOpcode::kCopyDone: return visitor->HandleCopyDone(this); case HloOpcode::kRecv: return visitor->HandleRecv(this); case HloOpcode::kTopK: return visitor->HandleTopK(this); case HloOpcode::kRecvDone: return visitor->HandleRecvDone(this); case HloOpcode::kSend: return visitor->HandleSend(this); case HloOpcode::kSendDone: return visitor->HandleSendDone(this); case HloOpcode::kGather: return visitor->HandleGather(this); case HloOpcode::kScatter: return visitor->HandleScatter(this); case HloOpcode::kDomain: return visitor->HandleDomain(this); case HloOpcode::kAfterAll: return visitor->HandleAfterAll(this); case HloOpcode::kAddDependency: return visitor->HandleAddDependency(this); case HloOpcode::kIota: return visitor->HandleIota(this); case HloOpcode::kGetDimensionSize: return visitor->HandleGetDimensionSize(this); case HloOpcode::kSetDimensionSize: return visitor->HandleSetDimensionSize(this); case HloOpcode::kTriangularSolve: return visitor->HandleTriangularSolve(this); case HloOpcode::kCholesky: return visitor->HandleCholesky(this); case HloOpcode::kOptimizationBarrier: return visitor->HandleOptimizationBarrier(this); default: return Internal( "Unhandled HloOpcode for DfsHloVisitor: %s. This should not happen - " "please file a bug for XLA.", HloOpcodeString(opcode_)); } } template absl::Status HloInstruction::Visit(DfsHloVisitor* visitor); template absl::Status HloInstruction::Visit(ConstDfsHloVisitor* visitor); template <typename Visitor> inline bool PushDFSChild(Visitor* visitor, DFSStack* dfs_stack, HloInstruction* child) { CHECK(child != nullptr); const int id = child->unique_id(); CHECK_GE(id, 0) << "instruction may not have a parent computation"; switch (visitor->GetVisitState(id)) { case Visitor::kVisiting: return false; case Visitor::kVisited: return true; case Visitor::kNotVisited: dfs_stack->push_back(std::make_pair(id, child)); return true; } } using InternalCompareFunction = absl::FunctionRef<bool(std::pair<int, const HloInstruction*>, std::pair<int, const HloInstruction*>)>; template <typename Visitor> static absl::Status PostOrderDFS( HloInstruction* root, Visitor* visitor, std::optional<InternalCompareFunction> operand_order, bool ignore_control_predecessors, bool cross_computation) { visitor->ReserveVisitStates(root->parent()->instruction_count()); DFSStack dfs_stack; dfs_stack.emplace_back(root->unique_id(), root); do { DCHECK(!dfs_stack.empty()); int current_id = dfs_stack.back().first; HloInstruction* current_node = dfs_stack.back().second; CHECK_GE(current_id, 0) << current_id << ": " << current_node << ": instruction may not have parent computation"; typename Visitor::VisitState visit_state = visitor->GetVisitState(current_id); if (visit_state == Visitor::kVisited) { dfs_stack.pop_back(); VLOG(3) << "Not visiting HLO (id = " << current_id << ") as it was already visited."; continue; } if (visit_state == Visitor::kVisiting) { dfs_stack.pop_back(); TF_RETURN_IF_ERROR(visitor->Preprocess(current_node)); VLOG(2) << "Visiting HLO %" << current_node->name(); TF_RETURN_IF_ERROR(current_node->Visit(visitor)); visitor->SetVisitState(current_id, Visitor::kVisited); TF_RETURN_IF_ERROR(visitor->Postprocess(current_node)); continue; } visitor->SetVisitState(current_id, Visitor::kVisiting); const size_t old_dfs_stack_size = dfs_stack.size(); for (HloInstruction* child : current_node->operands()) { if (!ABSL_PREDICT_TRUE(PushDFSChild(visitor, &dfs_stack, child))) { return FailedPrecondition( "A cycle is detected while visiting instruction %s %s", current_node->ToString(), PrintCycle(child, &dfs_stack, ignore_control_predecessors)); } } if (!ignore_control_predecessors) { for (HloInstruction* child : current_node->control_predecessors()) { if (!ABSL_PREDICT_TRUE(PushDFSChild(visitor, &dfs_stack, child))) { return FailedPrecondition( "A cycle is detected while visiting instruction %s %s", current_node->ToString(), PrintCycle(child, &dfs_stack, ignore_control_predecessors)); } } } if (cross_computation) { for (const HloComputation* called_computation : current_node->called_computations()) { HloInstruction* root_instruction = called_computation->root_instruction(); if (!ABSL_PREDICT_TRUE( PushDFSChild(visitor, &dfs_stack, root_instruction))) { return FailedPrecondition( "A cycle is detected while visiting instruction %s %s", current_node->ToString(), PrintCycle(root_instruction, &dfs_stack, ignore_control_predecessors)); } } } if (operand_order != std::nullopt) { std::sort(dfs_stack.begin() + old_dfs_stack_size, dfs_stack.end(), *operand_order); } std::reverse(dfs_stack.begin() + old_dfs_stack_size, dfs_stack.end()); } while (!dfs_stack.empty()); return absl::OkStatus(); } template <typename HloInstructionPtr> absl::Status HloInstruction::Accept( DfsHloVisitorBase<HloInstructionPtr>* visitor, bool call_finish_visit, bool ignore_control_predecessors, bool cross_computation) { VLOG(3) << "HloInstruction::Accept(%" << name() << ")"; TF_RETURN_IF_ERROR(PostOrderDFS(this, visitor, std::nullopt, ignore_control_predecessors, cross_computation)); if (call_finish_visit) { TF_RETURN_IF_ERROR(visitor->FinishVisit(this)); } return absl::OkStatus(); } template absl::Status HloInstruction::Accept(DfsHloVisitor*, bool, bool, bool); template absl::Status HloInstruction::Accept(ConstDfsHloVisitor*, bool, bool, bool); absl::Status HloInstruction::AcceptWithOperandOrder( DfsHloVisitor* visitor, CompareFunction operand_order, bool call_finish_visit) { VLOG(2) << "HloInstruction::AcceptWithOperandOrder(%" << name() << ")"; auto func = [operand_order](std::pair<int, const HloInstruction*> a, std::pair<int, const HloInstruction*> b) { return operand_order(a.second, b.second); }; TF_RETURN_IF_ERROR(PostOrderDFS(this, visitor, func, false, false)); if (call_finish_visit) { VLOG(3) << "HloInstruction::AcceptWithOperandOrder BEFORE FINISH VISIT"; TF_RETURN_IF_ERROR(visitor->FinishVisit(this)); VLOG(3) << "HloInstruction::AcceptWithOperandOrder AFTER FINISH VISIT"; } VLOG(2) << "HloInstruction::AcceptWithOperandOrder EXIT"; return absl::OkStatus(); } const Shape& HloInstruction::shape() const { return shape_; } absl::InlinedVector<int64_t, 4> HloInstruction::OperandIndices( const HloInstruction* operand) const { absl::InlinedVector<int64_t, 4> result; for (int64_t i = 0; i < operand_count(); ++i) { if (this->operand(i) == operand) { result.push_back(i); } } return result; } bool HloInstruction::IsElementwiseBinary() const { return IsElementwise() && operand_count() == 2; } bool HloInstruction::IsElementwise() const { return IsElementwiseImpl(std::nullopt); } bool HloInstruction::IsElementwiseOnOperand(int64_t operand_idx) const { return IsElementwiseImpl(operand_idx); } namespace { enum class UseKind { kReuse = 0, kUse = 1, kNoUse = 2 }; class FusionReusesParamElements { public: static UseKind Compute(int64_t i, const HloInstruction& hlo) { absl::flat_hash_map<const HloInstruction*, UseKind> memoization_cache; return ComputeInternal(i, hlo, &memoization_cache); } private: static UseKind ComputeInternal( int64_t outer_param_num, const HloInstruction& hlo, absl::flat_hash_map<const HloInstruction*, UseKind>* cache); }; } static UseKind OperandElementUse(const HloInstruction& instr, int64_t operand_num) { switch (instr.opcode()) { case HloOpcode::kBitcast: case HloOpcode::kConcatenate: case HloOpcode::kReshape: case HloOpcode::kReverse: case HloOpcode::kSlice: case HloOpcode::kTranspose: case HloOpcode::kGather: return UseKind::kUse; case HloOpcode::kPad: return operand_num > 0 ? UseKind::kReuse : UseKind::kUse; case HloOpcode::kReduce: return operand_num >= Cast<HloReduceInstruction>(&instr)->input_count() ? UseKind::kReuse : UseKind::kUse; case HloOpcode::kFusion: return FusionReusesParamElements::Compute(operand_num, *instr.fused_expression_root()); case HloOpcode::kDot: if (instr.shape().dimensions_size() <= 1) { if ((operand_num == 0 && instr.operand(1)->shape().rank() <= 1) || (operand_num == 1 && instr.operand(0)->shape().rank() <= 1)) { return UseKind::kUse; } } return UseKind::kReuse; case HloOpcode::kDynamicUpdateSlice: if (operand_num == 0 || operand_num == 1) { return UseKind::kUse; } return UseKind::kReuse; default: return instr.IsElementwise() ? UseKind::kUse : UseKind::kReuse; } } UseKind FusionReusesParamElements::ComputeInternal( int64_t outer_param_num, const HloInstruction& hlo, absl::flat_hash_map<const HloInstruction*, UseKind>* cache) { if (auto hlo_param = DynCast<HloParameterInstruction>(&hlo)) { if (hlo_param->parameter_number() == outer_param_num) { return UseKind::kUse; } } auto p = cache->emplace(&hlo, UseKind::kNoUse); auto value_it = p.first; const bool key_is_new = p.second; if (!key_is_new) { return value_it->second; } for (int64_t operand_num = 0; operand_num < hlo.operands().size(); ++operand_num) { UseKind old_val = value_it->second; UseKind new_val = [&] { UseKind hlo_use = OperandElementUse(hlo, operand_num); if (hlo_use == UseKind::kNoUse) { return old_val; } UseKind operand_use = ComputeInternal(outer_param_num, *hlo.operand(operand_num), cache); if (operand_use == UseKind::kNoUse) { return old_val; } return std::min({old_val, hlo_use, operand_use}); }(); value_it = cache->find(&hlo); value_it->second = new_val; if (new_val == UseKind::kReuse) { break; } } return value_it->second; } bool HloInstruction::ReusesOperandElements(int64_t i) const { return OperandElementUse(*this, i) == UseKind::kReuse; } std::optional<ShapeUtil::ShapeEqualityDescriptor> HloInstruction::ReshapeMerelyInsertsOrDeletes1SizedDimensions() const { if (HloOpcode::kReshape != opcode_) { return std::nullopt; } return ShapeUtil::InsertedOrDeleted1SizedDimensions(operand(0)->shape_, shape_); } absl::string_view ToString(HloInstruction::FusionKind kind) { switch (kind) { case HloInstruction::FusionKind::kLoop: return "kLoop"; case HloInstruction::FusionKind::kInput: return "kInput"; case HloInstruction::FusionKind::kOutput: return "kOutput"; case HloInstruction::FusionKind::kCustom: return "kCustom"; } } absl::StatusOr<HloInstruction::FusionKind> StringToFusionKind( absl::string_view kind_name) { if (kind_name == "kLoop") { return HloInstruction::FusionKind::kLoop; } if (kind_name == "kInput") { return HloInstruction::FusionKind::kInput; } if (kind_name == "kOutput") { return HloInstruction::FusionKind::kOutput; } if (kind_name == "kCustom") { return HloInstruction::FusionKind::kCustom; } return InvalidArgument("Unknown fusion kind: %s", kind_name); } std::string StatisticsVizToString(const StatisticsViz& statistics_viz) { if (statistics_viz.statistics().empty()) return "{}"; std::vector<Statistic> all_statistics(statistics_viz.statistics().begin(), statistics_viz.statistics().end()); const auto formatter = [](std::string* out, const Statistic& item) { absl::StrAppend(out, item.stat_name(), "=", item.stat_val()); }; return absl::StrFormat("{%s,%s}", absl::StrCat("visualizing_index=", statistics_viz.stat_index_to_visualize()), absl::StrJoin(all_statistics, ",", formatter)); } std::string PaddingConfigToString(const PaddingConfig& padding) { bool has_interior_padding = absl::c_any_of(padding.dimensions(), [](const PaddingConfig::PaddingConfigDimension& dim) { return dim.interior_padding() != 0; }); return StrJoin( padding.dimensions(), "x", [&](std::string* out, const PaddingConfig::PaddingConfigDimension& dim) { StrAppend( out, dim.edge_padding_low(), "_", dim.edge_padding_high(), has_interior_padding ? StrCat("_", dim.interior_padding()) : ""); }); } std::string RandomDistributionToString(const RandomDistribution& distribution) { return absl::AsciiStrToLower(RandomDistribution_Name(distribution)); } std::string RandomAlgorithmToString(const RandomAlgorithm& algorithm) { return absl::AsciiStrToLower(RandomAlgorithm_Name(algorithm)); } std::string PrecisionToString(const PrecisionConfig::Precision& precision) { return absl::AsciiStrToLower(PrecisionConfig::Precision_Name(precision)); } std::string AlgorithmToString(const PrecisionConfig::Algorithm& algorithm) { constexpr absl::string_view kPrefix = "ALG_"; const std::string& name = PrecisionConfig::Algorithm_Name(algorithm); DCHECK(absl::StartsWith(name, kPrefix)); return absl::AsciiStrToLower(name.substr(kPrefix.size())); } static std::string CustomCallScheduleToString( const CustomCallSchedule& schedule) { return absl::AsciiStrToLower(CustomCallSchedule_Name(schedule)); } static std::string CustomCallApiVersionToString( const CustomCallApiVersion& schedule) { return absl::AsciiStrToLower(CustomCallApiVersion_Name(schedule)); } std::string DotDimensionNumbersToString(const DotDimensionNumbers& dnums) { std::vector<std::string> result; if (!dnums.lhs_batch_dimensions().empty()) { result.push_back(StrCat("lhs_batch_dims={", StrJoin(dnums.lhs_batch_dimensions(), ","), "}")); } result.push_back(StrCat("lhs_contracting_dims={", StrJoin(dnums.lhs_contracting_dimensions(), ","), "}")); if (!dnums.rhs_batch_dimensions().empty()) { result.push_back(StrCat("rhs_batch_dims={", StrJoin(dnums.rhs_batch_dimensions(), ","), "}")); } result.push_back(StrCat("rhs_contracting_dims={", StrJoin(dnums.rhs_contracting_dimensions(), ","), "}")); return StrJoin(result, ", "); } std::string ConvolutionDimensionNumbersToString( const ConvolutionDimensionNumbers& dnums) { auto len_required = [](int64_t a, int64_t b, absl::Span<const int64_t> cs) { return std::max({a, b, cs.empty() ? 0 : *absl::c_max_element(cs)}) + 1; }; std::vector<std::string> lhs_dims( len_required(dnums.input_batch_dimension(), dnums.input_feature_dimension(), dnums.input_spatial_dimensions()), "?"); lhs_dims[dnums.input_batch_dimension()] = 'b'; lhs_dims[dnums.input_feature_dimension()] = 'f'; for (int64_t i = 0; i < dnums.input_spatial_dimensions().size(); ++i) { lhs_dims[dnums.input_spatial_dimensions(i)] = StrCat(i); } std::vector<std::string> rhs_dims( len_required(dnums.kernel_input_feature_dimension(), dnums.kernel_output_feature_dimension(), dnums.kernel_spatial_dimensions()), "?"); rhs_dims[dnums.kernel_input_feature_dimension()] = "i"; rhs_dims[dnums.kernel_output_feature_dimension()] = "o"; for (int64_t i = 0; i < dnums.kernel_spatial_dimensions().size(); ++i) { rhs_dims[dnums.kernel_spatial_dimensions(i)] = StrCat(i); } std::vector<std::string> output_dims( len_required(dnums.output_batch_dimension(), dnums.output_feature_dimension(), dnums.output_spatial_dimensions()), "?"); output_dims[dnums.output_batch_dimension()] = 'b'; output_dims[dnums.output_feature_dimension()] = 'f'; for (int64_t i = 0; i < dnums.output_spatial_dimensions().size(); ++i) { output_dims[dnums.output_spatial_dimensions(i)] = StrCat(i); } return StrCat(StrJoin(lhs_dims, ""), "_", StrJoin(rhs_dims, ""), "->", StrJoin(output_dims, "")); } absl::StatusOr<RandomAlgorithm> StringToRandomAlgorithm( const std::string& name) { static absl::flat_hash_map<std::string, RandomAlgorithm>* map = [] { static auto* map = new absl::flat_hash_map<std::string, RandomAlgorithm>; for (int i = 0; i < RandomAlgorithm_ARRAYSIZE; i++) { if (RandomAlgorithm_IsValid(i)) { auto value = static_cast<RandomAlgorithm>(i); (*map)[RandomAlgorithmToString(value)] = value; } } return map; }(); auto found = map->find(absl::AsciiStrToLower(name)); if (found == map->end()) { return InvalidArgument("Unknown algorithm"); } return found->second; } absl::StatusOr<RandomDistribution> StringToRandomDistribution( const std::string& name) { static absl::flat_hash_map<std::string, RandomDistribution>* map = [] { static auto* map = new absl::flat_hash_map<std::string, RandomDistribution>; for (int i = 0; i < RandomDistribution_ARRAYSIZE; i++) { if (RandomDistribution_IsValid(i)) { auto value = static_cast<RandomDistribution>(i); (*map)[RandomDistributionToString(value)] = value; } } return map; }(); auto found = map->find(absl::AsciiStrToLower(name)); if (found == map->end()) { return InvalidArgument("Unknown distribution"); } return found->second; } absl::StatusOr<PrecisionConfig::Precision> StringToPrecision( const std::string& name) { static absl::flat_hash_map<std::string, PrecisionConfig::Precision>* map = [] { static auto* map = new absl::flat_hash_map<std::string, PrecisionConfig::Precision>; for (int i = 0; i < PrecisionConfig::Precision_ARRAYSIZE; i++) { if (PrecisionConfig::Precision_IsValid(i)) { auto value = static_cast<PrecisionConfig::Precision>(i); (*map)[PrecisionToString(value)] = value; } } return map; }(); auto found = map->find(absl::AsciiStrToLower(name)); if (found == map->end()) { return InvalidArgument("Unknown precision"); } return found->second; } absl::StatusOr<PrecisionConfig::Algorithm> StringToAlgorithm( const std::string& name) { static absl::flat_hash_map<std::string, PrecisionConfig::Algorithm>* map = [] { static auto* map = new absl::flat_hash_map<std::string, PrecisionConfig::Algorithm>; for (int i = 0; i < PrecisionConfig::Algorithm_ARRAYSIZE; i++) { if (PrecisionConfig::Algorithm_IsValid(i)) { auto value = static_cast<PrecisionConfig::Algorithm>(i); (*map)[AlgorithmToString(value)] = value; } } return map; }(); auto found = map->find(absl::AsciiStrToLower(name)); if (found == map->end()) { return InvalidArgument("Unknown algorithm"); } return found->second; } absl::StatusOr<CustomCallSchedule> StringToCustomCallSchedule( absl::string_view name) { static const absl::flat_hash_map<std::string, CustomCallSchedule>* map = [] { static auto* map = new absl::flat_hash_map<std::string, CustomCallSchedule>; for (int i = 0; i < CustomCallSchedule_ARRAYSIZE; i++) { if (CustomCallSchedule_IsValid(i)) { auto value = static_cast<CustomCallSchedule>(i); (*map)[CustomCallScheduleToString(value)] = value; } } return map; }(); auto found = map->find(absl::AsciiStrToLower(name)); if (found == map->end()) { return InvalidArgument("Unknown schedule"); } return found->second; } absl::StatusOr<CustomCallApiVersion> StringToCustomCallApiVersion( absl::string_view name) { static const absl::flat_hash_map<std::string, CustomCallApiVersion>* map = [] { static auto* map = new absl::flat_hash_map<std::string, CustomCallApiVersion>; for (int i = 0; i < CustomCallApiVersion_ARRAYSIZE; i++) { if (CustomCallApiVersion_IsValid(i)) { auto value = static_cast<CustomCallApiVersion>(i); (*map)[CustomCallApiVersionToString(value)] = value; } } return map; }(); auto found = map->find(absl::AsciiStrToLower(name)); if (found == map->end()) { return InvalidArgument("Unknown API version"); } return found->second; } std::ostream& operator<<(std::ostream& os, HloInstruction::FusionKind kind) { return os << ToString(kind); } bool HloPtrComparator::operator()(const HloInstruction* const& lhs, const HloInstruction* const& rhs) const { if (rhs == nullptr) { return false; } if (lhs == nullptr) { return true; } auto lhs_module = lhs->GetModule(); auto rhs_module = rhs->GetModule(); CHECK((lhs_module == nullptr && rhs_module == nullptr) || (lhs_module != nullptr && rhs_module != nullptr)); if (lhs_module != nullptr && lhs_module->unique_id() != rhs_module->unique_id()) { return lhs_module->unique_id() < rhs_module->unique_id(); } return lhs->unique_id() < rhs->unique_id(); } const PrecisionConfig& HloInstruction::precision_config() const { if (auto* convolution = DynCast<HloConvolutionInstruction>(this)) { return convolution->precision_config(); } if (auto* dot = DynCast<HloDotInstruction>(this)) { return dot->precision_config(); } if (auto* custom_call = DynCast<HloCustomCallInstruction>(this)) { return custom_call->precision_config(); } LOG(FATAL) << "Unimplemented method."; } PrecisionConfig* HloInstruction::mutable_precision_config() { if (auto* convolution = DynCast<HloConvolutionInstruction>(this)) { return convolution->mutable_precision_config(); } if (auto* dot = DynCast<HloDotInstruction>(this)) { return dot->mutable_precision_config(); } if (auto* custom_call = DynCast<HloCustomCallInstruction>(this)) { return custom_call->mutable_precision_config(); } LOG(FATAL) << "Unimplemented method."; } HloModule* HloInstruction::GetModule() const { if (parent_) { return parent_->parent(); } return nullptr; } void HloInstruction::UniquifyName(NameUniquer* name_uniquer) { name_ = name_uniquer->GetUniqueName(name_); } void HloInstruction::UniquifyName(HloModule* module) { UniquifyName(&module->instruction_name_uniquer()); } void HloInstruction::UniquifyId(HloModule* module) { SetUniqueId(module->NewUniqueInstructionId()); } void HloInstruction::SortInstructionUsersAndControlLists( const MappedPtrContainerSorter<HloInstruction>::MapPtrFn& map_fn, const HloInstruction& sorted_instruction) { using Sorter = MappedPtrContainerSorter<HloInstruction>; users_.SortInstructionUsers(map_fn, sorted_instruction.users_); absl::Status status; if (has_rare()) { status = Sorter::Sort(map_fn, Sorter::IndexAfterMappedElementsFn(), sorted_instruction.control_predecessors(), mutable_rare()->control_predecessors); } if (!status.ok()) { LOG(ERROR) << "Failed to sort instruction control predecessors for " << name() << "; " << status; } if (has_rare()) { status = Sorter::Sort(map_fn, Sorter::IndexAfterMappedElementsFn(), sorted_instruction.control_successors(), mutable_rare()->control_successors); } if (!status.ok()) { LOG(ERROR) << "Failed to sort instruction control successors for " << name() << "; " << status; } } int64_t HloInstruction::feature_index() const { return Cast<HloBatchNormInstruction>(this)->feature_index(); } float HloInstruction::epsilon() const { return Cast<HloBatchNormInstruction>(this)->epsilon(); } FftType HloInstruction::fft_type() const { return Cast<HloFftInstruction>(this)->fft_type(); } const std::vector<int64_t>& HloInstruction::fft_length() const { return Cast<HloFftInstruction>(this)->fft_length(); } int64_t HloInstruction::concatenate_dimension() const { return Cast<HloConcatenateInstruction>(this)->concatenate_dimension(); } int64_t HloInstruction::dimension() const { if (auto set_size = DynCast<HloSetDimensionSizeInstruction>(this)) { return set_size->dimension(); } return Cast<HloGetDimensionSizeInstruction>(this)->dimension(); } int64_t HloInstruction::inferred_dimension() const { return Cast<HloReshapeInstruction>(this)->inferred_dimension(); } bool HloInstruction::IsRank2Transpose() const { auto transpose = DynCast<HloTransposeInstruction>(this); return transpose != nullptr && transpose->IsRank2Transpose(); } int64_t HloInstruction::slice_starts(int64_t dimension) const { return Cast<HloSliceInstruction>(this)->slice_starts(dimension); } const std::vector<int64_t>& HloInstruction::slice_starts() const { return Cast<HloSliceInstruction>(this)->slice_starts(); } std::vector<int64_t>* HloInstruction::mutable_slice_starts() { return Cast<HloSliceInstruction>(this)->mutable_slice_starts(); } int64_t HloInstruction::slice_limits(int64_t dimension) const { return Cast<HloSliceInstruction>(this)->slice_limits(dimension); } const std::vector<int64_t>& HloInstruction::slice_limits() const { return Cast<HloSliceInstruction>(this)->slice_limits(); } std::vector<int64_t>* HloInstruction::mutable_slice_limits() { return Cast<HloSliceInstruction>(this)->mutable_slice_limits(); } int64_t HloInstruction::slice_strides(int64_t dimension) const { return Cast<HloSliceInstruction>(this)->slice_strides(dimension); } const std::vector<int64_t>& HloInstruction::slice_strides() const { return Cast<HloSliceInstruction>(this)->slice_strides(); } std::vector<int64_t>* HloInstruction::mutable_slice_strides() { return Cast<HloSliceInstruction>(this)->mutable_slice_strides(); } const Literal& HloInstruction::literal() const { return Cast<HloConstantInstruction>(this)->literal(); } bool HloInstruction::IsConstant() const { return DynCast<HloConstantInstruction>(this) != nullptr; } void HloInstruction::RelayoutConstant(const Layout& new_layout, const ShapeIndex& shape_index) { Cast<HloConstantInstruction>(this)->RelayoutConstant(new_layout, shape_index); } HloInstruction* HloInstruction::AppendInstructionIntoCalledComputation( HloInstruction* instruction_to_append, bool add_output) { return Cast<HloCallableInstruction>(this) ->AppendInstructionIntoCalledComputation(instruction_to_append, add_output); } HloInstruction* HloInstruction::AddFusionOperand(HloInstruction* new_operand) { return Cast<HloFusionInstruction>(this)->AddFusionOperand(new_operand); } void HloInstruction::MergeFusionInstruction( HloInstruction* instruction_to_merge) { return Cast<HloFusionInstruction>(this)->MergeFusionInstruction( Cast<HloFusionInstruction>(instruction_to_merge)); } void HloInstruction::MergeFusionInstructionIntoMultiOutput( HloInstruction* instruction_to_merge) { return Cast<HloFusionInstruction>(this) ->MergeFusionInstructionIntoMultiOutput( Cast<HloFusionInstruction>(instruction_to_merge)); } HloInstruction* HloInstruction::FuseInstruction( HloInstruction* instruction_to_fuse) { return Cast<HloFusionInstruction>(this)->FuseInstruction(instruction_to_fuse); } HloInstruction* HloInstruction::FuseInstructionIntoMultiOutput( HloInstruction* instruction_to_fuse) { return Cast<HloFusionInstruction>(this)->FuseInstructionIntoMultiOutput( instruction_to_fuse); } HloComputation* HloInstruction::fused_instructions_computation() const { return Cast<HloFusionInstruction>(this)->fused_instructions_computation(); } HloInstruction* HloInstruction::fused_expression_root() const { return Cast<HloFusionInstruction>(this)->fused_expression_root(); } tsl::gtl::iterator_range<HloInstructionUnwrappingConstIterator> HloInstruction::fused_instructions() const { return Cast<HloFusionInstruction>(this)->fused_instructions(); } tsl::gtl::iterator_range<HloInstructionUnwrappingIterator> HloInstruction::fused_instructions() { return Cast<HloFusionInstruction>(this)->fused_instructions(); } int64_t HloInstruction::fused_instruction_count() const { return Cast<HloFusionInstruction>(this)->fused_instruction_count(); } HloInstruction* HloInstruction::fused_parameter( int64_t parameter_number) const { return Cast<HloFusionInstruction>(this)->fused_parameter(parameter_number); } const HloInstruction::InstructionVector& HloInstruction::fused_parameters() const { return Cast<HloFusionInstruction>(this)->fused_parameters(); } bool HloInstruction::IsMultiOutputFusion() const { const HloFusionInstruction* fusion = DynCast<HloFusionInstruction>(this); return fusion != nullptr && fusion->IsMultiOutputFusion(); } HloInstruction::FusionKind HloInstruction::fusion_kind() const { return Cast<HloFusionInstruction>(this)->fusion_kind(); } void HloInstruction::set_fusion_kind(FusionKind kind) { return Cast<HloFusionInstruction>(this)->set_fusion_kind(kind); } RandomDistribution HloInstruction::random_distribution() const { return Cast<HloRngInstruction>(this)->random_distribution(); } int64_t HloInstruction::parameter_number() const { return Cast<HloParameterInstruction>(this)->parameter_number(); } void HloInstruction::set_parameter_replicated_at_leaf_buffers( absl::Span<const bool> parameter_replicated_at_leaf_buffers) { return Cast<HloParameterInstruction>(this) ->set_parameter_replicated_at_leaf_buffers( parameter_replicated_at_leaf_buffers); } void HloInstruction::set_parameter_replicated_at_leaf_buffers( const std::vector<bool>& parameter_replicated_at_leaf_buffers) { return Cast<HloParameterInstruction>(this) ->set_parameter_replicated_at_leaf_buffers( parameter_replicated_at_leaf_buffers); } const std::optional<std::vector<bool>>& HloInstruction::parameter_replicated_at_leaf_buffers() const { return Cast<HloParameterInstruction>(this) ->parameter_replicated_at_leaf_buffers(); } int64_t HloInstruction::tuple_index() const { return Cast<HloGetTupleElementInstruction>(this)->tuple_index(); } void HloInstruction::set_tuple_index(int64_t new_tuple_index) { return Cast<HloGetTupleElementInstruction>(this)->set_tuple_index( new_tuple_index); } int32_t HloInstruction::exponent_bits() const { return Cast<HloReducePrecisionInstruction>(this)->exponent_bits(); } int32_t HloInstruction::mantissa_bits() const { return Cast<HloReducePrecisionInstruction>(this)->mantissa_bits(); } std::string HloInstruction::infeed_config() const { return Cast<HloInfeedInstruction>(this)->infeed_config(); } void HloInstruction::set_infeed_config(const std::string& config) { return Cast<HloInfeedInstruction>(this)->set_infeed_config(config); } const Shape& HloInstruction::outfeed_shape() const { return Cast<HloOutfeedInstruction>(this)->outfeed_shape(); } Shape* HloInstruction::mutable_outfeed_shape() { return Cast<HloOutfeedInstruction>(this)->mutable_outfeed_shape(); } const std::string& HloInstruction::outfeed_config() const { return Cast<HloOutfeedInstruction>(this)->outfeed_config(); } void HloInstruction::set_outfeed_config(const std::string& config) { return Cast<HloOutfeedInstruction>(this)->set_outfeed_config(config); } const std::vector<ReplicaGroup>& HloInstruction::replica_groups() const { return Cast<HloCollectiveInstruction>(this)->replica_groups(); } const CollectiveDeviceList& HloInstruction::device_list() const { return Cast<HloCollectiveInstruction>(this)->device_list(); } const std::vector<std::pair<int64_t, int64_t>>& HloInstruction::source_target_pairs() const { return Cast<HloCollectivePermuteInstruction>(this)->source_target_pairs(); } std::optional<int64_t> HloInstruction::channel_id() const { return Cast<HloChannelInstruction>(this)->channel_id(); } void HloInstruction::set_channel_id(const std::optional<int64_t>& channel_id) { return Cast<HloChannelInstruction>(this)->set_channel_id(channel_id); } const ConvolutionDimensionNumbers& HloInstruction::convolution_dimension_numbers() const { if (auto convolution = DynCast<HloConvolutionInstruction>(this)) { return convolution->convolution_dimension_numbers(); } if (auto custom_call = DynCast<HloCustomCallInstruction>(this)) { return custom_call->convolution_dimension_numbers(); } LOG(FATAL) << "Unimplemented method."; } void HloInstruction::set_convolution_dimension_numbers( const ConvolutionDimensionNumbers& dnums) { if (auto convolution = DynCast<HloConvolutionInstruction>(this)) { convolution->set_convolution_dimension_numbers(dnums); } else if (auto custom_call = DynCast<HloCustomCallInstruction>(this)) { custom_call->set_convolution_dimension_numbers(dnums); } else { LOG(FATAL) << "Unimplemented method."; } } int64_t HloInstruction::feature_group_count() const { if (auto convolution = DynCast<HloConvolutionInstruction>(this)) { return convolution->feature_group_count(); } return Cast<HloCustomCallInstruction>(this)->feature_group_count(); } void HloInstruction::set_feature_group_count(int64_t feature_group_count) { if (auto convolution = DynCast<HloConvolutionInstruction>(this)) { return convolution->set_feature_group_count(feature_group_count); } Cast<HloCustomCallInstruction>(this)->set_feature_group_count( feature_group_count); } int64_t HloInstruction::batch_group_count() const { if (auto convolution = DynCast<HloConvolutionInstruction>(this)) { return convolution->batch_group_count(); } return Cast<HloCustomCallInstruction>(this)->batch_group_count(); } void HloInstruction::set_batch_group_count(int64_t batch_group_count) { if (auto convolution = DynCast<HloConvolutionInstruction>(this)) { return convolution->set_batch_group_count(batch_group_count); } Cast<HloCustomCallInstruction>(this)->set_batch_group_count( batch_group_count); } HloComputation* HloInstruction::select() const { return Cast<HloSelectAndScatterInstruction>(this)->select(); } HloComputation* HloInstruction::scatter() const { return Cast<HloSelectAndScatterInstruction>(this)->scatter(); } void HloInstruction::set_select(HloComputation* computation) { return Cast<HloSelectAndScatterInstruction>(this)->set_select(computation); } void HloInstruction::set_scatter(HloComputation* computation) { return Cast<HloSelectAndScatterInstruction>(this)->set_scatter(computation); } const std::string& HloInstruction::custom_call_target() const { return Cast<HloCustomCallInstruction>(this)->custom_call_target(); } void HloInstruction::set_custom_call_target(absl::string_view target) { Cast<HloCustomCallInstruction>(this)->set_custom_call_target(target); } const PaddingConfig& HloInstruction::padding_config() const { return Cast<HloPadInstruction>(this)->padding_config(); } PaddingType HloInstruction::padding_type() const { return Cast<HloCustomCallInstruction>(this)->padding_type(); } PaddingConfig* HloInstruction::mutable_padding_config() { return Cast<HloPadInstruction>(this)->mutable_padding_config(); } int64_t HloInstruction::slice_sizes(int64_t dimension) const { return Cast<HloDynamicSliceInstruction>(this)->slice_sizes(dimension); } const std::vector<int64_t>& HloInstruction::dynamic_slice_sizes() const { return Cast<HloDynamicSliceInstruction>(this)->dynamic_slice_sizes(); } const std::vector<std::vector<int64_t>>& HloInstruction::dynamic_slice_sizes_list() const { return Cast<HloCollectivePermuteInstruction>(this) ->dynamic_slice_sizes_list(); } const GatherDimensionNumbers& HloInstruction::gather_dimension_numbers() const { return Cast<HloGatherInstruction>(this)->gather_dimension_numbers(); } absl::Span<const int64_t> HloInstruction::gather_slice_sizes() const { return Cast<HloGatherInstruction>(this)->gather_slice_sizes(); } const ScatterDimensionNumbers& HloInstruction::scatter_dimension_numbers() const { return Cast<HloScatterInstruction>(this)->scatter_dimension_numbers(); } const DotDimensionNumbers& HloInstruction::dot_dimension_numbers() const { return Cast<HloDotInstruction>(this)->dot_dimension_numbers(); } const DomainMetadata& HloInstruction::operand_side_metadata() const { return Cast<HloDomainInstruction>(this)->operand_side_metadata(); } const DomainMetadata& HloInstruction::user_side_metadata() const { return Cast<HloDomainInstruction>(this)->user_side_metadata(); } bool HloInstruction::IsAsynchronous() const { return HloOpcodeIsAsync(opcode()); } HloInstruction* HloInstruction::async_chain_start() const { return Cast<HloAsyncInstruction>(this)->async_chain_start(); } HloInstruction* HloInstruction::async_chain_done() const { return Cast<HloAsyncInstruction>(this)->async_chain_done(); } HloComputation* HloInstruction::async_wrapped_computation() const { return Cast<HloAsyncInstruction>(this)->async_wrapped_computation(); } HloInstruction* HloInstruction::async_wrapped_instruction() const { return Cast<HloAsyncInstruction>(this)->async_wrapped_instruction(); } HloOpcode HloInstruction::async_wrapped_opcode() const { return Cast<HloAsyncInstruction>(this)->async_wrapped_opcode(); } absl::string_view HloInstruction::async_execution_thread() const { return Cast<HloAsyncInstruction>(this)->async_execution_thread(); } void HloInstruction::set_async_execution_thread( absl::string_view async_execution_thread) { Cast<HloAsyncInstruction>(this)->set_async_execution_thread( async_execution_thread); } void HloInstruction::set_called_computations_execution_thread( absl::string_view async_execution_thread, bool skip_async_execution_thread_overwrite) { Cast<HloCallableInstruction>(this)->RecursivelySetComputationsThreadName( async_execution_thread, skip_async_execution_thread_overwrite); } std::optional<int> HloInstruction::cross_program_prefetch_index() const { return Cast<HloCopyStartInstruction>(this)->cross_program_prefetch_index(); } ComparisonDirection HloInstruction::comparison_direction() const { return Cast<HloCompareInstruction>(this)->direction(); } ComparisonOrder HloInstruction::comparison_order() const { return Cast<HloCompareInstruction>(this)->order(); } const TriangularSolveOptions& HloInstruction::triangular_solve_options() const { return Cast<HloTriangularSolveInstruction>(this)->triangular_solve_options(); } const CholeskyOptions& HloInstruction::cholesky_options() const { return Cast<HloCholeskyInstruction>(this)->cholesky_options(); } const std::vector<std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>>& HloInstruction::output_operand_aliasing() const { return Cast<HloCallableInstruction>(this)->output_to_operand_aliasing(); } void HloInstruction::set_output_to_operand_aliasing( std::vector<std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>> aliasing) { Cast<HloCallableInstruction>(this)->set_output_to_operand_aliasing( std::move(aliasing)); } std::shared_ptr<OriginalValue> HloInstruction::original_value() const { return original_value_; } void HloInstruction::set_original_value( std::shared_ptr<OriginalValue> original_value) { original_value_ = original_value; } }
#include "xla/hlo/ir/hlo_instruction.h" #include <cstddef> #include <cstdint> #include <initializer_list> #include <limits> #include <memory> #include <optional> #include <set> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/layout_util.h" #include "xla/literal_util.h" #include "xla/protobuf_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/util.h" #include "xla/window_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace m = ::xla::match; using ::testing::ElementsAre; using ::testing::UnorderedElementsAre; class HloInstructionTest : public HloTestBase { protected: Shape r0f32_ = ShapeUtil::MakeShape(F32, {}); }; class OpAndUserCollectingVisitor : public DfsHloVisitorWithDefault { public: absl::Status DefaultAction(HloInstruction* hlo_instruction) override { return Unimplemented("not implemented %s", HloOpcodeString(hlo_instruction->opcode())); } absl::Status HandleParameter(HloInstruction* parameter) override { EXPECT_FALSE(count_.contains(parameter)); count_[parameter] = GetCountsForNode(parameter); return absl::OkStatus(); } absl::Status HandleConstant(HloInstruction* constant) override { EXPECT_FALSE(count_.contains(constant)); count_[constant] = GetCountsForNode(constant); return absl::OkStatus(); } absl::Status HandleAdd(HloInstruction* add) override { auto lhs = add->operand(0); auto rhs = add->operand(1); EXPECT_FALSE(count_.contains(add)); EXPECT_TRUE(count_.contains(lhs)); EXPECT_TRUE(count_.contains(rhs)); count_[add] = GetCountsForNode(add); return absl::OkStatus(); } absl::Status HandleNegate(HloInstruction* negate) override { auto operand = negate->operand(0); EXPECT_FALSE(count_.contains(negate)); EXPECT_TRUE(count_.contains(operand)); count_[negate] = GetCountsForNode(negate); return absl::OkStatus(); } absl::Status HandleMap(HloInstruction* map) override { EXPECT_FALSE(count_.contains(map)); for (HloInstruction* arg : map->operands()) { EXPECT_TRUE(count_.contains(arg)); } count_[map] = GetCountsForNode(map); return absl::OkStatus(); } absl::Status HandleReduce(HloInstruction* reduce) override { auto arg = reduce->operand(0); auto init_value = reduce->operand(1); EXPECT_FALSE(count_.contains(reduce)); EXPECT_TRUE(count_.contains(arg)); EXPECT_TRUE(count_.contains(init_value)); count_[reduce] = GetCountsForNode(reduce); return absl::OkStatus(); } int64_t NumOperands(const HloInstruction* node) { auto count_iterator = count_.find(node); EXPECT_NE(count_.end(), count_iterator); return count_iterator->second.operand_count; } int64_t NumUsers(const HloInstruction* node) { auto count_iterator = count_.find(node); EXPECT_NE(count_.end(), count_iterator); return count_iterator->second.user_count; } private: struct NumOpsAndUsers { int64_t operand_count; int64_t user_count; }; NumOpsAndUsers GetCountsForNode(const HloInstruction* node) { NumOpsAndUsers counts{node->operand_count(), node->user_count()}; return counts; } absl::flat_hash_map<const HloInstruction*, NumOpsAndUsers> count_; }; TEST_F(HloInstructionTest, BasicProperties) { auto parameter = HloInstruction::CreateParameter(1, r0f32_, "foo"); EXPECT_EQ(HloOpcode::kParameter, parameter->opcode()); EXPECT_TRUE(ShapeUtil::IsScalarWithElementType(parameter->shape(), F32)); EXPECT_FALSE(ShapeUtil::IsScalarWithElementType(parameter->shape(), S32)); EXPECT_FALSE(parameter->operand_count()); } TEST_F(HloInstructionTest, UserWithTwoOperands) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto bar = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "bar")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, bar)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_THAT(add->operands(), UnorderedElementsAre(foo, bar)); EXPECT_THAT(foo->users(), UnorderedElementsAre(add)); EXPECT_THAT(bar->users(), UnorderedElementsAre(add)); OpAndUserCollectingVisitor visitor; ASSERT_IS_OK(add->Accept(&visitor)); EXPECT_EQ(2, visitor.NumOperands(add)); EXPECT_EQ(0, visitor.NumUsers(add)); EXPECT_EQ(1, visitor.NumUsers(foo)); EXPECT_EQ(1, visitor.NumUsers(bar)); } TEST_F(HloInstructionTest, MultipleUsers) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto bar = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "bar")); auto exp1 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, foo)); auto exp2 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, foo)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, bar)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(3, foo->user_count()); EXPECT_EQ(1, bar->user_count()); EXPECT_EQ(0, exp1->user_count()); EXPECT_EQ(0, exp2->user_count()); EXPECT_EQ(0, add->user_count()); OpAndUserCollectingVisitor visitor; ASSERT_IS_OK(add->Accept(&visitor)); EXPECT_EQ(2, visitor.NumOperands(add)); EXPECT_EQ(3, visitor.NumUsers(foo)); } TEST_F(HloInstructionTest, RepeatedUser) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, foo)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(1, foo->user_count()); EXPECT_EQ(2, add->operand_count()); } TEST_F(HloInstructionTest, MultipleUsersAndOperands) { HloComputation::Builder builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32_, "param0")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, r0f32_, "param1")); auto c0 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto addleft = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, param0, c0)); auto addright = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, c0, param1)); auto addtotal = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, addleft, addright)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); OpAndUserCollectingVisitor visitor; ASSERT_IS_OK(addtotal->Accept(&visitor)); EXPECT_EQ(2, visitor.NumUsers(c0)); EXPECT_EQ(2, visitor.NumOperands(addleft)); EXPECT_EQ(2, visitor.NumOperands(addright)); EXPECT_EQ(2, visitor.NumOperands(addtotal)); } TEST_F(HloInstructionTest, MultipleUsersAndOperandsWithUnaryOps) { HloComputation::Builder builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32_, "param0")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, r0f32_, "param1")); auto c0 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto neg1 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, c0)); auto addleft = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, param0, neg1)); auto addright = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, neg1, param1)); auto addtotal = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, addleft, addright)); auto neg2 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, addtotal)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); OpAndUserCollectingVisitor visitor; ASSERT_IS_OK(neg2->Accept(&visitor)); EXPECT_EQ(1, visitor.NumUsers(c0)); EXPECT_EQ(2, visitor.NumUsers(neg1)); EXPECT_EQ(2, visitor.NumOperands(addleft)); EXPECT_EQ(2, visitor.NumOperands(addright)); EXPECT_EQ(2, visitor.NumOperands(addtotal)); EXPECT_EQ(1, visitor.NumOperands(neg2)); EXPECT_EQ(0, visitor.NumUsers(neg2)); } TEST_F(HloInstructionTest, TrivialMap) { Shape r0f32 = ShapeUtil::MakeShape(F32, {}); Shape f32a100x10 = ShapeUtil::MakeShape(F32, {100, 10}); auto module = CreateNewVerifiedModule(); auto embedded_builder = HloComputation::Builder("f32+1"); auto param = embedded_builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32, "x")); auto value = embedded_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); embedded_builder.AddInstruction( HloInstruction::CreateBinary(r0f32, HloOpcode::kAdd, param, value)); auto add_f32 = module->AddEmbeddedComputation(embedded_builder.Build()); HloComputation::Builder builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, f32a100x10, "p")); auto map = builder.AddInstruction( HloInstruction::CreateMap(f32a100x10, {param0}, add_f32)); module->AddEntryComputation(builder.Build()); OpAndUserCollectingVisitor visitor; ASSERT_IS_OK(map->Accept(&visitor)); EXPECT_EQ(1, visitor.NumUsers(param0)); EXPECT_EQ(0, visitor.NumUsers(map)); EXPECT_EQ(1, visitor.NumOperands(map)); } TEST_F(HloInstructionTest, TrivialReduce) { Shape r0f32 = ShapeUtil::MakeShape(F32, {}); Shape f32v100 = ShapeUtil::MakeShape(F32, {100}); Shape f32a100x10 = ShapeUtil::MakeShape(F32, {100, 10}); auto embedded_builder = HloComputation::Builder("f32+f32"); auto paramx = embedded_builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32, "x")); auto paramy = embedded_builder.AddInstruction( HloInstruction::CreateParameter(1, r0f32, "y")); embedded_builder.AddInstruction( HloInstruction::CreateBinary(r0f32, HloOpcode::kAdd, paramx, paramy)); auto module = CreateNewVerifiedModule(); auto add_f32 = module->AddEmbeddedComputation(embedded_builder.Build()); HloComputation::Builder builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, f32a100x10, "p")); auto const0 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0f))); builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto reduce = builder.AddInstruction( HloInstruction::CreateReduce(f32v100, param0, const0, {1}, add_f32)); module->AddEntryComputation(builder.Build()); OpAndUserCollectingVisitor visitor; ASSERT_IS_OK(reduce->Accept(&visitor)); EXPECT_EQ(1, visitor.NumUsers(param0)); EXPECT_EQ(1, visitor.NumUsers(const0)); EXPECT_EQ(0, visitor.NumUsers(reduce)); EXPECT_EQ(2, visitor.NumOperands(reduce)); } TEST_F(HloInstructionTest, ReplaceUseInBinaryOps) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto bar = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "bar")); auto add_foobar = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, bar)); auto add_foofoo = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, foo)); builder.AddInstruction(HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, add_foobar, add_foofoo)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(2, foo->user_count()); EXPECT_EQ(1, bar->user_count()); ASSERT_IS_OK(foo->ReplaceUseWith(add_foofoo, bar)); EXPECT_EQ(1, foo->user_count()); EXPECT_EQ(2, bar->user_count()); EXPECT_THAT(foo->users(), UnorderedElementsAre(add_foobar)); EXPECT_THAT(add_foobar->operands(), ElementsAre(foo, bar)); EXPECT_THAT(bar->users(), UnorderedElementsAre(add_foobar, add_foofoo)); EXPECT_THAT(add_foobar->operands(), ElementsAre(foo, bar)); EXPECT_THAT(add_foofoo->operands(), ElementsAre(bar, bar)); } TEST_F(HloInstructionTest, ReplaceUseInVariadicOp) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto bar = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "bar")); auto baz = builder.AddInstruction(HloInstruction::CreateParameter(2, r0f32_, "baz")); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({foo, bar, baz, foo})); auto add_foobar = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, bar)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(2, foo->user_count()); EXPECT_THAT(foo->users(), UnorderedElementsAre(tuple, add_foobar)); ASSERT_IS_OK(foo->ReplaceUseWith(tuple, bar)); EXPECT_THAT(foo->users(), UnorderedElementsAre(add_foobar)); EXPECT_THAT(tuple->operands(), ElementsAre(bar, bar, baz, bar)); } TEST_F(HloInstructionTest, ReplaceUseInUnaryOp) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto bar = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "bar")); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, foo)); auto log = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kLog, foo)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(2, foo->user_count()); EXPECT_THAT(foo->users(), UnorderedElementsAre(exp, log)); EXPECT_EQ(0, bar->user_count()); ASSERT_IS_OK(foo->ReplaceUseWith(exp, bar)); EXPECT_EQ(1, foo->user_count()); EXPECT_THAT(foo->users(), UnorderedElementsAre(log)); EXPECT_THAT(log->operands(), ElementsAre(foo)); EXPECT_EQ(1, bar->user_count()); EXPECT_EQ(*bar->users().begin(), exp); EXPECT_EQ(1, exp->operands().size()); EXPECT_EQ(*exp->operands().begin(), bar); } TEST_F(HloInstructionTest, ReplaceAllUsesWithInBinaryOps) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto bar = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "bar")); auto add_foobar = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, bar)); auto add_foofoo = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, foo)); builder.AddInstruction(HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, add_foobar, add_foofoo)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(2, foo->user_count()); EXPECT_EQ(1, bar->user_count()); ASSERT_IS_OK(foo->ReplaceAllUsesWith(bar)); EXPECT_EQ(0, foo->user_count()); EXPECT_EQ(2, bar->user_count()); EXPECT_THAT(bar->users(), UnorderedElementsAre(add_foobar, add_foofoo)); } TEST_F(HloInstructionTest, ReplaceAllUsesInMultipleOps) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto bar = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "bar")); auto add_foobar = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, bar)); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, foo)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({foo, bar})); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(3, foo->user_count()); EXPECT_EQ(2, bar->user_count()); ASSERT_IS_OK(foo->ReplaceAllUsesWith(bar)); EXPECT_EQ(0, foo->user_count()); EXPECT_EQ(3, bar->user_count()); EXPECT_THAT(bar->users(), UnorderedElementsAre(add_foobar, exp, tuple)); } class NodeCollectorAndPostProcessor : public DfsHloVisitorWithDefault { public: NodeCollectorAndPostProcessor() {} absl::Status Postprocess(HloInstruction* hlo) override { post_processed_nodes_.push_back(hlo); return absl::OkStatus(); } absl::Status DefaultAction(HloInstruction* hlo_instruction) override { visited_nodes_.push_back(hlo_instruction); return absl::OkStatus(); } const std::vector<const HloInstruction*>& visited_nodes() { return visited_nodes_; } const std::vector<const HloInstruction*>& post_processed_nodes() { return post_processed_nodes_; } private: std::vector<const HloInstruction*> visited_nodes_; std::vector<const HloInstruction*> post_processed_nodes_; }; bool Distinct(const std::vector<const HloInstruction*>& vec) { std::set<const HloInstruction*> distinct_nodes(vec.begin(), vec.end()); return distinct_nodes.size() == vec.size(); } TEST_F(HloInstructionTest, PostProcessAllVisitedNodes) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, foo)); auto log = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kLog, foo)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, exp, log)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); NodeCollectorAndPostProcessor visitor; ASSERT_IS_OK(add->Accept(&visitor)); EXPECT_EQ(visitor.visited_nodes(), visitor.post_processed_nodes()); EXPECT_TRUE(Distinct(visitor.visited_nodes())); } TEST_F(HloInstructionTest, PostProcessAllVisitedNodesMultiComputation) { const std::string& hlo_string = R"( HloModule axpy_module calculate_alpha { c.1 = f32[] constant(1) c.2 = f32[] constant(2) c.3 = f32[] add(c.1, c.2) c.4 = f32[] constant(4) ROOT ret = f32[] multiply(c.4, c.3) } ENTRY axpy_computation { p.0 = f32[10] parameter(0) p.1 = f32[10] parameter(1) add.0 = f32[10] add(p.0, p.1) alpha = f32[] call(), to_apply=calculate_alpha broadcast = f32[10] broadcast(alpha), dimensions={} p.2 = f32[10] parameter(2) y = f32[10] multiply(broadcast, p.2) x = f32[10] subtract(y, add.0) p.3 = f32[10] parameter(3) ROOT add.1 = f32[10] add(x, p.3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* add1 = FindInstruction(module.get(), "add.1"); EXPECT_EQ(add1, module->entry_computation()->root_instruction()); NodeCollectorAndPostProcessor visitor; ASSERT_IS_OK(add1->Accept(&visitor, true, false, true)); EXPECT_EQ(visitor.visited_nodes(), visitor.post_processed_nodes()); EXPECT_TRUE(Distinct(visitor.visited_nodes())); } TEST_F(HloInstructionTest, SingletonFusionOp) { HloComputation::Builder builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, constant)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* fusion = computation->CreateFusionInstruction( {exp}, HloInstruction::FusionKind::kLoop); EXPECT_THAT(fusion->operands(), ElementsAre(constant)); EXPECT_THAT(constant->users(), ElementsAre(fusion)); } TEST_F(HloInstructionTest, BinaryFusionOp) { HloComputation::Builder builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.1f))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant1, constant2)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* fusion = computation->CreateFusionInstruction( {add}, HloInstruction::FusionKind::kLoop); EXPECT_THAT(fusion->operands(), ElementsAre(constant1, constant2)); EXPECT_THAT(constant1->users(), ElementsAre(fusion)); EXPECT_THAT(constant2->users(), ElementsAre(fusion)); } TEST_F(HloInstructionTest, ChainFusionOp) { HloComputation::Builder builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto exp1 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, constant)); auto exp2 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, exp1)); auto exp3 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, exp2)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* fusion = computation->CreateFusionInstruction( {exp3, exp2, exp1}, HloInstruction::FusionKind::kLoop); EXPECT_THAT(fusion->operands(), ElementsAre(constant)); EXPECT_THAT(constant->users(), ElementsAre(fusion)); } TEST_F(HloInstructionTest, PreserveMetadataInFusionAndClone) { HloComputation::Builder builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto exp1 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, constant)); auto exp2 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, exp1)); OpMetadata metadata; metadata.set_op_name("tf_op"); exp1->set_metadata(metadata); exp2->set_metadata(metadata); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* fusion = computation->CreateFusionInstruction( {exp2, exp1}, HloInstruction::FusionKind::kLoop); EXPECT_TRUE(protobuf_util::ProtobufEquals(metadata, fusion->metadata())); EXPECT_TRUE(protobuf_util::ProtobufEquals( metadata, fusion->fused_expression_root()->metadata())); EXPECT_TRUE(protobuf_util::ProtobufEquals( metadata, fusion->fused_expression_root()->operand(0)->metadata())); std::string new_name = "foobarfoo"; auto cloned = fusion->CloneWithNewOperands(fusion->shape(), {}, new_name); EXPECT_TRUE(protobuf_util::ProtobufEquals(metadata, fusion->metadata())); size_t index = cloned->name().rfind(new_name); EXPECT_TRUE(index != std::string::npos); } TEST_F(HloInstructionTest, BinaryCallOp) { HloComputation::Builder builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.1f))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant1, constant2)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* call = computation->CreateCallInstruction({add}); EXPECT_THAT(call->operands(), ElementsAre(constant1, constant2)); EXPECT_THAT(constant1->users(), ElementsAre(call)); EXPECT_THAT(constant2->users(), ElementsAre(call)); } TEST_F(HloInstructionTest, ChainCallOp) { HloComputation::Builder builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto exp1 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, constant)); auto exp2 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, exp1)); auto exp3 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, exp2)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* call = computation->CreateCallInstruction({exp3, exp2, exp1}); EXPECT_THAT(call->operands(), ElementsAre(constant)); EXPECT_THAT(constant->users(), ElementsAre(call)); } TEST_F(HloInstructionTest, MultiOutputCallOp) { HloComputation::Builder builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto exp1 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, constant)); auto exp2 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, exp1)); auto exp3 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, exp2)); auto exp4 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, constant)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, exp3, exp4)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* call = computation->CreateCallInstruction({exp3, exp2, exp1}); call->AppendInstructionIntoCalledComputation(exp4, true); EXPECT_THAT(call->operands(), ElementsAre(constant)); EXPECT_EQ(add->operand(0)->opcode(), HloOpcode::kGetTupleElement); EXPECT_THAT(add->operand(0)->operands(), ElementsAre(call)); EXPECT_EQ(add->operand(1)->opcode(), HloOpcode::kGetTupleElement); EXPECT_THAT(add->operand(1)->operands(), ElementsAre(call)); } TEST_F(HloInstructionTest, AsyncOp) { HloComputation::Builder builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.1f))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant1, constant2)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN( auto* async_done, computation->CreateAsyncInstructions( add, {ShapeUtil::MakeScalarShape(U32)}, "parallel_thread")); auto* async_start = async_done->operand(0); EXPECT_EQ(async_start->shape().tuple_shapes_size(), 3); EXPECT_EQ(async_start->async_execution_thread(), "parallel_thread"); EXPECT_EQ(async_done->async_execution_thread(), "parallel_thread"); EXPECT_TRUE(ShapeUtil::Equal(async_start->shape().tuple_shapes(2), ShapeUtil::MakeScalarShape(U32))); EXPECT_EQ(async_start->async_wrapped_computation()->execution_thread(), "parallel_thread"); EXPECT_EQ(async_done->async_wrapped_computation()->execution_thread(), "parallel_thread"); EXPECT_THAT(async_start->operands(), ElementsAre(constant1, constant2)); EXPECT_THAT(constant1->users(), ElementsAre(async_start)); EXPECT_THAT(constant2->users(), ElementsAre(async_start)); EXPECT_EQ(computation->root_instruction(), async_done); } TEST_F(HloInstructionTest, AsyncOpWithDeps) { HloComputation::Builder builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.1f))); auto constant3 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto constant4 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.1f))); auto add1 = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant3, constant4)); auto add = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant1, constant2)); auto add2 = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant1, constant2)); TF_ASSERT_OK(add1->AddControlDependencyTo(add)); TF_ASSERT_OK(add->AddControlDependencyTo(add2)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN( auto* async_done, computation->CreateAsyncInstructions( add, {ShapeUtil::MakeScalarShape(U32)}, "parallel_thread")); auto* async_start = async_done->operand(0); EXPECT_EQ(async_start->control_predecessors().size(), 1); EXPECT_EQ(async_start->control_predecessors()[0], add1); EXPECT_EQ(async_done->control_successors().size(), 1); EXPECT_EQ(async_done->control_successors()[0], add2); EXPECT_EQ(async_start->shape().tuple_shapes_size(), 3); EXPECT_EQ(async_start->async_execution_thread(), "parallel_thread"); EXPECT_EQ(async_done->async_execution_thread(), "parallel_thread"); EXPECT_TRUE(ShapeUtil::Equal(async_start->shape().tuple_shapes(2), ShapeUtil::MakeScalarShape(U32))); EXPECT_EQ(async_start->async_wrapped_computation()->execution_thread(), "parallel_thread"); EXPECT_EQ(async_done->async_wrapped_computation()->execution_thread(), "parallel_thread"); EXPECT_THAT(async_start->operands(), ElementsAre(constant1, constant2)); } TEST_F(HloInstructionTest, PreserveOutfeedShapeThroughClone) { HloComputation::Builder builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2<float>({ {1, 2}, {3, 4}, }))); auto shape10 = ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 2}, {1, 0}); auto shape01 = ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 2}, {0, 1}); auto token = builder.AddInstruction(HloInstruction::CreateToken()); auto outfeed10 = builder.AddInstruction( HloInstruction::CreateOutfeed(shape10, constant, token, "")); auto outfeed01 = builder.AddInstruction( HloInstruction::CreateOutfeed(shape01, constant, token, "")); auto clone01 = builder.AddInstruction(outfeed01->Clone()); auto clone10 = builder.AddInstruction(outfeed10->Clone()); EXPECT_TRUE(ShapeUtil::Equal(clone01->outfeed_shape(), shape01)); EXPECT_TRUE(ShapeUtil::Equal(clone10->outfeed_shape(), shape10)); } TEST_F(HloInstructionTest, PreserveTupleShapeThroughClone) { HloComputation::Builder builder(TestName()); auto* constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2<float>({ {1, 2}, {3, 4}, }))); auto* tuple = builder.AddInstruction(HloInstruction::CreateTuple({constant, constant})); *ShapeUtil::GetMutableSubshape(tuple->mutable_shape(), {0}) ->mutable_layout() = LayoutUtil::MakeLayout({0, 1}); *ShapeUtil::GetMutableSubshape(tuple->mutable_shape(), {1}) ->mutable_layout() = LayoutUtil::MakeLayout({1, 0}); auto tuple_clone = tuple->Clone(); EXPECT_TRUE(ShapeUtil::Equal(tuple_clone->shape(), tuple->shape())); } TEST_F(HloInstructionTest, PreserveShardingThroughCompatibleClone) { HloSharding sharding = HloSharding::AssignDevice(5); HloComputation::Builder builder(TestName()); auto* constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2<float>({ {1, 2}, {3, 4}, }))); auto* tuple = builder.AddInstruction(HloInstruction::CreateTuple({constant, constant})); HloSharding tuple_sharding = HloSharding::SingleTuple(tuple->shape(), sharding); tuple->set_sharding(tuple_sharding); auto clone_shape = ShapeUtil::MakeShape(F32, {3, 3}); clone_shape = ShapeUtil::MakeTupleShape({clone_shape, clone_shape}); auto tuple_clone = tuple->CloneWithNewOperands(clone_shape, {}); EXPECT_EQ(tuple_clone->sharding(), tuple_sharding); } TEST_F(HloInstructionTest, DoNotPreserveShardingThroughTupleTreeIncompatibleClone) { HloSharding sharding = HloSharding::AssignDevice(5); HloComputation::Builder builder(TestName()); auto* constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2<float>({ {1, 2}, {3, 4}, }))); auto* tuple = builder.AddInstruction(HloInstruction::CreateTuple({constant, constant})); tuple->set_sharding(HloSharding::SingleTuple(tuple->shape(), sharding)); auto clone_shape = ShapeUtil::MakeShape(F32, {2, 2}); clone_shape = ShapeUtil::MakeTupleShape({clone_shape, clone_shape, clone_shape}); auto tuple_clone = tuple->CloneWithNewOperands(clone_shape, {}); EXPECT_FALSE(tuple_clone->has_sharding()); } TEST_F(HloInstructionTest, DoNotPreserveShardingThroughLeafRankIncompatibleClone) { HloSharding sharding = HloSharding::AssignDevice(5); HloComputation::Builder builder(TestName()); auto* constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2<float>({ {1, 2}, {3, 4}, }))); auto* tuple = builder.AddInstruction(HloInstruction::CreateTuple({constant, constant})); tuple->set_sharding(HloSharding::SingleTuple(tuple->shape(), sharding)); auto clone_shape = ShapeUtil::MakeShape(F32, {1, 2, 3}); clone_shape = ShapeUtil::MakeTupleShape({clone_shape, clone_shape}); auto tuple_clone = tuple->CloneWithNewOperands(clone_shape, {}); EXPECT_FALSE(tuple_clone->has_sharding()); } TEST_F(HloInstructionTest, FusionOpWithCalledComputations) { const Shape scalar_shape = ShapeUtil::MakeShape(F32, {}); auto module = CreateNewVerifiedModule(); auto make_map_computation = [&]() { auto builder = HloComputation::Builder("FusionMap"); builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "param")); return module->AddEmbeddedComputation(builder.Build()); }; HloComputation* computation_x = make_map_computation(); HloComputation* computation_y = make_map_computation(); HloComputation::Builder builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto map_1_x = builder.AddInstruction( HloInstruction::CreateMap(scalar_shape, {constant}, computation_x)); auto map_2_x = builder.AddInstruction( HloInstruction::CreateMap(scalar_shape, {map_1_x}, computation_x)); auto map_3_y = builder.AddInstruction( HloInstruction::CreateMap(scalar_shape, {map_2_x}, computation_y)); auto* computation = module->AddEntryComputation(builder.Build()); auto* fusion = computation->CreateFusionInstruction( {map_3_y}, HloInstruction::FusionKind::kLoop); auto* fused_computation = fusion->fused_instructions_computation(); EXPECT_THAT(fusion->called_computations(), ElementsAre(fused_computation)); fusion->FuseInstruction(map_2_x); EXPECT_THAT(fusion->called_computations(), ElementsAre(fused_computation)); fusion->FuseInstruction(map_1_x); EXPECT_THAT(fusion->called_computations(), ElementsAre(fused_computation)); } TEST_F(HloInstructionTest, ComplexFusionOp) { HloComputation::Builder builder(TestName()); auto c1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto c2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.1f))); auto c3 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(9.0f))); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, c1, c2)); auto clamp = builder.AddInstruction( HloInstruction::CreateTernary(r0f32_, HloOpcode::kClamp, c2, add, add)); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, add)); auto mul = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kMultiply, exp, c3)); auto sub = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kSubtract, mul, clamp)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({sub, sub, mul, c1})); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* fusion = computation->CreateFusionInstruction( {tuple, sub, mul, exp, clamp, add}, HloInstruction::FusionKind::kLoop); EXPECT_THAT(fusion->operands(), ElementsAre(c1, c3, c2)); EXPECT_THAT(c1->users(), ElementsAre(fusion)); } static bool Identical(const HloInstruction& instruction1, const HloInstruction& instruction2) { EXPECT_TRUE(instruction1.Identical(instruction1)); EXPECT_TRUE(instruction2.Identical(instruction2)); bool is_equal = instruction1.Identical(instruction2); EXPECT_EQ(is_equal, instruction2.Identical(instruction1)); return is_equal; } static bool StructuralEqual(const HloInstruction& instruction1, const HloInstruction& instruction2) { auto eq_operand_shapes = [](const HloInstruction* a, const HloInstruction* b) { return ShapeUtil::Equal(a->shape(), b->shape()); }; auto eq_computations = [](const HloComputation* a, const HloComputation* b) { return *a == *b; }; EXPECT_TRUE( instruction1.Identical(instruction1, eq_operand_shapes, eq_computations)); EXPECT_TRUE( instruction2.Identical(instruction2, eq_operand_shapes, eq_computations)); bool is_equal = instruction1.Identical(instruction2, eq_operand_shapes, eq_computations); EXPECT_EQ(is_equal, instruction2.Identical(instruction1, eq_operand_shapes, eq_computations)); return is_equal; } TEST_F(HloInstructionTest, IdenticalInstructions) { auto operand1 = HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}})); auto operand2 = HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{10.0, 20.0}, {30.0, 40.0}})); auto vector_operand = HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({42.0, 123.0})); Shape shape = operand1->shape(); HloInstruction* op1 = operand1.get(); HloInstruction* op2 = operand2.get(); EXPECT_TRUE( Identical(*HloInstruction::CreateUnary(shape, HloOpcode::kCopy, op1), *HloInstruction::CreateUnary(shape, HloOpcode::kCopy, op1))); EXPECT_FALSE( Identical(*HloInstruction::CreateUnary(shape, HloOpcode::kCopy, op1), *HloInstruction::CreateUnary(shape, HloOpcode::kCopy, op2))); EXPECT_FALSE( Identical(*HloInstruction::CreateUnary(shape, HloOpcode::kCopy, op1), *HloInstruction::CreateUnary(shape, HloOpcode::kNegate, op1))); EXPECT_TRUE(Identical(*HloInstruction::CreateTuple({op1, op2}), *HloInstruction::CreateTuple({op1, op2}))); EXPECT_FALSE(Identical(*HloInstruction::CreateTuple({op1, op2}), *HloInstruction::CreateTuple({op2, op1}))); EXPECT_TRUE(Identical(*HloInstruction::CreateBroadcast(shape, op1, {0, 1}), *HloInstruction::CreateBroadcast(shape, op1, {0, 1}))); EXPECT_FALSE(Identical(*HloInstruction::CreateBroadcast(shape, op1, {0, 1}), *HloInstruction::CreateBroadcast(shape, op1, {1, 0}))); Shape bcast_shape1 = ShapeUtil::MakeShape(F32, {2, 2, 42}); Shape bcast_shape2 = ShapeUtil::MakeShape(F32, {2, 2, 123}); EXPECT_FALSE( Identical(*HloInstruction::CreateBroadcast(bcast_shape1, op1, {0, 1}), *HloInstruction::CreateBroadcast(bcast_shape2, op1, {0, 1}))); EXPECT_TRUE(Identical( *HloInstruction::CreateBinary(shape, HloOpcode::kAdd, op1, op2), *HloInstruction::CreateBinary(shape, HloOpcode::kAdd, op1, op2))); EXPECT_FALSE(Identical( *HloInstruction::CreateBinary(shape, HloOpcode::kAdd, op1, op2), *HloInstruction::CreateBinary(shape, HloOpcode::kDivide, op2, op1))); EXPECT_FALSE(Identical( *HloInstruction::CreateBinary(shape, HloOpcode::kAdd, op1, op2), *HloInstruction::CreateBinary(shape, HloOpcode::kDivide, op1, op2))); } TEST_F(HloInstructionTest, IdenticalCallInstructions) { const char* const hlo_string = R"( HloModule Module subcomp1 (x: f32[]) -> f32[] { x = f32[] parameter(0) ROOT n = f32[] sine(x) } subcomp2 (x: f32[]) -> f32[] { x = f32[] parameter(0) ROOT n = f32[] cosine(x) } ENTRY entry (param: f32[]) -> (f32[], f32[], f32[]) { p = f32[] parameter(0) t1 = f32[] call(p), to_apply=subcomp1 t2 = f32[] call(p), to_apply=subcomp1 t3 = f32[] call(p), to_apply=subcomp2 ROOT t = (f32[], f32[], f32[]) tuple(t1, t2, t3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto* root = module->entry_computation()->root_instruction(); auto* t1 = root->operand(0); auto* t2 = root->operand(1); auto* t3 = root->operand(2); EXPECT_TRUE(StructuralEqual(*t1, *t2)); EXPECT_FALSE(StructuralEqual(*t1, *t3)); } TEST_F(HloInstructionTest, FunctionVisitor) { const Shape f32 = ShapeUtil::MakeShape(F32, {}); HloComputation::Builder builder(TestName()); auto param = builder.AddInstruction(HloInstruction::CreateParameter(0, f32, "0")); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(f32, HloOpcode::kNegate, param)); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(f32, HloOpcode::kExp, param)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32, HloOpcode::kAdd, negate, exp)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); int visit_num = 0; absl::flat_hash_map<HloInstruction*, int> visit_order; FunctionVisitor visitor([&visit_num, &visit_order](HloInstruction* inst) { EXPECT_FALSE(visit_order.contains(inst)); visit_order[inst] = visit_num; visit_num++; return absl::OkStatus(); }); EXPECT_IS_OK(add->Accept(&visitor)); EXPECT_EQ(0, visit_order.at(param)); EXPECT_TRUE(visit_order.at(exp) == 1 || visit_order.at(exp) == 2); EXPECT_TRUE(visit_order.at(negate) == 1 || visit_order.at(negate) == 2); EXPECT_NE(visit_order.at(exp), visit_order.at(negate)); EXPECT_EQ(3, visit_order.at(add)); } TEST_F(HloInstructionTest, FullyElementwise) { const Shape r1f32 = ShapeUtil::MakeShape(F32, {5}); HloComputation::Builder builder(TestName()); auto x = builder.AddInstruction(HloInstruction::CreateParameter(0, r1f32, "x")); auto y = builder.AddInstruction(HloInstruction::CreateParameter(1, r1f32, "y")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r1f32, HloOpcode::kAdd, x, y)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_TRUE(add->IsElementwise()); for (int i = 0; i < add->operand_count(); ++i) { EXPECT_TRUE(add->IsElementwiseOnOperand(i)); } } TEST_F(HloInstructionTest, MapIsElementwise) { auto module = CreateNewVerifiedModule(); const Shape r2f32 = ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 10}, {1, 0}); HloComputation::Builder builder(TestName()); HloComputation::Builder map_builder("id"); map_builder.AddInstruction( HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p0")); auto map_computation = module->AddEmbeddedComputation(map_builder.Build()); auto x = builder.AddInstruction(HloInstruction::CreateParameter(0, r2f32, "x")); auto map = builder.AddInstruction( HloInstruction::CreateMap(r2f32, {x}, map_computation)); module->AddEntryComputation(builder.Build()); EXPECT_TRUE(map->IsElementwise()); } TEST_F(HloInstructionTest, PartiallyElementwise) { const Shape r1f32 = ShapeUtil::MakeShape(F32, {5}); const Shape r2f32 = ShapeUtil::MakeShape(F32, {3, 5}); HloComputation::Builder builder("PartiallyElementwise"); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, r2f32, "p0")); HloInstruction* p1 = builder.AddInstruction(HloInstruction::CreateParameter(1, r2f32, "p1")); HloInstruction* p2 = builder.AddInstruction(HloInstruction::CreateParameter(2, r2f32, "p2")); HloInstruction* p3 = builder.AddInstruction(HloInstruction::CreateParameter(3, r1f32, "p3")); HloInstruction* mul = builder.AddInstruction( HloInstruction::CreateBinary(r2f32, HloOpcode::kMultiply, p0, p1)); HloInstruction* div = builder.AddInstruction( HloInstruction::CreateBinary(r2f32, HloOpcode::kDivide, mul, p2)); HloInstruction* broadcast = builder.AddInstruction(HloInstruction::CreateBroadcast(r2f32, p3, {1})); HloInstruction* max = builder.AddInstruction( HloInstruction::CreateBinary(r2f32, HloOpcode::kMaximum, div, broadcast)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); HloInstruction* fusion = computation->CreateFusionInstruction( {max, broadcast, div, mul}, HloInstruction::FusionKind::kLoop); EXPECT_FALSE(fusion->IsElementwise()); for (int64_t operand_idx = 0; operand_idx < fusion->operand_count(); ++operand_idx) { const HloInstruction* operand = fusion->operand(operand_idx); if (operand == p3) { EXPECT_FALSE(fusion->IsElementwiseOnOperand(operand_idx)); } else { EXPECT_TRUE(fusion->IsElementwiseOnOperand(operand_idx)); } } } TEST_F(HloInstructionTest, PartiallyElementwiseWithReuse) { const Shape r0f32 = ShapeUtil::MakeShape(F32, {}); const Shape r1f32 = ShapeUtil::MakeShape(F32, {5}); HloComputation::Builder builder("PartiallyElementwiseWithReuse"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, r1f32, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32, "y")); HloInstruction* broadcast = builder.AddInstruction(HloInstruction::CreateBroadcast(r1f32, y, {})); HloInstruction* min = builder.AddInstruction( HloInstruction::CreateBinary(r1f32, HloOpcode::kMinimum, x, broadcast)); HloInstruction* sub = builder.AddInstruction(HloInstruction::CreateBinary( r1f32, HloOpcode::kSubtract, min, broadcast)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); HloInstruction* fusion = computation->CreateFusionInstruction( {sub, broadcast, min}, HloInstruction::FusionKind::kLoop); EXPECT_FALSE(fusion->IsElementwise()); for (int64_t operand_idx = 0; operand_idx < fusion->operand_count(); ++operand_idx) { if (fusion->operand(operand_idx) == y) { EXPECT_FALSE(fusion->IsElementwiseOnOperand(operand_idx)); } else { EXPECT_TRUE(fusion->IsElementwiseOnOperand(operand_idx)); } } } TEST_F(HloInstructionTest, CloneOfFusionPreservesShape) { const Shape s1 = ShapeUtil::MakeShape(F32, {5, 10}); const Shape s2 = ShapeUtil::MakeShape(F32, {20, 10}); const Shape s2t = ShapeUtil::MakeShape(F32, {10, 20}); const Shape sout = ShapeUtil::MakeShape(F32, {5, 20}); HloComputation::Builder builder("TransposeDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, s1, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, s2, "y")); HloInstruction* reshape = builder.AddInstruction(HloInstruction::CreateTranspose(s2t, y, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); HloInstruction* dot = builder.AddInstruction(HloInstruction::CreateDot( sout, x, reshape, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); HloInstruction* fusion = computation->CreateFusionInstruction( {dot, reshape}, HloInstruction::FusionKind::kLoop); auto fusion2 = fusion->Clone(); const HloInstruction* root = fusion->fused_expression_root(); const HloInstruction* root2 = fusion2->fused_expression_root(); EXPECT_TRUE(ShapeUtil::Equal(root->shape(), root2->shape())); EXPECT_TRUE( ShapeUtil::Equal(root->operand(0)->shape(), root2->operand(0)->shape())); EXPECT_TRUE( ShapeUtil::Equal(root->operand(1)->shape(), root2->operand(1)->shape())); EXPECT_TRUE(ShapeUtil::Equal(root->operand(1)->operand(0)->shape(), root2->operand(1)->operand(0)->shape())); EXPECT_TRUE(StructuralEqual(*fusion, *fusion2)); } TEST_F(HloInstructionTest, FuseInstructionKeepsInstruction) { constexpr char kHloString[] = R"( HloModule test_module fused_add { p0 = f32[32,32]{1,0} parameter(0) p1 = f32[32,32]{1,0} parameter(1) ROOT add = f32[32,32]{1,0} add(p0, p1) } ENTRY reduce { p2 = f32[32,32]{1,0} parameter(0) p3 = f32[32,32]{1,0} parameter(1) c1 = f32[] constant(1) broadcast = f32[32,32]{1,0} broadcast(c1), dimensions={} mul = f32[32,32]{1,0} multiply(p2, p3) ROOT add = f32[32,32]{1,0} fusion(mul, broadcast), kind=kLoop, calls=fused_add })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloString)); HloInstruction* fused_add = module->entry_computation()->root_instruction(); HloInstruction* mul = fused_add->mutable_operand(0); EXPECT_EQ(1, mul->user_count()); fused_add->FuseInstruction(mul); EXPECT_EQ(0, mul->user_count()); EXPECT_EQ(fused_add->parent(), mul->parent()); } TEST_F(HloInstructionTest, FuseInstructionIntoMultiOutputKeepsInstruction) { constexpr char kHloString[] = R"( HloModule test_module fused_add { p0 = f32[32,32]{1,0} parameter(0) p1 = f32[32,32]{1,0} parameter(1) ROOT add = f32[32,32]{1,0} add(p0, p1) } ENTRY reduce { p2 = f32[32,32]{1,0} parameter(0) p3 = f32[32,32]{1,0} parameter(1) c1 = f32[] constant(1) mul = f32[32,32]{1,0} multiply(p2, p3) broadcast = f32[32,32]{1,0} broadcast(c1), dimensions={} add = f32[32,32]{1,0} fusion(mul, broadcast), kind=kLoop, calls=fused_add ROOT root = (f32[32,32]{1,0}, f32[32,32]{1,0}) tuple(mul, add) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloString)); HloInstruction* root = module->entry_computation()->root_instruction(); HloInstruction* mul = root->mutable_operand(0); HloInstruction* fused_add = root->mutable_operand(1); EXPECT_EQ(2, mul->user_count()); fused_add->FuseInstructionIntoMultiOutput(mul); EXPECT_EQ(0, mul->user_count()); EXPECT_EQ(root->parent(), mul->parent()); } TEST_F(HloInstructionTest, NoRedundantFusionOperandsAfterReplacingUse) { const Shape s = ShapeUtil::MakeShape(F32, {10, 10}); HloComputation::Builder builder("TransposeDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, s, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, s, "y")); HloInstruction* reshape = builder.AddInstruction(HloInstruction::CreateTranspose(s, y, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); HloInstruction* dot = builder.AddInstruction(HloInstruction::CreateDot( s, x, reshape, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); HloInstruction* fusion = computation->CreateFusionInstruction( {dot, reshape}, HloInstruction::FusionKind::kLoop); EXPECT_TRUE(x->ReplaceAllUsesWith(y).ok()); EXPECT_THAT(fusion->operands(), UnorderedElementsAre(y)); EXPECT_EQ(fusion->fused_instructions_computation()->num_parameters(), 1); } TEST_F(HloInstructionTest, FusionEquality) { auto module = CreateNewVerifiedModule(); HloComputation::Builder builder(TestName()); auto parameter = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "x")); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, parameter)); auto neg = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, parameter)); auto* computation = module->AddEntryComputation(builder.Build()); auto* fusion = computation->CreateFusionInstruction( {exp}, HloInstruction::FusionKind::kLoop); auto* fusion2 = computation->CreateFusionInstruction( {neg}, HloInstruction::FusionKind::kLoop); EXPECT_FALSE(StructuralEqual(*fusion, *fusion2)); auto clone = fusion->Clone(); EXPECT_TRUE(StructuralEqual(*fusion, *clone)); } TEST_F(HloInstructionTest, NestedFusionEquality) { auto module = CreateNewVerifiedModule(); HloComputation::Builder builder(TestName()); Shape data_shape = ShapeUtil::MakeShape(F32, {2, 2}); auto a = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{1.0, 0.0}, {0.0, 1.0}}))); auto b = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{2.0, 2.0}, {2.0, 2.0}}))); auto b_t = builder.AddInstruction( HloInstruction::CreateTranspose(data_shape, b, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto dot = builder.AddInstruction(HloInstruction::CreateDot( data_shape, a, b_t, dot_dnums, DefaultPrecisionConfig(2))); auto one = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto add_operand = builder.AddInstruction( HloInstruction::CreateBroadcast(data_shape, one, {})); auto add = builder.AddInstruction(HloInstruction::CreateBinary( data_shape, HloOpcode::kAdd, dot, add_operand)); auto sub = builder.AddInstruction(HloInstruction::CreateBinary( data_shape, HloOpcode::kSubtract, dot, add_operand)); builder.AddInstruction( HloInstruction::CreateBinary(data_shape, HloOpcode::kMultiply, add, sub)); auto computation = module->AddEntryComputation(builder.Build()); auto nested_fusion = computation->CreateFusionInstruction( {dot, b_t}, HloInstruction::FusionKind::kLoop); auto fusion = computation->CreateFusionInstruction( {add, nested_fusion}, HloInstruction::FusionKind::kOutput); auto fusion2 = computation->CreateFusionInstruction( {sub, nested_fusion}, HloInstruction::FusionKind::kOutput); auto clone = fusion->Clone(); EXPECT_TRUE(StructuralEqual(*fusion, *clone)); EXPECT_FALSE(StructuralEqual(*fusion, *fusion2)); } TEST_F(HloInstructionTest, CloneSuffixNames) { auto foo = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "foo"); EXPECT_EQ(foo->Clone()->name(), "foo.clone"); EXPECT_EQ(foo->Clone()->Clone()->name(), "foo.clone2"); EXPECT_EQ(foo->Clone()->Clone()->Clone()->name(), "foo.clone3"); EXPECT_EQ(foo->Clone("bar")->name(), "foo.bar"); EXPECT_EQ(foo->Clone("bar")->Clone("bar")->name(), "foo.bar2"); EXPECT_EQ(foo->Clone("bar")->Clone("bar")->Clone()->name(), "foo.bar2.clone"); auto foo_baz = HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "foo.baz"); EXPECT_EQ(foo_baz->Clone()->name(), "foo.baz.clone"); auto foo_clone234 = HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "foo.clone234"); EXPECT_EQ(foo_clone234->Clone()->name(), "foo.clone235"); auto foo_clonexyz = HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "foo.clonexyz"); EXPECT_EQ(foo_clonexyz->Clone()->name(), "foo.clonexyz.clone"); auto foo_clone_clone3 = HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "foo.clone.clone3"); EXPECT_EQ(foo_clone_clone3->Clone()->name(), "foo.clone.clone4"); } TEST_F(HloInstructionTest, StringifyDot) { const Shape s1 = ShapeUtil::MakeShape(F32, {5, 10}); const Shape s2 = ShapeUtil::MakeShape(F32, {20, 10}); const Shape s2t = ShapeUtil::MakeShape(F32, {10, 20}); const Shape sout = ShapeUtil::MakeShape(F32, {5, 20}); HloComputation::Builder builder("TransposeDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, s1, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, s2, "y")); HloInstruction* reshape = builder.AddInstruction(HloInstruction::CreateTranspose(s2t, y, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); HloInstruction* dot = builder.AddInstruction(HloInstruction::CreateDot( sout, x, reshape, dot_dnums, DefaultPrecisionConfig(2))); auto options = HloPrintOptions().set_print_metadata(false); EXPECT_EQ(dot->ToString(options), "%dot = f32[5,20]{1,0} dot(f32[5,10]{1,0} %x, f32[10,20]{1,0} " "%transpose), lhs_contracting_dims={1}, rhs_contracting_dims={0}"); auto options2 = HloPrintOptions() .set_print_metadata(false) .set_print_operand_shape(false) .set_print_percent(false) .set_include_layout_in_shapes(false); EXPECT_EQ(dot->ToString(options2), "dot = f32[5,20] dot(x, transpose), " "lhs_contracting_dims={1}, rhs_contracting_dims={0}"); } TEST_F(HloInstructionTest, StringifySparseDot) { HloComputation::Builder builder("SparseDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {5, 16}), "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {32, 20}), "y")); HloInstruction* meta = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(U16, {5, 2}), "meta")); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); SparsityDescriptor sparsity_descriptor; sparsity_descriptor.set_type(SparsityType::SPARSITY_STRUCTURED_N_M); sparsity_descriptor.set_n(2); sparsity_descriptor.set_m(4); sparsity_descriptor.set_index(0); sparsity_descriptor.set_dimension(1); std::vector<HloInstruction*> meta_operands = {meta}; HloInstruction* dot = builder.AddInstruction(HloInstruction::CreateDot( ShapeUtil::MakeShape(F32, {5, 20}), x, y, dot_dnums, DefaultPrecisionConfig(2), {sparsity_descriptor}, meta_operands)); EXPECT_EQ(dot->ToString(), "%dot = f32[5,20]{1,0} dot(f32[5,16]{1,0} %x, f32[32,20]{1,0} %y, " "u16[5,2]{1,0} %meta), lhs_contracting_dims={1}, " "rhs_contracting_dims={0}, sparsity=L.1@2:4"); } TEST_F(HloInstructionTest, StringifyConditional) { const Shape s1 = ShapeUtil::MakeShape(F32, {5, 10}); const Shape s2 = ShapeUtil::MakeShape(F32, {20, 10}); const Shape s2t = ShapeUtil::MakeShape(F32, {10, 20}); const Shape sout = ShapeUtil::MakeShape(F32, {5, 20}); HloComputation::Builder builder("TransposeDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, s1, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, s2, "y")); HloInstruction* reshape = builder.AddInstruction(HloInstruction::CreateTranspose(s2t, y, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); builder.AddInstruction(HloInstruction::CreateDot(sout, x, reshape, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto options = HloPrintOptions().set_print_metadata(false); auto pred = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(true))); HloInstruction* conditional = builder.AddInstruction(HloInstruction::CreateConditional( sout, pred, x, computation, x, computation)); EXPECT_EQ(conditional->ToString(options), "%conditional = f32[5,20]{1,0} conditional(pred[] %constant, " "f32[5,10]{1,0} %x, f32[5,10]{1,0} %x), " "true_computation=%TransposeDot, false_computation=%TransposeDot"); } TEST_F(HloInstructionTest, StringifyWhile) { const Shape s1 = ShapeUtil::MakeShape(F32, {5, 10}); const Shape s2 = ShapeUtil::MakeShape(F32, {20, 10}); const Shape s2t = ShapeUtil::MakeShape(F32, {10, 20}); const Shape sout = ShapeUtil::MakeShape(F32, {5, 20}); HloComputation::Builder builder("TransposeDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, s1, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, s2, "y")); HloInstruction* reshape = builder.AddInstruction(HloInstruction::CreateTranspose(s2t, y, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); builder.AddInstruction(HloInstruction::CreateDot(sout, x, reshape, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto options = HloPrintOptions().set_print_metadata(false); HloInstruction* loop = builder.AddInstruction( HloInstruction::CreateWhile(sout, computation, computation, x)); EXPECT_EQ(loop->ToString(options), "%while = f32[5,20]{1,0} while(f32[5,10]{1,0} %x), " "condition=%TransposeDot, body=%TransposeDot"); } TEST_F(HloInstructionTest, GetSetStatisticsViz) { const Shape shape = ShapeUtil::MakeShape(F32, {5, 10}); HloComputation::Builder builder(TestName()); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "x")); StatisticsViz statistics_viz; statistics_viz.set_stat_index_to_visualize(-1); x->set_statistics_viz(statistics_viz); EXPECT_FALSE(x->has_statistics()); EXPECT_EQ(x->statistics_viz().stat_index_to_visualize(), -1); Statistic statistic; statistic.set_stat_name("stat-1"); statistic.set_stat_val(30.0); x->add_single_statistic(statistic); x->set_stat_index_to_visualize(0); EXPECT_TRUE(x->has_statistics()); EXPECT_TRUE( protobuf_util::ProtobufEquals(x->statistic_to_visualize(), statistic)); statistic.set_stat_val(40.0); *statistics_viz.add_statistics() = statistic; x->set_statistics_viz(statistics_viz); EXPECT_TRUE( protobuf_util::ProtobufEquals(x->statistics_viz(), statistics_viz)); } TEST_F(HloInstructionTest, StringifyStatisticsViz) { const Shape shape = ShapeUtil::MakeShape(F32, {5, 10}); HloComputation::Builder builder(TestName()); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "y")); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, x, y)); add->set_statistics_viz({}); EXPECT_EQ(add->ToString(), "%add = f32[5,10]{1,0} add(f32[5,10]{1,0} %x, f32[5,10]{1,0} %y)"); auto CreateStatisticsVizWithStatistics = [](int64_t stat_index_to_visualize, std::initializer_list<std::pair<absl::string_view, double>> statistics) -> StatisticsViz { StatisticsViz statistics_viz; statistics_viz.set_stat_index_to_visualize(stat_index_to_visualize); auto create_statistic = [](absl::string_view statistic_name, double statistic_value) { Statistic statistic; statistic.set_stat_name(std::string(statistic_name)); statistic.set_stat_val(statistic_value); return statistic; }; for (const auto& [statistic_name, statistic_value] : statistics) { *statistics_viz.add_statistics() = create_statistic(statistic_name, statistic_value); } return statistics_viz; }; add->set_statistics_viz(CreateStatisticsVizWithStatistics( 1, {{"stat-1", 33.0}, {"stat-2", 44.0}})); EXPECT_EQ(add->ToString(), "%add = f32[5,10]{1,0} add(f32[5,10]{1,0} %x, f32[5,10]{1,0} %y), " "statistics={visualizing_index=1,stat-1=33,stat-2=44}"); } TEST_F(HloInstructionTest, StringifyGather_0) { Shape input_tensor_shape = ShapeUtil::MakeShape(F32, {50, 49, 48, 47, 46}); Shape start_indices_tensor_shape = ShapeUtil::MakeShape(S64, {10, 9, 8, 7, 5}); Shape gather_result_shape = ShapeUtil::MakeShape(F32, {10, 9, 8, 7, 30, 29, 28, 27, 26}); HloComputation::Builder builder("Gather"); HloInstruction* input = builder.AddInstruction( HloInstruction::CreateParameter(0, input_tensor_shape, "input_tensor")); HloInstruction* start_indices = builder.AddInstruction(HloInstruction::CreateParameter( 1, start_indices_tensor_shape, "start_indices")); HloInstruction* gather_instruction = builder.AddInstruction( HloInstruction::CreateGather(gather_result_shape, input, start_indices, HloGatherInstruction::MakeGatherDimNumbers( {4, 5, 6, 7, 8}, {}, {0, 1, 2, 3, 4}, 4), {30, 29, 28, 27, 26}, false)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(gather_instruction->ToString(), "%gather = f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} " "gather(f32[50,49,48,47,46]{4,3,2,1,0} %input_tensor, " "s64[10,9,8,7,5]{4,3,2,1,0} %start_indices), " "offset_dims={4,5,6,7,8}, collapsed_slice_dims={}, " "start_index_map={0,1,2,3,4}, " "index_vector_dim=4, slice_sizes={30,29,28,27,26}"); } TEST_F(HloInstructionTest, StringifyGather_1) { Shape input_tensor_shape = ShapeUtil::MakeShape(F32, {50, 49, 48, 47, 46}); Shape start_indices_tensor_shape = ShapeUtil::MakeShape(S64, {10, 9, 5, 7, 6}); Shape gather_result_shape = ShapeUtil::MakeShape(F32, {10, 9, 7, 6, 30, 29, 28, 27, 26}); HloComputation::Builder builder("Gather"); HloInstruction* input = builder.AddInstruction( HloInstruction::CreateParameter(0, input_tensor_shape, "input_tensor")); HloInstruction* start_indices = builder.AddInstruction(HloInstruction::CreateParameter( 1, start_indices_tensor_shape, "start_indices")); HloInstruction* gather_instruction = builder.AddInstruction( HloInstruction::CreateGather(gather_result_shape, input, start_indices, HloGatherInstruction::MakeGatherDimNumbers( {4, 5, 6, 7, 8}, {}, {0, 1, 2, 3, 4}, 2), {30, 29, 28, 27, 26}, false)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(gather_instruction->ToString(), "%gather = f32[10,9,7,6,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} " "gather(f32[50,49,48,47,46]{4,3,2,1,0} %input_tensor, " "s64[10,9,5,7,6]{4,3,2,1,0} %start_indices), " "offset_dims={4,5,6,7,8}, collapsed_slice_dims={}, " "start_index_map={0,1,2,3,4}, " "index_vector_dim=2, slice_sizes={30,29,28,27,26}"); } TEST_F(HloInstructionTest, StringifyScatter) { Shape input_tensor_shape = ShapeUtil::MakeShape(F32, {50, 49, 48, 47, 46}); Shape scatter_indices_tensor_shape = ShapeUtil::MakeShape(S64, {10, 9, 5, 7, 6}); Shape scatter_updates_shape = ShapeUtil::MakeShape(F32, {10, 9, 7, 6, 30, 29, 28, 27, 26}); HloComputation::Builder builder("Scatter"); HloInstruction* input = builder.AddInstruction( HloInstruction::CreateParameter(0, input_tensor_shape, "input_tensor")); HloInstruction* scatter_indices = builder.AddInstruction(HloInstruction::CreateParameter( 1, scatter_indices_tensor_shape, "scatter_indices")); HloInstruction* scatter_updates = builder.AddInstruction(HloInstruction::CreateParameter( 2, scatter_updates_shape, "scatter_updates")); HloComputation::Builder update_builder("Scatter.update"); update_builder.AddInstruction( HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p1")); update_builder.AddInstruction( HloInstruction::CreateParameter(1, ShapeUtil::MakeShape(F32, {}), "p2")); auto module = CreateNewVerifiedModule(); auto* update_computation = module->AddEmbeddedComputation(update_builder.Build()); HloInstruction* scatter_instruction = builder.AddInstruction(HloInstruction::CreateScatter( input_tensor_shape, input, scatter_indices, scatter_updates, update_computation, HloScatterInstruction::MakeScatterDimNumbers( {4, 5, 6, 7, 8}, {}, {0, 1, 2, 3, 4}, 2), false, false)); module->AddEntryComputation(builder.Build()); EXPECT_EQ( scatter_instruction->ToString(), "%scatter = f32[50,49,48,47,46]{4,3,2,1,0} " "scatter(f32[50,49,48,47,46]{4,3,2,1,0} %input_tensor, " "s64[10,9,5,7,6]{4,3,2,1,0} %scatter_indices, " "f32[10,9,7,6,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} %scatter_updates), " "update_window_dims={4,5,6,7,8}, inserted_window_dims={}, " "scatter_dims_to_operand_dims={0,1,2,3,4}, index_vector_dim=2, " "to_apply=%Scatter.update"); } TEST_F(HloInstructionTest, StringifyAsyncOps) { const Shape s1 = ShapeUtil::MakeShape(F32, {10}); const Shape s2 = ShapeUtil::MakeShape(F32, {20}); const Shape s_tuple = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeTupleShape({s1}), s2, ShapeUtil::MakeShape(S32, {})}); HloComputation::Builder async_builder("AsyncOp"); HloInstruction* param = async_builder.AddInstruction( HloInstruction::CreateParameter(0, s1, "p0")); async_builder.AddInstruction( HloInstruction::CreateCustomCall(s2, {param}, "foo")); std::unique_ptr<HloComputation> async_computation = async_builder.Build(); HloComputation::Builder entry_builder("Entry"); HloInstruction* entry_param = entry_builder.AddInstruction( HloInstruction::CreateParameter(0, s1, "p0")); HloInstruction* async_start = entry_builder.AddInstruction(HloInstruction::CreateAsyncStart( s_tuple, {entry_param}, async_computation.get(), "parallel_thread")); HloInstruction* async_update = entry_builder.AddInstruction( HloInstruction::CreateAsyncUpdate(s_tuple, async_start)); entry_builder.AddInstruction( HloInstruction::CreateAsyncDone(s2, async_update)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(entry_builder.Build()); module->AddEmbeddedComputation(std::move(async_computation)); const std::string expected_with_syntax_sugar = R"(HloModule StringifyAsyncOps, entry_computation_layout={(f32[10]{0})->f32[20]{0}} ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %custom-call-start = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-start(f32[10]{0} %p0), async_execution_thread="parallel_thread", custom_call_target="foo" %custom-call-update = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-update(((f32[10]{0}), f32[20]{0}, s32[]) %custom-call-start) ROOT %custom-call-done = f32[20]{0} custom-call-done(((f32[10]{0}), f32[20]{0}, s32[]) %custom-call-update) } )"; EXPECT_EQ(module->ToString(), expected_with_syntax_sugar); const std::string expected_without_syntax_sugar = R"(HloModule StringifyAsyncOps, entry_computation_layout={(f32[10]{0})->f32[20]{0}} %AsyncOp (p0.1: f32[10]) -> f32[20] { %p0.1 = f32[10]{0} parameter(0) ROOT %custom-call = f32[20]{0} custom-call(f32[10]{0} %p0.1), custom_call_target="foo" }, execution_thread="parallel_thread" ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %custom-call-start = ((f32[10]{0}), f32[20]{0}, s32[]) async-start(f32[10]{0} %p0), async_execution_thread="parallel_thread", calls=%AsyncOp %custom-call-update = ((f32[10]{0}), f32[20]{0}, s32[]) async-update(((f32[10]{0}), f32[20]{0}, s32[]) %custom-call-start) ROOT %custom-call-done = f32[20]{0} async-done(((f32[10]{0}), f32[20]{0}, s32[]) %custom-call-update) } )"; auto options = HloPrintOptions().set_syntax_sugar_async_ops(false); EXPECT_EQ(module->ToString(options), expected_without_syntax_sugar); } TEST_F(HloInstructionTest, StringifyAsyncOpsWithReduceScatter) { const Shape rs_input_shape = ShapeUtil::MakeShape(F32, {20}); const Shape rs_output_shape = ShapeUtil::MakeShape(F32, {10}); std::unique_ptr<HloComputation> add_computation; { const Shape scalar_shape = ShapeUtil::MakeScalarShape(F32); HloComputation::Builder add_builder("add"); HloInstruction* param0 = add_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "p0")); HloInstruction* param1 = add_builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "p1")); add_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, param0, param1)); add_computation = add_builder.Build(); } std::unique_ptr<HloComputation> async_computation; { HloComputation::Builder async_builder("AsyncOp"); HloInstruction* param = async_builder.AddInstruction( HloInstruction::CreateParameter(0, rs_input_shape, "pasync")); async_builder.AddInstruction(HloInstruction::CreateReduceScatter( rs_output_shape, {param}, add_computation.get(), CollectiveDeviceList(), false, std::nullopt, false, 0)); async_computation = async_builder.Build(); } const Shape async_start_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeTupleShape({rs_input_shape}), rs_output_shape}); HloComputation::Builder entry_builder("Entry"); HloInstruction* entry_param = entry_builder.AddInstruction( HloInstruction::CreateParameter(0, rs_input_shape, "pentry")); HloInstruction* async_start = entry_builder.AddInstruction(HloInstruction::CreateAsyncStart( async_start_shape, {entry_param}, async_computation.get(), "parallel_thread")); HloInstruction* async_update = entry_builder.AddInstruction( HloInstruction::CreateAsyncUpdate(async_start_shape, async_start)); entry_builder.AddInstruction( HloInstruction::CreateAsyncDone(rs_output_shape, async_update)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(entry_builder.Build()); module->AddEmbeddedComputation(std::move(async_computation)); module->AddEmbeddedComputation(std::move(add_computation)); const std::string expected_with_syntax_sugar = R"(HloModule StringifyAsyncOpsWithReduceScatter, entry_computation_layout={(f32[20]{0})->f32[10]{0}} %add (p0: f32[], p1: f32[]) -> f32[] { %p0 = f32[] parameter(0) %p1 = f32[] parameter(1) ROOT %add = f32[] add(f32[] %p0, f32[] %p1) }, execution_thread="parallel_thread" ENTRY %Entry (pentry: f32[20]) -> f32[10] { %pentry = f32[20]{0} parameter(0) %reduce-scatter-start = ((f32[20]{0}), f32[10]{0}) reduce-scatter-start(f32[20]{0} %pentry), async_execution_thread="parallel_thread", replica_groups={}, dimensions={0}, to_apply=%add %reduce-scatter-update = ((f32[20]{0}), f32[10]{0}) reduce-scatter-update(((f32[20]{0}), f32[10]{0}) %reduce-scatter-start) ROOT %reduce-scatter-done = f32[10]{0} reduce-scatter-done(((f32[20]{0}), f32[10]{0}) %reduce-scatter-update) } )"; EXPECT_EQ(module->ToString(), expected_with_syntax_sugar); const std::string expected_without_syntax_sugar = R"(HloModule StringifyAsyncOpsWithReduceScatter, entry_computation_layout={(f32[20]{0})->f32[10]{0}} %add (p0: f32[], p1: f32[]) -> f32[] { %p0 = f32[] parameter(0) %p1 = f32[] parameter(1) ROOT %add = f32[] add(f32[] %p0, f32[] %p1) }, execution_thread="parallel_thread" %AsyncOp (pasync: f32[20]) -> f32[10] { %pasync = f32[20]{0} parameter(0) ROOT %reduce-scatter = f32[10]{0} reduce-scatter(f32[20]{0} %pasync), replica_groups={}, dimensions={0}, to_apply=%add }, execution_thread="parallel_thread" ENTRY %Entry (pentry: f32[20]) -> f32[10] { %pentry = f32[20]{0} parameter(0) %reduce-scatter-start = ((f32[20]{0}), f32[10]{0}) async-start(f32[20]{0} %pentry), async_execution_thread="parallel_thread", calls=%AsyncOp %reduce-scatter-update = ((f32[20]{0}), f32[10]{0}) async-update(((f32[20]{0}), f32[10]{0}) %reduce-scatter-start) ROOT %reduce-scatter-done = f32[10]{0} async-done(((f32[20]{0}), f32[10]{0}) %reduce-scatter-update) } )"; auto options = HloPrintOptions().set_syntax_sugar_async_ops(false); EXPECT_EQ(module->ToString(options), expected_without_syntax_sugar); } TEST_F(HloInstructionTest, CanonicalStringificationFusion) { const Shape s1 = ShapeUtil::MakeShape(F32, {5, 10}); const Shape s2 = ShapeUtil::MakeShape(F32, {20, 10}); const Shape s2t = ShapeUtil::MakeShape(F32, {10, 20}); const Shape sout = ShapeUtil::MakeShape(F32, {5, 20}); HloComputation::Builder builder("TransposeDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, s1, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, s2, "y")); HloInstruction* reshape = builder.AddInstruction(HloInstruction::CreateTranspose(s2t, y, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); HloInstruction* dot = builder.AddInstruction(HloInstruction::CreateDot( sout, x, reshape, dot_dnums, DefaultPrecisionConfig(2))); auto options = HloPrintOptions().Canonical(); EXPECT_EQ(dot->ToString(options), "f32[5,20]{1,0} dot(f32[5,10]{1,0}, f32[10,20]{1,0}), " "lhs_contracting_dims={1}, rhs_contracting_dims={0}"); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); constexpr char kParallelThreadName[] = "parallel_thread"; computation->SetExecutionThread(kParallelThreadName); HloInstruction* fusion = computation->CreateFusionInstruction( {dot, reshape}, HloInstruction::FusionKind::kLoop); fusion->set_called_computations_execution_thread( kParallelThreadName, false); const std::string expected_fusion = R"(f32[5,20]{1,0} fusion(f32[5,10]{1,0}, f32[20,10]{1,0}), kind=kLoop, calls= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) tmp_2 = f32[10,20]{1,0} transpose(f32[20,10]{1,0} tmp_1), dimensions={1,0} ROOT tmp_3 = f32[5,20]{1,0} dot(f32[5,10]{1,0} tmp_0, f32[10,20]{1,0} tmp_2), lhs_contracting_dims={1}, rhs_contracting_dims={0} }, execution_thread="parallel_thread")"; EXPECT_EQ(fusion->ToString(options), expected_fusion); } TEST_F(HloInstructionTest, CanonicalStringificationWhile) { const Shape s1 = ShapeUtil::MakeShape(F32, {5, 10}); const Shape s2 = ShapeUtil::MakeShape(F32, {20, 10}); const Shape s2t = ShapeUtil::MakeShape(F32, {10, 20}); const Shape sout = ShapeUtil::MakeShape(F32, {5, 20}); HloComputation::Builder builder("TransposeDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, s1, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, s2, "y")); HloInstruction* reshape = builder.AddInstruction(HloInstruction::CreateTranspose(s2t, y, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); HloInstruction* dot = builder.AddInstruction(HloInstruction::CreateDot( sout, x, reshape, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); computation->CreateFusionInstruction({dot, reshape}, HloInstruction::FusionKind::kLoop); HloInstruction* loop = builder.AddInstruction( HloInstruction::CreateWhile(sout, computation, computation, x)); auto options = HloPrintOptions().Canonical(); const std::string expected_loop = R"(f32[5,20]{1,0} while(f32[5,10]{1,0}), condition= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) ROOT tmp_2 = f32[5,20]{1,0} fusion(f32[5,10]{1,0} tmp_0, f32[20,10]{1,0} tmp_1), kind=kLoop, calls= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) tmp_2 = f32[10,20]{1,0} transpose(f32[20,10]{1,0} tmp_1), dimensions={1,0} ROOT tmp_3 = f32[5,20]{1,0} dot(f32[5,10]{1,0} tmp_0, f32[10,20]{1,0} tmp_2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } }, body= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) ROOT tmp_2 = f32[5,20]{1,0} fusion(f32[5,10]{1,0} tmp_0, f32[20,10]{1,0} tmp_1), kind=kLoop, calls= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) tmp_2 = f32[10,20]{1,0} transpose(f32[20,10]{1,0} tmp_1), dimensions={1,0} ROOT tmp_3 = f32[5,20]{1,0} dot(f32[5,10]{1,0} tmp_0, f32[10,20]{1,0} tmp_2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } })"; EXPECT_EQ(loop->ToString(options), expected_loop); } TEST_F(HloInstructionTest, CanonicalStringificationConditional) { const Shape s1 = ShapeUtil::MakeShape(F32, {5, 10}); const Shape s2 = ShapeUtil::MakeShape(F32, {20, 10}); const Shape s2t = ShapeUtil::MakeShape(F32, {10, 20}); const Shape sout = ShapeUtil::MakeShape(F32, {5, 20}); HloComputation::Builder builder("TransposeDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, s1, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, s2, "y")); HloInstruction* reshape = builder.AddInstruction(HloInstruction::CreateTranspose(s2t, y, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); HloInstruction* dot = builder.AddInstruction(HloInstruction::CreateDot( sout, x, reshape, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); computation->CreateFusionInstruction({dot, reshape}, HloInstruction::FusionKind::kLoop); auto pred = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(true))); HloInstruction* conditional = builder.AddInstruction(HloInstruction::CreateConditional( sout, pred, x, computation, x, computation)); auto options = HloPrintOptions().Canonical(); const std::string expected_conditional = R"(f32[5,20]{1,0} conditional(pred[], f32[5,10]{1,0}, f32[5,10]{1,0}), true_computation= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) ROOT tmp_2 = f32[5,20]{1,0} fusion(f32[5,10]{1,0} tmp_0, f32[20,10]{1,0} tmp_1), kind=kLoop, calls= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) tmp_2 = f32[10,20]{1,0} transpose(f32[20,10]{1,0} tmp_1), dimensions={1,0} ROOT tmp_3 = f32[5,20]{1,0} dot(f32[5,10]{1,0} tmp_0, f32[10,20]{1,0} tmp_2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } }, false_computation= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) ROOT tmp_2 = f32[5,20]{1,0} fusion(f32[5,10]{1,0} tmp_0, f32[20,10]{1,0} tmp_1), kind=kLoop, calls= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) tmp_2 = f32[10,20]{1,0} transpose(f32[20,10]{1,0} tmp_1), dimensions={1,0} ROOT tmp_3 = f32[5,20]{1,0} dot(f32[5,10]{1,0} tmp_0, f32[10,20]{1,0} tmp_2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } })"; EXPECT_EQ(conditional->ToString(options), expected_conditional); } TEST_F(HloInstructionTest, CheckDeepClone) { const char* const hlo_string = R"( HloModule Module addy (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT zadd = s32[] add(lhs, rhs) } calla (x: s32[]) -> s32[] { x = s32[] parameter(0) reduce = s32[] reduce-window(x, x), to_apply=addy ROOT xadd = s32[] add(x, reduce) } body (bparam: s32[]) -> s32[] { constant = s32[] constant(1) bparam = s32[] parameter(0) v = s32[] call(bparam), to_apply=calla ROOT add = s32[] add(constant, bparam) } condition (cparam: s32[]) -> pred[] { xconstant = s32[] constant(5) cparam = s32[] parameter(0) ROOT greater-than = pred[] compare(xconstant, cparam), direction=GT } ENTRY entry (param: s32[]) -> s32[] { eparam = s32[] parameter(0) ROOT while = s32[] while(eparam), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); std::unique_ptr<HloModule> clone = module->Clone(); for (HloComputation* computation : clone->computations()) { EXPECT_EQ(computation->parent(), clone.get()); for (HloInstruction* instruction : computation->instructions()) { EXPECT_EQ(instruction->GetModule(), clone.get()); } } } TEST_F(HloInstructionTest, IdenticalAccountsForBackendConfig) { const Shape shape = ShapeUtil::MakeShape(F32, {42}); HloComputation::Builder builder("test"); HloInstruction* p = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p")); HloInstruction* add1 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p, p)); HloInstruction* add2 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p, p)); EXPECT_TRUE(add1->Identical(*add2)); add1->set_raw_backend_config_string("abc"); EXPECT_FALSE(add1->Identical(*add2)); } TEST_F(HloInstructionTest, IdenticalAccountsForCustomCallWindow) { auto instr1 = HloInstruction::CreateCustomCall(ShapeUtil::MakeShape(F32, {}), {}, "foo"); auto instr2 = instr1->Clone(); EXPECT_TRUE(instr1->Identical(*instr2)); Window w = window_util::MakeWindow({1, 2, 3}); instr1->set_window(w); EXPECT_FALSE(instr1->Identical(*instr2)); } TEST_F(HloInstructionTest, IdenticalAccountsForCustomCallDnums) { auto instr1 = HloInstruction::CreateCustomCall(ShapeUtil::MakeShape(F32, {}), {}, "foo"); auto instr2 = instr1->Clone(); EXPECT_TRUE(instr1->Identical(*instr2)); ConvolutionDimensionNumbers dnums; dnums.set_output_batch_dimension(42); instr1->set_convolution_dimension_numbers(dnums); EXPECT_FALSE(instr1->Identical(*instr2)); } TEST_F(HloInstructionTest, IdenticalAccountsForCustomCallHasSideEffect) { auto instr1 = HloInstruction::CreateCustomCall(ShapeUtil::MakeShape(F32, {}), {}, "foo"); auto instr2 = instr1->Clone(); EXPECT_TRUE(instr1->Identical(*instr2)); auto custom_call_instr1 = Cast<HloCustomCallInstruction>(instr1.get()); custom_call_instr1->set_custom_call_has_side_effect(true); EXPECT_FALSE(instr1->Identical(*instr2)); } TEST_F(HloInstructionTest, CloneWindowOnCustomCall) { auto instr = HloInstruction::CreateCustomCall(ShapeUtil::MakeShape(F32, {}), {}, "foo"); Window w = window_util::MakeWindow({1, 2, 3}); instr->set_window(w); auto clone = instr->Clone(); EXPECT_TRUE(protobuf_util::ProtobufEquals(clone->window(), w)) << clone->window().DebugString(); } TEST_F(HloInstructionTest, CloneDnumsOnCustomCall) { auto instr = HloInstruction::CreateCustomCall(ShapeUtil::MakeShape(F32, {}), {}, "foo"); ConvolutionDimensionNumbers dnums; dnums.set_output_batch_dimension(42); instr->set_convolution_dimension_numbers(dnums); auto clone = instr->Clone(); EXPECT_TRUE(protobuf_util::ProtobufEquals( clone->convolution_dimension_numbers(), dnums)) << clone->convolution_dimension_numbers().DebugString(); } TEST_F(HloInstructionTest, CloneHasSideEffectOnCustomCall) { auto instr = HloInstruction::CreateCustomCall(ShapeUtil::MakeShape(F32, {}), {}, "foo"); auto custom_call_instr = Cast<HloCustomCallInstruction>(instr.get()); EXPECT_FALSE(custom_call_instr->custom_call_has_side_effect()); custom_call_instr->set_custom_call_has_side_effect(true); EXPECT_TRUE(custom_call_instr->custom_call_has_side_effect()); auto clone = instr->Clone(); auto custom_call_clone = Cast<HloCustomCallInstruction>(clone.get()); EXPECT_TRUE(custom_call_clone->custom_call_has_side_effect()); } TEST_F(HloInstructionTest, CustomCallHasSideEffect) { auto instr = HloInstruction::CreateCustomCall(ShapeUtil::MakeShape(F32, {}), {}, "foo"); auto custom_call_instr = Cast<HloCustomCallInstruction>(instr.get()); EXPECT_FALSE(instr->HasSideEffect()); custom_call_instr->set_custom_call_has_side_effect(true); EXPECT_TRUE(instr->HasSideEffect()); } TEST_F(HloInstructionTest, PreserveOperandPrecisionOnCloneConv) { constexpr char kHloString[] = R"( HloModule test_module ENTRY test { arg0 = f32[1,2,1] parameter(0) arg1 = f32[1,1,1] parameter(1) ROOT conv = f32[1,2,1] convolution(arg0, arg1), window={size=1}, dim_labels=b0f_0io->b0f, operand_precision={high,default} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloString)); auto* conv = module->entry_computation()->root_instruction(); auto clone = conv->Clone(); EXPECT_THAT( clone->precision_config().operand_precision(), ::testing::ElementsAre(PrecisionConfig::HIGH, PrecisionConfig::DEFAULT)); } TEST_F(HloInstructionTest, ReuseReshapeOfFusionParameter) { constexpr char kHloString[] = R"( HloModule test_module f { p = f32[3,2] parameter(0) r = f32[2,3] reshape(p) x = f32[2,3] multiply(r, r) y = f32[2,3] add(r, r) ROOT sum = f32[2,3] add(x, y) } ENTRY test { p = f32[3,2] parameter(0) ROOT fusion = f32[2,3] fusion(p), calls=f, kind=kLoop })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloString)); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_FALSE(root->ReusesOperandElements(0)); } TEST_F(HloInstructionTest, ReuseMultipleReshapesOfFusionParameter) { constexpr char kHloString[] = R"( HloModule test_module f { p = f32[3,2] parameter(0) r1 = f32[2,3] reshape(p) r2 = f32[6,1] reshape(p) ROOT result = (f32[2,3], f32[6,1]) tuple(r1, r2) } ENTRY test { p = f32[3,2] parameter(0) ROOT fusion = (f32[2,3], f32[6,1]) fusion(p), calls=f, kind=kLoop })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloString)); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_TRUE(root->ReusesOperandElements(0)); } TEST_F(HloInstructionTest, BitcastDoesNotReuseElements) { constexpr char kHloString[] = R"( HloModule test_module ENTRY test { p = f32[3,2]{0,1} parameter(0) ROOT bitcast = f32[6] bitcast(p) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloString)); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_FALSE(root->ReusesOperandElements(0)); } TEST_F(HloInstructionTest, GatherDoesNotReuseElements) { constexpr char kHloString[] = R"( HloModule test_module ENTRY test { input = f32[50,49,48,47,46]{4,3,2,1,0} parameter(0) idx = s64[10,9,8,7,5]{4,3,2,1,0} parameter(1) ROOT gather = f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} gather(input, idx), offset_dims={4,5,6,7,8}, collapsed_slice_dims={}, start_index_map={0,1,2,3,4}, index_vector_dim=4, slice_sizes={30,29,28,27,26} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloString)); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_FALSE(root->ReusesOperandElements(0)); EXPECT_FALSE(root->ReusesOperandElements(1)); } TEST_F(HloInstructionTest, BackendConfigCanContainNonFiniteFloats) { HloComputation::Builder b(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); auto p0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto dot = b.AddInstruction(HloInstruction::CreateDot( shape, p0, p0, dot_dnums, DefaultPrecisionConfig(2))); gpu::GpuBackendConfig gpu_config; gpu::GemmBackendConfig& orig_config = *gpu_config.mutable_gemm_backend_config(); orig_config.set_alpha_real(std::numeric_limits<double>::infinity()); orig_config.set_alpha_imag(std::numeric_limits<double>::quiet_NaN()); TF_ASSERT_OK(dot->set_backend_config(gpu_config)); TF_ASSERT_OK_AND_ASSIGN(auto new_gpu_config, dot->backend_config<gpu::GpuBackendConfig>()); EXPECT_GT(new_gpu_config.gemm_backend_config().alpha_real(), std::numeric_limits<double>::max()); EXPECT_NE(new_gpu_config.gemm_backend_config().alpha_imag(), new_gpu_config.gemm_backend_config().alpha_imag()); } TEST_F(HloInstructionTest, VerifyToApplyRegionPointsToReduceScatter) { const Shape rs_input_shape = ShapeUtil::MakeShape(F32, {20}); const Shape rs_output_shape = ShapeUtil::MakeShape(F32, {10}); std::unique_ptr<HloComputation> add_computation; { const Shape scalar_shape = ShapeUtil::MakeScalarShape(F32); HloComputation::Builder add_builder("add"); HloInstruction* param0 = add_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "p0")); HloInstruction* param1 = add_builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "p1")); add_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, param0, param1)); add_computation = add_builder.Build(); } std::unique_ptr<HloComputation> main_computation; HloComputation::Builder main_builder("Entry"); HloInstruction* param = main_builder.AddInstruction( HloInstruction::CreateParameter(0, rs_input_shape, "input")); main_builder.AddInstruction(HloInstruction::CreateReduceScatter( rs_output_shape, {param}, add_computation.get(), CollectiveDeviceList(), false, std::nullopt, false, 0)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(main_builder.Build()); module->AddEmbeddedComputation(std::move(add_computation)); for (HloComputation* comp : module->MakeComputationPostOrder()) { if (!comp->IsEntryComputation()) { EXPECT_TRUE(comp->IsCollectiveCalledComputation()); EXPECT_EQ(comp->CollectiveCallInstruction(), module->entry_computation()->root_instruction()); } } } TEST_F(HloInstructionTest, VerifyToApplyRegionPointsToAllReduce) { const Shape ar_input_shape = ShapeUtil::MakeShape(F32, {20}); std::unique_ptr<HloComputation> add_computation; { const Shape scalar_shape = ShapeUtil::MakeScalarShape(F32); HloComputation::Builder add_builder("add"); HloInstruction* param0 = add_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "p0")); HloInstruction* param1 = add_builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "p1")); add_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, param0, param1)); add_computation = add_builder.Build(); } std::unique_ptr<HloComputation> main_computation; HloComputation::Builder main_builder("Entry"); HloInstruction* param = main_builder.AddInstruction( HloInstruction::CreateParameter(0, ar_input_shape, "input")); main_builder.AddInstruction(HloInstruction::CreateAllReduce( ar_input_shape, {param}, add_computation.get(), CollectiveDeviceList(), false, std::nullopt, false)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(main_builder.Build()); module->AddEmbeddedComputation(std::move(add_computation)); for (HloComputation* comp : module->MakeComputationPostOrder()) { if (!comp->IsEntryComputation()) { EXPECT_TRUE(comp->IsCollectiveCalledComputation()); EXPECT_EQ(comp->CollectiveCallInstruction(), module->entry_computation()->root_instruction()); } } } TEST_F(HloInstructionTest, PrintCycle) { constexpr char kHloString[] = R"( ENTRY main { c0 = u32[] constant(0) f0 = f32[] constant(0.0) init = f32[1, 1024, 1024] broadcast(f0), dimensions={} after-all = token[] after-all() recv = (f32[1, 1024, 1024], u32[], token[]) recv(after-all), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0, 1}, {1, 2}}" } send = (f32[1, 1024, 1024], u32[], token[]) send(init, after-all), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0, 1}, {1, 2}}" }, control-predecessors={recv} send-done = token[] send-done(send), channel_id=2 recv-done = (f32[1, 1024, 1024], token[]) recv-done(recv), channel_id=2 ROOT recv-data = f32[1, 1024, 1024] get-tuple-element(recv-done), index=0 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloString)); HloInstruction* recv = FindInstruction(module.get(), "recv"); HloInstruction* send_done = FindInstruction(module.get(), "send-done"); ASSERT_IS_OK(send_done->AddControlDependencyTo(recv)); HloInstruction* root = FindInstruction(module.get(), "recv-data"); NodeCollectorAndPostProcessor visitor; auto status = root->Accept(&visitor); EXPECT_FALSE(status.ok()); EXPECT_THAT(status.message(), ::testing::HasSubstr("recv\n send\n send-done\n recv")); ASSERT_IS_OK(send_done->DropAllControlDeps()); } TEST_F(HloInstructionTest, VerifyBodyComputationPointsToWhile) { auto module = CreateNewVerifiedModule(); const Shape scalar_shape = ShapeUtil::MakeScalarShape(F32); HloComputation::Builder cond_builder("cond"); { HloInstruction* param = cond_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "p0")); HloInstruction* constant = cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1024.0))); cond_builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), param, constant, ComparisonDirection::kLt)); } auto cond_computation = module->AddEmbeddedComputation(cond_builder.Build()); HloComputation::Builder body_builder("body"); { HloInstruction* param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "p0")); body_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kMultiply, param, param)); } auto body_computation = module->AddEmbeddedComputation(body_builder.Build()); std::unique_ptr<HloComputation> main_computation; HloComputation::Builder main_builder("Entry"); HloInstruction* param = main_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "input")); main_builder.AddInstruction(HloInstruction::CreateWhile( scalar_shape, cond_computation, body_computation, param)); module->AddEntryComputation(main_builder.Build()); int num_while_body_comp = 0; for (HloComputation* comp : module->MakeComputationPostOrder()) { if (comp->IsWhileBodyComputation()) { num_while_body_comp += 1; EXPECT_EQ(comp->WhileCallInstruction(), module->entry_computation()->root_instruction()); } } EXPECT_EQ(num_while_body_comp, 1); for (HloInstruction* instruction : module->entry_computation()->instructions()) { if (instruction->opcode() == HloOpcode::kWhile) { HloComputation* while_body = instruction->while_body(); EXPECT_TRUE(while_body->IsWhileBodyComputation()); HloInstruction* while_back_ref = while_body->WhileCallInstruction(); EXPECT_EQ(while_back_ref->while_body(), while_body); } } } TEST_F(HloInstructionTest, VerifyBranchComputationPointsToConditonal_TrueFalseConstructor) { auto module = CreateNewVerifiedModule(); const Shape scalar_shape = ShapeUtil::MakeScalarShape(F32); HloComputation::Builder branch_0_builder("branch_0"); { HloInstruction* param = branch_0_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "p0")); HloInstruction* constant = branch_0_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1024.0))); branch_0_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, param, constant)); } auto branch_0_computation = module->AddEmbeddedComputation(branch_0_builder.Build()); HloComputation::Builder branch_1_builder("branch_1"); { HloInstruction* param = branch_1_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "p0")); branch_1_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kMultiply, param, param)); } auto branch_1_computation = module->AddEmbeddedComputation(branch_1_builder.Build()); std::unique_ptr<HloComputation> main_computation; HloComputation::Builder main_builder("Entry"); HloInstruction* pred_param = main_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(PRED, {}), "pred_param")); HloInstruction* param = main_builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "input")); main_builder.AddInstruction(HloInstruction::CreateConditional( scalar_shape, pred_param, param, branch_0_computation, param, branch_1_computation)); module->AddEntryComputation(main_builder.Build()); int num_conditional_branch_comp = 0; for (HloComputation* comp : module->MakeComputationPostOrder()) { if (comp->IsConditionalBranchComputation()) { num_conditional_branch_comp += 1; EXPECT_EQ(comp->ConditionalCallInstruction(), module->entry_computation()->root_instruction()); } } EXPECT_EQ(num_conditional_branch_comp, 2); } TEST_F(HloInstructionTest, VerifyBranchComputationPointsToConditonal_BranchIndexConstructor) { auto module = CreateNewVerifiedModule(); const Shape scalar_shape = ShapeUtil::MakeScalarShape(F32); std::vector<HloComputation*> branch_computations; { HloComputation::Builder builder("branch_0"); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "p0")); HloInstruction* constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1024.0))); builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, param, constant)); branch_computations.push_back( module->AddEmbeddedComputation(builder.Build())); } { HloComputation::Builder builder("branch_1"); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "p0")); builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kMultiply, param, param)); branch_computations.push_back( module->AddEmbeddedComputation(builder.Build())); } { HloComputation::Builder builder("branch_2"); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "p0")); builder.AddInstruction( HloInstruction::CreateUnary(scalar_shape, HloOpcode::kLog, param)); branch_computations.push_back( module->AddEmbeddedComputation(builder.Build())); } std::unique_ptr<HloComputation> main_computation; HloComputation::Builder main_builder("Entry"); HloInstruction* branch_index = main_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeScalarShape(S32), "branch_index_param")); HloInstruction* param = main_builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "input")); std::vector<HloInstruction*> branch_computation_args( branch_computations.size(), param); main_builder.AddInstruction(HloInstruction::CreateConditional( scalar_shape, branch_index, branch_computations, branch_computation_args)); module->AddEntryComputation(main_builder.Build()); int num_conditional_branch_comp = 0; for (HloComputation* comp : module->MakeComputationPostOrder()) { if (comp->IsConditionalBranchComputation()) { num_conditional_branch_comp += 1; EXPECT_EQ(comp->ConditionalCallInstruction(), module->entry_computation()->root_instruction()); } } EXPECT_EQ(num_conditional_branch_comp, branch_computations.size()); } TEST_F(HloInstructionTest, BackendConfigCopiedToDerived) { HloComputation::Builder b(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); auto p0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); auto p1 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "p1")); auto add = b.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p0, p1)); gpu::GpuBackendConfig gpu_config; gpu_config.set_operation_queue_id(2); TF_ASSERT_OK(add->set_backend_config(gpu_config)); auto add2 = b.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p0, p0)); add->SetupDerivedInstruction(add2); auto backend_config = add2->backend_config<gpu::GpuBackendConfig>(); EXPECT_TRUE(backend_config.ok()); EXPECT_EQ(backend_config->operation_queue_id(), 2); } TEST_F(HloInstructionTest, BackendConfigNotCopiedToDerivedWithDiffOpcode) { HloComputation::Builder b(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); auto p0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); auto p1 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "p1")); auto or1 = b.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kOr, p0, p1)); gpu::GpuBackendConfig gpu_config; gpu_config.set_operation_queue_id(2); TF_ASSERT_OK(or1->set_backend_config(gpu_config)); auto add2 = b.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p0, p1)); or1->SetupDerivedInstruction(add2); EXPECT_FALSE(add2->has_backend_config()); } TEST_F(HloInstructionTest, MergeMultiOutputProducerFusionIntoMultiOutputFusion) { const std::string& hlo_string = R"( HloModule mof mof_producer { param0 = f32[10]{0} parameter(0) param1 = f32[10]{0} parameter(1) add = f32[10]{0} add(param0, param1) sub = f32[10]{0} subtract(param0, param1) ROOT res = (f32[10]{0}, f32[10]{0}, f32[10]{0}, f32[10]{0}) tuple(param1, add, sub, param0) } mof_consumer { param0.0 = f32[10]{0} parameter(0) param1.0 = f32[10]{0} parameter(1) param2.0 = f32[10]{0} parameter(2) mul = f32[10]{0} multiply(param0.0, param1.0) div = f32[10]{0} divide(param0.0, param1.0) ROOT res = (f32[10]{0}, f32[10]{0}, f32[10]{0}) tuple(mul, div, param2.0) } ENTRY main { p0 = f32[10]{0} parameter(0) p1 = f32[10]{0} parameter(1) producer = (f32[10]{0}, f32[10]{0}, f32[10]{0}, f32[10]{0}) fusion(p0, p1), kind=kLoop, calls=mof_producer gte0 = f32[10]{0} get-tuple-element(producer), index=0 gte1 = f32[10]{0} get-tuple-element(producer), index=1 gte2 = f32[10]{0} get-tuple-element(producer), index=2 gte3 = f32[10]{0} get-tuple-element(producer), index=3 consumer = (f32[10]{0}, f32[10]{0}, f32[10]{0}) fusion(gte1, gte2, gte3), kind=kLoop, calls=mof_consumer gte4 = f32[10]{0} get-tuple-element(consumer), index=0 gte5 = f32[10]{0} get-tuple-element(consumer), index=1 gte6 = f32[10]{0} get-tuple-element(consumer), index=2 ROOT res = (f32[10]{0}, f32[10]{0}, f32[10]{0}, f32[10]{0}, f32[10]{0}, f32[10]{0}) tuple(gte0, gte1, gte3, gte4, gte5, gte6) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* producer = FindInstruction(module.get(), "producer"); HloInstruction* consumer = FindInstruction(module.get(), "consumer"); consumer->MergeFusionInstructionIntoMultiOutput(producer); HloInstruction* fusion = nullptr; EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::Parameter(1), m::GetTupleElement(m::Fusion(&fusion), 3), m::Parameter(0), m::GetTupleElement(m::Fusion(), 0), m::GetTupleElement(m::Fusion(), 1), m::GetTupleElement(m::Fusion(), 2)))); EXPECT_THAT(fusion->fused_instructions_computation()->root_instruction(), GmockMatch(m::Tuple( m::Multiply(m::Add(m::Parameter(0), m::Parameter(1)), m::Subtract(m::Parameter(0), m::Parameter(1))), m::Divide(m::Add(m::Parameter(0), m::Parameter(1)), m::Subtract(m::Parameter(0), m::Parameter(1))), m::Parameter(0), m::Add(m::Parameter(0), m::Parameter(1))))); } TEST_F(HloInstructionTest, MergeMultiOutputProducerFusionIntoMultiOutputFusionAvoidDuplicateRoots) { const std::string& hlo_string = R"( HloModule mof mof_producer { param0 = f32[10]{0} parameter(0) param1 = f32[10]{0} parameter(1) add = f32[10]{0} add(param0, param1) sub = f32[10]{0} subtract(param0, param1) ROOT res = (f32[10]{0}, f32[10]{0}) tuple(add, sub) } mof_consumer { param0.0 = f32[10]{0} parameter(0) param1.0 = f32[10]{0} parameter(1) mul = f32[10]{0} multiply(param0.0, param1.0) div = f32[10]{0} divide(param0.0, param1.0) ROOT res = (f32[10]{0}, f32[10]{0}, f32[10]{0}) tuple(mul, div, param0.0) } ENTRY main { p0 = f32[10]{0} parameter(0) p1 = f32[10]{0} parameter(1) producer = (f32[10]{0}, f32[10]{0}) fusion(p0, p1), kind=kLoop, calls=mof_producer gte1 = f32[10]{0} get-tuple-element(producer), index=0 gte2 = f32[10]{0} get-tuple-element(producer), index=1 consumer = (f32[10]{0}, f32[10]{0}, f32[10]{0}) fusion(gte1, gte2), kind=kLoop, calls=mof_consumer gte3 = f32[10]{0} get-tuple-element(consumer), index=0 gte4 = f32[10]{0} get-tuple-element(consumer), index=1 gte5 = f32[10]{0} get-tuple-element(consumer), index=2 ROOT res = (f32[10]{0}, f32[10]{0}, f32[10]{0}, f32[10]{0}) tuple(gte1, gte3, gte4, gte5) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* producer = FindInstruction(module.get(), "producer"); HloInstruction* consumer = FindInstruction(module.get(), "consumer"); consumer->MergeFusionInstructionIntoMultiOutput(producer); HloInstruction* fusion = nullptr; EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::GetTupleElement(m::Fusion(&fusion), 2), m::GetTupleElement(m::Fusion(), 0), m::GetTupleElement(m::Fusion(), 1), m::GetTupleElement(m::Fusion(), 2)))); EXPECT_THAT(fusion->fused_instructions_computation()->root_instruction(), GmockMatch(m::Tuple( m::Multiply(m::Add(m::Parameter(0), m::Parameter(1)), m::Subtract(m::Parameter(0), m::Parameter(1))), m::Divide(m::Add(m::Parameter(0), m::Parameter(1)), m::Subtract(m::Parameter(0), m::Parameter(1))), m::Add(m::Parameter(0), m::Parameter(1))))); } TEST_F(HloInstructionTest, MergeMultiOutputSiblingFusionsAvoidDuplicateFusionParameters) { const std::string& hlo_string = R"( HloModule mof mof_sibling1 { param0 = f32[10]{0} parameter(0) param1 = f32[10]{0} parameter(1) add = f32[10]{0} add(param0, param1) ROOT res = (f32[10]{0}, f32[10]{0}) tuple(param1, add) } mof_sibling2 { param0.0 = f32[10]{0} parameter(0) param1.0 = f32[10]{0} parameter(1) mul = f32[10]{0} multiply(param0.0, param1.0) ROOT res = (f32[10]{0}, f32[10]{0}) tuple(mul, param1.0) } ENTRY main { p0 = f32[10]{0} parameter(0) p1 = f32[10]{0} parameter(1) sibling1 = (f32[10]{0}, f32[10]{0}) fusion(p0, p1), kind=kLoop, calls=mof_sibling1 gte0 = f32[10]{0} get-tuple-element(sibling1), index=0 gte1 = f32[10]{0} get-tuple-element(sibling1), index=1 sibling2 = (f32[10]{0}, f32[10]{0}) fusion(p0, p1), kind=kLoop, calls=mof_sibling2 gte2 = f32[10]{0} get-tuple-element(sibling2), index=0 gte3 = f32[10]{0} get-tuple-element(sibling2), index=1 ROOT res = (f32[10]{0}, f32[10]{0}, f32[10]{0}, f32[10]{0}) tuple(gte0, gte1, gte2, gte3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* sibling1 = FindInstruction(module.get(), "sibling1"); HloInstruction* sibling2 = FindInstruction(module.get(), "sibling2"); sibling2->MergeFusionInstructionIntoMultiOutput(sibling1); HloInstruction* fusion = nullptr; EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::Parameter(1), m::GetTupleElement(m::Fusion(&fusion), 2), m::GetTupleElement(m::Fusion(), 0), m::GetTupleElement(m::Fusion(), 1)))); EXPECT_THAT(fusion->fused_instructions_computation()->root_instruction(), GmockMatch(m::Tuple(m::Multiply(m::Parameter(0), m::Parameter(1)), m::Parameter(1), m::Add(m::Parameter(0), m::Parameter(1))))); } TEST_F(HloInstructionTest, UnfuseInstruction) { const std::string& hlo_string = R"( HloModule mof fusion_comp { param0 = f32[10]{0} parameter(0) param1 = f32[10]{0} parameter(1) add = f32[10]{0} add(param0, param1) ROOT res = (f32[10]{0}, f32[10]{0}) tuple(param1, add) } ENTRY main { p0 = f32[10]{0} parameter(0) p1 = f32[10]{0} parameter(1) fusion.1 = (f32[10]{0}, f32[10]{0}) fusion(p0, p1), kind=kLoop, calls=fusion_comp gte0 = f32[10]{0} get-tuple-element(fusion.1), index=0 gte1 = f32[10]{0} get-tuple-element(fusion.1), index=1 ROOT res = (f32[10]{0}, f32[10]{0}) tuple(gte0, gte1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* fusion = FindInstruction(module.get(), "fusion.1"); HloInstruction* add = fusion->fused_instructions_computation() ->root_instruction() ->mutable_operand(1); TF_ASSERT_OK_AND_ASSIGN(auto unfused, fusion->UnfuseInstruction(add)); EXPECT_THAT(unfused, GmockMatch(m::Add(m::Parameter(0), m::Parameter(1)))); } TEST_F(HloInstructionTest, UnfuseInstruction2) { const std::string& hlo_string = R"( HloModule mof fusion_comp { param0 = f32[10]{0} parameter(0) param1 = f32[10]{0} parameter(1) add = f32[10]{0} add(param0, param1) add2 = f32[10]{0} add(add, param1) ROOT res = (f32[10]{0}, f32[10]{0}) tuple(param1, add2) } ENTRY main { p0 = f32[10]{0} parameter(0) p1 = f32[10]{0} parameter(1) fusion.1 = (f32[10]{0}, f32[10]{0}) fusion(p0, p1), kind=kLoop, calls=fusion_comp gte0 = f32[10]{0} get-tuple-element(fusion.1), index=0 gte1 = f32[10]{0} get-tuple-element(fusion.1), index=1 ROOT res = (f32[10]{0}, f32[10]{0}) tuple(gte0, gte1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* fusion = FindInstruction(module.get(), "fusion.1"); HloInstruction* add2 = fusion->fused_instructions_computation() ->root_instruction() ->mutable_operand(1); HloInstruction* add = add2->mutable_operand(0); EXPECT_FALSE(fusion->UnfuseInstruction(add2).ok()); TF_ASSERT_OK_AND_ASSIGN(auto unfused, fusion->UnfuseInstruction(add)); EXPECT_THAT(unfused, GmockMatch(m::Add(m::Parameter(0), m::Parameter(1)))); } TEST_F(HloInstructionTest, UnfuseInstructionWithConstantOperand) { const std::string& hlo_string = R"( HloModule mof fusion_comp { param0 = f32[10]{0} parameter(0) param1 = f32[10]{0} parameter(1) const = f32[] constant(1.0) broadcast = f32[10]{0} broadcast(const), dimensions={} add = f32[10]{0} add(param0, broadcast) ROOT res = (f32[10]{0}, f32[10]{0}) tuple(param1, add) } ENTRY main { p0 = f32[10]{0} parameter(0) p1 = f32[10]{0} parameter(1) fusion.1 = (f32[10]{0}, f32[10]{0}) fusion(p0, p1), kind=kLoop, calls=fusion_comp gte0 = f32[10]{0} get-tuple-element(fusion.1), index=0 gte1 = f32[10]{0} get-tuple-element(fusion.1), index=1 ROOT res = (f32[10]{0}, f32[10]{0}) tuple(gte0, gte1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* fusion = FindInstruction(module.get(), "fusion.1"); HloInstruction* add = fusion->fused_instructions_computation() ->root_instruction() ->mutable_operand(1); TF_ASSERT_OK_AND_ASSIGN(auto unfused, fusion->UnfuseInstruction(add)); EXPECT_THAT(unfused, GmockMatch(m::Add(m::Parameter(0), m::Broadcast(m::Constant())))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/hlo_instruction.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_instruction_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b385adf9-728d-43f0-a409-fe53a52414c6
cpp
tensorflow/tensorflow
hlo_input_output_alias_config
third_party/xla/xla/hlo/ir/hlo_input_output_alias_config.cc
third_party/xla/xla/service/hlo_input_output_alias_config_test.cc
#include "xla/hlo/ir/hlo_input_output_alias_config.h" #include <cstdint> #include <optional> #include <ostream> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/layout_util.h" #include "xla/service/hlo.pb.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { bool HloInputOutputAliasConfig::OutputHasAlias( const ShapeIndex& output_index) const { return alias_.element(output_index).has_value(); } absl::Status HloInputOutputAliasConfig::SetUpAlias( const ShapeIndex& output_index, int64_t param_number, const ShapeIndex& param_index, HloInputOutputAliasConfig::AliasKind must_alias) { TF_RET_CHECK(ShapeUtil::IndexIsValid(alias_.shape(), output_index)) << "Trying to set up alias at " << output_index.ToString() << " which is an invalid index for shape " << ShapeUtil::HumanString(alias_.shape()); TF_RET_CHECK(param_number >= 0) << param_number; TF_RET_CHECK(!alias_.element(output_index)) << absl::StrFormat( "Trying to set up output alias for param %lld at %s but failed: output " "index %s is already aliased with param %lld at %s", param_number, param_index.ToString(), output_index.ToString(), alias_.element(output_index)->parameter_number, alias_.element(output_index)->parameter_index.ToString()); (*alias_.mutable_element(output_index)) = Alias(param_number, param_index, must_alias); VLOG(4) << "Set up alias between output index " << output_index.ToString() << " and parameter " << param_number << " at index " << param_index.ToString(); return absl::OkStatus(); } HloInputOutputAliasProto HloInputOutputAliasConfig::ToProto() const { HloInputOutputAliasProto result; alias_.ForEachElement( [&](const ShapeIndex& index, const std::optional<Alias>& data) { if (data) { HloInputOutputAliasProto::AliasEntryProto entry; for (int64_t i : index) { entry.add_output_shape_index(i); } entry.set_parameter_number(data->parameter_number); for (int64_t i : data->parameter_index) { entry.add_parameter_shape_index(i); } if (data->must_alias()) { entry.set_kind(Kind::MUST_ALIAS); } else { entry.set_kind(Kind::MAY_ALIAS); } result.add_entries()->Swap(&entry); } }); return result; } absl::StatusOr<HloInputOutputAliasConfig> HloInputOutputAliasConfig::CreateFromProto( Shape output_shape, const HloInputOutputAliasProto& proto) { HloInputOutputAliasConfig result(std::move(output_shape)); for (const HloInputOutputAliasProto::AliasEntryProto& entry : proto.entries()) { ShapeIndex output_index(entry.output_shape_index().begin(), entry.output_shape_index().end()); int64_t param_number = entry.parameter_number(); ShapeIndex param_index(entry.parameter_shape_index().begin(), entry.parameter_shape_index().end()); AliasKind kind = entry.kind() == Kind::MAY_ALIAS ? kMayAlias : kMustAlias; TF_RETURN_IF_ERROR( result.SetUpAlias(output_index, param_number, param_index, kind)); } return result; } const Shape& HloInputOutputAliasConfig::shape() const { return alias_.shape(); } std::string HloInputOutputAliasConfig::ToString() const { std::vector<std::string> pieces; pieces.push_back("HloInputOutputAliasConfig"); pieces.push_back( absl::StrFormat(" Output shape: %s", alias_.shape().ToString())); ForEachAlias([&](const ShapeIndex& output_index, const Alias& alias) { pieces.push_back(absl::StrFormat( " OutputIndex %s is %saliased with parameter %lld at %s:", output_index.ToString(), alias.kind == kMustAlias ? "must-" : "may-", alias.parameter_number, alias.parameter_index.ToString())); }); return absl::StrJoin(pieces, "\n"); } std::string HloInputOutputAliasConfig::ToShortString() const { std::vector<std::string> pieces; for (const auto& p : alias_) { const ShapeIndex& index = p.first; if (std::optional<Alias> alias = p.second) { pieces.push_back( absl::StrFormat("%s: %s", index.ToString(), alias->ToString())); } } return absl::StrJoin(pieces, ", "); } bool HloInputOutputAliasConfig::ParameterMustAlias( int64_t param_number, const ShapeIndex& param_index) const { bool result = false; alias_.ForEachElement( [&](const xla::ShapeIndex&, std::optional<Alias> alias) { if (alias && alias->parameter_number == param_number && alias->parameter_index == param_index && alias->must_alias()) { result = true; } }); return result; } std::optional<ShapeIndex> HloInputOutputAliasConfig::GetAliasedOutput( int64_t param_number, const ShapeIndex& param_index) const { for (auto it = alias_.rbegin(); it != alias_.rend(); ++it) { if (it->second.has_value() && it->second->parameter_number == param_number && it->second->parameter_index == param_index) { return it->first; } } return std::nullopt; } std::optional<HloInputOutputAliasConfig::Alias> HloInputOutputAliasConfig::GetAliasedParameter( const ShapeIndex& output_index) const { CHECK(ShapeUtil::IndexIsValid(alias_.shape(), output_index)) << ToString() << " " << alias_.shape().ToString() << " " << output_index; return alias_.element(output_index); } void HloInputOutputAliasConfig::ForEachAlias(AliasFn fn) const { alias_.ForEachElement( [&](const ShapeIndex& output_index, std::optional<Alias> aliased) { if (aliased) { fn(output_index, *aliased); } }); } absl::Status HloInputOutputAliasConfig::ForEachAliasWithStatus( AliasFnWithStatus fn) const { return alias_.ForEachElementWithStatus( [&](const ShapeIndex& output_index, std::optional<Alias> aliased) { if (aliased) { TF_RETURN_IF_ERROR(fn(output_index, *aliased)); } return absl::OkStatus(); }); } absl::Status HloInputOutputAliasConfig::Verify( const HloModule& module, absl::FunctionRef<int64_t(const Shape&)> size_func) const { std::vector<ShapeTree<bool>> param_has_seen; const HloComputation* entry = module.entry_computation(); for (int64_t i = 0; i < entry->num_parameters(); ++i) { HloInstruction* param = entry->parameter_instruction(i); param_has_seen.emplace_back(param->shape()); } return ForEachAliasWithStatus([&](const ShapeIndex& output_index, const Alias& alias) -> absl::Status { TF_RET_CHECK(0 <= alias.parameter_number); TF_RET_CHECK(entry->num_parameters() > alias.parameter_number); const Shape& param_shape = module.entry_computation_layout().parameter_shape( alias.parameter_number); const Shape& output_shape = module.entry_computation_layout().result_shape(); TF_RET_CHECK(ShapeUtil::IndexIsValid(param_shape, alias.parameter_index)); TF_RET_CHECK(ShapeUtil::IndexIsValid(output_shape, output_index)); const Shape& param_subshape = ShapeUtil::GetSubshape(param_shape, alias.parameter_index); const Shape& output_subshape = ShapeUtil::GetSubshape(output_shape, output_index); TF_RET_CHECK(LayoutUtil::IsDenseArray(param_subshape)); TF_RET_CHECK(LayoutUtil::IsDenseArray(output_subshape)); if (size_func(param_subshape) != size_func(output_subshape)) { return Internal( "Expected aliased input %lld at index %s and output at index %s to " "have the same size. Input sub-shape is %s with size %lld, output " "sub-shape is %s with size %lld", alias.parameter_number, alias.parameter_index.ToString(), output_index.ToString(), ShapeUtil::HumanStringWithLayout(param_subshape), size_func(param_subshape), ShapeUtil::HumanStringWithLayout(output_subshape), size_func(output_subshape)); } TF_RET_CHECK(param_has_seen[alias.parameter_number].element( alias.parameter_index) == false); *(param_has_seen[alias.parameter_number].mutable_element( alias.parameter_index)) = true; return absl::OkStatus(); }); } std::ostream& operator<<(std::ostream& out, const HloInputOutputAliasConfig& config) { out << config.ToString(); return out; } absl::Status HloBufferDonorConfig::AddBufferDonor( int64_t param_number, const ShapeIndex& param_index) { TF_RET_CHECK(param_number >= 0) << param_number; VLOG(4) << "Register the parameter " << param_number << " at index " << param_index.ToString() << " as a buffer donor."; buffer_donor_.emplace(BufferDonor(param_number, param_index)); return absl::OkStatus(); } absl::Status HloBufferDonorConfig::RemoveBufferDonor( int64_t param_number, const ShapeIndex& param_index) { TF_RET_CHECK(param_number >= 0) << param_number; buffer_donor_.erase(BufferDonor(param_number, param_index)); return absl::OkStatus(); } HloBufferDonorProto HloBufferDonorConfig::ToProto() const { HloBufferDonorProto result; for (const auto& donor : buffer_donor_) { HloBufferDonorProto::BufferDonorEntryProto entry; entry.set_parameter_number(donor.param_number); for (int64_t i : donor.param_index) { entry.add_parameter_shape_index(i); } result.add_entries()->Swap(&entry); } return result; } absl::StatusOr<HloBufferDonorConfig> HloBufferDonorConfig::CreateFromProto( const HloBufferDonorProto& proto) { HloBufferDonorConfig result; for (const HloBufferDonorProto::BufferDonorEntryProto& entry : proto.entries()) { int64_t param_number = entry.parameter_number(); ShapeIndex param_index(entry.parameter_shape_index().begin(), entry.parameter_shape_index().end()); TF_RETURN_IF_ERROR(result.AddBufferDonor(param_number, param_index)); } return result; } std::string HloBufferDonorConfig::ToString() const { std::vector<std::string> pieces; pieces.push_back("HloBufferDonorConfig"); for (const auto& donor : buffer_donor_) { pieces.push_back(absl::StrFormat( " Parameter %lld at %s is registered as a buffer donor.", donor.param_number, donor.param_index.ToString())); } return absl::StrJoin(pieces, "\n"); } std::string HloBufferDonorConfig::ToShortString() const { std::vector<std::string> pieces; pieces.reserve(buffer_donor_.size()); for (const auto& donor : buffer_donor_) { pieces.push_back(absl::StrFormat("(%lld, %s)", donor.param_number, donor.param_index.ToString())); } return absl::StrJoin(pieces, ", "); } bool HloBufferDonorConfig::ParameterIsBufferDonor( int64_t param_number, const ShapeIndex& param_index) const { auto it = buffer_donor_.find(BufferDonor(param_number, param_index)); return it != buffer_donor_.end(); } absl::Status HloBufferDonorConfig::Verify(const HloModule& module) const { const HloComputation* entry = module.entry_computation(); const auto& alias_config = module.input_output_alias_config(); for (const auto& donor : buffer_donor_) { TF_RET_CHECK(donor.param_number >= 0); TF_RET_CHECK(donor.param_number < entry->num_parameters()); const Shape& param_shape = module.entry_computation_layout().parameter_shape(donor.param_number); TF_RET_CHECK(ShapeUtil::IndexIsValid(param_shape, donor.param_index)); const Shape& param_subshape = ShapeUtil::GetSubshape(param_shape, donor.param_index); TF_RET_CHECK(LayoutUtil::IsDenseArray(param_subshape)); if (alias_config.ParameterHasAlias(donor.param_number, donor.param_index)) { return Internal( "Input %lld at index %s is registered as a buffer donor. However, it " "is also in the input output alias config.", donor.param_number, donor.param_index.ToString()); } } return absl::OkStatus(); } std::ostream& operator<<(std::ostream& out, const HloBufferDonorConfig& config) { out << config.ToString(); return out; } }
#include "xla/hlo/ir/hlo_input_output_alias_config.h" #include <memory> #include <string> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_memory_scheduler.h" #include "xla/service/hlo_ordering.h" #include "xla/shape_util.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/types.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class HloInputOutputAliasConfigTest : public HloTestBase { protected: void expect_aliased(const ShapeIndex& output_index, int64_t param_number, const ShapeIndex& param_index, const HloInputOutputAliasConfig& config) { std::optional<ShapeIndex> aliased_output = config.GetAliasedOutput(param_number, param_index); EXPECT_TRUE(aliased_output); EXPECT_EQ(aliased_output.value(), output_index); std::optional<HloInputOutputAliasConfig::Alias> aliased_param = config.GetAliasedParameter(output_index); EXPECT_TRUE(aliased_param); EXPECT_EQ(aliased_param->parameter_number, param_number); EXPECT_EQ(aliased_param->parameter_index, param_index); } void expect_not_aliased(const ShapeIndex& output_index, int64_t param_number, const ShapeIndex& param_index, const HloInputOutputAliasConfig& config) { std::optional<ShapeIndex> aliased_output = config.GetAliasedOutput(param_number, param_index); EXPECT_FALSE(aliased_output && aliased_output == output_index); std::optional<HloInputOutputAliasConfig::Alias> aliased_param = config.GetAliasedParameter(output_index); EXPECT_FALSE(aliased_param && aliased_param->parameter_number == param_number && aliased_param->parameter_index == param_index); } }; TEST_F(HloInputOutputAliasConfigTest, SimpleAliasing) { const std::string module_str = R"( HloModule TEST ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) ROOT root = (f32[], f32[]) tuple(%a, %b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); HloInputOutputAliasConfig config( module->entry_computation()->root_instruction()->shape()); TF_ASSERT_OK(config.SetUpAlias( {0}, 1, {})); expect_aliased({0}, 1, {}, config); expect_not_aliased({1}, 1, {}, config); expect_not_aliased({0}, 0, {}, config); } TEST_F(HloInputOutputAliasConfigTest, SimpleAliasingWithTupleInput) { const std::string module_str = R"( HloModule TEST ENTRY main { param = (f32[], f32[]) parameter(0) gte1 = f32[] get-tuple-element(%param), index=0 gte2 = f32[] get-tuple-element(%param), index=1 ROOT root = (f32[], f32[]) tuple(%gte1, %gte2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); HloInputOutputAliasConfig config( module->entry_computation()->root_instruction()->shape()); TF_ASSERT_OK(config.SetUpAlias( {0}, 0, {0})); TF_ASSERT_OK(config.SetUpAlias( {1}, 0, {1})); expect_aliased({0}, 0, {0}, config); expect_aliased({1}, 0, {1}, config); expect_not_aliased({1}, 1, {}, config); expect_not_aliased({0}, 0, {}, config); } TEST_F(HloInputOutputAliasConfigTest, InputDoNotAliasTwice) { const std::string module_str = R"( HloModule TEST ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) ROOT root = (f32[], f32[]) tuple(%a, %b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); HloInputOutputAliasConfig config( module->entry_computation()->root_instruction()->shape()); TF_ASSERT_OK(config.SetUpAlias( {0}, 0, {})); TF_ASSERT_OK(config.SetUpAlias( {1}, 0, {})); ASSERT_IS_NOT_OK(config.Verify(*module, [](const Shape& shape) { return ShapeUtil::ByteSizeOf(shape); })); } TEST_F(HloInputOutputAliasConfigTest, SizesMustMatch) { const std::string module_str = R"( HloModule TEST ENTRY main { a = f32[] parameter(0) b = f32[4096] parameter(1) ROOT root = (f32[], f32[4096]) tuple(%a, %b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); HloInputOutputAliasConfig config( module->entry_computation()->root_instruction()->shape()); TF_ASSERT_OK(config.SetUpAlias( {1}, 0, {})); ASSERT_IS_NOT_OK(config.Verify(*module, [](const Shape& shape) { return ShapeUtil::ByteSizeOf(shape); })); } TEST_F(HloInputOutputAliasConfigTest, OutputDoNotAliasTwice) { const std::string module_str = R"( HloModule TEST ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) ROOT root = (f32[], f32[]) tuple(%a, %b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); HloInputOutputAliasConfig config( module->entry_computation()->root_instruction()->shape()); TF_ASSERT_OK(config.SetUpAlias( {0}, 0, {})); ASSERT_IS_NOT_OK(config.SetUpAlias( {0}, 1, {})); } class HloBufferDonorConfigTest : public HloTestBase {}; TEST_F(HloBufferDonorConfigTest, SimpleBufferDonor) { const std::string module_str = R"( HloModule TEST ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) ROOT root = (f32[], f32[]) tuple(%a, %b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); HloBufferDonorConfig config; TF_ASSERT_OK(config.AddBufferDonor(0, {})); EXPECT_TRUE(config.ParameterIsBufferDonor(0, {})); EXPECT_FALSE(config.ParameterIsBufferDonor(1, {})); TF_ASSERT_OK(config.AddBufferDonor(1, {})); EXPECT_TRUE(config.ParameterIsBufferDonor(0, {})); EXPECT_TRUE(config.ParameterIsBufferDonor(1, {})); TF_ASSERT_OK(config.RemoveBufferDonor(0, {})); EXPECT_FALSE(config.ParameterIsBufferDonor(0, {})); EXPECT_TRUE(config.ParameterIsBufferDonor(1, {})); TF_ASSERT_OK(config.Verify(*module)); TF_ASSERT_OK(config.AddBufferDonor(2, {})); ASSERT_IS_NOT_OK(config.Verify(*module)); } TEST_F(HloBufferDonorConfigTest, SimpleBufferDonorWithTupleInput) { const std::string module_str = R"( HloModule TEST ENTRY main { param = (f32[], f32[]) parameter(0) gte1 = f32[] get-tuple-element(%param), index=0 gte2 = f32[] get-tuple-element(%param), index=1 ROOT root = (f32[], f32[]) tuple(%gte1, %gte2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); HloBufferDonorConfig config; TF_ASSERT_OK(config.AddBufferDonor(0, {0})); EXPECT_TRUE(config.ParameterIsBufferDonor(0, {0})); EXPECT_FALSE(config.ParameterIsBufferDonor(0, {1})); EXPECT_FALSE(config.ParameterIsBufferDonor(0, {})); EXPECT_FALSE(config.ParameterIsBufferDonor(1, {})); TF_ASSERT_OK(config.AddBufferDonor(0, {1})); EXPECT_TRUE(config.ParameterIsBufferDonor(0, {0})); EXPECT_TRUE(config.ParameterIsBufferDonor(0, {1})); EXPECT_FALSE(config.ParameterIsBufferDonor(0, {})); EXPECT_FALSE(config.ParameterIsBufferDonor(1, {})); TF_ASSERT_OK(config.Verify(*module)); TF_ASSERT_OK(config.AddBufferDonor(0, {2})); ASSERT_IS_NOT_OK(config.Verify(*module)); } TEST_F(HloBufferDonorConfigTest, BufferDonorInputOutputAliasOverlap) { const std::string module_str = R"( HloModule TEST ENTRY main { param = (f32[], f32[]) parameter(0) gte1 = f32[] get-tuple-element(%param), index=0 gte2 = f32[] get-tuple-element(%param), index=1 ROOT root = (f32[], f32[]) tuple(%gte1, %gte2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); HloBufferDonorConfig config; TF_ASSERT_OK(config.AddBufferDonor(0, {0})); TF_ASSERT_OK(config.Verify(*module)); TF_ASSERT_OK(module->input_output_alias_config().SetUpAlias({0}, 0, {0})); ASSERT_IS_NOT_OK(config.Verify(*module)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/hlo_input_output_alias_config.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_input_output_alias_config_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c3a95f6c-7a3e-41ce-a6b7-c77b05f1b7d2
cpp
tensorflow/tensorflow
hlo_module
third_party/xla/xla/hlo/ir/hlo_module.cc
third_party/xla/xla/service/hlo_module_test.cc
#include "xla/hlo/ir/hlo_module.h" #include <algorithm> #include <atomic> #include <cstddef> #include <cstdint> #include <iterator> #include <memory> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/map_util.h" #include "xla/printer.h" #include "xla/service/compilation_environments.h" #include "xla/service/computation_layout.h" #include "xla/service/computation_placer.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/service/mapped_ptr_container_sorter.h" #include "xla/service/name_uniquer.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tsl/lib/gtl/map_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/fingerprint.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { HloModule::HloModule(const std::string& name, HloModuleConfig config) : HloModule(name, std::move(config), std::make_unique<CompilationEnvironments>()) {} HloModule::HloModule(const std::string& name, HloModuleConfig config, std::unique_ptr<CompilationEnvironments> comp_envs) : HloModule(name, std::make_unique<HloModuleConfig>(std::move(config)), std::move(comp_envs)) {} HloModule::HloModule(const std::string& name, std::variant<std::unique_ptr<HloModuleConfig>, std::shared_ptr<const HloModuleConfig>> config, std::unique_ptr<CompilationEnvironments> comp_envs) : name_(NameUniquer::GetSanitizedName(name)), config_(std::move(config)), unique_id_(next_unique_module_id_++), metadata_(tsl::Env::Default()), autofdo_fingerprint_(""), comp_envs_(std::move(comp_envs)) { metadata_.set_canonical_module_id(unique_id_); } absl::Status HloModule::set_schedule(HloSchedule schedule) { TF_RET_CHECK(schedule.module() == this); TF_RETURN_IF_ERROR(schedule.Verify()); schedule_ = std::move(schedule); return absl::OkStatus(); } void HloModule::ReplaceEntryComputation(HloComputation* entry_computation) { entry_computation_ = entry_computation; config_.get_mutable().SetDefaultComputationLayout( entry_computation_->ComputeProgramShape()); input_output_alias_config_ = HloInputOutputAliasConfig( entry_computation_->root_instruction()->shape()); buffer_donor_config_ = HloBufferDonorConfig(); } HloModule::StackFrame HloModule::get_stack_frame(int id) const { HloModule::StackFrame stack_frame; if (!stack_frame_index_.has_value() || id < 1 || id > stack_frame_index_->stack_frames().size()) { return stack_frame; } auto& frame = stack_frame_index_->stack_frames(id - 1); auto& file_location = stack_frame_index_->file_locations(frame.file_location_id() - 1); stack_frame.file_name = stack_frame_index_->file_names(file_location.file_name_id() - 1); stack_frame.function_name = stack_frame_index_->function_names(file_location.function_name_id() - 1); stack_frame.line = file_location.line(); stack_frame.column = file_location.column(); stack_frame.parent_frame_id = frame.parent_frame_id(); return stack_frame; } HloComputation* HloModule::AddComputationInternal( std::unique_ptr<HloComputation> computation, bool is_entry, bool uniquify_identifiers, bool preserve_entry_layouts) { if (is_entry) { CHECK_EQ(nullptr, entry_computation_); entry_computation_ = computation.get(); if (preserve_entry_layouts) { config_.get_mutable().SetComputationLayoutIfExists( entry_computation_->ComputeProgramShape()); } else if (!config_.get().has_entry_computation_layout()) { config_.get_mutable().SetDefaultComputationLayout( entry_computation_->ComputeProgramShape()); } input_output_alias_config_ = HloInputOutputAliasConfig( entry_computation_->root_instruction()->shape()); buffer_donor_config_ = HloBufferDonorConfig(); } if (uniquify_identifiers) { computation->UniquifyName(&computation_name_uniquer_); for (auto* instruction : computation->instructions()) { instruction->UniquifyName(&instruction_name_uniquer_); } for (auto* instruction : computation->instructions()) { instruction->SetUniqueId(NewUniqueInstructionId()); } CHECK_NE(computation->root_instruction()->unique_id(), -1) << "Root has no valid id: " << computation->ToString(); computation->SetUniqueId(computation->root_instruction()->unique_id()); } else { computation_name_uniquer_.GetUniqueName(computation->name()); for (auto* instruction : computation->instructions()) { instruction_name_uniquer_.GetUniqueName(instruction->name()); next_unique_id_ = std::max(next_unique_id_, instruction->unique_id() + 1); } if (next_unique_id_ < computation->unique_id() + 1) { next_unique_id_ = computation->unique_id() + 1; } } computation->set_parent(this); computations_.push_back(std::move(computation)); return computations_.back().get(); } HloComputation* HloModule::AddEntryComputation( std::unique_ptr<HloComputation> computation) { return AddComputationInternal(std::move(computation), true, true, false); } HloComputation* HloModule::AddEntryComputationWithLayouts( std::unique_ptr<HloComputation> computation) { return AddComputationInternal(std::move(computation), true, true, true); } absl::Status HloModule::RemoveEmbeddedComputation(HloComputation* to_remove) { if (has_schedule()) { schedule_->remove_computation(to_remove); } auto it = absl::c_find_if( computations_, [&to_remove](const std::unique_ptr<HloComputation>& comp) { return comp.get() == to_remove; }); TF_RET_CHECK(it != computations_.end()); TF_RET_CHECK(it->get() == to_remove); computations_.erase(it); return absl::OkStatus(); } HloComputation* HloModule::AddEmbeddedComputation( std::unique_ptr<HloComputation> computation) { return AddComputationInternal(std::move(computation), false, true, false); } void HloModule::MarkFusionDuplications( const absl::flat_hash_map<HloComputation*, HloComputation*>& replacements) { for (std::unique_ptr<HloComputation>& computation : computations_) { for (auto* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kFusion) { auto rep = replacements.find(instruction->fused_instructions_computation()); if (rep != replacements.end()) { xla::HloComputation* new_comp = rep->second; if (new_comp->IsFusionComputation()) { auto dedup_name = new_comp->FusionInstruction()->name(); new_comp->FusionInstruction()->set_metadata_deduplicated_name( std::string(dedup_name)); instruction->set_metadata_deduplicated_name( std::string(dedup_name)); } } } } } } void HloModule::MoveComputationsFrom(HloModule* module, bool make_names_unique) { for (size_t i = 0; i < module->computation_count(); ++i) { for (auto* instruction : module->computations_[i]->instructions()) { instruction->ClearUniqueIdInternal(); } module->computations_[i]->ClearUniqueIdInternal(); auto computation_raw_ptr = module->computations_[i].get(); if (computation_raw_ptr->IsEntryComputation()) { this->entry_computation_ = nullptr; } this->AddComputationInternal( std::move(module->computations_[i]), computation_raw_ptr->IsEntryComputation(), false, false); if (make_names_unique) { computation_raw_ptr->UniquifyName(&computation_name_uniquer_); for (auto* instruction : computation_raw_ptr->instructions()) { instruction->UniquifyName(&instruction_name_uniquer_); } } for (auto* instruction : computation_raw_ptr->instructions()) { instruction->SetUniqueId(NewUniqueInstructionId()); } CHECK_NE(computation_raw_ptr->root_instruction()->unique_id(), -1) << "Root has no valid id: " << computation_raw_ptr->ToString(); computation_raw_ptr->SetUniqueId( computation_raw_ptr->root_instruction()->unique_id()); } module->computations_.clear(); } void HloModule::ReplaceComputations( const absl::flat_hash_map<HloComputation*, HloComputation*>& replacements) { std::vector<std::unique_ptr<HloComputation>> new_computations; new_computations.reserve(computations_.size()); for (std::unique_ptr<HloComputation>& computation : computations_) { for (auto* instruction : computation->instructions()) { if (instruction->has_to_apply()) { HloComputation* new_arg = tsl::gtl::FindWithDefault( replacements, instruction->to_apply(), nullptr); if (new_arg != nullptr) { instruction->set_to_apply(new_arg); } continue; } switch (instruction->opcode()) { case HloOpcode::kWhile: { HloComputation* new_condition = tsl::gtl::FindWithDefault( replacements, instruction->while_condition(), nullptr); if (new_condition != nullptr) { instruction->set_while_condition(new_condition); } HloComputation* new_body = tsl::gtl::FindWithDefault( replacements, instruction->while_body(), nullptr); if (new_body != nullptr) { instruction->set_while_body(new_body); } break; } case HloOpcode::kConditional: { for (int b = 0; b < instruction->branch_count(); ++b) { HloComputation* new_computation = tsl::gtl::FindWithDefault( replacements, instruction->branch_computation(b), nullptr); if (new_computation != nullptr) { instruction->set_branch_computation(b, new_computation); } } break; } case HloOpcode::kSelectAndScatter: { HloComputation* new_select = tsl::gtl::FindWithDefault( replacements, instruction->select(), nullptr); if (new_select != nullptr) { instruction->set_select(new_select); } HloComputation* new_scatter = tsl::gtl::FindWithDefault( replacements, instruction->scatter(), nullptr); if (new_scatter != nullptr) { instruction->set_scatter(new_scatter); } break; } default: break; } } if (replacements.find(computation.get()) == replacements.end()) { new_computations.push_back(std::move(computation)); } } entry_computation_ = tsl::gtl::FindWithDefault( replacements, entry_computation_, entry_computation_); computations_ = std::move(new_computations); } void HloModule::Print(Printer* printer, const HloPrintOptions& options) const { printer->Append("HloModule "); if (options.print_ids()) { printer->Append(name()); } if (has_schedule()) { TF_CHECK_OK(schedule().Verify()); printer->Append(", is_scheduled=true"); } std::string serialized_aliasing = input_output_alias_config().ToShortString(); if (!serialized_aliasing.empty()) { printer->Append(", input_output_alias={ "); printer->Append(std::move(serialized_aliasing)); printer->Append(" }"); } std::string serialized_buffer_donor = buffer_donor_config().ToShortString(); if (!serialized_buffer_donor.empty()) { printer->Append(", buffer_donor={ "); printer->Append(std::move(serialized_buffer_donor)); printer->Append(" }"); } const auto& config = config_.get(); if (config.alias_passthrough_params()) { printer->Append(", alias_passthrough_params=true"); } if (config.has_entry_computation_layout()) { printer->Append(", entry_computation_layout={"); entry_computation_layout().Print(printer); printer->Append("}"); } if (config.allow_spmd_sharding_propagation_to_parameters().size() != 1 || config.allow_spmd_sharding_propagation_to_parameters().back()) { printer->Append(", allow_spmd_sharding_propagation_to_parameters={"); AppendJoin(printer, config.allow_spmd_sharding_propagation_to_parameters(), ",", [](Printer* printer, bool i) { printer->Append(i ? "true" : "false"); }); printer->Append("}"); } if (config.allow_spmd_sharding_propagation_to_output().size() != 1 || config.allow_spmd_sharding_propagation_to_output().back()) { printer->Append(", allow_spmd_sharding_propagation_to_output={"); AppendJoin(printer, config.allow_spmd_sharding_propagation_to_output(), ",", [](Printer* printer, bool i) { printer->Append(i ? "true" : "false"); }); printer->Append("}"); } if (config.replica_count() != 1) { printer->Append(", replica_count="); printer->Append(config.replica_count()); } if (config.num_partitions() != 1) { printer->Append(", num_partitions="); printer->Append(config.num_partitions()); } if (!frontend_attributes_.map().empty()) { AppendCat(printer, ", frontend_attributes=", FrontendAttributesToString(frontend_attributes_)); } printer->Append("\n\n"); const auto& computations = options.canonicalize_computations() ? MakeComputationSorted() : MakeComputationPostOrder(); for (const HloComputation* computation : computations) { if (options.syntax_sugar_async_ops() && computation->IsAsyncComputation() && computation->CanExpandIntoSingleInstruction()) { continue; } if (computation == entry_computation()) { printer->Append("ENTRY "); } if (has_schedule() && schedule().is_computation_scheduled(computation)) { computation->Print(printer, options, schedule().sequence(computation).instructions()); } else { computation->Print(printer, options); } printer->Append("\n\n"); } } std::string HloModule::ToString(const HloPrintOptions& options) const { StringPrinter printer; Print(&printer, options); return std::move(printer).ToString(); } absl::Cord HloModule::ToCord(const HloPrintOptions& options) const { CordPrinter printer; Print(&printer, options); return std::move(printer).ToCord(); } HloModuleProto HloModule::ToProto() const { HloModuleProto proto; proto.set_id(unique_id_); proto.set_name(name_); if (entry_computation_) { *proto.mutable_entry_computation_name() = std::string(entry_computation_->name()); proto.set_entry_computation_id(entry_computation_->unique_id()); *proto.mutable_host_program_shape() = entry_computation_layout().ComputeProgramShape().ToProto(); } for (const HloComputation* computation : MakeComputationPostOrder()) { HloComputationProto computation_proto = computation->ToProto(); proto.add_computations()->Swap(&computation_proto); } if (has_schedule()) { *proto.mutable_schedule() = schedule().ToProto().value(); } *proto.mutable_input_output_alias() = input_output_alias_config().ToProto(); *proto.mutable_buffer_donor() = buffer_donor_config().ToProto(); for (const auto& [parameter, indices, alt_memory_offset] : CrossProgramPrefetches()) { auto* prefetch = proto.mutable_cross_program_prefetches()->Add(); prefetch->set_parameter(parameter); for (auto index : indices) { prefetch->add_index(index); } if (alt_memory_offset) { prefetch->set_offset(*alt_memory_offset); } } proto.set_is_dynamic(is_dynamic_); if (has_spmd_output_sharding()) { *proto.mutable_spmd_output_sharding() = spmd_output_sharding().ToProto(); } *proto.mutable_frontend_attributes() = frontend_attributes_; if (has_spmd_parameters_shardings()) { for (const auto& parameter_sharding : spmd_parameters_shardings()) { *proto.add_spmd_parameters_shardings() = parameter_sharding.ToProto(); } } proto.set_use_auto_spmd_partitioning(use_auto_spmd_partitioning_); for (const HloModuleProto::ProfileInfo& profile_info : profile_info_list_) { HloModuleProto::ProfileInfo& profile_info_proto = *proto.mutable_profile_info()->Add(); profile_info_proto.set_profile_type(profile_info.profile_type()); profile_info_proto.set_relative_speedup(profile_info.relative_speedup()); profile_info_proto.set_profile_source(profile_info.profile_source()); profile_info_proto.set_compilation_event(profile_info.compilation_event()); profile_info_proto.set_fingerprint(profile_info.fingerprint()); } if (config_.get().has_static_device_assignment()) { DeviceAssignmentProto device_assignment; config_.get().static_device_assignment().Serialize(&device_assignment); (*proto.mutable_device_assignment()) = device_assignment; } if (stack_frame_index_.has_value()) { (*proto.mutable_stack_frame_index()) = *stack_frame_index_; } return proto; } HloModuleProtoWithConfig HloModule::ToProtoWithConfig() const { HloModuleProtoWithConfig result; *result.mutable_config() = config_.get().ToProto(); *result.mutable_hlo_module() = ToProto(); return result; } absl::Status HloModule::CheckUniqueNamesAndIdsForComputationsAndInstructions() const { absl::flat_hash_set<absl::string_view> computation_names; absl::flat_hash_set<int> computation_ids; absl::flat_hash_set<absl::string_view> instruction_names; absl::flat_hash_set<int> instruction_ids; for (const HloComputation* computation : computations()) { TF_RET_CHECK(!ContainsKey(computation_names, computation->name())) << "Computation name is not unique: " << computation->name(); computation_names.insert(computation->name()); TF_RET_CHECK(!ContainsKey(computation_ids, computation->unique_id())) << "Computation id is not unique: " << computation->unique_id(); computation_ids.insert(computation->unique_id()); for (const HloInstruction* instruction : computation->instructions()) { TF_RET_CHECK(!ContainsKey(instruction_names, instruction->name())) << "Instruction name is not unique: " << instruction->name(); instruction_names.insert(instruction->name()); TF_RET_CHECK(!ContainsKey(instruction_ids, instruction->unique_id())) << "Instruction id is not unique: " << instruction->unique_id(); instruction_ids.insert(instruction->unique_id()); } } return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<HloModule>> HloModule::CreateFromProto( const HloModuleProto& proto, const HloModuleConfig& module_config, bool prohibit_empty_literal) { VLOG(2) << "CreateFromProto()"; XLA_VLOG_LINES(3, proto.DebugString()); TF_RET_CHECK(proto.has_host_program_shape()) << "No program shape found in the proto"; ProgramShape expected_program_shape(proto.host_program_shape()); TF_RET_CHECK(expected_program_shape.parameters_size() == module_config.entry_computation_layout().parameter_count()); for (int i = 0; i < expected_program_shape.parameters_size(); ++i) { const Shape& parameter_shape = module_config.entry_computation_layout().parameter_layout(i).shape(); TF_RET_CHECK(ShapeUtil::Compatible(expected_program_shape.parameters(i), parameter_shape)) << "HloModuleConfig has different shape for parameter " << i << " than the HLO module. Expected: " << ShapeUtil::HumanStringWithLayout( expected_program_shape.parameters(i)) << ", actual: " << ShapeUtil::HumanStringWithLayout(parameter_shape); } const Shape& result_shape = module_config.entry_computation_layout().result_layout().shape(); TF_RET_CHECK( ShapeUtil::Compatible(expected_program_shape.result(), result_shape)) << "HloModuleConfig has different result shape than the HLO module. " "Expected: " << ShapeUtil::HumanStringWithLayout(expected_program_shape.result()) << ", actual: " << ShapeUtil::HumanStringWithLayout(result_shape); absl::flat_hash_map<int64_t, HloComputation*> computation_map; absl::flat_hash_map<HloComputation*, int64_t> to_proto_id; std::vector<std::unique_ptr<HloComputation>> computations; HloComputation* entry = nullptr; for (const HloComputationProto& computation_proto : proto.computations()) { TF_ASSIGN_OR_RETURN( std::unique_ptr<HloComputation> computation, HloComputation::CreateFromProto(computation_proto, computation_map, prohibit_empty_literal)); CHECK_NE(computation.get(), nullptr); int64_t computation_id = computation_proto.id(); TF_RET_CHECK(computation_id != -1); TF_RET_CHECK(!ContainsKey(computation_map, computation_id)); computation_map[computation_id] = computation.get(); to_proto_id[computation.get()] = computation_id; if (computation_id == proto.entry_computation_id()) { entry = computation.get(); } computations.push_back(std::move(computation)); } TF_RET_CHECK(entry != nullptr); auto module = std::make_unique<HloModule>(proto.name(), module_config); absl::c_sort(computations, [&](const std::unique_ptr<HloComputation>& a, const std::unique_ptr<HloComputation>& b) { return to_proto_id[a.get()] < to_proto_id[b.get()]; }); for (auto& computation : computations) { bool is_entry = computation.get() == entry; module->AddComputationInternal(std::move(computation), is_entry, false, false); } TF_RET_CHECK(module->entry_computation_ != nullptr); TF_ASSIGN_OR_RETURN( module->input_output_alias_config_, HloInputOutputAliasConfig::CreateFromProto( entry->ComputeProgramShape().result(), proto.input_output_alias())); TF_ASSIGN_OR_RETURN( module->buffer_donor_config_, HloBufferDonorConfig::CreateFromProto(proto.buffer_donor())); TF_RETURN_IF_ERROR( module->CheckUniqueNamesAndIdsForComputationsAndInstructions()); if (proto.has_schedule()) { TF_ASSIGN_OR_RETURN( HloSchedule schedule, HloSchedule::CreateFromProto(module.get(), proto.schedule())); TF_RETURN_IF_ERROR(module->set_schedule(std::move(schedule))); } for (const auto& prefetch : proto.cross_program_prefetches()) { module->AddCrossProgramPrefetch( prefetch.parameter(), ShapeIndex(prefetch.index().begin(), prefetch.index().end()), prefetch.offset()); } module->set_is_dynamic(proto.is_dynamic()); if (proto.has_frontend_attributes()) { module->set_frontend_attributes(proto.frontend_attributes()); } if (proto.has_spmd_output_sharding()) { TF_ASSIGN_OR_RETURN(HloSharding hlo_sharding, HloSharding::FromProto(proto.spmd_output_sharding())); module->set_spmd_output_sharding(hlo_sharding); } std::vector<HloSharding> param_shardings; for (const auto& sharding_proto : proto.spmd_parameters_shardings()) { TF_ASSIGN_OR_RETURN(HloSharding sharding, HloSharding::FromProto(sharding_proto)); param_shardings.push_back(sharding); } if (!param_shardings.empty()) { module->set_spmd_parameters_shardings(param_shardings); } module->set_use_auto_spmd_partitioning(proto.use_auto_spmd_partitioning()); for (const auto& profile_info : proto.profile_info()) { module->add_profile_info(profile_info); } if (proto.has_device_assignment()) { if (!module->config_.get().has_static_device_assignment()) { TF_ASSIGN_OR_RETURN( std::unique_ptr<DeviceAssignment> device_assignment, DeviceAssignment::Deserialize(proto.device_assignment())); module->config_.get_mutable().set_static_device_assignment( *device_assignment); } } if (proto.has_stack_frame_index()) { if (!module->stack_frame_index_.has_value()) { module->stack_frame_index_ = std::move(proto.stack_frame_index()); } } return std::move(module); } absl::StatusOr<HloModuleConfig> HloModule::CreateModuleConfigFromShape( const ProgramShape& program_shape, const DebugOptions& debug_options, const ExecutionOptions* execution_options) { HloModuleConfig module_config(ProgramShape{program_shape}); module_config.set_debug_options(debug_options); if (execution_options) { if (execution_options->num_replicas() > 0) { module_config.set_replica_count(execution_options->num_replicas()); } if (execution_options->num_partitions() > 0) { module_config.set_num_partitions(execution_options->num_partitions()); } module_config.set_use_spmd_partitioning( execution_options->use_spmd_partitioning()); module_config.set_use_auto_spmd_partitioning( execution_options->use_auto_spmd_partitioning()); module_config.set_auto_spmd_partitioning_mesh_shape(std::vector<int64_t>( execution_options->auto_spmd_partitioning_mesh_shape().begin(), execution_options->auto_spmd_partitioning_mesh_shape().end())); module_config.set_auto_spmd_partitioning_mesh_ids(std::vector<int64_t>( execution_options->auto_spmd_partitioning_mesh_ids().begin(), execution_options->auto_spmd_partitioning_mesh_ids().end())); module_config.set_deduplicate_hlo(execution_options->deduplicate_hlo()); if (!execution_options->allow_spmd_sharding_propagation_to_parameters() .empty()) { module_config.set_allow_spmd_sharding_propagation_to_parameters( execution_options->allow_spmd_sharding_propagation_to_parameters()); } if (!execution_options->allow_spmd_sharding_propagation_to_output() .empty()) { module_config.set_allow_spmd_sharding_propagation_to_output( execution_options->allow_spmd_sharding_propagation_to_output()); } if (execution_options->has_device_assignment()) { TF_ASSIGN_OR_RETURN(std::unique_ptr<DeviceAssignment> device_assignment, DeviceAssignment::Deserialize( execution_options->device_assignment())); module_config.set_static_device_assignment(*device_assignment); if (execution_options->num_replicas() > 0) { CHECK_EQ(module_config.static_device_assignment().replica_count(), module_config.replica_count()); } if (execution_options->num_partitions() > 0) { CHECK_EQ(module_config.static_device_assignment().computation_count(), module_config.num_partitions()); } } module_config.set_param_requires_broadcast_via_collectives(std::vector< bool>( execution_options->param_requires_broadcast_via_collectives().begin(), execution_options->param_requires_broadcast_via_collectives().end())); module_config.set_allow_separate_sharding_programs( execution_options->allow_separate_sharding_programs()); HloModuleConfig::AssignStructShardableValueUpdatePairs( module_config, execution_options->shardable_value_update_pairs()); module_config.set_use_shardy_partitioner( execution_options->use_shardy_partitioner()); } ComputationLayout* entry_layout = module_config.mutable_entry_computation_layout(); for (int64_t i = 0; i < entry_layout->parameter_count(); ++i) { TF_RETURN_IF_ERROR( entry_layout->mutable_parameter_layout(i)->CopyLayoutFromShape( program_shape.parameters(i))); } TF_RETURN_IF_ERROR(entry_layout->mutable_result_layout()->CopyLayoutFromShape( program_shape.result())); return module_config; } absl::StatusOr<HloModuleConfig> HloModule::CreateModuleConfigFromProto( const HloModuleProto& module, const DebugOptions& debug_options, const ExecutionOptions* execution_options) { if (!module.has_host_program_shape()) { return tsl::errors::FailedPrecondition( "No program shape found in the proto"); } ProgramShape program_shape(module.host_program_shape()); TF_ASSIGN_OR_RETURN(HloModuleConfig config, CreateModuleConfigFromShape(program_shape, debug_options, execution_options)); if (!config.has_static_device_assignment()) { if (module.has_device_assignment()) { TF_ASSIGN_OR_RETURN( std::unique_ptr<DeviceAssignment> device_assignment, DeviceAssignment::Deserialize(module.device_assignment())); config.set_static_device_assignment(*device_assignment); } } return config; } absl::StatusOr<std::unique_ptr<HloModule>> HloModule::CreateFromProtoWithConfig( const HloModuleProtoWithConfig& proto, bool prohibit_empty_literal) { const auto& hlo_module_proto = proto.hlo_module(); TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModuleConfig> config_ptr, HloModuleConfig::CreateFromProto(proto.config())); return HloModule::CreateFromProto(hlo_module_proto, *config_ptr, prohibit_empty_literal); } namespace { bool IsUsedOutsideSubcomputation(const HloInstruction& hlo, const absl::flat_hash_set<HloInstruction*>& instructions_in_subcomputation) { return absl::c_any_of(hlo.users(), [&](HloInstruction* user) { return !instructions_in_subcomputation.contains(user); }); } } HloInstruction* HloModule::OutlineExpressionFromComputation( absl::Span<HloInstruction* const> instructions_to_outline, const std::string& outlined_computation_name, HloComputation* computation) { auto builder = HloComputation::Builder(outlined_computation_name); absl::flat_hash_map<HloInstruction*, HloInstruction*> outlined_instructions; absl::flat_hash_set<HloInstruction*> instruction_set_to_outline( instructions_to_outline.begin(), instructions_to_outline.end()); std::vector<HloInstruction*> arguments; std::vector<HloInstruction*> outputs; int64_t parameter_count = 0; for (HloInstruction* instruction_to_outline : instructions_to_outline) { HloInstruction* outlined_instruction = builder.AddInstruction(instruction_to_outline->Clone()); for (int64_t operand_num = 0; operand_num < outlined_instruction->operand_count(); ++operand_num) { HloInstruction* old_operand = outlined_instruction->mutable_operand(operand_num); HloInstruction** operand_slot = &(outlined_instructions[old_operand]); if (*operand_slot == nullptr) { arguments.push_back(old_operand); *operand_slot = builder.AddInstruction(HloInstruction::CreateParameter( parameter_count, old_operand->shape(), "p")); ++parameter_count; } TF_CHECK_OK( outlined_instruction->ReplaceOperandWith(operand_num, *operand_slot)); } InsertOrDie(&outlined_instructions, instruction_to_outline, outlined_instruction); if (instruction_to_outline->user_count() == 0 || IsUsedOutsideSubcomputation(*instruction_to_outline, instruction_set_to_outline)) { outputs.push_back(instruction_to_outline); } } if (outputs.size() != 1) { std::string error_message = "The subcomputation to outline has multiple outputs:\n"; for (HloInstruction* output : outputs) { absl::StrAppend(&error_message, output->ToString(), "\n"); } LOG(FATAL) << error_message; } HloInstruction* output = outputs[0]; HloComputation* nested_computation = AddEmbeddedComputation( builder.Build(FindOrDie(outlined_instructions, output))); HloInstruction* call = computation->AddInstruction(HloInstruction::CreateCall( output->shape(), arguments, nested_computation)); VLOG(2) << "Outlining the following instructions"; for (auto* instruction_to_outline : instructions_to_outline) { VLOG(2) << " " << instruction_to_outline->ToString(); } VLOG(2) << "as a call " << call->ToString(); VLOG(2) << "to " << nested_computation->ToString(); TF_CHECK_OK(output->ReplaceAllUsesWith(call)); for (auto i = instructions_to_outline.rbegin(); i != instructions_to_outline.rend(); ++i) { TF_CHECK_OK(computation->RemoveInstruction(*i)); } return call; } int64_t HloModule::instruction_count() const { int64_t n = 0; for (const auto& computation : computations_) { n += computation->instruction_count(); } return n; } std::vector<HloComputation*> HloModule::MakeComputationPostOrder( const absl::flat_hash_set<absl::string_view>& execution_threads, const absl::flat_hash_set<HloComputation*>& allow_list) const { std::vector<HloComputation*> post_order = this->MakeComputationPostOrder(execution_threads); post_order.erase(std::remove_if(post_order.begin(), post_order.end(), [&allow_list](HloComputation* computation) { return !allow_list.contains(computation); }), post_order.end()); return post_order; } std::vector<HloComputation*> HloModule::MakeComputationPostOrder( const absl::flat_hash_set<absl::string_view>& execution_threads) const { if (computations_.empty()) { return {}; } absl::flat_hash_set<HloComputation*> nonroot_computations; nonroot_computations.reserve(computations_.size() - 1); for (auto& computation : computations_) { for (const HloInstructionInfo& inst : computation->instructions_with_info()) { if (HloInstruction::MightHaveCalledComputations(inst.opcode())) { for (HloComputation* called_computation : inst->called_computations()) { nonroot_computations.insert(called_computation); } } } } absl::flat_hash_set<HloComputation*> added_computations; std::vector<HloComputation*> post_order; added_computations.reserve(computations_.size()); post_order.reserve(computations_.size()); for (auto& computation : computations_) { if (nonroot_computations.contains(computation.get())) { continue; } for (HloComputation* embedded_computation : computation->MakeEmbeddedComputationsList()) { if (added_computations.insert(embedded_computation).second) { post_order.push_back(embedded_computation); } } CHECK(!added_computations.contains(computation.get())); post_order.push_back(computation.get()); added_computations.insert(computation.get()); } if (post_order.size() != computations_.size()) { for (HloComputation* computation : post_order) { LOG(ERROR) << "Post Order: " << computation->name() << " (" << computation->parent()->name() << ")"; } for (auto& computation : computations_) { LOG(ERROR) << "Computations: " << computation->name() << " (" << computation->parent()->name() << ")"; } LOG(FATAL) << "Mismatch computation count: post_order=" << post_order.size() << " computation_count=" << computations_.size(); } if (!execution_threads.empty()) { post_order.erase(std::remove_if(post_order.begin(), post_order.end(), [&](HloComputation* computation) { return !execution_threads.contains( computation->execution_thread()); }), post_order.end()); } return post_order; } namespace { class FingerprintMap { public: void Reserve(int capacity) { fingerprint_map_.reserve(capacity); } uint64_t GetFingerprint(const HloComputation* computation) { auto result = fingerprint_map_.try_emplace(computation, 0); if (result.second) { result.first->second = tsl::Fingerprint64(computation->ToString(print_options_)); } return result.first->second; } private: HloPrintOptions print_options_ = HloPrintOptions::ModuleFingerprint(); absl::flat_hash_map<const HloComputation*, uint64_t> fingerprint_map_; }; void SortComputationsByContent(std::vector<HloComputation*>* computations) { FingerprintMap fingerprint_map; fingerprint_map.Reserve(computations->size()); auto cmp = [&fingerprint_map](const HloComputation* a, const HloComputation* b) { if (a->instruction_count() != b->instruction_count()) { return a->instruction_count() < b->instruction_count(); } if (a == b) return false; return fingerprint_map.GetFingerprint(a) < fingerprint_map.GetFingerprint(b); }; absl::c_sort(*computations, cmp); } } std::vector<HloComputation*> HloModule::MakeComputationSorted( const absl::flat_hash_set<absl::string_view>& execution_threads) const { std::vector<HloComputation*> result = MakeComputationPostOrder(execution_threads); if (config().content_aware_computation_sorting()) { SortComputationsByContent(&result); } return result; } std::vector<HloComputation*> HloModule::MakeNonfusionComputations( const absl::flat_hash_set<absl::string_view>& execution_threads) const { std::vector<HloComputation*> result = MakeComputationPostOrder(execution_threads); result.erase(std::remove_if( result.begin(), result.end(), [](HloComputation* c) { return c->IsFusionComputation(); }), result.end()); return result; } std::vector<HloComputation*> HloModule::MakeNonfusionComputationsSorted( const absl::flat_hash_set<absl::string_view>& execution_threads) const { auto result = MakeNonfusionComputations(execution_threads); if (config().content_aware_computation_sorting()) { SortComputationsByContent(&result); } return result; } std::unique_ptr<HloModule> HloModule::Clone(const std::string& suffix) const { return Clone(config_.FreezeAndShare(), suffix); } std::unique_ptr<HloModule> HloModule::Clone(const HloModuleConfig& config, const std::string& suffix) const { return Clone(std::make_shared<const HloModuleConfig>(config), suffix); } std::unique_ptr<HloModule> HloModule::Clone( std::shared_ptr<const HloModuleConfig> config, const std::string& suffix) const { VLOG(1) << "Cloning module :" << name_ << " --> " << suffix << "\n"; auto module = std::make_unique<HloModule>( absl::StrCat(name_, suffix.empty() ? "" : "-", suffix), std::move(config), std::make_unique<CompilationEnvironments>(*comp_envs_)); HloCloneContext context(module.get(), suffix); if (entry_computation_) { auto cloned_computation = entry_computation_->Clone(suffix, &context); module->AddEntryComputation(std::move(cloned_computation)); } module->input_output_alias_config() = input_output_alias_config(); module->buffer_donor_config() = buffer_donor_config(); module->set_is_dynamic(is_dynamic()); module->set_frontend_attributes(frontend_attributes()); if (has_schedule() && schedule().Verify().ok()) { HloSchedule clone_schedule(module.get()); for (HloComputation* computation : computations()) { if (schedule().is_computation_scheduled(computation)) { HloComputation* new_computation = context.FindComputation(computation); if (new_computation != nullptr) { HloInstructionSequence& clone_sequence = clone_schedule.GetOrCreateSequence(new_computation); for (const HloInstruction* instruction : schedule().sequence(computation).instructions()) { clone_sequence.push_back(context.GetInstruction(instruction)); } } } } TF_CHECK_OK(module->set_schedule(std::move(clone_schedule))); } for (const auto& [parameter, indices, offset] : CrossProgramPrefetches()) { module->AddCrossProgramPrefetch(parameter, indices, offset); } using ComputationSorter = MappedPtrContainerSorter<HloComputation>; auto computation_map_fn = [&context](const HloComputation* c) { return context.FindComputation(c); }; auto status = ComputationSorter::Sort( computation_map_fn, ComputationSorter::IndexAfterMappedElementsFn(), computations_, module->computations_); if (!status.ok()) { LOG(ERROR) << "Failed to sort module computations for " << name() << "; " << status; } return module; } absl::Status HloModule::RemoveUnusedComputations() { std::string suffix = "tmp"; auto module = std::make_unique<HloModule>( absl::StrCat(name_, "-", suffix), config(), std::make_unique<CompilationEnvironments>(*comp_envs_)); HloCloneContext context(module.get(), suffix); entry_computation_->Clone(suffix, &context); std::vector<HloComputation*> to_remove; for (auto computation : computations()) { auto found_computation = context.FindComputation(computation); if (found_computation == nullptr) { to_remove.push_back(computation); } } for (auto computation : to_remove) { TF_RETURN_IF_ERROR(RemoveEmbeddedComputation(computation)); } return absl::OkStatus(); } HloComputation* HloModule::DeepCloneComputation(HloComputation* computation, HloCloneContext* context) { HloComputation* new_computation; if (context != nullptr) { if ((new_computation = context->FindComputation(computation)) != nullptr) { return new_computation; } new_computation = AddEmbeddedComputation(computation->Clone(context->suffix(), context)); } else { new_computation = AddEmbeddedComputation(computation->Clone("")); } return new_computation; } uint64_t HloModule::RandomNew64() const { absl::MutexLock l(&rng_mutex_); return rng_(); } HloComputation* HloModule::GetComputationWithName(absl::string_view name) { auto computations_in_module = computations(); auto it = absl::c_find_if( computations_in_module, [&](HloComputation* computation) { return computation->name() == name; }); return it == computations_in_module.end() ? nullptr : *it; } std::string HloModule::GetFingerprint128(const HloPrintOptions& options) const { const tsl::Fprint128 fingerprint = tsl::Fingerprint128(ToString(options)); absl::string_view fp_bytes(reinterpret_cast<const char*>(&fingerprint), sizeof(tsl::Fprint128)); return absl::BytesToHexString(fp_bytes); } std::atomic<int> HloModule::next_unique_module_id_(0); }
#include "xla/hlo/ir/hlo_module.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal.h" #include "xla/service/computation_placer.h" #include "xla/service/hlo_memory_scheduler.h" #include "xla/service/test_compilation_environment.pb.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/lib/strings/proto_serialization.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { std::unique_ptr<tsl::protobuf::Message> ProcessNewEnv( std::unique_ptr<tsl::protobuf::Message> msg) { std::unique_ptr<test::TestCompilationEnvironment1> env( tensorflow::down_cast<test::TestCompilationEnvironment1*>(msg.release())); if (!env) { env = std::make_unique<test::TestCompilationEnvironment1>(); env->set_some_flag(100); } return env; } namespace { namespace op = ::xla::testing::opcode_matchers; class HloModuleTest : public HloTestBase { protected: static void SetUpTestSuite() { CompilationEnvironments::RegisterProcessNewEnvFn( test::TestCompilationEnvironment1::descriptor(), ProcessNewEnv); } std::unique_ptr<HloComputation> CreateConstantComputation() { auto builder = HloComputation::Builder("Constant"); builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); return builder.Build(); } std::unique_ptr<HloComputation> CreateCallComputation( absl::Span<HloComputation* const> computations) { auto builder = HloComputation::Builder("Call"); for (auto computation : computations) { builder.AddInstruction( HloInstruction::CreateCall(r0f32_, {}, computation)); } return builder.Build(); } Shape r0f32_ = ShapeUtil::MakeShape(F32, {}); }; TEST_F(HloModuleTest, OneComputationPostOrder) { auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(CreateConstantComputation()); EXPECT_THAT(module->MakeComputationPostOrder(), ::testing::ElementsAre(computation)); } TEST_F(HloModuleTest, TwoComputationsPostOrder) { auto module = CreateNewVerifiedModule(); auto computation1 = module->AddEntryComputation(CreateConstantComputation()); auto computation2 = module->AddEmbeddedComputation(CreateConstantComputation()); EXPECT_THAT(module->MakeComputationPostOrder(), ::testing::UnorderedElementsAre(computation1, computation2)); EXPECT_EQ(computation1->name(), "Constant"); EXPECT_EQ(computation2->name(), "Constant.1"); } TEST_F(HloModuleTest, CloneTest) { auto module = CreateNewVerifiedModule(); auto computation1 = module->AddEmbeddedComputation(CreateConstantComputation()); auto computation2 = module->AddEmbeddedComputation(CreateCallComputation({computation1})); auto computation3 = module->AddEmbeddedComputation(CreateCallComputation({computation1})); module->AddEntryComputation( CreateCallComputation({computation2, computation3})); auto env = std::make_unique<test::TestCompilationEnvironment1>(); env->set_some_flag(10); TF_ASSERT_OK(module->comp_envs().AddEnv(std::move(env))); auto post_order = module->MakeComputationPostOrder(); auto cloned_module = module->Clone("copy"); auto post_order_copied = cloned_module->MakeComputationPostOrder(); EXPECT_EQ(cloned_module->comp_envs() .GetEnv<test::TestCompilationEnvironment1>() .some_flag(), 10); EXPECT_EQ(post_order.size(), post_order_copied.size()); for (auto origin = post_order.begin(), copied = post_order_copied.begin(); origin != post_order.end() && copied != post_order_copied.end(); ++origin, ++copied) { EXPECT_EQ(absl::StrCat((*origin)->name(), ".copy"), (*copied)->name()); } } TEST_F(HloModuleTest, CloneFrontendAttributes) { auto module = CreateNewVerifiedModule(); FrontendAttributes frontend_attributes; frontend_attributes.mutable_map()->emplace("attribute1", "attribute1_value"); module->set_frontend_attributes(frontend_attributes); std::unique_ptr<HloModule> clone = module->Clone(); bool areEqual = std::equal( frontend_attributes.map().begin(), frontend_attributes.map().end(), clone->frontend_attributes().map().begin(), [](const auto& kv1, const auto& kv2) { return kv1.first == kv2.first && kv1.second == kv2.second; }); EXPECT_TRUE(areEqual); } TEST_F(HloModuleTest, CloneHasFusion) { auto module = CreateNewVerifiedModule(); HloComputation* fused_computation; { auto b = HloComputation::Builder("Fused"); auto x = b.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "x")); b.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, x, x)); fused_computation = module->AddEmbeddedComputation(b.Build()); } { auto b = HloComputation::Builder("Entry"); auto input = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); b.AddInstruction( HloInstruction::CreateFusion(r0f32_, HloInstruction::FusionKind::kInput, {input}, fused_computation)); module->AddEntryComputation(b.Build()); } auto post_order = module->MakeComputationPostOrder(); auto cloned_module = module->Clone("copy"); auto post_order_copied = cloned_module->MakeComputationPostOrder(); EXPECT_EQ(post_order.size(), post_order_copied.size()); for (auto origin = post_order.begin(), copied = post_order_copied.begin(); origin != post_order.end() && copied != post_order_copied.end(); ++origin, ++copied) { if ((*origin)->name() == "Fused") { EXPECT_EQ(absl::StrCat((*origin)->name(), ".clone"), (*copied)->name()); } else { EXPECT_EQ(absl::StrCat((*origin)->name(), ".copy"), (*copied)->name()); } } } TEST_F(HloModuleTest, CloneCustomCallComputationToApply) { const char* const hlo_string = R"( HloModule a_module add_s32 { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY entry () -> s32[] { %c1 = s32[] constant(1) %c2 = s32[] constant(2) ROOT %custom-call = s32[] custom-call(s32[] %c1, %c2), custom_call_target="foo", backend_config="this string is opaque", to_apply=add_s32 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); std::unique_ptr<HloModule> cloned_module = module->Clone(); HloComputation* cloned_computation = cloned_module->GetComputationWithName("add_s32.clone"); HloInstruction* cloned_custom_call = cloned_module->entry_computation()->GetInstructionWithName("custom-call"); EXPECT_TRUE(cloned_computation->IsCustomCallComputation()); EXPECT_EQ(cloned_computation->CustomCallInstruction(), cloned_custom_call); } TEST_F(HloModuleTest, CloneCustomCallComputationCalledComputations) { const char* const hlo_string = R"( HloModule a_module add_s32_0 { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } add_s32_1 { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY entry () -> s32[] { %c1 = s32[] constant(1) %c2 = s32[] constant(2) ROOT %custom-call = s32[] custom-call(s32[] %c1, %c2), custom_call_target="foo", backend_config="this string is opaque", called_computations={%add_s32_0, %add_s32_1} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); std::unique_ptr<HloModule> cloned_module = module->Clone(); HloComputation* cloned_computation_0 = cloned_module->GetComputationWithName("add_s32_0.clone"); HloComputation* cloned_computation_1 = cloned_module->GetComputationWithName("add_s32_1.clone"); HloInstruction* cloned_custom_call = cloned_module->entry_computation()->GetInstructionWithName("custom-call"); EXPECT_TRUE(cloned_computation_0->IsCustomCallComputation()); EXPECT_EQ(cloned_computation_0->CustomCallInstruction(), cloned_custom_call); EXPECT_TRUE(cloned_computation_1->IsCustomCallComputation()); EXPECT_EQ(cloned_computation_1->CustomCallInstruction(), cloned_custom_call); } TEST_F(HloModuleTest, CloneFusionComputation) { const char* const hlo_string = R"( HloModule a_module fused_computation () -> s32[] { ROOT %result = s32[] parameter(0) } ENTRY main { %c = s32[] constant(1) ROOT %fusion = s32[] fusion(%c), kind=kLoop, calls=fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); std::unique_ptr<HloModule> cloned_module = module->Clone(); HloComputation* cloned_computation = cloned_module->GetComputationWithName("fused_computation.clone"); HloInstruction* cloned_fusion_instr = cloned_module->entry_computation()->GetInstructionWithName("fusion"); EXPECT_TRUE(cloned_computation->IsFusionComputation()); EXPECT_EQ(cloned_computation->FusionInstruction(), cloned_fusion_instr); } TEST_F(HloModuleTest, DiamondComputationsPostOrder) { auto module = CreateNewVerifiedModule(); auto computation1 = module->AddEmbeddedComputation(CreateConstantComputation()); auto computation2 = module->AddEmbeddedComputation(CreateCallComputation({computation1})); auto computation3 = module->AddEmbeddedComputation(CreateCallComputation({computation1})); auto computation4 = module->AddEntryComputation( CreateCallComputation({computation2, computation3})); auto post_order = module->MakeComputationPostOrder(); EXPECT_THAT(post_order, ::testing::UnorderedElementsAre(computation1, computation2, computation3, computation4)); EXPECT_EQ(post_order.back(), computation4); EXPECT_EQ(post_order.front(), computation1); } TEST_F(HloModuleTest, LargeConstantToString) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder("Constant"); std::vector<float> values(16, 42.0); builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<float>(values))); module->AddEntryComputation(builder.Build()); EXPECT_EQ( "HloModule LargeConstantToString, " "entry_computation_layout={()->f32[16]{0}}\n\nENTRY %Constant () -> " "f32[16] {\n ROOT %constant = f32[16]{0} constant({...})\n}\n\n", module->ToString(HloPrintOptions().set_print_large_constants(false))); EXPECT_EQ( "HloModule LargeConstantToString, " "entry_computation_layout={()->f32[16]{0}}\n\nENTRY %Constant () -> " "f32[16] {\n ROOT %constant = f32[16]{0} constant({42, 42, 42, 42, 42, " "42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42})\n}\n\n", module->ToString(HloPrintOptions().set_print_large_constants(true))); } TEST_F(HloModuleTest, UniqueModuleId) { auto module_a = CreateNewVerifiedModule(); auto module_b = CreateNewVerifiedModule(); EXPECT_NE(module_a->unique_id(), module_b->unique_id()); } TEST_F(HloModuleTest, ProtoSerializationWithoutSchedule) { const std::string text = R"( HloModule axpy_module ENTRY %axpy.v5 (alpha: f32[], x: f32[2,4], y: f32[2,4]) -> f32[2,4] { %alpha = f32[] parameter(0) %x = f32[2,4]{1,0} parameter(1) %y = f32[2,4]{1,0} parameter(2) %broadcast = f32[2,4]{1,0} broadcast(f32[] %alpha), dimensions={} %multiply = f32[2,4]{1,0} multiply(f32[2,4]{1,0} %broadcast, f32[2,4]{1,0} %x) ROOT %add = f32[2,4]{1,0} add(f32[2,4]{1,0} %multiply, f32[2,4]{1,0} %y) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); ASSERT_FALSE(module->has_schedule()); TF_ASSERT_OK_AND_ASSIGN( auto module_copy, HloModule::CreateFromProto(module->ToProto(), module->config())); ASSERT_FALSE(module_copy->has_schedule()); } TEST_F(HloModuleTest, ProtoSerializationWithSchedule) { const std::string text = R"( HloModule axpy_module, is_scheduled=true ENTRY %axpy.v5 (alpha: f32[], x: f32[2,4], y: f32[2,4]) -> f32[2,4] { %alpha = f32[] parameter(0) %x = f32[2,4]{1,0} parameter(1) %y = f32[2,4]{1,0} parameter(2) %broadcast = f32[2,4]{1,0} broadcast(f32[] %alpha), dimensions={} %multiply = f32[2,4]{1,0} multiply(f32[2,4]{1,0} %broadcast, f32[2,4]{1,0} %x) ROOT %add = f32[2,4]{1,0} add(f32[2,4]{1,0} %multiply, f32[2,4]{1,0} %y) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); ASSERT_TRUE(module->has_schedule()); TF_ASSERT_OK_AND_ASSIGN( auto module_copy, HloModule::CreateFromProto(module->ToProto(), module->config())); ASSERT_TRUE(module_copy->has_schedule()); TF_ASSERT_OK(module_copy->schedule().Verify()); EXPECT_EQ(module_copy->schedule().sequences().size(), 1); ASSERT_TRUE(module_copy->schedule().is_computation_scheduled( module_copy->entry_computation())); EXPECT_THAT( module_copy->schedule() .sequence(module_copy->entry_computation()) .instructions(), ::testing::ElementsAre(op::Parameter(), op::Parameter(), op::Parameter(), op::Broadcast(), op::Multiply(), op::Add())); } TEST_F(HloModuleTest, ProtoSerializationPreservesIds) { const std::string text = R"(HloModule ReduceR3ToR2_module add_F32.v3 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY ReduceR3ToR2.v3 { input = f32[8,16,256]{2,1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[8,16]{1,0} reduce(input, constant), dimensions={2}, to_apply=add_F32.v3 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); HloComputation* entry = module->entry_computation(); HloInstruction* root = entry->root_instruction(); HloComputation* reduction = root->to_apply(); HloComputation* reduction_clone = module->AddEmbeddedComputation(reduction->Clone()); root->set_to_apply(reduction_clone); TF_ASSERT_OK(module->RemoveEmbeddedComputation(reduction)); HloInstruction* negate = entry->AddInstruction( HloInstruction::CreateUnary(root->shape(), HloOpcode::kNegate, root)); entry->set_root_instruction(negate); auto size_fn = [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape()); }; HloMemoryScheduler scheduler(size_fn); TF_ASSERT_OK(scheduler.Run(module.get()).status()); ASSERT_TRUE(module->has_schedule()); TF_ASSERT_OK_AND_ASSIGN( auto module_copy, HloModule::CreateFromProto(module->ToProto(), module->config())); EXPECT_NE(module->unique_id(), module_copy->unique_id()); auto computation_copy = module_copy->computations(); auto computation_copy_it = computation_copy.begin(); for (const HloComputation* computation_orig : module->computations()) { const HloComputation* computation_copy = *computation_copy_it++; EXPECT_EQ(computation_orig->unique_id(), computation_copy->unique_id()) << absl::StrFormat( "ID of original computation %s != ID of deserialized " "computation %s: %d != %d", computation_orig->name(), computation_copy->name(), computation_orig->unique_id(), computation_copy->unique_id()); auto instruction_copy_it = computation_copy->instructions().begin(); for (const HloInstruction* instruction_orig : computation_orig->instructions()) { const HloInstruction* instruction_copy = *instruction_copy_it++; EXPECT_EQ(instruction_orig->unique_id(), instruction_copy->unique_id()) << absl::StrFormat( "ID of original instruction %s != ID of deserialized " "instruction %s: %d != %d", instruction_orig->name(), instruction_copy->name(), instruction_orig->unique_id(), instruction_copy->unique_id()); } } int next_id = module_copy->NewUniqueInstructionId(); for (const HloComputation* computation : module_copy->computations()) { for (const HloInstruction* instruction : computation->instructions()) { EXPECT_GT(next_id, instruction->unique_id()); } } } TEST_F(HloModuleTest, VerifyReplaceComputationsWithReduceScatter) { const std::string text = R"( HloModule reduce-scatter %sum (a: f32[], b: f32[]) -> f32[] { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(f32[] a, f32[] b) } ENTRY main { %param = f32[16,8,128]{2,1,0} parameter(0) ROOT %rs = f32[4,8,128]{2,1,0} reduce-scatter(f32[16,8,128]{2,1,0} %param), replica_groups={}, to_apply=%sum, dimensions={0} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); HloComputation* new_comp; { auto b = HloComputation::Builder("Fused"); auto p0 = b.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "p0")); auto p1 = b.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "p1")); b.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(F32, {}), HloOpcode::kMultiply, p0, p1)); new_comp = module->AddEmbeddedComputation(b.Build()); } HloComputation* entry = module->entry_computation(); HloInstruction* root = entry->root_instruction(); EXPECT_EQ(root->to_apply()->root_instruction()->opcode(), HloOpcode::kAdd); absl::flat_hash_map<HloComputation*, HloComputation*> replacement; replacement[root->to_apply()] = new_comp; module->ReplaceComputations(replacement); EXPECT_EQ(root->to_apply(), new_comp); } TEST_F(HloModuleTest, VerifyReplaceComputationsWithSortOp) { const std::string text = R"( HloModule sort compare { p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) p.1.lhs = f32[] parameter(2) p.1.rhs = f32[] parameter(3) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY top { p.0 = f32[32] parameter(0) p.1 = f32[32] parameter(1) ROOT %sort.148.1589 = (f32[32], f32[32]) sort(p.0, p.1), dimensions={0}, to_apply=compare } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); HloComputation* new_comp; { auto b = HloComputation::Builder("Fused"); auto p0 = b.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "p0")); auto p1 = b.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "p1")); b.AddInstruction(HloInstruction::CreateParameter(2, r0f32_, "p2")); b.AddInstruction(HloInstruction::CreateParameter(3, r0f32_, "p3")); b.AddInstruction(HloInstruction::CreateCompare( ShapeUtil::MakeShape(PRED, {}), p0, p1, ComparisonDirection::kGt)); new_comp = module->AddEmbeddedComputation(b.Build()); } HloComputation* entry = module->entry_computation(); HloInstruction* root = entry->root_instruction(); EXPECT_EQ(root->to_apply()->root_instruction()->opcode(), HloOpcode::kCompare); EXPECT_EQ(root->to_apply()->root_instruction()->comparison_direction(), ComparisonDirection::kLt); absl::flat_hash_map<HloComputation*, HloComputation*> replacement; replacement[root->to_apply()] = new_comp; module->ReplaceComputations(replacement); EXPECT_EQ(root->to_apply(), new_comp); } TEST_F(HloModuleTest, OneComputationAllAllowed) { auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(CreateConstantComputation()); absl::flat_hash_set<HloComputation*> allowList = {computation}; EXPECT_THAT( module->MakeComputationPostOrder({}, allowList), ::testing::ElementsAre(computation)); } TEST_F(HloModuleTest, OneComputationAllFiltered) { auto module = CreateNewVerifiedModule(); module->AddEntryComputation(CreateConstantComputation()); absl::flat_hash_set<HloComputation*> allowList = {}; module->MakeComputationPostOrder({}, allowList); EXPECT_THAT( module->MakeComputationPostOrder({}, allowList), ::testing::IsEmpty()); } TEST_F(HloModuleTest, DiamondComputationsPostOrderAllAllowed) { auto module = CreateNewVerifiedModule(); auto computation1 = module->AddEmbeddedComputation(CreateConstantComputation()); auto computation2 = module->AddEmbeddedComputation(CreateCallComputation({computation1})); auto computation3 = module->AddEmbeddedComputation(CreateCallComputation({computation1})); auto computation4 = module->AddEntryComputation( CreateCallComputation({computation2, computation3})); absl::flat_hash_set<HloComputation*> allowList = {computation1, computation2, computation3, computation4}; auto post_order = module->MakeComputationPostOrder({}, allowList); EXPECT_THAT(post_order, ::testing::UnorderedElementsAre(computation1, computation2, computation3, computation4)); EXPECT_EQ(post_order.back(), computation4); EXPECT_EQ(post_order.front(), computation1); } TEST_F(HloModuleTest, DiamondComputationsPostOrderMiddleFiltered) { auto module = CreateNewVerifiedModule(); auto computation1 = module->AddEmbeddedComputation(CreateConstantComputation()); auto computation2 = module->AddEmbeddedComputation(CreateCallComputation({computation1})); auto computation3 = module->AddEmbeddedComputation(CreateCallComputation({computation1})); auto computation4 = module->AddEntryComputation( CreateCallComputation({computation2, computation3})); absl::flat_hash_set<HloComputation*> allowList = {computation1, computation4}; auto post_order = module->MakeComputationPostOrder({}, allowList); EXPECT_THAT(post_order, ::testing::UnorderedElementsAre(computation1, computation4)); } TEST_F(HloModuleTest, DiamondComputationsPostOrderAllFiltered) { auto module = CreateNewVerifiedModule(); auto computation1 = module->AddEmbeddedComputation(CreateConstantComputation()); auto computation2 = module->AddEmbeddedComputation(CreateCallComputation({computation1})); auto computation3 = module->AddEmbeddedComputation(CreateCallComputation({computation1})); module->AddEntryComputation( CreateCallComputation({computation2, computation3})); absl::flat_hash_set<HloComputation*> allowList = {}; auto post_order = module->MakeComputationPostOrder({}, allowList); EXPECT_THAT( module->MakeComputationPostOrder({}, allowList), ::testing::IsEmpty()); } TEST_F(HloModuleTest, TwoComputationsFilterexecution_threads) { HloComputation::Builder builder(TestName()); constexpr char kParallelThreadName[] = "parallel_thread"; auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.1f))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant1, constant2)); auto module = CreateNewVerifiedModule(); auto* main_thread_computation = module->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN( auto* async_done, main_thread_computation->CreateAsyncInstructions( add, {ShapeUtil::MakeScalarShape(U32)}, kParallelThreadName)); auto* parallel_thread_computation = async_done->async_wrapped_computation(); EXPECT_THAT( module->MakeComputationPostOrder({HloInstruction::kMainExecutionThread}), ::testing::ElementsAre(main_thread_computation)); EXPECT_THAT(module->MakeComputationPostOrder(), ::testing::ElementsAre(parallel_thread_computation, main_thread_computation)); EXPECT_THAT(module->MakeComputationPostOrder({kParallelThreadName}), ::testing::ElementsAre(parallel_thread_computation)); int num_all_computations = 0; for ([[maybe_unused]] const HloComputation* comp : module->computations({})) { ++num_all_computations; } EXPECT_EQ(num_all_computations, 2); int num_main_computations = 0; for (const HloComputation* comp : module->computations({HloInstruction::kMainExecutionThread})) { ++num_main_computations; EXPECT_EQ(comp->execution_thread(), HloInstruction::kMainExecutionThread); } EXPECT_EQ(num_main_computations, 1); int num_parallel_computations = 0; for (const HloComputation* comp : module->computations({kParallelThreadName})) { ++num_parallel_computations; EXPECT_EQ(comp->execution_thread(), kParallelThreadName); } EXPECT_EQ(num_parallel_computations, 1); } TEST_F(HloModuleTest, HloModuleWithConfigSerializationEquality) { const std::string computation_text = R"(HloModule ReduceR3ToR2_module add_F32.v3 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY ReduceR3ToR2.v3 { input = f32[8,16,256]{2,1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[8,16]{1,0} reduce(input, constant), dimensions={2}, to_apply=add_F32.v3 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(computation_text)); xla::HloModuleProtoWithConfig proto = module->ToProtoWithConfig(); std::string serialized_module; ASSERT_TRUE(tsl::SerializeToStringDeterministic(proto, &serialized_module)); std::string original_debug_str = proto.DebugString(); RecordProperty("serialized_module", original_debug_str); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> reconstructed_module, HloModule::CreateFromProtoWithConfig(proto)); xla::HloModuleProtoWithConfig reconstructed_module_proto = reconstructed_module->ToProtoWithConfig(); google::protobuf::util::MessageDifferencer diff; diff.set_message_field_comparison( google::protobuf::util::MessageDifferencer::EQUIVALENT); auto module_descriptor = HloModuleProto::GetDescriptor(); auto unique_id_field = module_descriptor->FindFieldByName("id"); diff.IgnoreField(unique_id_field); EXPECT_TRUE(diff.Compare(proto, reconstructed_module_proto)); } static ShardableValueUpdatePairProto MakeShardPair(int offset) { ShardableValueUpdatePairProto pear; pear.set_input_parameter_number(offset + 1); for (int64_t i = 0; i < 5; ++i) { pear.add_parameter_shape_index(offset + i); } for (int64_t j = 0; j < 3; ++j) { pear.add_output_shape_index(offset + j); } return pear; } static HloModuleConfigProto::BoolList MakeOneHotBoolList(unsigned num_vals, unsigned hot_idx) { HloModuleConfigProto::BoolList list; for (unsigned i = 0; i < num_vals; ++i) { list.add_vals(i == hot_idx); } return list; } static absl::StatusOr<HloModuleConfigProto> MakeTestModuleConfigProto() { HloModuleConfigProto proto; proto.set_seed(0xdeadbeef); proto.set_launch_id(0xfeed100); proto.set_replica_count(3); proto.set_num_partitions(2); for (int x = 0; x < 6; ++x) { proto.add_param_requires_broadcast_via_collectives(x & 1); } proto.set_use_spmd_partitioning(true); proto.set_use_auto_spmd_partitioning(true); for (unsigned x = 0; x < 4; ++x) { proto.add_auto_spmd_partitioning_mesh_ids(10 - x); proto.add_auto_spmd_partitioning_mesh_ids(x); } proto.set_deduplicate_hlo(true); proto.set_intra_op_parallelism_threads(42); proto.set_device_type("Google Test framework"); *proto.mutable_debug_options() = DefaultDebugOptionsIgnoringFlags(); { DeviceAssignmentProto device_assignment_proto; DeviceAssignment device_assignment(3, 2); device_assignment.Serialize(&device_assignment_proto); proto.mutable_static_device_assignment()->Swap(&device_assignment_proto); } for (int k = 0; k < 3; ++k) { *proto.add_shardable_value_update_pairs() = MakeShardPair(k); } proto.set_alias_passthrough_params(true); proto.set_content_aware_computation_sorting(true); proto.set_fusion_config_collection(HloModuleConfigProto::PER_NODE); for (int idx = 0; idx < 4; ++idx) { bool reverse = (idx & 1) == 0; *proto.add_fusion_config() = MakeOneHotBoolList(6, (reverse) ? 6 - idx : idx); } for (int idx = 0; idx < 4; ++idx) { HloModuleConfigProto::Int64List int_list; for (int x = 1; x <= 3; ++x) { int_list.add_vals(x * x * idx); } proto.mutable_dot_config()->insert( {absl::StrCat("Node", idx, "dot"), std::move(int_list)}); } for (int idx = 0; idx < 4; ++idx) { HloModuleConfigProto::Int64ListList list_of_lists; for (int x = 0; x < 4; ++x) { HloModuleConfigProto::Int64List int_list; for (int y = 0; y < 6; ++y) { int_list.add_vals(y * x + idx + y + 1); } list_of_lists.add_lists()->Swap(&int_list); } proto.mutable_layout_config()->Add(std::move(list_of_lists)); } for (uint64_t mem_asgn = 42; mem_asgn < 50; ++mem_asgn) { proto.add_memory_space_assignment_config(mem_asgn); } for (int n = 0; n < 4; ++n) { *proto.add_phase_ordering_config() = MakeOneHotBoolList(4, n); } proto.set_phase_index(2); proto.add_allow_spmd_sharding_propagation_to_output(true); for (int idx = 1; idx <= 3; ++idx) { int64_t allowance = 35 * idx; proto.mutable_analysis_allowance_map()->insert( {absl::StrCat("Key", idx), allowance}); } proto.set_matrix_unit_operand_precision(PrecisionConfig::HIGH); return proto; } TEST_F(HloModuleTest, HloModuleConfigCreateFromProto) { TF_ASSERT_OK_AND_ASSIGN(HloModuleConfigProto input_proto, MakeTestModuleConfigProto()); TF_ASSERT_OK_AND_ASSIGN(auto good_config, HloModuleConfig::CreateFromProto(input_proto)); HloModuleConfigProto output_proto = good_config->ToProto(); google::protobuf::util::MessageDifferencer diff; diff.set_message_field_comparison( google::protobuf::util::MessageDifferencer::EQUIVALENT); EXPECT_TRUE(diff.Compare(input_proto, output_proto)); } TEST_F(HloModuleTest, HloModuleConfigToProto) { auto module = CreateNewVerifiedModule(); const HloModuleConfig& good_config = module->config(); HloModuleConfigProto first_proto = good_config.ToProto(); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModuleConfig> remade_config, HloModuleConfig::CreateFromProto(first_proto)); ASSERT_NE(remade_config, nullptr); HloModuleConfigProto second_proto = remade_config->ToProto(); google::protobuf::util::MessageDifferencer diff; diff.set_message_field_comparison( google::protobuf::util::MessageDifferencer::EQUIVALENT); EXPECT_TRUE(diff.Compare(first_proto, second_proto)); } TEST_F(HloModuleTest, HloModuleStackFrames) { const std::string text = R"( HloModule a_module ENTRY main { %c = s32[] constant(1) ROOT %result = s32[] parameter(0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); EXPECT_TRUE(module->get_stack_frame(1).empty()); auto module_proto = module->ToProto(); auto index = module_proto.mutable_stack_frame_index(); index->add_file_names("main.py"); index->add_function_names("main"); auto location = index->add_file_locations(); location->set_file_name_id(1); location->set_function_name_id(1); location->set_line(10); location->set_column(5); auto frame = index->add_stack_frames(); frame->set_file_location_id(1); module_proto.mutable_computations(0) ->mutable_instructions(0) ->mutable_metadata() ->set_stack_frame_id(1); TF_ASSERT_OK_AND_ASSIGN( auto module_with_stack_frames, HloModule::CreateFromProto(module_proto, module->config())); EXPECT_TRUE(module_with_stack_frames->get_stack_frame(0).empty()); EXPECT_TRUE(module_with_stack_frames->get_stack_frame(2).empty()); auto stack_frame = module_with_stack_frames->get_stack_frame(1); EXPECT_EQ(stack_frame.file_name, index->file_names(0)); EXPECT_EQ(stack_frame.function_name, index->function_names(0)); EXPECT_EQ(stack_frame.line, location->line()); EXPECT_EQ(stack_frame.column, location->column()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/hlo_module.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_module_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
54892a0d-a6bd-4074-b1d2-de0af3d15773
cpp
tensorflow/tensorflow
hlo_sharding
third_party/xla/xla/hlo/ir/hlo_sharding.cc
third_party/xla/xla/service/hlo_sharding_test.cc
#include "xla/hlo/ir/hlo_sharding.h" #include <algorithm> #include <array> #include <cstdint> #include <iterator> #include <map> #include <memory> #include <optional> #include <ostream> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_op_metadata.h" #include "xla/overflow_util.h" #include "xla/printer.h" #include "xla/status_macros.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/protobuf.h" namespace xla { namespace { using absl::StrCat; bool GroupMinorIotaDimsSorted(absl::Span<const int64_t> dims, absl::Span<const int> perm, int64_t group_size, absl::InlinedVector<int64_t, 6>& new_dims, absl::InlinedVector<int, 6>& new_perm) { DCHECK_GT(group_size, 1); int grouped_dims = 0; std::optional<std::pair<int, int64_t>> split_dim_and_size; for (int i = perm.size() - 1; i >= 0; --i) { const int dim = perm[i]; const int64_t dim_size = dims[dim]; if (dim_size <= group_size) { if (group_size % dim_size != 0) { return false; } group_size /= dim_size; ++grouped_dims; } else { if (dim_size % group_size != 0) { return false; } split_dim_and_size.emplace(dim, dim_size / group_size); ++grouped_dims; group_size = 1; break; } } if (!split_dim_and_size) { new_dims.assign(dims.begin(), dims.end()); new_perm.assign(perm.begin(), perm.end()); std::stable_sort(new_perm.end() - grouped_dims, new_perm.end()); return true; } new_dims.resize(dims.size() + 1); new_perm.resize(perm.size() + 1); const int split_i = split_dim_and_size->first; for (int i = 0; i < split_i; ++i) { new_dims[i] = dims[i]; } new_dims[split_i] = split_dim_and_size->second; new_dims[split_i + 1] = dims[split_i] / split_dim_and_size->second; for (int i = split_i + 2; i < new_perm.size(); ++i) { new_dims[i] = dims[i - 1]; } int perm_split = 0; for (int i = 0; i < perm.size(); ++i) { const int perm_dim = perm[i]; new_perm[i] = perm_dim <= split_i ? perm_dim : (perm_dim + 1); if (perm_dim == split_i) { perm_split = i; break; } } new_perm[perm_split + 1] = new_perm[perm_split] + 1; for (int i = perm_split + 2; i < new_perm.size(); ++i) { const int perm_dim = perm[i - 1]; new_perm[i] = perm_dim <= split_i ? perm_dim : (perm_dim + 1); } std::stable_sort(new_perm.end() - grouped_dims, new_perm.end()); return true; } } HloSharding HloSharding::AssignDevice(int64_t device_id, absl::Span<const OpMetadata> metadata) { return HloSharding(device_id, metadata); } HloSharding HloSharding::Tile1D(const Shape& input_shape, int64_t num_tiles, absl::Span<const OpMetadata> metadata) { CHECK_EQ(1, input_shape.rank()); CHECK_GT(num_tiles, 1); absl::Span<const int64_t> dimensions(&num_tiles, 1); return HloSharding(TileAssignment(dimensions, dimensions, {0}), false, metadata); } HloSharding HloSharding::PartialTile( const TileAssignment& tile_assignment_last_dim_replicate, absl::Span<const OpMetadata> metadata) { if (tile_assignment_last_dim_replicate.num_dimensions() == 1 || tile_assignment_last_dim_replicate.dimensions().back() == tile_assignment_last_dim_replicate.num_elements()) { return Replicate(metadata); } if (tile_assignment_last_dim_replicate.dimensions().back() == 1) { auto new_tile_dims = tile_assignment_last_dim_replicate.dimensions(); new_tile_dims.remove_suffix(1); return HloSharding( tile_assignment_last_dim_replicate.Reshape(new_tile_dims), false, metadata); } const int64_t group_size = tile_assignment_last_dim_replicate.dimensions().back(); if (tile_assignment_last_dim_replicate.iota_) { auto& iota = tile_assignment_last_dim_replicate.iota_.value(); if (iota.reshape_dims()[iota.transpose_perm().back()] == group_size) { return HloSharding(tile_assignment_last_dim_replicate, true, metadata); } absl::InlinedVector<int64_t, 6> new_reshape_dims; absl::InlinedVector<int, 6> new_transpose_perm; if (GroupMinorIotaDimsSorted(iota.reshape_dims(), iota.transpose_perm(), group_size, new_reshape_dims, new_transpose_perm)) { return HloSharding( TileAssignment(iota.dims(), new_reshape_dims, new_transpose_perm), true, metadata); } } std::vector<int64_t> sorted_groups( tile_assignment_last_dim_replicate.num_elements()); const int64_t num_groups = tile_assignment_last_dim_replicate.num_elements() / group_size; std::vector<int32_t> current_group_idx(num_groups, 0); auto get_group_id = [&](absl::Span<const int64_t> indices) { int64_t group_id = 0; for (int64_t i = 0; i < indices.size() - 1; ++i) { group_id *= tile_assignment_last_dim_replicate.dim(i); group_id += indices[i]; } return group_id; }; tile_assignment_last_dim_replicate.Each( [&](absl::Span<const int64_t> indices, const int64_t device) { const int64_t group_id = get_group_id(indices); sorted_groups[group_id * group_size + current_group_idx[group_id]++] = device; }); for (int i = 0; i < num_groups; ++i) { std::sort(sorted_groups.begin() + i * group_size, sorted_groups.begin() + (i + 1) * group_size); } absl::c_fill(current_group_idx, 0); auto sorted_tile = std::make_shared<Array<int64_t>>( tile_assignment_last_dim_replicate.dimensions()); sorted_tile->Each([&](absl::Span<const int64_t> indices, int64_t* device) { const int64_t group_id = get_group_id(indices); *device = sorted_groups[group_id * group_size + current_group_idx[group_id]++]; }); return HloSharding(TileAssignment(std::move(sorted_tile)), true, metadata); } HloSharding HloSharding::Subgroup( const TileAssignment& tile_assignment, absl::Span<const OpSharding::Type> subgroup_types, absl::Span<const OpMetadata> metadata) { if (subgroup_types.empty()) { return HloSharding(tile_assignment, false, metadata); } if (absl::c_all_of( subgroup_types, [&](const OpSharding::Type t) { return t == subgroup_types[0]; }) && Product(tile_assignment.dimensions().subspan( 0, tile_assignment.num_dimensions() - subgroup_types.size())) == 1) { if (subgroup_types[0] == OpSharding::MANUAL) { return Manual(metadata); } if (subgroup_types[0] == OpSharding::REPLICATED) { return Replicate(metadata); } } int64_t data_dims = tile_assignment.num_dimensions() - subgroup_types.size(); absl::InlinedVector<int, 6> perm(data_dims); absl::c_iota(perm, 0); static_assert(sizeof(std::vector<int>) >= sizeof(absl::InlinedVector<int, 2>)); std::array<absl::InlinedVector<int, 2>, OpSharding::Type_ARRAYSIZE> type_to_dims; int subgroup_count = 0; bool needs_merging = false; absl::InlinedVector<int, 4> removed_dims; for (int i = 0; i < subgroup_types.size(); ++i) { if (tile_assignment.dim(i + data_dims) == 1) { removed_dims.push_back(i + data_dims); needs_merging = true; continue; } auto& dims = type_to_dims[subgroup_types[i]]; if (!dims.empty()) { needs_merging = true; } else { ++subgroup_count; } needs_merging |= !dims.empty(); dims.push_back(i + data_dims); } needs_merging |= subgroup_count > 1; auto create_sharding = [](const TileAssignment& tiles, absl::Span<const OpSharding::Type> types, absl::Span<const OpMetadata> metadata) { if (types.size() == 1 && types.back() == OpSharding::REPLICATED) { return PartialTile(tiles, metadata); } if (types.size() == 1 && types.back() == OpSharding::MANUAL && tiles.num_elements() == tiles.dimensions().back()) { return Manual(metadata); } if (!types.empty() && types.back() == OpSharding::REPLICATED) { HloSharding sharding = PartialTile(tiles, metadata); sharding.replicate_on_last_tile_dim_ = false; for (const OpSharding::Type type : types) { sharding.subgroup_types_.push_back(type); } return sharding; } return HloSharding(tiles, types, metadata); }; if (needs_merging) { auto data_tile_shape = tile_assignment.dimensions().subspan(0, data_dims); absl::InlinedVector<int64_t, 6> merged_shape(data_tile_shape.begin(), data_tile_shape.end()); absl::InlinedVector<int64_t, 6> transposed_shape = merged_shape; std::vector<OpSharding::Type> merged_types; static constexpr std::array<OpSharding::Type, OpSharding::Type_ARRAYSIZE> kOrderedTypes = {OpSharding::MAXIMAL, OpSharding::TUPLE, OpSharding::OTHER, OpSharding::MANUAL, OpSharding::REPLICATED, OpSharding::UNKNOWN}; static_assert(kOrderedTypes[0] == 1 && kOrderedTypes[1] == 2 && kOrderedTypes[2] == 3 && kOrderedTypes[3] == 4 && kOrderedTypes[4] == 0 && kOrderedTypes[5] == 5); for (OpSharding::Type type : kOrderedTypes) { auto& dims = type_to_dims[type]; if (dims.empty()) continue; int64_t dim_size = 1; for (int64_t dim : dims) { perm.push_back(dim); dim_size *= tile_assignment.dim(dim); transposed_shape.push_back(tile_assignment.dim(dim)); } merged_shape.push_back(dim_size); merged_types.push_back(type); } TileAssignment new_tile_assignment = [&] { if (tile_assignment.iota_) { absl::c_copy(removed_dims, std::back_inserter(perm)); auto transposed_iota = tile_assignment.iota_->Transpose(perm); if (transposed_iota) { return TileAssignment(merged_shape, transposed_iota->reshape_dims(), transposed_iota->transpose_perm()); } } auto new_tiles = std::make_shared<Array<int64_t>>(transposed_shape); new_tiles->Each([&](absl::Span<const int64_t> indices, int64_t* value) { std::vector<int64_t> src_indices(tile_assignment.num_dimensions(), 0); for (int64_t i = 0; i < indices.size(); ++i) { src_indices[perm[i]] = indices[i]; } *value = tile_assignment(src_indices); }); new_tiles->Reshape(merged_shape); return TileAssignment(std::move(new_tiles)); }(); return create_sharding(new_tile_assignment, merged_types, metadata); } return create_sharding(tile_assignment, subgroup_types, metadata); } HloSharding HloSharding::Tuple(const ShapeTree<HloSharding>& sub_shardings) { std::vector<HloSharding> flattened_list; flattened_list.reserve(sub_shardings.leaf_count()); for (const auto& index_to_sharding : sub_shardings.leaves()) { flattened_list.push_back(index_to_sharding.second); } if (flattened_list.empty()) { flattened_list.push_back(sub_shardings.element(ShapeIndex({}))); } return HloSharding(flattened_list); } HloSharding HloSharding::Tuple(const Shape& tuple_shape, absl::Span<const HloSharding> shardings) { CHECK(tuple_shape.IsTuple()) << ShapeUtil::HumanString(tuple_shape); for (auto& sharding : shardings) { CHECK(!sharding.IsTuple()) << sharding.ToString() << ", tuple shape = " << ShapeUtil::HumanString(tuple_shape); } std::vector<HloSharding> flattened_list(shardings.begin(), shardings.end()); if (!flattened_list.empty()) { CHECK_EQ(flattened_list.size(), RequiredLeaves(tuple_shape)) << "Flat list has " << flattened_list.size() << ", required " << RequiredLeaves(tuple_shape); } return HloSharding(std::move(flattened_list)); } HloSharding HloSharding::SingleTuple(const Shape& tuple_shape, const HloSharding& sharding) { CHECK(tuple_shape.IsTuple()) << ShapeUtil::HumanString(tuple_shape); CHECK(!sharding.IsTuple()) << sharding.ToString(); int64_t leaf_count = RequiredLeaves(tuple_shape); std::vector<HloSharding> flattened_list; flattened_list.resize(leaf_count, sharding); return HloSharding(std::move(flattened_list)); } HloSharding HloSharding::Single(const Shape& shape, const HloSharding& sharding) { return shape.IsTuple() ? SingleTuple(shape, sharding) : sharding; } void HloSharding::Print(Printer* printer, bool include_metadata) const { if (IsTuple()) { CHECK(metadata_.empty()); if (ABSL_PREDICT_FALSE(tuple_elements_.empty())) { printer->Append("{}"); return; } printer->Append("{"); tuple_elements_[0].Print(printer, include_metadata); for (int i = 1; i < tuple_elements_.size(); ++i) { if (i % 5 == 0) { AppendCat(printer, ", "); } else { printer->Append(", "); } tuple_elements_[i].Print(printer, include_metadata); } printer->Append("}"); return; } auto print_metadata = [&] { if (include_metadata && !metadata_.empty()) { printer->Append(" metadata={"); if (metadata_.size() == 1) { printer->Append(OpMetadataToString(metadata_.front())); } else { AppendJoin(printer, metadata_, ", ", [](Printer* printer, auto& metadata) { AppendCat(printer, "{", OpMetadataToString(metadata), "}"); }); } printer->Append("}"); } }; auto print_shard_group = [&] { auto shard_group_str = shard_group_.ToString(); if (!shard_group_str.empty()) { printer->Append(" " + shard_group_str); } }; if (replicated_) { printer->Append("{replicated"); print_shard_group(); print_metadata(); printer->Append("}"); return; } if (manual_) { printer->Append("{manual"); print_shard_group(); print_metadata(); printer->Append("}"); return; } if (unknown_) { printer->Append("{unknown"); print_shard_group(); print_metadata(); printer->Append("}"); return; } if (maximal_) { AppendCat(printer, "{maximal device=", static_cast<int64_t>(*tile_assignment_.array().begin())); print_shard_group(); print_metadata(); printer->Append("}"); return; } auto print_last_tile_dims = [&] { if (!subgroup_types_.empty()) { auto op_sharding_type_to_string = [](OpSharding::Type type) { switch (type) { case OpSharding::MANUAL: return "manual"; case OpSharding::MAXIMAL: return "maximul"; case OpSharding::REPLICATED: return "replicated"; default: return "error_type."; } }; printer->Append(" last_tile_dims={"); AppendJoin(printer, subgroup_types_, ", ", [&](Printer* printer, OpSharding::Type sharding_type) { printer->Append(op_sharding_type_to_string(sharding_type)); }); printer->Append("}"); } }; printer->Append("{"); tile_assignment_.Print(printer); if (replicate_on_last_tile_dim_) { printer->Append(" last_tile_dim_replicate"); } print_last_tile_dims(); print_shard_group(); print_metadata(); printer->Append("}"); } std::string HloSharding::ToString(bool include_metadata) const { StringPrinter printer; Print(&printer, include_metadata); return std::move(printer).ToString(); } bool HloSharding::UsesDevice(int64_t device) const { if (IsTuple()) { return absl::c_any_of(tuple_elements_, [&](const HloSharding& s) { return s.UsesDevice(device); }); } return replicated_ || manual_ || tile_assignment_.UsesDevice(device); } std::map<int64_t, int64_t> HloSharding::UsedDevices(int64_t* count) const { int64_t element_count = 1; std::map<int64_t, int64_t> device_map; if (IsTuple()) { for (auto& tuple_element_sharding : tuple_elements()) { auto unique_device = tuple_element_sharding.UniqueDevice(); if (unique_device) { device_map[*unique_device] += 1; } } element_count = tuple_elements().size(); } else { auto unique_device = UniqueDevice(); if (unique_device) { device_map[*unique_device] += 1; } } if (count != nullptr) { *count = element_count; } return device_map; } std::vector<int64_t> HloSharding::TileIndexForDevice(int64_t device) const { CHECK(!maximal_); CHECK(!IsManual()); CHECK(!IsUnknown()); CHECK(!IsTuple()); std::vector<int64_t> ret_index; tile_assignment_.Each([&](absl::Span<const int64_t> index, int64_t d) { if (d == device) { ret_index = {index.begin(), index.end()}; } }); CHECK(!ret_index.empty()); ret_index.resize(TiledDataRank()); return ret_index; } int64_t HloSharding::DeviceForTileIndex(absl::Span<const int64_t> index) const { CHECK(!replicated_); CHECK(!IsManual()); CHECK(!IsUnknown()); CHECK(!IsTuple()); if (maximal_) { return *tile_assignment_.array().begin(); } if (index.size() == TiledDataRank() && index.size() < tile_assignment_.num_dimensions()) { std::vector<int64_t> first_subgroup_index(index.begin(), index.end()); for (int64_t i = 0; i < tile_assignment_.num_dimensions() - index.size(); ++i) { first_subgroup_index.push_back(0); } return tile_assignment_(first_subgroup_index); } return tile_assignment_(index); } std::vector<int64_t> HloSharding::TileOffsetForDevice(const Shape& shape, int64_t device) const { CHECK(!IsTuple()); CHECK(!IsManual()); CHECK(!IsUnknown()); if (maximal_) { return std::vector<int64_t>(shape.dimensions_size(), 0); } CHECK_EQ(shape.dimensions_size(), TiledDataRank()); std::vector<int64_t> index = TileIndexForDevice(device); for (int64_t i = 0; i < index.size(); ++i) { const int64_t shape_dim = shape.dimensions(i); index[i] = std::min( index[i] * CeilOfRatio(shape_dim, tile_assignment_.dim(i)), shape_dim); } return index; } std::vector<int64_t> HloSharding::TileLimitForDevice(const Shape& shape, int64_t device) const { CHECK(!IsTuple()); CHECK(!IsManual()); CHECK(!IsUnknown()); if (maximal_) { return std::vector<int64_t>(shape.dimensions().begin(), shape.dimensions().end()); } CHECK_EQ(shape.dimensions_size(), TiledDataRank()); std::vector<int64_t> index = TileIndexForDevice(device); for (int64_t i = 0; i < index.size(); ++i) { const int64_t shape_dim = shape.dimensions(i); index[i] = std::min( (index[i] + 1) * CeilOfRatio(shape_dim, tile_assignment_.dim(i)), shape_dim); } return index; } int64_t HloSharding::RequiredLeaves(const Shape& shape) { const int64_t leaf_count = ShapeUtil::GetLeafCount(shape); return (leaf_count == 0) ? 1 : leaf_count; } absl::Status HloSharding::CheckLeafCount(const Shape& shape) const { int64_t leaf_count = ShapeUtil::GetLeafCount(shape); if (leaf_count == 0 && tuple_elements_.size() == 1) { return absl::OkStatus(); } TF_RET_CHECK(leaf_count == tuple_elements_.size()) << "Shape " << ShapeUtil::HumanString(shape) << " has " << leaf_count << " leaf nodes while this sharding has " << tuple_elements_.size(); return absl::OkStatus(); } absl::StatusOr<ShapeTree<HloSharding>> HloSharding::AsShapeTree( const Shape& shape) const { if (IsTuple()) { ShapeTree<HloSharding> result(shape, HloSharding::Replicate()); TF_RETURN_IF_ERROR(CheckLeafCount(shape)); auto it = tuple_elements_.begin(); for (auto& index_to_sharding : result.leaves()) { index_to_sharding.second = *it++; } return std::move(result); } else { return ShapeTree<HloSharding>(shape, *this); } } absl::StatusOr<HloSharding> HloSharding::GetTupleSharding( const Shape& shape) const { if (IsTuple()) { TF_RETURN_IF_ERROR(CheckLeafCount(shape)); return *this; } return SingleTuple(shape, *this); } HloSharding HloSharding::NormalizeTupleSharding(const Shape& shape) const { if (shape.IsTuple() && !IsTuple()) { return HloSharding::SingleTuple(shape, *this); } return *this; } std::optional<int64_t> HloSharding::UniqueDevice() const { if (IsTuple()) { if (tuple_elements_.empty()) { return std::nullopt; } std::optional<int64_t> unique_device; for (auto& tuple_sharding : tuple_elements_) { auto device = tuple_sharding.UniqueDevice(); if (!device || (unique_device && *device != *unique_device)) { return std::nullopt; } unique_device = device; } return unique_device; } if (!replicated_ && maximal_) { return static_cast<int64_t>(*tile_assignment_.array().begin()); } return std::nullopt; } int64_t HloSharding::GetUniqueDevice() const { auto device = UniqueDevice(); CHECK(device) << "Sharding does not have a unique device: " << *this; return *device; } absl::Status HloSharding::ValidateTuple( const Shape& shape, std::optional<int64_t> num_devices) const { if (!shape.IsTuple()) { return tsl::errors::InvalidArgument( "Sharding is tuple-shaped but validation shape is not."); } TF_RETURN_IF_ERROR(CheckLeafCount(shape)); if (ShapeUtil::GetLeafCount(shape) == 0 && tuple_elements_.empty()) { return absl::OkStatus(); } ShapeTree<HloSharding> shape_tree = GetAsShapeTree(shape); for (const auto& index_to_sharding : shape_tree.leaves()) { absl::Status status = index_to_sharding.second.ValidateNonTuple( ShapeUtil::GetSubshape(shape, index_to_sharding.first), num_devices); if (!status.ok()) { tsl::errors::AppendToMessage( &status, StrCat("Note: While validating sharding tuple element ", index_to_sharding.first.ToString(), " which is ", index_to_sharding.second.ToString())); return status; } } return absl::OkStatus(); } absl::Status HloSharding::Validate(const Shape& shape, std::optional<int64_t> num_devices) const { if (shape.IsToken()) { return absl::OkStatus(); } absl::Status status = IsTuple() ? ValidateTuple(shape, num_devices) : ValidateNonTuple(shape, num_devices); if (!status.ok()) { tsl::errors::AppendToMessage( &status, StrCat("Note: While validating sharding ", ToString(), " against shape ", ShapeUtil::HumanString(shape))); } return status; } absl::Status HloSharding::ValidateNonTuple( const Shape& shape, std::optional<int64_t> num_devices) const { if (shape.IsTuple()) { return absl::InvalidArgumentError( "Validation shape is a tuple but sharding is not."); } if (replicated_) { return absl::OkStatus(); } bool all_devices_seen; if (!tile_assignment_.iota_) { absl::flat_hash_set<int64_t> seen_devices; absl::Status status = tile_assignment_.array().EachStatus( [&num_devices, &seen_devices](absl::Span<const int64_t> indices, int32_t device) { if (num_devices.has_value() && device >= *num_devices) { return absl::InvalidArgumentError( absl::StrCat("device ", device, " > num_devices (", *num_devices, ") in tile assignment")); } else if (seen_devices.contains(device)) { return absl::InvalidArgumentError(absl::StrCat( "device ", device, " is not unique in tile assignment")); } seen_devices.insert(device); return absl::OkStatus(); }); TF_RETURN_IF_ERROR(status); all_devices_seen = !num_devices.has_value() || seen_devices.size() == *num_devices; } else { all_devices_seen = !num_devices.has_value() || tile_assignment_.iota_->num_elements() == *num_devices; } if (IsTileMaximal() || IsManual() || IsUnknown()) { return absl::OkStatus(); } if (shape.rank() != TiledDataRank()) { return tsl::errors::InvalidArgument( "Number of tile assignment dimensions (excluding subgroups) is " "different than the input rank. " "sharding=", ToString(), ", input_shape=", ShapeUtil::HumanString(shape)); } if (!all_devices_seen) { return tsl::errors::InvalidArgument("tile_assignment should have ", *num_devices, " devices"); } if (tile_assignment_.num_elements() == 1) { return tsl::errors::InvalidArgument( "Tile assignment only contains a single device. If a replicated " "sharding was intended, use HloSharding::Replicated(). If a device " "placement was intended, use HloSharding::AssignDevice()"); } return absl::OkStatus(); } absl::StatusOr<HloSharding> HloSharding::FromProto( const OpSharding& proto) { std::vector<OpMetadata> metadata(proto.metadata().begin(), proto.metadata().end()); std::vector<int> subgroup_types_int(proto.last_tile_dims().begin(), proto.last_tile_dims().end()); std::vector<OpSharding::Type> subgroup_types; absl::c_transform( subgroup_types_int, std::back_inserter(subgroup_types), [](const int type) { return static_cast<OpSharding::Type>(type); }); if (proto.type() == OpSharding::TUPLE) { TF_RET_CHECK(metadata.empty()) << "Tuple sharding is expected to have no metadata."; std::vector<HloSharding> tuple_shardings; tuple_shardings.reserve(proto.tuple_shardings().size()); for (const OpSharding& tuple_sharding_proto : proto.tuple_shardings()) { TF_ASSIGN_OR_RETURN(HloSharding sharding, HloSharding::FromProto(tuple_sharding_proto)); tuple_shardings.push_back(std::move(sharding)); } return std::move( HloSharding(std::move(tuple_shardings)).SetShardGroupFromProto(proto)); } else if (proto.type() == OpSharding::REPLICATED) { return std::move(Replicate(metadata).SetShardGroupFromProto(proto)); } else if (proto.type() == OpSharding::MANUAL) { return std::move(Manual(metadata).SetShardGroupFromProto(proto)); } else if (proto.type() == OpSharding::UNKNOWN) { return std::move(Unknown(metadata).SetShardGroupFromProto(proto)); } else if (proto.tile_assignment_devices().size() == 1) { return std::move(HloSharding(proto.tile_assignment_devices(0), metadata) .SetShardGroupFromProto(proto)); } else if (!proto.iota_reshape_dims().empty() && absl::c_all_of(proto.iota_reshape_dims(), [](int64_t d) { return d == 1; })) { return std::move(HloSharding(0, metadata).SetShardGroupFromProto(proto)); } TF_RET_CHECK(proto.type() != OpSharding::MAXIMAL) << "Maximal sharding is expected to have single device assignment, but " << proto.tile_assignment_devices().size() << " has provided."; const bool use_iota_tile_assignments = !proto.iota_reshape_dims().empty(); if (use_iota_tile_assignments) { TF_RET_CHECK(proto.tile_assignment_devices().empty()); TF_RET_CHECK(proto.iota_reshape_dims().size() == proto.iota_transpose_perm().size()); } else { TF_RET_CHECK(proto.tile_assignment_devices().size() > 1) << proto.ShortDebugString(); } TF_RET_CHECK(!proto.tile_assignment_dimensions().empty()); auto product_no_overflow = [](absl::Span<const int64_t> dims) -> absl::StatusOr<int64_t> { int64_t product_of_dimensions = 1; bool any_overflow = false; for (auto dimension : dims) { bool overflow = false; std::tie(product_of_dimensions, overflow) = OverflowSafeMultiply(product_of_dimensions, dimension); } TF_RET_CHECK(!any_overflow); return product_of_dimensions; }; TF_ASSIGN_OR_RETURN(int64_t product_of_dimensions, product_no_overflow(proto.tile_assignment_dimensions())); if (use_iota_tile_assignments) { TF_ASSIGN_OR_RETURN(int64_t product_of_iota_dimensions, product_no_overflow(proto.iota_reshape_dims())); TF_RET_CHECK(product_of_dimensions == product_of_iota_dimensions); } else { TF_RET_CHECK(product_of_dimensions == proto.tile_assignment_devices().size()); } auto create_tile_assignment = [&] { if (use_iota_tile_assignments) { return TileAssignment(proto.tile_assignment_dimensions(), proto.iota_reshape_dims(), proto.iota_transpose_perm()); } auto tiles = std::make_shared<Array<int64_t>>(proto.tile_assignment_dimensions()); absl::c_copy(proto.tile_assignment_devices(), tiles->begin()); return TileAssignment(std::move(tiles)); }; if (!subgroup_types.empty()) { TF_RET_CHECK(!proto.replicate_on_last_tile_dim()); return std::move( Subgroup(create_tile_assignment(), subgroup_types, metadata) .SetShardGroupFromProto(proto)); } if (proto.replicate_on_last_tile_dim()) { return std::move(PartialTile(create_tile_assignment(), metadata) .SetShardGroupFromProto(proto)); } return std::move(HloSharding(create_tile_assignment(), false, metadata) .SetShardGroupFromProto(proto)); } OpSharding HloSharding::ToProto() const { OpSharding result; if (IsTuple()) { CHECK(metadata_.empty()); for (const HloSharding& element : tuple_elements_) { *result.add_tuple_shardings() = element.ToProto(); } result.set_type(OpSharding::TUPLE); return result; } result.mutable_metadata()->Reserve(metadata_.size()); for (const auto& metadata : metadata_) { *result.add_metadata() = metadata; } result.mutable_tile_assignment_dimensions()->Reserve( tile_assignment_.num_dimensions()); absl::c_copy(tile_assignment_.dimensions(), tsl::protobuf::RepeatedFieldBackInserter( result.mutable_tile_assignment_dimensions())); if (tile_assignment_.iota_) { result.mutable_iota_reshape_dims()->Reserve( tile_assignment_.iota_->reshape_dims().size()); absl::c_copy(tile_assignment_.iota_->reshape_dims(), tsl::protobuf::RepeatedFieldBackInserter( result.mutable_iota_reshape_dims())); result.mutable_iota_transpose_perm()->Reserve( tile_assignment_.iota_->transpose_perm().size()); absl::c_copy(tile_assignment_.iota_->transpose_perm(), tsl::protobuf::RepeatedFieldBackInserter( result.mutable_iota_transpose_perm())); } else { result.mutable_tile_assignment_devices()->Reserve( tile_assignment_.num_elements()); absl::c_copy(tile_assignment_.array(), tsl::protobuf::RepeatedFieldBackInserter( result.mutable_tile_assignment_devices())); } if (IsReplicated()) { result.set_type(OpSharding::REPLICATED); result.clear_tile_assignment_dimensions(); } else if (IsTileMaximal()) { result.set_type(OpSharding::MAXIMAL); } else if (IsManual()) { result.set_type(OpSharding::MANUAL); result.clear_tile_assignment_dimensions(); } else if (IsUnknown()) { result.set_type(OpSharding::UNKNOWN); result.clear_tile_assignment_dimensions(); } else { result.set_type(OpSharding::OTHER); result.set_replicate_on_last_tile_dim(ReplicateOnLastTileDim()); for (auto type : subgroup_types_) { result.add_last_tile_dims(type); } } if (IsShardGroup()) { result.set_is_shard_group(true); result.set_shard_group_id(shard_group_.shard_group_id); if (shard_group_.shard_as) { result.set_shard_group_type(OpSharding::AS); } else { result.set_shard_group_type(OpSharding::LIKE); } } return result; } Shape HloSharding::TileShape(const Shape& shape) const { if (IsTileMaximal() || IsManual() || IsUnknown()) { return shape; } Shape result_shape = shape; for (int64_t i = 0; i < TiledDataRank(); ++i) { result_shape.set_dimensions( i, CeilOfRatio<int64_t>(shape.dimensions(i), tile_assignment_.dim(i))); } return result_shape; } Shape HloSharding::TileShape(const Shape& shape, int64_t device) const { if (IsTileMaximal() || IsManual() || IsUnknown()) { return shape; } std::vector<int64_t> index = TileIndexForDevice(device); Shape result_shape = shape; for (int64_t i = 0; i < index.size(); ++i) { const int64_t shape_dim = shape.dimensions(i); int64_t offset = std::min( index[i] * CeilOfRatio(shape_dim, tile_assignment_.dim(i)), shape_dim); int64_t limit = std::min( (index[i] + 1) * CeilOfRatio(shape_dim, tile_assignment_.dim(i)), shape_dim); result_shape.set_dimensions(i, limit - offset); } return result_shape; } int64_t HloSharding::TotalNumTiles() const { if (IsTileMaximal()) { return 1; } CHECK(!IsManual()); CHECK(!IsUnknown()); return Product(absl::Span<const int64_t>(tile_assignment_.dimensions())); } int64_t HloSharding::NumTiles() const { if (IsTileMaximal()) { return 1; } CHECK(!IsManual()); CHECK(!IsUnknown()); return Product(absl::Span<const int64_t>(tile_assignment_.dimensions()) .subspan(0, TiledDataRank())); } int64_t HloSharding::NumTilesLeaf() const { DCHECK(!IsTuple()); if (IsTileMaximalLeaf()) { return 1; } CHECK(!IsManualLeaf() && !IsUnknownLeaf()); return Product(absl::Span<const int64_t>(tile_assignment_.dimensions()) .subspan(0, TiledDataRankLeaf())); } int64_t HloSharding::NumTiles(absl::Span<const int64_t> dims) const { if (IsTileMaximal()) { return 1; } CHECK(!IsManual()); CHECK(!ReplicateOnLastTileDim() || !absl::c_linear_search(dims, tile_assignment().num_dimensions() - 1)); int64_t num_tiles = 1; for (auto d : dims) { CHECK(d < tile_assignment().num_dimensions()); num_tiles *= tile_assignment().dim(d); } return num_tiles; } HloSharding HloSharding::GetSubSharding(const Shape& shape, const ShapeIndex& index) const { CHECK(IsTuple()); int64_t sharding_index = 0; const Shape* sub_shape = &shape; for (int64_t idx : index) { for (int64_t i = 0; i < idx; ++i) { sharding_index += ShapeUtil::GetLeafCount( ShapeUtil::GetSubshapeOneIndex(*sub_shape, i)); } sub_shape = &ShapeUtil::GetSubshapeOneIndex(*sub_shape, idx); } if (sub_shape->IsTuple()) { auto begin_it = tuple_elements_.begin() + sharding_index; return HloSharding::Tuple( *sub_shape, absl::MakeConstSpan( &*begin_it, &*(begin_it + ShapeUtil::GetLeafCountTuple(*sub_shape)))); } else { return tuple_elements_[sharding_index]; } } std::optional<HloSharding> HloSharding::ExtractSingleSharding() const { if (!IsTuple()) { return *this; } if (tuple_elements_.empty()) { return std::nullopt; } for (int64_t i = 1; i < tuple_elements_.size(); ++i) { if (tuple_elements_[0] != tuple_elements_[i]) { return std::nullopt; } } return tuple_elements_.front(); } HloSharding HloSharding::WithMetadata(absl::Span<const OpMetadata> metadata, bool overwrite) const { auto assign_metadata = [&](HloSharding& sharding) { if (sharding.metadata_.empty() || overwrite) { sharding.metadata_.assign(metadata.begin(), metadata.end()); } }; HloSharding sharding = *this; if (sharding.IsTuple()) { for (HloSharding& sub_sharding : sharding.tuple_elements()) { assign_metadata(sub_sharding); } } else { assign_metadata(sharding); } return sharding; } HloSharding HloSharding::WithoutMetadata() const { HloSharding sharding = *this; sharding.metadata_.clear(); for (HloSharding& sub_sharding : sharding.tuple_elements()) { sub_sharding.metadata_.clear(); } return sharding; } std::ostream& operator<<(std::ostream& out, const HloSharding& sharding) { out << sharding.ToString(); return out; } }
#include <algorithm> #include <set> #include <sstream> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/hash/hash.h" #include "xla/protobuf_util.h" #include "xla/service/hlo_parser.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" namespace xla { namespace { Array<int64_t> MakeArray(absl::Span<const int64_t> dimensions, absl::Span<const int64_t> contents) { Array<int64_t> a(dimensions); std::copy(contents.begin(), contents.end(), a.begin()); return a; } OpMetadata GetMetadata(const std::string& op_name) { OpMetadata metadata; metadata.set_op_name(op_name); return metadata; } std::vector<OpMetadata> SingleMetadata() { return {GetMetadata("a")}; } std::vector<OpMetadata> ListMetadata() { return {GetMetadata("b"), GetMetadata("c")}; } class HloShardingTest : public HloTestBase {}; TEST_F(HloShardingTest, Replicate) { HloSharding sharding = HloSharding::Replicate(); EXPECT_TRUE(sharding.IsReplicated()); EXPECT_TRUE(sharding.IsTileMaximal()); EXPECT_TRUE(sharding.UsesDevice(0)); EXPECT_TRUE(sharding.UsesDevice(65535)); HloSharding other = HloSharding::Replicate(); EXPECT_EQ(other, sharding); EXPECT_IS_OK(sharding.Validate(ShapeUtil::MakeShape(U32, {4}), 2)); EXPECT_FALSE(sharding.HasUniqueDevice()); } TEST_F(HloShardingTest, DevicePlacement) { HloSharding sharding = HloSharding::AssignDevice(5); EXPECT_FALSE(sharding.IsReplicated()); EXPECT_TRUE(sharding.IsTileMaximal()); EXPECT_FALSE(sharding.UsesDevice(0)); EXPECT_TRUE(sharding.UsesDevice(5)); EXPECT_EQ(5, sharding.GetUniqueDevice()); HloSharding other = HloSharding::Replicate(); EXPECT_NE(other, sharding); EXPECT_IS_OK(sharding.Validate(ShapeUtil::MakeShape(U32, {4}), 6)); EXPECT_IS_NOT_OK( sharding.Validate(ShapeUtil::MakeShape(U32, {4}), 5)); ShapeTree<HloSharding> shape_tree = sharding.GetAsShapeTree(ShapeUtil::MakeShape(U32, {4})); EXPECT_EQ(shape_tree.element({}), sharding); EXPECT_TRUE(shape_tree.IsLeaf({})); } TEST_F(HloShardingTest, ProtoRoundTrip) { OpSharding proto; proto.set_type(OpSharding::TUPLE); auto* tiled = proto.add_tuple_shardings(); tiled->set_type(OpSharding::OTHER); tiled->add_tile_assignment_devices(0); tiled->add_tile_assignment_devices(1); tiled->add_tile_assignment_dimensions(1); tiled->add_tile_assignment_dimensions(2); *tiled->add_metadata() = GetMetadata("a"); *tiled->add_metadata() = GetMetadata("b"); auto* replicated = proto.add_tuple_shardings(); replicated->set_type(OpSharding::REPLICATED); *replicated->add_metadata() = GetMetadata("c"); auto* manual = proto.add_tuple_shardings(); manual->set_type(OpSharding::MANUAL); HloSharding sharding = HloSharding::FromProto(proto).value(); EXPECT_TRUE(protobuf_util::ProtobufEquals(proto, sharding.ToProto())); } TEST_F(HloShardingTest, IotaProtoRoundTrip) { OpSharding proto; proto.set_type(OpSharding::TUPLE); auto* tiled = proto.add_tuple_shardings(); tiled->set_type(OpSharding::OTHER); tiled->add_tile_assignment_dimensions(6); tiled->add_tile_assignment_dimensions(1); tiled->add_iota_reshape_dims(3); tiled->add_iota_reshape_dims(2); tiled->add_iota_transpose_perm(1); tiled->add_iota_transpose_perm(0); *tiled->add_metadata() = GetMetadata("a"); *tiled->add_metadata() = GetMetadata("b"); auto* replicated = proto.add_tuple_shardings(); replicated->set_type(OpSharding::REPLICATED); *replicated->add_metadata() = GetMetadata("c"); auto* manual = proto.add_tuple_shardings(); manual->set_type(OpSharding::MANUAL); HloSharding sharding = HloSharding::FromProto(proto).value(); EXPECT_TRUE(protobuf_util::ProtobufEquals(proto, sharding.ToProto())); } TEST_F(HloShardingTest, Tile) { { HloSharding sharding = HloSharding::Tile(MakeArray({2, 2}, {0, 0, 2, 3})); EXPECT_IS_NOT_OK(sharding.Validate(ShapeUtil::MakeShape(F32, {4, 6}), 4)); } { HloSharding sharding = HloSharding::Tile(MakeArray({2, 2}, {0, 1, 2, 3})); EXPECT_IS_NOT_OK(sharding.Validate(ShapeUtil::MakeShape(U32, {4, 6}), 2)); } { HloSharding sharding = HloSharding::Tile(MakeArray({2, 2}, {0, 1, 2, 3})); EXPECT_IS_NOT_OK(sharding.Validate(ShapeUtil::MakeShape(U32, {4, 6}), 5)); } { Shape shape = ShapeUtil::MakeShape(U32, {4, 5}); HloSharding sharding = HloSharding::Tile(MakeArray({2, 2}, {0, 3, 2, 1})); EXPECT_IS_OK(sharding.Validate(ShapeUtil::MakeShape(F32, {3, 5}), 4)); EXPECT_EQ(0, sharding.DeviceForTileIndex({0, 0})); EXPECT_EQ(3, sharding.DeviceForTileIndex({0, 1})); EXPECT_EQ(2, sharding.DeviceForTileIndex({1, 0})); EXPECT_EQ(1, sharding.DeviceForTileIndex({1, 1})); EXPECT_EQ(sharding.TileOffsetForDevice(shape, 0), (std::vector<int64_t>{0, 0})); EXPECT_EQ(sharding.TileOffsetForDevice(shape, 3), (std::vector<int64_t>{0, 3})); EXPECT_EQ(sharding.TileOffsetForDevice(shape, 2), (std::vector<int64_t>{2, 0})); EXPECT_EQ(sharding.TileOffsetForDevice(shape, 1), (std::vector<int64_t>{2, 3})); EXPECT_FALSE(sharding.HasUniqueDevice()); } } TEST_F(HloShardingTest, V1V2TileEquivalence) { { HloSharding v1 = HloSharding::Tile(MakeArray({2, 2}, {0, 1, 2, 3})); HloSharding v2 = HloSharding::IotaTile({2, 2}); EXPECT_EQ(v1, v2); EXPECT_EQ(absl::HashOf(v1), absl::HashOf(v2)); } { HloSharding v1 = HloSharding::Tile(MakeArray({2, 2}, {0, 2, 1, 3})); HloSharding v2 = HloSharding::IotaTile({2, 2}, {2, 2}, {1, 0}); EXPECT_EQ(v1, v2); EXPECT_EQ(absl::HashOf(v1), absl::HashOf(v2)); } { HloSharding v1 = HloSharding::Tile(MakeArray({2, 2, 2}, {0, 2, 4, 6, 1, 3, 5, 7})); HloSharding v2 = HloSharding::IotaTile({2, 2, 2}, {2, 2, 2}, {2, 0, 1}); EXPECT_EQ(v1, v2); EXPECT_EQ(absl::HashOf(v1), absl::HashOf(v2)); } } TEST_F(HloShardingTest, V1V2PartialTileEquivalence) { { HloSharding v1 = HloSharding::PartialTile(MakeArray({2, 2}, {0, 1, 2, 3})); HloSharding v2 = HloSharding::PartialTile(TileAssignment({2, 2})); EXPECT_EQ(v1, v2); EXPECT_EQ(absl::HashOf(v1), absl::HashOf(v2)); } { HloSharding v1 = HloSharding::PartialTile(MakeArray({2, 2}, {0, 2, 1, 3})); HloSharding v2 = HloSharding::PartialTile(TileAssignment({2, 2}, {2, 2}, {1, 0})); EXPECT_EQ(v1, v2); EXPECT_EQ(absl::HashOf(v1), absl::HashOf(v2)); } { HloSharding v1 = HloSharding::PartialTile( MakeArray({2, 2, 2}, {0, 2, 4, 6, 1, 3, 5, 7})); HloSharding v2 = HloSharding::PartialTile( TileAssignment({2, 2, 2}, {2, 2, 2}, {2, 0, 1})); EXPECT_EQ(v1, v2); EXPECT_EQ(absl::HashOf(v1), absl::HashOf(v2)); } } TEST_F(HloShardingTest, V1V2SubgroupEquivalence) { { HloSharding v1 = HloSharding::Subgroup(MakeArray({2, 2}, {0, 1, 2, 3}), {OpSharding::MANUAL, OpSharding::REPLICATED}); HloSharding v2 = HloSharding::Subgroup( TileAssignment({2, 2}), {OpSharding::MANUAL, OpSharding::REPLICATED}); EXPECT_EQ(v1, v2); EXPECT_EQ(absl::HashOf(v1), absl::HashOf(v2)); } { HloSharding v1 = HloSharding::Subgroup(MakeArray({2, 2}, {0, 2, 1, 3}), {OpSharding::MANUAL, OpSharding::REPLICATED}); HloSharding v2 = HloSharding::Subgroup(TileAssignment({2, 2}, {2, 2}, {1, 0}), {OpSharding::MANUAL, OpSharding::REPLICATED}); EXPECT_EQ(v1, v2); EXPECT_EQ(absl::HashOf(v1), absl::HashOf(v2)); } { HloSharding v1 = HloSharding::Subgroup(MakeArray({2, 2, 2}, {0, 2, 4, 6, 1, 3, 5, 7}), {OpSharding::MANUAL, OpSharding::REPLICATED}); HloSharding v2 = HloSharding::Subgroup(TileAssignment({2, 2, 2}, {2, 2, 2}, {2, 0, 1}), {OpSharding::MANUAL, OpSharding::REPLICATED}); EXPECT_EQ(v1, v2); EXPECT_EQ(absl::HashOf(v1), absl::HashOf(v2)); } } TEST_F(HloShardingTest, EmptySingleTuple) { HloSharding sharding = HloSharding::SingleTuple(ShapeUtil::MakeTupleShape({}), HloSharding::AssignDevice(0)); EXPECT_TRUE(sharding.ExtractSingleSharding()); } TEST_F(HloShardingTest, EmptySingleTupleIsNotShardGroup) { HloSharding sharding = HloSharding::SingleTuple(ShapeUtil::MakeTupleShape({}), HloSharding::AssignDevice(0)); EXPECT_FALSE(sharding.IsShardGroup()); EXPECT_FALSE(sharding.IsShardAs()); EXPECT_FALSE(sharding.IsShardLike()); } TEST_F(HloShardingTest, NestedTuple) { Shape nested_tuple_shape = ShapeUtil::MakeTupleShape({ ShapeUtil::MakeShape(F32, {}), ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {3})}), ShapeUtil::MakeShape(F32, {4, 6}), }); HloSharding tiled_sharding = HloSharding::Tile(Array<int64_t>({{0, 1}})); OpSharding proto; proto.set_type(OpSharding::TUPLE); *proto.add_tuple_shardings() = HloSharding::Replicate().ToProto(); *proto.add_tuple_shardings() = HloSharding::AssignDevice(0).ToProto(); *proto.add_tuple_shardings() = tiled_sharding.ToProto(); HloSharding tuple_sharding = HloSharding::FromProto(proto).value(); ShapeTree<HloSharding> shape_tree = tuple_sharding.GetAsShapeTree(nested_tuple_shape); EXPECT_EQ(shape_tree.element({0}), HloSharding::Replicate()); EXPECT_EQ(shape_tree.element({1, 0}), HloSharding::AssignDevice(0)); EXPECT_EQ(shape_tree.element({2}), tiled_sharding); EXPECT_IS_OK(tuple_sharding.Validate(nested_tuple_shape, 2)); EXPECT_IS_NOT_OK(tuple_sharding.Validate(ShapeUtil::MakeTupleShape({}), 5)); EXPECT_IS_NOT_OK(tuple_sharding.Validate(ShapeUtil::MakeShape(F32, {}), 5)); } TEST_F(HloShardingTest, NormalizeTrivialSubgroupToManual) { HloSharding sharding = HloSharding::Subgroup(MakeArray({1, 2, 1}, {0, 1}), {OpSharding::MANUAL, OpSharding::REPLICATED}); EXPECT_TRUE(sharding.IsManual()); } TEST_F(HloShardingTest, Hash) { auto hash_compare_equal = [](const HloSharding& a, const HloSharding& b) { if (absl::HashOf(a) != absl::HashOf(b)) { return false; } return a == b; }; { HloSharding sharding1 = HloSharding::Replicate(); HloSharding sharding2 = HloSharding::Replicate(); EXPECT_TRUE(hash_compare_equal(sharding1, sharding2)); } { HloSharding sharding1 = HloSharding::AssignDevice(1); HloSharding sharding2 = HloSharding::AssignDevice(1); EXPECT_TRUE(hash_compare_equal(sharding1, sharding2)); } { HloSharding sharding1 = HloSharding::AssignDevice(1); HloSharding sharding2 = HloSharding::AssignDevice(2); EXPECT_FALSE(hash_compare_equal(sharding1, sharding2)); } { HloSharding sharding1 = HloSharding::Tile(MakeArray({2, 2}, {0, 3, 2, 1})); HloSharding sharding2 = HloSharding::Tile(MakeArray({2, 2}, {0, 3, 2, 1})); EXPECT_TRUE(hash_compare_equal(sharding1, sharding2)); } { HloSharding sharding1 = HloSharding::IotaTile({3, 4}); HloSharding sharding2 = HloSharding::Tile( MakeArray({3, 4}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11})); EXPECT_TRUE(hash_compare_equal(sharding1, sharding2)); } HloSharding default_sharding = HloSharding::Replicate(); { ShapeTree<HloSharding> shape_tree(ShapeUtil::MakeTupleShape({}), default_sharding); HloSharding sharding1 = HloSharding::Replicate(); HloSharding sharding2 = HloSharding::Tuple(shape_tree); EXPECT_FALSE(hash_compare_equal(sharding1, sharding2)); } { ShapeTree<HloSharding> shape_tree(ShapeUtil::MakeTupleShape({}), default_sharding); HloSharding sharding1 = HloSharding::Tuple(shape_tree); HloSharding sharding2 = HloSharding::Tuple(shape_tree); EXPECT_TRUE(hash_compare_equal(sharding1, sharding2)); } { ShapeTree<HloSharding> shape_tree1( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {4})}), default_sharding); *shape_tree1.mutable_element({0}) = HloSharding::Replicate(); ShapeTree<HloSharding> shape_tree2( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {4})}), default_sharding); *shape_tree2.mutable_element({0}) = HloSharding::AssignDevice(0); HloSharding sharding1 = HloSharding::Tuple(shape_tree1); HloSharding sharding2 = HloSharding::Tuple(shape_tree2); EXPECT_FALSE(hash_compare_equal(sharding1, sharding2)); } { ShapeTree<HloSharding> shape_tree1( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {4})}), default_sharding); *shape_tree1.mutable_element({0}) = HloSharding::AssignDevice(0); ShapeTree<HloSharding> shape_tree2( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {4})}), default_sharding); *shape_tree2.mutable_element({0}) = HloSharding::AssignDevice(0); HloSharding sharding1 = HloSharding::Tuple(shape_tree1); HloSharding sharding2 = HloSharding::Tuple(shape_tree2); EXPECT_TRUE(hash_compare_equal(sharding1, sharding2)); } } using ShardingWithMetadataParamType = std::tuple<std::vector<OpMetadata>, std::string>; TEST_F(HloShardingTest, ToStringReplicatedTest) { HloSharding sharding = HloSharding::Replicate(); EXPECT_EQ(sharding.ToString(), "{replicated}"); } class HloReplicateShardingWithMetadataTest : public ::testing::TestWithParam<ShardingWithMetadataParamType> {}; TEST_P(HloReplicateShardingWithMetadataTest, ToStringTest) { HloSharding sharding = HloSharding::Replicate(std::get<0>(GetParam())); EXPECT_EQ(sharding.ToString(false), "{replicated}"); EXPECT_EQ(sharding.ToString(true), std::get<1>(GetParam())); } INSTANTIATE_TEST_SUITE_P( ToString, HloReplicateShardingWithMetadataTest, ::testing::Values( std::make_tuple(std::vector<OpMetadata>(), "{replicated}"), std::make_tuple(SingleMetadata(), "{replicated metadata={op_name=\"a\"}}"), std::make_tuple( ListMetadata(), "{replicated metadata={{op_name=\"b\"}, {op_name=\"c\"}}}"))); TEST_F(HloShardingTest, ToStringAssignDeviceTest) { HloSharding sharding = HloSharding::AssignDevice(7); EXPECT_EQ(sharding.ToString(), "{maximal device=7}"); } class HloAssignDeviceShardingWithMetadataTest : public ::testing::TestWithParam<ShardingWithMetadataParamType> {}; TEST_P(HloAssignDeviceShardingWithMetadataTest, ToStringTest) { HloSharding sharding = HloSharding::AssignDevice(7, std::get<0>(GetParam())); EXPECT_EQ(sharding.ToString(false), "{maximal device=7}"); EXPECT_EQ(sharding.ToString(true), std::get<1>(GetParam())); } INSTANTIATE_TEST_SUITE_P( ToString, HloAssignDeviceShardingWithMetadataTest, ::testing::Values( std::make_tuple(std::vector<OpMetadata>(), "{maximal device=7}"), std::make_tuple(SingleMetadata(), "{maximal device=7 metadata={op_name=\"a\"}}"), std::make_tuple( ListMetadata(), "{maximal device=7 metadata={{op_name=\"b\"}, {op_name=\"c\"}}}"))); TEST_F(HloShardingTest, ToStringTiledTest) { HloSharding sharding = HloSharding::Tile(Array3D<int64_t>({{{2, 3}}, {{5, 7}}})); EXPECT_EQ(sharding.ToString(), "{devices=[2,1,2]2,3,5,7}"); } TEST_F(HloShardingTest, ToStringIotaTiledTest) { HloSharding sharding = HloSharding::IotaTile({3, 4}, {2, 2, 3}, {2, 1, 0}); EXPECT_EQ(sharding.ToString(), "{devices=[3,4]<=[2,2,3]T(2,1,0)}"); } class HloTiledShardingWithMetadataTest : public ::testing::TestWithParam<ShardingWithMetadataParamType> {}; TEST_P(HloTiledShardingWithMetadataTest, ToStringTest) { HloSharding sharding = HloSharding::Tile( Array3D<int64_t>({{{2, 3}}, {{5, 7}}}), std::get<0>(GetParam())); EXPECT_EQ(sharding.ToString(false), "{devices=[2,1,2]2,3,5,7}"); EXPECT_EQ(sharding.ToString(true), std::get<1>(GetParam())); } INSTANTIATE_TEST_SUITE_P( ToString, HloTiledShardingWithMetadataTest, ::testing::Values( std::make_tuple(std::vector<OpMetadata>(), "{devices=[2,1,2]2,3,5,7}"), std::make_tuple(SingleMetadata(), "{devices=[2,1,2]2,3,5,7 metadata={op_name=\"a\"}}"), std::make_tuple(ListMetadata(), "{devices=[2,1,2]2,3,5,7 metadata={{op_name=\"b\"}, " "{op_name=\"c\"}}}"))); TEST_F(HloShardingTest, ToStringTupleTest) { HloSharding sharding = HloSharding::Tuple( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {3, 5}), ShapeUtil::MakeShape(U32, {7, 25}), ShapeUtil::MakeShape(S32, {9, 11})}), {HloSharding::Replicate(), HloSharding::Tile(Array2D<int64_t>({{3, 5}})), HloSharding::AssignDevice(3)}); EXPECT_EQ(sharding.ToString(), "{{replicated}, {devices=[1,2]3,5}, {maximal device=3}}"); } TEST_F(HloShardingTest, ToStringTupleWithMetadataTest) { auto metadata = SingleMetadata(); HloSharding sharding = HloSharding::Tuple( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {3, 5}), ShapeUtil::MakeShape(U32, {7, 25}), ShapeUtil::MakeShape(S32, {9, 11})}), {HloSharding::Replicate({GetMetadata("d")}), HloSharding::Tile(Array2D<int64_t>({{3, 5}})), HloSharding::AssignDevice(3, {GetMetadata("e")})}); EXPECT_EQ(sharding.ToString(false), "{{replicated}, {devices=[1,2]3,5}, {maximal device=3}}"); EXPECT_EQ(sharding.ToString(true), "{{replicated metadata={op_name=\"d\"}}, {devices=[1,2]3,5}, " "{maximal device=3 metadata={op_name=\"e\"}}}"); } TEST_F(HloShardingTest, OstreamTest) { HloSharding sharding = HloSharding::Tile(Array4D<int64_t>({{{{0, 1}, {2, 3}}}})); std::ostringstream oss; oss << sharding; EXPECT_EQ(oss.str(), "{devices=[1,1,2,2]0,1,2,3}"); } class HloParseShardingWithMetadataTest : public ::testing::TestWithParam<std::vector<OpMetadata>> {}; TEST_P(HloParseShardingWithMetadataTest, ParseHloString) { auto check = [](const HloSharding& sharding) { TF_ASSERT_OK_AND_ASSIGN( auto parsed_sharding, ParseSharding(sharding.ToString(true))); EXPECT_EQ(sharding, parsed_sharding); }; check(HloSharding::Replicate(GetParam())); check(HloSharding::AssignDevice(2, GetParam())); check(HloSharding::Tile(Array4D<int64_t>({{{{0}, {1}}}}), GetParam())); check(HloSharding::Tuple(ShapeUtil::MakeTupleShape({}), {HloSharding::Replicate(GetParam())})); { auto tuple_shape = ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {3, 1, 5, 7}), ShapeUtil::MakeShape(F32, {3, 5, 7}), ShapeUtil::MakeShape(F32, {3, 7})}); check(HloSharding::Tuple( tuple_shape, {HloSharding::Tile(Array4D<int64_t>({{{{0}, {1}}}})), HloSharding::Replicate(GetParam()), HloSharding::AssignDevice(1)})); } { auto tuple_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {3, 1, 5, 7}), ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {3, 5, 7}), ShapeUtil::MakeShape(F32, {3, 7})})}); std::vector<HloSharding> leaf_shardings = { HloSharding::Tile(Array4D<int64_t>({{{{0}, {1}}}})), HloSharding::Replicate(), HloSharding::AssignDevice(1, GetParam())}; ShapeTree<HloSharding> sharding_tree(tuple_shape, HloSharding::Replicate()); auto it = leaf_shardings.begin(); for (auto& index_to_sharding : sharding_tree.leaves()) { index_to_sharding.second = *it++; } check(HloSharding::Tuple(sharding_tree)); } } INSTANTIATE_TEST_SUITE_P(ParseHloString, HloParseShardingWithMetadataTest, ::testing::Values(std::vector<OpMetadata>(), SingleMetadata(), ListMetadata())); TEST_F(HloShardingTest, WithMetadataNoOverwrite) { { HloSharding sharding = HloSharding::Replicate(); auto sharding_new_metadata = sharding.WithMetadata(SingleMetadata(), false); ASSERT_EQ(sharding_new_metadata.metadata().size(), 1); EXPECT_TRUE(protobuf_util::ProtobufEquals( sharding_new_metadata.metadata().front(), SingleMetadata().front())); } { HloSharding sharding = HloSharding::AssignDevice(7, SingleMetadata()); auto sharding_new_metadata = sharding.WithMetadata(ListMetadata(), false); ASSERT_EQ(sharding_new_metadata.metadata().size(), 1); EXPECT_TRUE(protobuf_util::ProtobufEquals( sharding.metadata().front(), sharding_new_metadata.metadata().front())); } { HloSharding sharding = HloSharding::Tuple( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {3, 5}), ShapeUtil::MakeShape(U32, {7, 25}), ShapeUtil::MakeShape(S32, {9, 11})}), {HloSharding::Replicate(SingleMetadata()), HloSharding::Tile(Array2D<int64_t>({{3, 5}})), HloSharding::AssignDevice(3, SingleMetadata())}); auto sharding_new_metadata = sharding.WithMetadata(ListMetadata(), false); EXPECT_TRUE(sharding_new_metadata.metadata().empty()); ASSERT_TRUE(sharding_new_metadata.IsTuple()); ASSERT_EQ(sharding_new_metadata.tuple_elements().size(), 3); ASSERT_EQ(sharding_new_metadata.tuple_elements()[0].metadata().size(), 1); EXPECT_TRUE(protobuf_util::ProtobufEquals( sharding_new_metadata.tuple_elements()[0].metadata().front(), SingleMetadata().front())); ASSERT_EQ(sharding_new_metadata.tuple_elements()[1].metadata().size(), 2); for (int i = 0; i < 2; ++i) { EXPECT_TRUE(protobuf_util::ProtobufEquals( sharding_new_metadata.tuple_elements()[1].metadata()[i], ListMetadata()[i])); } ASSERT_EQ(sharding_new_metadata.tuple_elements()[2].metadata().size(), 1); EXPECT_TRUE(protobuf_util::ProtobufEquals( sharding_new_metadata.tuple_elements()[2].metadata().front(), SingleMetadata().front())); } } TEST_F(HloShardingTest, WithMetadataOverwrite) { { HloSharding sharding = HloSharding::Replicate(); auto sharding_new_metadata = sharding.WithMetadata(SingleMetadata(), true); ASSERT_EQ(sharding_new_metadata.metadata().size(), 1); EXPECT_TRUE(protobuf_util::ProtobufEquals( sharding_new_metadata.metadata().front(), SingleMetadata().front())); } { HloSharding sharding = HloSharding::AssignDevice(7, SingleMetadata()); auto sharding_new_metadata = sharding.WithMetadata(ListMetadata(), true); ASSERT_EQ(sharding_new_metadata.metadata().size(), 2); for (int i = 0; i < 2; ++i) { EXPECT_TRUE(protobuf_util::ProtobufEquals( sharding_new_metadata.metadata()[i], ListMetadata()[i])); } } { HloSharding sharding = HloSharding::Tuple( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {3, 5}), ShapeUtil::MakeShape(U32, {7, 25}), ShapeUtil::MakeShape(S32, {9, 11})}), {HloSharding::Replicate(SingleMetadata()), HloSharding::Tile(Array2D<int64_t>({{3, 5}})), HloSharding::AssignDevice(3, SingleMetadata())}); auto sharding_new_metadata = sharding.WithMetadata(ListMetadata(), true); EXPECT_TRUE(sharding_new_metadata.metadata().empty()); ASSERT_TRUE(sharding_new_metadata.IsTuple()); ASSERT_EQ(sharding_new_metadata.tuple_elements().size(), 3); for (const auto& sub_sharding : sharding_new_metadata.tuple_elements()) { ASSERT_EQ(sub_sharding.metadata().size(), 2); for (int i = 0; i < 2; ++i) { EXPECT_TRUE(protobuf_util::ProtobufEquals(sub_sharding.metadata()[i], ListMetadata()[i])); } } } } TEST_F(HloShardingTest, WithoutMetadata) { { HloSharding sharding = HloSharding::Replicate(); auto sharding_no_metadata = sharding.WithoutMetadata(); EXPECT_TRUE(sharding_no_metadata.metadata().empty()); } { HloSharding sharding = HloSharding::AssignDevice(7, SingleMetadata()); auto sharding_no_metadata = sharding.WithoutMetadata(); EXPECT_TRUE(sharding_no_metadata.metadata().empty()); } { HloSharding sharding = HloSharding::Tuple( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {3, 5}), ShapeUtil::MakeShape(U32, {7, 25}), ShapeUtil::MakeShape(S32, {9, 11})}), {HloSharding::Replicate(SingleMetadata()), HloSharding::Tile(Array2D<int64_t>({{3, 5}})), HloSharding::AssignDevice(3, ListMetadata())}); auto sharding_no_metadata = sharding.WithoutMetadata(); EXPECT_TRUE(sharding_no_metadata.metadata().empty()); ASSERT_TRUE(sharding_no_metadata.IsTuple()); EXPECT_EQ(sharding_no_metadata.tuple_elements().size(), 3); for (const auto& sub_sharding : sharding_no_metadata.tuple_elements()) { EXPECT_TRUE(sub_sharding.metadata().empty()); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/hlo_sharding.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_sharding_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1ebc940d-e527-4074-8f1f-bd379b98050d
cpp
tensorflow/tensorflow
hlo_matchers
tensorflow/compiler/mlir/lite/stablehlo/transforms/hlo_matchers.cc
third_party/xla/xla/hlo/utils/hlo_matchers_test.cc
#include "tensorflow/compiler/mlir/lite/stablehlo/transforms/hlo_matchers.h" #include <cassert> #include <cstddef> #include <cstdint> #include <cstdlib> #include <optional> #include <utility> #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributeInterfaces.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/Value.h" #include "mlir/Support/LLVM.h" #include "mlir/Transforms/DialectConversion.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" namespace mlir { namespace odml { namespace { class StridedArrayViewBase { protected: StridedArrayViewBase(ArrayRef<int64_t> shape, ArrayRef<int64_t> index, int64_t axis) { assert(shape.size() == index.size()); assert(axis < shape.size()); assert(axis >= 0); assert(index[axis] == 0); offset_ = IndexToOffset(shape, index); stride_ = StrideForAxis(shape, axis); size_ = shape[axis]; } int64_t size() const { return size_; } static std::optional<SmallVector<int64_t>> NextTensorIndex( SmallVector<int64_t> index, ArrayRef<int64_t> shape, int64_t fixed_axis) { #ifndef NDEBUG assert(shape.size() == index.size()); assert(fixed_axis < shape.size()); assert(fixed_axis >= 0); assert(index[fixed_axis] == 0); for (size_t i = 0; i < shape.size(); ++i) { assert(index[i] < shape[i]); assert(index[i] >= 0); } #endif for (int64_t dim = shape.size() - 1; dim >= 0; --dim) { if (dim == fixed_axis) continue; ++index[dim]; if (index[dim] < shape[dim]) return std::move(index); index[dim] = 0; } return std::nullopt; } protected: int64_t OffsetForIndex(int64_t i) const { return offset_ + i * stride_; } private: static int64_t StrideForAxis(ArrayRef<int64_t> shape, int64_t axis) { int64_t stride = 1; for (int64_t dim = shape.size() - 1; dim > axis; --dim) { stride *= shape[dim]; } return stride; } static int64_t IndexToOffset(ArrayRef<int64_t> shape, ArrayRef<int64_t> index) { #ifndef NDEBUG assert(shape.size() == index.size()); for (size_t i = 0; i < shape.size(); ++i) { assert(index[i] < shape[i]); assert(index[i] >= 0); } #endif int64_t offset = 0; int64_t stride = 1; for (int64_t dim = shape.size() - 1; dim >= 0; --dim) { offset += index[dim] * stride; stride *= shape[dim]; } return offset; } int64_t offset_; int64_t stride_; int64_t size_; }; template <typename T> class StridedArrayView; template <> class StridedArrayView<DenseIntElementsAttr> : StridedArrayViewBase { public: StridedArrayView(const DenseIntElementsAttr& data, ArrayRef<int64_t> shape, ArrayRef<int64_t> index, int64_t axis) : StridedArrayViewBase(shape, index, axis), data_(data) { int64_t element_count = 1; for (int64_t i = 0, e = shape.size(); i < e; ++i) { element_count *= shape[i]; } assert(data.getNumElements() == element_count); } using StridedArrayViewBase::NextTensorIndex; using StridedArrayViewBase::size; int64_t operator[](int64_t i) const { return data_.getValues<APInt>()[OffsetForIndex(i)].getSExtValue(); } private: const DenseIntElementsAttr& data_; }; bool MatchIotaBroadCastInDim(DenseIntElementsAttr dimensions, Value iota) { auto iota_broadcast = dyn_cast_or_null<mhlo::BroadcastInDimOp>(iota.getDefiningOp()); if (!iota_broadcast || iota_broadcast.getBroadcastDimensions() != dimensions) return false; if (!isa_and_nonnull<mhlo::IotaOp>( iota_broadcast.getOperand().getDefiningOp())) return false; return true; } bool MatchIotaConst(DenseIntElementsAttr dimensions, Value iota) { DenseIntElementsAttr iota_const_attr; if (!matchPattern(iota, m_Constant(&iota_const_attr))) return false; auto iota_type = iota_const_attr.getType(); auto iota_shape = iota_type.getShape(); auto reduce_dim = (*dimensions.value_begin<APInt>()).getSExtValue(); if (reduce_dim < 0) reduce_dim += iota_type.getRank(); auto index = std::optional<SmallVector<int64_t>>(std::in_place, iota_type.getRank()); while (index.has_value()) { StridedArrayView<DenseIntElementsAttr> array_view( iota_const_attr, iota_shape, *index, reduce_dim); for (int64_t i = 0; i < array_view.size(); ++i) { if (array_view[i] != i) return false; } index = StridedArrayView<DenseIntElementsAttr>::NextTensorIndex( std::move(*index), iota_shape, reduce_dim); } return true; } bool MatchReshapedIota(DenseIntElementsAttr dimensions, Value iota) { if (dimensions.getNumElements() != 1) return false; auto reshape_op = dyn_cast_or_null<mhlo::ReshapeOp>(iota.getDefiningOp()); if (!reshape_op) return false; auto operand_type = mlir::dyn_cast<RankedTensorType>(reshape_op.getOperand().getType()); if (!operand_type || !operand_type.hasStaticShape()) return false; auto reshape_type = mlir::cast<RankedTensorType>(reshape_op.getType()); if (operand_type.getRank() != 1) return false; if (!dyn_cast_or_null<mhlo::IotaOp>(reshape_op.getOperand().getDefiningOp())) return false; int64_t iota_dim = (*dimensions.value_begin<APInt>()).getSExtValue(); for (int64_t i = 0, e = reshape_type.getRank(); i < e; ++i) { if (i == iota_dim) { if (reshape_type.getDimSize(i) != operand_type.getDimSize(0)) return false; } else if (reshape_type.getDimSize(i) != 1) { return false; } } return true; } bool MatchSingleIota(DenseIntElementsAttr dimensions, Value iota) { auto iota_op = dyn_cast_or_null<mhlo::IotaOp>(iota.getDefiningOp()); if (!iota_op || dimensions.getNumElements() != 1) return false; auto dim = *dimensions.value_begin<APInt>(); return dim == iota_op.getIotaDimension(); } bool MatchConstIotaBroadCastInDim(DenseIntElementsAttr dimensions, Value iota) { if (dimensions.getNumElements() != 1) return false; auto iota_broadcast = dyn_cast_or_null<mhlo::BroadcastInDimOp>(iota.getDefiningOp()); if (!iota_broadcast || iota_broadcast.getBroadcastDimensions() != dimensions) return false; DenseElementsAttr range_const; if (!matchPattern(iota_broadcast.getOperand(), m_Constant(&range_const))) return false; int index = 0; for (auto value : range_const.getValues<APInt>()) { if (value != index++) return false; } return true; } } bool MatchIota(DenseIntElementsAttr dimensions, Value iota) { return MatchSingleIota(dimensions, iota) || MatchIotaBroadCastInDim(dimensions, iota) || MatchReshapedIota(dimensions, iota) || MatchConstIotaBroadCastInDim(dimensions, iota) || MatchIotaConst(dimensions, iota); } } }
#include "xla/hlo/utils/hlo_matchers.h" #include <optional> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include "xla/literal_util.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" namespace op = xla::testing::opcode_matchers; using ::testing::_; using ::testing::Eq; using ::testing::HasSubstr; namespace xla { namespace { using HloMatchersTest = HloTestBase; std::string DescribeHloMatcher( const ::testing::Matcher<const HloInstruction*>& m) { std::stringstream ss; m.DescribeTo(&ss); return ss.str(); } template <typename M, typename T> std::string Explain(const T& t, const M& m) { ::testing::StringMatchResultListener listener; EXPECT_THAT(t, ::testing::Not(m)); EXPECT_FALSE(m.MatchAndExplain(t, &listener)); return listener.str(); } TEST_F(HloMatchersTest, Test) { auto shape = ShapeUtil::MakeShape(F32, {1}); auto param = HloInstruction::CreateParameter(0, shape, "param"); auto mul = HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, param.get(), param.get()); auto add = HloInstruction::CreateBinary(shape, HloOpcode::kAdd, param.get(), mul.get()); EXPECT_THAT(add.get(), op::Add()); EXPECT_THAT(add.get(), op::Add(op::Parameter(), op::Multiply())); EXPECT_THAT(add.get(), op::Add(op::Parameter(), op::Multiply(_, op::Parameter()))); EXPECT_THAT( Explain(add.get(), op::Parameter()), Eq("(%add = f32[1]{0} add(f32[1]{0} %param, f32[1]{0} %multiply))")); EXPECT_THAT( Explain(add.get(), op::Add(op::Parameter())), Eq("(%add = f32[1]{0} add(f32[1]{0} %param, f32[1]{0} %multiply)) " "has too many operands (got 2, want 1)")); EXPECT_THAT( Explain(add.get(), op::Add(op::Parameter(), op::Parameter())), Eq("(%add = f32[1]{0} add(f32[1]{0} %param, f32[1]{0} %multiply))" "\noperand 1:\n\t" "%multiply = f32[1]{0} multiply(f32[1]{0} %param, f32[1]{0} %param)\n" "doesn't match expected:\n\t" "parameter" ", (%multiply = f32[1]{0} multiply(f32[1]{0} %param, f32[1]{0} " "%param))")); EXPECT_THAT( Explain(add.get(), op::Add(op::Parameter(), op::Multiply(op::Add(), op::Add()))), Eq("(%add = f32[1]{0} add(f32[1]{0} %param, f32[1]{0} %multiply))" "\noperand 1:\n\t" "%multiply = f32[1]{0} multiply(f32[1]{0} %param, f32[1]{0} %param)\n" "doesn't match expected:\n\t" "multiply(add, add)" ", (%multiply = f32[1]{0} multiply(f32[1]{0} %param, f32[1]{0} " "%param))\n" "operand 0:\n\t" "%param = f32[1]{0} parameter(0)\n" "doesn't match expected:\n\t" "add, (%param = f32[1]{0} parameter(0))")); } TEST_F(HloMatchersTest, CustomCallMatcher) { auto c1 = HloInstruction::CreateConstant(LiteralUtil::CreateR1<float>({1, 2, 3})); auto c2 = HloInstruction::CreateConstant(LiteralUtil::CreateR1<int32_t>({1, 2, 3})); auto call = HloInstruction::CreateCustomCall( ShapeUtil::MakeShape(F32, {1}), {c1.get(), c2.get()}, "foo_target"); EXPECT_THAT(call.get(), op::CustomCall()); EXPECT_THAT(call.get(), op::CustomCall(c1.get(), c2.get())); EXPECT_THAT(call.get(), op::CustomCall("foo_target")); EXPECT_THAT(call.get(), op::CustomCall("foo_target", c1.get(), c2.get())); EXPECT_THAT(call.get(), op::CustomCall(::testing::StartsWith("foo"))); EXPECT_THAT(call.get(), op::CustomCall(::testing::Not(::testing::StartsWith("bar")))); EXPECT_THAT(call.get(), ::testing::Not(op::CustomCall(c1.get()))); EXPECT_THAT(call.get(), ::testing::Not(op::CustomCall(::testing::StartsWith("bar")))); EXPECT_THAT(Explain(call.get(), op::CustomCall("bar")), "(%custom-call = f32[1]{0} custom-call(f32[3]{0} %constant, " "s32[3]{0} %constant), custom_call_target=\"foo_target\") " "custom-call with call target that isn't equal to \"bar\""); EXPECT_THAT(DescribeHloMatcher(op::CustomCall("foo_target")), R"(custom-call with call target that is equal to "foo_target")"); } TEST_F(HloMatchersTest, ShapeMatcher) { auto p0 = HloInstruction::CreateParameter( 0, ShapeUtil::MakeShapeWithDenseLayout(F32, {5, 7}, {0, 1}), "param"); EXPECT_THAT(p0.get(), op::Shape(ShapeUtil::MakeShape(F32, {5, 7}))); EXPECT_THAT(p0.get(), op::Shape("f32[5,7]")); EXPECT_THAT( p0.get(), ::testing::Not(op::ShapeWithLayout(ShapeUtil::MakeShape(F32, {5, 7})))); EXPECT_THAT(p0.get(), ::testing::Not(op::ShapeWithLayout("f32[5,7]"))); EXPECT_THAT(p0.get(), ::testing::Not(op::Shape(ShapeUtil::MakeShape(F32, {7, 5})))); EXPECT_THAT(p0.get(), ::testing::Not(op::Shape("f32[7,5]"))); EXPECT_THAT( p0.get(), ::testing::Not(op::ShapeWithLayout(ShapeUtil::MakeShape(F32, {7, 5})))); EXPECT_THAT(p0.get(), ::testing::Not(op::ShapeWithLayout("f32[7,5]"))); EXPECT_THAT(p0.get(), op::Shape(ShapeUtil::MakeShapeWithDenseLayout( F32, {5, 7}, {0, 1}))); EXPECT_THAT(p0.get(), op::Shape("f32[5,7]{0,1}")); EXPECT_THAT(p0.get(), op::ShapeWithLayout(ShapeUtil::MakeShapeWithDenseLayout( F32, {5, 7}, {0, 1}))); EXPECT_THAT(p0.get(), op::ShapeWithLayout("f32[5,7]{0,1}")); EXPECT_THAT(p0.get(), ::testing::Not(op::ShapeWithLayout( ShapeUtil::MakeShapeWithDenseLayout(F32, {5, 7}, {1, 0})))); EXPECT_THAT(p0.get(), ::testing::Not(op::ShapeWithLayout("f32[5,7]{1,0}"))); EXPECT_THAT(Explain(p0.get(), op::Shape(ShapeUtil::MakeShape(F32, {7, 5}))), "%param = f32[5,7]{0,1} parameter(0) has incorrect shape " "(expected: f32[7,5])"); EXPECT_THAT( Explain(p0.get(), op::ShapeWithLayout(ShapeUtil::MakeShapeWithDenseLayout( F32, {7, 5}, {1, 0}))), "%param = f32[5,7]{0,1} parameter(0) has incorrect shape " "(expected: f32[7,5]{1,0})"); } TEST_F(HloMatchersTest, ShardingMatcher) { auto p0 = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {5}), "param.0"); p0->clear_sharding(); auto p1 = HloInstruction::CreateParameter(1, ShapeUtil::MakeShape(F32, {7}), "param.1"); p1->set_sharding(HloSharding::AssignDevice(1)); auto tuple_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {7}), ShapeUtil::MakeShape(S32, {9}), ShapeUtil::MakeShape(F32, {11})}); auto p2 = HloInstruction::CreateParameter(1, tuple_shape, "param.2"); Array<int64_t> assignment({2}); assignment.SetValues({0, 1}); auto sharding = HloSharding::Tuple( tuple_shape, {HloSharding::Tile(assignment), HloSharding::AssignDevice(1), HloSharding::Replicate()}); p2->set_sharding(sharding); EXPECT_THAT(p0.get(), op::NoSharding()); EXPECT_THAT(p0.get(), ::testing::Not(op::Sharding(HloSharding::AssignDevice(1)))); EXPECT_THAT(p1.get(), ::testing::Not(op::NoSharding())); EXPECT_THAT(p1.get(), ::testing::Not(op::Sharding(HloSharding::AssignDevice(0)))); EXPECT_THAT(p1.get(), op::Sharding(HloSharding::AssignDevice(1))); EXPECT_THAT( p2.get(), op::Sharding("{{devices=[2]0,1}, {maximal device=1}, {replicated}}")); EXPECT_THAT(Explain(p0.get(), op::Sharding(HloSharding::AssignDevice(1))), "%param.0 = f32[5]{0} parameter(0) has no sharding (expected: " "{maximal device=1})"); EXPECT_THAT(Explain(p1.get(), op::NoSharding()), "%param.1 = f32[7]{0} parameter(1), sharding={maximal device=1} " "expected to have no sharding."); EXPECT_THAT(Explain(p1.get(), op::Sharding(HloSharding::AssignDevice(0))), "%param.1 = f32[7]{0} parameter(1), sharding={maximal device=1} " "has incorrect sharding (expected: {maximal device=0})"); } TEST_F(HloMatchersTest, DotMatcher) { std::string hlo_string = R"( HloModule DotOperationFusion_TransposeFusion ENTRY DotOperationFusion_TransposeFusion { arg0 = f32[1,256] parameter(0) arg1 = f32[256,1024] parameter(1) ROOT dot = f32[1,1024] dot(arg0, arg1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Dot(op::Parameter(0), op::Parameter(1), 1, 0)); EXPECT_THAT( Explain(root, op::Dot(op::Parameter(0), op::Parameter(1), 0, 0)), "(%dot = f32[1,1024]{1,0} dot(f32[1,256]{1,0} %arg0, f32[256,1024]{1,0} " "%arg1), lhs_contracting_dims={1}, rhs_contracting_dims={0}) has wrong " "lhs_contracting_dimensions (got {1} want {0})"); EXPECT_THAT( Explain(root, op::Dot(op::Parameter(0), op::Parameter(1), 1, 1)), "(%dot = f32[1,1024]{1,0} dot(f32[1,256]{1,0} %arg0, f32[256,1024]{1,0} " "%arg1), lhs_contracting_dims={1}, rhs_contracting_dims={0}) has wrong " "rhs_contracting_dimensions (got {0} want {1})"); } TEST_F(HloMatchersTest, ComparisonMatcher) { auto shape = ShapeUtil::MakeShape(F32, {1}); auto p0 = HloInstruction::CreateParameter(0, shape, "param.0"); auto p1 = HloInstruction::CreateParameter(1, shape, "param.1"); auto eq = HloInstruction::CreateCompare(shape, p0.get(), p1.get(), ComparisonDirection::kEq); auto ne = HloInstruction::CreateCompare(shape, p0.get(), p1.get(), ComparisonDirection::kNe); auto add = HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p0.get(), p1.get()); auto le = HloInstruction::CreateCompare(shape, p0.get(), add.get(), ComparisonDirection::kLe); EXPECT_THAT(eq.get(), op::Compare()); EXPECT_THAT(eq.get(), op::Eq()); EXPECT_THAT(ne.get(), op::Compare()); EXPECT_THAT(ne.get(), op::Ne()); EXPECT_THAT(le.get(), op::Compare(op::Parameter(0), op::Add(op::Parameter(0), op::Parameter(1)))); EXPECT_THAT(le.get(), op::Le(op::Parameter(0), op::Add(op::Parameter(0), op::Parameter(1)))); EXPECT_THAT(Explain(eq.get(), op::Add()), Eq("(%compare = f32[1]{0} compare(f32[1]{0} %param.0, " "f32[1]{0} %param.1), direction=EQ)")); EXPECT_THAT(Explain(eq.get(), op::Ne()), Eq("(%compare = f32[1]{0} compare(f32[1]{0} %param.0, " "f32[1]{0} %param.1), direction=EQ) " "has wrong comparison direction (got EQ, want NE)")); } TEST_F(HloMatchersTest, AsyncCopyMatcher) { Shape shape_memspace1 = ShapeUtil::MakeShapeWithDenseLayout( F32, {16}, {0}, {}, 1, 0, 1); Shape shape_memspace2 = ShapeUtil::MakeShapeWithDenseLayout( F32, {16}, {0}, {}, 1, 0, 2); auto p0 = HloInstruction::CreateParameter(0, shape_memspace1, "p0"); auto copy_start = HloInstruction::CreateCopyStart( ShapeUtil::MakeTupleShape( {shape_memspace2, shape_memspace1, ShapeUtil::MakeShape(U32, {})}), p0.get()); auto copy_done = HloInstruction::CreateUnary( shape_memspace2, HloOpcode::kCopyDone, copy_start.get()); EXPECT_THAT(copy_done.get(), op::AsyncCopy(2, 1, op::Parameter(0))); EXPECT_THAT(Explain(copy_start.get(), op::AsyncCopy(2, 1, op::Parameter(0))), Eq("(%copy-start = (f32[16]{0:S(2)}, f32[16]{0:S(1)}, u32[]) " "copy-start(f32[16]{0:S(1)} %p0))")); EXPECT_THAT(Explain(copy_done.get(), op::AsyncCopy(3, 1, op::Parameter(0))), "(%copy-done = f32[16]{0:S(2)} copy-done((f32[16]{0:S(2)}, " "f32[16]{0:S(1)}, u32[]) " "%copy-start)) " "copies to memory space 2, expected 3"); EXPECT_THAT(Explain(copy_done.get(), op::AsyncCopy(2, 3, op::Parameter(0))), "(%copy-done = f32[16]{0:S(2)} copy-done((f32[16]{0:S(2)}, " "f32[16]{0:S(1)}, u32[]) " "%copy-start)) " "is in the memory space 1, expected 3"); } TEST_F(HloMatchersTest, ConstantMatcher) { std::string hlo_string = R"( HloModule Constant ENTRY main { ROOT x = u32[2] constant({1, 2}) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Constant()); EXPECT_THAT(root, op::Constant(LiteralUtil::CreateR1<uint32_t>({1, 2}))); EXPECT_THAT(root, ::testing::Not( op::Constant(LiteralUtil::CreateR1<uint32_t>({1, 1})))); EXPECT_THAT(Explain(root, op::Constant(LiteralUtil::CreateR0<uint32_t>(1))), "(%x = u32[2]{0} constant({1, 2})) has wrong value (got u32[2] " "{1, 2}, want u32[] 1)"); } TEST_F(HloMatchersTest, ReplicaGroupsMatcher) { Shape shape = ShapeUtil::MakeShape(F32, {5, 7}); std::unique_ptr<HloInstruction> p0 = HloInstruction::CreateParameter(0, shape, "param"); std::vector<ReplicaGroup> replica_groups(2); replica_groups[0].add_replica_ids(0); replica_groups[0].add_replica_ids(2); replica_groups[1].add_replica_ids(1); replica_groups[1].add_replica_ids(3); std::unique_ptr<HloInstruction> all_to_all = HloInstruction::CreateAllToAll( shape, {p0.get()}, CollectiveDeviceList(replica_groups), false, std::nullopt); EXPECT_THAT(Explain(p0.get(), op::ReplicaGroups({})), "%param = f32[5,7]{1,0} parameter(0) not a collective op"); EXPECT_THAT(Explain(all_to_all.get(), op::ReplicaGroups({{0, 1}, {2, 3}})), "%all-to-all = f32[5,7]{1,0} all-to-all(f32[5,7]{1,0} %param), " "replica_groups={{0,2},{1,3}} has incorrect replica_groups " "(expected: {{0,1},{2,3}})"); EXPECT_THAT(all_to_all.get(), op::ReplicaGroups({{0, 2}, {1, 3}})); } TEST_F(HloMatchersTest, SourceTargetPairsMatcher) { Shape shape = ShapeUtil::MakeShape(F32, {5, 7}); std::unique_ptr<HloInstruction> p0 = HloInstruction::CreateParameter(0, shape, "param"); std::vector<std::pair<int64_t, int64_t>> source_target_pairs = { {0, 1}, {2, 3}, {1, 2}}; std::unique_ptr<HloInstruction> cp = HloInstruction::CreateCollectivePermute( shape, p0.get(), source_target_pairs, std::nullopt); EXPECT_THAT(Explain(p0.get(), op::SourceTargetPairs({{0, 1}})), HasSubstr("not a collective permute")); EXPECT_THAT(Explain(cp.get(), op::SourceTargetPairs({{0, 1}, {2, 3}})), HasSubstr("source_target_pairs (expected: {{0,1},{2,3}}")); EXPECT_THAT(cp.get(), op::SourceTargetPairs({{0, 1}, {2, 3}, {1, 2}})); } TEST_F(HloMatchersTest, MetadataMatcher) { Shape shape = ShapeUtil::MakeShape(F32, {5, 7}); std::unique_ptr<HloInstruction> p0 = HloInstruction::CreateParameter(0, shape, "param"); OpMetadata metadata; metadata.set_op_type("op_type1"); metadata.set_op_name("op_name1"); p0->set_metadata(metadata); OpMetadata actual_opname; actual_opname.set_op_type("op_type1"); actual_opname.set_op_name("op_name2"); OpMetadata actual_source_file; actual_source_file.set_op_type("op_type1"); actual_source_file.set_op_name("op_name1"); actual_source_file.set_source_file("source_file"); OpMetadata actual_optype; actual_optype.set_op_type("op_type2"); actual_optype.set_op_name("op_name1"); OpMetadata actual_source_line; actual_source_line.set_op_type("op_type1"); actual_source_line.set_op_name("op_name1"); actual_source_line.set_source_line(1); EXPECT_THAT(Explain(p0.get(), op::Metadata(actual_opname)), HasSubstr("has wrong metadata (got op_name1, want op_name2)")); EXPECT_THAT(Explain(p0.get(), op::Metadata(actual_source_file)), HasSubstr("has wrong metadata (got " ", want source_file)")); EXPECT_THAT(Explain(p0.get(), op::Metadata(actual_optype)), HasSubstr("has wrong metadata (got" " op_type1, want op_type2)")); EXPECT_THAT(Explain(p0.get(), op::Metadata(actual_source_line)), HasSubstr("has wrong metadata (got 0" ", want 1)")); EXPECT_THAT(DescribeHloMatcher(op::Metadata(p0->metadata())), R"( (metadata: op_type1 op_name1 0))"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/lite/stablehlo/transforms/hlo_matchers.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/utils/hlo_matchers_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3ae28366-5f5c-4685-9465-c15e3ed6cca1
cpp
tensorflow/tensorflow
hlo_live_range
third_party/xla/xla/hlo/utils/hlo_live_range.cc
third_party/xla/xla/hlo/utils/hlo_live_range_test.cc
#include "xla/hlo/utils/hlo_live_range.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "xla/hlo/ir/dfs_hlo_visitor.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_buffer.h" #include "xla/service/hlo_value.h" #include "xla/shape_util.h" #include "tsl/platform/logging.h" namespace xla { absl::StatusOr<std::unique_ptr<HloLiveRange>> HloLiveRange::Run( const HloSchedule& schedule, const HloAliasAnalysis& alias_analysis, const HloComputation* computation, bool module_scoped_analysis) { std::unique_ptr<HloLiveRange> hlo_live_range( new HloLiveRange(schedule, alias_analysis, module_scoped_analysis)); hlo_live_range->FlattenSchedule(*computation); hlo_live_range->CalculateBufferStartEndMap(); hlo_live_range->NormalizeAliasedBuffers(); return std::move(hlo_live_range); } void HloLiveRange::NormalizeAliasedBuffers() { absl::flat_hash_map<HloBuffer::Id, std::vector<std::pair<TimeBound*, HloValue::Id>>> live_ranges_by_buffer; for (auto& entry : buffer_live_ranges_) { const HloValue& value = *entry.first; const HloBuffer& buffer = alias_analysis_.GetBufferContainingValue(value); live_ranges_by_buffer[buffer.id()].push_back({&entry.second, value.id()}); } for (auto& entry : live_ranges_by_buffer) { auto& aliased_live_ranges = entry.second; absl::c_sort( aliased_live_ranges, [](std::pair<const TimeBound*, HloValue::Id> a, std::pair<const TimeBound*, HloValue::Id> b) { return std::forward_as_tuple(a.first->start, a.first->end, a.second) < std::forward_as_tuple(b.first->start, b.first->end, b.second); }); for (int64_t i = 0; i + 1 < aliased_live_ranges.size(); ++i) { TimeBound& live_range1 = *aliased_live_ranges[i].first; TimeBound& live_range2 = *aliased_live_ranges[i + 1].first; live_range2.end = std::max(live_range1.end, live_range2.end); live_range1.end = std::min(live_range1.end, live_range2.start); } } } void HloLiveRange::FlattenSchedule(const HloComputation& computation, const HloComputation* async_context) { auto it = schedule_.sequences().find(computation.unique_id()); if (it == schedule_.sequences().end()) { total_order_scheduled_ = false; return; } if (computation_span_times_.contains(&computation)) return; if (async_context != nullptr) { computations_in_async_context_[&computation] = async_context; } LogicalTime start_time = flattened_instruction_sequence_.size(); const HloInstructionSequence& instruction_sequence = it->second; for (HloInstruction* instruction : instruction_sequence.instructions()) { if (module_scoped_analysis_) { if (instruction->opcode() == HloOpcode::kCall || instruction->opcode() == HloOpcode::kConditional || instruction->opcode() == HloOpcode::kAsyncStart) { for (const HloComputation* called_computation : instruction->called_computations()) { FlattenSchedule(*called_computation, instruction->opcode() == HloOpcode::kAsyncStart ? called_computation : async_context); } } else if (instruction->opcode() == HloOpcode::kWhile) { FlattenSchedule(*instruction->while_condition(), async_context); FlattenSchedule(*instruction->while_body(), async_context); } } LogicalTime time = flattened_instruction_sequence_.size(); CHECK(instruction_schedule_.insert({instruction, time}).second); flattened_instruction_sequence_.push_back(instruction); } LogicalTime end_time = flattened_instruction_sequence_.size(); computation_span_times_[&computation] = {start_time, end_time}; } HloLiveRange::TimeBound HloLiveRange::GetLastPosition( const HloValue& value, HloLiveRange::LogicalTime definition_end_time) const { LogicalTime end_time = definition_end_time; const HloPosition* end_position = &value.defining_position(); for (const HloPosition& position : absl::Span<const HloPosition>(value.positions()).subspan(1)) { const HloInstruction* position_inst = position.instruction; LogicalTime position_time; if (position_inst->IsRoot()) { auto it = computation_span_times_.find(position_inst->parent()); if (it == computation_span_times_.end()) continue; position_time = it->second.end; } else { auto it = instruction_schedule_.find(position_inst); if (it == instruction_schedule_.end()) continue; position_time = it->second; } if (position_time > end_time) { end_time = position_time; end_position = &position; } } return {-1, end_time, *end_position}; } HloLiveRange::LogicalTime HloLiveRange::GetLastUsageTime( const HloValue& value) const { LogicalTime end_time = -1; for (const HloUse& use : value.GetUses()) { const HloInstruction* used = use.instruction; if (module_scoped_analysis_ && used->opcode() == HloOpcode::kCall) continue; if (module_scoped_analysis_ && used->opcode() == HloOpcode::kWhile) { used = used->while_body()->parameter_instruction(0); VLOG(1) << "Moved value " << value.ToShortString() << " to while param: " << used->ToString(); } auto it = instruction_schedule_.find(used); if (it != instruction_schedule_.end()) { end_time = std::max(end_time, it->second); } } return end_time; } void HloLiveRange::CalculateBufferStartEndMap() { for (const auto& entry : instruction_schedule_) { const HloInstruction& instruction = *entry.first; const HloComputation* computation = instruction.parent(); LogicalTime start_time = (instruction.opcode() == HloOpcode::kParameter) ? computation_span_times_[computation].start : entry.second; LogicalTime definition_end_time = instruction.IsRoot() ? computation_span_times_[computation].end : entry.second; auto async_context_it = computations_in_async_context_.find(computation); if (async_context_it != computations_in_async_context_.end()) { const HloComputation* async_context = async_context_it->second; CHECK(async_context->IsAsyncComputation()); auto async_done = async_context->AsyncStart()->async_chain_done(); auto async_done_it = instruction_schedule_.find(async_done); CHECK(async_done_it != instruction_schedule_.end()); definition_end_time = std::max(definition_end_time, async_done_it->second); VLOG(2) << "Setting the definition end time for op in async context: " << definition_end_time; } const InstructionValueSet& value_set_tree = alias_analysis_.dataflow_analysis().GetInstructionValueSet( &instruction); for (const auto& entry : value_set_tree) { for (const HloValue* value : entry.second.values()) { if (value->defining_instruction() != &instruction) continue; TimeBound live_range = GetLastPosition(*value, definition_end_time); live_range.start = start_time; const HloModule& module = *computation->parent(); if (instruction.opcode() == HloOpcode::kParameter && computation == module.entry_computation() && !module.input_output_alias_config().ParameterHasAlias( instruction.parameter_number(), value->index())) { live_range.end = schedule_end_time(); } else { live_range.end = std::max(live_range.end, GetLastUsageTime(*value)); } CHECK_LE(live_range.start, live_range.end) << instruction.ToString(); CHECK(buffer_live_ranges_.insert({value, live_range}).second); } } } } int64_t HloLiveRange::ComputePeakMemoryMoment() const { std::vector<std::tuple<int64_t , bool , const HloValue*>> events; for (const HloValue* value : alias_analysis_.dataflow_analysis().values()) { auto it = buffer_live_ranges_.find(value); if (it != buffer_live_ranges_.end()) { events.emplace_back(it->second.start, false, value); events.emplace_back(it->second.end + 1, true, value); } } std::sort(events.begin(), events.end()); int64_t memory_usage = 0; int64_t peak_usage = 0; std::optional<int64_t> peak_time; for (const auto& event : events) { int64_t time; bool is_end; const HloValue* value; std::tie(time, is_end, value) = event; auto buffer_size = ShapeUtil::ByteSizeOf(value->instruction()->shape(), 8); if (is_end) { memory_usage -= buffer_size; } else { memory_usage += buffer_size; } if (peak_usage < memory_usage) { peak_usage = memory_usage; peak_time = time; } } return peak_time.value_or(0); } std::string HloLiveRange::ToString() const { std::string output; absl::StrAppendFormat(&output, "HloLiveRange (max %d):\n", schedule_end_time()); absl::StrAppendFormat(&output, " InstructionSequence:\n"); auto& instructions = flattened_instruction_sequence().instructions(); for (int64_t i = 0; i < instructions.size(); ++i) { absl::StrAppendFormat(&output, " %d:%s\n", i, instructions[i]->name()); } absl::StrAppendFormat(&output, " BufferLiveRange:\n"); for (const HloValue* value : alias_analysis_.dataflow_analysis().values()) { auto it = buffer_live_ranges_.find(value); if (it != buffer_live_ranges_.end()) { absl::StrAppendFormat( &output, " %s%s:%d-%d\n", value->instruction()->name(), value->index().ToString(), it->second.start, it->second.end); } } int64_t peak_moment = ComputePeakMemoryMoment(); absl::StrAppendFormat(&output, " Live ranges at %lld (peak):\n", peak_moment); for (const HloValue* value : alias_analysis_.dataflow_analysis().values()) { auto it = buffer_live_ranges_.find(value); if (it != buffer_live_ranges_.end()) { if (it->second.start <= peak_moment && peak_moment <= it->second.end) { int64_t bytes = ShapeUtil::ByteSizeOf(value->instruction()->shape(), 8); absl::StrAppendFormat(&output, " %s: %lld bytes\n", value->instruction()->name(), bytes); } } } return output; } }
#include "xla/hlo/utils/hlo_live_range.h" #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/literal_util.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_value.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using TimeBound = HloLiveRange::TimeBound; class HloLiveRangeTest : public HloTestBase { protected: HloLiveRangeTest() : module_(CreateNewVerifiedModule()) {} ~HloLiveRangeTest() override {} void Analyze(const HloSchedule& schedule) { alias_analysis_ = HloAliasAnalysis::Run(module_.get()).value(); hlo_live_range_ = HloLiveRange::Run(schedule, *alias_analysis_, module_->entry_computation()) .value(); } std::unique_ptr<HloModule> module_; std::unique_ptr<HloLiveRange> hlo_live_range_; std::unique_ptr<HloAliasAnalysis> alias_analysis_; Shape f32scalar_ = ShapeUtil::MakeShape(xla::F32, {}); Shape f32vec4_ = ShapeUtil::MakeShape(F32, {4}); const HloValue* BufferAt(const HloInstruction* instruction, const ShapeIndex& index) const { return &alias_analysis_->dataflow_analysis().GetUniqueValueAt(instruction, index); } HloLiveRange::TimeBound LiveRangeAt(const HloInstruction* instruction, const ShapeIndex& index = {}) const { auto* value = BufferAt(instruction, index); return hlo_live_range_->buffer_live_ranges().at(value); } void CheckSchedule() const { const auto& flattened_instructions = hlo_live_range_->flattened_instruction_sequence().instructions(); EXPECT_EQ(flattened_instructions.size(), hlo_live_range_->instruction_schedule().size()); for (const auto& inst_and_time : hlo_live_range_->instruction_schedule()) { EXPECT_EQ(flattened_instructions.at(inst_and_time.second), inst_and_time.first) << "(flattened_inst[" << inst_and_time.second << "] = " << flattened_instructions.at(inst_and_time.second)->name() << ") != (inst_schedule[" << inst_and_time.second << "] = " << inst_and_time.first->name() << ")"; } } }; TEST_F(HloLiveRangeTest, Multiply) { auto builder = HloComputation::Builder(TestName()); auto paramA = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec4_, "paramA")); auto paramX = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec4_, "paramX")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec4_, HloOpcode::kMultiply, paramA, paramX)); module_->AddEntryComputation(builder.Build()); HloSchedule schedule(module_.get()); schedule.set_sequence(module_->entry_computation(), {paramA, paramX, mul}); Analyze(schedule); CheckSchedule(); EXPECT_EQ(LiveRangeAt(paramA), TimeBound({0, 3})); EXPECT_EQ(LiveRangeAt(paramX), TimeBound({0, 3})); EXPECT_EQ(LiveRangeAt(mul), TimeBound({2, 3})); } TEST_F(HloLiveRangeTest, MultiplyAdd) { auto builder = HloComputation::Builder(TestName()); auto paramA = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec4_, "paramA")); auto paramX = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec4_, "paramX")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec4_, HloOpcode::kMultiply, paramA, paramX)); auto paramY = builder.AddInstruction( HloInstruction::CreateParameter(2, f32vec4_, "paramY")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec4_, HloOpcode::kAdd, mul, paramY)); module_->AddEntryComputation(builder.Build()); HloSchedule schedule(module_.get()); schedule.set_sequence(module_->entry_computation(), {paramA, paramX, mul, paramY, add}); Analyze(schedule); CheckSchedule(); EXPECT_EQ(LiveRangeAt(paramA), TimeBound({0, 5})); EXPECT_EQ(LiveRangeAt(paramX), TimeBound({0, 5})); EXPECT_EQ(LiveRangeAt(paramY), TimeBound({0, 5})); EXPECT_EQ(LiveRangeAt(mul), TimeBound({2, 4})); EXPECT_EQ(LiveRangeAt(add), TimeBound({4, 5})); } TEST_F(HloLiveRangeTest, LiveOutBuffers) { auto builder = HloComputation::Builder(TestName()); auto paramA = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec4_, "paramA")); auto paramX = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec4_, "paramX")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec4_, HloOpcode::kMultiply, paramA, paramX)); auto paramY = builder.AddInstruction( HloInstruction::CreateParameter(2, f32vec4_, "paramY")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec4_, HloOpcode::kAdd, mul, paramY)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({mul, add})); module_->AddEntryComputation(builder.Build()); HloSchedule schedule(module_.get()); schedule.set_sequence(module_->entry_computation(), {paramA, paramX, mul, paramY, add, tuple}); Analyze(schedule); CheckSchedule(); EXPECT_EQ(LiveRangeAt(paramA), TimeBound({0, 6})); EXPECT_EQ(LiveRangeAt(paramX), TimeBound({0, 6})); EXPECT_EQ(LiveRangeAt(paramY), TimeBound({0, 6})); EXPECT_EQ(LiveRangeAt(mul), TimeBound({2, 6})); EXPECT_EQ(LiveRangeAt(add), TimeBound({4, 6})); } TEST_F(HloLiveRangeTest, InstructionScheduledAfterRoot) { auto builder = HloComputation::Builder(TestName()); auto paramA = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec4_, "paramA")); auto paramX = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec4_, "paramX")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec4_, HloOpcode::kMultiply, paramA, paramX)); auto paramY = builder.AddInstruction( HloInstruction::CreateParameter(2, f32vec4_, "paramY")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec4_, HloOpcode::kAdd, mul, paramY)); auto add2 = builder.AddInstruction( HloInstruction::CreateBinary(f32vec4_, HloOpcode::kAdd, mul, paramY)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({mul, add})); module_->AddEntryComputation(builder.Build()); HloSchedule schedule(module_.get()); schedule.set_sequence(module_->entry_computation(), {paramA, paramX, mul, paramY, add, tuple, add2}); Analyze(schedule); CheckSchedule(); EXPECT_EQ(LiveRangeAt(paramA), TimeBound({0, 7})); EXPECT_EQ(LiveRangeAt(paramX), TimeBound({0, 7})); EXPECT_EQ(LiveRangeAt(paramY), TimeBound({0, 7})); EXPECT_EQ(LiveRangeAt(mul), TimeBound({2, 7})); EXPECT_EQ(LiveRangeAt(add), TimeBound({4, 7})); EXPECT_EQ(LiveRangeAt(tuple), TimeBound({5, 7})); EXPECT_EQ(LiveRangeAt(add2), TimeBound({6, 6})); } TEST_F(HloLiveRangeTest, AliasedParameter) { auto builder = HloComputation::Builder(TestName()); auto paramA = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec4_, "paramA")); auto paramX = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec4_, "paramX")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec4_, HloOpcode::kMultiply, paramA, paramX)); auto paramY = builder.AddInstruction( HloInstruction::CreateParameter(2, f32vec4_, "paramY")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec4_, HloOpcode::kAdd, mul, paramY)); module_->AddEntryComputation(builder.Build()); TF_ASSERT_OK(module_->input_output_alias_config().SetUpAlias({}, 0, {})); HloSchedule schedule(module_.get()); schedule.set_sequence(module_->entry_computation(), {paramA, paramX, mul, paramY, add}); Analyze(schedule); CheckSchedule(); EXPECT_EQ(LiveRangeAt(paramA), TimeBound({0, 2})); EXPECT_EQ(LiveRangeAt(paramX), TimeBound({0, 5})); EXPECT_EQ(LiveRangeAt(paramY), TimeBound({0, 5})); EXPECT_EQ(LiveRangeAt(mul), TimeBound({2, 4})); EXPECT_EQ(LiveRangeAt(add), TimeBound({4, 5})); } TEST_F(HloLiveRangeTest, While) { Shape shape = ShapeUtil::MakeShape(xla::F32, {2, 3}); Shape scalar_shape = ShapeUtil::MakeShape(xla::F32, {}); Shape tuple_shape = ShapeUtil::MakeTupleShape({shape, scalar_shape}); auto cond_builder = HloComputation::Builder("WhileCond"); HloInstruction* cond_param = cond_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "cond_param")); HloInstruction* cond_iter = cond_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape, cond_param, 1)); HloInstruction* cond_limit = cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(50.f))); HloInstruction* cond_lt = cond_builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), cond_iter, cond_limit, ComparisonDirection::kLt)); HloComputation* cond_computation = module_->AddEmbeddedComputation(cond_builder.Build()); auto body_builder = HloComputation::Builder("WhileBody"); HloInstruction* body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "body_param")); HloInstruction* body_iter = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape, body_param, 1)); HloInstruction* body_data = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, body_param, 0)); HloInstruction* body_iter_increment = body_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.f))); HloInstruction* body_iter_next = body_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, body_iter, body_iter_increment)); HloInstruction* body_data_increment = body_builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{1.f, 2.f, 3.f}, {4.f, 5.f, 6.f}}))); HloInstruction* body_data_mul = body_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, body_data, body_data)); HloInstruction* body_data_add = body_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, body_data, body_data_increment)); HloInstruction* body_data_next = body_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, body_data_add, body_data_mul)); HloInstruction* body_out = body_builder.AddInstruction( HloInstruction::CreateTuple({body_data_next, body_iter_next})); HloComputation* body_computation = module_->AddEmbeddedComputation(body_builder.Build()); auto builder = HloComputation::Builder(TestName()); HloInstruction* data = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "param_iter")); HloInstruction* iter = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "param_data")); HloInstruction* tuple = builder.AddInstruction(HloInstruction::CreateTuple({data, iter})); HloInstruction* while_op = builder.AddInstruction(HloInstruction::CreateWhile( tuple_shape, cond_computation, body_computation, tuple)); HloComputation* entry_computation = module_->AddEntryComputation(builder.Build()); HloSchedule schedule(module_.get()); schedule.set_sequence(cond_computation, {cond_param, cond_iter, cond_limit, cond_lt}); schedule.set_sequence(body_computation, {body_param, body_iter, body_data, body_iter_increment, body_iter_next, body_data_increment, body_data_mul, body_data_add, body_data_next, body_out}); schedule.set_sequence(entry_computation, {iter, data, tuple, while_op}); Analyze(schedule); CheckSchedule(); EXPECT_EQ(LiveRangeAt(iter).end, LiveRangeAt(cond_iter).start); EXPECT_EQ(LiveRangeAt(cond_iter).end, LiveRangeAt(body_iter).start); EXPECT_EQ(LiveRangeAt(body_iter).end, LiveRangeAt(body_iter_next).start); } TEST_F(HloLiveRangeTest, Determinism) { std::string hlo_string = R"( HloModule While, is_scheduled=true %WhileBody { %body_param = (f32[2,3]{1,0}, f32[], f32[2,3]{1,0}) parameter(0) %get-tuple-element.2 = f32[2,3]{1,0} get-tuple-element(%body_param), index=0 %constant.2 = f32[2,3]{1,0} constant({ { 1, 2, 3 }, { 4, 5, 6 } }) %add.1 = f32[2,3]{1,0} add(f32[2,3]{1,0} %get-tuple-element.2, f32[2,3]{1,0} %constant.2) %multiply = f32[2,3]{1,0} multiply(f32[2,3]{1,0} %get-tuple-element.2, f32[2,3]{1,0} %get-tuple-element.2) %add.2 = f32[2,3]{1,0} add(f32[2,3]{1,0} %add.1, f32[2,3]{1,0} %multiply) %get-tuple-element.1 = f32[] get-tuple-element(%body_param), index=1 %constant.1 = f32[] constant(1) %add = f32[] add(f32[] %get-tuple-element.1, f32[] %constant.1) %get-tuple-element.3 = f32[2,3]{1,0} get-tuple-element(%body_param), index=2 %add.3 = f32[2,3]{1,0} add(f32[2,3]{1,0} %get-tuple-element.3, f32[2,3]{1,0} %constant.2) ROOT %tuple = (f32[2,3]{1,0}, f32[], f32[2,3]{1,0}) tuple(f32[2,3]{1,0} %add.2, f32[] %add, f32[2,3]{1,0} %add.3) } %WhileCond { %cond_param = (f32[2,3]{1,0}, f32[], f32[2,3]{1,0}) parameter(0) %get-tuple-element = f32[] get-tuple-element(%cond_param), index=1 %constant = f32[] constant(50) ROOT %compare = pred[] compare(f32[] %get-tuple-element, f32[] %constant), direction=LT } ENTRY %While { %param_iter = f32[2,3]{1,0} parameter(0) %param_data = f32[] parameter(1) %tuple.1 = (f32[2,3]{1,0}, f32[], f32[2,3]{1,0}) tuple(f32[2,3]{1,0} %param_iter, f32[] %param_data, f32[2,3]{1,0} %param_iter) %while = (f32[2,3]{1,0}, f32[], f32[2,3]{1,0}) while(%tuple.1), condition=%WhileCond, body=%WhileBody ROOT %get-tuple-element.4 = f32[2,3]{1,0} get-tuple-element(%while), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(module_, ParseAndReturnVerifiedModule(hlo_string)); const HloSchedule& schedule = module_->schedule(); const int32_t num_runs = 20; std::vector<std::unique_ptr<HloLiveRange>> hlo_live_ranges; std::unique_ptr<HloAliasAnalysis> alias_analysis = HloAliasAnalysis::Run(module_.get()).value(); for (int i = 0; i < num_runs; ++i) { hlo_live_ranges.push_back(HloLiveRange::Run(schedule, *alias_analysis, module_->entry_computation()) .value()); } absl::flat_hash_map<const HloValue*, HloLiveRange::TimeBound>& buffer_live_ranges_0 = hlo_live_ranges[0]->buffer_live_ranges(); for (const auto& iter : buffer_live_ranges_0) { for (size_t i = 1; i < num_runs; i++) { absl::flat_hash_map<const HloValue*, HloLiveRange::TimeBound>& buffer_live_ranges_i = hlo_live_ranges[i]->buffer_live_ranges(); auto found_iter = buffer_live_ranges_i.find(iter.first); EXPECT_TRUE(found_iter != buffer_live_ranges_i.end()) << "value does not exist: " << iter.first->ToString(); EXPECT_EQ(found_iter->second.start, iter.second.start) << "value " << iter.first->ToString() << " has different start: " << found_iter->second.start << " vs " << iter.second.start; EXPECT_EQ(found_iter->second.end, iter.second.end) << "value " << iter.first->ToString() << " has different end: " << found_iter->second.end << " vs " << iter.second.end; } } } TEST_F(HloLiveRangeTest, AsyncCall) { std::string hlo_string = R"( HloModule AsyncCall, is_scheduled=true, entry_computation_layout={(f32[4096]{0},f32[4096]{0})->f32[4096]{0}} %called_computation (param_0: f32[4096], param_1: f32[4096]) -> f32[4096] { %param_0 = f32[4096]{0} parameter(0) %param_1 = f32[4096]{0} parameter(1) %negate_2 = f32[4096]{0} negate(f32[4096]{0} %param_0) %negate_3 = f32[4096]{0} negate(f32[4096]{0} %param_1) ROOT %result.1 = f32[4096]{0} add(f32[4096]{0} %negate_2, f32[4096]{0} %negate_3) } %async_wrapped (async_param: f32[4096], async_param.1: f32[4096]) -> f32[4096] { %async_param = f32[4096]{0} parameter(0) %async_param.1 = f32[4096]{0} parameter(1) ROOT %call = f32[4096]{0} call(f32[4096]{0} %async_param, f32[4096]{0} %async_param.1), to_apply=%called_computation } ENTRY %main (a: f32[4096], b: f32[4096]) -> f32[4096] { %a = f32[4096]{0} parameter(0) %b = f32[4096]{0} parameter(1) %negate_0 = f32[4096]{0} negate(f32[4096]{0} %a) %negate_1 = f32[4096]{0} negate(f32[4096]{0} %b) %async-start = ((f32[4096]{0}, f32[4096]{0}), f32[4096]{0}, u32[]) async-start(f32[4096]{0} %negate_0, f32[4096]{0} %negate_1), calls=%async_wrapped %add_0 = f32[4096]{0} add(f32[4096]{0} %negate_0, f32[4096]{0} %negate_1) %async-done = f32[4096]{0} async-done(((f32[4096]{0}, f32[4096]{0}), f32[4096]{0}, u32[]) %async-start) ROOT %add_1 = f32[4096]{0} add(f32[4096]{0} %add_0, f32[4096]{0} %async-done) } )"; TF_ASSERT_OK_AND_ASSIGN(module_, ParseAndReturnVerifiedModule(hlo_string)); const HloSchedule& schedule = module_->schedule(); Analyze(schedule); CheckSchedule(); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloAliasAnalysis> aa, HloAliasAnalysis::Run(module_.get())); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloLiveRange> hlo_live_range, HloLiveRange::Run(module_->schedule(), *aa, module_->entry_computation())); absl::flat_hash_map<std::string, std::pair<int32_t, int32_t>> inst_ranges; for (auto& [value, time_bound] : hlo_live_range->buffer_live_ranges()) { inst_ranges[value->instruction()->name()] = {time_bound.start, time_bound.end}; } EXPECT_EQ(inst_ranges["a"], std::make_pair(0, 16)); EXPECT_EQ(inst_ranges["b"], std::make_pair(0, 16)); EXPECT_EQ(inst_ranges["add_0"], std::make_pair(13, 15)); EXPECT_EQ(inst_ranges["add_1"], std::make_pair(15, 16)); EXPECT_EQ(inst_ranges["negate_0"], std::make_pair(2, 14)); EXPECT_EQ(inst_ranges["negate_1"], std::make_pair(3, 14)); } TEST_F(HloLiveRangeTest, Call) { std::string hlo_string = R"( HloModule Call, is_scheduled=true %called_computation (param_0: f32[4096]) -> f32[4096] { %param_0 = f32[4096]{0} parameter(0) ROOT %negate_0 = f32[4096]{0} negate(f32[4096]{0} %param_0) } ENTRY %main (a: f32[4096]) -> f32[4096] { %a = f32[4096]{0} parameter(0) %b = f32[4096]{0} negate(%a) %c = f32[4096]{0} call(%b), to_apply=%called_computation %d = f32[4096]{0} negate(%c) ROOT %e = f32[4096]{0} add(%c, %d) })"; TF_ASSERT_OK_AND_ASSIGN(module_, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloAliasAnalysis> aa, HloAliasAnalysis::Run(module_.get())); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloLiveRange> hlo_live_range, HloLiveRange::Run(module_->schedule(), *aa, module_->entry_computation())); absl::flat_hash_map<std::string, std::pair<int32_t, int32_t>> inst_ranges; for (auto& [value, time_bound] : hlo_live_range->buffer_live_ranges()) { inst_ranges[value->instruction()->name()] = {time_bound.start, time_bound.end}; } EXPECT_EQ(inst_ranges["a"], std::make_pair(0, 7)); EXPECT_EQ(inst_ranges["b"], std::make_pair(1, 3)); EXPECT_EQ(inst_ranges["negate_0"], std::make_pair(3, 6)); EXPECT_EQ(inst_ranges["d"], std::make_pair(5, 6)); EXPECT_EQ(inst_ranges["e"], std::make_pair(6, 7)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/utils/hlo_live_range.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/utils/hlo_live_range_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
03d4180a-c3ad-4127-b9e0-08f2506c3923
cpp
tensorflow/tensorflow
hlo_query
third_party/xla/xla/hlo/utils/hlo_query.cc
third_party/xla/xla/hlo/utils/hlo_query_test.cc
#include "xla/hlo/utils/hlo_query.h" #include <algorithm> #include <cstdint> #include <utility> #include "absl/algorithm/container.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/service/pattern_matcher.h" #include "xla/shape_util.h" namespace xla { namespace hlo_query { bool IsCollectiveCommunicationOp(HloOpcode op) { return op == HloOpcode::kAllReduce || op == HloOpcode::kAllGather || op == HloOpcode::kAllToAll || op == HloOpcode::kCollectivePermute || op == HloOpcode::kCollectiveBroadcast || op == HloOpcode::kReduceScatter || op == HloOpcode::kAllReduceStart || op == HloOpcode::kAllGatherStart || op == HloOpcode::kCollectivePermuteStart; } bool IsAsyncCollectiveStartOp(const HloInstruction* instruction, bool include_send_recv) { HloOpcode op = instruction->opcode(); if (op == HloOpcode::kAsyncStart) { return IsCollectiveCommunicationOp(instruction->async_wrapped_opcode()); } return op == HloOpcode::kAllReduceStart || op == HloOpcode::kAllGatherStart || op == HloOpcode::kCollectivePermuteStart || (include_send_recv && (op == HloOpcode::kSend || op == HloOpcode::kRecv)); } bool IsAsyncCollectiveDoneOp(const HloInstruction* instruction, bool include_send_recv) { HloOpcode op = instruction->opcode(); if (op == HloOpcode::kAsyncDone) { return IsCollectiveCommunicationOp(instruction->async_wrapped_opcode()); } return op == HloOpcode::kAllReduceDone || op == HloOpcode::kAllGatherDone || op == HloOpcode::kCollectivePermuteDone || (include_send_recv && (op == HloOpcode::kSendDone || op == HloOpcode::kRecvDone)); } bool IsConstantR0F32(HloInstruction* instruction, float* out) { if (instruction->opcode() == HloOpcode::kConstant && ShapeUtil::IsScalarWithElementType(instruction->shape(), F32)) { *out = instruction->literal().Get<float>({}); return true; } return false; } bool AllOperandsAreParametersOrConstants(const HloInstruction& instruction) { for (const auto& operand : instruction.operands()) { if (operand->opcode() != HloOpcode::kParameter && operand->opcode() != HloOpcode::kConstant) { return false; } } return true; } bool AllOperandsAreParametersOrConstantsWithSingleUser( const HloInstruction& instruction) { for (const auto& operand : instruction.operands()) { if (operand->opcode() != HloOpcode::kParameter && operand->opcode() != HloOpcode::kConstant) { return false; } if (operand->user_count() > 1) { return false; } } return true; } bool AllOperandsAreParameters(const HloInstruction& instruction) { for (const auto& operand : instruction.operands()) { if (operand->opcode() != HloOpcode::kParameter) { return false; } } return true; } bool AllOperandsAreConstants(const HloInstruction& instruction) { for (const auto& operand : instruction.operands()) { if (operand->opcode() != HloOpcode::kConstant) { return false; } } return true; } HloInstruction* GetMatchingOperand(const HloPredicate& matcher, HloInstruction* instruction) { for (HloInstruction* op : instruction->operands()) { if (matcher(op)) { return op; } } return nullptr; } bool MatchBinaryInstructionOperand(const HloPredicate& matcher, HloInstruction* instruction, HloInstruction** matching_operand, HloInstruction** other_operand) { CHECK_EQ(instruction->operand_count(), 2); if (matcher(instruction->operand(0))) { *matching_operand = instruction->mutable_operand(0); *other_operand = instruction->mutable_operand(1); return true; } if (matcher(instruction->operand(1))) { *matching_operand = instruction->mutable_operand(1); *other_operand = instruction->mutable_operand(0); return true; } return false; } bool MatchBinaryInstructionOperandOpcode(HloOpcode opcode, HloInstruction* instruction, HloInstruction** matching_operand, HloInstruction** other_operand) { return MatchBinaryInstructionOperand( [opcode](const HloInstruction* instruction) { return instruction->opcode() == opcode; }, instruction, matching_operand, other_operand); } bool IsScalarConstant(const HloInstruction* instruction) { return instruction->IsConstant() && ShapeUtil::IsScalar(instruction->shape()); } bool IsBroadcastedConstantOrScalar(const HloInstruction& instr) { return instr.IsConstant() || ShapeUtil::IsScalar(instr.shape()) || (HloOpcode::kBroadcast == instr.opcode() && (instr.operand(0)->IsConstant() || ShapeUtil::IsScalar(instr.operand(0)->shape()))); } bool IsBroadcastOfScalarConstant(const HloInstruction& instr) { return instr.opcode() == HloOpcode::kBroadcast && IsScalarConstant(instr.operand(0)); } bool IsBroadcastOfParameter(const HloInstruction& instr) { return instr.opcode() == HloOpcode::kBroadcast && instr.operand(0)->opcode() == HloOpcode::kParameter; } HloInstruction* GetFirstInstructionWithOpcode(const HloComputation& computation, const HloOpcode opcode) { auto instructions = computation.instructions(); auto it = absl::c_find_if(instructions, [&](HloInstruction* instr) { return instr->opcode() == opcode; }); return it == instructions.end() ? nullptr : *it; } bool ContainsInstrWithOpcode(const HloComputation* comp, const absl::flat_hash_set<HloOpcode>& opcodes) { for (const auto* instr : comp->instructions()) { if (opcodes.count(instr->opcode())) { return true; } for (const HloComputation* subcomp : instr->called_computations()) { if (ContainsInstrWithOpcode(subcomp, opcodes)) { return true; } } } return false; } bool ContainsLayoutConstrainedCollective(const HloModule& module, HloOpcode op) { CHECK(IsCollectiveCommunicationOp(op)); for (auto computation : module.computations()) { for (auto hlo : computation->instructions()) { if (hlo->opcode() == op && DynCast<HloCollectiveInstruction>(hlo)->constrain_layout()) { return true; } } } return false; } int64_t NextChannelId(const HloModule& module) { int64_t next_channel_id = 1; for (const HloComputation* comp : module.computations()) { for (const HloInstruction* hlo : comp->instructions()) { const HloChannelInstruction* channel_instr = DynCast<HloChannelInstruction>(hlo); if (channel_instr && channel_instr->channel_id()) { next_channel_id = std::max(next_channel_id, *channel_instr->channel_id() + 1); } } } return next_channel_id; } bool HasX64TransformedHostTransfer(const HloModule& module) { for (auto computation : module.computations()) { for (auto hlo : computation->instructions()) { if (hlo->opcode() == HloOpcode::kSend) { auto send = DynCast<HloSendInstruction>(hlo); if (send->is_host_transfer() && send->operand(0)->shape().IsTuple()) { return true; } } else if (hlo->opcode() == HloOpcode::kRecv) { auto recv = DynCast<HloRecvInstruction>(hlo); if (recv->is_host_transfer() && recv->shape().tuple_shapes(0).IsTuple()) { return true; } } } } return false; } HloInstruction* GetUniqueGteInstruction(const HloInstruction* operand, int64_t index) { HloInstruction* gte = nullptr; for (HloInstruction* instr : operand->parent()->MakeInstructionPostOrder()) { if (!Match(instr, match::GetTupleElement().WithTupleIndex(index))) { continue; } if (instr->operand(0) != operand) { continue; } if (gte != nullptr) { return nullptr; } gte = instr; } return gte; } HloComputation* FindComputation(HloModule* module, absl::string_view name) { auto computations = module->computations(); auto it = absl::c_find_if( computations, [&](HloComputation* c) { return c->name() == name; }); if (it == computations.end()) { return nullptr; } return *it; } HloInstruction* FindInstruction(const HloComputation* computation, absl::string_view name) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->name() == name) return instruction; } return nullptr; } HloInstruction* FindInstruction(const HloComputation* computation, HloOpcode opcode) { for (auto* instruction : computation->instructions()) { if (instruction->opcode() == opcode) return instruction; } return nullptr; } } }
#include "xla/hlo/utils/hlo_query.h" #include <memory> #include <utility> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using HloQueryTest = HloTestBase; template <typename Hlo> int CountInstructions(Hlo& module, HloOpcode opcode) { int counter = 0; hlo_query::ForEachInstructionWithOpcode( module, opcode, [&counter](auto& instr) { counter++; }); return counter; } constexpr absl::string_view kConstantAdditionHloString = R"( HloModule test ENTRY main { zero = f32[] constant(0) five = f32[] constant(5) ROOT out = f32[] add(zero, five) })"; TEST_F(HloQueryTest, GetInstructionWithOpCodeReturnsMatchingInstructionForModule) { constexpr absl::string_view kHloString = R"( HloModule m computation.0 { param.0 = f32[32]{0} parameter(0) ROOT _ = f32[32]{0} rsqrt(param.0) } ENTRY main { param.0 = f32[32]{0} parameter(0) param.1 = f32[32]{0} parameter(1) param.2 = f32[32]{0} parameter(2) param.3 = f32[32]{0} parameter(3) add.0 = f32[32]{0} add(param.0,param.1) add.1 = f32[32]{0} add(param.1,param.2) sub.0 = f32[32]{0} subtract(param.0,param.1) mul.0 = f32[32]{0} multiply(param.0,param.1) mul.1 = f32[32]{0} multiply(param.1,param.2) mul.2 = f32[32]{0} multiply(param.2,param.3) comp.0 = call(param.0), to_apply=computation.0 ROOT _ = (f32[32],f32[32],f32[32],f32[32],f32[32],f32[32],f32[32]) tuple(comp.0,add.0,add.1,sub.0,mul.0,mul.1,mul.2) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule(kHloString)); EXPECT_EQ(CountInstructions(*module, HloOpcode::kAdd), 2); EXPECT_EQ(CountInstructions(*module, HloOpcode::kSubtract), 1); EXPECT_EQ(CountInstructions(*module, HloOpcode::kMultiply), 3); } TEST_F(HloQueryTest, GetInstructionWithOpCodeReturnsMatchingInstructionForComputation) { constexpr absl::string_view kHloString = R"( HloModule m computation.0 { param.0 = f32[32]{0} parameter(0) param.1 = f32[32]{0} parameter(1) param.2 = f32[32]{0} parameter(2) param.3 = f32[32]{0} parameter(3) add.0 = f32[32]{0} add(param.0,param.1) add.1 = f32[32]{0} add(param.1,param.2) sub.0 = f32[32]{0} subtract(param.0,param.1) mul.0 = f32[32]{0} multiply(param.0,param.1) mul.1 = f32[32]{0} multiply(param.1,param.2) ROOT mul.2 = f32[32]{0} multiply(param.2,param.3) } ENTRY main { param.0 = f32[32]{0} parameter(0) param.1 = f32[32]{0} parameter(1) param.2 = f32[32]{0} parameter(2) param.3 = f32[32]{0} parameter(3) add.0 = f32[32]{0} add(param.0,param.1) sub.0 = f32[32]{0} subtract(param.0,param.1) mul.0 = f32[32]{0} multiply(param.0,param.1) comp.0 = f32[32]{0} call(param.0,param.1,param.2), to_apply=computation.0 ROOT _ = (f32[32],f32[32],f32[32],f32[32]) tuple(add.0,sub.0,mul.0,comp.0) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule(kHloString)); HloComputation* computation = module->GetComputationWithName("computation.0"); EXPECT_EQ(CountInstructions(*computation, HloOpcode::kAdd), 2); EXPECT_EQ(CountInstructions(*computation, HloOpcode::kSubtract), 1); EXPECT_EQ(CountInstructions(*computation, HloOpcode::kMultiply), 3); } TEST_F(HloQueryTest, GetUniqueGteTest) { constexpr absl::string_view kHloString = R"( HloModule m ENTRY main { param.0 = (f32[32]{0}, f32[32]{0}, f32[32]{0}, f32[32]{0}) parameter(0) gte1 = f32[32]{0} get-tuple-element(param.0), index=0 gte2 = f32[32]{0} get-tuple-element(param.0), index=1 dup_gte2 = f32[32]{0} get-tuple-element(param.0), index=1 gte3 = f32[32]{0} get-tuple-element(param.0), index=2 ROOT gte4 = f32[32]{0} get-tuple-element(param.0), index=3 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule(kHloString)); HloInstruction* param = module->entry_computation()->parameter_instruction(0); HloInstruction* gte1 = hlo_query::GetUniqueGteInstruction(param, 0); EXPECT_NE(gte1, nullptr); HloInstruction* gte2 = hlo_query::GetUniqueGteInstruction(param, 1); EXPECT_EQ(gte2, nullptr); } TEST_F(HloQueryTest, FindComputationTest) { TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule(kConstantAdditionHloString)); EXPECT_NE(hlo_query::FindComputation(module.get(), "main"), nullptr); EXPECT_EQ(hlo_query::FindComputation(module.get(), "foo"), nullptr); } TEST_F(HloQueryTest, FindInstructionUsingNameTest) { TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule(kConstantAdditionHloString)); const HloComputation* main = hlo_query::FindComputation(module.get(), "main"); EXPECT_NE(hlo_query::FindInstruction(main, "zero"), nullptr); EXPECT_NE(hlo_query::FindInstruction(main, "five"), nullptr); EXPECT_NE(hlo_query::FindInstruction(main, "out"), nullptr); EXPECT_EQ(hlo_query::FindInstruction(main, "foo"), nullptr); } void FindInstructionsAndExpectEqual(const HloComputation* main, absl::string_view name, HloOpcode opcode) { SCOPED_TRACE(absl::StrCat("Comparing finding by name: ", name, " and opcode: ", opcode)); HloInstruction* by_name = hlo_query::FindInstruction(main, name); HloInstruction* by_opcode = hlo_query::FindInstruction(main, opcode); EXPECT_EQ(by_name, by_opcode); } TEST_F(HloQueryTest, FindInstructionUsingOpcodeTest) { TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule(kConstantAdditionHloString)); const HloComputation* main = hlo_query::FindComputation(module.get(), "main"); EXPECT_NE(hlo_query::FindInstruction(main, HloOpcode::kConstant), nullptr); EXPECT_NE(hlo_query::FindInstruction(main, HloOpcode::kAdd), nullptr); EXPECT_EQ(hlo_query::FindInstruction(main, HloOpcode::kSelect), nullptr); } TEST_F(HloQueryTest, FindInstructionUsingOpcodeAndNameEqualTest) { TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule(kConstantAdditionHloString)); const HloComputation* main = hlo_query::FindComputation(module.get(), "main"); FindInstructionsAndExpectEqual(main, "zero", HloOpcode::kConstant); FindInstructionsAndExpectEqual(main, "out", HloOpcode::kAdd); FindInstructionsAndExpectEqual(main, "dummy", HloOpcode::kSelect); } TEST_F(HloQueryTest, FindInstructionDoesNotExistTest) { TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule(kConstantAdditionHloString)); const HloComputation* main = hlo_query::FindComputation(module.get(), "main"); EXPECT_NE(main, nullptr); auto find_beef = hlo_query::FindInstruction(main, "deadbeef"); auto find_nothing = hlo_query::FindInstruction(main, ""); EXPECT_EQ(find_beef, nullptr); EXPECT_EQ(find_nothing, nullptr); } TEST_F(HloQueryTest, NextChannelIdForModuleWithoutChannelIdTest) { TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnUnverifiedModule(kConstantAdditionHloString)); EXPECT_EQ(hlo_query::NextChannelId(*module), 1) << "module with no channel id"; } TEST_F(HloQueryTest, NextChannelIdBasicTest) { absl::string_view hlo = R"( HloModule test ENTRY test_computation { p = u32[] partition-id() ROOT start = u32[] collective-permute(p), channel_id=8, source_target_pairs={{0,1},{1,2},{2,3},{3,0}} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(hlo)); EXPECT_EQ(hlo_query::NextChannelId(*module), 9); } TEST_F(HloQueryTest, NextChannelIdTwoIdsTest) { absl::string_view hlo = R"( HloModule test ENTRY test_computation { p = u32[] partition-id() l = u32[] collective-permute(p), channel_id=8, source_target_pairs={{0,1},{1,2}} r = u32[] collective-permute(p), channel_id=9, source_target_pairs={{2,3},{3,0}} ROOT res = u32[] add(l,r) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(hlo)); EXPECT_EQ(hlo_query::NextChannelId(*module), 10); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/utils/hlo_query.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/utils/hlo_query_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fa51a62f-98c3-4da9-956d-b566594678eb
cpp
tensorflow/tensorflow
hlo_sharding_util
third_party/xla/xla/hlo/utils/hlo_sharding_util.cc
third_party/xla/xla/hlo/utils/hlo_sharding_util_test.cc
#include "xla/hlo/utils/hlo_sharding_util.h" #include <algorithm> #include <cmath> #include <cstdint> #include <cstdlib> #include <iterator> #include <map> #include <memory> #include <numeric> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/btree_set.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "xla/array.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/ir/tile_assignment.h" #include "xla/literal_util.h" #include "xla/map_util.h" #include "xla/protobuf_util.h" #include "xla/service/call_graph.h" #include "xla/service/dot_as_convolution_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace hlo_sharding_util { bool IsSubTilingOrEqualSharding(const Shape& potential_sharded_shape, const HloSharding& potential_subsharding, const HloSharding& sharding) { if (potential_subsharding.IsManual() || sharding.IsManual()) { return false; } if (sharding.IsTileMaximal()) { return true; } if (potential_subsharding.IsTileMaximal()) { return false; } const int32_t tiled_data_rank = potential_subsharding.TiledDataRank(); if (tiled_data_rank != sharding.TiledDataRank() || tiled_data_rank != potential_sharded_shape.dimensions_size()) { return false; } DimensionVector potential_base_tile(tiled_data_rank); DimensionVector base_tile(tiled_data_rank); bool shortcut = true; int64_t diff_dim_counter = 0; DimensionVector reshape_dims( potential_subsharding.tile_assignment().dimensions().begin(), potential_subsharding.tile_assignment().dimensions().end()); for (int64_t i = 0; i < tiled_data_rank; ++i) { const auto shape_i = potential_sharded_shape.dimensions(i); const auto p_tile_dim_i = potential_subsharding.tile_assignment().dim(i); const auto s_tile_dim_i = sharding.tile_assignment().dim(i); if (p_tile_dim_i < s_tile_dim_i) { return false; } potential_base_tile[i] = CeilOfRatio(shape_i, p_tile_dim_i); base_tile[i] = CeilOfRatio(shape_i, s_tile_dim_i); if (s_tile_dim_i != 1 && (p_tile_dim_i % s_tile_dim_i != 0 || base_tile[i] % potential_base_tile[i] != 0 || shape_i <= (p_tile_dim_i - 1) * potential_base_tile[i] || shape_i <= (s_tile_dim_i - 1) * base_tile[i])) { shortcut = false; } if (shortcut && p_tile_dim_i != s_tile_dim_i) { reshape_dims[i + diff_dim_counter] = s_tile_dim_i; reshape_dims.insert(reshape_dims.begin() + i + diff_dim_counter + 1, p_tile_dim_i / s_tile_dim_i); diff_dim_counter++; } } if (shortcut) { if (!sharding.HasPartialReplication()) { return potential_subsharding == sharding; } std::vector<int> perm(reshape_dims.size()); absl::c_iota(perm, 0); for (int64_t i = 0; i < tiled_data_rank; ++i) { if (potential_subsharding.tile_assignment().dim(i) != sharding.tile_assignment().dim(i)) { auto element = perm[i + 1]; perm.erase(perm.begin() + i + 1); perm.push_back(element); } } auto reshaped_ta = potential_subsharding.tile_assignment() .Reshape(reshape_dims) .Transpose(perm) .Reshape(sharding.tile_assignment().dimensions()); return HloSharding::PartialTile(reshaped_ta).tile_assignment() == sharding.tile_assignment(); } auto storage = std::make_unique<int32_t[]>( sharding.tile_assignment().num_elements() * tiled_data_rank); int32_t* storage_cursor = storage.get(); absl::flat_hash_map<int32_t, int32_t*> sharding_offsets; sharding_offsets.reserve(sharding.tile_assignment().num_elements()); auto get_sharding_offsets = [&](int64_t device) -> absl::Span<int32_t> { auto it = sharding_offsets.find(device); if (it == sharding_offsets.end()) { bool emplaced; std::tie(it, emplaced) = sharding_offsets.emplace(device, storage_cursor); DCHECK(emplaced); storage_cursor += tiled_data_rank; } return absl::MakeSpan(it->second, tiled_data_rank); }; sharding.tile_assignment().Each( [&](absl::Span<const int64_t> indices, int64_t device) { auto indices_per_device = get_sharding_offsets(device); for (int64_t i = 0; i < tiled_data_rank; ++i) { indices_per_device[i] = base_tile[i] * indices[i]; } }); auto& potential_ta = potential_subsharding.tile_assignment().array(); absl::Status ok_if_no_violation = potential_ta.EachStatus( [&](absl::Span<const int64_t> indices, int64_t device) -> absl::Status { auto sharding_offset = get_sharding_offsets(device); for (int j = 0; j < tiled_data_rank; ++j) { const int32_t subsharding_offset_j = potential_base_tile[j] * indices[j]; if (subsharding_offset_j < sharding_offset[j]) { return Internal(""); } if (subsharding_offset_j + potential_base_tile[j] <= potential_sharded_shape.dimensions(j) && subsharding_offset_j + potential_base_tile[j] > sharding_offset[j] + base_tile[j]) { return Internal(""); } } return absl::OkStatus(); }); return ok_if_no_violation.ok(); } static bool IsLeafShardingMoreSpecific(const HloSharding& lhs, const HloSharding& rhs) { DCHECK(!lhs.IsTuple()); DCHECK(!rhs.IsTuple()); if (lhs.IsManualLeaf() && rhs.IsTileMaximalLeaf()) { return true; } if (lhs.IsManualLeaf() || rhs.IsManualLeaf()) { return false; } if (!rhs.IsTileMaximalLeaf()) { return lhs.NumTilesLeaf() > rhs.NumTilesLeaf(); } return !(rhs.IsReplicatedLeaf() ? lhs.IsReplicatedLeaf() : lhs.IsTileMaximalLeaf()); } bool IsShardingMoreSpecific(const HloSharding& lhs, const HloSharding& rhs) { CHECK_EQ(lhs.IsTuple(), rhs.IsTuple()) << lhs << " <> " << rhs; if (lhs.IsTuple()) { const auto& lhs_shardings = lhs.tuple_elements(); const auto& rhs_shardings = rhs.tuple_elements(); CHECK_EQ(lhs_shardings.size(), rhs_shardings.size()); bool is_better = false; for (int64_t i = 0; i < lhs_shardings.size(); ++i) { if (IsShardingMoreSpecific(rhs_shardings[i], lhs_shardings[i])) { return false; } if (IsShardingMoreSpecific(lhs_shardings[i], rhs_shardings[i])) { is_better = true; } } return is_better; } return IsLeafShardingMoreSpecific(lhs, rhs); } bool MergeSharding(const HloSharding& to_merge, HloSharding* dst, bool may_combine_partial_sharding) { if (to_merge.IsTuple()) { CHECK(dst->IsTuple()); bool changed = false; for (int64_t i = 0; i < to_merge.tuple_elements().size(); ++i) { changed |= MergeSharding(to_merge.tuple_elements()[i], &dst->tuple_elements()[i], may_combine_partial_sharding); } return changed; } if (!may_combine_partial_sharding || !to_merge.HasPartialReplication() || !dst->HasPartialReplication() || to_merge.tile_assignment().num_elements() != dst->tile_assignment().num_elements()) { goto check_if_more_specific; } if (MergeShardingIfCompatible( to_merge, std::max(to_merge.NumTiles(), dst->NumTiles()) + 1, dst)) { return true; } check_if_more_specific: return IsLeafShardingMoreSpecific(*dst, to_merge); } bool MergeShardingIfCompatible(const HloSharding& to_merge, HloSharding* dst) { return MergeShardingIfCompatible(to_merge, dst->NumTiles() + 1, dst); } bool MergeShardingIfCompatible(const HloSharding& to_merge, int64_t minimum_tiles, HloSharding* dst) { CHECK(!to_merge.IsTuple() && !to_merge.IsManual() && !dst->IsTuple() && !dst->IsManual()); if (to_merge.IsTileMaximal()) { return false; } if (dst->IsTileMaximal()) { *dst = to_merge; return true; } if (!dst->HasPartialReplication()) { return false; } if (dst->TiledDataRank() != to_merge.TiledDataRank()) { return false; } const int64_t to_merge_man_dim = to_merge.SubgroupManualDim(); const int64_t dst_man_dim = dst->SubgroupManualDim(); if ((to_merge_man_dim >= 0) != (dst_man_dim >= 0)) { return false; } DimensionVector perm_merge(dst->tile_assignment().num_dimensions(), -1); DimensionVector perm_dst(dst->tile_assignment().num_dimensions(), -1); int64_t perm_merge_counter = 0; int64_t perm_dst_counter = 0; DimensionVector merge_old_tile_dim, dst_old_tile_dim; DimensionVector merge_new_tile_dim, dst_new_tile_dim; DimensionVector merge_new_tile_index, dst_new_tile_index; DimensionVector merged_tile_dims; merged_tile_dims.reserve(dst->tile_assignment().num_dimensions()); int64_t num_merge_groups = 1; int64_t num_dst_groups = 1; for (int64_t i = 0; i < to_merge.TiledDataRank(); ++i) { int64_t merge_dim = to_merge.tile_assignment().dim(i); int64_t dst_dim = dst->tile_assignment().dim(i); num_merge_groups *= merge_dim; num_dst_groups *= dst_dim; if (dst_dim == merge_dim) { merge_old_tile_dim.push_back(merge_dim); perm_merge[i] = perm_merge_counter++; dst_old_tile_dim.push_back(dst_dim); perm_dst[i] = perm_dst_counter++; merged_tile_dims.push_back(dst_dim); } else if (dst_dim == 1) { merge_old_tile_dim.push_back(merge_dim); perm_merge[i] = perm_merge_counter++; dst_new_tile_dim.push_back(merge_dim); dst_new_tile_index.push_back(i); merged_tile_dims.push_back(merge_dim); } else if (merge_dim == 1) { merge_new_tile_dim.push_back(dst_dim); merge_new_tile_index.push_back(i); dst_old_tile_dim.push_back(dst_dim); perm_dst[i] = perm_dst_counter++; merged_tile_dims.push_back(dst_dim); } else { return false; } } const int64_t num_devices = to_merge.tile_assignment().num_elements(); const int64_t new_num_tiles = Product(merged_tile_dims); if (num_devices % new_num_tiles != 0 || new_num_tiles < minimum_tiles) { return false; } int64_t replication; if (to_merge_man_dim >= 0) { int64_t man_group_size = to_merge.tile_assignment().dim(to_merge_man_dim); if (man_group_size != dst->tile_assignment().dim(dst_man_dim)) { return false; } merge_old_tile_dim.push_back(man_group_size); dst_old_tile_dim.push_back(man_group_size); perm_merge[to_merge.TiledDataRank()] = perm_merge_counter++; perm_dst[to_merge.TiledDataRank()] = perm_dst_counter++; merged_tile_dims.push_back(man_group_size); num_merge_groups *= man_group_size; num_dst_groups *= man_group_size; if (num_devices % (new_num_tiles * man_group_size) != 0) { return false; } replication = num_devices / (new_num_tiles * man_group_size); } else { replication = num_devices / new_num_tiles; } if (replication > 1) { merged_tile_dims.push_back(replication); } std::optional<TileAssignment> compatible_tile_assignment; { auto get_compatible_tile_assignment = [&](const HloSharding& sharding, const DimensionVector& old_tile_dims, DimensionVector& new_tile_dims, DimensionVector& new_tile_indices, DimensionVector& perm, const int64_t perm_counter) -> std::vector<TileAssignment> { if (!sharding.HasPartialReplication() || sharding.tile_assignment().dim(sharding.SubgroupReplicationDim()) == replication) { return {sharding.tile_assignment()}; } if (replication == 1) { perm.pop_back(); } else { new_tile_dims.push_back(replication); new_tile_indices.push_back(dst->tile_assignment().num_dimensions() - 1); } std::vector<TileAssignment> result; DimensionVector iota(new_tile_dims.size()); absl::c_iota(iota, 0); do { std::vector<int> local_perm(perm.begin(), perm.end()); int64_t local_perm_counter = perm_counter; DimensionVector reshape_dims(old_tile_dims.begin(), old_tile_dims.end()); reshape_dims.reserve(old_tile_dims.size() + new_tile_dims.size()); for (auto i : iota) { reshape_dims.push_back(new_tile_dims[i]); local_perm[new_tile_indices[i]] = local_perm_counter++; } result.push_back(sharding.tile_assignment() .Reshape(reshape_dims) .Transpose(local_perm)); } while (std::next_permutation(iota.begin(), iota.end())); return result; }; auto merge_compatible_tile_assignment = get_compatible_tile_assignment( to_merge, merge_old_tile_dim, merge_new_tile_dim, merge_new_tile_index, perm_merge, perm_merge_counter); auto dst_compatible_tile_assignment = get_compatible_tile_assignment( *dst, dst_old_tile_dim, dst_new_tile_dim, dst_new_tile_index, perm_dst, perm_dst_counter); for (const auto& ta1 : dst_compatible_tile_assignment) { for (const auto& ta2 : merge_compatible_tile_assignment) { if (ta1 == ta2) { compatible_tile_assignment = ta1.iota() ? ta1 : ta2; } } } } if (!compatible_tile_assignment.has_value()) { Array<int64_t> new_tile_array(merged_tile_dims); std::vector<absl::btree_set<int64_t>> merge_group_members(num_merge_groups); std::vector<absl::btree_set<int64_t>> dst_group_members(num_dst_groups); const int64_t merge_group_size = num_devices / num_merge_groups; const int64_t dst_group_size = num_devices / num_dst_groups; const auto* merge_begin = to_merge.tile_assignment().array().begin(); const auto* dst_begin = dst->tile_assignment().array().begin(); for (int64_t i = 0; i < num_merge_groups; ++i) { merge_group_members[i] = absl::btree_set<int64_t>{merge_begin + i * merge_group_size, merge_begin + (i + 1) * merge_group_size}; } for (int64_t i = 0; i < num_dst_groups; ++i) { dst_group_members[i] = absl::btree_set<int64_t>{ dst_begin + i * dst_group_size, dst_begin + (i + 1) * dst_group_size}; } auto get_group_index = [&](absl::Span<const int64_t> tile_indices, const HloSharding& sharding, int64_t manual_dim) { int64_t group_id = 0; for (int64_t i = 0; i < to_merge.TiledDataRank(); ++i) { group_id *= sharding.tile_assignment().dim(i); group_id += tile_indices[i]; } if (manual_dim >= 0) { group_id *= sharding.tile_assignment().dim(manual_dim); group_id += tile_indices[manual_dim]; } return group_id; }; absl::Status compatible = new_tile_array.EachStatus([&](absl::Span<const int64_t> indices, int64_t* device) -> absl::Status { DimensionVector to_merge_index( to_merge.tile_assignment().num_dimensions()); DimensionVector dst_index(dst->tile_assignment().num_dimensions()); for (int64_t i = 0; i < to_merge.TiledDataRank(); ++i) { if (to_merge.tile_assignment().dim(i) == 1) { to_merge_index[i] = 0; } else { to_merge_index[i] = indices[i]; } if (dst->tile_assignment().dim(i) == 1) { dst_index[i] = 0; } else { dst_index[i] = indices[i]; } } if (to_merge_man_dim >= 0) { to_merge_index[to_merge_man_dim] = indices[to_merge.TiledDataRank()]; dst_index[dst_man_dim] = indices[to_merge.TiledDataRank()]; } if (to_merge.HasPartialReplication()) { to_merge_index[to_merge.SubgroupReplicationDim()] = indices.back(); } dst_index[dst->SubgroupReplicationDim()] = indices.back(); int64_t to_merge_group_id = get_group_index(to_merge_index, to_merge, to_merge_man_dim); int64_t dst_group_id = get_group_index(dst_index, *dst, dst_man_dim); auto& gm1 = merge_group_members[to_merge_group_id]; auto& gm2 = dst_group_members[dst_group_id]; auto it1 = gm1.begin(); auto it2 = gm2.begin(); while (it1 != gm1.end() && it2 != gm2.end()) { if (*it1 == *it2) { *device = *it1; gm1.erase(it1); gm2.erase(it2); return absl::OkStatus(); } else if (*it1 < *it2) { it1++; } else { it2++; } } return InvalidArgument("Not compatible"); }); if (!compatible.ok()) { return false; } compatible_tile_assignment = TileAssignment(std::make_shared<const Array<int64_t>>(new_tile_array)); } std::vector<OpMetadata> merged_metadata(std::move(dst->metadata())); merged_metadata.reserve(merged_metadata.size() + to_merge.metadata().size()); const absl::flat_hash_set<OpMetadata, protobuf_util::ProtobufHashWrapper, protobuf_util::ProtobufEqualsWrapper> metadata_set(merged_metadata.begin(), merged_metadata.end()); absl::c_copy_if(to_merge.metadata(), std::back_inserter(merged_metadata), [&metadata_set](const OpMetadata& data) { return !ContainsKey(metadata_set, data); }); std::vector<OpSharding::Type> subgroup_types; if (to_merge_man_dim >= 0) { subgroup_types.push_back(OpSharding::MANUAL); } if (replication > 1) { subgroup_types.push_back(OpSharding::REPLICATED); } *dst = HloSharding::Subgroup(compatible_tile_assignment.value(), subgroup_types, merged_metadata); return true; } std::optional<int64_t> SelectDominantDevice( const std::map<int64_t, int64_t>& device_map, int64_t* top_count) { int64_t device = 0; int64_t count = 0; for (auto& it : device_map) { if (it.second > count) { count = it.second; device = it.first; } } if (top_count != nullptr) { *top_count = count; } return count > 0 ? std::optional<int64_t>(device) : std::optional<int64_t>(); } HloSharding FindCommonSharding(absl::Span<const HloSharding> shardings, std::optional<HloSharding> default_sharding) { CHECK(!shardings.empty()); bool all_compatible = true; HloSharding common_sharding = shardings[0]; for (int i = 1; i != shardings.size(); ++i) { if (common_sharding != shardings[i] && !MergeShardingIfCompatible(shardings[i], common_sharding.NumTiles(), &common_sharding)) { all_compatible = false; break; } } if (all_compatible) { return common_sharding; } return default_sharding.has_value() ? default_sharding.value() : shardings[0]; } void AssignComputationDevice(HloComputation* computation, int64_t device) { VLOG(4) << "Assigning device " << device << " to " << computation->name() << " computation"; for (HloInstruction* instruction : computation->instructions()) { if (!instruction->has_sharding()) { VLOG(4) << "Assigning device " << device << " to " << instruction->name(); instruction->set_device_sharding(device); } } } std::optional<int64_t> GetMostOccurringDevice( absl::Span<HloInstruction* const> instructions) { std::map<int64_t, int64_t> device_map; for (HloInstruction* instruction : instructions) { if (instruction->has_sharding()) { for (auto& it : instruction->sharding().UsedDevices(nullptr)) { device_map[it.first] += it.second; } } } return SelectDominantDevice(device_map, nullptr); } std::optional<int64_t> GetDominantDevice( absl::Span<HloComputation* const> computations, double dominant_factor) { int64_t instruction_count = 0; std::map<int64_t, int64_t> device_map; for (HloComputation* computation : computations) { for (HloInstruction* instruction : computation->instructions()) { int64_t count = 1; if (instruction->has_sharding()) { for (auto& it : instruction->sharding().UsedDevices(&count)) { device_map[it.first] += it.second; } } instruction_count += count; } } int64_t count; std::optional<int64_t> device = SelectDominantDevice(device_map, &count); std::optional<int64_t> dominant_device; if (device) { double factor = static_cast<double>(count) / static_cast<double>(instruction_count); if (factor >= dominant_factor) { dominant_device = device; } } return dominant_device; } HloSharding TransposeSharding(const HloSharding& sharding, absl::Span<const int64_t> dimensions) { if (sharding.IsTileMaximal() || sharding.IsManual()) { return sharding; } std::vector<int> perm_dimensions(dimensions.begin(), dimensions.end()); if (sharding.TiledDataRank() == dimensions.size()) { for (int64_t i = sharding.TiledDataRank(); i < sharding.tile_assignment().num_dimensions(); ++i) { perm_dimensions.push_back(i); } } else { CHECK_EQ(sharding.tile_assignment().num_dimensions(), dimensions.size()); } auto tile_assignment = sharding.tile_assignment().Transpose(perm_dimensions); if (!sharding.ReplicateOnLastTileDim()) { std::vector<OpSharding::Type> subgroup_types; for (int64_t i = sharding.TiledDataRank(); i < perm_dimensions.size(); ++i) { int64_t src_i = perm_dimensions[i] - sharding.TiledDataRank(); subgroup_types.push_back(sharding.subgroup_types()[src_i]); } return HloSharding::Subgroup(tile_assignment, subgroup_types, sharding.metadata()); } else { return HloSharding::PartialTile(tile_assignment, sharding.metadata()); } } std::optional<HloSharding> ReshapeSharding(const Shape& source_shape, const Shape& target_shape, const HloSharding& source_sharding) { if (source_sharding.IsTileMaximal() || source_sharding.IsManual()) { return source_sharding; } DimensionVector target_tile_assignment_dimensions; DimensionVector source_dims_stack(source_shape.dimensions().rbegin(), source_shape.dimensions().rend()); DimensionVector target_dims_stack(target_shape.dimensions().rbegin(), target_shape.dimensions().rend()); DimensionVector sharding_tile_dims_stack( source_sharding.tile_assignment().dimensions().begin(), source_sharding.tile_assignment().dimensions().begin() + source_shape.rank()); std::reverse(sharding_tile_dims_stack.begin(), sharding_tile_dims_stack.end()); int64_t source_dims_index = -1; std::vector<int64_t> dims_to_replicate; auto source_dims_push = [&](int64_t shape_size, int64_t partitions) { source_dims_stack.push_back(shape_size); sharding_tile_dims_stack.push_back(partitions); source_dims_index--; }; auto source_dims_pop = [&]() { source_dims_stack.pop_back(); sharding_tile_dims_stack.pop_back(); source_dims_index++; }; bool inplace_add_sharding_dim = false; auto append_sharding_dim = [&](int64_t size) { if (inplace_add_sharding_dim) { target_tile_assignment_dimensions.back() *= size; } else { target_tile_assignment_dimensions.push_back(size); } inplace_add_sharding_dim = false; }; while (!source_dims_stack.empty() || !target_dims_stack.empty()) { if (Product(sharding_tile_dims_stack) == 1) { break; } int64_t source_dims_product = 1; while (!sharding_tile_dims_stack.empty() && sharding_tile_dims_stack.back() == 1) { source_dims_product *= source_dims_stack.back(); source_dims_pop(); } while (!target_dims_stack.empty() && target_dims_stack.back() > 1 && source_dims_product % target_dims_stack.back() == 0) { source_dims_product /= target_dims_stack.back(); target_dims_stack.pop_back(); append_sharding_dim(1); } if (source_dims_product != 1) { source_dims_push(source_dims_product, 1); } if (target_dims_stack.empty()) { break; } int64_t t_size = target_dims_stack.back(); target_dims_stack.pop_back(); int64_t s_size = 1; int64_t s_partitions = 1; if (!source_dims_stack.empty()) { s_size = source_dims_stack.back(); s_partitions = sharding_tile_dims_stack.back(); source_dims_pop(); } if (s_size == t_size) { append_sharding_dim(s_partitions); } else if (s_partitions > 1 && s_size % s_partitions == 0 && t_size % s_partitions == 0) { source_dims_push(s_size / s_partitions, 1); target_dims_stack.push_back(t_size / s_partitions); append_sharding_dim(s_partitions); inplace_add_sharding_dim = true; } else if (t_size == 1) { append_sharding_dim(1); source_dims_push(s_size, s_partitions); } else if (s_size == 1) { target_dims_stack.push_back(t_size); if (s_partitions > 1) { dims_to_replicate.push_back(source_dims_index); } } else if (s_size > t_size) { if (s_size % s_partitions != 0) { return std::nullopt; } if (s_size % t_size != 0) { append_sharding_dim(std::gcd(t_size, s_partitions)); break; } if (t_size % s_partitions == 0) { append_sharding_dim(s_partitions); source_dims_push(s_size / t_size, 1); } else if (s_partitions % t_size == 0) { append_sharding_dim(t_size); source_dims_push(s_size / t_size, s_partitions / t_size); } else { append_sharding_dim(std::gcd(t_size, s_partitions)); break; } } else { if (s_size % s_partitions != 0) { return std::nullopt; } CHECK(!source_dims_stack.empty()); if (t_size % s_size != 0) { append_sharding_dim(std::gcd(t_size, s_partitions)); break; } if (sharding_tile_dims_stack.back() != 1 && s_size != s_partitions) { break; } source_dims_stack.back() *= s_size; sharding_tile_dims_stack.back() *= s_partitions; target_dims_stack.push_back(t_size); } } if (Product(target_tile_assignment_dimensions) == 1) { return std::nullopt; } while (target_tile_assignment_dimensions.size() < target_shape.rank()) { target_tile_assignment_dimensions.push_back(1); } const HloSharding sharding = !dims_to_replicate.empty() ? PartiallyReplicateTiledShardingOnDims( source_sharding, dims_to_replicate) : source_sharding; for (int64_t i = sharding.TiledDataRank(); i < sharding.tile_assignment().num_dimensions(); ++i) { target_tile_assignment_dimensions.push_back( i == sharding.SubgroupReplicationDim() ? 1 : sharding.tile_assignment().dim(i)); } auto subgroup_types = sharding.subgroup_types(); auto partially_replicated = std::div( sharding.TotalNumTiles(), Product(target_tile_assignment_dimensions)); CHECK_EQ(partially_replicated.rem, 0); if (partially_replicated.quot > 1) { if (sharding.ReplicateOnLastTileDim()) { target_tile_assignment_dimensions.back() = partially_replicated.quot; subgroup_types.push_back(OpSharding::REPLICATED); } else if (absl::c_linear_search(subgroup_types, OpSharding::REPLICATED)) { target_tile_assignment_dimensions[sharding.SubgroupReplicationDim() - sharding.TiledDataRank() + target_shape.rank()] = partially_replicated.quot; } else { target_tile_assignment_dimensions.push_back(partially_replicated.quot); subgroup_types.push_back(OpSharding::REPLICATED); } } auto new_tile_assignment = sharding.tile_assignment().Reshape(target_tile_assignment_dimensions); return HloSharding::Subgroup(new_tile_assignment, subgroup_types, sharding.metadata()); } HloSharding PropagateShardingThroughReshape(const Shape& source_shape, const Shape& target_shape, const HloSharding& sharding) { if (sharding.IsTileMaximal() || sharding.IsManual()) { return sharding; } if (sharding.IsManualSubgroup()) { auto group = GroupShardingOnDims(sharding, {sharding.SubgroupManualDim()}, true); HloSharding inner_reshaped = PropagateShardingThroughReshape( source_shape, target_shape, group.sharding); group.sharding = std::move(inner_reshaped); group.data_rank = target_shape.rank(); group.group_dims[0] += target_shape.rank() - source_shape.rank(); return UngroupSharding(group); } HloSharding result = HloSharding::Replicate(); int64_t start_dim = 0; while (start_dim < source_shape.rank()) { bool found_compatible = false; for (int64_t end_dim = source_shape.rank(); end_dim > start_dim; --end_dim) { DimensionVector grouped_tiling_dims(source_shape.rank(), 1); for (int64_t i = start_dim; i < end_dim; ++i) { grouped_tiling_dims[i] = sharding.tile_assignment().dim(i); } HloSharding grouped_sharding = HloSharding::Tile(TileAssignment(grouped_tiling_dims)); if (auto reshaped = ReshapeSharding(source_shape, target_shape, grouped_sharding)) { std::vector<int> perm; perm.reserve(sharding.tile_assignment().num_dimensions()); for (int64_t i = start_dim; i < end_dim; i++) { perm.push_back(i); } for (int64_t i = 0; i < start_dim; i++) { perm.push_back(i); } for (int64_t i = end_dim; i < sharding.tile_assignment().num_dimensions(); i++) { perm.push_back(i); } DimensionVector reshape_dims( reshaped->tile_assignment().dimensions().begin(), reshaped->tile_assignment().dimensions().end()); CHECK_EQ( sharding.tile_assignment().num_elements() % Product(reshape_dims), 0); int64_t num_replicated_dims = sharding.tile_assignment().num_elements() / Product(reshape_dims); const int64_t diff = reshape_dims.size() - target_shape.rank(); CHECK(diff == 0 || diff == 1); if (diff == 0) { reshape_dims.push_back(num_replicated_dims); } else { reshape_dims.back() *= num_replicated_dims; } HloSharding ungrouped_sharding = HloSharding::PartialTile( sharding.tile_assignment().Transpose(perm).Reshape(reshape_dims)); if (MergeShardingIfCompatible(ungrouped_sharding, &result)) { start_dim = end_dim; found_compatible = true; break; } } } if (!found_compatible) { start_dim += 1; } } result.metadata() = sharding.metadata(); return result; } HloSharding ReverseSharding(const HloSharding& sharding, absl::Span<const int64_t> dimensions) { if (sharding.IsTileMaximal() || dimensions.empty()) { return sharding; } Array<int64_t> new_tile_assignment(sharding.tile_assignment().dimensions()); new_tile_assignment.Each( [&](absl::Span<const int64_t> indices, int64_t* device) { std::vector<int64_t> original_indices(indices.begin(), indices.end()); for (int64_t d : dimensions) { original_indices[d] = new_tile_assignment.dim(d) - 1 - original_indices[d]; } *device = sharding.tile_assignment()(original_indices); }); return sharding.ReplicateOnLastTileDim() ? HloSharding::PartialTile(new_tile_assignment, sharding.metadata()) : HloSharding::Subgroup(new_tile_assignment, sharding.subgroup_types(), sharding.metadata()); } HloSharding ReshapeToTileDimension(const HloSharding& sharding, int64_t dim, absl::Span<const int64_t> dims) { CHECK(!sharding.IsTuple() && !sharding.IsTileMaximal()); CHECK_NE(absl::c_find(dims, dim), dims.end()) << "dim is not in dims"; auto old_dims = sharding.tile_assignment().dimensions(); DimensionVector new_dims(old_dims.begin(), old_dims.end()); std::vector<int> not_in_dims, dims_except_the_dim; for (int64_t i = 0; i < sharding.tile_assignment().num_dimensions(); ++i) { if (i == dim) { continue; } else if (absl::c_find(dims, i) != dims.end()) { dims_except_the_dim.push_back(i); new_dims[dim] *= old_dims[i]; new_dims[i] = 1; } else { not_in_dims.push_back(i); } } std::vector<int> perm; perm.reserve(sharding.tile_assignment().num_dimensions()); perm.insert(perm.end(), not_in_dims.begin(), not_in_dims.end()); perm.push_back(dim); perm.insert(perm.end(), dims_except_the_dim.begin(), dims_except_the_dim.end()); auto new_tile_assignment = sharding.tile_assignment().Transpose(perm).Reshape(new_dims); return HloSharding::Tile(new_tile_assignment, sharding.metadata()); } bool ContainsTileSharding(const HloModule& module) { for (const HloComputation* computation : module.computations()) { for (const HloInstruction* instruction : computation->instructions()) { if (instruction->has_sharding() && !instruction->sharding().IsTileMaximal()) { return true; } } } return false; } template <typename T> std::vector<int64_t> argsort(absl::Span<const T> data) { std::vector<int64_t> indices(data.size()); std::iota(indices.begin(), indices.end(), 0); std::sort(indices.begin(), indices.end(), [&data](int64_t i, int64_t j) { return data[i] < data[j]; }); return indices; } HloSharding PropagateShardingAlongDimsAndReplicateOthers( const HloSharding& source_sharding, absl::Span<const int64_t> source_dims, absl::Span<const int64_t> target_dims, int64_t target_shape_rank) { CHECK_EQ(source_dims.size(), target_dims.size()); if (source_sharding.IsTileMaximal() || source_sharding.IsManual()) { return source_sharding; } HloSharding replicate_other_dims = PartiallyReplicateTiledShardingOnAllDimsExcept(source_sharding, source_dims); if (replicate_other_dims.IsTileMaximal()) { return replicate_other_dims; } std::vector<int64_t> argsort_source_dims = argsort(source_dims); std::vector<int64_t> argsort_target_dims = argsort(target_dims); if (argsort_source_dims != argsort_target_dims) { std::vector<int64_t> perm( replicate_other_dims.tile_assignment().num_dimensions(), -1); for (int64_t i = 0; i < source_dims.size(); ++i) { perm[source_dims[argsort_target_dims[i]]] = i; } int64_t i = source_dims.size(); for (int64_t& perm_element : perm) { if (perm_element == -1) { perm_element = i++; } } replicate_other_dims = TransposeSharding(replicate_other_dims, perm); } std::vector<int64_t> target_tile_dims(target_shape_rank, 1); for (int i = 0; i < source_dims.size(); ++i) { target_tile_dims[target_dims[i]] = source_sharding.tile_assignment().dim(source_dims[i]); } for (int64_t i = replicate_other_dims.TiledDataRank(); i < replicate_other_dims.tile_assignment().num_dimensions(); ++i) { target_tile_dims.push_back(replicate_other_dims.tile_assignment().dim(i)); } auto target_tile_assignment = replicate_other_dims.tile_assignment().Reshape(target_tile_dims); return replicate_other_dims.ReplicateOnLastTileDim() ? HloSharding::PartialTile(target_tile_assignment, replicate_other_dims.metadata()) : HloSharding::Subgroup(target_tile_assignment, replicate_other_dims.subgroup_types(), replicate_other_dims.metadata()); } HloSharding GatherOutputShardingFromIndexIndexPassthroughDimensions( const HloSharding& index_sharding, const HloInstruction* hlo) { CHECK(hlo->opcode() == HloOpcode::kGather); if (index_sharding.IsTileMaximal() || index_sharding.IsManual()) { return index_sharding; } const GatherDimensionNumbers& dnums = hlo->gather_dimension_numbers(); const absl::InlinedVector<int64_t, 1> index_passthrough_dims = GetGatherScatterIndexPassthroughIndexDims(hlo->operand(1)->shape().rank(), dnums.index_vector_dim()); const absl::InlinedVector<int64_t, 1> output_passthrough_dims = GetGatherScatterIndexPassthroughOutputOrUpdateDims(hlo->shape().rank(), dnums.offset_dims()); CHECK_EQ(index_passthrough_dims.size(), output_passthrough_dims.size()); DimensionVector output_tile(hlo->shape().rank(), 1); for (auto i = 0; i != index_passthrough_dims.size(); ++i) { output_tile[output_passthrough_dims[i]] = index_sharding.tile_assignment().dim(index_passthrough_dims[i]); } HloSharding relevant_index_sharding = PartiallyReplicateTiledShardingOnAllDimsExcept(index_sharding, index_passthrough_dims); if (relevant_index_sharding.IsTileMaximal()) { return relevant_index_sharding; } for (int64_t i = relevant_index_sharding.TiledDataRank(); i != relevant_index_sharding.tile_assignment().num_dimensions(); ++i) { output_tile.push_back(relevant_index_sharding.tile_assignment().dim(i)); } auto tile_assignment = relevant_index_sharding.tile_assignment().Reshape(output_tile); return relevant_index_sharding.ReplicateOnLastTileDim() ? HloSharding::PartialTile(tile_assignment, index_sharding.metadata()) : HloSharding::Subgroup(tile_assignment, relevant_index_sharding.subgroup_types(), index_sharding.metadata()); } HloSharding GatherIndexShardingFromOutputIndexPassthroughDimensions( const HloSharding& output_sharding, const HloInstruction* hlo) { CHECK(hlo->opcode() == HloOpcode::kGather); if (output_sharding.IsTileMaximal() || output_sharding.IsManual()) { return output_sharding; } const GatherDimensionNumbers& dnums = hlo->gather_dimension_numbers(); const absl::InlinedVector<int64_t, 1> index_passthrough_dims = GetGatherScatterIndexPassthroughIndexDims(hlo->operand(1)->shape().rank(), dnums.index_vector_dim()); const absl::InlinedVector<int64_t, 1> output_passthrough_dims = GetGatherScatterIndexPassthroughOutputOrUpdateDims(hlo->shape().rank(), dnums.offset_dims()); CHECK_EQ(index_passthrough_dims.size(), output_passthrough_dims.size()); DimensionVector index_tile(hlo->operand(1)->shape().rank(), 1); for (auto i = 0; i != index_passthrough_dims.size(); ++i) { index_tile[index_passthrough_dims[i]] = output_sharding.tile_assignment().dim(output_passthrough_dims[i]); } HloSharding relevant_output_sharding = PartiallyReplicateTiledShardingOnAllDimsExcept(output_sharding, output_passthrough_dims); if (relevant_output_sharding.IsTileMaximal()) { return relevant_output_sharding; } for (int64_t i = relevant_output_sharding.TiledDataRank(); i != relevant_output_sharding.tile_assignment().num_dimensions(); ++i) { index_tile.push_back(relevant_output_sharding.tile_assignment().dim(i)); } auto tile_assignment = relevant_output_sharding.tile_assignment().Reshape(index_tile); return relevant_output_sharding.ReplicateOnLastTileDim() ? HloSharding::PartialTile(tile_assignment, output_sharding.metadata()) : HloSharding::Subgroup(tile_assignment, relevant_output_sharding.subgroup_types(), output_sharding.metadata()); } HloSharding GatherEffectiveOutputSharding(const HloInstruction& hlo) { if (hlo.sharding().IsTileMaximal() || hlo.sharding().IsManual()) { return hlo.sharding(); } const GatherDimensionNumbers& dnums = hlo.gather_dimension_numbers(); DimensionVector tile_assignment_dims(hlo.shape().rank()); int64_t num_elements = 1; for (int64_t i = 0; i < hlo.shape().rank(); ++i) { if (!absl::c_binary_search(dnums.offset_dims(), i)) { tile_assignment_dims[i] = hlo.sharding().tile_assignment().dim(i); num_elements *= hlo.sharding().tile_assignment().dim(i); } else { tile_assignment_dims[i] = 1; } } if (num_elements == hlo.sharding().tile_assignment().num_elements()) { return hlo.sharding(); } if (num_elements == 1) { return HloSharding::AssignDevice(hlo.sharding().tile_assignment().first(), hlo.sharding().metadata()); } DimensionVector slice_starts(hlo.shape().rank(), 0LL), slice_limits(hlo.shape().rank()); for (int64_t i = 0; i < hlo.shape().rank(); ++i) { if (!absl::c_binary_search(dnums.offset_dims(), i)) { slice_limits[i] = hlo.sharding().tile_assignment().dim(i); } else { slice_limits[i] = 1; } } Array<int64_t> tile_assignment = hlo.sharding().tile_assignment().array().Slice(slice_starts, slice_limits); return HloSharding::Tile(tile_assignment, hlo.sharding().metadata()); } HloSharding ScatterIndexShardingFromUpdateIndexPassthroughDimensions( const HloSharding& update_sharding, const HloScatterInstruction* scatter) { if (update_sharding.IsTileMaximal() || update_sharding.IsManual()) { return update_sharding; } const ScatterDimensionNumbers& dnums = scatter->scatter_dimension_numbers(); const absl::InlinedVector<int64_t, 1> index_passthrough_dims = GetGatherScatterIndexPassthroughIndexDims( scatter->scatter_indices()->shape().rank(), dnums.index_vector_dim()); const absl::InlinedVector<int64_t, 1> update_passthrough_dims = GetGatherScatterIndexPassthroughOutputOrUpdateDims( scatter->scatter_updates()[0]->shape().rank(), dnums.update_window_dims()); CHECK_EQ(index_passthrough_dims.size(), update_passthrough_dims.size()); DimensionVector index_tile(scatter->scatter_indices()->shape().rank(), 1); for (auto i = 0; i != index_passthrough_dims.size(); ++i) { index_tile[index_passthrough_dims[i]] = update_sharding.tile_assignment().dim(update_passthrough_dims[i]); } HloSharding relevant_update_sharding = PartiallyReplicateTiledShardingOnAllDimsExcept(update_sharding, update_passthrough_dims); if (relevant_update_sharding.IsTileMaximal()) { return relevant_update_sharding; } for (int64_t i = relevant_update_sharding.TiledDataRank(); i != relevant_update_sharding.tile_assignment().num_dimensions(); ++i) { index_tile.push_back(relevant_update_sharding.tile_assignment().dim(i)); } auto tile_assignment = relevant_update_sharding.tile_assignment().Reshape(index_tile); return relevant_update_sharding.ReplicateOnLastTileDim() ? HloSharding::PartialTile(tile_assignment, update_sharding.metadata()) : HloSharding::Subgroup(tile_assignment, relevant_update_sharding.subgroup_types(), update_sharding.metadata()); } HloSharding ScatterUpdateShardingFromIndexIndexPassthroughDimensions( const HloSharding& index_sharding, const HloScatterInstruction* scatter) { if (index_sharding.IsTileMaximal() || index_sharding.IsManual()) { return index_sharding; } const ScatterDimensionNumbers& dnums = scatter->scatter_dimension_numbers(); const absl::InlinedVector<int64_t, 1> index_passthrough_dims = GetGatherScatterIndexPassthroughIndexDims( scatter->scatter_indices()->shape().rank(), dnums.index_vector_dim()); const absl::InlinedVector<int64_t, 1> update_passthrough_dims = GetGatherScatterIndexPassthroughOutputOrUpdateDims( scatter->scatter_updates()[0]->shape().rank(), dnums.update_window_dims()); CHECK_EQ(index_passthrough_dims.size(), update_passthrough_dims.size()); DimensionVector update_tile(scatter->scatter_updates()[0]->shape().rank(), 1); for (auto i = 0; i != index_passthrough_dims.size(); ++i) { update_tile[update_passthrough_dims[i]] = index_sharding.tile_assignment().dim(index_passthrough_dims[i]); } HloSharding relevant_index_sharding = PartiallyReplicateTiledShardingOnAllDimsExcept(index_sharding, index_passthrough_dims); if (relevant_index_sharding.IsTileMaximal()) { return relevant_index_sharding; } for (int64_t i = relevant_index_sharding.TiledDataRank(); i != relevant_index_sharding.tile_assignment().num_dimensions(); ++i) { update_tile.push_back(relevant_index_sharding.tile_assignment().dim(i)); } auto tile_assignment = relevant_index_sharding.tile_assignment().Reshape(update_tile); return relevant_index_sharding.ReplicateOnLastTileDim() ? HloSharding::PartialTile(tile_assignment, index_sharding.metadata()) : HloSharding::Subgroup(tile_assignment, relevant_index_sharding.subgroup_types(), index_sharding.metadata()); } HloSharding ScatterEffectiveIndexSharding( const HloSharding& index_sharding, const HloScatterInstruction& scatter) { if (index_sharding.IsTileMaximal() || index_sharding.IsManual()) { return index_sharding; } const ScatterDimensionNumbers& dnums = scatter.scatter_dimension_numbers(); int64_t num_elements = 1; int64_t index_dim = 0; for (int64_t i = 0; i < scatter.shape().rank(); ++i) { if (absl::c_binary_search(dnums.inserted_window_dims(), i)) { num_elements *= index_sharding.tile_assignment().dim(index_dim); index_dim++; } } if (num_elements == index_sharding.tile_assignment().num_elements()) { return index_sharding; } if (num_elements == 1) { return HloSharding::AssignDevice(index_sharding.tile_assignment().first(), index_sharding.metadata()); } const int64_t index_rank = scatter.scatter_indices()->shape().rank(); DimensionVector slice_starts(index_rank, 0LL), slice_limits(index_rank); for (int64_t i = 0; i < index_rank; ++i) { if (i < index_dim) { slice_limits[i] = index_sharding.tile_assignment().dim(i); } else { slice_limits[i] = 1; } } Array<int64_t> tile_assignment = index_sharding.tile_assignment().array().Slice(slice_starts, slice_limits); return HloSharding::Tile(tile_assignment, index_sharding.metadata()); } HloSharding ScatterEffectiveDataSharding(const HloSharding& data_sharding, const HloScatterInstruction& scatter) { if (data_sharding.IsTileMaximal() || data_sharding.IsManual()) { return data_sharding; } const ScatterDimensionNumbers& dnums = scatter.scatter_dimension_numbers(); const int64_t data_rank = scatter.scatter_updates()[0]->shape().rank(); DimensionVector tile_assignment_dims(data_rank, 1LL); int64_t num_elements = 1; for (int64_t i = 0; i < scatter.shape().rank(); ++i) { if (absl::c_binary_search(dnums.inserted_window_dims(), i)) { CHECK_LT(i, data_rank); tile_assignment_dims[i] = data_sharding.tile_assignment().dim(i); num_elements *= data_sharding.tile_assignment().dim(i); } } if (num_elements == data_sharding.tile_assignment().num_elements()) { return data_sharding; } if (num_elements == 1) { return HloSharding::AssignDevice(data_sharding.tile_assignment().first(), data_sharding.metadata()); } DimensionVector slice_starts(data_rank, 0LL); Array<int64_t> tile_assignment = data_sharding.tile_assignment().array().Slice(slice_starts, tile_assignment_dims); return HloSharding::Tile(tile_assignment, data_sharding.metadata()); } namespace { absl::InlinedVector<int64_t, 1> GetGatherScatterOperandPassthroughOperandDims( const Shape& operand_shape, absl::Span<const int64_t> collapsed_or_inserted_dims, absl::Span<const int64_t> operand_batching_dims, absl::Span<const int64_t> index_map, absl::Span<const int64_t> offset_or_window_dims, absl::Span<const int64_t> slice_size) { absl::InlinedVector<int64_t, 1> passthrough_dims; int64_t collapsed_or_batching = 0; for (int64_t i = 0; i < operand_shape.rank(); ++i) { if (absl::c_linear_search(collapsed_or_inserted_dims, i) || absl::c_linear_search(operand_batching_dims, i)) { collapsed_or_batching++; continue; } if (slice_size[i] != operand_shape.dimensions(i)) { continue; } if (i - collapsed_or_batching > 0 && offset_or_window_dims[i - collapsed_or_batching] < offset_or_window_dims[i - collapsed_or_batching - 1]) { continue; } passthrough_dims.push_back(i); } return passthrough_dims; } absl::InlinedVector<int64_t, 1> GetGatherScatterOperandPassthroughOutputOrUpdateDims( const int64_t output_or_update_rank, const Shape& operand_shape, absl::Span<const int64_t> collapsed_or_inserted_dims, absl::Span<const int64_t> operand_batching_dims, absl::Span<const int64_t> index_map, absl::Span<const int64_t> offset_or_window_dims, absl::Span<const int64_t> slice_size) { auto operand_passthrough_dims = GetGatherScatterOperandPassthroughOperandDims( operand_shape, collapsed_or_inserted_dims, operand_batching_dims, index_map, offset_or_window_dims, slice_size); absl::InlinedVector<int64_t, 1> passthrough_dims; int64_t collapsed_or_batching = 0; for (int64_t i = 0; i < operand_shape.rank(); ++i) { if (absl::c_linear_search(collapsed_or_inserted_dims, i) || absl::c_linear_search(operand_batching_dims, i)) { collapsed_or_batching++; continue; } if (!absl::c_linear_search(operand_passthrough_dims, i)) { continue; } int64_t offset_dim = offset_or_window_dims[i - collapsed_or_batching]; passthrough_dims.push_back(offset_dim); } return passthrough_dims; } std::optional<HloSharding> PassthroughOperandToGatherOutputOrScatterUpdate( const Shape& operand_shape, const HloSharding& operand_sharding, const int64_t output_or_update_rank, absl::Span<const int64_t> collapsed_or_inserted_dims, absl::Span<const int64_t> operand_batching_dims, absl::Span<const int64_t> index_map, absl::Span<const int64_t> offset_or_window_dims, absl::Span<const int64_t> slice_size, const int64_t index_vector_dim) { if (operand_sharding.IsTileMaximal() || operand_sharding.IsManual()) { return std::nullopt; } auto operand_passthrough_dims = GetGatherScatterOperandPassthroughOperandDims( operand_shape, collapsed_or_inserted_dims, operand_batching_dims, index_map, offset_or_window_dims, slice_size); DimensionVector passthrough_tile(output_or_update_rank, 1); int64_t collapsed_or_batching = 0; for (int64_t i = 0; i < operand_shape.rank(); ++i) { if (absl::c_linear_search(collapsed_or_inserted_dims, i) || absl::c_linear_search(operand_batching_dims, i)) { collapsed_or_batching++; continue; } if (!absl::c_linear_search(operand_passthrough_dims, i)) { continue; } int64_t offset_dim = offset_or_window_dims[i - collapsed_or_batching]; passthrough_tile[offset_dim] = operand_sharding.tile_assignment().dim(i); } HloSharding replicate_non_passthrough_dims = PartiallyReplicateTiledShardingOnAllDimsExcept(operand_sharding, operand_passthrough_dims); if (replicate_non_passthrough_dims.IsTileMaximal()) { return std::nullopt; } for (int64_t i = replicate_non_passthrough_dims.TiledDataRank(); i < replicate_non_passthrough_dims.tile_assignment().num_dimensions(); ++i) { passthrough_tile.push_back( replicate_non_passthrough_dims.tile_assignment().dim(i)); } auto tile_assignment = replicate_non_passthrough_dims.tile_assignment().Reshape( passthrough_tile); return replicate_non_passthrough_dims.ReplicateOnLastTileDim() ? HloSharding::PartialTile( tile_assignment, replicate_non_passthrough_dims.metadata()) : HloSharding::Subgroup( tile_assignment, replicate_non_passthrough_dims.subgroup_types(), replicate_non_passthrough_dims.metadata()); } std::optional<HloSharding> PassthroughGatherOutputOrScatterUpdateToOperand( const Shape& operand_shape, const HloSharding& output_or_update_sharding, absl::Span<const int64_t> collapsed_or_inserted_dims, absl::Span<const int64_t> operand_batching_dims, absl::Span<const int64_t> index_map, absl::Span<const int64_t> offset_or_window_dims, absl::Span<const int64_t> slice_size) { if (output_or_update_sharding.IsTileMaximal() || output_or_update_sharding.IsManual()) { return output_or_update_sharding; } auto operand_passthrough_dims = GetGatherScatterOperandPassthroughOperandDims( operand_shape, collapsed_or_inserted_dims, operand_batching_dims, index_map, offset_or_window_dims, slice_size); DimensionVector passthrough_tile(operand_shape.rank(), 1); int64_t collapsed_or_batching = 0; DimensionVector relevant_output_or_update_dims; for (int64_t i = 0; i < operand_shape.rank(); ++i) { if (absl::c_linear_search(collapsed_or_inserted_dims, i) || absl::c_linear_search(operand_batching_dims, i)) { collapsed_or_batching++; continue; } if (!absl::c_linear_search(operand_passthrough_dims, i)) { continue; } int64_t offset_dim = offset_or_window_dims[i - collapsed_or_batching]; passthrough_tile[i] = output_or_update_sharding.tile_assignment().dim(offset_dim); relevant_output_or_update_dims.push_back(offset_dim); } HloSharding relevant_sharding = PartiallyReplicateTiledShardingOnAllDimsExcept( output_or_update_sharding, relevant_output_or_update_dims); if (relevant_sharding.IsTileMaximal()) { return std::nullopt; } for (int64_t i = relevant_sharding.TiledDataRank(); i < relevant_sharding.tile_assignment().num_dimensions(); ++i) { passthrough_tile.push_back(relevant_sharding.tile_assignment().dim(i)); } auto tile_assignment = relevant_sharding.tile_assignment().Reshape(passthrough_tile); return relevant_sharding.ReplicateOnLastTileDim() ? HloSharding::PartialTile(tile_assignment, output_or_update_sharding.metadata()) : HloSharding::Subgroup(tile_assignment, relevant_sharding.subgroup_types(), output_or_update_sharding.metadata()); } std::optional<HloSharding> GatherOperandShardingFromOutputParallelDimensions( const HloSharding& output_sharding, const HloInstruction& gather, const CallGraph& call_graph) { if (output_sharding.IsTileMaximal() || output_sharding.IsManual()) { return output_sharding; } GatherScatterParallelDims parallel_dims; const GatherDimensionNumbers& dnums = gather.gather_dimension_numbers(); if (!dnums.operand_batching_dims().empty()) { parallel_dims.operand_parallel_dims.assign( dnums.operand_batching_dims().begin(), dnums.operand_batching_dims().end()); parallel_dims.indices_parallel_dims.assign( dnums.start_indices_batching_dims().begin(), dnums.start_indices_batching_dims().end()); } if (std::optional<GatherScatterParallelDims> implicit_parallel_dims = GetGatherParallelBatchDims(gather, call_graph)) { parallel_dims.operand_parallel_dims.insert( parallel_dims.operand_parallel_dims.end(), implicit_parallel_dims->operand_parallel_dims.begin(), implicit_parallel_dims->operand_parallel_dims.end()); parallel_dims.indices_parallel_dims.insert( parallel_dims.indices_parallel_dims.end(), implicit_parallel_dims->indices_parallel_dims.begin(), implicit_parallel_dims->indices_parallel_dims.end()); } if (parallel_dims.operand_parallel_dims.empty()) { return std::nullopt; } return PropagateShardingAlongDimsAndReplicateOthers( output_sharding, GetGatherParallelOutputDims(gather, parallel_dims), parallel_dims.operand_parallel_dims, gather.operand(0)->shape().rank()); } } std::optional<HloSharding> GatherOutputShardingFromOperandOperandPassthroughDimensions( const HloSharding& operand_sharding, const HloInstruction& hlo) { return GatherOutputShardingFromOperandOperandPassthroughDimensions( hlo.operand(0)->shape(), operand_sharding, hlo, hlo.gather_slice_sizes()); } std::optional<HloSharding> GatherOutputShardingFromOperandOperandPassthroughDimensions( const Shape& operand_shape, const HloSharding& operand_sharding, const HloInstruction& hlo, absl::Span<const int64_t> slice_sizes) { const auto& dnums = hlo.gather_dimension_numbers(); return PassthroughOperandToGatherOutputOrScatterUpdate( operand_shape, operand_sharding, hlo.shape().rank(), dnums.collapsed_slice_dims(), dnums.operand_batching_dims(), dnums.start_index_map(), dnums.offset_dims(), slice_sizes, dnums.index_vector_dim()); } std::optional<HloSharding> GatherOperandShardingFromOutput( const HloSharding& output_sharding, const HloInstruction& hlo, const CallGraph& call_graph) { const auto& dnums = hlo.gather_dimension_numbers(); std::optional<HloSharding> parallel_sharding = GatherOperandShardingFromOutputParallelDimensions(output_sharding, hlo, call_graph); std::optional<HloSharding> passthrough_sharding = PassthroughGatherOutputOrScatterUpdateToOperand( hlo.operand(0)->shape(), output_sharding, dnums.collapsed_slice_dims(), dnums.operand_batching_dims(), dnums.start_index_map(), dnums.offset_dims(), hlo.gather_slice_sizes()); if (!passthrough_sharding) { return parallel_sharding; } if (!parallel_sharding) { return passthrough_sharding; } if (MergeSharding(*parallel_sharding, &*passthrough_sharding, true)) { return passthrough_sharding; } if (MergeSharding(*passthrough_sharding, &*parallel_sharding, true)) { return parallel_sharding; } return parallel_sharding; } std::vector<int64_t> GetScatterSliceSize(const Shape& operand_shape, const Shape& update_shape, const ScatterDimensionNumbers& dnums) { std::vector<int64_t> slice_size(operand_shape.rank(), 1); int64_t num_update_window_dims = 0; for (int64_t i = 0; i < operand_shape.rank(); ++i) { if (absl::c_linear_search(dnums.inserted_window_dims(), i) || absl::c_linear_search(dnums.input_batching_dims(), i)) { continue; } slice_size[i] = update_shape.dimensions( dnums.update_window_dims(num_update_window_dims++)); } CHECK_EQ(num_update_window_dims, dnums.update_window_dims_size()); return slice_size; } std::optional<HloSharding> ScatterOutputShardingFromUpdate( const HloSharding& update_sharding, const HloScatterInstruction& scatter) { const auto& dnums = scatter.scatter_dimension_numbers(); std::vector<int64_t> slice_size = GetScatterSliceSize(scatter.scatter_operands()[0]->shape(), scatter.scatter_updates()[0]->shape(), dnums); return PassthroughGatherOutputOrScatterUpdateToOperand( scatter.scatter_operands()[0]->shape(), update_sharding, dnums.inserted_window_dims(), dnums.input_batching_dims(), dnums.scatter_dims_to_operand_dims(), dnums.update_window_dims(), slice_size); } std::optional<HloSharding> ScatterUpdateShardingFromOutput( const HloSharding& per_output_sharding, const HloScatterInstruction& scatter, const CallGraph& call_graph) { std::optional<HloSharding> parallel_sharding = ScatterUpdateShardingFromOutputParallelDimensions(per_output_sharding, scatter, call_graph); std::optional<HloSharding> passthrough_sharding = ScatterUpdateShardingFromOutputOperandPassthroughDimensions( per_output_sharding, scatter); if (!passthrough_sharding) { return parallel_sharding; } if (!parallel_sharding) { return passthrough_sharding; } if (MergeSharding(*parallel_sharding, &*passthrough_sharding, true)) { return passthrough_sharding; } if (MergeSharding(*passthrough_sharding, &*parallel_sharding, true)) { return parallel_sharding; } return parallel_sharding; } std::optional<HloSharding> ScatterUpdateShardingFromOutputOperandPassthroughDimensions( const HloSharding& output_sharding, const HloInstruction& hlo) { const HloScatterInstruction* scatter = DynCast<HloScatterInstruction>(&hlo); CHECK(scatter); const Shape& operand_shape = scatter->scatter_operands()[0]->shape(); const Shape& update_shape = scatter->scatter_updates()[0]->shape(); const Shape& output_shape = operand_shape; return ScatterUpdateShardingFromOutputOperandPassthroughDimensions( output_shape, output_sharding, *scatter, GetScatterSliceSize(operand_shape, update_shape, scatter->scatter_dimension_numbers())); } std::optional<HloSharding> ScatterUpdateShardingFromOutputOperandPassthroughDimensions( const Shape& output_shape, const HloSharding& output_sharding, const HloInstruction& hlo, absl::Span<const int64_t> slice_sizes) { const HloScatterInstruction* scatter = DynCast<HloScatterInstruction>(&hlo); CHECK(scatter); const auto& dnums = scatter->scatter_dimension_numbers(); return PassthroughOperandToGatherOutputOrScatterUpdate( output_shape, output_sharding, scatter->scatter_updates()[0]->shape().rank(), dnums.inserted_window_dims(), dnums.input_batching_dims(), dnums.scatter_dims_to_operand_dims(), dnums.update_window_dims(), slice_sizes, dnums.index_vector_dim()); } std::optional<HloSharding> ScatterUpdateShardingFromOutputParallelDimensions( const HloSharding& output_sharding, const HloScatterInstruction& scatter, const CallGraph& call_graph) { if (output_sharding.IsTileMaximal() || output_sharding.IsManual()) { return output_sharding; } GatherScatterParallelDims parallel_dims; const ScatterDimensionNumbers& dnums = scatter.scatter_dimension_numbers(); if (!dnums.input_batching_dims().empty()) { parallel_dims.operand_parallel_dims.assign( dnums.input_batching_dims().begin(), dnums.input_batching_dims().end()); parallel_dims.indices_parallel_dims.assign( dnums.scatter_indices_batching_dims().begin(), dnums.scatter_indices_batching_dims().end()); } if (std::optional<GatherScatterParallelDims> implicit_parallel_dims = GetScatterParallelBatchDims(scatter, call_graph)) { parallel_dims.operand_parallel_dims.insert( parallel_dims.operand_parallel_dims.end(), implicit_parallel_dims->operand_parallel_dims.begin(), implicit_parallel_dims->operand_parallel_dims.end()); parallel_dims.indices_parallel_dims.insert( parallel_dims.indices_parallel_dims.end(), implicit_parallel_dims->indices_parallel_dims.begin(), implicit_parallel_dims->indices_parallel_dims.end()); } if (parallel_dims.operand_parallel_dims.empty()) { return std::nullopt; } return PropagateShardingAlongDimsAndReplicateOthers( output_sharding, parallel_dims.operand_parallel_dims, GetScatterParallelUpdateDims(scatter, parallel_dims), scatter.scatter_updates()[0]->shape().rank()); } HloSharding GatherOutputOrScatterUpdateShardingFromIndicesParallelDimensions( const HloSharding& indices_sharding, const int64_t output_or_update_shape_rank, absl::Span<const int64_t> indices_parallel_dims, absl::Span<const int64_t> output_or_update_parallel_dims) { if (indices_sharding.IsTileMaximal() || indices_sharding.IsManual()) { return indices_sharding; } CHECK_EQ(output_or_update_parallel_dims.size(), indices_parallel_dims.size()); absl::InlinedVector<int64_t, 4> output_or_update_tiling( output_or_update_shape_rank, 1); absl::InlinedVector<int64_t, 4> relevant_indices_dims; for (int i = 0; i != output_or_update_parallel_dims.size(); ++i) { const int output_or_update_idx = output_or_update_parallel_dims[i]; CHECK_LT(output_or_update_idx, output_or_update_shape_rank); const int indices_idx = indices_parallel_dims[i]; output_or_update_tiling[output_or_update_idx] = indices_sharding.tile_assignment().dim(indices_idx); relevant_indices_dims.push_back(indices_idx); } HloSharding relevant_indices_sharding = PartiallyReplicateTiledShardingOnAllDimsExcept(indices_sharding, relevant_indices_dims); if (relevant_indices_sharding.IsTileMaximal()) { return relevant_indices_sharding; } for (int64_t i = relevant_indices_sharding.TiledDataRank(); i != relevant_indices_sharding.tile_assignment().num_dimensions(); ++i) { output_or_update_tiling.push_back( relevant_indices_sharding.tile_assignment().dim(i)); } auto output_tile_assignment = relevant_indices_sharding.tile_assignment().Reshape( output_or_update_tiling); return relevant_indices_sharding.ReplicateOnLastTileDim() ? HloSharding::PartialTile(output_tile_assignment, indices_sharding.metadata()) : HloSharding::Subgroup(output_tile_assignment, relevant_indices_sharding.subgroup_types(), indices_sharding.metadata()); } absl::StatusOr<std::pair<std::unique_ptr<HloInstruction>, HloOpcode>> IdentityValueAndHloOpcodeForScatterReduceComputation( const HloScatterInstruction& scatter) { auto computation = scatter.to_apply(); if (computation->instruction_count() != 3) { return absl::Status( absl::StatusCode::kInvalidArgument, "Expected scatter reduce computation with 2 parameters and only 1 " "calculation"); } auto root_instruction = computation->root_instruction(); if (root_instruction->opcode() == HloOpcode::kAdd || root_instruction->opcode() == HloOpcode::kOr) { return std::make_pair(HloInstruction::CreateConstant(LiteralUtil::Zero( scatter.shape().element_type())), root_instruction->opcode()); } else if (root_instruction->opcode() == HloOpcode::kMultiply || root_instruction->opcode() == HloOpcode::kAnd) { return std::make_pair(HloInstruction::CreateConstant( LiteralUtil::One(scatter.shape().element_type())), root_instruction->opcode()); } else if (root_instruction->opcode() == HloOpcode::kMaximum) { return std::make_pair(HloInstruction::CreateConstant(LiteralUtil::MinValue( scatter.shape().element_type())), root_instruction->opcode()); } else if (root_instruction->opcode() == HloOpcode::kMinimum) { return std::make_pair(HloInstruction::CreateConstant(LiteralUtil::MaxValue( scatter.shape().element_type())), root_instruction->opcode()); } return absl::Status(absl::StatusCode::kInvalidArgument, "Expected scatter reduce computation which is " "add/or/multiply/add/min/max"); } namespace { void DevicesForShardingInternal( const HloSharding& sharding, const absl::flat_hash_set<int64_t>& available_devices, absl::flat_hash_set<int64_t>* used) { if (sharding.IsTuple()) { for (const auto& subsharding : sharding.tuple_elements()) { DevicesForShardingInternal(subsharding, available_devices, used); } return; } if (sharding.IsReplicated()) { for (int64_t device : available_devices) { if (!HloSharding::IsReservedDevice(device)) { used->insert(device); } } return; } DCHECK(std::all_of( sharding.tile_assignment().array().begin(), sharding.tile_assignment().array().end(), [&](int64_t device) { return available_devices.contains(device); })); sharding.tile_assignment().Each( [&](absl::Span<const int64_t> , int64_t device) { used->insert(device); }); } } std::vector<int64_t> DevicesForSharding( const HloSharding& sharding, absl::Span<const int64_t> available_devices) { absl::flat_hash_set<int64_t> available_set; for (int64_t device : available_devices) { available_set.insert(device); } absl::flat_hash_set<int64_t> used_set; DevicesForShardingInternal(sharding, available_set, &used_set); std::vector<int64_t> devices; for (int64_t device : available_devices) { if (used_set.contains(device)) { devices.push_back(device); } } return devices; } HloSharding PartiallyReplicateTiledShardingOnDims( const HloSharding& sharding, absl::Span<const int64_t> dims_to_replicate) { if (sharding.IsTileMaximal() || sharding.IsManual()) { return sharding; } int64_t group_count = 1; DimensionVector valid_dims_to_replicate; for (int64_t dim : dims_to_replicate) { if (dim >= sharding.TiledDataRank()) { continue; } valid_dims_to_replicate.push_back(dim); group_count *= sharding.tile_assignment().dim(dim); } if (group_count == 1) { return sharding; } if (group_count == sharding.NumTiles() && sharding.subgroup_types().empty()) { return HloSharding::Replicate(sharding.metadata()); } DimensionVector dim_permutation(sharding.TiledDataRank()); absl::c_iota(dim_permutation, 0); absl::c_stable_sort(dim_permutation, [&](const int64_t a, const int64_t b) { return absl::c_linear_search(valid_dims_to_replicate, a) < absl::c_linear_search(valid_dims_to_replicate, b); }); auto new_tile = TransposeSharding(sharding, dim_permutation).tile_assignment(); DimensionVector new_tile_shape( sharding.tile_assignment().dimensions().begin(), sharding.tile_assignment().dimensions().end()); for (int64_t dim : valid_dims_to_replicate) { new_tile_shape[dim] = 1; } if (sharding.ReplicateOnLastTileDim()) { new_tile_shape.back() *= group_count; new_tile = new_tile.Reshape(new_tile_shape); return HloSharding::PartialTile(new_tile, sharding.metadata()); } else { new_tile_shape.insert(new_tile_shape.begin() + sharding.TiledDataRank(), group_count); new_tile = new_tile.Reshape(new_tile_shape); std::vector<OpSharding::Type> subgroup_types; subgroup_types.push_back(OpSharding::REPLICATED); for (OpSharding::Type type : sharding.subgroup_types()) { subgroup_types.push_back(type); } return HloSharding::Subgroup(new_tile, subgroup_types, sharding.metadata()); } } HloSharding PartiallyReplicateTiledShardingOnAllDimsExcept( const HloSharding& sharding, absl::Span<const int64_t> dims_to_keep) { if (sharding.IsTileMaximal() || sharding.IsManual()) { return sharding; } DimensionVector dims_to_replicate(sharding.TiledDataRank()); absl::c_iota(dims_to_replicate, 0); dims_to_replicate.erase( std::remove_if( dims_to_replicate.begin(), dims_to_replicate.end(), [&](int64_t i) { return absl::c_linear_search(dims_to_keep, i); }), dims_to_replicate.end()); return PartiallyReplicateTiledShardingOnDims(sharding, dims_to_replicate); } HloSharding ReplicateAllDataDims(const HloSharding& sharding, int64_t data_rank) { if (sharding.IsManual()) { return sharding; } if (sharding.subgroup_types().empty()) { return HloSharding::Replicate(sharding.metadata()); } HloSharding result = PartiallyReplicateTiledShardingOnAllDimsExcept(sharding, {}); if (data_rank >= 0 && data_rank != result.TiledDataRank() && !result.IsTileMaximal()) { DimensionVector new_tile_shape(data_rank, 1); for (int64_t i = result.TiledDataRank(); i < result.tile_assignment().num_dimensions(); ++i) { new_tile_shape.push_back(result.tile_assignment().dim(i)); } auto tile = result.tile_assignment().Reshape(new_tile_shape); result = HloSharding::Subgroup(tile, result.subgroup_types()); } return result; } HloSharding RemoveShapeDimensions(const HloSharding& sharding, absl::Span<const int64_t> dims_to_remove) { if (sharding.IsTileMaximal() || dims_to_remove.empty()) { return sharding; } DimensionVector new_tile_shape; new_tile_shape.reserve(sharding.tile_assignment().num_dimensions() - dims_to_remove.size()); for (int64_t i = 0; i < sharding.tile_assignment().num_dimensions(); ++i) { if (absl::c_linear_search(dims_to_remove, i)) { CHECK_EQ(sharding.tile_assignment().dim(i), 1); } else { new_tile_shape.push_back(sharding.tile_assignment().dim(i)); } } auto new_tile = sharding.tile_assignment().Reshape(new_tile_shape); return sharding.ReplicateOnLastTileDim() ? HloSharding::PartialTile(new_tile, sharding.metadata()) : HloSharding::Subgroup(new_tile, sharding.subgroup_types(), sharding.metadata()); } std::optional<HloSharding> TransposeShardingWithCollapsedDims( const HloSharding& source, absl::Span<int64_t const> src_to_tgt, absl::Span<int64_t const> tgt_to_src) { if (source.IsTileMaximal() || source.IsManual()) { return source; } if (src_to_tgt.size() < source.tile_assignment().num_dimensions()) { DimensionVector new_src_to_tgt(src_to_tgt.begin(), src_to_tgt.end()); DimensionVector new_tgt_to_src(tgt_to_src.begin(), tgt_to_src.end()); for (int64_t i = 0; i < source.tile_assignment().num_dimensions() - src_to_tgt.size(); ++i) { new_src_to_tgt.push_back(tgt_to_src.size() + i); new_tgt_to_src.push_back(src_to_tgt.size() + i); } return TransposeShardingWithCollapsedDims(source, new_src_to_tgt, new_tgt_to_src); } DimensionVector tgt_dims_skipping_new(tgt_to_src.size(), -1); int64_t skipped_tgt_dims = 0; int64_t src_non_subgroup_dims = src_to_tgt.size() - source.subgroup_types().size(); int64_t tgt_non_subgroup_dims = tgt_to_src.size() - source.subgroup_types().size(); for (int64_t i = 0; i < tgt_to_src.size(); ++i) { if (tgt_to_src[i] < 0) { CHECK_LT(i, tgt_non_subgroup_dims) << "Sharding transpose should not remove subgroup dims."; skipped_tgt_dims++; } else { tgt_dims_skipping_new[i] = i - skipped_tgt_dims; } } int64_t skipped_src_dims = absl::c_count(src_to_tgt, -1); DimensionVector perm(src_to_tgt.size()); for (int64_t i = 0; i < src_non_subgroup_dims; ++i) { if (src_to_tgt[i] < 0) { if (source.tile_assignment().dim(i) > 1) { return std::nullopt; } perm[src_non_subgroup_dims - skipped_src_dims] = i; skipped_src_dims--; } else { perm[tgt_dims_skipping_new[src_to_tgt[i]]] = i; } } skipped_src_dims = absl::c_count(src_to_tgt, -1); for (int64_t i = src_non_subgroup_dims; i < src_to_tgt.size(); ++i) { CHECK_GE(src_to_tgt[i], tgt_non_subgroup_dims) << "Sharding transpose should not move subgroup dims before data dims."; perm[src_to_tgt[i] - skipped_tgt_dims + skipped_src_dims] = i; } auto tgt_sharding = TransposeSharding(source, perm); DimensionVector tgt_tiles(tgt_to_src.size(), 1); for (int64_t i = 0; i < tgt_tiles.size(); ++i) { if (tgt_to_src[i] >= 0) { int64_t dim = tgt_dims_skipping_new[i]; if (i >= tgt_non_subgroup_dims) { dim += skipped_src_dims; } tgt_tiles[i] = tgt_sharding.tile_assignment().dim(dim); } } auto reshape_tiles = tgt_sharding.tile_assignment().Reshape(tgt_tiles); return source.ReplicateOnLastTileDim() ? HloSharding::PartialTile(reshape_tiles, source.metadata()) : HloSharding::Subgroup(reshape_tiles, source.subgroup_types(), source.metadata()); } std::optional<int64_t> GetDimensionForIota(const HloInstruction* maybe_iota, const CallGraph& call_graph) { if (auto* iota = DynCast<HloIotaInstruction>(maybe_iota)) { return iota->iota_dimension(); } if (maybe_iota->shape().element_type() != S32) { return std::nullopt; } if (maybe_iota->IsConstant()) { std::vector<bool> is_iota_dim(maybe_iota->shape().rank(), true); maybe_iota->literal().EachCell<int32_t>( [&](absl::Span<const int64_t> indices, int32_t val) { for (int64_t i = 0; i < indices.size(); ++i) { if (val != indices[i]) { is_iota_dim[i] = false; } } }); for (int64_t i = 0; i < is_iota_dim.size(); ++i) { if (is_iota_dim[i] && maybe_iota->shape().dimensions(i) > 1) { return i; } } return std::nullopt; } if (maybe_iota->opcode() == HloOpcode::kBroadcast) { auto operand_dim = GetDimensionForIota(maybe_iota->operand(0), call_graph); if (operand_dim) { return maybe_iota->dimensions(*operand_dim); } return std::nullopt; } if (maybe_iota->opcode() == HloOpcode::kGetTupleElement && maybe_iota->operand(0)->opcode() == HloOpcode::kParameter) { const HloComputation* called_computation = maybe_iota->parent(); if (!called_computation->IsEntryComputation()) { const HloInstruction* gte = maybe_iota; const int64_t gte_index = gte->tuple_index(); std::vector<HloInstruction*> callers = call_graph.GetComputationCallers(called_computation); CHECK_EQ(callers.size(), 1); HloInstruction* caller = call_graph.GetComputationCallers(called_computation)[0]; if (caller->opcode() == HloOpcode::kWhile && caller->operand(0)->opcode() == HloOpcode::kTuple) { HloInstruction* while_root = called_computation->root_instruction(); if (while_root->opcode() == HloOpcode::kTuple && while_root->operand(gte_index) == gte) { return GetDimensionForIota(caller->operand(0)->operand(gte_index), call_graph); } } if (caller->opcode() == HloOpcode::kConditional) { int64_t cond_comp_idx = absl::c_find(caller->branch_computations(), called_computation) - caller->branch_computations().begin(); CHECK(cond_comp_idx < caller->branch_computations().size()); const HloInstruction* branch_comp_arg = caller->operand(cond_comp_idx + 1); CHECK(branch_comp_arg->shape().IsTuple()); return GetDimensionForIota(branch_comp_arg->operand(gte_index), call_graph); } } return std::nullopt; } return std::nullopt; } std::optional<GatherScatterParallelDims> GetGatherScatterBatchParallelDims( const HloInstruction* operand, const HloInstruction* indices, absl::Span<const int64_t> slice_sizes, int64_t index_vector_dim, absl::Span<const int64_t> index_map, const CallGraph& call_graph) { std::vector<int64_t> index_parallel_in_dim(index_map.size(), -1); auto findConcatenate = [&](const HloInstruction* indices) { const HloInstruction* orig_indices = indices; while (indices->opcode() == HloOpcode::kCopy) { indices = indices->operand(0); } if (indices->opcode() == HloOpcode::kConcatenate) { return indices; } return orig_indices; }; indices = findConcatenate(indices); if (indices->opcode() == HloOpcode::kConcatenate && indices->concatenate_dimension() == index_vector_dim) { int concatenated_dims = 0; for (int i = 0; i < indices->operand_count(); ++i) { const HloInstruction* op = indices->operand(i); const int64_t num_indices_from_element = op->shape().dimensions_size() > index_vector_dim ? op->shape().dimensions(index_vector_dim) : 1; if (std::optional<int64_t> maybe_iota_dim = GetDimensionForIota(op, call_graph)) { if (*maybe_iota_dim != index_vector_dim) { for (int j = 0; j < num_indices_from_element; ++j) { index_parallel_in_dim[concatenated_dims + j] = *maybe_iota_dim; } } } concatenated_dims += num_indices_from_element; } } else if (std::optional<int64_t> maybe_iota_dim = GetDimensionForIota(indices, call_graph)) { if (*maybe_iota_dim != index_vector_dim) { const int64_t num_indices_from_element = indices->shape().dimensions_size() > index_vector_dim ? indices->shape().dimensions(index_vector_dim) : 1; index_parallel_in_dim.assign(num_indices_from_element, *maybe_iota_dim); } } absl::InlinedVector<int64_t, 1> indices_parallel_dims; absl::InlinedVector<int64_t, 1> operand_parallel_dims; for (int i = 0; i < index_parallel_in_dim.size(); ++i) { int index_parallel_dim = index_parallel_in_dim[i]; if (index_parallel_dim == -1) { continue; } if (absl::c_linear_search(indices_parallel_dims, index_parallel_dim)) { return std::nullopt; } if (slice_sizes[index_map[i]] == 1) { indices_parallel_dims.push_back(index_parallel_dim); operand_parallel_dims.push_back(index_map[i]); if (operand->shape().dimensions(operand_parallel_dims.back()) != indices->shape().dimensions(indices_parallel_dims.back())) { return std::nullopt; } } else { index_parallel_in_dim[i] = -1; } } if (!indices_parallel_dims.empty()) { return GatherScatterParallelDims{indices_parallel_dims, operand_parallel_dims}; } return std::nullopt; } std::optional<GatherScatterParallelDims> GetGatherParallelBatchDims( const HloInstruction& hlo, const CallGraph& call_graph) { CHECK(DynCast<HloGatherInstruction>(&hlo)); const HloInstruction* operand = hlo.operand(0); const HloInstruction* indices = hlo.operand(1); absl::Span<const int64_t> slice_sizes = hlo.gather_slice_sizes(); const auto& dnums = hlo.gather_dimension_numbers(); int64_t index_vector_dim = dnums.index_vector_dim(); const auto& index_map = dnums.start_index_map(); return GetGatherScatterBatchParallelDims( operand, indices, slice_sizes, index_vector_dim, index_map, call_graph); } std::optional<GatherScatterParallelDims> GetScatterParallelBatchDims( const HloInstruction& hlo, const CallGraph& call_graph) { const HloScatterInstruction* scatter = DynCast<HloScatterInstruction>(&hlo); CHECK(scatter); const HloInstruction* operand = scatter->scatter_operands()[0]; const HloInstruction* indices = scatter->scatter_indices(); const auto& dnums = hlo.scatter_dimension_numbers(); std::vector<int64_t> slice_sizes = GetScatterSliceSize(scatter->scatter_operands()[0]->shape(), scatter->scatter_updates()[0]->shape(), dnums); int64_t index_vector_dim = dnums.index_vector_dim(); const auto& index_map = dnums.scatter_dims_to_operand_dims(); return GetGatherScatterBatchParallelDims( operand, indices, slice_sizes, index_vector_dim, index_map, call_graph); } static absl::InlinedVector<int64_t, 1> GetGatherOutputOrScatterUpdateParallelDims( const Shape& shape, absl::Span<const int64_t> indices_parallel_dims, int64_t index_vector_dim, absl::Span<const int64_t> offset_or_window_dims) { absl::InlinedVector<int64_t, 1> output_parallel_dims; for (int64_t indices_parallel_dim : indices_parallel_dims) { for (int i = 0, idx_dim = 0; i < shape.dimensions_size(); ++i) { if (absl::c_linear_search(offset_or_window_dims, i)) { continue; } const int index_dim = idx_dim < index_vector_dim ? idx_dim : idx_dim + 1; if (indices_parallel_dim == index_dim) { output_parallel_dims.push_back(i); break; } ++idx_dim; } } CHECK_EQ(output_parallel_dims.size(), indices_parallel_dims.size()); return output_parallel_dims; } absl::InlinedVector<int64_t, 1> GetGatherParallelOutputDims( const HloInstruction& hlo, const GatherScatterParallelDims& parallel_dim) { CHECK(DynCast<HloGatherInstruction>(&hlo)); const Shape& output_shape = hlo.shape(); const auto& dnums = hlo.gather_dimension_numbers(); int64_t index_vector_dim = dnums.index_vector_dim(); const auto& offset_dims = dnums.offset_dims(); return GetGatherOutputOrScatterUpdateParallelDims( output_shape, parallel_dim.indices_parallel_dims, index_vector_dim, offset_dims); } absl::InlinedVector<int64_t, 1> GetScatterParallelUpdateDims( const HloInstruction& hlo, const GatherScatterParallelDims& parallel_dim) { const HloScatterInstruction* scatter = DynCast<HloScatterInstruction>(&hlo); CHECK(scatter); const Shape update_shape = scatter->scatter_updates()[0]->shape(); const auto& dnums = hlo.scatter_dimension_numbers(); int64_t index_vector_dim = dnums.index_vector_dim(); const auto& window_dims = dnums.update_window_dims(); return GetGatherOutputOrScatterUpdateParallelDims( update_shape, parallel_dim.indices_parallel_dims, index_vector_dim, window_dims); } absl::InlinedVector<int64_t, 1> GetGatherOperandPassthroughOperandDims( const Shape& operand_shape, const HloInstruction& hlo, absl::Span<const int64_t> slice_sizes) { const auto& dnums = hlo.gather_dimension_numbers(); return GetGatherScatterOperandPassthroughOperandDims( operand_shape, dnums.collapsed_slice_dims(), dnums.operand_batching_dims(), dnums.start_index_map(), dnums.offset_dims(), slice_sizes); } absl::InlinedVector<int64_t, 1> GetScatterOperandPassthroughOperandDims( const Shape& operand_shape, const HloSharding& operand_sharding, const HloInstruction& hlo, absl::Span<const int64_t> slice_sizes) { const auto& dnums = hlo.scatter_dimension_numbers(); return GetGatherScatterOperandPassthroughOperandDims( operand_shape, dnums.inserted_window_dims(), dnums.input_batching_dims(), dnums.scatter_dims_to_operand_dims(), dnums.update_window_dims(), slice_sizes); } absl::InlinedVector<int64_t, 1> GetGatherOperandPassthroughOutputDims( const Shape& output_shape, const Shape& operand_shape, const HloInstruction& hlo, absl::Span<const int64_t> slice_sizes) { const auto& dnums = hlo.gather_dimension_numbers(); return GetGatherScatterOperandPassthroughOutputOrUpdateDims( output_shape.rank(), operand_shape, dnums.collapsed_slice_dims(), dnums.operand_batching_dims(), dnums.start_index_map(), dnums.offset_dims(), slice_sizes); } absl::InlinedVector<int64_t, 1> GetScatterOperandPassthroughUpdateDims( const Shape& update_shape, const Shape& operand_shape, const HloSharding& operand_sharding, const HloInstruction& hlo, absl::Span<const int64_t> slice_sizes) { const auto& dnums = hlo.scatter_dimension_numbers(); return GetGatherScatterOperandPassthroughOutputOrUpdateDims( update_shape.rank(), operand_shape, dnums.inserted_window_dims(), dnums.input_batching_dims(), dnums.scatter_dims_to_operand_dims(), dnums.update_window_dims(), slice_sizes); } absl::InlinedVector<int64_t, 1> GetGatherScatterIndexPassthroughIndexDims( const int64_t indices_rank, const int64_t index_vector_dim) { absl::InlinedVector<int64_t, 1> passthrough_dims; for (int64_t i = 0; i != indices_rank; ++i) { if (i == index_vector_dim) { continue; } passthrough_dims.push_back(i); } return passthrough_dims; } absl::InlinedVector<int64_t, 1> GetGatherScatterIndexPassthroughOutputOrUpdateDims( const int64_t output_or_update_rank, absl::Span<const int64_t> offset_or_window_dims) { absl::InlinedVector<int64_t, 1> passthrough_dims; for (int64_t i = 0; i != output_or_update_rank; ++i) { if (!absl::c_linear_search(offset_or_window_dims, i)) { passthrough_dims.push_back(i); } } return passthrough_dims; } HloSharding InferGatherScatterParallelShardingFromOperandSharding( const HloSharding& operand_sharding, const Shape& shape, absl::Span<const int64_t> output_aligned_operand_parallel_dims, absl::Span<const int64_t> output_parallel_dims) { return PropagateShardingAlongDimsAndReplicateOthers( operand_sharding, output_aligned_operand_parallel_dims, output_parallel_dims, shape.rank()); } std::string GroupedSharding::ToString() const { auto result = absl::StrCat("group dims: ", absl::StrJoin(group_dims, ","), "\n"); absl::StrAppend( &result, "group dim sizes: ", absl::StrJoin(group_dim_sizes, ","), "\n"); absl::StrAppend(&result, "data rank: ", data_rank, "\n"); absl::StrAppend(&result, "subgroup manual: ", subgroup_manual, "\n"); absl::StrAppend(&result, "inner sharding: ", sharding.ToString(), "\n"); absl::StrAppend(&result, "device groups:", "\n"); for (auto& device_group : device_groups) { absl::StrAppend(&result, "\t", absl::StrJoin(device_group, ","), "\n"); } return result; } GroupedSharding GroupShardingOnAllDimsExcept( const HloSharding& sharding, absl::Span<const int64_t> non_group_dims, bool subgroup_manual) { std::vector<int64_t> group_dims(sharding.tile_assignment().num_dimensions()); absl::c_iota(group_dims, 0); group_dims.erase( std::remove_if( group_dims.begin(), group_dims.end(), [&](int64_t i) { return absl::c_linear_search(non_group_dims, i); }), group_dims.end()); return GroupShardingOnDims(sharding, group_dims, subgroup_manual); } GroupedSharding GroupShardingOnDims(const HloSharding& sharding, absl::Span<const int64_t> group_dims, bool subgroup_manual) { std::vector<int64_t> group_dim_shards(group_dims.size(), 1); return GroupShardingOnDims(sharding, group_dims, group_dim_shards, subgroup_manual); } GroupedSharding GroupShardingOnDims(const HloSharding& sharding, absl::Span<const int64_t> group_dims, absl::Span<const int64_t> group_dim_shards, bool subgroup_manual) { CHECK(!sharding.IsTileMaximal()); std::vector<std::pair<int64_t, int64_t>> decomposed_tiling_dims( sharding.tile_assignment().num_dimensions()); for (int64_t i = 0; i < decomposed_tiling_dims.size(); ++i) { decomposed_tiling_dims[i] = std::make_pair(1, sharding.tile_assignment().dim(i)); } DimensionVector group_dim_sizes(group_dims.size()); for (int64_t i = 0; i < group_dims.size(); ++i) { CHECK_EQ( sharding.tile_assignment().dim(group_dims[i]) % group_dim_shards[i], 0); group_dim_sizes[i] = sharding.tile_assignment().dim(group_dims[i]) / group_dim_shards[i]; decomposed_tiling_dims[group_dims[i]].first = group_dim_sizes[i]; decomposed_tiling_dims[group_dims[i]].second = group_dim_shards[i]; } DimensionVector grouped_tiling_dims(decomposed_tiling_dims.size()); for (int64_t i = 0; i < decomposed_tiling_dims.size(); ++i) { grouped_tiling_dims[i] = decomposed_tiling_dims[i].second; } DimensionVector sorted_group_dims(group_dims.size()); std::partial_sort_copy(group_dims.begin(), group_dims.end(), sorted_group_dims.begin(), sorted_group_dims.end()); absl::flat_hash_map<int64_t, int64_t> group_dim_to_index(group_dims.size()); DimensionVector reshape_dimensions(grouped_tiling_dims.begin(), grouped_tiling_dims.end()); reshape_dimensions.reserve(decomposed_tiling_dims.size() + group_dims.size()); for (int64_t i = 0; i < sorted_group_dims.size(); ++i) { int64_t index = sorted_group_dims[i] + i; group_dim_to_index[sorted_group_dims[i]] = index; reshape_dimensions.insert( reshape_dimensions.begin() + index, decomposed_tiling_dims[sorted_group_dims[i]].first); } std::vector<int> perm(reshape_dimensions.size()); absl::c_iota(perm, 0); for (int64_t i = 0; i < group_dims.size(); ++i) { const int64_t index = group_dim_to_index[group_dims[i]]; perm.erase(std::remove(perm.begin(), perm.end(), index), perm.end()); perm.insert(perm.begin() + i, index); } auto grouped_array = sharding.tile_assignment() .Reshape(reshape_dimensions) .Transpose(perm) .array(); const int64_t num_device_groups = Product(group_dim_sizes); const int64_t num_devices = sharding.tile_assignment().num_elements(); CHECK_EQ(num_devices % num_device_groups, 0); const int64_t device_group_size = num_devices / num_device_groups; std::vector<std::vector<int64_t>> device_groups( num_device_groups, std::vector<int64_t>(device_group_size)); for (int64_t i = 0; i < num_device_groups; ++i) { device_groups[i].assign( grouped_array.begin() + i * device_group_size, grouped_array.begin() + (i + 1) * device_group_size); } auto grouped = GroupedSharding( std::move(device_groups), DimensionVector(group_dims.begin(), group_dims.end()), std::move(group_dim_sizes), sharding.tile_assignment().num_dimensions(), HloSharding::Replicate(), subgroup_manual); if (sharding.ReplicateOnLastTileDim()) { grouped.data_rank--; } if (sharding.IsManualSubgroup()) { grouped.data_rank -= sharding.subgroup_types().size(); } if (Product(grouped_tiling_dims) == 1 || (sharding.ReplicateOnLastTileDim() && Product(grouped_tiling_dims) == grouped_tiling_dims.back())) { return grouped; } if (sharding.IsManualSubgroup()) { int64_t tile_dimensions = sharding.tile_assignment().num_dimensions(); int64_t subgroup_size = sharding.subgroup_types().size(); int64_t rank = tile_dimensions - subgroup_size; int num_dims_erase = 0; for (int i = 0; i < subgroup_size; i++) { if (sharding.subgroup_types()[i] == OpSharding::MANUAL) { grouped_tiling_dims.erase(grouped_tiling_dims.begin() + i + rank - num_dims_erase); num_dims_erase++; } } } if (sharding.ReplicateOnLastTileDim() && grouped_tiling_dims.back() == 1) { grouped_tiling_dims.pop_back(); } TileAssignment grouped_tiling(grouped_tiling_dims); grouped.sharding = sharding.ReplicateOnLastTileDim() && grouped_tiling_dims.size() == sharding.tile_assignment().num_dimensions() ? HloSharding::PartialTile(grouped_tiling, sharding.metadata()) : HloSharding::Tile(grouped_tiling, sharding.metadata()); return grouped; } namespace { std::vector<int64_t> PrimeFactorization(int64_t num) { std::vector<int64_t> prime_factors; while (num % 2 == 0) { prime_factors.push_back(2); num /= 2; } for (int64_t i = 3; i <= sqrt(num); i += 2) { while (num % i == 0) { prime_factors.push_back(i); num /= i; } } return prime_factors; } } GroupedSharding GroupShardingOnReplicatedDim( const HloSharding& sharding, int64_t num_groups, int64_t num_tiles, int64_t data_rank, absl::Span<const int64_t> replicable_dims) { if (sharding.ReplicateOnLastTileDim() && sharding.tile_assignment().dimensions().back() % num_groups == 0) { absl::InlinedVector<int64_t, 1> group_dim_shards = { sharding.tile_assignment().dimensions().back() / num_groups}; return GroupShardingOnDims( sharding, {sharding.tile_assignment().num_dimensions() - 1}, group_dim_shards); } if (sharding.IsTiled()) { const int64_t reps_on_last_tile_dim = sharding.ReplicateOnLastTileDim() ? sharding.tile_assignment().dimensions().back() : 1; const int64_t max_replicable_dimensions = absl::c_accumulate( replicable_dims, reps_on_last_tile_dim, [&](int64_t product, int64_t dim) { return product * sharding.tile_assignment().dim(dim); }); if (max_replicable_dimensions % num_groups == 0 && num_groups % reps_on_last_tile_dim == 0) { auto tile_assignment = [&]() -> std::optional<TileAssignment> { int dimensions_to_borrow = num_groups / reps_on_last_tile_dim; DimensionVector tile_dims( sharding.tile_assignment().dimensions().begin(), sharding.tile_assignment().dimensions().end()); if (!sharding.ReplicateOnLastTileDim()) { tile_dims.push_back(1); } for (auto replicable_dim : replicable_dims) { for (auto factor : PrimeFactorization( sharding.tile_assignment().dim(replicable_dim))) { if (dimensions_to_borrow % factor == 0) { tile_dims[replicable_dim] /= factor; tile_dims.back() *= factor; dimensions_to_borrow /= factor; if (dimensions_to_borrow == 1) { return TileAssignment(tile_dims); } } } } return std::nullopt; }(); if (tile_assignment.has_value()) { HloSharding partial_sharding = HloSharding::PartialTile( tile_assignment.value(), sharding.metadata()); if (!partial_sharding.IsReplicated()) { return GroupShardingOnDims( partial_sharding, {partial_sharding.tile_assignment().num_dimensions() - 1}); } } } } return GetGroupedReplicatedSharding(num_groups, num_tiles, data_rank); } GroupedSharding GetGroupedReplicatedSharding(const int64_t num_groups, const int64_t num_tiles, const int64_t data_rank) { CHECK_EQ(num_tiles % num_groups, 0); const int64_t group_size = num_tiles / num_groups; std::vector<std::vector<int64_t>> device_groups( num_groups, std::vector<int64_t>(group_size)); int64_t device_id = 0; for (auto& device_group : device_groups) { absl::c_iota(device_group, device_id); device_id = device_group.back() + 1; } return GroupedSharding(std::move(device_groups), {data_rank}, {num_groups}, data_rank, HloSharding::Replicate(), false); } GroupedSharding GetManualSubgroupSharding(const HloSharding& sharding) { CHECK(sharding.IsManualSubgroup()); int64_t tile_dimensions = sharding.tile_assignment().num_dimensions(); int64_t subgroup_size = sharding.subgroup_types().size(); int64_t rank = tile_dimensions - subgroup_size; DimensionVector group_dims; bool last_tile_dim_replicate = false; for (int64_t i = 0; i < subgroup_size; i++) { if (sharding.subgroup_types()[i] == OpSharding::MANUAL) { group_dims.push_back(rank + i); } else if (sharding.subgroup_types()[i] == OpSharding::REPLICATED) { last_tile_dim_replicate = true; } } GroupedSharding group_sharding = GroupShardingOnDims(sharding, group_dims, true); if (last_tile_dim_replicate || group_sharding.sharding.tile_assignment().num_dimensions() > rank) { group_sharding.sharding = HloSharding::PartialTile( group_sharding.sharding.tile_assignment(), sharding.metadata()); } return group_sharding; } std::optional<GroupedSharding> PartialReplicatedGroupShardingWithAssignedDeviceGroups( const HloSharding& sharding, int64_t num_shards, const std::vector<std::vector<int64_t>>& device_groups) { if (!sharding.ReplicateOnLastTileDim() || sharding.tile_assignment().dimensions().back() % device_groups.size() != 0) { VLOG(5) << "Failed because not partial replicated or not divisible"; return std::nullopt; } std::vector<DimensionVector> device_to_index( Product(sharding.tile_assignment().dimensions()), DimensionVector(sharding.tile_assignment().num_dimensions())); sharding.tile_assignment().Each( [&device_to_index](absl::Span<const int64_t> indices, int64_t device) { device_to_index[device].assign(indices.begin(), indices.end()); }); DimensionVector grouped_tiling_dims( sharding.tile_assignment().dimensions().begin(), sharding.tile_assignment().dimensions().end()); grouped_tiling_dims.back() /= device_groups.size(); std::optional<HloSharding> final_sharding; const int64_t shard_size_on_replicated_dim = sharding.tile_assignment().dimensions().back() / num_shards; for (int64_t group_idx = 0; group_idx < device_groups.size(); ++group_idx) { HloSharding group_sharding = HloSharding::Replicate(); Array<int64_t> grouped_tiling(grouped_tiling_dims); Array<int64_t> stacked_pos( absl::MakeConstSpan(grouped_tiling_dims.data(), grouped_tiling_dims.size() - 1), 0); for (int64_t device_idx = 0; device_idx < device_groups[group_idx].size(); ++device_idx) { VLOG(5) << "Device idx: " << device_idx; const int64_t device = device_groups[group_idx][device_idx]; const auto& indices = device_to_index[device]; absl::Span<const int64_t> stacked_pos_idx = absl::MakeConstSpan(indices.data(), indices.size() - 1); int64_t& position = stacked_pos(stacked_pos_idx); if (position == num_shards) { VLOG(5) << "Fail because stacked position overflow " << position << " device_groups " << device_groups.size() << " [" << absl::StrJoin(indices, ",") << "]"; VLOG(5) << "Device: " << device << " " << device_groups[group_idx][device_idx]; VLOG(5) << "Indices: " << absl::StrJoin(indices, ","); VLOG(5) << "Grouped tiling: " << grouped_tiling.ToString(); return std::nullopt; } auto stacked_indices = indices; stacked_indices.back() = position++; grouped_tiling(stacked_indices) = device_idx; } group_sharding = HloSharding::PartialTile(grouped_tiling, sharding.metadata()); if (!final_sharding) { final_sharding = group_sharding; continue; } if (*final_sharding != group_sharding) { VLOG(5) << "Fail because final sharding different from group sharding: " << final_sharding->ToString() << " vs " << group_sharding.ToString(); return std::nullopt; } } return GroupedSharding(device_groups, {sharding.tile_assignment().num_dimensions() - 1}, {shard_size_on_replicated_dim}, sharding.tile_assignment().num_dimensions() - 1, *final_sharding, false); } HloSharding UngroupSharding(const GroupedSharding& grouped_sharding) { DimensionVector tiling_dims; bool partial_sharding = false; std::vector<OpSharding::Type> subgroup_types; auto grouped_tiling = grouped_sharding.sharding.tile_assignment(); if (grouped_sharding.sharding.IsTileMaximal()) { tiling_dims = DimensionVector(grouped_sharding.data_rank, 1); if (grouped_sharding.device_groups[0].size() != 1 || absl::c_linear_search(grouped_sharding.group_dims, tiling_dims.size())) { tiling_dims.push_back(grouped_sharding.device_groups[0].size()); partial_sharding = true; } grouped_tiling = TileAssignment(tiling_dims); } if (grouped_sharding.subgroup_manual) { partial_sharding = grouped_sharding.sharding.ReplicateOnLastTileDim() || grouped_sharding.sharding.IsReplicated(); int64_t subgroup_dim_size = grouped_sharding.group_dims.size(); if (partial_sharding) { subgroup_dim_size++; } subgroup_types = std::vector<OpSharding::Type>(subgroup_dim_size, OpSharding::REPLICATED); if (!grouped_sharding.sharding.IsTileMaximal()) { tiling_dims.assign( grouped_sharding.sharding.tile_assignment().dimensions().begin(), grouped_sharding.sharding.tile_assignment().dimensions().end()); } for (int i = 0; i < grouped_sharding.group_dims.size(); i++) { subgroup_types[grouped_sharding.group_dims[i] - grouped_sharding.data_rank] = OpSharding::MANUAL; tiling_dims.insert(tiling_dims.begin() + grouped_sharding.group_dims[i], 1); } } else if (!grouped_sharding.sharding.IsTileMaximal()) { partial_sharding = grouped_sharding.sharding.ReplicateOnLastTileDim(); tiling_dims.assign( grouped_sharding.sharding.tile_assignment().dimensions().begin(), grouped_sharding.sharding.tile_assignment().dimensions().end()); if (absl::c_linear_search(grouped_sharding.group_dims, tiling_dims.size())) { tiling_dims.push_back(1); partial_sharding = true; } } DimensionVector group_dim_sizes_and_tiling_dims( grouped_sharding.group_dim_sizes.begin(), grouped_sharding.group_dim_sizes.end()); group_dim_sizes_and_tiling_dims.insert(group_dim_sizes_and_tiling_dims.end(), tiling_dims.begin(), tiling_dims.end()); Array<int64_t> tiling(group_dim_sizes_and_tiling_dims); DimensionVector sorted_group_dims(grouped_sharding.group_dims.size()); std::partial_sort_copy(grouped_sharding.group_dims.begin(), grouped_sharding.group_dims.end(), sorted_group_dims.begin(), sorted_group_dims.end()); absl::flat_hash_map<int64_t, int64_t> group_dim_to_index( grouped_sharding.group_dims.size()); for (int64_t i = 0; i < sorted_group_dims.size(); ++i) { group_dim_to_index[sorted_group_dims[i]] = sorted_group_dims[i] + i; } std::vector<int> perm(tiling_dims.size() + grouped_sharding.group_dims.size(), -1); for (int64_t i = 0; i < grouped_sharding.group_dims.size(); i++) { perm[group_dim_to_index[grouped_sharding.group_dims[i]]] = i; } int64_t j = grouped_sharding.group_dims.size(); for (int64_t i = 0; i < perm.size(); i++) { if (perm[i] == -1) { perm[i] = j++; } } std::vector<int64_t> flattened_device_groups; flattened_device_groups.reserve(grouped_sharding.device_groups.size() * grouped_sharding.device_groups[0].size()); bool same_length = grouped_tiling.num_elements() == grouped_sharding.device_groups[0].size(); for (auto const& v : grouped_sharding.device_groups) { if (same_length) { for (int64_t i = 0; i < v.size(); ++i) { flattened_device_groups.push_back( v[*(grouped_tiling.array().begin() + i)]); } } else { flattened_device_groups.insert(flattened_device_groups.end(), v.begin(), v.end()); } } tiling.SetValues(flattened_device_groups); TileAssignment tile_assignment( std::make_shared<const Array<int64_t>>(std::move(tiling))); for (int64_t i = 0; i < grouped_sharding.group_dims.size(); ++i) { int64_t dim = grouped_sharding.group_dims[i]; tiling_dims[dim] *= grouped_sharding.group_dim_sizes[i]; } tile_assignment = tile_assignment.Transpose(perm).Reshape(tiling_dims); if (grouped_sharding.subgroup_manual) { return HloSharding::Subgroup(tile_assignment, subgroup_types, grouped_sharding.sharding.metadata()); } return partial_sharding ? HloSharding::PartialTile(tile_assignment) : HloSharding::Tile(tile_assignment); } bool DeviceGroupsAreMatch(GroupedSharding& lhs, GroupedSharding& rhs, bool ignore_group_order) { if (lhs.device_groups.size() != rhs.device_groups.size()) { return false; } bool matching_groups = true; std::vector<int64_t> device_to_ref_group(lhs.device_groups.size() * lhs.device_groups[0].size()); for (int64_t g = 0; g < lhs.device_groups.size(); ++g) { for (int64_t device : lhs.device_groups[g]) { device_to_ref_group[device] = g; } } auto unique_ref_dev_group = [&](absl::Span<const int64_t> devices) -> int64_t { int64_t ref_g = -1; for (int64_t device : devices) { if (ref_g == -1) { ref_g = device_to_ref_group[device]; } else if (ref_g != device_to_ref_group[device]) { return -1; } } return ref_g; }; for (int64_t g = 0; g < rhs.device_groups.size(); ++g) { int64_t ref_g = unique_ref_dev_group(rhs.device_groups[g]); if (ref_g < 0 || (!ignore_group_order && g != ref_g)) { matching_groups = false; break; } } return matching_groups; } HloSharding SplitShardingDimension(const HloSharding& sharding, int64_t dimension, int64_t new_dim_size) { CHECK_GT(sharding.TiledDataRank(), dimension); CHECK_EQ(sharding.tile_assignment().dim(dimension) % new_dim_size, 0) << "dim size " << new_dim_size; DimensionVector dimensions(sharding.tile_assignment().dimensions().begin(), sharding.tile_assignment().dimensions().end()); int64_t current_dimension = dimensions[dimension]; dimensions.insert(dimensions.begin() + dimension + 1, current_dimension / new_dim_size); dimensions[dimension] = new_dim_size; auto new_tile_assignment = sharding.tile_assignment().Reshape(dimensions); return sharding.ReplicateOnLastTileDim() ? HloSharding::PartialTile(new_tile_assignment) : HloSharding::Subgroup(new_tile_assignment, sharding.subgroup_types()); } HloSharding MergeShardingDimension(const HloSharding& sharding, int64_t dimension) { CHECK_GT(sharding.TiledDataRank(), dimension); DimensionVector dimensions(sharding.tile_assignment().dimensions().begin(), sharding.tile_assignment().dimensions().end()); dimensions[dimension] *= dimensions[dimension + 1]; dimensions.erase(dimensions.begin() + dimension + 1); auto new_tile_assignment = sharding.tile_assignment().Reshape(dimensions); return sharding.ReplicateOnLastTileDim() ? HloSharding::PartialTile(new_tile_assignment) : HloSharding::Subgroup(new_tile_assignment, sharding.subgroup_types()); } std::shared_ptr<const HloSharding> CreateTupleSharding( const Shape& shape, absl::Span<const HloInstruction* const> elements) { bool any_sharding = false; for (const HloInstruction* element : elements) { any_sharding |= element->has_sharding(); } if (!any_sharding) { return nullptr; } std::vector<HloSharding> sub_shardings; sub_shardings.reserve(elements.size()); for (const HloInstruction* element : elements) { if (element->has_sharding()) { sub_shardings.push_back(element->sharding()); } else { sub_shardings.push_back(HloSharding::Replicate()); } } return std::make_shared<const HloSharding>( HloSharding::Tuple(shape, sub_shardings)); } bool IsSortOperandShardingMovable(const HloInstruction* sort_operand, int64_t sort_dim) { if (sort_operand == nullptr || sort_operand->shape().rank() < 2 || !sort_operand->has_sharding()) { return false; } const auto& sharding = sort_operand->sharding(); if (!sharding.IsTiled() || sharding.IsTileMaximal() || sharding.tile_assignment().dim(sort_dim) == 1) { return false; } auto tile_assignment_dims = sharding.tile_assignment().dimensions(); const int rank = sort_operand->shape().rank(); for (int64_t dim = 0; dim < rank; ++dim) { if (dim == sort_dim || tile_assignment_dims[dim] != 1 || sort_operand->shape().dimensions(dim) == 1) { continue; } return true; } return false; } std::optional<HloSharding> GetOutputSharding( const HloInstruction* instruction) { if (!instruction->has_sharding()) { return std::nullopt; } if (instruction->opcode() == HloOpcode::kOutfeed) { if (!instruction->sharding().IsTuple()) { return instruction->sharding(); } return instruction->sharding().tuple_elements().back(); } return instruction->sharding(); } Shape UntileShape(const HloSharding& sharding, const Shape& shape) { if (!sharding.IsTuple()) { return UntileLeafShape(sharding, shape); } Shape result_shape = shape; ShapeUtil::ForEachMutableSubshape( &result_shape, [&shape, &sharding](Shape* subshape, const ShapeIndex& index) { if (!ShapeUtil::IsLeafIndex(shape, index)) { return; } const HloSharding& subshape_sharding = sharding.GetSubSharding(shape, index); *subshape = UntileLeafShape(subshape_sharding, *subshape); }); return result_shape; } Shape UntileLeafShape(const HloSharding& sharding, const Shape& shape) { if (sharding.IsTileMaximal() || sharding.IsManual() || sharding.IsUnknown()) { return shape; } if (!shape.IsArray()) { return shape; } Shape result_shape = shape; for (int64_t i = 0; i < sharding.TiledDataRank() && i < shape.rank(); ++i) { result_shape.set_dimensions( i, shape.dimensions(i) * sharding.tile_assignment().dim(i)); } return result_shape; } Shape TileShape(const HloSharding& sharding, const Shape& shape) { if (!sharding.IsTuple()) { return TileLeafShape(sharding, shape); } Shape result_shape = shape; ShapeUtil::ForEachMutableSubshape( &result_shape, [&shape, &sharding](Shape* subshape, const ShapeIndex& index) { if (!ShapeUtil::IsLeafIndex(shape, index)) { return; } const HloSharding& subshape_sharding = sharding.GetSubSharding(shape, index); *subshape = TileLeafShape(subshape_sharding, *subshape); }); return result_shape; } Shape TileLeafShape(const HloSharding& sharding, const Shape& shape) { if (sharding.IsTileMaximal() || sharding.IsManual() || sharding.IsUnknown()) { return shape; } if (!shape.IsArray()) { return shape; } Shape result_shape = shape; for (int64_t i = 0; i < sharding.TiledDataRank() && i < shape.rank(); ++i) { CHECK_EQ(shape.dimensions(i) % sharding.tile_assignment().dim(i), 0); result_shape.set_dimensions( i, shape.dimensions(i) / sharding.tile_assignment().dim(i)); } return result_shape; } absl::Status CanonicalizeLayoutAfterShardingPropagation( HloModule* module, bool update_output_layout, bool update_parameters_layout) { if (!update_output_layout && !update_parameters_layout) { return absl::OkStatus(); } if (!module->layout_canonicalization_callback()) { LOG(INFO) << "There is no registered layout_canonicalization_callback."; return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(auto shapes_with_layout, module->layout_canonicalization_callback()(*module)); if (update_output_layout && module->entry_computation_layout().result_layout().LayoutIsSet()) { TF_RETURN_IF_ERROR(module->mutable_entry_computation_layout() ->mutable_result_layout() ->CopyLayoutFromShape(shapes_with_layout.second)); } if (update_parameters_layout) { for (int64_t i = 0; i < module->entry_computation()->num_parameters(); ++i) { if (module->entry_computation_layout() .parameter_layout(i) .LayoutIsSet()) { TF_RETURN_IF_ERROR( module->mutable_entry_computation_layout() ->mutable_parameter_layout(i) ->CopyLayoutFromShape(shapes_with_layout.first[i])); } } } return absl::OkStatus(); } bool IsSpatiallyPartitioned(const HloSharding& sharding) { if (sharding.IsTuple()) { return absl::c_any_of(sharding.tuple_elements(), [](const HloSharding& sub_sharding) { return IsSpatiallyPartitioned(sub_sharding); }); } else { return !sharding.IsTileMaximal() || sharding.IsReplicated(); } } int MaskTupleShardingStrictlyBetter(const HloSharding& lhs, const HloSharding& rhs) { DCHECK(lhs.IsTuple()); DCHECK(rhs.IsTuple()); const auto& lhs_shardings = lhs.tuple_elements(); const auto& rhs_shardings = rhs.tuple_elements(); CHECK_EQ(lhs_shardings.size(), rhs_shardings.size()); int mask = 0; for (int64_t i = 0; i < lhs_shardings.size(); ++i) { const auto& lhs_shard = lhs_shardings[i]; const auto& rhs_shard = rhs_shardings[i]; CHECK_EQ(lhs_shard.IsTuple(), rhs_shard.IsTuple()); if (lhs_shard.IsTuple()) { mask |= MaskTupleShardingStrictlyBetter(lhs_shard, rhs_shard); } else { if (lhs_shard.IsManualLeaf() && rhs_shard.IsTileMaximalLeaf()) { mask |= 1; } if (rhs_shard.IsManualLeaf() && lhs_shard.IsTileMaximalLeaf()) { mask |= 2; } } if (mask == 3) break; } return mask; } bool IsShardingStrictlyBetter(const HloSharding& lhs, const HloSharding& rhs) { CHECK_EQ(lhs.IsTuple(), rhs.IsTuple()) << lhs << " <> " << rhs; if (lhs.IsTuple()) { return MaskTupleShardingStrictlyBetter(lhs, rhs) == 1; } return lhs.IsManualLeaf() && rhs.IsTileMaximalLeaf(); } std::optional<HloSharding> ReturnImprovedShardingImpl( HloSharding from, const HloSharding* to_improved, const Shape& to_improved_shape, bool may_combine_partial_sharding, bool allow_aggressive_resharding) { if (to_improved != nullptr && IsShardingStrictlyBetter(from, *to_improved)) { return std::move(from); } if (!IsSpatiallyPartitioned(from)) { return std::nullopt; } if (to_improved == nullptr) { return std::move(from); } if (from.IsManual()) { return std::nullopt; } int64_t sharding_tiles = from.NumTiles(); if (MergeSharding(*to_improved, &from, may_combine_partial_sharding)) { if (!allow_aggressive_resharding && to_improved_shape.IsArray() && !to_improved->IsTileMaximal() && from.NumTiles() == sharding_tiles) { if (!IsSubTilingOrEqualSharding(to_improved_shape, from, *to_improved)) { VLOG(10) << "Not merging because of different device distribution"; VLOG(10) << "Instr sharding: " << to_improved->ToString(); VLOG(10) << "New sharding " << from.ToString(); return std::nullopt; } } return std::move(from); } return std::nullopt; } HloSharding InferDotOperandSharding( const HloSharding* dot_sharding, const HloSharding* other_operand_sharding, int64_t operand_index, const dot_as_convolution_util::DotConvolutionDimsInfo& dnums, bool consider_other_operand, bool may_combine_partial_sharding) { CHECK(operand_index == 0 || operand_index == 1); CHECK(dnums.conv_spatial_dims.empty()); std::vector<int64_t> output_dims_to_replicate; std::vector<int64_t> other_operand_dims_to_replicate; for (const auto& dim : operand_index == 0 ? dnums.rhs_non_contracting_dims : dnums.lhs_non_contracting_dims) { output_dims_to_replicate.push_back(dim.output); other_operand_dims_to_replicate.push_back(operand_index == 0 ? dim.rhs : dim.lhs); } for (const auto& dim : dnums.contracting_dims) { if (dim.output >= 0) { output_dims_to_replicate.push_back(dim.output); } } for (const auto& dim : operand_index == 0 ? dnums.lhs_non_contracting_dims : dnums.rhs_non_contracting_dims) { int64_t other_dim = operand_index == 0 ? dim.rhs : dim.lhs; if (other_dim >= 0) { other_operand_dims_to_replicate.push_back(other_dim); } } int64_t operand_shape_rank = operand_index == 0 ? dnums.lhs_shape_rank : dnums.rhs_shape_rank; int64_t other_shape_rank = operand_index == 0 ? dnums.rhs_shape_rank : dnums.lhs_shape_rank; HloSharding sharding = HloSharding::Replicate(); if (dot_sharding != nullptr) { HloSharding output_other_dims_replicated = PartiallyReplicateTiledShardingOnDims(*dot_sharding, output_dims_to_replicate); std::vector<int64_t> output_to_operand_dims(dnums.output_shape_rank, -1); std::vector<int64_t> operand_to_output_dims(operand_shape_rank, -1); for (const auto& dim : dnums.batch_dims) { output_to_operand_dims[dim.output] = operand_index == 0 ? dim.lhs : dim.rhs; operand_to_output_dims[operand_index == 0 ? dim.lhs : dim.rhs] = dim.output; } for (const auto& dim : operand_index == 0 ? dnums.lhs_non_contracting_dims : dnums.rhs_non_contracting_dims) { output_to_operand_dims[dim.output] = operand_index == 0 ? dim.lhs : dim.rhs; operand_to_output_dims[operand_index == 0 ? dim.lhs : dim.rhs] = dim.output; } sharding = std::move(*TransposeShardingWithCollapsedDims( output_other_dims_replicated, output_to_operand_dims, operand_to_output_dims)); } if (consider_other_operand && other_operand_sharding != nullptr && IsSpatiallyPartitioned(*other_operand_sharding)) { auto other_operand_dims_replicated = PartiallyReplicateTiledShardingOnDims( *other_operand_sharding, other_operand_dims_to_replicate); std::vector<int64_t> other_to_operand_dims(other_shape_rank, -1); std::vector<int64_t> operand_to_other_dims(operand_shape_rank, -1); for (const auto& dim : dnums.batch_dims) { other_to_operand_dims[operand_index == 0 ? dim.rhs : dim.lhs] = operand_index == 0 ? dim.lhs : dim.rhs; operand_to_other_dims[operand_index == 0 ? dim.lhs : dim.rhs] = operand_index == 0 ? dim.rhs : dim.lhs; } for (const auto& dim : dnums.contracting_dims) { other_to_operand_dims[operand_index == 0 ? dim.rhs : dim.lhs] = operand_index == 0 ? dim.lhs : dim.rhs; operand_to_other_dims[operand_index == 0 ? dim.lhs : dim.rhs] = operand_index == 0 ? dim.rhs : dim.lhs; } HloSharding sharding_from_other = *TransposeShardingWithCollapsedDims( other_operand_dims_replicated, other_to_operand_dims, operand_to_other_dims); if (MergeSharding(sharding, &sharding_from_other, may_combine_partial_sharding)) { sharding = std::move(sharding_from_other); } } return sharding; } HloSharding InferDotOperandSharding( const HloInstruction* dot, int64_t operand_index, const dot_as_convolution_util::DotConvolutionDimsInfo& dnums, bool consider_other_operand, bool may_combine_partial_sharding) { CHECK(dot->opcode() == HloOpcode::kDot || dot->opcode() == HloOpcode::kConvolution); const HloInstruction* other_operand = dot->operand(1 - operand_index); return InferDotOperandSharding( dot->has_sharding() ? &dot->sharding() : nullptr, other_operand->has_sharding() ? &other_operand->sharding() : nullptr, operand_index, dnums, consider_other_operand, may_combine_partial_sharding); } } }
#include "xla/hlo/utils/hlo_sharding_util.h" #include <cstdint> #include <initializer_list> #include <optional> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/log/log.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/array.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/ir/tile_assignment.h" #include "xla/service/dot_as_convolution_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace hlo_sharding_util { namespace { TEST(HloShardingUtilTest, MergeShardingIfCompatible1) { HloSharding to_merge = HloSharding::PartialTile(TileAssignment({1, 4, 2, 16}, {16, 8}, {1, 0})); HloSharding dst = HloSharding::PartialTile(TileAssignment({4, 1, 1, 32})); EXPECT_TRUE(MergeShardingIfCompatible(to_merge, &dst)); EXPECT_EQ(dst, HloSharding::PartialTile( TileAssignment({4, 4, 2, 4}, {4, 4, 8}, {0, 2, 1}))); } TEST(HloShardingUtilTest, MergeShardingIfCompatible2) { HloSharding to_merge = HloSharding::PartialTile(TileAssignment({1, 2, 4, 16}, {16, 8}, {1, 0})); HloSharding dst = HloSharding::PartialTile(TileAssignment({4, 1, 1, 32})); EXPECT_TRUE(MergeShardingIfCompatible(to_merge, &dst)); EXPECT_EQ(dst, HloSharding::PartialTile( TileAssignment({4, 2, 4, 4}, {4, 4, 8}, {0, 2, 1}))); } TEST(HloShardingUtilTest, MergeShardingIfCompatible3) { HloSharding to_merge = HloSharding::PartialTile(TileAssignment({4, 2, 1, 16}, {16, 8}, {1, 0})); HloSharding dst = HloSharding::PartialTile(TileAssignment({1, 1, 4, 32})); EXPECT_TRUE(MergeShardingIfCompatible(to_merge, &dst)); EXPECT_EQ(dst, HloSharding::PartialTile( TileAssignment({4, 2, 4, 4}, {16, 8}, {1, 0}))); } TEST(HloShardingUtilTest, MergeShardingIfCompatible4) { HloSharding to_merge = HloSharding::PartialTile(TileAssignment({1, 4, 2, 16}, {16, 8}, {1, 0})); HloSharding dst = HloSharding::PartialTile(TileAssignment({4, 1, 1, 32}, {4, 32}, {1, 0})); EXPECT_TRUE(MergeShardingIfCompatible(to_merge, &dst)); EXPECT_EQ(dst, HloSharding::PartialTile( TileAssignment({4, 4, 2, 4}, {4, 32}, {1, 0}))); } TEST(HloShardingUtilTest, MergeShardingIfCompatible5) { HloSharding to_merge = HloSharding::PartialTile(TileAssignment({1, 4, 2, 16}, {16, 8}, {1, 0})); HloSharding dst = HloSharding::PartialTile(TileAssignment({4, 1, 1, 32}, {32, 4}, {1, 0})); EXPECT_FALSE(MergeShardingIfCompatible(to_merge, &dst)); } TEST(HloShardingUtilTest, MergeShardingIfCompatible6) { HloSharding to_merge = HloSharding::PartialTile(TileAssignment({1, 4, 2, 16})); HloSharding dst = HloSharding::PartialTile(TileAssignment({4, 1, 1, 32})); EXPECT_FALSE(MergeShardingIfCompatible(to_merge, &dst)); } TEST(HloShardingUtilTest, MergeShardingIfCompatible7) { HloSharding to_merge = HloSharding::PartialTile( TileAssignment({2, 1, 2, 2}, {2, 2, 2}, {2, 1, 0})); HloSharding dst = HloSharding::PartialTile(TileAssignment({1, 2, 1, 4})); EXPECT_TRUE(MergeShardingIfCompatible(to_merge, &dst)); EXPECT_EQ(dst, HloSharding::Tile(TileAssignment({2, 2, 2}, {2, 2, 2}, {2, 0, 1}))); } TEST(HloShardingUtilTest, MergeShardingIfCompatible8) { HloSharding to_merge = HloSharding::PartialTile(TileAssignment({2, 1, 4})); HloSharding dst = HloSharding::PartialTile(TileAssignment({1, 4, 2}, {2, 2, 2}, {2, 1, 0})); EXPECT_TRUE(MergeShardingIfCompatible(to_merge, &dst)); EXPECT_EQ(dst, HloSharding::Tile(TileAssignment({2, 4}, {2, 2, 2}, {0, 2, 1}))); } TEST(HloShardingUtilTest, TransposeShardingReplicated) { EXPECT_EQ(TransposeSharding(HloSharding::Replicate(), {0, 1, 2}), HloSharding::Replicate()); } TEST(HloShardingUtilTest, TransposeShardingTiled) { HloSharding input = HloSharding::IotaTile({1, 2, 1, 2}); HloSharding output = HloSharding::IotaTile({2, 1, 2, 1}, {2, 2}, {1, 0}); EXPECT_EQ(TransposeSharding(input, {3, 0, 1, 2}), output); } TEST(HloShardingUtilTest, TransposeShardingWithCollapsedDimsSubgroupManual) { HloSharding input = HloSharding::Subgroup(TileAssignment({1, 2, 4}), {OpSharding::MANUAL}); HloSharding output = HloSharding::Subgroup(TileAssignment({1, 1, 2, 4}), {OpSharding::MANUAL}); EXPECT_EQ(TransposeShardingWithCollapsedDims(input, {-1, 2}, {-1, -1, 1}), output); } TEST(HloShardingUtilTest, ReshapeShardingDimensionSizeOnePartitioned1) { Shape input_shape = ShapeUtil::MakeShape(F32, {1, 2, 16}); Shape output_shape = ShapeUtil::MakeShape(F32, {2, 16}); HloSharding input_sharding = HloSharding::IotaTile({3, 2, 2}); HloSharding output_sharding = HloSharding::PartialTile(TileAssignment({2, 2, 3}, {3, 2, 2}, {1, 2, 0})); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingDimensionSizeOnePartitioned2) { Shape input_shape = ShapeUtil::MakeShape(F32, {2, 1, 16}); Shape output_shape = ShapeUtil::MakeShape(F32, {2, 16}); HloSharding input_sharding = HloSharding::IotaTile({2, 3, 2}); HloSharding output_sharding = HloSharding::PartialTile(TileAssignment({2, 2, 3}, {2, 3, 2}, {0, 2, 1})); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingDimensionSizeOnePartitioned3) { Shape input_shape = ShapeUtil::MakeShape(F32, {2, 1, 16}); Shape output_shape = ShapeUtil::MakeShape(F32, {32}); HloSharding input_sharding = HloSharding::IotaTile({2, 3, 2}); HloSharding output_sharding = HloSharding::PartialTile(TileAssignment({4, 3}, {2, 3, 2}, {0, 2, 1})); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingDimensionSizeOnePartitioned4) { Shape input_shape = ShapeUtil::MakeShape(F32, {1, 32}); Shape output_shape = ShapeUtil::MakeShape(F32, {2, 16}); HloSharding input_sharding = HloSharding::IotaTile({3, 4}); HloSharding output_sharding = HloSharding::PartialTile(TileAssignment({2, 2, 3}, {3, 4}, {1, 0})); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingDimensionSizeOnePartitioned5) { Shape input_shape = ShapeUtil::MakeShape(F32, {1, 1, 32}); Shape output_shape = ShapeUtil::MakeShape(F32, {1, 1, 2, 16}); HloSharding input_sharding = HloSharding::IotaTile({2, 3, 4}); HloSharding output_sharding = HloSharding::IotaTile({2, 3, 2, 2}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingMaximal) { Shape input_shape = ShapeUtil::MakeShape(F32, {2, 3, 5}); Shape output_shape = ShapeUtil::MakeShape(F32, {3, 5, 2}); HloSharding sharding = HloSharding::AssignDevice(7); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), sharding); } TEST(HloShardingUtilTest, ReshapeShardingTiledInvalid) { Shape input_shape = ShapeUtil::MakeShape(F32, {2, 3, 5}); Shape output_shape = ShapeUtil::MakeShape(F32, {3, 5, 2}); HloSharding sharding = HloSharding::IotaTile({1, 2, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, sharding); EXPECT_FALSE(result.has_value()); } TEST(HloShardingUtilTest, ReshapeShardingTiledMerge) { Shape input_shape = ShapeUtil::MakeShape(F32, {4, 5, 7}); Shape output_shape = ShapeUtil::MakeShape(F32, {20, 7}); HloSharding input_sharding = HloSharding::IotaTile({2, 1, 1}); HloSharding output_sharding = HloSharding::IotaTile({2, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingTiledSplit) { Shape input_shape = ShapeUtil::MakeShape(F32, {16, 7}); Shape output_shape = ShapeUtil::MakeShape(F32, {4, 4, 7}); HloSharding input_sharding = HloSharding::IotaTile({2, 1}); HloSharding output_sharding = HloSharding::IotaTile({2, 1, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingTiledSplit2) { Shape input_shape = ShapeUtil::MakeShape(F32, {16, 7}); Shape output_shape = ShapeUtil::MakeShape(F32, {4, 4, 7}); HloSharding input_sharding = HloSharding::IotaTile({16, 1}); HloSharding output_sharding = HloSharding::IotaTile({4, 4, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingTiledSplit3) { Shape input_shape = ShapeUtil::MakeShape(F32, {36}); Shape output_shape = ShapeUtil::MakeShape(F32, {6, 6}); HloSharding input_sharding = HloSharding::IotaTile({4}); HloSharding output_sharding = HloSharding::PartialTile(TileAssignment({2, 1, 2})); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingTiledSplitThenMerge) { Shape input_shape = ShapeUtil::MakeShape(F32, {16, 4, 7}); Shape output_shape = ShapeUtil::MakeShape(F32, {4, 16, 7}); HloSharding input_sharding = HloSharding::IotaTile({2, 1, 1}); HloSharding output_sharding = HloSharding::IotaTile({2, 1, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingTiledArbitraryMinorDimensions) { Shape input_shape = ShapeUtil::MakeShape(F32, {16, 7, 5, 3}); Shape output_shape = ShapeUtil::MakeShape(F32, {4, 15, 2, 14}); HloSharding sharding = HloSharding::IotaTile({2, 1, 1, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), sharding); } TEST(HloShardingUtilTest, ReshapeShardingTiledTrivialDimensions) { Shape input_shape = ShapeUtil::MakeShape(F32, {3, 1, 5, 7}); Shape output_shape = ShapeUtil::MakeShape(F32, {3, 5, 1, 7}); HloSharding input_sharding = HloSharding::IotaTile({1, 1, 2, 1}); HloSharding output_sharding = HloSharding::IotaTile({1, 2, 1, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingTrivialDimensionInsertedToEnd) { Shape input_shape = ShapeUtil::MakeShape(F32, {8, 16}); Shape output_shape = ShapeUtil::MakeShape(F32, {8, 16, 1}); HloSharding input_sharding = HloSharding::IotaTile({2, 1}); HloSharding output_sharding = HloSharding::IotaTile({2, 1, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, NoopReshapeShardingEmptyTile) { Shape shape = ShapeUtil::MakeShape(F32, {7, 1, 1}); HloSharding sharding = HloSharding::IotaTile({2, 1, 1}); std::optional<HloSharding> result = ReshapeSharding(shape, shape, sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), sharding); } TEST(HloShardingUtilTest, ReshapeShardingScalar) { Shape input_shape = ShapeUtil::MakeShape(F32, {1, 1, 1}); Shape output_shape = ShapeUtil::MakeShape(F32, {}); HloSharding sharding = HloSharding::IotaTile({2, 1, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, sharding); EXPECT_FALSE(result.has_value()); } TEST(HloShardingUtilTest, ReshapeShardingSuffixShapeSizeOne1) { Shape input_shape = ShapeUtil::MakeShape(F32, {64, 1, 1}); Shape output_shape = ShapeUtil::MakeShape(F32, {64, 1}); HloSharding input_sharding = HloSharding::IotaTile({4, 1, 1}); HloSharding output_sharding = HloSharding::IotaTile({4, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); result = ReshapeSharding(output_shape, input_shape, output_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), input_sharding); } TEST(HloShardingUtilTest, ReshapeShardingSuffixShapeSizeOne2) { Shape input_shape = ShapeUtil::MakeShape(F32, {64, 1, 1}); Shape output_shape = ShapeUtil::MakeShape(F32, {64, 1}); HloSharding input_sharding = HloSharding::IotaTile({4, 2, 8}); HloSharding output_sharding = HloSharding::PartialTile(TileAssignment({4, 2, 8})); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingSuffixShapeSizeOne3) { Shape input_shape = ShapeUtil::MakeShape(F32, {64, 1}); Shape output_shape = ShapeUtil::MakeShape(F32, {64, 1, 1}); HloSharding input_sharding = HloSharding::IotaTile({4, 2}); HloSharding output_sharding = HloSharding::IotaTile({4, 2, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingSuffixShapeSizeOne4) { Shape input_shape = ShapeUtil::MakeShape(F32, {4, 2, 1}); Shape output_shape = ShapeUtil::MakeShape(F32, {4, 2}); HloSharding input_sharding = HloSharding::IotaTile({4, 2, 4}); HloSharding output_sharding = HloSharding::PartialTile(TileAssignment({4, 2, 4})); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingPrefixShapeSizeOne1) { Shape input_shape = ShapeUtil::MakeShape(F32, {1, 1, 64}); Shape output_shape = ShapeUtil::MakeShape(F32, {1, 64}); HloSharding input_sharding = HloSharding::IotaTile({1, 1, 4}); HloSharding output_sharding = HloSharding::IotaTile({1, 4}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); result = ReshapeSharding(output_shape, input_shape, output_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), input_sharding); } TEST(HloShardingUtilTest, ReshapeShardingPrefixShapeSizeOne2) { Shape input_shape = ShapeUtil::MakeShape(F32, {1, 1, 64}); Shape output_shape = ShapeUtil::MakeShape(F32, {1, 64}); HloSharding input_sharding = HloSharding::IotaTile({2, 1, 1}); HloSharding output_sharding = HloSharding::IotaTile({2, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); result = ReshapeSharding(output_shape, input_shape, output_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), input_sharding); } TEST(HloShardingUtilTest, ReshapeShardingTranspose1) { Shape input_shape = ShapeUtil::MakeShape(F32, {6, 2, 5}); Shape output_shape = ShapeUtil::MakeShape(F32, {4, 3, 5}); HloSharding sharding = HloSharding::IotaTile({2, 1, 5}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), sharding); } TEST(HloShardingUtilTest, ReshapeShardingTranspose2) { Shape input_shape = ShapeUtil::MakeShape(F32, {2, 3, 5, 7, 11}); Shape output_shape = ShapeUtil::MakeShape(F32, {10, 21, 11}); HloSharding input_sharding = HloSharding::IotaTile({2, 1, 1, 1, 13}); HloSharding output_sharding = HloSharding::IotaTile({2, 1, 13}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingTranspose3) { Shape input_shape = ShapeUtil::MakeShape(F32, {2, 3, 5}); Shape output_shape = ShapeUtil::MakeShape(F32, {3, 10}); HloSharding input_sharding = HloSharding::IotaTile({1, 1, 5}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_FALSE(result.has_value()); } TEST(HloShardingUtilTest, ReshapeShardingTranspose4) { Shape input_shape = ShapeUtil::MakeShape(F32, {2, 3, 5, 7, 11, 13, 17, 19}); Shape output_shape = ShapeUtil::MakeShape(F32, {3, 2, 55, 91, 19, 17}); HloSharding input_sharding = HloSharding::IotaTile({1, 1, 5, 1, 1, 13, 1, 1}); HloSharding output_sharding = HloSharding::PartialTile(TileAssignment({1, 1, 5, 1, 1, 1, 13})); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeToTileDimension2D) { std::vector<HloSharding> shardings = {HloSharding::IotaTile({2, 2}), HloSharding::Tile({{0, 1}, {2, 3}})}; for (const HloSharding& sharding : shardings) { EXPECT_EQ(ReshapeToTileDimension(sharding, 0, {0, 1}) .tile_assignment(), TileAssignment({4, 1})); EXPECT_EQ(ReshapeToTileDimension(sharding, 1, {0, 1}) .tile_assignment(), TileAssignment({1, 4}, {2, 2}, {1, 0})); } } TEST(HloShardingUtilTest, ReshapeToTileDimension3D_Case1) { std::vector<HloSharding> shardings = { HloSharding::IotaTile({2, 2, 2}), HloSharding::Tile({{{0, 1}, {2, 3}}, {{4, 5}, {6, 7}}})}; for (const HloSharding& sharding : shardings) { EXPECT_EQ(ReshapeToTileDimension(sharding, 0, {0, 1, 2}) .tile_assignment(), TileAssignment({8, 1, 1})); EXPECT_EQ(ReshapeToTileDimension(sharding, 1, {0, 1, 2}) .tile_assignment(), TileAssignment({1, 8, 1}, {2, 2, 2}, {1, 0, 2})); EXPECT_EQ(ReshapeToTileDimension(sharding, 2, {0, 1, 2}) .tile_assignment(), TileAssignment({1, 1, 8}, {4, 2}, {1, 0})); EXPECT_EQ(ReshapeToTileDimension(sharding, 2, {1, 2}) .tile_assignment(), TileAssignment({2, 1, 4}, {2, 2, 2}, {0, 2, 1})); EXPECT_EQ(ReshapeToTileDimension(sharding, 0, {0, 2}) .tile_assignment(), TileAssignment({4, 2, 1}, {2, 2, 2}, {1, 0, 2})); EXPECT_EQ(ReshapeToTileDimension(sharding, 2, {0, 2}) .tile_assignment(), TileAssignment({1, 2, 4}, {2, 2, 2}, {1, 2, 0})); } } TEST(HloShardingUtilTest, ReshapeToTileDimension3D_Case2) { std::vector<HloSharding> shardings = { HloSharding::IotaTile({2, 2, 2}, {4, 2}, {1, 0}), HloSharding::Tile({{{0, 2}, {4, 6}}, {{1, 3}, {5, 7}}})}; for (const HloSharding& sharding : shardings) { EXPECT_EQ(ReshapeToTileDimension(sharding, 0, {0, 1, 2}) .tile_assignment(), TileAssignment({8, 1, 1}, {4, 2}, {1, 0})); EXPECT_EQ(ReshapeToTileDimension(sharding, 1, {0, 1, 2}) .tile_assignment(), TileAssignment({1, 8, 1}, {2, 2, 2}, {0, 2, 1})); EXPECT_EQ(ReshapeToTileDimension(sharding, 2, {0, 1, 2}) .tile_assignment(), TileAssignment({1, 1, 8}, {2, 4}, {1, 0})); } } TEST(HloShardingUtilTest, ReshapeToTileDimension4D) { HloSharding sharding1 = HloSharding::IotaTile({2, 3, 5, 7}); HloSharding sharding2 = HloSharding::Tile(sharding1.tile_assignment().array()); std::vector<HloSharding> shardings = {sharding1, sharding2}; for (const HloSharding& sharding : shardings) { EXPECT_EQ(ReshapeToTileDimension(sharding, 1, {0, 1}) .tile_assignment(), TileAssignment({1, 6, 5, 7}, {2, 3, 5, 7}, {2, 3, 1, 0})); EXPECT_EQ(ReshapeToTileDimension(sharding, 1, {1, 2}) .tile_assignment(), TileAssignment({2, 15, 1, 7}, {2, 3, 5, 7}, {0, 3, 1, 2})); EXPECT_EQ(ReshapeToTileDimension(sharding, 1, {1, 3}) .tile_assignment(), TileAssignment({2, 21, 5, 1}, {2, 3, 5, 7}, {0, 2, 1, 3})); EXPECT_EQ(ReshapeToTileDimension(sharding, 1, {0, 1, 2}) .tile_assignment(), TileAssignment({1, 30, 1, 7}, {2, 3, 5, 7}, {3, 1, 0, 2})); EXPECT_EQ(ReshapeToTileDimension(sharding, 1, {0, 1, 3}) .tile_assignment(), TileAssignment({1, 42, 5, 1}, {2, 3, 5, 7}, {2, 1, 0, 3})); EXPECT_EQ(ReshapeToTileDimension(sharding, 1, {1, 2, 3}) .tile_assignment(), TileAssignment({2, 105, 1, 1}, {2, 3, 5, 7}, {0, 1, 2, 3})); EXPECT_EQ(ReshapeToTileDimension(sharding, 1, {0, 1, 2, 3}) .tile_assignment(), TileAssignment({1, 210, 1, 1}, {2, 3, 5, 7}, {1, 0, 2, 3})); } } TEST(HloShardingUtilTest, PropagateReshapeShardingTranspose1) { Shape input_shape = ShapeUtil::MakeShape(F32, {6, 4}); Shape output_shape = ShapeUtil::MakeShape(F32, {2, 2, 3, 2}); HloSharding input_sharding = HloSharding::IotaTile({6, 1}); HloSharding output_sharding = HloSharding::PartialTile(TileAssignment({2, 1, 1, 1, 3})); HloSharding result = PropagateShardingThroughReshape( input_shape, output_shape, input_sharding); EXPECT_EQ(result, output_sharding); } TEST(HloShardingUtilTest, PropagateReshapeShardingTranspose2) { Shape input_shape = ShapeUtil::MakeShape(F32, {6, 4}); Shape output_shape = ShapeUtil::MakeShape(F32, {4, 6}); HloSharding input_sharding = HloSharding::IotaTile({6, 1}); HloSharding output_sharding = HloSharding::PartialTile(TileAssignment({2, 1, 3})); HloSharding result = PropagateShardingThroughReshape( input_shape, output_shape, input_sharding); EXPECT_EQ(result, output_sharding); } TEST(HloShardingUtilTest, PropagateReshapeShardingTranspose3) { Shape input_shape = ShapeUtil::MakeShape(F32, {4, 6, 5}); Shape output_shape = ShapeUtil::MakeShape(F32, {2, 2, 2, 5, 3}); HloSharding input_sharding = HloSharding::IotaTile({2, 6, 1}); HloSharding output_sharding = HloSharding::PartialTile(TileAssignment({2, 1, 2, 1, 1, 3})); HloSharding result = PropagateShardingThroughReshape( input_shape, output_shape, input_sharding); EXPECT_EQ(result, output_sharding); } TEST(HloShardingUtilTest, PropagateReshapeShardingTiledSplitPartialMatch) { Shape input_shape = ShapeUtil::MakeShape(F32, {14, 16}); Shape output_shape = ShapeUtil::MakeShape(F32, {2, 7, 4, 4}); HloSharding input_sharding = HloSharding::IotaTile({4, 8}); HloSharding output_sharding = HloSharding::PartialTile(TileAssignment({1, 1, 4, 2, 4}, {4, 8}, {1, 0})); HloSharding result = PropagateShardingThroughReshape( input_shape, output_shape, input_sharding); EXPECT_EQ(result, output_sharding); } TEST(HloShardingUtilTest, PropagateReshapeShardingTiledMergeSplitPartialMatch) { Shape input_shape = ShapeUtil::MakeShape(F32, {2, 2, 14, 16}); Shape output_shape = ShapeUtil::MakeShape(F32, {4, 2, 7, 4, 4}); HloSharding input_sharding = HloSharding::IotaTile({2, 2, 4, 8}); HloSharding output_sharding = HloSharding::PartialTile( TileAssignment({4, 1, 1, 4, 2, 4}, {2, 2, 4, 8}, {0, 1, 3, 2})); HloSharding result = PropagateShardingThroughReshape( input_shape, output_shape, input_sharding); EXPECT_EQ(result, output_sharding); } TEST(HloShardingUtilTest, PropagateReshapeShardingTiledSplitPartialMatchManual) { Shape input_shape = ShapeUtil::MakeShape(F32, {14, 16}); Shape output_shape = ShapeUtil::MakeShape(F32, {2, 7, 4, 4}); HloSharding input_sharding = HloSharding::Subgroup(TileAssignment({4, 8, 2}), {OpSharding::MANUAL}); HloSharding output_sharding = HloSharding::Subgroup( TileAssignment({1, 1, 4, 2, 4, 2}, {4, 8, 2}, {1, 0, 2}), {OpSharding::REPLICATED, OpSharding::MANUAL}); HloSharding result = PropagateShardingThroughReshape( input_shape, output_shape, input_sharding); EXPECT_EQ(result, output_sharding); } TEST(HloShardingUtilTest, MergeManualSubgroupSharding) { TileAssignment tile_assignment({16, 4}); std::vector<OpSharding::Type> subgroup_types = {OpSharding::MANUAL, OpSharding::REPLICATED}; HloSharding dst = HloSharding::Subgroup(tile_assignment, subgroup_types); HloSharding to_merge = dst; EXPECT_FALSE(MergeShardingIfCompatible(to_merge, &dst)); } TEST(HloShardingUtilTest, GetManualSubgroupSharding_ManualOnly) { TileAssignment tile_assignment({1, 2, 2}); std::vector<OpSharding::Type> subgroup_types = {OpSharding::MANUAL}; HloSharding sharding = HloSharding::Subgroup(tile_assignment, subgroup_types); GroupedSharding group_sharding = GetManualSubgroupSharding(sharding); EXPECT_EQ(group_sharding.sharding.tile_assignment(), TileAssignment({1, 2})); EXPECT_THAT(group_sharding.device_groups[0], ::testing::ElementsAreArray({0, 2})); EXPECT_THAT(group_sharding.device_groups[1], ::testing::ElementsAreArray({1, 3})); } TEST(HloShardingUtilTest, GetManualSubgroupSharding_ManualAndReplicted) { TileAssignment tile_assignment({1, 2, 2, 2}); std::vector<OpSharding::Type> subgroup_types = {OpSharding::REPLICATED, OpSharding::MANUAL}; HloSharding sharding = HloSharding::Subgroup(tile_assignment, subgroup_types); GroupedSharding group_sharding = GetManualSubgroupSharding(sharding); EXPECT_EQ(group_sharding.sharding.ToString(), "{devices=[1,2,2]<=[4] last_tile_dim_replicate}"); EXPECT_THAT(group_sharding.device_groups[0], ::testing::ElementsAreArray({0, 2, 4, 6})); EXPECT_THAT(group_sharding.device_groups[1], ::testing::ElementsAreArray({1, 3, 5, 7})); } TEST(HloShardingUtilTest, GetManualSubgroupSharding_ReplicatedAndManual) { TileAssignment tile_assignment({1, 2, 2, 2}); std::vector<OpSharding::Type> subgroup_types = {OpSharding::MANUAL, OpSharding::REPLICATED}; HloSharding sharding = HloSharding::Subgroup(tile_assignment, subgroup_types); GroupedSharding group_sharding = GetManualSubgroupSharding(sharding); EXPECT_EQ(group_sharding.sharding.ToString(), "{devices=[1,2,2]<=[4] last_tile_dim_replicate}"); EXPECT_THAT(group_sharding.device_groups[0], ::testing::ElementsAreArray({0, 1, 4, 5})); EXPECT_THAT(group_sharding.device_groups[1], ::testing::ElementsAreArray({2, 3, 6, 7})); } TEST(HloShardingUtilTest, UngroupSharding_ManualOnly) { HloSharding sharding = HloSharding::IotaTile({1, 2}); std::vector<std::vector<int64_t>> device_groups = {{0, 2}, {1, 3}}; DimensionVector group_dims = {2}; DimensionVector group_dim_sizes = {2}; auto grouped = GroupedSharding( std::move(device_groups), std::move(group_dims), std::move(group_dim_sizes), sharding.tile_assignment().num_dimensions(), sharding, true); HloSharding ungroup_sharding = UngroupSharding(grouped); EXPECT_EQ(ungroup_sharding.ToString(), "{devices=[1,2,2]0,1,2,3 last_tile_dims={manual}}"); } TEST(HloShardingUtilTest, UngroupSharding_ReplicatedAndManual) { HloSharding sharding = HloSharding::PartialTile(TileAssignment({1, 2, 2})); std::vector<std::vector<int64_t>> device_groups = {{0, 2, 4, 6}, {1, 3, 5, 7}}; DimensionVector group_dims = {3}; DimensionVector group_dim_sizes = {2}; auto grouped = GroupedSharding(std::move(device_groups), std::move(group_dims), std::move(group_dim_sizes), sharding.tile_assignment().num_dimensions() - 1, sharding, true); HloSharding ungroup_sharding = UngroupSharding(grouped); VLOG(1) << "ungroup_sharding: " << ungroup_sharding.ToString(); EXPECT_EQ( ungroup_sharding.ToString(), "{devices=[1,2,2,2]0,2,1,3,4,6,5,7 last_tile_dims={manual, replicated}}"); } TEST(HloShardingUtilTest, UngroupSharding_ManualAndReplicated) { HloSharding sharding = HloSharding::PartialTile(TileAssignment({1, 2, 2})); std::vector<std::vector<int64_t>> device_groups = {{0, 1, 4, 5}, {2, 3, 6, 7}}; DimensionVector group_dims = {2}; DimensionVector group_dim_sizes = {2}; auto grouped = GroupedSharding(std::move(device_groups), std::move(group_dims), std::move(group_dim_sizes), sharding.tile_assignment().num_dimensions() - 1, sharding, true); HloSharding ungroup_sharding = UngroupSharding(grouped); VLOG(1) << "ungroup_sharding: " << ungroup_sharding.ToString(); EXPECT_EQ( ungroup_sharding.ToString(), "{devices=[1,2,2,2]0,1,2,3,4,5,6,7 last_tile_dims={manual, replicated}}"); } TEST(HloShardingUtilTest, UngroupSharding_Replicated) { HloSharding sharding = HloSharding::Replicate(); DimensionVector group_dims = {3}; DimensionVector group_dim_sizes = {2}; std::vector<std::vector<int64_t>> device_groups = {{0, 1}, {2, 3}}; auto grouped = GroupedSharding(std::move(device_groups), std::move(group_dims), std::move(group_dim_sizes), 2, sharding, true); HloSharding ungroup_sharding = UngroupSharding(grouped); VLOG(1) << "ungroup_sharding: " << ungroup_sharding.ToString(); EXPECT_EQ(ungroup_sharding.ToString(), "{devices=[1,1,2,2]0,1,2,3 last_tile_dims={manual, replicated}}"); } TEST(HloShardingUtilTest, UngroupSharding_Replicated2) { HloSharding sharding = HloSharding::Replicate(); DimensionVector group_dims = {2}; DimensionVector group_dim_sizes = {2}; std::vector<std::vector<int64_t>> device_groups = {{0, 2}, {1, 3}}; auto grouped = GroupedSharding(std::move(device_groups), std::move(group_dims), std::move(group_dim_sizes), 2, sharding, true); HloSharding ungroup_sharding = UngroupSharding(grouped); VLOG(1) << "ungroup_sharding: " << ungroup_sharding.ToString(); EXPECT_EQ(ungroup_sharding.ToString(), "{devices=[1,1,2,2]0,2,1,3 last_tile_dims={manual, replicated}}"); } TEST(HloShardingUtilTest, GroupedAndUngroupedReplicatedSharding) { GroupedSharding group_sharding = GetGroupedReplicatedSharding( 3, 12, 2); EXPECT_EQ(UngroupSharding(group_sharding), HloSharding::Replicate()); } TEST(HloShardingUtilTest, GroupedAndUngroupedIotaSharding) { std::vector<std::vector<int64_t>> device_groups = {{0, 1, 2, 3, 4, 5}, {6, 7, 8, 9, 10, 11}}; GroupedSharding group_sharding = GroupedSharding( device_groups, {0}, {2}, 2, HloSharding::IotaTile({1, 2, 3}, {2, 3}, {1, 0})); EXPECT_EQ(UngroupSharding(group_sharding), HloSharding::IotaTile({2, 2, 3}, {2, 2, 3}, {0, 2, 1})); } TEST(HloShardingUtilTest, GroupedAndUngroupedShardingWithUnsortedGroupDims) { HloSharding sharding = HloSharding::IotaTile({4, 3, 5, 7}); GroupedSharding group_sharding = GroupShardingOnDims(sharding, {2, 0}, {1, 2}); EXPECT_EQ(group_sharding.sharding, HloSharding::IotaTile({2, 3, 1, 7})); EXPECT_EQ(UngroupSharding(group_sharding), sharding); } TEST(HloShardingUtilTest, UngroupShardingWithUnsortedGroupDims) { GroupedSharding group_sharding({{0}, {1}, {2}, {3}}, {1, 0}, {2, 2}, 4, HloSharding::Replicate()); EXPECT_EQ(UngroupSharding(group_sharding), HloSharding::IotaTile({2, 2, 1, 1}, {2, 2}, {1, 0})); } TEST(HloShardingUtilTest, DeviceGroupsDoesNotMatch) { HloSharding sharding = HloSharding::PartialTile(TileAssignment({2, 2})); DimensionVector group_dim_sizes = {2}; std::vector<std::vector<int64_t>> lhs_device_groups = {{0, 2, 4, 6}, {1, 3, 5, 7}}; DimensionVector lhs_group_dims = {3}; auto lhs = GroupedSharding(std::move(lhs_device_groups), std::move(lhs_group_dims), group_dim_sizes, 2, sharding, true); std::vector<std::vector<int64_t>> rhs_device_groups = {{0, 1, 4, 5}, {2, 3, 6, 7}}; DimensionVector rhs_group_dims = {2}; auto rhs = GroupedSharding(std::move(rhs_device_groups), std::move(rhs_group_dims), group_dim_sizes, 2, sharding, true); EXPECT_FALSE(DeviceGroupsAreMatch(lhs, rhs)); } TEST(HloShardingUtilTest, DeviceGroupsMatch) { HloSharding lhs_sharding = HloSharding::Replicate(); DimensionVector group_dims = {2}; DimensionVector group_dim_sizes = {2}; std::vector<std::vector<int64_t>> device_groups = {{0, 2}, {1, 3}}; auto lhs = GroupedSharding( device_groups, DimensionVector(group_dims.begin(), group_dims.end()), group_dim_sizes, 2, lhs_sharding, true); HloSharding rhs_sharding = HloSharding::PartialTile(TileAssignment({2, 2})); auto rhs = GroupedSharding( device_groups, DimensionVector(group_dims.begin(), group_dims.end()), group_dim_sizes, 2, rhs_sharding, true); EXPECT_TRUE(DeviceGroupsAreMatch(lhs, rhs)); } TEST(HloShardingUtilTest, IsSubShardingTiledReplicated) { HloSharding rhs_sharding = HloSharding::Replicate(); HloSharding lhs_sharding = HloSharding::IotaTile({4, 1}); Shape shape = ShapeUtil::MakeShape(F32, {129, 253}); EXPECT_TRUE(IsSubTilingOrEqualSharding(shape, lhs_sharding, rhs_sharding)); } TEST(HloShardingUtilTest, IsSubShardingReplicatedTiled) { HloSharding rhs_sharding = HloSharding::IotaTile({4, 1}); HloSharding lhs_sharding = HloSharding::Replicate(); Shape shape = ShapeUtil::MakeShape(F32, {129, 253}); EXPECT_FALSE(IsSubTilingOrEqualSharding(shape, lhs_sharding, rhs_sharding)); } TEST(HloShardingUtilTest, IsSubShardingTiledPartialReplicated) { HloSharding rhs_sharding = HloSharding::Replicate(); HloSharding lhs_sharding = HloSharding::PartialTile(TileAssignment({2, 2})); Shape shape = ShapeUtil::MakeShape(F32, {129, 253}); EXPECT_TRUE(IsSubTilingOrEqualSharding(shape, lhs_sharding, rhs_sharding)); } TEST(HloShardingUtilTest, IsSubShardingReplicatedTiledPartial) { HloSharding rhs_sharding = HloSharding::PartialTile(TileAssignment({2, 2})); HloSharding lhs_sharding = HloSharding::Replicate(); Shape shape = ShapeUtil::MakeShape(F32, {129, 253}); EXPECT_FALSE(IsSubTilingOrEqualSharding(shape, lhs_sharding, rhs_sharding)); } TEST(HloShardingUtilTest, IsSubShardingPartialTiledTiled) { HloSharding rhs_sharding = HloSharding::PartialTile(TileAssignment({2, 2})); HloSharding lhs_sharding = HloSharding::IotaTile({4, 1}); Shape shape = ShapeUtil::MakeShape(F32, {129, 253}); EXPECT_FALSE(IsSubTilingOrEqualSharding(shape, lhs_sharding, rhs_sharding)); } TEST(HloShardingUtilTest, IsSubShardingIncompatibleTiled) { HloSharding rhs_sharding = HloSharding::IotaTile({4, 1}); HloSharding lhs_sharding = HloSharding::IotaTile({1, 4}); Shape shape = ShapeUtil::MakeShape(F32, {129, 253}); EXPECT_FALSE(IsSubTilingOrEqualSharding(shape, lhs_sharding, rhs_sharding)); } TEST(HloShardingUtilTest, IsSubShardingIncompatibleShapeTiledPartialTiled) { HloSharding rhs_sharding = HloSharding::PartialTile(TileAssignment({2, 2})); HloSharding lhs_sharding = HloSharding::IotaTile({4, 1}); Shape shape = ShapeUtil::MakeShape(F32, {129, 253}); EXPECT_FALSE(IsSubTilingOrEqualSharding(shape, lhs_sharding, rhs_sharding)); } TEST(HloShardingUtilTest, IsSubShardingCompatibleShapeTiledPartialTiled) { HloSharding rhs_sharding = HloSharding::PartialTile(TileAssignment({2, 1, 2})); HloSharding lhs_sharding = HloSharding::IotaTile({4, 1}); Shape shape = ShapeUtil::MakeShape(F32, {128, 253}); EXPECT_TRUE(IsSubTilingOrEqualSharding(shape, lhs_sharding, rhs_sharding)); } TEST(HloShardingUtilTest, IsSubTilingOrEqualShardingNoShortcut) { HloSharding rhs_sharding = HloSharding::PartialTile(TileAssignment({2, 2})); HloSharding lhs_sharding = HloSharding::IotaTile({4}); std::vector<int64_t> success = {1, 3, 4, 7, 8, 11, 12, 15, 16, 19, 20}; std::vector<int64_t> fail = {2, 5, 6, 9, 10, 13, 14, 17, 18}; for (int64_t i : success) { Shape shape = ShapeUtil::MakeShape(F32, {i}); EXPECT_TRUE(IsSubTilingOrEqualSharding(shape, lhs_sharding, rhs_sharding)); } for (int64_t i : fail) { Shape shape = ShapeUtil::MakeShape(F32, {i}); EXPECT_FALSE(IsSubTilingOrEqualSharding(shape, lhs_sharding, rhs_sharding)); } } TEST(HloShardingUtilTest, IsSubTilingOrEqualShardingShortcut1) { HloSharding rhs_sharding = HloSharding::PartialTile(TileAssignment({2, 2})); HloSharding lhs_sharding = HloSharding::IotaTile({4}); Shape shape = ShapeUtil::MakeShape(F32, {8}); EXPECT_TRUE(IsSubTilingOrEqualSharding(shape, lhs_sharding, rhs_sharding)); } TEST(HloShardingUtilTest, IsSubTilingOrEqualShardingShortcut2) { HloSharding rhs_sharding = HloSharding::PartialTile(TileAssignment({2, 2})); Array<int64_t> lhs_array({4}); lhs_array.SetValues({1, 0, 2, 3}); HloSharding lhs_sharding = HloSharding::Tile(lhs_array); Shape shape = ShapeUtil::MakeShape(F32, {8}); EXPECT_TRUE(IsSubTilingOrEqualSharding(shape, lhs_sharding, rhs_sharding)); } TEST(HloShardingUtilTest, IsSubTilingOrEqualShardingShortcut3) { HloSharding rhs_sharding = HloSharding::PartialTile(TileAssignment({2, 2})); HloSharding lhs_sharding = HloSharding::IotaTile({4}, {2, 2}, {1, 0}); Shape shape = ShapeUtil::MakeShape(F32, {8}); EXPECT_FALSE(IsSubTilingOrEqualSharding(shape, lhs_sharding, rhs_sharding)); } TEST(HloShardingUtilTest, IsSubTilingOrEqualShardingShortcut4) { HloSharding rhs_sharding = HloSharding::PartialTile(TileAssignment({2, 2}, {2, 2}, {1, 0})); HloSharding lhs_sharding = HloSharding::IotaTile({4}, {2, 2}, {1, 0}); Shape shape = ShapeUtil::MakeShape(F32, {8}); EXPECT_TRUE(IsSubTilingOrEqualSharding(shape, lhs_sharding, rhs_sharding)); } TEST(HloShardingUtilTest, IsSubTilingOrEqualShardingShortcut5) { HloSharding rhs_sharding = HloSharding::PartialTile(TileAssignment({2, 3, 5, 7})); HloSharding lhs_sharding_1 = HloSharding::IotaTile({2, 21, 5}, {2, 3, 5, 7}, {0, 1, 3, 2}); HloSharding lhs_sharding_2 = HloSharding::IotaTile({2, 21, 5}, {2, 3, 5, 7}, {0, 2, 3, 1}); HloSharding lhs_sharding_3 = HloSharding::IotaTile({2, 21, 5}); std::vector<Shape> shapes = {ShapeUtil::MakeShape(F32, {10, 42, 10}), ShapeUtil::MakeShape(F32, {11, 41, 11})}; for (const auto& shape : shapes) { EXPECT_TRUE( IsSubTilingOrEqualSharding(shape, lhs_sharding_1, rhs_sharding)); EXPECT_FALSE( IsSubTilingOrEqualSharding(shape, lhs_sharding_2, rhs_sharding)); EXPECT_FALSE( IsSubTilingOrEqualSharding(shape, lhs_sharding_3, rhs_sharding)); } } TEST(HloShardingUtilTest, IsSubTilingOrEqualShardingShortcut6) { HloSharding rhs_sharding = HloSharding::PartialTile(TileAssignment({2, 3, 5, 7 * 11 * 13})); HloSharding lhs_sharding_1 = HloSharding::PartialTile(TileAssignment( {2 * 7, 3, 5 * 11, 13}, {2, 3, 5, 7, 11, 13}, {0, 3, 1, 2, 4, 5})); HloSharding lhs_sharding_2 = HloSharding::PartialTile(TileAssignment( {2 * 7, 3, 5 * 11, 13}, {2, 3, 5, 11, 7, 13}, {0, 4, 1, 2, 3, 5})); HloSharding lhs_sharding_3 = HloSharding::PartialTile(TileAssignment( {2 * 7, 3, 5 * 11, 13}, {2, 3, 5, 13, 7, 11}, {0, 4, 1, 2, 5, 3})); HloSharding lhs_sharding_4 = HloSharding::PartialTile(TileAssignment( {2 * 7, 3, 5 * 11, 13}, {2, 3, 5, 7, 13, 11}, {0, 3, 1, 2, 5, 4})); HloSharding lhs_sharding_5 = HloSharding::PartialTile(TileAssignment({2 * 7, 3, 5 * 11, 13})); std::vector<Shape> shapes = { ShapeUtil::MakeShape(F32, {2 * 7, 9, 5 * 11}), ShapeUtil::MakeShape(F32, {2 * 7 - 1, 4, 5 * 11 - 1})}; for (const auto& shape : shapes) { EXPECT_TRUE( IsSubTilingOrEqualSharding(shape, lhs_sharding_1, rhs_sharding)); EXPECT_TRUE( IsSubTilingOrEqualSharding(shape, lhs_sharding_2, rhs_sharding)); EXPECT_TRUE( IsSubTilingOrEqualSharding(shape, lhs_sharding_3, rhs_sharding)); EXPECT_TRUE( IsSubTilingOrEqualSharding(shape, lhs_sharding_4, rhs_sharding)); EXPECT_FALSE( IsSubTilingOrEqualSharding(shape, lhs_sharding_5, rhs_sharding)); } } TEST(HloShardingUtilTest, IsSubTilingOrEqualShardingShortcut7) { HloSharding rhs_sharding = HloSharding::PartialTile(TileAssignment({1, 2, 1, 3, 5 * 7 * 11})); HloSharding lhs_sharding = HloSharding::PartialTile( TileAssignment({5, 2, 7, 3, 11}, {2, 3, 5, 7, 11}, {2, 0, 3, 1, 4})); std::vector<Shape> shapes = {ShapeUtil::MakeShape(F32, {5, 2, 7, 3}), ShapeUtil::MakeShape(F32, {2, 2, 9, 3})}; for (const auto& shape : shapes) { EXPECT_TRUE(IsSubTilingOrEqualSharding(shape, lhs_sharding, rhs_sharding)); } } TEST(HloShardingUtilTest, IsSortOperandShardingMovableRankTwoOneFreeDim) { HloIotaInstruction iota(ShapeUtil::MakeShape(F32, {8, 128}), 1); iota.set_sharding(HloSharding::IotaTile({1, 2})); EXPECT_TRUE(IsSortOperandShardingMovable(&iota, 1)); } TEST(HloShardingUtilTest, IsSortOperandShardingMovableRankTwoOneFreeDimOfSize1) { HloIotaInstruction iota(ShapeUtil::MakeShape(F32, {1, 128}), 1); iota.set_sharding(HloSharding::IotaTile({1, 2})); EXPECT_FALSE(IsSortOperandShardingMovable(&iota, 1)); } TEST(HloShardingUtilTest, IsSortOperandShardingMovableRankTwoNoFreeDims) { HloIotaInstruction iota(ShapeUtil::MakeShape(F32, {8, 128}), 1); iota.set_sharding(HloSharding::IotaTile({2, 2})); EXPECT_FALSE(IsSortOperandShardingMovable(&iota, 1)); } TEST(HloShardingUtilTest, IsSortOperandShardingMovableRankOne) { HloIotaInstruction iota(ShapeUtil::MakeShape(F32, {1024}), 1); iota.set_sharding( HloSharding::Tile(TileAssignment(std::initializer_list<int64_t>{2}))); EXPECT_FALSE(IsSortOperandShardingMovable(&iota, 0)); } TEST(HloShardingUtilTest, IsSortOperandShardingMovableNoSharding) { HloIotaInstruction iota(ShapeUtil::MakeShape(F32, {1024}), 1); EXPECT_FALSE(IsSortOperandShardingMovable(&iota, 0)); } TEST(HloShardingUtilTest, IsSortOperandShardingMovableReplicated) { HloIotaInstruction iota(ShapeUtil::MakeShape(F32, {8, 128}), 1); iota.set_sharding(HloSharding::Replicate()); EXPECT_FALSE(IsSortOperandShardingMovable(&iota, 1)); } TEST(HloShardingUtilTest, IsSortOperandShardingMovableSortDimUnsharded) { HloIotaInstruction iota(ShapeUtil::MakeShape(F32, {8, 128}), 1); iota.set_sharding(HloSharding::IotaTile({1, 2})); EXPECT_FALSE(IsSortOperandShardingMovable(&iota, 0)); } TEST(HloShardingUtilTest, TileShape) { HloSharding sharding = HloSharding::Tile(TileAssignment({4, 1})); Shape shape_0 = ShapeUtil::MakeShape(F32, {80, 128}); auto tile_shape_0 = hlo_sharding_util::TileShape(sharding, shape_0); auto expected_shape_0 = ShapeUtil::MakeShape(F32, {20, 128}); EXPECT_EQ(tile_shape_0, expected_shape_0); Shape shape_1 = ShapeUtil::MakeShape(F32, {40, 128}); auto tile_shape_1 = hlo_sharding_util::TileShape(sharding, shape_1); auto expected_shape_1 = ShapeUtil::MakeShape(F32, {10, 128}); EXPECT_EQ(tile_shape_1, expected_shape_1); const Shape tuple = ShapeUtil::MakeTupleShape({tile_shape_0, tile_shape_1}); EXPECT_EQ(hlo_sharding_util::TileShape(sharding, tuple), ShapeUtil::MakeTupleShape({expected_shape_0, expected_shape_1})); } TEST(HloShardingUtilTest, UntileShape) { HloSharding sharding = HloSharding::Tile(TileAssignment({4, 1})); Shape shape_0 = ShapeUtil::MakeShape(F32, {80, 128}); auto tile_shape_0 = hlo_sharding_util::UntileShape(sharding, shape_0); auto expected_shape_0 = ShapeUtil::MakeShape(F32, {320, 128}); EXPECT_EQ(tile_shape_0, expected_shape_0); Shape shape_1 = ShapeUtil::MakeShape(F32, {40, 128}); auto tile_shape_1 = hlo_sharding_util::UntileShape(sharding, shape_1); auto expected_shape_1 = ShapeUtil::MakeShape(F32, {160, 128}); EXPECT_EQ(tile_shape_1, expected_shape_1); const Shape tuple = ShapeUtil::MakeTupleShape({tile_shape_0, tile_shape_1}); EXPECT_EQ(hlo_sharding_util::UntileShape(sharding, tuple), ShapeUtil::MakeTupleShape({expected_shape_0, expected_shape_1})); } using HloShardingUtilTestWithHlo = HloTestBase; TEST_F(HloShardingUtilTestWithHlo, InferDotOperandShardingTest1) { absl::string_view hlo_string = R"( HloModule module ENTRY %main.7 { %p0 = bf16[32,64,128,512] parameter(0), sharding={devices=[8,1,1,4]<=[32]} %p1 = bf16[32,64,256,512] parameter(1), sharding={devices=[1,1,1,2,16]<=[8,2,2]T(1,0,2) last_tile_dim_replicate} ROOT %dot.3 = bf16[32,64,128,256] dot(%p0, %p1), lhs_batch_dims={0,1}, rhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_contracting_dims={3}, sharding={devices=[2,2,2,2,2]<=[32] last_tile_dim_replicate} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); const HloInstruction* dot = module->entry_computation()->root_instruction(); auto dnums = dot_as_convolution_util::ParseDotGeneralFromDot(dot); bool consider_other_operand = true; bool may_combine_partial_sharding = false; EXPECT_EQ(InferDotOperandSharding(dot, 0, dnums, consider_other_operand, may_combine_partial_sharding), HloSharding::PartialTile(TileAssignment({2, 2, 2, 1, 4}))); EXPECT_EQ(InferDotOperandSharding(dot, 1, dnums, consider_other_operand, may_combine_partial_sharding), HloSharding::IotaTile({8, 1, 1, 4})); consider_other_operand = true; may_combine_partial_sharding = true; EXPECT_EQ(InferDotOperandSharding(dot, 0, dnums, consider_other_operand, may_combine_partial_sharding), HloSharding::PartialTile(TileAssignment({2, 2, 2, 2, 2}))); EXPECT_EQ(InferDotOperandSharding(dot, 1, dnums, consider_other_operand, may_combine_partial_sharding), HloSharding::IotaTile({8, 1, 1, 4})); consider_other_operand = false; for (bool may_combine_partial_sharding : {false, true}) { EXPECT_EQ(InferDotOperandSharding(dot, 0, dnums, consider_other_operand, may_combine_partial_sharding), HloSharding::PartialTile(TileAssignment({2, 2, 2, 1, 4}))); EXPECT_EQ(InferDotOperandSharding(dot, 1, dnums, consider_other_operand, may_combine_partial_sharding), HloSharding::PartialTile(TileAssignment( {2, 2, 2, 1, 4}, {2, 2, 2, 2, 2}, {0, 1, 3, 2, 4}))); } } TEST_F(HloShardingUtilTestWithHlo, InferDotOperandShardingTest2) { absl::string_view hlo_string = R"( HloModule module ENTRY %main.7 { %p0 = bf16[32,64,128,512] parameter(0), sharding={devices=[8,1,1,4]<=[32]} %p1 = bf16[32,64,256,512] parameter(1), sharding={devices=[1,1,1,2,16]<=[8,2,2]T(1,0,2) last_tile_dim_replicate} ROOT %dot.3 = bf16[32,64,128,256] dot(%p0, %p1), lhs_batch_dims={0,1}, rhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_contracting_dims={3}, sharding={devices=[2,2,2,2,2]<=[32] last_tile_dim_replicate} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); const HloInstruction* dot = module->entry_computation()->root_instruction(); auto dnums = dot_as_convolution_util::ParseDotGeneralFromDot(dot); const HloSharding& lhs_sharding = dot->operand(0)->sharding(); const HloSharding& rhs_sharding = dot->operand(1)->sharding(); const HloSharding& dot_sharding = dot->sharding(); bool may_combine_partial_sharding = true; for (int64_t i = 0; i < 2; ++i) { EXPECT_EQ(InferDotOperandSharding(nullptr, nullptr, i, dnums, true, may_combine_partial_sharding), HloSharding::Replicate()); } for (int64_t i = 0; i < 2; ++i) { EXPECT_EQ(InferDotOperandSharding(&dot_sharding, nullptr, i, dnums, true, may_combine_partial_sharding), InferDotOperandSharding(dot, i, dnums, false, may_combine_partial_sharding)); } EXPECT_EQ(InferDotOperandSharding(nullptr, &rhs_sharding, 0, dnums, true, may_combine_partial_sharding), rhs_sharding); EXPECT_EQ(InferDotOperandSharding(nullptr, &lhs_sharding, 1, dnums, true, may_combine_partial_sharding), lhs_sharding); EXPECT_EQ(InferDotOperandSharding(nullptr, &rhs_sharding, 0, dnums, false, may_combine_partial_sharding), HloSharding::Replicate()); EXPECT_EQ(InferDotOperandSharding(nullptr, &lhs_sharding, 1, dnums, false, may_combine_partial_sharding), HloSharding::Replicate()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/utils/hlo_sharding_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/utils/hlo_sharding_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
94825b0c-0378-4fc1-b42d-9a415dd00c59
cpp
tensorflow/tensorflow
hlo_parser
third_party/xla/xla/hlo/parser/hlo_parser.cc
third_party/xla/xla/hlo/parser/hlo_parser_test.cc
#include "xla/hlo/parser/hlo_parser.h" #include <cmath> #include <complex> #include <cstdint> #include <functional> #include <iterator> #include <limits> #include <memory> #include <optional> #include <string> #include <tuple> #include <type_traits> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/casts.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "absl/types/span.h" #include "Eigen/Core" #include "xla/array.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_domain_metadata.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_original_value.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/ir/hlo_sharding_metadata.h" #include "xla/hlo/ir/tile_assignment.h" #include "xla/hlo/parser/hlo_lexer.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/service/computation_layout.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/service/name_uniquer.h" #include "xla/service/shape_inference.h" #include "xla/shape.h" #include "xla/shape_layout.h" #include "xla/shape_util.h" #include "xla/tsl/lib/gtl/map_util.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" namespace xla { namespace { using absl::StrAppend; using absl::StrCat; using absl::StrFormat; using absl::StrJoin; using std::nullopt; using std::optional; const int8_t kDebugLevel = 10; const int8_t kErrorLevel = 1; HloSchedule ScheduleFromInstructionOrder(HloModule* module) { HloSchedule schedule(module); for (HloComputation* computation : module->computations()) { if (!computation->IsFusionComputation()) { for (HloInstruction* instruction : computation->instructions()) { schedule.GetOrCreateSequence(computation).push_back(instruction); } } } return schedule; } bool CanInferShape(HloOpcode code) { switch (code) { case HloOpcode::kAbs: case HloOpcode::kAdd: case HloOpcode::kAddDependency: case HloOpcode::kAfterAll: case HloOpcode::kAtan2: case HloOpcode::kBatchNormGrad: case HloOpcode::kBatchNormInference: case HloOpcode::kBatchNormTraining: case HloOpcode::kBroadcast: case HloOpcode::kCall: case HloOpcode::kCeil: case HloOpcode::kCholesky: case HloOpcode::kClamp: case HloOpcode::kClz: case HloOpcode::kCompare: case HloOpcode::kComplex: case HloOpcode::kConcatenate: case HloOpcode::kConditional: case HloOpcode::kConvolution: case HloOpcode::kCopy: case HloOpcode::kCos: case HloOpcode::kOptimizationBarrier: case HloOpcode::kDivide: case HloOpcode::kDomain: case HloOpcode::kDot: case HloOpcode::kErf: case HloOpcode::kExp: case HloOpcode::kExpm1: case HloOpcode::kFft: case HloOpcode::kFloor: case HloOpcode::kGather: case HloOpcode::kGetDimensionSize: case HloOpcode::kSetDimensionSize: case HloOpcode::kGetTupleElement: case HloOpcode::kImag: case HloOpcode::kIsFinite: case HloOpcode::kLog: case HloOpcode::kLog1p: case HloOpcode::kLogistic: case HloOpcode::kAnd: case HloOpcode::kNot: case HloOpcode::kOr: case HloOpcode::kXor: case HloOpcode::kMap: case HloOpcode::kMaximum: case HloOpcode::kMinimum: case HloOpcode::kMultiply: case HloOpcode::kNegate: case HloOpcode::kPad: case HloOpcode::kPartitionId: case HloOpcode::kPopulationCount: case HloOpcode::kPower: case HloOpcode::kReal: case HloOpcode::kReduce: case HloOpcode::kRemainder: case HloOpcode::kReplicaId: case HloOpcode::kReverse: case HloOpcode::kRoundNearestAfz: case HloOpcode::kRoundNearestEven: case HloOpcode::kRsqrt: case HloOpcode::kScatter: case HloOpcode::kSelect: case HloOpcode::kShiftLeft: case HloOpcode::kShiftRightArithmetic: case HloOpcode::kShiftRightLogical: case HloOpcode::kSign: case HloOpcode::kSin: case HloOpcode::kSqrt: case HloOpcode::kCbrt: case HloOpcode::kReduceWindow: case HloOpcode::kSelectAndScatter: case HloOpcode::kSort: case HloOpcode::kSubtract: case HloOpcode::kTan: case HloOpcode::kTanh: case HloOpcode::kTranspose: case HloOpcode::kTriangularSolve: case HloOpcode::kTuple: case HloOpcode::kWhile: case HloOpcode::kTopK: return true; case HloOpcode::kAsyncStart: case HloOpcode::kAsyncUpdate: case HloOpcode::kAsyncDone: case HloOpcode::kAllGather: case HloOpcode::kAllGatherStart: case HloOpcode::kAllGatherDone: case HloOpcode::kAllReduce: case HloOpcode::kAllReduceStart: case HloOpcode::kAllReduceDone: case HloOpcode::kAllToAll: case HloOpcode::kCollectiveBroadcast: case HloOpcode::kCollectivePermute: case HloOpcode::kCollectivePermuteStart: case HloOpcode::kCollectivePermuteDone: case HloOpcode::kCopyDone: case HloOpcode::kCopyStart: case HloOpcode::kDynamicReshape: case HloOpcode::kDynamicSlice: case HloOpcode::kDynamicUpdateSlice: case HloOpcode::kRecv: case HloOpcode::kRecvDone: case HloOpcode::kReduceScatter: case HloOpcode::kSend: case HloOpcode::kSendDone: case HloOpcode::kSlice: case HloOpcode::kBitcast: case HloOpcode::kBitcastConvert: case HloOpcode::kConstant: case HloOpcode::kConvert: case HloOpcode::kCustomCall: case HloOpcode::kFusion: case HloOpcode::kInfeed: case HloOpcode::kIota: case HloOpcode::kOutfeed: case HloOpcode::kParameter: case HloOpcode::kReducePrecision: case HloOpcode::kReshape: case HloOpcode::kRng: case HloOpcode::kRngBitGenerator: case HloOpcode::kRngGetAndUpdateState: case HloOpcode::kStochasticConvert: return false; } } class HloParserImpl : public HloParser { public: using LocTy = HloLexer::LocTy; using BoolList = absl::InlinedVector<bool, 1>; explicit HloParserImpl(absl::string_view str, const HloParserOptions& options = HloParserOptions()) : lexer_(str), options_(options) {} absl::Status Run(HloModule* module) override; std::string GetError() const { return StrJoin(error_, "\n"); } absl::StatusOr<Shape> ParseShapeOnly(); absl::StatusOr<Layout> ParseLayoutOnly(); absl::StatusOr<HloSharding> ParseShardingOnly(); absl::StatusOr<FrontendAttributes> ParseFrontendAttributesOnly(); absl::StatusOr<StatisticsViz> ParseStatisticsVizOnly(); absl::StatusOr<std::vector<bool>> ParseParameterReplicationOnly(); absl::StatusOr<BoolList> ParseBooleanListOrSingleBooleanOnly(); absl::StatusOr<Window> ParseWindowOnly(); absl::StatusOr<ConvolutionDimensionNumbers> ParseConvolutionDimensionNumbersOnly(); absl::StatusOr<PaddingConfig> ParsePaddingConfigOnly(); absl::StatusOr<std::vector<ReplicaGroup>> ParseReplicaGroupsOnly(); private: enum class AttrTy { kBool, kInt64, kInt32, kFloat, kString, kLiteral, kBracedInt64List, kBracedInt64ListList, kHloComputation, kBracedHloComputationList, kFftType, kPaddingType, kComparisonDirection, kComparisonType, kWindow, kConvolutionDimensionNumbers, kSharding, kFrontendAttributes, kStatisticsViz, kBracedBoolListOrBool, kParameterReplication, kInstructionList, kSliceRanges, kPaddingConfig, kMetadata, kFusionKind, kDistribution, kDomain, kPrecisionList, kShape, kShapeList, kEnum, kRandomAlgorithm, kPrecisionAlgorithm, kAliasing, kBufferDonor, kComputationLayout, kInstructionAliasing, kCustomCallSchedule, kCustomCallApiVersion, kSparsityDescriptor, kStringOrJsonDict, kCollectiveDeviceList, kOriginalValue, }; struct AttrConfig { bool required; AttrTy attr_type; void* result; }; using InstrNameTable = absl::flat_hash_map<std::string, std::pair<HloInstruction*, LocTy>>; InstrNameTable& current_name_table() { return scoped_name_tables_.back(); } std::pair<HloInstruction*, LocTy>* FindInstruction( const std::string& name, const optional<Shape>& shape = nullopt); bool ParseSingleInstruction(HloModule* module); bool ParseHloModule(HloModule* module, bool parse_module_without_header = false); bool ParseComputations(HloModule* module); bool ParseComputation(HloComputation** entry_computation); bool ParseInstructionList(HloComputation** computation, const std::string& computation_name); bool ParseInstruction(HloComputation::Builder* builder, std::string* root_name); bool ParseInstructionRhs(HloComputation::Builder* builder, std::string name, LocTy name_loc, bool allow_attributes = true); bool ParseControlPredecessors(HloInstruction* instruction); bool ParseLiteral(Literal* literal); bool ParseLiteral(Literal* literal, const Shape& shape); bool ParseTupleLiteral(Literal* literal, const Shape& shape); bool ParseNonTupleLiteral(Literal* literal, const Shape& shape); bool ParseDenseLiteral(Literal* literal, const Shape& shape); HloInstruction* CreateInstruction( HloComputation::Builder* builder, absl::string_view name, std::optional<Shape> shape, HloOpcode opcode, std::optional<HloOpcode> async_wrapped_opcode, absl::flat_hash_map<std::string, AttrConfig>& attrs, bool allow_attributes, std::vector<HloInstruction*>* preset_operands = nullptr); bool SetValueInLiteral(LocTy loc, int64_t value, int64_t index, Literal* literal); bool SetValueInLiteral(LocTy loc, double value, int64_t index, Literal* literal); bool SetValueInLiteral(LocTy loc, bool value, int64_t index, Literal* literal); bool SetValueInLiteral(LocTy loc, std::complex<double> value, int64_t index, Literal* literal); template <typename LiteralNativeT, typename ParsedElemT> bool SetValueInLiteralHelper(LocTy loc, ParsedElemT value, int64_t index, Literal* literal); template <typename LiteralNativeT, typename ParsedElemT> bool CheckParsedValueIsInRange(LocTy loc, ParsedElemT value); template <typename LiteralNativeT> bool CheckParsedValueIsInRange(LocTy loc, std::complex<double> value); bool ParseOperands(std::vector<HloInstruction*>* operands, HloComputation::Builder* builder); bool ParseOperands(std::vector<HloInstruction*>* operands, HloComputation::Builder* builder, int expected_size); struct SliceRanges { std::vector<int64_t> starts; std::vector<int64_t> limits; std::vector<int64_t> strides; }; struct DomainData { std::unique_ptr<DomainMetadata> entry_metadata; std::unique_ptr<DomainMetadata> exit_metadata; }; bool ParseAttributes( const absl::flat_hash_map<std::string, AttrConfig>& attrs, bool allow_attributes = true, const std::optional<Shape>& shape = {}); bool ParseSubAttributes( const absl::flat_hash_map<std::string, AttrConfig>& attrs); bool ParseAttributeHelper( const absl::flat_hash_map<std::string, AttrConfig>& attrs, absl::flat_hash_set<std::string>* seen_attrs, const std::optional<Shape>& shape = {}); bool CopyAttributeToProtoMessage( absl::flat_hash_set<std::string> non_proto_attrs, const absl::flat_hash_map<std::string, AttrConfig>& attrs, tsl::protobuf::Message* message); bool ParseAttributesAsProtoMessage( const absl::flat_hash_map<std::string, AttrConfig>& non_proto_attrs, tsl::protobuf::Message* message); bool ParseComputationName(HloComputation** value); bool ParseInstructionNames(std::vector<HloInstruction*>* instructions); bool ParseWindow(Window* window, bool expect_outer_curlies); bool ParseConvolutionDimensionNumbers(ConvolutionDimensionNumbers* dnums); bool ParsePaddingConfig(PaddingConfig* padding); bool ParseMetadata(OpMetadata& metadata); bool ParseSingleOrListMetadata(std::vector<OpMetadata>& metadata); bool ParseOpShardingType(OpSharding::Type* type); bool ParseListShardingType(std::vector<OpSharding::Type>* types); bool ParseSharding(std::optional<HloSharding>& sharding); bool ParseCollectiveDeviceList(CollectiveDeviceList* device_list); bool ParseFrontendAttributes(FrontendAttributes* frontend_attributes); bool ParseStatisticsViz(StatisticsViz* statistics_viz); bool ParseTileAssignment(std::vector<int64_t>& tile_assignment_dimensions, std::vector<int64_t>& iota_reshape_dims, std::vector<int>& iota_transpose_perm, std::vector<int64_t>* devices); bool ParseSingleSharding(std::optional<HloSharding>& sharding, bool lbrace_pre_lexed); bool ParseParameterReplication(ParameterReplication* parameter_replication); bool ParseBooleanListOrSingleBoolean(BoolList* boolean_list); bool ParseReplicaGroupsOnly(std::vector<ReplicaGroup>* replica_groups); bool ParseDomain(DomainData* domain); bool ParseDxD(const std::string& name, std::vector<int64_t>* result); bool ParseWindowPad(std::vector<std::vector<int64_t>>* pad); bool ParseSliceRanges(SliceRanges* result); bool ParsePrecisionList(std::vector<PrecisionConfig::Precision>* result); bool ParseHloComputation(HloComputation** result); bool ParseHloComputationList(std::vector<HloComputation*>* result); bool ParseShapeList(std::vector<Shape>* result); bool ParseInt64List(TokKind start, TokKind end, TokKind delim, std::vector<int64_t>* result); bool ParseInt64ListList(TokKind start, TokKind end, TokKind delim, std::vector<std::vector<int64_t>>* result); bool ParseList(TokKind start, TokKind end, TokKind delim, absl::FunctionRef<bool()> parse_and_add_item); bool ParseParamListToShape(Shape* shape, LocTy* shape_loc); bool ParseParamList(); bool ParseName(std::string* result); bool ParseAttributeName(std::string* result); bool ParseString(std::string* result); bool ParseJsonDict(std::string* result); bool ParseDimensionSizes(std::vector<int64_t>* dimension_sizes, std::vector<bool>* dynamic_dimensions); bool ParseShape(Shape* result); bool ParseLayout(Layout* layout); bool ParseLayoutIntAttribute(int64_t* attr_value, absl::string_view attr_description); bool ParseDimLevelTypes( absl::InlinedVector<DimLevelType, InlineRank()>* dim_level_types, absl::InlinedVector<bool, InlineRank()>* dim_unique, absl::InlinedVector<bool, InlineRank()>* dim_ordered); bool ParseTiles(std::vector<Tile>* tiles); bool ParseSplitConfigs(std::vector<SplitConfig>& split_configs); bool ParsePhysicalShape(Shape* physical_shape); bool ParseOpcode(HloOpcode* opcode, std::optional<HloOpcode>* async_wrapped_opcode); bool ParseFftType(FftType* result); bool ParsePaddingType(PaddingType* result); bool ParsePrimitiveType(PrimitiveType* result); bool ParseComparisonDirection(ComparisonDirection* result); bool ParseComparisonType(Comparison::Type* result); bool ParseFusionKind(HloInstruction::FusionKind* result); bool ParseRandomDistribution(RandomDistribution* result); bool ParseRandomAlgorithm(RandomAlgorithm* result); bool ParsePrecision(PrecisionConfig::Precision* result); bool ParseAlgorithm(PrecisionConfig::Algorithm* result); bool ParseInt64(int64_t* result); bool ParseDouble(double* result); bool ParseComplex(std::complex<double>* result); bool ParseBool(bool* result); bool ParseToken(TokKind kind, const std::string& msg); bool ParseUnsignedIntegerType(PrimitiveType* primitive_type); bool ParseOriginalValue( optional<std::shared_ptr<OriginalValue>>* original_value, const Shape& shape); using AliasingData = absl::flat_hash_map<ShapeIndex, HloInputOutputAliasConfig::Alias>; using BufferDonor = absl::flat_hash_set<HloBufferDonorConfig::BufferDonor>; bool ParseAliasing(AliasingData* data); bool ParseBufferDonor(BufferDonor* data); bool ParseComputationLayout(ComputationLayout* computation_layout); bool ParseInstructionOutputOperandAliasing( std::vector<std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>>* aliasing_output_operand_pairs); bool ParseCustomCallSchedule(CustomCallSchedule* result); bool ParseCustomCallApiVersion(CustomCallApiVersion* result); bool ParseSparsityDescriptor(std::vector<SparsityDescriptor>* result); bool ParseShapeIndex(ShapeIndex* out); bool CanBeShape(); bool CanBeParamListToShape(); bool TokenError(absl::string_view msg); bool Error(LocTy loc, absl::string_view msg); bool EatIfPresent(TokKind kind); bool AddInstruction(const std::string& name, HloInstruction* instruction, LocTy name_loc); bool AddComputation(const std::string& name, HloComputation* computation, LocTy name_loc); HloLexer lexer_; std::vector<InstrNameTable> scoped_name_tables_; class Scope { public: explicit Scope(std::vector<InstrNameTable>* scoped_name_tables) : scoped_name_tables_(scoped_name_tables) { scoped_name_tables_->emplace_back(); } ~Scope() { scoped_name_tables_->pop_back(); } private: std::vector<InstrNameTable>* scoped_name_tables_; }; absl::flat_hash_map<std::string, std::pair<HloComputation*, LocTy>> computation_pool_; std::vector<std::unique_ptr<HloComputation>> computations_; std::vector<std::string> error_; std::function<std::pair<HloInstruction*, LocTy>*(const std::string& name, const Shape& shape)> create_missing_instruction_; NameUniquer name_uniquer_{"."}; const HloParserOptions options_; }; bool SplitToInt64s(absl::string_view s, char delim, std::vector<int64_t>* out) { for (const auto& split : absl::StrSplit(s, delim)) { int64_t val; if (!absl::SimpleAtoi(split, &val)) { return false; } out->push_back(val); } return true; } std::vector<ReplicaGroup> CreateReplicaGroups( absl::Span<const std::vector<int64_t>> groups) { std::vector<ReplicaGroup> replica_groups; absl::c_transform(groups, std::back_inserter(replica_groups), [](const std::vector<int64_t>& ids) { ReplicaGroup group; *group.mutable_replica_ids() = {ids.begin(), ids.end()}; return group; }); return replica_groups; } bool HloParserImpl::Error(LocTy loc, absl::string_view msg) { auto line_col = lexer_.GetLineAndColumn(loc); const unsigned line = line_col.first; const unsigned col = line_col.second; std::vector<std::string> error_lines; error_lines.push_back( StrCat("was parsing ", line, ":", col, ": error: ", msg)); error_lines.emplace_back(lexer_.GetLine(loc)); error_lines.push_back(col == 0 ? "" : StrCat(std::string(col - 1, ' '), "^")); error_.push_back(StrJoin(error_lines, "\n")); VLOG(kErrorLevel) << "Error: " << error_.back(); return false; } bool HloParserImpl::TokenError(absl::string_view msg) { return Error(lexer_.GetLoc(), msg); } absl::Status HloParserImpl::Run(HloModule* module) { lexer_.Lex(); if ((lexer_.GetKind() == TokKind::kw_HloModule) || (lexer_.GetKind() == TokKind::kw_ENTRY) || (lexer_.LookAhead() == TokKind::kLbrace)) { bool parse_module_without_header = (lexer_.GetKind() == TokKind::kw_HloModule) ? false : true; if (!ParseHloModule(module, parse_module_without_header)) { return InvalidArgument( "Syntax error when trying to parse the text as a HloModule:\n%s", GetError()); } return absl::OkStatus(); } if (!ParseSingleInstruction(module)) { return InvalidArgument( "Syntax error when trying to parse the text as a single " "HloInstruction:\n%s", GetError()); } return absl::OkStatus(); } std::pair<HloInstruction*, HloParserImpl::LocTy>* HloParserImpl::FindInstruction(const std::string& name, const optional<Shape>& shape) { std::pair<HloInstruction*, LocTy>* instr = nullptr; if (!name.empty()) { instr = tsl::gtl::FindOrNull(current_name_table(), name); } if (instr == nullptr && create_missing_instruction_ != nullptr && scoped_name_tables_.size() == 1) { if (!shape.has_value()) { Error(lexer_.GetLoc(), "Operand had no shape in HLO text; cannot create parameter for " "single-instruction module."); return nullptr; } return create_missing_instruction_(name, *shape); } if (instr != nullptr && shape.has_value() && !ShapeUtil::Compatible(instr->first->shape(), shape.value())) { Error( lexer_.GetLoc(), StrCat("The declared operand shape ", ShapeUtil::HumanStringWithLayout(shape.value()), " is not compatible with the shape of the operand instruction ", ShapeUtil::HumanStringWithLayout(instr->first->shape()), ".")); return nullptr; } return instr; } bool HloParserImpl::ParseShapeIndex(ShapeIndex* out) { if (!ParseToken(TokKind::kLbrace, "Expects '{' at the start of ShapeIndex")) { return false; } std::vector<int64_t> idxs; while (lexer_.GetKind() != TokKind::kRbrace) { int64_t idx; if (!ParseInt64(&idx)) { return false; } idxs.push_back(idx); if (!EatIfPresent(TokKind::kComma)) { break; } } if (!ParseToken(TokKind::kRbrace, "Expects '}' at the end of ShapeIndex")) { return false; } *out = ShapeIndex(idxs.begin(), idxs.end()); return true; } bool HloParserImpl::ParseAliasing(AliasingData* data) { if (!ParseToken(TokKind::kLbrace, "Expects '{' at the start of aliasing description")) { return false; } while (lexer_.GetKind() != TokKind::kRbrace) { ShapeIndex out; if (!ParseShapeIndex(&out)) { return false; } std::string errmsg = "Expected format: <output_shape_index>: (<input_param>, " "<input_param_shape_index>) OR <output_shape_index>: <input_param>"; if (!ParseToken(TokKind::kColon, errmsg)) { return false; } if (!ParseToken(TokKind::kLparen, errmsg)) { return false; } int64_t param_num; ParseInt64(&param_num); if (!ParseToken(TokKind::kComma, errmsg)) { return false; } ShapeIndex param_idx; if (!ParseShapeIndex(&param_idx)) { return false; } HloInputOutputAliasConfig::AliasKind alias_kind = HloInputOutputAliasConfig::kMayAlias; if (EatIfPresent(TokKind::kComma)) { std::string type; ParseName(&type); if (type == "must-alias") { alias_kind = HloInputOutputAliasConfig::kMustAlias; } else if (type == "may-alias") { alias_kind = HloInputOutputAliasConfig::kMayAlias; } else { return TokenError("Unexpected aliasing kind; expected SYSTEM or USER"); } } data->emplace(std::piecewise_construct, std::forward_as_tuple(out), std::forward_as_tuple(param_num, param_idx, alias_kind)); if (!ParseToken(TokKind::kRparen, errmsg)) { return false; } if (!EatIfPresent(TokKind::kComma)) { break; } } if (!ParseToken(TokKind::kRbrace, "Expects '}' at the end of aliasing description")) { return false; } return true; } bool HloParserImpl::ParseBufferDonor(BufferDonor* data) { if (!ParseToken(TokKind::kLbrace, "Expects '{' at the start of buffer donor description")) { return false; } std::string errmsg = "Expected format: (<input_param>, <input_param_shape_index>)"; while (lexer_.GetKind() != TokKind::kRbrace) { if (!ParseToken(TokKind::kLparen, errmsg)) { return false; } int64_t param_num; ParseInt64(&param_num); if (!ParseToken(TokKind::kComma, errmsg)) { return false; } ShapeIndex param_idx; if (!ParseShapeIndex(&param_idx)) { return false; } if (!ParseToken(TokKind::kRparen, errmsg)) { return false; } data->emplace(param_num, param_idx); if (!EatIfPresent(TokKind::kComma)) { break; } } if (!ParseToken(TokKind::kRbrace, "Expects '}' at the end of buffer donor description")) { return false; } return true; } bool HloParserImpl::ParseComputationLayout( ComputationLayout* computation_layout) { if (!ParseToken(TokKind::kLbrace, "Expects '{' at the start of aliasing description")) { return false; } if (!ParseToken(TokKind::kLparen, "Expects ( before parameter shape list")) { return false; } while (lexer_.GetKind() != TokKind::kRparen) { Shape param; if (!ParseShape(&param)) { return false; } computation_layout->add_parameter_layout(ShapeLayout(param)); if (lexer_.GetKind() == TokKind::kRparen) { break; } if (!ParseToken(TokKind::kComma, "Expects , between parameter shapes")) { return false; } } if (!ParseToken(TokKind::kRparen, "Expects ) at end of parameter shape list")) { return false; } if (!ParseToken(TokKind::kArrow, "Expects -> before result shape")) { return false; } Shape result; if (!ParseShape(&result)) { return false; } *computation_layout->mutable_result_layout() = ShapeLayout(result); if (!ParseToken(TokKind::kRbrace, "Expects '}' at the end of computation layouts")) { return false; } return true; } bool HloParserImpl::ParseInstructionOutputOperandAliasing( std::vector<std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>>* aliasing_output_operand_pairs) { if (!ParseToken( TokKind::kLbrace, "Expects '{' at the start of instruction aliasing description")) { return false; } while (lexer_.GetKind() != TokKind::kRbrace) { ShapeIndex out; if (!ParseShapeIndex(&out)) { return false; } std::string errmsg = "Expected format: <output_shape_index>: (<operand_index>, " "<operand_shape_index>)"; if (!ParseToken(TokKind::kColon, errmsg)) { return false; } if (!ParseToken(TokKind::kLparen, errmsg)) { return false; } int64_t operand_index; ParseInt64(&operand_index); if (!ParseToken(TokKind::kComma, errmsg)) { return false; } ShapeIndex operand_shape_index; if (!ParseShapeIndex(&operand_shape_index)) { return false; } aliasing_output_operand_pairs->emplace_back( out, std::pair<int64_t, ShapeIndex>{operand_index, operand_shape_index}); if (!ParseToken(TokKind::kRparen, errmsg)) { return false; } if (!EatIfPresent(TokKind::kComma)) { break; } } if (!ParseToken( TokKind::kRbrace, "Expects '}' at the end of instruction aliasing description")) { return false; } return true; } bool HloParserImpl::ParseCustomCallSchedule(CustomCallSchedule* result) { VLOG(kDebugLevel) << "ParseCustomCallSchedule"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects custom-call schedule"); } std::string val = lexer_.GetStrVal(); auto status_or_result = StringToCustomCallSchedule(val); if (!status_or_result.ok()) { return TokenError( StrFormat("expects custom-call schedule but sees: %s, error: %s", val, status_or_result.status().message())); } *result = status_or_result.value(); lexer_.Lex(); return true; } bool HloParserImpl::ParseCustomCallApiVersion(CustomCallApiVersion* result) { VLOG(kDebugLevel) << "ParseCustomCallApiVersion"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects custom-call API version"); } std::string val = lexer_.GetStrVal(); auto status_or_result = StringToCustomCallApiVersion(val); if (!status_or_result.ok()) { return TokenError( StrFormat("expects custom-call API version but sees: %s, error: %s", val, status_or_result.status().message())); } *result = status_or_result.value(); lexer_.Lex(); return true; } bool HloParserImpl::ParseSparsityDescriptor( std::vector<SparsityDescriptor>* result) { VLOG(kDebugLevel) << "ParseSparsityDescriptor"; if (lexer_.GetKind() != TokKind::kSparsityDesc) { return TokenError("expects sparsity descriptor, e.g. L.0@2:4"); } std::string val = lexer_.GetStrVal(); std::vector<absl::string_view> split = absl::StrSplit(val, '_'); for (absl::string_view item : split) { std::vector<absl::string_view> splitA = absl::StrSplit(item, '@'); std::vector<absl::string_view> splitB = absl::StrSplit(splitA[0], '.'); std::vector<absl::string_view> splitC = absl::StrSplit(splitA[1], ':'); SparsityDescriptor descriptor; int dim, n, m; if (!absl::SimpleAtoi(splitB[1], &dim) || dim < 0) { return TokenError("Invalid dimension number"); } if (!absl::SimpleAtoi(splitC[0], &n) || !absl::SimpleAtoi(splitC[1], &m) || n < 1 || m <= n) { return TokenError("Invalid structured sparsity type"); } descriptor.set_type(SparsityType::SPARSITY_STRUCTURED_N_M); descriptor.set_index(splitB[0] == "L" ? 0 : 1); descriptor.set_dimension(dim); descriptor.set_n(n); descriptor.set_m(m); result->push_back(descriptor); } lexer_.Lex(); return true; } bool HloParserImpl::ParseHloModule(HloModule* module, bool parse_module_without_header) { std::string name; std::optional<bool> is_scheduled; std::optional<int64_t> replica_count; std::optional<int64_t> num_partitions; std::optional<AliasingData> aliasing_data; std::optional<BufferDonor> buffer_donor_data; std::optional<bool> alias_passthrough_params; absl::flat_hash_map<std::string, AttrConfig> attrs; std::optional<ComputationLayout> entry_computation_layout; std::optional<FrontendAttributes> frontend_attributes; BoolList allow_spmd_sharding_propagation_to_parameters; BoolList allow_spmd_sharding_propagation_to_output; attrs["is_scheduled"] = {false, AttrTy::kBool, &is_scheduled}; attrs["replica_count"] = {false, AttrTy::kInt64, &replica_count}; attrs["num_partitions"] = {false, AttrTy::kInt64, &num_partitions}; attrs["input_output_alias"] = {false, AttrTy::kAliasing, &aliasing_data}; attrs["buffer_donor"] = {false, AttrTy::kBufferDonor, &buffer_donor_data}; attrs["alias_passthrough_params"] = {false, AttrTy::kBool, &alias_passthrough_params}; attrs["entry_computation_layout"] = {false, AttrTy::kComputationLayout, &entry_computation_layout}; attrs["frontend_attributes"] = { false, AttrTy::kFrontendAttributes, &frontend_attributes}; attrs["allow_spmd_sharding_propagation_to_parameters"] = { false, AttrTy::kBracedBoolListOrBool, &allow_spmd_sharding_propagation_to_parameters}; attrs["allow_spmd_sharding_propagation_to_output"] = { false, AttrTy::kBracedBoolListOrBool, &allow_spmd_sharding_propagation_to_output}; if (!parse_module_without_header) { if (lexer_.GetKind() != TokKind::kw_HloModule) { return TokenError("expects HloModule"); } lexer_.Lex(); if (!ParseName(&name)) { return false; } if (!ParseAttributes(attrs)) { return false; } module->set_name(name); } if (!ParseComputations(module)) { return false; } if (parse_module_without_header) { name = absl::StrCat("module_", module->entry_computation()->name()); } module->set_name(name); if (is_scheduled.value_or(false)) { TF_CHECK_OK(module->set_schedule(ScheduleFromInstructionOrder(module))); } HloModuleConfig config = module->config(); bool default_config = true; if (alias_passthrough_params.value_or(false)) { config.set_alias_passthrough_params(true); default_config = false; } if (num_partitions.value_or(1) != 1) { config.set_num_partitions(*num_partitions); config.set_use_spmd_partitioning(true); default_config = false; } if (replica_count.value_or(1) != 1) { config.set_replica_count(*replica_count); default_config = false; } if (entry_computation_layout.has_value()) { *config.mutable_entry_computation_layout() = *entry_computation_layout; default_config = false; } else { HloComputation* entry_computation = module->entry_computation(); for (int64_t p = 0; p < entry_computation->num_parameters(); p++) { const Shape& param_shape = entry_computation->parameter_instruction(p)->shape(); TF_CHECK_OK(module->mutable_entry_computation_layout() ->mutable_parameter_layout(p) ->CopyLayoutFromShape(param_shape)); } const Shape& result_shape = entry_computation->root_instruction()->shape(); TF_CHECK_OK(module->mutable_entry_computation_layout() ->mutable_result_layout() ->CopyLayoutFromShape(result_shape)); } if (frontend_attributes) { module->set_frontend_attributes(frontend_attributes.value()); } if (!allow_spmd_sharding_propagation_to_parameters.empty()) { config.set_allow_spmd_sharding_propagation_to_parameters( allow_spmd_sharding_propagation_to_parameters); default_config = false; } if (!allow_spmd_sharding_propagation_to_output.empty()) { config.set_allow_spmd_sharding_propagation_to_output( allow_spmd_sharding_propagation_to_output); default_config = false; } if (!default_config) { module->set_config(config); } if (aliasing_data) { HloInputOutputAliasConfig alias_config(module->result_shape()); for (auto& p : *aliasing_data) { absl::Status st = alias_config.SetUpAlias(p.first, p.second.parameter_number, p.second.parameter_index, p.second.kind); if (!st.ok()) { return TokenError(st.message()); } } module->input_output_alias_config() = alias_config; } if (buffer_donor_data) { HloBufferDonorConfig buffer_donor_config; for (auto& p : *buffer_donor_data) { absl::Status st = buffer_donor_config.AddBufferDonor(p.param_number, p.param_index); if (!st.ok()) { return TokenError(st.message()); } } module->buffer_donor_config() = buffer_donor_config; } return true; } bool HloParserImpl::ParseComputations(HloModule* module) { HloComputation* entry_computation = nullptr; do { if (!ParseComputation(&entry_computation)) { return false; } } while (lexer_.GetKind() != TokKind::kEof); for (int i = 0; i < computations_.size(); i++) { if ((entry_computation != nullptr && computations_[i].get() != entry_computation) || (entry_computation == nullptr && i != computations_.size() - 1)) { module->AddEmbeddedComputation(std::move(computations_[i])); continue; } module->AddEntryComputation(std::move(computations_[i])); } return true; } bool HloParserImpl::ParseComputation(HloComputation** entry_computation) { LocTy maybe_entry_loc = lexer_.GetLoc(); const bool is_entry_computation = EatIfPresent(TokKind::kw_ENTRY); std::string name; LocTy name_loc = lexer_.GetLoc(); if (!ParseName(&name)) { return false; } LocTy shape_loc = nullptr; Shape shape; if (CanBeParamListToShape() && !ParseParamListToShape(&shape, &shape_loc)) { return false; } HloComputation* computation = nullptr; if (!ParseInstructionList(&computation, name)) { return false; } if (shape_loc != nullptr && !ShapeUtil::Compatible(computation->root_instruction()->shape(), shape)) { return Error( shape_loc, StrCat( "Shape of computation ", name, ", ", ShapeUtil::HumanString(shape), ", is not compatible with that of its root instruction ", computation->root_instruction()->name(), ", ", ShapeUtil::HumanString(computation->root_instruction()->shape()))); } absl::flat_hash_map<std::string, AttrConfig> attrs; optional<std::string> execution_thread = HloInstruction::kMainExecutionThread; attrs["execution_thread"] = {false, AttrTy::kString, &execution_thread}; if (!ParseAttributes(attrs)) { return false; } computation->SetExecutionThread(*execution_thread); if (is_entry_computation) { if (*entry_computation != nullptr) { return Error(maybe_entry_loc, "expects only one ENTRY"); } *entry_computation = computation; } return AddComputation(name, computation, name_loc); } bool HloParserImpl::ParseInstructionList(HloComputation** computation, const std::string& computation_name) { Scope scope(&scoped_name_tables_); HloComputation::Builder builder(computation_name); if (!ParseToken(TokKind::kLbrace, "expects '{' at the beginning of instruction list.")) { return false; } std::string root_name; do { if (!ParseInstruction(&builder, &root_name)) { return false; } } while (lexer_.GetKind() != TokKind::kRbrace); if (!ParseToken(TokKind::kRbrace, "expects '}' at the end of instruction list.")) { return false; } HloInstruction* root = nullptr; if (!root_name.empty()) { std::pair<HloInstruction*, LocTy>* root_node = tsl::gtl::FindOrNull(current_name_table(), root_name); if (root_node == nullptr) { LOG(FATAL) << "instruction " << root_name << " was marked as ROOT but the parser has not seen it before"; } root = root_node->first; } computations_.emplace_back(builder.Build(root)); *computation = computations_.back().get(); return true; } bool HloParserImpl::ParseInstruction(HloComputation::Builder* builder, std::string* root_name) { std::string name; LocTy maybe_root_loc = lexer_.GetLoc(); bool is_root = EatIfPresent(TokKind::kw_ROOT); const LocTy name_loc = lexer_.GetLoc(); if (!ParseName(&name) || !ParseToken(TokKind::kEqual, "expects '=' in instruction")) { return false; } if (is_root) { if (!root_name->empty()) { return Error(maybe_root_loc, "one computation should have only one ROOT"); } *root_name = name; } return ParseInstructionRhs(builder, name, name_loc); } bool HloParserImpl::ParseInstructionRhs(HloComputation::Builder* builder, std::string name, LocTy name_loc, bool allow_attributes) { Shape shape; HloOpcode opcode; std::optional<HloOpcode> async_wrapped_opcode; std::vector<HloInstruction*> operands; const bool parse_shape = CanBeShape(); if ((parse_shape && !ParseShape(&shape)) || !ParseOpcode(&opcode, &async_wrapped_opcode)) { return false; } if (!parse_shape && !CanInferShape(opcode)) { return TokenError(StrFormat("cannot infer shape for opcode: %s", HloOpcodeString(opcode))); } absl::flat_hash_map<std::string, AttrConfig> attrs; optional<HloSharding> sharding; optional<FrontendAttributes> frontend_attributes; optional<StatisticsViz> statistics_viz; attrs["sharding"] = {false, AttrTy::kSharding, &sharding}; attrs["frontend_attributes"] = { false, AttrTy::kFrontendAttributes, &frontend_attributes}; attrs["statistics"] = {false, AttrTy::kStatisticsViz, &statistics_viz}; optional<ParameterReplication> parameter_replication; attrs["parameter_replication"] = {false, AttrTy::kParameterReplication, &parameter_replication}; optional<std::vector<HloInstruction*>> predecessors; attrs["control-predecessors"] = {false, AttrTy::kInstructionList, &predecessors}; optional<std::shared_ptr<OriginalValue>> original_value; attrs["origin"] = {false, AttrTy::kOriginalValue, &original_value}; optional<OpMetadata> metadata; attrs["metadata"] = {false, AttrTy::kMetadata, &metadata}; optional<std::string> backend_config; attrs["backend_config"] = {false, AttrTy::kStringOrJsonDict, &backend_config}; std::optional<Shape> maybe_shape; if (parse_shape) { maybe_shape = shape; } HloInstruction* instruction = CreateInstruction(builder, name, maybe_shape, opcode, async_wrapped_opcode, attrs, allow_attributes); if (instruction == nullptr) { return false; } if (name.empty()) { name = name_uniquer_.GetUniqueName( absl::StrCat(HloOpcodeString(instruction->opcode()), ".anon")); } else { name_uniquer_.GetUniqueName(name); } instruction->SetAndSanitizeName(name); if (instruction->name() != name) { return Error(name_loc, StrCat("illegal instruction name: ", name, "; suggest renaming to: ", instruction->name())); } if (sharding) { instruction->set_sharding( sharding->NormalizeTupleSharding(instruction->shape())); } if (parameter_replication) { int leaf_count = ShapeUtil::GetLeafCount(instruction->shape()); const auto& replicated = parameter_replication->replicated_at_leaf_buffers(); if (leaf_count != replicated.size()) { return Error(lexer_.GetLoc(), StrCat("parameter has ", leaf_count, " leaf buffers, but parameter_replication has ", replicated.size(), " elements.")); } instruction->set_parameter_replicated_at_leaf_buffers(replicated); } if (predecessors) { for (auto* pre : *predecessors) { absl::Status status = pre->AddControlDependencyTo(instruction); if (!status.ok()) { return Error(name_loc, StrCat("error adding control dependency for: ", name, " status: ", status.ToString())); } } } if (metadata) { instruction->set_metadata(*metadata); } if (original_value) { instruction->set_original_value(*original_value); } if (backend_config) { instruction->set_raw_backend_config_string(std::move(*backend_config)); } if (frontend_attributes) { instruction->set_frontend_attributes(*frontend_attributes); } if (statistics_viz) { instruction->set_statistics_viz(*statistics_viz); } return AddInstruction(name, instruction, name_loc); } HloInstruction* HloParserImpl::CreateInstruction( HloComputation::Builder* builder, absl::string_view name, std::optional<Shape> shape, HloOpcode opcode, std::optional<HloOpcode> async_wrapped_opcode, absl::flat_hash_map<std::string, AttrConfig>& attrs, bool allow_attributes, std::vector<HloInstruction*>* preset_operands) { std::vector<HloInstruction*> operands; if (preset_operands) { operands = *preset_operands; } const auto maybe_infer_shape = [&](absl::FunctionRef<absl::StatusOr<Shape>()> infer) { if (shape.has_value()) { return true; } auto inferred = infer(); if (!inferred.ok()) { return TokenError( StrFormat("failed to infer shape for opcode: %s, error: %s", HloOpcodeString(opcode), inferred.status().message())); } shape = std::move(inferred).value(); return true; }; switch (opcode) { case HloOpcode::kParameter: { int64_t parameter_number; if (!ParseToken(TokKind::kLparen, "expects '(' before parameter number") || !ParseInt64(&parameter_number)) { return nullptr; } const LocTy loc = lexer_.GetLoc(); if (parameter_number < 0) { Error(loc, "parameter number must be >= 0"); return nullptr; } if (!ParseToken(TokKind::kRparen, "expects ')' after parameter number") || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } std::string param_name(name); auto result = builder->AddParameter(HloInstruction::CreateParameter( parameter_number, *shape, param_name)); if (!result.ok()) { Error(loc, result.status().message()); return nullptr; } return result.value(); } case HloOpcode::kConstant: { Literal literal; if (!ParseToken(TokKind::kLparen, "expects '(' before constant literal") || !ParseLiteral(&literal, *shape) || !ParseToken(TokKind::kRparen, "expects ')' after constant literal") || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateConstant(std::move(literal))); } case HloOpcode::kIota: { optional<int64_t> iota_dimension; attrs["iota_dimension"] = {true, AttrTy::kInt64, &iota_dimension}; if ((!preset_operands && !ParseOperands(&operands, builder, 0)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateIota(*shape, *iota_dimension)); } case HloOpcode::kTopK: { optional<int64_t> k; attrs["k"] = {true, AttrTy::kInt64, &k}; optional<bool> largest; attrs["largest"] = {false, AttrTy::kBool, &largest}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferTopKShape(operands[0]->shape(), *k); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateTopK( *shape, operands[0], *k, (largest.has_value() ? *largest : true))); } case HloOpcode::kAbs: case HloOpcode::kAllGatherDone: case HloOpcode::kAllReduceDone: case HloOpcode::kRoundNearestAfz: case HloOpcode::kRoundNearestEven: case HloOpcode::kBitcast: case HloOpcode::kCeil: case HloOpcode::kClz: case HloOpcode::kCollectivePermuteDone: case HloOpcode::kCopy: case HloOpcode::kCopyDone: case HloOpcode::kCos: case HloOpcode::kOptimizationBarrier: case HloOpcode::kErf: case HloOpcode::kExp: case HloOpcode::kExpm1: case HloOpcode::kImag: case HloOpcode::kIsFinite: case HloOpcode::kFloor: case HloOpcode::kLog: case HloOpcode::kLog1p: case HloOpcode::kLogistic: case HloOpcode::kNot: case HloOpcode::kNegate: case HloOpcode::kPopulationCount: case HloOpcode::kReal: case HloOpcode::kRsqrt: case HloOpcode::kSign: case HloOpcode::kSin: case HloOpcode::kSqrt: case HloOpcode::kCbrt: case HloOpcode::kTan: case HloOpcode::kTanh: { if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferUnaryOpShape(opcode, operands[0]); })) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateUnary(*shape, opcode, operands[0])); } case HloOpcode::kAdd: case HloOpcode::kDivide: case HloOpcode::kMultiply: case HloOpcode::kSubtract: case HloOpcode::kAtan2: case HloOpcode::kComplex: case HloOpcode::kMaximum: case HloOpcode::kMinimum: case HloOpcode::kPower: case HloOpcode::kRemainder: case HloOpcode::kAnd: case HloOpcode::kOr: case HloOpcode::kXor: case HloOpcode::kShiftLeft: case HloOpcode::kShiftRightArithmetic: case HloOpcode::kShiftRightLogical: case HloOpcode::kStochasticConvert: { if ((!preset_operands && !ParseOperands(&operands, builder, 2)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferBinaryOpShape(opcode, operands[0], operands[1]); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateBinary( *shape, opcode, operands[0], operands[1])); } case HloOpcode::kClamp: case HloOpcode::kSelect: { if ((!preset_operands && !ParseOperands(&operands, builder, 3)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferTernaryOpShape( opcode, operands[0], operands[1], operands[2]); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateTernary( *shape, opcode, operands[0], operands[1], operands[2])); } case HloOpcode::kConvert: { if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateConvert(*shape, operands[0])); } case HloOpcode::kBitcastConvert: { if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateBitcastConvert(*shape, operands[0])); } case HloOpcode::kAllGather: case HloOpcode::kAllGatherStart: { CollectiveDeviceList device_list; optional<int64_t> channel_id; optional<std::vector<int64_t>> dimensions; optional<bool> constrain_layout; optional<bool> use_global_device_ids; attrs["replica_groups"] = {false, AttrTy::kCollectiveDeviceList, &device_list}; attrs["channel_id"] = {false, AttrTy::kInt64, &channel_id}; attrs["dimensions"] = {true, AttrTy::kBracedInt64List, &dimensions}; attrs["constrain_layout"] = {false, AttrTy::kBool, &constrain_layout}; attrs["use_global_device_ids"] = {false, AttrTy::kBool, &use_global_device_ids}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (opcode == HloOpcode::kAllGather) { return builder->AddInstruction(HloInstruction::CreateAllGather( *shape, operands, dimensions->at(0), device_list, constrain_layout ? *constrain_layout : false, channel_id, use_global_device_ids ? *use_global_device_ids : false)); } return builder->AddInstruction(HloInstruction::CreateAllGatherStart( *shape, operands, dimensions->at(0), device_list, constrain_layout ? *constrain_layout : false, channel_id, use_global_device_ids ? *use_global_device_ids : false)); } case HloOpcode::kAllReduce: case HloOpcode::kAllReduceStart: case HloOpcode::kReduceScatter: { CollectiveDeviceList device_list; optional<HloComputation*> to_apply; optional<int64_t> channel_id; optional<bool> constrain_layout; optional<bool> use_global_device_ids; optional<std::vector<int64_t>> dimensions; attrs["to_apply"] = {true, AttrTy::kHloComputation, &to_apply}; attrs["replica_groups"] = {false, AttrTy::kCollectiveDeviceList, &device_list}; attrs["channel_id"] = {false, AttrTy::kInt64, &channel_id}; attrs["constrain_layout"] = {false, AttrTy::kBool, &constrain_layout}; attrs["use_global_device_ids"] = {false, AttrTy::kBool, &use_global_device_ids}; if (opcode == HloOpcode::kReduceScatter) { attrs["dimensions"] = {true, AttrTy::kBracedInt64List, &dimensions}; } if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (opcode == HloOpcode::kAllReduce) { return builder->AddInstruction(HloInstruction::CreateAllReduce( *shape, operands, *to_apply, device_list, constrain_layout ? *constrain_layout : false, channel_id, use_global_device_ids ? *use_global_device_ids : false)); } else if (opcode == HloOpcode::kReduceScatter) { return builder->AddInstruction(HloInstruction::CreateReduceScatter( *shape, operands, *to_apply, device_list, constrain_layout ? *constrain_layout : false, channel_id, use_global_device_ids ? *use_global_device_ids : false, dimensions->at(0))); } return builder->AddInstruction(HloInstruction::CreateAllReduceStart( *shape, operands, *to_apply, device_list, constrain_layout ? *constrain_layout : false, channel_id, use_global_device_ids ? *use_global_device_ids : false)); } case HloOpcode::kAllToAll: { CollectiveDeviceList device_list; attrs["replica_groups"] = {false, AttrTy::kCollectiveDeviceList, &device_list}; optional<int64_t> channel_id; attrs["channel_id"] = {false, AttrTy::kInt64, &channel_id}; optional<std::vector<int64_t>> dimensions; attrs["dimensions"] = {false, AttrTy::kBracedInt64List, &dimensions}; optional<bool> constrain_layout; attrs["constrain_layout"] = {false, AttrTy::kBool, &constrain_layout}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape) || (dimensions && dimensions->size() != 1)) { return nullptr; } optional<int64_t> split_dimension; if (dimensions) { split_dimension = dimensions->at(0); } return builder->AddInstruction(HloInstruction::CreateAllToAll( *shape, operands, device_list, constrain_layout ? *constrain_layout : false, channel_id, split_dimension)); } case HloOpcode::kCollectiveBroadcast: { CollectiveDeviceList device_list; attrs["replica_groups"] = {true, AttrTy::kCollectiveDeviceList, &device_list}; optional<int64_t> channel_id; attrs["channel_id"] = {false, AttrTy::kInt64, &channel_id}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateCollectiveBroadcast( *shape, operands, device_list, false, channel_id)); } case HloOpcode::kCollectivePermute: case HloOpcode::kCollectivePermuteStart: { optional<std::vector<std::vector<int64_t>>> source_targets; attrs["source_target_pairs"] = { true, AttrTy::kBracedInt64ListList, &source_targets}; optional<int64_t> channel_id; attrs["channel_id"] = {false, AttrTy::kInt64, &channel_id}; optional<std::vector<std::vector<int64_t>>> slice_sizes; attrs["slice_sizes"] = {false, AttrTy::kBracedInt64ListList, &slice_sizes}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } std::vector<std::pair<int64_t, int64_t>> pairs(source_targets->size()); for (int i = 0; i < pairs.size(); i++) { if ((*source_targets)[i].size() != 2) { TokenError("expects 'source_target_pairs=' to be a list of pairs"); return nullptr; } pairs[i].first = (*source_targets)[i][0]; pairs[i].second = (*source_targets)[i][1]; } if (!slice_sizes.has_value()) { if (operands.size() != 1) { TokenError( "CollectivePermute and CollectivePermuteStart must have exactly " "one operand (input buffer) unless it performs dynamic-slice and " "in-place update."); return nullptr; } if (opcode == HloOpcode::kCollectivePermute) { return builder->AddInstruction( HloInstruction::CreateCollectivePermute(*shape, operands[0], pairs, channel_id)); } if (opcode == HloOpcode::kCollectivePermuteStart) { return builder->AddInstruction( HloInstruction::CreateCollectivePermuteStart(*shape, operands[0], pairs, channel_id)); } LOG(FATAL) << "Expect opcode to be CollectivePermute or " "CollectivePermuteStart, but got " << opcode; } if (operands.size() != 4) { TokenError( "CollectivePermute and CollectivePermuteStart must " "have exactly four operands for dynamic-slice and " "in-place update."); return nullptr; } if (opcode == HloOpcode::kCollectivePermute) { return builder->AddInstruction(HloInstruction::CreateCollectivePermute( *shape, operands[0], operands[1], operands[2], operands[3], pairs, *slice_sizes, channel_id)); } if (opcode == HloOpcode::kCollectivePermuteStart) { return builder->AddInstruction( HloInstruction::CreateCollectivePermuteStart( *shape, operands[0], operands[1], operands[2], operands[3], pairs, *slice_sizes, channel_id)); } LOG(FATAL) << "Expect opcode to be CollectivePermute or " "CollectivePermuteStart, but got " << opcode; } case HloOpcode::kAsyncStart: case HloOpcode::kAsyncUpdate: case HloOpcode::kAsyncDone: { std::optional<HloComputation*> async_computation; if (!preset_operands && !ParseOperands(&operands, builder)) { return nullptr; } auto is_async_shape_correct = [](const Shape& shape) { return shape.IsTuple() && shape.tuple_shapes_size() >= 2 && shape.tuple_shapes(0).IsTuple(); }; if (opcode == HloOpcode::kAsyncUpdate || opcode == HloOpcode::kAsyncDone) { if (operands.size() != 1 || !is_async_shape_correct(operands[0]->shape())) { TokenError( "AsyncUpdate and AsyncDone expect a single operand in the form " "of ((async-operands), async-outputs, state)."); return nullptr; } } if (opcode == HloOpcode::kAsyncStart || opcode == HloOpcode::kAsyncUpdate) { if (!is_async_shape_correct(*shape)) { TokenError( "AsyncStart and AsyncUpdate expect the op shape to be in the " "form of " "((async-operands), async-outputs, state)."); return nullptr; } } if (opcode == HloOpcode::kAsyncUpdate || opcode == HloOpcode::kAsyncDone) { if (operands.size() != 1 || !is_async_shape_correct(operands[0]->shape())) { TokenError( "AsyncUpdate and AsyncDone expect a single operand in the form " "of ((async-operands), async-outputs, state)."); return nullptr; } if (!operands[0]->IsAsynchronous()) { TokenError( "AsyncUpdate and AsyncDone expect their operand to be the " "previous async op."); return nullptr; } } optional<std::string> async_execution_thread; attrs["async_execution_thread"] = {false, AttrTy::kString, &async_execution_thread}; if (async_wrapped_opcode) { if (opcode == HloOpcode::kAsyncStart) { std::vector<HloInstruction*> async_wrapped_operands; std::vector<Shape> async_wrapped_operand_shapes; Shape async_wrapped_root_shape; async_wrapped_operand_shapes.reserve(operands.size()); for (const HloInstruction* operand : operands) { async_wrapped_operand_shapes.push_back(operand->shape()); } async_wrapped_root_shape = shape->tuple_shapes(1); HloComputation::Builder async_wrapped_builder("async_wrapped"); async_wrapped_operands.reserve(async_wrapped_operand_shapes.size()); for (int i = 0; i < async_wrapped_operand_shapes.size(); ++i) { async_wrapped_operands.push_back( async_wrapped_builder.AddInstruction( HloInstruction::CreateParameter( i, async_wrapped_operand_shapes.at(i), "async_param"))); } HloInstruction* root = CreateInstruction(&async_wrapped_builder, "async_op", async_wrapped_root_shape, *async_wrapped_opcode, std::nullopt, attrs, allow_attributes, &async_wrapped_operands); if (!root) { return nullptr; } computations_.emplace_back(async_wrapped_builder.Build(root)); async_computation = computations_.back().get(); } else { if (operands[0]->async_wrapped_opcode() != *async_wrapped_opcode) { TokenError( StrFormat("Expect async wrapped opcode to be %s, but got %s", HloOpcodeString(operands[0]->async_wrapped_opcode()), HloOpcodeString(*async_wrapped_opcode))); return nullptr; } } } else { attrs["calls"] = {opcode == HloOpcode::kAsyncStart, AttrTy::kHloComputation, &async_computation}; } if (!(async_wrapped_opcode && opcode == HloOpcode::kAsyncStart)) { if (!ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } } if (opcode == HloOpcode::kAsyncUpdate || opcode == HloOpcode::kAsyncDone) { if (async_execution_thread && operands[0]->async_execution_thread() != *async_execution_thread) { TokenError(StrFormat( "Expect async_execution_thread to be %s, but got %s", operands[0]->async_execution_thread(), *async_execution_thread)); return nullptr; } if (async_computation && operands[0]->async_wrapped_computation() != *async_computation) { TokenError( StrFormat("Expect async_wrapped_computation to be %s, but got %s", operands[0]->async_wrapped_computation()->name(), (*async_computation)->name())); return nullptr; } } if (opcode == HloOpcode::kAsyncStart && (*async_computation)->IsAsyncComputation()) { TokenError(StrFormat( "Computation %s is already referenced by another async op", (*async_computation)->name())); return nullptr; } if (opcode == HloOpcode::kAsyncStart) { if (!async_execution_thread) { async_execution_thread = HloInstruction::kMainExecutionThread; } return builder->AddInstruction(HloInstruction::CreateAsyncStart( *shape, operands, *async_computation, *async_execution_thread)); } if (opcode == HloOpcode::kAsyncUpdate) { return builder->AddInstruction( HloInstruction::CreateAsyncUpdate(*shape, operands[0])); } return builder->AddInstruction( HloInstruction::CreateAsyncDone(*shape, operands[0])); } case HloOpcode::kCopyStart: { optional<int> cross_program_prefetch_index = std::nullopt; attrs["cross_program_prefetch_index"] = { false, AttrTy::kInt32, &cross_program_prefetch_index}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateCopyStart( *shape, operands[0], cross_program_prefetch_index)); } case HloOpcode::kReplicaId: { if ((!preset_operands && !ParseOperands(&operands, builder, 0)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (shape.has_value()) { return builder->AddInstruction(HloInstruction::CreateReplicaId(*shape)); } return builder->AddInstruction(HloInstruction::CreateReplicaId()); } case HloOpcode::kPartitionId: { if ((!preset_operands && !ParseOperands(&operands, builder, 0)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (shape.has_value()) { return builder->AddInstruction( HloInstruction::CreatePartitionId(*shape)); } return builder->AddInstruction(HloInstruction::CreatePartitionId()); } case HloOpcode::kDynamicReshape: { if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateDynamicReshape( *shape, operands[0], absl::Span<HloInstruction* const>(operands).subspan(1))); } case HloOpcode::kReshape: { optional<int64_t> inferred_dimension; attrs["inferred_dimension"] = {false, AttrTy::kInt64, &inferred_dimension}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateReshape( *shape, operands[0], inferred_dimension.value_or(-1))); } case HloOpcode::kAfterAll: { if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (operands.empty()) { return builder->AddInstruction(HloInstruction::CreateToken()); } return builder->AddInstruction(HloInstruction::CreateAfterAll(operands)); } case HloOpcode::kAddDependency: { if ((!preset_operands && !ParseOperands(&operands, builder, 2)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateAddDependency(operands[0], operands[1])); } case HloOpcode::kSort: { optional<std::vector<int64_t>> dimensions; attrs["dimensions"] = {true, AttrTy::kBracedInt64List, &dimensions}; optional<bool> is_stable = false; attrs["is_stable"] = {false, AttrTy::kBool, &is_stable}; optional<HloComputation*> to_apply; attrs["to_apply"] = {true, AttrTy::kHloComputation, &to_apply}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape) || dimensions->size() != 1) { return nullptr; } if (!maybe_infer_shape([&] { absl::InlinedVector<const Shape*, 2> arg_shapes; arg_shapes.reserve(operands.size()); for (auto* operand : operands) { arg_shapes.push_back(&operand->shape()); } return ShapeInference::InferVariadicOpShape(opcode, arg_shapes); })) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateSort(*shape, dimensions->at(0), operands, to_apply.value(), is_stable.value())); } case HloOpcode::kTuple: { if ((!preset_operands && !(shape.has_value() ? ParseOperands(&operands, builder, shape->tuple_shapes_size()) : ParseOperands(&operands, builder))) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { absl::InlinedVector<const Shape*, 2> arg_shapes; arg_shapes.reserve(operands.size()); for (auto* operand : operands) { arg_shapes.push_back(&operand->shape()); } return ShapeInference::InferVariadicOpShape(opcode, arg_shapes); })) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateVariadic(*shape, HloOpcode::kTuple, operands)); } case HloOpcode::kWhile: { optional<HloComputation*> condition; optional<HloComputation*> body; attrs["condition"] = {true, AttrTy::kHloComputation, &condition}; attrs["body"] = {true, AttrTy::kHloComputation, &body}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferWhileShape( condition.value()->ComputeProgramShape(), body.value()->ComputeProgramShape(), operands[0]->shape()); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateWhile( *shape, *condition, *body, operands[0])); } case HloOpcode::kRecv: { optional<int64_t> channel_id; optional<bool> is_host_transfer = false; attrs["channel_id"] = {true, AttrTy::kInt64, &channel_id}; attrs["is_host_transfer"] = {false, AttrTy::kBool, &is_host_transfer}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateRecv( shape->tuple_shapes(0), operands[0], *channel_id, *is_host_transfer)); } case HloOpcode::kRecvDone: { optional<int64_t> channel_id; optional<bool> is_host_transfer = false; attrs["channel_id"] = {true, AttrTy::kInt64, &channel_id}; attrs["is_host_transfer"] = {false, AttrTy::kBool, &is_host_transfer}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (dynamic_cast<const HloChannelInstruction*>(operands[0]) != nullptr) { if (channel_id != operands[0]->channel_id()) { return nullptr; } } return builder->AddInstruction(HloInstruction::CreateRecvDone( operands[0], channel_id.value(), *is_host_transfer)); } case HloOpcode::kSend: { optional<int64_t> channel_id; optional<bool> is_host_transfer = false; attrs["channel_id"] = {true, AttrTy::kInt64, &channel_id}; attrs["is_host_transfer"] = {false, AttrTy::kBool, &is_host_transfer}; if ((!preset_operands && !ParseOperands(&operands, builder, 2)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateSend( operands[0], operands[1], *channel_id, *is_host_transfer)); } case HloOpcode::kSendDone: { optional<int64_t> channel_id; optional<bool> is_host_transfer = false; attrs["channel_id"] = {true, AttrTy::kInt64, &channel_id}; attrs["is_host_transfer"] = {false, AttrTy::kBool, &is_host_transfer}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (dynamic_cast<const HloChannelInstruction*>(operands[0]) != nullptr) { if (channel_id != operands[0]->channel_id()) { return nullptr; } } return builder->AddInstruction(HloInstruction::CreateSendDone( operands[0], channel_id.value(), *is_host_transfer)); } case HloOpcode::kGetTupleElement: { optional<int64_t> index; attrs["index"] = {true, AttrTy::kInt64, &index}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeUtil::GetTupleElementShape(operands[0]->shape(), *index); })) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateGetTupleElement(*shape, operands[0], *index)); } case HloOpcode::kCall: { optional<HloComputation*> to_apply; optional<bool> is_composite = false; attrs["to_apply"] = {true, AttrTy::kHloComputation, &to_apply}; attrs["is_composite"] = {false, AttrTy::kBool, &is_composite}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { absl::InlinedVector<const Shape*, 2> arg_shapes; arg_shapes.reserve(operands.size()); for (auto* operand : operands) { arg_shapes.push_back(&operand->shape()); } return ShapeInference::InferCallShape( arg_shapes, to_apply.value()->ComputeProgramShape()); })) { return nullptr; } auto call_op = HloInstruction::CreateCall(*shape, operands, *to_apply); call_op->set_is_composite(is_composite.value()); return builder->AddInstruction(std::move(call_op)); } case HloOpcode::kReduceWindow: { optional<HloComputation*> reduce_computation; optional<Window> window; attrs["window"] = {false, AttrTy::kWindow, &window}; attrs["to_apply"] = {true, AttrTy::kHloComputation, &reduce_computation}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!window) { window.emplace(); } if (operands.size() % 2) { TokenError(StrCat("expects an even number of operands, but has ", operands.size(), " operands")); return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferReduceWindowShape( operands[0]->shape(), operands[1]->shape(), *window, reduce_computation.value()->ComputeProgramShape()); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateReduceWindow( *shape, absl::Span<HloInstruction* const>(operands).subspan( 0, operands.size() / 2), absl::Span<HloInstruction* const>(operands).subspan(operands.size() / 2), *window, *reduce_computation)); } case HloOpcode::kConvolution: { optional<Window> window; optional<ConvolutionDimensionNumbers> dnums; optional<int64_t> feature_group_count; optional<int64_t> batch_group_count; attrs["window"] = {false, AttrTy::kWindow, &window}; attrs["dim_labels"] = {true, AttrTy::kConvolutionDimensionNumbers, &dnums}; attrs["feature_group_count"] = {false, AttrTy::kInt64, &feature_group_count}; attrs["batch_group_count"] = {false, AttrTy::kInt64, &batch_group_count}; optional<std::vector<PrecisionConfig::Precision>> operand_precision; attrs["operand_precision"] = {false, AttrTy::kPrecisionList, &operand_precision}; if ((!preset_operands && !ParseOperands(&operands, builder, 2)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!window) { window.emplace(); } if (!feature_group_count) { feature_group_count = 1; } if (!batch_group_count) { batch_group_count = 1; } PrecisionConfig precision_config; if (operand_precision) { *precision_config.mutable_operand_precision() = { operand_precision->begin(), operand_precision->end()}; } else { precision_config.mutable_operand_precision()->Resize( operands.size(), PrecisionConfig::DEFAULT); } if (!maybe_infer_shape([&] { return ShapeInference::InferConvolveShape( operands[0]->shape(), operands[1]->shape(), *feature_group_count, *batch_group_count, *window, *dnums, std::nullopt); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateConvolve( *shape, operands[0], operands[1], feature_group_count.value(), batch_group_count.value(), *window, *dnums, precision_config)); } case HloOpcode::kFft: { optional<FftType> fft_type; optional<std::vector<int64_t>> fft_length; attrs["fft_type"] = {true, AttrTy::kFftType, &fft_type}; attrs["fft_length"] = {true, AttrTy::kBracedInt64List, &fft_length}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferFftShape(operands[0]->shape(), *fft_type, *fft_length); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateFft( *shape, operands[0], *fft_type, *fft_length)); } case HloOpcode::kTriangularSolve: { TriangularSolveOptions options; if ((!preset_operands && !ParseOperands(&operands, builder, 2)) || (allow_attributes && !ParseAttributesAsProtoMessage( attrs, &options))) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferTriangularSolveShape( operands[0]->shape(), operands[1]->shape(), options); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateTriangularSolve( *shape, operands[0], operands[1], options)); } case HloOpcode::kCompare: { optional<ComparisonDirection> direction; optional<Comparison::Type> type; attrs["direction"] = {true, AttrTy::kComparisonDirection, &direction}; attrs["type"] = {false, AttrTy::kComparisonType, &type}; if ((!preset_operands && !ParseOperands(&operands, builder, 2)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferBinaryOpShape(opcode, operands[0], operands[1]); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateCompare( *shape, operands[0], operands[1], *direction, type)); } case HloOpcode::kCholesky: { CholeskyOptions options; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || (allow_attributes && !ParseAttributesAsProtoMessage( attrs, &options))) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferCholeskyShape(operands[0]->shape()); })) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateCholesky(*shape, operands[0], options)); } case HloOpcode::kBroadcast: { if (!preset_operands && !ParseOperands(&operands, builder, 1)) { return nullptr; } bool operand_is_scalar = ShapeUtil::IsScalar(operands[0]->shape()); optional<std::vector<int64_t>> broadcast_dimensions; attrs["dimensions"] = {!operand_is_scalar, AttrTy::kBracedInt64List, &broadcast_dimensions}; if (!ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (operand_is_scalar && !broadcast_dimensions.has_value()) { broadcast_dimensions.emplace(); } if (!maybe_infer_shape([&] { return ShapeInference::InferBroadcastShape(operands[0]->shape(), *broadcast_dimensions); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateBroadcast( *shape, operands[0], *broadcast_dimensions)); } case HloOpcode::kConcatenate: { optional<std::vector<int64_t>> dimensions; attrs["dimensions"] = {true, AttrTy::kBracedInt64List, &dimensions}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape) || dimensions->size() != 1) { return nullptr; } if (!maybe_infer_shape([&] { absl::InlinedVector<const Shape*, 2> arg_shapes; arg_shapes.reserve(operands.size()); for (auto* operand : operands) { arg_shapes.push_back(&operand->shape()); } return ShapeInference::InferConcatOpShape(arg_shapes, dimensions->at(0)); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateConcatenate( *shape, operands, dimensions->at(0))); } case HloOpcode::kMap: { optional<HloComputation*> to_apply; attrs["to_apply"] = {true, AttrTy::kHloComputation, &to_apply}; optional<std::vector<int64_t>> dimensions; attrs["dimensions"] = {false, AttrTy::kBracedInt64List, &dimensions}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { absl::InlinedVector<const Shape*, 2> arg_shapes; arg_shapes.reserve(operands.size()); for (auto* operand : operands) { arg_shapes.push_back(&operand->shape()); } return ShapeInference::InferMapShape( arg_shapes, to_apply.value()->ComputeProgramShape(), *dimensions); })) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateMap(*shape, operands, *to_apply)); } case HloOpcode::kReduce: { optional<HloComputation*> reduce_computation; attrs["to_apply"] = {true, AttrTy::kHloComputation, &reduce_computation}; optional<std::vector<int64_t>> dimensions_to_reduce; attrs["dimensions"] = {true, AttrTy::kBracedInt64List, &dimensions_to_reduce}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (operands.size() % 2) { TokenError(StrCat("expects an even number of operands, but has ", operands.size(), " operands")); return nullptr; } if (!maybe_infer_shape([&] { absl::InlinedVector<const Shape*, 2> arg_shapes; arg_shapes.reserve(operands.size()); for (auto* operand : operands) { arg_shapes.push_back(&operand->shape()); } return ShapeInference::InferReduceShape( arg_shapes, *dimensions_to_reduce, reduce_computation.value()->ComputeProgramShape()); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateReduce( *shape, absl::Span<HloInstruction* const>(operands).subspan( 0, operands.size() / 2), absl::Span<HloInstruction* const>(operands).subspan(operands.size() / 2), *dimensions_to_reduce, *reduce_computation)); } case HloOpcode::kReverse: { optional<std::vector<int64_t>> dimensions; attrs["dimensions"] = {true, AttrTy::kBracedInt64List, &dimensions}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferReverseShape(operands[0]->shape(), *dimensions); })) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateReverse(*shape, operands[0], *dimensions)); } case HloOpcode::kSelectAndScatter: { optional<HloComputation*> select; attrs["select"] = {true, AttrTy::kHloComputation, &select}; optional<HloComputation*> scatter; attrs["scatter"] = {true, AttrTy::kHloComputation, &scatter}; optional<Window> window; attrs["window"] = {false, AttrTy::kWindow, &window}; if ((!preset_operands && !ParseOperands(&operands, builder, 3)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!window) { window.emplace(); } if (!maybe_infer_shape([&] { return ShapeInference::InferSelectAndScatterShape( operands[0]->shape(), select.value()->ComputeProgramShape(), *window, operands[1]->shape(), operands[2]->shape(), scatter.value()->ComputeProgramShape()); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateSelectAndScatter( *shape, operands[0], *select, *window, operands[1], operands[2], *scatter)); } case HloOpcode::kSlice: { optional<SliceRanges> slice_ranges; attrs["slice"] = {true, AttrTy::kSliceRanges, &slice_ranges}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateSlice( *shape, operands[0], slice_ranges->starts, slice_ranges->limits, slice_ranges->strides)); } case HloOpcode::kDynamicSlice: { optional<std::vector<int64_t>> dynamic_slice_sizes; attrs["dynamic_slice_sizes"] = { true, AttrTy::kBracedInt64List, &dynamic_slice_sizes}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (operands.empty()) { TokenError("Expected at least one operand."); return nullptr; } if (!(operands.size() == 2 && operands[1]->shape().rank() == 1) && operands.size() != 1 + operands[0]->shape().rank()) { TokenError("Wrong number of operands."); return nullptr; } return builder->AddInstruction(HloInstruction::CreateDynamicSlice( *shape, operands[0], absl::MakeSpan(operands).subspan(1), *dynamic_slice_sizes)); } case HloOpcode::kDynamicUpdateSlice: { if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (operands.size() < 2) { TokenError("Expected at least two operands."); return nullptr; } if (!(operands.size() == 3 && operands[2]->shape().rank() == 1) && operands.size() != 2 + operands[0]->shape().rank()) { TokenError("Wrong number of operands."); return nullptr; } return builder->AddInstruction(HloInstruction::CreateDynamicUpdateSlice( *shape, operands[0], operands[1], absl::MakeSpan(operands).subspan(2))); } case HloOpcode::kTranspose: { optional<std::vector<int64_t>> dimensions; attrs["dimensions"] = {true, AttrTy::kBracedInt64List, &dimensions}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferTransposeShape(operands[0]->shape(), *dimensions); })) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateTranspose(*shape, operands[0], *dimensions)); } case HloOpcode::kBatchNormTraining: { optional<float> epsilon; attrs["epsilon"] = {true, AttrTy::kFloat, &epsilon}; optional<int64_t> feature_index; attrs["feature_index"] = {true, AttrTy::kInt64, &feature_index}; if ((!preset_operands && !ParseOperands(&operands, builder, 3)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferBatchNormTrainingShape( operands[0]->shape(), operands[1]->shape(), operands[2]->shape(), *feature_index); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateBatchNormTraining( *shape, operands[0], operands[1], operands[2], *epsilon, *feature_index)); } case HloOpcode::kBatchNormInference: { optional<float> epsilon; attrs["epsilon"] = {true, AttrTy::kFloat, &epsilon}; optional<int64_t> feature_index; attrs["feature_index"] = {true, AttrTy::kInt64, &feature_index}; if ((!preset_operands && !ParseOperands(&operands, builder, 5)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferBatchNormInferenceShape( operands[0]->shape(), operands[1]->shape(), operands[2]->shape(), operands[3]->shape(), operands[4]->shape(), *feature_index); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateBatchNormInference( *shape, operands[0], operands[1], operands[2], operands[3], operands[4], *epsilon, *feature_index)); } case HloOpcode::kBatchNormGrad: { optional<float> epsilon; attrs["epsilon"] = {true, AttrTy::kFloat, &epsilon}; optional<int64_t> feature_index; attrs["feature_index"] = {true, AttrTy::kInt64, &feature_index}; if ((!preset_operands && !ParseOperands(&operands, builder, 5)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferBatchNormGradShape( operands[0]->shape(), operands[1]->shape(), operands[2]->shape(), operands[3]->shape(), operands[4]->shape(), *feature_index); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateBatchNormGrad( *shape, operands[0], operands[1], operands[2], operands[3], operands[4], *epsilon, *feature_index)); } case HloOpcode::kPad: { optional<PaddingConfig> padding; attrs["padding"] = {true, AttrTy::kPaddingConfig, &padding}; if ((!preset_operands && !ParseOperands(&operands, builder, 2)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferPadShape( operands[0]->shape(), operands[1]->shape(), *padding); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreatePad( *shape, operands[0], operands[1], *padding)); } case HloOpcode::kFusion: { optional<HloComputation*> fusion_computation; attrs["calls"] = {true, AttrTy::kHloComputation, &fusion_computation}; optional<HloInstruction::FusionKind> fusion_kind; attrs["kind"] = {true, AttrTy::kFusionKind, &fusion_kind}; optional< std::vector<std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>>> output_to_operand_aliasing; attrs["output_to_operand_aliasing"] = {false, AttrTy::kInstructionAliasing, &output_to_operand_aliasing}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } auto instr = builder->AddInstruction(HloInstruction::CreateFusion( *shape, *fusion_kind, operands, *fusion_computation)); auto fusion_instr = Cast<HloFusionInstruction>(instr); if (output_to_operand_aliasing.has_value()) { fusion_instr->set_output_to_operand_aliasing( std::move(*output_to_operand_aliasing)); } return instr; } case HloOpcode::kInfeed: { optional<std::string> config; attrs["infeed_config"] = {false, AttrTy::kString, &config}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!shape->IsTuple() && !ShapeUtil::IsEmptyTuple(*shape)) { TokenError("infeed must have a non-empty tuple shape"); return nullptr; } return builder->AddInstruction(HloInstruction::CreateInfeed( ShapeUtil::GetTupleElementShape(*shape, 0), operands[0], config ? *config : "")); } case HloOpcode::kOutfeed: { optional<std::string> config; optional<Shape> outfeed_shape; attrs["outfeed_config"] = {false, AttrTy::kString, &config}; attrs["outfeed_shape"] = {false, AttrTy::kShape, &outfeed_shape}; if ((!preset_operands && !ParseOperands(&operands, builder, 2)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } HloInstruction* const outfeed_input = operands[0]; HloInstruction* const outfeed_token = operands[1]; const Shape shape = outfeed_shape.has_value() ? *outfeed_shape : outfeed_input->shape(); return builder->AddInstruction(HloInstruction::CreateOutfeed( shape, outfeed_input, outfeed_token, config ? *config : "")); } case HloOpcode::kRng: { optional<RandomDistribution> distribution; attrs["distribution"] = {true, AttrTy::kDistribution, &distribution}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateRng(*shape, *distribution, operands)); } case HloOpcode::kRngGetAndUpdateState: { optional<int64_t> delta; attrs["delta"] = {true, AttrTy::kInt64, &delta}; if ((!preset_operands && !ParseOperands(&operands, builder, 0)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateRngGetAndUpdateState(*shape, *delta)); } case HloOpcode::kRngBitGenerator: { optional<RandomAlgorithm> algorithm; attrs["algorithm"] = {true, AttrTy::kRandomAlgorithm, &algorithm}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateRngBitGenerator( *shape, operands[0], *algorithm)); } case HloOpcode::kReducePrecision: { optional<int64_t> exponent_bits; optional<int64_t> mantissa_bits; attrs["exponent_bits"] = {true, AttrTy::kInt64, &exponent_bits}; attrs["mantissa_bits"] = {true, AttrTy::kInt64, &mantissa_bits}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateReducePrecision( *shape, operands[0], static_cast<int>(*exponent_bits), static_cast<int>(*mantissa_bits))); } case HloOpcode::kConditional: { optional<HloComputation*> true_computation; optional<HloComputation*> false_computation; optional<std::vector<HloComputation*>> branch_computations; if (!preset_operands && !ParseOperands(&operands, builder)) { return nullptr; } if (!ShapeUtil::IsScalar(operands[0]->shape())) { TokenError("The first operand must be a scalar"); return nullptr; } const bool branch_index_is_bool = operands[0]->shape().element_type() == PRED; if (branch_index_is_bool) { attrs["true_computation"] = {true, AttrTy::kHloComputation, &true_computation}; attrs["false_computation"] = { true, AttrTy::kHloComputation, &false_computation}; } else { if (operands[0]->shape().element_type() != S32) { TokenError("The first operand must be a scalar of PRED or S32"); return nullptr; } attrs["branch_computations"] = {true, AttrTy::kBracedHloComputationList, &branch_computations}; } if (!ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (branch_index_is_bool) { branch_computations.emplace({*true_computation, *false_computation}); } if (branch_computations->empty() || operands.size() != branch_computations->size() + 1) { return nullptr; } if (!maybe_infer_shape([&] { absl::InlinedVector<ProgramShape, 2> branch_computation_shapes; branch_computation_shapes.reserve(branch_computations->size()); for (auto* computation : *branch_computations) { branch_computation_shapes.push_back( computation->ComputeProgramShape()); } absl::InlinedVector<Shape, 2> branch_operand_shapes; branch_operand_shapes.reserve(operands.size() - 1); for (int i = 1; i < operands.size(); ++i) { branch_operand_shapes.push_back(operands[i]->shape()); } return ShapeInference::InferConditionalShape( operands[0]->shape(), branch_computation_shapes, branch_operand_shapes); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateConditional( *shape, operands[0], absl::MakeSpan(*branch_computations), absl::MakeSpan(operands).subspan(1))); } case HloOpcode::kCustomCall: { optional<std::string> custom_call_target; optional<Window> window; optional<ConvolutionDimensionNumbers> dnums; optional<int64_t> feature_group_count; optional<int64_t> batch_group_count; optional<std::vector<Shape>> operand_layout_constraints; optional<bool> custom_call_has_side_effect; optional<HloComputation*> to_apply; optional< std::vector<std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>>> output_to_operand_aliasing; optional<PaddingType> padding_type; optional<std::vector<HloComputation*>> called_computations; optional<CustomCallSchedule> custom_call_schedule; optional<CustomCallApiVersion> api_version; attrs["custom_call_target"] = {true, AttrTy::kString, &custom_call_target}; attrs["window"] = {false, AttrTy::kWindow, &window}; attrs["dim_labels"] = {false, AttrTy::kConvolutionDimensionNumbers, &dnums}; attrs["feature_group_count"] = {false, AttrTy::kInt64, &feature_group_count}; attrs["batch_group_count"] = {false, AttrTy::kInt64, &batch_group_count}; attrs["operand_layout_constraints"] = { false, AttrTy::kShapeList, &operand_layout_constraints}; attrs["custom_call_has_side_effect"] = {false, AttrTy::kBool, &custom_call_has_side_effect}; attrs["to_apply"] = {false, AttrTy::kHloComputation, &to_apply}; attrs["called_computations"] = {false, AttrTy::kBracedHloComputationList, &called_computations}; attrs["output_to_operand_aliasing"] = {false, AttrTy::kInstructionAliasing, &output_to_operand_aliasing}; attrs["padding_type"] = {false, AttrTy::kPaddingType, &padding_type}; optional<Literal> literal; attrs["literal"] = {false, AttrTy::kLiteral, &literal}; optional<std::vector<PrecisionConfig::Precision>> operand_precision; attrs["operand_precision"] = {false, AttrTy::kPrecisionList, &operand_precision}; HloInstruction* instruction; if (called_computations.has_value() && to_apply.has_value()) { TokenError( "A single instruction can't have both to_apply and " "calls field"); return nullptr; } attrs["schedule"] = {false, AttrTy::kCustomCallSchedule, &custom_call_schedule}; attrs["api_version"] = {false, AttrTy::kCustomCallApiVersion, &api_version}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (api_version.has_value() && *api_version == CustomCallApiVersion::API_VERSION_UNSPECIFIED) { TokenError(StrCat("Invalid API version: ", CustomCallApiVersion_Name(*api_version))); return nullptr; } if (operand_layout_constraints.has_value()) { if (!LayoutUtil::HasLayout(*shape)) { TokenError("Layout must be set on layout-constrained custom call"); return nullptr; } if (operands.size() != operand_layout_constraints->size()) { TokenError(StrCat("Expected ", operands.size(), " operand layout constraints, ", operand_layout_constraints->size(), " given")); return nullptr; } for (int64_t i = 0; i < operands.size(); ++i) { const Shape& operand_shape_with_layout = (*operand_layout_constraints)[i]; if (!LayoutUtil::HasLayout(operand_shape_with_layout)) { TokenError(StrCat( "Operand layout constraint shape ", ShapeUtil::HumanStringWithLayout(operand_shape_with_layout), " for operand ", i, " does not have a layout")); return nullptr; } if (!ShapeUtil::Compatible(operand_shape_with_layout, operands[i]->shape())) { TokenError(StrCat( "Operand layout constraint shape ", ShapeUtil::HumanStringWithLayout(operand_shape_with_layout), " for operand ", i, " is not compatible with operand shape ", ShapeUtil::HumanStringWithLayout(operands[i]->shape()))); return nullptr; } } instruction = builder->AddInstruction(HloInstruction::CreateCustomCall( *shape, operands, *custom_call_target, *operand_layout_constraints, "")); } else { if (to_apply.has_value()) { instruction = builder->AddInstruction(HloInstruction::CreateCustomCall( *shape, operands, *to_apply, *custom_call_target, "")); } else if (called_computations.has_value()) { instruction = builder->AddInstruction(HloInstruction::CreateCustomCall( *shape, operands, *called_computations, *custom_call_target, "")); } else { instruction = builder->AddInstruction(HloInstruction::CreateCustomCall( *shape, operands, *custom_call_target, "")); } } auto custom_call_instr = Cast<HloCustomCallInstruction>(instruction); if (window.has_value()) { custom_call_instr->set_window(*window); } if (dnums.has_value()) { custom_call_instr->set_convolution_dimension_numbers(*dnums); } if (feature_group_count.has_value()) { custom_call_instr->set_feature_group_count(*feature_group_count); } if (batch_group_count.has_value()) { custom_call_instr->set_batch_group_count(*batch_group_count); } if (padding_type.has_value()) { custom_call_instr->set_padding_type(*padding_type); } if (custom_call_has_side_effect.has_value()) { custom_call_instr->set_custom_call_has_side_effect( *custom_call_has_side_effect); } if (custom_call_schedule.has_value()) { custom_call_instr->set_custom_call_schedule(*custom_call_schedule); } if (api_version.has_value()) { custom_call_instr->set_api_version(*api_version); } if (output_to_operand_aliasing.has_value()) { custom_call_instr->set_output_to_operand_aliasing( std::move(*output_to_operand_aliasing)); } if (literal.has_value()) { custom_call_instr->set_literal(std::move(*literal)); } PrecisionConfig precision_config; if (operand_precision) { *precision_config.mutable_operand_precision() = { operand_precision->begin(), operand_precision->end()}; } else { precision_config.mutable_operand_precision()->Resize( operands.size(), PrecisionConfig::DEFAULT); } *custom_call_instr->mutable_precision_config() = precision_config; return instruction; } case HloOpcode::kDot: { optional<std::vector<int64_t>> lhs_contracting_dims; attrs["lhs_contracting_dims"] = { false, AttrTy::kBracedInt64List, &lhs_contracting_dims}; optional<std::vector<int64_t>> rhs_contracting_dims; attrs["rhs_contracting_dims"] = { false, AttrTy::kBracedInt64List, &rhs_contracting_dims}; optional<std::vector<int64_t>> lhs_batch_dims; attrs["lhs_batch_dims"] = {false, AttrTy::kBracedInt64List, &lhs_batch_dims}; optional<std::vector<int64_t>> rhs_batch_dims; attrs["rhs_batch_dims"] = {false, AttrTy::kBracedInt64List, &rhs_batch_dims}; optional<std::vector<PrecisionConfig::Precision>> operand_precision; attrs["operand_precision"] = {false, AttrTy::kPrecisionList, &operand_precision}; std::vector<SparsityDescriptor> sparsity; attrs["sparsity"] = {false, AttrTy::kSparsityDescriptor, &sparsity}; optional<PrecisionConfig::Algorithm> algorithm; attrs["algorithm"] = {false, AttrTy::kPrecisionAlgorithm, &algorithm}; LocTy loc = lexer_.GetLoc(); if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } int expected_size = HloDotInstruction::kOperands + sparsity.size(); if (sparsity.size() > HloDotInstruction::kOperands) { Error(loc, StrCat("too many sparse dot descriptors: ", sparsity.size())); return nullptr; } if (operands.size() != expected_size) { Error(loc, StrCat("expects ", expected_size, " operands, but has ", operands.size(), " operands")); return nullptr; } DotDimensionNumbers dnum; if (lhs_contracting_dims) { *dnum.mutable_lhs_contracting_dimensions() = { lhs_contracting_dims->begin(), lhs_contracting_dims->end()}; } if (rhs_contracting_dims) { *dnum.mutable_rhs_contracting_dimensions() = { rhs_contracting_dims->begin(), rhs_contracting_dims->end()}; } if (lhs_batch_dims) { *dnum.mutable_lhs_batch_dimensions() = {lhs_batch_dims->begin(), lhs_batch_dims->end()}; } if (rhs_batch_dims) { *dnum.mutable_rhs_batch_dimensions() = {rhs_batch_dims->begin(), rhs_batch_dims->end()}; } PrecisionConfig precision_config; if (operand_precision) { *precision_config.mutable_operand_precision() = { operand_precision->begin(), operand_precision->end()}; } else { precision_config.mutable_operand_precision()->Resize( HloDotInstruction::kOperands, PrecisionConfig::DEFAULT); } if (algorithm) { precision_config.set_algorithm(*algorithm); } if (!maybe_infer_shape([&] { return ShapeInference::InferDotOpShape( operands[0]->shape(), operands[1]->shape(), dnum, std::nullopt, sparsity); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateDot( *shape, operands[0], operands[1], dnum, precision_config, sparsity, absl::MakeSpan(operands).subspan(HloDotInstruction::kOperands))); } case HloOpcode::kGather: { optional<std::vector<int64_t>> offset_dims; attrs["offset_dims"] = {true, AttrTy::kBracedInt64List, &offset_dims}; optional<std::vector<int64_t>> collapsed_slice_dims; attrs["collapsed_slice_dims"] = { true, AttrTy::kBracedInt64List, &collapsed_slice_dims}; optional<std::vector<int64_t>> start_index_map; attrs["start_index_map"] = {true, AttrTy::kBracedInt64List, &start_index_map}; optional<int64_t> index_vector_dim; attrs["index_vector_dim"] = {true, AttrTy::kInt64, &index_vector_dim}; optional<std::vector<int64_t>> slice_sizes; attrs["slice_sizes"] = {true, AttrTy::kBracedInt64List, &slice_sizes}; optional<bool> indices_are_sorted = false; attrs["indices_are_sorted"] = {false, AttrTy::kBool, &indices_are_sorted}; optional<std::vector<int64_t>> operand_batching_dims; attrs["operand_batching_dims"] = { false, AttrTy::kBracedInt64List, &operand_batching_dims}; optional<std::vector<int64_t>> start_indices_batching_dims; attrs["start_indices_batching_dims"] = {false, AttrTy::kBracedInt64List, &start_indices_batching_dims}; if ((!preset_operands && !ParseOperands(&operands, builder, 2)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } GatherDimensionNumbers dim_numbers = HloGatherInstruction::MakeGatherDimNumbers( *offset_dims, *collapsed_slice_dims, *start_index_map, *index_vector_dim, operand_batching_dims ? *operand_batching_dims : std::vector<int64_t>(), start_indices_batching_dims ? *start_indices_batching_dims : std::vector<int64_t>()); if (!maybe_infer_shape([&] { return ShapeInference::InferGatherShape(operands[0]->shape(), operands[1]->shape(), dim_numbers, *slice_sizes); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateGather( *shape, operands[0], operands[1], dim_numbers, *slice_sizes, indices_are_sorted.value())); } case HloOpcode::kScatter: { optional<std::vector<int64_t>> update_window_dims; attrs["update_window_dims"] = { true, AttrTy::kBracedInt64List, &update_window_dims}; optional<std::vector<int64_t>> inserted_window_dims; attrs["inserted_window_dims"] = { true, AttrTy::kBracedInt64List, &inserted_window_dims}; optional<std::vector<int64_t>> scatter_dims_to_operand_dims; attrs["scatter_dims_to_operand_dims"] = {true, AttrTy::kBracedInt64List, &scatter_dims_to_operand_dims}; optional<int64_t> index_vector_dim; attrs["index_vector_dim"] = {true, AttrTy::kInt64, &index_vector_dim}; optional<HloComputation*> update_computation; attrs["to_apply"] = {true, AttrTy::kHloComputation, &update_computation}; optional<bool> indices_are_sorted = false; attrs["indices_are_sorted"] = {false, AttrTy::kBool, &indices_are_sorted}; optional<bool> unique_indices = false; attrs["unique_indices"] = {false, AttrTy::kBool, &unique_indices}; optional<std::vector<int64_t>> input_batching_dims; attrs["input_batching_dims"] = { false, AttrTy::kBracedInt64List, &input_batching_dims}; optional<std::vector<int64_t>> scatter_indices_batching_dims; attrs["scatter_indices_batching_dims"] = {false, AttrTy::kBracedInt64List, &scatter_indices_batching_dims}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (operands.size() % 2 == 0) { TokenError(StrCat("expects an odd number of operands, but has ", operands.size(), " operands")); return nullptr; } ScatterDimensionNumbers dim_numbers = HloScatterInstruction::MakeScatterDimNumbers( *update_window_dims, *inserted_window_dims, *scatter_dims_to_operand_dims, *index_vector_dim, input_batching_dims ? *input_batching_dims : std::vector<int64_t>(), scatter_indices_batching_dims ? *scatter_indices_batching_dims : std::vector<int64_t>()); if (!maybe_infer_shape([&] { absl::InlinedVector<const Shape*, 3> arg_shapes; arg_shapes.reserve(operands.size()); for (auto* operand : operands) { arg_shapes.push_back(&operand->shape()); } return ShapeInference::InferScatterShape( arg_shapes, update_computation.value()->ComputeProgramShape(), dim_numbers); })) { return nullptr; } auto input_count = operands.size() / 2; auto operand_span = absl::MakeConstSpan(operands); return builder->AddInstruction(HloInstruction::CreateScatter( *shape, operand_span.first(input_count), operands[input_count], operand_span.last(input_count), *update_computation, dim_numbers, indices_are_sorted.value(), unique_indices.value())); } case HloOpcode::kDomain: { DomainData domain; attrs["domain"] = {true, AttrTy::kDomain, &domain}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferUnaryOpShape(opcode, operands[0]); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateDomain( *shape, operands[0], std::move(domain.exit_metadata), std::move(domain.entry_metadata))); } case HloOpcode::kGetDimensionSize: { optional<std::vector<int64_t>> dimensions; attrs["dimensions"] = {true, AttrTy::kBracedInt64List, &dimensions}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferGetDimensionSizeShape( operands[0]->shape(), dimensions->at(0)); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateGetDimensionSize( *shape, operands[0], (*dimensions)[0])); } case HloOpcode::kSetDimensionSize: { optional<std::vector<int64_t>> dimensions; attrs["dimensions"] = {true, AttrTy::kBracedInt64List, &dimensions}; if ((!preset_operands && !ParseOperands(&operands, builder, 2)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferSetDimensionSizeShape( operands[0]->shape(), operands[1]->shape(), dimensions->at(0)); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateSetDimensionSize( *shape, operands[0], operands[1], (*dimensions)[0])); } default: return nullptr; } } bool HloParserImpl::ParseCollectiveDeviceList( CollectiveDeviceList* device_list) { if (lexer_.GetKind() == TokKind::kLbrace) { std::vector<ReplicaGroup> replica_groups; if (!ParseReplicaGroupsOnly(&replica_groups)) { return false; } *device_list = CollectiveDeviceList(replica_groups); return true; } std::vector<int64_t> tile_assignment_dimensions; std::vector<int64_t> iota_reshape_dims; std::vector<int> iota_transpose_perm; if (!ParseTileAssignment(tile_assignment_dimensions, iota_reshape_dims, iota_transpose_perm, nullptr)) { return false; } if (tile_assignment_dimensions.size() != 2) { VLOG(kErrorLevel) << "Expected tile assignment to have 2 dimensions for collective " "device list but got " << tile_assignment_dimensions.size(); return false; } *device_list = CollectiveDeviceList(IotaReplicaGroupList( tile_assignment_dimensions[0], tile_assignment_dimensions[1], iota_reshape_dims, iota_transpose_perm)); return true; } bool HloParserImpl::ParseSharding(std::optional<HloSharding>& sharding) { if (!ParseToken(TokKind::kLbrace, "expected '{' to start sharding attribute")) { return false; } if (lexer_.GetKind() != TokKind::kLbrace && lexer_.GetKind() != TokKind::kRbrace) { return ParseSingleSharding(sharding, true); } std::vector<HloSharding> tuple_shardings; if (lexer_.GetKind() != TokKind::kRbrace) { do { std::optional<HloSharding> tuple_sharding; if (!ParseSingleSharding(tuple_sharding, false)) { return false; } tuple_shardings.push_back(std::move(*tuple_sharding)); } while (EatIfPresent(TokKind::kComma)); } sharding = HloSharding::FlatTuple(std::move(tuple_shardings)); return ParseToken(TokKind::kRbrace, "expected '}' to end sharding attribute"); } bool HloParserImpl::ParseFrontendAttributes( FrontendAttributes* frontend_attributes) { CHECK(frontend_attributes != nullptr); if (!ParseToken(TokKind::kLbrace, "expected '{' to start frontend attributes")) { return false; } if (lexer_.GetKind() == TokKind::kRbrace) { } else { do { std::string attribute; if (!ParseAttributeName(&attribute)) { return false; } std::string result; if (lexer_.GetKind() == TokKind::kString) { if (!ParseString(&result)) { return false; } } else if (lexer_.GetKind() == TokKind::kLbrace) { if (!ParseJsonDict(&result)) { return false; } } else { return false; } (*frontend_attributes->mutable_map())[attribute] = result; } while (EatIfPresent(TokKind::kComma)); } return ParseToken(TokKind::kRbrace, "expects '}' at the end of frontend attributes"); } bool HloParserImpl::ParseStatisticsViz(StatisticsViz* statistics_viz) { CHECK(statistics_viz != nullptr); if (!ParseToken(TokKind::kLbrace, "expected '{' to start statistics")) { return false; } if (lexer_.GetKind() == TokKind::kRbrace) { } else { std::string visualizing_index_attr_name; if (!ParseAttributeName(&visualizing_index_attr_name)) { return false; } if (lexer_.GetKind() != TokKind::kInt) { return false; } statistics_viz->set_stat_index_to_visualize(lexer_.GetInt64Val()); lexer_.Lex(); while (EatIfPresent(TokKind::kComma)) { std::string stat_name; if (!ParseAttributeName(&stat_name)) { return false; } if (lexer_.GetKind() != TokKind::kDecimal && lexer_.GetKind() != TokKind::kInt) { return false; } Statistic statistic; statistic.set_stat_name(stat_name); statistic.set_stat_val(lexer_.GetKind() == TokKind::kDecimal ? lexer_.GetDecimalVal() : lexer_.GetInt64Val()); lexer_.Lex(); *statistics_viz->add_statistics() = std::move(statistic); } } return ParseToken(TokKind::kRbrace, "expects '}' at the end of statistics"); } bool HloParserImpl::ParseTileAssignment( std::vector<int64_t>& tile_assignment_dimensions, std::vector<int64_t>& iota_reshape_dims, std::vector<int>& iota_transpose_perm, std::vector<int64_t>* devices) { if (!ParseToken(TokKind::kLsquare, "expected '[' to start sharding devices shape")) { return false; } do { int64_t dim; if (!ParseInt64(&dim)) { return false; } tile_assignment_dimensions.push_back(dim); } while (EatIfPresent(TokKind::kComma)); if (!ParseToken(TokKind::kRsquare, "expected ']' to end sharding devices shape")) { return false; } if (lexer_.GetKind() == TokKind::kLeq) { lexer_.Lex(); if (!ParseToken(TokKind::kLsquare, "expected '[' to start sharding iota_reshape_dims")) { return false; } do { int64_t dim; if (!ParseInt64(&dim)) { return false; } iota_reshape_dims.push_back(dim); } while (EatIfPresent(TokKind::kComma)); if (iota_reshape_dims.empty()) { return TokenError("expected non-empty iota_reshape_dims"); } if (!ParseToken(TokKind::kRsquare, "expected ']' to end sharding iota_reshape_dims")) { return false; } if (iota_reshape_dims.size() == 1) { iota_transpose_perm.push_back(0); } else { if (lexer_.GetKind() != TokKind::kIdent || lexer_.GetStrVal() != "T") { return TokenError( "expected 'T(' to start sharding devices " "iota_transpose_perm"); } lexer_.Lex(); if (!ParseToken(TokKind::kLparen, "expected 'T(' to start sharding devices " "iota_transpose_perm")) { return false; } do { int64_t dim; if (!ParseInt64(&dim)) { return false; } if (dim >= iota_reshape_dims.size()) { return TokenError(absl::StrFormat( "Out of range iota minor_to_major value %lld.", dim)); } iota_transpose_perm.push_back(dim); } while (EatIfPresent(TokKind::kComma)); if (!ParseToken(TokKind::kRparen, "expected ')' to end sharding devices " "iota_transpose_perm")) { return false; } } } else { if (!devices) { return TokenError( "Caller expected iota tile assignment when parsing, which should not " "have any manual device entries."); } do { int64_t device; if (!ParseInt64(&device)) { return false; } devices->push_back(device); } while (EatIfPresent(TokKind::kComma)); } return true; } bool HloParserImpl::ParseSingleSharding(std::optional<HloSharding>& sharding, bool lbrace_pre_lexed) { if (!lbrace_pre_lexed && !ParseToken(TokKind::kLbrace, "expected '{' to start sharding attribute")) { return false; } LocTy loc = lexer_.GetLoc(); bool maximal = false; bool replicated = false; bool manual = false; bool unknown = false; bool last_tile_dim_replicate = false; bool last_tile_dims = false; bool shard_like = false; bool shard_as = false; int64_t shard_group_id; std::vector<int64_t> devices; std::vector<int64_t> tile_assignment_dimensions; std::vector<int64_t> iota_reshape_dims; std::vector<int> iota_transpose_perm; std::vector<OpSharding::Type> subgroup_types; std::vector<OpMetadata> metadata; while (lexer_.GetKind() != TokKind::kRbrace) { switch (lexer_.GetKind()) { case TokKind::kw_maximal: maximal = true; lexer_.Lex(); break; case TokKind::kw_replicated: replicated = true; lexer_.Lex(); break; case TokKind::kw_manual: manual = true; lexer_.Lex(); break; case TokKind::kw_unknown: unknown = true; lexer_.Lex(); break; case TokKind::kAttributeName: { if (lexer_.GetStrVal() == "device") { if (lexer_.Lex() != TokKind::kInt) { return TokenError("device= attribute must be an integer"); } devices = {lexer_.GetInt64Val()}; lexer_.Lex(); } else if (lexer_.GetStrVal() == "devices") { lexer_.Lex(); if (!ParseTileAssignment(tile_assignment_dimensions, iota_reshape_dims, iota_transpose_perm, &devices)) { return false; } } else if (lexer_.GetStrVal() == "metadata") { lexer_.Lex(); if (!ParseSingleOrListMetadata(metadata)) { return false; } } else if (lexer_.GetStrVal() == "last_tile_dims") { last_tile_dims = true; lexer_.Lex(); if (!ParseListShardingType(&subgroup_types)) { return false; } } else { return TokenError( "unknown attribute in sharding: expected device=, devices= " "metadata= or last_tile_dims= "); } break; } case TokKind::kw_last_tile_dim_replicate: last_tile_dim_replicate = true; lexer_.Lex(); break; case TokKind::kw_shard_as: { shard_as = true; lexer_.Lex(); if (!ParseInt64(&shard_group_id)) { return false; } break; } case TokKind::kw_shard_like: { shard_like = true; lexer_.Lex(); if (!ParseInt64(&shard_group_id)) { return false; } break; } case TokKind::kRbrace: break; default: return TokenError("unexpected token"); } } if (replicated) { if (!devices.empty()) { return Error(loc, "replicated shardings should not have any devices assigned"); } sharding = HloSharding::Replicate(metadata); } else if (maximal) { if (devices.size() != 1) { return Error(loc, "maximal shardings should have exactly one device assigned"); } sharding = HloSharding::AssignDevice(devices[0], metadata); } else if (manual) { if (!devices.empty()) { return Error(loc, "manual shardings should not have any devices assigned"); } sharding = HloSharding::Manual(metadata); } else if (unknown) { if (!devices.empty()) { return Error(loc, "unknown shardings should not have any devices assigned"); } sharding = HloSharding::Unknown(metadata); } else { if (tile_assignment_dimensions.empty()) { return Error( loc, "non-maximal shardings must have a tile assignment list including " "dimensions"); } if (iota_transpose_perm.size() != iota_reshape_dims.size()) { return Error(loc, absl::StrFormat( "iota_transpose_perm should have the same rank as " "iota_reshape_dims : expected %lld, saw %lld.", iota_reshape_dims.size(), iota_transpose_perm.size())); } if (last_tile_dim_replicate) { CHECK(subgroup_types.empty()); subgroup_types.push_back(OpSharding::REPLICATED); } if (!iota_reshape_dims.empty()) { CHECK(devices.empty()); sharding = subgroup_types.empty() ? HloSharding::IotaTile(tile_assignment_dimensions, iota_reshape_dims, iota_transpose_perm, metadata) : HloSharding::Subgroup( TileAssignment(tile_assignment_dimensions, iota_reshape_dims, iota_transpose_perm), subgroup_types, metadata); } else { if (devices.size() <= 1) { return Error( loc, "non-maximal shardings must have more than one device assigned"); } auto tiles = std::make_shared<Array<int64_t>>(tile_assignment_dimensions); absl::c_copy(devices, tiles->begin()); sharding = subgroup_types.empty() ? HloSharding::Tile(TileAssignment(std::move(tiles)), metadata) : HloSharding::Subgroup(TileAssignment(std::move(tiles)), subgroup_types, metadata); } } if (shard_as || shard_like) { sharding = sharding->SetShardGroup( shard_as ? HloSharding::ShardAs(shard_group_id) : HloSharding::ShardLike(shard_group_id)); } lexer_.Lex(); return true; } bool HloParserImpl::ParseParameterReplication( ParameterReplication* parameter_replication) { if (!ParseToken(TokKind::kLbrace, "expected '{' to start parameter_replication attribute")) { return false; } if (lexer_.GetKind() != TokKind::kRbrace) { do { if (lexer_.GetKind() == TokKind::kw_true) { parameter_replication->add_replicated_at_leaf_buffers(true); } else if (lexer_.GetKind() == TokKind::kw_false) { parameter_replication->add_replicated_at_leaf_buffers(false); } else { return false; } lexer_.Lex(); } while (EatIfPresent(TokKind::kComma)); } return ParseToken(TokKind::kRbrace, "expected '}' to end parameter_replication attribute"); } bool HloParserImpl::ParseBooleanListOrSingleBoolean(BoolList* boolean_list) { if (lexer_.GetKind() != TokKind::kLbrace && lexer_.GetKind() != TokKind::kw_true && lexer_.GetKind() != TokKind::kw_false) { TokenError("Expected list of booleans or true/false value"); return false; } auto parse_boolean = [this, boolean_list]() { if (lexer_.GetKind() == TokKind::kw_true) { boolean_list->push_back(true); lexer_.Lex(); return true; } else if (lexer_.GetKind() == TokKind::kw_false) { boolean_list->push_back(false); lexer_.Lex(); return true; } return false; }; if (parse_boolean()) { return true; } if (!ParseToken(TokKind::kLbrace, "expected '{' to start boolean list attribute")) { return false; } if (lexer_.GetKind() != TokKind::kRbrace) { do { if (!parse_boolean()) { return false; } } while (EatIfPresent(TokKind::kComma)); } return ParseToken(TokKind::kRbrace, "expected '}' to end boolean list attribute"); } bool HloParserImpl::ParseReplicaGroupsOnly( std::vector<ReplicaGroup>* replica_groups) { std::vector<std::vector<int64_t>> result; if (!ParseInt64ListList(TokKind::kLbrace, TokKind::kRbrace, TokKind::kComma, &result)) { return false; } *replica_groups = CreateReplicaGroups(result); return true; } bool HloParserImpl::ParseDomain(DomainData* domain) { absl::flat_hash_map<std::string, AttrConfig> attrs; optional<std::string> kind; optional<HloSharding> entry_sharding; optional<HloSharding> exit_sharding; attrs["kind"] = {true, AttrTy::kString, &kind}; attrs["entry"] = {true, AttrTy::kSharding, &entry_sharding}; attrs["exit"] = {true, AttrTy::kSharding, &exit_sharding}; if (!ParseSubAttributes(attrs)) { return false; } if (*kind == ShardingMetadata::KindName()) { auto entry_sharding_ptr = std::make_unique<HloSharding>(std::move(*entry_sharding)); auto exit_sharding_ptr = std::make_unique<HloSharding>(std::move(*exit_sharding)); domain->entry_metadata = std::make_unique<ShardingMetadata>(std::move(entry_sharding_ptr)); domain->exit_metadata = std::make_unique<ShardingMetadata>(std::move(exit_sharding_ptr)); } else { return TokenError(StrCat("unsupported domain kind: ", *kind)); } return true; } bool HloParserImpl::ParseInstructionNames( std::vector<HloInstruction*>* instructions) { if (!ParseToken(TokKind::kLbrace, "expects '{' at the beginning of instruction name list")) { return false; } LocTy loc = lexer_.GetLoc(); do { std::string name; if (!ParseName(&name)) { return Error(loc, "expects a instruction name"); } std::pair<HloInstruction*, LocTy>* instr = FindInstruction(name); if (!instr) { return TokenError(StrFormat("instruction '%s' is not defined", name)); } instructions->push_back(instr->first); } while (EatIfPresent(TokKind::kComma)); return ParseToken(TokKind::kRbrace, "expects '}' at the end of instruction name list"); } template <typename T> std::string StringifyValue(T val) { if constexpr (is_complex_v<T>) { return StrFormat("(%f, %f)", val.real(), val.imag()); } else { return StrCat(val); } } template <class T> uint64_t GetNanPayload(T val) { if constexpr (std::is_same_v<T, double>) { auto rep = absl::bit_cast<uint64_t>(val); if (auto payload = rep & NanPayloadBitMask<double>()) { return payload; } return QuietNanWithoutPayload<double>(); } else { static_assert(!std::numeric_limits<T>::has_quiet_NaN); static_assert(!std::numeric_limits<T>::has_signaling_NaN); return 0; } } template <typename LiteralNativeT, typename LiteralComponentT> LiteralNativeT LiteralNativeFromRealImag(LiteralComponentT real, LiteralComponentT imag) { if constexpr (std::is_same_v<LiteralNativeT, std::complex<LiteralComponentT>>) { return LiteralNativeT(real, imag); } else { return real; } } template <typename T> struct ComponentType { using Type = T; }; template <typename T> struct ComponentType<std::complex<T>> { using Type = T; }; template <typename T> T GetReal(T value) { return value; } template <typename T> T GetReal(std::complex<T> value) { return value.real(); } template <typename T> T GetImag(T value) { return 0; } template <typename T> T GetImag(std::complex<T> value) { return value.imag(); } template <typename T> struct MinMaxFiniteValue { static constexpr T max() { return std::numeric_limits<T>::max(); } static constexpr T min() { return std::numeric_limits<T>::lowest(); } }; template <typename T> bool IsFinite(T val) { if constexpr (std::numeric_limits<T>::has_infinity || std::numeric_limits<T>::has_quiet_NaN || std::numeric_limits<T>::has_signaling_NaN) { return Eigen::numext::isfinite(val); } else { return true; } } template <typename LiteralNativeT, typename ParsedElemT> bool HloParserImpl::CheckParsedValueIsInRange(LocTy loc, ParsedElemT value) { if constexpr (std::is_floating_point_v<ParsedElemT>) { auto value_as_native_t = static_cast<LiteralNativeT>(value); auto value_double_converted = static_cast<ParsedElemT>(value_as_native_t); if (!IsFinite(value) || IsFinite(value_double_converted)) { value = value_double_converted; } } PrimitiveType literal_ty = primitive_util::NativeToPrimitiveType<LiteralNativeT>(); if (!IsFinite(value)) { } else if constexpr (std::is_unsigned<LiteralNativeT>::value) { static_assert(std::is_same_v<ParsedElemT, int64_t> || std::is_same_v<ParsedElemT, bool>, "Unimplemented checking for ParsedElemT"); const uint64_t unsigned_value = value; const uint64_t upper_bound = static_cast<uint64_t>(std::numeric_limits<LiteralNativeT>::max()); if (unsigned_value > upper_bound) { return Error(loc, StrCat("value ", value, " is out of range for literal's primitive type ", PrimitiveType_Name(literal_ty), " namely [0, ", upper_bound, "].")); } } else if (value > static_cast<ParsedElemT>( MinMaxFiniteValue<LiteralNativeT>::max()) || value < static_cast<ParsedElemT>( MinMaxFiniteValue<LiteralNativeT>::min())) { return Error( loc, StrCat( "value ", value, " is out of range for literal's primitive type ", PrimitiveType_Name(literal_ty), " namely [", static_cast<ParsedElemT>(MinMaxFiniteValue<LiteralNativeT>::min()), ", ", static_cast<ParsedElemT>(MinMaxFiniteValue<LiteralNativeT>::max()), "].")); } return true; } template <typename LiteralNativeT> bool HloParserImpl::CheckParsedValueIsInRange(LocTy loc, std::complex<double> value) { using LiteralComplexComponentT = decltype(std::real(std::declval<LiteralNativeT>())); auto check_component = [&](absl::string_view name, double v) { if (!std::isfinite(v)) { return true; } double min = MinMaxFiniteValue<LiteralComplexComponentT>::min(); double max = MinMaxFiniteValue<LiteralComplexComponentT>::max(); if (v < min || v > max) { return Error( loc, StrCat(name, " part ", v, " is out of range for literal's primitive type ", PrimitiveType_Name( primitive_util::NativeToPrimitiveType<LiteralNativeT>()), ", namely [", min, ", ", max, "].")); } return true; }; return check_component("real", std::real(value)) && check_component("imaginary", std::imag(value)); } template <typename LiteralNativeT, typename ParsedElemT> bool HloParserImpl::SetValueInLiteralHelper(LocTy loc, ParsedElemT value, int64_t index, Literal* literal) { if (!CheckParsedValueIsInRange<LiteralNativeT>(loc, value)) { return false; } if (index >= ShapeUtil::ElementsIn(literal->shape())) { return Error(loc, StrCat("tries to set value ", StringifyValue(value), " to a literal in shape ", ShapeUtil::HumanString(literal->shape()), " at linear index ", index, ", but the index is out of range")); } using ParsedElemComponentT = typename ComponentType<ParsedElemT>::Type; using LiteralNativeComponentT = typename ComponentType<LiteralNativeT>::Type; const auto handle_nan = [this, literal, index, loc]( ParsedElemComponentT parsed_value_component, LiteralNativeComponentT* literal_value_component) { if (!std::isnan(static_cast<double>(parsed_value_component))) { return true; } auto nan_payload = GetNanPayload(parsed_value_component); if constexpr (NanPayloadBits<LiteralNativeComponentT>() > 0) { if (nan_payload == QuietNanWithoutPayload<double>()) { nan_payload = QuietNanWithoutPayload<LiteralNativeComponentT>(); } const auto kLargestPayload = NanPayloadBitMask<LiteralNativeComponentT>(); if (nan_payload > kLargestPayload) { return Error( loc, StrCat("tries to set NaN payload 0x", absl::Hex(nan_payload), " to a literal in shape ", ShapeUtil::HumanString(literal->shape()), " at linear index ", index, ", but the NaN payload is out of range (0x", absl::Hex(kLargestPayload), ")")); } *literal_value_component = NanWithSignAndPayload<LiteralNativeComponentT>( std::signbit( static_cast<double>(parsed_value_component)), nan_payload); } else { if (nan_payload != QuietNanWithoutPayload<double>()) { return Error( loc, StrCat("tries to set NaN payload 0x", absl::Hex(nan_payload), " to a literal in shape ", ShapeUtil::HumanString(literal->shape()), " at linear index ", index, ", but ", primitive_util::LowercasePrimitiveTypeName( literal->shape().element_type()), " does not support payloads")); } } return true; }; const ParsedElemComponentT parsed_real_value = GetReal(value); auto literal_real_value = static_cast<LiteralNativeComponentT>(parsed_real_value); if (std::is_floating_point_v<ParsedElemT> || std::is_same_v<ParsedElemT, std::complex<double>>) { if (!handle_nan(parsed_real_value, &literal_real_value)) { return false; } } const ParsedElemComponentT parsed_imag_value = GetImag(value); auto literal_imag_value = static_cast<LiteralNativeComponentT>(parsed_imag_value); if constexpr (std::is_same_v<ParsedElemT, std::complex<double>>) { if (!handle_nan(parsed_real_value, &literal_imag_value)) { return false; } } literal->data<LiteralNativeT>().at(index) = LiteralNativeFromRealImag<LiteralNativeT>(literal_real_value, literal_imag_value); return true; } bool HloParserImpl::SetValueInLiteral(LocTy loc, int64_t value, int64_t index, Literal* literal) { const Shape& shape = literal->shape(); return primitive_util::PrimitiveTypeSwitch<bool>( [&](auto primitive_type_constant) -> bool { if constexpr (primitive_type_constant == PRED) { return SetValueInLiteralHelper<bool>(loc, static_cast<bool>(value), index, literal); } if constexpr (primitive_util::IsIntegralType(primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; return SetValueInLiteralHelper<NativeT>(loc, value, index, literal); } LOG(FATAL) << "unknown integral primitive type " << PrimitiveType_Name(shape.element_type()); }, shape.element_type()); } bool HloParserImpl::SetValueInLiteral(LocTy loc, double value, int64_t index, Literal* literal) { const Shape& shape = literal->shape(); return primitive_util::PrimitiveTypeSwitch<bool>( [&](auto primitive_type_constant) -> bool { if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; return SetValueInLiteralHelper<NativeT>(loc, value, index, literal); } LOG(FATAL) << "unknown floating point primitive type " << PrimitiveType_Name(shape.element_type()); }, shape.element_type()); } bool HloParserImpl::SetValueInLiteral(LocTy loc, bool value, int64_t index, Literal* literal) { const Shape& shape = literal->shape(); switch (shape.element_type()) { case PRED: return SetValueInLiteralHelper<bool>(loc, value, index, literal); default: LOG(FATAL) << PrimitiveType_Name(shape.element_type()) << " is not PRED type"; } } bool HloParserImpl::SetValueInLiteral(LocTy loc, std::complex<double> value, int64_t index, Literal* literal) { const Shape& shape = literal->shape(); return primitive_util::PrimitiveTypeSwitch<bool>( [&](auto primitive_type_constant) -> bool { if constexpr (primitive_util::IsComplexType(primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; return SetValueInLiteralHelper<NativeT>(loc, value, index, literal); } LOG(FATAL) << PrimitiveType_Name(shape.element_type()) << " is not a complex type"; }, shape.element_type()); } bool HloParserImpl::ParseLiteral(Literal* literal) { if (lexer_.GetKind() == TokKind::kLparen) { lexer_.Lex(); std::vector<Literal> elements; while (lexer_.GetKind() != TokKind::kRparen) { Literal element; if (!ParseLiteral(&element)) { return TokenError("Fails when parsing tuple element"); } elements.emplace_back(std::move(element)); if (lexer_.GetKind() != TokKind::kRparen) { ParseToken(TokKind::kComma, "expects ',' to separate tuple elements"); } } *literal = LiteralUtil::MakeTupleOwned(std::move(elements)); return ParseToken(TokKind::kRparen, "expects ')' to close a tuple literal"); } Shape literal_shape; if (!ParseShape(&literal_shape)) { return false; } return ParseLiteral(literal, literal_shape); } bool HloParserImpl::ParseLiteral(Literal* literal, const Shape& shape) { return shape.IsTuple() ? ParseTupleLiteral(literal, shape) : ParseNonTupleLiteral(literal, shape); } bool HloParserImpl::ParseTupleLiteral(Literal* literal, const Shape& shape) { if (!ParseToken(TokKind::kLparen, "expects '(' in front of tuple elements")) { return false; } std::vector<Literal> elements(ShapeUtil::TupleElementCount(shape)); if (lexer_.GetKind() == TokKind::kRparen) { } else { for (int i = 0; i < elements.size(); i++) { if (i > 0) { ParseToken(TokKind::kComma, "expects ',' to separate tuple elements"); } if (!ParseLiteral(&elements[i], ShapeUtil::GetTupleElementShape(shape, i))) { return TokenError(StrCat("expects the ", i, "th element")); } } } *literal = LiteralUtil::MakeTupleOwned(std::move(elements)); return ParseToken(TokKind::kRparen, StrCat("expects ')' at the end of the tuple with ", ShapeUtil::TupleElementCount(shape), "elements")); } bool HloParserImpl::ParseNonTupleLiteral(Literal* literal, const Shape& shape) { CHECK(LayoutUtil::IsDenseArray(shape)) << shape.ToString(true); return ParseDenseLiteral(literal, shape); } bool HloParserImpl::ParseDenseLiteral(Literal* literal, const Shape& shape) { const int rank = static_cast<int>(shape.rank()); *literal = LiteralUtil::CreateFromDimensions(shape.element_type(), shape.dimensions()); int64_t nest_level = 0; int64_t linear_index = 0; std::vector<int64_t> elems_seen_per_dim(rank); auto get_index_str = [&elems_seen_per_dim](int dim) -> std::string { std::vector<int64_t> elems_seen_until_dim(elems_seen_per_dim.begin(), elems_seen_per_dim.begin() + dim); return StrCat("[", StrJoin(elems_seen_until_dim, ",", [](std::string* out, const int64_t num_elems) { StrAppend(out, num_elems - 1); }), "]"); }; auto add_one_elem_seen = [&] { if (rank > 0) { if (nest_level != rank) { return TokenError(absl::StrFormat( "expects nested array in rank %d, but sees %d", rank, nest_level)); } elems_seen_per_dim[rank - 1]++; if (elems_seen_per_dim[rank - 1] > shape.dimensions(rank - 1)) { return TokenError(absl::StrFormat( "expects %d elements on the minor-most dimension, but " "sees more", shape.dimensions(rank - 1))); } } return true; }; do { switch (lexer_.GetKind()) { default: return TokenError("unexpected token type in a literal"); case TokKind::kLbrace: { nest_level++; if (nest_level > rank) { return TokenError(absl::StrFormat( "expects nested array in rank %d, but sees larger", rank)); } if (nest_level > 1) { elems_seen_per_dim[nest_level - 2]++; if (elems_seen_per_dim[nest_level - 2] > shape.dimensions(nest_level - 2)) { return TokenError(absl::StrFormat( "expects %d elements in the %sth element, but sees more", shape.dimensions(nest_level - 2), get_index_str(nest_level - 2))); } } lexer_.Lex(); break; } case TokKind::kRbrace: { if (nest_level == 0) { return TokenError("unexpected '}' token"); } nest_level--; if (elems_seen_per_dim[nest_level] != shape.dimensions(nest_level)) { return TokenError(absl::StrFormat( "expects %d elements in the %sth element, but sees %d", shape.dimensions(nest_level), get_index_str(nest_level), elems_seen_per_dim[nest_level])); } elems_seen_per_dim[nest_level] = 0; lexer_.Lex(); break; } case TokKind::kLparen: { if (!primitive_util::IsComplexType(shape.element_type())) { return TokenError( absl::StrFormat("unexpected '(' in literal. Parens are only " "valid for complex literals")); } std::complex<double> value; LocTy loc = lexer_.GetLoc(); if (!add_one_elem_seen() || !ParseComplex(&value) || !SetValueInLiteral(loc, value, linear_index++, literal)) { return false; } break; } case TokKind::kDots: { if (nest_level != 1) { return TokenError(absl::StrFormat( "expects `...` at nest level 1, but sees it at nest level %d", nest_level)); } elems_seen_per_dim[0] = shape.dimensions(0); lexer_.Lex(); static uint32_t data = 0; static_assert(sizeof(bool) == 1); constexpr uint32_t kBooleanMask = 0x01010101; constexpr uint32_t kNoMask = 0xFFFFFFFF; const uint32_t mask = (shape.element_type() == PRED) ? kBooleanMask : kNoMask; uint32_t* raw_data = static_cast<uint32_t*>(literal->untyped_data()); for (int64_t i = 0; i < literal->size_bytes() / 4; ++i) { raw_data[i] = data++ & mask; } uint8_t* raw_data_int8 = static_cast<uint8_t*>(literal->untyped_data()); static uint8_t data_int8 = 0; for (int64_t i = 0; i < literal->size_bytes() % 4; ++i) { raw_data_int8[literal->size_bytes() / 4 + i] = data_int8++ & mask; } break; } case TokKind::kComma: lexer_.Lex(); break; case TokKind::kw_true: case TokKind::kw_false: case TokKind::kInt: case TokKind::kDecimal: case TokKind::kw_inf: case TokKind::kNegInf: { add_one_elem_seen(); if (lexer_.GetKind() == TokKind::kw_true || lexer_.GetKind() == TokKind::kw_false) { if (!SetValueInLiteral(lexer_.GetLoc(), lexer_.GetKind() == TokKind::kw_true, linear_index++, literal)) { return false; } lexer_.Lex(); } else if (primitive_util::IsIntegralType(shape.element_type()) || shape.element_type() == PRED) { LocTy loc = lexer_.GetLoc(); int64_t value; if (!ParseInt64(&value)) { return Error(loc, StrCat("expects integer for primitive type: ", PrimitiveType_Name(shape.element_type()))); } if (!SetValueInLiteral(loc, value, linear_index++, literal)) { return false; } } else if (primitive_util::IsFloatingPointType(shape.element_type())) { LocTy loc = lexer_.GetLoc(); double value; if (!ParseDouble(&value)) { return Error( loc, StrCat("expect floating point value for primitive type: ", PrimitiveType_Name(shape.element_type()))); } if (!SetValueInLiteral(loc, value, linear_index++, literal)) { return false; } } else { return TokenError(StrCat("unsupported primitive type ", PrimitiveType_Name(shape.element_type()))); } break; } } } while (nest_level > 0); *literal = literal->Relayout(shape.layout()); return true; } bool HloParserImpl::ParseOperands(std::vector<HloInstruction*>* operands, HloComputation::Builder* builder) { CHECK(operands != nullptr); if (!ParseToken(TokKind::kLparen, "expects '(' at the beginning of operands")) { return false; } if (lexer_.GetKind() == TokKind::kRparen) { } else { do { HloLexer lexer_copy = lexer_; std::vector<std::string> saved_errors; std::swap(saved_errors, error_); bool is_normal_operand = [&] { LocTy loc = lexer_.GetLoc(); std::string name; optional<Shape> shape; if (CanBeShape()) { shape.emplace(); if (!ParseShape(&shape.value())) { return false; } } if (!ParseName(&name)) { if (shape.has_value() && create_missing_instruction_ != nullptr && scoped_name_tables_.size() == 1) { name = ""; } else { return false; } } std::pair<HloInstruction*, LocTy>* instruction = FindInstruction(name, shape); if (instruction == nullptr) { return Error(loc, StrCat("instruction does not exist: ", name)); } auto next = lexer_.GetKind(); if (next != TokKind::kComma && next != TokKind::kRparen) { return false; } operands->push_back(instruction->first); return true; }(); if (is_normal_operand) { error_ = std::move(saved_errors); continue; } std::vector<std::string> normal_operand_errors; std::swap(error_, normal_operand_errors); lexer_ = lexer_copy; LocTy loc = lexer_.GetLoc(); bool is_nested_instruction = ParseInstructionRhs( builder, "", loc, false); if (is_nested_instruction) { operands->push_back(builder->last_added_instruction()); error_ = std::move(saved_errors); continue; } std::vector<std::string> nested_instruction_errors; std::swap(error_, nested_instruction_errors); error_ = std::move(saved_errors); Error(loc, "cannot parse as an instruction name or as a nested instruction:"); error_.insert(error_.end(), std::make_move_iterator(normal_operand_errors.begin()), std::make_move_iterator(normal_operand_errors.end())); error_.insert(error_.end(), std::make_move_iterator(nested_instruction_errors.begin()), std::make_move_iterator(nested_instruction_errors.end())); } while (EatIfPresent(TokKind::kComma)); } return ParseToken(TokKind::kRparen, "expects ')' at the end of operands"); } bool HloParserImpl::ParseOperands(std::vector<HloInstruction*>* operands, HloComputation::Builder* builder, const int expected_size) { CHECK(operands != nullptr); LocTy loc = lexer_.GetLoc(); if (!ParseOperands(operands, builder)) { return false; } if (expected_size != operands->size()) { return Error(loc, StrCat("expects ", expected_size, " operands, but has ", operands->size(), " operands")); } return true; } bool HloParserImpl::ParseSubAttributes( const absl::flat_hash_map<std::string, AttrConfig>& attrs) { LocTy loc = lexer_.GetLoc(); if (!ParseToken(TokKind::kLbrace, "expects '{' to start sub attributes")) { return false; } absl::flat_hash_set<std::string> seen_attrs; if (lexer_.GetKind() == TokKind::kRbrace) { } else { do { EatIfPresent(TokKind::kComma); if (!ParseAttributeHelper(attrs, &seen_attrs)) { return false; } } while (lexer_.GetKind() != TokKind::kRbrace); } for (const auto& attr_it : attrs) { if (attr_it.second.required && seen_attrs.find(attr_it.first) == seen_attrs.end()) { return Error(loc, StrFormat("sub-attribute %s is expected but not seen", attr_it.first)); } } return ParseToken(TokKind::kRbrace, "expects '}' to end sub attributes"); } bool HloParserImpl::ParseAttributes( const absl::flat_hash_map<std::string, AttrConfig>& attrs, bool allow_attributes, const std::optional<Shape>& shape) { LocTy loc = lexer_.GetLoc(); absl::flat_hash_set<std::string> seen_attrs; if (allow_attributes) { while (EatIfPresent(TokKind::kComma)) { if (!ParseAttributeHelper(attrs, &seen_attrs, shape)) { return false; } } } for (const auto& attr_it : attrs) { if (attr_it.second.required && seen_attrs.find(attr_it.first) == seen_attrs.end()) { return Error(loc, StrFormat("attribute %s is expected but not seen", attr_it.first)); } } return true; } bool HloParserImpl::ParseAttributeHelper( const absl::flat_hash_map<std::string, AttrConfig>& attrs, absl::flat_hash_set<std::string>* seen_attrs, const std::optional<Shape>& shape) { LocTy loc = lexer_.GetLoc(); std::string name; if (!ParseAttributeName(&name)) { return Error(loc, "error parsing attributes"); } VLOG(kDebugLevel) << "Parsing attribute " << name; if (!seen_attrs->insert(name).second) { return Error(loc, StrFormat("attribute %s already exists", name)); } auto attr_it = attrs.find(name); if (attr_it == attrs.end()) { std::string allowed_attrs; if (attrs.empty()) { allowed_attrs = "No attributes are allowed here."; } else { allowed_attrs = StrCat("Allowed attributes: ", StrJoin(attrs, ", ", [&](std::string* out, const std::pair<std::string, AttrConfig>& kv) { StrAppend(out, kv.first); })); } return Error( loc, StrFormat("unexpected attribute \"%s\". %s", name, allowed_attrs)); } AttrTy attr_type = attr_it->second.attr_type; void* attr_out_ptr = attr_it->second.result; bool success = [&] { LocTy attr_loc = lexer_.GetLoc(); switch (attr_type) { case AttrTy::kBool: { bool result; if (!ParseBool(&result)) { return false; } static_cast<optional<bool>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kBracedBoolListOrBool: { if (!ParseBooleanListOrSingleBoolean( static_cast<BoolList*>(attr_out_ptr))) { return false; } return true; } case AttrTy::kInt64: { int64_t result; if (!ParseInt64(&result)) { return false; } static_cast<optional<int64_t>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kInt32: { int64_t result; if (!ParseInt64(&result)) { return false; } if (result != static_cast<int32_t>(result)) { return Error(attr_loc, "value out of range for int32_t"); } static_cast<optional<int32_t>*>(attr_out_ptr) ->emplace(static_cast<int32_t>(result)); return true; } case AttrTy::kFloat: { double result; if (!ParseDouble(&result)) { return false; } if (result > std::numeric_limits<float>::max() || result < std::numeric_limits<float>::lowest()) { return Error(attr_loc, "value out of range for float"); } static_cast<optional<float>*>(attr_out_ptr) ->emplace(static_cast<float>(result)); return true; } case AttrTy::kHloComputation: { HloComputation* result = nullptr; if (!ParseHloComputation(&result)) { return false; } static_cast<optional<HloComputation*>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kBracedHloComputationList: { std::vector<HloComputation*> result; if (!ParseHloComputationList(&result)) { return false; } static_cast<optional<std::vector<HloComputation*>>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kFftType: { FftType result; if (!ParseFftType(&result)) { return false; } static_cast<optional<FftType>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kPaddingType: { PaddingType result; if (!ParsePaddingType(&result)) { return false; } static_cast<optional<PaddingType>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kComparisonDirection: { ComparisonDirection result; if (!ParseComparisonDirection(&result)) { return false; } static_cast<optional<ComparisonDirection>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kComparisonType: { Comparison::Type result; if (!ParseComparisonType(&result)) { return false; } static_cast<optional<Comparison::Type>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kEnum: { if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects an enumeration value"); } std::string result = lexer_.GetStrVal(); lexer_.Lex(); static_cast<optional<std::string>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kWindow: { Window result; if (!ParseWindow(&result, true)) { return false; } static_cast<optional<Window>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kConvolutionDimensionNumbers: { ConvolutionDimensionNumbers result; if (!ParseConvolutionDimensionNumbers(&result)) { return false; } static_cast<optional<ConvolutionDimensionNumbers>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kSharding: { std::optional<HloSharding> sharding; if (!ParseSharding(sharding)) { return false; } static_cast<optional<HloSharding>*>(attr_out_ptr) ->emplace(std::move(*sharding)); return true; } case AttrTy::kCollectiveDeviceList: { CollectiveDeviceList device_list; if (!ParseCollectiveDeviceList(&device_list)) { return false; } *(static_cast<CollectiveDeviceList*>(attr_out_ptr)) = device_list; return true; } case AttrTy::kFrontendAttributes: { FrontendAttributes frontend_attributes; if (!ParseFrontendAttributes(&frontend_attributes)) { return false; } static_cast<optional<FrontendAttributes>*>(attr_out_ptr) ->emplace(frontend_attributes); return true; } case AttrTy::kStatisticsViz: { StatisticsViz statistics_viz; if (!ParseStatisticsViz(&statistics_viz)) { return false; } static_cast<optional<StatisticsViz>*>(attr_out_ptr) ->emplace(statistics_viz); return true; } case AttrTy::kParameterReplication: { ParameterReplication parameter_replication; if (!ParseParameterReplication(&parameter_replication)) { return false; } static_cast<optional<ParameterReplication>*>(attr_out_ptr) ->emplace(parameter_replication); return true; } case AttrTy::kInstructionList: { std::vector<HloInstruction*> result; if (!ParseInstructionNames(&result)) { return false; } static_cast<optional<std::vector<HloInstruction*>>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kFusionKind: { HloInstruction::FusionKind result; if (!ParseFusionKind(&result)) { return false; } static_cast<optional<HloInstruction::FusionKind>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kBracedInt64List: { std::vector<int64_t> result; if (!ParseInt64List(TokKind::kLbrace, TokKind::kRbrace, TokKind::kComma, &result)) { return false; } static_cast<optional<std::vector<int64_t>>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kBracedInt64ListList: { std::vector<std::vector<int64_t>> result; if (!ParseInt64ListList(TokKind::kLbrace, TokKind::kRbrace, TokKind::kComma, &result)) { return false; } static_cast<optional<std::vector<std::vector<int64_t>>>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kSliceRanges: { SliceRanges result; if (!ParseSliceRanges(&result)) { return false; } static_cast<optional<SliceRanges>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kPaddingConfig: { PaddingConfig result; if (!ParsePaddingConfig(&result)) { return false; } static_cast<optional<PaddingConfig>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kString: { std::string result; if (!ParseString(&result)) { return false; } static_cast<optional<std::string>*>(attr_out_ptr) ->emplace(std::move(result)); return true; } case AttrTy::kStringOrJsonDict: { std::string result; if (lexer_.GetKind() == TokKind::kString) { if (!ParseString(&result)) { return false; } } else if (lexer_.GetKind() == TokKind::kLbrace) { if (!ParseJsonDict(&result)) { return false; } } else { return false; } static_cast<optional<std::string>*>(attr_out_ptr) ->emplace(std::move(result)); return true; } case AttrTy::kOriginalValue: { if (!shape) { return TokenError("expects instruction shape"); } return ParseOriginalValue( static_cast<optional<std::shared_ptr<OriginalValue>>*>( attr_out_ptr), *shape); } case AttrTy::kMetadata: { OpMetadata result; if (!ParseMetadata(result)) { return false; } static_cast<optional<OpMetadata>*>(attr_out_ptr) ->emplace(std::move(result)); return true; } case AttrTy::kDistribution: { RandomDistribution result; if (!ParseRandomDistribution(&result)) { return false; } static_cast<optional<RandomDistribution>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kDomain: { return ParseDomain(static_cast<DomainData*>(attr_out_ptr)); } case AttrTy::kPrecisionList: { std::vector<PrecisionConfig::Precision> result; if (!ParsePrecisionList(&result)) { return false; } static_cast<optional<std::vector<PrecisionConfig::Precision>>*>( attr_out_ptr) ->emplace(result); return true; } case AttrTy::kShape: { Shape result; if (!ParseShape(&result)) { return false; } static_cast<optional<Shape>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kShapeList: { std::vector<Shape> result; if (!ParseShapeList(&result)) { return false; } static_cast<optional<std::vector<Shape>>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kRandomAlgorithm: { RandomAlgorithm result; if (!ParseRandomAlgorithm(&result)) { return false; } static_cast<optional<RandomAlgorithm>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kPrecisionAlgorithm: { PrecisionConfig::Algorithm result; if (!ParseAlgorithm(&result)) { return false; } static_cast<optional<PrecisionConfig::Algorithm>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kAliasing: { AliasingData aliasing_data; if (!ParseAliasing(&aliasing_data)) { return false; } static_cast<optional<AliasingData>*>(attr_out_ptr) ->emplace(aliasing_data); return true; } case AttrTy::kBufferDonor: { BufferDonor buffer_donor; if (!ParseBufferDonor(&buffer_donor)) { return false; } static_cast<optional<BufferDonor>*>(attr_out_ptr) ->emplace(buffer_donor); return true; } case AttrTy::kComputationLayout: { ComputationLayout computation_layout(ShapeLayout(Shape{})); if (!ParseComputationLayout(&computation_layout)) { return false; } static_cast<optional<ComputationLayout>*>(attr_out_ptr) ->emplace(computation_layout); return true; } case AttrTy::kInstructionAliasing: { std::vector<std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>> aliasing_output_operand_pairs; if (!ParseInstructionOutputOperandAliasing( &aliasing_output_operand_pairs)) { return false; } static_cast<optional<std::vector< std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>>>*>( attr_out_ptr) ->emplace(std::move(aliasing_output_operand_pairs)); return true; } case AttrTy::kLiteral: { Literal result; if (!ParseLiteral(&result)) { return false; } static_cast<optional<Literal>*>(attr_out_ptr) ->emplace(std::move(result)); return true; } case AttrTy::kCustomCallSchedule: { CustomCallSchedule result; if (!ParseCustomCallSchedule(&result)) { return false; } static_cast<optional<CustomCallSchedule>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kCustomCallApiVersion: { CustomCallApiVersion result; if (!ParseCustomCallApiVersion(&result)) { return false; } static_cast<optional<CustomCallApiVersion>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kSparsityDescriptor: { std::vector<SparsityDescriptor> result; if (!ParseSparsityDescriptor(&result)) { return false; } *static_cast<std::vector<SparsityDescriptor>*>(attr_out_ptr) = std::move(result); return true; } } }(); if (!success) { return Error(loc, StrFormat("error parsing attribute %s", name)); } return true; } bool HloParserImpl::CopyAttributeToProtoMessage( absl::flat_hash_set<std::string> non_proto_attrs, const absl::flat_hash_map<std::string, AttrConfig>& attrs, tsl::protobuf::Message* message) { const tsl::protobuf::Descriptor* descriptor = message->GetDescriptor(); const tsl::protobuf::Reflection* reflection = message->GetReflection(); for (const auto& p : attrs) { const std::string& name = p.first; if (non_proto_attrs.find(name) != non_proto_attrs.end()) { continue; } const tsl::protobuf::FieldDescriptor* fd = descriptor->FindFieldByName(name); if (!fd) { std::string allowed_attrs = "Allowed attributes: "; for (int i = 0; i < descriptor->field_count(); ++i) { if (i == 0) { absl::StrAppend(&allowed_attrs, descriptor->field(i)->name()); } else { absl::StrAppend(&allowed_attrs, ", ", descriptor->field(i)->name()); } } return TokenError( StrFormat("unexpected attribute \"%s\". %s", name, allowed_attrs)); } CHECK(!fd->is_repeated()); bool success = [&] { switch (fd->type()) { case tsl::protobuf::FieldDescriptor::TYPE_BOOL: { auto attr_value = static_cast<optional<bool>*>(p.second.result); if (attr_value->has_value()) { reflection->SetBool(message, fd, **attr_value); } return true; } case tsl::protobuf::FieldDescriptor::TYPE_ENUM: { auto attr_value = static_cast<optional<std::string>*>(p.second.result); if (attr_value->has_value()) { const tsl::protobuf::EnumValueDescriptor* evd = fd->enum_type()->FindValueByName(**attr_value); reflection->SetEnum(message, fd, evd); } return true; } default: return false; } }(); if (!success) { return TokenError(StrFormat("error parsing attribute %s", name)); } } return true; } bool HloParserImpl::ParseAttributesAsProtoMessage( const absl::flat_hash_map<std::string, AttrConfig>& non_proto_attrs, tsl::protobuf::Message* message) { const tsl::protobuf::Descriptor* descriptor = message->GetDescriptor(); absl::flat_hash_map<std::string, AttrConfig> attrs; std::vector<optional<bool>> bool_params; std::vector<optional<std::string>> string_params; bool_params.reserve(descriptor->field_count()); string_params.reserve(descriptor->field_count()); for (int field_idx = 0; field_idx < descriptor->field_count(); field_idx++) { const tsl::protobuf::FieldDescriptor* fd = descriptor->field(field_idx); absl::string_view field_name = fd->name(); switch (fd->type()) { case tsl::protobuf::FieldDescriptor::TYPE_BOOL: { bool_params.emplace_back(std::nullopt); attrs[field_name] = { false, AttrTy::kBool, &bool_params.back()}; break; } case tsl::protobuf::FieldDescriptor::TYPE_ENUM: { string_params.emplace_back(std::nullopt); attrs[field_name] = { false, AttrTy::kEnum, &string_params.back()}; break; } default: return TokenError(absl::StrFormat( "Unexpected protocol buffer type: %s ", fd->DebugString())); } } absl::flat_hash_set<std::string> non_proto_attrs_names; non_proto_attrs_names.reserve(non_proto_attrs.size()); for (const auto& p : non_proto_attrs) { const std::string& attr_name = p.first; if (attrs.find(attr_name) == attrs.end()) { non_proto_attrs_names.insert(attr_name); attrs[attr_name] = p.second; } } if (!ParseAttributes(attrs)) { return false; } return CopyAttributeToProtoMessage(non_proto_attrs_names, attrs, message); } bool HloParserImpl::ParseComputationName(HloComputation** value) { std::string name; LocTy loc = lexer_.GetLoc(); if (!ParseName(&name)) { return Error(loc, "expects computation name"); } std::pair<HloComputation*, LocTy>* computation = tsl::gtl::FindOrNull(computation_pool_, name); if (computation == nullptr) { return Error(loc, StrCat("computation does not exist: ", name)); } *value = computation->first; return true; } bool HloParserImpl::ParseWindow(Window* window, bool expect_outer_curlies) { LocTy loc = lexer_.GetLoc(); if (expect_outer_curlies && !ParseToken(TokKind::kLbrace, "expected '{' to start window attribute")) { return false; } std::vector<int64_t> size; std::vector<int64_t> stride; std::vector<std::vector<int64_t>> pad; std::vector<int64_t> lhs_dilate; std::vector<int64_t> rhs_dilate; std::vector<int64_t> rhs_reversal; const auto end_token = expect_outer_curlies ? TokKind::kRbrace : TokKind::kEof; while (lexer_.GetKind() != end_token) { LocTy attr_loc = lexer_.GetLoc(); std::string field_name; if (!ParseAttributeName(&field_name)) { return Error(attr_loc, "expects sub-attributes in window"); } bool ok = [&] { if (field_name == "size") { return ParseDxD("size", &size); } if (field_name == "stride") { return ParseDxD("stride", &stride); } if (field_name == "lhs_dilate") { return ParseDxD("lhs_dilate", &lhs_dilate); } if (field_name == "rhs_dilate") { return ParseDxD("rls_dilate", &rhs_dilate); } if (field_name == "pad") { return ParseWindowPad(&pad); } if (field_name == "rhs_reversal") { return ParseDxD("rhs_reversal", &rhs_reversal); } return Error(attr_loc, StrCat("unexpected attribute name: ", field_name)); }(); if (!ok) { return false; } } if (!stride.empty() && stride.size() != size.size()) { return Error(loc, "expects 'stride=' has the same size as 'size='"); } if (!lhs_dilate.empty() && lhs_dilate.size() != size.size()) { return Error(loc, "expects 'lhs_dilate=' has the same size as 'size='"); } if (!rhs_dilate.empty() && rhs_dilate.size() != size.size()) { return Error(loc, "expects 'rhs_dilate=' has the same size as 'size='"); } if (!pad.empty() && pad.size() != size.size()) { return Error(loc, "expects 'pad=' has the same size as 'size='"); } for (int i = 0; i < size.size(); i++) { window->add_dimensions()->set_size(size[i]); if (!pad.empty()) { window->mutable_dimensions(i)->set_padding_low(pad[i][0]); window->mutable_dimensions(i)->set_padding_high(pad[i][1]); } window->mutable_dimensions(i)->set_stride(stride.empty() ? 1 : stride[i]); window->mutable_dimensions(i)->set_base_dilation( lhs_dilate.empty() ? 1 : lhs_dilate[i]); window->mutable_dimensions(i)->set_window_dilation( rhs_dilate.empty() ? 1 : rhs_dilate[i]); window->mutable_dimensions(i)->set_window_reversal( rhs_reversal.empty() ? false : (rhs_reversal[i] == 1)); } return !expect_outer_curlies || ParseToken(TokKind::kRbrace, "expected '}' to end window attribute"); } bool HloParserImpl::ParseConvolutionDimensionNumbers( ConvolutionDimensionNumbers* dnums) { if (lexer_.GetKind() != TokKind::kDimLabels) { return TokenError("expects dim labels pattern, e.g., 'bf0_0io->0bf'"); } std::string str = lexer_.GetStrVal(); std::vector<std::string> split1 = absl::StrSplit(str, '_'); if (split1.size() != 2) { LOG(FATAL) << "expects 3 items: lhs, rhs, and output dims, but sees " << str; } std::vector<std::string> split2 = absl::StrSplit(split1[1], "->"); if (split2.size() != 2) { LOG(FATAL) << "expects 3 items: lhs, rhs, and output dims, but sees " << str; } absl::string_view lhs = split1[0]; absl::string_view rhs = split2[0]; absl::string_view out = split2[1]; auto is_unique = [](absl::string_view str) -> bool { absl::flat_hash_set<char> chars; for (char c : str) { if (c == '?') { continue; } if (!chars.insert(c).second) { return false; } } return true; }; { if (!is_unique(lhs)) { return TokenError( StrCat("expects unique lhs dimension numbers, but sees ", lhs)); } for (char c : lhs) { if (c != 'b' && c != 'f' && c != '?') { dnums->add_input_spatial_dimensions(-1); } } for (int i = 0; i < lhs.size(); i++) { char c = lhs[i]; if (c == '?') { continue; } else if (c == 'b') { dnums->set_input_batch_dimension(i); } else if (c == 'f') { dnums->set_input_feature_dimension(i); } else if (c < '0' + lhs.size() && c >= '0') { dnums->set_input_spatial_dimensions(c - '0', i); } else { return TokenError(StrFormat( "expects [0-%dbf?] in lhs dimension numbers", lhs.size() - 1)); } } } { if (!is_unique(rhs)) { return TokenError( StrCat("expects unique rhs dimension numbers, but sees ", rhs)); } for (char c : rhs) { if (c != 'i' && c != 'o' && c != '?') { dnums->add_kernel_spatial_dimensions(-1); } } for (int i = 0; i < rhs.size(); i++) { char c = rhs[i]; if (c == '?') { continue; } else if (c == 'i') { dnums->set_kernel_input_feature_dimension(i); } else if (c == 'o') { dnums->set_kernel_output_feature_dimension(i); } else if (c < '0' + rhs.size() && c >= '0') { dnums->set_kernel_spatial_dimensions(c - '0', i); } else { return TokenError(StrFormat( "expects [0-%dio?] in rhs dimension numbers", rhs.size() - 1)); } } } { if (!is_unique(out)) { return TokenError( StrCat("expects unique output dimension numbers, but sees ", out)); } for (char c : out) { if (c != 'b' && c != 'f' && c != '?') { dnums->add_output_spatial_dimensions(-1); } } for (int i = 0; i < out.size(); i++) { char c = out[i]; if (c == '?') { continue; } else if (c == 'b') { dnums->set_output_batch_dimension(i); } else if (c == 'f') { dnums->set_output_feature_dimension(i); } else if (c < '0' + out.size() && c >= '0') { dnums->set_output_spatial_dimensions(c - '0', i); } else { return TokenError(StrFormat( "expects [0-%dbf?] in output dimension numbers", out.size() - 1)); } } } if (dnums->input_spatial_dimensions_size() != dnums->output_spatial_dimensions_size() || dnums->input_spatial_dimensions_size() != dnums->kernel_spatial_dimensions_size()) { return TokenError( StrFormat("input, kernel, and output must have same number of spatial " "dimensions, but got %d, %d, %d, respectively.", dnums->input_spatial_dimensions_size(), dnums->kernel_spatial_dimensions_size(), dnums->output_spatial_dimensions_size())); } lexer_.Lex(); return true; } bool HloParserImpl::ParseSliceRanges(SliceRanges* result) { if (!ParseToken(TokKind::kLbrace, "expects '{' to start ranges")) { return false; } std::vector<std::vector<int64_t>> ranges; if (lexer_.GetKind() == TokKind::kRbrace) { return ParseToken(TokKind::kRbrace, "expects '}' to end ranges"); } do { LocTy loc = lexer_.GetLoc(); ranges.emplace_back(); if (!ParseInt64List(TokKind::kLsquare, TokKind::kRsquare, TokKind::kColon, &ranges.back())) { return false; } const auto& range = ranges.back(); if (range.size() != 2 && range.size() != 3) { return Error(loc, StrFormat("expects [start:limit:step] or [start:limit], " "but sees %d elements.", range.size())); } } while (EatIfPresent(TokKind::kComma)); for (const auto& range : ranges) { result->starts.push_back(range[0]); result->limits.push_back(range[1]); result->strides.push_back(range.size() == 3 ? range[2] : 1); } return ParseToken(TokKind::kRbrace, "expects '}' to end ranges"); } bool HloParserImpl::ParsePrecisionList( std::vector<PrecisionConfig::Precision>* result) { auto parse_and_add_item = [&]() { PrecisionConfig::Precision item; if (!ParsePrecision(&item)) { return false; } result->push_back(item); return true; }; return ParseList(TokKind::kLbrace, TokKind::kRbrace, TokKind::kComma, parse_and_add_item); } bool HloParserImpl::ParseHloComputation(HloComputation** result) { if (lexer_.GetKind() == TokKind::kLbrace) { return ParseInstructionList(result, "_"); } return ParseComputationName(result); } bool HloParserImpl::ParseHloComputationList( std::vector<HloComputation*>* result) { auto parse_and_add_item = [&]() { HloComputation* computation; if (!ParseHloComputation(&computation)) { return false; } VLOG(kDebugLevel) << "parsed computation " << computation->name(); result->push_back(computation); return true; }; return ParseList(TokKind::kLbrace, TokKind::kRbrace, TokKind::kComma, parse_and_add_item); } bool HloParserImpl::ParseShapeList(std::vector<Shape>* result) { auto parse_and_add_item = [&]() { Shape shape; if (!ParseShape(&shape)) { return false; } result->push_back(std::move(shape)); return true; }; return ParseList(TokKind::kLbrace, TokKind::kRbrace, TokKind::kComma, parse_and_add_item); } bool HloParserImpl::ParseInt64List(const TokKind start, const TokKind end, const TokKind delim, std::vector<int64_t>* result) { auto parse_and_add_item = [&]() { int64_t i; if (!ParseInt64(&i)) { return false; } result->push_back(i); return true; }; return ParseList(start, end, delim, parse_and_add_item); } bool HloParserImpl::ParseInt64ListList( const TokKind start, const TokKind end, const TokKind delim, std::vector<std::vector<int64_t>>* result) { auto parse_and_add_item = [&]() { std::vector<int64_t> item; if (!ParseInt64List(start, end, delim, &item)) { return false; } result->push_back(item); return true; }; return ParseList(start, end, delim, parse_and_add_item); } bool HloParserImpl::ParseList(const TokKind start, const TokKind end, const TokKind delim, absl::FunctionRef<bool()> parse_and_add_item) { if (!ParseToken(start, StrCat("expects a list starting with ", TokKindToString(start)))) { return false; } if (lexer_.GetKind() == end) { } else { do { if (!parse_and_add_item()) { return false; } } while (EatIfPresent(delim)); } return ParseToken( end, StrCat("expects a list to end with ", TokKindToString(end))); } bool HloParserImpl::ParseParamListToShape(Shape* shape, LocTy* shape_loc) { if (!ParseParamList() || !ParseToken(TokKind::kArrow, "expects '->'")) { return false; } *shape_loc = lexer_.GetLoc(); return ParseShape(shape); } bool HloParserImpl::CanBeParamListToShape() { return lexer_.GetKind() == TokKind::kLparen; } bool HloParserImpl::ParseParamList() { if (!ParseToken(TokKind::kLparen, "expects '(' at the beginning of param list")) { return false; } if (lexer_.GetKind() == TokKind::kRparen) { } else { do { Shape shape; std::string name; if (!ParseName(&name) || !ParseShape(&shape)) { return false; } } while (EatIfPresent(TokKind::kComma)); } return ParseToken(TokKind::kRparen, "expects ')' at the end of param list"); } bool HloParserImpl::ParseDimensionSizes(std::vector<int64_t>* dimension_sizes, std::vector<bool>* dynamic_dimensions) { auto parse_and_add_item = [&]() { int64_t i; bool is_dynamic = false; if (lexer_.GetKind() == TokKind::kQuestionMark) { i = Shape::kUnboundedSize; is_dynamic = true; lexer_.Lex(); } else { if (lexer_.GetKind() == TokKind::kLeq) { is_dynamic = true; lexer_.Lex(); } if (!ParseInt64(&i)) { return false; } } dimension_sizes->push_back(i); dynamic_dimensions->push_back(is_dynamic); return true; }; return ParseList(TokKind::kLsquare, TokKind::kRsquare, TokKind::kComma, parse_and_add_item); } bool HloParserImpl::ParseDimLevelTypes( absl::InlinedVector<DimLevelType, InlineRank()>* dim_level_types, absl::InlinedVector<bool, InlineRank()>* dim_unique, absl::InlinedVector<bool, InlineRank()>* dim_ordered) { auto parse_and_add_item = [&]() { if (lexer_.GetKind() == TokKind::kIdent) { bool dim_level_type_valid = false; DimLevelType dim_level_type; if (lexer_.GetStrVal() == "D") { lexer_.Lex(); dim_level_type = DIM_DENSE; dim_level_type_valid = true; } else if (lexer_.GetStrVal() == "C") { lexer_.Lex(); dim_level_type = DIM_COMPRESSED; dim_level_type_valid = true; } else if (lexer_.GetStrVal() == "S") { lexer_.Lex(); dim_level_type = DIM_SINGLETON; dim_level_type_valid = true; } else if (lexer_.GetStrVal() == "H") { lexer_.Lex(); dim_level_type = DIM_LOOSE_COMPRESSED; dim_level_type_valid = true; } if (dim_level_type_valid) { bool new_dim_unique = true; if (lexer_.GetKind() == TokKind::kPlus) { new_dim_unique = false; lexer_.Lex(); } bool new_dim_ordered = true; if (lexer_.GetKind() == TokKind::kTilde) { new_dim_ordered = false; lexer_.Lex(); } if (!LayoutUtil::ValidateDimLevel(dim_level_type, new_dim_unique, new_dim_ordered)) { return Error( lexer_.GetLoc(), "invalid DimLevelType/unique/ordered combination in shape"); } dim_level_types->push_back(dim_level_type); dim_unique->push_back(new_dim_unique); dim_ordered->push_back(new_dim_ordered); return true; } } return Error(lexer_.GetLoc(), "expected a DimLevelType abbreviation (D, C, or S)"); }; return ParseList(TokKind::kLparen, TokKind::kRparen, TokKind::kComma, parse_and_add_item); } bool HloParserImpl::ParseTiles(std::vector<Tile>* tiles) { auto parse_and_add_tile_dimension = [&]() { int64_t i; if (ParseInt64(&i)) { tiles->back().add_dimensions(i); return true; } if (lexer_.GetKind() == TokKind::kAsterisk) { tiles->back().add_dimensions(Tile::kCombineDimension); lexer_.Lex(); return true; } return false; }; do { tiles->push_back(Tile()); if (!ParseList(TokKind::kLparen, TokKind::kRparen, TokKind::kComma, parse_and_add_tile_dimension)) { return false; } } while (lexer_.GetKind() == TokKind::kLparen); return true; } bool HloParserImpl::ParsePhysicalShape(Shape* physical_shape) { if (!ParseToken(TokKind::kLparen, StrCat("expects physical shape to start with ", TokKindToString(TokKind::kLparen)))) { return false; } ParseShape(physical_shape); if (!ParseToken(TokKind::kRparen, StrCat("expects physical shape to end with ", TokKindToString(TokKind::kRparen)))) { return false; } return true; } bool HloParserImpl::ParsePrimitiveType(PrimitiveType* result) { if (lexer_.GetKind() != TokKind::kPrimitiveType) { return TokenError(absl::StrCat("expected primitive type, saw ", TokKindToString(lexer_.GetKind()))); } *result = lexer_.GetPrimitiveTypeVal(); lexer_.Lex(); return true; } bool HloParserImpl::ParseUnsignedIntegerType(PrimitiveType* primitive_type) { if (!ParsePrimitiveType(primitive_type)) { return false; } if (!primitive_util::IsUnsignedIntegralType(*primitive_type)) { return TokenError("expecting an unsigned integer type"); } return true; } bool HloParserImpl::ParseLayoutIntAttribute( int64_t* attr_value, absl::string_view attr_description) { if (!ParseToken(TokKind::kLparen, StrCat("expects ", attr_description, " to start with ", TokKindToString(TokKind::kLparen)))) { return false; } if (!ParseInt64(attr_value)) { return false; } if (!ParseToken(TokKind::kRparen, StrCat("expects ", attr_description, " to end with ", TokKindToString(TokKind::kRparen)))) { return false; } return true; } bool HloParserImpl::ParseSplitConfigs(std::vector<SplitConfig>& split_configs) { auto parse_and_add_split_index = [&]() { int64_t i; if (ParseInt64(&i)) { split_configs.back().add_split_indices(i); return true; } return false; }; do { if (!ParseToken(TokKind::kLparen, StrCat("expects split configs to start with ", TokKindToString(TokKind::kLparen)))) { return false; } int64_t dimension; if (!ParseInt64(&dimension)) { return false; } split_configs.push_back(SplitConfig(dimension, {})); if (!ParseList(TokKind::kColon, TokKind::kRparen, TokKind::kComma, parse_and_add_split_index)) { return false; } } while (lexer_.GetKind() == TokKind::kLparen); return true; } bool HloParserImpl::ParseLayout(Layout* layout) { absl::InlinedVector<int64_t, InlineRank()> minor_to_major; DimLevelTypeVector dim_level_types; absl::InlinedVector<bool, InlineRank()> dim_unique; absl::InlinedVector<bool, InlineRank()> dim_ordered; std::vector<Tile> tiles; PrimitiveType index_primitive_type = PRIMITIVE_TYPE_INVALID; PrimitiveType pointer_primitive_type = PRIMITIVE_TYPE_INVALID; int64_t element_size_in_bits = 0; int64_t memory_space = 0; std::vector<SplitConfig> split_configs; std::optional<Shape> physical_shape; int64_t dynamic_shape_metadata_prefix_bytes = 0; int64_t tail_padding_alignment_in_elements = 1; auto parse_and_add_item = [&]() { int64_t i; if (!ParseInt64(&i)) { return false; } minor_to_major.push_back(i); return true; }; if (!ParseToken(TokKind::kLbrace, StrCat("expects layout to start with ", TokKindToString(TokKind::kLbrace)))) { return false; } if (lexer_.GetKind() != TokKind::kRbrace) { if (lexer_.GetKind() == TokKind::kInt) { do { if (!parse_and_add_item()) { return false; } } while (EatIfPresent(TokKind::kComma)); } if (lexer_.GetKind() == TokKind::kColon) { lexer_.Lex(); if (lexer_.GetKind() == TokKind::kIdent && lexer_.GetStrVal() == "D") { lexer_.Lex(); ParseDimLevelTypes(&dim_level_types, &dim_unique, &dim_ordered); } if (lexer_.GetKind() == TokKind::kIdent && lexer_.GetStrVal() == "T") { lexer_.Lex(); ParseTiles(&tiles); } if (lexer_.GetKind() == TokKind::kIdent && lexer_.GetStrVal() == "L") { lexer_.Lex(); ParseLayoutIntAttribute(&tail_padding_alignment_in_elements, "multiple padded to in elements"); } if (lexer_.GetKind() == TokKind::kOctothorp) { lexer_.Lex(); ParseToken( TokKind::kLparen, StrCat("expects ", TokKindToString(TokKind::kOctothorp), " to be followed by ", TokKindToString(TokKind::kLparen))); ParseUnsignedIntegerType(&index_primitive_type); ParseToken(TokKind::kRparen, StrCat("expects index primitive type to be followed by ", TokKindToString(TokKind::kRparen))); } if (lexer_.GetKind() == TokKind::kAsterisk) { lexer_.Lex(); ParseToken( TokKind::kLparen, StrCat("expects ", TokKindToString(TokKind::kAsterisk), " to be followed by ", TokKindToString(TokKind::kLparen))); ParseUnsignedIntegerType(&pointer_primitive_type); ParseToken(TokKind::kRparen, StrCat("expects pointer primitive type to be followed by ", TokKindToString(TokKind::kRparen))); } if (lexer_.GetKind() == TokKind::kIdent && lexer_.GetStrVal() == "E") { lexer_.Lex(); ParseLayoutIntAttribute(&element_size_in_bits, "element size in bits"); } if (lexer_.GetKind() == TokKind::kIdent && lexer_.GetStrVal() == "S") { lexer_.Lex(); ParseLayoutIntAttribute(&memory_space, "memory space"); } if (lexer_.GetKind() == TokKind::kIdent && lexer_.GetStrVal() == "SC") { lexer_.Lex(); ParseSplitConfigs(split_configs); } if (lexer_.GetKind() == TokKind::kIdent && lexer_.GetStrVal() == "P") { lexer_.Lex(); physical_shape.emplace(); ParsePhysicalShape(&*physical_shape); } if (lexer_.GetKind() == TokKind::kIdent && lexer_.GetStrVal() == "M") { lexer_.Lex(); ParseLayoutIntAttribute(&dynamic_shape_metadata_prefix_bytes, "dynamic shape metadata prefix bytes"); } } } if (!ParseToken(TokKind::kRbrace, StrCat("expects layout to end with ", TokKindToString(TokKind::kRbrace)))) { return false; } std::vector<Tile> vec_tiles(tiles.size()); for (int i = 0; i < tiles.size(); i++) { vec_tiles[i] = Tile(tiles[i]); } *layout = LayoutUtil::MakeLayout( minor_to_major, dim_level_types, dim_unique, dim_ordered, vec_tiles, tail_padding_alignment_in_elements, index_primitive_type, pointer_primitive_type, element_size_in_bits, memory_space, split_configs, std::move(physical_shape), dynamic_shape_metadata_prefix_bytes); return true; } bool HloParserImpl::ParseShape(Shape* result) { if (EatIfPresent(TokKind::kLparen)) { std::vector<Shape> shapes; if (lexer_.GetKind() == TokKind::kRparen) { } else { do { shapes.emplace_back(); if (!ParseShape(&shapes.back())) { return false; } } while (EatIfPresent(TokKind::kComma)); } *result = ShapeUtil::MakeTupleShape(shapes); return ParseToken(TokKind::kRparen, "expects ')' at the end of tuple."); } PrimitiveType primitive_type; if (!ParsePrimitiveType(&primitive_type)) { return false; } std::vector<int64_t> dimension_sizes; std::vector<bool> dynamic_dimensions; if (!ParseDimensionSizes(&dimension_sizes, &dynamic_dimensions)) { return false; } result->set_element_type(primitive_type); for (int i = 0; i < dimension_sizes.size(); ++i) { result->add_dimensions(dimension_sizes[i]); result->set_dynamic_dimension(i, dynamic_dimensions[i]); } if (options_.fill_missing_layouts() || ShapeUtil::IsScalar(*result)) { LayoutUtil::SetToDefaultLayout(result); } if (lexer_.GetKind() == TokKind::kLbrace && (lexer_.LookAhead() == TokKind::kInt || lexer_.LookAhead() == TokKind::kColon)) { Layout layout; if (!ParseLayout(&layout)) { return false; } if (layout.dim_level_types_size() != 0 && layout.dim_level_types_size() != result->rank()) { return Error( lexer_.GetLoc(), StrFormat("Dimensions size is %ld, but dim level types size is %ld.", result->rank(), layout.dim_level_types_size())); } if (layout.minor_to_major_size() != result->rank()) { return Error( lexer_.GetLoc(), StrFormat("Dimensions size is %ld, but minor to major size is %ld.", result->rank(), layout.minor_to_major_size())); } if (LayoutUtil::IsSparse(layout) && layout.tiles_size() > 0) { return Error(lexer_.GetLoc(), StrFormat("Layout has tiles, but is for a sparse array: %s", layout.ToString())); } if (!LayoutUtil::IsSparse(layout) && layout.has_physical_shape()) { return Error( lexer_.GetLoc(), StrFormat( "Layout has physical shape, but is not for a sparse array: %s", layout.ToString())); } *result->mutable_layout() = layout; } return true; } bool HloParserImpl::CanBeShape() { return lexer_.GetKind() == TokKind::kPrimitiveType || lexer_.GetKind() == TokKind::kLparen; } bool HloParserImpl::ParseName(std::string* result) { VLOG(kDebugLevel) << "ParseName"; if (lexer_.GetKind() != TokKind::kIdent && lexer_.GetKind() != TokKind::kName) { return TokenError("expects name"); } *result = lexer_.GetStrVal(); lexer_.Lex(); return true; } bool HloParserImpl::ParseAttributeName(std::string* result) { if (lexer_.GetKind() != TokKind::kAttributeName) { return TokenError("expects attribute name"); } *result = lexer_.GetStrVal(); lexer_.Lex(); return true; } bool HloParserImpl::ParseString(std::string* result) { VLOG(kDebugLevel) << "ParseString"; if (lexer_.GetKind() != TokKind::kString) { return TokenError("expects string"); } *result = lexer_.GetStrVal(); lexer_.Lex(); return true; } bool HloParserImpl::ParseJsonDict(std::string* result) { VLOG(kDebugLevel) << "ParseJsonDict"; if (lexer_.LexJsonDict() != TokKind::kString) { return TokenError("expects JSON dict"); } *result = lexer_.GetStrVal(); lexer_.Lex(); return true; } bool HloParserImpl::ParseDxD(const std::string& name, std::vector<int64_t>* result) { LocTy loc = lexer_.GetLoc(); if (!result->empty()) { return Error(loc, StrFormat("sub-attribute '%s=' already exists", name)); } if (lexer_.GetKind() == TokKind::kInt) { int64_t number; if (!ParseInt64(&number)) { return Error(loc, StrFormat("expects sub-attribute '%s=i'", name)); } result->push_back(number); return true; } if (lexer_.GetKind() == TokKind::kDxD) { std::string str = lexer_.GetStrVal(); if (!SplitToInt64s(str, 'x', result)) { return Error(loc, StrFormat("expects sub-attribute '%s=ixj...'", name)); } lexer_.Lex(); return true; } return TokenError("expects token type kInt or kDxD"); } bool HloParserImpl::ParseWindowPad(std::vector<std::vector<int64_t>>* pad) { LocTy loc = lexer_.GetLoc(); if (!pad->empty()) { return Error(loc, "sub-attribute 'pad=' already exists"); } if (lexer_.GetKind() != TokKind::kPad) { return TokenError("expects window pad pattern, e.g., '0_0x3_3'"); } std::string str = lexer_.GetStrVal(); for (const auto& padding_dim_str : absl::StrSplit(str, 'x')) { std::vector<int64_t> low_high; if (!SplitToInt64s(padding_dim_str, '_', &low_high) || low_high.size() != 2) { return Error(loc, "expects padding_low and padding_high separated by '_'"); } pad->push_back(low_high); } lexer_.Lex(); return true; } bool HloParserImpl::ParsePaddingConfig(PaddingConfig* padding) { if (lexer_.GetKind() != TokKind::kPad) { return TokenError("expects padding config, e.g., '0_0_0x3_3_1'"); } LocTy loc = lexer_.GetLoc(); std::string str = lexer_.GetStrVal(); for (const auto& padding_dim_str : absl::StrSplit(str, 'x')) { std::vector<int64_t> padding_dim; if (!SplitToInt64s(padding_dim_str, '_', &padding_dim) || (padding_dim.size() != 2 && padding_dim.size() != 3)) { return Error(loc, "expects padding config pattern like 'low_high_interior' or " "'low_high'"); } auto* dim = padding->add_dimensions(); dim->set_edge_padding_low(padding_dim[0]); dim->set_edge_padding_high(padding_dim[1]); dim->set_interior_padding(padding_dim.size() == 3 ? padding_dim[2] : 0); } lexer_.Lex(); return true; } bool HloParserImpl::ParseOriginalValue( optional<std::shared_ptr<OriginalValue>>* original_value, const Shape& shape) { VLOG(kDebugLevel) << "ParseOriginalValue"; if (!ParseToken(TokKind::kLbrace, "Expects '{'")) { return false; } *original_value = std::make_shared<OriginalValue>(shape); ShapeIndex leaf_shape_index; while (lexer_.GetKind() != TokKind::kRbrace) { if (lexer_.GetKind() == TokKind::kLparen) { lexer_.Lex(); leaf_shape_index.push_back(0); } else if (lexer_.GetKind() == TokKind::kRparen) { lexer_.Lex(); leaf_shape_index.pop_back(); } else if (lexer_.GetKind() == TokKind::kComma) { lexer_.Lex(); ++leaf_shape_index.back(); } else if (lexer_.GetKind() == TokKind::kLbrace) { lexer_.Lex(); std::string instruction_name; ShapeIndex shape_index; if (!ParseString(&instruction_name)) { return false; } if (lexer_.GetKind() != TokKind::kRbrace) { if (!ParseShapeIndex(&shape_index)) { return false; } } *(**original_value)->mutable_element(leaf_shape_index) = { instruction_name, shape_index}; if (!ParseToken(TokKind::kRbrace, "Expects '} at end of each OriginalArray'")) { return false; } } else { return false; } } lexer_.Lex(); return true; } bool HloParserImpl::ParseMetadata(OpMetadata& metadata) { absl::flat_hash_map<std::string, AttrConfig> attrs; optional<std::string> op_type; optional<std::string> op_name; optional<std::string> source_file; optional<int32_t> source_line; optional<std::vector<int64_t>> profile_type; optional<std::string> deduplicated_name; optional<bool> preserve_layout; optional<std::string> scheduling_name; attrs["op_type"] = {false, AttrTy::kString, &op_type}; attrs["op_name"] = {false, AttrTy::kString, &op_name}; attrs["source_file"] = {false, AttrTy::kString, &source_file}; attrs["source_line"] = {false, AttrTy::kInt32, &source_line}; attrs["profile_type"] = {false, AttrTy::kBracedInt64List, &profile_type}; attrs["deduplicated_name"] = {false, AttrTy::kString, &deduplicated_name}; attrs["preserve_layout"] = {false, AttrTy::kBool, &preserve_layout}; attrs["scheduling_name"] = {false, AttrTy::kString, &scheduling_name}; if (!ParseSubAttributes(attrs)) { return false; } if (op_type) { metadata.set_op_type(*op_type); } if (op_name) { metadata.set_op_name(*op_name); } if (source_file) { metadata.set_source_file(*source_file); } if (source_line) { metadata.set_source_line(*source_line); } if (profile_type) { for (const auto& type : *profile_type) { if (!ProfileType_IsValid(type)) { return false; } metadata.add_profile_type(static_cast<ProfileType>(type)); } } if (deduplicated_name) { metadata.set_deduplicated_name(*deduplicated_name); } if (preserve_layout) { metadata.set_preserve_layout(*preserve_layout); } else { metadata.set_preserve_layout(false); } if (scheduling_name) { metadata.set_scheduling_name(*scheduling_name); } return true; } bool HloParserImpl::ParseSingleOrListMetadata( std::vector<OpMetadata>& metadata) { if (lexer_.GetKind() == TokKind::kLbrace && lexer_.LookAhead() == TokKind::kLbrace) { if (!ParseToken(TokKind::kLbrace, "expected '{' to start metadata list")) { return false; } if (lexer_.GetKind() != TokKind::kRbrace) { do { if (!ParseMetadata(metadata.emplace_back())) { return false; } } while (EatIfPresent(TokKind::kComma)); } return ParseToken(TokKind::kRbrace, "expected '}' to end metadata list"); } return ParseMetadata(metadata.emplace_back()); } bool HloParserImpl::ParseOpShardingType(OpSharding::Type* type) { switch (lexer_.GetKind()) { case TokKind::kw_maximal: *type = OpSharding::MAXIMAL; lexer_.Lex(); break; case TokKind::kw_replicated: *type = OpSharding::REPLICATED; lexer_.Lex(); break; case TokKind::kw_manual: *type = OpSharding::MANUAL; lexer_.Lex(); break; default: return false; } return true; } bool HloParserImpl::ParseListShardingType( std::vector<OpSharding::Type>* types) { if (!ParseToken(TokKind::kLbrace, "expected '{' to start sharding type list")) { return false; } if (lexer_.GetKind() != TokKind::kRbrace) { do { OpSharding::Type type; if (!ParseOpShardingType(&type)) { return false; } types->emplace_back(type); } while (EatIfPresent(TokKind::kComma)); } return ParseToken(TokKind::kRbrace, "expected '}' to end sharding type list"); } bool HloParserImpl::ParseOpcode( HloOpcode* opcode, std::optional<HloOpcode>* async_wrapped_opcode) { VLOG(kDebugLevel) << "ParseOpcode"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects opcode"); } std::string val = lexer_.GetStrVal(); auto status_or_result = StringToHloOpcode(val); if (!status_or_result.ok()) { auto try_parsing_async_op = [&](absl::string_view suffix, HloOpcode async_opcode) { absl::string_view wrapped_opcode_view(val); if (absl::ConsumeSuffix(&wrapped_opcode_view, suffix)) { *opcode = async_opcode; std::string wrapped_opcode(wrapped_opcode_view); status_or_result = StringToHloOpcode(wrapped_opcode); return true; } return false; }; if (try_parsing_async_op("-start", HloOpcode::kAsyncStart) || try_parsing_async_op("-update", HloOpcode::kAsyncUpdate) || try_parsing_async_op("-done", HloOpcode::kAsyncDone)) { if (!status_or_result.ok()) { return TokenError( StrFormat("expects async wrapped opcode but sees: %s, error: %s", val, status_or_result.status().message())); } *async_wrapped_opcode = status_or_result.value(); } else { return TokenError(StrFormat("expects opcode but sees: %s, error: %s", val, status_or_result.status().message())); } } else { *opcode = status_or_result.value(); } lexer_.Lex(); return true; } bool HloParserImpl::ParseFftType(FftType* result) { VLOG(kDebugLevel) << "ParseFftType"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects fft type"); } std::string val = lexer_.GetStrVal(); if (!FftType_Parse(val, result) || !FftType_IsValid(*result)) { return TokenError(StrFormat("expects fft type but sees: %s", val)); } lexer_.Lex(); return true; } bool HloParserImpl::ParsePaddingType(PaddingType* result) { VLOG(kDebugLevel) << "ParsePaddingType"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects padding type"); } std::string val = lexer_.GetStrVal(); if (!PaddingType_Parse(val, result) || !PaddingType_IsValid(*result)) { return TokenError(StrFormat("expects padding type but sees: %s", val)); } lexer_.Lex(); return true; } bool HloParserImpl::ParseComparisonDirection(ComparisonDirection* result) { VLOG(kDebugLevel) << "ParseComparisonDirection"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects comparison direction"); } std::string val = lexer_.GetStrVal(); auto status_or_result = StringToComparisonDirection(val); if (!status_or_result.ok()) { return TokenError( StrFormat("expects comparison direction but sees: %s", val)); } *result = status_or_result.value(); lexer_.Lex(); return true; } bool HloParserImpl::ParseComparisonType(Comparison::Type* result) { VLOG(kDebugLevel) << "ParseComparisonType"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects comparison type"); } std::string val = lexer_.GetStrVal(); auto status_or_result = StringToComparisonType(val); if (!status_or_result.ok()) { return TokenError(StrFormat("expects comparison type but sees: %s", val)); } *result = status_or_result.value(); lexer_.Lex(); return true; } bool HloParserImpl::ParseFusionKind(HloInstruction::FusionKind* result) { VLOG(kDebugLevel) << "ParseFusionKind"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects fusion kind"); } std::string val = lexer_.GetStrVal(); auto status_or_result = StringToFusionKind(val); if (!status_or_result.ok()) { return TokenError(StrFormat("expects fusion kind but sees: %s, error: %s", val, status_or_result.status().message())); } *result = status_or_result.value(); lexer_.Lex(); return true; } bool HloParserImpl::ParseRandomDistribution(RandomDistribution* result) { VLOG(kDebugLevel) << "ParseRandomDistribution"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects random distribution"); } std::string val = lexer_.GetStrVal(); auto status_or_result = StringToRandomDistribution(val); if (!status_or_result.ok()) { return TokenError( StrFormat("expects random distribution but sees: %s, error: %s", val, status_or_result.status().message())); } *result = status_or_result.value(); lexer_.Lex(); return true; } bool HloParserImpl::ParseRandomAlgorithm(RandomAlgorithm* result) { VLOG(kDebugLevel) << "ParseRandomAlgorithm"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects random algorithm"); } std::string val = lexer_.GetStrVal(); auto status_or_result = StringToRandomAlgorithm(val); if (!status_or_result.ok()) { return TokenError( StrFormat("expects random algorithm but sees: %s, error: %s", val, status_or_result.status().message())); } *result = status_or_result.value(); lexer_.Lex(); return true; } bool HloParserImpl::ParsePrecision(PrecisionConfig::Precision* result) { VLOG(kDebugLevel) << "ParsePrecision"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects random distribution"); } std::string val = lexer_.GetStrVal(); auto status_or_result = StringToPrecision(val); if (!status_or_result.ok()) { return TokenError(StrFormat("expects precision but sees: %s, error: %s", val, status_or_result.status().message())); } *result = status_or_result.value(); lexer_.Lex(); return true; } bool HloParserImpl::ParseAlgorithm(PrecisionConfig::Algorithm* result) { VLOG(kDebugLevel) << "ParseAlgorithm"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects algorithm"); } std::string val = lexer_.GetStrVal(); auto status_or_result = StringToAlgorithm(val); if (!status_or_result.ok()) { return TokenError(StrFormat("expects algorithm but sees: %s, error: %s", val, status_or_result.status().message())); } *result = status_or_result.value(); lexer_.Lex(); return true; } bool HloParserImpl::ParseInt64(int64_t* result) { VLOG(kDebugLevel) << "ParseInt64"; if (lexer_.GetKind() != TokKind::kInt) { return TokenError("expects integer"); } *result = lexer_.GetInt64Val(); lexer_.Lex(); return true; } bool HloParserImpl::ParseDouble(double* result) { switch (lexer_.GetKind()) { case TokKind::kDecimal: { double val = lexer_.GetDecimalVal(); if (std::isinf(val)) { return TokenError(StrCat("Constant is out of range for double (+/-", std::numeric_limits<double>::max(), ") and so is unparsable.")); } *result = val; break; } case TokKind::kInt: *result = static_cast<double>(lexer_.GetInt64Val()); break; case TokKind::kw_inf: *result = std::numeric_limits<double>::infinity(); break; case TokKind::kNegInf: *result = -std::numeric_limits<double>::infinity(); break; default: return TokenError("expects decimal or integer"); } lexer_.Lex(); return true; } bool HloParserImpl::ParseComplex(std::complex<double>* result) { if (lexer_.GetKind() != TokKind::kLparen) { return TokenError("expects '(' before complex number"); } lexer_.Lex(); double real; LocTy loc = lexer_.GetLoc(); if (!ParseDouble(&real)) { return Error(loc, "expect floating-point value for real part of complex number"); } if (lexer_.GetKind() != TokKind::kComma) { return TokenError( absl::StrFormat("expect comma after real part of complex literal")); } lexer_.Lex(); double imag; loc = lexer_.GetLoc(); if (!ParseDouble(&imag)) { return Error( loc, "expect floating-point value for imaginary part of complex number"); } if (lexer_.GetKind() != TokKind::kRparen) { return TokenError(absl::StrFormat("expect ')' after complex number")); } *result = std::complex<double>(real, imag); lexer_.Lex(); return true; } bool HloParserImpl::ParseBool(bool* result) { if (lexer_.GetKind() != TokKind::kw_true && lexer_.GetKind() != TokKind::kw_false) { return TokenError("expects true or false"); } *result = lexer_.GetKind() == TokKind::kw_true; lexer_.Lex(); return true; } bool HloParserImpl::ParseToken(TokKind kind, const std::string& msg) { VLOG(kDebugLevel) << "ParseToken " << TokKindToString(kind) << " " << msg; if (lexer_.GetKind() != kind) { return TokenError(msg); } lexer_.Lex(); return true; } bool HloParserImpl::EatIfPresent(TokKind kind) { if (lexer_.GetKind() != kind) { return false; } lexer_.Lex(); return true; } bool HloParserImpl::AddInstruction(const std::string& name, HloInstruction* instruction, LocTy name_loc) { auto result = current_name_table().insert({name, {instruction, name_loc}}); if (!result.second) { Error(name_loc, StrCat("instruction already exists: ", name)); return Error(result.first->second.second, "instruction previously defined here"); } return true; } bool HloParserImpl::AddComputation(const std::string& name, HloComputation* computation, LocTy name_loc) { auto result = computation_pool_.insert({name, {computation, name_loc}}); if (!result.second) { Error(name_loc, StrCat("computation already exists: ", name)); return Error(result.first->second.second, "computation previously defined here"); } return true; } absl::StatusOr<Shape> HloParserImpl::ParseShapeOnly() { lexer_.Lex(); Shape shape; if (!ParseShape(&shape)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument("Syntax error:\nExtra content after shape"); } return shape; } absl::StatusOr<Layout> HloParserImpl::ParseLayoutOnly() { lexer_.Lex(); Layout layout; if (!ParseLayout(&layout)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument("Syntax error:\nExtra content after layout"); } return layout; } absl::StatusOr<HloSharding> HloParserImpl::ParseShardingOnly() { lexer_.Lex(); std::optional<HloSharding> sharding; if (!ParseSharding(sharding)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument("Syntax error:\nExtra content after sharding"); } return std::move(*sharding); } absl::StatusOr<FrontendAttributes> HloParserImpl::ParseFrontendAttributesOnly() { lexer_.Lex(); FrontendAttributes attributes; if (!ParseFrontendAttributes(&attributes)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument( "Syntax error:\nExtra content after frontend attributes"); } return attributes; } absl::StatusOr<StatisticsViz> HloParserImpl::ParseStatisticsVizOnly() { lexer_.Lex(); StatisticsViz statistics_viz; if (!ParseStatisticsViz(&statistics_viz)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument("Syntax error:\nExtra content after statistics"); } return statistics_viz; } absl::StatusOr<std::vector<bool>> HloParserImpl::ParseParameterReplicationOnly() { lexer_.Lex(); ParameterReplication parameter_replication; if (!ParseParameterReplication(&parameter_replication)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument( "Syntax error:\nExtra content after parameter replication"); } return std::vector<bool>( parameter_replication.replicated_at_leaf_buffers().begin(), parameter_replication.replicated_at_leaf_buffers().end()); } absl::StatusOr<HloParserImpl::BoolList> HloParserImpl::ParseBooleanListOrSingleBooleanOnly() { lexer_.Lex(); BoolList booleans; if (!ParseBooleanListOrSingleBoolean(&booleans)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument("Syntax error:\nExtra content after boolean list"); } return booleans; } absl::StatusOr<std::vector<ReplicaGroup>> HloParserImpl::ParseReplicaGroupsOnly() { lexer_.Lex(); std::vector<ReplicaGroup> replica_groups; if (!ParseReplicaGroupsOnly(&replica_groups)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument("Syntax error:\nExtra content after replica groups"); } return replica_groups; } absl::StatusOr<Window> HloParserImpl::ParseWindowOnly() { lexer_.Lex(); Window window; if (!ParseWindow(&window, false)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument("Syntax error:\nExtra content after window"); } return window; } absl::StatusOr<ConvolutionDimensionNumbers> HloParserImpl::ParseConvolutionDimensionNumbersOnly() { lexer_.Lex(); ConvolutionDimensionNumbers dnums; if (!ParseConvolutionDimensionNumbers(&dnums)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument( "Syntax error:\nExtra content after convolution dnums"); } return dnums; } absl::StatusOr<PaddingConfig> HloParserImpl::ParsePaddingConfigOnly() { lexer_.Lex(); PaddingConfig padding_config; if (!ParsePaddingConfig(&padding_config)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument("Syntax error:\nExtra content after PaddingConfig"); } return padding_config; } bool HloParserImpl::ParseSingleInstruction(HloModule* module) { if (create_missing_instruction_ != nullptr || !scoped_name_tables_.empty()) { LOG(FATAL) << "Parser state is not clean. Please do not call any other " "methods before calling ParseSingleInstruction."; } HloComputation::Builder builder(module->name()); int64_t parameter_count = 0; create_missing_instruction_ = [this, &builder, &parameter_count]( const std::string& name, const Shape& shape) -> std::pair<HloInstruction*, LocTy>* { std::string new_name = name.empty() ? StrCat("_", parameter_count) : name; HloInstruction* parameter = builder.AddInstruction( HloInstruction::CreateParameter(parameter_count++, shape, new_name)); current_name_table()[new_name] = {parameter, lexer_.GetLoc()}; return tsl::gtl::FindOrNull(current_name_table(), new_name); }; Scope scope(&scoped_name_tables_); if (CanBeShape()) { if (!ParseInstructionRhs(&builder, module->name(), lexer_.GetLoc())) { return false; } } else { std::string root_name; if (!ParseInstruction(&builder, &root_name)) { return false; } } if (lexer_.GetKind() != TokKind::kEof) { Error( lexer_.GetLoc(), "Syntax error:\nExpected eof after parsing single instruction. Did you" " mean to write an HLO module and forget the \"HloModule\" header?"); return false; } module->AddEntryComputation(builder.Build()); for (auto& comp : computations_) { module->AddEmbeddedComputation(std::move(comp)); } TF_CHECK_OK(module->set_schedule(ScheduleFromInstructionOrder(module))); return true; } } absl::StatusOr<std::unique_ptr<HloModule>> ParseAndReturnUnverifiedModule( absl::string_view str, const HloModuleConfig& config, const HloParserOptions& options) { auto module = std::make_unique<HloModule>("_", config); HloParserImpl parser(str, options); TF_RETURN_IF_ERROR(parser.Run(module.get())); return std::move(module); } absl::StatusOr<HloSharding> ParseSharding(absl::string_view str) { HloParserImpl parser(str); return parser.ParseShardingOnly(); } absl::StatusOr<FrontendAttributes> ParseFrontendAttributes( absl::string_view str) { HloParserImpl parser(str); return parser.ParseFrontendAttributesOnly(); } absl::StatusOr<StatisticsViz> ParseStatisticsViz(absl::string_view str) { HloParserImpl parser(str); return parser.ParseStatisticsVizOnly(); } absl::StatusOr<std::vector<bool>> ParseParameterReplication( absl::string_view str) { HloParserImpl parser(str); return parser.ParseParameterReplicationOnly(); } absl::StatusOr<HloParserImpl::BoolList> ParseBooleanListOrSingleBoolean( absl::string_view str) { HloParserImpl parser(str); return parser.ParseBooleanListOrSingleBooleanOnly(); } absl::StatusOr<std::vector<ReplicaGroup>> ParseReplicaGroupsOnly( absl::string_view str) { HloParserImpl parser(str); return parser.ParseReplicaGroupsOnly(); } absl::StatusOr<Window> ParseWindow(absl::string_view str) { HloParserImpl parser(str); return parser.ParseWindowOnly(); } absl::StatusOr<ConvolutionDimensionNumbers> ParseConvolutionDimensionNumbers( absl::string_view str) { HloParserImpl parser(str); return parser.ParseConvolutionDimensionNumbersOnly(); } absl::StatusOr<PaddingConfig> ParsePaddingConfig(absl::string_view str) { HloParserImpl parser(str); return parser.ParsePaddingConfigOnly(); } absl::StatusOr<Shape> ParseShape(absl::string_view str) { HloParserImpl parser(str); return parser.ParseShapeOnly(); } absl::StatusOr<Layout> ParseLayout(absl::string_view str) { HloParserImpl parser(str); return parser.ParseLayoutOnly(); } std::unique_ptr<HloParser> HloParser::CreateHloParserForTests( absl::string_view str) { return std::make_unique<HloParserImpl>(str); } }
#include "xla/hlo/parser/hlo_parser.h" #include <cstdint> #include <memory> #include <string> #include <string_view> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/ascii.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/array.h" #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/parser/hlo_lexer.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/service/hlo_module_config.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/verified_hlo_module.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/window_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { namespace m = ::xla::match; using ::absl::string_view; using ::testing::ElementsAre; using ::testing::HasSubstr; struct TestData { std::string test_name; std::string module_string; int64_t replica_count = 1; bool enable_verification = true; }; std::string TestDataToString(const ::testing::TestParamInfo<TestData>& data) { return data.param.test_name; } struct NonRoundtripTestData { std::string test_name; std::string input_module_string; std::string output_module_string; }; std::string NonRoundtripTestDataToString( const ::testing::TestParamInfo<NonRoundtripTestData>& data) { return data.param.test_name; } std::vector<TestData> CreateTestCases() { return std::vector<TestData>({ { "AxpyParam", R"(HloModule axpy_module, entry_computation_layout={(f32[], f32[2,4]{1,0}, f32[2,4]{1,0})->f32[2,4]{1,0}} ENTRY %axpy.v5 (alpha: f32[], x: f32[2,4], y: f32[2,4]) -> f32[2,4] { %alpha = f32[] parameter(0) %broadcast = f32[2,4]{1,0} broadcast(f32[] %alpha), dimensions={} %x = f32[2,4]{1,0} parameter(1) %multiply = f32[2,4]{1,0} multiply(f32[2,4]{1,0} %broadcast, f32[2,4]{1,0} %x) %y = f32[2,4]{1,0} parameter(2) ROOT %add = f32[2,4]{1,0} add(f32[2,4]{1,0} %multiply, f32[2,4]{1,0} %y) } )" }, { "ParamReplication", R"(HloModule param_replication_module, entry_computation_layout={(f32[], (f32[2,4]{1,0}, (f32[2,4]{1,0})))->(f32[], (f32[2,4]{1,0}, (f32[2,4]{1,0})))} ENTRY %param_replication (a: f32[], b: (f32[2,4], (f32[2,4]))) -> (f32[], (f32[2,4], (f32[2,4]))) { %a = f32[] parameter(0), parameter_replication={true} %b = (f32[2,4]{1,0}, (f32[2,4]{1,0})) parameter(1), parameter_replication={false,true} ROOT %tuple = (f32[], (f32[2,4]{1,0}, (f32[2,4]{1,0}))) tuple(f32[] %a, (f32[2,4]{1,0}, (f32[2,4]{1,0})) %b) } )" }, { "ConstantPred", R"(HloModule constant_pred_module, entry_computation_layout={()->pred[]} ENTRY %constant_pred () -> pred[] { ROOT %constant = pred[] constant(true), metadata={op_type="const" op_name="\"it\'s not a problem\n" source_file="path/to/test.cc" source_line=68}, backend_config="foo\" bar" } )" }, { "ConstantPredArray", R"(HloModule module, entry_computation_layout={()->pred[2,3]{1,0}} ENTRY %constant_pred_array () -> pred[2,3] { ROOT %constant = pred[2,3]{1,0} constant({ { 0, 1, 0 }, { 1, 0, 1 } }) } )" }, { "ConstantS32", R"(HloModule constant_s32_module, entry_computation_layout={()->s32[]} ENTRY %constant_s32 () -> s32[] { ROOT %constant = s32[] constant(-42) } )" }, { "ConstantS32WithStatistics", R"(HloModule constant_s32_module, entry_computation_layout={()->s32[]} ENTRY %constant_s32 () -> s32[] { ROOT %constant = s32[] constant(-42), statistics={visualizing_index=1,stat-1=33,stat-2=44} } )" }, { "ConstantF32", R"(HloModule ConstantF32_module, entry_computation_layout={()->f32[]} ENTRY %ConstantF32.v4 () -> f32[] { ROOT %constant = f32[] constant(42), backend_config="this is a configuration" } )" }, { "ConstantF32R1Empty", R"(HloModule ConstantF32Empty_module, entry_computation_layout={()->f32[0]{0}} ENTRY %ConstantF32Empty.v4 () -> f32[0] { ROOT %constant = f32[0]{0} constant({}) } )" }, { "ConstantF32R4Empty", R"(HloModule ConstantF32R4Empty_module, entry_computation_layout={()->f32[2,0,4,3]{3,2,1,0}} ENTRY %ConstantF32R4Empty.v4 () -> f32[2,0,4,3] { ROOT %constant = f32[2,0,4,3]{3,2,1,0} constant({ { }, { } }) } )" }, { "Constant4D", R"(HloModule Small_3x2x1x1_module, entry_computation_layout={()->f32[3,2,1,1]{3,2,1,0}} ENTRY %Small_3x2x1x1.v1 () -> f32[3,2,1,1] { ROOT %constant = f32[3,2,1,1]{3,2,1,0} constant({ { { {-1} }, { {4.1} } }, { { {2} }, { {4.1} } }, { { {5} }, { {4.4} } } }) } )" }, { "ConstantNonFinite", R"(HloModule IsFiniteR1F32s_module, entry_computation_layout={()->pred[6]{0}} ENTRY %IsFiniteR1F32s.v2 () -> pred[6] { %constant = f32[6]{0} constant({nan, 7, nan, -1, inf, -inf}) ROOT %is-finite = pred[6]{0} is-finite(f32[6]{0} %constant) } )" }, { "ConstantNonFiniteE4M3", R"(HloModule ConstantR1F8E4M3FNs_module, entry_computation_layout={()->f8e4m3fn[3]{0}} ENTRY %IsFiniteR1F32s.v2 () -> f8e4m3fn[3] { ROOT %constant = f8e4m3fn[3]{0} constant({nan, 7, -nan}) } )" }, { "ConstantNonFiniteE4M3B11", R"(HloModule ConstantR1F8E4M3B11_module, entry_computation_layout={()->f8e4m3b11fnuz[2]{0}} ENTRY %IsFiniteR1F32s.v2 () -> f8e4m3b11fnuz[2] { ROOT %constant = f8e4m3b11fnuz[2]{0} constant({-nan, 7}) } )" }, { "ConstantF16", R"(HloModule ConstantF16_module, entry_computation_layout={()->f16[]} ENTRY %ConstantF16.v4 () -> f16[] { ROOT %constant = f16[] constant(500) } )" }, { "BF16", R"(HloModule BF16, entry_computation_layout={()->bf16[]} ENTRY %BF16.v4 () -> bf16[] { ROOT %constant = bf16[] constant(500) } )" }, { "AddConstants", R"(HloModule add_constants_module, entry_computation_layout={()->f32[]} ENTRY %add_constants () -> f32[] { %constant = f32[] constant(3.14) ROOT %add = f32[] add(f32[] %constant, f32[] %constant) } )" }, { "TupleConstant", R"(HloModule TupleConstant_module, entry_computation_layout={()->(f32[2,1]{1,0}, f32[2]{0})} ENTRY %TupleConstant.v1 () -> (f32[2,1], f32[2]) { ROOT %constant = (f32[2,1]{1,0}, f32[2]{0}) constant(( { {1}, {2} }, {2, 42} )) } )" }, { "SelectR1F32", R"(HloModule SelectR1F32WithCmpR1F32sFromParamsSmall_module, entry_computation_layout={(f32[4]{0}, f32[4]{0})->f32[4]{0}} ENTRY %SelectR1F32WithCmpR1F32sFromParamsSmall.v4 (v1: f32[4], v2: f32[4]) -> f32[4] { %v1 = f32[4]{0} parameter(0), sharding={maximal device=1} %v2 = f32[4]{0} parameter(1), sharding={maximal device=1} %greater-than = pred[4]{0} compare(f32[4]{0} %v1, f32[4]{0} %v2), direction=GT, type=TOTALORDER, sharding={replicated} ROOT %select = f32[4]{0} select(pred[4]{0} %greater-than, f32[4]{0} %v1, f32[4]{0} %v2), sharding={replicated} } )" }, { "EmptyTupleCreate", R"(HloModule EmptyTupleCreate_module, entry_computation_layout={()->()} ENTRY %EmptyTupleCreate.v1 () -> () { ROOT %tuple = () tuple() } )" }, { "TupleCreate", R"(HloModule TupleCreate_module, entry_computation_layout={(f32[], f32[3]{0}, f32[2,3]{1,0})->(f32[], f32[3]{0}, f32[2,3]{1,0})} ENTRY %TupleCreate.v4 (v1: f32[], v2: f32[3], v3: f32[2,3]) -> (f32[], f32[3], f32[2,3]) { %v1 = f32[] parameter(0) %v2 = f32[3]{0} parameter(1) %v3 = f32[2,3]{1,0} parameter(2) ROOT %tuple = (f32[], f32[3]{0}, f32[2,3]{1,0}) tuple(f32[] %v1, f32[3]{0} %v2, f32[2,3]{1,0} %v3) } )" }, { "LargeTupleRoundTrip", R"(HloModule LargeTupleRoundTrip_module, entry_computation_layout={(f32[])->(f32[], f32[], f32[], f32[], f32[], f32[])} ENTRY %TupleCreate.v4 (v: f32[]) -> (f32[], f32[], f32[], f32[], f32[], f32[]) { %v = f32[] parameter(0) ROOT %tuple = (f32[], f32[], f32[], f32[], f32[], f32[]) tuple(f32[] %v, f32[] %v, f32[] %v, f32[] %v, f32[] %v, f32[] %v) } )" }, { "ShardedTupleCreate", R"(HloModule ShardedTupleCreate_module, entry_computation_layout={(f32[], f32[3]{0}, f32[2,3]{1,0})->(f32[], f32[3]{0}, f32[2,3]{1,0})} ENTRY %ShardedTupleCreate.v4 (v1: f32[], v2: f32[3], v3: f32[2,3]) -> (f32[], f32[3], f32[2,3]) { %v1 = f32[] parameter(0), sharding={manual} %v2 = f32[3]{0} parameter(1) %v3 = f32[2,3]{1,0} parameter(2) ROOT %tuple = (f32[], f32[3]{0}, f32[2,3]{1,0}) tuple(f32[] %v1, f32[3]{0} %v2, f32[2,3]{1,0} %v3), sharding={{manual}, {maximal device=0}, {replicated}} } )" }, { "DomainParsing", R"(HloModule DomainParsing_module, entry_computation_layout={(f32[])->f32[]} ENTRY %DomainParsing (v1: f32[]) -> f32[] { %v1 = f32[] parameter(0) ROOT %dom = f32[] domain(f32[] %v1), domain={kind="sharding", entry={maximal device=0}, exit={maximal device=1}} } )" }, { "WhileWithScalarS32Result", R"(HloModule WhileWithScalarS32Result_module, entry_computation_layout={()->s32[]} %body.v3 (prev.1: s32[]) -> s32[] { %constant = s32[] constant(1) %prev.1 = s32[] parameter(0) ROOT %add = s32[] add(s32[] %constant, s32[] %prev.1) } %condition.v3 (prev.2: s32[]) -> pred[] { %constant.1 = s32[] constant(5) %prev.2 = s32[] parameter(0) ROOT %greater-than = pred[] compare(s32[] %constant.1, s32[] %prev.2), direction=GT } ENTRY %WhileWithScalarS32Result.v2 () -> s32[] { %constant.2 = s32[] constant(0) ROOT %while = s32[] while(s32[] %constant.2), condition=%condition.v3, body=%body.v3 } )" }, { "CopyStartAndCopyDone", R"(HloModule CopyStartAndCopyDone_module, entry_computation_layout={(f32[], f32[2,3]{1,0:S(1)})->(f32[], f32[2,3]{1,0:S(2)})} ENTRY %CopyStartAndCopyDone (v1: f32[], v2: f32[2,3]) -> (f32[], f32[2,3]) { %v1 = f32[] parameter(0) %copy-start.1 = (f32[], f32[], u32[]) copy-start(f32[] %v1), cross_program_prefetch_index=0 %copy-done.1 = f32[] copy-done((f32[], f32[], u32[]) %copy-start.1) %v2 = f32[2,3]{1,0:S(1)} parameter(1) %copy-start.2 = (f32[2,3]{1,0:S(2)}, f32[2,3]{1,0:S(1)}, u32[]) copy-start(f32[2,3]{1,0:S(1)} %v2) %copy-done.2 = f32[2,3]{1,0:S(2)} copy-done((f32[2,3]{1,0:S(2)}, f32[2,3]{1,0:S(1)}, u32[]) %copy-start.2) ROOT %tuple = (f32[], f32[2,3]{1,0:S(2)}) tuple(f32[] %copy-done.1, f32[2,3]{1,0:S(2)} %copy-done.2) } )" }, { "SendRecv", R"(HloModule TwoSendRecvBothWayRecvFist_module, entry_computation_layout={()->(f32[], token[])} ENTRY %TwoSendRecvBothWayRecvFist.v3 () -> (f32[], token[]) { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15, sharding={{maximal device=1}, {replicated}, {replicated}} ROOT %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15, sharding={{maximal device=1}, {replicated}} %constant = f32[] constant(2.1), sharding={maximal device=0} %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, sharding={{maximal device=1}, {replicated}, {replicated}}, control-predecessors={%recv} %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16, sharding={maximal device=0} } )" }, { "SendRecvWithHostTransfer", R"(HloModule HostTransferSendRecv_module, entry_computation_layout={()->(f32[], token[])} ENTRY %TwoSendRecvBothWayRecvFist.v3 () -> (f32[], token[]) { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15, is_host_transfer=true ROOT %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15, is_host_transfer=true %constant = f32[] constant(2.1), sharding={maximal device=0} %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, is_host_transfer=true %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16, is_host_transfer=true } )" }, { "GetTupleElement", R"(HloModule GetTupleElement_module, entry_computation_layout={()->s32[2,3]{1,0}} ENTRY %GetTupleElement.v4 () -> s32[2,3] { %constant = f32[3]{0} constant({1, 2, 3}) %constant.1 = s32[2,3]{1,0} constant({ { 1, 2, 3 }, { 4, 5, 6 } }) %tuple = (f32[3]{0}, s32[2,3]{1,0}) tuple(f32[3]{0} %constant, s32[2,3]{1,0} %constant.1) ROOT %get-tuple-element = s32[2,3]{1,0} get-tuple-element((f32[3]{0}, s32[2,3]{1,0}) %tuple), index=1, sharding={maximal device=0} } )" }, { "Call", R"(HloModule CallR0F32IdentityScalar_module, entry_computation_layout={()->f32[]} %Identity.v1 (x: f32[]) -> f32[] { ROOT %x = f32[] parameter(0) } ENTRY %CallR0F32IdentityScalar.v2 () -> f32[] { %constant = f32[] constant(42) ROOT %call = f32[] call(f32[] %constant), to_apply=%Identity.v1 } )" }, { "CompositeCall", R"(HloModule CompositeCall, entry_computation_layout={()->f32[]} %add (x: f32[]) -> f32[] { %x = f32[] parameter(0) %constant = f32[] constant(2) ROOT %z = f32[] add(f32[] %x, f32[] %constant) } ENTRY %CompositeCall.v2 () -> f32[] { %constant.1 = f32[] constant(42) ROOT %call = f32[] call(f32[] %constant.1), to_apply=%add, is_composite=true, frontend_attributes={composite.attributes={n = 1 : i32, tensor = dense<1> : tensor<i32>},composite.name="foo.bar",composite.version="1"} } )" }, { "CompositeCallWithExtraFrontendAttributes", R"(HloModule CompositeCall, entry_computation_layout={()->f32[]} %add (x: f32[]) -> f32[] { %x = f32[] parameter(0) %constant = f32[] constant(2) ROOT %z = f32[] add(f32[] %x, f32[] %constant) } ENTRY %CompositeCall.v2 () -> f32[] { %constant.1 = f32[] constant(42) ROOT %call = f32[] call(f32[] %constant.1), to_apply=%add, is_composite=true, frontend_attributes={composite.attributes={n = 1 : i32, tensor = dense<1> : tensor<i32>},composite.name="foo.bar",composite.version="1",foo="bar"} } )" }, { "CompositeCallOptionalAttributesAndVersion", R"(HloModule CompositeCall, entry_computation_layout={()->f32[]} %add (x: f32[]) -> f32[] { %x = f32[] parameter(0) %constant = f32[] constant(2) ROOT %z = f32[] add(f32[] %x, f32[] %constant) } ENTRY %CompositeCall.v2 () -> f32[] { %constant.1 = f32[] constant(42) ROOT %call = f32[] call(f32[] %constant.1), to_apply=%add, is_composite=true, frontend_attributes={composite.name="foo.bar"} } )" }, { "CompositeCallOptionalAttributes", R"(HloModule CompositeCall, entry_computation_layout={()->f32[]} %add (x: f32[]) -> f32[] { %x = f32[] parameter(0) %constant = f32[] constant(2) ROOT %z = f32[] add(f32[] %x, f32[] %constant) } ENTRY %CompositeCall.v2 () -> f32[] { %constant.1 = f32[] constant(42) ROOT %call = f32[] call(f32[] %constant.1), to_apply=%add, is_composite=true, frontend_attributes={composite.name="foo.bar",composite.version="1"} } )" }, { "CompositeCallOptionalVersion", R"(HloModule CompositeCall, entry_computation_layout={()->f32[]} %add (x: f32[]) -> f32[] { %x = f32[] parameter(0) %constant = f32[] constant(2) ROOT %z = f32[] add(f32[] %x, f32[] %constant) } ENTRY %CompositeCall.v2 () -> f32[] { %constant.1 = f32[] constant(42) ROOT %call = f32[] call(f32[] %constant.1), to_apply=%add, is_composite=true, frontend_attributes={composite.attributes={n = 1 : i32, tensor = dense<1> : tensor<i32>},composite.name="foo.bar"} } )" }, { "CustomCallWithOpaque", R"(HloModule custom_call, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) ROOT %custom-call = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo\"bar", backend_config="this string is opaque" } )" }, { "CustomCallWithBackendConfigInCurlyBraces", R"(HloModule custom_call, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) ROOT %custom-call = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo\"bar", backend_config={key: "value"} } )" }, { "CustomCallWithLiteral", R"(HloModule custom_call, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) ROOT %custom-call = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo\"bar", literal=s32[2]{0} {1, 2} } )" }, { "CustomCallWithLiteralTuple", R"(HloModule custom_call, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) ROOT %custom-call = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo\"bar", literal=( s32[4]{0} {4, 128, 128, 3}, pred[4]{0} {1, 0, 0, 0} ) } )" }, { "CustomCallWithLiteralR0", R"(HloModule custom_call, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) ROOT %custom-call = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo\"bar", literal=f32[] 0.1 } )" }, { "ReduceWindow", R"(HloModule R4UnitWindow_module, entry_computation_layout={(f32[13,12,8,15]{0,3,2,1})->f32[13,3,8,15]{0,3,2,1}} %add_F32.v3 (lhs: f32[], rhs: f32[]) -> f32[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs, f32[] %rhs) } ENTRY %R4UnitWindow.v3 (operand: f32[13,12,8,15]) -> f32[13,3,8,15] { %operand = f32[13,12,8,15]{0,3,2,1} parameter(0) %constant = f32[] constant(0) ROOT %reduce-window = f32[13,3,8,15]{0,3,2,1} reduce-window(f32[13,12,8,15]{0,3,2,1} %operand, f32[] %constant), window={size=1x1x7x1 stride=1x4x1x1 pad=0_0x0_0x3_3x0_0}, to_apply=%add_F32.v3 } )" }, { "ReduceWindowScalar", R"(HloModule reduce_window_scalar, entry_computation_layout={()->f32[]} %add_F32.v3 (lhs: f32[], rhs: f32[]) -> f32[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs, f32[] %rhs) } ENTRY %R4UnitWindowScalar () -> f32[] { %constant = f32[] constant(42) %constant.1 = f32[] constant(1) ROOT %reduce-window = f32[] reduce-window(f32[] %constant, f32[] %constant.1), to_apply=%add_F32.v3 } )" }, { "ReduceWindowVariadic", R"(HloModule reduce_window_variadic, entry_computation_layout={()->(f32[], f32[])} %add_F32.v3 (lhs1: f32[], lhs2: f32[], rhs1: f32[], rhs2: f32[]) -> (f32[], f32[]) { %lhs1 = f32[] parameter(0) %rhs1 = f32[] parameter(2) %add1 = f32[] add(f32[] %lhs1, f32[] %rhs1) %lhs2 = f32[] parameter(1) %rhs2 = f32[] parameter(3) %add2 = f32[] add(f32[] %lhs2, f32[] %rhs2) ROOT %tuple1 = (f32[], f32[]) tuple(f32[] %add1, f32[] %add2) } ENTRY %R4UnitWindowScalar () -> (f32[], f32[]) { %constant = f32[] constant(42) %constant.1 = f32[] constant(1) ROOT %reduce-window = (f32[], f32[]) reduce-window(f32[] %constant, f32[] %constant, f32[] %constant.1, f32[] %constant.1), to_apply=%add_F32.v3 } )" }, { "Convolution", R"(HloModule Convolve1D1Window_0_module, entry_computation_layout={(f32[1,2,1]{2,1,0}, f32[1,1,1]{2,1,0})->f32[1,2,1]{2,0,1}} ENTRY %Convolve1D1Window_0.v3 (input: f32[1,2,1], filter: f32[1,1,1]) -> f32[1,2,1] { %input = f32[1,2,1]{2,1,0} parameter(0) %copy = f32[1,2,1]{2,0,1} copy(f32[1,2,1]{2,1,0} %input) %filter = f32[1,1,1]{2,1,0} parameter(1) ROOT %convolution = f32[1,2,1]{2,0,1} convolution(f32[1,2,1]{2,0,1} %copy, f32[1,1,1]{2,1,0} %filter), window={size=1}, dim_labels=b0f_0io->b0f, operand_precision={high,default} } )" }, { "ConvolutionDynamic", R"(HloModule Convolve1D1Window_0_module, entry_computation_layout={(f32[1,2,1]{2,1,0}, f32[1,1,1]{2,1,0})->f32[1,2,1]{2,0,1}} ENTRY %Convolve1D1Window_0.v3 (input: f32[1,2,1], filter: f32[1,1,1]) -> f32[1,2,1] { %input = f32[1,2,1]{2,1,0} parameter(0) %copy = f32[1,2,1]{2,0,1} copy(f32[1,2,1]{2,1,0} %input) %filter = f32[1,1,1]{2,1,0} parameter(1) ROOT %custom-call.52 = f32[1,2,1]{2,0,1} custom-call(f32[1,2,1]{2,0,1} %copy, f32[1,1,1]{2,1,0} %filter), window={size=1}, dim_labels=b0f_0io->b0f, operand_precision={high,default}, custom_call_target="DynamicConvolutionForward", metadata={op_type="Conv2D" op_name="conv1d"} } )" }, { "ConvolutionR2", R"(HloModule ConvolveR2_module, entry_computation_layout={(f32[1,2]{1,0}, f32[2,2]{1,0})->f32[1,2]{0,1}} ENTRY %ConvolveR2.v3 (input: f32[1,2], filter: f32[2,2]) -> f32[1,2] { %input = f32[1,2]{1,0} parameter(0) %filter = f32[2,2]{1,0} parameter(1) ROOT %convolution = f32[1,2]{0,1} convolution(f32[1,2]{1,0} %input, f32[2,2]{1,0} %filter), dim_labels=bf_io->bf } )" }, { "ConvolutionBackward", R"(HloModule ConvolveBackward_module, entry_computation_layout={(f32[128,7,7,512]{0,3,2,1}, f32[3,3,512,512]{3,2,1,0})->f32[128,14,14,512]{0,3,2,1}} ENTRY %ConvolveBackward (input: f32[128,7,7,512], filter: f32[3,3,512,512]) -> f32[128,14,14,512] { %input = f32[128,7,7,512]{0,3,2,1} parameter(0) %filter = f32[3,3,512,512]{3,2,1,0} parameter(1) ROOT %convolution-base-dilated = f32[128,14,14,512]{0,3,2,1} convolution(f32[128,7,7,512]{0,3,2,1} %input, f32[3,3,512,512]{3,2,1,0} %filter), window={size=3x3 pad=1_2x1_2 lhs_dilate=2x2 rhs_reversal=1x1}, dim_labels=b01f_01oi->b01f } )" }, { "Reverse4D", R"(HloModule Reverse4DFloatArrayOnDim01_module, entry_computation_layout={()->f32[4,3,2,1]{0,1,2,3}} ENTRY %Reverse4DFloatArrayOnDim01.v2 () -> f32[4,3,2,1] { %constant = f32[4,3,2,1]{0,1,2,3} constant({ { { {1}, {2} }, { {3}, {4} }, { {5}, {6} } }, { { {7}, {8} }, { {9}, {10} }, { {11}, {12} } }, { { {13}, {14} }, { {15}, {16} }, { {17}, {18} } }, { { {19}, {20} }, { {21}, {22} }, { {23}, {24} } } }) ROOT %reverse = f32[4,3,2,1]{0,1,2,3} reverse(f32[4,3,2,1]{0,1,2,3} %constant), dimensions={0,1} } )" }, { "Concat", R"(HloModule Concat2x3With2x5_module, entry_computation_layout={()->f32[2,8]{1,0}} ENTRY %Concat2x3With2x5.v3 () -> f32[2,8] { %constant = f32[2,3]{1,0} constant({ { 0, 1, 2 }, { 1000, 1001, 1002 } }) %constant.1 = f32[2,5]{1,0} constant({ { 64, 65, 66, 67, 68 }, { 1064, 1065, 1066, 1067, 1068 } }) ROOT %concatenate = f32[2,8]{1,0} concatenate(f32[2,3]{1,0} %constant, f32[2,5]{1,0} %constant.1), dimensions={1} } )" }, { "SelectAndScatter", R"(HloModule R4F32OverlapSmall_module, entry_computation_layout={()->f32[4,5,1,1]{3,2,1,0}} %ge_F32.v3 (lhs: f32[], rhs: f32[]) -> pred[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %greater-than-or-equal-to = pred[] compare(f32[] %lhs, f32[] %rhs), direction=GE, type=TOTALORDER } %add_F32.v3 (lhs.1: f32[], rhs.1: f32[]) -> f32[] { %lhs.1 = f32[] parameter(0) %rhs.1 = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs.1, f32[] %rhs.1) } ENTRY %R4F32OverlapSmall.v4 () -> f32[4,5,1,1] { %constant = f32[4,5,1,1]{3,2,1,0} constant({ { { {7} }, { {2} }, { {5} }, { {3} }, { {8} } }, { { {3} }, { {8} }, { {9} }, { {3} }, { {4} } }, { { {1} }, { {5} }, { {7} }, { {5} }, { {6} } }, { { {0} }, { {6} }, { {2} }, { {10} }, { {2} } } }) %constant.1 = f32[2,2,1,1]{3,2,1,0} constant({ { { {2} }, { {6} } }, { { {3} }, { {1} } } }) %constant.2 = f32[] constant(0) ROOT %select-and-scatter = f32[4,5,1,1]{3,2,1,0} select-and-scatter(f32[4,5,1,1]{3,2,1,0} %constant, f32[2,2,1,1]{3,2,1,0} %constant.1, f32[] %constant.2), window={size=2x3x1x1 stride=2x2x1x1}, select=%ge_F32.v3, scatter=%add_F32.v3 } )" }, { "SelectAndScatterScalar", R"(HloModule select_and_scatter_scalar, entry_computation_layout={()->f32[]} %ge_F32.v3 (lhs: f32[], rhs: f32[]) -> pred[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %greater-than-or-equal-to = pred[] compare(f32[] %lhs, f32[] %rhs), direction=GE } %add_F32.v3 (lhs.1: f32[], rhs.1: f32[]) -> f32[] { %lhs.1 = f32[] parameter(0) %rhs.1 = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs.1, f32[] %rhs.1) } ENTRY %SelectAndScatterScalar () -> f32[] { %constant = f32[] constant(42) %constant.1 = f32[] constant(1) %constant.2 = f32[] constant(2) ROOT %select-and-scatter = f32[] select-and-scatter(f32[] %constant, f32[] %constant.1, f32[] %constant.2), select=%ge_F32.v3, scatter=%add_F32.v3 } )" }, { "Slice", R"(HloModule slice_module, entry_computation_layout={(f32[3,3,4,4]{3,2,1,0})->f32[3,3,2,4]{3,2,1,0}} ENTRY %slice.v2 (p0: f32[3,3,4,4]) -> f32[3,3,2,4] { %p0 = f32[3,3,4,4]{3,2,1,0} parameter(0) ROOT %slice = f32[3,3,2,4]{3,2,1,0} slice(f32[3,3,4,4]{3,2,1,0} %p0), slice={[0:3:1], [0:3:1], [0:4:2], [0:4:1]} } )" }, { "SliceNoStride", R"(HloModule Slice3x3x3_To_1x3x3_F32_module, entry_computation_layout={()->f32[1,3,3]{2,1,0}} ENTRY %Slice3x3x3_To_1x3x3_F32.v2 () -> f32[1,3,3] { %constant = f32[3,3,3]{2,1,0} constant({ { { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 } }, { { 9, 10, 11 }, { 12, 13, 14 }, { 15, 16, 17 } }, { { 18, 19, 20 }, { 21, 22, 23 }, { 24, 25, 26 } } }) ROOT %slice = f32[1,3,3]{2,1,0} slice(f32[3,3,3]{2,1,0} %constant), slice={[0:1], [0:3], [0:3]} } )" }, { "SliceR0", R"(HloModule SliceR0_module, entry_computation_layout={()->s32[]} ENTRY %SliceR0.v2 () -> s32[] { %constant = s32[] constant(1) ROOT %slice = s32[] slice(s32[] %constant), slice={} } )" }, { "Transpose", R"(HloModule Transpose_module, entry_computation_layout={()->s32[1,2,3]{2,1,0}} ENTRY %Transpose.v2 () -> s32[1,2,3] { %constant = s32[1,2,3]{2,1,0} constant({ { { 1, 2, 3 }, { 4, 5, 6 } } }) ROOT %transpose = s32[1,2,3]{2,1,0} transpose(s32[1,2,3]{2,1,0} %constant), dimensions={0,1,2} } )" }, { "TransposeC128", R"(HloModule TransposeC128_module, entry_computation_layout={(c128[1,2,3]{2,1,0})->c128[1,2,3]{2,1,0}} ENTRY %Transpose.v3 (input: c128[1,2,3]) -> c128[1,2,3] { %input = c128[1,2,3]{2,1,0} parameter(0) ROOT %transpose = c128[1,2,3]{2,1,0} transpose(c128[1,2,3]{2,1,0} %input), dimensions={0,1,2} } )" }, { "TriangularSolve", R"(HloModule TriangularSolve_module, entry_computation_layout={(f32[4,4]{1,0}, f32[3,4]{1,0})->f32[3,4]{1,0}} ENTRY %SimpleRightLowerNotranspose.4 (a.1: f32[4,4], b.2: f32[3,4]) -> f32[3,4] { %a.1 = f32[4,4]{1,0} parameter(0) %b.2 = f32[3,4]{1,0} parameter(1) ROOT %triangular-solve.3 = f32[3,4]{1,0} triangular-solve(f32[4,4]{1,0} %a.1, f32[3,4]{1,0} %b.2), lower=true, transpose_a=NO_TRANSPOSE } )" }, { "DynamicSlice", R"(HloModule DynamicSlice_module, entry_computation_layout={(s32[2,2,258]{2,1,0}, s32[1]{0})->s32[2,2,258]{2,1,0}} ENTRY %DynamicSlice.v5 (original_parameter: s32[2,2,258], start_index: s32[1]) -> s32[2,2,258] { %original_parameter = s32[2,2,258]{2,1,0} parameter(0) %constant = s32[1]{0} constant({0}) %start_index = s32[1]{0} parameter(1) %concatenate = s32[3]{0} concatenate(s32[1]{0} %constant, s32[1]{0} %constant, s32[1]{0} %start_index), dimensions={0} ROOT %dynamic-slice = s32[2,2,258]{2,1,0} dynamic-slice(s32[2,2,258]{2,1,0} %original_parameter, s32[3]{0} %concatenate), dynamic_slice_sizes={2,2,258} } )" }, { "DynamicSliceScalarIndices", R"(HloModule DynamicSlice_module, entry_computation_layout={(s32[2,2,258]{2,1,0}, s32[])->s32[2,2,258]{2,1,0}} ENTRY %DynamicSlice.v5 (original_parameter: s32[2,2,258], start_index: s32[]) -> s32[2,2,258] { %original_parameter = s32[2,2,258]{2,1,0} parameter(0) %constant = s32[] constant(0) %start_index = s32[] parameter(1) ROOT %dynamic-slice = s32[2,2,258]{2,1,0} dynamic-slice(s32[2,2,258]{2,1,0} %original_parameter, s32[] %constant, s32[] %constant, s32[] %start_index), dynamic_slice_sizes={2,2,258} } )" }, { "DynamicUpdateSlice", R"(HloModule DynamicSlice_module, entry_computation_layout={(s32[1,1,25,1]{3,2,1,0}, s32[1,1,2,1]{3,2,1,0}, s32[4]{0})->s32[1,1,25,1]{3,2,1,0}} ENTRY %DynamicUpdateSlice.v4 (input: s32[1,1,25,1], update: s32[1,1,2,1], start_indices: s32[4]) -> s32[1,1,25,1] { %input = s32[1,1,25,1]{3,2,1,0} parameter(0) %update = s32[1,1,2,1]{3,2,1,0} parameter(1) %start_indices = s32[4]{0} parameter(2) ROOT %dynamic-update-slice = s32[1,1,25,1]{3,2,1,0} dynamic-update-slice(s32[1,1,25,1]{3,2,1,0} %input, s32[1,1,2,1]{3,2,1,0} %update, s32[4]{0} %start_indices) } )" }, { "DynamicUpdateSliceScalarIndex", R"(HloModule DynamicUpdateSlice_module, entry_computation_layout={(s32[1,1,25,1]{3,2,1,0}, s32[1,1,2,1]{3,2,1,0}, s32[], s32[], s32[], s32[])->s32[1,1,25,1]{3,2,1,0}} ENTRY %DynamicUpdateSlice.v4 (input: s32[1,1,25,1], update: s32[1,1,2,1], start_index.0: s32[], start_index.1: s32[], start_index.2: s32[], start_index.3: s32[]) -> s32[1,1,25,1] { %input = s32[1,1,25,1]{3,2,1,0} parameter(0) %update = s32[1,1,2,1]{3,2,1,0} parameter(1) %start_index.0 = s32[] parameter(2) %start_index.1 = s32[] parameter(3) %start_index.2 = s32[] parameter(4) %start_index.3 = s32[] parameter(5) ROOT %dynamic-update-slice = s32[1,1,25,1]{3,2,1,0} dynamic-update-slice(s32[1,1,25,1]{3,2,1,0} %input, s32[1,1,2,1]{3,2,1,0} %update, s32[] %start_index.0, s32[] %start_index.1, s32[] %start_index.2, s32[] %start_index.3) } )" }, { "BatchNormTraining", R"(HloModule BasicTraining_module, entry_computation_layout={()->(f32[2,2,1,2]{3,2,1,0}, f32[2]{0}, f32[2]{0})} ENTRY %BasicTraining.v4 () -> (f32[2,2,1,2], f32[2], f32[2]) { %constant = f32[2,2,1,2]{3,2,1,0} constant({ { { { 1, 2 } }, { { 3, 4 } } }, { { { 5, 6 } }, { { 7, 8 } } } }) %constant.1 = f32[2]{0} constant({2, 3}) %constant.2 = f32[2]{0} constant({1, 2}) ROOT %batch-norm-training = (f32[2,2,1,2]{3,2,1,0}, f32[2]{0}, f32[2]{0}) batch-norm-training(f32[2,2,1,2]{3,2,1,0} %constant, f32[2]{0} %constant.1, f32[2]{0} %constant.2), epsilon=0.001, feature_index=3 } )" }, { "BatchNormInference", R"(HloModule BatchNormInference_module, entry_computation_layout={(f32[2,2,2,2]{3,2,1,0}, f32[2]{0}, f32[2]{0}, f32[2]{0}, f32[2]{0})->f32[2,2,2,2]{3,2,1,0}} ENTRY %BatchNormInference.v6 (input: f32[2,2,2,2], offset: f32[2], scale: f32[2], mean: f32[2], variance: f32[2]) -> f32[2,2,2,2] { %input = f32[2,2,2,2]{3,2,1,0} parameter(0) %offset = f32[2]{0} parameter(1) %scale = f32[2]{0} parameter(2) %mean = f32[2]{0} parameter(3) %variance = f32[2]{0} parameter(4) ROOT %batch-norm-inference = f32[2,2,2,2]{3,2,1,0} batch-norm-inference(f32[2,2,2,2]{3,2,1,0} %input, f32[2]{0} %offset, f32[2]{0} %scale, f32[2]{0} %mean, f32[2]{0} %variance), epsilon=0.001, feature_index=0 } )" }, { "BatchNormGrad", R"(HloModule BatchNormGrad_module, entry_computation_layout={(f32[2,2,2,2]{3,2,1,0}, f32[2]{0}, f32[2]{0}, f32[2]{0}, f32[2,2,2,2]{3,2,1,0})->(f32[2,2,2,2]{3,2,1,0}, f32[2]{0}, f32[2]{0})} ENTRY %BatchNormGrad.v4 (input: f32[2,2,2,2], scale: f32[2], mean: f32[2], variance: f32[2], grad_output: f32[2,2,2,2]) -> (f32[2,2,2,2], f32[2], f32[2]) { %input = f32[2,2,2,2]{3,2,1,0} parameter(0) %scale = f32[2]{0} parameter(1) %mean = f32[2]{0} parameter(2) %variance = f32[2]{0} parameter(3) %grad_output = f32[2,2,2,2]{3,2,1,0} parameter(4) ROOT %batch-norm-grad = (f32[2,2,2,2]{3,2,1,0}, f32[2]{0}, f32[2]{0}) batch-norm-grad(f32[2,2,2,2]{3,2,1,0} %input, f32[2]{0} %scale, f32[2]{0} %mean, f32[2]{0} %variance, f32[2,2,2,2]{3,2,1,0} %grad_output), epsilon=0.001, feature_index=0 } )" }, { "Fft", R"(HloModule Fft_module, entry_computation_layout={(c64[8,32]{1,0})->c64[8,32]{1,0}} ENTRY %Fft (input: c64[8,32]) -> c64[8,32] { %input = c64[8,32]{1,0} parameter(0) ROOT %fft = c64[8,32]{1,0} fft(c64[8,32]{1,0} %input), fft_type=FFT, fft_length={32} } )" }, { "Ifft2d", R"(HloModule Ifft2d_module, entry_computation_layout={(c64[5,8,32]{2,1,0})->c64[5,8,32]{2,1,0}} ENTRY %Ifft2d (input: c64[5,8,32]) -> c64[5,8,32] { %input = c64[5,8,32]{2,1,0} parameter(0) ROOT %fft = c64[5,8,32]{2,1,0} fft(c64[5,8,32]{2,1,0} %input), fft_type=IFFT, fft_length={8,32} } )" }, { "Rfft2d", R"(HloModule Rfft2d_module, entry_computation_layout={(f32[5,64,32]{2,1,0})->c64[5,64,17]{2,1,0}} ENTRY %Rfft2d (input: f32[5,64,32]) -> c64[5,64,17] { %input = f32[5,64,32]{2,1,0} parameter(0) ROOT %fft = c64[5,64,17]{2,1,0} fft(f32[5,64,32]{2,1,0} %input), fft_type=RFFT, fft_length={64,32} } )" }, { "Irfft3d", R"(HloModule Irfft3d_module, entry_computation_layout={(c64[5,64,128,33]{3,2,1,0})->f32[5,64,128,64]{3,2,1,0}} ENTRY %Irfft3d (input: c64[5,64,128,33]) -> f32[5,64,128,64] { %input = c64[5,64,128,33]{3,2,1,0} parameter(0) ROOT %fft = f32[5,64,128,64]{3,2,1,0} fft(c64[5,64,128,33]{3,2,1,0} %input), fft_type=IRFFT, fft_length={64,128,64} } )" }, { "Pad", R"(HloModule Pad1DS3Array_module, entry_computation_layout={()->f32[7]{0}} ENTRY %Pad1DS3Array.v3 () -> f32[7] { %constant = f32[3]{0} constant({1, 2, 3}) %constant.1 = f32[] constant(0.1) ROOT %pad = f32[7]{0} pad(f32[3]{0} %constant, f32[] %constant.1), padding=3_1 } )" }, { "PadHasInterior", R"(HloModule PadHasInterior_module, entry_computation_layout={(f32[1,25,7,7]{3,2,1,0})->f32[1,25,17,11]{3,2,1,0}} ENTRY %PadHasInterior.v3 (input: f32[1,25,7,7]) -> f32[1,25,17,11] { %input = f32[1,25,7,7]{3,2,1,0} parameter(0) %constant = f32[] constant(-5.123) ROOT %pad = f32[1,25,17,11]{3,2,1,0} pad(f32[1,25,7,7]{3,2,1,0} %input, f32[] %constant), padding=0_0_0x0_0_0x2_2_1x2_2_0 } )" }, { "RoundNearestEven", R"(HloModule RoundNearestEven_module, entry_computation_layout={(f32[2,2]{1,0})->f32[2,2]{1,0}} ENTRY %RoundNearestEven (input: f32[2,2]) -> f32[2,2] { %input = f32[2,2]{1,0} parameter(0) ROOT %round-nearest-even = f32[2,2]{1,0} round-nearest-even(f32[2,2]{1,0} %input) } )" }, { "PadHasNegativePadding", R"(HloModule PadHasNegativePadding_module, entry_computation_layout={(f32[1,25,7,7,10]{4,3,2,1,0})->f32[1,15,6,3,35]{4,3,2,1,0}} ENTRY %PadHasNegativePadding (input: f32[1,25,7,7,10]) -> f32[1,15,6,3,35] { %input = f32[1,25,7,7,10]{4,3,2,1,0} parameter(0) %constant = f32[] constant(-5.123) ROOT %pad = f32[1,15,6,3,35]{4,3,2,1,0} pad(f32[1,25,7,7,10]{4,3,2,1,0} %input, f32[] %constant), padding=0_0_0x0_-10_0x0_-1_0x-2_-2_0x-1_-1_3 } )" }, { "Fusion", R"(HloModule fusion_module, entry_computation_layout={()->f32[3,2,1,1]{3,2,1,0}} %fused_computation (constant.param_0: f32[3,2,1,1], constant.1.param_1: f32[2]) -> f32[3,2,1,1] { %constant.param_0 = f32[3,2,1,1]{3,2,1,0} parameter(0) %constant.1.param_1 = f32[2]{0} parameter(1) %broadcast = f32[3,2,1,1]{3,2,1,0} broadcast(f32[2]{0} %constant.1.param_1), dimensions={1} ROOT %subtract = f32[3,2,1,1]{3,2,1,0} subtract(f32[3,2,1,1]{3,2,1,0} %constant.param_0, f32[3,2,1,1]{3,2,1,0} %broadcast) } ENTRY %fusion.v3 () -> f32[3,2,1,1] { %constant = f32[3,2,1,1]{3,2,1,0} constant({ { { {-1} }, { {4.1} } }, { { {2} }, { {4.1} } }, { { {5} }, { {4.4} } } }) %constant.1 = f32[2]{0} constant({3.14, 4.25}) ROOT %fusion = f32[3,2,1,1]{3,2,1,0} fusion(f32[3,2,1,1]{3,2,1,0} %constant, f32[2]{0} %constant.1), kind=kLoop, calls=%fused_computation } )" }, { "FusionWithAliasing", R"(HloModule FusionWithAliasing, entry_computation_layout={((f32[2,2]{0,1}, f32[42,2,3]{0,1,2}), f32[123,4]{0,1})->(f32[123,4]{0,1}, f32[2,2]{0,1}, f32[1,2,3]{0,1,2})} %FusedComp (p0: (f32[2,2], f32[42,2,3]), p1: f32[123,4]) -> (f32[123,4], f32[2,2], f32[1,2,3]) { %p1 = f32[123,4]{0,1} parameter(1) %p0 = (f32[2,2]{0,1}, f32[42,2,3]{0,1,2}) parameter(0) %elem1 = f32[2,2]{0,1} get-tuple-element((f32[2,2]{0,1}, f32[42,2,3]{0,1,2}) %p0), index=0 %constant0 = f32[] constant(1) %broadcast0 = f32[1,2,3]{0,1,2} broadcast(f32[] %constant0), dimensions={} ROOT %tuple = (f32[123,4]{0,1}, f32[2,2]{0,1}, f32[1,2,3]{0,1,2}) tuple(f32[123,4]{0,1} %p1, f32[2,2]{0,1} %elem1, f32[1,2,3]{0,1,2} %broadcast0) } ENTRY %FusionWithAliasing (p0.1: (f32[2,2], f32[42,2,3]), p1.1: f32[123,4]) -> (f32[123,4], f32[2,2], f32[1,2,3]) { %p0.1 = (f32[2,2]{0,1}, f32[42,2,3]{0,1,2}) parameter(0) %p1.1 = f32[123,4]{0,1} parameter(1) ROOT %fusion = (f32[123,4]{0,1}, f32[2,2]{0,1}, f32[1,2,3]{0,1,2}) fusion((f32[2,2]{0,1}, f32[42,2,3]{0,1,2}) %p0.1, f32[123,4]{0,1} %p1.1), kind=kLoop, output_to_operand_aliasing={{0}: (1, {}), {1}: (0, {0})}, calls=%FusedComp } )" }, { "Gather", R"(HloModule StringifyGather, entry_computation_layout={(f32[50,49,48,47,46]{4,3,2,1,0}, s64[10,9,8,7,5]{4,3,2,1,0})->f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0}} ENTRY %Gather (input_tensor: f32[50,49,48,47,46], start_indices: s64[10,9,8,7,5]) -> f32[10,9,8,7,30,29,28,27,26] { %input_tensor = f32[50,49,48,47,46]{4,3,2,1,0} parameter(0) %start_indices = s64[10,9,8,7,5]{4,3,2,1,0} parameter(1) ROOT %gather = f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} gather(f32[50,49,48,47,46]{4,3,2,1,0} %input_tensor, s64[10,9,8,7,5]{4,3,2,1,0} %start_indices), offset_dims={4,5,6,7,8}, collapsed_slice_dims={}, start_index_map={0,1,2,3,4}, index_vector_dim=4, slice_sizes={30,29,28,27,26} } )" }, { "SortedGather", R"(HloModule StringifyGather, entry_computation_layout={(f32[50,49,48,47,46]{4,3,2,1,0}, s64[10,9,8,7,5]{4,3,2,1,0})->f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0}} ENTRY %Gather (input_tensor: f32[50,49,48,47,46], start_indices: s64[10,9,8,7,5]) -> f32[10,9,8,7,30,29,28,27,26] { %input_tensor = f32[50,49,48,47,46]{4,3,2,1,0} parameter(0) %start_indices = s64[10,9,8,7,5]{4,3,2,1,0} parameter(1) ROOT %gather = f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} gather(f32[50,49,48,47,46]{4,3,2,1,0} %input_tensor, s64[10,9,8,7,5]{4,3,2,1,0} %start_indices), offset_dims={4,5,6,7,8}, collapsed_slice_dims={}, start_index_map={0,1,2,3,4}, index_vector_dim=4, slice_sizes={30,29,28,27,26}, indices_are_sorted=true } )" }, { "BatchGather", R"(HloModule StringifyGather, entry_computation_layout={(f32[50,49,48,47,46,512]{5,4,3,2,1,0}, s64[10,9,8,7,5,512]{5,4,3,2,1,0})->f32[10,9,8,7,30,29,28,27,26,512]{9,8,7,6,5,4,3,2,1,0}} ENTRY %Gather (input_tensor: f32[50,49,48,47,46,512], start_indices: s64[10,9,8,7,5,512]) -> f32[10,9,8,7,30,29,28,27,26,512] { %input_tensor = f32[50,49,48,47,46,512]{5,4,3,2,1,0} parameter(0) %start_indices = s64[10,9,8,7,5,512]{5,4,3,2,1,0} parameter(1) ROOT %gather = f32[10,9,8,7,30,29,28,27,26,512]{9,8,7,6,5,4,3,2,1,0} gather(f32[50,49,48,47,46,512]{5,4,3,2,1,0} %input_tensor, s64[10,9,8,7,5,512]{5,4,3,2,1,0} %start_indices), offset_dims={4,5,6,7,8}, collapsed_slice_dims={}, start_index_map={0,1,2,3,4}, operand_batching_dims={5}, start_indices_batching_dims={5}, index_vector_dim=4, slice_sizes={30,29,28,27,26,1} } )" }, { "Scatter", R"(HloModule StringifyScatter, entry_computation_layout={(f32[50,49,48,47,46]{4,3,2,1,0}, s64[10,9,8,7,5]{4,3,2,1,0}, f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0})->f32[50,49,48,47,46]{4,3,2,1,0}} %add_F32.v3 (lhs: f32[], rhs: f32[]) -> f32[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs, f32[] %rhs) } ENTRY %Scatter (input_tensor: f32[50,49,48,47,46], scatter_indices: s64[10,9,8,7,5], updates: f32[10,9,8,7,30,29,28,27,26]) -> f32[50,49,48,47,46] { %input_tensor = f32[50,49,48,47,46]{4,3,2,1,0} parameter(0) %scatter_indices = s64[10,9,8,7,5]{4,3,2,1,0} parameter(1) %updates = f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} parameter(2) ROOT %scatter = f32[50,49,48,47,46]{4,3,2,1,0} scatter(f32[50,49,48,47,46]{4,3,2,1,0} %input_tensor, s64[10,9,8,7,5]{4,3,2,1,0} %scatter_indices, f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} %updates), update_window_dims={4,5,6,7,8}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1,2,3,4}, index_vector_dim=4, to_apply=%add_F32.v3 } )" }, { "BatchScatter", R"(HloModule StringifyScatter, entry_computation_layout={(f32[50,49,48,47,46,512]{5,4,3,2,1,0}, s64[10,9,8,7,5,512]{5,4,3,2,1,0}, f32[10,9,8,7,30,29,28,27,26,512]{9,8,7,6,5,4,3,2,1,0})->f32[50,49,48,47,46,512]{5,4,3,2,1,0}} %add_F32.v3 (lhs: f32[], rhs: f32[]) -> f32[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs, f32[] %rhs) } ENTRY %Scatter (input_tensor: f32[50,49,48,47,46,512], scatter_indices: s64[10,9,8,7,5,512], updates: f32[10,9,8,7,30,29,28,27,26,512]) -> f32[50,49,48,47,46,512] { %input_tensor = f32[50,49,48,47,46,512]{5,4,3,2,1,0} parameter(0) %scatter_indices = s64[10,9,8,7,5,512]{5,4,3,2,1,0} parameter(1) %updates = f32[10,9,8,7,30,29,28,27,26,512]{9,8,7,6,5,4,3,2,1,0} parameter(2) ROOT %scatter = f32[50,49,48,47,46,512]{5,4,3,2,1,0} scatter(f32[50,49,48,47,46,512]{5,4,3,2,1,0} %input_tensor, s64[10,9,8,7,5,512]{5,4,3,2,1,0} %scatter_indices, f32[10,9,8,7,30,29,28,27,26,512]{9,8,7,6,5,4,3,2,1,0} %updates), update_window_dims={4,5,6,7,8}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1,2,3,4}, input_batching_dims={5}, scatter_indices_batching_dims={5}, index_vector_dim=4, to_apply=%add_F32.v3 } )" }, { "TupleScatter", R"(HloModule TupleScatter, entry_computation_layout={(f32[50,49,48,47,46]{4,3,2,1,0}, bf16[50,49,48,47,46]{4,3,2,1,0}, s64[10,9,8,7,5]{4,3,2,1,0}, f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0}, bf16[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0})->(f32[50,49,48,47,46]{4,3,2,1,0}, bf16[50,49,48,47,46]{4,3,2,1,0})} %add_F32_mul_BF16 (lhs_0: f32[], lhs_1: bf16[], rhs_0: f32[], rhs_1: bf16[]) -> (f32[], bf16[]) { %lhs_0 = f32[] parameter(0) %rhs_0 = f32[] parameter(2) %add = f32[] add(f32[] %lhs_0, f32[] %rhs_0) %lhs_1 = bf16[] parameter(1) %rhs_1 = bf16[] parameter(3) %mul = bf16[] multiply(bf16[] %lhs_1, bf16[] %rhs_1) ROOT %tuple = (f32[], bf16[]) tuple(f32[] %add, bf16[] %mul) } ENTRY %Scatter (input_0: f32[50,49,48,47,46], input_1: bf16[50,49,48,47,46], scatter_indices: s64[10,9,8,7,5], updates_0: f32[10,9,8,7,30,29,28,27,26], updates_1: bf16[10,9,8,7,30,29,28,27,26]) -> (f32[50,49,48,47,46], bf16[50,49,48,47,46]) { %input_0 = f32[50,49,48,47,46]{4,3,2,1,0} parameter(0) %input_1 = bf16[50,49,48,47,46]{4,3,2,1,0} parameter(1) %scatter_indices = s64[10,9,8,7,5]{4,3,2,1,0} parameter(2) %updates_0 = f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} parameter(3) %updates_1 = bf16[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} parameter(4) ROOT %scatter = (f32[50,49,48,47,46]{4,3,2,1,0}, bf16[50,49,48,47,46]{4,3,2,1,0}) scatter(f32[50,49,48,47,46]{4,3,2,1,0} %input_0, bf16[50,49,48,47,46]{4,3,2,1,0} %input_1, s64[10,9,8,7,5]{4,3,2,1,0} %scatter_indices, f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} %updates_0, bf16[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} %updates_1), update_window_dims={4,5,6,7,8}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1,2,3,4}, index_vector_dim=4, to_apply=%add_F32_mul_BF16 } )" }, { "SortedScatter", R"(HloModule StringifySortedScatter, entry_computation_layout={(f32[50,49,48,47,46]{4,3,2,1,0}, s64[10,9,8,7,5]{4,3,2,1,0}, f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0})->f32[50,49,48,47,46]{4,3,2,1,0}} %add_F32.v3 (lhs: f32[], rhs: f32[]) -> f32[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs, f32[] %rhs) } ENTRY %Scatter (input_tensor: f32[50,49,48,47,46], scatter_indices: s64[10,9,8,7,5], updates: f32[10,9,8,7,30,29,28,27,26]) -> f32[50,49,48,47,46] { %input_tensor = f32[50,49,48,47,46]{4,3,2,1,0} parameter(0) %scatter_indices = s64[10,9,8,7,5]{4,3,2,1,0} parameter(1) %updates = f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} parameter(2) ROOT %scatter = f32[50,49,48,47,46]{4,3,2,1,0} scatter(f32[50,49,48,47,46]{4,3,2,1,0} %input_tensor, s64[10,9,8,7,5]{4,3,2,1,0} %scatter_indices, f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} %updates), update_window_dims={4,5,6,7,8}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1,2,3,4}, index_vector_dim=4, indices_are_sorted=true, to_apply=%add_F32.v3 } )" }, { "UniqueIndicesScatter", R"(HloModule StringifyUniqueIndicesScatter, entry_computation_layout={(f32[50,49,48,47,46]{4,3,2,1,0}, s64[10,9,8,7,5]{4,3,2,1,0}, f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0})->f32[50,49,48,47,46]{4,3,2,1,0}} %add_F32.v3 (lhs: f32[], rhs: f32[]) -> f32[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs, f32[] %rhs) } ENTRY %Scatter (input_tensor: f32[50,49,48,47,46], scatter_indices: s64[10,9,8,7,5], updates: f32[10,9,8,7,30,29,28,27,26]) -> f32[50,49,48,47,46] { %input_tensor = f32[50,49,48,47,46]{4,3,2,1,0} parameter(0) %scatter_indices = s64[10,9,8,7,5]{4,3,2,1,0} parameter(1) %updates = f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} parameter(2) ROOT %scatter = f32[50,49,48,47,46]{4,3,2,1,0} scatter(f32[50,49,48,47,46]{4,3,2,1,0} %input_tensor, s64[10,9,8,7,5]{4,3,2,1,0} %scatter_indices, f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} %updates), update_window_dims={4,5,6,7,8}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1,2,3,4}, index_vector_dim=4, unique_indices=true, to_apply=%add_F32.v3 } )" }, { "ConstantUnsignedNoUnderflow", R"(HloModule ConstantUnsignedNoUnderflow_module, entry_computation_layout={()->u64[]} ENTRY %ConstantUnsignedNoUnderflow () -> u64[] { ROOT %constant = u64[] constant(1) } )" }, { "ConstantUnsignedNoOverflow", R"(HloModule ConstantUnsignedNoOverflow_module, entry_computation_layout={()->u64[]} ENTRY %ConstantUnsignedNoOverflow () -> u64[] { ROOT %constant = u64[] constant(9223372036854775807) } )" }, { "CustomCallWithLayoutConstraints", R"(HloModule CustomCallWithLayoutConstraints, entry_computation_layout={(f32[42,2,3]{0,1,2}, f32[123,4]{0,1})->f32[1,2,3]{0,2,1}} ENTRY %CustomCallWithLayoutConstraints (p0: f32[42,2,3], p1: f32[123,4]) -> f32[1,2,3] { %p0 = f32[42,2,3]{0,1,2} parameter(0) %p1 = f32[123,4]{0,1} parameter(1) ROOT %custom-call = f32[1,2,3]{0,2,1} custom-call(f32[42,2,3]{0,1,2} %p0, f32[123,4]{0,1} %p1), custom_call_target="baz", operand_layout_constraints={f32[42,2,3]{0,1,2}, f32[123,4]{1,0}} } )" }, { "CustomCallWithLayoutConstraintsNoOperands", R"(HloModule CustomCallWithLayoutConstraintsNoOperands, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY %CustomCallWithLayoutConstraints () -> f32[1,2,3] { ROOT %custom-call = f32[1,2,3]{0,2,1} custom-call(), custom_call_target="baz", operand_layout_constraints={} } )" }, { "CustomCallWithLayoutConstraintsTupleShapes", R"(HloModule CustomCallWithLayoutConstraintsTupleShapes, entry_computation_layout={((f32[2,2]{0,1}, f32[42,2,3]{0,1,2}), f32[123,4]{0,1})->(f32[1,2,3]{0,2,1}, f32[1,2,3]{1,2,0})} ENTRY %CustomCallWithLayoutConstraints (p0: (f32[2,2], f32[42,2,3]), p1: f32[123,4]) -> (f32[1,2,3], f32[1,2,3]) { %p0 = (f32[2,2]{0,1}, f32[42,2,3]{0,1,2}) parameter(0) %p1 = f32[123,4]{0,1} parameter(1) ROOT %custom-call = (f32[1,2,3]{0,2,1}, f32[1,2,3]{1,2,0}) custom-call((f32[2,2]{0,1}, f32[42,2,3]{0,1,2}) %p0, f32[123,4]{0,1} %p1), custom_call_target="baz", operand_layout_constraints={(f32[2,2]{1,0}, f32[42,2,3]{2,0,1}), f32[123,4]{1,0}} } )" }, { "CustomCallWithHasSideEffect", R"(HloModule CustomCallWithHasSideEffect, entry_computation_layout={((f32[2,2]{0,1}, f32[42,2,3]{0,1,2}), f32[123,4]{0,1})->(f32[1,2,3]{0,2,1}, f32[1,2,3]{1,2,0})} ENTRY %CustomCallWithHasSideEffect (p0: (f32[2,2], f32[42,2,3]), p1: f32[123,4]) -> (f32[1,2,3], f32[1,2,3]) { %p0 = (f32[2,2]{0,1}, f32[42,2,3]{0,1,2}) parameter(0) %p1 = f32[123,4]{0,1} parameter(1) ROOT %custom-call = (f32[1,2,3]{0,2,1}, f32[1,2,3]{1,2,0}) custom-call((f32[2,2]{0,1}, f32[42,2,3]{0,1,2}) %p0, f32[123,4]{0,1} %p1), custom_call_target="baz", custom_call_has_side_effect=true } )" }, { "CustomCallWithAliasing", R"(HloModule CustomCallWithAliasing, entry_computation_layout={((f32[2,2]{0,1}, f32[42,2,3]{0,1,2}), f32[123,4]{0,1})->(f32[123,4]{0,1}, f32[2,2]{0,1}, f32[1,2,3]{0,1,2})} ENTRY %CustomCallWithAliasing (p0: (f32[2,2], f32[42,2,3]), p1: f32[123,4]) -> (f32[123,4], f32[2,2], f32[1,2,3]) { %p0 = (f32[2,2]{0,1}, f32[42,2,3]{0,1,2}) parameter(0) %p1 = f32[123,4]{0,1} parameter(1) ROOT %custom-call = (f32[123,4]{0,1}, f32[2,2]{0,1}, f32[1,2,3]{0,1,2}) custom-call((f32[2,2]{0,1}, f32[42,2,3]{0,1,2}) %p0, f32[123,4]{0,1} %p1), custom_call_target="baz", output_to_operand_aliasing={{0}: (1, {}), {1}: (0, {0})} } )" }, { "CustomCallWithSchedule", R"(HloModule custom_call, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) %custom-call.0 = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo", schedule=SCHEDULE_EARLIEST ROOT %custom-call.1 = f32[1,2,3]{0,2,1} custom-call(f32[1,2,3]{0,2,1} %custom-call.0), custom_call_target="bar", schedule=SCHEDULE_LATEST } )" }, { "CustomCallWithStatusReturningVersion", R"(HloModule custom_call, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) ROOT %custom-call.1 = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo", api_version=API_VERSION_STATUS_RETURNING } )" }, { "ParseC64Literal", R"(HloModule ParseC64Literal, entry_computation_layout={()->c64[2]{0}} ENTRY %ParseC64Literal () -> c64[2] { ROOT %c = c64[2]{0} constant({(1, 2), (-inf, nan)}) } )" }, { "ParseC128Literal", R"(HloModule ParseC128Literal, entry_computation_layout={()->c128[2]{0}} ENTRY %ParseC128Literal () -> c128[2] { ROOT %c = c128[2]{0} constant({(1, 2), (-inf, nan)}) } )" }, { "IndexedConditional", R"(HloModule indexed_conditional, entry_computation_layout={()->f32[]} %Negate (x: f32[]) -> f32[] { %x = f32[] parameter(0) ROOT %negate = f32[] negate(f32[] %x) } %Identity (y: f32[]) -> f32[] { %y = f32[] parameter(0) ROOT %copy = f32[] copy(f32[] %y) } %Floor (z: f32[]) -> f32[] { %z = f32[] parameter(0) ROOT %floor = f32[] floor(f32[] %z) } ENTRY %Parameters1.v4 () -> f32[] { %constant = s32[] constant(1) %constant.1 = f32[] constant(56) %constant.2 = f32[] constant(12) %constant.3 = f32[] constant(13) ROOT %conditional = f32[] conditional(s32[] %constant, f32[] %constant.1, f32[] %constant.2, f32[] %constant.3), branch_computations={%Negate, %Identity, %Floor} } )" }, { "RngGetAndUpdateState", R"(HloModule rng_get_and_update_state, entry_computation_layout={()->u64[2]{0}} ENTRY %RngGetAndUpdateState () -> u64[2] { ROOT %rng-get-and-update-state = u64[2]{0} rng-get-and-update-state(), delta=4096 } )" }, { "RngBitGenerator", R"(HloModule gng_bit_generator, entry_computation_layout={(u64[2]{0})->(u64[2]{0}, u32[11,17]{1,0})} ENTRY %RngBitGenerator (p0: u64[2]) -> (u64[2], u32[11,17]) { %p0 = u64[2]{0} parameter(0) ROOT %rand = (u64[2]{0}, u32[11,17]{1,0}) rng-bit-generator(u64[2]{0} %p0), algorithm=rng_three_fry } )" }, { "AsyncOpsWithSyntaxSugar", R"(HloModule AsyncOpsWithSyntaxSugar, entry_computation_layout={(f32[10]{0})->f32[20]{0}} ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %async-start = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-start(f32[10]{0} %p0), custom_call_target="foo" %async-update = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-update(((f32[10]{0}), f32[20]{0}, s32[]) %async-start) ROOT %async-done = f32[20]{0} custom-call-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-update) } )" }, { "AsyncOpsWithSyntaxSugarAndThreadName", R"(HloModule AsyncOpsWithSyntaxSugarAndThreadName, entry_computation_layout={(f32[10]{0})->f32[20]{0}} ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %async-start = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-start(f32[10]{0} %p0), async_execution_thread="parallel_thread", custom_call_target="foo" %async-update = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-update(((f32[10]{0}), f32[20]{0}, s32[]) %async-start) ROOT %async-done = f32[20]{0} custom-call-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-update) } )" }, { "HloComputationWithParallelThreadName", R"(HloModule HloComputationWithParallelThreadName, entry_computation_layout={(f32[10]{0})->f32[20]{0}} ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %async-start = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-start(f32[10]{0} %p0), async_execution_thread="parallel_thread", custom_call_target="foo" %async-update = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-update(((f32[10]{0}), f32[20]{0}, s32[]) %async-start) ROOT %async-done = f32[20]{0} custom-call-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-update) }, execution_thread="main_thread" )" }, { "MetadataFields", R"(HloModule test, entry_computation_layout={(f32[100]{0})->u32[100]{0}} ENTRY %test (p: f32[100]) -> u32[100] { %p = f32[100]{0} parameter(0) ROOT %root = u32[100]{0} bitcast-convert(f32[100]{0} %p), metadata={op_type="a" op_name="b" source_file="c" source_line=1 profile_type={1} deduplicated_name="d" scheduling_name="foo"} } )" }, { "MetadataPreserveLayout", R"(HloModule test, entry_computation_layout={(f32[100]{0})->u32[100]{0}} ENTRY %test (p: f32[100]) -> u32[100] { %p = f32[100]{0} parameter(0) ROOT %root = u32[100]{0} bitcast-convert(f32[100]{0} %p), metadata={op_type="a" op_name="b" source_file="c" source_line=1 profile_type={1} deduplicated_name="d" preserve_layout=true} } )" }, { "OriginalValue", R"(HloModule test, entry_computation_layout={(f32[], f32[3]{0}, f32[2,3]{1,0})->((f32[], f32[3]{0}), f32[2,3]{1,0})} ENTRY %test (v1: f32[], v2: f32[3], v3: f32[2,3]) -> ((f32[], f32[3]), f32[2,3]) { %v1 = f32[] parameter(0), origin={{"v1"}} %v2 = f32[3]{0} parameter(1), origin={{"v2"}} %tuple = (f32[], f32[3]{0}) tuple(f32[] %v1, f32[3]{0} %v2), origin={({"v1"}, {"v2"})} %v3 = f32[2,3]{1,0} parameter(2), origin={{"v3"}} ROOT %nested_tuple = ((f32[], f32[3]{0}), f32[2,3]{1,0}) tuple((f32[], f32[3]{0}) %tuple, f32[2,3]{1,0} %v3), origin={(({"v1"}, {"v2"}), {"v3"})} } )" }, }); } std::vector<TestData> CreateShortTestCases() { return std::vector<TestData>({ { "Map", R"(HloModule MapBinaryAdder_module, entry_computation_layout={(f32[4]{0}, f32[4]{0})->f32[4]{0}} add_F32.v3 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY MapBinaryAdder.v3 { param0 = f32[4]{0} parameter(0) param1 = f32[4]{0} parameter(1) ROOT map = f32[4]{0} map(param0, param1), dimensions={0}, to_apply=add_F32.v3 } )" }, { "Reduce", R"(HloModule ReduceR3ToR2_module, entry_computation_layout={(f32[8,16,256]{2,1,0})->f32[8,16]{1,0}} add_F32.v3 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY ReduceR3ToR2.v3 { input = f32[8,16,256]{2,1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[8,16]{1,0} reduce(input, constant), dimensions={2}, to_apply=add_F32.v3 } )" }, { "TupleReduce", R"(HloModule TupleReduce, entry_computation_layout={(f32[1024]{0}, s32[1024]{0})->(f32[], s32[])} max_argmax { value = f32[] parameter(2) prev_max = f32[] parameter(0) is_next_larger = pred[] compare(value, prev_max), direction=GE max = f32[] select(is_next_larger, value, prev_max) index = s32[] parameter(3) prev_argmax = s32[] parameter(1) argmax = s32[] select(is_next_larger, index, prev_argmax) ROOT pair = (f32[], s32[]) tuple(max, argmax) } ENTRY reduce_entry { values = f32[1024]{0} parameter(0) indices = s32[1024]{0} parameter(1) init_value = f32[] constant(-inf) init_index = s32[] constant(-1) ROOT result = (f32[], s32[]) reduce(values, indices, init_value, init_index), dimensions={0}, to_apply=max_argmax } )" }, { "InfeedOutfeed", R"(HloModule outfeed_module, entry_computation_layout={()->((u32[3]{0}, pred[]), token[])} ENTRY InfeedToOutfeed { token0 = token[] after-all() infeed = ((u32[3]{0}, pred[]), token[]) infeed(token0) infeed.data = (u32[3]{0}, pred[]) get-tuple-element(infeed), index=0 outfeed = token[] outfeed(infeed.data, token0), outfeed_shape=(u32[3]{0}, pred[]) ROOT infeed.1 = ((u32[3]{0}, pred[]), token[]) infeed(token0) infeed.1.data = (u32[3]{0}, pred[]) get-tuple-element(infeed.1), index=0 infeed.1.token = token[] get-tuple-element(infeed.1), index=1 outfeed.1 = token[] outfeed(infeed.1.data, infeed.1.token), outfeed_shape=(u32[3]{0}, pred[]) } )" }, { "Rng", R"(HloModule rng_module, entry_computation_layout={()->f32[8]{0}} ENTRY Rng { constant = f32[] constant(0) constant.1 = f32[] constant(1) ROOT rng = f32[8]{0} rng(constant, constant.1), distribution=rng_uniform } )" }, { "ReducePrecision", R"(HloModule reduce_precision, entry_computation_layout={()->f32[1]{0}} ENTRY ReducePrecision { constant = f32[1]{0} constant({3.14159}) ROOT reduce-precision = f32[1]{0} reduce-precision(constant), exponent_bits=8, mantissa_bits=10 } )" }, { "SortKey", R"(HloModule sort, entry_computation_layout={(f32[1024]{0})->f32[1024]{0}} compare { p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY Sort { x = f32[1024]{0} parameter(0) ROOT sorted = f32[1024]{0} sort(x), dimensions={0}, to_apply=compare } )" }, { "SortKeyValue", R"(HloModule sort, entry_computation_layout={(f32[1024]{0}, s32[1024]{0})->(f32[1024]{0}, s32[1024]{0})} compare { p.1.lhs = s32[] parameter(2) p.1.rhs = s32[] parameter(3) p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY Sort { keys = f32[1024]{0} parameter(0) values = s32[1024]{0} parameter(1) ROOT sorted = (f32[1024]{0}, s32[1024]{0}) sort(keys, values), dimensions={0}, to_apply=compare } )" }, { "SortKeyR2", R"(HloModule sort, entry_computation_layout={(f32[1024,16]{0,1})->f32[1024,16]{0,1}} compare { p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY Sort { x = f32[1024,16]{0,1} parameter(0) ROOT sorted = f32[1024,16]{0,1} sort(x), dimensions={0}, to_apply=compare } )" }, { "SortKeyValueR2", R"(HloModule sort, entry_computation_layout={(f32[1024,16]{0,1}, s32[1024,16]{0,1})->(f32[1024,16]{0,1}, s32[1024,16]{0,1})} compare { p.1.lhs = s32[] parameter(2) p.1.rhs = s32[] parameter(3) p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY Sort { keys = f32[1024,16]{0,1} parameter(0) values = s32[1024,16]{0,1} parameter(1) ROOT sorted = (f32[1024,16]{0,1}, s32[1024,16]{0,1}) sort(keys, values), dimensions={0}, to_apply=compare } )" }, { "SortManyValues", R"(HloModule sort, entry_computation_layout={(f32[1024,16]{0,1}, s32[1024,16]{0,1}, u32[1024,16]{0,1}, f32[1024,16]{0,1})->(f32[1024,16]{0,1}, s32[1024,16]{0,1}, u32[1024,16]{0,1}, f32[1024,16]{0,1})} compare { p.1.lhs = s32[] parameter(2) p.1.rhs = s32[] parameter(3) p.2.lhs = u32[] parameter(4) p.2.rhs = u32[] parameter(5) p.3.lhs = f32[] parameter(6) p.3.rhs = f32[] parameter(7) p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY Sort { keys = f32[1024,16]{0,1} parameter(0) values.0 = s32[1024,16]{0,1} parameter(1) values.1 = u32[1024,16]{0,1} parameter(2) values.2 = f32[1024,16]{0,1} parameter(3) ROOT sorted = (f32[1024,16]{0,1}, s32[1024,16]{0,1}, u32[1024,16]{0,1}, f32[1024,16]{0,1}) sort(keys, values.0, values.1, values.2), dimensions={0}, to_apply=compare } )" }, { "SortKeyStable", R"(HloModule sort, entry_computation_layout={(f32[1024]{0})->f32[1024]{0}} compare { p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY Sort { x = f32[1024]{0} parameter(0) ROOT sorted = f32[1024]{0} sort(x), dimensions={0}, is_stable=true, to_apply=compare } )" }, { "TopK", R"(HloModule topk, entry_computation_layout={(f32[10,10]{0,1})->(f32[10,2]{0,1}, s32[10,2]{0,1})} ENTRY TopK { x = f32[10,10]{0,1} parameter(0) ROOT topk = (f32[10,2]{0,1}, s32[10,2]{0,1}) topk(x), k=2, largest=true } )" }, { "IndexedConditional", R"(HloModule indexed_conditional, entry_computation_layout={()->f32[]} Negate { x = f32[] parameter(0) ROOT negate = f32[] negate(x) } Identity { y = f32[] parameter(0) ROOT copy = f32[] copy(y) } Floor { z = f32[] parameter(0) ROOT floor = f32[] floor(z) } ENTRY Parameters1.v4 { constant = s32[] constant(1) constant.1 = f32[] constant(56) constant.2 = f32[] constant(12) constant.3 = f32[] constant(13) ROOT conditional = f32[] conditional(constant, constant.1, constant.2, constant.3), branch_computations={Negate, Identity, Floor} } )" }, { "PredicatedConditional", R"(HloModule pred_conditional, entry_computation_layout={()->f32[]} Negate { x = f32[] parameter(0) ROOT negate = f32[] negate(x) } Identity { y = f32[] parameter(0) ROOT copy = f32[] copy(y) } ENTRY Parameters1.v4 { constant = pred[] constant(true) constant.1 = f32[] constant(56) constant.2 = f32[] constant(12) ROOT conditional = f32[] conditional(constant, constant.1, constant.2), true_computation=Negate, false_computation=Identity } )" }, { "CustomCall", R"(HloModule custom_call, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY CustomCall { constant = f32[1]{0} constant({12345}) ROOT custom-call = f32[1,2,3]{0,2,1} custom-call(constant), custom_call_target="foo\"bar" } )" }, { "CustumCallSingleComp", R"(HloModule custom_call_with_comp, entry_computation_layout={()->f32[1,2,3]{0,2,1}} max_F32 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT maximum = f32[] maximum(lhs, rhs) } ENTRY CustomCall { constant = f32[1]{0} constant({12345}) ROOT custom-call = f32[1,2,3]{0,2,1} custom-call(constant), custom_call_target="foo\"bar", called_computations={max_F32} } )" }, { "CustumCallMultipleComps", R"(HloModule custom_call_with_comps, entry_computation_layout={()->f32[1,2,3]{0,2,1}} max_F32 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT maximum = f32[] maximum(lhs, rhs) } ENTRY CustomCall { constant = f32[1]{0} constant({12345}) ROOT custom-call = f32[1,2,3]{0,2,1} custom-call(constant), custom_call_target="foo\"bar", called_computations={max_F32, max_F32} } )" }, { "NonDefaultNames", R"(HloModule add_constants_module, entry_computation_layout={()->f32[]} ENTRY add_constants { foo = f32[] constant(3.14) ROOT bar = f32[] add(foo, foo) } )" }, { "Dot", R"(HloModule dot, entry_computation_layout={(f32[2,10]{1,0}, f32[10,2]{1,0})->f32[2]{0}} ENTRY dot { a = f32[2,10]{1,0} parameter(0) b = f32[10,2]{1,0} parameter(1) ROOT dot = f32[2]{0} dot(a, b), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={1}, rhs_contracting_dims={0} } )" }, { "DotSparseOperand", R"(HloModule dot, entry_computation_layout={(f16[32,32]{1,0}, f16[64,32]{1,0}, u16[32,4]{1,0})->f16[32,32]{1,0}} ENTRY dot { a = f16[32,32]{1,0} parameter(0) b = f16[64,32]{1,0} parameter(1) meta = u16[32,4]{1,0} parameter(2) ROOT dot = f16[32,32]{1,0} dot(a, b, meta), lhs_contracting_dims={1}, rhs_contracting_dims={0}, sparsity=L.1@2:4 } )" }, { "DotSparseOperands", R"(HloModule dot, entry_computation_layout={(f16[32,32]{1,0}, f16[32,32]{1,0}, u16[32,4]{1,0}, u16[4,32]{1,0})->f16[32,32]{1,0}} ENTRY dot { a = f16[32,32]{1,0} parameter(0) b = f16[32,32]{1,0} parameter(1) a_meta = u16[32,4]{1,0} parameter(2) b_meta = u16[4,32]{1,0} parameter(3) ROOT dot = f16[32,32]{1,0} dot(a, b, a_meta, b_meta), lhs_contracting_dims={1}, rhs_contracting_dims={0}, sparsity=L.1@2:4_R.0@2:4 } )" }, { "DotWithAlgorithm", R"(HloModule dot, entry_computation_layout={(f32[2,10]{1,0}, f32[10,2]{1,0})->f32[2]{0}} ENTRY dot { a = f32[2,10]{1,0} parameter(0) b = f32[10,2]{1,0} parameter(1) ROOT dot = f32[2]{0} dot(a, b), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={1}, rhs_contracting_dims={0}, algorithm=dot_tf32_tf32_f32 } )" }, { "gather", R"(HloModule gather, entry_computation_layout={(f32[50,49,48,47,46]{4,3,2,1,0}, s64[10,9,8,7,5]{4,3,2,1,0})->f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0}} ENTRY Gather { input_tensor = f32[50,49,48,47,46]{4,3,2,1,0} parameter(0) start_indices = s64[10,9,8,7,5]{4,3,2,1,0} parameter(1) ROOT gather = f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} gather(input_tensor, start_indices), offset_dims={4,5,6,7,8}, collapsed_slice_dims={}, start_index_map={0,1,2,3,4}, index_vector_dim=4, slice_sizes={30,29,28,27,26} } )" }, { "AllReduce", R"(HloModule CRS, entry_computation_layout={(f32[8]{0})->f32[8]{0}} add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY CRS { input = f32[8]{0} parameter(0) ROOT crs = f32[8]{0} all-reduce(input), replica_groups={}, to_apply=add } )" }, { "AllReduceWithSubgroups", R"(HloModule CRS_Subgroups, entry_computation_layout={(f32[128,32]{0,1})->f32[128,32]{0,1}}, replica_count=4 add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY AllReduceWithSubgroups { input = f32[128,32]{0,1} parameter(0) ROOT all-reduce = f32[128,32]{0,1} all-reduce(input), replica_groups={{0,1},{2,3}}, to_apply=add } )", 4, }, { "AllReduceWithSubgroupsIotaList", R"(HloModule CRS_Subgroups, entry_computation_layout={(f32[128,32]{0,1})->f32[128,32]{0,1}}, replica_count=20 add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY AllReduceWithSubgroupsIotaList { input = f32[128,32]{0,1} parameter(0) ROOT all-reduce = f32[128,32]{0,1} all-reduce(input), replica_groups=[2,10]<=[20], to_apply=add } )", 20, }, { "AllReduceWithLayout", R"(HloModule CRS, entry_computation_layout={(f32[8]{0})->f32[8]{0}} add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY CRS { input = f32[8]{0} parameter(0) ROOT crs = f32[8]{0} all-reduce(input), replica_groups={}, constrain_layout=true, to_apply=add } )" }, { "AllReduceAllReduce", R"(HloModule CRS, entry_computation_layout={(f32[8]{0})->f32[8]{0}} add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY CRS { input = f32[8]{0} parameter(0) crs.1 = f32[8]{0} all-reduce(input), channel_id=1, replica_groups={{0}}, to_apply=add ROOT crs.0 = f32[8]{0} all-reduce(input), channel_id=1, replica_groups={{0}}, to_apply=add } )" }, { "AllReduceStartAndDone", R"(HloModule CRS, entry_computation_layout={(f32[8]{0})->f32[8]{0}} add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY CRS { input = f32[8]{0} parameter(0) crs = f32[8]{0} all-reduce-start(input), replica_groups={}, to_apply=add ROOT done = f32[8]{0} all-reduce-done(crs) } )" }, { "ReduceScatter", R"(HloModule RS, entry_computation_layout={(f32[8]{0})->f32[4]{0}} add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY CRS { input = f32[8]{0} parameter(0) ROOT ars = f32[4]{0} reduce-scatter(input), replica_groups={{0,1}}, dimensions={0}, to_apply=add } )" }, { "AllGather", R"(HloModule AllGather, entry_computation_layout={(f32[128,32]{0,1})->f32[128,128]{0,1}} ENTRY AllGather { input = f32[128,32]{0,1} parameter(0) ROOT ag = f32[128,128]{0,1} all-gather(input), replica_groups={}, dimensions={1} } )" }, { "AllGatherWithLayout", R"(HloModule AllGather, entry_computation_layout={(f32[128,32]{0,1})->f32[128,128]{0,1}} ENTRY AllGather { input = f32[128,32]{0,1} parameter(0) ROOT ag = f32[128,128]{0,1} all-gather(input), replica_groups={}, constrain_layout=true, dimensions={1} } )" }, { "AllGatherWithSubgroups", R"(HloModule AllGatherWithSubgroups, entry_computation_layout={(f32[128,32]{0,1})->f32[128,64]{0,1}}, replica_count=4 ENTRY AllGatherWithSubgroups { input = f32[128,32]{0,1} parameter(0) ROOT ag = f32[128,64]{0,1} all-gather(input), replica_groups={{0,1},{2,3}}, dimensions={1} } )", 4, }, { "AllGatherWithSubgroupsIotaList", R"(HloModule AllGatherWithSubgroupsIotaList, entry_computation_layout={(f32[128,32]{0,1})->f32[128,320]{0,1}}, replica_count=30 ENTRY AllGatherWithSubgroupsIotaList { input = f32[128,32]{0,1} parameter(0) ROOT ag = f32[128,320]{0,1} all-gather(input), replica_groups=[3,10]<=[6,5]T(1,0), dimensions={1} } )", 30, }, { "AllToAll", R"(HloModule AllToAll, entry_computation_layout={(f32[128,32]{0,1})->(f32[128,32]{0,1})} ENTRY AllToAll { input = f32[128,32]{0,1} parameter(0) ROOT a2a = (f32[128,32]{0,1}) all-to-all(input), replica_groups={} } )" }, { "AllToAllWithSubgroups", R"(HloModule AllToAllWithSubgroups, entry_computation_layout={(f32[128,32]{0,1}, f32[128,32]{0,1})->(f32[128,32]{0,1}, f32[128,32]{0,1})}, replica_count=4 ENTRY AllToAllWithSubgroups { p0 = f32[128,32]{0,1} parameter(0) p1 = f32[128,32]{0,1} parameter(1) ROOT a2a = (f32[128,32]{0,1}, f32[128,32]{0,1}) all-to-all(p0, p1), replica_groups={{1,2},{3,0}} } )", 4, }, { "AllToAllWithSubgroupsIotaList", R"(HloModule AllToAllWithSubgroupsIotaList, entry_computation_layout={(f32[128,32]{0,1})->f32[128,32]{0,1}}, replica_count=32 ENTRY AllToAllWithSubgroupsIotaList { p0 = f32[128,32]{0,1} parameter(0) ROOT a2a = f32[128,32]{0,1} all-to-all(p0), replica_groups=[4,8]<=[4,8]T(1,0), dimensions={0} } )", 40 }, { "CollectiveBroadcast", R"(HloModule CollectiveBroadcast, entry_computation_layout={(f32[128,32]{0,1})->f32[128,32]{0,1}}, replica_count=4 ENTRY CollectiveBroadcast { input = f32[128,32]{0,1} parameter(0) ROOT cb = f32[128,32]{0,1} collective-broadcast(input), replica_groups={{1,0},{2,3}} } )", 4, }, { "CollectivePermute", R"(HloModule CollectivePermute, entry_computation_layout={(f32[128,32]{0,1})->f32[128,32]{0,1}}, replica_count=4 ENTRY CollectivePermute { input = f32[128,32]{0,1} parameter(0) ROOT root = f32[128,32]{0,1} collective-permute(input), source_target_pairs={{0,1},{1,2},{2,3}} } )", 4 }, { "CollectivePermuteInPlaceUpdate", R"(HloModule CollectivePermuteInPlaceUpdate, entry_computation_layout={(f32[128,32]{0,1})->f32[128,128]{0,1}}, replica_count=4 ENTRY CollectivePermuteInPlaceUpdate { input = f32[128,32]{0,1} parameter(0) constant = f32[] constant(1) output = f32[128,128]{0,1} broadcast(constant), dimensions={} constant.1 = s32[] constant(0) tuple.1 = (s32[], s32[]) tuple(constant.1, constant.1) constant.2 = s32[] constant(64) tuple.2 = (s32[], s32[]) tuple(constant.1, constant.2) ROOT root = f32[128,128]{0,1} collective-permute(input, output, tuple.1, tuple.2), source_target_pairs={{0,1},{1,2},{2,3}}, slice_sizes={{128,32}} } )", 4 }, { "CollectivePermuteInPlaceUpdateMultipleReadWrite", R"(HloModule CollectivePermuteInPlaceUpdateMultipleReadWrite, entry_computation_layout={(f32[8,8,128]{2,1,0})->f32[8,8,128]{2,1,0}}, replica_count=4 ENTRY CollectivePermuteInPlaceUpdate { constant.3 = s32[] constant(2) constant.1 = s32[] constant(0) output_offset.3 = (s32[], s32[], s32[]) tuple(constant.3, constant.1, constant.1) constant.4 = s32[] constant(3) output_offset.4 = (s32[], s32[], s32[]) tuple(constant.4, constant.1, constant.1) input = f32[8,8,128]{2,1,0} parameter(0) constant = f32[] constant(1) output = f32[8,8,128]{2,1,0} broadcast(constant), dimensions={} input_offset.1 = (s32[], s32[], s32[]) tuple(constant.1, constant.1, constant.1) constant.2 = s32[] constant(1) input_offset.2 = (s32[], s32[], s32[]) tuple(constant.2, constant.1, constant.1) input_offset = ((s32[], s32[], s32[]), (s32[], s32[], s32[])) tuple(input_offset.1, input_offset.2) output_offset = ((s32[], s32[], s32[]), (s32[], s32[], s32[])) tuple(input_offset.1, input_offset.2) ROOT root = f32[8,8,128]{2,1,0} collective-permute(input, output, input_offset, output_offset), source_target_pairs={{0,1},{1,2},{2,3},{0,3},{2,1},{3,2}}, slice_sizes={{1,8,128},{1,8,128}} } )", 4 }, { "CollectivePermuteInPlaceUpdateTupleMultipleReadWrite", R"(HloModule hlo_runner_test_0.1, entry_computation_layout={()->(u32[2,8,128]{2,1,0:T(2,128)}, u32[4,8,128]{2,1,0:T(2,128)})}, replica_count=4 ENTRY hlo_runner_test_0.1 { replica_id = u32[] replica-id() broadcast.0 = u32[2,8,128]{2,1,0:T(2,128)} broadcast(replica_id), dimensions={} tuple.input = (u32[2,8,128]{2,1,0:T(2,128)}, u32[2,8,128]{2,1,0:T(2,128)}) tuple(broadcast.0, broadcast.0) constant.1 = u32[] constant(1000) broadcast.1 = u32[2,8,128]{2,1,0:T(2,128)} broadcast(constant.1), dimensions={} broadcast.2 = u32[4,8,128]{2,1,0:T(2,128)} broadcast(constant.1), dimensions={} tuple.output = (u32[2,8,128]{2,1,0:T(2,128)}, u32[4,8,128]{2,1,0:T(2,128)}) tuple(broadcast.1, broadcast.2) constant.2 = s32[] constant(0) tuple.2 = (s32[], s32[], s32[]) tuple(constant.2, constant.2, constant.2) constant.3 = s32[] constant(1) tuple.3 = (s32[], s32[], s32[]) tuple(constant.3, constant.2, constant.2) tuple.4 = ((s32[], s32[], s32[]), (s32[], s32[], s32[])) tuple(tuple.2, tuple.3) tuple.7 = ((s32[], s32[], s32[]), (s32[], s32[], s32[])) tuple(tuple.2, tuple.2) tuple.8 = (((s32[], s32[], s32[]), (s32[], s32[], s32[])), ((s32[], s32[], s32[]), (s32[], s32[], s32[]))) tuple(tuple.4, tuple.7) constant.4 = s32[] constant(2) tuple.5 = (s32[], s32[], s32[]) tuple(constant.4, constant.2, constant.2) tuple.6 = ((s32[], s32[], s32[]), (s32[], s32[], s32[])) tuple(tuple.2, tuple.5) tuple.9 = (((s32[], s32[], s32[]), (s32[], s32[], s32[])), ((s32[], s32[], s32[]), (s32[], s32[], s32[]))) tuple(tuple.4, tuple.6) ROOT collective-permute.53 = (u32[2,8,128]{2,1,0:T(2,128)}, u32[4,8,128]{2,1,0:T(2,128)}) collective-permute(tuple.input, tuple.output, tuple.8, tuple.9), source_target_pairs={{0,1},{1,2},{2,3},{3,0},{0,3},{3,2},{2,1},{1,0}}, slice_sizes={{1,8,128},{1,8,128},{2,8,128},{2,8,128}} } )", 4 }, { "CollectivePermuteTupleInPlaceUpdate", R"(HloModule CollectivePermuteTupleInPlaceUpdate, entry_computation_layout={(f32[128,32]{0,1})->(f32[128,128]{0,1}, f32[128,128]{0,1})}, replica_count=4 ENTRY CollectivePermuteInPlaceUpdate { input = f32[128,32]{0,1} parameter(0) tuple.input = (f32[128,32]{0,1}, f32[128,32]{0,1}) tuple(input, input) constant = f32[] constant(1) output = f32[128,128]{0,1} broadcast(constant), dimensions={} tuple.output = (f32[128,128]{0,1}, f32[128,128]{0,1}) tuple(output, output) constant.1 = s32[] constant(0) tuple.1 = (s32[], s32[]) tuple(constant.1, constant.1) constant.2 = s32[] constant(64) tuple.2 = (s32[], s32[]) tuple(constant.2, constant.1) tuple.3 = ((s32[], s32[]), (s32[], s32[])) tuple(tuple.1, tuple.2) tuple.4 = (s32[], s32[]) tuple(constant.1, constant.1) tuple.5 = (s32[], s32[]) tuple(constant.2, constant.2) tuple.6 = ((s32[], s32[]), (s32[], s32[])) tuple(tuple.4, tuple.5) ROOT root = (f32[128,128]{0,1}, f32[128,128]{0,1}) collective-permute(tuple.input, tuple.output, tuple.3, tuple.6), source_target_pairs={{0,1},{1,2},{2,3}}, slice_sizes={{64,32},{64,32}} } )", 4 }, { "CollectivePermuteStartAndDone", R"(HloModule CollectivePermuteStartAndDone, entry_computation_layout={(f32[128,32]{0,1})->f32[128,32]{0,1}}, replica_count=4 ENTRY CollectivePermuteStartAndDone { input = f32[128,32]{0,1} parameter(0) collective-permute-start.1 = (f32[128,32]{0,1}, f32[128,32]{0,1}, u32[], u32[]) collective-permute-start(input), source_target_pairs={{0,1},{1,2},{2,3}} ROOT collective-permute-done.1 = f32[128,32]{0,1} collective-permute-done(collective-permute-start.1) } )", 4 }, { "CollectivePermuteStartAndDoneInplaceUpdate", R"(HloModule CollectivePermuteStartAndDoneInplaceUpdate, entry_computation_layout={(f32[128,32]{0,1})->f32[128,128]{0,1}}, replica_count=4 ENTRY CollectivePermuteStartAndDoneInplaceUpdate { input = f32[128,32]{0,1} parameter(0) constant = f32[] constant(1) output = f32[128,128]{0,1} broadcast(constant), dimensions={} constant.1 = s32[] constant(0) tuple.1 = (s32[], s32[]) tuple(constant.1, constant.1) constant.2 = s32[] constant(64) tuple.2 = (s32[], s32[]) tuple(constant.1, constant.2) collective-permute-start.1 = (f32[128,32]{0,1}, f32[128,128]{0,1}, u32[], u32[]) collective-permute-start(input, output, tuple.1, tuple.2), source_target_pairs={{0,1},{1,2},{2,3}}, slice_sizes={{64,32}} ROOT collective-permute-done.1 = f32[128,128]{0,1} collective-permute-done(collective-permute-start.1) } )", 4 }, { "ReplicaId", R"(HloModule replica-id, entry_computation_layout={()->u32[]} ENTRY Replica-id { ROOT replica-id = u32[] replica-id() } )" }, { "PartitionId", R"(HloModule partition-id, entry_computation_layout={()->u32[]} ENTRY PartitionId { ROOT id = u32[] partition-id() } )" }, { "Iota", R"(HloModule iota, entry_computation_layout={()->f32[100]{0}} ENTRY Iota { ROOT iota = f32[100]{0} iota(), iota_dimension=0 } )" }, { "CustomCallWithWindowAndDimLabelsAndFeatureGroupCount", R"(HloModule CustomCallWithWindowAndDimLabelsAndFeatureGroupCount, entry_computation_layout={()->f32[100]{0}} ENTRY Computation { ROOT r = f32[100]{0} custom-call(), window={size=2x2}, dim_labels=b01f_01io->b01f, feature_group_count=2, custom_call_target="target" } )" }, { "CustomCallWithUnknownDimLabels", R"(HloModule CustomCallWithUnknownDimLabels, entry_computation_layout={()->f32[100]{0}} ENTRY Computation { ROOT r = f32[100]{0} custom-call(), window={size=2x2}, dim_labels=?b01f_0?1io->b01?f, custom_call_target="target" } )" }, { "ScheduledModule", R"(HloModule scheduled_module, is_scheduled=true, entry_computation_layout={(f32[1024]{0}, s32[1024]{0})->(f32[1024]{0}, s32[1024]{0})} compare { p.1.lhs = s32[] parameter(2) p.1.rhs = s32[] parameter(3) p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) ROOT lhs = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY Sort { keys = f32[1024]{0} parameter(0) values = s32[1024]{0} parameter(1) ROOT sorted = (f32[1024]{0}, s32[1024]{0}) sort(keys, values), dimensions={0}, to_apply=compare } )" }, { "AfterAllWithMultipleOperands", R"(HloModule AfterAllWithMultipleOperands, entry_computation_layout={(f32[])->token[]} ENTRY AfterAllWithMultipleOperands { p0 = f32[] parameter(0) token0 = token[] after-all() token1 = token[] after-all() ROOT after-all = token[] after-all(p0, token0, token1) } )" }, { "AddDependency", R"(HloModule AddDependency, entry_computation_layout={(f32[])->f32[]} ENTRY AddDependency { p = f32[] parameter(0) neg = f32[] negate(p) token0 = token[] after-all(neg) p_after_token = f32[] add-dependency(p, token0) exp = f32[] exponential(p_after_token) ROOT sum = f32[] add(neg, exp) } )" }, { "MinMaxValues", R"(HloModule MinMaxValues, entry_computation_layout={()->c128[2]{0}} ENTRY MinMaxValues { x.s4 = s4[2]{0} constant({-8, 7}) x.s8 = s8[2]{0} constant({-128, 127}) x.s16 = s16[2]{0} constant({-32768, 32767}) x.s32 = s32[2]{0} constant({-2147483648, 2147483647}) x.u4 = u4[2]{0} constant({0, 15}) x.u8 = u8[2]{0} constant({0, 255}) x.u16 = u16[2]{0} constant({0, 65535}) x.u32 = u32[2]{0} constant({0, 4294967295}) x.f16 = f16[2]{0} constant({-65504, 65504}) x.bf16 = bf16[2]{0} constant({-3.39e+38, 3.39e+38}) x.f32 = f32[2]{0} constant({-3.40282e+38, 3.40282e+38}) x.f64 = f64[2]{0} constant({-1.79769e+308, 1.79769e+308}) x.c64 = c64[2]{0} constant({(-3.40282e+38, 3.40282e+38), (3.40282e+38, -3.40282e+38)}) ROOT c.c128 = c128[2]{0} constant({(-1.79769e+308, 1.79769e+308), (1.79769e+308, -1.79769e+308)}) } )" }, { "BitcastConvert", R"(HloModule BitcastConvert, entry_computation_layout={(f32[100]{0})->u32[100]{0}} ENTRY BitcastConvertUsage { p = f32[100]{0} parameter(0) ROOT out = u32[100]{0} bitcast-convert(p) } )" }, }); } std::vector<NonRoundtripTestData> CreateNonRoundtripTestCases() { return std::vector<NonRoundtripTestData>({ { "SimpleNesting", R"(HloModule test ENTRY test { ROOT root = add(f32[10] parameter(0), multiply(f32[10] parameter(1), f32[10] parameter(2))) })", R"(HloModule test, entry_computation_layout={(f32[10]{0}, f32[10]{0}, f32[10]{0})->f32[10]{0}} ENTRY test { parameter.anon = f32[10]{0} parameter(0) parameter.anon.1 = f32[10]{0} parameter(1) parameter.anon.2 = f32[10]{0} parameter(2) multiply.anon = f32[10]{0} multiply(parameter.anon.1, parameter.anon.2) ROOT root = f32[10]{0} add(parameter.anon, multiply.anon) })" }, { "AmbiguousNames", R"(HloModule test ENTRY test { add = add(f32[10] parameter(0), f32[10] parameter(1)) ROOT add2 = add(add, add(add, add)) })", R"(HloModule test, entry_computation_layout={(f32[10]{0}, f32[10]{0})->f32[10]{0}} ENTRY test { parameter.anon = f32[10]{0} parameter(0) parameter.anon.1 = f32[10]{0} parameter(1) add = f32[10]{0} add(parameter.anon, parameter.anon.1) add.anon = f32[10]{0} add(add, add) ROOT add2 = f32[10]{0} add(add, add.anon) })" }, { "TupleShapeInsideAnonymousInstr", R"(HloModule test ENTRY test { ROOT root = get-tuple-element( (f32[10], f16[10]) tuple(f32[10] parameter(0), f16[10] parameter(1)) ), index=0 })", R"(HloModule test, entry_computation_layout={(f32[10]{0}, f16[10]{0})->f32[10]{0}} ENTRY test { parameter.anon = f32[10]{0} parameter(0) parameter.anon.1 = f16[10]{0} parameter(1) tuple.anon = (f32[10]{0}, f16[10]{0}) tuple(parameter.anon, parameter.anon.1) ROOT root = f32[10]{0} get-tuple-element(tuple.anon), index=0 })" }, { "MixAnonAndNonAnonOperands", R"(HloModule test ENTRY test { add = add(f32[10] parameter(0), f32[10] parameter(1)) ROOT root = tuple(add, add(add, add), add) })", R"(HloModule test, entry_computation_layout={(f32[10]{0}, f32[10]{0})->(f32[10]{0}, f32[10]{0}, f32[10]{0})} ENTRY test { parameter.anon = f32[10]{0} parameter(0) parameter.anon.1 = f32[10]{0} parameter(1) add = f32[10]{0} add(parameter.anon, parameter.anon.1) add.anon = f32[10]{0} add(add, add) ROOT root = (f32[10]{0}, f32[10]{0}, f32[10]{0}) tuple(add, add.anon, add) })" }, { "BroadcastOfScalarDoesntNeedDimensionsAttr", R"(HloModule test ENTRY test { ROOT root = sqrt(f32[10,10] broadcast(f32[] parameter(0))) })", R"(HloModule test, entry_computation_layout={(f32[])->f32[10,10]{1,0}} ENTRY test { parameter.anon = f32[] parameter(0) broadcast.anon = f32[10,10]{1,0} broadcast(parameter.anon), dimensions={} ROOT root = f32[10,10]{1,0} sqrt(broadcast.anon) })" }, { "SparseShape", R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)} parameter(0) })", R"(HloModule test, entry_computation_layout={(f32[10,10]{1,0:D(D,C)})->f32[10,10]{1,0:D(D,C)}} ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)} parameter(0) })", }, { "SparseShapeWithIndexPrimitiveType", R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)#(u32)} parameter(0) })", R"(HloModule test, entry_computation_layout={(f32[10,10]{1,0:D(D,C)#(u32)})->f32[10,10]{1,0:D(D,C)#(u32)}} ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)#(u32)} parameter(0) })", }, { "SparseShapeWithPointerPrimitiveType", R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)*(u32)} parameter(0) })", R"(HloModule test, entry_computation_layout={(f32[10,10]{1,0:D(D,C)*(u32)})->f32[10,10]{1,0:D(D,C)*(u32)}} ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)*(u32)} parameter(0) })", }, { "SparseShapeWithPhysicalShape", R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)P((s32[10]{0:T(100)}, s32[10]{0:T(100)}, f32[10]{0:T(100)}))} parameter(0) })", R"(HloModule test, entry_computation_layout={(f32[10,10]{1,0:D(D,C)P((s32[10]{0:T(100)}, s32[10]{0:T(100)}, f32[10]{0:T(100)}))})->f32[10,10]{1,0:D(D,C)P((s32[10]{0:T(100)}, s32[10]{0:T(100)}, f32[10]{0:T(100)}))}} ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)P((s32[10]{0:T(100)}, s32[10]{0:T(100)}, f32[10]{0:T(100)}))} parameter(0) })", }, { "SparseShapeFull", R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)#(u64)*(u32)S(42)P((s32[10]{0:T(100)}, s32[10]{0:T(100)}, f32[10]{0:T(100)}))} parameter(0) })", R"(HloModule test, entry_computation_layout={(f32[10,10]{1,0:D(D,C)#(u64)*(u32)S(42)P((s32[10]{0:T(100)}, s32[10]{0:T(100)}, f32[10]{0:T(100)}))})->f32[10,10]{1,0:D(D,C)#(u64)*(u32)S(42)P((s32[10]{0:T(100)}, s32[10]{0:T(100)}, f32[10]{0:T(100)}))}} ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)#(u64)*(u32)S(42)P((s32[10]{0:T(100)}, s32[10]{0:T(100)}, f32[10]{0:T(100)}))} parameter(0) })", }, { "SparseCOO", R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:D(C+,S)} parameter(0) })", R"(HloModule test, entry_computation_layout={(f32[10,10]{1,0:D(C+,S)})->f32[10,10]{1,0:D(C+,S)}} ENTRY test { ROOT root = f32[10,10]{1,0:D(C+,S)} parameter(0) })", }, { "SparseCOOUnordered", R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:D(C+~,S~)} parameter(0) })", R"(HloModule test, entry_computation_layout={(f32[10,10]{1,0:D(C+~,S~)})->f32[10,10]{1,0:D(C+~,S~)}} ENTRY test { ROOT root = f32[10,10]{1,0:D(C+~,S~)} parameter(0) })", }, }); } template <bool short_form, bool proto_round_trip> class HloParameterizedParserTest : public ::testing::Test, public ::testing::WithParamInterface<TestData> { protected: void ExpectEqual() { std::unique_ptr<HloModule> module; const std::string& original = GetParam().module_string; HloModuleConfig config; config.set_replica_count(GetParam().replica_count); if (GetParam().enable_verification) { auto verified_module = std::make_unique<VerifiedHloModule>( GetParam().test_name, config, false, true, ShapeUtil::ByteSizeOfElements); TF_ASSERT_OK(verified_module->ParseHloStringAndVerifyModule(original)); module = std::move(verified_module); } else { TF_ASSERT_OK_AND_ASSIGN(module, ParseAndReturnUnverifiedModule(original, config)); } if (proto_round_trip) { TF_ASSERT_OK_AND_ASSIGN(module, HloModule::CreateFromProto( module->ToProto(), module->config())); } if (short_form) { EXPECT_EQ(original, module->ToString(HloPrintOptions::ShortParsable())); } else { EXPECT_EQ( original, module->ToString(HloPrintOptions().set_print_large_constants(true))); } for (HloComputation* computation : module->computations()) { for (HloInstruction* instr : computation->instructions()) { if (instr->opcode() == HloOpcode::kWhile) { EXPECT_EQ(instr->while_body()->WhileCallInstruction(), instr); EXPECT_TRUE(instr->while_body()->IsWhileBodyComputation()); } } } } }; using HloParserTestLong = HloParameterizedParserTest<false, false>; using HloParserTestLongProto = HloParameterizedParserTest<false, true>; using HloParserTestShort = HloParameterizedParserTest<true, false>; using HloParserTestShortProto = HloParameterizedParserTest<true, true>; TEST_P(HloParserTestLong, Run) { ExpectEqual(); } TEST_P(HloParserTestLongProto, Run) { ExpectEqual(); } TEST_P(HloParserTestShort, Run) { ExpectEqual(); } TEST_P(HloParserTestShortProto, Run) { ExpectEqual(); } INSTANTIATE_TEST_SUITE_P(HloParserTestSuccessInstantiation, HloParserTestLong, ::testing::ValuesIn(CreateTestCases()), TestDataToString); INSTANTIATE_TEST_SUITE_P(HloParserTestSuccessInstantiation, HloParserTestLongProto, ::testing::ValuesIn(CreateTestCases()), TestDataToString); INSTANTIATE_TEST_SUITE_P(HloParserTestSuccessInstantiation, HloParserTestShort, ::testing::ValuesIn(CreateShortTestCases()), TestDataToString); INSTANTIATE_TEST_SUITE_P(HloParserTestSuccessInstantiation, HloParserTestShortProto, ::testing::ValuesIn(CreateShortTestCases()), TestDataToString); class HloNonRoundtripParserTest : public ::testing::TestWithParam<NonRoundtripTestData> {}; TEST_P(HloNonRoundtripParserTest, Run) { auto module = std::make_unique<VerifiedHloModule>( GetParam().test_name, HloModuleConfig{}, false, true, ShapeUtil::ByteSizeOfElements); TF_ASSERT_OK( module->ParseHloStringAndVerifyModule(GetParam().input_module_string)); EXPECT_EQ(absl::StripAsciiWhitespace(GetParam().output_module_string), absl::StripAsciiWhitespace( module->ToString(HloPrintOptions::ShortParsable()))); } INSTANTIATE_TEST_SUITE_P(HloParserTestSuccessInstantiation, HloNonRoundtripParserTest, ::testing::ValuesIn(CreateNonRoundtripTestCases()), NonRoundtripTestDataToString); class HloParserTest : public ::testing::Test { protected: static void ExpectHasSubstr(string_view s, string_view expected) { EXPECT_TRUE(absl::StrContains(s, expected)) << "'" << s << "' does not contain '" << expected << "'"; } absl::StatusOr<std::unique_ptr<VerifiedHloModule>> ParseAndReturnVerifiedModule(absl::string_view hlo_text) { auto module = std::make_unique<VerifiedHloModule>( ::testing::UnitTest::GetInstance()->current_test_info()->name(), HloModuleConfig(), false, true, ShapeUtil::ByteSizeOfElements); TF_RETURN_IF_ERROR(module->ParseHloStringAndVerifyModule(hlo_text)); return std::move(module); } }; TEST_F(HloParserTest, Empty) { const std::string original = ""; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, Garbage) { const std::string original = "HloModule thi$ str1ng makes# N0 sen$e @all!*&^%$"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, WrongOpcode) { const std::string original = R"(HloModule wrong_opcode: ENTRY %blabla (x: f32[], y: f32[]) -> f32[] { %x = f32[]{} parameter(0) %y = f32[]{} parameter(1) %le = pred[]{} le(f32[]{} %x, f32[]{} %y) } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, MetadataWithCholesky) { const std::string original = R"(HloModule metadata_with_cholesky ENTRY %blabla (a: f32[1,291,291]) -> f32[1,291,291] { %a = f32[1,291,291] parameter(0) %out = f32[1,291,291] cholesky(f32[1,291,291] %a), lower=true, metadata={op_type="Cholesky" op_name="Cholesky" profile_type={1}} } )"; auto result = ParseAndReturnVerifiedModule(original); EXPECT_EQ(absl::OkStatus(), result.status()); EXPECT_EQ("Cholesky", result.value() ->entry_computation() ->root_instruction() ->metadata() .op_name()); EXPECT_EQ("Cholesky", result.value() ->entry_computation() ->root_instruction() ->metadata() .op_type()); EXPECT_EQ(WINDOW, *result.value() ->entry_computation() ->root_instruction() ->metadata() .profile_type() .begin()); } TEST_F(HloParserTest, WrongShape) { const std::string original = R"(HloModule wrong_opcode: ENTRY %blabla (x: g32[]) -> g32[] { %x = g32[]{} parameter(0) } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, WrongOperandsSize) { const std::string original = R"(HloModule wrong_opcode: ENTRY %blabla (x: f32[]) -> pred[] { %x = f32[]{} parameter(0) %eq = pred[]{} compare(f32[]{} %x), direction=EQ } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, OperandNotFound) { const std::string original = R"(HloModule operand_not_found: ENTRY %blabla (x: f32[]) -> pred[] { %x = f32[]{} parameter(0) %eq = pred[]{} compare(f32[]{} %x, f32[]{} %y), direction=EQ } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, MoreConstants) { const std::string original = R"(HloModule SelectScalarS32True_module ENTRY %SelectScalarS32True.v4 () -> s32[] { %constant.2 = pred[] constant(true) %constant.1 = s32[] constant(-42), sharding={replicated} %constant = s32[] constant(42) %select = s32[] select(pred[] %constant.2, s32[] %constant.1, s32[] %constant) } )"; auto result = ParseAndReturnVerifiedModule(original); TF_EXPECT_OK(result.status()); } TEST_F(HloParserTest, ConfigurationField) { const std::string original = R"(HloModule AModule ENTRY %configuration_test() -> s32[] { %constant = s32[] constant(42), backend_config="foo bar" })"; auto result = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(result.status()); EXPECT_EQ("foo bar", result.value() ->entry_computation() ->root_instruction() ->raw_backend_config_string()); } TEST_F(HloParserTest, LiteralDimensionsError) { const std::string original = R"(HloModule some_2x3_module ENTRY %some_2x3 () -> f32[2,3] { ROOT %constant = f32[2,3]{1,0} constant(}{1, 2, 3}, {4, 5, 6}}) } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); ExpectHasSubstr(result.status().message(), "unexpected '}' token"); } TEST_F(HloParserTest, LiteralDimensionsMismatch_1) { const std::string original = R"(HloModule some_2_module ENTRY %some_2 () -> f32[2] { ROOT %constant = f32[2]{0} constant({1,{2}}) } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); ExpectHasSubstr(result.status().message(), "expects nested array in rank 1, but sees larger"); } TEST_F(HloParserTest, LiteralDimensionsMismatch_2) { const std::string original = R"(HloModule some_2x3_module ENTRY %some_2x3 () -> f32[2,3] { ROOT %constant = f32[2,3]{1,0} constant({1, 2, 3, 4, 5, 6}) } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); ExpectHasSubstr(result.status().message(), "expects nested array in rank 2, but sees 1"); } TEST_F(HloParserTest, LiteralDimensionsMismatch_3) { const std::string original = R"(HloModule some_2x3x2_module ENTRY %some_2x3x2 () -> f32[2,3,2] { ROOT %constant = f32[2,3,2]{2,1,0} constant({{{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}}}) } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); ExpectHasSubstr(result.status().message(), "expects 3 elements in the [0]th element"); } TEST_F(HloParserTest, ConstantF16Overflow) { const std::string original = R"(HloModule ConstantF16Overflow_module ENTRY %ConstantF16Overflow.v4 () -> f16[] { ROOT %constant = f16[] constant(-65520) } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); ExpectHasSubstr(result.status().message(), "is out of range for literal's primitive type F16"); } TEST_F(HloParserTest, ConstantBf16NoOverflow) { const std::string original = R"( HloModule test_module ENTRY test { ROOT c = bf16[] constant(-65505) })"; EXPECT_EQ(absl::OkStatus(), ParseAndReturnVerifiedModule(original).status()); } TEST_F(HloParserTest, ConstantBf16Overflow) { const std::string original = R"( HloModule test_module ENTRY test { ROOT c = bf16[] constant(1e100) })"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "out of range"); } TEST_F(HloParserTest, ConstantU4Underflow) { const std::string original = R"( HloModule ConstantU4Underflow_module ENTRY %ConstantU4Underflow () -> u4[] { ROOT %constant = u4[] constant(-1) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); ExpectHasSubstr(result.status().message(), "is out of range for literal's primitive type U4"); } TEST_F(HloParserTest, ConstantU4Overflow) { const std::string original = R"( HloModule ConstantU4Overflow_module ENTRY %ConstantU4Overflow () -> u4[] { ROOT %constant = u4[] constant(16) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); ExpectHasSubstr(result.status().message(), "is out of range for literal's primitive type U4"); } TEST_F(HloParserTest, ConstantS4Underflow) { const std::string original = R"( HloModule ConstantS4Underflow_module ENTRY %ConstantS4Underflow () -> s4[] { ROOT %constant = s4[] constant(-9) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); ExpectHasSubstr(result.status().message(), "is out of range for literal's primitive type S4"); } TEST_F(HloParserTest, ConstantS4Overflow) { const std::string original = R"( HloModule ConstantS4Overflow_module ENTRY %ConstantS4Overflow () -> s4[] { ROOT %constant = s4[] constant(8) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); ExpectHasSubstr(result.status().message(), "is out of range for literal's primitive type S4"); } TEST_F(HloParserTest, ConstantUnsignedUnderflow) { const std::string original = R"( HloModule ConstantUnsignedUnderflow_module ENTRY %ConstantUnsignedUnderflow () -> u64[] { ROOT %constant = u64[] constant(-1) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_EQ(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, ConstantUnsignedOverflow) { const std::string original = R"( HloModule ConstantUnsignedOverflow_module ENTRY %ConstantUnsignedOverflow () -> u32[] { ROOT %constant = u32[] constant(4294967296) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); ExpectHasSubstr(result.status().message(), "is out of range for literal's primitive type U32"); } TEST_F(HloParserTest, ConstantUnsignedInt64Overflow) { const std::string original = R"( HloModule ConstantUnsignedOverflow_module ENTRY %ConstantUnsignedOverflow () -> u64[] { ROOT %constant = u64[] constant(9223372036854775808) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_EQ(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, ConstantC64Overflow) { const std::string original = R"( HloModule test_module ENTRY test () -> c64[] { ROOT c = c64[] constant((1e100, 0)) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, ConstantC64Underflow) { const std::string original = R"( HloModule test_module ENTRY test () -> c64[] { ROOT c = c64[] constant((0, -1e100)) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, ConstantF64Overflow) { const std::string original = R"( HloModule test_module ENTRY test { ROOT c = f64[] constant(1.8e308) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, ConstantF64Underflow) { const std::string original = R"( HloModule test_module ENTRY test { ROOT c = f64[] constant(-1.8e308) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, ConstantWithExp) { const std::string original = R"(HloModule ConstantWithExp_module ENTRY %ConstantWithExp.v4 () -> f32[] { %constant.1 = f32[] constant(3e+2) } )"; auto result = ParseAndReturnVerifiedModule(original); TF_EXPECT_OK(result.status()); } TEST_F(HloParserTest, ShortConstant) { const std::string original = R"(HloModule ShortConstant_module, entry_computation_layout={()->f32[67,89]{1,0}} ENTRY %ShortConstant.v4 () -> f32[67,89] { ROOT %constant.1 = f32[67,89]{1,0} constant({...}) } )"; auto result = ParseAndReturnVerifiedModule(original); TF_EXPECT_OK(result.status()); EXPECT_EQ(result.value()->ToString(HloPrintOptions()), original); } TEST_F(HloParserTest, NegativeNan) { const std::string original = R"(HloModule NegativeNan_module, entry_computation_layout={()->bf16[2]{0}} ENTRY %NegativeNan () -> bf16[2] { ROOT %constant = bf16[2]{0} constant({-nan, -nan}) } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_EQ(absl::OkStatus(), result.status()); EXPECT_EQ(result.value()->ToString(HloPrintOptions()), original); } TEST_F(HloParserTest, NanPayload) { const std::string original = R"(HloModule NanPayload_module, entry_computation_layout={()->bf16[2]{0}} ENTRY %NanPayload () -> bf16[2] { ROOT %constant = bf16[2]{0} constant({-nan(0x7f), -nan(0x3f)}) } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_EQ(absl::OkStatus(), result.status()); EXPECT_EQ(result.value()->ToString(HloPrintOptions()), original); } TEST_F(HloParserTest, InvalidNanPayloadBf16) { const std::string original = R"(HloModule InvalidNanPayloadBf16_module, entry_computation_layout={()->bf16[1]{0}} ENTRY %NanPayload () -> bf16[1] { ROOT %constant = bf16[1]{0} constant({nan(0x3ff)}) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "tries to set NaN payload 0x3ff"); } TEST_F(HloParserTest, InvalidNanPayloadF8e4m3fn) { const std::string original = R"(HloModule InvalidNanPayloadF8e4m3fn_module, entry_computation_layout={()->f8e4m3fn[1]{0}} ENTRY %NanPayload () -> f8e4m3fn[1] { ROOT %constant = f8e4m3fn[1]{0} constant({nan(0x1)}) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "tries to set NaN payload 0x1"); } TEST_F(HloParserTest, InvalidNanPayloadF8e4m3b11fnuz) { const std::string original = R"(HloModule InvalidNanPayloadF8e4m3b11fnuz_module, entry_computation_layout={()->f8e4m3b11fnuz[1]{0}} ENTRY %NanPayload () -> f8e4m3b11fnuz[1] { ROOT %constant = f8e4m3b11fnuz[1]{0} constant({nan(0x1)}) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "tries to set NaN payload 0x1"); } TEST_F(HloParserTest, AttributesAnyOrder) { const std::string original = R"(HloModule any_order_module ENTRY %Convolve1D1Window_0.v3 (input: f32[1,2,1], filter: f32[1,1,1]) -> f32[1,4,1] { %input = f32[1,2,1]{2,1,0} parameter(0) %copy = f32[1,2,1]{2,0,1} copy(f32[1,2,1]{2,1,0} %input) %filter = f32[1,1,1]{2,1,0} parameter(1) ROOT %convolution = f32[1,4,1]{2,0,1} convolution(f32[1,2,1]{2,0,1} %copy, f32[1,1,1]{2,1,0} %filter), feature_group_count=1, sharding={maximal device=1}, backend_config="foo", dim_labels=b0f_0io->b0f, window={pad=1_1 size=1} } )"; TF_EXPECT_OK(ParseAndReturnVerifiedModule(original).status()); } TEST_F(HloParserTest, InvalidDimLabels) { std::string prefix = R"(HloModule invalid_dim_labels_module ENTRY %Convolve1D1Window_0.v3 (input: f32[1,2,1], filter: f32[1,1,1]) -> f32[1,2,1] { %input = f32[1,2,1]{2,1,0} parameter(0) %copy = f32[1,2,1]{2,0,1} copy(f32[1,2,1]{2,1,0} %input) %filter = f32[1,1,1]{2,1,0} parameter(1) ROOT %convolution = f32[1,2,1]{2,0,1} convolution(f32[1,2,1]{2,0,1} %copy, f32[1,1,1]{2,1,0} %filter), window={size=1} )"; std::string suffix = R"( } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule( absl::StrCat(prefix, ",dim_labels=00_01->10", suffix)) .status() .message(), "expects unique"); ExpectHasSubstr(ParseAndReturnUnverifiedModule( absl::StrCat(prefix, ",dim_labels=012_0123->210", suffix)) .status() .message(), "must have same number of spatial dimensions"); ExpectHasSubstr(ParseAndReturnUnverifiedModule( absl::StrCat(prefix, ",dim_labels=013_0123->210", suffix)) .status() .message(), "expects [0-2bf?]"); } TEST_F(HloParserTest, UnexpectedAttribute) { const std::string original = R"(HloModule unexpected_attr_module ENTRY %TwoSendRecvBothWayRecvFist.v3 () -> f32[] { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15 %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15 ROOT %constant = f32[] constant(2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, calls=%recv %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16 } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "unexpected attribute \"calls\""); } TEST_F(HloParserTest, MissingAttribute) { const std::string original = R"(HloModule missing_attr_module ENTRY %TwoSendRecvBothWayRecvFist.v3 () -> f32[] { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15 %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15 ROOT %constant = f32[] constant(-2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0) %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16 } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "attribute channel_id is expected but not seen"); } TEST_F(HloParserTest, PredecessorUndefined) { const std::string original = R"(HloModule pre_not_found_module ENTRY %TwoSendRecvBothWayRecvFist.v3 () -> f32[] { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15 %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15 ROOT %constant = f32[] constant(2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, control-predecessors={%done} %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16 } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "'done' is not defined"); } TEST_F(HloParserTest, SliceAllowOmitStride1) { const std::string original = R"(HloModule slice_module ENTRY %slice.v2 (p0: f32[3,3,4,4]) -> f32[3,3,2,4] { %p0 = f32[3,3,4,4]{3,2,1,0} parameter(0) ROOT %slice = f32[3,3,2,4]{3,2,1,0} slice(f32[3,3,4,4]{3,2,1,0} %p0), slice={[0:3], [0:3], [0:4:2], [0:4]} } )"; TF_EXPECT_OK(ParseAndReturnVerifiedModule(original).status()); } TEST_F(HloParserTest, PaddingConfigIsNotWindowPad) { const std::string original = R"(HloModule window_pad_module ENTRY %Convolve1D1Window_0.v3 (input: f32[1,2,1], filter: f32[1,1,1]) -> f32[1,2,1] { %input = f32[1,2,1]{2,1,0} parameter(0) %copy = f32[1,2,1]{2,0,1} copy(f32[1,2,1]{2,1,0} %input) %filter = f32[1,1,1]{2,1,0} parameter(1) ROOT %convolution = f32[1,2,1]{2,0,1} convolution(f32[1,2,1]{2,0,1} %copy, f32[1,1,1]{2,1,0} %filter), dim_labels=b0f_0io->b0f, window={pad=1_1_0 size=1} } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "expects padding_low and padding_high separated by '_'"); } TEST_F(HloParserTest, CommaBetweenSubAttributes) { const std::string original = R"(HloModule test_comma_module ENTRY %test_comma.v4 () -> f32[] { ROOT %constant = f32[] constant(-4.2), metadata={source_line=5, op_type="::const"} } )"; TF_EXPECT_OK(ParseAndReturnVerifiedModule(original).status()); } TEST_F(HloParserTest, ComputationShapeDoesNotMatchRootShape) { const std::string original = R"(HloModule custom_call: ENTRY %CustomCall () -> f32[1] { %constant = f32[1]{0} constant({12345}) ROOT %foo = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo\"bar" })"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "Shape of computation CustomCall, f32[1], is not compatible " "with that of its root instruction foo, f32[1,2,3]"); } TEST_F(HloParserTest, EntryComputationLayoutNotDefined) { const std::string original = R"( HloModule layout_not_defined add_F32.v3 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %Reduce (input: f32[8,16,256]) -> f32[8,16] { input = f32[8,16,256]{0,1,2} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[8,16]{0,1} reduce(input, constant), dimensions={2}, to_apply=add_F32.v3 })"; auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); auto program_layout = module.value()->entry_computation_layout(); ASSERT_EQ(program_layout.parameter_count(), 1); auto param_layout = program_layout.parameter_layout(0).layout(); auto result_layout = program_layout.result_layout().layout(); EXPECT_TRUE( LayoutUtil::Equal(LayoutUtil::MakeLayout({0, 1, 2}), param_layout)) << "actual layout of parameter(0) is " << LayoutUtil::HumanString(param_layout); EXPECT_TRUE(LayoutUtil::Equal(LayoutUtil::MakeLayout({0, 1}), result_layout)) << "actual layout of result is " << LayoutUtil::HumanString(result_layout); } TEST_F(HloParserTest, EntryComputationLayoutDefined) { const std::string original = R"( HloModule layout_defined, entry_computation_layout={(f32[8,16,256]) -> f32[8,16]} add_F32.v3 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %Reduce (input: f32[8,16,256]) -> f32[8,16] { input = f32[8,16,256]{0,1,2} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[8,16]{0,1} reduce(input, constant), dimensions={2}, to_apply=add_F32.v3 })"; absl::StatusOr<std::unique_ptr<HloModule>> module = ParseAndReturnUnverifiedModule( original, {}, HloParserOptions().set_fill_missing_layouts(false)); TF_ASSERT_OK(module.status()); EXPECT_FALSE(module.value()->entry_computation_layout().AnyLayoutSet()); } TEST_F(HloParserTest, DoNotSetEntryComputationLayoutIfSet) { const std::string original = R"( HloModule layout_defined, entry_computation_layout={(f32[8,16,256]{1,2,0}) -> f32[8,16]} add_F32.v3 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %Reduce (input: f32[8,16,256]) -> f32[8,16] { input = f32[8,16,256]{0,1,2} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[8,16]{0,1} reduce(input, constant), dimensions={2}, to_apply=add_F32.v3 })"; absl::StatusOr<std::unique_ptr<HloModule>> module = ParseAndReturnUnverifiedModule( original, {}, HloParserOptions().set_fill_missing_layouts(true)); TF_ASSERT_OK(module.status()); EXPECT_THAT(module.value() ->entry_computation_layout() .parameter_layout(0) .layout() .minor_to_major(), ElementsAre(1, 2, 0)); } TEST_F(HloParserTest, SetEntryComputationLayoutIfNotSet) { const std::string original = R"( HloModule layout_defined, entry_computation_layout={(f32[8,16,256]) -> f32[8,16]} add_F32.v3 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %Reduce (input: f32[8,16,256]) -> f32[8,16] { input = f32[8,16,256]{0,1,2} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[8,16]{0,1} reduce(input, constant), dimensions={2}, to_apply=add_F32.v3 })"; absl::StatusOr<std::unique_ptr<HloModule>> module = ParseAndReturnUnverifiedModule( original, {}, HloParserOptions().set_fill_missing_layouts(true)); TF_ASSERT_OK(module.status()); EXPECT_THAT(module.value() ->entry_computation_layout() .parameter_layout(0) .layout() .minor_to_major(), ElementsAre(2, 1, 0)); } TEST_F(HloParserTest, DoNotFallBackToDefaultLayoutIfDisabled) { const std::string original = R"( HloModule t ENTRY main { p0 = f16[16,32,48,64]{3,2,1,0} parameter(0) p1 = f16[80,64,48,32]{3,2,1,0} parameter(1) ROOT dot = f16[64,32,16,80] dot(p0, p1), lhs_contracting_dims={2}, rhs_contracting_dims={2}, lhs_batch_dims={3,1}, rhs_batch_dims={1,3} })"; absl::StatusOr<std::unique_ptr<HloModule>> module = ParseAndReturnUnverifiedModule( original, {}, HloParserOptions().set_fill_missing_layouts(false)); TF_ASSERT_OK(module.status()); EXPECT_FALSE(module.value() ->entry_computation() ->root_instruction() ->shape() .has_layout()); } TEST_F(HloParserTest, FallBackToDefaultLayoutIfEnabled) { const std::string original = R"( HloModule t ENTRY main { p0 = f16[16,32,48,64]{3,2,1,0} parameter(0) p1 = f16[80,64,48,32]{3,2,1,0} parameter(1) ROOT dot = f16[64,32,16,80] dot(p0, p1), lhs_contracting_dims={2}, rhs_contracting_dims={2}, lhs_batch_dims={3,1}, rhs_batch_dims={1,3} })"; absl::StatusOr<std::unique_ptr<HloModule>> module = ParseAndReturnUnverifiedModule( original, {}, HloParserOptions().set_fill_missing_layouts(true)); TF_ASSERT_OK(module.status()); EXPECT_THAT(module.value() ->entry_computation() ->root_instruction() ->shape() .layout() .minor_to_major(), ElementsAre(3, 2, 1, 0)); } TEST_F(HloParserTest, FallBackToDefaultLayoutIfAlreadySet) { const std::string original = R"( HloModule t ENTRY main { p0 = f16[16,32,48,64]{3,2,1,0} parameter(0) p1 = f16[80,64,48,32]{3,2,1,0} parameter(1) ROOT dot = f16[64,32,16,80]{1,2,0,3} dot(p0, p1), lhs_contracting_dims={2}, rhs_contracting_dims={2}, lhs_batch_dims={3,1}, rhs_batch_dims={1,3} })"; absl::StatusOr<std::unique_ptr<HloModule>> module = ParseAndReturnUnverifiedModule( original, {}, HloParserOptions().set_fill_missing_layouts(true)); TF_ASSERT_OK(module.status()); EXPECT_THAT(module.value() ->entry_computation() ->root_instruction() ->shape() .layout() .minor_to_major(), ElementsAre(1, 2, 0, 3)); } TEST_F(HloParserTest, NoEntry) { const std::string original = R"(HloModule no_entry: c1 { const1 = f32[1]{0} constant({12345}) } c2 { const2 = f32[1]{0} constant({67890}) })"; auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); EXPECT_EQ(module.value()->entry_computation()->name(), "c2"); } TEST_F(HloParserTest, NoRoot) { const std::string original = R"(HloModule no_root: ENTRY consts { first = f32[1]{0} constant({12345}) last = f32[1]{0} constant({67890}) })"; auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); EXPECT_EQ(module.value()->entry_computation()->root_instruction()->name(), "last"); } TEST_F(HloParserTest, Comments) { const std::string original = R"( HloModule comments: ENTRY c1 { ROOT const1 = f32[1]{0} constant({12345 }) } )"; auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); } TEST_F(HloParserTest, MultilineComments) { const std::string original = R"(HloModule multiline_comment: ENTRY c1 { ROOT const1 = f32[1]{0} constant({12345}) })"; auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); } TEST_F(HloParserTest, UnterminatedComment) { const std::string original = R"(HloModule unterminated_comment: ENTRY c1 { /* unterminated ROOT const1 = f32[1]{0} constant({12345}) })"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "/* unterminated\n^"); } TEST_F(HloParserTest, SlashSlashComments) { const std::string original = R"(HloModule slash_slash_comment: ENTRY c1 { ROOT const1 = f32[1]{0} constant({12345}) })"; auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); } TEST_F(HloParserTest, SlashSlashCommentMsDosEolFormat) { const std::string original = "HloModule slash_slash_comment:\r\n "bar\r\nROOT const1 = f32[1]{0} constant({12345}) auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); } TEST_F(HloParserTest, SlashSlashCommentMacEolFormat) { const std::string original = "HloModule slash_slash_comment:\r "bar\rROOT const1 = f32[1]{0} constant({12345}) auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); } TEST_F(HloParserTest, MultipleEntries) { const std::string original = R"(HloModule multiple_entries: ENTRY c1 { const1 = f32[1]{0} constant({12345}) } ENTRY c2 { const2 = f32[1]{0} constant({67890}) })"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "expects only one ENTRY"); } TEST_F(HloParserTest, SimpleAliasing) { const std::string original = R"( HloModule Module, input_output_alias={ {0}: (0, {0}, must-alias), {1}: (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 ROOT %out = (f32[], f32[]) tuple(%p0, %p1) } )"; auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); std::unique_ptr<HloModule> parsed_module = std::move(module).value(); EXPECT_EQ(parsed_module->input_output_alias_config().GetAliasedOutput(0, {0}), ShapeIndex{0}); EXPECT_TRUE( parsed_module->input_output_alias_config().ParameterMustAlias(0, {0})); EXPECT_EQ(parsed_module->input_output_alias_config().GetAliasedOutput(0, {1}), ShapeIndex{1}); EXPECT_FALSE( parsed_module->input_output_alias_config().ParameterMustAlias(0, {1})); } TEST_F(HloParserTest, NestedAliasing) { const std::string original = R"( HloModule Module, input_output_alias={ {0, 0}: (0, {0}), {1, 1}: (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 %t0 = (f32[], f32[]) tuple(%p0, %p1) %t1 = (f32[], f32[]) tuple(%p0, %p1) ROOT %out = ((f32[], f32[]), (f32[], f32[])) tuple(%t0, %t1) } )"; auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); std::unique_ptr<HloModule> parsed_module = std::move(module).value(); EXPECT_EQ(parsed_module->input_output_alias_config().GetAliasedOutput(0, {0}), ShapeIndex({0, 0})); EXPECT_EQ(parsed_module->input_output_alias_config().GetAliasedOutput(0, {1}), ShapeIndex({1, 1})); } TEST_F(HloParserTest, AliasingWrongIndex) { const std::string original = R"( HloModule Module, input_output_alias={ {0 : (0, {0}), {1}: (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 ROOT %out = (f32[], f32[]) tuple(%p0, %p1) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "Expects '}' at the end of ShapeIndex"); } TEST_F(HloParserTest, AliasingShapeIndexNotNumerical) { const std::string original = R"( HloModule Module, input_output_alias={ {0, a}: (0, {0}), {1}: (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 ROOT %out = (f32[], f32[]) tuple(%p0, %p1) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "expects integer"); } TEST_F(HloParserTest, AliasingWrongFormatNoColon) { const std::string original = R"( HloModule Module, input_output_alias={ {0, 0}: (0, {0}), (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 ROOT %out = (f32[], f32[]) tuple(%p0, %p1) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "Expects '{' at the start of ShapeIndex"); } TEST_F(HloParserTest, AliasingWrongFormatTwoColons) { const std::string original = R"( HloModule Module, input_output_alias={ {0}: (0, {0}): {0, 1}, {1}: (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 ROOT %out = (f32[], f32[]) tuple(%p0, %p1) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "Expects '}' at the end of aliasing description"); } TEST_F(HloParserTest, AliasingWrongFormatAlphaParam) { const std::string original = R"( HloModule Module, input_output_alias={ {0, a}: (zero, {0}), {1}: (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 ROOT %out = (f32[], f32[]) tuple(%p0, %p1) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "expects integer"); } TEST_F(HloParserTest, SimpleBufferDonor) { const std::string original = R"( HloModule Module, buffer_donor={ (0, {0}), (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 ROOT %out = (f32[], f32[]) tuple(%p0, %p1) } )"; auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); std::unique_ptr<HloModule> parsed_module = std::move(module).value(); EXPECT_TRUE( parsed_module->buffer_donor_config().ParameterIsBufferDonor(0, {0})); EXPECT_TRUE( parsed_module->buffer_donor_config().ParameterIsBufferDonor(0, {1})); EXPECT_FALSE( parsed_module->buffer_donor_config().ParameterIsBufferDonor(0, {})); } TEST_F(HloParserTest, BufferDonorShapeIndexNotNumerical) { const std::string original = R"( HloModule Module, buffer_donor={ (0, {0, a}), (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 ROOT %out = (f32[], f32[]) tuple(%p0, %p1) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "expects integer"); } TEST_F(HloParserTest, BufferDonorWrongFormatAlphaParam) { const std::string original = R"( HloModule Module, buffer_donor={ (zero, {0}), (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 ROOT %out = (f32[], f32[]) tuple(%p0, %p1) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "expects integer"); } TEST_F(HloParserTest, MultipleRoots) { const std::string original = R"(HloModule multiple_roots: ENTRY consts { ROOT const1 = f32[1]{0} constant({12345}) ROOT const2 = f32[1]{0} constant({12345}) })"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "one computation should have only one ROOT"); } TEST_F(HloParserTest, ComputationExists) { const std::string original = R"(HloModule comp_exists comp { const1 = f32[1]{0} constant({12345}) } comp { const2 = f32[1]{0} constant({67890}) })"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), R"(was parsing 2:1: error: computation previously defined here comp { ^)"); } TEST_F(HloParserTest, CrossComputationLookup) { const std::string original = R"(HloModule cross_computation_lookup: tcalla (a: (s32[], s32[])) -> (s32[], s32[]) { ROOT aparam = (s32[], s32[]) parameter(0) } tcallb (b: (s32[], s32[])) -> s32[] { rparam = (s32[], s32[]) parameter(0) ROOT gte0 = s32[] get-tuple-element(aparam), index=0 } ENTRY entry { param = (s32[], s32[]) parameter(0) call0 = (s32[], s32[]) call(param), to_apply=tcalla ROOT call1 = s32[] call(param), to_apply=tcallb })"; ExpectHasSubstr( ParseAndReturnUnverifiedModule(original).status().message(), "was parsing 8:39: error: instruction does not exist: aparam"); } TEST_F(HloParserTest, SameNameDiffComputations) { const std::string original = R"(HloModule same_names: add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT result = f32[] add(p0, p1) } ENTRY ReduceR3ToR2 { p0 = f32[8,16,256]{2,1,0} parameter(0) p1 = f32[] constant(0) ROOT result = f32[8,16]{1,0} reduce(p0, p1), dimensions={2}, to_apply=add } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(original)); ASSERT_NE(module->entry_computation(), nullptr); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Reduce())); } TEST_F(HloParserTest, ParseSharding) { const std::string original = "{maximal device=42}"; TF_ASSERT_OK_AND_ASSIGN(HloSharding sharding, ParseSharding(original)); EXPECT_EQ(sharding.ToString(), original); } TEST_F(HloParserTest, ParseShardingPartialReplication) { const std::string original = "{devices=[2,2]0,1,2,3 last_tile_dim_replicate}"; TF_ASSERT_OK_AND_ASSIGN(HloSharding sharding, ParseSharding(original)); EXPECT_EQ(sharding.ToString(), original); Array<int64_t> tiling_last_dim_replicated({{0, 1}, {2, 3}}); EXPECT_EQ(HloSharding::PartialTile(tiling_last_dim_replicated).ToString(), original); } TEST_F(HloParserTest, ParseShardingSubGroup) { const std::string original = "{devices=[2,2,2,2]0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 " "last_tile_dims={manual, replicated}}"; TF_ASSERT_OK_AND_ASSIGN(HloSharding sharding, ParseSharding(original)); EXPECT_EQ(sharding.ToString(), original); Array<int64_t> tile_assignment({2, 2, 2, 2}); tile_assignment.FillIota(0); std::vector<OpSharding::Type> subgroup_types = {OpSharding::MANUAL, OpSharding::REPLICATED}; EXPECT_EQ(HloSharding::Subgroup(tile_assignment, subgroup_types).ToString(), original); } TEST_F(HloParserTest, ParseTrivialIotaShardingPartialReplication) { const std::string original = "{devices=[2,2]<=[4] last_tile_dim_replicate}"; TF_ASSERT_OK_AND_ASSIGN(HloSharding sharding, ParseSharding(original)); EXPECT_EQ(sharding.ToString(), original); TileAssignment tiling_last_dim_replicated((absl::Span<const int64_t>){2, 2}); EXPECT_EQ(HloSharding::PartialTile(tiling_last_dim_replicated).ToString(), original); } TEST_F(HloParserTest, ParseTrivialIotaShardingSubGroup) { const std::string original = "{devices=[2,2,2,2]<=[16] last_tile_dims={manual, replicated}}"; TF_ASSERT_OK_AND_ASSIGN(HloSharding sharding, ParseSharding(original)); EXPECT_EQ(sharding.ToString(), original); TileAssignment tile_assignment({2, 2, 2, 2}); std::vector<OpSharding::Type> subgroup_types = {OpSharding::MANUAL, OpSharding::REPLICATED}; EXPECT_EQ(HloSharding::Subgroup(tile_assignment, subgroup_types).ToString(), original); } TEST_F(HloParserTest, ParseTransposedIotaShardingPartialReplication) { const std::string original = "{devices=[2,2]<=[2,2]T(1,0) last_tile_dim_replicate}"; TF_ASSERT_OK_AND_ASSIGN(HloSharding sharding, ParseSharding(original)); EXPECT_EQ(sharding.ToString(), original); TileAssignment tiling_last_dim_replicated({2, 2}, {2, 2}, {1, 0}); EXPECT_EQ(HloSharding::PartialTile(tiling_last_dim_replicated).ToString(), original); } TEST_F(HloParserTest, ParseTransposedIotaShardingSubGroup) { const std::string original = "{devices=[2,2,2,2]<=[2,2,4]T(2,1,0) last_tile_dims={manual, " "replicated}}"; TF_ASSERT_OK_AND_ASSIGN(HloSharding sharding, ParseSharding(original)); EXPECT_EQ(sharding.ToString(), original); TileAssignment tile_assignment({2, 2, 2, 2}, {2, 2, 4}, {2, 1, 0}); std::vector<OpSharding::Type> subgroup_types = {OpSharding::MANUAL, OpSharding::REPLICATED}; EXPECT_EQ(HloSharding::Subgroup(tile_assignment, subgroup_types).ToString(), original); } TEST_F(HloParserTest, ParseShardAs) { const std::string original = "{manual shard_as 1}"; TF_ASSERT_OK_AND_ASSIGN(HloSharding sharding, ParseSharding(original)); EXPECT_EQ(sharding.ToString(), original); EXPECT_EQ( HloSharding::Manual().SetShardGroup(HloSharding::ShardAs(1)).ToString(), original); } TEST_F(HloParserTest, ParseShardLike) { const std::string original = "{devices=[2,2,2,2]<=[16] last_tile_dims={manual, replicated} shard_like " "1}"; TF_ASSERT_OK_AND_ASSIGN(HloSharding sharding, ParseSharding(original)); EXPECT_EQ(sharding.ToString(), original); TileAssignment tile_assignment({2, 2, 2, 2}); std::vector<OpSharding::Type> subgroup_types = {OpSharding::MANUAL, OpSharding::REPLICATED}; EXPECT_EQ(HloSharding::Subgroup(tile_assignment, subgroup_types) .SetShardGroup(HloSharding::ShardLike(1)) .ToString(), original); } TEST_F(HloParserTest, ParseUnknownSharding) { const std::string original = "{unknown}"; TF_ASSERT_OK_AND_ASSIGN(HloSharding sharding, ParseSharding(original)); EXPECT_EQ(sharding.ToString(), original); EXPECT_EQ(HloSharding::Unknown().ToString(), original); } TEST_F(HloParserTest, ParseFrontendAttributes) { const std::string original = R"({attr_a="test_a",attr_b="b",attr_c="s64",attr_d="a/b"})"; TF_ASSERT_OK_AND_ASSIGN(FrontendAttributes frontend_attributes, ParseFrontendAttributes(original)); EXPECT_EQ(FrontendAttributesToString(frontend_attributes), original); } TEST_F(HloParserTest, ParseWindow) { Window original = window_util::MakeWindow({1, 2, 3}); TF_ASSERT_OK_AND_ASSIGN(Window parsed, ParseWindow(window_util::ToString(original))) EXPECT_EQ(window_util::ToString(original), window_util::ToString(parsed)); } TEST_F(HloParserTest, ParseConvolutionDimensionNumbers) { const std::string original = "b0f_0io->b0f"; TF_ASSERT_OK_AND_ASSIGN(ConvolutionDimensionNumbers dnums, ParseConvolutionDimensionNumbers(original)); EXPECT_EQ(original, ConvolutionDimensionNumbersToString(dnums)); } TEST_F(HloParserTest, ParseConvolutionDimensionNumbersWithUnknownDims) { const std::string original = "b0?f_?0?io->?b?0?f"; TF_ASSERT_OK_AND_ASSIGN(ConvolutionDimensionNumbers dnums, ParseConvolutionDimensionNumbers(original)); EXPECT_EQ(original, ConvolutionDimensionNumbersToString(dnums)); } TEST_F(HloParserTest, ParseReplicaGroups) { const std::string original = "{{0,1},{2,3}}"; TF_ASSERT_OK_AND_ASSIGN(std::vector<ReplicaGroup> replica_groups, ParseReplicaGroupsOnly(original)); EXPECT_EQ(original, ReplicaGroupsToString(replica_groups)); } TEST_F(HloParserTest, ParsePaddingConfigNoInteriorPadding) { const std::string original = "0_1x2_3"; TF_ASSERT_OK_AND_ASSIGN(PaddingConfig dnums, ParsePaddingConfig(original)); EXPECT_EQ(original, PaddingConfigToString(dnums)); } TEST_F(HloParserTest, ParsePaddingConfigInteriorPadding) { const std::string original = "0_1_0x2_3_4"; TF_ASSERT_OK_AND_ASSIGN(PaddingConfig dnums, ParsePaddingConfig(original)); EXPECT_EQ(original, PaddingConfigToString(dnums)); } TEST_F(HloParserTest, ParsePaddingConfigInteriorPaddingImplicitZeroDim) { TF_ASSERT_OK_AND_ASSIGN(PaddingConfig dnums, ParsePaddingConfig("0_1x2_3_4")); EXPECT_EQ("0_1_0x2_3_4", PaddingConfigToString(dnums)); } TEST_F(HloParserTest, NontupleInfeed) { const std::string original = R"(HloModule nontuple_infeed: ENTRY nontuple_infeed { token0 = token[] after-all() ROOT infeed = pred[] infeed(token0) })"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "infeed must have a non-empty tuple shape"); } TEST(HloParserSingleOpTest, SingleOp) { const std::string text = "%multiply = f32[2,4]{1,0} multiply(f32[2,4]{1,0} %broadcast, " "f32[2,4]{1,0} %x)"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(text)); const HloComputation* computation = module->entry_computation(); ASSERT_NE(computation, nullptr); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Multiply(m::Parameter(0), m::Parameter(1)))); } TEST(HloParserSingleOpTest, SingleOpNoShapeProducesError) { const std::string text = "multiply(f32[2,4]{1,0} %broadcast, f32[2,4]{1,0} %x)"; absl::StatusOr<std::unique_ptr<HloModule>> module = ParseAndReturnUnverifiedModule(text); ASSERT_TRUE(!module.status().ok()); LOG(INFO) << "Status: " << module.status(); EXPECT_THAT(module.status().ToString(), HasSubstr("expects '=' in instruction")); } TEST(HloParserSingleOpTest, SingleOpNoOperandShapesProducesError) { const std::string text = "%multiply = f32[2,4]{1,0} multiply(%broadcast, %x)"; absl::StatusOr<std::unique_ptr<HloModule>> module = ParseAndReturnUnverifiedModule(text); ASSERT_TRUE(!module.status().ok()); LOG(INFO) << "Status: " << module.status(); EXPECT_THAT(module.status().ToString(), HasSubstr("Operand had no shape in HLO text")); } TEST(HloParserSingleOpTest, SingleOpNoNames) { const std::string text = "%multiply = f32[2,4]{1,0} multiply(f32[2,4]{1,0}, f32[2,4]{1,0})"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(text)); const HloComputation* computation = module->entry_computation(); ASSERT_NE(computation, nullptr); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Multiply(m::Parameter(0), m::Parameter(1)))); } TEST(HloParserSingleOpTest, CanonicalOp) { const std::string text = "f32[2,4]{1,0} multiply(f32[2,4]{1,0}, f32[2,4]{1,0})"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(text)); const HloComputation* computation = module->entry_computation(); ASSERT_NE(computation, nullptr); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Multiply(m::Parameter(0), m::Parameter(1)))); EXPECT_EQ( computation->root_instruction()->ToString(HloPrintOptions::Canonical()), text); } TEST(HloParserSingleOpTest, CanonicalOpWithNested) { const std::string text = R"(f32[5,20]{1,0} while(f32[5,10]{1,0}), condition= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) ROOT tmp_2 = f32[5,20]{1,0} fusion(f32[5,10]{1,0} tmp_0, f32[20,10]{1,0} tmp_1), kind=kLoop, calls= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) tmp_2 = f32[10,20]{1,0} transpose(f32[20,10]{1,0} tmp_1), dimensions={1,0} ROOT tmp_3 = f32[5,20]{1,0} dot(f32[5,10]{1,0} tmp_0, f32[10,20]{1,0} tmp_2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } }, body= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) ROOT tmp_2 = f32[5,20]{1,0} fusion(f32[5,10]{1,0} tmp_0, f32[20,10]{1,0} tmp_1), kind=kLoop, calls= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) tmp_2 = f32[10,20]{1,0} transpose(f32[20,10]{1,0} tmp_1), dimensions={1,0} ROOT tmp_3 = f32[5,20]{1,0} dot(f32[5,10]{1,0} tmp_0, f32[10,20]{1,0} tmp_2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(text)); const HloComputation* computation = module->entry_computation(); ASSERT_NE(computation, nullptr); EXPECT_EQ( computation->root_instruction()->ToString(HloPrintOptions::Canonical()), text); } TEST(HloParserSingleOpTest, CanonicalOpIndexedConditionalInlinedBranches) { const std::string text = R"(f32[5,10]{1,0} conditional(s32[], f32[5,10]{1,0}, f32[5,10]{1,0}, f32[5,10]{1,0}), branch_computations={ { tmp_0 = f32[5,10]{1,0} parameter(0) ROOT tmp_1 = f32[5,10]{1,0} ceil(f32[5,10]{1,0} tmp_0) }, { tmp_0 = f32[5,10]{1,0} parameter(0) ROOT tmp_1 = f32[5,10]{1,0} floor(f32[5,10]{1,0} tmp_0) }, { tmp_0 = f32[5,10]{1,0} parameter(0) ROOT tmp_1 = f32[5,10]{1,0} copy(f32[5,10]{1,0} tmp_0) } })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(text)); const HloComputation* computation = module->entry_computation(); ASSERT_NE(computation, nullptr); EXPECT_EQ( computation->root_instruction()->ToString(HloPrintOptions::Canonical()), text); } TEST(HloParserSingleOpTest, SingleOpWithNested) { const std::string text = R"(%fusion = f32[3,2,1,1]{3,2,1,0} fusion(f32[3,2,1,1]{3,2,1,0} %p0, f32[2]{0} %p1), kind=kLoop, calls= { %param_0 = f32[3,2,1,1]{3,2,1,0} parameter(0) %param_1 = f32[2]{0} parameter(1) %broadcast = f32[3,2,1,1]{3,2,1,0} broadcast(f32[2]{0} %param_1), dimensions={1} ROOT %subtract = f32[3,2,1,1]{3,2,1,0} subtract(f32[3,2,1,1]{3,2,1,0} %param_0, f32[3,2,1,1]{3,2,1,0} %broadcast) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(text)); const HloComputation* computation = module->entry_computation(); ASSERT_NE(computation, nullptr); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Op() .WithOpcode(HloOpcode::kFusion) .WithNumOperands(2) .WithOperand(0, m::Parameter(0)) .WithOperand(1, m::Parameter(1)))); } TEST(HloParserSingleOpTest, SingleOpWithNested_DoesNotExist) { const std::string text = R"(reduce = f32[] reduce(f32[10], f32[]), dimensions={1}, to_apply= { result = f32[] add(f32[] x, f32[] y) })"; auto status = ParseAndReturnUnverifiedModule(text).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("does not exist: x")); } TEST(HloParserSingleOpTest, SingleOpWithNested_NoLhs) { const std::string text = R"(reduce = f32[] reduce(f32[10], f32[]), dimensions={1}, to_apply= { f32[] add(f32[] x, f32[] y) })"; auto status = ParseAndReturnUnverifiedModule(text).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("expects name")); } TEST(HloParserSingleOpTest, SingleOpWithNested_NoOperandName) { const std::string text = R"(reduce = f32[] reduce(f32[10], f32[]), dimensions={1}, to_apply= { result = f32[] add(f32[], f32[]) })"; auto status = ParseAndReturnUnverifiedModule(text).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("expects name")); } TEST(HloParserSingleOpTest, ConvolutionTrivialFeatureGroupCount) { const std::string text = R"(%convolution = f32[1,2,1]{2,0,1} convolution(f32[1,2,1]{2,0,1} %copy, f32[1,1,1]{2,1,0} %filter), window={size=1}, dim_labels=b0f_0io->b0f)"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(text)); const HloComputation* computation = module->entry_computation(); ASSERT_NE(computation, nullptr); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Convolution(m::Parameter(0), m::Parameter(1)))); auto* convolution = Cast<HloConvolutionInstruction>(computation->root_instruction()); EXPECT_EQ(convolution->feature_group_count(), 1); } TEST(HloParserSingleOpTest, MultipleOpsProducesError) { const std::string text = R"( param = f32[2,5,1,3] parameter(0) transpose = f32[1,5,2,3] transpose(param), dimensions={2,1,0,3} )"; auto status = ParseAndReturnUnverifiedModule(text).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("Expected eof")); } TEST_F(HloParserTest, IsScheduledIsFalse) { const std::string text = R"( HloModule axpy_module, is_scheduled=false ENTRY %axpy.v5 (alpha: f32[], x: f32[2,4], y: f32[2,4]) -> f32[2,4] { %alpha = f32[] parameter(0) %broadcast = f32[2,4]{1,0} broadcast(f32[] %alpha), dimensions={} %x = f32[2,4]{1,0} parameter(1) %multiply = f32[2,4]{1,0} multiply(f32[2,4]{1,0} %broadcast, f32[2,4]{1,0} %x) %y = f32[2,4]{1,0} parameter(2) ROOT %add = f32[2,4]{1,0} add(f32[2,4]{1,0} %multiply, f32[2,4]{1,0} %y) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); ASSERT_FALSE(module->has_schedule()); } TEST_F(HloParserTest, IsScheduledNotPresent) { const std::string text = R"( HloModule axpy_module ENTRY %axpy.v5 (alpha: f32[], x: f32[2,4], y: f32[2,4]) -> f32[2,4] { %alpha = f32[] parameter(0) %broadcast = f32[2,4]{1,0} broadcast(f32[] %alpha), dimensions={} %x = f32[2,4]{1,0} parameter(1) %multiply = f32[2,4]{1,0} multiply(f32[2,4]{1,0} %broadcast, f32[2,4]{1,0} %x) %y = f32[2,4]{1,0} parameter(2) ROOT %add = f32[2,4]{1,0} add(f32[2,4]{1,0} %multiply, f32[2,4]{1,0} %y) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); ASSERT_FALSE(module->has_schedule()); } TEST_F(HloParserTest, IsScheduledIsTrue) { const std::string text = R"( HloModule axpy_module, is_scheduled=true ENTRY %axpy.v5 (alpha: f32[], x: f32[2,4], y: f32[2,4]) -> f32[2,4] { %alpha = f32[] parameter(0) %broadcast = f32[2,4]{1,0} broadcast(f32[] %alpha), dimensions={} %x = f32[2,4]{1,0} parameter(1) %multiply = f32[2,4]{1,0} multiply(f32[2,4]{1,0} %broadcast, f32[2,4]{1,0} %x) %y = f32[2,4]{1,0} parameter(2) ROOT %add = f32[2,4]{1,0} add(f32[2,4]{1,0} %multiply, f32[2,4]{1,0} %y) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); ASSERT_TRUE(module->has_schedule()); TF_ASSERT_OK(module->schedule().Verify()); EXPECT_EQ(module->schedule().sequences().size(), 1); ASSERT_TRUE( module->schedule().is_computation_scheduled(module->entry_computation())); EXPECT_THAT( module->schedule().sequence(module->entry_computation()).instructions(), ElementsAre(GmockMatch(m::Parameter()), GmockMatch(m::Broadcast()), GmockMatch(m::Parameter()), GmockMatch(m::Multiply()), GmockMatch(m::Parameter()), GmockMatch(m::Add()))); } TEST_F(HloParserTest, IsScheduledIsTrueDifferentOrder) { const std::string text = R"( HloModule axpy_module, is_scheduled=true ENTRY %axpy.v5 (alpha: f32[], x: f32[2,4], y: f32[2,4]) -> f32[2,4] { %alpha = f32[] parameter(0) %x = f32[2,4]{1,0} parameter(1) %y = f32[2,4]{1,0} parameter(2) %broadcast = f32[2,4]{1,0} broadcast(f32[] %alpha), dimensions={} %multiply = f32[2,4]{1,0} multiply(f32[2,4]{1,0} %broadcast, f32[2,4]{1,0} %x) ROOT %add = f32[2,4]{1,0} add(f32[2,4]{1,0} %multiply, f32[2,4]{1,0} %y) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); ASSERT_TRUE(module->has_schedule()); TF_ASSERT_OK(module->schedule().Verify()); EXPECT_EQ(module->schedule().sequences().size(), 1); ASSERT_TRUE( module->schedule().is_computation_scheduled(module->entry_computation())); EXPECT_THAT( module->schedule().sequence(module->entry_computation()).instructions(), ElementsAre(GmockMatch(m::Parameter()), GmockMatch(m::Parameter()), GmockMatch(m::Parameter()), GmockMatch(m::Broadcast()), GmockMatch(m::Multiply()), GmockMatch(m::Add()))); } TEST_F(HloParserTest, CustomCallWrongNumberofOperandConstraints) { const std::string original = R"(HloModule CustomCallWrongNumberofOperandConstraints ENTRY %CustomCallWrongNumberofOperandConstraints (p0: f32[42,2,3], p1: f32[123,4]) -> f32[1,2,3] { %p0 = f32[42,2,3]{0,1,2} parameter(0) %p1 = f32[123,4]{0,1} parameter(1) ROOT %custom-call = f32[1,2,3]{0,1,2} custom-call(f32[42,2,3]{0,1,2} %p0, f32[123,4]{0,1} %p1), custom_call_target="baz", operand_layout_constraints={f32[42,2,3]{0,1,2}} } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "Expected 2 operand layout constraints, 1 given"); } TEST_F(HloParserTest, CustomCallIncompatibleOperandConstraints) { const std::string original = R"(HloModule CustomCallIncompatibleOperandConstraints ENTRY %CustomCallIncompatibleOperandConstraints (p0: f32[42,2,3], p1: f32[123,4]) -> f32[1,2,3] { %p0 = f32[42,2,3]{0,1,2} parameter(0) %p1 = f32[123,4]{0,1} parameter(1) ROOT %custom-call = f32[1,2,3]{0,1,2} custom-call(f32[42,2,3]{0,1,2} %p0, f32[123,4]{0,1} %p1), custom_call_target="baz", operand_layout_constraints={f32[42,2,3]{0,1,2}, f32[555,5]{1,0}} } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "operand 1 is not compatible with operand shape"); } TEST_F(HloParserTest, CustomCallWithNonexistentVersion) { const std::string original = R"(HloModule custom_call ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) ROOT %custom-call.1 = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo", api_version=API_VERSION_THAT_DOESNT_EXIST } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "Unknown API version"); } TEST_F(HloParserTest, CustomCallWithUnspecifiedVersion) { const std::string original = R"(HloModule custom_call ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) ROOT %custom-call.1 = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo", api_version=API_VERSION_UNSPECIFIED } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "Invalid API version"); } TEST_F(HloParserTest, AllowShapeWhitespace) { const std::string text = R"( HloModule module ENTRY entry { ROOT root = f32[ 1, 2,3, 4, 5]{0, 1, 2,3, 4 } parameter(0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); } TEST_F(HloParserTest, ShapeMismatchInOperand) { const std::string text = R"( HloModule foobar ENTRY %entrycomp (p: f32[2,2]) -> f32[2,2] { %p = f32[2,2] parameter(0) %constant.1 = f32[2,2] constant({{1, 2}, {3, 4}}) ROOT %add.1 = f32[2,2] add(f32[2,2] %p, f32[2,5] %constant.1) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(text).status().message(), "The declared operand shape f32[2,5]{1,0} is not compatible" " with the shape of the operand instruction f32[2,2]{1,0}."); } TEST_F(HloParserTest, ParseShapeStringR2F32) { std::string shape_string = "f32[123,456]"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeShape(F32, {123, 456}); ASSERT_TRUE(ShapeUtil::Equal(expected, actual)) << "expected: " << ShapeUtil::HumanString(expected) << "actual: " << ShapeUtil::HumanString(actual); } TEST_F(HloParserTest, ParseShapeStringUnbounded) { std::string shape_string = "f32[?,784]"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeShape(F32, {Shape::kUnboundedSize, 784}, {true, false}); ASSERT_TRUE(ShapeUtil::Equal(expected, actual)) << "expected: " << ShapeUtil::HumanString(expected) << "actual: " << ShapeUtil::HumanString(actual); } TEST_F(HloParserTest, ParseShapeStringTupleOfArrays) { std::string shape_string = "(f32[1572864],s8[5120,1024])"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {1572864}), ShapeUtil::MakeShape(S8, {5120, 1024})}); ASSERT_TRUE(ShapeUtil::Equal(expected, actual)) << "expected: " << ShapeUtil::HumanString(expected) << "actual: " << ShapeUtil::HumanString(actual); } TEST_F(HloParserTest, ParseShapeStringNestedTuple) { std::string shape_string = "(f32[1],(f32[2], token[]), opaque[], f32[3])"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeTupleShape({ ShapeUtil::MakeShape(F32, {1}), ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {2}), ShapeUtil::MakeTokenShape()}), ShapeUtil::MakeOpaqueShape(), ShapeUtil::MakeShape(F32, {3}), }); ASSERT_TRUE(ShapeUtil::Equal(expected, actual)) << "expected: " << ShapeUtil::HumanString(expected) << "actual: " << ShapeUtil::HumanString(actual); } TEST_F(HloParserTest, ParseShapeStringWithLayout) { std::string shape_string = "f32[123,456]{0,1}"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeShapeWithDenseLayout(F32, {123, 456}, {0, 1}); ASSERT_TRUE(ShapeUtil::Equal(expected, actual)) << "expected: " << ShapeUtil::HumanString(expected) << "actual: " << ShapeUtil::HumanString(actual); } TEST_F(HloParserTest, ParseShapeStringWithTilingLayout) { std::string shape_string = "f32[123,456]{0,1:T(2,128)}"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeShapeWithDenseLayout(F32, {123, 456}, {0, 1}, {Tile({2, 128})}); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); shape_string = "f32[123,456,789]{0,1,2:T(2, * , 128)}"; TF_ASSERT_OK_AND_ASSIGN(actual, ParseShape(shape_string)); expected = ShapeUtil::MakeShapeWithDenseLayout( F32, {123, 456, 789}, {0, 1, 2}, {Tile({2, Tile::kCombineDimension, 128})}); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); shape_string = "bf16[123,456,789]{2,1,0:T(2,*,128)(2,1)}"; TF_ASSERT_OK_AND_ASSIGN(actual, ParseShape(shape_string)); expected = ShapeUtil::MakeShapeWithDenseLayout( BF16, {123, 456, 789}, {2, 1, 0}, {Tile({2, Tile::kCombineDimension, 128}), Tile({2, 1})}); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); shape_string = "f32[123,456,789]{1:T(2, * , 128)}"; auto result = ParseShape(shape_string); ExpectHasSubstr(result.status().message(), "Dimensions size is 3, but minor to major size is 1."); } TEST_F(HloParserTest, ParseShapeStringWithElementSizeInBits) { std::string shape_string = "s4[123,456]{1,0:T(2,128)E(4)}"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeShapeWithDenseLayout(S4, {123, 456}, {1, 0}, {Tile({2, 128})}, 1, 4); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); } TEST_F(HloParserTest, ParseShapeStringWithMemorySpaceLayout) { std::string shape_string = "pred[123,456]{1,0:T(2,128)S(3)}"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeShapeWithDenseLayout( PRED, {123, 456}, {1, 0}, {Tile({2, 128})}, 1, 0, 3); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); shape_string = "pred[123,456]{1,0:S(3)}"; TF_ASSERT_OK_AND_ASSIGN(actual, ParseShape(shape_string)); expected = ShapeUtil::MakeShapeWithDenseLayout(PRED, {123, 456}, {1, 0}, {}, 1, 0, 3); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); shape_string = "pred[123,456]{1,0:S(3)}"; TF_ASSERT_OK_AND_ASSIGN(actual, ParseShape(shape_string)); expected = ShapeUtil::MakeShapeWithDenseLayout(PRED, {123, 456}, {1, 0}, {}, 1, 0, 3); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); } TEST_F(HloParserTest, ParseShapeStringWithDynamicShapeMetadataPrefix) { std::string shape_string = "f32[123,456]{1,0:T(16,128)M(1024)}"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeShapeWithDenseLayout(F32, {123, 456}, {1, 0}, {Tile({16, 128})}); expected.mutable_layout()->set_dynamic_shape_metadata_prefix_bytes(1024); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); } TEST_F(HloParserTest, ParseShapeStringWithSplitConfigLayout) { std::string shape_string = "pred[123,456]{1,0:T(2,128)S(3)SC(1:200)}"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeShapeWithDenseLayout( PRED, {123, 456}, {1, 0}, {Tile({2, 128})}, 1, 0, 3, {SplitConfig(1, {200})}); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); shape_string = "pred[123,456]{1,0:S(3)SC(0:10)(1:4,5)}"; TF_ASSERT_OK_AND_ASSIGN(actual, ParseShape(shape_string)); expected = ShapeUtil::MakeShapeWithDenseLayout( PRED, {123, 456}, {1, 0}, {}, 1, 0, 3, {SplitConfig(0, {10}), SplitConfig(1, {4, 5})}); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); shape_string = "pred[123,456]{1,0:SC(1:50,200)}"; TF_ASSERT_OK_AND_ASSIGN(actual, ParseShape(shape_string)); expected = ShapeUtil::MakeShapeWithDenseLayout( PRED, {123, 456}, {1, 0}, {}, 1, 0, 0, {SplitConfig(1, {50, 200})}); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); } TEST_F(HloParserTest, ParseOpaqueType) { TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape("opaque[]")); Shape expected = ShapeUtil::MakeOpaqueShape(); ASSERT_TRUE(ShapeUtil::Equal(expected, actual)) << "expected: " << ShapeUtil::HumanString(expected) << "actual: " << ShapeUtil::HumanString(actual); } TEST_F(HloParserTest, ParseTokenType) { TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape("token[]")); Shape expected = ShapeUtil::MakeTokenShape(); ASSERT_TRUE(ShapeUtil::Equal(expected, actual)) << "expected: " << ShapeUtil::HumanString(expected) << "actual: " << ShapeUtil::HumanString(actual); } TEST_F(HloParserTest, ParseInvalidShapeString) { std::string shape_strings[] = {"f32[123,456]foobar{0,1}", "f32[123,456]{foo}", "f32[123,456]dense{foo}"}; for (const std::string& shape_string : shape_strings) { absl::StatusOr<Shape> result = ParseShape(shape_string); ASSERT_FALSE(result.ok()) << "shape: " << shape_string; } } TEST_F(HloParserTest, ParseDynamicArray) { std::string shape_string = "f32[123,<=456]"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeShape(F32, {123, 456}, {false, true}); ASSERT_TRUE(ShapeUtil::Equal(expected, actual)) << "expected: " << ShapeUtil::HumanString(expected) << "actual: " << ShapeUtil::HumanString(actual); } TEST_F(HloParserTest, ParseDynamicTuple) { std::string shape_string = "(f32[42], u32[<=123,<=456])"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {42}), ShapeUtil::MakeShape(U32, {123, 456}, {true, true})}); ASSERT_TRUE(ShapeUtil::Equal(expected, actual)) << "expected: " << ShapeUtil::HumanString(expected) << "actual: " << ShapeUtil::HumanString(actual); } TEST_F(HloParserTest, ParseInvalidDimLevel) { constexpr std::string_view shape_string = "f32[123]{0:D(D+~)}"; absl::StatusOr<Shape> result = ParseShape(shape_string); ASSERT_THAT( result.status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, testing::HasSubstr( "invalid DimLevelType/unique/ordered combination in shape"))); } TEST_F(HloParserTest, NegativeParameterNumber) { const std::string hlo_string = "par0 = f32[3,5] parameter(-1)"; auto result = ParseAndReturnUnverifiedModule(hlo_string); ASSERT_FALSE(result.status().ok()); EXPECT_THAT(result.status().message(), HasSubstr("parameter number must be >= 0")); } TEST_F(HloParserTest, DuplicateParameterNumberIsDetected) { const std::string kHloString = R"( ENTRY e { a = s8[] parameter(0) b = s8[] parameter(0) ROOT a = s8[] add(a, b) } )"; auto result = ParseAndReturnUnverifiedModule(kHloString); ASSERT_FALSE(result.status().ok()); EXPECT_THAT(result.status().message(), HasSubstr("Duplicate parameter number 0")); } TEST_F(HloParserTest, WrongNumberOfParameterLeafBuffersInReplication) { const std::string hlo_string = "par0 = (f32[3,5], f32[]) parameter(0), " "parameter_replication={true,false,true}"; auto result = ParseAndReturnUnverifiedModule(hlo_string); ASSERT_FALSE(result.status().ok()); EXPECT_THAT(result.status().message(), HasSubstr("parameter has 2 leaf buffers, but " "parameter_replication has 3 elements")); } TEST_F(HloParserTest, CheckIndexedConditionalDimension) { const char* const hlo_string = R"( HloModule Module branch0 { tparam = f32[4] parameter(0) ROOT tgte1 = f32[4] ceil(tparam) } branch1 { fparam = f32[4] parameter(0) ROOT fgte1 = f32[4] floor(fparam) } ENTRY entry { p0 = f32[4] parameter(0) b0 = s32[2] parameter(1) ROOT conditional = f32[4] conditional(b0, p0, p0), branch_computations={branch0, branch1} } )"; auto result = ParseAndReturnUnverifiedModule(hlo_string); EXPECT_NE(absl::OkStatus(), result.status()); EXPECT_THAT(result.status().message(), HasSubstr("The first operand must be a scalar")); } TEST_F(HloParserTest, CheckIndexedConditionalElementType) { const char* const hlo_string = R"( HloModule Module branch0 { tparam = f32[4] parameter(0) ROOT tgte1 = f32[4] ceil(tparam) } branch1 { fparam = f32[4] parameter(0) ROOT fgte1 = f32[4] floor(fparam) } ENTRY entry { p0 = f32[4] parameter(0) b0 = f32[] parameter(1) ROOT conditional = f32[4] conditional(b0, p0, p0), branch_computations={branch0, branch1} } )"; auto result = ParseAndReturnUnverifiedModule(hlo_string); EXPECT_NE(absl::OkStatus(), result.status()); EXPECT_THAT(result.status().message(), HasSubstr("The first operand must be a scalar of PRED or S32")); } TEST_F(HloParserTest, CheckPredicatedConditionalRequiresTrueAndFalseComputation) { const char* const hlo_string = R"( HloModule Module branch0 { tparam = f32[4] parameter(0) ROOT tgte1 = f32[4] ceil(tparam) } branch1 { fparam = f32[4] parameter(0) ROOT fgte1 = f32[4] floor(fparam) } ENTRY entry { p0 = f32[4] parameter(0) b0 = pred[] parameter(1) ROOT conditional = f32[4] conditional(b0, p0, p0), branch_computations={branch0, branch1} } )"; auto result = ParseAndReturnUnverifiedModule(hlo_string); EXPECT_NE(absl::OkStatus(), result.status()); EXPECT_THAT(result.status().message(), HasSubstr("unexpected attribute \"branch_computations\"")); } TEST_F(HloParserTest, InferUnaryShape) { constexpr char text[] = R"(HloModule InferUnaryShapeTest ENTRY InferUnaryShape { a = f32[2,10]{1,0} parameter(0) ROOT v = abs(a) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); } TEST_F(HloParserTest, InferBinaryShape) { constexpr char text[] = R"(HloModule InferBinaryShapeTest ENTRY InferBinaryShape { a = f32[2,10]{1,0} parameter(0) b = f32[2,10]{1,0} parameter(1) ROOT sum = add(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); EXPECT_TRUE(ShapeUtil::Equal( module->entry_computation()->ComputeProgramShape().result(), ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 10}, {1, 0}))); } TEST_F(HloParserTest, InferTernaryShape) { constexpr char text[] = R"(HloModule InferTernaryShapeTest ENTRY InferTernaryShape { p = pred[] constant(true) f = s32[] constant(-42) t = s32[] constant(42) ROOT select = select(p, f, t) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); EXPECT_TRUE(ShapeUtil::Equal( module->entry_computation()->ComputeProgramShape().result(), ShapeUtil::MakeScalarShape(S32))); } TEST_F(HloParserTest, TupleTypo) { constexpr char text[] = R"(HloModule TupleTypoTest ENTRY TupleTypo { pow = s32[] constant(42) ROOT v = (s32[]) tuple(power) } )"; auto result = ParseAndReturnVerifiedModule(text); EXPECT_THAT(result.status(), tsl::testing::StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("instruction does not exist"))); } TEST_F(HloParserTest, InferDotShape) { constexpr char text[] = R"(HloModule InferDotShapeTest ENTRY InferDotShape { a = f32[2,10]{1,0} parameter(0) b = f32[10,2]{1,0} parameter(1) ROOT dot = dot(a, b), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); EXPECT_TRUE(ShapeUtil::Equal( module->entry_computation()->ComputeProgramShape().result(), ShapeUtil::MakeShape(F32, {2}, {0}))); } TEST_F(HloParserTest, InferSparseDotShape) { constexpr char text[] = R"(HloModule InferSparseDotShapeTest ENTRY InferSparseDotShape { a = f32[2,16]{1,0} parameter(0) b = f32[32,2]{1,0} parameter(1) meta = u16[2,2]{1,0} parameter(2) ROOT dot = dot(a, b, meta), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={1}, rhs_contracting_dims={0}, sparsity=L.1@2:4 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); EXPECT_TRUE(ShapeUtil::Equal( module->entry_computation()->ComputeProgramShape().result(), ShapeUtil::MakeShape(F32, {2}, {0}))); } TEST_F(HloParserTest, InferTupleShape) { constexpr char text[] = R"(HloModule InferTupleShapeTest ENTRY InferTupleShape () -> s32[2,3] { c0 = f32[3]{0} constant({1, 2, 3}) c1 = s32[2,3]{1,0} constant({ { 1, 2, 3 }, { 4, 5, 6 } }) tuple = tuple(c0, c1) ROOT get = get-tuple-element(tuple), index=1, sharding={maximal device=0} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); EXPECT_TRUE(ShapeUtil::Equal( module->entry_computation()->ComputeProgramShape().result(), ShapeUtil::MakeShapeWithDenseLayout(S32, {2, 3}, {1, 0}))); } TEST_F(HloParserTest, InferShapeMixedExplicitShape) { constexpr char text[] = R"(HloModule InferUnaryShapeTest Negate { x = f32[] parameter(0) ROOT negate = negate(x) } Identity { y = f32[] parameter(0) ROOT copy = copy(y) } ENTRY InferUnaryShape { a = f32[] parameter(0) b = f32[] parameter(1) p = pred[] parameter(2) c = f32[] add(a, b) ROOT conditional = conditional(p, a, c), true_computation=Negate, false_computation=Identity } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); EXPECT_TRUE(ShapeUtil::Equal( module->entry_computation()->ComputeProgramShape().result(), ShapeUtil::MakeScalarShape(F32))); } TEST_F(HloParserTest, CheckAliasPassthroughParams) { const char* const hlo_string = R"( HloModule TestModule, alias_passthrough_params=true ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) p1 = f16[2048,1024] parameter(1) ROOT root = (f16[2048,1024], f16[2048,1024]) tuple(p0, p1) } )"; auto result = ParseAndReturnVerifiedModule(hlo_string); TF_EXPECT_OK(result.status()); EXPECT_TRUE(result.value()->config().alias_passthrough_params()); } TEST_F(HloParserTest, CheckReplicaCount) { const char* const hlo_string = R"( HloModule TestModule, replica_count=5 ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) p1 = f16[2048,1024] parameter(1) ROOT root = (f16[2048,1024], f16[2048,1024]) tuple(p0, p1) } )"; auto result = ParseAndReturnVerifiedModule(hlo_string); TF_EXPECT_OK(result.status()); EXPECT_EQ(result.value()->config().replica_count(), 5); } TEST_F(HloParserTest, CheckNumPartitions) { const char* const hlo_string = R"( HloModule TestModule, num_partitions=3 ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) p1 = f16[2048,1024] parameter(1) ROOT root = (f16[2048,1024], f16[2048,1024]) tuple(p0, p1) } )"; auto result = ParseAndReturnVerifiedModule(hlo_string); TF_EXPECT_OK(result.status()); EXPECT_EQ(result.value()->config().num_partitions(), 3); EXPECT_TRUE(result.value()->config().use_spmd_partitioning()); } TEST_F(HloParserTest, CheckFrontendAttributes) { const char* const hlo_string = R"( HloModule TestModule, frontend_attributes={attr_name="attr_value"} ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) p1 = f16[2048,1024] parameter(1) ROOT root = (f16[2048,1024], f16[2048,1024]) tuple(p0, p1) } )"; auto result = ParseAndReturnVerifiedModule(hlo_string); TF_EXPECT_OK(result.status()); EXPECT_EQ(result.value()->frontend_attributes().map().size(), 1); EXPECT_EQ(result.value()->frontend_attributes().map().begin()->first, "attr_name"); EXPECT_EQ(result.value()->frontend_attributes().map().begin()->second, "attr_value"); } TEST_F(HloParserTest, CheckAllowSpmdShardingPropagationToParameters) { const char* const hlo_string = R"( HloModule TestModule, allow_spmd_sharding_propagation_to_parameters=true ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) p1 = f16[2048,1024] parameter(1) ROOT root = (f16[2048,1024], f16[2048,1024]) tuple(p0, p1) } )"; auto result = ParseAndReturnVerifiedModule(hlo_string); TF_EXPECT_OK(result.status()); EXPECT_EQ((*result) ->config() .allow_spmd_sharding_propagation_to_parameters() .size(), 1); EXPECT_TRUE( (*result)->config().allow_spmd_sharding_propagation_to_parameters()[0]); } TEST_F(HloParserTest, CheckAllowSpmdShardingPropagationToParametersVec) { const char* const hlo_string = R"( HloModule TestModule, allow_spmd_sharding_propagation_to_parameters={true,false} ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) p1 = f16[2048,1024] parameter(1) ROOT root = (f16[2048,1024], f16[2048,1024]) tuple(p0, p1) } )"; auto result = ParseAndReturnVerifiedModule(hlo_string); TF_EXPECT_OK(result.status()); EXPECT_EQ((*result) ->config() .allow_spmd_sharding_propagation_to_parameters() .size(), 2); EXPECT_TRUE( (*result)->config().allow_spmd_sharding_propagation_to_parameters()[0]); EXPECT_FALSE( (*result)->config().allow_spmd_sharding_propagation_to_parameters()[1]); } TEST_F(HloParserTest, CheckAllowSpmdShardingPropagationToOutput) { const char* const hlo_string = R"( HloModule TestModule, allow_spmd_sharding_propagation_to_output=true ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) p1 = f16[2048,1024] parameter(1) ROOT root = (f16[2048,1024], f16[2048,1024]) tuple(p0, p1) } )"; auto result = ParseAndReturnVerifiedModule(hlo_string); TF_EXPECT_OK(result.status()); EXPECT_EQ( (*result)->config().allow_spmd_sharding_propagation_to_output().size(), 1); EXPECT_TRUE( (*result)->config().allow_spmd_sharding_propagation_to_output()[0]); } TEST_F(HloParserTest, CheckAllowSpmdShardingPropagationToOutputVec) { const char* const hlo_string = R"( HloModule TestModule, allow_spmd_sharding_propagation_to_output={true,false} ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) p1 = f16[2048,1024] parameter(1) ROOT root = (f16[2048,1024], f16[2048,1024]) tuple(p0, p1) } )"; auto result = ParseAndReturnVerifiedModule(hlo_string); TF_EXPECT_OK(result.status()); EXPECT_EQ( (*result)->config().allow_spmd_sharding_propagation_to_output().size(), 2); EXPECT_TRUE( (*result)->config().allow_spmd_sharding_propagation_to_output()[0]); EXPECT_FALSE( (*result)->config().allow_spmd_sharding_propagation_to_output()[1]); } TEST_F(HloParserTest, NestedBroadcastWithoutDimensionsAttribute) { const char* const hlo_string = R"( HloModule test ENTRY test { ROOT root = sqrt(f32[10,10] broadcast(f32[10] parameter(0))) } )"; auto result = ParseAndReturnVerifiedModule(hlo_string); EXPECT_NE(absl::OkStatus(), result.status()); EXPECT_THAT(result.status().message(), HasSubstr("dimensions")); } TEST_F(HloParserTest, InvalidDimLevelType) { const std::string original = R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:D(X,C)} parameter(0) })"; EXPECT_THAT(ParseAndReturnUnverifiedModule(original).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("expected a DimLevelType abbreviation"))); } TEST_F(HloParserTest, InvalidDimLevelTypeCount) { const std::string original = R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:D(C)} parameter(0) })"; EXPECT_THAT( ParseAndReturnUnverifiedModule(original).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("Dimensions size is 2, but dim level types size is 1"))); } TEST_F(HloParserTest, RejectSparseTiles) { const std::string original = R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)T(128,8)} parameter(0) })"; EXPECT_THAT(ParseAndReturnUnverifiedModule(original).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("Layout has tiles, but is for a sparse array"))); } TEST_F(HloParserTest, RejectDensePhysicalShape) { const std::string original = R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:T(128,8)P(f32[10,10])} parameter(0) })"; EXPECT_THAT( ParseAndReturnUnverifiedModule(original).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr( "Layout has physical shape, but is not for a sparse array"))); } TEST_F(HloParserTest, ParseSingleComputation) { const std::string original = R"( test { ROOT root = f32[1,64,10,128]{1,0,2,3} parameter(0) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(original)); EXPECT_TRUE(module->entry_computation() ->ComputeProgramShape() .parameters()[0] .has_layout()); EXPECT_TRUE( module->entry_computation()->ComputeProgramShape().result().has_layout()); EXPECT_EQ(module->entry_computation() ->ComputeProgramShape() .parameters()[0] .layout(), Layout({1, 0, 2, 3})); EXPECT_EQ( module->entry_computation()->ComputeProgramShape().result().layout(), Layout({1, 0, 2, 3})); } TEST_F(HloParserTest, ParseComputationNameClosingBrace) { const std::string original = R"( test { ROOT root = f32[1,64,10,128]{1,0,2,3} parameter(0) } )"; EXPECT_TRUE(ParseAndReturnUnverifiedModule(original).ok()); } TEST_F(HloParserTest, ParseSingleEntryComputation) { const std::string original = R"( ENTRY test { ROOT root = f32[1,64,10,128]{1,0,2,3} parameter(0) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(original)); EXPECT_TRUE(module->entry_computation() ->ComputeProgramShape() .parameters()[0] .has_layout()); EXPECT_TRUE( module->entry_computation()->ComputeProgramShape().result().has_layout()); EXPECT_EQ(module->entry_computation() ->ComputeProgramShape() .parameters()[0] .layout(), Layout({1, 0, 2, 3})); EXPECT_EQ( module->entry_computation()->ComputeProgramShape().result().layout(), Layout({1, 0, 2, 3})); } TEST_F(HloParserTest, ParseMultiComputations) { const std::string original = R"( comp1 { ROOT root = f32[1,64,10,128]{3,2,1,0} parameter(0) } comp2 { ROOT root = f32[1,64,10,128]{1,0,2,3} parameter(0) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(original)); EXPECT_TRUE(module->entry_computation() ->ComputeProgramShape() .parameters()[0] .has_layout()); EXPECT_TRUE( module->entry_computation()->ComputeProgramShape().result().has_layout()); EXPECT_EQ(module->entry_computation() ->ComputeProgramShape() .parameters()[0] .layout(), Layout({1, 0, 2, 3})); EXPECT_EQ( module->entry_computation()->ComputeProgramShape().result().layout(), Layout({1, 0, 2, 3})); } TEST_F(HloParserTest, ParseMultiComputationsWithEntry) { const std::string original = R"( ENTRY comp1 { ROOT root = f32[1,64,10,128]{1,0,2,3} parameter(0) } comp2 { ROOT root = f32[1,64,10,128]{3,2,1,0} parameter(0) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(original)); EXPECT_TRUE(module->entry_computation() ->ComputeProgramShape() .parameters()[0] .has_layout()); EXPECT_TRUE( module->entry_computation()->ComputeProgramShape().result().has_layout()); EXPECT_EQ(module->entry_computation() ->ComputeProgramShape() .parameters()[0] .layout(), Layout({1, 0, 2, 3})); EXPECT_EQ( module->entry_computation()->ComputeProgramShape().result().layout(), Layout({1, 0, 2, 3})); } TEST_F(HloParserTest, NontrivialAsyncOpRoundTrip) { const std::string original = R"( HloModule module %async_wrapped { %async_param.1 = s32[1024]{0} parameter(0) %copy = s32[1024]{0} copy(s32[1024]{0} %async_param.1) %async_param.2 = s32[256]{0} parameter(1) %async_param.3 = s32[] parameter(2) ROOT %dus = s32[1024]{0} dynamic-update-slice(s32[1024]{0} %copy, s32[256]{0} %async_param.2, s32[] %async_param.3) } ENTRY %main { %input.5 = s32[] parameter(1) %broadcast = s32[1024]{0} broadcast(s32[] %input.5), dimensions={} %input.0 = s32[256]{0} parameter(0) %async-start = ((s32[1024]{0}, s32[256]{0}, s32[]), s32[1024]{0}, u32[]) async-start(%broadcast, %input.0, %input.5), calls=%async_wrapped ROOT %async-done = s32[1024]{0} async-done(((s32[1024]{0}, s32[256]{0}, s32[]), s32[1024]{0}, u32[]) %async-start), calls=%async_wrapped } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(original)); TF_ASSERT_OK_AND_ASSIGN( auto roundtrip_module, ParseAndReturnUnverifiedModule(module->ToString( HloPrintOptions().set_syntax_sugar_async_ops(true)))); auto fp_options = HloPrintOptions::Fingerprint(); EXPECT_EQ(roundtrip_module->ToString(fp_options), module->ToString(fp_options)); } TEST_F(HloParserTest, LexesAsJsonDict) { EXPECT_TRUE(LexesAsJsonDict("{}")); EXPECT_TRUE(LexesAsJsonDict("{abc: 123}")); EXPECT_TRUE(LexesAsJsonDict("{{abc: 123}, {{{d}}}}")); EXPECT_TRUE(LexesAsJsonDict(R"({"}"})")); EXPECT_TRUE(LexesAsJsonDict(R"({"\"}"})")); EXPECT_TRUE(LexesAsJsonDict(R"({"\"{"})")); EXPECT_FALSE(LexesAsJsonDict("")); EXPECT_FALSE(LexesAsJsonDict("{")); EXPECT_FALSE(LexesAsJsonDict("}")); EXPECT_FALSE(LexesAsJsonDict("{{}")); EXPECT_FALSE(LexesAsJsonDict("{}}")); EXPECT_FALSE(LexesAsJsonDict("{}a")); EXPECT_FALSE(LexesAsJsonDict("a{}")); EXPECT_FALSE(LexesAsJsonDict("{{{{}}}")); } TEST_F(HloParserTest, AsyncStartMissingOperandWrapper) { const char* const hlo_string = R"( HloModule Module async_computation { p = f32[2,3] parameter(0) ROOT custom-call = f32[3,2] custom-call(p), custom_call_target="foo" } ENTRY AsyncStartMissingOperandWrapper { p0 = f32[2,3] parameter(0) async-start = (f32[2,3], f32[3,2], s32[]) async-start(p0), calls=async_computation async-update = ((f32[2,3]), f32[3,2], s32[]) async-update(async-start), calls=async_computation ROOT async-done = f32[3,2] async-done(async-update), calls=async_computation } )"; EXPECT_THAT( ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("AsyncStart and AsyncUpdate expect the op shape to be " "in the form of " "((async-operands), async-outputs, state)."))); } TEST_F(HloParserTest, AsyncUpdateMissingOperandWrapper) { const char* const hlo_string = R"( HloModule Module async_computation { p = f32[2,3] parameter(0) ROOT custom-call = f32[3,2] custom-call(p), custom_call_target="foo" } ENTRY AsyncUpdateMissingOperandWrapper { p0 = f32[2,3] parameter(0) async-start = ((f32[2,3]), f32[3,2], s32[]) async-start(p0), calls=async_computation async-update = (f32[2,3], f32[3,2], s32[]) async-update(async-start), calls=async_computation ROOT async-done = f32[3,2] async-done(async-update), calls=async_computation } )"; EXPECT_THAT( ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("AsyncStart and AsyncUpdate expect the op shape to be " "in the form of " "((async-operands), async-outputs, state)."))); } TEST_F(HloParserTest, AsyncOpTupleWrongType) { const char* const hlo_string = R"( HloModule Module async_computation { p = f32[2,3] parameter(0) ROOT custom-call = f32[3,2] custom-call(p), custom_call_target="foo" } ENTRY AsyncStartAndAsyncDone { p0 = f32[2,3] parameter(0) async-start = ((f32[2,3])) async-start(p0), calls=async_computation ROOT async-done = f32[3,2] async-done(async-start), calls=async_computation } )"; EXPECT_THAT( ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("AsyncStart and AsyncUpdate expect the op shape to be " "in the form of " "((async-operands), async-outputs, state)."))); } TEST_F(HloParserTest, AsyncDoneNoAsyncStart) { const char* const hlo_string = R"( HloModule Module ENTRY AsyncStartAndAsyncDone { p0 = f32[2,3] parameter(0) p1 = u32[] parameter(1) tuple = ((f32[2,3]), f32[2,3], u32[]) tuple(p0, p0, p1) ROOT async-done = f32[2,3] custom-call-done(tuple) } )"; EXPECT_THAT( ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("AsyncUpdate and AsyncDone expect their operand to be " "the previous async op."))); } TEST_F(HloParserTest, AsyncUpdateAndAsyncDoneNoAsyncStart) { const char* const hlo_string = R"( HloModule Module ENTRY AsyncStartAndAsyncDone { p0 = f32[2,3] parameter(0) p1 = u32[] parameter(1) tuple = ((f32[2,3]), f32[2,3], u32[]) tuple(p0, p0, p1) async-update = ((f32[2,3]), f32[2,3], u32[]) custom-call-update(tuple) ROOT async-done = f32[2,3] custom-call-done(tuple) } )"; EXPECT_THAT( ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("AsyncUpdate and AsyncDone expect their operand to be " "the previous async op."))); } TEST_F(HloParserTest, AsyncUpdateWithSyntaxSugarWrongOp) { const char* const hlo_string = R"( HloModule AsyncUpdateWithSyntaxSugarWrongOp ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %async-start = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-start(f32[10]{0} %p0), custom_call_target="foo" %async-update = ((f32[10]{0}), f32[20]{0}, s32[]) add-update(((f32[10]{0}), f32[20]{0}, s32[]) %async-start) ROOT %async-done = f32[20]{0} custom-call-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-update) } )"; EXPECT_THAT(ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("Expect async wrapped opcode to be custom-call, " "but got add"))); } TEST_F(HloParserTest, AsyncDoneWithSyntaxSugarWrongOp) { const char* const hlo_string = R"( HloModule AsyncUpdateWithSyntaxSugarWrongOp ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %async-start = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-start(f32[10]{0} %p0), custom_call_target="foo" %async-update = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-update(((f32[10]{0}), f32[20]{0}, s32[]) %async-start) ROOT %async-done = f32[20]{0} add-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-update) } )"; EXPECT_THAT(ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("Expect async wrapped opcode to be custom-call, " "but got add"))); } TEST_F(HloParserTest, AsyncOpSharedComputation) { const char* const hlo_string = R"( HloModule AsyncOpSharedComputation %async_wrapped (async_param: f32[10]) -> f32[20] { %async_param = f32[10]{0} parameter(0) ROOT %call = f32[20]{0} custom-call(f32[10]{0} %async_param), custom_call_target="foo" } ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %async-start.0 = ((f32[10]{0}), f32[20]{0}, s32[]) async-start(f32[10]{0} %p0), calls=%async_wrapped %async-done.0 = f32[20]{0} async-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-start.0) %async-start.1 = ((f32[10]{0}), f32[20]{0}, s32[]) async-start(f32[10]{0} %p0), calls=%async_wrapped ROOT %async-done.1 = f32[20]{0} async-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-start.1) } )"; EXPECT_THAT(ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("Computation async_wrapped is already referenced " "by another async op"))); } TEST_F(HloParserTest, AsyncUpdateWrongComputation) { const char* const hlo_string = R"( HloModule AsyncUpdateWrongComputation %async_wrapped.0 (async_param: f32[10]) -> f32[20] { %async_param = f32[10]{0} parameter(0) ROOT %custom-call = f32[20]{0} custom-call(f32[10]{0} %async_param), custom_call_target="foo" } %async_wrapped.1 (async_param: f32[10]) -> f32[20] { %async_param = f32[10]{0} parameter(0) ROOT %custom-call = f32[20]{0} custom-call(f32[10]{0} %async_param), custom_call_target="foo" } ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %async-start = ((f32[10]{0}), f32[20]{0}, s32[]) async-start(f32[10]{0} %p0), calls=%async_wrapped.0 %async-update = ((f32[10]{0}), f32[20]{0}, s32[]) async-update(((f32[10]{0}), f32[20]{0}, s32[]) %async-start), calls=%async_wrapped.1 ROOT %async-done = f32[20]{0} async-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-update) } )"; EXPECT_THAT( ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("Expect async_wrapped_computation to be async_wrapped.0, " "but got async_wrapped.1"))); } TEST_F(HloParserTest, AsyncDoneWrongComputation) { const char* const hlo_string = R"( HloModule AsyncDoneWrongComputation %async_wrapped.0 (async_param: f32[10]) -> f32[20] { %async_param = f32[10]{0} parameter(0) ROOT %custom-call = f32[20]{0} custom-call(f32[10]{0} %async_param), custom_call_target="foo" } %async_wrapped.1 (async_param: f32[10]) -> f32[20] { %async_param = f32[10]{0} parameter(0) ROOT %custom-call = f32[20]{0} custom-call(f32[10]{0} %async_param), custom_call_target="foo" } ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %async-start = ((f32[10]{0}), f32[20]{0}, s32[]) async-start(f32[10]{0} %p0), calls=%async_wrapped.0 %async-update = ((f32[10]{0}), f32[20]{0}, s32[]) async-update(((f32[10]{0}), f32[20]{0}, s32[]) %async-start) ROOT %async-done = f32[20]{0} async-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-update), calls=%async_wrapped.1 } )"; EXPECT_THAT( ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("Expect async_wrapped_computation to be async_wrapped.0, " "but got async_wrapped.1"))); } TEST_F(HloParserTest, AsyncUpdateWrongDefaultThread) { const char* const hlo_string = R"( HloModule AsyncUpdateWrongDefaultThread ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %async-start = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-start(f32[10]{0} %p0), custom_call_target="foo" %async-update = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-update(((f32[10]{0}), f32[20]{0}, s32[]) %async-start), async_execution_thread="foo_thread" ROOT %async-done = f32[20]{0} custom-call-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-update) } )"; EXPECT_THAT(ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("Expect async_execution_thread to be main, " "but got foo_thread"))); } TEST_F(HloParserTest, AsyncDoneWrongDefaultThread) { const char* const hlo_string = R"( HloModule AsyncDoneWrongDefaultThread ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %async-start = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-start(f32[10]{0} %p0), custom_call_target="foo" %async-update = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-update(((f32[10]{0}), f32[20]{0}, s32[]) %async-start) ROOT %async-done = f32[20]{0} custom-call-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-update), async_execution_thread="foo_thread" } )"; EXPECT_THAT(ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("Expect async_execution_thread to be main, " "but got foo_thread"))); } TEST_F(HloParserTest, PipelinedSendRecv) { const std::string hlo_string = R"( HloModule test cond { param = (u32[], (u32[2], u32[], token[]), (u32[2], u32[], token[])) parameter(0) count = get-tuple-element(%param), index=0 ub = u32[] constant(1) ROOT result = pred[] compare(count, ub), direction=LT } body { param = (u32[], (u32[2], u32[], token[]), (u32[2], u32[], token[])) parameter(0) count = get-tuple-element(%param), index=0 recv.0 = (u32[2], u32[], token[]) get-tuple-element(param), index=1 recv-done.0 = (u32[2], token[]) recv-done(recv.0), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } recv-data.0 = u32[2] get-tuple-element(recv-done.0), index=0 c1 = u32[] constant(1) new_count = u32[] add(count, c1) send.0 = (u32[2], u32[], token[]) get-tuple-element(param), index=2 send-done.0 = (u32[2], token[]) recv-done(send.0), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } after-all.0.n = token[] after-all() recv.0.n = (u32[2], u32[], token[]) recv(after-all.0.n), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1,0}}", _xla_send_recv_pipeline="0" } after-all.1.n = token[] after-all() send.0.n = (u32[2], u32[], token[]) send(recv-data.0, after-all.1.n), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1,0}}", _xla_send_recv_pipeline="0" } ROOT result = (u32[], (u32[2], u32[], token[]), (u32[2], u32[], token[])) tuple(new_count, recv.0.n, send.0.n) } ENTRY test_computation { c0 = u32[] constant(0) init = u32[2] broadcast(c0), dimensions={} after-all.0.p = token[] after-all() recv.0.p = (u32[2], u32[], token[]) recv(after-all.0.p), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1,0}}", _xla_send_recv_pipeline="0" } after-all.1.p = token[] after-all() send.0.p = (u32[2], u32[], token[]) send(init, after-all.1.p), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1,0}}", _xla_send_recv_pipeline="0" } while_init = (u32[], (u32[2], u32[], token[]), (u32[2], u32[], token[])) tuple(c0, recv.0.p, send.0.p) while_result = (u32[], (u32[2], u32[], token[]), (u32[2], u32[], token[])) while(while_init), body=body, condition=cond recv.0.q = (u32[2], u32[], token[]) get-tuple-element(while_result), index=1 recv-done.0.q = (u32[2], token[]) recv-done(recv.0.q), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send.0.q = (u32[2], u32[], token[]) get-tuple-element(while_result), index=2 send-done.0.q = token[] send-done(send.0.q), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } ROOT recv-data.0.q = u32[2] get-tuple-element(recv-done.0.q), index=0 })"; auto result = ParseAndReturnUnverifiedModule(hlo_string); EXPECT_EQ(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, ReplicaIdWithLayout) { const char* const hlo_string = R"( HloModule ReplicaId ENTRY ReplicaId { ROOT replica-id.18600 = u32[]{:T(128)} replica-id() } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(hlo_string)); EXPECT_TRUE( module->entry_computation()->root_instruction()->shape().has_layout()); EXPECT_FALSE(module->entry_computation() ->root_instruction() ->shape() .layout() .tiles() .empty()); } TEST_F(HloParserTest, OriginalValueWithoutShape) { const std::string hlo_string = R"(HloModule test ENTRY %test { %a = f32[2,10]{1,0} parameter(0), origin={{"a"}} ROOT %v = abs(%a), origin={{"v"}} } )"; EXPECT_THAT(ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("expects instruction shape"))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/parser/hlo_parser.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/parser/hlo_parser_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b24371fc-a9b3-45b6-b90e-9778a16abea8
cpp
tensorflow/tensorflow
hlo_constant_splitter
third_party/xla/xla/hlo/transforms/hlo_constant_splitter.cc
third_party/xla/xla/hlo/transforms/hlo_constant_splitter_test.cc
#include "xla/hlo/transforms/hlo_constant_splitter.h" #include <iterator> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { bool IsSupportedConstant(const HloInstruction* instruction, bool split_expressions) { return instruction->opcode() == HloOpcode::kConstant || (split_expressions && instruction->opcode() == HloOpcode::kIota); } bool IsSupportedConstantExpression(const HloInstruction* instruction) { if (instruction->HasSideEffect()) { return false; } if (instruction->IsElementwise()) { return true; } switch (instruction->opcode()) { case HloOpcode::kBroadcast: case HloOpcode::kSlice: return true; default: return false; } } absl::StatusOr<bool> DuplicateConstantExpressionPerUser( HloComputation* computation, HloInstruction* to_clone, HloInstruction* user) { absl::InlinedVector<std::pair<const HloInstruction*, int>, 8> worklist( 1, std::make_pair(to_clone, 0)); absl::InlinedVector<const HloInstruction*, 8> to_clone_vec; absl::flat_hash_set<const HloInstruction*> visited; bool changed = false; VLOG(10) << "Duplicating: " << to_clone->ToString() << " for user " << user->ToString(); while (!worklist.empty()) { auto& [to_clone_i, index] = worklist.back(); if (index >= to_clone_i->operand_count()) { to_clone_vec.push_back(to_clone_i); worklist.pop_back(); continue; } int64_t prev_idx = index++; if (visited.insert(to_clone_i->operands()[prev_idx]).second) { VLOG(10) << "Adding operand to worklist: " << to_clone_i->operands()[prev_idx]->ToString(); worklist.push_back(std::make_pair(to_clone_i->operands()[prev_idx], 0)); } } absl::flat_hash_map<const HloInstruction*, HloInstruction*> cloned_instructions_map; for (auto* i : to_clone_vec) { absl::InlinedVector<HloInstruction*, 4> new_operand_vector; for (auto* op : i->operands()) { auto it = cloned_instructions_map.find(op); CHECK(it != cloned_instructions_map.end()) << "Expected already cloned instruction for operand: " << op->ToString() << " Instruction to clone: " << i->ToString(); new_operand_vector.push_back(it->second); } HloInstruction* cloned_instr = computation->AddInstruction( i->CloneWithNewOperands(i->shape(), new_operand_vector)); cloned_instructions_map[i] = cloned_instr; if (i == to_clone) { TF_RETURN_IF_ERROR(to_clone->ReplaceUseWith(user, cloned_instr)); changed = true; } } return changed; } } absl::StatusOr<bool> HloConstantSplitter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* computation : module->computations(execution_threads)) { absl::flat_hash_set<HloInstruction*> constants_set; std::vector<HloInstruction*> constants_list; std::vector<HloInstruction*> worklist; for (HloInstruction* instruction : computation->MakeInstructionPostOrder()) { VLOG(10) << "Considering: " << instruction->ToString(); if (IsSupportedConstant(instruction, split_expressions_) && extra_constraints_(instruction)) { VLOG(10) << "Adding to constant list: " << instruction->ToString(); constants_set.insert(instruction); constants_list.push_back(instruction); } } int64_t previous_total_constants = 0; while (constants_list.size() != previous_total_constants) { VLOG(10) << "Previous total: " << previous_total_constants << " current constants: " << constants_list.size(); previous_total_constants = constants_list.size(); worklist.clear(); worklist.insert(worklist.end(), constants_list.begin(), constants_list.end()); while (!worklist.empty()) { auto* i = worklist.back(); worklist.pop_back(); bool is_constant = true; for (auto* ops : i->operands()) { if (!constants_set.contains(ops)) { is_constant = false; break; } } if (is_constant) { if (constants_set.insert(i).second) { constants_list.push_back(i); } if (split_expressions_) { for (auto* u : i->users()) { if (IsSupportedConstantExpression(u) && !constants_set.contains(u)) { worklist.push_back(u); } } } } } } if (VLOG_IS_ON(5)) { VLOG(5) << "For computation: " << computation->ToString(); for (HloInstruction* instruction : constants_list) { VLOG(5) << "Is a constant: " << instruction->ToString(); } } for (HloInstruction* instruction : constants_list) { if (IsSupportedConstant(instruction, split_expressions_) && instruction->user_count() <= 1) { continue; } absl::InlinedVector<HloInstruction*, 8> users; users.reserve(instruction->user_count()); for (HloInstruction* user : instruction->users()) { if (instruction->opcode() == HloOpcode::kConstant || !constants_set.contains(user)) { users.push_back(user); } } for (auto* u : users) { TF_ASSIGN_OR_RETURN(bool duplicated, DuplicateConstantExpressionPerUser( computation, instruction, u)); changed |= duplicated; } } } return changed; } }
#include "xla/hlo/transforms/hlo_constant_splitter.h" #include <cstdint> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_parser.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using HloConstantSplitterTest = HloTestBase; TEST_F(HloConstantSplitterTest, SplitConstants) { const char* module_str = R"( HloModule test_module ENTRY entry_computation { param = (f32[], f32[]) parameter(0), sharding={{maximal device=0}, {maximal device=0}} gte0 = f32[] get-tuple-element(param), index=0 gte1 = f32[] get-tuple-element(param), index=1 constant = f32[] constant(94.1934) add1 = f32[] add(constant, gte0) add2 = f32[] add(constant, gte1) ROOT root = (f32[], f32[], f32[]) tuple(constant, add1, add2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(module_str)); TF_ASSERT_OK(HloConstantSplitter().Run(module.get()).status()); for (HloComputation* computation : module->computations()) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kConstant) { EXPECT_LE(instruction->user_count(), 1); } } } } TEST_F(HloConstantSplitterTest, OnlySplitConstantsAllowedBySeedConstraints) { const char* module_str = R"( HloModule test_module ENTRY entry_computation { param = (f32[], f32[]) parameter(0), sharding={{maximal device=0}, {maximal device=0}} gte0 = f32[] get-tuple-element(param), index=0 gte1 = f32[] get-tuple-element(param), index=1 constant1 = f32[] constant(1) add0 = f32[] add(constant1, gte0) add1 = f32[] add(constant1, add0) constant2 = f32[] constant(2) add2 = f32[] multiply(constant2, gte1) ROOT root = (f32[], f32[], f32[]) tuple(constant2, add1, add2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(module_str)); TF_ASSERT_OK(HloConstantSplitter( false, [](const HloInstruction* instruction) { return instruction->name() != "constant1"; }) .Run(module.get()) .status()); for (HloComputation* computation : module->computations()) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kConstant && instruction->name() != "constant1") { EXPECT_LE(instruction->user_count(), 1); } } } const HloInstruction* constant1 = FindInstruction(module.get(), "constant1"); ASSERT_NE(constant1, nullptr); EXPECT_EQ(constant1->user_count(), 2); } TEST_F(HloConstantSplitterTest, PreservingConstantsWithZeroUsers) { const char* module_str = R"( HloModule test_module ENTRY entry_computation { param = (f32[], f32[]) parameter(0), sharding={{maximal device=0}, {maximal device=0}} gte0 = f32[] get-tuple-element(param), index=0 gte1 = f32[] get-tuple-element(param), index=1 constant1 = f32[] constant(94.1934) constant2 = f32[] constant(9.1934) ROOT root = (f32[], f32[]) tuple(gte0, gte1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(module_str)); HloConstantSplitter pass = HloConstantSplitter(); const auto status_or = HloTestBase::RunHloPass(&pass, module.get()); TF_ASSERT_OK(status_or.status()); EXPECT_FALSE(status_or.value()); } TEST_F(HloConstantSplitterTest, SplittingExpressionsWithBroadcast) { const char* module_str = R"( HloModule test_module ENTRY entry_computation { gte0 = f32[1024] parameter(0) gte1 = f32[1024] parameter(1) constant1 = f32[1024] iota(), iota_dimension=0 constant2 = f32[] constant(9.1934) constant3 = f32[] constant(0.0) constant4 = f32[] constant(1.0) b = f32[1024] broadcast(constant2), dimensions={} b2 = f32[1024] broadcast(constant3), dimensions={} b3 = f32[1024] broadcast(constant4), dimensions={} cmp = pred[1024] compare(constant1, b), direction=LT s = f32[1024] select(cmp, b2, b3) a1 = f32[1024] add(s, gte0) a2 = f32[1024] add(s, gte1) ROOT root = (f32[1024], f32[1024]) tuple(a1, a2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(module_str)); HloConstantSplitter pass = HloConstantSplitter(true); const auto status_or = HloTestBase::RunHloPass(&pass, module.get()); TF_ASSERT_OK(status_or.status()); EXPECT_TRUE(status_or.value()); HloDCE dce; TF_ASSERT_OK(dce.Run(module.get()).status()); XLA_VLOG_LINES(1, module->entry_computation()->ToString()); EXPECT_EQ(module->entry_computation()->instruction_count(), 23); } TEST_F(HloConstantSplitterTest, SplittingExpressionsWithSlice) { const char* module_str = R"( HloModule test_module ENTRY entry_computation { iota.0 = u32[64] iota(), iota_dimension=0 slice.0 = u32[32] slice(iota.0), slice={[0:32]} broadcast.0 = u32[16,32] broadcast(slice.0), dimensions={1} broadcast.1 = u32[32,32] broadcast(slice.0), dimensions={1} p.0 = u32[16,32] parameter(0) p.1 = u32[32,32] parameter(1) add.0 = u32[16,32] add(p.0, broadcast.0) add.1 = u32[32,32] add(p.1, broadcast.1) ROOT root = (u32[16,32], u32[32,32]) tuple(add.0, add.1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(module_str)); HloConstantSplitter pass = HloConstantSplitter(true); const auto status_or = HloTestBase::RunHloPass(&pass, module.get()); TF_ASSERT_OK(status_or.status()); EXPECT_TRUE(status_or.value()); HloDCE dce; TF_ASSERT_OK(dce.Run(module.get()).status()); XLA_VLOG_LINES(1, module->entry_computation()->ToString()); EXPECT_EQ(module->entry_computation()->instruction_count(), 11); } TEST_F(HloConstantSplitterTest, NoSplittingSideEffectExpressions) { const char* module_str = R"( HloModule test_module ENTRY entry_computation { gte0 = f32[1024] parameter(0) gte1 = f32[1024] parameter(1) constant1 = f32[1024] iota(), iota_dimension=0 constant2 = f32[] constant(9.1934) constant3 = f32[] constant(0.0) constant4 = f32[] constant(0.0) constant5 = f32[] constant(1.0) b = f32[1024] broadcast(constant2), dimensions={} b2 = f32[1024] broadcast(constant3), dimensions={} rng = f32[] rng(constant4, constant5), distribution=rng_uniform b3 = f32[1024] broadcast(rng), dimensions={} cmp = pred[1024] compare(constant1, b), direction=LT s = f32[1024] select(cmp, b2, b3) a1 = f32[1024] add(s, gte0) a2 = f32[1024] add(s, gte1) ROOT root = (f32[1024], f32[1024]) tuple(a1, a2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(module_str)); HloConstantSplitter pass = HloConstantSplitter(true); const int64_t count_before = module->entry_computation()->instruction_count(); TF_ASSERT_OK_AND_ASSIGN(bool changed, HloTestBase::RunHloPass(&pass, module.get())); HloDCE dce; TF_ASSERT_OK(dce.Run(module.get()).status()); const int64_t count_after_dce = module->entry_computation()->instruction_count(); EXPECT_TRUE(changed); EXPECT_EQ(count_before, count_after_dce); int64_t rng_count = 0; for (HloInstruction* instruction : module->entry_computation()->instructions()) { if (instruction->opcode() == HloOpcode::kRng) { rng_count++; } } EXPECT_EQ(rng_count, 1); } TEST_F(HloConstantSplitterTest, InstructionsWithOneUser) { const char* module_str = R"( HloModule test_module, entry_computation_layout={(f32[1024]{0:T(512)})->f32[1024]{0:T(512)}} reduce.add { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add = f32[] add(a, b) } ENTRY entry_computation { constant1 = f32[] constant(1.1) b1 = f32[1024]{0} broadcast(constant1), dimensions={} iota.1 = f32[1024]{0} iota(), iota_dimension=0 add.1 = f32[1024]{0} add(b1, iota.1) p0 = f32[1024]{0} parameter(0), sharding={devices=[4]0,1,2,3} custom-call.0 = f32[256]{0} custom-call(p0), custom_call_target="SPMDFullToShardShape", sharding={manual} constant0 = f32[] constant(0) reduce.1 = f32[] reduce(custom-call.0, constant0), dimensions={0}, to_apply=reduce.add b3 = f32[1024]{0} broadcast(reduce.1), dimensions={} add.2 = f32[1024]{0} add(add.1, b3) custom-call.1 = f32[4096]{0} custom-call(add.2), custom_call_target="SPMDShardToFullShape", sharding={devices=[4]0,1,2,3} reshape = f32[4,1024]{1,0} reshape(custom-call.1) reduce.2 = f32[1024]{0} reduce(reshape, constant0), dimensions={0}, to_apply=reduce.add iota.2 = f32[1024]{0} iota(), iota_dimension=0 mul = f32[1024]{0} multiply(b1, iota.2) ROOT sub = f32[1024]{0} subtract(reduce.2, mul), sharding={devices=[4]0,1,2,3} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(module_str)); HloConstantSplitter pass = HloConstantSplitter(true); TF_ASSERT_OK_AND_ASSIGN(bool changed, HloTestBase::RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); int64_t broadcast_count_before_dce = 0, broadcast_count_after_dce = 0; for (HloInstruction* instruction : module->entry_computation()->instructions()) { if (instruction->opcode() == HloOpcode::kBroadcast) { broadcast_count_before_dce++; } } EXPECT_EQ(broadcast_count_before_dce, 4); HloDCE dce; TF_ASSERT_OK(dce.Run(module.get()).status()); for (HloInstruction* instruction : module->entry_computation()->instructions()) { if (instruction->opcode() == HloOpcode::kBroadcast) { broadcast_count_after_dce++; } } EXPECT_EQ(broadcast_count_after_dce, 3); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/transforms/hlo_constant_splitter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/transforms/hlo_constant_splitter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea