ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
48
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
13
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
78
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
93
203
Commit Hash
stringclasses
13 values
0dc90f43-3fd2-43ff-b407-9a4a3aaa2aa1
cpp
tensorflow/tensorflow
shape_tree
third_party/xla/xla/shape_tree.cc
third_party/xla/xla/shape_tree_test.cc
#include "xla/shape_tree.h" #include <cstddef> #include <cstdint> #include "xla/shape.h" #include "xla/shape_util.h" #include "tsl/platform/logging.h" namespace xla { namespace internal { IndexTable::IndexTable(const Shape& shape) : entries_(1) { size_t next_node_id = 0; CreateEntry(entries_[0], shape, next_node_id); } void IndexTable::CreateEntry(Entry& entry, const Shape& shape, size_t& next_node_id) { entry.node_id = next_node_id++; if (!shape.IsTuple()) return; size_t children_start_id = entries_.size(); entry.children_start_id = children_start_id; entries_.resize(entries_.size() + shape.tuple_shapes_size()); for (size_t i = 0; i < shape.tuple_shapes_size(); ++i) { CreateEntry(entries_[children_start_id + i], shape.tuple_shapes(i), next_node_id); } } const IndexTable::Entry& IndexTable::operator[](ShapeIndexView index) const { const Entry* result = &entries_.front(); for (int64_t i : index) { CHECK_GE(result->children_start_id, 0); result = &entries_[result->children_start_id + i]; } return *result; } } }
#include "xla/shape_tree.h" #include <iterator> #include <memory> #include <utility> #include <vector> #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/xla_data.pb.h" #include "tsl/platform/test_benchmark.h" namespace xla { namespace { class ShapeTreeTest : public ::testing::Test { protected: ShapeTreeTest() { array_shape_ = ShapeUtil::MakeShape(F32, {42, 42, 123}); tuple_shape_ = ShapeUtil::MakeTupleShape({array_shape_, array_shape_, array_shape_}); nested_tuple_shape_ = ShapeUtil::MakeTupleShape( {array_shape_, ShapeUtil::MakeTupleShape({array_shape_, array_shape_}), ShapeUtil::MakeTupleShape( {ShapeUtil::MakeTupleShape({array_shape_, array_shape_}), array_shape_})}); } void TestShapeConstructor(const Shape& shape, int expected_num_nodes); void TestInitValueConstructor(const Shape& shape, int expected_num_nodes); Shape array_shape_; Shape tuple_shape_; Shape nested_tuple_shape_; }; TEST_F(ShapeTreeTest, DefaultConstructor) { ShapeTree<int> int_tree; EXPECT_TRUE(ShapeUtil::IsEmptyTuple(int_tree.shape())); ShapeTree<bool> bool_tree; EXPECT_TRUE(ShapeUtil::IsEmptyTuple(bool_tree.shape())); } void ShapeTreeTest::TestShapeConstructor(const Shape& shape, int expected_num_nodes) { ShapeTree<int> int_tree(shape); int num_nodes = 0; int_tree.ForEachElement([&num_nodes](const ShapeIndex& , int data) { EXPECT_EQ(0, data); ++num_nodes; }); EXPECT_EQ(expected_num_nodes, num_nodes); ShapeTree<bool> bool_tree(shape); num_nodes = 0; bool_tree.ForEachElement( [&num_nodes](const ShapeIndex& , bool data) { EXPECT_EQ(false, data); ++num_nodes; }); EXPECT_EQ(expected_num_nodes, num_nodes); } TEST_F(ShapeTreeTest, ShapeConstructor) { TestShapeConstructor(array_shape_, 1); TestShapeConstructor(tuple_shape_, 4); TestShapeConstructor(nested_tuple_shape_, 10); } void ShapeTreeTest::TestInitValueConstructor(const Shape& shape, int expected_num_nodes) { ShapeTree<int> tree(shape, 42); int num_nodes = 0; tree.ForEachElement([&num_nodes](const ShapeIndex& , int data) { EXPECT_EQ(42, data); ++num_nodes; }); EXPECT_EQ(expected_num_nodes, num_nodes); num_nodes = 0; tree.ForEachMutableElement( [&num_nodes](const ShapeIndex& , int* data) { EXPECT_EQ(42, *data); *data = num_nodes; ++num_nodes; }); EXPECT_EQ(expected_num_nodes, num_nodes); num_nodes = 0; tree.ForEachElement([&num_nodes](const ShapeIndex& , int data) { EXPECT_EQ(num_nodes, data); ++num_nodes; }); EXPECT_EQ(expected_num_nodes, num_nodes); } TEST_F(ShapeTreeTest, InitValueConstructor) { TestInitValueConstructor(array_shape_, 1); TestInitValueConstructor(tuple_shape_, 4); TestInitValueConstructor(nested_tuple_shape_, 10); } TEST_F(ShapeTreeTest, EmptyTupleMustHaveNoLeaves) { ShapeTree<int> shape_tree{ShapeUtil::MakeTupleShape({})}; EXPECT_EQ(0, shape_tree.leaf_count()); } TEST_F(ShapeTreeTest, NestedEmptyTuple) { Shape shape( ShapeUtil::MakeTupleShape({ShapeUtil::MakeTupleShape({}), array_shape_})); ShapeTree<int> shape_tree{shape}; EXPECT_EQ(ShapeUtil::GetLeafCount(shape), shape_tree.leaf_count()); } TEST_F(ShapeTreeTest, ArrayShape) { ShapeTree<int> shape_tree{array_shape_}; *shape_tree.mutable_element({}) = 42; EXPECT_EQ(42, shape_tree.element({})); *shape_tree.mutable_element({}) = 123; EXPECT_EQ(123, shape_tree.element({})); EXPECT_TRUE(ShapeUtil::Compatible(array_shape_, shape_tree.shape())); ShapeTree<int> copy{shape_tree}; EXPECT_EQ(123, copy.element({})); *copy.mutable_element({}) = 99; EXPECT_EQ(99, copy.element({})); EXPECT_EQ(123, shape_tree.element({})); copy = shape_tree; EXPECT_EQ(123, copy.element({})); } TEST_F(ShapeTreeTest, TupleShape) { ShapeTree<int> shape_tree{tuple_shape_}; *shape_tree.mutable_element({}) = 1; *shape_tree.mutable_element({0}) = 42; *shape_tree.mutable_element({1}) = 123; *shape_tree.mutable_element({2}) = -100; EXPECT_EQ(1, shape_tree.element({})); EXPECT_EQ(42, shape_tree.element({0})); EXPECT_EQ(123, shape_tree.element({1})); EXPECT_EQ(-100, shape_tree.element({2})); EXPECT_TRUE(ShapeUtil::Compatible(tuple_shape_, shape_tree.shape())); int sum = 0; shape_tree.ForEachElement( [&sum](const ShapeIndex& , int data) { sum += data; }); EXPECT_EQ(66, sum); ShapeTree<int> copy{shape_tree}; EXPECT_EQ(1, copy.element({})); EXPECT_EQ(42, copy.element({0})); EXPECT_EQ(123, copy.element({1})); EXPECT_EQ(-100, copy.element({2})); shape_tree.ForEachMutableElement( [](const ShapeIndex& , int* data) { *data = 0; }); EXPECT_EQ(0, shape_tree.element({})); EXPECT_EQ(0, shape_tree.element({0})); EXPECT_EQ(0, shape_tree.element({1})); EXPECT_EQ(0, shape_tree.element({2})); EXPECT_EQ(1, copy.element({})); EXPECT_EQ(42, copy.element({0})); EXPECT_EQ(123, copy.element({1})); EXPECT_EQ(-100, copy.element({2})); copy = shape_tree; EXPECT_EQ(0, copy.element({})); EXPECT_EQ(0, copy.element({0})); EXPECT_EQ(0, copy.element({1})); EXPECT_EQ(0, copy.element({2})); } TEST_F(ShapeTreeTest, NestedTupleShape) { ShapeTree<int> shape_tree{nested_tuple_shape_}; *shape_tree.mutable_element({0}) = 42; *shape_tree.mutable_element({1, 1}) = 123; *shape_tree.mutable_element({2, 0, 1}) = -100; EXPECT_EQ(42, shape_tree.element({0})); EXPECT_EQ(123, shape_tree.element({1, 1})); EXPECT_EQ(-100, shape_tree.element({2, 0, 1})); EXPECT_TRUE(ShapeUtil::Compatible(nested_tuple_shape_, shape_tree.shape())); ShapeTree<int> copy{shape_tree}; EXPECT_EQ(42, copy.element({0})); EXPECT_EQ(123, copy.element({1, 1})); EXPECT_EQ(-100, copy.element({2, 0, 1})); *copy.mutable_element({0}) = 1; *copy.mutable_element({1, 1}) = 2; *copy.mutable_element({2, 0, 1}) = 3; EXPECT_EQ(1, copy.element({0})); EXPECT_EQ(2, copy.element({1, 1})); EXPECT_EQ(3, copy.element({2, 0, 1})); EXPECT_EQ(42, shape_tree.element({0})); EXPECT_EQ(123, shape_tree.element({1, 1})); EXPECT_EQ(-100, shape_tree.element({2, 0, 1})); copy = shape_tree; EXPECT_EQ(42, copy.element({0})); EXPECT_EQ(123, copy.element({1, 1})); EXPECT_EQ(-100, copy.element({2, 0, 1})); } TEST_F(ShapeTreeTest, InvalidIndexingTuple) { ShapeTree<int> shape_tree{tuple_shape_}; #ifndef NDEBUG EXPECT_DEATH(shape_tree.element({4}), ""); #endif } TEST_F(ShapeTreeTest, InvalidIndexingNestedTuple) { ShapeTree<int> shape_tree{nested_tuple_shape_}; #ifndef NDEBUG EXPECT_DEATH(shape_tree.element({0, 0}), ""); #endif } TEST_F(ShapeTreeTest, ShapeTreeOfNonCopyableType) { ShapeTree<std::unique_ptr<int>> shape_tree{tuple_shape_}; EXPECT_EQ(shape_tree.element({2}).get(), nullptr); *shape_tree.mutable_element({2}) = std::make_unique<int>(42); EXPECT_EQ(*shape_tree.element({2}), 42); } TEST_F(ShapeTreeTest, CopySubtreeFromArrayShape) { ShapeTree<int> source(array_shape_); *source.mutable_element({}) = 42; ShapeTree<int> destination(array_shape_, 123); EXPECT_EQ(destination.element({}), 123); destination.CopySubtreeFrom(source, {}, {}); EXPECT_EQ(destination.element({}), 42); } TEST_F(ShapeTreeTest, FullCopySubtreeFromTupleShape) { ShapeTree<int> source(tuple_shape_); *source.mutable_element({}) = 10; *source.mutable_element({0}) = 11; *source.mutable_element({1}) = 12; *source.mutable_element({2}) = 13; ShapeTree<int> destination(tuple_shape_, 0); destination.CopySubtreeFrom(source, {}, {}); EXPECT_EQ(destination.element({}), 10); EXPECT_EQ(destination.element({0}), 11); EXPECT_EQ(destination.element({1}), 12); EXPECT_EQ(destination.element({2}), 13); } TEST_F(ShapeTreeTest, SingleElementCopySubtreeFromTupleShape) { ShapeTree<int> source(tuple_shape_); *source.mutable_element({}) = 10; *source.mutable_element({0}) = 11; *source.mutable_element({1}) = 12; *source.mutable_element({2}) = 13; ShapeTree<int> destination(tuple_shape_, 0); destination.CopySubtreeFrom(source, {0}, {1}); EXPECT_EQ(destination.element({}), 0); EXPECT_EQ(destination.element({0}), 0); EXPECT_EQ(destination.element({1}), 11); EXPECT_EQ(destination.element({2}), 0); } TEST_F(ShapeTreeTest, CopySubtreeIntoNestedShape) { ShapeTree<int> source( ShapeUtil::MakeTupleShape({array_shape_, array_shape_})); *source.mutable_element({}) = 10; *source.mutable_element({0}) = 11; *source.mutable_element({1}) = 12; ShapeTree<int> destination(nested_tuple_shape_, 0); destination.CopySubtreeFrom(source, {}, {2, 0}); EXPECT_EQ(destination.element({}), 0); EXPECT_EQ(destination.element({0}), 0); EXPECT_EQ(destination.element({1}), 0); EXPECT_EQ(destination.element({1, 0}), 0); EXPECT_EQ(destination.element({1, 1}), 0); EXPECT_EQ(destination.element({2}), 0); EXPECT_EQ(destination.element({2, 0}), 10); EXPECT_EQ(destination.element({2, 0, 0}), 11); EXPECT_EQ(destination.element({2, 0, 1}), 12); EXPECT_EQ(destination.element({2, 1}), 0); } TEST_F(ShapeTreeTest, CopySubtreeFromNestedShape) { ShapeTree<int> source(nested_tuple_shape_, 42); *source.mutable_element({1}) = 10; *source.mutable_element({1, 0}) = 11; *source.mutable_element({1, 1}) = 12; ShapeTree<int> destination( ShapeUtil::MakeTupleShape({array_shape_, array_shape_}), 0); destination.CopySubtreeFrom(source, {1}, {}); EXPECT_EQ(destination.element({}), 10); EXPECT_EQ(destination.element({0}), 11); EXPECT_EQ(destination.element({1}), 12); } TEST_F(ShapeTreeTest, OperatorEquals) { { ShapeTree<int> a(array_shape_, 123); ShapeTree<int> b(array_shape_, 42); ShapeTree<int> c(array_shape_, 42); EXPECT_FALSE(a == b); EXPECT_TRUE(a != b); EXPECT_TRUE(b == c); } { ShapeTree<int> a(tuple_shape_); *a.mutable_element({}) = 10; *a.mutable_element({0}) = 11; *a.mutable_element({1}) = 12; ShapeTree<int> b(tuple_shape_); *b.mutable_element({}) = 10; *b.mutable_element({0}) = 42; *b.mutable_element({1}) = 11; ShapeTree<int> c(tuple_shape_); *c.mutable_element({}) = 10; *c.mutable_element({0}) = 42; *c.mutable_element({1}) = 11; EXPECT_FALSE(a == b); EXPECT_TRUE(a != b); EXPECT_TRUE(b == c); EXPECT_FALSE(b != c); } } TEST_F(ShapeTreeTest, ConstructWithPointerToShape) { ShapeTree<int> t(&nested_tuple_shape_, 42); int num_nodes = 0; t.ForEachElement([&num_nodes](const ShapeIndex& , int data) { EXPECT_EQ(42, data); ++num_nodes; }); EXPECT_EQ(10, num_nodes); } TEST_F(ShapeTreeTest, CopyWithPointerToShape) { ShapeTree<int> source(&nested_tuple_shape_, 0); ShapeTree<int> dest(source); EXPECT_EQ(&dest.shape(), &nested_tuple_shape_); } TEST_F(ShapeTreeTest, CopyAssignWithPointerToShape) { ShapeTree<int> source(&nested_tuple_shape_, 0); ShapeTree<int> dest; dest = source; EXPECT_EQ(&dest.shape(), &nested_tuple_shape_); } TEST_F(ShapeTreeTest, IterateSimple) { ShapeTree<int> t(nested_tuple_shape_, 42); int num_nodes = 0; for (auto index_to_data : t) { EXPECT_EQ(42, index_to_data.second); ++num_nodes; } EXPECT_EQ(10, num_nodes); } TEST_F(ShapeTreeTest, ConstIterate) { const ShapeTree<int> t(nested_tuple_shape_, 42); int num_nodes = 0; for (const auto& index_to_data : t) { EXPECT_EQ(42, index_to_data.second); ++num_nodes; } EXPECT_EQ(10, num_nodes); } TEST_F(ShapeTreeTest, IterateAndMutate) { ShapeTree<int> t(nested_tuple_shape_, 42); int i = 0; for (auto& index_to_data : t) { EXPECT_EQ(42, index_to_data.second); if (i == 1) { index_to_data.second = 98; } ++i; } (*t.begin()).second = 78; EXPECT_EQ(78, (*t.begin()).second); i = 0; for (auto& index_to_data : t) { if (i == 0) { EXPECT_EQ(78, index_to_data.second); } else if (i == 1) { EXPECT_EQ(98, index_to_data.second); } else { EXPECT_EQ(42, index_to_data.second); } ++i; } EXPECT_EQ(78, (*t.begin()).second); EXPECT_EQ(98, (*std::next(t.begin())).second); } TEST_F(ShapeTreeTest, IterateOrder) { ShapeTree<int> t(nested_tuple_shape_, 42); std::vector<ShapeIndex> v; v.reserve(t.leaf_count()); for (auto index_to_data : t) { v.push_back(index_to_data.first); } EXPECT_EQ(v, (std::vector<ShapeIndex>{{}, {0}, {1}, {1, 0}, {1, 1}, {2}, {2, 0}, {2, 0, 0}, {2, 0, 1}, {2, 1}})); } TEST_F(ShapeTreeTest, ReverseIterateOrder) { ShapeTree<int> t(nested_tuple_shape_, 42); std::vector<ShapeIndex> v; v.reserve(t.leaf_count()); for (auto it = t.rbegin(); it != t.rend(); ++it) { v.push_back(it->first); } EXPECT_EQ(v, (std::vector<ShapeIndex>{ {2, 1}, {2, 0, 1}, {2, 0, 0}, {2, 0}, {2}, {1, 1}, {1, 0}, {1}, {0}, {}, })); } TEST_F(ShapeTreeTest, Find) { ShapeTree<int> t(nested_tuple_shape_, 42); auto found = t.find({1, 0}); EXPECT_NE(found, t.end()); EXPECT_EQ(found->first, ShapeIndex({1, 0})); EXPECT_EQ(found->second, 42); } TEST_F(ShapeTreeTest, ConstFind) { const ShapeTree<int> t(nested_tuple_shape_, 42); auto found = t.find({1, 0}); EXPECT_NE(found, t.end()); EXPECT_EQ(found->first, ShapeIndex({1, 0})); EXPECT_EQ(found->second, 42); } TEST_F(ShapeTreeTest, IterateOrderLeaves) { ShapeTree<int> t(nested_tuple_shape_, 42); std::vector<ShapeIndex> v; const auto& leaves = t.leaves(); v.reserve(t.leaf_count()); for (auto index_to_data : leaves) { v.push_back(index_to_data.first); } EXPECT_EQ(v, (std::vector<ShapeIndex>{ {0}, {1, 0}, {1, 1}, {2, 0, 0}, {2, 0, 1}, {2, 1}})); } TEST_F(ShapeTreeTest, ReverseIterateOrderLeaves) { ShapeTree<int> t(nested_tuple_shape_, 42); std::vector<ShapeIndex> v; v.reserve(t.leaf_count()); for (auto it = t.leaf_rbegin(); it != t.leaf_rend(); ++it) { v.push_back(it->first); } EXPECT_EQ(v, (std::vector<ShapeIndex>{ {2, 1}, {2, 0, 1}, {2, 0, 0}, {1, 1}, {1, 0}, {0}, })); } void BM_Construct(::testing::benchmark::State& state) { const int depth = state.range(0); const int fan_out = state.range(1); Shape shape = ShapeUtil::MakeShape(F32, {32, 64, 128}); for (int i = 0; i < depth; ++i) { std::vector<xla::Shape> shapes(fan_out, shape); shape = ShapeUtil::MakeTupleShape(shapes); } for (auto s : state) { ShapeTree<int> shape_tree(shape); } } void BM_ConstructUnowned(::testing::benchmark::State& state) { const int depth = state.range(0); const int fan_out = state.range(1); Shape shape = ShapeUtil::MakeShape(F32, {32, 64, 128}); for (int i = 0; i < depth; ++i) { std::vector<xla::Shape> shapes(fan_out, shape); shape = ShapeUtil::MakeTupleShape(shapes); } for (auto s : state) { ShapeTree<int> shape_tree(&shape); } } void BM_Copy(::testing::benchmark::State& state) { const int depth = state.range(0); const int fan_out = state.range(1); Shape shape = ShapeUtil::MakeShape(F32, {32, 64, 128}); for (int i = 0; i < depth; ++i) { std::vector<xla::Shape> shapes(fan_out, shape); shape = ShapeUtil::MakeTupleShape(shapes); } ShapeTree<int> shape_tree(shape); for (auto s : state) { ShapeTree<int> copy = shape_tree; tsl::testing::DoNotOptimize(copy); } } void BM_Move(::testing::benchmark::State& state) { const int depth = state.range(0); const int fan_out = state.range(1); Shape shape = ShapeUtil::MakeShape(F32, {32, 64, 128}); for (int i = 0; i < depth; ++i) { std::vector<xla::Shape> shapes(fan_out, shape); shape = ShapeUtil::MakeTupleShape(shapes); } ShapeTree<int> shape_tree(shape); for (auto s : state) { ShapeTree<int> copy = std::move(shape_tree); shape_tree = std::move(copy); } } void BM_ForEach(::testing::benchmark::State& state) { const int depth = state.range(0); const int fan_out = state.range(1); Shape shape = ShapeUtil::MakeShape(F32, {32, 64, 128}); for (int i = 0; i < depth; ++i) { std::vector<xla::Shape> shapes(fan_out, shape); shape = ShapeUtil::MakeTupleShape(shapes); } ShapeTree<int> shape_tree(shape); for (auto s : state) { shape_tree.ForEachMutableElement([](const ShapeIndex& index, int* data) { tsl::testing::DoNotOptimize(index); }); } } void BM_Iterate(::testing::benchmark::State& state) { const int depth = state.range(0); const int fan_out = state.range(1); Shape shape = ShapeUtil::MakeShape(F32, {32, 64, 128}); for (int i = 0; i < depth; ++i) { std::vector<xla::Shape> shapes(fan_out, shape); shape = ShapeUtil::MakeTupleShape(shapes); } ShapeTree<int> shape_tree(shape); for (auto s : state) { for (auto& iter : shape_tree) { tsl::testing::DoNotOptimize(iter.second); } } } #define BENCHMARK_WITH_ARGS(name) \ BENCHMARK(name)->ArgPair(2, 8)->ArgPair(1, 1000) BENCHMARK_WITH_ARGS(BM_Construct); BENCHMARK_WITH_ARGS(BM_ConstructUnowned); BENCHMARK_WITH_ARGS(BM_Copy); BENCHMARK_WITH_ARGS(BM_Move); BENCHMARK_WITH_ARGS(BM_ForEach); BENCHMARK_WITH_ARGS(BM_Iterate); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/shape_tree.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/shape_tree_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3adfd356-0a6b-4561-8157-72882331708c
cpp
tensorflow/tensorflow
index_util
third_party/xla/xla/index_util.cc
third_party/xla/xla/index_util_test.cc
#include "xla/index_util.h" #include <algorithm> #include <cstdint> #include <string> #include <vector> #include "absl/types/span.h" #include "xla/layout_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/logging.h" namespace xla { DimensionVector IndexUtil::LinearIndexToMultidimensionalIndex( const Shape& shape, int64_t linear_index) { DCHECK_GE(linear_index, 0); DCHECK_LT(linear_index, ShapeUtil::ElementsIn(shape)); DimensionVector multi_index(shape.dimensions_size()); int64_t divisor = 1; for (auto dimension : LayoutUtil::MinorToMajor(shape)) { multi_index[dimension] = (linear_index / divisor) % shape.dimensions(dimension); divisor *= shape.dimensions(dimension); } return multi_index; } bool IndexUtil::BumpIndices(const Shape& shape, absl::Span<int64_t> indices) { for (int64_t dimno = indices.size() - 1; dimno >= 0; --dimno) { int64_t limit = shape.dimensions(dimno); if (indices[dimno] + 1 < limit) { indices[dimno]++; std::fill(indices.begin() + dimno + 1, indices.end(), 0); return true; } } return false; } int64_t IndexUtil::GetDimensionStride(const Shape& shape, int64_t dimension) { int64_t stride = 1; for (auto dim : LayoutUtil::MinorToMajor(shape)) { if (dim == dimension) { break; } stride *= shape.dimensions()[dim]; } return stride; } bool IndexUtil::IndexInBounds(const Shape& shape, absl::Span<const int64_t> index) { int64_t rank = shape.rank(); const int64_t index_size = index.size(); if (rank != index_size) { return false; } for (int64_t d = 0; d < rank; ++d) { if (index[d] >= shape.dimensions(d)) { return false; } } return true; } int IndexUtil::CompareIndices(absl::Span<const int64_t> lhs, absl::Span<const int64_t> rhs) { int64_t rank = lhs.size(); const int64_t rhs_rank = rhs.size(); CHECK_EQ(rhs_rank, rank); for (int64_t dim = 0; dim < rank; ++dim) { if (lhs[dim] < rhs[dim]) { return -1; } else if (lhs[dim] > rhs[dim]) { return 1; } } return 0; } }
#include "xla/index_util.h" #include <initializer_list> #include <vector> #include "absl/types/span.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/xla_data.pb.h" namespace xla { namespace { void SetMinorToMajorLayout(Shape* shape, std::vector<int64_t> dimensions) { shape->mutable_layout()->clear_minor_to_major(); for (auto dimension : dimensions) { shape->mutable_layout()->add_minor_to_major(dimension); } } TEST(IndexUtilTest, VectorIndexing) { Shape vector_shape = ShapeUtil::MakeShape(F32, {100}); EXPECT_EQ(42, IndexUtil::MultidimensionalIndexToLinearIndex(vector_shape, {42})); auto multi_index = IndexUtil::LinearIndexToMultidimensionalIndex(vector_shape, 42); EXPECT_EQ(1, multi_index.size()); EXPECT_EQ(42, multi_index[0]); } TEST(IndexUtilTest, MatrixIndexingRowMajor) { Shape matrix_shape_01 = ShapeUtil::MakeShape(F32, {10, 20}); SetMinorToMajorLayout(&matrix_shape_01, {0, 1}); EXPECT_EQ(0, IndexUtil::MultidimensionalIndexToLinearIndex(matrix_shape_01, {0, 0})); EXPECT_EQ(199, IndexUtil::MultidimensionalIndexToLinearIndex(matrix_shape_01, {9, 19})); EXPECT_EQ(53, IndexUtil::MultidimensionalIndexToLinearIndex(matrix_shape_01, {3, 5})); EXPECT_THAT( IndexUtil::LinearIndexToMultidimensionalIndex(matrix_shape_01, 53), testing::ElementsAre(3, 5)); } TEST(IndexUtilTest, MatrixIndexingColumnMajor) { Shape matrix_shape_10 = ShapeUtil::MakeShape(F32, {10, 20}); SetMinorToMajorLayout(&matrix_shape_10, {1, 0}); EXPECT_EQ(0, IndexUtil::MultidimensionalIndexToLinearIndex(matrix_shape_10, {0, 0})); EXPECT_EQ(199, IndexUtil::MultidimensionalIndexToLinearIndex(matrix_shape_10, {9, 19})); EXPECT_EQ(65, IndexUtil::MultidimensionalIndexToLinearIndex(matrix_shape_10, {3, 5})); EXPECT_THAT( IndexUtil::LinearIndexToMultidimensionalIndex(matrix_shape_10, 65), testing::ElementsAre(3, 5)); } TEST(IndexUtilTest, ThreeDArrayIndexing210) { Shape shape_210 = ShapeUtil::MakeShape(F32, {10, 20, 30}); SetMinorToMajorLayout(&shape_210, {2, 1, 0}); EXPECT_EQ(1957, IndexUtil::MultidimensionalIndexToLinearIndex(shape_210, {3, 5, 7})); EXPECT_EQ(5277, IndexUtil::MultidimensionalIndexToLinearIndex(shape_210, {8, 15, 27})); } TEST(IndexUtilTest, ThreeDArrayIndexing120) { Shape shape_120 = ShapeUtil::MakeShape(F32, {10, 20, 30}); SetMinorToMajorLayout(&shape_120, {1, 2, 0}); EXPECT_EQ(1945, IndexUtil::MultidimensionalIndexToLinearIndex(shape_120, {3, 5, 7})); EXPECT_EQ(5355, IndexUtil::MultidimensionalIndexToLinearIndex(shape_120, {8, 15, 27})); } TEST(IndexUtilTest, FourDArrayIndexing3210) { Shape shape_3210 = ShapeUtil::MakeShape(F32, {10, 20, 30, 40}); SetMinorToMajorLayout(&shape_3210, {3, 2, 1, 0}); EXPECT_EQ(78289, IndexUtil::MultidimensionalIndexToLinearIndex(shape_3210, {3, 5, 7, 9})); EXPECT_EQ(211113, IndexUtil::MultidimensionalIndexToLinearIndex( shape_3210, {8, 15, 27, 33})); } TEST(IndexUtilTest, LinearToMultiToLinear) { std::vector<int64_t> linear_indexes = {0, 1439999999, 1145567336, 43883404, 617295214, 1117613654}; std::vector<std::vector<int64_t>> minor_to_major_orders; minor_to_major_orders.push_back({6, 5, 4, 3, 2, 1, 0}); minor_to_major_orders.push_back({0, 1, 2, 3, 4, 5, 6}); minor_to_major_orders.push_back({4, 5, 1, 2, 6, 0, 3}); for (auto minor_to_major_order : minor_to_major_orders) { Shape shape = ShapeUtil::MakeShape(F32, {10, 20, 30, 40, 30, 20, 10}); SetMinorToMajorLayout(&shape, minor_to_major_order); for (auto linear_index : linear_indexes) { auto multi_index = IndexUtil::LinearIndexToMultidimensionalIndex(shape, linear_index); EXPECT_EQ(linear_index, IndexUtil::MultidimensionalIndexToLinearIndex( shape, multi_index)); } } } TEST(IndexUtilTest, BumpIndices2x2) { auto shape = ShapeUtil::MakeShape(S32, {2, 2}); std::vector<int64_t> indices = {0, 0}; EXPECT_TRUE(IndexUtil::BumpIndices(shape, absl::MakeSpan(indices))); EXPECT_THAT(indices, ::testing::ElementsAre(0, 1)); EXPECT_TRUE(IndexUtil::BumpIndices(shape, absl::MakeSpan(indices))); EXPECT_THAT(indices, ::testing::ElementsAre(1, 0)); EXPECT_TRUE(IndexUtil::BumpIndices(shape, absl::MakeSpan(indices))); EXPECT_THAT(indices, ::testing::ElementsAre(1, 1)); EXPECT_FALSE(IndexUtil::BumpIndices(shape, absl::MakeSpan(indices))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/index_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/index_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
eb05537e-6e3d-43eb-98f5-278684d16219
cpp
tensorflow/tensorflow
literal
third_party/xla/xla/literal.cc
third_party/xla/xla/literal_test.cc
#include "xla/literal.h" #include <algorithm> #include <complex> #include <cstdint> #include <cstring> #include <functional> #include <limits> #include <memory> #include <optional> #include <ostream> #include <string> #include <type_traits> #include <utility> #include <variant> #include <vector> #include "absl/base/casts.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "Eigen/Core" #include "xla/index_util.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/permutation_util.h" #include "xla/primitive_util.h" #include "xla/printer.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tsl/lib/core/bitmap.h" #include "xla/tsl/util/byte_swap_array.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/mem.h" #include "tsl/platform/ml_dtypes.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using absl::StrCat; using primitive_util::NativeTypeOf; constexpr bool kLittleEndian = __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__; void ConvertEndianShort(std::string* bytes) { CHECK_EQ(bytes->size() % 2, 0); for (int64_t i = 0, end = bytes->size(); i < end; i += 2) { std::swap((*bytes)[i], (*bytes)[i + 1]); } } void ConvertEndianShort(char* bytes, int64_t size) { CHECK_EQ(size % 2, 0); for (int64_t i = 0; i < size; i += 2) { std::swap(bytes[i], bytes[i + 1]); } } bool LiteralProtoHasValues(const LiteralProto& proto) { return !proto.s2s().empty() || !proto.s4s().empty() || !proto.s8s().empty() || !proto.s16s().empty() || proto.s32s_size() || proto.s64s_size() || !proto.u2s().empty() || !proto.u4s().empty() || !proto.u8s().empty() || !proto.u16s().empty() || proto.u32s_size() || proto.u64s_size() || !proto.f8e5m2s().empty() || !proto.f8e4m3s().empty() || !proto.f8e4m3fns().empty() || !proto.f8e4m3b11fnuzs().empty() || !proto.f8e5m2fnuzs().empty() || !proto.f8e4m3fnuzs().empty() || !proto.f8e3m4s().empty() || !proto.f16s().empty() || !proto.bf16s().empty() || proto.f32s_size() || proto.f64s_size() || proto.c64s_size() || proto.c128s_size() || proto.preds_size() || proto.tuple_literals_size(); } template <PrimitiveType kType> const Shape& ScalarShapeImpl() { static_assert(primitive_util::IsArrayType(kType), "Not a valid type for a scalar."); static const Shape* shape = [] { auto shape = new Shape(kType, {}, {}, {}); shape->mutable_layout(); return shape; }(); return *shape; } const Shape& ScalarShape(PrimitiveType type) { return primitive_util::ArrayTypeSwitch<const Shape&>( [&](auto primitive_type_constant) -> const Shape& { return ScalarShapeImpl<primitive_type_constant>(); }, type); } const Shape& NilShape() { static const Shape* shape = new Shape(TUPLE, {}, {}, {}); return *shape; } const Shape* TryInternShape(const Shape& shape) { if (shape.IsTuple() && shape.tuple_shapes_size() == 0) { return &NilShape(); } if (shape.IsArray() && shape.dimensions_size() == 0 && shape.is_static() && shape.layout().tiles_size() == 0 && shape.layout().memory_space() == 0) { return &ScalarShape(shape.element_type()); } return nullptr; } struct StrideConfig { StrideConfig(const Shape& source_shape, const Shape& dest_shape, absl::Span<const int64_t> dimensions); absl::Span<const int64_t> dimensions; DimensionVector base; DimensionVector step; int64_t minor_dimension = 0; int64_t dest_stride = 1; int64_t source_stride = 1; int64_t minor_loop_size = 1; }; StrideConfig::StrideConfig(const Shape& source_shape, const Shape& dest_shape, absl::Span<const int64_t> dimensions) : dimensions(dimensions), base(dimensions.size(), 0), step(dimensions.size(), 1) { if (!dimensions.empty()) { if (dimensions[LayoutUtil::Minor(source_shape.layout(), 0)] >= dimensions[LayoutUtil::Minor(dest_shape.layout(), 0)]) { minor_dimension = LayoutUtil::Minor(source_shape.layout(), 0); dest_stride = IndexUtil::GetDimensionStride(dest_shape, minor_dimension); } else { minor_dimension = LayoutUtil::Minor(dest_shape.layout(), 0); source_stride = IndexUtil::GetDimensionStride(source_shape, minor_dimension); } minor_loop_size = dimensions[minor_dimension]; step[minor_dimension] = minor_loop_size; } } } LiteralBase::~LiteralBase() = default; const Shape& LiteralBase::shape() const { return root_piece().subshape(); } const char* LiteralBase::Piece::buffer() const { if (auto* r = std::get_if<DenseRep>(&rep_)) { return r->data; } if (auto* r = std::get_if<DenseInlinedRep>(&rep_)) { return r->data; } DCHECK(std::holds_alternative<TupleRep>(rep_) || std::holds_alternative<Uninitialized>(rep_)); return nullptr; } const LiteralBase::Piece& LiteralBase::piece( const ShapeIndex& shape_index) const { const Piece* piece = &root_piece(); for (const auto i : shape_index) { DCHECK_GE(i, 0); DCHECK_LT(i, piece->children_size()); piece = &piece->child(i); } return *piece; } std::ostream& operator<<(std::ostream& out, const Literal& literal) { out << literal.ToString(); return out; } Shape* MutableLiteralBase::mutable_shape_do_not_use() { const Shape* const_shape = shape_.get(); if (!shape_.OwnsPtr()) { shape_ = MaybeOwningShapePtr(std::make_unique<Shape>(*shape_)); } Shape* shape = shape_.get_mutable(); if (shape != const_shape) { std::function<void(const Shape&, Piece*)> set_piece_shapes = [&set_piece_shapes](const Shape& shape, Piece* piece) { piece->set_subshape(&shape); if (shape.IsTuple()) { for (int i = 0; i < ShapeUtil::TupleElementCount(shape); ++i) { const Shape& subshape = shape.tuple_shapes(i); set_piece_shapes(subshape, &piece->child(i)); } } }; set_piece_shapes(*shape, &mutable_root_piece()); } return shape; } Literal::Literal() : Literal(NilShape()) {} Literal::Literal(const Shape& shape) : Literal(shape, true) {} void Literal::SetShape(const Shape& shape) { Shape shape_storage; const Shape* shape_ptr = &shape; if (shape.IsArray() && LayoutUtil::HasCustomElementSizeInBits(shape)) { shape_storage = shape; shape_storage.mutable_layout()->set_element_size_in_bits(0); shape_ptr = &shape_storage; } if (const Shape* intered_shape_ptr = TryInternShape(*shape_ptr)) { shape_ = intered_shape_ptr; } else { shape_ = std::make_unique<Shape>(*shape_ptr); } } void Literal::SetPiece(const Shape& shape, Piece* piece, bool allocate_arrays, ArrayValueState leaf_array_value_state) { if (shape.IsTuple()) { for (const Shape& subshape : shape.tuple_shapes()) { Piece child_piece; child_piece.set_subshape(&subshape); SetPiece(subshape, &child_piece, allocate_arrays, leaf_array_value_state); piece->emplace_back(std::move(child_piece)); } } else if (shape.IsArray()) { DCHECK(LayoutUtil::IsDenseArray(shape)) << "literal array storage is currently only supported for dense " "arrays: " << shape; piece->set_array_value_state(leaf_array_value_state); if (leaf_array_value_state == LiteralBase::ArrayValueState::kKnown && allocate_arrays) { piece->AllocateBuffers(); } } } Literal::Literal(const Shape& shape, bool allocate_arrays, ArrayValueState leaf_array_value_state) : MutableLiteralBase() { SetShape(shape); CHECK(leaf_array_value_state != ArrayValueState::kKnown || LayoutUtil::HasLayout(*shape_)); root_piece_.set_subshape(shape_.get()); CHECK(&root_piece_.subshape() == shape_.get()); SetPiece(*shape_, &root_piece_, allocate_arrays, leaf_array_value_state); } Literal::~Literal() { DeallocateBuffers(); } void Literal::DeallocateBuffers() { root_piece_.ForEachMutableSubpiece( [&](const ShapeIndex& index, Piece* piece) { piece->DeallocateBuffers(); }); } Literal::Literal(Literal&& other) : MutableLiteralBase() { *this = std::move(other); } Literal& Literal::operator=(Literal&& other) { DCHECK(&other.root_piece_.subshape() == other.shape_.get()); using std::swap; swap(shape_, other.shape_); swap(root_piece_, other.root_piece_); DCHECK(&root_piece_.subshape() == shape_.get()); return *this; } Literal LiteralBase::CreateFromShape(const Shape& shape) { Literal literal(shape); literal.root_piece_.ForEachMutableSubpiece( [&](const ShapeIndex& index, Piece* piece) { if (piece->subshape().IsArray()) { memset(piece->untyped_data(), 0, piece->size_bytes_dense()); } }); return literal; } Literal LiteralBase::CreateFromShapeWithUnknownLeafArrays(const Shape& shape) { Literal literal(shape, false, ArrayValueState::kUnknown); return literal; } Literal LiteralBase::CreateFromShapeWithUndeterminedLeafArrays( const Shape& shape) { Literal literal(shape, false, ArrayValueState::kUndetermined); return literal; } int32_t LiteralBase::GetDynamicSize(int64_t dim_index) const { return GetDynamicSize(dim_index, {}); } int32_t LiteralBase::GetDynamicSize(int64_t dim_index, const ShapeIndex& shape_index) const { return piece(shape_index).GetDynamicSize(dim_index); } std::optional<int64_t> LiteralBase::GetFirstInteger() const { if (!primitive_util::IsIntegralType(shape().element_type())) { return std::nullopt; } return primitive_util::IntegralTypeSwitch<std::optional<int64_t>>( [&](auto primitive_type_constant) -> std::optional<int64_t> { using NativeT = NativeTypeOf<primitive_type_constant>; auto first_element = GetFirstElement<NativeT>(); if constexpr (std::is_same_v<NativeT, uint64_t>) { int64_t v = static_cast<int64_t>(first_element); if (v < 0) { return std::nullopt; } } return first_element; }, shape().element_type()); } void LiteralBase::BuildPieceSubtree(const Shape& shape, Piece* piece) { CHECK(shape.IsTuple()); for (int i = 0; i < ShapeUtil::TupleElementCount(shape); ++i) { const Shape& subshape = shape.tuple_shapes(i); Piece child_piece; child_piece.set_subshape(&subshape); if (subshape.IsTuple()) { BuildPieceSubtree(subshape, &child_piece); } piece->emplace_back(std::move(child_piece)); } } absl::Status LiteralBase::SerializeToString(std::string* output) const { ShapeProto shape_proto = shape().ToProto(); TF_ASSIGN_OR_RETURN(int64_t size, ShapeUtil::SerializedSizeWithProto(shape(), shape_proto)); output->resize(size); return SerializeWithShapeProto(shape_proto, output->data()); } absl::StatusOr<std::string> LiteralBase::SerializeAsString() const { std::string result; TF_RETURN_IF_ERROR(SerializeToString(&result)); return std::move(result); } template <typename NativeT> absl::Status MutableLiteralBase::CopySliceFromInternal( const LiteralBase& src_literal, absl::Span<const int64_t> src_base, absl::Span<const int64_t> dest_base, absl::Span<const int64_t> copy_size) { auto linear_index = [](const Shape& shape, absl::Span<const int64_t> multi_index) { return IndexUtil::MultidimensionalIndexToLinearIndex(shape, multi_index); }; NativeT* dest_data = this->data<NativeT>().data(); const NativeT* src_data = src_literal.data<NativeT>().data(); if (src_literal.shape().rank() == 0 || shape().rank() == 0) { TF_RET_CHECK(copy_size.empty()); dest_data[linear_index(shape(), dest_base)] = src_data[linear_index(src_literal.shape(), src_base)]; } else if (!ShapeUtil::IsZeroElementArray(shape()) && !ShapeUtil::IsZeroElementArray(src_literal.shape()) && absl::c_none_of(copy_size, [](auto d) { return d == 0; })) { TF_RET_CHECK(src_base.size() == dest_base.size()); TF_RET_CHECK(src_base.size() == copy_size.size()); DimensionVector src_indexes(src_base.size(), 0); DimensionVector dest_indexes(dest_base.size(), 0); StrideConfig stride_config(src_literal.shape(), shape(), copy_size); auto copy_proc = [&](absl::Span<const int64_t> indexes) { std::transform(indexes.begin(), indexes.end(), src_base.begin(), src_indexes.begin(), std::plus<int64_t>()); std::transform(indexes.begin(), indexes.end(), dest_base.begin(), dest_indexes.begin(), std::plus<int64_t>()); int64_t src_index = linear_index(src_literal.shape(), src_indexes); int64_t dest_index = linear_index(shape(), dest_indexes); StridedCopy(dest_data + dest_index, stride_config.dest_stride, src_data + src_index, stride_config.source_stride, stride_config.minor_loop_size); return true; }; ShapeUtil::ForEachIndex(src_literal.shape(), stride_config.base, stride_config.dimensions, stride_config.step, copy_proc); } return absl::OkStatus(); } void MutableLiteralBase::CopyElementFrom(const LiteralSlice& src_literal, absl::Span<const int64_t> src_index, absl::Span<const int64_t> dest_index) { DCHECK(LayoutUtil::IsDenseArray(shape())); DCHECK_EQ(shape().element_type(), src_literal.shape().element_type()); const int64_t src_linear_index = IndexUtil::MultidimensionalIndexToLinearIndex(src_literal.shape(), src_index); const int64_t dest_linear_index = IndexUtil::MultidimensionalIndexToLinearIndex(shape(), dest_index); const int64_t primitive_size = ShapeUtil::ByteSizeOfPrimitiveType(shape().element_type()); char* dest_address = static_cast<char*>(untyped_data()) + dest_linear_index * primitive_size; const char* source_address = static_cast<const char*>(src_literal.untyped_data()) + src_linear_index * primitive_size; if (dest_address != source_address) { memcpy(dest_address, source_address, primitive_size); } } absl::StatusOr<Literal> MutableLiteralBase::CreateFromProto( const LiteralProto& proto, bool prohibit_empty_literal) { if (!proto.has_shape()) { return InvalidArgument("LiteralProto has no shape"); } Shape shape(proto.shape()); if (ShapeUtil::HasPrimitiveType(shape, OPAQUE_TYPE)) { return InvalidArgument( "Literal shape cannot include OPAQUE_TYPE sub-shape"); } if (!LayoutUtil::HasLayout(shape)) { return InvalidArgument("LiteralProto has no layout"); } if (LayoutUtil::IsSparseArray(shape)) { return Unimplemented("Sparse literals are not supported"); } TF_RETURN_IF_ERROR(ShapeUtil::ValidateShapeWithOptionalLayout(shape)); Literal literal(shape); TF_RETURN_IF_ERROR(literal.root_piece_.ForEachMutableSubpieceWithStatus( [&](const ShapeIndex& index, Piece* piece) -> absl::Status { const LiteralProto* proto_element = &proto; for (int64_t i : index) { CHECK(i < proto_element->tuple_literals_size()); proto_element = &proto_element->tuple_literals(i); } if (piece->subshape().IsTuple()) { if (proto_element->tuple_literals_size() != ShapeUtil::TupleElementCount(piece->subshape())) { return InvalidArgument( "Expected %d tuple elements in LiteralProto, has %d", ShapeUtil::TupleElementCount(piece->subshape()), proto_element->tuple_literals_size()); } return absl::OkStatus(); } if (piece->subshape().element_type() == TOKEN) { return absl::OkStatus(); } CHECK(piece->subshape().IsArray()); if (prohibit_empty_literal || LiteralProtoHasValues(*proto_element)) { TF_RETURN_IF_ERROR(piece->CopyFromProto(*proto_element)); } return absl::OkStatus(); })); return std::move(literal); } Literal Literal::SubLiteral(ShapeIndexView shape_index) { if (!shape_index.empty()) { auto decomposed = this->DecomposeTuple(); return decomposed.at(shape_index.front()) .SubLiteral(shape_index.subspan(1)); } else { return std::move(*this); } } std::vector<Literal> Literal::DecomposeTuple() { CHECK(shape().IsTuple()); std::vector<Literal> elements; const auto tuple_element_count = ShapeUtil::TupleElementCount(shape()); elements.reserve(tuple_element_count); for (int i = 0; i < tuple_element_count; ++i) { elements.push_back(Literal(ShapeUtil::GetSubshape(shape(), {i}), false)); Literal& element = elements.back(); element.root_piece_.ForEachMutableSubpiece( [&](const ShapeIndex& index, Piece* dest_piece) { if (dest_piece->subshape().IsTuple()) { return; } ShapeIndex src_index = {i}; for (int64_t j : index) { src_index.push_back(j); } Piece& src_piece = piece(src_index); dest_piece->MoveDataFrom(src_piece); }); } *this = Literal(); return elements; } namespace { template <typename NativeT> void CopyElementsBetween(absl::Span<NativeT> dest, absl::Span<const NativeT> src, const Shape& dest_shape, const Shape& src_shape) { DCHECK(LayoutUtil::IsDenseArray(dest_shape)); DCHECK(LayoutUtil::IsDenseArray(src_shape)); DCHECK(ShapeUtil::Compatible(dest_shape, src_shape)); if (ShapeUtil::IsZeroElementArray(dest_shape)) { return; } std::vector<int64_t> index(dest_shape.rank()); do { dest[IndexUtil::MultidimensionalIndexToLinearIndex(dest_shape, index)] = src[IndexUtil::MultidimensionalIndexToLinearIndex(src_shape, index)]; } while (IndexUtil::BumpIndices(dest_shape, absl::MakeSpan(index))); } } int32_t LiteralBase::Piece::GetDynamicSize(int64_t dim_index) const { CHECK(LayoutUtil::IsDenseArray(subshape())); if (!subshape_->is_dynamic_dimension(dim_index)) { return subshape_->dimensions(dim_index); } return dynamic_size_buffer()[dim_index]; } void LiteralBase::Piece::SetDynamicSize(int64_t dim_index, int32_t size) { CHECK(LayoutUtil::IsDenseArray(subshape())); CHECK(subshape_->is_dynamic_dimension(dim_index)); dynamic_size_buffer()[dim_index] = size; } void LiteralBase::Piece::AllocateBuffers() { const int64_t bytes = total_bytes_dense(); if (bytes > kMaxInlinedBytes) { CHECK_EQ(buffer(), nullptr); rep_.emplace<DenseRep>(); set_buffer( static_cast<char*>(tsl::port::AlignedMalloc(bytes, kMinimumAlignment))); } else { rep_.emplace<DenseInlinedRep>(); } } void LiteralBase::Piece::DeallocateBuffers() { if (auto* array_rep = GetDenseRep()) { tsl::port::AlignedFree(array_rep->data); rep_.emplace<Uninitialized>(); } } template <typename NativeT> void LiteralBase::Piece::CopyElementsWithDynamicBound( const LiteralBase::Piece& src) { auto& dest_shape = subshape(); auto& src_shape = src.subshape(); CHECK(dest_shape.is_static() || src_shape.is_static()); auto& bound_shape = dest_shape.is_static() ? src_shape : dest_shape; if (ShapeUtil::IsZeroElementArray(dest_shape)) { return; } if (dest_shape.rank() == 1) { int64_t count = std::min(GetDynamicSize(0), src.GetDynamicSize(0)); std::copy_n(src.data<NativeT>().begin(), count, data<NativeT>().begin()); return; } std::vector<int64_t> index(dest_shape.rank()); do { bool out_of_bound = false; for (int64_t i = 0; i < index.size(); ++i) { if (index[i] >= GetDynamicSize(i) || index[i] >= src.GetDynamicSize(i)) { out_of_bound = true; } } if (out_of_bound) { continue; } data<NativeT>()[IndexUtil::MultidimensionalIndexToLinearIndex(dest_shape, index)] = src.data<NativeT>()[IndexUtil::MultidimensionalIndexToLinearIndex( src_shape, index)]; } while (IndexUtil::BumpIndices(bound_shape, absl::MakeSpan(index))); } absl::Status LiteralBase::Piece::CopyFrom(const LiteralBase::Piece& src, bool only_dynamic_bound) { CHECK(subshape_ != nullptr); CHECK(src.subshape_ != nullptr); CHECK(LayoutUtil::IsDenseArray(subshape())) << __func__ << " is only supported for dense arrays: " << subshape(); CHECK(LayoutUtil::IsDenseArray(src.subshape())) << __func__ << " is only supported for dense arrays: " << src.subshape(); if (!only_dynamic_bound) { CHECK(ShapeUtil::Compatible(subshape(), src.subshape())); } if (src.array_value_state_ == ArrayValueState::kUnknown || src.array_value_state_ == ArrayValueState::kUndetermined) { if (array_value_state_ == ArrayValueState::kKnown) { DeallocateBuffers(); } array_value_state_ = src.array_value_state_; return absl::OkStatus(); } else { CHECK(src.array_value_state_ == ArrayValueState::kKnown); if (array_value_state_ == ArrayValueState::kUndetermined || array_value_state_ == ArrayValueState::kUnknown) { AllocateBuffers(); } array_value_state_ = src.array_value_state_; } if (ShapeUtil::Equal(subshape(), src.subshape())) { memcpy(buffer(), src.buffer(), src.size_bytes_dense()); } else { std::vector<int64_t> origin(subshape().rank(), 0); primitive_util::ArrayTypeSwitch<void>( [&](auto primitive_type_constant) { using NativeT = NativeTypeOf<primitive_type_constant>; if (only_dynamic_bound) { CopyElementsWithDynamicBound<NativeT>(src); } else { CopyElementsBetween<NativeT>(this->data<NativeT>(), src.data<NativeT>(), subshape(), src.subshape()); } }, subshape().element_type()); } DCHECK_EQ(dynamic_size_buffer_bytes(), src.dynamic_size_buffer_bytes()); if (subshape().is_dynamic() && src.subshape().is_dynamic()) { memcpy(dynamic_size_buffer(), src.dynamic_size_buffer(), src.dynamic_size_buffer_bytes()); } return absl::OkStatus(); } void MutableLiteralBase::SetDynamicSize(int64_t dim_index, int32_t size) { return SetDynamicSize(dim_index, {}, size); } void MutableLiteralBase::SetDynamicSize(int64_t dim_index, const ShapeIndex& shape_index, int32_t size) { Shape* subshape = ShapeUtil::GetMutableSubshape(mutable_shape_do_not_use(), shape_index); CHECK(LayoutUtil::IsDenseArray(*subshape)) << __func__ << " is only supported for dense arrays: " << *subshape; CHECK_GE(subshape->dimensions(dim_index), size); subshape->set_dynamic_dimension(dim_index, true); CHECK_EQ(&piece(shape_index).subshape(), subshape); piece(shape_index).SetDynamicSize(dim_index, size); } absl::Status MutableLiteralBase::CopyFrom(const LiteralSlice& src_literal, const ShapeIndex& dest_shape_index, const ShapeIndex& src_shape_index, bool only_dynamic_bound) { const Shape& dest_subshape = ShapeUtil::GetSubshape(shape(), dest_shape_index); const Shape& src_subshape = ShapeUtil::GetSubshape(src_literal.shape(), src_shape_index); if (only_dynamic_bound) { auto& bound_shape = dest_subshape.is_static() ? src_subshape : dest_subshape; auto& compact_shape = dest_subshape.is_static() ? dest_subshape : src_subshape; CHECK(ShapeUtil::DynamicShapeIsCompatible(compact_shape, bound_shape)) << compact_shape.ToString() << " vs " << bound_shape.ToString(); } else { if (!ShapeUtil::Compatible(dest_subshape, src_subshape)) { return InvalidArgument( "Destination subshape incompatible with source subshape: %s vs %s", ShapeUtil::HumanString(dest_subshape), ShapeUtil::HumanString(src_subshape)); } } return mutable_root_piece().ForEachMutableSubpieceWithStatus( [&](const ShapeIndex& index, Piece* piece) { if (!piece->subshape().IsArray()) { return absl::OkStatus(); } bool in_subtree_to_copy = true; for (int i = 0; i < dest_shape_index.size(); ++i) { if (index[i] != dest_shape_index[i]) { in_subtree_to_copy = false; break; } } if (!in_subtree_to_copy) { return absl::OkStatus(); } ShapeIndex src_piece_index = src_shape_index; for (int64_t i = dest_shape_index.size(), end = index.size(); i < end; ++i) { src_piece_index.push_back(index[i]); } TF_RETURN_IF_ERROR( piece->CopyFrom(src_literal.piece(src_piece_index), only_dynamic_bound)); return absl::OkStatus(); }); } absl::Status Literal::MoveFrom(Literal&& src_literal, const ShapeIndex& dest_shape_index) { const Shape& dest_subshape = ShapeUtil::GetSubshape(shape(), dest_shape_index); if (!ShapeUtil::Equal(dest_subshape, src_literal.shape())) { return InvalidArgument( "Destination subshape not equal to source shape: %s vs %s", ShapeUtil::HumanString(dest_subshape), ShapeUtil::HumanString(src_literal.shape())); } src_literal.root_piece_.ForEachMutableSubpiece( [&](const ShapeIndex& src_index, Piece* src_piece) { if (!src_piece->subshape().IsArray()) { return; } ShapeIndex dest_index = dest_shape_index; for (int64_t i : src_index) { dest_index.push_back(i); } Piece& dest_piece = piece(dest_index); dest_piece.DeallocateBuffers(); dest_piece.MoveDataFrom(*src_piece); }); src_literal.shape_ = MaybeOwningShapePtr(&NilShape()); src_literal.root_piece_ = Piece(); src_literal.root_piece_.set_subshape(src_literal.shape_.get()); return absl::OkStatus(); } absl::Status MutableLiteralBase::CopySliceFrom( const LiteralSlice& src_literal, absl::Span<const int64_t> src_base, absl::Span<const int64_t> dest_base, absl::Span<const int64_t> copy_size) { TF_RET_CHECK(LayoutUtil::IsDenseArray(shape())) << shape(); TF_RET_CHECK(LayoutUtil::IsDenseArray(src_literal.shape())) << src_literal.shape(); TF_RET_CHECK(ShapeUtil::SameElementType(src_literal.shape(), shape())); TF_RET_CHECK(src_literal.shape().rank() == src_base.size()); TF_RET_CHECK(shape().rank() == dest_base.size()); return primitive_util::ArrayTypeSwitch<absl::Status>( [&](auto primitive_type_constant) -> absl::Status { using NativeT = NativeTypeOf<primitive_type_constant>; return CopySliceFromInternal<NativeT>(src_literal, src_base, dest_base, copy_size); }, shape().element_type()); } void MutableLiteralBase::PopulateR1(const tsl::core::Bitmap& values) { CHECK(shape().IsArray()); CHECK_EQ(shape().rank(), 1); CHECK_EQ(element_count(), values.bits()); CHECK_EQ(shape().element_type(), PRED); for (int64_t i = 0; i < static_cast<int64_t>(values.bits()); ++i) { Set({i}, values.get(i)); } } void MutableLiteralBase::PopulateInplaceInternal( absl::FunctionRef<void(void*, absl::Span<const int64_t>, int)> populator, bool parallel) { const Shape& this_shape = shape(); const int64_t rank = this_shape.rank(); DCHECK(LayoutUtil::IsDenseArray(this_shape)); char* const dest_base = static_cast<char*>(untyped_data()); if (rank > 0) { StrideConfig stride_config(this_shape, this_shape, this_shape.dimensions()); const int64_t primitive_size = ShapeUtil::ByteSizeOfPrimitiveType(shape().element_type()); const int64_t num_elements = ShapeUtil::ElementsIn(shape()); if (parallel && this_shape.rank() == 1) { const int64_t thread_count = ShapeUtil::GetForEachIndexParallelThreadCount(); stride_config.dest_stride = stride_config.minor_loop_size = num_elements > 32 ? std::max<int64_t>(num_elements / thread_count, 1) : num_elements; stride_config.step = {stride_config.minor_loop_size}; } auto init_function = [&](absl::Span<const int64_t> indexes, int thread_id) -> absl::StatusOr<bool> { const int64_t index = IndexUtil::MultidimensionalIndexToLinearIndex(shape(), indexes); DimensionVector minor_scan_indexes(rank, 0); std::copy(indexes.begin(), indexes.end(), minor_scan_indexes.begin()); char* dest_ptr = dest_base + index * primitive_size; char* const dest_end = dest_base + std::min(index + stride_config.minor_loop_size, num_elements) * primitive_size; while (dest_ptr < dest_end) { populator(dest_ptr, minor_scan_indexes, thread_id); ++minor_scan_indexes[stride_config.minor_dimension]; dest_ptr += primitive_size; } return true; }; if (parallel) { ShapeUtil::ForEachIndexParallel(this_shape, stride_config.base, stride_config.dimensions, stride_config.step, init_function); } else { ShapeUtil::ForEachIndex( this_shape, stride_config.base, stride_config.dimensions, stride_config.step, [&init_function]( absl::Span<const int64_t> indexes) -> absl::StatusOr<bool> { auto result_ignored = init_function(indexes, -1); return true; }); } } else { populator(dest_base, {}, -1); } } absl::Status MutableLiteralBase::PopulateInplace( absl::FunctionRef<void(void*, absl::Span<const int64_t>)> populator) { TF_RET_CHECK(LayoutUtil::IsDenseArray(shape())) << __func__ << " is only supported for dense arrays: " << shape(); PopulateInplaceInternal( [&](void* dest, absl::Span<const int64_t> indexes, int ) { return populator(dest, indexes); }, false); return absl::OkStatus(); } absl::Status MutableLiteralBase::PopulateInplaceParallel( absl::FunctionRef<void(void*, absl::Span<const int64_t>, int)> populator) { TF_RET_CHECK(LayoutUtil::IsDenseArray(shape())) << __func__ << " is only supported for dense arrays: " << shape(); PopulateInplaceInternal(populator, element_count() > 32); return absl::OkStatus(); } Literal LiteralBase::Relayout(const Layout& new_layout, const ShapeIndex& shape_index) const { Shape new_shape = shape(); Shape* subshape = ShapeUtil::GetMutableSubshape(&new_shape, shape_index); TF_CHECK_OK(LayoutUtil::ValidateLayoutForShape(new_layout, *subshape)); *subshape->mutable_layout() = new_layout; if (subshape->layout().element_size_in_bits() == 4) { subshape->mutable_layout()->set_element_size_in_bits(0); } Literal result(new_shape); TF_CHECK_OK(result.CopyFrom(*this)); return result; } Literal LiteralBase::Relayout(const Shape& shape_with_layout) const { CHECK(ShapeUtil::Compatible(shape_with_layout, shape())) << "Given shape_with_layout " << ShapeUtil::HumanString(shape_with_layout) << " not compatible with literal shape " << ShapeUtil::HumanString(shape()); Literal result = CreateFromShape(shape_with_layout); ShapeUtil::ForEachSubshape( result.shape(), [this, &result](const Shape& subshape, const ShapeIndex& index) { if (subshape.IsArray()) { TF_CHECK_OK(result.CopyFrom(*this, index, index)); } }); return result; } Literal LiteralBase::ToBoundedDynamic(const Shape& bounded_shape) const { CHECK(bounded_shape.is_dynamic()); Literal result(bounded_shape); ShapeUtil::ForEachSubshape( shape(), [&](const Shape& subshape, const ShapeIndex& index) { if (!subshape.IsArray()) { return; } for (int64_t i = 0; i < subshape.rank(); ++i) { if (bounded_shape.is_dynamic_dimension(i)) { result.SetDynamicSize(i, subshape.dimensions(i)); } } }); TF_CHECK_OK(result.CopyFrom(*this, {}, {}, true)); return result; } Literal LiteralBase::ToStatic() const { Shape new_shape = shape(); ShapeUtil::ForEachMutableSubshape( &new_shape, [this](Shape* subshape, const ShapeIndex& index) { if (!subshape->IsArray()) { return; } for (int64_t i = 0; i < subshape->rank(); ++i) { if (!subshape->is_dynamic_dimension(i)) continue; subshape->set_dynamic_dimension(i, false); subshape->set_dimensions(i, GetDynamicSize(i, index)); } }); Literal result(new_shape); TF_CHECK_OK(result.CopyFrom(*this, {}, {}, true)); return result; } namespace { template <int64_t PRIMITIVE_SIZE> absl::StatusOr<Literal> BroadcastHelper(const LiteralBase& src, const Shape& src_shape, const Shape& result_shape, absl::Span<const int64_t> dimensions) { for (int64_t i = 0, end = dimensions.size(); i < end; i++) { TF_RET_CHECK(src_shape.dimensions(i) == result_shape.dimensions(dimensions[i])); } TF_RET_CHECK(result_shape.element_type() == src_shape.element_type()); Literal result(result_shape); if (src_shape.is_dynamic()) { for (int64_t i = 0; i < dimensions.size(); ++i) { if (src_shape.is_dynamic_dimension(i)) { int64_t dynamic_size = src.GetDynamicSize(i); result.SetDynamicSize(dimensions[i], dynamic_size); } } } int src_shape_dims = src_shape.dimensions_size(); std::vector<int64_t> scratch_source_index(src_shape_dims); absl::Span<int64_t> scratch_source_span(scratch_source_index); int64_t* scratch_source_array = scratch_source_span.data(); const char* source_data = static_cast<const char*>(src.untyped_data()); char* dest_data = static_cast<char*>(result.untyped_data()); auto src_minor_to_major = LayoutUtil::MinorToMajor(src_shape); auto result_minor_to_major = LayoutUtil::MinorToMajor(result_shape); ShapeUtil::ForEachIndexNoStatus( result_shape, [&](absl::Span<const int64_t> output_index) { int64_t dest_index = IndexUtil::MultidimensionalIndexToLinearIndex( result_shape, result_minor_to_major, output_index); int64_t source_index; for (int64_t i = 0, end = dimensions.size(); i < end; ++i) { scratch_source_array[i] = output_index[dimensions[i]]; } if (src_shape_dims == 1) { source_index = scratch_source_array[0]; DCHECK_EQ(source_index, IndexUtil::MultidimensionalIndexToLinearIndex( src_shape, src_minor_to_major, scratch_source_span)); } else { source_index = IndexUtil::MultidimensionalIndexToLinearIndex( src_shape, src_minor_to_major, scratch_source_span); } memcpy(dest_data + PRIMITIVE_SIZE * dest_index, source_data + PRIMITIVE_SIZE * source_index, PRIMITIVE_SIZE); return true; }); return std::move(result); } } absl::StatusOr<Literal> LiteralBase::Broadcast( const Shape& result_shape, absl::Span<const int64_t> dimensions) const { const LiteralBase& src = *this; const Shape& src_shape = shape(); if (!src_shape.IsArray()) { return InvalidArgument("Broadcast only supports arrays."); } const int64_t primitive_size = ShapeUtil::ByteSizeOfPrimitiveType(src_shape.element_type()); switch (primitive_size) { case 0: return BroadcastHelper<0>(src, src_shape, result_shape, dimensions); case 1: return BroadcastHelper<1>(src, src_shape, result_shape, dimensions); case 2: return BroadcastHelper<2>(src, src_shape, result_shape, dimensions); case 4: return BroadcastHelper<4>(src, src_shape, result_shape, dimensions); case 8: return BroadcastHelper<8>(src, src_shape, result_shape, dimensions); case 16: return BroadcastHelper<16>(src, src_shape, result_shape, dimensions); default: LOG(FATAL) << "Unhandled primitive size " << primitive_size; return InvalidArgument("Unhandled primitive size"); break; } } absl::StatusOr<Literal> LiteralBase::Reshape( absl::Span<const int64_t> dimensions) const { if (!LayoutUtil::IsDenseArray(shape())) { return InvalidArgument("Reshape is only supported for dense arrays."); } if (shape().is_dynamic()) { return Unimplemented("Dynamic reshape is not implemented."); } Literal output; if (!LayoutUtil::IsMonotonicWithDim0Major(shape().layout())) { output = Relayout(LayoutUtil::GetDefaultLayoutForRank(shape().rank())); } else { output = Clone(); } *output.mutable_shape_do_not_use() = ShapeUtil::MakeShape(shape().element_type(), dimensions); int64_t elements_before = ShapeUtil::ElementsIn(shape()); int64_t elements_after = ShapeUtil::ElementsIn(output.shape()); if (elements_before != elements_after) { return InvalidArgument( "Shapes before and after Literal::Reshape have different numbers " "of elements: %s vs %s.", ShapeUtil::HumanString(shape()), ShapeUtil::HumanString(output.shape())); } return std::move(output); } Literal LiteralBase::Transpose(absl::Span<const int64_t> permutation) const { CHECK(LayoutUtil::IsDenseArray(shape())) << __func__ << " is only supported for dense arrays: " << shape(); CHECK(shape().rank() == permutation.size() && IsPermutation(permutation)) << "Given permutation is not a permutation of dimension numbers"; Shape permuted_shape = ShapeUtil::PermuteDimensions(permutation, shape()); std::vector<int64_t> inverse_permutation = InversePermutation(permutation); CHECK(LayoutUtil::IsDenseArray(permuted_shape)); Layout* layout = permuted_shape.mutable_layout(); layout->clear_minor_to_major(); for (auto index : LayoutUtil::MinorToMajor(shape())) { layout->add_minor_to_major(inverse_permutation[index]); } Literal new_literal(permuted_shape); if (shape().is_dynamic()) { for (int64_t i = 0; i < shape().rank(); i++) { if (shape().is_dynamic_dimension(i)) { new_literal.SetDynamicSize(inverse_permutation[i], GetDynamicSize(i)); } } } DCHECK_EQ(ShapeUtil::ByteSizeOf(new_literal.shape()), ShapeUtil::ByteSizeOf(shape())); std::memcpy(new_literal.untyped_data(), untyped_data(), size_bytes()); return new_literal; } namespace { template <typename NativeT> void SliceInternal(const LiteralBase& src_literal, absl::Span<const int64_t> start_indices, Literal& result_literal) { const Shape& result_shape = result_literal.shape(); DimensionVector new_indices(result_shape.rank()); TF_CHECK_OK( result_literal.Populate<NativeT>([&](absl::Span<const int64_t> indices) { for (int64_t i = 0; i < result_shape.rank(); ++i) { new_indices[i] = indices[i] + start_indices[i]; } return src_literal.Get<NativeT>(new_indices); })); for (int64_t dnum = 0; dnum < src_literal.shape().rank(); ++dnum) { if (src_literal.shape().is_dynamic_dimension(dnum)) { int64_t dynamic_size = src_literal.GetDynamicSize(dnum) - start_indices[dnum]; CHECK_GE(dynamic_size, 0) << src_literal.GetDynamicSize(dnum); dynamic_size = std::min(dynamic_size, result_shape.dimensions(dnum)); result_literal.SetDynamicSize(dnum, dynamic_size); } } } } Literal LiteralBase::Slice(absl::Span<const int64_t> start_indices, absl::Span<const int64_t> limit_indices) const { CHECK(shape().IsArray()) << "tuple is not supported for slice"; DimensionVector result_dimensions; for (int64_t dnum = 0; dnum < shape().rank(); ++dnum) { CHECK_GE(start_indices[dnum], 0); CHECK_LE(limit_indices[dnum], shape().dimensions(dnum)) << "dnum = " << dnum; int64_t dimension = limit_indices[dnum] - start_indices[dnum]; CHECK_GE(dimension, 0) << "dnum = " << dnum; result_dimensions.push_back(dimension); } auto result_shape = ShapeUtil::MakeShapeWithDenseLayout( shape().element_type(), result_dimensions, LayoutUtil::MinorToMajor(shape())); ShapeUtil::CopyDynamicDimensions(&result_shape, shape()); Literal result_literal(result_shape); primitive_util::ArrayTypeSwitch<void>( [&](auto primitive_type_constant) -> void { using NativeT = NativeTypeOf<primitive_type_constant>; return SliceInternal<NativeT>(*this, start_indices, result_literal); }, result_shape.element_type()); return result_literal; } Literal LiteralBase::Clone() const { Literal result(shape()); TF_CHECK_OK(result.CopyFrom(*this)); return result; } std::unique_ptr<Literal> LiteralBase::CloneToUnique() const { auto result = std::make_unique<Literal>(shape()); TF_CHECK_OK(result->CopyFrom(*this)); return result; } bool LiteralBase::IsDetermined(const ShapeIndex& shape_index) const { return piece(shape_index).IsDetermined(); } bool LiteralBase::IsKnown(const ShapeIndex& shape_index) const { return piece(shape_index).IsKnown(); } std::string LiteralBase::GetAsString(absl::Span<const int64_t> multi_index, const ShapeIndex& shape_index) const { const Shape& subshape = ShapeUtil::GetSubshape(shape(), shape_index); CHECK(LayoutUtil::IsDenseArray(subshape)); return primitive_util::ArrayTypeSwitch<std::string>( [&](auto primitive_type_constant) -> std::string { using NativeT = NativeTypeOf<primitive_type_constant>; if constexpr (primitive_util::IsIntegralType(primitive_type_constant)) { return StrCat(Get<NativeT>(multi_index, shape_index)); } if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { return RoundTripFpToString(Get<NativeT>(multi_index, shape_index)); } if constexpr (primitive_util::IsComplexType(primitive_type_constant)) { NativeT c = Get<NativeT>(multi_index, shape_index); return StrCat("(", RoundTripFpToString(c.real()), ", ", RoundTripFpToString(c.imag()), ")"); } if constexpr (primitive_type_constant == PRED) { return Get<bool>(multi_index, shape_index) ? "true" : "false"; } LOG(FATAL) << PrimitiveType_Name(subshape.element_type()); }, subshape.element_type()); } std::optional<int64_t> LiteralBase::GetIntegralAsS64( absl::Span<const int64_t> multi_index) const { CHECK(LayoutUtil::IsDenseArray(shape())); return primitive_util::PrimitiveTypeSwitch<std::optional<int64_t>>( [&](auto primitive_type_constant) -> std::optional<int64_t> { if constexpr (primitive_util::IsIntegralType(primitive_type_constant) || primitive_type_constant == PRED) { using NativeT = NativeTypeOf<primitive_type_constant>; return Get<NativeT>(multi_index); } return std::nullopt; }, shape().element_type()); } std::optional<double> LiteralBase::GetAsDouble( absl::Span<const int64_t> multi_index) const { const Shape& s = shape(); CHECK(LayoutUtil::IsDenseArray(s)); return primitive_util::PrimitiveTypeSwitch<std::optional<double>>( [&](auto primitive_type_constant) -> std::optional<double> { if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { using NativeT = NativeTypeOf<primitive_type_constant>; return static_cast<double>(Get<NativeT>(multi_index)); } return std::nullopt; }, s.element_type()); } std::optional<double> LiteralBase::GetSumAsDouble( absl::Span<const int64_t> linear_indices) const { const Shape& s = shape(); CHECK(LayoutUtil::IsDenseArray(s)); if (!primitive_util::IsFloatingPointType(s.element_type())) { return std::nullopt; } return primitive_util::FloatingPointTypeSwitch<double>( [&](auto primitive_type_constant) -> double { using NativeT = NativeTypeOf<primitive_type_constant>; double sum = 0.0; auto d = root_piece().data<NativeT>(); for (const int64_t idx : linear_indices) { sum += static_cast<double>(d[idx]); } return sum; }, s.element_type()); } std::optional<complex128> LiteralBase::GetAsComplex128( absl::Span<const int64_t> multi_index) const { return primitive_util::PrimitiveTypeSwitch<std::optional<complex128>>( [&](auto primitive_type_constant) -> std::optional<complex128> { if constexpr (primitive_util::IsArrayType(primitive_type_constant)) { using NativeT = NativeTypeOf<primitive_type_constant>; if constexpr (primitive_util::IsComplexType( primitive_type_constant)) { return {Get<NativeT>(multi_index)}; } if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { return {{static_cast<double>(Get<NativeT>(multi_index)), 0}}; } if constexpr (primitive_util::IsIntegralType( primitive_type_constant) && primitive_type_constant != S64 && primitive_type_constant != U64) { return {{static_cast<double>(Get<NativeT>(multi_index)), 0}}; } } return std::nullopt; }, shape().element_type()); } absl::Status MutableLiteralBase::SetIntegralAsS64( absl::Span<const int64_t> multi_index, int64_t value) { CHECK(LayoutUtil::IsDenseArray(shape())); return primitive_util::PrimitiveTypeSwitch<absl::Status>( [&](auto primitive_type_constant) -> absl::Status { if constexpr (primitive_util::IsIntegralType(primitive_type_constant) || primitive_type_constant == PRED) { using NativeT = NativeTypeOf<primitive_type_constant>; Set<NativeT>(multi_index, static_cast<NativeT>(value)); return absl::OkStatus(); } return FailedPrecondition("Array element type is not integral: %s", PrimitiveType_Name(shape().element_type())); }, shape().element_type()); } absl::Status MutableLiteralBase::SetFromDouble( absl::Span<const int64_t> multi_index, double value) { CHECK(LayoutUtil::IsDenseArray(shape())); if (!primitive_util::IsFloatingPointType(shape().element_type())) { return FailedPrecondition("Array element type is not integral: %s", PrimitiveType_Name(shape().element_type())); } primitive_util::FloatingPointTypeSwitch<void>( [&](auto primitive_type_constant) -> void { using NativeT = NativeTypeOf<primitive_type_constant>; Set<NativeT>(multi_index, static_cast<NativeT>(value)); }, shape().element_type()); return absl::OkStatus(); } namespace { void PrintShape(bool print_layout, const Shape& shape, Printer* printer) { if (print_layout) { ShapeUtil::PrintHumanStringWithLayout(printer, shape); } else { ShapeUtil::PrintHumanString(printer, shape); } } void PrintHelper(const LiteralBase& literal, const ShapeIndex& shape_index, bool print_shape, bool print_layout, bool oneline, Printer* printer); void TuplePrintHelper(const LiteralBase& literal, const ShapeIndex& shape_index, bool print_shape, bool print_layout, bool oneline, Printer* printer) { const Shape& subshape = ShapeUtil::GetSubshape(literal.shape(), shape_index); printer->Append(oneline ? "( " : "(\n"); for (int i = 0; i < ShapeUtil::TupleElementCount(subshape); ++i) { ShapeIndex element_index = shape_index; element_index.push_back(i); if (i > 0) printer->Append(oneline ? ", " : ",\n"); PrintHelper(literal, element_index, print_shape, print_layout, oneline, printer); } printer->Append(oneline ? " )" : "\n)"); } void DenseArrayPrintHelper(const LiteralBase& literal, const ShapeIndex& shape_index, bool print_shape, bool print_layout, bool oneline, Printer* printer) { const Shape& subshape = ShapeUtil::GetSubshape(literal.shape(), shape_index); int64_t rank = subshape.rank(); const absl::string_view linebreak = oneline ? " " : "\n"; std::function<void(absl::Span<const int64_t> dimensions, std::vector<int64_t>*)> print_recursive = [&](absl::Span<const int64_t> dimensions, std::vector<int64_t>* accum_indices) { CHECK_EQ(rank, dimensions.size() + accum_indices->size()); auto brace_to_string = [&](std::string brace) -> std::string { if (rank == 1) { return brace; } if (dimensions.size() == 1 && brace == "{") { return StrCat(oneline ? "" : " ", brace, dimensions[0] <= 1 ? "" : " "); } if (dimensions.size() == 1 && brace == "}") { return StrCat(dimensions[0] <= 1 ? "" : " ", brace); } if (brace == "{") { const int64_t accum_indices_size = accum_indices->size(); if (rank > 3 && !accum_indices->empty() && accum_indices_size < rank) { int index = accum_indices->size() - 1; int value = accum_indices->back(); int size = dimensions.front(); return StrCat(brace, " ", size > 0 ? linebreak : ""); } return StrCat(brace, linebreak); } return StrCat(linebreak, brace); }; if (dimensions.empty()) { std::string elem; if (subshape.element_type() == PRED && rank > 0) { elem = literal.Get<bool>(*accum_indices, shape_index) ? "1" : "0"; } else { elem = literal.GetAsString(*accum_indices, shape_index); } printer->Append(elem); } else { printer->Append(brace_to_string("{")); for (int i = 0; i < dimensions[0]; ++i) { accum_indices->push_back(i); print_recursive(dimensions.subspan(1), accum_indices); accum_indices->pop_back(); if (i < dimensions[0] - 1) { printer->Append(","); printer->Append(dimensions.size() > 1 ? linebreak : " "); } } printer->Append(brace_to_string("}")); } }; if (print_shape) { PrintShape(print_layout, subshape, printer); if (subshape.is_dynamic()) { printer->Append("("); for (int64_t i = 0; i < subshape.dimensions_size(); ++i) { printer->Append(literal.GetDynamicSize(i, shape_index)); if (i < subshape.dimensions_size() - 1) { printer->Append(","); } } printer->Append(")"); } printer->Append(" "); } std::vector<int64_t> indices = {}; std::vector<int64_t> dimensions; dimensions.reserve(subshape.rank()); for (int64_t i = 0; i < subshape.rank(); ++i) { dimensions.push_back(literal.GetDynamicSize(i, shape_index)); } print_recursive(dimensions, &indices); } void PrintHelper(const LiteralBase& literal, const ShapeIndex& shape_index, bool print_shape, bool print_layout, bool oneline, Printer* printer) { const Shape& subshape = ShapeUtil::GetSubshape(literal.shape(), shape_index); CHECK(LayoutUtil::HasLayout(literal.shape())); CHECK(LayoutUtil::HasLayout(subshape)); if (subshape.IsTuple()) { TuplePrintHelper(literal, shape_index, print_shape, print_layout, oneline, printer); } else if (subshape.IsToken()) { printer->Append("token"); } else { CHECK(LayoutUtil::IsDenseArray(subshape)); if (literal.IsKnown(shape_index)) { DenseArrayPrintHelper(literal, shape_index, print_shape, print_layout, oneline, printer); } else { PrintShape(print_layout, subshape, printer); printer->Append(" "); if (literal.IsDetermined(shape_index)) { printer->Append("unknown"); } else { printer->Append("undetermined"); } } } } } void LiteralBase::Print(Printer* printer) const { CHECK(LayoutUtil::HasLayout(this->shape())); PrintHelper(*this, {}, true, false, false, printer); } void LiteralBase::PrintOneline(Printer* printer) const { CHECK(LayoutUtil::HasLayout(this->shape())); PrintHelper(*this, {}, true, false, true, printer); } void LiteralBase::PrintWithoutShape(Printer* printer) const { CHECK(LayoutUtil::HasLayout(this->shape())); PrintHelper(*this, {}, false, false, false, printer); } void LiteralBase::PrintWithoutShapeOneline(Printer* printer) const { CHECK(LayoutUtil::HasLayout(this->shape())); PrintHelper(*this, {}, false, false, true, printer); } void LiteralBase::PrintWithLayout(Printer* printer) const { CHECK(LayoutUtil::HasLayout(this->shape())); PrintHelper(*this, {}, true, true, false, printer); } void LiteralBase::PrintWithLayoutOneline(Printer* printer) const { CHECK(LayoutUtil::HasLayout(this->shape())); PrintHelper(*this, {}, true, true, true, printer); } std::string LiteralBase::ToString() const { StringPrinter printer; Print(&printer); return std::move(printer).ToString(); } std::string LiteralBase::ToStringOneline() const { StringPrinter printer; PrintOneline(&printer); return std::move(printer).ToString(); } std::string LiteralBase::ToStringWithoutShape() const { StringPrinter printer; PrintWithoutShape(&printer); return std::move(printer).ToString(); } std::string LiteralBase::ToStringWithoutShapeOneline() const { StringPrinter printer; PrintWithoutShapeOneline(&printer); return std::move(printer).ToString(); } std::string LiteralBase::ToStringWithLayout() const { StringPrinter printer; PrintWithLayout(&printer); return std::move(printer).ToString(); } std::string LiteralBase::ToStringWithLayoutOneline() const { StringPrinter printer; PrintWithLayoutOneline(&printer); return std::move(printer).ToString(); } void LiteralBase::EachCellAsString( absl::FunctionRef<void(absl::Span<const int64_t> indices, const std::string& value)> per_cell) const { if (ShapeUtil::IsZeroElementArray(shape())) { return; } auto indices = IndexUtil::LinearIndexToMultidimensionalIndex( shape(), 0); do { per_cell(indices, GetAsString(indices)); } while (IndexUtil::BumpIndices(shape(), absl::MakeSpan(indices))); } namespace { template <typename NativeSrcT, typename NativeDestT> void ConvertBetweenNativeTypes(absl::Span<const NativeSrcT> src_data, void* dst_base) { static_assert(!std::is_same_v<NativeSrcT, NativeDestT>); auto converter = [](NativeSrcT src) -> NativeDestT { if constexpr (!std::is_same_v<NativeDestT, bool> && !std::numeric_limits<NativeSrcT>::is_integer && std::numeric_limits<NativeDestT>::is_integer) { if (src != src) { return NativeDestT{0}; } if (src >= static_cast<NativeSrcT>(std::numeric_limits<NativeDestT>::max())) { return std::numeric_limits<NativeDestT>::max(); } if (src <= static_cast<NativeSrcT>(std::numeric_limits<NativeDestT>::lowest())) { return std::numeric_limits<NativeDestT>::lowest(); } } if constexpr (sizeof(src) == 1 && std::is_same_v<NativeDestT, tsl::float8_e3m4>) { return static_cast<NativeDestT>(static_cast<half>(src)); } else { return static_cast<NativeDestT>(src); } }; NativeDestT* dest_data = static_cast<NativeDestT*>(dst_base); for (const NativeSrcT& src : src_data) { *(dest_data++) = converter(src); } } template <PrimitiveType kSrcType> absl::Status ConvertIfDestTypeMatches(const LiteralBase& src_literal, MutableLiteralBase& dst_literal) { DCHECK(dst_literal.shape().IsArray()); using NativeSrcT = NativeTypeOf<kSrcType>; auto src_data = src_literal.data<NativeSrcT>(); void* dst_base = dst_literal.untyped_data(); DCHECK_EQ(src_data.size(), dst_literal.element_count()); return primitive_util::ArrayTypeSwitch<absl::Status>( [&](auto primitive_type_constant) -> absl::Status { if constexpr (primitive_util::IsComplexType(kSrcType) && !primitive_util::IsComplexType(primitive_type_constant)) { return Unimplemented("%s from type %s to type %s is not implemented.", "Converting", PrimitiveType_Name(kSrcType), PrimitiveType_Name(primitive_type_constant())); } else if constexpr (kSrcType != primitive_type_constant) { using NativeDestT = NativeTypeOf<primitive_type_constant>; ConvertBetweenNativeTypes<NativeSrcT, NativeDestT>(src_data, dst_base); } return absl::OkStatus(); }, dst_literal.shape().element_type()); } absl::StatusOr<Literal> ConvertSwitch(const LiteralBase& literal, PrimitiveType primitive_dest_type) { TF_RET_CHECK(LayoutUtil::IsDenseArray(literal.shape())); if (literal.shape().element_type() == primitive_dest_type) { return literal.Clone(); } if (!primitive_util::IsArrayType(primitive_dest_type) || !primitive_util::IsArrayType(literal.shape().element_type())) { return Unimplemented("%s from type %s to type %s is not implemented.", "Converting", PrimitiveType_Name(literal.shape().element_type()), PrimitiveType_Name(primitive_dest_type)); } Literal result( ShapeUtil::ChangeElementType(literal.shape(), primitive_dest_type)); TF_RETURN_IF_ERROR(primitive_util::ArrayTypeSwitch<absl::Status>( [&](auto primitive_type_constant) -> absl::Status { return ConvertIfDestTypeMatches<primitive_type_constant>(literal, result); }, literal.shape().element_type())); return result; } } absl::StatusOr<Literal> LiteralBase::Convert( PrimitiveType primitive_dest_type) const { return ConvertSwitch(*this, primitive_dest_type); } absl::StatusOr<Literal> LiteralBase::BitcastConvert( const Shape& dest_shape) const { if (ShapeUtil::ByteSizeOf(dest_shape) != ShapeUtil::ByteSizeOf(shape())) { return InvalidArgument( "Can not bitcast-convert from shape %s to a shape of different size %s", shape().ToString(), dest_shape.ToString()); } if (dest_shape.IsTuple() || shape().IsTuple()) { return InvalidArgument( "bitcast-convert is not valid for tuple shapes %s->%s", shape().ToString(), dest_shape.ToString()); } if (shape().is_dynamic() || dest_shape.is_dynamic()) { return InvalidArgument( "bitcast-convert is not valid for dynamic shape %s->%s", shape().ToString(), dest_shape.ToString()); } Literal out(dest_shape); std::memcpy(out.root_piece_.buffer(), root_piece().buffer(), root_piece().size_bytes_dense()); if constexpr (!kLittleEndian) { size_t input_elem_size = ShapeUtil::ByteSizeOfPrimitiveType(shape().element_type()); TF_RETURN_IF_ERROR(tsl::ByteSwapArray( const_cast<char*>(out.root_piece().buffer()), input_elem_size, out.root_piece().size_bytes_dense() / input_elem_size)); size_t output_elem_size = ShapeUtil::ByteSizeOfPrimitiveType(dest_shape.element_type()); TF_RETURN_IF_ERROR(tsl::ByteSwapArray( const_cast<char*>(out.root_piece().buffer()), output_elem_size, out.root_piece().size_bytes_dense() / output_elem_size)); } return out; } absl::StatusOr<Literal> LiteralBase::ConvertToShape( const Shape& dest_shape) const { if (!dest_shape.IsTuple()) { return Convert(dest_shape.element_type()); } std::vector<Literal> elements; const auto tuple_element_count = ShapeUtil::TupleElementCount(shape()); elements.reserve(tuple_element_count); for (int i = 0; i < tuple_element_count; ++i) { auto element = LiteralSlice(*this, {i}); TF_ASSIGN_OR_RETURN( auto new_element, element.ConvertToShape(ShapeUtil::GetSubshape(dest_shape, {i}))); elements.push_back(std::move(new_element)); } return MutableLiteralBase::MoveIntoTuple(absl::MakeSpan(elements)); } Literal MutableLiteralBase::MoveIntoTuple( absl::Span<Literal> elements) { std::vector<const Shape*> element_shapes; element_shapes.reserve(elements.size()); for (const Literal& element : elements) { element_shapes.push_back(&element.shape()); } Literal literal(ShapeUtil::MakeTupleShapeWithPtrs(element_shapes), false); for (int i = 0, end = elements.size(); i < end; ++i) { TF_CHECK_OK( literal.MoveFrom(std::move(elements[i]), {i})); } return literal; } template <typename NativeT> bool LiteralBase::Piece::EqualElementsInternal( const LiteralBase::Piece& other, std::vector<int64_t>* multi_index) const { if (multi_index->size() == subshape().rank()) { return (Get<NativeT>(*multi_index) == other.Get<NativeT>(*multi_index)); } for (int64_t i = 0; i < GetDynamicSize(multi_index->size()); ++i) { multi_index->push_back(i); if (!EqualElementsInternal<NativeT>(other, multi_index)) { return false; } multi_index->pop_back(); } return true; } bool LiteralBase::Piece::EqualDynamicSize( const LiteralBase::Piece& other) const { DCHECK(ShapeUtil::Compatible(subshape(), other.subshape())); if (subshape().is_static()) { return true; } for (int64_t i = 0; i < subshape().rank(); ++i) { if (GetDynamicSize(i) != other.GetDynamicSize(i)) { return false; } } return true; } bool LiteralBase::Piece::EqualElements(const LiteralBase::Piece& other) const { if (subshape().is_static() && ShapeUtil::Equal(subshape(), other.subshape()) && subshape().IsArray()) { CHECK(LayoutUtil::IsDenseArray(subshape())) << __func__ << " is only supported for dense arrays: " << subshape(); CHECK_EQ(size_bytes_dense(), other.size_bytes_dense()); if (primitive_util::IsSubByteNonPredType(subshape().element_type())) { CHECK(!primitive_util::IsFloatingPointType(subshape().element_type())); auto one_array = buffer(); auto two_array = other.buffer(); const int bits_per_element = primitive_util::BitWidth(subshape().element_type()); const uint8_t mask = LsbMask<uint8_t>(bits_per_element); for (int64_t i = 0; i < size_bytes_dense(); ++i) { if ((one_array[i] & mask) != (two_array[i] & mask)) return false; } return true; } return memcmp(buffer(), other.buffer(), size_bytes_dense()) == 0; } std::vector<int64_t> multi_index; return primitive_util::ArrayTypeSwitch<bool>( [&](auto primitive_type_constant) -> bool { using NativeSrcT = NativeTypeOf<primitive_type_constant>; return EqualElementsInternal<NativeSrcT>(other, &multi_index); }, subshape().element_type()); } bool LiteralBase::Equal(const LiteralBase& other, bool layout_sensitive) const { if (!ShapeUtil::EqualStructure(shape(), other.shape())) { return false; } return root_piece().ForEachSubpieceWithBool([&](const ShapeIndex& index, const Piece& piece) { const Piece& other_piece = other.piece(index); const Shape& subshape = piece.subshape(); const Shape& other_subshape = other_piece.subshape(); if (subshape.element_type() != other_subshape.element_type()) { return false; } if (!piece.subshape().IsArray()) { return true; } if (subshape.rank() != other_subshape.rank()) { return false; } if (layout_sensitive && (subshape.layout() != other_subshape.layout())) { return false; } for (int64_t i = 0; i < subshape.rank(); ++i) { if (piece.GetDynamicSize(i) != other_piece.GetDynamicSize(i)) { return false; } } if (!piece.EqualElements(other_piece)) { return false; } return true; }); } template <typename NativeT> static bool EqualIncludingNan(NativeT a, NativeT b) { if constexpr (std::numeric_limits<NativeT>::has_quiet_NaN || std::numeric_limits<NativeT>::has_signaling_NaN) { if (Eigen::numext::isnan(a) && Eigen::numext::isnan(b)) { return true; } } return a == b; } template <typename T> static bool EqualIncludingNan(std::complex<T> a, std::complex<T> b) { return EqualIncludingNan(a.real(), b.real()) && EqualIncludingNan(a.imag(), b.imag()); } template <typename NativeT> static bool AllElementsEqualValue(absl::Span<const NativeT> data, NativeT value) { for (int64_t i = 0; i < data.size(); ++i) { if (memcmp(&data[i], &value, sizeof value)) { return false; } } return true; } bool Literal::Piece::IsAll(const Literal& scalar) const { CHECK(ShapeUtil::IsScalar(scalar.shape())) << scalar.shape().ToString(); if (!subshape().IsArray()) { return false; } CHECK(LayoutUtil::IsDenseArray(subshape())) << __func__ << " is only supported for dense arrays: " << subshape(); CHECK_EQ(subshape().element_type(), scalar.shape().element_type()); return primitive_util::ArrayTypeSwitch<bool>( [&](auto primitive_type_constant) -> bool { using NativeT = NativeTypeOf<primitive_type_constant>; return AllElementsEqualValue(this->data<NativeT>(), scalar.GetFirstElement<NativeT>()); }, subshape().element_type()); } int64_t Literal::Piece::CountAll(const Literal& scalar) const { CHECK(ShapeUtil::IsScalar(scalar.shape())) << scalar.shape().ToString(); if (!subshape().IsArray()) { return 0; } CHECK(LayoutUtil::IsDenseArray(subshape())) << __func__ << " is only supported for dense arrays: " << subshape(); CHECK_EQ(subshape().element_type(), scalar.shape().element_type()); return primitive_util::ArrayTypeSwitch<int64_t>( [&](auto primitive_type_constant) -> int64_t { using NativeT = NativeTypeOf<primitive_type_constant>; return absl::c_count_if( this->data<NativeT>(), [&](NativeT elem) -> bool { return EqualIncludingNan(elem, scalar.GetFirstElement<NativeT>()); }); }, subshape().element_type()); } bool LiteralBase::IsAll(const Literal& scalar) const { return root_piece().IsAll(scalar); } bool LiteralBase::IsAll(int8_t value) const { if (!shape().IsArray()) { return false; } PrimitiveType ty = shape().element_type(); if (primitive_util::IsFloatingPointType(ty)) { return IsAllFloatImpl(value, false); } if (primitive_util::IsUnsignedIntegralType(ty) && value < 0) { return false; } Literal scalar(ShapeUtil::MakeScalarShape(ty)); return primitive_util::ArrayTypeSwitch<bool>( [&](auto primitive_type_constant) -> bool { using NativeT = NativeTypeOf<primitive_type_constant>; NativeT converted(value); if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { if (!Eigen::numext::isfinite(converted)) { return false; } } if constexpr (!primitive_util::IsComplexType(primitive_type_constant)) { if (static_cast<int8_t>(converted) != value) { return false; } } scalar.Set<NativeT>({}, converted); return root_piece().IsAll(scalar); }, ty); } bool LiteralBase::IsAllFloat(float value) const { return IsAllFloatImpl(value, true); } bool LiteralBase::IsAllFloatImpl(float value, bool round_value) const { PrimitiveType ty = shape().element_type(); if (!primitive_util::IsFloatingPointType(ty)) { return false; } Literal scalar(ShapeUtil::MakeScalarShape(ty)); return primitive_util::FloatingPointTypeSwitch<bool>( [&](auto primitive_type_constant) -> bool { using NativeT = NativeTypeOf<primitive_type_constant>; scalar.Set<NativeT>({}, static_cast<NativeT>(value)); if (!round_value && scalar.GetAsDouble({}) != value) { return false; } return root_piece().IsAll(scalar); }, ty); } bool LiteralBase::IsAllComplex(complex64 value) const { PrimitiveType ty = shape().element_type(); if (!primitive_util::IsComplexType(ty)) { return false; } Literal scalar(ShapeUtil::MakeScalarShape(ty)); return primitive_util::ComplexTypeSwitch<bool>( [&](auto primitive_type_constant) -> bool { using NativeT = NativeTypeOf<primitive_type_constant>; scalar.Set<NativeT>({}, static_cast<NativeT>(value)); return root_piece().IsAll(scalar); }, ty); } bool LiteralBase::IsAllFirst() const { if (!shape().IsArray()) { return false; } if (ShapeUtil::IsZeroElementArray(shape())) { return false; } absl::InlinedVector<int64_t, 4> start_indices(shape().rank(), 0); absl::InlinedVector<int64_t, 4> end_indices(shape().rank(), 1); Literal first = Slice(start_indices, end_indices); return IsAll(first.Reshape({}).value()); } bool LiteralBase::IsR1Iota() const { if (!shape().IsArray()) { return false; } CHECK(LayoutUtil::IsDenseArray(shape())) << __func__ << " is only supported for dense arrays: " << shape(); if (shape().rank() != 1) { return false; } return primitive_util::ArrayTypeSwitch<bool>( [&](auto primitive_type_constant) -> bool { using NativeT = NativeTypeOf<primitive_type_constant>; const int64_t elements = ShapeUtil::ElementsIn(shape()); for (int64_t idx = 0; idx < elements; ++idx) { if constexpr (primitive_util::IsIntegralType( primitive_type_constant)) { if (static_cast<int64_t>(Get<NativeT>({idx})) != idx) { return false; } } else if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { if (Get<NativeT>({idx}) != static_cast<NativeT>(idx)) { return false; } } else if constexpr (primitive_util::IsComplexType( primitive_type_constant)) { if (Get<NativeT>({idx}) != NativeT(idx, 0.0f)) { return false; } } else { return false; } } return true; }, shape().element_type()); } std::optional<int64_t> LiteralBase::IsR1StridedIota() const { if (!shape().IsArray() || shape().rank() != 1) { return std::nullopt; } CHECK(LayoutUtil::IsDenseArray(shape())) << __func__ << " is only supported for dense arrays: " << shape(); const int64_t elements = ShapeUtil::ElementsIn(shape()); const PrimitiveType type = shape().element_type(); if (elements <= 1 || !primitive_util::IsIntegralType(type)) { return std::nullopt; } return primitive_util::IntegralTypeSwitch<std::optional<int64_t>>( [&](auto primitive_type_constant) -> std::optional<int64_t> { using NativeT = NativeTypeOf<primitive_type_constant>; const int64_t stride = static_cast<int64_t>(Get<NativeT>({1})); if (stride == 0) { return std::nullopt; } for (int64_t idx = 0; idx < elements; ++idx) { if (static_cast<int64_t>(Get<NativeT>({idx})) != idx * stride) { return std::nullopt; } } return stride; }, shape().element_type()); } bool LiteralBase::IsZero(absl::Span<const int64_t> indices) const { CHECK(LayoutUtil::IsDenseArray(shape())) << __func__ << " is only supported for dense arrays: " << shape(); return primitive_util::ArrayTypeSwitch<bool>( [&](auto primitive_type_constant) -> bool { using NativeT = NativeTypeOf<primitive_type_constant>; return Get<NativeT>(indices) == NativeT{0}; }, shape().element_type()); } namespace { template <typename RepeatedFieldT, typename NativeT> void CopyToRepeatedField(RepeatedFieldT* dest, const absl::Span<const NativeT> src) { *dest = RepeatedFieldT(src.begin(), src.end()); } } void LiteralBase::Piece::set_array_value_state(ArrayValueState state) { array_value_state_ = state; } LiteralBase::ArrayValueState LiteralBase::Piece::get_array_value_state() const { return array_value_state_; } void LiteralBase::Piece::WriteToProto(LiteralProto* proto) const { *proto->mutable_shape() = subshape().ToProto(); switch (subshape().element_type()) { case PRED: CopyToRepeatedField(proto->mutable_preds(), data<bool>()); break; case U2: *proto->mutable_u2s() = std::string( reinterpret_cast<const char*>(data<u2>().data()), size_bytes_dense()); break; case U4: *proto->mutable_u4s() = std::string( reinterpret_cast<const char*>(data<u4>().data()), size_bytes_dense()); break; case U8: proto->set_u8s(static_cast<const unsigned char*>(data<uint8_t>().data()), element_count()); break; case U16: *proto->mutable_u16s() = std::string(reinterpret_cast<const char*>(data<uint16_t>().data()), size_bytes_dense()); if (!kLittleEndian) { ConvertEndianShort(proto->mutable_u16s()); } break; case U32: CopyToRepeatedField(proto->mutable_u32s(), data<uint32_t>()); break; case U64: CopyToRepeatedField(proto->mutable_u64s(), data<uint64_t>()); break; case S2: *proto->mutable_s2s() = std::string( reinterpret_cast<const char*>(data<s2>().data()), size_bytes_dense()); break; case S4: *proto->mutable_s4s() = std::string( reinterpret_cast<const char*>(data<s4>().data()), size_bytes_dense()); break; case S8: proto->set_s8s(static_cast<const signed char*>(data<int8_t>().data()), element_count()); break; case S16: *proto->mutable_s16s() = std::string(reinterpret_cast<const char*>(data<int16_t>().data()), size_bytes_dense()); if (!kLittleEndian) { ConvertEndianShort(proto->mutable_s16s()); } break; case S32: CopyToRepeatedField(proto->mutable_s32s(), data<int32_t>()); break; case S64: CopyToRepeatedField(proto->mutable_s64s(), data<int64_t>()); break; case F8E5M2: *proto->mutable_f8e5m2s() = std::string( reinterpret_cast<const char*>(data<tsl::float8_e5m2>().data()), size_bytes_dense()); break; case F8E4M3: *proto->mutable_f8e4m3s() = std::string( reinterpret_cast<const char*>(data<tsl::float8_e4m3>().data()), size_bytes_dense()); break; case F8E4M3FN: *proto->mutable_f8e4m3fns() = std::string( reinterpret_cast<const char*>(data<tsl::float8_e4m3fn>().data()), size_bytes_dense()); break; case F8E4M3B11FNUZ: *proto->mutable_f8e4m3b11fnuzs() = std::string( reinterpret_cast<const char*>(data<tsl::float8_e4m3b11fnuz>().data()), size_bytes_dense()); break; case F8E5M2FNUZ: *proto->mutable_f8e5m2fnuzs() = std::string( reinterpret_cast<const char*>(data<tsl::float8_e5m2fnuz>().data()), size_bytes_dense()); break; case F8E4M3FNUZ: *proto->mutable_f8e4m3fnuzs() = std::string( reinterpret_cast<const char*>(data<tsl::float8_e4m3fnuz>().data()), size_bytes_dense()); break; case F8E3M4: *proto->mutable_f8e3m4s() = std::string( reinterpret_cast<const char*>(data<tsl::float8_e3m4>().data()), size_bytes_dense()); break; case F16: *proto->mutable_f16s() = std::string(reinterpret_cast<const char*>(data<half>().data()), size_bytes_dense()); if (!kLittleEndian) { ConvertEndianShort(proto->mutable_f16s()); } break; case BF16: *proto->mutable_bf16s() = std::string(reinterpret_cast<const char*>(data<bfloat16>().data()), size_bytes_dense()); if (!kLittleEndian) { ConvertEndianShort(proto->mutable_bf16s()); } break; case F32: CopyToRepeatedField(proto->mutable_f32s(), data<float>()); break; case F64: CopyToRepeatedField(proto->mutable_f64s(), data<double>()); break; case C64: for (complex64 value : data<complex64>()) { proto->add_c64s(value.real()); proto->add_c64s(value.imag()); } break; case C128: for (complex128 value : data<complex128>()) { proto->add_c128s(value.real()); proto->add_c128s(value.imag()); } break; case TUPLE: case TOKEN: return; default: LOG(FATAL) << "Unhandled primitive type " << PrimitiveType_Name(subshape().element_type()); } } const void* LiteralBase::Piece::untyped_data() const { DCHECK(LayoutUtil::IsDenseArray(subshape())) << ShapeUtil::HumanString(subshape()); return buffer(); } void* LiteralBase::Piece::untyped_data() { DCHECK(LayoutUtil::IsDenseArray(subshape())) << ShapeUtil::HumanString(subshape()); return buffer(); } namespace { template <typename RepeatedFieldT, typename NativeT> absl::Status CopyFromRepeatedField(absl::Span<NativeT> dest, const RepeatedFieldT& src) { if (dest.size() != src.size()) { return InvalidArgument( "Expected %lu elements in LiteralProto repeated field, has %d", dest.size(), src.size()); } std::copy(src.begin(), src.end(), dest.begin()); return absl::OkStatus(); } } absl::Status LiteralBase::Piece::CopyFromProto(const LiteralProto& proto) { TF_RET_CHECK(proto.has_shape()); Shape shape(proto.shape()); TF_RET_CHECK(LayoutUtil::HasLayout(shape)); TF_RET_CHECK(ShapeUtil::Equal(shape, subshape())); switch (subshape().element_type()) { case PRED: TF_RETURN_IF_ERROR(CopyFromRepeatedField(data<bool>(), proto.preds())); break; case S2: { const std::string& s(proto.s2s()); TF_RET_CHECK(data<s2>().size() * sizeof(s2) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case S4: { const std::string& s(proto.s4s()); TF_RET_CHECK(data<s4>().size() * sizeof(s4) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case S8: { auto s8_data = data<int8_t>(); TF_RET_CHECK(proto.s8s().size() == s8_data.size()); std::copy(proto.s8s().begin(), proto.s8s().end(), s8_data.begin()); break; } case S16: { const std::string& s(proto.s16s()); TF_RET_CHECK(data<int16_t>().size() * sizeof(int16_t) == s.size()); memcpy(untyped_data(), s.data(), s.size()); if (!kLittleEndian) { ConvertEndianShort(reinterpret_cast<char*>(untyped_data()), s.size()); } break; } case S32: TF_RETURN_IF_ERROR(CopyFromRepeatedField(data<int32_t>(), proto.s32s())); break; case S64: TF_RETURN_IF_ERROR(CopyFromRepeatedField(data<int64_t>(), proto.s64s())); break; case U2: { const std::string& s(proto.u2s()); TF_RET_CHECK(data<u2>().size() * sizeof(u2) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case U4: { const std::string& s(proto.u4s()); TF_RET_CHECK(data<u4>().size() * sizeof(u4) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case U8: { auto u8_data = data<uint8_t>(); TF_RET_CHECK(proto.u8s().size() == u8_data.size()); std::copy(proto.u8s().begin(), proto.u8s().end(), u8_data.begin()); break; } case U16: { const std::string& s(proto.u16s()); TF_RET_CHECK(data<uint16_t>().size() * sizeof(uint16_t) == s.size()); memcpy(untyped_data(), s.data(), s.size()); if (!kLittleEndian) { ConvertEndianShort(reinterpret_cast<char*>(untyped_data()), s.size()); } break; } case U32: TF_RETURN_IF_ERROR(CopyFromRepeatedField(data<uint32_t>(), proto.u32s())); break; case U64: TF_RETURN_IF_ERROR(CopyFromRepeatedField(data<uint64_t>(), proto.u64s())); break; case F8E5M2: { const std::string& s(proto.f8e5m2s()); TF_RET_CHECK(data<tsl::float8_e5m2>().size() * sizeof(tsl::float8_e5m2) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case F8E4M3: { const std::string& s(proto.f8e4m3s()); TF_RET_CHECK(data<tsl::float8_e4m3>().size() * sizeof(tsl::float8_e4m3) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case F8E4M3FN: { const std::string& s(proto.f8e4m3fns()); TF_RET_CHECK(data<tsl::float8_e4m3fn>().size() * sizeof(tsl::float8_e4m3fn) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case F8E4M3B11FNUZ: { const std::string& s(proto.f8e4m3b11fnuzs()); TF_RET_CHECK(data<tsl::float8_e4m3b11fnuz>().size() * sizeof(tsl::float8_e4m3b11fnuz) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case F8E5M2FNUZ: { const std::string& s(proto.f8e5m2fnuzs()); TF_RET_CHECK(data<tsl::float8_e5m2fnuz>().size() * sizeof(tsl::float8_e5m2fnuz) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case F8E4M3FNUZ: { const std::string& s(proto.f8e4m3fnuzs()); TF_RET_CHECK(data<tsl::float8_e4m3fnuz>().size() * sizeof(tsl::float8_e4m3fnuz) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case F8E3M4: { const std::string& s(proto.f8e3m4s()); TF_RET_CHECK(data<tsl::float8_e3m4>().size() * sizeof(tsl::float8_e3m4) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case F16: { const std::string& s(proto.f16s()); TF_RET_CHECK(data<half>().size() * sizeof(half) == s.size()); memcpy(untyped_data(), s.data(), s.size()); if (!kLittleEndian) { ConvertEndianShort(reinterpret_cast<char*>(untyped_data()), s.size()); } break; } case BF16: { const std::string& s(proto.bf16s()); TF_RET_CHECK(data<bfloat16>().size() * sizeof(bfloat16) == s.size()); memcpy(untyped_data(), s.data(), s.size()); if (!kLittleEndian) { ConvertEndianShort(reinterpret_cast<char*>(untyped_data()), s.size()); } break; } case F32: TF_RETURN_IF_ERROR(CopyFromRepeatedField(data<float>(), proto.f32s())); break; case F64: TF_RETURN_IF_ERROR(CopyFromRepeatedField(data<double>(), proto.f64s())); break; case C64: { auto complex_data = data<complex64>(); TF_RET_CHECK(proto.c64s_size() == complex_data.size() * 2); for (int64_t i = 0; i < complex_data.size(); ++i) { complex_data[i] = complex64{proto.c64s(i * 2), proto.c64s(i * 2 + 1)}; } break; } case C128: { auto complex_data = data<complex128>(); const int64_t complex_data_size_doubled = complex_data.size() * 2; TF_RET_CHECK(proto.c128s_size() == complex_data_size_doubled); for (int64_t i = 0, end = complex_data.size(); i < end; ++i) { complex_data[i] = complex128{proto.c128s(i * 2), proto.c128s(i * 2 + 1)}; } break; } case TUPLE: return InvalidArgument("Should not be called on tuple shapes: %s", ShapeUtil::HumanString(subshape())); default: return InvalidArgument("Is called on unsupported shape: %s", ShapeUtil::HumanString(subshape())); } return absl::OkStatus(); } bool LiteralBase::Piece::IsKnown() const { if (array_value_state_ != ArrayValueState::kKnown) { return false; } if (subshape().IsTuple()) { bool are_all_leaf_arrays_known = true; ForEachSubpiece([&are_all_leaf_arrays_known](const ShapeIndex& index, const Piece& piece) { if (!piece.subshape().IsArray()) { return; } are_all_leaf_arrays_known &= piece.IsKnown(); }); return are_all_leaf_arrays_known; } return true; } bool LiteralBase::Piece::IsDetermined() const { if (array_value_state_ == ArrayValueState::kUndetermined) { return false; } if (subshape().IsTuple()) { bool are_all_leaf_arrays_determined = true; ForEachSubpiece([&are_all_leaf_arrays_determined](const ShapeIndex& index, const Piece& piece) { if (!piece.subshape().IsArray()) { return; } are_all_leaf_arrays_determined &= piece.IsDetermined(); }); return are_all_leaf_arrays_determined; } return true; } LiteralProto LiteralBase::ToProto() const { LiteralProto proto; root_piece().ForEachSubpiece( [&](const ShapeIndex& index, const Piece& piece) { LiteralProto* proto_piece = &proto; for (int64_t i : index) { while (proto_piece->tuple_literals_size() <= i) { proto_piece->add_tuple_literals(); } proto_piece = proto_piece->mutable_tuple_literals(i); } piece.WriteToProto(proto_piece); }); return proto; } const void* LiteralBase::untyped_data(const ShapeIndex& shape_index) const { return piece(shape_index).untyped_data(); } void* MutableLiteralBase::untyped_data(const ShapeIndex& shape_index) { return piece(shape_index).untyped_data(); } int64_t LiteralBase::size_bytes(const ShapeIndex& shape_index) const { return piece(shape_index).size_bytes_dense(); } std::string LiteralBase::GetR1U8AsString() const { CHECK(shape().IsArray()); CHECK_EQ(shape().rank(), 1); CHECK_EQ(shape().element_type(), U8); return std::string(absl::bit_cast<const char*>(data<uint8_t>().data()), ShapeUtil::ElementsIn(shape())); } void MutableBorrowingLiteral::CopyPieceSubtree(const Shape& shape, const Piece* src_piece, Piece* dest_piece) { DCHECK(ShapeUtil::Equal(src_piece->subshape(), dest_piece->subshape())) << "src_piece has shape: " << ShapeUtil::HumanString(src_piece->subshape()) << "dest_piece has shape: " << ShapeUtil::HumanString(dest_piece->subshape()); dest_piece->set_array_value_state(src_piece->get_array_value_state()); if (shape.IsTuple()) { for (int i = 0; i < ShapeUtil::TupleElementCount(shape); ++i) { const Shape& subshape = shape.tuple_shapes(i); Piece child_piece; child_piece.set_subshape(&subshape); CopyPieceSubtree(subshape, &src_piece->child(i), &child_piece); dest_piece->emplace_back(std::move(child_piece)); } } else if (shape.IsArray()) { dest_piece->set_buffer(const_cast<char*>(src_piece->buffer())); } } MutableLiteralBase::~MutableLiteralBase() = default; MutableBorrowingLiteral::MutableBorrowingLiteral( const MutableBorrowingLiteral& literal) : MutableLiteralBase() { shape_ = literal.shape_.Clone(); CHECK(LayoutUtil::HasLayout(*shape_)); root_piece_ = new Piece(); root_piece_->set_subshape(shape_.get()); CopyPieceSubtree(*shape_, &literal.root_piece(), root_piece_); } MutableBorrowingLiteral& MutableBorrowingLiteral::operator=( const MutableBorrowingLiteral& literal) { shape_ = literal.shape_.Clone(); CHECK(LayoutUtil::HasLayout(*shape_)); root_piece_ = new Piece(); root_piece_->set_subshape(shape_.get()); CopyPieceSubtree(*shape_, &literal.root_piece(), root_piece_); return *this; } MutableBorrowingLiteral::MutableBorrowingLiteral(MutableLiteralBase* literal) : MutableLiteralBase() { shape_ = literal->shape_.Clone(); CHECK(LayoutUtil::HasLayout(*shape_)); root_piece_ = new Piece(); root_piece_->set_subshape(shape_.get()); CopyPieceSubtree(*shape_, &literal->root_piece(), root_piece_); } MutableBorrowingLiteral::MutableBorrowingLiteral( MutableBorrowingLiteral literal, const ShapeIndex& view_root) : MutableLiteralBase() { shape_ = std::make_unique<Shape>(literal.piece(view_root).subshape()); CHECK(LayoutUtil::HasLayout(*shape_)); root_piece_ = new Piece(); root_piece_->set_subshape(shape_.get()); CopyPieceSubtree(*shape_, &literal.piece(view_root), root_piece_); } MutableBorrowingLiteral::MutableBorrowingLiteral(const char* src_buf_ptr, const Shape& shape) : MutableLiteralBase() { shape_ = std::make_unique<Shape>(shape); CHECK(LayoutUtil::HasLayout(*shape_)); CHECK(!shape_->IsTuple()); root_piece_ = new Piece(); root_piece_->set_subshape(shape_.get()); root_piece_->set_buffer(const_cast<char*>(src_buf_ptr)); } MutableBorrowingLiteral::MutableBorrowingLiteral(absl::Span<char*> src_buf_ptrs, const Shape& shape) : MutableLiteralBase() { shape_ = std::make_unique<Shape>(shape); if (!shape_->IsTuple()) { CHECK_EQ(src_buf_ptrs.size(), 1); root_piece_ = new Piece(); root_piece_->set_subshape(shape_.get()); root_piece_->set_buffer(const_cast<char*>(src_buf_ptrs[0])); } else { CHECK(!ShapeUtil::IsNestedTuple(*shape_)); CHECK_EQ(src_buf_ptrs.size(), ShapeUtil::TupleElementCount(*shape_)); root_piece_ = new Piece(); root_piece_->set_subshape(shape_.get()); for (int i = 0; i < src_buf_ptrs.size(); ++i) { Piece child_piece; const auto& src_shape = shape_->tuple_shapes(i); CHECK(src_shape.IsArray()); child_piece.set_subshape(&src_shape); child_piece.set_buffer(src_buf_ptrs[i]); root_piece_->emplace_back(std::move(child_piece)); } } } MutableBorrowingLiteral::MutableBorrowingLiteral(ShapeTree<char*> src_buf_ptrs) : MutableLiteralBase() { shape_ = std::make_unique<Shape>(src_buf_ptrs.shape()); root_piece_ = new Piece(); root_piece_->set_subshape(shape_.get()); BuildPieceSubtree(*shape_, root_piece_); root_piece_->ForEachMutableSubpiece( [&](const ShapeIndex& index, Piece* piece) { if (ShapeUtil::GetSubshape(*shape_, index).IsTuple()) { DCHECK_EQ(src_buf_ptrs.element(index), nullptr) << "Tuples should not have buffer pointers"; return; } piece->set_buffer(const_cast<char*>(src_buf_ptrs.element(index))); }); } MutableBorrowingLiteral::~MutableBorrowingLiteral() { if (root_piece_ != nullptr) { delete root_piece_; } } LiteralSlice::LiteralSlice(const LiteralBase& literal) : LiteralBase(), root_piece_(&literal.root_piece()) {} LiteralSlice::LiteralSlice(const LiteralBase& literal, const ShapeIndex& view_root) : LiteralBase(), root_piece_(&literal.piece(view_root)) {} BorrowingLiteral::BorrowingLiteral(const char* src_buf_ptr, const Shape& shape) : LiteralBase(), shape_(std::make_unique<Shape>(shape)) { CHECK(shape_->IsArray()); CHECK(LayoutUtil::HasLayout(*shape_)); root_piece_ = Piece(); root_piece_.set_subshape(shape_.get()); root_piece_.set_buffer(const_cast<char*>(src_buf_ptr)); } BorrowingLiteral::BorrowingLiteral(absl::Span<const char* const> src_buf_ptrs, const Shape& shape) : LiteralBase(), shape_(std::make_unique<Shape>(shape)) { CHECK(shape_->IsTuple()); CHECK(!ShapeUtil::IsNestedTuple(*shape_)); CHECK_EQ(src_buf_ptrs.size(), ShapeUtil::TupleElementCount(*shape_)); root_piece_ = Piece(); root_piece_.set_subshape(shape_.get()); BuildPieceSubtree(*shape_, &root_piece_); for (int i = 0, end = src_buf_ptrs.size(); i < end; ++i) { const auto& src_shape = shape_->tuple_shapes(i); CHECK(src_shape.IsArray()); root_piece_.child(i).set_buffer(const_cast<char*>(src_buf_ptrs[i])); } } BorrowingLiteral::BorrowingLiteral(ShapeTree<const char*> src_buf_ptrs) : LiteralBase(), shape_(std::make_unique<Shape>(src_buf_ptrs.shape())) { root_piece_ = Piece(); root_piece_.set_subshape(shape_.get()); BuildPieceSubtree(*shape_, &root_piece_); root_piece_.ForEachMutableSubpiece( [&](const ShapeIndex& index, Piece* piece) { if (ShapeUtil::GetSubshape(*shape_, index).IsTuple()) { DCHECK_EQ(src_buf_ptrs.element(index), nullptr) << "Tuples should not have buffer pointers"; return; } piece->set_buffer(const_cast<char*>(src_buf_ptrs.element(index))); }); } }
#include "xla/literal.h" #include <algorithm> #include <cmath> #include <complex> #include <cstdint> #include <functional> #include <limits> #include <random> #include <string> #include <tuple> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/base/casts.h" #include "absl/hash/hash.h" #include "absl/random/random.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/types/span.h" #include "xla/array.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/array4d.h" #include "xla/index_util.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" #include "tsl/platform/ml_dtypes.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test_benchmark.h" namespace xla { namespace { using ::testing::ElementsAre; using ::testing::HasSubstr; class LiteralUtilTest : public ::testing::Test { protected: LiteralUtilTest() { Array4D<float> arr4d({ { { {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, }, { {11, 12, 13}, {14, 15, 16}, {17, 18, 19}, }, }, { { {101, 102, 103}, {104, 105, 106}, {107, 108, 109}, }, { {201, 202, 203}, {204, 205, 206}, {207, 208, 209}, }, }, }); layout_r2_dim0major_ = LayoutUtil::MakeLayout({1, 0}); layout_r2_dim0minor_ = LayoutUtil::MakeLayout({0, 1}); layout_r3_dim0major_ = LayoutUtil::MakeLayout({2, 1, 0}); layout_r3_dim0minor_ = LayoutUtil::MakeLayout({0, 1, 2}); layout_r4_dim0major_ = LayoutUtil::MakeLayout({3, 2, 1, 0}); layout_r4_dim0minor_ = LayoutUtil::MakeLayout({0, 1, 2, 3}); literal_r4_2x2x3x3_dim0major_ = LiteralUtil::CreateR4FromArray4DWithLayout<float>(arr4d, layout_r4_dim0major_); literal_r4_2x2x3x3_dim0minor_ = LiteralUtil::CreateR4FromArray4DWithLayout<float>(arr4d, layout_r4_dim0minor_); } Layout layout_r2_dim0major_; Layout layout_r2_dim0minor_; Layout layout_r3_dim0major_; Layout layout_r3_dim0minor_; Layout layout_r4_dim0major_; Layout layout_r4_dim0minor_; Literal literal_r4_2x2x3x3_dim0major_; Literal literal_r4_2x2x3x3_dim0minor_; }; template <typename T> class LiteralUtilFloatTest : public LiteralUtilTest {}; using FloatTypes = ::testing::Types<float, half, bfloat16, tsl::float8_e3m4, tsl::float8_e4m3, tsl::float8_e4m3fn, tsl::float8_e4m3fnuz, tsl::float8_e4m3b11fnuz, tsl::float8_e5m2, tsl::float8_e5m2fnuz>; TYPED_TEST_SUITE(LiteralUtilFloatTest, FloatTypes); TEST_F(LiteralUtilTest, LiteralScalarToString) { auto true_lit = LiteralUtil::CreateR0<bool>(true); EXPECT_EQ("pred[] true", true_lit.ToString()); auto false_lit = LiteralUtil::CreateR0<bool>(false); EXPECT_EQ("pred[] false", false_lit.ToString()); auto u4_lit = LiteralUtil::CreateR0<u4>(u4(5)); EXPECT_EQ("u4[] 5", u4_lit.ToString()); auto u32_lit = LiteralUtil::CreateR0<uint32_t>(42); EXPECT_EQ("u32[] 42", u32_lit.ToString()); auto s4_lit = LiteralUtil::CreateR0<s4>(s4(-3)); EXPECT_EQ("s4[] -3", s4_lit.ToString()); auto s32_lit = LiteralUtil::CreateR0<int32_t>(-999); EXPECT_EQ("s32[] -999", s32_lit.ToString()); auto f32_lit = LiteralUtil::CreateR0<float>(3.14f); EXPECT_EQ("f32[] 3.14", f32_lit.ToString()); auto f16_lit = LiteralUtil::CreateR0<half>(static_cast<half>(0.5f)); EXPECT_EQ("f16[] 0.5", f16_lit.ToString()); auto c64_lit = LiteralUtil::CreateR0<complex64>({3.14f, 2.78f}); EXPECT_EQ("c64[] (3.14, 2.78)", c64_lit.ToString()); auto c128_lit = LiteralUtil::CreateR0<complex128>({3.14, 2.78}); EXPECT_EQ("c128[] (3.14, 2.78)", c128_lit.ToString()); auto bf16_lit = LiteralUtil::CreateR0<bfloat16>(static_cast<bfloat16>(0.5f)); EXPECT_EQ("bf16[] 0.5", bf16_lit.ToString()); auto bf16_lit_truncated = LiteralUtil::CreateR0<bfloat16>(static_cast<bfloat16>(3.14f)); ASSERT_EQ("bf16[] 3.141", bf16_lit_truncated.ToString()); auto bf16_lit_truncated2 = LiteralUtil::CreateR0<bfloat16>(static_cast<bfloat16>(9.001f)); EXPECT_EQ("bf16[] 9", bf16_lit_truncated2.ToString()); auto f8e5m2_lit = LiteralUtil::CreateR0<tsl::float8_e5m2>(tsl::float8_e5m2(0.5)); EXPECT_EQ("f8e5m2[] 0.5", f8e5m2_lit.ToString()); auto f8e5m2_lit_truncated = LiteralUtil::CreateR0<tsl::float8_e5m2>(tsl::float8_e5m2(3.141)); EXPECT_EQ("f8e5m2[] 3", f8e5m2_lit_truncated.ToString()); auto f8e4m3_lit = LiteralUtil::CreateR0<tsl::float8_e4m3>(tsl::float8_e4m3(0.5)); EXPECT_EQ("f8e4m3[] 0.5", f8e4m3_lit.ToString()); auto f8e4m3fn_lit = LiteralUtil::CreateR0<tsl::float8_e4m3fn>(tsl::float8_e4m3fn(0.5)); EXPECT_EQ("f8e4m3fn[] 0.5", f8e4m3fn_lit.ToString()); auto f8e4m3b11fnuz_lit = LiteralUtil::CreateR0<tsl::float8_e4m3b11fnuz>( tsl::float8_e4m3b11fnuz(0.5)); EXPECT_EQ("f8e4m3b11fnuz[] 0.5", f8e4m3b11fnuz_lit.ToString()); auto f8e4m3fnuz_lit = LiteralUtil::CreateR0<tsl::float8_e4m3fnuz>(tsl::float8_e4m3fnuz(0.5)); EXPECT_EQ("f8e4m3fnuz[] 0.5", f8e4m3fnuz_lit.ToString()); auto f8e5m2fnuz_lit = LiteralUtil::CreateR0<tsl::float8_e5m2fnuz>(tsl::float8_e5m2fnuz(0.5)); EXPECT_EQ("f8e5m2fnuz[] 0.5", f8e5m2fnuz_lit.ToString()); auto f8e3m4_lit = LiteralUtil::CreateR0<tsl::float8_e3m4>(tsl::float8_e3m4(0.5)); EXPECT_EQ("f8e3m4[] 0.5", f8e3m4_lit.ToString()); } TEST_F(LiteralUtilTest, LiteralVectorToString) { auto pred_vec = LiteralUtil::CreateR1<bool>({true, false, true}); EXPECT_EQ("pred[3] {1, 0, 1}", pred_vec.ToString()); } TEST_F(LiteralUtilTest, R2ToString) { const auto literal = LiteralUtil::CreateR2({{1, 2}, {3, 4}, {5, 6}}); const std::string expected = R"(s32[3,2] { { 1, 2 }, { 3, 4 }, { 5, 6 } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, R2DynamicToString) { auto literal = LiteralUtil::CreateR2({{1, 2}, {3, 4}, {5, 6}}); literal.SetDynamicSize(0, {}, 2); const std::string expected = R"(s32[<=3,2](2,2) { { 1, 2 }, { 3, 4 } })"; EXPECT_EQ(expected, literal.ToString()); auto literal2 = LiteralUtil::CreateR2({{1, 2, 3}, {4, 5, 6}}); literal2.SetDynamicSize(1, {}, 2); const std::string expected2 = R"(s32[2,<=3](2,2) { { 1, 2 }, { 4, 5 } })"; EXPECT_EQ(expected2, literal2.ToString()); } TEST_F(LiteralUtilTest, R2BoolDynamicToString) { auto literal = LiteralUtil::CreateR2<bool>( {{true, true, true}, {true, true, true}, {true, true, true}}); literal.SetDynamicSize(0, {}, 2); const std::string expected = R"(pred[<=3,3](2,3) { { 1, 1, 1 }, { 1, 1, 1 } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, R3ToString) { const auto literal = LiteralUtil::CreateR3({{{1}, {2}}, {{3}, {4}}, {{5}, {6}}}); const std::string expected = R"(s32[3,2,1] { { {1}, {2} }, { {3}, {4} }, { {5}, {6} } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, R6ToString) { const auto literal = LiteralUtil::CreateFromDimensions(S32, {2, 2, 1, 1, 1, 2}); const std::string expected = R"(s32[2,2,1,1,1,2] { { { { { { 0, 0 } } } }, { { { { 0, 0 } } } } }, { { { { { 0, 0 } } } }, { { { { 0, 0 } } } } } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, TupleToString) { auto scalar = LiteralUtil::CreateR0<float>(1.0); auto matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto tuple = LiteralUtil::MakeTuple({&scalar, &matrix}); const std::string expected = R"(( f32[] 1, f32[2,2] { { 1, 2 }, { 3, 4 } } ))"; EXPECT_EQ(expected, tuple.ToString()); } TEST_F(LiteralUtilTest, CreateR3FromArray3d) { Array3D<float> array_3d({ {{1.0f, 2.0f}, {3.0f, 4.0f}, {5.0f, 6.0f}}, {{7.0f, 8.0f}, {9.0f, 10.0f}, {11.0f, 12.0f}}, }); auto literal = LiteralUtil::CreateR3FromArray3D(array_3d); EXPECT_THAT(literal.shape().dimensions(), ElementsAre(2, 3, 2)); std::string result = literal.ToString(); const std::string expected = R"(f32[2,3,2] { { { 1, 2 }, { 3, 4 }, { 5, 6 } }, { { 7, 8 }, { 9, 10 }, { 11, 12 } } })"; EXPECT_EQ(expected, result); } TEST_F(LiteralUtilTest, LiteralR4F32ProjectedStringifies) { auto literal = LiteralUtil::CreateR4Projected<float>({ {1, 2}, {1001, 1002}, {2001, 2002}, }, 1, 2); EXPECT_THAT(literal.shape().dimensions(), ElementsAre(1, 2, 3, 2)); std::string result = literal.ToString(); const std::string expected = R"(f32[1,2,3,2] { { { { 1, 2 }, { 1001, 1002 }, { 2001, 2002 } }, { { 1, 2 }, { 1001, 1002 }, { 2001, 2002 } } } })"; EXPECT_EQ(expected, result); } TEST_F(LiteralUtilTest, LiteralR4F32Stringifies) { EXPECT_THAT(literal_r4_2x2x3x3_dim0major_.shape().dimensions(), ElementsAre(2, 2, 3, 3)); std::string result = literal_r4_2x2x3x3_dim0major_.ToString(); const std::string expected = R"(f32[2,2,3,3] { { { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }, { { 11, 12, 13 }, { 14, 15, 16 }, { 17, 18, 19 } } }, { { { 101, 102, 103 }, { 104, 105, 106 }, { 107, 108, 109 } }, { { 201, 202, 203 }, { 204, 205, 206 }, { 207, 208, 209 } } } })"; EXPECT_EQ(expected, result); } TEST_F(LiteralUtilTest, EachCellR2F32) { auto literal = LiteralUtil::CreateR2<float>({ {3.1f, 4.2f}, {9.3f, 12.4f}, }); std::vector<std::tuple<int64_t, int64_t, std::string>> seen; literal.EachCellAsString( [&seen](absl::Span<const int64_t> indices, const std::string& value) { seen.emplace_back(indices[0], indices[1], value); }); using Elem = std::tuple<int64_t, int64_t, std::string>; std::vector<Elem> expected = {Elem(0, 0, "3.1"), Elem(0, 1, "4.2"), Elem(1, 0, "9.3"), Elem(1, 1, "12.4")}; EXPECT_EQ(expected, seen); } TEST_F(LiteralUtilTest, ScalarEquality) { auto f32_42 = LiteralUtil::CreateR0<float>(42.0); auto f32_42_clone = LiteralUtil::CreateR0<float>(42.0); EXPECT_EQ(f32_42, f32_42); EXPECT_EQ(f32_42, f32_42_clone); auto f32_123 = LiteralUtil::CreateR0<float>(123.0); EXPECT_NE(f32_42, f32_123); auto f64_42 = LiteralUtil::CreateR0<double>(42.0); EXPECT_NE(f32_42, f64_42); } TEST_F(LiteralUtilTest, NonScalarEquality) { auto matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto matrix_clone = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto matrix_different = LiteralUtil::CreateR2<float>({{4.0, 3.0}, {1.0, 2.0}}); auto vector_literal = LiteralUtil::CreateR1<float>({1.0, 2.0, 3.0, 4.0}); auto scalar = LiteralUtil::CreateR0<float>(1.0); Literal nil(ShapeUtil::MakeNil()); EXPECT_EQ(matrix, matrix); EXPECT_EQ(matrix, matrix_clone); EXPECT_NE(matrix, matrix_different); EXPECT_NE(matrix, vector_literal); EXPECT_NE(matrix, scalar); EXPECT_NE(matrix, nil); EXPECT_EQ(nil, nil); } TEST_F(LiteralUtilTest, TokenEquality) { auto token0 = LiteralUtil::CreateToken(); auto token1 = LiteralUtil::CreateToken(); auto scalar = LiteralUtil::CreateR0<float>(1.0); EXPECT_EQ(token0, token1); EXPECT_NE(token0, scalar); EXPECT_EQ(LiteralUtil::MakeTuple({&token0}), LiteralUtil::MakeTuple({&token0})); EXPECT_EQ(LiteralUtil::MakeTuple({&token0, &scalar}), LiteralUtil::MakeTuple({&token1, &scalar})); EXPECT_NE(LiteralUtil::MakeTuple({&token0, &scalar}), LiteralUtil::MakeTuple({&scalar, &token1})); } TEST_F(LiteralUtilTest, DifferentLayoutEquality) { Literal colmajor(ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 2}, {0, 1})); colmajor.Set<float>({0, 0}, 1.0); colmajor.Set<float>({0, 1}, 2.0); colmajor.Set<float>({1, 0}, 3.0); colmajor.Set<float>({1, 1}, 4.0); Literal rowmajor(ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 2}, {1, 0})); rowmajor.Set<float>({0, 0}, 1.0); rowmajor.Set<float>({0, 1}, 2.0); rowmajor.Set<float>({1, 0}, 3.0); rowmajor.Set<float>({1, 1}, 4.0); EXPECT_EQ(rowmajor, colmajor); } TEST_F(LiteralUtilTest, DifferentLayoutInEquality) { Literal colmajor(ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 2}, {0, 1})); colmajor.Set<float>({0, 0}, 1.0); colmajor.Set<float>({0, 1}, 2.0); colmajor.Set<float>({1, 0}, 3.0); colmajor.Set<float>({1, 1}, 4.0); Literal rowmajor(ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 2}, {1, 0})); rowmajor.Set<float>({0, 0}, 1.0); rowmajor.Set<float>({0, 1}, 2.0); rowmajor.Set<float>({1, 0}, 3.0); rowmajor.Set<float>({1, 1}, 4.0); EXPECT_FALSE(rowmajor.Equal(colmajor, true)); EXPECT_FALSE(colmajor.Equal(rowmajor, true)); } TEST_F(LiteralUtilTest, TupleEquality) { auto scalar = LiteralUtil::CreateR0<float>(1.0); auto matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto tuple1 = LiteralUtil::MakeTuple({&scalar, &matrix}); auto scalar_clone = LiteralUtil::CreateR0<float>(1.0); auto tuple2 = LiteralUtil::MakeTuple({&scalar_clone, &matrix}); EXPECT_EQ(tuple1, tuple2); auto reversed_tuple = LiteralUtil::MakeTuple({&matrix, &scalar}); EXPECT_NE(tuple1, reversed_tuple); auto scalar_42 = LiteralUtil::CreateR0<float>(42.0); auto different_tuple = LiteralUtil::MakeTuple({&scalar_42, &matrix}); EXPECT_NE(tuple1, different_tuple); } TEST_F(LiteralUtilTest, DynamicShapeEquality) { auto r1 = LiteralUtil::CreateR1<float>({1.0, 2.0}); r1.SetDynamicSize(0, {}, 1); auto r2 = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); r2.SetDynamicSize(0, {}, 1); auto tuple1 = LiteralUtil::MakeTuple({&r1, &r2}); auto r1_clone = LiteralUtil::CreateR1<float>({1.0, 3.0}); r1_clone.SetDynamicSize(0, {}, 1); auto tuple2 = LiteralUtil::MakeTuple({&r1_clone, &r2}); EXPECT_EQ(tuple1, tuple2); auto r2_clone = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); r2_clone.SetDynamicSize(0, {}, 2); auto tuple_3 = LiteralUtil::MakeTuple({&r1_clone, &r2_clone}); EXPECT_NE(tuple1, tuple_3); } TEST_F(LiteralUtilTest, C64Equality) { auto vector = LiteralUtil::CreateR1<complex64>({{1.0, 2.0}, {3.0, 4.0}}); auto vector_clone = LiteralUtil::CreateR1<complex64>({{1.0, 2.0}, {3.0, 4.0}}); EXPECT_EQ(vector, vector_clone); auto vector_reversed = LiteralUtil::CreateR1<complex64>({{3.0, 4.0}, {1.0, 2.0}}); EXPECT_NE(vector, vector_reversed); } TEST_F(LiteralUtilTest, C128Equality) { auto vector = LiteralUtil::CreateR1<complex128>({{1.0, 2.0}, {3.0, 4.0}}); auto vector_clone = LiteralUtil::CreateR1<complex128>({{1.0, 2.0}, {3.0, 4.0}}); EXPECT_EQ(vector, vector_clone); auto vector_reversed = LiteralUtil::CreateR1<complex128>({{3.0, 4.0}, {1.0, 2.0}}); EXPECT_NE(vector, vector_reversed); } TEST_F(LiteralUtilTest, IsAllTuple) { auto element1 = LiteralUtil::CreateR0<float>(0.0); auto element2 = LiteralUtil::CreateR2<float>({{0.0, 0.0}, {0.0, 0.0}}); auto tuple = LiteralUtil::MakeTuple({&element1, &element1}); EXPECT_FALSE(tuple.IsAll(0)); EXPECT_FALSE(tuple.IsAll(1)); } TEST_F(LiteralUtilTest, CreateFromShapeTuple) { auto scalar = LiteralUtil::CreateR0<float>(0.0); auto matrix = LiteralUtil::CreateR2<int32_t>({{0, 0}, {0, 0}}); auto tuple = LiteralUtil::MakeTuple({&scalar, &matrix}); auto x = Literal::CreateFromShape(tuple.shape()); EXPECT_EQ(tuple, x); } TEST_F(LiteralUtilTest, IsAll) { EXPECT_TRUE(LiteralUtil::CreateR0<bool>(false).IsAll(0)); EXPECT_TRUE(LiteralUtil::CreateR0<bool>(true).IsAll(1)); EXPECT_FALSE(LiteralUtil::CreateR0<bool>(false).IsAll(1)); EXPECT_FALSE(LiteralUtil::CreateR0<bool>(false).IsAll(2)); EXPECT_FALSE(LiteralUtil::CreateR0<bool>(true).IsAll(0)); EXPECT_FALSE(LiteralUtil::CreateR0<bool>(true).IsAll(2)); EXPECT_FALSE(LiteralUtil::CreateR0<bool>(true).IsAll(-1)); auto int8_min = std::numeric_limits<int8_t>::min(); EXPECT_FALSE(LiteralUtil::CreateR0<uint8_t>(255).IsAll(int8_min)); EXPECT_TRUE(LiteralUtil::CreateR0<float>(42.0).IsAll(42)); EXPECT_FALSE(LiteralUtil::CreateR0<float>(42.0001).IsAll(42)); EXPECT_TRUE(LiteralUtil::CreateR1<int>({100, 100, 100}).IsAll(100)); EXPECT_FALSE(LiteralUtil::CreateR1<double>({100, 100, 100.001}).IsAll(100)); EXPECT_TRUE(LiteralUtil::CreateR2<uint64_t>({{8, 8}, {8, 8}}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR2<uint64_t>({{8, 8}, {8, 9}}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR2<uint64_t>({{9, 8}, {8, 8}}).IsAll(8)); half h8(8.0f); half h9(9.0f); EXPECT_TRUE(LiteralUtil::CreateR2<half>({{h8}, {h8}}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR2<half>({{h8}, {h9}}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR2<half>({{h9}, {h8}}).IsAll(8)); bfloat16 b8(8.0f); bfloat16 b9(9.0f); EXPECT_TRUE(LiteralUtil::CreateR2<bfloat16>({{b8}, {b8}}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR2<bfloat16>({{b8}, {b9}}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR2<bfloat16>({{b9}, {b8}}).IsAll(8)); bfloat16 b91(9.001f); bfloat16 b90(9.00f); EXPECT_TRUE(LiteralUtil::CreateR2<bfloat16>({{b91}, {b90}}).IsAll(9.0)); tsl::float8_e5m2 p16(8); EXPECT_TRUE(LiteralUtil::CreateR1<tsl::float8_e5m2>({p16}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR1<tsl::float8_e5m2>({p16}).IsAll(9)); tsl::float8_e4m3 q16(9); EXPECT_FALSE(LiteralUtil::CreateR1<tsl::float8_e4m3>({q16}).IsAll(8)); EXPECT_TRUE(LiteralUtil::CreateR1<tsl::float8_e4m3>({q16}).IsAll(9)); tsl::float8_e4m3fn r16(9); EXPECT_FALSE(LiteralUtil::CreateR1<tsl::float8_e4m3fn>({r16}).IsAll(8)); EXPECT_TRUE(LiteralUtil::CreateR1<tsl::float8_e4m3fn>({r16}).IsAll(9)); tsl::float8_e4m3b11fnuz s16(9); EXPECT_FALSE(LiteralUtil::CreateR1<tsl::float8_e4m3b11fnuz>({s16}).IsAll(8)); EXPECT_TRUE(LiteralUtil::CreateR1<tsl::float8_e4m3b11fnuz>({s16}).IsAll(9)); tsl::float8_e4m3fnuz t16(9); EXPECT_FALSE(LiteralUtil::CreateR1<tsl::float8_e4m3fnuz>({t16}).IsAll(8)); EXPECT_TRUE(LiteralUtil::CreateR1<tsl::float8_e4m3fnuz>({t16}).IsAll(9)); tsl::float8_e5m2fnuz u16(8); EXPECT_TRUE(LiteralUtil::CreateR1<tsl::float8_e5m2fnuz>({u16}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR1<tsl::float8_e5m2fnuz>({u16}).IsAll(9)); tsl::float8_e3m4 v16(9); EXPECT_FALSE(LiteralUtil::CreateR1<tsl::float8_e3m4>({v16}).IsAll(8)); EXPECT_TRUE(LiteralUtil::CreateR1<tsl::float8_e3m4>({v16}).IsAll(9)); complex64 c8_9 = {8, 9}; EXPECT_FALSE(LiteralUtil::CreateR2<complex64>({{c8_9}, {c8_9}}).IsAll(8)); auto uint64_max = std::numeric_limits<uint64_t>::max(); EXPECT_FALSE(LiteralUtil::CreateR2<uint64_t>( {{uint64_max, uint64_max}, {uint64_max, uint64_max}}) .IsAll(-1)); } TEST_F(LiteralUtilTest, IsAllFloat) { EXPECT_FALSE(LiteralUtil::CreateR0<bool>(false).IsAllFloat(0)); EXPECT_FALSE(LiteralUtil::CreateR0<int8_t>(0).IsAllFloat(0)); EXPECT_FALSE(LiteralUtil::CreateR0<uint8_t>(0).IsAllFloat(0)); EXPECT_FALSE(LiteralUtil::CreateR0<int>(0).IsAllFloat(0)); EXPECT_TRUE(LiteralUtil::CreateR0<float>(0).IsAllFloat(0)); EXPECT_TRUE(LiteralUtil::CreateR0<float>(.5).IsAllFloat(.5)); EXPECT_TRUE(LiteralUtil::CreateR0<float>(-.5).IsAllFloat(-.5)); EXPECT_FALSE(LiteralUtil::CreateR0<float>(-.5).IsAllFloat(-.49)); EXPECT_FALSE( LiteralUtil::CreateR2<float>({{0, 0, 0}, {0, .1, 0}}).IsAllFloat(0)); EXPECT_TRUE(LiteralUtil::CreateR2<float>({{.5, .5, .5}, {.5, .5, .5}}) .IsAllFloat(.5)); EXPECT_TRUE(LiteralUtil::CreateR0<double>(0).IsAllFloat(0)); EXPECT_TRUE(LiteralUtil::CreateR0<double>(.5).IsAllFloat(.5)); EXPECT_TRUE(LiteralUtil::CreateR0<double>(-.5).IsAllFloat(-.5)); EXPECT_FALSE(LiteralUtil::CreateR0<double>(-.5).IsAllFloat(-.49)); EXPECT_FALSE( LiteralUtil::CreateR2<double>({{0, 0, 0}, {0, .1, 0}}).IsAllFloat(0)); EXPECT_TRUE( LiteralUtil::CreateR0<bfloat16>(bfloat16(128.)).IsAllFloat(128.5)); } TEST_F(LiteralUtilTest, IsAllComplex) { EXPECT_FALSE(LiteralUtil::CreateR0<bool>(false).IsAllComplex(0)); EXPECT_FALSE(LiteralUtil::CreateR0<int8_t>(0).IsAllComplex(0)); EXPECT_FALSE(LiteralUtil::CreateR0<uint8_t>(0).IsAllComplex(0)); EXPECT_FALSE(LiteralUtil::CreateR0<int>(0).IsAllComplex(0)); EXPECT_FALSE(LiteralUtil::CreateR0<float>(0).IsAllComplex(0)); EXPECT_FALSE(LiteralUtil::CreateR0<double>(0).IsAllComplex(0)); complex64 c8_9 = {8, 9}; complex64 c7_9 = {7, 9}; EXPECT_TRUE(LiteralUtil::CreateR2<complex64>({{c8_9}, {c8_9}}) .IsAllComplex({8.0f, 9.0f})); EXPECT_FALSE(LiteralUtil::CreateR2<complex64>({{c7_9}, {c8_9}}) .IsAllComplex({8.0f, 9.0f})); EXPECT_FALSE(LiteralUtil::CreateR2<complex64>({{c8_9}, {c7_9}}) .IsAllComplex({8.0f, 9.0f})); } TEST_F(LiteralUtilTest, IsAllFirst) { EXPECT_FALSE(LiteralUtil::CreateR1<bool>({false, true}).IsAllFirst()); EXPECT_TRUE(LiteralUtil::CreateR1<bool>({false, false}).IsAllFirst()); EXPECT_FALSE(LiteralUtil::CreateR1<int8_t>({1, 1, 2}).IsAllFirst()); EXPECT_TRUE(LiteralUtil::CreateR1<int8_t>({5, 5, 5, 5}).IsAllFirst()); EXPECT_FALSE(LiteralUtil::CreateR1<uint8_t>({1, 1, 2}).IsAllFirst()); EXPECT_TRUE(LiteralUtil::CreateR1<int32_t>({5, 5, 5, 5}).IsAllFirst()); EXPECT_FALSE(LiteralUtil::CreateR1<int32_t>({1, 1, 2}).IsAllFirst()); EXPECT_TRUE(LiteralUtil::CreateR1<uint32_t>({5, 5, 5, 5}).IsAllFirst()); EXPECT_FALSE(LiteralUtil::CreateR1<uint32_t>({1, 1, 2}).IsAllFirst()); complex64 c8_9 = {8, 9}; complex64 c7_9 = {7, 9}; EXPECT_TRUE(LiteralUtil::CreateR2<complex64>({{c8_9}, {c8_9}}).IsAllFirst()); EXPECT_FALSE(LiteralUtil::CreateR2<complex64>({{c7_9}, {c8_9}}).IsAllFirst()); #if defined(__x86_64__) && defined(_MM_DENORMALS_ZERO_ON) int old_csr = _mm_getcsr(); _mm_setcsr(old_csr | _MM_DENORMALS_ZERO_ON); #endif bool eq0 = LiteralUtil::CreateR1<float>({0.0, 1.401298e-45}).IsAllFirst(); bool eq1 = LiteralUtil::CreateR1<float>({0.0, 2.802597e-45}).IsAllFirst(); bool eq2 = LiteralUtil::CreateR1<float>({4.203895e-45, 7.006492e-45}).IsAllFirst(); #if defined(__x86_64__) && defined(_MM_DENORMALS_ZERO_ON) _mm_setcsr(old_csr); #endif EXPECT_FALSE(eq0); EXPECT_FALSE(eq1); EXPECT_FALSE(eq2); } TEST_F(LiteralUtilTest, CountEqualInt) { EXPECT_EQ(LiteralUtil::CreateR1<int8_t>({}).CountEqual<int8_t>(1), 0); EXPECT_EQ( LiteralUtil::CreateR1<int8_t>({1, 2, 3, 4, 5, 100}).CountEqual<int8_t>(2), 1); EXPECT_EQ(LiteralUtil::CreateR1<int8_t>({0, 3, 6, 0, 9, 18, 0}) .CountEqual<int8_t>(0), 3); EXPECT_EQ(LiteralUtil::CreateR1<int32_t>({234, 345, 4, 45, 5467, 5467, 5467}) .CountEqual<int32_t>(5467), 3); } TEST_F(LiteralUtilTest, CountEqualFloat) { EXPECT_EQ(LiteralUtil::CreateR1<float>({}).CountEqual<float>(0), 0); EXPECT_EQ(LiteralUtil::CreateR1<float>({1.1, 2.2, 3.3, 4.4, 5.5, 100.6}) .CountEqual<float>(3.3), 1); EXPECT_EQ(LiteralUtil::CreateR1<float>({7.62, 3, 7.75, 7.62, 7.3, 2, 7.62}) .CountEqual<float>(7.62), 3); EXPECT_EQ(LiteralUtil::CreateR1<float>( {NAN, 0, 6.8, NAN, NAN, NAN, 63.12, 24.6, NAN}) .CountEqual<float>(NAN), 5); } TEST_F(LiteralUtilTest, CountEqualBool) { EXPECT_EQ(LiteralUtil::CreateR1<bool>({false, true}).CountEqual<bool>(false), 1); } TEST_F(LiteralUtilTest, CountEqualComplex) { EXPECT_EQ(LiteralUtil::CreateR1<std::complex<double>>( {std::complex<float>(1, 2), std::complex<float>(3, 4), std::complex<float>(5, 6), std::complex<float>(6, 7)}) .CountEqual<float>(std::complex<float>(5, 6)), 1); } TEST_F(LiteralUtilTest, CountEqualMismatched) { EXPECT_EQ(LiteralUtil::CreateR1<float>({13, 10.5, 15.6, 22.7}) .CountEqual<int8_t>(13), 1); EXPECT_EQ( LiteralUtil::CreateR1<float>({10.5, 15.6, 22.7}).CountEqual<int8_t>(1), 0); EXPECT_EQ(LiteralUtil::CreateR1<std::complex<float>>( {std::complex<float>(1, 2), std::complex<float>(3, 4), std::complex<float>(5, 6), std::complex<float>(6, 7)}) .CountEqual<float>(1), 0); } TEST_F(LiteralUtilTest, IsZero) { auto scalar_zero = LiteralUtil::CreateR0<float>(0.0f); auto scalar_one = LiteralUtil::CreateR0<float>(1.0f); EXPECT_TRUE(scalar_zero.IsZero({})); EXPECT_FALSE(scalar_one.IsZero({})); auto array = LiteralUtil::CreateR2<uint32_t>({{1, 2, 0, 3}, {1, 0, 1, 2}}); EXPECT_FALSE(array.IsZero({0, 1})); EXPECT_TRUE(array.IsZero({0, 2})); EXPECT_TRUE(array.IsZero({1, 1})); EXPECT_FALSE(array.IsZero({1, 2})); auto complex_zero = LiteralUtil::CreateR0<complex64>(0.0f); auto complex_nonzero = LiteralUtil::CreateR0<complex64>(0.5f); EXPECT_TRUE(complex_zero.IsZero({})); EXPECT_FALSE(complex_nonzero.IsZero({})); } template <typename T> class LiteralUtilTestTemplated : public ::testing::Test {}; using TestedTypes = ::testing::Types<float, int32_t, uint32_t, complex64>; class TestNamer { public: template <typename TypeParam> static std::string GetName(int) { return ::testing::internal::GetTypeName<TypeParam>(); } }; TYPED_TEST_SUITE(LiteralUtilTestTemplated, TestedTypes, TestNamer); TYPED_TEST(LiteralUtilTestTemplated, Relayout2x2) { TypeParam half = TypeParam(1) / TypeParam(2); auto data = LiteralUtil::CreateR2<TypeParam>({{half, 2}, {3, 4}}); const Layout layout01 = LayoutUtil::MakeLayout({0, 1}); const Layout layout10 = LayoutUtil::MakeLayout({1, 0}); auto data01 = data.Relayout(layout01); EXPECT_TRUE(LayoutUtil::Equal(data01.shape().layout(), layout01)); EXPECT_EQ(data, data01); auto data10 = data.Relayout(layout10); EXPECT_TRUE(LayoutUtil::Equal(data10.shape().layout(), layout10)); EXPECT_EQ(data, data10); } TEST_F(LiteralUtilTest, ReshapeR0) { auto original = LiteralUtil::CreateR0<float>(1.7f); auto reshape = original.Reshape({}).value(); EXPECT_EQ(original, reshape); } TEST_F(LiteralUtilTest, ReshapeR4) { auto original = LiteralUtil::CreateR4WithLayout<float>({{ {{10, 11, 12, 13}, {14, 15, 16, 17}}, {{18, 19, 20, 21}, {22, 23, 24, 25}}, {{26, 27, 28, 29}, {30, 31, 32, 33}}, }}, layout_r4_dim0major_); auto expected = LiteralUtil::CreateR3WithLayout<float>({ {{10, 11}, {12, 13}, {14, 15}, {16, 17}}, {{18, 19}, {20, 21}, {22, 23}, {24, 25}}, {{26, 27}, {28, 29}, {30, 31}, {32, 33}}, }, layout_r3_dim0major_); auto reshape = original.Reshape({3, 4, 2}).value(); EXPECT_EQ(expected, reshape); } TEST_F(LiteralUtilTest, ReshapeR4Dim0Minor) { auto original = LiteralUtil::CreateR4WithLayout<float>({{ {{10, 11, 12, 13}, {14, 15, 16, 17}}, {{18, 19, 20, 21}, {22, 23, 24, 25}}, {{26, 27, 28, 29}, {30, 31, 32, 33}}, }}, layout_r4_dim0minor_); auto expected = LiteralUtil::CreateR3WithLayout<float>({ {{10, 11}, {12, 13}, {14, 15}, {16, 17}}, {{18, 19}, {20, 21}, {22, 23}, {24, 25}}, {{26, 27}, {28, 29}, {30, 31}, {32, 33}}, }, layout_r3_dim0major_); auto reshape = original.Reshape({3, 4, 2}).value(); EXPECT_EQ(expected, reshape); } TEST_F(LiteralUtilTest, TransposeR0) { auto original = LiteralUtil::CreateR0<float>(1.7f); auto reshape = original.Transpose({}); EXPECT_EQ(original, reshape); } TEST_F(LiteralUtilTest, TransposeR4) { auto original = LiteralUtil::CreateR4<float>({{ {{10, 11, 12, 13}, {14, 15, 16, 17}}, {{18, 19, 20, 21}, {22, 23, 24, 25}}, {{26, 27, 28, 29}, {30, 31, 32, 33}}, }}); auto reshape = original.Transpose({2, 3, 0, 1}); reshape.EachCell<float>([&](absl::Span<const int64_t> indices, float value) { EXPECT_EQ(value, original.Get<float>( {indices[2], indices[3], indices[0], indices[1]})); }); } TEST_F(LiteralUtilTest, TransposeDynamicR2) { auto original = LiteralUtil::CreateR2<float>({{1, 2, 3}, {4, 5, 6}}); original.SetDynamicSize(1, 1); auto reshape = original.Transpose({1, 0}); reshape.EachCell<float>([&](absl::Span<const int64_t> indices, float value) { EXPECT_EQ(value, original.Get<float>({indices[1], indices[0]})); }); } TEST_F(LiteralUtilTest, ToStaticR2) { auto original = LiteralUtil::CreateR2<float>({{1, 2, 3}, {4, 5, 6}}); original.SetDynamicSize(1, 1); auto static_literal = original.ToStatic(); EXPECT_EQ(static_literal.shape(), ShapeUtil::MakeShape(F32, {2, 1})); EXPECT_TRUE(static_literal.shape().is_static()); static_literal.EachCell<float>( [&](absl::Span<const int64_t> indices, float value) { EXPECT_EQ(value, original.Get<float>({indices[0], indices[1]})); }); } TEST_F(LiteralUtilTest, ToBoundedDynamicR2) { auto original = LiteralUtil::CreateR2<float>({{1}, {4}}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {2, 3}, {false, true}); auto dynamic_literal = original.ToBoundedDynamic(dynamic_shape); EXPECT_EQ(dynamic_literal.shape(), dynamic_shape); dynamic_literal.EachCell<float>( [&](absl::Span<const int64_t> indices, float value) { EXPECT_EQ(value, original.Get<float>({indices[0], indices[1]})); }); } TEST_F(LiteralUtilTest, TestR4RelayoutEquivalence) { auto dim0minor_relaid_to_dim0major = literal_r4_2x2x3x3_dim0minor_.Relayout(layout_r4_dim0major_); EXPECT_EQ(literal_r4_2x2x3x3_dim0major_, dim0minor_relaid_to_dim0major); auto dim0major_relaid_to_dim0minor = literal_r4_2x2x3x3_dim0major_.Relayout(layout_r4_dim0minor_); EXPECT_EQ(literal_r4_2x2x3x3_dim0minor_, dim0major_relaid_to_dim0minor); } template <bool kIsLayoutSensitive> struct HashTester { template <typename H> friend H AbslHashValue(H h, const HashTester& key) { return Literal::Hash<H, kIsLayoutSensitive, 64>( std::move(h), *key.literal); } const Literal* literal; }; TEST_F(LiteralUtilTest, TestR2LinearLayout) { auto mat_dim0minor = LiteralUtil::CreateR2WithLayout<int32_t>( {{1, 2, 3}, {4, 5, 6}}, layout_r2_dim0minor_); EXPECT_EQ(mat_dim0minor.element_count(), 6); EXPECT_THAT(mat_dim0minor.data<int32_t>(), ElementsAre(1, 4, 2, 5, 3, 6)); auto relaid_mat_to_dim0major = mat_dim0minor.Relayout(layout_r2_dim0major_); EXPECT_THAT(relaid_mat_to_dim0major.data<int32_t>(), ElementsAre(1, 2, 3, 4, 5, 6)); EXPECT_EQ(absl::HashOf(HashTester<false>{&mat_dim0minor}), absl::HashOf(HashTester<false>{&relaid_mat_to_dim0major})); auto mat_dim0major = LiteralUtil::CreateR2WithLayout<int32_t>( {{1, 2, 3}, {4, 5, 6}}, layout_r2_dim0major_); EXPECT_EQ(mat_dim0major.element_count(), 6); EXPECT_THAT(mat_dim0major.data<int32_t>(), ElementsAre(1, 2, 3, 4, 5, 6)); auto relaid_mat_to_dim0minor = mat_dim0major.Relayout(layout_r2_dim0minor_); EXPECT_THAT(relaid_mat_to_dim0minor.data<int32_t>(), ElementsAre(1, 4, 2, 5, 3, 6)); EXPECT_EQ(absl::HashOf(HashTester<false>{&mat_dim0major}), absl::HashOf(HashTester<false>{&relaid_mat_to_dim0minor})); EXPECT_EQ(absl::HashOf(HashTester<true>{&mat_dim0minor}), absl::HashOf(HashTester<true>{&relaid_mat_to_dim0minor})); EXPECT_EQ(absl::HashOf(HashTester<true>{&mat_dim0major}), absl::HashOf(HashTester<true>{&relaid_mat_to_dim0major})); } TEST_F(LiteralUtilTest, TestR3LinearLayout) { Array3D<int> arr3d( { { {1, 2, 3}, {4, 5, 6}, }, { {7, 8, 9}, {10, 11, 12}, }, }); auto lit_dim0minor = LiteralUtil::CreateR3FromArray3DWithLayout<int>( arr3d, layout_r3_dim0minor_); EXPECT_EQ(lit_dim0minor.element_count(), 12); std::vector<int> expected_dim0minor{1, 7, 4, 10, 2, 8, 5, 11, 3, 9, 6, 12}; EXPECT_THAT(lit_dim0minor.data<int32_t>(), testing::ElementsAreArray(expected_dim0minor)); auto relaid_lit_to_dim0major = lit_dim0minor.Relayout(layout_r3_dim0major_); std::vector<int> expected_dim0major{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; EXPECT_THAT(relaid_lit_to_dim0major.data<int32_t>(), testing::ElementsAreArray(expected_dim0major)); auto lit_dim0major = LiteralUtil::CreateR3FromArray3DWithLayout<int>( arr3d, layout_r3_dim0major_); EXPECT_EQ(lit_dim0major.element_count(), 12); EXPECT_THAT(lit_dim0major.data<int32_t>(), testing::ElementsAreArray(expected_dim0major)); auto relaid_lit_to_dim0minor = lit_dim0major.Relayout(layout_r3_dim0minor_); EXPECT_THAT(relaid_lit_to_dim0minor.data<int32_t>(), testing::ElementsAreArray(expected_dim0minor)); } TEST_F(LiteralUtilTest, SliceR0S32) { auto input = LiteralUtil::CreateR0<int32_t>(1); auto result = input.Slice({}, {}); EXPECT_EQ(input, result); } TEST_F(LiteralUtilTest, SliceR1F32) { auto input = LiteralUtil::CreateR1<float>({1.0, 2.0, 3.0, 4.0, 5.0}); auto result = input.Slice({3}, {4}); auto expected = LiteralUtil::CreateR1<float>({4.0}); EXPECT_EQ(expected, result); } TEST_F(LiteralUtilTest, SliceR2U32) { auto input_3x4 = LiteralUtil::CreateR2<uint32_t>( {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}); auto result = input_3x4.Slice({0, 2}, {2, 4}); auto expected = LiteralUtil::CreateR2<uint32_t>({{3, 4}, {7, 8}}); EXPECT_EQ(expected, result); } TEST_F(LiteralUtilTest, SliceR3U32Full) { auto input_2x3x2 = LiteralUtil::CreateR3<uint32_t>( {{{1, 2}, {3, 4}, {5, 6}}, {{7, 8}, {9, 10}, {11, 12}}}); auto result = input_2x3x2.Slice({0, 0, 0}, {2, 3, 2}); EXPECT_EQ(input_2x3x2, result); } TEST_F(LiteralUtilTest, SliceR2Dynamic) { auto input_3x4 = LiteralUtil::CreateR2<uint32_t>( {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}); input_3x4.SetDynamicSize(1, 3); auto result = input_3x4.Slice({0, 1}, {2, 2}); auto expected = LiteralUtil::CreateR2<uint32_t>({{2}, {6}}); EXPECT_EQ(expected, result); EXPECT_EQ(result.GetDynamicSize(1), 1); } TEST_F(LiteralUtilTest, SliceR2DynamicInBound) { auto input_3x4 = LiteralUtil::CreateR2<uint32_t>( {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}); input_3x4.SetDynamicSize(1, 1); auto result = input_3x4.Slice({0, 0}, {2, 2}); auto expected = LiteralUtil::CreateR2<uint32_t>({{1}, {5}}); EXPECT_EQ(expected, result); EXPECT_EQ(result.GetDynamicSize(1), 1); } TEST_F(LiteralUtilTest, SliceR2DynamicOutOfBound) { auto input_3x4 = LiteralUtil::CreateR2<uint32_t>( {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}); input_3x4.SetDynamicSize(1, 1); auto result = input_3x4.Slice({0, 1}, {2, 3}); auto expected = LiteralUtil::CreateR2<uint32_t>({{}, {}}); EXPECT_EQ(expected, result); EXPECT_EQ(result.GetDynamicSize(1), 0); } TEST_F(LiteralUtilTest, PopulateR1S64) { Literal output(ShapeUtil::MakeShape(S64, {1})); output.PopulateR1<int64_t>({77}); auto expected = LiteralUtil::CreateR1<int64_t>({77}); EXPECT_EQ(output, expected); } TEST_F(LiteralUtilTest, PopulateR1U64) { Literal output(ShapeUtil::MakeShape(U64, {2})); output.PopulateR1<uint64_t>({{77, 88}}); auto expected = LiteralUtil::CreateR1<uint64_t>({{77, 88}}); EXPECT_EQ(output, expected); } TEST_F(LiteralUtilTest, PopulateR1C64) { Literal output(ShapeUtil::MakeShape(C64, {1})); output.PopulateR1<complex64>({{77, 88}}); auto expected = LiteralUtil::CreateR1<complex64>({{77, 88}}); EXPECT_EQ(output, expected); } TEST_F(LiteralUtilTest, PopulateR1C128) { Literal output(ShapeUtil::MakeShape(C128, {1})); output.PopulateR1<complex128>({{77, 88}}); auto expected = LiteralUtil::CreateR1<complex128>({{77, 88}}); EXPECT_EQ(output, expected); } TEST_F(LiteralUtilTest, PopulateR2C64) { Literal output(ShapeUtil::MakeShape(C64, {2, 2})); output.PopulateR2<complex64>({{{7, 8}, {9, 10}}, {{1, 2}, {3, 4}}}); auto expected = LiteralUtil::CreateR2<complex64>({{{7, 8}, {9, 10}}, {{1, 2}, {3, 4}}}); EXPECT_EQ(output, expected); } TYPED_TEST(LiteralUtilFloatTest, PopulateWithValueR0Float) { Literal output(ShapeUtil::MakeShape( primitive_util::NativeToPrimitiveType<TypeParam>(), {})); TypeParam h(0.25f); output.PopulateWithValue<TypeParam>(h); auto expected = LiteralUtil::CreateR0<TypeParam>(h); EXPECT_EQ(output, expected); } TYPED_TEST(LiteralUtilFloatTest, PopulateWithValueR1Float) { Literal output(ShapeUtil::MakeShape( primitive_util::NativeToPrimitiveType<TypeParam>(), {3})); TypeParam h(0.5f); output.PopulateWithValue<TypeParam>(h); auto expected = LiteralUtil::CreateR1<TypeParam>({h, h, h}); EXPECT_EQ(output, expected); } TYPED_TEST(LiteralUtilFloatTest, PopulateWithValueR2Float) { Literal output(ShapeUtil::MakeShape( primitive_util::NativeToPrimitiveType<TypeParam>(), {2, 2})); TypeParam h(2.0f); output.PopulateWithValue<TypeParam>(h); auto expected = LiteralUtil::CreateR2<TypeParam>({{h, h}, {h, h}}); EXPECT_EQ(output, expected); } TEST_F(LiteralUtilTest, PopulateWithValueR1S64) { Literal output(ShapeUtil::MakeShape(S64, {3})); output.PopulateWithValue<int64_t>(-7); auto expected = LiteralUtil::CreateR1<int64_t>({-7, -7, -7}); EXPECT_EQ(output, expected); } TEST_F(LiteralUtilTest, PopulateWithValueR2U64) { Literal output(ShapeUtil::MakeShape(U64, {2, 2})); output.PopulateWithValue<uint64_t>(42); auto expected = LiteralUtil::CreateR2<uint64_t>({{42, 42}, {42, 42}}); EXPECT_EQ(output, expected); } TEST_F(LiteralUtilTest, PopulateWithValueR2C64) { Literal output(ShapeUtil::MakeShape(C64, {2, 2})); output.PopulateWithValue<complex64>({4, 2}); auto expected = LiteralUtil::CreateR2<complex64>({{{4, 2}, {4, 2}}, {{4, 2}, {4, 2}}}); EXPECT_EQ(output, expected); } TEST_F(LiteralUtilTest, PopulateWithValueR2C128) { Literal output(ShapeUtil::MakeShape(C128, {2, 2})); output.PopulateWithValue<complex128>({4, 2}); auto expected = LiteralUtil::CreateR2<complex128>({{{4, 2}, {4, 2}}, {{4, 2}, {4, 2}}}); EXPECT_EQ(output, expected); } TEST_F(LiteralUtilTest, ReplicateR2U32) { auto input = LiteralUtil::CreateR2<uint32_t>( {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}); auto output = input.Replicate<uint32_t>(3); auto expected = LiteralUtil::CreateR3<uint32_t>( {{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}, {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}, {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}}); EXPECT_EQ(output, expected); } TEST_F(LiteralUtilTest, CopySliceFrom) { const int64_t dimensions[] = {17, 15, 34, 21}; const int64_t layouts[][4] = { {3, 2, 1, 0}, {0, 2, 1, 3}, {0, 1, 2, 3}, {2, 0, 3, 1}, {1, 3, 0, 2}}; for (const auto& layout : layouts) { Shape shape = ShapeUtil::MakeShapeWithDenseLayout( primitive_util::NativeToPrimitiveType<uint32_t>(), dimensions, layout); auto source = Literal::CreateFromShape(shape); const int64_t zero_base[] = {0, 0, 0, 0}; const int64_t step[] = {1, 1, 1, 1}; uint32_t seqnr = 0; auto init_proc = [&](absl::Span<const int64_t> indexes) { source.Set(indexes, ++seqnr); return true; }; ShapeUtil::ForEachIndex(source.shape(), zero_base, dimensions, step, init_proc); auto blank = Literal::CreateFromShape(shape); const int64_t src_base[] = {3, 1, 5, 7}; const int64_t dest_base[] = {6, 4, 12, 2}; const int64_t copy_size[] = {7, 8, 11, 9}; TF_EXPECT_OK(blank.CopySliceFrom(source, src_base, dest_base, copy_size)); std::vector<int64_t> source_indexes(TF_ARRAYSIZE(dimensions), 0); std::vector<int64_t> blank_indexes(TF_ARRAYSIZE(dimensions), 0); bool matched = true; auto check_proc = [&](absl::Span<const int64_t> indexes) { std::copy(indexes.begin(), indexes.end(), source_indexes.begin()); std::transform(source_indexes.begin(), source_indexes.end(), src_base, source_indexes.begin(), std::plus<int64_t>()); std::copy(indexes.begin(), indexes.end(), blank_indexes.begin()); std::transform(blank_indexes.begin(), blank_indexes.end(), dest_base, blank_indexes.begin(), std::plus<int64_t>()); auto bval = blank.Get<uint32_t>(blank_indexes); matched = (bval != 0 && bval == source.Get<uint32_t>(source_indexes)); return matched; }; ShapeUtil::ForEachIndex(source.shape(), zero_base, copy_size, step, check_proc); EXPECT_TRUE(matched); } } TEST_F(LiteralUtilTest, CopyFromScalars) { auto zero = LiteralUtil::CreateR0<uint32_t>(0); auto nine = LiteralUtil::CreateR0<uint32_t>(9); TF_EXPECT_OK(zero.CopyFrom(nine)); EXPECT_EQ(zero, nine); auto vect = LiteralUtil::CreateR1<uint32_t>({3, 4, 9, 12, 5, 17, 21}); TF_EXPECT_OK(zero.CopySliceFrom(vect, {5}, {}, {})); EXPECT_EQ(zero.Get<uint32_t>({}), 17); TF_EXPECT_OK(vect.CopySliceFrom(zero, {}, {4}, {})); EXPECT_EQ(vect.Get<uint32_t>({4}), 17); } TEST_F(LiteralUtilTest, CopyFromAndToZeroElement) { const Shape empty_r1_shape = ShapeUtil::MakeShape(F32, {0}); const auto const_nine = LiteralUtil::CreateR1<float>({9}); const auto const_empty = Literal::CreateFromShape(empty_r1_shape); { const auto empty = Literal::CreateFromShape(empty_r1_shape); auto nine = LiteralUtil::CreateR1<float>({9}); TF_EXPECT_OK(nine.CopySliceFrom(empty, {0}, {0}, {0})); EXPECT_EQ(nine, const_nine); } { auto empty = Literal::CreateFromShape(empty_r1_shape); auto nine = LiteralUtil::CreateR1<float>({9}); TF_EXPECT_OK(empty.CopySliceFrom(nine, {0}, {0}, {0})); EXPECT_EQ(empty, const_empty); } } TEST_F(LiteralUtilTest, CopyFromNilShape) { Literal nil_literal0(ShapeUtil::MakeNil()); Literal nil_literal1(ShapeUtil::MakeNil()); TF_ASSERT_OK(nil_literal0.CopyFrom(nil_literal1)); } TEST_F(LiteralUtilTest, CopyFromArrays) { auto scalar_42 = LiteralUtil::CreateR0<float>(42.0); auto scalar_123 = LiteralUtil::CreateR0<float>(123.0); EXPECT_NE(scalar_42, scalar_123); TF_ASSERT_OK(scalar_42.CopyFrom(scalar_123, {}, {})); EXPECT_EQ(scalar_42, scalar_123); EXPECT_EQ(scalar_42.Get<float>({}), 123.0f); auto matrix_1234 = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto matrix_5678 = LiteralUtil::CreateR2<float>({{5.0, 6.0}, {7.0, 8.0}}); EXPECT_NE(matrix_1234, matrix_5678); EXPECT_EQ(matrix_1234.Get<float>({0, 0}), 1.0f); TF_ASSERT_OK(matrix_1234.CopyFrom(matrix_5678, {}, {})); EXPECT_EQ(matrix_1234, matrix_5678); EXPECT_EQ(matrix_1234.Get<float>({0, 0}), 5.0f); } TEST_F(LiteralUtilTest, CopyFromTuples) { auto matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); Literal nil_literal(ShapeUtil::MakeNil()); Literal inner_elements[] = {LiteralUtil::CreateR0<int32_t>(42), LiteralUtil::CreateR1<double>({23.0, 44.0})}; Literal inner_tuple = LiteralUtil::MakeTuple( {&inner_elements[0], &inner_elements[1], &nil_literal}); Literal nested_tuple = LiteralUtil::MakeTuple({&matrix, &inner_tuple}); Literal int32_minus5 = LiteralUtil::CreateR0<int32_t>(-5); Literal double_2_4 = LiteralUtil::CreateR1<double>({2.0, 4.0}); Literal tuple = LiteralUtil::MakeTuple({&int32_minus5, &double_2_4, &nil_literal}); EXPECT_EQ(matrix, LiteralSlice(nested_tuple, {0})); EXPECT_EQ(nested_tuple.Get<int32_t>({}, {1, 0}), 42); EXPECT_EQ(nested_tuple.Get<double>({0}, {1, 1}), 23.0); EXPECT_EQ(nested_tuple.Get<double>({1}, {1, 1}), 44.0); TF_ASSERT_OK(nested_tuple.CopyFrom(tuple, {1}, {})); EXPECT_EQ(matrix, LiteralSlice(nested_tuple, {0})); EXPECT_EQ(nested_tuple.Get<int32_t>({}, {1, 0}), -5); EXPECT_EQ(nested_tuple.Get<double>({0}, {1, 1}), 2.0); EXPECT_EQ(nested_tuple.Get<double>({1}, {1, 1}), 4.0); } TEST_F(LiteralUtilTest, CopyBetweenSameTuple) { Literal elements[] = {LiteralUtil::CreateR0<int32_t>(-2), LiteralUtil::CreateR0<int32_t>(4)}; Literal tuple = LiteralUtil::MakeTuple({&elements[0], &elements[1]}); EXPECT_EQ(tuple.Get<int32_t>({}, {0}), -2); EXPECT_EQ(tuple.Get<int32_t>({}, {1}), 4); TF_ASSERT_OK(tuple.CopyFrom(tuple, {1}, {0})); EXPECT_EQ(tuple.Get<int32_t>({}, {0}), -2); EXPECT_EQ(tuple.Get<int32_t>({}, {1}), -2); } TEST_F(LiteralUtilTest, CopyFromDifferentShapes) { auto matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto vector = LiteralUtil::CreateR1<float>({5.0, 7.0}); absl::Status status = matrix.CopyFrom(vector); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("Destination subshape incompatible")); } TEST_F(LiteralUtilTest, F16) { Literal m1 = Literal::CreateFromShape(ShapeUtil::MakeShape(F16, {2, 2})); const char* d1 = reinterpret_cast<const char*>(m1.data<half>().data()); EXPECT_EQ(d1[0], 0); EXPECT_EQ(d1[1], 0); EXPECT_EQ(d1[2], 0); EXPECT_EQ(d1[3], 0); EXPECT_EQ(d1[4], 0); EXPECT_EQ(d1[5], 0); EXPECT_EQ(d1[6], 0); EXPECT_EQ(d1[7], 0); half h1(1.0f); half h2(2.0f); auto m2 = LiteralUtil::CreateR2<half>({{h1, h2}, {h2, h1}}); const uint16_t* d2 = reinterpret_cast<const uint16_t*>(m2.data<half>().data()); EXPECT_EQ(d2[0], 0x3C00); EXPECT_EQ(d2[1], 0x4000); EXPECT_EQ(d2[2], 0x4000); EXPECT_EQ(d2[3], 0x3C00); } TEST_F(LiteralUtilTest, Populate) { struct PopulateData { std::vector<int64_t> dimensions; std::vector<int64_t> layout; } populate_data[] = { {{}, {}}, {{0}, {0}}, {{16}, {0}}, {{2, 0}, {1, 0}}, {{4, 16}, {1, 0}}, {{21, 12}, {0, 1}}, {{6, 11, 17}, {2, 0, 1}}, {{6, 11, 5, 17}, {3, 2, 0, 1}}, }; for (const auto& data : populate_data) { Shape shape = ShapeUtil::MakeShapeWithDenseLayout( primitive_util::NativeToPrimitiveType<uint32_t>(), data.dimensions, data.layout); Literal literal(shape); auto generator = [&](absl::Span<const int64_t> indexes) -> uint32_t { return IndexUtil::MultidimensionalIndexToLinearIndex(literal.shape(), indexes) + 17; }; TF_EXPECT_OK(literal.Populate<uint32_t>(generator)); std::vector<int64_t> zero_base(data.dimensions.size(), 0); std::vector<int64_t> step(data.dimensions.size(), 1); bool matched = true; auto check_function = [&](absl::Span<const int64_t> indexes) { auto value = literal.Get<uint32_t>(indexes); matched = matched && (value == generator(indexes)); return matched; }; ShapeUtil::ForEachIndex(literal.shape(), zero_base, data.dimensions, step, check_function); EXPECT_TRUE(matched); } } TEST_F(LiteralUtilTest, PopulateParallel) { struct PopulateData { std::vector<int64_t> dimensions; std::vector<int64_t> layout; } populate_data[] = { {{}, {}}, {{0}, {0}}, {{16}, {0}}, {{2, 0}, {1, 0}}, {{4, 16}, {1, 0}}, {{21, 12}, {0, 1}}, {{6, 11, 17}, {2, 0, 1}}, {{6, 11, 5, 17}, {3, 2, 0, 1}}, }; for (const auto& data : populate_data) { Shape shape = ShapeUtil::MakeShapeWithDenseLayout( primitive_util::NativeToPrimitiveType<uint32_t>(), data.dimensions, data.layout); Literal literal(shape); auto generator = [&](absl::Span<const int64_t> indexes, int ) -> uint32_t { return IndexUtil::MultidimensionalIndexToLinearIndex(literal.shape(), indexes) + 17; }; TF_EXPECT_OK(literal.PopulateParallel<uint32_t>(generator)); std::vector<int64_t> zero_base(data.dimensions.size(), 0); std::vector<int64_t> step(data.dimensions.size(), 1); bool matched = true; auto check_function = [&](absl::Span<const int64_t> indexes) { auto value = literal.Get<uint32_t>(indexes); matched = matched && (value == generator(indexes, -1)); return matched; }; ShapeUtil::ForEachIndex(literal.shape(), zero_base, data.dimensions, step, check_function); EXPECT_TRUE(matched); } } TEST_F(LiteralUtilTest, ConvertR4) { auto original = LiteralUtil::CreateR4WithLayout<int8_t>({{ {{10, 11, 12, 13}, {14, 15, 16, 17}}, {{18, 19, 20, 21}, {22, 23, 24, 25}}, {{26, 27, 28, 29}, {30, 31, 32, 33}}, }}, layout_r4_dim0major_); auto expected = LiteralUtil::CreateR4WithLayout<uint32_t>({{ {{10, 11, 12, 13}, {14, 15, 16, 17}}, {{18, 19, 20, 21}, {22, 23, 24, 25}}, {{26, 27, 28, 29}, {30, 31, 32, 33}}, }}, layout_r4_dim0major_); TF_ASSERT_OK_AND_ASSIGN(Literal converted, original.Convert(U32)); EXPECT_EQ(expected, converted); } TEST_F(LiteralUtilTest, ConvertIfTypesMatch) { auto s8 = LiteralUtil::CreateR4WithLayout<int8_t>({{ {{10, 0, 12, 0}, {0, 15, 0, 17}}, {{0, 19, 0, 21}, {22, 0, 24, 0}}, {{26, 0, 28, 0}, {0, 31, 0, 33}}, }}, layout_r4_dim0major_); auto s16 = LiteralUtil::CreateR4WithLayout<int16_t>({{ {{10, 0, 12, 0}, {0, 15, 0, 17}}, {{0, 19, 0, 21}, {22, 0, 24, 0}}, {{26, 0, 28, 0}, {0, 31, 0, 33}}, }}, layout_r4_dim0major_); auto s32 = LiteralUtil::CreateR4WithLayout<int32_t>({{ {{10, 0, 12, 0}, {0, 15, 0, 17}}, {{0, 19, 0, 21}, {22, 0, 24, 0}}, {{26, 0, 28, 0}, {0, 31, 0, 33}}, }}, layout_r4_dim0major_); auto u16 = LiteralUtil::CreateR4WithLayout<uint16_t>({{ {{10, 0, 12, 0}, {0, 15, 0, 17}}, {{0, 19, 0, 21}, {22, 0, 24, 0}}, {{26, 0, 28, 0}, {0, 31, 0, 33}}, }}, layout_r4_dim0major_); auto u32 = LiteralUtil::CreateR4WithLayout<uint32_t>({{ {{10, 0, 12, 0}, {0, 15, 0, 17}}, {{0, 19, 0, 21}, {22, 0, 24, 0}}, {{26, 0, 28, 0}, {0, 31, 0, 33}}, }}, layout_r4_dim0major_); auto s64 = LiteralUtil::CreateR4WithLayout<int64_t>({{ {{10, 0, 12, 0}, {0, 15, 0, 17}}, {{0, 19, 0, 21}, {22, 0, 24, 0}}, {{26, 0, 28, 0}, {0, 31, 0, 33}}, }}, layout_r4_dim0major_); auto u64 = LiteralUtil::CreateR4WithLayout<uint64_t>({{ {{10, 0, 12, 0}, {0, 15, 0, 17}}, {{0, 19, 0, 21}, {22, 0, 24, 0}}, {{26, 0, 28, 0}, {0, 31, 0, 33}}, }}, layout_r4_dim0major_); auto pred = LiteralUtil::CreateR4WithLayout<bool>({{ {{true, false, true, false}, {false, true, false, true}}, {{false, true, false, true}, {true, false, true, false}}, {{true, false, true, false}, {false, true, false, true}}, }}, layout_r4_dim0major_); auto int32_pred = LiteralUtil::CreateR4WithLayout<int32_t>({{ {{1, 0, 1, 0}, {0, 1, 0, 1}}, {{0, 1, 0, 1}, {1, 0, 1, 0}}, {{1, 0, 1, 0}, {0, 1, 0, 1}}, }}, layout_r4_dim0major_); auto s4nums = LiteralUtil::CreateR4WithLayout<s4>({{ {{s4(1), s4(0), s4(2), s4(0)}, {s4(0), s4(5), s4(0), s4(7)}}, {{s4(0), s4(1), s4(0), s4(1)}, {s4(2), s4(0), s4(4), s4(0)}}, {{s4(2), s4(0), s4(2), s4(0)}, {s4(0), s4(3), s4(0), s4(3)}}, }}, layout_r4_dim0major_); auto int32_s4nums = LiteralUtil::CreateR4WithLayout<int32_t>({{ {{1, 0, 2, 0}, {0, 5, 0, 7}}, {{0, 1, 0, 1}, {2, 0, 4, 0}}, {{2, 0, 2, 0}, {0, 3, 0, 3}}, }}, layout_r4_dim0major_); auto f16 = LiteralUtil::CreateR4WithLayout<half>({{ {{half(10.0), half(0.0), half(12.0), half(0.0)}, {half(0.0), half(15.0), half(0.0), half(17.0)}}, {{half(0.0), half(19.0), half(0.0), half(21.0)}, {half(22.0), half(0.0), half(24.0), half(0.0)}}, {{half(26.0), half(0.0), half(28.0), half(0.0)}, {half(0.0), half(31.0), half(0.0), half(33.0)}}, }}, layout_r4_dim0major_); auto bf16 = LiteralUtil::CreateR4WithLayout<bfloat16>({{ {{bfloat16(10.0), bfloat16(0.0), bfloat16(12.0), bfloat16(0.0)}, {bfloat16(0.0), bfloat16(15.0), bfloat16(0.0), bfloat16(17.0)}}, {{bfloat16(0.0), bfloat16(19.0), bfloat16(0.0), bfloat16(21.0)}, {bfloat16(22.0), bfloat16(0.0), bfloat16(24.0), bfloat16(0.0)}}, {{bfloat16(26.0), bfloat16(0.0), bfloat16(28.0), bfloat16(0.0)}, {bfloat16(0.0), bfloat16(31.0), bfloat16(0.0), bfloat16(33.0)}}, }}, layout_r4_dim0major_); auto f32 = LiteralUtil::CreateR4WithLayout<float>({{ {{10.0f, 0.0f, 12.0f, 0.0f}, {0.0f, 15.0f, 0.0f, 17.0f}}, {{0.0f, 19.0f, 0.0f, 21.0f}, {22.0f, 0.0f, 24.0f, 0.0f}}, {{26.0f, 0.0f, 28.0f, 0.0f}, {0.0f, 31.0f, 0.0f, 33.0f}}, }}, layout_r4_dim0major_); auto f64 = LiteralUtil::CreateR4WithLayout<double>({{ {{10.0, 0.0, 12.0, 0.0}, {0.0, 15.0, 0.0, 17.0}}, {{0.0, 19.0, 0.0, 21.0}, {22.0, 0.0, 24.0, 0.0}}, {{26.0, 0.0, 28.0, 0.0}, {0.0, 31.0, 0.0, 33.0}}, }}, layout_r4_dim0major_); auto c64 = LiteralUtil::CreateR4WithLayout<complex64>({{ {{10.0f, 0.0f, 12.0f, 0.0f}, {0.0f, 15.0f, 0.0f, 17.0f}}, {{0.0f, 19.0f, 0.0f, 21.0f}, {22.0f, 0.0f, 24.0f, 0.0f}}, {{26.0f, 0.0f, 28.0f, 0.0f}, {0.0f, 31.0f, 0.0f, 33.0f}}, }}, layout_r4_dim0major_); auto c128 = LiteralUtil::CreateR4WithLayout<complex128>({{ {{10.0, 0.0, 12.0, 0.0}, {0.0, 15.0, 0.0, 17.0}}, {{0.0, 19.0, 0.0, 21.0}, {22.0, 0.0, 24.0, 0.0}}, {{26.0, 0.0, 28.0, 0.0}, {0.0, 31.0, 0.0, 33.0}}, }}, layout_r4_dim0major_); Literal conv; conv = s8.Convert(U16).value(); EXPECT_EQ(conv, u16); conv = s8.Convert(S16).value(); EXPECT_EQ(conv, s16); conv = s8.Convert(U32).value(); EXPECT_EQ(conv, u32); conv = s8.Convert(S32).value(); EXPECT_EQ(conv, s32); conv = s8.Convert(U64).value(); EXPECT_EQ(conv, u64); conv = s8.Convert(S64).value(); EXPECT_EQ(conv, s64); conv = s8.Convert(PRED).value(); EXPECT_EQ(conv, pred); conv = bf16.Convert(S32).value(); EXPECT_EQ(conv, s32); conv = bf16.Convert(F32).value(); EXPECT_EQ(conv, f32); conv = pred.Convert(S32).value(); EXPECT_EQ(conv, int32_pred); conv = s4nums.Convert(S32).value(); EXPECT_EQ(conv, int32_s4nums); conv = f32.Convert(S32).value(); EXPECT_EQ(conv, s32); conv = f64.Convert(S32).value(); EXPECT_EQ(conv, s32); conv = s32.Convert(F32).value(); EXPECT_EQ(conv, f32); conv = f32.Convert(F16).value(); EXPECT_EQ(conv, f16); conv = f64.Convert(F16).value(); EXPECT_EQ(conv, f16); conv = s32.Convert(F16).value(); EXPECT_EQ(conv, f16); conv = u32.Convert(F16).value(); EXPECT_EQ(conv, f16); conv = s32.Convert(C64).value(); EXPECT_EQ(conv, c64); conv = f16.Convert(C64).value(); EXPECT_EQ(conv, c64); conv = s32.Convert(S16).value(); EXPECT_EQ(conv, s16); conv = s32.Convert(U16).value(); EXPECT_EQ(conv, u16); conv = s32.Convert(C128).value(); EXPECT_EQ(conv, c128); conv = f16.Convert(C128).value(); EXPECT_EQ(conv, c128); EXPECT_EQ(s32.Convert(TUPLE).status().code(), tsl::error::UNIMPLEMENTED); EXPECT_EQ(c64.Convert(F32).status().code(), tsl::error::UNIMPLEMENTED); EXPECT_EQ(c64.Convert(S32).status().code(), tsl::error::UNIMPLEMENTED); EXPECT_EQ(c128.Convert(F32).status().code(), tsl::error::UNIMPLEMENTED); EXPECT_EQ(c128.Convert(S32).status().code(), tsl::error::UNIMPLEMENTED); } TYPED_TEST(LiteralUtilFloatTest, ConvertIfTypesMatchF8) { constexpr auto ptype = primitive_util::NativeToPrimitiveType<TypeParam>(); if (!primitive_util::IsF8Type(ptype)) { GTEST_SKIP() << "Skipping test for non F8 types"; } auto s8 = LiteralUtil::CreateR2WithLayout<int8_t>( {{0, 1}, {2, 3}}, LiteralUtilTest::layout_r2_dim0major_); auto bf16 = LiteralUtil::CreateR2WithLayout<bfloat16>( {{bfloat16(0.), bfloat16(1.)}, {bfloat16(2.), bfloat16(3.)}}, LiteralUtilTest::layout_r2_dim0major_); auto f32 = LiteralUtil::CreateR2WithLayout<float>( {{0., 1.}, {2., 3.}}, LiteralUtilTest::layout_r2_dim0major_); auto c128 = LiteralUtil::CreateR2WithLayout<complex128>( {{0., 1.}, {2., 3.}}, LiteralUtilTest::layout_r2_dim0major_); using f8e5m2_t = tsl::float8_e5m2; auto f8e5m2 = LiteralUtil::CreateR2WithLayout<f8e5m2_t>( {{f8e5m2_t{0.}, f8e5m2_t{1.}}, {f8e5m2_t{2.}, f8e5m2_t{3.}}}, LiteralUtilTest::layout_r2_dim0major_); using e4m3fn_t = tsl::float8_e4m3fn; auto f8e4m3fn = LiteralUtil::CreateR2WithLayout<e4m3fn_t>( {{e4m3fn_t{0.}, e4m3fn_t{1.}}, {e4m3fn_t{2.}, e4m3fn_t{3.}}}, LiteralUtilTest::layout_r2_dim0major_); auto f8 = LiteralUtil::CreateR2WithLayout<TypeParam>( {{TypeParam{0.}, TypeParam{1.}}, {TypeParam{2.}, TypeParam{3.}}}, LiteralUtilTest::layout_r2_dim0major_); Literal conv; conv = s8.Convert(ptype).value(); EXPECT_EQ(conv, f8); conv = bf16.Convert(ptype).value(); EXPECT_EQ(conv, f8); conv = f32.Convert(ptype).value(); EXPECT_EQ(conv, f8); conv = f8e5m2.Convert(ptype).value(); EXPECT_EQ(conv, f8); conv = f8e4m3fn.Convert(ptype).value(); EXPECT_EQ(conv, f8); conv = f8.Convert(S8).value(); EXPECT_EQ(conv, s8); conv = f8.Convert(BF16).value(); EXPECT_EQ(conv, bf16); conv = f8.Convert(F32).value(); EXPECT_EQ(conv, f32); conv = f8.Convert(C128).value(); EXPECT_EQ(conv, c128); conv = f8.Convert(F8E5M2).value(); EXPECT_EQ(conv, f8e5m2); conv = f8.Convert(F8E4M3FN).value(); EXPECT_EQ(conv, f8e4m3fn); } TEST_F(LiteralUtilTest, BitcastConvert) { Literal original = LiteralUtil::CreateR1<uint32_t>( {absl::bit_cast<uint32_t>(2.5f), absl::bit_cast<uint32_t>(-42.25f), absl::bit_cast<uint32_t>(100.f), 0xbeef}); Literal expected = LiteralUtil::CreateR1<float>( {2.5f, -42.25f, 100.0f, absl::bit_cast<float>(0xbeef)}); TF_ASSERT_OK_AND_ASSIGN(Literal converted, original.BitcastConvert(ShapeUtil::ChangeElementType( original.shape(), F32))); } TEST_F(LiteralUtilTest, BitcastConvertBetweenInvalidTypes) { Literal literal = LiteralUtil::CreateR0<uint32_t>(1234); absl::Status status = literal.BitcastConvert(ShapeUtil::ChangeElementType(literal.shape(), F64)) .status(); EXPECT_NE(absl::OkStatus(), status); EXPECT_TRUE( absl::StrContains(status.message(), "to a shape of different size")); } void SetDefaultLayoutOnProto(ShapeProto* shape_proto) { CHECK(ShapeUtil::IsArrayPrimitiveType(shape_proto->element_type())); auto* minor_to_major = shape_proto->mutable_layout()->mutable_minor_to_major(); minor_to_major->Resize(shape_proto->dimensions_size(), 0); const int64_t size = minor_to_major->size(); for (int64_t i = 0; i < size; ++i) { minor_to_major->Set(i, size - 1 - i); } } TEST_F(LiteralUtilTest, CopyFromProto_Bool) { LiteralProto p; p.mutable_shape()->set_element_type(PRED); for (int len = 0; len < 25; ++len) { p.mutable_shape()->clear_dimensions(); p.mutable_shape()->add_dimensions(len); SetDefaultLayoutOnProto(p.mutable_shape()); p.clear_preds(); for (int i = 0; i < len; ++i) { p.add_preds((i % 2) == (len % 2)); } TF_ASSERT_OK_AND_ASSIGN(Literal literal, Literal::CreateFromProto(p)); ASSERT_EQ(len, literal.data<bool>().size()); int i = 0; for (bool value : literal.data<bool>()) { EXPECT_EQ((i % 2) == (len % 2), value); ++i; } } } TEST_F(LiteralUtilTest, ToProto_f16) { half h1(1.0f); half h2(2.0f); auto m = LiteralUtil::CreateR2<half>({{h1, h2}, {h2, h1}}); EXPECT_EQ(4, ShapeUtil::ElementsIn(m.shape())); EXPECT_EQ(4, m.data<half>().size()); LiteralProto p = m.ToProto(); EXPECT_EQ(4, ShapeUtil::ElementsIn(Shape(p.shape()))); EXPECT_EQ(8, p.f16s().size()); const char* d = p.f16s().data(); EXPECT_EQ(d[0], 0); EXPECT_EQ(d[1], 0x3C); EXPECT_EQ(d[2], 0); EXPECT_EQ(d[3], 0x40); EXPECT_EQ(d[4], 0); EXPECT_EQ(d[5], 0x40); EXPECT_EQ(d[6], 0); EXPECT_EQ(d[7], 0x3C); } TEST_F(LiteralUtilTest, CopyFromProto_f16) { half h1(1.0f); half h2(2.0f); const char half_vals[8] = {0x00, 0x3C, 0x00, 0x40, 0x00, 0x40, 0x00, 0x3C}; LiteralProto p; p.mutable_shape()->set_element_type(F16); p.mutable_shape()->clear_dimensions(); p.mutable_shape()->add_dimensions(4); SetDefaultLayoutOnProto(p.mutable_shape()); p.clear_f16s(); p.set_f16s(half_vals, 8); TF_ASSERT_OK_AND_ASSIGN(Literal literal, Literal::CreateFromProto(p)); auto r = literal.data<half>(); ASSERT_EQ(4, r.size()); EXPECT_EQ(h1, r[0]); EXPECT_EQ(h2, r[1]); EXPECT_EQ(h2, r[2]); EXPECT_EQ(h1, r[3]); } TEST_F(LiteralUtilTest, CopyFromProto_u16) { uint16_t u1(0xabcd); uint16_t u2(0x1234); const unsigned char uint16_vals[8] = {0xcd, 0xab, 0x34, 0x12, 0x34, 0x12, 0xcd, 0xab}; LiteralProto p; p.mutable_shape()->set_element_type(U16); p.mutable_shape()->clear_dimensions(); p.mutable_shape()->add_dimensions(4); SetDefaultLayoutOnProto(p.mutable_shape()); p.clear_u16s(); p.set_u16s(uint16_vals, 8); TF_ASSERT_OK_AND_ASSIGN(Literal literal, Literal::CreateFromProto(p)); auto r = literal.data<uint16_t>(); ASSERT_EQ(4, r.size()); EXPECT_EQ(u1, r[0]); EXPECT_EQ(u2, r[1]); EXPECT_EQ(u2, r[2]); EXPECT_EQ(u1, r[3]); } TEST_F(LiteralUtilTest, LiteralDynamicSliceTest) { auto scalar = LiteralUtil::CreateR0<float>(1.0); auto matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto tuple = LiteralUtil::MakeTuple({&scalar, &matrix}); auto nested_tuple = LiteralUtil::MakeTuple({&tuple, &scalar}); Literal nil(ShapeUtil::MakeNil()); EXPECT_EQ(LiteralSlice(scalar, {}), scalar); EXPECT_EQ(LiteralSlice(matrix, {}), matrix); EXPECT_EQ(LiteralSlice(tuple, {}), tuple); EXPECT_EQ(LiteralSlice(nested_tuple, {}), nested_tuple); EXPECT_EQ(LiteralSlice(nil, {}), nil); EXPECT_EQ(LiteralSlice(tuple, {0}), scalar); EXPECT_EQ(LiteralSlice(tuple, {1}), matrix); EXPECT_EQ(LiteralSlice(nested_tuple, {0}), tuple); EXPECT_EQ(LiteralSlice(nested_tuple, {0, 0}), scalar); EXPECT_EQ(LiteralSlice(nested_tuple, {0, 1}), matrix); EXPECT_EQ(LiteralSlice(nested_tuple, {1}), scalar); } TEST_F(LiteralUtilTest, MutatingLiteralSlice) { auto scalar = LiteralUtil::CreateR0<float>(1.0); auto matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto tuple = LiteralUtil::MakeTuple({&scalar, &matrix}); auto nested_tuple = LiteralUtil::MakeTuple({&tuple, &scalar}); const auto nested_tuple_view = LiteralSlice(nested_tuple); EXPECT_EQ(nested_tuple.Get<float>({}, {0, 0}), 1.0f); EXPECT_EQ(nested_tuple_view.Get<float>({}, {0, 0}), 1.0f); nested_tuple.Set<float>({}, {0, 0}, 555.0f); EXPECT_EQ(nested_tuple.Get<float>({}, {0, 0}), 555.0f); EXPECT_EQ(nested_tuple_view.Get<float>({}, {0, 0}), 555.0f); } TEST_F(LiteralUtilTest, LiteralSliceOfALiteralSlice) { auto scalar = LiteralUtil::CreateR0<float>(1.0); auto matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto tuple = LiteralUtil::MakeTuple({&scalar, &matrix}); auto nested_tuple = LiteralUtil::MakeTuple({&tuple, &scalar}); const auto nested_tuple_view = LiteralSlice(nested_tuple); const auto tuple_view = LiteralSlice(nested_tuple_view, {0}); const auto matrix_view = LiteralSlice(tuple_view, {1}); EXPECT_EQ(matrix_view, LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}})); } TEST_F(LiteralUtilTest, BorrowingLiteralFromOneBufferPtr) { std::vector<int64_t> int64_values = {1, 2, 3}; const Shape literal_shape = ShapeUtil::MakeShape(S64, {3}); BorrowingLiteral literal(reinterpret_cast<const char*>(int64_values.data()), literal_shape); EXPECT_EQ(literal.Get<int64_t>({0}), 1); EXPECT_EQ(literal.Get<int64_t>({1}), 2); EXPECT_EQ(literal.Get<int64_t>({2}), 3); } TEST_F(LiteralUtilTest, BorrowingLiteralFromMultipleBufferPtrs) { std::vector<int64_t> one_two_three = {1, 2, 3}; const Shape one_two_three_shape = ShapeUtil::MakeShape(S64, {3}); std::vector<int64_t> hundred = {100}; const Shape hundred_shape = ShapeUtil::MakeShape(S64, {1}); std::vector<const char*> src_buf_ptrs; src_buf_ptrs.emplace_back( reinterpret_cast<const char*>(one_two_three.data())); src_buf_ptrs.emplace_back(reinterpret_cast<const char*>(hundred.data())); auto literal_tuple = BorrowingLiteral( src_buf_ptrs, ShapeUtil::MakeTupleShape({one_two_three_shape, hundred_shape})); EXPECT_EQ( literal_tuple.Get<int64_t>({0}, {0}), 1); EXPECT_EQ( literal_tuple.Get<int64_t>({0}, {1}), 100); EXPECT_EQ( literal_tuple.Get<int64_t>({1}, {0}), 2); EXPECT_EQ( literal_tuple.Get<int64_t>({2}, {0}), 3); } TEST_F(LiteralUtilTest, BorrowingLiteralFromShapeTree) { std::vector<float> data = {1.0, 2.0, 3.0}; Shape shape = ShapeUtil::MakeShape(PrimitiveType::F32, {3}); Shape tuple = ShapeUtil::MakeTupleShape({shape, shape}); Shape nested_tuple = ShapeUtil::MakeTupleShape({tuple, shape}); ShapeTree<const char*> ptr_tree(nested_tuple); *ptr_tree.mutable_element({0, 0}) = reinterpret_cast<char*>(data.data()); *ptr_tree.mutable_element({0, 1}) = reinterpret_cast<char*>(data.data()); *ptr_tree.mutable_element({1}) = reinterpret_cast<char*>(data.data()); BorrowingLiteral literal(ptr_tree); EXPECT_THAT(literal.data<float>({0, 0}), ElementsAre(1.0, 2.0, 3.0)); EXPECT_THAT(literal.data<float>({0, 1}), ElementsAre(1.0, 2.0, 3.0)); EXPECT_THAT(literal.data<float>({1}), ElementsAre(1.0, 2.0, 3.0)); } TEST_F(LiteralUtilTest, MutableBorrowingLiteralFromShapeTree) { std::vector<float> data = {1.0, 2.0, 3.0}; Shape shape = ShapeUtil::MakeShape(PrimitiveType::F32, {3}); Shape tuple = ShapeUtil::MakeTupleShape({shape, shape}); Shape nested_tuple = ShapeUtil::MakeTupleShape({tuple, shape}); ShapeTree<char*> ptr_tree(nested_tuple); *ptr_tree.mutable_element({0, 0}) = reinterpret_cast<char*>(data.data()); *ptr_tree.mutable_element({0, 1}) = reinterpret_cast<char*>(data.data()); *ptr_tree.mutable_element({1}) = reinterpret_cast<char*>(data.data()); MutableBorrowingLiteral literal(ptr_tree); EXPECT_THAT(literal.data<float>({0, 0}), ElementsAre(1.0, 2.0, 3.0)); EXPECT_THAT(literal.data<float>({0, 1}), ElementsAre(1.0, 2.0, 3.0)); EXPECT_THAT(literal.data<float>({1}), ElementsAre(1.0, 2.0, 3.0)); } TEST_F(LiteralUtilTest, LiteralMove) { Literal matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); Literal literal(std::move(matrix)); EXPECT_TRUE( ShapeUtil::Equal(ShapeUtil::MakeShape(F32, {2, 2}), literal.shape())); EXPECT_EQ(literal.Get<float>({0, 0}), 1.0); EXPECT_EQ(literal.Get<float>({0, 1}), 2.0); EXPECT_EQ(literal.Get<float>({1, 0}), 3.0); EXPECT_EQ(literal.Get<float>({1, 1}), 4.0); } TEST_F(LiteralUtilTest, DecomposeTuple) { Literal nil_literal(ShapeUtil::MakeNil()); Literal inner_elements[] = { LiteralUtil::CreateR0<int32_t>(42), LiteralUtil::CreateR1<double>({23.0, 44.0}), }; Literal tuple_elements[] = { LiteralUtil::CreateR2<int32_t>({{1, 2}, {3, 4}}), LiteralUtil::MakeTuple( {&inner_elements[0], &inner_elements[1], &nil_literal}), }; Literal nested_tuple = LiteralUtil::MakeTuple( {&tuple_elements[0], &tuple_elements[1], &nil_literal}); EXPECT_FALSE(ShapeUtil::IsEmptyTuple(nested_tuple.shape())); std::vector<Literal> elements = nested_tuple.DecomposeTuple(); EXPECT_TRUE(ShapeUtil::IsEmptyTuple(nested_tuple.shape())); ASSERT_EQ(elements.size(), 3); EXPECT_TRUE(ShapeUtil::Compatible(elements[0].shape(), ShapeUtil::MakeShape(S32, {2, 2}))); EXPECT_EQ(elements[0].Get<int32_t>({0, 0}), 1); EXPECT_EQ(elements[0].Get<int32_t>({0, 1}), 2); EXPECT_EQ(elements[0].Get<int32_t>({1, 0}), 3); EXPECT_EQ(elements[0].Get<int32_t>({1, 1}), 4); EXPECT_TRUE(ShapeUtil::Compatible( elements[1].shape(), ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(S32, {}), ShapeUtil::MakeShape(F64, {2}), ShapeUtil::MakeNil()}))); EXPECT_EQ(elements[1].Get<int32_t>({}, {0}), 42); EXPECT_EQ(elements[1].Get<double>({0}, {1}), 23.0); EXPECT_EQ(elements[1].Get<double>({1}, {1}), 44.0); EXPECT_TRUE(ShapeUtil::Compatible(elements[2].shape(), ShapeUtil::MakeNil())); } TEST_F(LiteralUtilTest, DecomposeEmptyTuple) { Literal nil_literal(ShapeUtil::MakeNil()); std::vector<Literal> elements = nil_literal.DecomposeTuple(); EXPECT_EQ(elements.size(), 0); } TEST_F(LiteralUtilTest, MoveIntoTuple) { std::vector<Literal> elements; elements.push_back(LiteralUtil::CreateR0<float>(1.0)); elements.push_back(LiteralUtil::CreateR1<int32_t>({4, 8})); std::vector<Literal> inner_elements; inner_elements.push_back(LiteralUtil::CreateR0<int32_t>(42)); inner_elements.push_back(LiteralUtil::CreateR1<double>({23.0, 44.0})); elements.push_back( LiteralUtil::MakeTuple({&inner_elements[0], &inner_elements[1]})); Literal literal = Literal::MoveIntoTuple(absl::MakeSpan(elements)); ASSERT_TRUE(literal.shape().IsTuple()); ASSERT_EQ(ShapeUtil::TupleElementCount(literal.shape()), 3); EXPECT_EQ(literal.Get<float>({}, {0}), 1.0); EXPECT_EQ(literal.Get<int32_t>({0}, {1}), 4); EXPECT_EQ(literal.Get<int32_t>({1}, {1}), 8); EXPECT_EQ(literal.Get<int32_t>({}, {2, 0}), 42); EXPECT_EQ(literal.Get<double>({0}, {2, 1}), 23.0); EXPECT_EQ(literal.Get<double>({1}, {2, 1}), 44.0); for (const Literal& element : elements) { EXPECT_TRUE(ShapeUtil::IsEmptyTuple(element.shape())); } } TEST_F(LiteralUtilTest, MoveIntoEmptyTuple) { Literal literal = Literal::MoveIntoTuple({}); ASSERT_TRUE(literal.shape().IsTuple()); EXPECT_EQ(ShapeUtil::TupleElementCount(literal.shape()), 0); } TEST_F(LiteralUtilTest, LiteralMoveAssignment) { Literal literal; EXPECT_TRUE(ShapeUtil::Equal(ShapeUtil::MakeNil(), literal.shape())); Literal matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); literal = std::move(matrix); EXPECT_TRUE( ShapeUtil::Equal(ShapeUtil::MakeShape(F32, {2, 2}), literal.shape())); EXPECT_EQ(literal.Get<float>({0, 0}), 1.0); EXPECT_EQ(literal.Get<float>({0, 1}), 2.0); EXPECT_EQ(literal.Get<float>({1, 0}), 3.0); EXPECT_EQ(literal.Get<float>({1, 1}), 4.0); } TEST_F(LiteralUtilTest, LiteralSliceCopy) { Literal matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); const auto matrix_view = LiteralSlice(matrix); LiteralSlice matrix_view_copy(matrix_view); EXPECT_EQ(matrix_view_copy.Get<float>({0, 0}), 1.0); EXPECT_EQ(matrix_view_copy.Get<float>({0, 1}), 2.0); EXPECT_EQ(matrix_view_copy.Get<float>({1, 0}), 3.0); EXPECT_EQ(matrix_view_copy.Get<float>({1, 1}), 4.0); } TEST_F(LiteralUtilTest, GetSetTuple) { Literal elements[] = { LiteralUtil::CreateR0<float>(42.0), LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}), }; auto tuple = LiteralUtil::MakeTuple({&elements[0], &elements[1]}); EXPECT_EQ(tuple.Get<float>({}, {0}), 42.0); tuple.Set<float>({}, {0}, -5.0); EXPECT_EQ(tuple.Get<float>({}, {0}), -5.0); EXPECT_EQ(tuple.Get<float>({1, 0}, {1}), 3.0); tuple.Set<float>({1, 0}, {1}, -4.0); EXPECT_EQ(tuple.Get<float>({1, 0}, {1}), -4.0); } TEST_F(LiteralUtilTest, CreateFromShapeZeroInitialized) { Literal scalar_f32 = Literal::CreateFromShape(ShapeUtil::MakeShape(F32, {})); EXPECT_EQ(scalar_f32.Get<float>({}), 0.0); EXPECT_TRUE(scalar_f32.IsAll(0)); Literal vector_s32 = Literal::CreateFromShape(ShapeUtil::MakeShape(S32, {3})); EXPECT_EQ(vector_s32.Get<int32_t>({0}), 0); EXPECT_EQ(vector_s32.Get<int32_t>({1}), 0); EXPECT_EQ(vector_s32.Get<int32_t>({2}), 0); EXPECT_TRUE(vector_s32.IsAll(0)); Literal tuple = Literal::CreateFromShape(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F64, {}), ShapeUtil::MakeShape(PRED, {2}), ShapeUtil::MakeShape(U64, {2, 1}), ShapeUtil::MakeShape(C64, {}), ShapeUtil::MakeShape(C128, {})})); EXPECT_EQ(tuple.Get<double>({}, {0}), 0.0); EXPECT_EQ(tuple.Get<bool>({0}, {1}), false); EXPECT_EQ(tuple.Get<bool>({1}, {1}), false); EXPECT_EQ(tuple.Get<uint64_t>({0, 0}, {2}), 0); EXPECT_EQ(tuple.Get<uint64_t>({1, 0}, {2}), 0); EXPECT_EQ(tuple.Get<complex64>({}, {3}), complex64(0.0f, 0.0f)); EXPECT_EQ(tuple.Get<complex128>({}, {4}), complex128(0.0, 0.0)); } TEST_F(LiteralUtilTest, ProtoRoundTrip) { auto one_f32 = LiteralUtil::CreateR0<float>(1.0); auto two_f32 = LiteralUtil::CreateR0<float>(2.0); auto vector_int8 = LiteralUtil::CreateR1<int8_t>({-128, 0, 2, 4, 7, 56, 127}); auto vector_uint8 = LiteralUtil::CreateR1<uint8_t>({128, 0, 2, 56, 127, 255}); auto vector_c64 = LiteralUtil::CreateR1<complex64>({{1.0, 2.0}, {3.0, 4.0}}); auto vector_c128 = LiteralUtil::CreateR1<complex128>({{1.0, 2.0}, {3.0, 4.0}}); auto vector_bfloat16 = LiteralUtil::CreateR1<bfloat16>( {bfloat16{-1.0}, bfloat16{2.0}, bfloat16{-3.0}}); auto vector_half = LiteralUtil::CreateR1<half>({half{10.0}, half{20.0}, half{-30.0}}); using e5 = tsl::float8_e5m2; auto vector_f8e5m2 = LiteralUtil::CreateR1<e5>({e5{10.0}, e5{20.0}, e5{-32.0}}); using e4 = tsl::float8_e4m3; auto vector_f8e4m3 = LiteralUtil::CreateR1<e4>({e4{10.0}, e4{20.0}, e4{-32.0}}); using e4fn = tsl::float8_e4m3fn; auto vector_f8e4m3fn = LiteralUtil::CreateR1<e4fn>({e4fn{10.0}, e4fn{20.0}, e4fn{-32.0}}); using b11 = tsl::float8_e4m3b11fnuz; auto vector_f8e4m3b11 = LiteralUtil::CreateR1<b11>({b11{10.0}, b11{20.0}, b11{-30.0}}); using e5f = tsl::float8_e5m2fnuz; auto vector_f8e5m2fnuz = LiteralUtil::CreateR1<e5f>({e5f{10.0}, e5f{20.0}, e5f{-30.0}}); using e4f = tsl::float8_e4m3fnuz; auto vector_f8e4m3fnuz = LiteralUtil::CreateR1<e4f>({e4f{10.0}, e4f{20.0}, e4f{-30.0}}); using e3 = tsl::float8_e3m4; auto vector_f8e3m4 = LiteralUtil::CreateR1<e3>({e3{2.5}, e3{5.0}, e3{-8.0}}); auto matrix_pred = LiteralUtil::CreateR2<bool>({{true, false, true}, {false, false, true}}); auto vector_s4 = LiteralUtil::CreateR1<s4>({s4{-1}, s4{3}, s4{7}}); auto vector_u4 = LiteralUtil::CreateR1<u4>({u4{1}, u4{3}, u4{15}}); auto tuple = LiteralUtil::MakeTuple( {&one_f32, &vector_half, &matrix_pred, &matrix_pred}); Literal nil_literal(ShapeUtil::MakeNil()); auto nested_tuple = LiteralUtil::MakeTuple({&tuple, &vector_bfloat16, &tuple, &nil_literal}); auto to_from_proto = [](const Literal& literal) -> Literal { return Literal::CreateFromProto(literal.ToProto()).value(); }; EXPECT_EQ(one_f32, to_from_proto(one_f32)); EXPECT_EQ(vector_int8, to_from_proto(vector_int8)); EXPECT_EQ(vector_uint8, to_from_proto(vector_uint8)); EXPECT_EQ(vector_c64, to_from_proto(vector_c64)); EXPECT_EQ(vector_c128, to_from_proto(vector_c128)); EXPECT_EQ(vector_bfloat16, to_from_proto(vector_bfloat16)); EXPECT_EQ(vector_f8e5m2, to_from_proto(vector_f8e5m2)); EXPECT_EQ(vector_f8e4m3, to_from_proto(vector_f8e4m3)); EXPECT_EQ(vector_f8e4m3fn, to_from_proto(vector_f8e4m3fn)); EXPECT_EQ(vector_f8e4m3b11, to_from_proto(vector_f8e4m3b11)); EXPECT_EQ(vector_f8e5m2fnuz, to_from_proto(vector_f8e5m2fnuz)); EXPECT_EQ(vector_f8e4m3fnuz, to_from_proto(vector_f8e4m3fnuz)); EXPECT_EQ(vector_f8e3m4, to_from_proto(vector_f8e3m4)); EXPECT_EQ(matrix_pred, to_from_proto(matrix_pred)); EXPECT_EQ(vector_s4, to_from_proto(vector_s4)); EXPECT_EQ(vector_u4, to_from_proto(vector_u4)); EXPECT_EQ(tuple, to_from_proto(tuple)); EXPECT_EQ(nested_tuple, to_from_proto(nested_tuple)); EXPECT_EQ(nil_literal, to_from_proto(nil_literal)); EXPECT_NE(one_f32, two_f32); EXPECT_NE(one_f32, to_from_proto(two_f32)); } TEST_F(LiteralUtilTest, InvalidProtoNoValues) { LiteralProto proto; *proto.mutable_shape() = ShapeUtil::MakeShape(F32, {3}).ToProto(); absl::Status status = Literal::CreateFromProto(proto).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("Expected 3 elements in LiteralProto")); } TEST_F(LiteralUtilTest, ValidProtoNoValues) { LiteralProto proto; *proto.mutable_shape() = ShapeUtil::MakeShape(F32, {3}).ToProto(); absl::Status status = Literal::CreateFromProto(proto, false) .status(); EXPECT_TRUE(status.ok()); } TEST_F(LiteralUtilTest, ValidProtoWithClearedValues) { auto literal = LiteralUtil::CreateR1<bool>({true, false, true}); LiteralProto proto = literal.ToProto(); EXPECT_EQ(proto.preds_size(), 3); proto.clear_preds(); EXPECT_EQ(proto.preds_size(), 0); absl::Status status = Literal::CreateFromProto(proto, false) .status(); EXPECT_TRUE(status.ok()); } TEST_F(LiteralUtilTest, InvalidProtoNoShape) { LiteralProto proto; proto.add_preds(false); proto.add_preds(true); proto.add_preds(false); absl::Status status = Literal::CreateFromProto(proto).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("LiteralProto has no shape")); } TEST_F(LiteralUtilTest, InvalidProtoWrongContainer) { LiteralProto proto; *proto.mutable_shape() = ShapeUtil::MakeShape(F32, {3}).ToProto(); proto.add_preds(false); proto.add_preds(true); proto.add_preds(false); absl::Status status = Literal::CreateFromProto(proto).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("Expected 3 elements in LiteralProto")); } TEST_F(LiteralUtilTest, InvalidProtoTooFewValues) { LiteralProto proto; *proto.mutable_shape() = ShapeUtil::MakeShape(F32, {42, 2}).ToProto(); proto.add_f32s(1.0); proto.add_f32s(2.0); proto.add_f32s(3.0); absl::Status status = Literal::CreateFromProto(proto).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("Expected 84 elements in LiteralProto")); } TEST_F(LiteralUtilTest, InvalidProtoTooManyValues) { LiteralProto proto; *proto.mutable_shape() = ShapeUtil::MakeShape(S32, {2}).ToProto(); proto.add_s32s(42); proto.add_s32s(-10); proto.add_s32s(100); absl::Status status = Literal::CreateFromProto(proto).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("Expected 2 elements in LiteralProto")); } TEST_F(LiteralUtilTest, InvalidProtoMissingLayout) { LiteralProto proto; *proto.mutable_shape() = ShapeUtil::MakeShape(PRED, {2, 2}).ToProto(); proto.mutable_shape()->clear_layout(); proto.add_preds(true); proto.add_preds(false); proto.add_preds(true); proto.add_preds(false); absl::Status status = Literal::CreateFromProto(proto).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("LiteralProto has no layout")); } TEST_F(LiteralUtilTest, InvalidProtoTooFewTupleElements) { LiteralProto proto; *proto.mutable_shape() = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(PRED, {2}), ShapeUtil::MakeShape(F32, {})}) .ToProto(); LiteralProto* element0 = proto.add_tuple_literals(); *element0->mutable_shape() = ShapeUtil::GetTupleElementShape(Shape(proto.shape()), 0).ToProto(); element0->add_preds(false); element0->add_preds(true); absl::Status status = Literal::CreateFromProto(proto).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("Expected 2 tuple elements")); } TEST_F(LiteralUtilTest, InvalidProtoTooManyTupleElements) { LiteralProto proto; *proto.mutable_shape() = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(PRED, {2}), ShapeUtil::MakeShape(F32, {})}) .ToProto(); LiteralProto* element0 = proto.add_tuple_literals(); *element0->mutable_shape() = ShapeUtil::GetTupleElementShape(Shape(proto.shape()), 0).ToProto(); element0->add_preds(false); element0->add_preds(true); LiteralProto* element1 = proto.add_tuple_literals(); *element1->mutable_shape() = ShapeUtil::GetTupleElementShape(Shape(proto.shape()), 1).ToProto(); element1->add_f32s(42.0); LiteralProto* element2 = proto.add_tuple_literals(); *element2->mutable_shape() = ShapeUtil::MakeShape(F32, {}).ToProto(); element2->add_f32s(123.0); absl::Status status = Literal::CreateFromProto(proto).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("Expected 2 tuple elements")); } TEST_F(LiteralUtilTest, BroadcastVectorToMatrix0) { Literal literal = LiteralUtil::CreateR1<int64_t>({1, 2}); TF_ASSERT_OK_AND_ASSIGN( Literal broadcasted_literal, literal.Broadcast(ShapeUtil::MakeShape(S64, {2, 2}), {0})); EXPECT_EQ(broadcasted_literal, LiteralUtil::CreateR2<int64_t>({{1, 1}, {2, 2}})); } TEST_F(LiteralUtilTest, BroadcastVectorToMatrix1) { Literal literal = LiteralUtil::CreateR1<int64_t>({1, 2}); TF_ASSERT_OK_AND_ASSIGN( Literal broadcasted_literal, literal.Broadcast(ShapeUtil::MakeShape(S64, {2, 2}), {1})); EXPECT_EQ(broadcasted_literal, LiteralUtil::CreateR2<int64_t>({{1, 2}, {1, 2}})); } TEST_F(LiteralUtilTest, BroadcastScalarToMatrix) { Literal literal = LiteralUtil::CreateR0<int32_t>(9); TF_ASSERT_OK_AND_ASSIGN( Literal broadcasted_literal, literal.Broadcast(ShapeUtil::MakeShape(S32, {2, 2}), {})); EXPECT_EQ(broadcasted_literal, LiteralUtil::CreateR2<int32_t>({{9, 9}, {9, 9}})); } TEST_F(LiteralUtilTest, DynamicBroadcast) { Literal literal = LiteralUtil::CreateR1<int64_t>({1, 2}); literal.SetDynamicSize(0, 1); TF_ASSERT_OK_AND_ASSIGN( Literal broadcasted_literal, literal.Broadcast(ShapeUtil::MakeShape(S64, {2, 2}), {1})); EXPECT_EQ(broadcasted_literal, LiteralUtil::CreateR2<int64_t>({{1}, {1}})); EXPECT_EQ(broadcasted_literal.GetDynamicSize(1), 1); } TEST_F(LiteralUtilTest, GetAsScalarInt64) { auto scalar1 = LiteralUtil::CreateR0<int32_t>(12); EXPECT_EQ(LiteralUtil::LiteralAsScalarInt64(scalar1).value(), (int64_t)12); auto scalar2 = LiteralUtil::CreateR0<int8_t>(12); EXPECT_EQ(LiteralUtil::LiteralAsScalarInt64(scalar2).value(), (int64_t)12); auto non_scalar1 = LiteralUtil::CreateR2<int32_t>({{1, 2}, {3, 4}}); EXPECT_FALSE(LiteralUtil::LiteralAsScalarInt64(non_scalar1).has_value()); auto non_scalar2 = LiteralUtil::CreateR1<int32_t>({{1, 2}}); EXPECT_FALSE(LiteralUtil::LiteralAsScalarInt64(non_scalar2).has_value()); } TEST_F(LiteralUtilTest, GetAsDouble) { auto m = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); EXPECT_EQ(*m.GetAsDouble({0, 0}), 1.0); EXPECT_EQ(*m.GetAsDouble({1, 0}), 3.0); } TEST_F(LiteralUtilTest, GetSumAsDouble) { auto m = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); EXPECT_EQ(*m.GetSumAsDouble({0, 3}), 1.0 + 4.0); EXPECT_EQ(*m.GetSumAsDouble({0, 1, 2, 3}), 1.0 + 2.0 + 3.0 + 4.0); auto md = LiteralUtil::CreateR2<double>({{1.0, 2.0}, {3.0, 4.0}}); EXPECT_EQ(*md.GetSumAsDouble({0, 3}), 1.0 + 4.0); EXPECT_EQ(*md.GetSumAsDouble({0, 1, 2, 3}), 1.0 + 2.0 + 3.0 + 4.0); std::vector<float> vals(1024, 1.0); auto v = LiteralUtil::CreateR1<float>(vals); std::vector<int64_t> indices; for (int i = 0; i < 1024; i += 2) { indices.push_back(i); EXPECT_EQ(*v.GetSumAsDouble(indices), (i + 2) / 2.0); } } TEST_F(LiteralUtilTest, GetAsComplex128) { complex128 value = {1, 0}; Literal c1 = LiteralUtil::CreateR0<complex128>(value); EXPECT_EQ(*c1.GetAsComplex128({}), value); Literal c2 = LiteralUtil::CreateR0<double>(1); EXPECT_EQ(*c2.GetAsComplex128({}), value); complex64 float_value = {1, 0}; Literal c4 = LiteralUtil::CreateR0<complex64>(float_value); EXPECT_EQ(*c4.GetAsComplex128({}), value); complex128 other_value = {1, 2}; Literal c5 = LiteralUtil::CreateR0<complex128>(other_value); EXPECT_EQ(*c5.GetAsComplex128({}), other_value); Literal c6 = LiteralUtil::CreateR0<int64_t>(1); EXPECT_FALSE(c6.GetAsComplex128({}).has_value()); } TEST_F(LiteralUtilTest, SliceOnBool) { Literal c1 = LiteralUtil::CreateR1<bool>({true, true, false}); EXPECT_EQ(c1, c1.Slice({0}, {3})); } TEST_F(LiteralUtilTest, IsEqualAt) { double val_double = 10.0; int val_integral = 10; Literal c1 = LiteralUtil::CreateR0<int>(10); EXPECT_TRUE(c1.IsEqualAt({}, val_double)); EXPECT_TRUE(c1.IsEqualAt({}, val_integral)); Literal c2 = LiteralUtil::CreateR0<double>(10); EXPECT_TRUE(c2.IsEqualAt({}, val_double)); EXPECT_TRUE(c2.IsEqualAt({}, val_integral)); Literal c3 = LiteralUtil::CreateR0<tsl::float8_e5m2>(tsl::float8_e5m2{val_double}); EXPECT_TRUE(c3.IsEqualAt({}, val_double)); EXPECT_TRUE(c3.IsEqualAt({}, val_integral)); complex128 val_complex = {10, 0}; EXPECT_TRUE(c1.IsEqualAt({}, val_complex)); EXPECT_TRUE(c2.IsEqualAt({}, val_complex)); EXPECT_TRUE(c3.IsEqualAt({}, val_complex)); Literal c4 = LiteralUtil::CreateR0<complex128>(val_complex); EXPECT_TRUE(c4.IsEqualAt({}, val_double)); EXPECT_TRUE(c4.IsEqualAt({}, val_integral)); EXPECT_TRUE(c4.IsEqualAt({}, val_complex)); EXPECT_FALSE(c4.IsEqualAt({}, std::numeric_limits<double>::infinity())); complex128 val_true_complex = {10, 3}; complex64 val_smaller_complex = {10, 3}; Literal c5 = LiteralUtil::CreateR0<complex128>(val_true_complex); EXPECT_TRUE(c5.IsEqualAt({}, val_true_complex)); EXPECT_TRUE(c5.IsEqualAt({}, val_smaller_complex)); Literal c6 = LiteralUtil::CreateR0<tsl::float8_e5m2fnuz>( tsl::float8_e5m2fnuz{val_double}); EXPECT_TRUE(c6.IsEqualAt({}, val_double)); EXPECT_TRUE(c6.IsEqualAt({}, val_integral)); Literal c7 = LiteralUtil::CreateR0<tsl::float8_e4m3fnuz>( tsl::float8_e4m3fnuz{val_double}); EXPECT_TRUE(c6.IsEqualAt({}, val_double)); EXPECT_TRUE(c6.IsEqualAt({}, val_integral)); Literal c8 = LiteralUtil::CreateR0<tsl::float8_e4m3>(tsl::float8_e4m3{val_double}); EXPECT_TRUE(c8.IsEqualAt({}, val_double)); EXPECT_TRUE(c8.IsEqualAt({}, val_integral)); Literal c9 = LiteralUtil::CreateR0<tsl::float8_e4m3fn>(tsl::float8_e4m3fn{val_double}); EXPECT_TRUE(c9.IsEqualAt({}, val_double)); EXPECT_TRUE(c9.IsEqualAt({}, val_integral)); Literal c10 = LiteralUtil::CreateR0<tsl::float8_e3m4>(tsl::float8_e3m4{val_double}); EXPECT_TRUE(c10.IsEqualAt({}, val_double)); EXPECT_TRUE(c10.IsEqualAt({}, val_integral)); } TEST_F(LiteralUtilTest, CreateFromShapeWithUnknownLeafArrays) { Literal c1 = Literal::CreateFromShapeWithUnknownLeafArrays( ShapeUtil::MakeShape(F32, {4, 4})); EXPECT_FALSE(c1.IsKnown()); } TEST_F(LiteralUtilTest, CreateFromShapeWithUnknownLeafArraysS4Tuple) { auto inner_shape = ShapeUtil::MakeShape(S4, {4, 4}); inner_shape.mutable_layout()->set_element_size_in_bits(4); Literal c1 = Literal::CreateFromShapeWithUnknownLeafArrays( ShapeUtil::MakeTupleShape({inner_shape})); EXPECT_FALSE(c1.IsKnown()); } TEST_F(LiteralUtilTest, CreatePartiallyKnownTuple) { Literal c1 = Literal::CreateFromShapeWithUnknownLeafArrays( ShapeUtil::MakeShape(F32, {4, 4})); Literal c2 = LiteralUtil::CreateR0<int>(10); Literal c3 = LiteralUtil::MakeTuple({&c1, &c2}); Literal c4 = LiteralUtil::CreateR0<int>(100); Literal c5 = LiteralUtil::MakeTuple({&c4, &c3}); EXPECT_FALSE(c5.IsKnown()); } TEST_F(LiteralUtilTest, CopyFromPartiallyKnownTuple) { Literal c1 = Literal::CreateFromShapeWithUnknownLeafArrays( ShapeUtil::MakeShape(F32, {4, 4})); Literal c2 = LiteralUtil::CreateR0<int>(10); Literal c3 = LiteralUtil::MakeTuple({&c1, &c2}); Literal c4 = LiteralUtil::CreateR0<int>(100); Literal c5 = LiteralUtil::MakeTuple({&c4, &c3}); Literal c6 = Literal::CreateFromShape(c5.shape()); TF_ASSERT_OK( c6.CopyFrom(c5, {1}, {1})); EXPECT_FALSE(c6.IsKnown()); } TEST_F(LiteralUtilTest, CopyFromPartiallyKnownTupleUnknownTupleElement) { Literal c1 = Literal::CreateFromShapeWithUnknownLeafArrays( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {4, 4}), ShapeUtil::MakeShape(F32, {4, 4})})); Literal c2 = LiteralUtil::CreateR0<int>(10); Literal c3 = LiteralUtil::MakeTuple({&c1, &c2}); Literal c4 = LiteralUtil::CreateR0<int>(100); Literal c5 = LiteralUtil::MakeTuple({&c4, &c3}); Literal c6 = Literal::CreateFromShape(c5.shape()); Literal c1_copy = Literal::CreateFromShape(c1.shape()); Literal c2_copy = Literal::CreateFromShape(c2.shape()); TF_ASSERT_OK( c6.CopyFrom(c5, {1}, {1})); TF_ASSERT_OK(c1_copy.CopyFrom(c6, {}, {1, 0})); TF_ASSERT_OK(c2_copy.CopyFrom(c6, {}, {1, 1})); EXPECT_FALSE(c6.IsKnown()); EXPECT_FALSE(c1_copy.IsKnown()); EXPECT_TRUE(c2_copy.IsKnown()); } TEST_F(LiteralUtilTest, PopulateR1Dynamic) { auto literal = Literal(ShapeUtil::MakeShape(U32, {20})); literal.SetDynamicSize(0, 10); literal.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); std::string expected = "u32[<=20](10) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateR2DynamicDim0) { auto literal = Literal(ShapeUtil::MakeShape(U32, {5, 2})); literal.SetDynamicSize(0, 3); literal.PopulateR2<uint32_t>({{1, 2}, {3, 4}, {5, 6}}); std::string expected = R"(u32[<=5,2](3,2) { { 1, 2 }, { 3, 4 }, { 5, 6 } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateR2DynamicDim1) { auto literal = Literal(ShapeUtil::MakeShape(U32, {2, 5})); literal.SetDynamicSize(1, 3); literal.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}}); std::string expected = R"(u32[2,<=5](2,3) { { 1, 2, 3 }, { 4, 5, 6 } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateFrom1DArray) { auto literal = Literal(ShapeUtil::MakeShape(F32, {20})); literal.SetDynamicSize(0, 10); xla::Array<float> array({10}); for (int i = 0; i < 10; i++) { array(i) = static_cast<float>(i); } literal.PopulateFromArray(array); std::string expected = "f32[<=20](10) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateFromArrayDynamicDim0) { auto literal = Literal(ShapeUtil::MakeShape(F32, {5, 5})); const uint32_t rows = 3; const uint32_t cols = 5; literal.SetDynamicSize(0, rows); xla::Array<float> array({rows, cols}); for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { array(i, j) = static_cast<float>(j); } } literal.PopulateFromArray(array); std::string expected = R"(f32[<=5,5](3,5) { { 0, 1, 2, 3, 4 }, { 0, 1, 2, 3, 4 }, { 0, 1, 2, 3, 4 } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateFromArrayDynamicDim1) { auto literal = Literal(ShapeUtil::MakeShape(F32, {5, 5})); const uint32_t rows = 5; const uint32_t cols = 3; literal.SetDynamicSize(1, cols); xla::Array<float> array({rows, cols}); for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { array(i, j) = static_cast<float>(j); } } literal.PopulateFromArray(array); std::string expected = R"(f32[5,<=5](5,3) { { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateR2FromArray2DDynamicDim0) { auto literal = Literal(ShapeUtil::MakeShape(F32, {5, 5})); const uint32_t rows = 3; const uint32_t cols = 5; literal.SetDynamicSize(0, rows); xla::Array2D<float> array({rows, cols}); for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { array(i, j) = static_cast<float>(j); } } literal.PopulateR2FromArray2D(array); std::string expected = R"(f32[<=5,5](3,5) { { 0, 1, 2, 3, 4 }, { 0, 1, 2, 3, 4 }, { 0, 1, 2, 3, 4 } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateR2FromArray2DDynamicDim1) { auto literal = Literal(ShapeUtil::MakeShape(F32, {5, 5})); const uint32_t rows = 5; const uint32_t cols = 3; literal.SetDynamicSize(1, cols); xla::Array2D<float> array({rows, cols}); for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { array(i, j) = static_cast<float>(j); } } literal.PopulateR2FromArray2D(array); std::string expected = R"(f32[5,<=5](5,3) { { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateR2FromArray2DDynamicDim0Dim1) { auto literal = Literal(ShapeUtil::MakeShape(F32, {5, 5})); const uint32_t rows = 3; const uint32_t cols = 2; literal.SetDynamicSize(0, rows); literal.SetDynamicSize(1, cols); xla::Array2D<float> array({rows, cols}); for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { array(i, j) = static_cast<float>(j); } } literal.PopulateR2FromArray2D(array); std::string expected = R"(f32[<=5,<=5](3,2) { { 0, 1 }, { 0, 1 }, { 0, 1 } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateR3FromArray3DDynamicDim0) { auto literal = Literal(ShapeUtil::MakeShape(S32, {3, 3, 3})); const uint32_t rows = 2; const uint32_t cols = 3; const uint32_t depth = 3; literal.SetDynamicSize(0, rows); xla::Array3D<int32_t> array({rows, cols, depth}); for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { for (int k = 0; k < depth; k++) { array(i, j, k) = static_cast<int32_t>(k); } } } literal.PopulateR3FromArray3D(array); std::string expected = R"(s32[<=3,3,3](2,3,3) { { { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 } }, { { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 } } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateR3FromArray3DDynamicDim1) { auto literal = Literal(ShapeUtil::MakeShape(S32, {3, 3, 3})); const uint32_t rows = 3; const uint32_t cols = 2; const uint32_t depth = 3; literal.SetDynamicSize(1, cols); xla::Array3D<int32_t> array({rows, cols, depth}); for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { for (int k = 0; k < depth; k++) { array(i, j, k) = static_cast<int32_t>(k); } } } literal.PopulateR3FromArray3D(array); std::string expected = R"(s32[3,<=3,3](3,2,3) { { { 0, 1, 2 }, { 0, 1, 2 } }, { { 0, 1, 2 }, { 0, 1, 2 } }, { { 0, 1, 2 }, { 0, 1, 2 } } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateR3FromArray3DDynamicDim2) { auto literal = Literal(ShapeUtil::MakeShape(S32, {3, 3, 3})); const uint32_t rows = 3; const uint32_t cols = 3; const uint32_t depth = 2; literal.SetDynamicSize(2, depth); xla::Array3D<int32_t> array({rows, cols, depth}); for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { for (int k = 0; k < depth; k++) { array(i, j, k) = static_cast<int32_t>(k); } } } literal.PopulateR3FromArray3D(array); std::string expected = R"(s32[3,3,<=3](3,3,2) { { { 0, 1 }, { 0, 1 }, { 0, 1 } }, { { 0, 1 }, { 0, 1 }, { 0, 1 } }, { { 0, 1 }, { 0, 1 }, { 0, 1 } } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, Compare4BitType) { Literal literal1 = Literal(ShapeUtil::MakeShape(S4, {})); Literal literal2 = Literal(ShapeUtil::MakeShape(S4, {})); void* p = literal1.untyped_data(); void* q = literal2.untyped_data(); *((uint8_t*)p) = 0x44; *((uint8_t*)q) = 0xc4; std::string expected = R"(s4[] 4)"; EXPECT_EQ(expected, literal1.ToString()); EXPECT_EQ(literal1.ToString(), literal2.ToString()); EXPECT_EQ(literal1, literal2); } class LiteralSerializationTest : public ::testing::Test, public ::testing::WithParamInterface<Shape> { public: static std::vector<Shape> GenerateSimpleParams() { std::vector<Shape> params; for (PrimitiveType element_type : {PRED, S4, U4, S8, U8, S16, U16, S32, U32, S64, U64, F16, F32, F64, BF16, F8E5M2, F8E4M3, F8E4M3FN, F8E4M3B11FNUZ, F8E5M2FNUZ, F8E4M3FNUZ, F8E3M4, C64, C128}) { for (const DimensionVector& dimensions : { DimensionVector{}, DimensionVector{0}, DimensionVector{1}, DimensionVector{7}, DimensionVector{8}, DimensionVector{9}, DimensionVector{0, 8}, DimensionVector{8, 9}, }) { params.push_back(ShapeUtil::MakeShape(element_type, dimensions)); } } return params; } static std::vector<Shape> GenerateTupleParams() { std::vector<Shape> params; const Shape tuple_elements[] = { ShapeUtil::MakeShape(PRED, {}), ShapeUtil::MakeShape(U4, {3}), ShapeUtil::MakeShape(U32, {0}), ShapeUtil::MakeShape(F32, {7}), ShapeUtil::MakeTupleShape({ ShapeUtil::MakeShape(BF16, {3}), ShapeUtil::MakeShape(C64, {7}), }), }; for (const Shape& lhs : tuple_elements) { for (const Shape& rhs : tuple_elements) { params.push_back(ShapeUtil::MakeTupleShape({lhs, rhs})); } } return params; } }; TEST_P(LiteralSerializationTest, Test) { const Shape& shape = GetParam(); LOG(INFO) << "shape: " << shape.ToString(); absl::InsecureBitGen bitgen(std::seed_seq({42})); Literal literal(shape); ASSERT_NO_FATAL_FAILURE(ShapeUtil::ForEachSubshape( shape, [&](const Shape& subshape, const ShapeIndex& shape_index) { if (subshape.IsTuple()) { return; } ASSERT_TRUE(subshape.IsArray()); primitive_util::ArrayTypeSwitch<void>( [&](auto primitive_type) { using NativeT = primitive_util::NativeTypeOf<primitive_type>; for (auto& element : literal.data<NativeT>(shape_index)) { if constexpr (std::is_same_v<NativeT, bool>) { element = absl::Uniform<int>(bitgen, 0, 2); } else if constexpr (primitive_util::IsComplexType( primitive_type)) { element = NativeT(absl::Uniform<double>(bitgen, -1.0, 1.0), absl::Uniform<double>(bitgen, -1.0, 1.0)); } else if constexpr (primitive_util::IsFloatingPointType( primitive_type)) { element = static_cast<NativeT>( absl::Uniform<double>(bitgen, -1.0, 1.0)); } else { element = static_cast<NativeT>(absl::Uniform<uint64_t>(bitgen)); } } }, subshape.element_type()); })); TF_ASSERT_OK_AND_ASSIGN(std::string serialized, literal.SerializeAsString()); TF_ASSERT_OK_AND_ASSIGN(Literal deserialized, Literal::DeserializeFromString(serialized)); EXPECT_EQ(literal, deserialized); } INSTANTIATE_TEST_SUITE_P( Simple, LiteralSerializationTest, ::testing::ValuesIn(LiteralSerializationTest::GenerateSimpleParams())); INSTANTIATE_TEST_SUITE_P( Tuples, LiteralSerializationTest, ::testing::ValuesIn(LiteralSerializationTest::GenerateTupleParams())); void BM_BroadcastVectorToMatrix(::testing::benchmark::State& state) { const int d0 = state.range(0); const int d1 = state.range(1); std::vector<int64_t> v(d0); for (int i = 0; i < d0; i++) { v[i] = i; } Literal literal = LiteralUtil::CreateR1<int64_t>(v); int count = 0; for (auto s : state) { TF_ASSERT_OK_AND_ASSIGN( Literal broadcasted_literal, literal.Broadcast(ShapeUtil::MakeShape(S64, {d0, d1}), {0})); if (count == 0) { state.SetLabel(literal.shape().ToString() + " to " + broadcasted_literal.shape().ToString()); } count++; } } BENCHMARK(BM_BroadcastVectorToMatrix) ->ArgPair(16, 16) ->ArgPair(16, 1024) ->ArgPair(1024, 1024); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/literal.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/literal_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
40deacba-c32f-4c52-97bb-a950b5905922
cpp
tensorflow/tensorflow
shape_util
tensorflow/compiler/tf2xla/kernels/shape_util.cc
third_party/xla/xla/shape_util_test.cc
#include "tensorflow/compiler/tf2xla/kernels/shape_util.h" #include <limits> #include "absl/status/status.h" #include "tensorflow/core/framework/bounds_check.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { Status TensorShapeToConstant(const TensorShape& input_shape, Tensor* shape_constant) { const int dims = input_shape.dims(); if (shape_constant->dtype() == DT_INT32) { auto vec = shape_constant->vec<int32>(); for (int i = 0; i < dims; ++i) { int64_t dim_size = input_shape.dim_size(i); if (!FastBoundsCheck(dim_size, std::numeric_limits<int32>::max())) { return errors::InvalidArgument( "Shape with out_type=int32 does not support tensors > int32max", " but dim ", i, " is ", dim_size); } vec(i) = static_cast<int32>(dim_size); } } else { auto vec = shape_constant->vec<int64_t>(); for (int i = 0; i < dims; ++i) { int64_t dim_size = input_shape.dim_size(i); vec(i) = dim_size; } } return absl::OkStatus(); } }
#include "xla/shape_util.h" #include <algorithm> #include <cstdint> #include <numeric> #include <optional> #include <utility> #include <variant> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/shape.h" #include "xla/test.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/test_benchmark.h" #include "tsl/platform/threadpool.h" namespace xla { namespace { using ::testing::ElementsAre; TEST(ShapeUtilTest, GetDimensionHelperCanNegativeIndex) { Shape matrix = ShapeUtil::MakeShape(F32, {2, 3}); EXPECT_EQ(3, ShapeUtil::GetDimension(matrix, -1)); EXPECT_EQ(2, ShapeUtil::GetDimension(matrix, -2)); } TEST(ShapeUtilTest, GetDimensionHelperExampleInDocumentationTest) { auto shape = ShapeUtil::MakeShape(F32, {1, 2, 3, 4}); ASSERT_EQ(4, ShapeUtil::GetDimension(shape, -1)); } TEST(ShapeUtilTest, NegativeIndexOobFails) { Shape matrix = ShapeUtil::MakeShape(F32, {2, 3}); ASSERT_DEATH(ShapeUtil::GetDimension(matrix, -3), "dimension_number >= 0"); } TEST(ShapeUtilTest, CreateRank3DimensionVectorFromShape) { Shape shape = ShapeUtil::MakeShape(F32, {3, 2, 7}); DimensionVector dimensions = ShapeUtil::CreateDimensionVectorFromShape(shape); EXPECT_THAT(dimensions, ElementsAre(3, 2, 7)); } TEST(ShapeUtilTest, Rank1DimensionIndexing) { Shape shape = ShapeUtil::MakeShape(F32, {3}); ASSERT_EQ(3, shape.dimensions(0)); } TEST(ShapeUtilTest, Rank2DimensionIndexing) { Shape shape = ShapeUtil::MakeShape(F32, {3, 2}); ASSERT_EQ(2, shape.dimensions(1)); ASSERT_EQ(3, shape.dimensions(0)); } TEST(ShapeUtilTest, Rank3DimensionIndexing) { Shape shape = ShapeUtil::MakeShape(F32, {3, 2, 7}); ASSERT_EQ(7, shape.dimensions(2)); ASSERT_EQ(2, shape.dimensions(1)); ASSERT_EQ(3, shape.dimensions(0)); } TEST(ShapeUtilTest, Rank4DimensionIndexing) { Shape shape = ShapeUtil::MakeShape(F32, {3, 2, 7, 8}); ASSERT_EQ(8, shape.dimensions(3)); ASSERT_EQ(7, shape.dimensions(2)); ASSERT_EQ(2, shape.dimensions(1)); ASSERT_EQ(3, shape.dimensions(0)); } TEST(ShapeUtilTest, CompatibleIdenticalShapes) { Shape shape1 = ShapeUtil::MakeShape(F32, {3, 2}); Shape shape2 = ShapeUtil::MakeShape(F32, {3, 2}); ASSERT_TRUE(ShapeUtil::Compatible(shape1, shape2)); } TEST(ShapeUtilTest, TokenCompatibility) { EXPECT_TRUE(ShapeUtil::Compatible(ShapeUtil::MakeTokenShape(), ShapeUtil::MakeTokenShape())); EXPECT_FALSE(ShapeUtil::Compatible(ShapeUtil::MakeTokenShape(), ShapeUtil::MakeShape(F32, {}))); EXPECT_FALSE(ShapeUtil::Compatible(ShapeUtil::MakeShape(F32, {}), ShapeUtil::MakeTokenShape())); EXPECT_TRUE(ShapeUtil::Compatible( ShapeUtil::MakeTupleShape({ShapeUtil::MakeTokenShape()}), ShapeUtil::MakeTupleShape({ShapeUtil::MakeTokenShape()}))); } TEST(ShapeUtilTest, TokensEqualShapes) { EXPECT_TRUE(ShapeUtil::Equal(ShapeUtil::MakeTokenShape(), ShapeUtil::MakeTokenShape())); EXPECT_FALSE(ShapeUtil::Equal(ShapeUtil::MakeTokenShape(), ShapeUtil::MakeShape(F32, {}))); EXPECT_FALSE(ShapeUtil::Equal(ShapeUtil::MakeShape(F32, {}), ShapeUtil::MakeTokenShape())); EXPECT_TRUE(ShapeUtil::Equal( ShapeUtil::MakeTupleShape( {ShapeUtil::MakeTokenShape(), ShapeUtil::MakeShapeWithDenseLayout(S32, {3, 4}, {0, 1})}), ShapeUtil::MakeTupleShape( {ShapeUtil::MakeTokenShape(), ShapeUtil::MakeShapeWithDenseLayout(S32, {3, 4}, {0, 1})}))); EXPECT_FALSE(ShapeUtil::Equal( ShapeUtil::MakeTupleShape( {ShapeUtil::MakeTokenShape(), ShapeUtil::MakeShapeWithDenseLayout(S32, {3, 4}, {0, 1})}), ShapeUtil::MakeTupleShape( {ShapeUtil::MakeTokenShape(), ShapeUtil::MakeShapeWithDenseLayout(S32, {3, 4}, {1, 0})}))); } TEST(ShapeUtilTest, CompatibleNotIdenticalShapes) { Shape shape_1 = ShapeUtil::MakeShape(F32, {3, 2}); auto layout_1 = shape_1.mutable_layout(); layout_1->clear_minor_to_major(); layout_1->add_minor_to_major(0); layout_1->add_minor_to_major(1); Shape shape_2 = ShapeUtil::MakeShape(F32, {3, 2}); auto layout_2 = shape_2.mutable_layout(); layout_2->clear_minor_to_major(); layout_2->add_minor_to_major(1); layout_2->add_minor_to_major(0); EXPECT_FALSE(ShapeUtil::Equal(shape_1, shape_2)); EXPECT_TRUE(ShapeUtil::Compatible(shape_1, shape_2)); } TEST(ShapeUtilTest, CompatibleIgnoringFpPrecision) { Shape shape1 = ShapeUtil::MakeShape(BF16, {3, 2}); Shape shape2 = ShapeUtil::MakeShape(F32, {3, 2}); ASSERT_TRUE(ShapeUtil::CompatibleIgnoringFpPrecision(shape1, shape2)); } TEST(ShapeUtilTest, IncompatibleIgnoringFpPrecision) { Shape shape1 = ShapeUtil::MakeShape(BF16, {3, 2}); Shape shape2 = ShapeUtil::MakeShape(F32, {2, 2}); ASSERT_FALSE(ShapeUtil::CompatibleIgnoringFpPrecision(shape1, shape2)); } TEST(ShapeUtilTest, IncompatibleDifferentElementShapes) { Shape shape_1 = ShapeUtil::MakeShape(F32, {3, 2}); Shape shape_2 = ShapeUtil::MakeShape(PRED, {3, 2}); EXPECT_FALSE(ShapeUtil::Compatible(shape_1, shape_2)); } TEST(ShapeUtilTest, EqualIgnoringFpPrecision) { EXPECT_TRUE(ShapeUtil::EqualIgnoringFpPrecision( ShapeUtil::MakeShapeWithDenseLayout(F32, {4, 3}, {0, 1}), ShapeUtil::MakeShapeWithDenseLayout(F16, {4, 3}, {0, 1}))); } TEST(ShapeUtilTest, UnequalIgnoringFpPrecision) { EXPECT_FALSE(ShapeUtil::EqualIgnoringFpPrecision( ShapeUtil::MakeShapeWithDenseLayout(F32, {4, 3}, {0, 1}), ShapeUtil::MakeShapeWithDenseLayout(F16, {3, 4}, {0, 1}))); EXPECT_FALSE(ShapeUtil::EqualIgnoringFpPrecision( ShapeUtil::MakeShapeWithDenseLayout(F32, {3, 4}, {0, 1}), ShapeUtil::MakeShapeWithDenseLayout(F16, {3, 4}, {1, 0}))); EXPECT_FALSE(ShapeUtil::EqualIgnoringFpPrecision( ShapeUtil::MakeShapeWithDenseLayout(F32, {4, 3}, {0, 1}), ShapeUtil::MakeShapeWithDenseLayout(PRED, {4, 3}, {0, 1}))); } TEST(ShapeUtilTest, EqualIgnoringElementType) { EXPECT_TRUE(ShapeUtil::EqualIgnoringElementType( ShapeUtil::MakeShapeWithDenseLayout(F32, {4, 3}, {0, 1}), ShapeUtil::MakeShapeWithDenseLayout(F16, {4, 3}, {0, 1}))); EXPECT_TRUE(ShapeUtil::EqualIgnoringElementType( ShapeUtil::MakeShapeWithDenseLayout(S32, {4, 3}, {0, 1}), ShapeUtil::MakeShapeWithDenseLayout(F16, {4, 3}, {0, 1}))); EXPECT_TRUE(ShapeUtil::EqualIgnoringElementType( ShapeUtil::MakeShapeWithDenseLayout(F32, {4, 3}, {0, 1}), ShapeUtil::MakeShapeWithDenseLayout(PRED, {4, 3}, {0, 1}))); } TEST(ShapeUtilTest, UnequalIgnoringElementType) { EXPECT_FALSE(ShapeUtil::EqualIgnoringElementType( ShapeUtil::MakeShapeWithDenseLayout(F32, {4, 3}, {0, 1}), ShapeUtil::MakeShapeWithDenseLayout(F16, {3, 4}, {0, 1}))); EXPECT_FALSE(ShapeUtil::EqualIgnoringElementType( ShapeUtil::MakeShapeWithDenseLayout(F32, {3, 4}, {0, 1}), ShapeUtil::MakeShapeWithDenseLayout(F16, {3, 4}, {1, 0}))); } TEST(ShapeUtilTest, EqualDynamicShapes) { EXPECT_TRUE( ShapeUtil::Equal(ShapeUtil::MakeShape(F32, {4, 3}, {true, false}), ShapeUtil::MakeShape(F32, {4, 3}, {true, false}))); EXPECT_FALSE( ShapeUtil::Equal(ShapeUtil::MakeShape(F32, {4, 3}, {true, false}), ShapeUtil::MakeShape(F32, {4, 3}, {false, false}))); EXPECT_FALSE(ShapeUtil::Equal( ShapeUtil::MakeShape(F32, {Shape::kUnboundedSize}, {true}), ShapeUtil::MakeShape(F32, {2}, {true}))); } TEST(ShapeUtilTest, CompatibleDynamicShapes) { Shape shape_a = ShapeUtil::MakeShape(F32, {4, 3}, {true, false}); *shape_a.mutable_layout() = Layout({1, 0}); Shape shape_b = ShapeUtil::MakeShape(F32, {4, 3}, {true, false}); *shape_b.mutable_layout() = Layout({0, 1}); Shape shape_c = ShapeUtil::MakeShape(F32, {4, 3}, {false, true}); *shape_c.mutable_layout() = Layout({0, 1}); EXPECT_TRUE(ShapeUtil::Compatible(shape_a, shape_a)); EXPECT_TRUE(ShapeUtil::Compatible(shape_a, shape_b)); EXPECT_TRUE(ShapeUtil::Compatible(shape_a, shape_c)); } TEST(ShapeUtilTest, CompatibleTuples) { Shape tuple1 = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {3, 2}), ShapeUtil::MakeShape(PRED, {4, 5})}); Shape tuple2 = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {3, 2}), ShapeUtil::MakeShape(PRED, {4, 5})}); EXPECT_TRUE(ShapeUtil::Compatible(tuple1, tuple2)); } TEST(ShapeUtilTest, MakeMaybeTupleShape) { Shape s1 = ShapeUtil::MakeMaybeTupleShape({ShapeUtil::MakeShape(F32, {3, 2})}); EXPECT_TRUE(ShapeUtil::Compatible(s1, ShapeUtil::MakeShape(F32, {3, 2}))); } TEST(ShapeUtilTest, CompatibleTuplesIgnoringFpPrecision) { Shape tuple1 = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(BF16, {3, 2}), ShapeUtil::MakeShape(F32, {4, 5})}); Shape tuple2 = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F64, {3, 2}), ShapeUtil::MakeShape(BF16, {4, 5})}); EXPECT_TRUE(ShapeUtil::CompatibleIgnoringFpPrecision(tuple1, tuple2)); } TEST(ShapeUtilTest, IncompatibleTuplesWithSwappedElements) { Shape tuple1 = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(PRED, {4, 5}), ShapeUtil::MakeShape(F32, {3, 2})}); Shape tuple2 = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {3, 2}), ShapeUtil::MakeShape(PRED, {4, 5})}); EXPECT_FALSE(ShapeUtil::Compatible(tuple1, tuple2)); EXPECT_FALSE(ShapeUtil::CompatibleIgnoringElementType(tuple1, tuple2)); } TEST(ShapeUtilTest, IncompatibleTuplesIgnoringFpPrecision) { Shape tuple1 = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(BF16, {4, 5}), ShapeUtil::MakeShape(F32, {3, 2})}); Shape tuple2 = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {3, 2}), ShapeUtil::MakeShape(BF16, {4, 5})}); EXPECT_FALSE(ShapeUtil::CompatibleIgnoringFpPrecision(tuple1, tuple2)); } TEST(ShapeUtilTest, IncompatibleTuplesWithDifferentPrimitiveType) { Shape tuple1 = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(PRED, {4, 5}), ShapeUtil::MakeShape(F32, {3, 2})}); Shape tuple2 = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(PRED, {4, 5}), ShapeUtil::MakeShape(S32, {3, 2})}); EXPECT_FALSE(ShapeUtil::Compatible(tuple1, tuple2)); EXPECT_TRUE(ShapeUtil::CompatibleIgnoringElementType(tuple1, tuple2)); } TEST(ShapeUtilTest, IncompatibleTuplesWithDifferentDimensions) { Shape tuple1 = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(PRED, {4, 5}), ShapeUtil::MakeShape(F32, {3, 2})}); Shape tuple2 = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(PRED, {4, 5}), ShapeUtil::MakeShape(F32, {4, 2})}); EXPECT_FALSE(ShapeUtil::Compatible(tuple1, tuple2)); } TEST(ShapeUtilTest, IncompatibleScalarVsTuple) { Shape shape1 = ShapeUtil::MakeShape(F32, {}); Shape shape2 = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {3, 2}), ShapeUtil::MakeShape(U32, {})}); EXPECT_FALSE(ShapeUtil::Compatible(shape1, shape2)); EXPECT_FALSE(ShapeUtil::Compatible(shape2, shape1)); EXPECT_FALSE(ShapeUtil::CompatibleIgnoringElementType(shape1, shape2)); EXPECT_FALSE(ShapeUtil::CompatibleIgnoringElementType(shape2, shape1)); EXPECT_FALSE(ShapeUtil::CompatibleIgnoringFpPrecision(shape1, shape2)); EXPECT_FALSE(ShapeUtil::CompatibleIgnoringFpPrecision(shape2, shape1)); } TEST(ShapeUtilTest, OpaqueVsArray) { Shape shape1 = ShapeUtil::MakeShape(F32, {5, 7}); Shape shape2 = ShapeUtil::MakeOpaqueShape(); EXPECT_FALSE(ShapeUtil::Compatible(shape1, shape2)); EXPECT_FALSE(ShapeUtil::Compatible(shape2, shape1)); EXPECT_FALSE(ShapeUtil::CompatibleIgnoringFpPrecision(shape1, shape2)); EXPECT_FALSE(ShapeUtil::CompatibleIgnoringFpPrecision(shape2, shape1)); EXPECT_FALSE(ShapeUtil::CompatibleIgnoringElementType(shape1, shape2)); EXPECT_FALSE(ShapeUtil::CompatibleIgnoringElementType(shape2, shape1)); } TEST(ShapeUtilTest, ScalarDefaultLayoutEqualsScalarEmptyMin2Maj) { Shape scalar_default_layout = ShapeUtil::MakeShape(F32, {}); ASSERT_TRUE(scalar_default_layout.has_layout()) << ShapeUtil::HumanStringWithLayout(scalar_default_layout); const Shape scalar_empty_min2maj = ShapeUtil::MakeShapeWithDenseLayout(F32, {}, {}); ASSERT_TRUE(scalar_empty_min2maj.has_layout()) << ShapeUtil::HumanStringWithLayout(scalar_empty_min2maj); EXPECT_TRUE(ShapeUtil::Equal(scalar_default_layout, scalar_empty_min2maj)); } TEST(ShapeUtilTest, ByteSizeOfWithoutPadding) { EXPECT_EQ(4, ShapeUtil::ByteSizeOfPrimitiveType(F32)); EXPECT_EQ(4, ShapeUtil::ByteSizeOf(ShapeUtil::MakeShape(F32, {}))); EXPECT_EQ(800, ShapeUtil::ByteSizeOf(ShapeUtil::MakeShape(F32, {10, 20}))); EXPECT_EQ(8, ShapeUtil::ByteSizeOfPrimitiveType(F64)); EXPECT_EQ(8, ShapeUtil::ByteSizeOf(ShapeUtil::MakeShape(F64, {}))); EXPECT_EQ(1600, ShapeUtil::ByteSizeOf(ShapeUtil::MakeShape(F64, {10, 20}))); EXPECT_EQ(8, ShapeUtil::ByteSizeOfPrimitiveType(C64)); EXPECT_EQ(8, ShapeUtil::ByteSizeOf(ShapeUtil::MakeShape(C64, {}))); EXPECT_EQ(1600, ShapeUtil::ByteSizeOf(ShapeUtil::MakeShape(C64, {10, 20}))); } TEST(ShapeUtilTest, ByteStrides) { Shape shape1 = ShapeUtil::MakeShape(F32, {3, 5, 7}); Shape shape2 = ShapeUtil::MakeShape(F16, {5, 7, 9}); EXPECT_THAT(*ShapeUtil::ByteStrides(shape1), ElementsAre(140, 28, 4)); EXPECT_THAT(*ShapeUtil::ByteStrides(shape2), ElementsAre(126, 18, 2)); } TEST(ShapeUtilTest, NilShape) { EXPECT_TRUE(ShapeUtil::IsEmptyTuple(ShapeUtil::MakeNil())); EXPECT_FALSE(ShapeUtil::IsEmptyTuple(ShapeUtil::MakeShape(F32, {1, 2, 3}))); EXPECT_FALSE(ShapeUtil::IsEmptyTuple(ShapeUtil::MakeShape(F32, {0, 1}))); EXPECT_FALSE(ShapeUtil::IsEmptyTuple( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(S32, {})}))); EXPECT_FALSE(ShapeUtil::IsEmptyTuple( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {0})}))); } TEST(ShapeUtilTest, NestedTuple) { EXPECT_FALSE(ShapeUtil::IsNestedTuple(ShapeUtil::MakeTupleShape({}))); EXPECT_FALSE(ShapeUtil::IsNestedTuple( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(S32, {})}))); EXPECT_TRUE(ShapeUtil::IsNestedTuple( ShapeUtil::MakeTupleShape({ShapeUtil::MakeTupleShape({})}))); EXPECT_FALSE(ShapeUtil::IsNestedTuple(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(S32, {}), ShapeUtil::MakeShape(S32, {})}))); EXPECT_TRUE(ShapeUtil::IsNestedTuple(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(S32, {}), ShapeUtil::MakeTupleShape({})}))); EXPECT_TRUE(ShapeUtil::IsNestedTuple(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeTupleShape({}), ShapeUtil::MakeShape(S32, {})}))); EXPECT_TRUE(ShapeUtil::IsNestedTuple(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeTupleShape({}), ShapeUtil::MakeTupleShape({})}))); } TEST(ShapeUtilTest, NestedTupleWithPtrs) { const Shape nil = ShapeUtil::MakeNil(); const Shape s32 = ShapeUtil::MakeShape(S32, {}); EXPECT_FALSE(ShapeUtil::IsNestedTuple(nil)); EXPECT_FALSE( ShapeUtil::IsNestedTuple(ShapeUtil::MakeTupleShapeWithPtrs({&s32}))); EXPECT_TRUE( ShapeUtil::IsNestedTuple(ShapeUtil::MakeTupleShapeWithPtrs({&nil}))); EXPECT_FALSE(ShapeUtil::IsNestedTuple( ShapeUtil::MakeTupleShapeWithPtrs({&s32, &s32}))); EXPECT_TRUE(ShapeUtil::IsNestedTuple( ShapeUtil::MakeTupleShapeWithPtrs({&s32, &nil}))); EXPECT_TRUE(ShapeUtil::IsNestedTuple( ShapeUtil::MakeTupleShapeWithPtrs({&nil, &s32}))); EXPECT_TRUE(ShapeUtil::IsNestedTuple( ShapeUtil::MakeTupleShapeWithPtrs({&nil, &nil}))); } TEST(ShapeUtilTest, ElementsIn) { EXPECT_EQ(1, ShapeUtil::ElementsIn(ShapeUtil::MakeShape(S32, {}))); EXPECT_EQ(0, ShapeUtil::ElementsIn(ShapeUtil::MakeShape(S32, {0}))); EXPECT_EQ(1, ShapeUtil::ElementsIn(ShapeUtil::MakeShape(S32, {1}))); EXPECT_EQ(1, ShapeUtil::ElementsIn(ShapeUtil::MakeShape(S32, {1, 1}))); EXPECT_EQ(2, ShapeUtil::ElementsIn(ShapeUtil::MakeShape(S32, {2}))); EXPECT_EQ(2, ShapeUtil::ElementsIn(ShapeUtil::MakeShape(S32, {2, 1}))); EXPECT_EQ(15, ShapeUtil::ElementsIn(ShapeUtil::MakeShape(S32, {3, 5}))); EXPECT_EQ(0, ShapeUtil::ElementsIn(ShapeUtil::MakeShape(S32, {3, 0, 5}))); EXPECT_EQ(0, ShapeUtil::ElementsIn(ShapeUtil::MakeShape(S32, {0, 3, 0}))); EXPECT_EQ(15, ShapeUtil::ElementsIn(ShapeUtil::MakeShape(S32, {1, 3, 5}))); EXPECT_EQ(221, ShapeUtil::ElementsIn(ShapeUtil::MakeShape(S32, {13, 17}))); } TEST(ShapeUtilTest, HasPrimitiveType) { EXPECT_TRUE(ShapeUtil::HasPrimitiveType(ShapeUtil::MakeShape(S32, {}), S32)); EXPECT_FALSE(ShapeUtil::HasPrimitiveType(ShapeUtil::MakeShape(S32, {}), S16)); EXPECT_TRUE(ShapeUtil::HasPrimitiveType(ShapeUtil::MakeShape(S32, {0}), S32)); EXPECT_FALSE(ShapeUtil::HasPrimitiveType(ShapeUtil::MakeTupleShape({}), S32)); EXPECT_TRUE(ShapeUtil::HasPrimitiveType( ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(S32, {}), ShapeUtil::MakeShape(S32, {})}), S32)); EXPECT_TRUE(ShapeUtil::HasPrimitiveType( ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(S32, {}), ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(S16, {})})}), S16)); } TEST(ShapeUtilTest, IsZeroElementArray) { EXPECT_FALSE(ShapeUtil::IsZeroElementArray(ShapeUtil::MakeShape(S32, {}))); EXPECT_TRUE(ShapeUtil::IsZeroElementArray(ShapeUtil::MakeShape(S32, {0}))); EXPECT_FALSE(ShapeUtil::IsZeroElementArray(ShapeUtil::MakeShape(S32, {1}))); EXPECT_FALSE( ShapeUtil::IsZeroElementArray(ShapeUtil::MakeShape(S32, {1, 1}))); EXPECT_FALSE(ShapeUtil::IsZeroElementArray(ShapeUtil::MakeShape(S32, {2}))); EXPECT_FALSE( ShapeUtil::IsZeroElementArray(ShapeUtil::MakeShape(S32, {2, 1}))); EXPECT_FALSE( ShapeUtil::IsZeroElementArray(ShapeUtil::MakeShape(S32, {3, 5}))); EXPECT_TRUE( ShapeUtil::IsZeroElementArray(ShapeUtil::MakeShape(S32, {3, 0, 5}))); EXPECT_TRUE( ShapeUtil::IsZeroElementArray(ShapeUtil::MakeShape(S32, {0, 3, 0}))); EXPECT_FALSE( ShapeUtil::IsZeroElementArray(ShapeUtil::MakeShape(S32, {1, 3, 5}))); EXPECT_FALSE( ShapeUtil::IsZeroElementArray(ShapeUtil::MakeShape(S32, {13, 17}))); EXPECT_FALSE(ShapeUtil::IsZeroElementArray(ShapeUtil::MakeNil())); EXPECT_FALSE(ShapeUtil::IsZeroElementArray(ShapeUtil::MakeTupleShape({}))); EXPECT_FALSE(ShapeUtil::IsZeroElementArray( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(S32, {0, 3, 0})}))); } TEST(ShapeUtilTest, SameDimensions) { EXPECT_TRUE(ShapeUtil::SameDimensions(ShapeUtil::MakeShape(S32, {}), ShapeUtil::MakeShape(S32, {}))); EXPECT_TRUE(ShapeUtil::SameDimensions(ShapeUtil::MakeShape(S32, {}), ShapeUtil::MakeShape(F32, {}))); EXPECT_TRUE(ShapeUtil::SameDimensions(ShapeUtil::MakeShape(S32, {1}), ShapeUtil::MakeShape(S32, {1}))); EXPECT_TRUE(ShapeUtil::SameDimensions(ShapeUtil::MakeShape(S32, {0}), ShapeUtil::MakeShape(S32, {0}))); EXPECT_TRUE(ShapeUtil::SameDimensions(ShapeUtil::MakeShape(S32, {2}), ShapeUtil::MakeShape(S32, {2}))); EXPECT_FALSE(ShapeUtil::SameDimensions(ShapeUtil::MakeShape(S32, {1}), ShapeUtil::MakeShape(F32, {2}))); EXPECT_FALSE(ShapeUtil::SameDimensions(ShapeUtil::MakeShape(S32, {0, 0}), ShapeUtil::MakeShape(F32, {0}))); EXPECT_FALSE(ShapeUtil::SameDimensions(ShapeUtil::MakeShape(S32, {1}), ShapeUtil::MakeShape(F32, {1, 1}))); EXPECT_FALSE(ShapeUtil::SameDimensions(ShapeUtil::MakeShape(S32, {}), ShapeUtil::MakeShape(F32, {1}))); EXPECT_FALSE(ShapeUtil::SameDimensions(ShapeUtil::MakeShape(S32, {1}), ShapeUtil::MakeShape(F32, {1, 1}))); EXPECT_FALSE(ShapeUtil::SameDimensions(ShapeUtil::MakeShape(S32, {1}), ShapeUtil::MakeShape(F32, {1, 0}))); EXPECT_FALSE(ShapeUtil::SameDimensions(ShapeUtil::MakeShape(S32, {1, 1}), ShapeUtil::MakeShape(F32, {1, 2}))); } TEST(ShapeUtilTest, GetSubshape) { Shape array_shape = ShapeUtil::MakeShape(F32, {42, 42, 123}); EXPECT_TRUE( ShapeUtil::Equal(array_shape, ShapeUtil::GetSubshape(array_shape, {}))); EXPECT_TRUE(ShapeUtil::Equal( array_shape, *ShapeUtil::GetMutableSubshape(&array_shape, {}))); Shape tuple_shape = ShapeUtil::MakeTupleShape({array_shape, array_shape, array_shape}); EXPECT_TRUE( ShapeUtil::Equal(tuple_shape, ShapeUtil::GetSubshape(tuple_shape, {}))); EXPECT_TRUE( ShapeUtil::Equal(array_shape, ShapeUtil::GetSubshape(tuple_shape, {0}))); EXPECT_TRUE( ShapeUtil::Equal(array_shape, ShapeUtil::GetSubshape(tuple_shape, {1}))); EXPECT_TRUE( ShapeUtil::Equal(array_shape, ShapeUtil::GetSubshape(tuple_shape, {2}))); Shape nested_tuple_shape = ShapeUtil::MakeTupleShape( {array_shape, ShapeUtil::MakeTupleShape({array_shape, array_shape}), ShapeUtil::MakeTupleShape( {ShapeUtil::MakeTupleShape({array_shape, array_shape}), array_shape})}); EXPECT_TRUE(ShapeUtil::Equal(nested_tuple_shape, ShapeUtil::GetSubshape(nested_tuple_shape, {}))); EXPECT_TRUE(ShapeUtil::Equal( array_shape, ShapeUtil::GetSubshape(nested_tuple_shape, {0}))); EXPECT_TRUE( ShapeUtil::Equal(ShapeUtil::MakeTupleShape({array_shape, array_shape}), ShapeUtil::GetSubshape(nested_tuple_shape, {1}))); EXPECT_TRUE( ShapeUtil::Equal(ShapeUtil::MakeTupleShape({array_shape, array_shape}), ShapeUtil::GetSubshape(nested_tuple_shape, {2, 0}))); } TEST(ShapeUtilTest, IsLeafIndex) { Shape array_shape = ShapeUtil::MakeShape(F32, {42, 42, 123}); EXPECT_TRUE(ShapeUtil::IsLeafIndex(array_shape, {})); Shape tuple_shape = ShapeUtil::MakeTupleShape({array_shape, array_shape}); EXPECT_FALSE(ShapeUtil::IsLeafIndex(tuple_shape, {})); EXPECT_TRUE(ShapeUtil::IsLeafIndex(tuple_shape, {0})); EXPECT_TRUE(ShapeUtil::IsLeafIndex(tuple_shape, {1})); Shape nested_tuple_shape = ShapeUtil::MakeTupleShape( {array_shape, ShapeUtil::MakeTupleShape({array_shape, array_shape}), ShapeUtil::MakeTupleShape( {ShapeUtil::MakeTupleShape({array_shape, array_shape}), array_shape})}); EXPECT_FALSE(ShapeUtil::IsLeafIndex(nested_tuple_shape, {})); EXPECT_TRUE(ShapeUtil::IsLeafIndex(nested_tuple_shape, {0})); EXPECT_FALSE(ShapeUtil::IsLeafIndex(nested_tuple_shape, {1})); EXPECT_TRUE(ShapeUtil::IsLeafIndex(nested_tuple_shape, {1, 0})); EXPECT_TRUE(ShapeUtil::IsLeafIndex(nested_tuple_shape, {1, 1})); } TEST(ShapeUtilTest, ForEachSubshapeArray) { const Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); int calls = 0; ShapeUtil::ForEachSubshape( shape, [&calls, &shape](const Shape& subshape, const ShapeIndex& index) { EXPECT_EQ(&shape, &subshape); EXPECT_TRUE(index.empty()); ++calls; }); EXPECT_EQ(1, calls); } TEST(ShapeUtilTest, ForEachSubshapeNestedTuple) { const Shape shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {42}), ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {101}), ShapeUtil::MakeShape(PRED, {33})})}); int calls = 0; ShapeUtil::ForEachSubshape( shape, [&calls, &shape](const Shape& subshape, const ShapeIndex& index) { EXPECT_TRUE( ShapeUtil::Equal(subshape, ShapeUtil::GetSubshape(shape, index))); if (calls == 0) { EXPECT_TRUE(index.empty()); } else if (calls == 4) { EXPECT_EQ(33, ShapeUtil::ElementsIn(subshape)); } ++calls; }); EXPECT_EQ(5, calls); } TEST(ShapeUtilTest, ForEachMutableSubshapeNestedTuple) { Shape shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {42}), ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {101}), ShapeUtil::MakeShape(PRED, {33})})}); int calls = 0; ShapeUtil::ForEachMutableSubshape( &shape, [&calls, &shape](const Shape* subshape, const ShapeIndex& index) { EXPECT_EQ(subshape, ShapeUtil::GetMutableSubshape(&shape, index)); if (calls == 0) { EXPECT_TRUE(index.empty()); } else if (calls == 4) { EXPECT_EQ(33, ShapeUtil::ElementsIn(*subshape)); } ++calls; }); EXPECT_EQ(5, calls); } TEST(ShapeUtilTest, ForEachMutableLeafShapeTest) { Shape shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {42}), ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {101}), ShapeUtil::MakeShape(PRED, {33})})}); int calls = 0; ShapeUtil::ForEachMutableLeafShape( &shape, [&calls, &shape](const Shape* subshape, const ShapeIndex& index) { EXPECT_EQ(subshape, ShapeUtil::GetMutableSubshape(&shape, index)); if (calls == 0) { EXPECT_EQ(42, ShapeUtil::ElementsIn(*subshape)); } else if (calls == 1) { EXPECT_EQ(101, ShapeUtil::ElementsIn(*subshape)); } else if (calls == 2) { EXPECT_EQ(33, ShapeUtil::ElementsIn(*subshape)); } ++calls; }); EXPECT_EQ(3, calls); } TEST(ShapeUtilTest, InsertedOrDeleted1SizedDimensions) { Shape shape0 = ShapeUtil::MakeShape(S32, {9, 1, 4}); Shape shape1 = ShapeUtil::MakeShape(S32, {1, 9, 4, 1}); Shape shape2 = ShapeUtil::MakeShape(S32, {3, 1, 12}); EXPECT_TRUE( ShapeUtil::InsertedOrDeleted1SizedDimensions(shape0, shape1).has_value()); EXPECT_FALSE( ShapeUtil::InsertedOrDeleted1SizedDimensions(shape0, shape2).has_value()); } TEST(ShapeUtilTest, ForEachIndex) { struct ShapeDimensionAndNumberInvocations { std::vector<int64_t> dimensions; int invocations; } test_data[] = { {{}, 1}, {{0}, 0}, {{16}, 16}, {{3, 0}, 0}, {{0, 2}, 0}, {{4, 16}, 64}, {{6, 11, 17}, 1122}, {{6, 11, 5, 17}, 5610}, }; for (const auto& data : test_data) { Shape shape = ShapeUtil::MakeShape(F32, data.dimensions); int invocations = 0; auto increment_func = [&invocations](absl::Span<const int64_t> indexes) { invocations++; return true; }; std::vector<int64_t> zero_base(data.dimensions.size(), 0); std::vector<int64_t> step(data.dimensions.size(), 1); ShapeUtil::ForEachIndex(shape, zero_base, data.dimensions, step, increment_func); EXPECT_EQ(invocations, data.invocations); } } TEST(ShapeUtilTest, ForEachIndexWithStatus) { Shape shape = ShapeUtil::MakeShape(F32, {10, 10}); int invocations = 0; auto increment_func = [&invocations]( absl::Span<const int64_t> indexes) -> absl::StatusOr<bool> { if (++invocations == 5) { return Unimplemented("Cannot increment beyond 5."); } return true; }; absl::Status error_status = ShapeUtil::ForEachIndexWithStatus( shape, {0, 0}, {10, 10}, {0, 1}, increment_func); EXPECT_FALSE(error_status.ok()); EXPECT_THAT(error_status.message(), ::testing::HasSubstr("Cannot increment beyond 5.")); EXPECT_EQ(invocations, 5); } TEST(ShapeUtilTest, GetForEachIndexParallelThreadCount) { const int kThreadCount = ShapeUtil::GetForEachIndexParallelThreadCount(); Shape shape = ShapeUtil::MakeShape(F32, {10, 100}); auto check_func = [kThreadCount](absl::Span<const int64_t> , int thread_id) -> absl::StatusOr<bool> { EXPECT_GE(thread_id, -1); EXPECT_LT(thread_id, kThreadCount); return true; }; for (int i = 0; i < 10; ++i) { ShapeUtil::ForEachIndexParallel(shape, {0, 0}, {10, 100}, {1, 1}, check_func); } } TEST(ShapeUtilTest, ForEachIndexParallel) { Shape shape = ShapeUtil::MakeShape(F32, {10, 10}); int64_t output[10][10]; int init = 5; auto set_func = [&](absl::Span<const int64_t> indexes, int ) -> absl::StatusOr<bool> { output[indexes[0]][indexes[1]] = init + indexes[0] + indexes[1]; return true; }; ShapeUtil::ForEachIndexParallel(shape, {0, 0}, {10, 10}, {1, 1}, set_func); for (int i = 0; i < 10; ++i) { for (int j = 0; j < 10; ++j) { EXPECT_EQ(output[i][j], init + i + j); } } } TEST(ShapeUtilTest, ForEachIndexParallel_Rank0) { Shape shape = ShapeUtil::MakeShape(F32, {}); int64_t output = -1; auto set_func = [&](absl::Span<const int64_t> indexes, int ) -> absl::StatusOr<bool> { output = indexes.size(); return true; }; ShapeUtil::ForEachIndexParallel(shape, {}, {}, {}, set_func); EXPECT_EQ(output, 0); } TEST(ShapeUtilTest, ForEachIndexParallel_Empty) { Shape shape = ShapeUtil::MakeShape(F32, {2, 0}); bool called = false; auto set_func = [&](absl::Span<const int64_t> indexes, int ) -> absl::StatusOr<bool> { called = true; return true; }; ShapeUtil::ForEachIndexParallel(shape, {0, 0}, {2, 0}, {1, 1}, set_func); EXPECT_FALSE(called); } TEST(ShapeUtilTest, ForEachIndexParallel_DimensionPinnedWithZeros) { Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); int64_t output[2][2] = {}; int init = 5; auto set_func = [&](absl::Span<const int64_t> indexes, int ) -> absl::StatusOr<bool> { output[indexes[0]][indexes[1]] = init + indexes[0] + indexes[1]; return true; }; ShapeUtil::ForEachIndexParallel(shape, {1, 0}, {0, 2}, {0, 1}, set_func); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 2; ++j) { if (i == 1) { EXPECT_EQ(output[i][j], init + i + j); } else { EXPECT_EQ(output[i][j], 0); } } } } TEST(ShapeUtilTest, ForEachIndexParallel_WithSkips) { Shape shape = ShapeUtil::MakeShape(F32, {10, 10}); int64_t output[10][10] = {}; int init = 5; auto set_func = [&](absl::Span<const int64_t> indexes, int ) -> absl::StatusOr<bool> { output[indexes[0]][indexes[1]] = init + indexes[0] + indexes[1]; return true; }; ShapeUtil::ForEachIndexParallel(shape, {2, 3}, {3, 1}, {2, 1}, set_func); for (int i = 0; i < 10; ++i) { for (int j = 0; j < 10; ++j) { if ((i == 2 || i == 4) && j == 3) { EXPECT_EQ(output[i][j], init + i + j); } else { EXPECT_EQ(output[i][j], 0); } } } } TEST(ShapeUtilTest, ForEachIndexParallel_CalledTwice) { Shape shape = ShapeUtil::MakeShape(F32, {10, 10}); int64_t output[10][10]; int init = 5; auto set_func = [&](absl::Span<const int64_t> indexes, int ) -> absl::StatusOr<bool> { output[indexes[0]][indexes[1]] = init + indexes[0] + indexes[1]; return true; }; int init2 = 15; auto set_func2 = [&](absl::Span<const int64_t> indexes, int ) -> absl::StatusOr<bool> { output[indexes[0]][indexes[1]] = init2 + indexes[0] + indexes[1]; return true; }; ShapeUtil::ForEachIndexParallel(shape, {0, 0}, {10, 10}, {1, 1}, set_func); ShapeUtil::ForEachIndexParallel(shape, {0, 0}, {10, 10}, {1, 1}, set_func2); for (int i = 0; i < 10; ++i) { for (int j = 0; j < 10; ++j) { EXPECT_EQ(output[i][j], init2 + i + j); } } } TEST(ShapeUtilTest, ForEachIndexParallel_CalledFromMultipleThreads) { constexpr int kCallingThreads = 10; constexpr int kDim0 = 10; constexpr int kDim1 = 10; constexpr int kInit = 5; const Shape kShape = ShapeUtil::MakeShape(F32, {kDim0, kDim1}); int64_t output[kCallingThreads][kDim0][kDim1]; { tsl::thread::ThreadPool pool(tsl::Env::Default(), "foreach", kCallingThreads); for (int t = 0; t < kCallingThreads; ++t) { pool.Schedule([&output, &kShape, t] { auto set_func = [&output, t]( absl::Span<const int64_t> indexes, int ) -> absl::StatusOr<bool> { output[t][indexes[0]][indexes[1]] = kInit + indexes[0] + indexes[1]; return true; }; ShapeUtil::ForEachIndexParallel(kShape, {0, 0}, {kDim0, kDim1}, {1, 1}, set_func); }); } } for (int t = 0; t < kCallingThreads; ++t) { for (int i = 0; i < kDim0; ++i) { for (int j = 0; j < kDim1; ++j) { EXPECT_EQ(output[t][i][j], kInit + i + j); } } } } TEST(ShapeUtilTest, DimensionsUnmodifiedByReshape_1x1x1x1_to_1x1x1) { EXPECT_THAT(ShapeUtil::DimensionsUnmodifiedByReshape( ShapeUtil::MakeShape(S32, {1, 1, 1, 1}), ShapeUtil::MakeShape(S32, {1, 1, 1})), ElementsAre(std::make_pair(0, 0), std::make_pair(1, 1), std::make_pair(2, 2))); } TEST(ShapeUtilTest, DimensionsUnmodifiedByReshape_1x1x1_to_1x1x1x1) { EXPECT_THAT(ShapeUtil::DimensionsUnmodifiedByReshape( ShapeUtil::MakeShape(S32, {1, 1, 1}), ShapeUtil::MakeShape(S32, {1, 1, 1, 1})), ElementsAre(std::make_pair(0, 0), std::make_pair(1, 1), std::make_pair(2, 2))); } TEST(ShapeUtilTest, DimensionsUnmodifiedByReshape_4x1x3x5x6x7_to_2x6x1x5x1x42) { EXPECT_THAT(ShapeUtil::DimensionsUnmodifiedByReshape( ShapeUtil::MakeShape(S32, {4, 1, 3, 5, 6, 7}), ShapeUtil::MakeShape(S32, {2, 6, 1, 5, 1, 42})), ElementsAre(std::make_pair(3, 3))); } TEST(ShapeUtilTest, ReshapeIsBitcast_3x4_6x2) { for (bool input_is_row_major : {true, false}) { for (bool output_is_row_major : {true, false}) { Layout input_layout = input_is_row_major ? LayoutUtil::MakeLayout({1, 0}) : LayoutUtil::MakeLayout({0, 1}); Layout output_layout = output_is_row_major ? LayoutUtil::MakeLayout({1, 0}) : LayoutUtil::MakeLayout({0, 1}); EXPECT_EQ(ShapeUtil::ReshapeIsBitcast( ShapeUtil::MakeShapeWithDenseLayout( F32, {3, 4}, input_layout.minor_to_major()), ShapeUtil::MakeShapeWithDenseLayout( F32, {6, 2}, output_layout.minor_to_major())), input_is_row_major && output_is_row_major); } } } TEST(ShapeUtilTest, ReshapeIsBitcast_3x2x2_6x2_Dim1IsMostMinor) { EXPECT_TRUE(ShapeUtil::ReshapeIsBitcast( ShapeUtil::MakeShapeWithDenseLayout(F32, {3, 2, 2}, {1, 0, 2}), ShapeUtil::MakeShapeWithDenseLayout(F32, {6, 2}, {0, 1}))); } TEST(ShapeUtilTest, ReshapeIsBitcastIgnoreElementType) { EXPECT_TRUE(ShapeUtil::ReshapeIsBitcast( ShapeUtil::MakeShapeWithDenseLayout(F32, {3, 2, 2}, {1, 0, 2}), ShapeUtil::MakeShapeWithDenseLayout(F16, {6, 2}, {0, 1}), true)); EXPECT_FALSE(ShapeUtil::ReshapeIsBitcast( ShapeUtil::MakeShapeWithDenseLayout(F32, {3, 2, 2}, {1, 0, 2}), ShapeUtil::MakeShapeWithDenseLayout(F16, {6, 2}, {0, 1}), false)); } TEST(ShapeUtilTest, TransposeIsBitcastIgnoreElementType) { EXPECT_TRUE(ShapeUtil::TransposeIsBitcast( ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 5}, {1, 0}), ShapeUtil::MakeShapeWithDenseLayout(F16, {5, 10}, {0, 1}), {1, 0}, true)); EXPECT_FALSE(ShapeUtil::TransposeIsBitcast( ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 5}, {1, 0}), ShapeUtil::MakeShapeWithDenseLayout(F16, {5, 10}, {0, 1}), {1, 0}, false)); } TEST(ShapeUtilTest, IsReshapeOrTransposeBitcast) { EXPECT_TRUE(ShapeUtil::IsReshapeOrTransposeBitcast( ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 5}, {1, 0}), ShapeUtil::MakeShapeWithDenseLayout(F32, {5, 10}, {0, 1}))); EXPECT_TRUE(ShapeUtil::ReshapeIsBitcast( ShapeUtil::MakeShapeWithDenseLayout(F32, {3, 2, 2}, {1, 0, 2}), ShapeUtil::MakeShapeWithDenseLayout(F16, {6, 2}, {0, 1}), true)); } TEST(ShapeUtilTest, HasDegenerateDimensions) { EXPECT_TRUE( ShapeUtil::HasDegenerateDimensions(ShapeUtil::MakeShape(F32, {3, 1, 2}))); EXPECT_TRUE( ShapeUtil::HasDegenerateDimensions(ShapeUtil::MakeShape(F32, {3, 1, 1}))); EXPECT_FALSE( ShapeUtil::HasDegenerateDimensions(ShapeUtil::MakeShape(F32, {3, 3, 5}))); EXPECT_FALSE( ShapeUtil::HasDegenerateDimensions(ShapeUtil::MakeShape(F32, {3, 0, 5}))); } TEST(ShapeUtilTest, PermuteDimensionsLayout) { std::vector<int64_t> layout(3); std::iota(layout.begin(), layout.end(), 0); do { Shape s = ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 100, 1000}, layout); SCOPED_TRACE(absl::StrCat("s=", ShapeUtil::HumanString(s))); std::vector<int64_t> permutation(3); std::iota(permutation.begin(), permutation.end(), 0); do { SCOPED_TRACE( absl::StrCat("permutation=", absl::StrJoin(permutation, ","))); EXPECT_TRUE(ShapeUtil::TransposeIsBitcast( s, ShapeUtil::PermuteDimensions(permutation, s), permutation)); } while (std::next_permutation(permutation.begin(), permutation.end())); } while (std::next_permutation(layout.begin(), layout.end())); } TEST(ShapeUtilTest, UpdateDynamicDimensions) { Shape shape = ShapeUtil::MakeShape(F32, {10, 100, 1000}); Shape tuple_shape = ShapeUtil::MakeTupleShape({shape}); ShapeUtil::UpdateDynamicDimension(&tuple_shape, {0}, 1, true); EXPECT_TRUE(ShapeUtil::GetSubshape(tuple_shape, {0}).is_dynamic_dimension(1)); } TEST(ShapeUtilTest, InvalidDynamicDimension) { absl::StatusOr<Shape> error_status = ShapeUtil::MakeValidatedShape( F32, {Shape::kUnboundedSize, Shape::kUnboundedSize}, {true, false}); EXPECT_FALSE(error_status.ok()); EXPECT_THAT(error_status.status().message(), ::testing::HasSubstr( "Cannot mark a dynamic dimension at dim=1 as static")); } TEST(ShapeUtilTest, PermuteDynamicDimensions) { Shape shape = ShapeUtil::MakeShape(F32, {10, 100, 1000}, {false, true, true}); SCOPED_TRACE(absl::StrCat("shape=", shape.ToString())); std::vector<int64_t> permutation(3); std::iota(permutation.begin(), permutation.end(), 0); do { SCOPED_TRACE(absl::StrCat("permutation=", absl::StrJoin(permutation, ","))); auto permuted = ShapeUtil::PermuteDimensions(permutation, shape); for (int i = 0; i < shape.rank(); i++) { EXPECT_EQ(permuted.dimensions(i), shape.dimensions(permutation[i])); EXPECT_EQ(permuted.is_dynamic_dimension(i), shape.is_dynamic_dimension(permutation[i])); } } while (std::next_permutation(permutation.begin(), permutation.end())); } TEST(ShapeUtilTest, PrependMajorDimension) { Shape shape = ShapeUtil::MakeShape(F32, {10, 20, 30}); EXPECT_EQ(ShapeUtil::PrependMajorDimension(40, shape), ShapeUtil::MakeShape(F32, {40, 10, 20, 30})); shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 20, 30}, {0, 2, 1}); EXPECT_EQ( ShapeUtil::PrependMajorDimension(40, shape), ShapeUtil::MakeShapeWithDenseLayout(F32, {40, 10, 20, 30}, {1, 3, 2, 0})); shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 20, 30}, {2, 1, 0}); EXPECT_EQ( ShapeUtil::PrependMajorDimension(40, shape), ShapeUtil::MakeShapeWithDenseLayout(F32, {40, 10, 20, 30}, {3, 2, 1, 0})); } TEST(ShapeUtilTest, AppendMinorDimension) { Shape shape = ShapeUtil::MakeShape(F32, {10, 20, 30}); ShapeUtil::AppendMinorDimension(40, &shape); EXPECT_EQ(shape, ShapeUtil::MakeShape(F32, {10, 20, 30, 40})); shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 20, 30}, {2, 1, 0}); ShapeUtil::AppendMinorDimension(40, &shape); EXPECT_EQ(shape, ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 20, 30, 40}, {3, 2, 1, 0})); shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 20, 30}, {0, 2, 1}); ShapeUtil::AppendMinorDimension(40, &shape); EXPECT_EQ(shape, ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 20, 30, 40}, {3, 0, 2, 1})); } TEST(ShapeUtilTest, MoveDimToMajor) { Shape shape = ShapeUtil::MakeShape(F32, {10, 10, 10}); Shape new_shape = ShapeUtil::MoveDimToMajor(shape, 0); EXPECT_EQ(shape, new_shape); new_shape = ShapeUtil::MoveDimToMajor(shape, 1); EXPECT_EQ(new_shape, ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 10, 10}, {2, 0, 1})); shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 10, 10}, {0, 2, 1}); new_shape = ShapeUtil::MoveDimToMajor(shape, 0); EXPECT_EQ(new_shape, ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 10, 10}, {2, 1, 0})); shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {10, 10, 10}), ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 10, 10}, {0, 2, 1})}); new_shape = ShapeUtil::MoveDimToMajor(shape, 0); EXPECT_EQ(new_shape, ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {10, 10, 10}), ShapeUtil::MakeShapeWithDenseLayout( F32, {10, 10, 10}, {2, 1, 0})})); } TEST(ShapeUtilTest, DeleteDimensions) { Shape shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {5, 3, 2}, {2, 0, 1}); Shape new_shape = ShapeUtil::DeleteDimensions({1}, shape); EXPECT_EQ(new_shape, ShapeUtil::MakeShapeWithDenseLayout(F32, {5, 2}, {1, 0})); } TEST(ShapeUtilTest, MakeShapeWithDescendingLayoutAndSamePhysicalLayout) { Shape shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {128, 24, 4, 48, 48}, {2, 4, 3, 1, 0}); Shape new_shape = ShapeUtil::MakeShapeWithDescendingLayoutAndSamePhysicalLayout(shape); EXPECT_EQ(new_shape, ShapeUtil::MakeShapeWithDenseLayout( F32, {128, 24, 48, 48, 4}, {4, 3, 2, 1, 0})); } TEST(ShapeUtilTest, DeduceTransposeDimensionsForBitcast) { Shape input_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {5, 3}, {1, 0}); Shape output_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {3, 5}, {0, 1}); std::vector<int64_t> expected_permutation = {1, 0}; EXPECT_EQ(std::make_optional(expected_permutation), ShapeUtil::DeduceTransposeDimensionsForBitcast(input_shape, output_shape)); } TEST(ShapeUtilTest, DeduceTransposeDimensionsForBitcastNegative) { Shape input_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {5, 3}, {1, 0}); Shape output_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {3, 5}, {1, 0}); EXPECT_EQ(std::nullopt, ShapeUtil::DeduceTransposeDimensionsForBitcast( input_shape, output_shape)); } TEST(ShapeUtilTest, DeleteDimensionsUnsorted) { Shape shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {5, 3, 2, 7, 9}, {2, 0, 1, 4, 3}); Shape a = ShapeUtil::DeleteDimensions({1, 2, 3}, shape); Shape b = ShapeUtil::DeleteDimensions({3, 2, 1}, shape); EXPECT_EQ(a, b); EXPECT_EQ(a, ShapeUtil::MakeShapeWithDenseLayout(F32, {5, 9}, {0, 1})); } TEST(ShapeUtilTest, IsEffectivelyMostMajorDimension) { Shape shape0 = ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 1, 16, 1, 279}, {4, 0, 1, 2, 3}); EXPECT_TRUE(ShapeUtil::IsEffectivelyMostMajorDimension(shape0, 2)); Shape shape1 = ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 1, 16, 1, 279}, {4, 1, 2, 3, 0}); EXPECT_TRUE(ShapeUtil::IsEffectivelyMostMajorDimension(shape1, 2)); Shape shape2 = ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 1, 16, 1, 279}, {0, 1, 2, 3, 4}); EXPECT_FALSE(ShapeUtil::IsEffectivelyMostMajorDimension(shape2, 2)); Shape shape3 = ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 1, 16, 1, 1}, {0, 1, 2, 3, 4}); EXPECT_TRUE(ShapeUtil::IsEffectivelyMostMajorDimension(shape2, 4)); } TEST(ShapeUtilTest, B_250640044) { ShapeProto proto; EXPECT_TRUE(tsl::protobuf::TextFormat::ParseFromString( R"pb(element_type: TUPLE tuple_shapes { element_type: S8 dimensions: 137438953472 layout { minor_to_major: 0 dim_level_types: DIM_COMPRESSED physical_shape { element_type: TUPLE tuple_shapes {} } } is_dynamic_dimension: false })pb", &proto)); Shape shape(proto); EXPECT_FALSE(ShapeUtil::ValidateShape(shape).ok()); } TEST(ShapeUtilTest, B_251055887) { ShapeProto proto; EXPECT_TRUE(tsl::protobuf::TextFormat::ParseFromString( R"pb( element_type: S8 dimensions: 0 dimensions: 8 dimensions: 0 dimensions: 0 dimensions: 4 dimensions: 1 dimensions: 1 dimensions: 6 dimensions: 281474976710657 dimensions: 1 layout { minor_to_major: 1 minor_to_major: 3 minor_to_major: 0 minor_to_major: 5 minor_to_major: 4 minor_to_major: 6 minor_to_major: 8 minor_to_major: 7 minor_to_major: 6 minor_to_major: 9 physical_shape { element_type: -562 } })pb", &proto)); Shape shape(proto); EXPECT_FALSE(ShapeUtil::ValidateShape(shape).ok()); } TEST(ShapeUtilTest, Int4ShapeSize) { Shape int4_shape = ShapeUtil::MakeShape(S4, {64, 128}); int4_shape.mutable_layout()->set_element_size_in_bits(4); EXPECT_EQ(ShapeUtil::ArrayDataSize(int4_shape), 64 * 128 / 2); EXPECT_EQ(ShapeUtil::ArraySize(int4_shape), 64 * 128 / 2); Shape int4_shape2 = ShapeUtil::MakeShape(S4, {9216, 6144}); auto* layout = int4_shape2.mutable_layout(); layout->clear_tiles(); layout->add_tiles(); layout->add_tiles(); *layout->mutable_tiles(0) = Tile({8 * (32 / 4), 128}); *layout->mutable_tiles(1) = Tile({32 / 4, 1}); layout->set_element_size_in_bits(4); EXPECT_EQ(ShapeUtil::ArrayDataSize(int4_shape2), 9216 * 6144 / 2); EXPECT_EQ(ShapeUtil::ArraySize(int4_shape2), 9216 * 6144 / 2); Shape pred_shape = ShapeUtil::ChangeElementType(int4_shape, PRED); EXPECT_EQ(pred_shape.layout().element_size_in_bits(), 0); Shape u4_shape = ShapeUtil::ChangeElementType(int4_shape, U4); EXPECT_EQ(u4_shape.layout().element_size_in_bits(), 4); } TEST(XlaShapeUtilTest, ZeroSize) { std::vector<std::vector<int64_t>> test_cases = { {0, 64, 128}, {128, 0, 64}, {64, 128, 0}, {0, 63, 127}, {127, 0, 63}, {63, 127, 0}, }; for (const auto& dimensions : test_cases) { xla::Shape int4_shape = xla::ShapeUtil::MakeShape(xla::S4, dimensions); int4_shape.mutable_layout()->set_element_size_in_bits(4); EXPECT_EQ(xla::ShapeUtil::ArrayDataSize(int4_shape), 0); EXPECT_EQ(xla::ShapeUtil::ArraySize(int4_shape), 0); } } TEST(ShapeUtilTest, DecomposeBitcastToReshape) { const Shape kInputShape = ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 16, 17, 3}, {3, 2, 1, 0}); const Shape kOutputShape = ShapeUtil::MakeShapeWithDenseLayout(F32, {16, 51}, {1, 0}); ShapeUtil::BitcastDecomposition decomposition = ShapeUtil::DecomposeBitcast(kInputShape, kOutputShape); EXPECT_TRUE(std::holds_alternative<ShapeUtil::BitcastDecompositionReshape>( decomposition)); } TEST(ShapeUtilTest, DecomposeBitcastToReshape2) { const Shape kInputShape = ShapeUtil::MakeShapeWithDenseLayout(F32, {17, 3, 1, 16}, {1, 0, 3, 2}); const Shape kOutputShape = ShapeUtil::MakeShapeWithDenseLayout(F32, {51, 16}, {0, 1}); ShapeUtil::BitcastDecomposition decomposition = ShapeUtil::DecomposeBitcast(kInputShape, kOutputShape); EXPECT_TRUE(std::holds_alternative<ShapeUtil::BitcastDecompositionReshape>( decomposition)); } TEST(ShapeUtilTest, DecomposeBitcastToTranspose) { const Shape kInputShape = ShapeUtil::MakeShapeWithDenseLayout(F32, {3, 7, 6, 4}, {3, 2, 1, 0}); const Shape kOutputShape = ShapeUtil::MakeShapeWithDenseLayout(F32, {3, 6, 4, 7}, {2, 1, 3, 0}); const std::vector<int64_t> kExpectedTransposeDims = {0, 2, 3, 1}; ShapeUtil::BitcastDecomposition decomposition = ShapeUtil::DecomposeBitcast(kInputShape, kOutputShape); ASSERT_TRUE(std::holds_alternative<ShapeUtil::BitcastDecompositionTranspose>( decomposition)); ShapeUtil::BitcastDecompositionTranspose decomposition_transpose = std::get<ShapeUtil::BitcastDecompositionTranspose>(decomposition); EXPECT_EQ(decomposition_transpose.transpose_dims, kExpectedTransposeDims); } TEST(ShapeUtilTest, DecomposeBitcastToReshapeAndTranspose) { const Shape kInputShape = ShapeUtil::MakeShapeWithDenseLayout(F32, {16, 17, 3}, {2, 1, 0}); const Shape kOutputShape = ShapeUtil::MakeShapeWithDenseLayout(F32, {51, 16}, {0, 1}); const std::vector<int64_t> kExpectedTranspose1Dims = {0, 1, 2}; const Shape kExpectedTranspose1Shape = kInputShape; const Shape kExpectedReshapeShape = ShapeUtil::MakeShapeWithDenseLayout(F32, {16, 51}, {1, 0}); const std::vector<int64_t> kExpectedTranspose2Dims = {1, 0}; ShapeUtil::BitcastDecomposition decomposition = ShapeUtil::DecomposeBitcast(kInputShape, kOutputShape); ASSERT_TRUE(std::holds_alternative<ShapeUtil::BitcastDecompositionTrt>( decomposition)); ShapeUtil::BitcastDecompositionTrt decomposition_trt = std::get<ShapeUtil::BitcastDecompositionTrt>(decomposition); EXPECT_EQ(decomposition_trt.transpose1_dims, kExpectedTranspose1Dims); EXPECT_TRUE(decomposition_trt.IsTranspose1Identity()); EXPECT_EQ(decomposition_trt.transpose1_shape, kExpectedTranspose1Shape); EXPECT_EQ(decomposition_trt.reshape_shape, kExpectedReshapeShape); EXPECT_EQ(decomposition_trt.transpose2_dims, kExpectedTranspose2Dims); EXPECT_FALSE(decomposition_trt.IsTranspose2Identity()); } TEST(ShapeUtilTest, DecomposeBitcastToReshapeAndTranspose2) { const Shape kInputShape = ShapeUtil::MakeShapeWithDenseLayout(F32, {16, 17, 3, 7}, {3, 2, 1, 0}); const Shape kOutputShape = ShapeUtil::MakeShapeWithDenseLayout(F32, {7, 16, 51}, {0, 2, 1}); const std::vector<int64_t> kExpectedTranspose1Dims = {0, 1, 2, 3}; const Shape kExpectedTranspose1Shape = kInputShape; const Shape kExpectedReshapeShape = ShapeUtil::MakeShapeWithDenseLayout(F32, {16, 51, 7}, {2, 1, 0}); const std::vector<int64_t> kExpectedTranspose2Dims = {2, 0, 1}; ShapeUtil::BitcastDecomposition decomposition = ShapeUtil::DecomposeBitcast(kInputShape, kOutputShape); ASSERT_TRUE(std::holds_alternative<ShapeUtil::BitcastDecompositionTrt>( decomposition)); ShapeUtil::BitcastDecompositionTrt decomposition_trt = std::get<ShapeUtil::BitcastDecompositionTrt>(decomposition); EXPECT_EQ(decomposition_trt.transpose1_dims, kExpectedTranspose1Dims); EXPECT_TRUE(decomposition_trt.IsTranspose1Identity()); EXPECT_EQ(decomposition_trt.transpose1_shape, kExpectedTranspose1Shape); EXPECT_EQ(decomposition_trt.reshape_shape, kExpectedReshapeShape); EXPECT_EQ(decomposition_trt.transpose2_dims, kExpectedTranspose2Dims); EXPECT_FALSE(decomposition_trt.IsTranspose2Identity()); } TEST(ShapeUtilTest, DecomposeBitcastToTransposeAndReshape) { const Shape kInputShape = ShapeUtil::MakeShapeWithDenseLayout(F32, {16, 3, 17}, {1, 2, 0}); const Shape kOutputShape = ShapeUtil::MakeShapeWithDenseLayout(F32, {51, 16}, {1, 0}); const std::vector<int64_t> kExpectedTranspose1Dims = {0, 2, 1}; const Shape kExpectedTranspose1Shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {16, 17, 3}, {2, 1, 0}); const Shape kExpectedReshapeShape = kOutputShape; const std::vector<int64_t> kExpectedTranspose2Dims = {0, 1}; ShapeUtil::BitcastDecomposition decomposition = ShapeUtil::DecomposeBitcast(kInputShape, kOutputShape); ASSERT_TRUE(std::holds_alternative<ShapeUtil::BitcastDecompositionTrt>( decomposition)); ShapeUtil::BitcastDecompositionTrt decomposition_trt = std::get<ShapeUtil::BitcastDecompositionTrt>(decomposition); EXPECT_EQ(decomposition_trt.transpose1_dims, kExpectedTranspose1Dims); EXPECT_FALSE(decomposition_trt.IsTranspose1Identity()); EXPECT_EQ(decomposition_trt.transpose1_shape, kExpectedTranspose1Shape); EXPECT_EQ(decomposition_trt.reshape_shape, kExpectedReshapeShape); EXPECT_EQ(decomposition_trt.transpose2_dims, kExpectedTranspose2Dims); EXPECT_TRUE(decomposition_trt.IsTranspose2Identity()); } TEST(ShapeUtilTest, DecomposeBitcastToTrt) { const Shape kInputShape = ShapeUtil::MakeShapeWithDenseLayout(F32, {16, 3, 17}, {1, 2, 0}); const Shape kOutputShape = ShapeUtil::MakeShapeWithDenseLayout(F32, {16, 51}, {0, 1}); const std::vector<int64_t> kExpectedTranspose1Dims = {0, 2, 1}; const Shape kExpectedTranspose1Shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {16, 17, 3}, {2, 1, 0}); const Shape kExpectedReshapeShape = ShapeUtil::MakeShapeWithDenseLayout(F32, {51, 16}, {1, 0}); const std::vector<int64_t> kExpectedTranspose2Dims = {1, 0}; ShapeUtil::BitcastDecomposition decomposition = ShapeUtil::DecomposeBitcast(kInputShape, kOutputShape); ASSERT_TRUE(std::holds_alternative<ShapeUtil::BitcastDecompositionTrt>( decomposition)); ShapeUtil::BitcastDecompositionTrt decomposition_trt = std::get<ShapeUtil::BitcastDecompositionTrt>(decomposition); EXPECT_EQ(decomposition_trt.transpose1_dims, kExpectedTranspose1Dims); EXPECT_FALSE(decomposition_trt.IsTranspose1Identity()); EXPECT_EQ(decomposition_trt.transpose1_shape, kExpectedTranspose1Shape); EXPECT_EQ(decomposition_trt.reshape_shape, kExpectedReshapeShape); EXPECT_EQ(decomposition_trt.transpose2_dims, kExpectedTranspose2Dims); EXPECT_FALSE(decomposition_trt.IsTranspose2Identity()); } TEST(AlgebraicSimplifierTest, ReshapeIsBitcast_3x2x2_6x2_Dim0IsMostMinor) { EXPECT_FALSE(ShapeUtil::ReshapeIsBitcast( ShapeUtil::MakeShapeWithDenseLayout(F32, {3, 2, 2}, {0, 1, 2}), ShapeUtil::MakeShapeWithDenseLayout(F32, {6, 2}, {0, 1}))); } TEST(AlignmentTest, AlignLayoutsWithoutTrivialDimensions) { Shape input = ShapeUtil::MakeShapeWithDenseLayout(xla::F32, {3, 8, 5, 7, 11}, {3, 2, 1, 0, 4}); auto aligned_shape = ShapeUtil::AlignLayouts( input, ShapeUtil::MakeShape(xla::F32, {4, 3, 2, 7, 5, 11})); EXPECT_TRUE(aligned_shape); EXPECT_THAT(aligned_shape.value().layout().minor_to_major(), ElementsAre(4, 3, 2, 1, 0, 5)); EXPECT_TRUE(ShapeUtil::ReshapeIsBitcast(input, aligned_shape.value())); aligned_shape = ShapeUtil::AlignLayouts( input, ShapeUtil::MakeShape(xla::F32, {3, 2, 4, 35, 11})); EXPECT_TRUE(aligned_shape); EXPECT_THAT(aligned_shape.value().layout().minor_to_major(), ElementsAre(3, 2, 1, 0, 4)); EXPECT_TRUE(ShapeUtil::ReshapeIsBitcast(input, aligned_shape.value())); } TEST(AlignmentTest, AlignLayoutsWithTrivialDimensions) { Shape input = ShapeUtil::MakeShapeWithDenseLayout( xla::F32, {1, 3, 8, 1, 5, 7, 1, 11, 1, 1}, {5, 0, 4, 2, 1, 3, 6, 7, 9, 8}); auto aligned_shape = ShapeUtil::AlignLayouts( input, ShapeUtil::MakeShape(xla::F32, {1, 4, 1, 3, 2, 7, 5, 11, 1})); EXPECT_TRUE(aligned_shape); EXPECT_TRUE(ShapeUtil::ReshapeIsBitcast(input, aligned_shape.value())); } TEST(AlignmentTest, AlignLayoutsWithAllTrivialDimensions) { Shape input = ShapeUtil::MakeShapeWithDenseLayout(xla::F32, {1, 1, 1, 1}, {0, 1, 3, 2}); auto aligned_shape = ShapeUtil::AlignLayouts( input, ShapeUtil::MakeShape(xla::F32, {1, 1, 1, 1, 1})); EXPECT_TRUE(aligned_shape); EXPECT_TRUE(ShapeUtil::ReshapeIsBitcast(input, aligned_shape.value())); } TEST(AlignmentTest, AlignLayoutsWithoutTrivialDimensionsWrongInputLayout) { Shape input = ShapeUtil::MakeShapeWithDenseLayout(xla::F32, {3, 8, 5, 7, 11}, {2, 3, 1, 0, 4}); auto aligned_shape = ShapeUtil::AlignLayouts( input, ShapeUtil::MakeShape(xla::F32, {4, 3, 2, 7, 5, 11})); EXPECT_FALSE(aligned_shape); } TEST(AlignmentTest, AlignLayoutsWithoutTrivialDimensionsNonConsecutiveAlignmentPart) { Shape input = ShapeUtil::MakeShapeWithDenseLayout(xla::F32, {3, 8, 5, 7, 11}, {3, 2, 1, 0, 4}); auto aligned_shape = ShapeUtil::AlignLayouts( input, ShapeUtil::MakeShape(xla::F32, {4, 3, 2, 5, 77})); EXPECT_FALSE(aligned_shape); } void BM_MakeShape(::testing::benchmark::State& state) { for (auto s : state) { ShapeUtil::MakeShape(F32, {2}); } } BENCHMARK(BM_MakeShape); void BM_MakeValidatedShape(::testing::benchmark::State& state) { for (auto s : state) { ShapeUtil::MakeValidatedShape(F32, {2}).value(); } } BENCHMARK(BM_MakeValidatedShape); Shape ShapeForBenchmark(::testing::benchmark::State& state) { Shape shape; switch (state.range(0)) { case 0: { shape = ShapeUtil::MakeShape(xla::F32, {1}); break; } case 1: { shape = ShapeUtil::MakeShape(xla::F32, {4, 1}); break; } case 2: { shape = ShapeUtil::MakeShape(xla::F32, {256, 1, 1024}); break; } } state.SetLabel(shape.ToString()); return shape; } void BM_ForEachIndex(::testing::benchmark::State& state) { Shape shape = ShapeForBenchmark(state); for (auto s : state) { int count = 0; auto increment_func = [&count](absl::Span<const int64_t> indexes) -> absl::StatusOr<bool> { count++; return true; }; ShapeUtil::ForEachIndex(shape, increment_func); } } BENCHMARK(BM_ForEachIndex)->Arg(0)->Arg(1)->Arg(2); void BM_ForEachIndexNoStatus(::testing::benchmark::State& state) { Shape shape = ShapeForBenchmark(state); for (auto s : state) { int count = 0; auto increment_func = [&count](absl::Span<const int64_t> indexes) -> bool { count++; return true; }; ShapeUtil::ForEachIndexNoStatus(shape, increment_func); } } BENCHMARK(BM_ForEachIndexNoStatus)->Arg(0)->Arg(1)->Arg(2); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/shape_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/shape_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
321442fe-b4d4-4301-bf31-494056f960f8
cpp
tensorflow/tensorflow
host_callback
third_party/xla/xla/python/ifrt/host_callback.cc
third_party/xla/xla/pjrt/host_callback_test.cc
#include "xla/python/ifrt/host_callback.h" namespace xla { namespace ifrt { char HostCallback::ID = 0; char LoadedHostCallback::ID = 0; } }
#include "xla/pjrt/host_callback.h" #include <cstring> #include <memory> #include <utility> #include <gtest/gtest.h> #include "absl/status/status.h" #include "xla/pjrt/pjrt_client.h" #include "xla/tests/literal_test_util.h" #include "xla/tsl/lib/core/status_test_util.h" namespace xla { namespace { class TestPjRtHostMemoryForDeviceManager : public PjRtHostMemoryForDeviceManager { public: ~TestPjRtHostMemoryForDeviceManager() override = default; absl::StatusOr<PjRtChunk> ToDeviceLayout(const void* src_data, size_t src_size, const Shape& host_shape, const Shape& device_shape) override { auto chunk = PjRtChunk::AllocateDefault(src_size); std::memcpy(chunk.data(), src_data, src_size); return chunk; } absl::Status ToHostLayout(const void* src_data, size_t src_size, const Shape& src_shape, void* dst_data, size_t dst_size, const Shape& dst_shape) override { CHECK_EQ(src_size, dst_size); std::memcpy(dst_data, src_data, src_size); return absl::OkStatus(); } }; class TestStream : public CopyToDeviceStream { public: TestStream(int64_t total_bytes, int64_t granule_bytes, PjRtChunk& chunk, absl::Notification& done) : CopyToDeviceStream(total_bytes, granule_bytes), chunk_(chunk), done_(done) {} PjRtFuture<> AddChunk(PjRtChunk chunk) override { CHECK(!done_.HasBeenNotified()); chunk_ = std::move(chunk); done_.Notify(); return PjRtFuture<>(absl::OkStatus()); } private: PjRtChunk& chunk_; absl::Notification& done_; }; TEST(HostCallbackTest, Basic) { HostCallback host_callback; Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); size_t byte_size = ShapeUtil::ByteSizeOf(shape); host_callback.operands = {HostCallbackArgInfo{1, shape}}; host_callback.results = {HostCallbackArgInfo{2, shape}}; host_callback.callback = [byte_size](void** outputs, void** inputs) { std::memcpy(outputs[0], inputs[0], byte_size); return absl::OkStatus(); }; HostCallbackStates states; auto& send_callbacks = states.send_callbacks.emplace_back(); auto& recv_callbacks = states.recv_callbacks.emplace_back(); TestPjRtHostMemoryForDeviceManager test_host_memory_for_device_manager; auto context = CreateHostCallbackStateAndAppendSendRecvCallbacks( std::move(host_callback), &test_host_memory_for_device_manager, send_callbacks, recv_callbacks, false); PjRtTransferMetadata metadata; metadata.device_shape = shape; auto literal = LiteralUtil::CreateR2({{1.0f, 2.0f}, {3.0f, 4.0f}}); auto chunk = PjRtChunk::AllocateDefault(byte_size); ASSERT_EQ(chunk.size(), literal.size_bytes()); std::memcpy(chunk.data(), literal.untyped_data(), literal.size_bytes()); TF_ASSERT_OK(context->OnSend(0, metadata, std::move(chunk))); PjRtChunk received_chunk; absl::Notification done; auto stream = std::make_unique<TestStream>(byte_size, 8, received_chunk, done); context->Receive(0, metadata, std::move(stream)); done.WaitForNotification(); BorrowingLiteral borrowing_literal( reinterpret_cast<const char*>(received_chunk.data()), shape); EXPECT_TRUE(LiteralTestUtil::Equal(literal, borrowing_literal)); } TEST(HostCallbackTest, NonBlockingRecv) { HostCallback host_callback; Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); size_t byte_size = ShapeUtil::ByteSizeOf(shape); host_callback.operands = {HostCallbackArgInfo{1, shape}}; host_callback.results = {HostCallbackArgInfo{2, shape}}; host_callback.callback = [byte_size](void** outputs, void** inputs) { std::memcpy(outputs[0], inputs[0], byte_size); return absl::OkStatus(); }; HostCallbackStates states; auto& send_callbacks = states.send_callbacks.emplace_back(); auto& recv_callbacks = states.recv_callbacks.emplace_back(); TestPjRtHostMemoryForDeviceManager test_host_memory_for_device_manager; auto context = CreateHostCallbackStateAndAppendSendRecvCallbacks( std::move(host_callback), &test_host_memory_for_device_manager, send_callbacks, recv_callbacks, false); PjRtTransferMetadata metadata; metadata.device_shape = shape; auto literal = LiteralUtil::CreateR2({{1.0f, 2.0f}, {3.0f, 4.0f}}); auto chunk = PjRtChunk::AllocateDefault(byte_size); ASSERT_EQ(chunk.size(), literal.size_bytes()); std::memcpy(chunk.data(), literal.untyped_data(), literal.size_bytes()); absl::Notification done; PjRtChunk received_chunk; auto stream = std::make_unique<TestStream>(byte_size, 8, received_chunk, done); context->Receive(0, metadata, std::move(stream)); TF_ASSERT_OK(context->OnSend(0, metadata, std::move(chunk))); done.WaitForNotification(); BorrowingLiteral borrowing_literal( reinterpret_cast<const char*>(received_chunk.data()), shape); EXPECT_TRUE(LiteralTestUtil::Equal(literal, borrowing_literal)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/host_callback.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/host_callback_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
629082a0-250e-48af-a434-7fe64da908c3
cpp
tensorflow/tensorflow
tracked_device_buffer
third_party/xla/xla/pjrt/tracked_device_buffer.cc
third_party/xla/xla/pjrt/tracked_device_buffer_test.cc
#include "xla/pjrt/tracked_device_buffer.h" #include <algorithm> #include <atomic> #include <cstdint> #include <functional> #include <iterator> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/functional/any_invocable.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/pjrt/event_pool.h" #include "xla/pjrt/pjrt_client.h" #include "xla/service/executable.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/service/shaped_buffer.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/event.h" #include "tsl/platform/logging.h" #include "tsl/profiler/lib/connected_traceme.h" #include "tsl/profiler/lib/context_types.h" namespace xla { void BufferSequencingEvent::SetSequencingEvent(EventPool::Handle event, se::Stream* stream) { { absl::MutexLock lock(&mu_); defined_status_.emplace(absl::OkStatus()); CHECK(!event_.event()); event_ = std::move(event); CHECK(streams_defined_on_.empty()); streams_defined_on_.push_back(stream); sequence_number_.store(event_.sequence_number(), std::memory_order_seq_cst); } this->ExecuteFutureTasks(); } bool BufferSequencingEvent::EventHasBeenRecorded() const { return event_.event() != nullptr; } bool BufferSequencingEvent::IsDefinedNoLock() const { return defined_status_.IsConcrete(); } uint64_t BufferSequencingEvent::sequence_number() const { uint64_t seq = sequence_number_.load(std::memory_order_seq_cst); return seq; } void BufferSequencingEvent::WaitForEventOnStream(se::Stream* stream) { absl::MutexLock lock(&mu_); mu_.Await( absl::Condition(this, &BufferSequencingEvent::EventHasBeenRecorded)); if (std::find(streams_defined_on_.begin(), streams_defined_on_.end(), stream) != streams_defined_on_.end()) { return; } stream->WaitFor(event_.event()).IgnoreError(); streams_defined_on_.push_back(stream); } absl::Status BufferSequencingEvent::WaitForEventOnExternalStream( std::intptr_t stream) { absl::MutexLock lock(&mu_); mu_.Await( absl::Condition(this, &BufferSequencingEvent::EventHasBeenRecorded)); return event_.event()->WaitForEventOnExternalStream(stream); } bool BufferSequencingEvent::IsPredeterminedErrorOrDefinedOn( se::Stream* stream) { absl::MutexLock lock(&mu_); mu_.Await(absl::Condition(this, &BufferSequencingEvent::IsDefinedNoLock)); if (defined_status_.IsConcrete() && !defined_status_.get().ok()) { return true; } return std::find(streams_defined_on_.begin(), streams_defined_on_.end(), stream) != streams_defined_on_.end(); } bool BufferSequencingEvent::IsComplete() { absl::MutexLock lock(&mu_); mu_.Await( absl::Condition(this, &BufferSequencingEvent::EventHasBeenRecorded)); return event_.event()->PollForStatus() == se::Event::Status::kComplete; } void BufferSequencingEvent::ExecuteOrAddToFutureTasks( const std::string& task_name, std::function<void()> task) { tsl::profiler::TraceMeProducer producer( "BufferSequencingEvent::ExecuteOrAddToFutureTasks", tsl::profiler::ContextType::kPjRt); uint64_t context_id = producer.GetContextId(); auto wrapped_task = [task = std::move(task), context_id]() { tsl::profiler::TraceMeConsumer consumer("BufferSequencingEvent::Execute", tsl::profiler::ContextType::kPjRt, context_id); task(); }; { absl::MutexLock lock(&mu_); if (!defined_status_.IsConcrete()) { on_ready_tasks_callback_[task_name] = std::move(wrapped_task); return; } } thread_pool_->Schedule(std::move(wrapped_task)); } void BufferSequencingEvent::ExecuteFutureTasks() { absl::flat_hash_map<std::string, std::function<void()>> on_ready_tasks_callback; { absl::MutexLock lock(&mu_); on_ready_tasks_callback = std::move(on_ready_tasks_callback_); } auto call_all_task_callbacks = [on_ready_tasks_callback = std::move(on_ready_tasks_callback)]() { for (auto& [task_name, task_callback] : on_ready_tasks_callback) { task_callback(); } }; thread_pool_->Schedule(std::move(call_all_task_callbacks)); } std::shared_ptr<TrackedDeviceBuffer> TrackedDeviceBuffer::FromScopedShapedBuffer( ScopedShapedBuffer* shaped_buffer, absl::Span<const std::shared_ptr<BufferSequencingEvent>> definition_events, PjRtDevice* device) { ShapeTree<se::DeviceMemoryBase>::iterator iterator = shaped_buffer->buffers().begin(); std::vector<se::DeviceMemoryBase> buffers; buffers.reserve(1); ShapeUtil::ForEachSubshape( shaped_buffer->on_device_shape(), [&](const Shape&, const ShapeIndex&) { CHECK(iterator != shaped_buffer->buffers().end()); buffers.push_back(iterator->second); iterator->second = se::DeviceMemoryBase(); ++iterator; }); CHECK(iterator == shaped_buffer->buffers().end()); return std::make_shared<TrackedDeviceBuffer>( shaped_buffer->memory_allocator(), device, absl::Span<se::DeviceMemoryBase>(buffers), definition_events, nullptr); } ShapedBuffer TrackedDeviceBuffer::AsShapedBuffer( const Shape& on_device_shape) const { ShapedBuffer shaped_buffer(on_device_shape, device_->local_device_id().value(), device_->local_hardware_id().value()); ShapeTree<se::DeviceMemoryBase>::iterator iterator = shaped_buffer.buffers().begin(); for (const se::DeviceMemoryBase& buf : device_memory_) { CHECK(iterator != shaped_buffer.buffers().end()); iterator->second = buf; ++iterator; } CHECK(iterator == shaped_buffer.buffers().end()); return shaped_buffer; } void TrackedDeviceBuffer::AddToInputAsImmutable( ShapeTree<MaybeOwningDeviceMemory>::iterator* iterator, const ShapeTree<MaybeOwningDeviceMemory>::iterator& end) const { for (const se::DeviceMemoryBase& buf : device_memory_) { CHECK(*iterator != end); (*iterator)->second = MaybeOwningDeviceMemory(buf); ++(*iterator); } } void TrackedDeviceBuffer::AddToInputAsDonated( ShapeTree<MaybeOwningDeviceMemory>::iterator* iterator, const ShapeTree<MaybeOwningDeviceMemory>::iterator& end, ExecutionInput* execution_input, se::DeviceMemoryAllocator* allocator) const { for (const se::DeviceMemoryBase& buf : device_memory_) { CHECK(*iterator != end); (*iterator)->second = MaybeOwningDeviceMemory(se::OwningDeviceMemory( buf, device_->local_device_id().value(), allocator)); execution_input->SetUnownedIndex((*iterator)->first); ++(*iterator); } } TrackedDeviceBuffer::TrackedDeviceBuffer( se::DeviceMemoryAllocator* allocator, PjRtDevice* device, absl::Span<se::DeviceMemoryBase const> device_memory, absl::Span<const std::shared_ptr<BufferSequencingEvent>> definition_events, absl::AnyInvocable<void() &&> on_delete_callback) : allocator_(allocator), device_(device), device_memory_(device_memory.begin(), device_memory.end()), definition_events_(std::make_move_iterator(definition_events.begin()), std::make_move_iterator(definition_events.end())), in_use_(true), on_delete_callback_(std::move(on_delete_callback)) {} TrackedDeviceBuffer::~TrackedDeviceBuffer() { if (allocator_) { for (const se::DeviceMemoryBase& buffer : device_memory_) { absl::Status status = allocator_->Deallocate(device_->local_device_id().value(), buffer); if (!status.ok()) { LOG(ERROR) << "Buffer deallocation failed: " << status; } } } if (on_delete_callback_) { std::move(on_delete_callback_)(); } } void TrackedDeviceBuffer::AddUsageEvent( se::Stream* usage_stream, std::shared_ptr<BufferSequencingEvent> event, bool reference_held) { CHECK(in_use_); if (*event == 0) { usage_events_.push_back({usage_stream, event, reference_held}); return; } for (auto& existing : usage_events_) { if (*existing.event == 0) continue; if (existing.stream == usage_stream) { if (*existing.event < *event) { existing.event = event; existing.reference_held = reference_held; } return; } } usage_events_.push_back({usage_stream, event, reference_held}); } TrackedDeviceBuffer::StreamAndEventContainer TrackedDeviceBuffer::LockUseAndTransferUsageEvents() { CHECK(in_use_); in_use_ = false; return std::move(usage_events_); } void GetDeviceBufferEvents( const TrackedDeviceBuffer& buffer, bool get_usage_events, absl::flat_hash_set<BufferSequencingEvent*>* events) { if (get_usage_events) { for (const auto& e : buffer.usage_events()) { events->insert(e.event.get()); } } else { for (const auto& e : buffer.definition_events()) { events->insert(e.get()); } } } void WaitForBufferDefinitionEventsOnStream(const TrackedDeviceBuffer& buffer, se::Stream* stream) { absl::flat_hash_set<BufferSequencingEvent*> events; GetDeviceBufferEvents(buffer, false, &events); for (BufferSequencingEvent* event : events) { event->WaitForEventOnStream(stream); } } }
#include "xla/pjrt/tracked_device_buffer.h" #include <memory> #include <vector> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/client/client_library.h" #include "xla/client/local_client.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_future.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/test.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class TestDevice : public PjRtDevice { public: TestDevice() = default; PjRtLocalHardwareId local_hardware_id() const override { return PjRtLocalHardwareId(0); } PjRtClient* client() const override { LOG(FATAL) << "Unimplemented for TestDevice."; } bool IsAddressable() const override { LOG(FATAL) << "Unimplemented for TestDevice."; } std::unique_ptr<ScopedAsyncTrackingEvent> CreateAsyncTrackingEvent( absl::string_view description) const override { LOG(FATAL) << "Unimplemented for TestDevice."; } absl::Status TransferToInfeed(const LiteralSlice& literal) override { return Unimplemented("Unimplemented for TestDeivce."); } absl::Status TransferFromOutfeed(MutableBorrowingLiteral literal) override { return Unimplemented("Unimplemented for TestDeivce."); } absl::Span<PjRtMemorySpace* const> memory_spaces() const override { LOG(FATAL) << "Unimplemented for TestDevice."; } absl::StatusOr<PjRtMemorySpace*> default_memory_space() const override { LOG(FATAL) << "Unimplemented for TestDevice."; } }; absl::StatusOr<std::shared_ptr<TrackedDeviceBuffer>> MakeArray( const Shape& shape, LocalClient* client, PjRtDevice* device) { std::vector<stream_executor::DeviceMemoryBase> device_buffers; TF_RETURN_IF_ERROR(ShapeUtil::ForEachSubshapeWithStatus( client->backend().transfer_manager()->HostShapeToDeviceShape(shape), [&](const Shape& subshape, const ShapeIndex&) -> absl::Status { TF_ASSIGN_OR_RETURN( se::OwningDeviceMemory device_memory, client->backend().memory_allocator()->Allocate( 0, client->backend().transfer_manager()->GetByteSizeRequirement( subshape))); device_buffers.push_back(device_memory.Release()); return absl::OkStatus(); })); return std::make_shared<TrackedDeviceBuffer>( client->backend().memory_allocator(), device, device_buffers, absl::Span<const std::shared_ptr<BufferSequencingEvent>>(), nullptr); } TEST(TrackedDeviceBufferTest, AsShapedBuffer) { LocalClient* client = ClientLibrary::LocalClientOrDie(); TestDevice device; Shape a_shape = ShapeUtil::MakeShape(F32, {3, 101, 4}); Shape b_shape = ShapeUtil::MakeShape(S8, {77}); Shape c_shape = ShapeUtil::MakeShape(S64, {}); TF_ASSERT_OK_AND_ASSIGN(auto a_buffer, MakeArray(a_shape, client, &device)); TF_ASSERT_OK_AND_ASSIGN(auto b_buffer, MakeArray(b_shape, client, &device)); TF_ASSERT_OK_AND_ASSIGN(auto c_buffer, MakeArray(c_shape, client, &device)); ASSERT_EQ(a_buffer->device_memory().size(), 1); ASSERT_EQ(b_buffer->device_memory().size(), 1); ASSERT_EQ(c_buffer->device_memory().size(), 1); std::vector<se::DeviceMemoryBase> expected_buffer_sequence = { a_buffer->device_memory()[0], b_buffer->device_memory()[0], c_buffer->device_memory()[0]}; ShapedBuffer shaped_a = a_buffer->AsShapedBuffer( client->backend().transfer_manager()->HostShapeToDeviceShape(a_shape)); ShapedBuffer shaped_b = b_buffer->AsShapedBuffer( client->backend().transfer_manager()->HostShapeToDeviceShape(b_shape)); ShapedBuffer shaped_c = c_buffer->AsShapedBuffer( client->backend().transfer_manager()->HostShapeToDeviceShape(c_shape)); auto expected_it = expected_buffer_sequence.begin(); for (auto it = shaped_a.buffers().begin(); it != shaped_a.buffers().end(); ++it) { ASSERT_TRUE(expected_it != expected_buffer_sequence.end()); EXPECT_TRUE(expected_it->IsSameAs(it->second)); ++expected_it; } for (auto it = shaped_b.buffers().begin(); it != shaped_b.buffers().end(); ++it) { ASSERT_TRUE(expected_it != expected_buffer_sequence.end()); EXPECT_TRUE(expected_it->IsSameAs(it->second)); ++expected_it; } for (auto it = shaped_c.buffers().begin(); it != shaped_c.buffers().end(); ++it) { ASSERT_TRUE(expected_it != expected_buffer_sequence.end()); EXPECT_TRUE(expected_it->IsSameAs(it->second)); ++expected_it; } EXPECT_TRUE(expected_it == expected_buffer_sequence.end()); } TEST(TrackedDeviceBufferTest, FromScopedShapedBuffer) { TestDevice device; LocalClient* client = ClientLibrary::LocalClientOrDie(); Literal literal = LiteralUtil::MakeTupleOwned( LiteralUtil::CreateFullWithDescendingLayout<float>({10, 3, 7}, 33.4f), LiteralUtil::One(S64)); TF_ASSERT_OK_AND_ASSIGN( ScopedShapedBuffer shaped_buffer, client->LiteralToShapedBuffer(literal, 0)); std::shared_ptr<TrackedDeviceBuffer> device_buffer = TrackedDeviceBuffer::FromScopedShapedBuffer(&shaped_buffer, {}, &device); EXPECT_EQ(device_buffer->device_memory().size(), ShapeUtil::SubshapeCount( client->backend().transfer_manager()->HostShapeToDeviceShape( literal.shape()))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/tracked_device_buffer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/tracked_device_buffer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
910cd118-d757-4424-beac-fac04be8dd3a
cpp
tensorflow/tensorflow
pjrt_client
third_party/xla/xla/python/pjrt_ifrt/pjrt_client.cc
third_party/xla/xla/pjrt/pjrt_client_test.cc
#include "xla/python/pjrt_ifrt/pjrt_client.h" #include <atomic> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <variant> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/log/check.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "llvm/Support/Casting.h" #include "xla/layout.h" #include "xla/literal.h" #include "xla/pjrt/distributed/protocol.pb.h" #include "xla/pjrt/distributed/topology_util.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_device_description.h" #include "xla/pjrt/pjrt_future.h" #include "xla/pjrt/pjrt_layout.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/attribute_map.h" #include "xla/python/ifrt/client.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/remap_plan.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/ifrt/topology.h" #include "xla/python/ifrt/tuple.h" #include "xla/python/ifrt/value.h" #include "xla/python/pjrt_ifrt/basic_string_array.h" #include "xla/python/pjrt_ifrt/pjrt_array.h" #include "xla/python/pjrt_ifrt/pjrt_attribute_map_util.h" #include "xla/python/pjrt_ifrt/pjrt_device.h" #include "xla/python/pjrt_ifrt/pjrt_dtype.h" #include "xla/python/pjrt_ifrt/pjrt_memory.h" #include "xla/python/pjrt_ifrt/pjrt_remap.h" #include "xla/python/pjrt_ifrt/pjrt_topology.h" #include "xla/python/pjrt_ifrt/pjrt_tuple.h" #include "xla/python/pjrt_ifrt/xla_sharding.h" #include "xla/status_macros.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/util.h" #include "tsl/platform/casts.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { absl::AnyInvocable<void() &&> FromStdFunction(std::function<void()>&& f) { return f ? std::move(f) : absl::AnyInvocable<void() &&>(); } AttributeMap MakeAttributeMap(xla::PjRtClient* pjrt_client) { absl::flat_hash_map<std::string, PjRtValueType> attributes; attributes.insert({"supports_executable_serialization", true}); if (std::optional<PjRtPluginAttributes> plugin_attributes = pjrt_client->plugin_attributes(); plugin_attributes.has_value()) { attributes.insert( {"pjrt_c_api_major_version", PjRtValueType(plugin_attributes->pjrt_c_api_major_version)}); attributes.insert( {"pjrt_c_api_minor_version", PjRtValueType(plugin_attributes->pjrt_c_api_minor_version)}); for (const auto& [key, value] : plugin_attributes->attributes) { attributes.insert({key, value}); } } return FromPjRtAttributeMap(std::move(attributes)); } void SerializePjRtDeviceAttributes( const absl::flat_hash_map<std::string, PjRtDeviceAttribute>& attributes, DeviceProto& device_proto) { for (const auto& [key, value] : attributes) { DeviceAttributeProto& attribute = (*device_proto.mutable_attributes())[key]; if (std::holds_alternative<std::string>(value)) { attribute.set_string_value(std::get<std::string>(value)); } else if (std::holds_alternative<int64_t>(value)) { attribute.set_int_value(std::get<int64_t>(value)); } else if (std::holds_alternative<std::vector<int64_t>>(value)) { auto values = std::get<std::vector<int64_t>>(value); attribute.mutable_int_values()->mutable_values()->Assign(values.begin(), values.end()); } else if (std::holds_alternative<bool>(value)) { attribute.set_bool_value(std::get<bool>(value)); } else if (std::holds_alternative<float>(value)) { attribute.set_float_value(std::get<float>(value)); } } } absl::Status DeserializePjRtDeviceAttributes( const DeviceProto& device_proto, absl::flat_hash_map<std::string, PjRtDeviceAttribute>& attributes) { for (const auto& [key, value] : device_proto.attributes()) { if (value.has_string_value()) { attributes[key] = value.string_value(); } else if (value.has_int_value()) { attributes[key] = value.int_value(); } else if (value.has_int_values()) { attributes[key] = std::vector<int64_t>(value.int_values().values().begin(), value.int_values().values().end()); } else if (value.has_bool_value()) { attributes[key] = value.bool_value(); } else if (value.has_float_value()) { attributes[key] = value.float_value(); } } return absl::OkStatus(); } absl::StatusOr<tsl::RCReference<Array>> MakeStringArrayFromHostBuffer( Client* client, const void* data, DType dtype, Shape shape, std::optional<absl::Span<const int64_t>> byte_strides, std::shared_ptr<const Sharding> sharding, Client::HostBufferSemantics semantics, std::function<void()> on_done_with_host_buffer) { auto param_validation = [&]() -> absl::Status { if (byte_strides.has_value()) { return absl::InvalidArgumentError( "byte_strides is not currently supported for making " "BasicStringArrays."); } if (semantics != Client::HostBufferSemantics::kImmutableOnlyDuringCall) { return absl::InvalidArgumentError( "HostBufferSemantics other than kImmutableOnlyDuringCall are not " "currently supported for making BasicStringArrays."); } if (!llvm::isa<const SingleDeviceSharding>(sharding.get())) { return absl::InvalidArgumentError( absl::StrCat("Only SingleDeviceSharding is supported for making " "BasicStringArrays: got: ", sharding->DebugString())); } return absl::OkStatus(); }(); TF_RETURN_IF_ERROR(param_validation); auto num_elements = shape.num_elements(); auto strings = std::make_shared<std::vector<std::string>>(); strings->reserve(num_elements); auto string_views = std::make_shared<std::vector<absl::string_view>>(); string_views->reserve(num_elements); auto element = static_cast<const absl::string_view*>(data); for (int i = 0; i < num_elements; ++i, ++element) { strings->push_back(std::string(*element)); string_views->push_back(absl::string_view(strings->back())); } std::move(on_done_with_host_buffer)(); BasicStringArray::Buffers buffers; buffers.push_back(*string_views); auto buffer_releaser = [strings = std::move(strings), string_views = std::move(string_views)]() {}; return BasicStringArray::Create( client, std::move(shape), std::move(sharding), Future<BasicStringArray::Buffers>(std::move(buffers)), std::move(buffer_releaser)); } absl::StatusOr<tsl::RCReference<Array>> AssembleStringArrayFromSingleDeviceStringArrays( Shape shape, std::shared_ptr<const Sharding> sharding, absl::Span<tsl::RCReference<Array>> arrays, ArrayCopySemantics semantics) { struct BufferBackingStore { explicit BufferBackingStore(int num_shards) : per_shard_strings(num_shards), per_shard_string_views(num_shards) {} void clear() { per_shard_strings.clear(); per_shard_string_views.clear(); } void CopyBuffer(absl::Span<const absl::string_view> strbuf, int shard_index, BasicStringArray::Buffers* buffers) { auto& strings = per_shard_strings[shard_index]; strings.reserve(strbuf.size()); auto& views = per_shard_string_views[shard_index]; views.reserve(strbuf.size()); for (int i = 0; i < strbuf.size(); ++i) { strings.push_back(std::string(strbuf[i].data(), strbuf[i].size())); } for (const auto& str : strings) { views.push_back(str); } (*buffers)[shard_index] = absl::MakeConstSpan(views); } std::vector<std::vector<std::string>> per_shard_strings; std::vector<std::vector<absl::string_view>> per_shard_string_views; }; auto buffer_backing_store = std::make_shared<BufferBackingStore>(sharding->devices()->size()); auto on_done_with_buffer = [buffer_holder = buffer_backing_store]() {}; struct BufferCopyingState { BufferCopyingState(int num_buffers_to_copy, std::shared_ptr<BufferBackingStore> buffer_backing_store) : num_buffers_to_copy(num_buffers_to_copy), buffer_backing_store(std::move(buffer_backing_store)), buffers(num_buffers_to_copy) {} absl::Mutex mu; int num_buffers_to_copy ABSL_GUARDED_BY(mu); std::shared_ptr<BufferBackingStore> buffer_backing_store ABSL_GUARDED_BY(mu); BasicStringArray::Buffers buffers ABSL_GUARDED_BY(mu); }; auto buffer_copying_state = std::make_shared<BufferCopyingState>( arrays.size(), std::move(buffer_backing_store)); auto buffers_promise = Future<BasicStringArray::Buffers>::CreatePromise(); auto buffers_future = Future<BasicStringArray::Buffers>(buffers_promise); auto buffer_copier = [state = buffer_copying_state, promise = buffers_promise]( absl::StatusOr<BasicStringArray::Buffers> strbuf, int shard_index) mutable { absl::MutexLock lock(&state->mu); if (state->num_buffers_to_copy == 0) { return; } if (!strbuf.ok()) { promise.Set(strbuf.status()); state->num_buffers_to_copy = 0; state->buffer_backing_store->clear(); state->buffer_backing_store = nullptr; return; } state->buffer_backing_store->CopyBuffer(strbuf->front(), shard_index, &state->buffers); if (--state->num_buffers_to_copy > 0) { return; } promise.Set(std::move(state->buffers)); }; for (int i = 0; i < arrays.size(); ++i) { auto basic_string_array = llvm::dyn_cast<BasicStringArray>(arrays[i].get()); if (!basic_string_array) { return absl::InvalidArgumentError( "All single device arrays must be BasicStringArrays"); } if (!llvm::isa<SingleDeviceSharding>(basic_string_array->sharding())) { return absl::InvalidArgumentError(absl::StrFormat( "All single device arrays must have single device sharding. got: %s " "for shard index: %d", basic_string_array->sharding().DebugString(), i)); } basic_string_array->buffers().OnReady( [shard_index = i, buffer_copier = buffer_copier]( absl::StatusOr<BasicStringArray::Buffers> strbuf) mutable { buffer_copier(std::move(strbuf), shard_index); }); } return BasicStringArray::Create(arrays[0]->client(), std::move(shape), std::move(sharding), buffers_future, std::move(on_done_with_buffer)); } } char PjRtCompatibleClient::ID = 0; char PjRtClient::ID = 0; absl::StatusOr<std::unique_ptr<PjRtClient>> PjRtClient::Create( PjRtClient::CreateOptions options) { auto client = absl::WrapUnique(new PjRtClient(std::move(options.pjrt_client))); xla::PjRtClient* pjrt_client = client->pjrt_client(); std::vector<std::unique_ptr<PjRtDevice>> devices; if (!options.kv_store) { devices.reserve(pjrt_client->devices().size()); for (xla::PjRtDevice* device : pjrt_client->devices()) { auto ifrt_device = std::make_unique<PjRtDevice>( client.get(), DeviceId(device->global_device_id().value()), std::string(device->device_kind()), std::string(device->ToString()), std::string(device->DebugString()), device->process_index(), device->Attributes(), device->IsAddressable() ? device : nullptr); devices.push_back(std::move(ifrt_device)); } } else { LocalTopologyProto local_topology; local_topology.set_node_id(options.process_id); std::string boot_id_str; auto boot_id_str_or_status = GetBootIdString(); if (!boot_id_str_or_status.ok()) { LOG(INFO) << boot_id_str_or_status.status(); } else { boot_id_str = boot_id_str_or_status.value(); } local_topology.set_boot_id(boot_id_str); absl::flat_hash_map<PjRtLocalDeviceId, xla::PjRtDevice*> pjrt_devices; for (xla::PjRtDevice* device : pjrt_client->addressable_devices()) { pjrt_devices[device->local_device_id()] = device; DeviceProto& device_proto = *local_topology.add_devices(); device_proto.set_global_device_id(device->global_device_id().value()); device_proto.set_local_device_ordinal(device->local_device_id().value()); device_proto.set_device_kind( std::string(device->description().device_kind())); device_proto.set_to_string(std::string(device->ToString())); device_proto.set_debug_string(std::string(device->DebugString())); SerializePjRtDeviceAttributes(device->Attributes(), device_proto); } GlobalTopologyProto global_topology; TF_RETURN_IF_ERROR(ExchangeTopologies( pjrt_client->platform_name(), options.process_id, options.num_processes, options.get_local_topology_timeout, options.get_global_topology_timeout, options.kv_store.get(), local_topology, &global_topology, false)); int next_slice_index = 0; absl::flat_hash_map<std::string, int> boot_id_to_slice_index; for (const LocalTopologyProto& node : global_topology.nodes()) { int64_t slice_index = -1; if (!node.boot_id().empty()) { std::string_view boot_id = node.boot_id(); auto [it, inserted] = boot_id_to_slice_index.try_emplace(boot_id, next_slice_index); slice_index = it->second; if (inserted) { ++next_slice_index; } } bool node_is_me = (node.node_id() == options.process_id); for (const DeviceProto& device_proto : node.devices()) { absl::flat_hash_map<std::string, PjRtDeviceAttribute> attributes; TF_RETURN_IF_ERROR( DeserializePjRtDeviceAttributes(device_proto, attributes)); if (!attributes.contains("slice_index")) { attributes["slice_index"] = slice_index; } xla::PjRtDevice* pjrt_device = nullptr; if (node_is_me) { auto it = pjrt_devices.find( PjRtLocalDeviceId(device_proto.local_device_ordinal())); TF_RET_CHECK(it != pjrt_devices.end()); pjrt_device = it->second; } auto ifrt_device = std::make_unique<PjRtDevice>( client.get(), DeviceId(device_proto.global_device_id()), device_proto.device_kind(), device_proto.to_string(), device_proto.debug_string(), node.node_id(), std::move(attributes), pjrt_device); devices.push_back(std::move(ifrt_device)); } } } client->devices_.reserve(devices.size()); client->device_map_.reserve(pjrt_client->addressable_device_count()); for (auto& ifrt_device : devices) { client->devices_.push_back(ifrt_device.get()); TF_RET_CHECK( client->device_id_map_.emplace(ifrt_device->Id(), ifrt_device.get()) .second); xla::PjRtDevice* pjrt_device = ifrt_device->pjrt_device(); if (pjrt_device) { TF_RET_CHECK( client->device_map_.emplace(pjrt_device, ifrt_device.get()).second); } client->owned_devices_.push_back(std::move(ifrt_device)); } client->addressable_devices_.reserve( pjrt_client->addressable_devices().size()); for (xla::PjRtDevice* device : pjrt_client->addressable_devices()) { auto it = client->device_map_.find(device); CHECK(it != client->device_map_.end()); client->addressable_devices_.push_back(it->second); } client->memory_map_.reserve(pjrt_client->memory_spaces().size()); for (xla::PjRtMemorySpace* memory_space : pjrt_client->memory_spaces()) { auto ifrt_memory = std::make_unique<PjRtMemory>(client.get(), memory_space); client->memory_map_[memory_space] = ifrt_memory.get(); client->owned_memories_.push_back(std::move(ifrt_memory)); } for (Device* ifrt_device : client->addressable_devices_) { auto* device = tensorflow::down_cast<PjRtDevice*>(ifrt_device); auto* pjrt_device = device->pjrt_device(); device->memories_.reserve(pjrt_device->memory_spaces().size()); for (xla::PjRtMemorySpace* pjrt_memory_space : pjrt_device->memory_spaces()) { device->memories_.push_back(*client->LookupPjRtMemory(pjrt_memory_space)); } absl::StatusOr<PjRtMemorySpace*> memory = pjrt_device->default_memory_space(); if (memory.ok()) { device->default_memory_ = *client->LookupPjRtMemory(*memory); } else { device->default_memory_ = memory.status(); } } return client; } std::unique_ptr<PjRtClient> PjRtClient::Create( std::shared_ptr<xla::PjRtClient> pjrt_client) { PjRtClient::CreateOptions options; options.pjrt_client = std::move(pjrt_client); return *Create(std::move(options)); } PjRtClient::PjRtClient(std::shared_ptr<xla::PjRtClient> pjrt_client) : pjrt_client_(std::move(pjrt_client)), default_compiler_(this), attributes_(MakeAttributeMap(pjrt_client_.get())) {} PjRtClient::~PjRtClient() = default; absl::StatusOr<PjRtCompatibleDevice*> PjRtClient::LookupPjRtDevice( xla::PjRtDevice* pjrt_device) const { auto it = device_map_.find(pjrt_device); if (it == device_map_.end()) { return InvalidArgument("PjRtDevice not found: %s", pjrt_device->DebugString()); } return it->second; } absl::StatusOr<PjRtCompatibleMemory*> PjRtClient::LookupPjRtMemory( xla::PjRtMemorySpace* pjrt_memory) const { auto it = memory_map_.find(pjrt_memory); if (it == memory_map_.end()) { return InvalidArgument("PjRtMemorySpace not found: %s", pjrt_memory->DebugString()); } return it->second; } absl::StatusOr<Device*> PjRtClient::LookupDevice(DeviceId device_id) const { DCHECK(this); auto it = device_id_map_.find(device_id); if (it != device_id_map_.end()) { return it->second; } return InvalidArgument("No matching device found for device_id %d", device_id.value()); } absl::StatusOr<Device*> PjRtClient::LookupAddressableDevice( int local_hardware_id) const { DCHECK(this); TF_ASSIGN_OR_RETURN(xla::PjRtDevice * pjrt_device, pjrt_client_->LookupAddressableDevice( xla::PjRtLocalDeviceId(local_hardware_id))); return LookupPjRtDevice(pjrt_device); } const AttributeMap& PjRtClient::Attributes() const { return attributes_; } absl::StatusOr<tsl::RCReference<PjRtCompatibleArray>> PjRtClient::CreatePjRtArray(std::shared_ptr<PjRtBuffer> pjrt_buffer) { TF_ASSIGN_OR_RETURN(auto array, PjRtArray::Create(this, std::move(pjrt_buffer))); return tsl::RCReference<PjRtCompatibleArray>(std::move(array)); } absl::StatusOr<tsl::RCReference<PjRtCompatibleArray>> PjRtClient::CreatePjRtArray(Shape shape, PjRtBuffers pjrt_buffers) { TF_ASSIGN_OR_RETURN(auto array, PjRtArray::Create(this, std::move(shape), std::move(pjrt_buffers))); return tsl::RCReference<PjRtCompatibleArray>(std::move(array)); } absl::StatusOr<tsl::RCReference<Array>> PjRtClient::MakeArrayFromHostBuffer( const void* data, DType dtype, Shape shape, std::optional<absl::Span<const int64_t>> byte_strides, std::shared_ptr<const Sharding> sharding, Client::HostBufferSemantics semantics, std::function<void()> on_done_with_host_buffer) { DCHECK(this); if (dtype.kind() == DType::kString) { return MakeStringArrayFromHostBuffer(this, data, dtype, shape, byte_strides, sharding, semantics, on_done_with_host_buffer); } if (!llvm::isa<const SingleDeviceSharding>(sharding.get()) && !sharding->IsFullyReplicated()) { return InvalidArgument( "Only SingleDeviceSharding or fully-replicated sharding is supported: " "sharding=%s", sharding->DebugString()); } TF_ASSIGN_OR_RETURN(auto primitive_type, ToPrimitiveType(dtype)); auto count = std::make_shared<std::atomic<int>>(sharding->devices()->size()); std::function<void()> on_done_with_host_buffer_per_device; if (on_done_with_host_buffer) { on_done_with_host_buffer_per_device = [on_done_with_host_buffer = std::move(on_done_with_host_buffer), count]() { if (count->fetch_sub(1, std::memory_order_relaxed) == 1) { on_done_with_host_buffer(); } }; } else { on_done_with_host_buffer_per_device = []() {}; } PjRtArray::PjRtBuffers buffers; buffers.reserve(sharding->devices()->size()); for (xla::ifrt::Device* const device : sharding->devices()->devices()) { std::unique_ptr<PjRtBuffer> buffer; if (sharding->memory_kind().memory_kind().has_value()) { Memory* memory = nullptr; for (Memory* ms : device->Memories()) { if (ms->Kind() == sharding->memory_kind()) { memory = ms; break; } } if (memory == nullptr) { return InvalidArgument( "Invalid memory kind: %s; available memory kinds: %s", *sharding->memory_kind().memory_kind(), absl::StrJoin(sharding->devices()->devices().front()->Memories(), ", ", [](std::string* out, Memory* ms) { absl::StrAppend(out, *ms->Kind().memory_kind()); })); } TF_ASSIGN_OR_RETURN( buffer, pjrt_client_->BufferFromHostBuffer( data, primitive_type, shape.dims(), byte_strides, semantics, on_done_with_host_buffer_per_device, tensorflow::down_cast<PjRtMemory*>(memory)->pjrt_memory(), nullptr)); } else { if (!device->IsAddressable()) { return InvalidArgument("Cannot copy array to non-addressable device %s", device->DebugString()); } TF_ASSIGN_OR_RETURN( buffer, pjrt_client_->BufferFromHostBuffer( data, primitive_type, shape.dims(), byte_strides, semantics, on_done_with_host_buffer_per_device, tensorflow::down_cast<PjRtDevice*>(device)->pjrt_device())); } buffers.push_back(std::move(buffer)); } return PjRtArray::Create(this, dtype, std::move(shape), std::move(sharding), std::move(buffers)); } absl::StatusOr<tsl::RCReference<Array>> PjRtClient::AssembleArrayFromSingleDeviceArrays( Shape shape, std::shared_ptr<const Sharding> sharding, absl::Span<tsl::RCReference<Array>> arrays, ArrayCopySemantics semantics) { DCHECK(this); if (llvm::isa<const SingleDeviceSharding>(sharding.get())) { if (arrays.size() != 1) { return InvalidArgument( "When the sharding is SingleDeviceSharding, the input arrays size " "must be one, but the actual size is %d", arrays.size()); } return arrays[0]; } else if (!llvm::isa<const OpaqueSharding, const ConcreteSharding, const ConcreteEvenSharding, const ShardingParamSharding, const HloSharding>(sharding.get())) { return InvalidArgument( "Only SingleDeviceSharding, OpaqueSharding, ConcreteSharding, " "ConcreteEvenSharding, ShardingParamSharding, HloSharding are " "supported: sharding=%s", sharding->DebugString()); } if (sharding->devices()->size() != arrays.size()) { return InvalidArgument( "Number of output shards must match the number of single-shard " "arrays: %d vs. %d", sharding->devices()->size(), arrays.size()); } if (arrays[0]->dtype().kind() == DType::kString) { return AssembleStringArrayFromSingleDeviceStringArrays(shape, sharding, arrays, semantics); } PjRtArray::PjRtBuffers buffers; buffers.reserve(arrays.size()); DType dtype = arrays[0]->dtype(); for (int i = 0; i < arrays.size(); ++i) { if (!llvm::isa<PjRtCompatibleArray>(arrays[i].get())) { return InvalidArgument( "Only PjRtCompatibleArray is supported: arrays[%d]=%s", i, arrays[i]->DebugString()); } auto* array = static_cast<PjRtCompatibleArray*>(arrays[i].get()); if (array->dtype() != dtype) { return InvalidArgument( "Every input must have the same dtype: %s (shard 0) vs. %s (shard " "%d)", dtype.DebugString(), array->dtype().DebugString(), i); } if (array->sharding().devices()->size() != 1) { return InvalidArgument( "Every input must use a single device sharding, but input %d has " "sharding=%s", i, array->sharding().DebugString()); } switch (semantics) { case ArrayCopySemantics::kAlwaysCopy: buffers.push_back(array->pjrt_buffers().front()); break; case ArrayCopySemantics::kReuseInput: buffers.push_back(array->pjrt_buffers().front()); break; case ArrayCopySemantics::kDonateInput: buffers.push_back(std::move(array->pjrt_buffers().front())); break; } } return PjRtArray::Create(this, dtype, std::move(shape), std::move(sharding), std::move(buffers)); } absl::StatusOr<std::vector<tsl::RCReference<Array>>> PjRtClient::CopyArrays( absl::Span<tsl::RCReference<Array>> arrays, std::optional<tsl::RCReference<DeviceList>> devices, std::optional<MemoryKind> memory_kind, ArrayCopySemantics semantics) { if (arrays.empty()) { return std::vector<tsl::RCReference<Array>>(); } for (int i = 1; i < arrays.size(); ++i) { const auto& sharding = arrays[i]->sharding(); if (*sharding.devices() != *arrays[0]->sharding().devices() || sharding.memory_kind() != arrays[0]->sharding().memory_kind()) { return absl::InvalidArgumentError( "CopyArrays only supports arrays with the same device list and " "memory kind"); } } std::vector<tsl::RCReference<Array>> new_arrays; new_arrays.reserve(arrays.size()); for (const auto& array : arrays) { if (auto* const pjrt_array = llvm::dyn_cast<PjRtArray>(array.get())) { TF_ASSIGN_OR_RETURN(new_arrays.emplace_back(), pjrt_array->Copy(devices, memory_kind, semantics)); } else if (auto* const string_array = llvm::dyn_cast<BasicStringArray>(array.get())) { TF_ASSIGN_OR_RETURN(new_arrays.emplace_back(), string_array->Copy(devices, memory_kind, semantics)); } else { return absl::InvalidArgumentError( "Unsupported array type for PjRtClient::CopyArrays"); } } return new_arrays; } absl::StatusOr<std::vector<tsl::RCReference<xla::ifrt::Array>>> PjRtClient::RemapArrays(const RemapPlan& plan, absl::Span<tsl::RCReference<xla::ifrt::Array>> arrays, ArrayCopySemantics semantics) { return PjRtCompatibleClientRemapArrays(this, plan, arrays, semantics); } Future<> PjRtClient::GetReadyFuture( absl::Span<const tsl::RCReference<Value>> values) { absl::InlinedVector<Future<>, 1> futures; futures.reserve(values.size()); for (const auto& value : values) { futures.push_back(value->GetReadyFuture()); } return JoinFutures(futures); } absl::StatusOr<tsl::RCReference<Tuple>> PjRtClient::MakeTuple( absl::Span<tsl::RCReference<Value>> values) { return PjRtTuple::Create(this, values); } absl::StatusOr<std::shared_ptr<Topology>> PjRtClient::GetTopologyForDevices( const tsl::RCReference<xla::ifrt::DeviceList>& devices) const { TF_ASSIGN_OR_RETURN(auto topology, pjrt_client_->GetTopologyDescription()); return std::make_shared<PjRtTopology>( std::shared_ptr<const xla::PjRtTopologyDescription>(pjrt_client_, topology)); } absl::StatusOr<std::unique_ptr<PjRtLayout>> PjRtClient::GetDefaultLayoutForDevice(DType dtype, absl::Span<const int64_t> dims, Device* device) const { TF_ASSIGN_OR_RETURN(PrimitiveType element_type, ToPrimitiveType(dtype)); TF_ASSIGN_OR_RETURN(xla::Layout layout, pjrt_client_->GetDefaultLayout(element_type, dims)); return std::make_unique<PjRtXlaLayout>(std::move(layout)); } absl::Status PjRtClient::TransferToInfeed(PjRtDevice* device, const LiteralSlice& literal) { if (!device->IsAddressable()) { return InvalidArgument( "Infeed is only supported on addressable devices " "but device %s is not addressable", device->DebugString()); } return device->pjrt_device()->TransferToInfeed(literal); } absl::Status PjRtClient::TransferFromOutfeed(PjRtDevice* device, MutableBorrowingLiteral literal) { if (!device->IsAddressable()) { return InvalidArgument( "Outfeed is only supported on addressable devices " "but device %s is not addressable", device->DebugString()); } return device->pjrt_device()->TransferFromOutfeed(literal); } } }
#include "xla/pjrt/pjrt_client_test.h" #include <cstdint> #include <functional> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "absl/synchronization/blocking_counter.h" #include "absl/types/span.h" #include "xla/client/xla_builder.h" #include "xla/client/xla_computation.h" #include "xla/pjrt/pjrt_client.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/literal_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class TestClientFactory { public: void Register( std::function<absl::StatusOr<std::unique_ptr<PjRtClient>>()> factory) { absl::MutexLock lock(&mu_); CHECK(!factory_); factory_ = std::move(factory); } std::function<absl::StatusOr<std::unique_ptr<PjRtClient>>()> Get() const { absl::MutexLock lock(&mu_); return factory_; } private: mutable absl::Mutex mu_; std::function<absl::StatusOr<std::unique_ptr<PjRtClient>>()> factory_ ABSL_GUARDED_BY(mu_); }; TestClientFactory& GetGlobalTestClientFactory() { static auto* const factory = new TestClientFactory; return *factory; } absl::StatusOr<std::unique_ptr<PjRtClient>> GetClient() { return GetGlobalTestClientFactory().Get()(); } } void RegisterTestClientFactory( std::function<absl::StatusOr<std::unique_ptr<PjRtClient>>()> factory) { GetGlobalTestClientFactory().Register(std::move(factory)); } namespace { std::unique_ptr<PjRtLoadedExecutable> MakeIncrementProgram( PjRtClient* client, bool alias, int device, bool tuplize_arg = false) { Shape shape = ShapeUtil::MakeShape(S32, {4}); XlaBuilder builder("inc"); if (tuplize_arg) { shape = ShapeUtil::MakeTupleShape({shape}); } auto inp = Parameter(&builder, 0, shape, "inp"); if (tuplize_arg) { inp = GetTupleElement(inp, 0); } auto one = ConstantR0<int32_t>(&builder, 1); auto inc = Add(inp, one); if (alias) { builder.SetUpAlias({}, 0, {}); } XlaComputation computation = builder.Build(inc).value(); DeviceAssignment assignment(1, 1); assignment(0, 0) = device; CompileOptions options; options.parameter_is_tupled_arguments = tuplize_arg; options.executable_build_options.set_device_assignment(assignment); return client->Compile(computation, options).value(); } class PjRtClientTest : public ::testing::TestWithParam<ExecuteOptions::ExecutionMode> {}; TEST_P(PjRtClientTest, Execute) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); auto executable = MakeIncrementProgram(client.get(), false, 0); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); ExecuteOptions options; options.execution_mode = GetParam(); TF_ASSERT_OK_AND_ASSIGN(auto results, executable->Execute({{buffer.get()}}, options)); ASSERT_EQ(results.size(), 1); ASSERT_EQ(results[0].size(), 1); TF_ASSERT_OK_AND_ASSIGN(auto literal, results[0][0]->ToLiteralSync()); std::vector<int32_t> expected(4, 1); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } TEST_P(PjRtClientTest, ExecuteWithImmutableUntilTransferCompletes) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); auto executable = MakeIncrementProgram(client.get(), false, 0); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableUntilTransferCompletes, nullptr, client->addressable_devices()[0])); ExecuteOptions options; options.execution_mode = GetParam(); TF_ASSERT_OK_AND_ASSIGN(auto results, executable->Execute({{buffer.get()}}, options)); ASSERT_EQ(results.size(), 1); ASSERT_EQ(results[0].size(), 1); TF_ASSERT_OK_AND_ASSIGN(auto literal, results[0][0]->ToLiteralSync()); std::vector<int32_t> expected(4, 1); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } TEST_P(PjRtClientTest, ExecuteWithTupleZeroCopy) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); auto executable = MakeIncrementProgram(client.get(), false, 0, true); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableZeroCopy, [&data]() { std::fill(data.begin(), data.end(), 1); }, client->addressable_devices()[0])); ExecuteOptions options; options.execution_mode = GetParam(); TF_ASSERT_OK_AND_ASSIGN(auto results, executable->Execute({{buffer.get()}}, options)); buffer.reset(); ASSERT_EQ(results.size(), 1); ASSERT_EQ(results[0].size(), 1); TF_ASSERT_OK_AND_ASSIGN(auto literal, results[0][0]->ToLiteralSync()); std::vector<int32_t> expected(4, 1); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } TEST_P(PjRtClientTest, ExecuteWithDonation) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); auto executable = MakeIncrementProgram(client.get(), true, 0); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableZeroCopy, nullptr, client->addressable_devices()[0])); ExecuteOptions options; options.execution_mode = GetParam(); TF_ASSERT_OK_AND_ASSIGN(auto results, executable->Execute({{buffer.get()}}, options)); ASSERT_EQ(results.size(), 1); ASSERT_EQ(results[0].size(), 1); TF_ASSERT_OK_AND_ASSIGN(auto literal, results[0][0]->ToLiteralSync()); std::vector<int32_t> expected(4, 1); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } TEST_P(PjRtClientTest, ExecuteWithDonationAbort) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); if (client->platform_id() == CpuId()) { return; } auto executable = MakeIncrementProgram(client.get(), true, 0); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableZeroCopy, nullptr, client->addressable_devices()[0])); auto external_reference = buffer->AcquireExternalReference(); ExecuteOptions options; options.execution_mode = GetParam(); auto resultsor = executable->Execute({{buffer.get()}}, options); ASSERT_FALSE(resultsor.ok()); EXPECT_THAT(resultsor.status().message(), ::testing::HasSubstr( "Donation requested for buffer with external reference")); } TEST_P(PjRtClientTest, ExecuteWithConcurrentUsage) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); auto executable = MakeIncrementProgram(client.get(), false, 0); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); ExecuteOptions options; options.execution_mode = GetParam(); constexpr int kNumThreads = 4; tsl::thread::ThreadPool thread_pool( tsl::Env::Default(), "ExecuteWithConcurrentUsage", kNumThreads); constexpr int kConcurrency = 16; absl::BlockingCounter blocking_counter(kConcurrency); std::vector<std::unique_ptr<PjRtBuffer>> results(kConcurrency); for (int i = 0; i < kConcurrency; ++i) { thread_pool.Schedule([&, &result = results[i]]() { auto results = executable->Execute({{buffer.get()}}, options).value(); CHECK_EQ(results.size(), 1); CHECK_EQ(results[0].size(), 1); result = std::move(results[0][0]); blocking_counter.DecrementCount(); }); } blocking_counter.Wait(); std::vector<int32_t> expected(4, 1); for (const auto& result : results) { TF_ASSERT_OK_AND_ASSIGN(auto literal, result->ToLiteralSync()); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } } TEST_P(PjRtClientTest, ExecuteWithConcurrentUsageAndDonation) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); auto executable = MakeIncrementProgram(client.get(), false, 0); auto executable_with_donation = MakeIncrementProgram(client.get(), true, 0); std::vector<int32_t> data(4, 0); std::vector<int32_t> expected(4, 1); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableZeroCopy, nullptr, client->addressable_devices()[0])); ExecuteOptions options; options.execution_mode = GetParam(); constexpr int kNumThreads = 4; tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "ExecuteWithConcurrentUsageAndDonation", kNumThreads); constexpr int kConcurrentUsage = 16; absl::BlockingCounter blocking_counter(kConcurrentUsage + 1); for (int i = 0; i < kConcurrentUsage; ++i) { thread_pool.Schedule([&]() { auto results_or = executable->Execute({{buffer.get()}}, options); if (results_or.ok()) { auto& results = *results_or; CHECK_EQ(results.size(), 1); CHECK_EQ(results[0].size(), 1); auto literal = results[0][0]->ToLiteralSync().value(); CHECK(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } blocking_counter.DecrementCount(); }); } std::unique_ptr<PjRtBuffer> result; thread_pool.Schedule([&]() { auto results = executable_with_donation->Execute({{buffer.get()}}, options).value(); CHECK_EQ(results.size(), 1); CHECK_EQ(results[0].size(), 1); result = std::move(results[0][0]); blocking_counter.DecrementCount(); }); blocking_counter.Wait(); TF_ASSERT_OK_AND_ASSIGN(auto literal, result->ToLiteralSync()); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } INSTANTIATE_TEST_SUITE_P( PjRtClientTestSuite, PjRtClientTest, ::testing::Values(ExecuteOptions::ExecutionMode::kSynchronous, ExecuteOptions::ExecutionMode::kAsynchronous)); TEST(PjRtClientTest, CopyToDevice) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); ASSERT_GT(client->addressable_devices().size(), 1); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); auto* device_1 = client->addressable_devices()[1]; TF_ASSERT_OK_AND_ASSIGN(auto result, buffer->CopyToDevice(device_1)); TF_ASSERT_OK_AND_ASSIGN(auto literal, result->ToLiteralSync()); std::vector<int32_t> expected(4, 0); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } TEST(PjRtClientTest, CopyToDeviceAsync) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); ASSERT_GT(client->addressable_devices().size(), 1); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); auto* device_1 = client->addressable_devices()[1]; constexpr int kNumThreads = 4; tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "CopyToDeviceAsync", kNumThreads); constexpr int kConcurrentCopy = 16; std::vector<std::unique_ptr<PjRtBuffer>> results(kConcurrentCopy); for (int i = 0; i < kConcurrentCopy; ++i) { TF_ASSERT_OK_AND_ASSIGN(results[i], buffer->CopyToDevice(device_1)); } buffer.reset(); for (const auto& result : results) { ASSERT_TRUE(result); TF_ASSERT_OK_AND_ASSIGN(auto literal, result->ToLiteralSync()); std::vector<int32_t> expected(4, 0); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } } TEST(PjRtClientTest, CopyToDeviceAsyncExternalCpuOnly) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); ASSERT_GT(client->addressable_devices().size(), 1); if (client->platform_id() != CpuId()) return; std::vector<int32_t> data(4, 0); auto* data_ptr = data.data(); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->CreateViewOfDeviceBuffer( data_ptr, shape, client->addressable_devices()[0], [data = std::move(data)]() mutable { data.clear(); data.shrink_to_fit(); })); auto* device_1 = client->addressable_devices()[1]; constexpr int kNumThreads = 4; tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "CopyToDeviceAsyncExternal", kNumThreads); constexpr int kConcurrentCopy = 16; std::vector<std::unique_ptr<PjRtBuffer>> results(kConcurrentCopy); for (int i = 0; i < kConcurrentCopy; ++i) { TF_ASSERT_OK_AND_ASSIGN(results[i], buffer->CopyToDevice(device_1)); } buffer.reset(); for (const auto& result : results) { ASSERT_TRUE(result); TF_ASSERT_OK_AND_ASSIGN(auto literal, result->ToLiteralSync()); std::vector<int32_t> expected(4, 0); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } } absl::StatusOr<std::unique_ptr<PjRtBuffer>> MakeFloatBuffer( PjRtClient* client, const std::vector<float>& data, absl::Span<const int64_t> dimensions) { Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); return client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0]); } TEST(PjRtClientTest, DuplicateDonationError) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); constexpr char kProgram[] = R"(HloModule DuplicateDonationError, input_output_alias={ {0}: (1, {}, must-alias), {1}: (2, {}, must-alias) } ENTRY DuplicateDonationError() -> (f32[2, 2], f32[2, 2]) { %input0 = f32[2, 2] parameter(0) %input1 = f32[2, 2] parameter(1) %input2 = f32[2, 2] parameter(2) %input3 = f32[2, 2] parameter(3) %tmp1 = f32[2, 2] add(%input0, %input1) %tmp2 = f32[2, 2] add(%input2, %input3) ROOT %result = (f32[2, 2], f32[2, 2]) tuple(%tmp1, %tmp2) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnUnverifiedModule(kProgram, {})); XlaComputation xla_computation(hlo_module->ToProto()); TF_ASSERT_OK_AND_ASSIGN(auto pjrt_executable, client->Compile(xla_computation, {})); std::vector<float> data(4, 0); TF_ASSERT_OK_AND_ASSIGN(auto buffer0, MakeFloatBuffer(client.get(), data, {2, 2})); TF_ASSERT_OK_AND_ASSIGN(auto buffer1, MakeFloatBuffer(client.get(), data, {2, 2})); TF_ASSERT_OK_AND_ASSIGN(auto buffer2, MakeFloatBuffer(client.get(), data, {2, 2})); { auto result = pjrt_executable->Execute({{ buffer0.get(), buffer1.get(), buffer1.get(), buffer0.get(), }}, {}); ASSERT_FALSE(result.ok()); EXPECT_THAT(result.status().message(), ::testing::HasSubstr("f(donate(a), donate(a))")); } { auto result = pjrt_executable->Execute({{ buffer1.get(), buffer1.get(), buffer2.get(), buffer0.get(), }}, {}); ASSERT_FALSE(result.ok()); EXPECT_THAT(result.status().message(), ::testing::HasSubstr("f(a, donate(a))")); } { auto result = pjrt_executable->Execute({{ buffer0.get(), buffer1.get(), buffer2.get(), buffer2.get(), }}, {}); ASSERT_FALSE(result.ok()); EXPECT_THAT(result.status().message(), ::testing::HasSubstr("f(donate(a), a)")); } } TEST(PjRtClientTest, GetDefaultLayout) {} } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/pjrt_ifrt/pjrt_client.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/pjrt_client_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
79f4067c-cdba-4150-810e-3c3b509d548f
cpp
tensorflow/tensorflow
mlir_to_hlo
third_party/xla/xla/pjrt/mlir_to_hlo.cc
third_party/xla/xla/pjrt/mlir_to_hlo_test.cc
#include "xla/pjrt/mlir_to_hlo.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "llvm/ADT/STLFunctionalExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/TypeSwitch.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "mlir/Bytecode/BytecodeWriter.h" #include "mlir/Conversion/ReconcileUnrealizedCasts/ReconcileUnrealizedCasts.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Func/Extensions/AllExtensions.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/MLProgram/IR/MLProgram.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Diagnostics.h" #include "mlir/IR/Location.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/IR/Visitors.h" #include "mlir/Parser/Parser.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "mlir/Transforms/Passes.h" #include "shardy/dialect/sdy/ir/register.h" #include "stablehlo/dialect/ChloOps.h" #include "stablehlo/dialect/Register.h" #include "stablehlo/dialect/Serialization.h" #include "stablehlo/dialect/StablehloOps.h" #include "stablehlo/dialect/Version.h" #include "stablehlo/transforms/Passes.h" #include "xla/debug_options_flags.h" #include "xla/hlo/translate/mhlo_to_hlo/mlir_hlo_to_hlo.h" #include "xla/mlir/utils/error_util.h" #include "xla/mlir_hlo/mhlo/IR/register.h" #include "xla/mlir_hlo/mhlo/transforms/passes.h" #include "xla/service/spmd/shardy/constants.h" #include "xla/service/spmd/shardy/utils.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { absl::Status MlirToXlaComputation(mlir::ModuleOp module, XlaComputation& xla_computation, bool use_tuple_args, bool return_tuple, bool use_shardy) { mlir::MLIRContext* context = module->getContext(); mlir::BaseScopedDiagnosticHandler diagnostic_handler(context); { mlir::PassManager pm(context); pm.addPass(mlir::mhlo::createStablehloLegalizeToHloPass()); pm.addNestedPass<mlir::func::FuncOp>( mlir::mhlo::createChloLegalizeToHloPass()); pm.addNestedPass<mlir::func::FuncOp>(mlir::createCanonicalizerPass()); pm.addNestedPass<mlir::func::FuncOp>( mlir::mhlo::createSinkConstantsToControlFlowPass()); if (failed(pm.run(module))) { VLOG(1) << "MHLO->HLO lowering passes failed."; module->dump(); return diagnostic_handler.ConsumeStatus(); } VLOG(5) << "MHLO module after lowering, before HLO import "; if (VLOG_IS_ON(5)) { module->dump(); } } if (use_tuple_args && use_shardy) { sdy::addFrontendAttribute(module, sdy::kUseTupleArgs, mlir::StringAttr::get(context, "t")); use_tuple_args = false; } mlir::MlirToHloConversionOptions options; options.use_tuple_args = use_tuple_args; options.return_tuple = return_tuple; TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> hlo_module, mlir::ConvertMlirHloToHloModule(module, options)); xla_computation = XlaComputation(hlo_module->ToProto()); return absl::OkStatus(); } absl::StatusOr<mlir::OwningOpRef<mlir::ModuleOp>> ParseMlirModuleString( absl::string_view mlir_module_str, mlir::MLIRContext& context) { mlir::DialectRegistry registry; registry.insert<mlir::arith::ArithDialect>(); registry.insert<mlir::func::FuncDialect>(); registry.insert<mlir::ml_program::MLProgramDialect>(); registry.insert<mlir::shape::ShapeDialect>(); mlir::func::registerAllExtensions(registry); mlir::mhlo::registerAllMhloDialects(registry); mlir::sdy::registerAllDialects(registry); mlir::stablehlo::registerAllDialects(registry); context.appendDialectRegistry(registry); mlir::BaseScopedDiagnosticHandler diagnostic_handler(&context); mlir::OwningOpRef<mlir::ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>( llvm::StringRef(mlir_module_str.data(), mlir_module_str.size()), mlir::ParserConfig{&context}); if (!module) { mlir::emitError(mlir::UnknownLoc::get(&context)) << "Failed to parse using StableHLO v" << mlir::vhlo::Version::getCurrentVersion() << ", " << "this could indicate forward incompatibility, >12w old " "unsupported plugin, or a portable artifact that needs to be " "further downgraded."; return diagnostic_handler.ConsumeStatus(); } TF_RETURN_IF_ERROR(UpgradeVersionedStablehlo(*module)); return std::move(module); } absl::Status ParseMlirModuleStringAndConvertToXlaComputation( absl::string_view mlir_module_str, XlaComputation& xla_computation, bool use_tuple_args, bool return_tuple) { mlir::MLIRContext context; TF_ASSIGN_OR_RETURN(mlir::OwningOpRef<mlir::ModuleOp> module, xla::ParseMlirModuleString(mlir_module_str, context)); return xla::MlirToXlaComputation(*module, xla_computation, use_tuple_args, return_tuple, false); } absl::StatusOr<std::string> SerializeUsingNativeBytecode( mlir::ModuleOp module) { std::string bytecode; llvm::raw_string_ostream os(bytecode); mlir::BytecodeWriterConfig config; config.setDesiredBytecodeVersion(1); mlir::OwningOpRef<mlir::ModuleOp> cloned = module.clone(); if (mlir::failed(mlir::writeBytecodeToFile(*cloned, os, config))) { return absl::InvalidArgumentError("mlir::writeBytecodeToFile failed"); } return bytecode; } absl::StatusOr<std::string> SerializeUsingVersionedStablehlo( mlir::ModuleOp mlir_module, absl::string_view target, bool inplace) { mlir::MLIRContext* context = mlir_module->getContext(); mlir::BaseScopedDiagnosticHandler diagnostic_handler(context); mlir::PassManager pm(context); pm.addNestedPass<mlir::func::FuncOp>( mlir::mhlo::createChloLegalizeToHighLevelMhloPass()); pm.addNestedPass<mlir::func::FuncOp>( mlir::stablehlo::createChloLegalizeToStablehloPass()); pm.addNestedPass<mlir::func::FuncOp>( mlir::stablehlo::createStablehloCompatibilityExpanderPass( {std::string(target)})); pm.addNestedPass<mlir::func::FuncOp>( mlir::stablehlo::createChloLegalizeToStablehloPass()); pm.addNestedPass<mlir::func::FuncOp>( mlir::stablehlo::createShapeLegalizeToStablehloPass()); pm.addPass(mlir::createReconcileUnrealizedCastsPass()); pm.addPass(mlir::mhlo::createHloLegalizeToStablehloPass()); if (!mlir::succeeded(pm.run(mlir_module))) { const absl::Status status = diagnostic_handler.ConsumeStatus(); return absl::InvalidArgumentError( absl::StrCat("CHLO => [MHLO+Shape] => StableHLO failed;\n\nDetailed " "error from MLIR: ", status.message())); } mlir::OwningOpRef<mlir::ModuleOp> cloned; if (!inplace) { cloned = mlir_module.clone(); mlir_module = *cloned; } std::string buffer; llvm::raw_string_ostream os(buffer); if (failed(mlir::stablehlo::serializePortableArtifact(mlir_module, target, os))) { const absl::Status status = diagnostic_handler.ConsumeStatus(); return absl::InvalidArgumentError(absl::StrCat( "Failed to serialize StableHLO;\n\nDetailed error from MLIR: ", status.message())); } return buffer; } absl::Status UpgradeVersionedStablehlo(mlir::ModuleOp mlir_module) { mlir::PassManager pm(mlir_module->getContext()); mlir::stablehlo::createStablehloDeserializePipeline(pm); if (!mlir::succeeded(pm.run(mlir_module))) return xla::InvalidArgument("Failed to upgrade versioned StableHLO."); return absl::OkStatus(); } std::string GetDefaultStablehloVersion(std::optional<int64_t> plugin_version) { if (plugin_version.has_value() && plugin_version.value() < 54) { return "0.19.0"; } return mlir::vhlo::Version::fromCompatibilityRequirement( mlir::vhlo::Version::CompatibilityRequirement::WEEK_12) .toString(); } absl::StatusOr<std::string> Serialize(mlir::ModuleOp module, absl::string_view target, bool inplace) { bool all_stablehlo = true; module->walk([&](mlir::Operation* op) { if (!llvm::isa<mlir::ModuleOp>(op) && !llvm::isa<mlir::stablehlo::StablehloDialect, mlir::func::FuncDialect, mlir::chlo::ChloDialect>(op->getDialect())) { all_stablehlo = false; return mlir::WalkResult::interrupt(); } return mlir::WalkResult::advance(); }); if (!all_stablehlo) { return SerializeUsingNativeBytecode(module); } return SerializeUsingVersionedStablehlo(module, target, inplace); } }
#include "xla/pjrt/mlir_to_hlo.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "stablehlo/api/PortableApi.h" #include "xla/test.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using ::testing::HasSubstr; using ::testing::Not; MATCHER_P(IsVhloArtifact, version, "") { return ExplainMatchResult(HasSubstr(absl::StrCat("StableHLO_v", version)), arg, result_listener); } TEST(MlirToHloTest, StablehloTest) { constexpr char kProgram[] = R"( func.func @add(%arg0: tensor<1x2xf32>) -> tensor<1x2xf32> { %cst = stablehlo.constant dense<1.0> : tensor<1x2xf32> %0 = stablehlo.add %arg0, %cst : tensor<1x2xf32> return %0 : tensor<1x2xf32> } )"; mlir::MLIRContext context; TF_ASSERT_OK_AND_ASSIGN(mlir::OwningOpRef<mlir::ModuleOp> module, ParseMlirModuleString(kProgram, context)); TF_ASSERT_OK_AND_ASSIGN(std::string blob, Serialize(*module, "1.0.0")); EXPECT_THAT(blob, IsVhloArtifact("1.0.0")); } TEST(MlirToHloTest, ChloTest) { constexpr char kProgram[] = R"( func.func @add(%arg0: tensor<1x2xf32>) -> tensor<1x2xf32> { %cst = stablehlo.constant dense<1.0> : tensor<1x2xf32> %0 = chlo.broadcast_add %arg0, %cst : (tensor<1x2xf32>, tensor<1x2xf32>) -> tensor<1x2xf32> return %0 : tensor<1x2xf32> } )"; mlir::MLIRContext context; TF_ASSERT_OK_AND_ASSIGN(mlir::OwningOpRef<mlir::ModuleOp> module, ParseMlirModuleString(kProgram, context)); TF_ASSERT_OK_AND_ASSIGN(std::string blob, Serialize(*module, "1.0.0")); EXPECT_THAT(blob, IsVhloArtifact("1.0.0")); } TEST(MlirToHloTest, ChloTanOpTest) { constexpr char kProgram[] = R"( func.func @add(%arg0: tensor<1x2xf32>) -> tensor<1x2xf32> { %0 = chlo.tan %arg0 : tensor<1x2xf32> -> tensor<1x2xf32> return %0 : tensor<1x2xf32> } )"; mlir::MLIRContext context; TF_ASSERT_OK_AND_ASSIGN(mlir::OwningOpRef<mlir::ModuleOp> module, ParseMlirModuleString(kProgram, context)); TF_ASSERT_OK_AND_ASSIGN(std::string blob, Serialize(*module, "1.0.0")); EXPECT_THAT(blob, IsVhloArtifact("1.0.0")); } TEST(MlirToHloTest, MhloTest) { constexpr char kProgram[] = R"( func.func @add(%arg0: tensor<1x2xf32>) -> tensor<1x2xf32> { %cst = mhlo.constant dense<1.0> : tensor<1x2xf32> %0 = mhlo.add %arg0, %cst : tensor<1x2xf32> return %0 : tensor<1x2xf32> } )"; mlir::MLIRContext context; TF_ASSERT_OK_AND_ASSIGN(mlir::OwningOpRef<mlir::ModuleOp> module, ParseMlirModuleString(kProgram, context)); TF_ASSERT_OK_AND_ASSIGN(std::string blob, Serialize(*module, "1.0.0")); EXPECT_THAT(blob, Not(IsVhloArtifact("1.0.0"))); } TEST(MlirToHloTest, InvalidBytecodeTest) { unsigned char invalid_future_vhlo_mlirbc[] = { 0x4d, 0x4c, 0xef, 0x52, 0x0d, 0x53, 0x74, 0x61, 0x62, 0x6c, 0x65, 0x48, 0x4c, 0x4f, 0x5f, 0x76, 0x32, 0x2e, 0x30, 0x2e, 0x30, 0x00, 0x01, 0x19, 0x05, 0x01, 0x05, 0x09, 0x01, 0x03, 0x0b, 0x03, 0x07, 0x0f, 0x13, 0x17, 0x03, 0x2b, 0x15, 0x07, 0x01, 0x0b, 0x0b, 0x13, 0x13, 0x13, 0x13, 0x03, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x1f, 0x03, 0x07, 0x0f, 0x13, 0x07, 0x02, 0x53, 0x05, 0x0d, 0x17, 0x01, 0x03, 0x03, 0x17, 0x01, 0x05, 0x07, 0x17, 0x01, 0x07, 0x15, 0x17, 0x01, 0x09, 0x0b, 0x03, 0x01, 0x23, 0x03, 0x1d, 0x0f, 0x1d, 0x11, 0x1f, 0x01, 0x09, 0x00, 0x00, 0x80, 0x3f, 0x29, 0x01, 0x05, 0x11, 0x01, 0x03, 0x01, 0x09, 0x04, 0x41, 0x05, 0x01, 0x50, 0x03, 0x01, 0x07, 0x04, 0x31, 0x03, 0x01, 0x05, 0x03, 0x50, 0x05, 0x03, 0x07, 0x04, 0x1d, 0x03, 0x03, 0x09, 0x05, 0x42, 0x07, 0x05, 0x03, 0x01, 0x07, 0x04, 0x09, 0x03, 0x01, 0x06, 0x03, 0x01, 0x05, 0x01, 0x00, 0xad, 0x13, 0x0f, 0x0b, 0x1b, 0x15, 0x1b, 0x11, 0x0f, 0x0b, 0x11, 0x62, 0x75, 0x69, 0x6c, 0x74, 0x69, 0x6e, 0x00, 0x76, 0x68, 0x6c, 0x6f, 0x00, 0x6d, 0x6f, 0x64, 0x75, 0x6c, 0x65, 0x00, 0x66, 0x75, 0x6e, 0x63, 0x5f, 0x76, 0x31, 0x00, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x61, 0x6e, 0x74, 0x5f, 0x76, 0x39, 0x39, 0x00, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x5f, 0x76, 0x31, 0x00, 0x2f, 0x74, 0x6d, 0x70, 0x2f, 0x74, 0x32, 0x2e, 0x6d, 0x6c, 0x69, 0x72, 0x00, 0x6d, 0x61, 0x69, 0x6e, 0x00, 0x70, 0x75, 0x62, 0x6c, 0x69, 0x63, 0x00, 0x08, 0x19, 0x07, 0x05, 0x01, 0x01, 0x0b, 0x0b, 0x0d, 0x0b, 0x0f, 0x11, 0x03, 0x13}; unsigned int invalid_future_vhlo_mlirbc_len = 243; std::string buffer(reinterpret_cast<char*>(invalid_future_vhlo_mlirbc), invalid_future_vhlo_mlirbc_len); mlir::MLIRContext context; auto status = ParseMlirModuleString(buffer, context); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.status().message(), HasSubstr("vhlo.constant_v99")); EXPECT_THAT(status.status().message(), HasSubstr("StableHLO_v2.0.0")); EXPECT_THAT(status.status().message(), HasSubstr(mlir::stablehlo::getCurrentVersion())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/mlir_to_hlo.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/mlir_to_hlo_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5f9eba1a-e055-4de1-82c4-1871f84d29b9
cpp
tensorflow/tensorflow
utils
tensorflow/compiler/mlir/tfrt/transforms/utils.cc
tensorflow/compiler/mlir/tf2xla/api/v2/testing/utils_test.cc
#include "tensorflow/compiler/mlir/tfrt/transforms/utils.h" #include <optional> #include <string> #include "absl/strings/string_view.h" #include "llvm/Support/Casting.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/OpDefinition.h" #include "mlir/IR/OperationSupport.h" #include "mlir/IR/SymbolTable.h" #include "mlir/IR/Value.h" #include "mlir/Support/LLVM.h" #include "tensorflow/compiler/mlir/tensorflow/ir/host_runtime/tfrt_ops.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_saved_model.h" namespace tensorflow { bool IsResourceArgument(mlir::Value value) { auto arg = mlir::dyn_cast<mlir::BlockArgument>(value); if (!arg) return false; auto func = llvm::cast<mlir::func::FuncOp>(arg.getOwner()->getParentOp()); return func.getArgAttr(arg.getArgNumber(), "tf.resource_name") != nullptr; } bool IsResultVariable(const mlir::Value &original_operand, const mlir::Value &operand) { if (mlir::isa<mlir::OpResult>(original_operand)) { auto defining_op = original_operand.getDefiningOp(); if (llvm::isa<mlir::TF::ReadVariableOp>(defining_op) && defining_op->getNumOperands() == 1) { return true; } else if (llvm::isa<mlir::TF::_TfrtGetResourceOp>(defining_op)) { return true; } return false; } return IsResourceArgument(operand); } std::optional<std::string> CanonicalizeTensorflowFunctionName( const mlir::SymbolTable &symbol_table, absl::string_view mlir_func_name, bool use_mlir_func_name) { if (use_mlir_func_name) { return std::string(mlir_func_name); } auto callee = symbol_table.lookup<mlir::func::FuncOp>(std::string(mlir_func_name)); if (!callee) return std::nullopt; mlir::StringAttr original_func_name = callee->getAttrOfType<mlir::StringAttr>("tf._original_func_name"); if (!original_func_name) { mlir_func_name.remove_suffix(1); return std::string(mlir_func_name); } return original_func_name.str(); } bool IsSessionInitializer(mlir::func::FuncOp op) { auto session_initializer_op = mlir::tf_saved_model::GetSessionInitializerOp( op->getParentOfType<mlir::ModuleOp>()); if (!session_initializer_op) return false; for (auto sym_ref : session_initializer_op.getInitializers()) { if (op.getSymName() == mlir::cast<mlir::FlatSymbolRefAttr>(sym_ref).getValue()) return true; } return false; } }
#include "tensorflow/compiler/mlir/tf2xla/api/v2/testing/utils.h" #include <stdlib.h> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> namespace tensorflow { namespace tf2xla { namespace v2 { namespace testing { namespace { class UtilsTest : public ::testing::Test {}; TEST_F(UtilsTest, TestDataPathSucceeds) { std::string expected_test_data_path_regex = ".*tensorflow/compiler/mlir/tf2xla/api/v2/testdata/"; std::string result_test_data_path = TestDataPath(); EXPECT_THAT(result_test_data_path, ::testing::ContainsRegex(expected_test_data_path_regex)); } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tfrt/transforms/utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/api/v2/testing/utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5bad8880-efb8-4120-a68e-51035a8d7284
cpp
tensorflow/tensorflow
pjrt_api
third_party/xla/xla/pjrt/pjrt_api.cc
third_party/xla/xla/pjrt/pjrt_api_test.cc
#include "xla/pjrt/pjrt_api.h" #include <cstdlib> #include <utility> #include "absl/status/status.h" #include "absl/strings/ascii.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "xla/pjrt/c/pjrt_c_api.h" #if !defined(PLATFORM_WINDOWS) #include <dlfcn.h> #endif #include <string> #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/pjrt/c/pjrt_c_api_helpers.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace pjrt { constexpr int kMinPjRtMinor = 29; static auto* pjrt_apis = new absl::flat_hash_map<std::string, std::pair<const PJRT_Api*, bool>>{}; static std::string CanonicalizeDeviceType(absl::string_view device_type) { return absl::AsciiStrToLower(device_type); } absl::StatusOr<const PJRT_Api*> PjrtApi(absl::string_view device_type) { std::string canonicalize_device_type = CanonicalizeDeviceType(device_type); auto iter = pjrt_apis->find(canonicalize_device_type); if (iter == pjrt_apis->end()) { return tsl::errors::NotFound("PJRT_Api not found for device type ", canonicalize_device_type); } return iter->second.first; } absl::Status SetPjrtApi(absl::string_view device_type, const PJRT_Api* api) { std::string canonicalize_device_type = CanonicalizeDeviceType(device_type); if (auto iter = pjrt_apis->find(canonicalize_device_type); iter != pjrt_apis->end()) { return tsl::errors::AlreadyExists( "PJRT_Api already exists for device type ", canonicalize_device_type); } (*pjrt_apis)[canonicalize_device_type] = std::make_pair(api, false); LOG(INFO) << "PJRT_Api is set for device type " << canonicalize_device_type; return absl::OkStatus(); } typedef const PJRT_Api* (*PjrtApiInitFn)(); absl::StatusOr<const PJRT_Api*> LoadPjrtPlugin(absl::string_view device_type, absl::string_view library_path) { #ifdef PLATFORM_WINDOWS return tsl::errors::Unimplemented( "LoadPjrtPlugin is not implemented on windows yet."); #else void* library = dlopen(library_path.data(), RTLD_LAZY); if (library == nullptr) { return tsl::errors::Internal("Failed to open ", library_path, ": ", dlerror()); } PjrtApiInitFn init_fn; *reinterpret_cast<void**>(&init_fn) = dlsym(library, "GetPjrtApi"); if (init_fn == nullptr) { return tsl::errors::NotFound("GetPjrtApi not found in ", library_path); } LOG(INFO) << "GetPjrtApi was found for " << device_type << " at " << library_path; const PJRT_Api* api = init_fn(); TF_RETURN_IF_ERROR(SetPjrtApi(device_type, api)); return api; #endif } absl::StatusOr<bool> IsPjrtPluginInitialized(absl::string_view device_type) { std::string canonicalize_device_type = CanonicalizeDeviceType(device_type); auto iter = pjrt_apis->find(canonicalize_device_type); if (iter == pjrt_apis->end()) { return absl::NotFoundError(absl::StrCat( "PJRT_Api not found for device type ", canonicalize_device_type, ". Call SetPjrtApi before calling IsPjrtPluginInitialized.")); } return iter->second.second; } static bool IsPjRtCompatibilityEnabled() { const char* val = getenv("ENABLE_PJRT_COMPATIBILITY"); if (val == nullptr) { return true; } bool enabled = false; if (!absl::SimpleAtob(val, &enabled)) { return false; } return enabled; } absl::Status InitializePjrtPlugin(absl::string_view device_type) { std::string canonicalize_device_type = CanonicalizeDeviceType(device_type); auto iter = pjrt_apis->find(canonicalize_device_type); if (iter == pjrt_apis->end()) { return absl::NotFoundError(absl::StrCat( "PJRT_Api not found for device type ", canonicalize_device_type, ". Call SetPjrtApi before calling IsPjrtPluginInitialized.")); } if (iter->second.second) { return absl::InvalidArgumentError( absl::StrCat("InitializePjrtPlugin requested to run on already " "initialized plugin ", canonicalize_device_type)); } const PJRT_Api* pjrt_api = iter->second.first; LOG(INFO) << "The PJRT plugin has PJRT API version " << pjrt_api->pjrt_api_version.major_version << "." << pjrt_api->pjrt_api_version.minor_version << ". The framework PJRT API version is " << PJRT_API_MAJOR << "." << PJRT_API_MINOR << "."; if (IsPjRtCompatibilityEnabled()) { if (pjrt_api->pjrt_api_version.major_version != PJRT_API_MAJOR) { return absl::InvalidArgumentError(absl::StrCat( "Mismatched PJRT plugin PJRT API major version (", pjrt_api->pjrt_api_version.major_version, ") and framework PJRT API major version ", PJRT_API_MAJOR, ").")); } if (pjrt_api->pjrt_api_version.minor_version < kMinPjRtMinor) { return absl::InvalidArgumentError(absl::StrCat( "Plugin PJRT API version ", pjrt_api->pjrt_api_version.major_version, ".", pjrt_api->pjrt_api_version.minor_version, " is older than the minimum supported version ", PJRT_API_MAJOR, ".", kMinPjRtMinor)); } } else { if (pjrt_api->pjrt_api_version.major_version != PJRT_API_MAJOR || pjrt_api->pjrt_api_version.minor_version != PJRT_API_MINOR) { return absl::InvalidArgumentError( absl::StrCat("Mismatched PJRT plugin PJRT API version (", pjrt_api->pjrt_api_version.major_version, ".", pjrt_api->pjrt_api_version.minor_version, ") and framework PJRT API version ", PJRT_API_MAJOR, ".", PJRT_API_MINOR, ").")); } } PJRT_Plugin_Initialize_Args args; args.struct_size = PJRT_Plugin_Initialize_Args_STRUCT_SIZE; args.extension_start = nullptr; RETURN_STATUS_IF_PJRT_ERROR(pjrt_api->PJRT_Plugin_Initialize(&args), pjrt_api); iter->second.second = true; return absl::OkStatus(); } }
#include "xla/pjrt/pjrt_api.h" #include <string> #include <gtest/gtest.h> #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_wrapper_impl.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/status_matchers.h" #include "tsl/protobuf/error_codes.pb.h" namespace { using ::testing::HasSubstr; using ::tsl::testing::StatusIs; TEST(PjRtApiTest, SetAndGetGlobalPjRtApi) { PJRT_Api api; api.struct_size = PJRT_Api_STRUCT_SIZE; api.pjrt_api_version.major_version = PJRT_API_MAJOR; api.pjrt_api_version.minor_version = PJRT_API_MINOR; TF_ASSERT_OK(pjrt::SetPjrtApi("CPU", &api)); TF_ASSERT_OK_AND_ASSIGN(const PJRT_Api* output, pjrt::PjrtApi("CPU")); TF_ASSERT_OK_AND_ASSIGN(const PJRT_Api* output_lowercase, pjrt::PjrtApi("cpu")); TF_ASSERT_OK_AND_ASSIGN(bool is_initialized, pjrt::IsPjrtPluginInitialized("CPU")); EXPECT_FALSE(is_initialized); EXPECT_EQ(output, &api); EXPECT_EQ(output_lowercase, &api); EXPECT_THAT(pjrt::SetPjrtApi("CPU", &api), StatusIs(tensorflow::error::ALREADY_EXISTS, HasSubstr("PJRT_Api already exists for device type"))); EXPECT_THAT(pjrt::PjrtApi("TPU"), StatusIs(tensorflow::error::NOT_FOUND, HasSubstr("PJRT_Api not found for device type tpu"))); } TEST(PjRtApiTest, InitPjRtPlugin) { PJRT_Api api; api.struct_size = PJRT_Api_STRUCT_SIZE; api.pjrt_api_version.major_version = PJRT_API_MAJOR; api.pjrt_api_version.minor_version = PJRT_API_MINOR; api.PJRT_Plugin_Initialize = pjrt::PJRT_Plugin_Initialize_NoOp; std::string plugin_name = "plugin"; TF_ASSERT_OK(pjrt::SetPjrtApi(plugin_name, &api)); TF_ASSERT_OK_AND_ASSIGN(bool is_initialized, pjrt::IsPjrtPluginInitialized(plugin_name)); EXPECT_FALSE(is_initialized); TF_ASSERT_OK(pjrt::InitializePjrtPlugin(plugin_name)); TF_ASSERT_OK_AND_ASSIGN(is_initialized, pjrt::IsPjrtPluginInitialized(plugin_name)); EXPECT_TRUE(is_initialized); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/pjrt_api.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/pjrt_api_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
634f061d-fae5-4c7b-a795-7b8955b04bf4
cpp
tensorflow/tensorflow
transpose
tensorflow/lite/delegates/gpu/common/tasks/transpose.cc
tensorflow/lite/delegates/xnnpack/transpose_test.cc
#include "tensorflow/lite/delegates/gpu/common/tasks/transpose.h" #include <string> #include "absl/strings/str_cat.h" #include "tensorflow/lite/delegates/gpu/common/task/work_group_picking.h" namespace tflite { namespace gpu { namespace { std::string GetTransposeCode(const OperationDef& op_def, const TransposeAttributes& attr) { const std::string batch_id = op_def.dst_tensors[0].HasAxis(Axis::BATCH) ? "B" : "0"; std::string c; c += "MAIN_FUNCTION($0) {\n"; if (op_def.dst_tensors[0].HasAxis(Axis::BATCH)) { c += " int linear_id = GLOBAL_ID_0;\n"; c += " int X = linear_id / args.dst_tensor.Batch();\n"; c += " int B = linear_id % args.dst_tensor.Batch();\n"; c += " args.dst_tensor.SetBatchRef(B);\n"; } else { c += " int X = GLOBAL_ID_0;\n"; } c += " int Y = GLOBAL_ID_1;\n"; c += " int S = GLOBAL_ID_2;\n"; c += " if (X >= args.dst_tensor.Width() || Y >= args.dst_tensor.Height() || " "S >= args.dst_tensor.Slices()) { \n"; c += " return; \n"; c += " } \n"; c += " args.src_tensor::scalar_type temps[4];\n"; c += " temps[0] = args.src_tensor::scalar_zero_value;\n"; c += " temps[1] = args.src_tensor::scalar_zero_value;\n"; c += " temps[2] = args.src_tensor::scalar_zero_value;\n"; c += " temps[3] = args.src_tensor::scalar_zero_value;\n"; int remap[4]; remap[attr.perm.b] = 0; remap[attr.perm.h] = 1; remap[attr.perm.w] = 2; remap[attr.perm.c] = 3; if (attr.perm.c == 3) { const std::string bhw[] = {batch_id, "Y", "X"}; if (op_def.src_tensors[0].HasAxis(Axis::BATCH)) { c += " args.src_tensor.SetBatchRef(" + bhw[remap[0]] + ");\n"; } c += " int s_y = " + bhw[remap[1]] + ";\n"; c += " int s_x = " + bhw[remap[2]] + ";\n"; c += " args.src_tensor::type t = args.src_tensor.Read(s_x, s_y, S);\n"; c += " temps[0] = t.x;\n"; c += " temps[1] = t.y;\n"; c += " temps[2] = t.z;\n"; c += " temps[3] = t.w;\n"; } else { c += " for (int i = 0; i < 4; ++i) {\n"; c += " int dst_channel = S * 4 + i;\n"; c += " if (dst_channel < args.dst_tensor.Channels()) {\n"; const std::string bhwc[] = {batch_id, "Y", "X", "dst_channel"}; if (op_def.src_tensors[0].HasAxis(Axis::BATCH)) { c += " args.src_tensor.SetBatchRef(" + bhwc[remap[0]] + ");\n"; } c += " int s_y = " + bhwc[remap[1]] + ";\n"; c += " int s_x = " + bhwc[remap[2]] + ";\n"; c += " int s_c = " + bhwc[remap[3]] + ";\n"; c += " args.src_tensor.ReadPerChannel(temps[i], s_x, s_y, s_c);\n"; c += " }\n"; c += " }\n"; } c += " args.src_tensor::type result;\n"; c += " result.x = temps[0];\n"; c += " result.y = temps[1];\n"; c += " result.z = temps[2];\n"; c += " result.w = temps[3];\n"; c += " args.dst_tensor.Write(result, X, Y, S);\n"; c += "}\n"; return c; } } GPUOperation CreateTranspose(const OperationDef& definition, const TransposeAttributes& attr) { GPUOperation op(definition); op.AddSrcTensor("src_tensor", definition.src_tensors[0]); op.AddDstTensor("dst_tensor", definition.dst_tensors[0]); op.code_ = GetTransposeCode(definition, attr); op.tensor_to_grid_ = TensorToGrid::kWBToX_HDToY_SToZ; return op; } } }
#include <algorithm> #include <cstdint> #include <functional> #include <memory> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/xnnpack/transpose_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" namespace tflite { namespace xnnpack { TEST(Transpose, 1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::vector<int32_t> perm{0}; TransposeTester() .num_dims(1) .input_shape({37}) .perm(perm) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } TEST(Transpose, 2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::vector<int32_t> perm{0, 1}; do { TransposeTester() .num_dims(2) .input_shape({37, 113}) .perm(perm) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } while (std::next_permutation(perm.begin(), perm.end())); } TEST(Transpose, 3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::vector<int32_t> perm{0, 1, 2}; do { TransposeTester() .num_dims(3) .input_shape({5, 7, 11}) .perm(perm) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } while (std::next_permutation(perm.begin(), perm.end())); } TEST(Transpose, 4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::vector<int32_t> perm{0, 1, 2, 3}; do { TransposeTester() .num_dims(4) .input_shape({5, 7, 11, 13}) .perm(perm) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } while (std::next_permutation(perm.begin(), perm.end())); } TEST(Transpose, 5D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::vector<int32_t> perm{0, 1, 2, 3, 4}; do { TransposeTester() .num_dims(5) .input_shape({3, 5, 7, 11, 13}) .perm(perm) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } while (std::next_permutation(perm.begin(), perm.end())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/common/tasks/transpose.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/transpose_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8adb0ed0-9542-4a16-afc5-37b3e581de81
cpp
tensorflow/tensorflow
pjrt_compiler
third_party/xla/xla/python/pjrt_ifrt/pjrt_compiler.cc
third_party/xla/xla/pjrt/pjrt_compiler_test.cc
#include "xla/python/pjrt_ifrt/pjrt_compiler.h" #include <memory> #include <optional> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "llvm/Support/Casting.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/python/ifrt/compiler.h" #include "xla/python/ifrt/executable.h" #include "xla/python/ifrt/hlo/hlo_program.h" #include "xla/python/ifrt/program.h" #include "xla/python/ifrt/topology.h" #include "xla/python/pjrt_ifrt/pjrt_client.h" #include "xla/python/pjrt_ifrt/pjrt_executable.h" #include "xla/python/pjrt_ifrt/pjrt_topology.h" #include "xla/python/pjrt_ifrt/xla_compiler.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { char PjRtCompiler::ID = 0; absl::StatusOr<std::unique_ptr<LoadedExecutable>> PjRtCompiler::Compile( std::unique_ptr<Program> program, std::unique_ptr<CompileOptions> options) { DCHECK(this); const auto* xla_program = llvm::dyn_cast<HloProgram>(program.get()); if (xla_program == nullptr) { return absl::InvalidArgumentError("PjRtCompiler requires an HloProgram"); } TF_ASSIGN_OR_RETURN(auto xla_compile_options, GetXlaCompileOptions(std::move(options))); return PjRtLoadedExecutable::Create( client_, xla_program->mlir_module, std::move(xla_compile_options->compile_options), std::move(xla_compile_options->loaded_host_callbacks)); } absl::StatusOr<std::unique_ptr<Executable>> PjRtCompiler::Compile( std::unique_ptr<Program> program, const Topology& topology, std::unique_ptr<CompileOptions> options) { DCHECK(this); const auto* xla_program = llvm::dyn_cast<HloProgram>(program.get()); if (xla_program == nullptr) { return absl::InvalidArgumentError("PjRtCompiler requires an HloProgram"); } TF_ASSIGN_OR_RETURN(auto xla_compile_options, GetXlaCompileOptions(std::move(options))); const auto* pjrt_topology = llvm::dyn_cast<PjRtTopology>(&topology); if (pjrt_topology == nullptr) { return absl::InvalidArgumentError("PjRtCompiler requires a PjRtTopology"); } TF_ASSIGN_OR_RETURN( auto executable, PjRtCompile(xla_compile_options->compile_options, xla_program->mlir_module, *pjrt_topology->description())); return PjRtExecutable::Create(std::move(executable), std::move(xla_compile_options)); } absl::StatusOr<std::unique_ptr<LoadedExecutable>> PjRtCompiler::DeserializeLoadedExecutable( absl::string_view serialized, std::unique_ptr<DeserializeExecutableOptions> options) { DCHECK(this); TF_ASSIGN_OR_RETURN(auto xla_deserialize_options, GetXlaDeserializeExecutableOptions(std::move(options))); TF_ASSIGN_OR_RETURN( auto pjrt_loaded_executable, client_->pjrt_client()->DeserializeExecutable( serialized, std::move(xla_deserialize_options->compile_options))); return PjRtLoadedExecutable::Create( client_, std::shared_ptr<xla::PjRtLoadedExecutable>( std::move(pjrt_loaded_executable)), std::move(xla_deserialize_options->loaded_host_callbacks)); } } }
#include "xla/pjrt/pjrt_compiler.h" #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/client/xla_computation.h" #include "xla/pjrt/metrics.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_device_description.h" #include "xla/tsl/lib/monitoring/cell_reader.h" #include "tsl/platform/status_matchers.h" namespace xla { using metrics::kPjrtCompilerCompileComputationMetricName; using metrics::kPjrtCompilerCompileModuleMetricName; using ::tsl::monitoring::testing::CellReader; using ::tsl::testing::StatusIs; namespace { class PjRtTestTopology : public PjRtTopologyDescription { public: PjRtPlatformId platform_id() const override { return 0; } absl::string_view platform_name() const override { return "not_registered"; } absl::string_view platform_version() const override { return "test"; } std::vector<std::unique_ptr<const PjRtDeviceDescription>> DeviceDescriptions() const override { LOG(FATAL) << "Unused"; } absl::StatusOr<std::string> Serialize() const override { return "test_topo"; } const absl::flat_hash_map<std::string, PjRtDeviceAttribute>& Attributes() const override { LOG(FATAL) << "Unused"; } absl::StatusOr<Layout> GetDefaultLayout( PrimitiveType element_type, absl::Span<const int64_t> dims) const override { return Unimplemented("TestTopology does not support GetDefaultLayout"); } }; TEST(PjRtCompilerTest, CompilerNotRegistered) { PjRtTestTopology topology; CompileOptions options; XlaComputation computation; auto res = PjRtCompile(options, computation, topology); EXPECT_TRUE(tsl::errors::IsNotFound(res.status())); } TEST(PjRtCompilerTest, CompilerRegistered) { class PjRtTestTopology : public PjRtTopologyDescription { public: PjRtPlatformId platform_id() const override { return 0; } absl::string_view platform_name() const override { return "registered"; } absl::string_view platform_version() const override { return "test"; } std::vector<std::unique_ptr<const PjRtDeviceDescription>> DeviceDescriptions() const override { LOG(FATAL) << "Unused"; } absl::StatusOr<std::string> Serialize() const override { return "test_topo"; } const absl::flat_hash_map<std::string, PjRtDeviceAttribute>& Attributes() const override { LOG(FATAL) << "Unused"; } absl::StatusOr<Layout> GetDefaultLayout( PrimitiveType element_type, absl::Span<const int64_t> dims) const override { return Unimplemented("TestTopology does not support GetDefaultLayout"); } }; PjRtTestTopology topology; class PjRtTestCompiler : public PjRtCompiler { public: absl::StatusOr<std::unique_ptr<PjRtExecutable>> Compile( CompileOptions options, const XlaComputation& computation, const PjRtTopologyDescription& topology, PjRtClient* client) override { return tsl::errors::Unimplemented("test compiler!"); } absl::StatusOr<std::unique_ptr<PjRtExecutable>> Compile( CompileOptions options, mlir::ModuleOp module, const PjRtTopologyDescription& topology, PjRtClient* client) override { return tsl::errors::Unimplemented("test compiler!"); } }; std::unique_ptr<PjRtCompiler> compiler = std::make_unique<PjRtTestCompiler>(); PjRtRegisterCompiler(topology.platform_name(), std::move(compiler)); CompileOptions options; XlaComputation computation; auto res = PjRtCompile(options, computation, topology); EXPECT_TRUE(tsl::errors::IsUnimplemented(res.status())); } TEST(PjRtCompilerTest, PjrtCompileComputationMetric) { PjRtTestTopology topology; xla::CompileOptions compile_options; XlaComputation xla_computation; CellReader<bool> metric_reader( std::string{kPjrtCompilerCompileComputationMetricName}); EXPECT_THAT(PjRtCompile(compile_options, xla_computation, topology, nullptr), StatusIs(tensorflow::error::NOT_FOUND)); EXPECT_FALSE(metric_reader.Read()); } TEST(PjRtCompilerTest, PjrtCompileModuleMetric) { PjRtTestTopology topology; xla::CompileOptions compile_options; mlir::ModuleOp module; CellReader<bool> metric_reader( std::string{kPjrtCompilerCompileModuleMetricName}); EXPECT_THAT(PjRtCompile(compile_options, module, topology, nullptr), StatusIs(tensorflow::error::NOT_FOUND)); EXPECT_FALSE(metric_reader.Read()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/pjrt_ifrt/pjrt_compiler.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/pjrt_compiler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0fe8e421-3b6a-41a7-a4c4-85093705cb50
cpp
tensorflow/tensorflow
tf_pjrt_client
third_party/xla/xla/pjrt/tf_pjrt_client.cc
third_party/xla/xla/pjrt/tf_pjrt_client_test.cc
#include "xla/pjrt/tf_pjrt_client.h" #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/synchronization/mutex.h" #include "xla/pjrt/pjrt_client.h" namespace xla { TfPjRtBuffer::TfPjRtBuffer(TfPjRtClient* client, std::unique_ptr<PjRtBuffer> wrapped) : client_(client), wrapped_(std::move(wrapped)) { client_->TrackBuffer(this); } TfPjRtBuffer::~TfPjRtBuffer() { client_->UntrackBuffer(this); } PjRtClient* TfPjRtBuffer::client() const { return client_; } PjRtClient* TfPjRtExecutable::client() const { return client_; } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfPjRtBuffer::CopyToDevice( PjRtDevice* dst_device) { TF_ASSIGN_OR_RETURN(std::unique_ptr<PjRtBuffer> result, wrapped_->CopyToDevice(dst_device)); return std::unique_ptr<PjRtBuffer>( std::make_unique<TfPjRtBuffer>(client_, std::move(result))); } TfPjRtExecutable::TfPjRtExecutable( TfPjRtClient* client, std::unique_ptr<PjRtLoadedExecutable> wrapped) : client_(client), wrapped_(std::move(wrapped)) {} absl::StatusOr<std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>> TfPjRtExecutable::Execute( absl::Span<const std::vector<PjRtBuffer*>> argument_handles, const ExecuteOptions& options, std::optional<std::vector<PjRtFuture<>>>& returned_futures) { std::vector<std::vector<PjRtBuffer*>> unwrapped_argument_handles; unwrapped_argument_handles.reserve(argument_handles.size()); for (auto& handles : argument_handles) { unwrapped_argument_handles.emplace_back(); auto& unwrapped_handles = unwrapped_argument_handles.back(); unwrapped_handles.reserve(handles.size()); for (PjRtBuffer* buffer : handles) { unwrapped_handles.push_back( tensorflow::down_cast<TfPjRtBuffer*>(buffer)->wrapped()); } } TF_ASSIGN_OR_RETURN(auto out, wrapped_->Execute(unwrapped_argument_handles, options, returned_futures)); for (auto& buffer_list : out) { for (std::unique_ptr<PjRtBuffer>& buffer : buffer_list) { buffer = std::make_unique<TfPjRtBuffer>(client_, std::move(buffer)); } } return out; } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> TfPjRtExecutable::ExecuteSharded(absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) { std::vector<PjRtBuffer*> unwrapped_argument_handles; unwrapped_argument_handles.reserve(argument_handles.size()); for (PjRtBuffer* buffer : argument_handles) { unwrapped_argument_handles.push_back( tensorflow::down_cast<TfPjRtBuffer*>(buffer)->wrapped()); } TF_ASSIGN_OR_RETURN(auto out, wrapped_->ExecuteSharded( unwrapped_argument_handles, device, options, returned_future, fill_future)); for (std::unique_ptr<PjRtBuffer>& buffer : out) { buffer = std::make_unique<TfPjRtBuffer>(client_, std::move(buffer)); } return out; } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> TfPjRtExecutable::ExecutePortable( absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) { std::vector<PjRtBuffer*> unwrapped_argument_handles; unwrapped_argument_handles.reserve(argument_handles.size()); for (PjRtBuffer* buffer : argument_handles) { unwrapped_argument_handles.push_back( tensorflow::down_cast<TfPjRtBuffer*>(buffer)->wrapped()); } TF_ASSIGN_OR_RETURN(auto out, wrapped_->ExecutePortable( unwrapped_argument_handles, device, options, returned_future, fill_future)); for (std::unique_ptr<PjRtBuffer>& buffer : out) { buffer = std::make_unique<TfPjRtBuffer>(client_, std::move(buffer)); } return out; } TfPjRtClient::TfPjRtClient(std::unique_ptr<PjRtClient> wrapped) : wrapped_(std::move(wrapped)) { LOG(INFO) << "TfPjRtClient created."; int num_mutexes = wrapped_->addressable_device_count(); alive_buffers_ = std::vector<DeviceBuffers>(num_mutexes); for (int i = 0; i < num_mutexes; ++i) { mutex_id_from_device_id_.insert( {wrapped_->addressable_devices()[i]->id(), i}); } } TfPjRtClient::~TfPjRtClient() { LOG(INFO) << "TfPjRtClient destroyed."; } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfPjRtClient::WrapBuffer( absl::StatusOr<std::unique_ptr<PjRtBuffer>> to_wrap) { TF_ASSIGN_OR_RETURN(std::unique_ptr<PjRtBuffer> buffer, std::move(to_wrap)); return std::unique_ptr<PjRtBuffer>( std::make_unique<TfPjRtBuffer>(this, std::move(buffer))); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> TfPjRtClient::WrapExecutable( absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> to_wrap) { TF_ASSIGN_OR_RETURN(std::unique_ptr<PjRtLoadedExecutable> executable, std::move(to_wrap)); return std::unique_ptr<PjRtLoadedExecutable>( std::make_unique<TfPjRtExecutable>(this, std::move(executable))); } static int GetMutexId( const TfPjRtBuffer* buffer, const absl::flat_hash_map<int, int>& mutex_id_from_device_id) { auto iters = mutex_id_from_device_id.find(buffer->wrapped()->device()->id()); CHECK(iters != mutex_id_from_device_id.end()) << "Mutex id not found for device id: " << buffer->wrapped()->device()->id(); return iters->second; } void TfPjRtClient::TrackBuffer(TfPjRtBuffer* buffer) { int mutex_id = GetMutexId(buffer, mutex_id_from_device_id_); { absl::MutexLock lock(&alive_buffers_[mutex_id].mu); alive_buffers_[mutex_id].alive_buffers.insert(buffer); } } void TfPjRtClient::UntrackBuffer(const TfPjRtBuffer* buffer) { if (buffer->wrapped() == nullptr) { return; } int mutex_id = GetMutexId(buffer, mutex_id_from_device_id_); { absl::MutexLock lock(&alive_buffers_[mutex_id].mu); alive_buffers_[mutex_id].alive_buffers.erase(buffer); } } void TfPjRtClient::DestroyWrappedBuffersAndClient() { int num_mutexes = alive_buffers_.size(); for (int i = 0; i < num_mutexes; ++i) { absl::MutexLock lock(&alive_buffers_[i].mu); for (auto* buffer : alive_buffers_[i].alive_buffers) { buffer->DestroyWrappedBuffer(); } } wrapped_.reset(nullptr); LOG(INFO) << "TfPjRtClient::DestroyWrappedBuffersAndClient completed."; } std::unique_ptr<TfPjRtClient> TfPjRtClient::CreateTfPjRtClient( std::unique_ptr<PjRtClient> wrapped) { return std::make_unique<TfPjRtClient>(std::move(wrapped)); } }
#include "xla/pjrt/tf_pjrt_client.h" #include <string> #include <utility> #include <vector> #include <gtest/gtest.h> #include "xla/literal_util.h" #include "xla/pjrt/cpu/cpu_client.h" #include "xla/service/hlo_parser.h" #include "tsl/platform/env.h" #include "tsl/platform/file_system.h" #include "tsl/platform/test.h" namespace xla { namespace { TEST(TfClientTest, ExecuteAndHloSnapshot) { constexpr char kProgram[] = R"( HloModule add ENTRY add { x = f32[3,2] parameter(0) y = f32[3,2] parameter(1) ROOT add = f32[3,2] add(x, y) })"; TF_ASSERT_OK_AND_ASSIGN(auto client, GetTfrtCpuClient(true)); client = TfPjRtClient::CreateTfPjRtClient(std::move(client)); TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnUnverifiedModule(kProgram, {})); std::string dir = tsl::testing::TmpDir(); xla::CompileOptions options; auto* debug_opts = options.executable_build_options.mutable_debug_options(); debug_opts->set_xla_dump_to(dir); debug_opts->set_xla_dump_hlo_snapshots(true); XlaComputation xla_computation(hlo_module->ToProto()); TF_ASSERT_OK_AND_ASSIGN(auto pjrt_executable, client->Compile(xla_computation, options)); std::vector<float> data1{1.0, 2.0, 3.0, 4.0, 5.0, 6.0}; std::vector<float> data2{10.0, 20.0, 30.0, 40.0, 50.0, 60.0}; Shape shape = ShapeUtil::MakeShape(F32, {3, 2}); TF_ASSERT_OK_AND_ASSIGN( auto buffer1, client->BufferFromHostBuffer( data1.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); TF_ASSERT_OK_AND_ASSIGN( auto buffer2, client->BufferFromHostBuffer( data2.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); auto result = pjrt_executable->Execute( {{buffer1.get(), buffer2.get()}}, {}); ASSERT_TRUE(result.ok()); tsl::FileSystem* fs; ASSERT_TRUE(tsl::Env::Default()->GetFileSystemForFile(dir, &fs).ok()); std::vector<std::string> paths; ASSERT_TRUE(fs->GetMatchingPaths(dir + "/*.snapshot.*.pb", &paths).ok()); ASSERT_EQ(paths.size(), 1); HloSnapshot snapshot; ASSERT_TRUE( tsl::ReadBinaryProto(tsl::Env::Default(), paths[0], &snapshot).ok()); ASSERT_EQ(*Literal::CreateFromProto(snapshot.arguments(0)), LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}, {5.0, 6.0}})); ASSERT_EQ( *Literal::CreateFromProto(snapshot.arguments(1)), LiteralUtil::CreateR2<float>({{10.0, 20.0}, {30.0, 40.0}, {50.0, 60.0}})); ASSERT_EQ( *Literal::CreateFromProto(snapshot.result()), LiteralUtil::CreateR2<float>({{11.0, 22.0}, {33.0, 44.0}, {55.0, 66.0}})); auto* tf_pjrt_client = tensorflow::down_cast<xla::TfPjRtClient*>(client.get()); tf_pjrt_client->DestroyWrappedBuffersAndClient(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/tf_pjrt_client.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/tf_pjrt_client_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8a36c167-4407-4e5f-84ef-a0ee90099328
cpp
tensorflow/tensorflow
pjrt_c_api_client
third_party/xla/xla/pjrt/pjrt_c_api_client.cc
third_party/xla/xla/pjrt/pjrt_c_api_client_test.cc
#include "xla/pjrt/pjrt_c_api_client.h" #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/cleanup/cleanup.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "llvm/Support/ErrorHandling.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LogicalResult.h" #include "xla/client/xla_computation.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/translate/mhlo_to_hlo/mlir_hlo_to_hlo.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/mlir_hlo/mhlo/transforms/passes.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_helpers.h" #include "xla/pjrt/c/pjrt_c_api_layouts_extension.h" #include "xla/pjrt/c/pjrt_c_api_profiler_extension.h" #include "xla/pjrt/c/pjrt_c_api_stream_extension.h" #include "xla/pjrt/compile_options.pb.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/pjrt/mlir_to_hlo.h" #include "xla/pjrt/pjrt_api.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_device_description.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/pjrt/pjrt_layout.h" #include "xla/service/computation_placer.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tsl/framework/allocator.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/casts.h" #include "tsl/platform/errors.h" #include "tsl/platform/fingerprint.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { #define RETURN_FUTURE_IF_ERROR(expr, c_api) \ do { \ PJRT_Error* error = (expr); \ std::unique_ptr<PJRT_Error, pjrt::PJRT_ErrorDeleter> _error( \ error, pjrt::MakeErrorDeleter(c_api)); \ absl::Status _status = pjrt::PjrtErrorToStatus(_error.get(), c_api); \ if (!_status.ok()) { \ return PjRtFuture<>(_status); \ } \ } while (false) static absl::StatusOr<const PjRtCApiTopologyDescription> InitClientTopoDesc( const PJRT_Api* c_api, PJRT_Client* c_client) { absl::StatusOr<PJRT_TopologyDescription*> c_topo = pjrt::GetTopologyDescription(c_client, c_api); TF_RETURN_IF_ERROR(c_topo.status()); return PjRtCApiTopologyDescription(c_api, *c_topo, false); } PjRtCApiClient::PjRtCApiClient( const PJRT_Api* c_api, PJRT_Client* c_client, std::unique_ptr<pjrt::PJRT_KeyValueCallbackData> kv_callback_data) : c_api_(c_api), c_client_(std::unique_ptr<PJRT_Client, ::pjrt::PJRT_ClientDeleter>( c_client, ::pjrt::MakeClientDeleter(c_api))), kv_callback_data_(std::move(kv_callback_data)), topo_desc_(InitClientTopoDesc(c_api, c_client)), platform_version_(absl::StrCat( "PJRT C API\n", ::pjrt::GetPlatformVersion(c_client, c_api))), platform_name_(::pjrt::GetPlatformName(c_client, c_api)), platform_id_(tsl::Fingerprint64(platform_name_)) { InitDevicesAndMemorySpaces(); InitAttributes(); LOG(INFO) << "PjRtCApiClient created."; } void PjRtCApiClient::InitDevicesAndMemorySpaces() { PJRT_Client_Devices_Args devices_args; devices_args.struct_size = PJRT_Client_Devices_Args_STRUCT_SIZE; devices_args.extension_start = nullptr; devices_args.client = c_client_.get(); pjrt::LogFatalIfPjrtError(c_api_->PJRT_Client_Devices(&devices_args), c_api_); const size_t num_devices = devices_args.num_devices; c_to_cpp_device_map_.reserve(num_devices); owned_devices_.reserve(num_devices); devices_.reserve(num_devices); for (int i = 0; i < num_devices; ++i) { PJRT_Device* device = devices_args.devices[i]; std::unique_ptr<PjRtCApiDevice>& cpp_device = owned_devices_.emplace_back( std::make_unique<PjRtCApiDevice>(device, this)); devices_.push_back(cpp_device.get()); c_to_cpp_device_map_[device] = cpp_device.get(); } PJRT_Client_AddressableDevices_Args address_args; address_args.struct_size = PJRT_Client_AddressableDevices_Args_STRUCT_SIZE; address_args.extension_start = nullptr; address_args.client = c_client_.get(); pjrt::LogFatalIfPjrtError( c_api_->PJRT_Client_AddressableDevices(&address_args), c_api_); const size_t num_addressable_devices = address_args.num_addressable_devices; addressable_devices_.reserve(num_addressable_devices); for (int i = 0; i < num_addressable_devices; ++i) { PJRT_Device* c_device = address_args.addressable_devices[i]; addressable_devices_.push_back(GetCppDevice(c_device)); } PJRT_Client_AddressableMemories_Args memory_args; memory_args.struct_size = PJRT_Client_AddressableMemories_Args_STRUCT_SIZE; memory_args.extension_start = nullptr; memory_args.client = c_client_.get(); std::unique_ptr<PJRT_Error, pjrt::PJRT_ErrorDeleter> client_error( c_api_->PJRT_Client_AddressableMemories(&memory_args), pjrt::MakeErrorDeleter(c_api_)); if (client_error == nullptr) { const size_t num_memories = memory_args.num_addressable_memories; c_to_cpp_memory_map_.reserve(num_memories); owned_memory_spaces_.reserve(num_memories); addressable_memory_spaces_.reserve(num_memories); for (int i = 0; i < num_memories; ++i) { PJRT_Memory* memory = memory_args.addressable_memories[i]; std::unique_ptr<PjRtCApiMemorySpace>& cpp_memory = owned_memory_spaces_.emplace_back( std::make_unique<PjRtCApiMemorySpace>(memory, this)); addressable_memory_spaces_.push_back(cpp_memory.get()); c_to_cpp_memory_map_[memory] = cpp_memory.get(); } } else if (pjrt::GetErrorCode(client_error.get(), c_api_) != PJRT_Error_Code_UNIMPLEMENTED) { pjrt::LogFatalIfPjrtError(client_error.get(), c_api_); } for (const auto& device : addressable_devices_) { PjRtCApiDevice* cpp_device = tensorflow::down_cast<PjRtCApiDevice*>(device); PJRT_Device* c_device = cpp_device->c_device(); PJRT_Device_AddressableMemories_Args args; args.struct_size = PJRT_Device_AddressableMemories_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device = c_device; std::unique_ptr<PJRT_Error, pjrt::PJRT_ErrorDeleter> device_error( c_api_->PJRT_Device_AddressableMemories(&args), pjrt::MakeErrorDeleter(c_api_)); if (device_error != nullptr) { if (pjrt::GetErrorCode(device_error.get(), c_api_) != PJRT_Error_Code_UNIMPLEMENTED) { pjrt::LogFatalIfPjrtError(device_error.get(), c_api_); } break; } const size_t num_memories = args.num_memories; cpp_device->memory_spaces_.reserve(num_memories); for (int i = 0; i < num_memories; ++i) { cpp_device->memory_spaces_.push_back(GetCppMemory(args.memories[i])); } } for (const auto& memory : addressable_memory_spaces_) { PjRtCApiMemorySpace* cpp_memory = tensorflow::down_cast<PjRtCApiMemorySpace*>(memory); PJRT_Memory* c_memory = cpp_memory->c_memory(); PJRT_Memory_AddressableByDevices_Args args; args.struct_size = PJRT_Memory_AddressableByDevices_Args_STRUCT_SIZE; args.extension_start = nullptr; args.memory = c_memory; pjrt::LogFatalIfPjrtError(c_api_->PJRT_Memory_AddressableByDevices(&args), c_api_); const size_t num_attached_devices = args.num_devices; cpp_memory->devices_.reserve(num_attached_devices); for (int i = 0; i < num_attached_devices; ++i) { cpp_memory->devices_.push_back(GetCppDevice(args.devices[i])); } } } void PjRtCApiClient::InitAttributes() { PJRT_Plugin_Attributes_Args args; args.struct_size = PJRT_Plugin_Attributes_Args_STRUCT_SIZE; args.extension_start = nullptr; pjrt::LogFatalIfPjrtError(c_api_->PJRT_Plugin_Attributes(&args), c_api_); attributes_ = pjrt::ConvertFromPjRtNamedValueList(args.attributes, args.num_attributes); } int PjRtCApiClient::device_count() const { return devices_.size(); } int PjRtCApiClient::addressable_device_count() const { return addressable_devices_.size(); } absl::Span<PjRtDevice* const> PjRtCApiClient::devices() const { return devices_; } absl::Span<PjRtDevice* const> PjRtCApiClient::addressable_devices() const { return addressable_devices_; } int PjRtCApiClient::process_index() const { PJRT_Client_ProcessIndex_Args process_index_args; process_index_args.struct_size = PJRT_Client_ProcessIndex_Args_STRUCT_SIZE; process_index_args.extension_start = nullptr; process_index_args.client = c_client_.get(); pjrt::LogFatalIfPjrtError( c_api_->PJRT_Client_ProcessIndex(&process_index_args), c_api_); return process_index_args.process_index; } absl::string_view PjRtCApiClient::platform_version() const { return platform_version_; } std::optional<PjRtPluginAttributes> PjRtCApiClient::plugin_attributes() const { return PjRtPluginAttributes{c_api_->pjrt_api_version.major_version, c_api_->pjrt_api_version.minor_version, attributes_}; } static DeviceAssignment CalculateDefaultAssignment( int num_replicas, int num_partitions, absl::Span<const int> device_assignment) { DeviceAssignment cpp_device_assignment(num_replicas, num_partitions); const int* iterator = device_assignment.begin(); for (int replica = 0; replica < num_replicas; ++replica) { for (int partition = 0; partition < num_partitions; ++partition) { cpp_device_assignment(replica, partition) = *(iterator++); } } return cpp_device_assignment; } absl::StatusOr<DeviceAssignment> PjRtCApiClient::GetDefaultDeviceAssignment( int num_replicas, int num_partitions) const { PJRT_Client_DefaultDeviceAssignment_Args args; args.struct_size = PJRT_Client_DefaultDeviceAssignment_Args_STRUCT_SIZE; args.extension_start = nullptr; args.client = c_client_.get(); args.num_replicas = num_replicas; args.num_partitions = num_partitions; std::vector<int> assignment_buffer(num_replicas * num_partitions); args.default_assignment_size = assignment_buffer.size(); args.default_assignment = assignment_buffer.data(); RETURN_STATUS_IF_PJRT_ERROR( c_api_->PJRT_Client_DefaultDeviceAssignment(&args), c_api_); absl::Span<const int> param{args.default_assignment, args.default_assignment_size}; return CalculateDefaultAssignment(args.num_replicas, args.num_partitions, param); } absl::StatusOr<PjRtDevice*> PjRtCApiClient::LookupDevice( PjRtGlobalDeviceId global_device_id) const { PJRT_Client_LookupDevice_Args args; args.struct_size = PJRT_Client_LookupDevice_Args_STRUCT_SIZE; args.extension_start = nullptr; args.client = c_client_.get(); args.id = global_device_id.value(); RETURN_STATUS_IF_PJRT_ERROR(c_api_->PJRT_Client_LookupDevice(&args), c_api_); return GetCppDevice(args.device); } absl::StatusOr<PjRtDevice*> PjRtCApiClient::LookupAddressableDevice( PjRtLocalDeviceId local_device_id) const { PJRT_Client_LookupAddressableDevice_Args args; args.struct_size = PJRT_Client_LookupAddressableDevice_Args_STRUCT_SIZE; args.extension_start = nullptr; args.client = c_client_.get(); args.local_hardware_id = local_device_id.value(); RETURN_STATUS_IF_PJRT_ERROR( c_api_->PJRT_Client_LookupAddressableDevice(&args), c_api_); return GetCppDevice(args.addressable_device); } absl::Span<PjRtMemorySpace* const> PjRtCApiClient::memory_spaces() const { return addressable_memory_spaces_; } static absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> InitializeArgsAndCompile(PjRtCApiClient* api_client, const PJRT_Api* c_api, PJRT_Client* client, const CompileOptions& options, const std::string& code, const std::string& format) { PJRT_Client_Compile_Args args; args.struct_size = PJRT_Client_Compile_Args_STRUCT_SIZE; PJRT_Profiler_Extension profiler_extension = pjrt::CreatePjrtProfilerExtension("PJRT_Client_Compile linkage"); args.extension_start = reinterpret_cast<PJRT_Extension_Base*>(&profiler_extension); args.client = client; TF_ASSIGN_OR_RETURN(const CompileOptionsProto options_proto, options.ToProto()); std::string options_str = options_proto.SerializeAsString(); args.compile_options = options_str.c_str(); args.compile_options_size = options_str.size(); PJRT_Program program; program.struct_size = PJRT_Program_STRUCT_SIZE; program.extension_start = nullptr; program.code = const_cast<char*>(code.c_str()); program.code_size = code.size(); program.format = format.c_str(); program.format_size = format.size(); args.program = &program; RETURN_STATUS_IF_PJRT_ERROR(c_api->PJRT_Client_Compile(&args), c_api); std::unique_ptr<PjRtLoadedExecutable> ret = std::make_unique<PjRtCApiLoadedExecutable>(api_client, args.executable); return ret; } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> PjRtCApiClient::Compile( const XlaComputation& computation, CompileOptions options) { std::string module_str = computation.proto().SerializeAsString(); std::string format(pjrt::kHloFormat); return InitializeArgsAndCompile(this, c_api_, c_client_.get(), options, module_str, format); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> PjRtCApiClient::Compile( mlir::ModuleOp module, CompileOptions options) { if (!pjrt_c_api()) llvm::report_fatal_error("pjrt_c_api is null"); TF_ASSIGN_OR_RETURN( std::string serialized, xla::Serialize(module, xla::GetDefaultStablehloVersion( plugin_attributes()->pjrt_c_api_minor_version))); std::string format(pjrt::kMlirFormat); return InitializeArgsAndCompile(this, c_api_, c_client_.get(), options, serialized, format); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> PjRtCApiClient::DeserializeExecutable(absl::string_view serialized, std::optional<CompileOptions> options) { PJRT_Executable_DeserializeAndLoad_Args des_args; des_args.struct_size = PJRT_Executable_DeserializeAndLoad_Args_STRUCT_SIZE; des_args.extension_start = nullptr; des_args.client = c_client_.get(); des_args.serialized_executable = serialized.data(); des_args.serialized_executable_size = serialized.length(); const PJRT_Api* api = pjrt_c_api(); RETURN_STATUS_IF_PJRT_ERROR( api->PJRT_Executable_DeserializeAndLoad(&des_args), api); PJRT_LoadedExecutable* c_exec = des_args.loaded_executable; CHECK(c_exec != nullptr); return std::unique_ptr<PjRtLoadedExecutable>( std::make_unique<PjRtCApiLoadedExecutable>(this, c_exec)); } absl::StatusOr<const PjRtTopologyDescription*> PjRtCApiClient::GetTopologyDescription() const { if (!topo_desc_.ok()) { return topo_desc_.status(); } return &(*topo_desc_); } absl::StatusOr<std::uintptr_t> PjRtCApiClient::UnsafeBufferPointer( PjRtBuffer* buffer) { if (buffer->client() != this) { return InvalidArgument( "buffer passed to PjRtCApiClient::UnsafeBufferPointer() is from a " "different client than that of the function call. Buffer's client " "platform: '%s', function call's client platform: '%s'.", buffer->client()->platform_name(), this->platform_name()); } PJRT_Buffer_UnsafePointer_Args args; args.struct_size = PJRT_Buffer_UnsafePointer_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = tensorflow::down_cast<const PjRtCApiBuffer*>(buffer)->c_buffer(); RETURN_STATUS_IF_PJRT_ERROR(c_api_->PJRT_Buffer_UnsafePointer(&args), c_api_); return args.buffer_pointer; } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtCApiClient::BufferFromHostBufferInternalImpl( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, std::variant<PjRtDevice*, PjRtMemorySpace*> device_or_memory, const Layout* device_layout) { if (host_buffer_semantics != HostBufferSemantics::kImmutableOnlyDuringCall && host_buffer_semantics != HostBufferSemantics::kImmutableZeroCopy && host_buffer_semantics != HostBufferSemantics::kImmutableUntilTransferCompletes) { return Unimplemented( "PJRT C API does not support HostBufferSemantics other than " "HostBufferSemantics::kImmutableOnlyDuringCall, " "HostBufferSemantics::kImmutableZeroCopy and " "HostBufferSemantics::kImmutableUntilTransferCompletes."); } PJRT_Client_BufferFromHostBuffer_Args args; args.struct_size = PJRT_Client_BufferFromHostBuffer_Args_STRUCT_SIZE; args.extension_start = nullptr; args.client = c_client_.get(); args.data = data; args.type = ::pjrt::ConvertToPjRtBufferType(type); args.dims = dims.data(); args.num_dims = dims.size(); if (byte_strides.has_value()) { args.byte_strides = byte_strides.value().data(); args.num_byte_strides = byte_strides.value().size(); } else { args.byte_strides = nullptr; args.num_byte_strides = 0; } pjrt::BufferMemoryLayoutData c_layout_data; if (device_layout != nullptr) { TF_ASSIGN_OR_RETURN(c_layout_data, pjrt::ConvertToBufferMemoryLayoutData(*device_layout)); args.device_layout = &c_layout_data.c_layout; } else { args.device_layout = nullptr; } args.host_buffer_semantics = ::pjrt::ConvertToPjRtHostBufferSemantics(host_buffer_semantics); if (std::holds_alternative<PjRtDevice*>(device_or_memory)) { args.device = tensorflow::down_cast<PjRtCApiDevice*>( std::get<PjRtDevice*>(device_or_memory)) ->c_device(); args.memory = nullptr; } else { CHECK(std::holds_alternative<PjRtMemorySpace*>(device_or_memory)); args.device = nullptr; args.memory = tensorflow::down_cast<PjRtCApiMemorySpace*>( std::get<PjRtMemorySpace*>(device_or_memory)) ->c_memory(); } RETURN_STATUS_IF_PJRT_ERROR(c_api_->PJRT_Client_BufferFromHostBuffer(&args), c_api_); auto buffer = std::unique_ptr<PjRtBuffer>( std::make_unique<PjRtCApiBuffer>(this, args.buffer)); std::unique_ptr<PJRT_Event, ::pjrt::PJRT_EventDeleter> event( args.done_with_host_buffer, ::pjrt::MakeEventDeleter(c_api_)); if (on_done_with_host_buffer) { PJRT_Event_OnReady_Args event_args; event_args.struct_size = PJRT_Event_OnReady_Args_STRUCT_SIZE; event_args.extension_start = nullptr; event_args.event = event.get(); event_args.user_arg = new absl::AnyInvocable<void(PJRT_Error*)>( [on_done_with_host_buffer = std::move(on_done_with_host_buffer), c_api = c_api_](PJRT_Error* error) mutable { if (error) { ::pjrt::MakeErrorDeleter(c_api)(error); } std::move(on_done_with_host_buffer)(); }); event_args.callback = [](PJRT_Error* error, void* args) { auto* on_done_with_host_buffer = reinterpret_cast<absl::AnyInvocable<void(PJRT_Error*)>*>(args); (*on_done_with_host_buffer)(error); delete on_done_with_host_buffer; }; RETURN_STATUS_IF_PJRT_ERROR(c_api_->PJRT_Event_OnReady(&event_args), c_api_); } return buffer; } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtCApiClient::BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtMemorySpace* memory_space, const Layout* device_layout) { return BufferFromHostBufferInternalImpl( data, type, dims, byte_strides, host_buffer_semantics, std::move(on_done_with_host_buffer), memory_space, device_layout); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtCApiClient::BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtDevice* device, const Layout* device_layout) { return BufferFromHostBufferInternalImpl( data, type, dims, byte_strides, host_buffer_semantics, std::move(on_done_with_host_buffer), device, device_layout); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtCApiClient::BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtDevice* device) { return BufferFromHostBufferInternalImpl( data, type, dims, byte_strides, host_buffer_semantics, std::move(on_done_with_host_buffer), device, nullptr); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtCApiClient::CreateViewOfDeviceBuffer( void* device_ptr, const Shape& shape, PjRtDevice* device, std::function<void()> on_delete_callback, std::optional<std::intptr_t> stream) { PJRT_Client_CreateViewOfDeviceBuffer_Args args; args.struct_size = PJRT_Client_CreateViewOfDeviceBuffer_Args_STRUCT_SIZE; args.extension_start = nullptr; args.client = c_client_.get(); args.device_buffer_ptr = device_ptr; args.dims = shape.dimensions().data(); args.num_dims = shape.dimensions().size(); args.element_type = pjrt::ConvertToPjRtBufferType(shape.element_type()); pjrt::BufferMemoryLayoutData c_layout_data; if (shape.has_layout()) { TF_ASSIGN_OR_RETURN(c_layout_data, pjrt::ConvertToBufferMemoryLayoutData(shape.layout())); args.layout = &(c_layout_data.c_layout); } else { args.layout = nullptr; } if (on_delete_callback != nullptr) { args.on_delete_callback_arg = new std::function(std::move(on_delete_callback)); args.on_delete_callback = [](void* device_buffer_ptr, void* user_arg) { auto* c_func = reinterpret_cast<std::function<void()>*>(user_arg); (*c_func)(); delete c_func; }; } else { args.on_delete_callback = nullptr; args.on_delete_callback_arg = nullptr; } args.device = tensorflow::down_cast<PjRtCApiDevice*>(device)->c_device(); if (stream.has_value()) { args.stream = *stream; } else { args.stream = reinterpret_cast<intptr_t>(nullptr); } const PJRT_Api* c_api = pjrt_c_api(); RETURN_STATUS_IF_PJRT_ERROR( c_api->PJRT_Client_CreateViewOfDeviceBuffer(&args), c_api); return std::unique_ptr<PjRtBuffer>( std::make_unique<PjRtCApiBuffer>(this, args.buffer)); } absl::StatusOr<Layout> PjRtCApiClient::GetDefaultLayout( PrimitiveType element_type, absl::Span<const int64_t> dims) { const PJRT_Api* c_api = pjrt_c_api(); PJRT_Layouts_Extension* extension = pjrt::FindExtension<PJRT_Layouts_Extension>( c_api, PJRT_Extension_Type::PJRT_Extension_Type_Layouts); if (extension == nullptr) { return LayoutUtil::MakeDescendingLayout(dims.size()); } PJRT_Layouts_PJRT_Client_GetDefaultLayout_Args args; args.struct_size = PJRT_Layouts_PJRT_Client_GetDefaultLayout_Args_STRUCT_SIZE; args.extension_start = nullptr; args.client = c_client_.get(); args.type = pjrt::ConvertToPjRtBufferType(element_type); args.dims = dims.data(); args.num_dims = dims.size(); RETURN_STATUS_IF_PJRT_ERROR( extension->PJRT_Layouts_PJRT_Client_GetDefaultLayout(&args), c_api); std::unique_ptr<PJRT_Layouts_MemoryLayout, pjrt::PJRT_Layouts_MemoryLayoutDeleter> layout_destroyer(args.layout, pjrt::MakeMemoryLayoutDeleter(c_api)); PJRT_Layouts_MemoryLayout_Serialize_Args serialize_args; serialize_args.struct_size = PJRT_Layouts_MemoryLayout_Serialize_Args_STRUCT_SIZE; serialize_args.extension_start = nullptr; serialize_args.layout = args.layout; RETURN_STATUS_IF_PJRT_ERROR( extension->PJRT_Layouts_MemoryLayout_Serialize(&serialize_args), c_api); absl::Cleanup cleanup = [&serialize_args] { serialize_args.serialized_layout_deleter(serialize_args.serialized_layout); }; std::string serialized_layout(serialize_args.serialized_bytes, serialize_args.serialized_bytes_size); TF_ASSIGN_OR_RETURN(PjRtXlaLayout pjrt_xla_layout, PjRtXlaLayout::Deserialize(serialized_layout)); return pjrt_xla_layout.xla_layout(); } const PJRT_Api* PjRtCApiClient::pjrt_c_api() const { return c_api_; } PjRtCApiDeviceDescription::PjRtCApiDeviceDescription( const PJRT_Api* c_api, PJRT_DeviceDescription* device_description) : c_api_(c_api), device_description_(device_description) { InitAttributes(); } int PjRtCApiDeviceDescription::id() const { PJRT_DeviceDescription_Id_Args args; args.struct_size = PJRT_DeviceDescription_Id_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device_description = device_description_; pjrt::LogFatalIfPjrtError(c_api_->PJRT_DeviceDescription_Id(&args), c_api_); return args.id; } int PjRtCApiDeviceDescription::process_index() const { PJRT_DeviceDescription_ProcessIndex_Args args; args.struct_size = PJRT_DeviceDescription_ProcessIndex_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device_description = device_description_; pjrt::LogFatalIfPjrtError(c_api_->PJRT_DeviceDescription_ProcessIndex(&args), c_api_); return args.process_index; } void PjRtCApiDeviceDescription::InitAttributes() { attributes_ = {}; PJRT_DeviceDescription_Attributes_Args args; args.struct_size = PJRT_DeviceDescription_Attributes_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device_description = device_description_; pjrt::LogFatalIfPjrtError(c_api_->PJRT_DeviceDescription_Attributes(&args), c_api_); for (int i = 0; i < args.num_attributes; ++i) { const auto& attribute = args.attributes[i]; std::string attribute_name(attribute.name, attribute.name_size); switch (attribute.type) { case PJRT_NamedValue_Type::PJRT_NamedValue_kString: { std::string string_value(attribute.string_value, attribute.value_size); attributes_[attribute_name] = PjRtDeviceAttribute(string_value); break; } case PJRT_NamedValue_Type::PJRT_NamedValue_kInt64: { attributes_[attribute_name] = PjRtDeviceAttribute(attribute.int64_value); break; } case PJRT_NamedValue_Type::PJRT_NamedValue_kInt64List: { const int64_t* array_ptr(attribute.int64_array_value); std::vector<int64_t> int64_array(array_ptr, array_ptr + attribute.value_size); attributes_[attribute_name] = PjRtDeviceAttribute(int64_array); break; } default: { LOG(FATAL) << "PJRT_DeviceDescription_Attributes() returned attribute '" << attribute_name << "' with unsupported type " << attribute.type << " to PjRtCApiDeviceDescription::InitAttributes()"; break; } } } } const absl::flat_hash_map<std::string, PjRtDeviceAttribute>& PjRtCApiDeviceDescription::Attributes() const { return attributes_; } absl::string_view PjRtCApiDeviceDescription::device_kind() const { PJRT_DeviceDescription_Kind_Args args; args.struct_size = PJRT_DeviceDescription_Kind_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device_description = device_description_; pjrt::LogFatalIfPjrtError(c_api_->PJRT_DeviceDescription_Kind(&args), c_api_); absl::string_view device_kind(args.device_kind, args.device_kind_size); return device_kind; } absl::string_view PjRtCApiDeviceDescription::DebugString() const { PJRT_DeviceDescription_DebugString_Args args; args.struct_size = PJRT_DeviceDescription_DebugString_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device_description = device_description_; pjrt::LogFatalIfPjrtError(c_api_->PJRT_DeviceDescription_DebugString(&args), c_api_); absl::string_view debug_string(args.debug_string, args.debug_string_size); return debug_string; } absl::string_view PjRtCApiDeviceDescription::ToString() const { PJRT_DeviceDescription_ToString_Args args; args.struct_size = PJRT_DeviceDescription_ToString_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device_description = device_description_; pjrt::LogFatalIfPjrtError(c_api_->PJRT_DeviceDescription_ToString(&args), c_api_); absl::string_view to_string(args.to_string, args.to_string_size); return to_string; } PjRtCApiDevice::PjRtCApiDevice(PJRT_Device* device, PjRtCApiClient* client) : client_(client), device_(device), description_(client->pjrt_c_api(), pjrt::GetDeviceDescription(client->pjrt_c_api(), device)) {} PjRtClient* PjRtCApiDevice::client() const { return client_; } bool PjRtCApiDevice::IsAddressable() const { PJRT_Device_IsAddressable_Args args; args.struct_size = PJRT_Device_IsAddressable_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device = device_; const PJRT_Api* api = client_->pjrt_c_api(); pjrt::LogFatalIfPjrtError(api->PJRT_Device_IsAddressable(&args), api); return args.is_addressable; } PjRtLocalHardwareId PjRtCApiDevice::local_hardware_id() const { PJRT_Device_LocalHardwareId_Args args; args.struct_size = PJRT_Device_LocalHardwareId_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device = device_; const PJRT_Api* api = client_->pjrt_c_api(); pjrt::LogFatalIfPjrtError(api->PJRT_Device_LocalHardwareId(&args), api); return PjRtLocalHardwareId(args.local_hardware_id); } absl::StatusOr<PjRtMemorySpace*> PjRtCApiDevice::default_memory_space() const { PJRT_Device_DefaultMemory_Args args; args.struct_size = PJRT_Device_DefaultMemory_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device = device_; const PJRT_Api* api = client_->pjrt_c_api(); RETURN_STATUS_IF_PJRT_ERROR(api->PJRT_Device_DefaultMemory(&args), api); return client_->GetCppMemory(args.memory); } absl::StatusOr<tsl::AllocatorStats> PjRtCApiDevice::GetAllocatorStats() const { PJRT_Device_MemoryStats_Args args; args.struct_size = PJRT_Device_MemoryStats_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device = device_; const PJRT_Api* api = client_->pjrt_c_api(); RETURN_STATUS_IF_PJRT_ERROR(api->PJRT_Device_MemoryStats(&args), api); tsl::AllocatorStats result; result.bytes_in_use = args.bytes_in_use; if (args.peak_bytes_in_use_is_set) { result.peak_bytes_in_use = args.peak_bytes_in_use; } else { result.peak_bytes_in_use = -1; } if (args.num_allocs_is_set) { result.num_allocs = args.num_allocs; } else { result.num_allocs = -1; } if (args.largest_alloc_size_is_set) { result.largest_alloc_size = args.largest_alloc_size; } else { result.largest_alloc_size = -1; } if (args.bytes_limit_is_set) { result.bytes_limit = args.bytes_limit; } if (args.bytes_reserved_is_set) { result.bytes_reserved = args.bytes_reserved; } else { result.bytes_reserved = -1; } if (args.peak_bytes_reserved_is_set) { result.peak_bytes_reserved = args.peak_bytes_reserved; } else { result.peak_bytes_reserved = -1; } if (args.bytes_reservable_limit_is_set) { result.bytes_reservable_limit = args.bytes_reservable_limit; } if (args.largest_free_block_bytes_is_set) { result.largest_free_block_bytes = args.largest_free_block_bytes; } else { result.largest_free_block_bytes = -1; } if (args.pool_bytes_is_set) { result.pool_bytes = args.pool_bytes; } if (args.peak_pool_bytes_is_set) { result.peak_pool_bytes = args.peak_pool_bytes; } return result; } absl::StatusOr<std::intptr_t> PjRtCApiDevice::GetStreamForExternalReadyEvents() const { const PJRT_Api* c_api = client_->pjrt_c_api(); PJRT_Stream_Extension* extension = pjrt::FindExtension<PJRT_Stream_Extension>( c_api, PJRT_Extension_Type::PJRT_Extension_Type_Stream); if (extension == nullptr) { return absl::UnimplementedError( "Stream extension not implemented in this PJRT plugin."); } PJRT_Get_Stream_For_External_Ready_Events_Args args; args.struct_size = PJRT_Get_Stream_For_External_Ready_Events_Args_STRUCT_SIZE; args.device = device_; RETURN_STATUS_IF_PJRT_ERROR(extension->get_stream(&args), c_api); return args.stream; } const PJRT_Api* PjRtCApiMemorySpace::pjrt_c_api() const { return client_->pjrt_c_api(); } PjRtClient* PjRtCApiMemorySpace::client() const { return client_; } int PjRtCApiMemorySpace::id() const { PJRT_Memory_Id_Args args; args.struct_size = PJRT_Memory_Id_Args_STRUCT_SIZE; args.extension_start = nullptr; args.memory = c_memory_; pjrt::LogFatalIfPjrtError(pjrt_c_api()->PJRT_Memory_Id(&args), pjrt_c_api()); return args.id; } absl::string_view PjRtCApiMemorySpace::kind() const { PJRT_Memory_Kind_Args args; args.struct_size = PJRT_Memory_Kind_Args_STRUCT_SIZE; args.extension_start = nullptr; args.memory = c_memory_; pjrt::LogFatalIfPjrtError(pjrt_c_api()->PJRT_Memory_Kind(&args), pjrt_c_api()); return absl::string_view(args.kind, args.kind_size); } int PjRtCApiMemorySpace::kind_id() const { PJRT_Memory_Kind_Id_Args args; args.struct_size = PJRT_Memory_Kind_Id_Args_STRUCT_SIZE; args.extension_start = nullptr; args.memory = c_memory_; if (pjrt_c_api()->pjrt_api_version.major_version > 0 || pjrt_c_api()->pjrt_api_version.minor_version >= 48) { pjrt::LogFatalIfPjrtError(pjrt_c_api()->PJRT_Memory_Kind_Id(&args), pjrt_c_api()); return args.kind_id; } return tsl::Fingerprint32(kind()); } absl::string_view PjRtCApiMemorySpace::DebugString() const { PJRT_Memory_DebugString_Args args; args.struct_size = PJRT_Memory_DebugString_Args_STRUCT_SIZE; args.extension_start = nullptr; args.memory = c_memory_; pjrt::LogFatalIfPjrtError(pjrt_c_api()->PJRT_Memory_DebugString(&args), pjrt_c_api()); return absl::string_view(args.debug_string, args.debug_string_size); } absl::string_view PjRtCApiMemorySpace::ToString() const { PJRT_Memory_ToString_Args args; args.struct_size = PJRT_Memory_ToString_Args_STRUCT_SIZE; args.extension_start = nullptr; args.memory = c_memory_; pjrt::LogFatalIfPjrtError(pjrt_c_api()->PJRT_Memory_ToString(&args), pjrt_c_api()); return absl::string_view(args.to_string, args.to_string_size); } PjRtCApiExecutable::PjRtCApiExecutable(const PJRT_Api* c_api, PJRT_Executable* executable) : c_api_(c_api), executable_(executable, ::pjrt::MakeExecutableDeleter(c_api)) {} absl::string_view PjRtCApiExecutable::name() const { auto* c_api = pjrt_c_api(); auto* executable = c_executable(); PJRT_Executable_Name_Args args; args.executable = executable; args.struct_size = PJRT_Executable_Name_Args_STRUCT_SIZE; args.extension_start = nullptr; pjrt::LogFatalIfPjrtError(c_api->PJRT_Executable_Name(&args), c_api); return absl::string_view(args.executable_name, args.executable_name_size); } int PjRtCApiExecutable::num_replicas() const { auto* c_api = pjrt_c_api(); auto* executable = c_executable(); PJRT_Executable_NumReplicas_Args args; args.executable = executable; args.struct_size = PJRT_Executable_NumReplicas_Args_STRUCT_SIZE; args.extension_start = nullptr; pjrt::LogFatalIfPjrtError(c_api->PJRT_Executable_NumReplicas(&args), c_api); return args.num_replicas; } int PjRtCApiExecutable::num_partitions() const { auto* c_api = pjrt_c_api(); auto* executable = c_executable(); PJRT_Executable_NumPartitions_Args args; args.executable = executable; args.struct_size = PJRT_Executable_NumPartitions_Args_STRUCT_SIZE; args.extension_start = nullptr; pjrt::LogFatalIfPjrtError(c_api->PJRT_Executable_NumPartitions(&args), c_api); return args.num_partitions; } int64_t PjRtCApiExecutable::SizeOfGeneratedCodeInBytes() const { auto* c_api = pjrt_c_api(); auto* executable = c_executable(); PJRT_Executable_SizeOfGeneratedCodeInBytes_Args args; args.struct_size = PJRT_Executable_SizeOfGeneratedCodeInBytes_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = executable; pjrt::LogFatalIfPjrtError( c_api->PJRT_Executable_SizeOfGeneratedCodeInBytes(&args), c_api); return args.size_in_bytes; } absl::StatusOr<absl::flat_hash_map<std::string, PjRtValueType>> PjRtCApiExecutable::GetCostAnalysis() const { PJRT_Executable_GetCostAnalysis_Args args; args.struct_size = PJRT_Executable_GetCostAnalysis_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = c_executable(); const PJRT_Api* c_api = pjrt_c_api(); RETURN_STATUS_IF_PJRT_ERROR(c_api->PJRT_Executable_GetCostAnalysis(&args), c_api); return pjrt::ConvertFromPjRtNamedValueList(args.properties, args.num_properties); } absl::StatusOr<std::vector<std::vector<PrimitiveType>>> PjRtCApiExecutable::GetOutputElementTypes() const { PJRT_Executable_OutputElementTypes_Args args; args.struct_size = PJRT_Executable_OutputElementTypes_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = c_executable(); const PJRT_Api* c_api = pjrt_c_api(); RETURN_STATUS_IF_PJRT_ERROR(c_api->PJRT_Executable_OutputElementTypes(&args), c_api); std::vector<PrimitiveType> out; out.reserve(args.num_output_types); for (int i = 0; i < args.num_output_types; ++i) { out.push_back(pjrt::ConvertFromPjRtBufferType(args.output_types[i])); } return std::vector<std::vector<PrimitiveType>>{std::move(out)}; } absl::StatusOr<std::vector<std::vector<DimensionVector>>> PjRtCApiExecutable::GetOutputDimensions() const { PJRT_Executable_OutputDimensions_Args args; args.struct_size = PJRT_Executable_OutputDimensions_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = c_executable(); const PJRT_Api* c_api = pjrt_c_api(); RETURN_STATUS_IF_PJRT_ERROR(c_api->PJRT_Executable_OutputDimensions(&args), c_api); std::vector<DimensionVector> out; out.reserve(args.num_outputs); int index = 0; for (int i = 0; i < args.num_outputs; ++i) { DimensionVector dimensions; dimensions.reserve(args.dim_sizes[i]); for (int j = 0; j < args.dim_sizes[i]; ++j) { dimensions.push_back(args.dims[index++]); } out.push_back(std::move(dimensions)); } return std::vector<std::vector<DimensionVector>>{std::move(out)}; } absl::StatusOr<std::vector<std::vector<absl::string_view>>> PjRtCApiExecutable::GetOutputMemoryKinds() const { PJRT_Executable_OutputMemoryKinds_Args args; args.struct_size = PJRT_Executable_OutputMemoryKinds_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = c_executable(); const PJRT_Api* c_api = pjrt_c_api(); RETURN_STATUS_IF_PJRT_ERROR(c_api->PJRT_Executable_OutputMemoryKinds(&args), c_api); std::vector<absl::string_view> out; out.reserve(args.num_outputs); for (int i = 0; i < args.num_outputs; ++i) { out.push_back( absl::string_view(args.memory_kinds[i], args.memory_kind_sizes[i])); } return std::vector<std::vector<absl::string_view>>{std::move(out)}; } absl::StatusOr<std::vector<std::shared_ptr<HloModule>>> PjRtCApiExecutable::GetHloModules() const { auto* c_api = pjrt_c_api(); auto* executable = c_executable(); PJRT_Executable_OptimizedProgram_Args args; args.struct_size = PJRT_Executable_OptimizedProgram_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = executable; PJRT_Program program; program.struct_size = PJRT_Program_STRUCT_SIZE; program.extension_start = nullptr; program.code = nullptr; args.program = &program; RETURN_STATUS_IF_PJRT_ERROR(c_api->PJRT_Executable_OptimizedProgram(&args), c_api); constexpr size_t TWO_GIBIBYTES = 2ull * 1024 * 1024 * 1024; const size_t code_size = args.program->code_size; CHECK(code_size < TWO_GIBIBYTES); std::string code(code_size, ' '); args.program->code = code.data(); RETURN_STATUS_IF_PJRT_ERROR(c_api->PJRT_Executable_OptimizedProgram(&args), c_api); absl::string_view program_format(program.format, program.format_size); if (program_format != ::pjrt::kHloWithConfigFormat && program_format != ::pjrt::kMlirFormat) { return xla::Internal( "expected program format `hlo_with_config` or `mlir` but got %s", program_format); } if (program_format == ::pjrt::kMlirFormat) { mlir::MLIRContext ctx; TF_ASSIGN_OR_RETURN( mlir::OwningOpRef<mlir::ModuleOp> module, ParseMlirModuleString(code, ctx)); mlir::PassManager pm(&ctx); pm.addPass(mlir::mhlo::createStablehloLegalizeToHloPass()); if (mlir::failed(pm.run(module.get()))) return xla::Internal("failed to convert to MHLO"); mlir::MlirToHloConversionOptions options; options.return_tuple = false; TF_ASSIGN_OR_RETURN(std::unique_ptr<xla::HloModule> hlo_module, mlir::ConvertMlirHloToHloModule(module.get(), options)); std::vector<std::shared_ptr<HloModule>> out; out.push_back(std::move(hlo_module)); return out; } HloModuleProtoWithConfig proto; proto.ParseFromString(code); std::vector<std::shared_ptr<HloModule>> out; TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> module, HloModule::CreateFromProtoWithConfig(proto)); out.push_back(std::move(module)); return out; } absl::StatusOr<std::string> PjRtCApiExecutable::SerializeExecutable() const { auto* c_api = pjrt_c_api(); auto* executable = c_executable(); PJRT_Executable_Serialize_Args ser_args; ser_args.struct_size = PJRT_Executable_Serialize_Args_STRUCT_SIZE; ser_args.extension_start = nullptr; ser_args.executable = executable; ser_args.serialized_executable = nullptr; RETURN_STATUS_IF_PJRT_ERROR(c_api->PJRT_Executable_Serialize(&ser_args), c_api); absl::Cleanup cleanup = [&ser_args] { ser_args.serialized_executable_deleter(ser_args.serialized_executable); }; return std::string(ser_args.serialized_bytes, ser_args.serialized_bytes_size); } absl::StatusOr<std::string> PjRtCApiExecutable::FingerprintExecutable() const { const PJRT_Api* c_api_ = pjrt_c_api(); PJRT_Executable_Fingerprint_Args args; args.struct_size = PJRT_Executable_Fingerprint_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = c_executable(); RETURN_STATUS_IF_PJRT_ERROR(c_api_->PJRT_Executable_Fingerprint(&args), c_api_); return std::string(args.executable_fingerprint, args.executable_fingerprint_size); } PjRtCApiLoadedExecutable::PjRtCApiLoadedExecutable( PjRtCApiClient* client, PJRT_LoadedExecutable* executable) : client_(client), loaded_executable_(executable, ::pjrt::MakeLoadedExecutableDeleter( client->pjrt_c_api())) { PJRT_LoadedExecutable_GetExecutable_Args args; args.struct_size = PJRT_LoadedExecutable_GetExecutable_Args_STRUCT_SIZE; args.extension_start = nullptr; args.loaded_executable = c_loaded_executable(); args.executable = nullptr; pjrt::LogFatalIfPjrtError( pjrt_c_api()->PJRT_LoadedExecutable_GetExecutable(&args), pjrt_c_api()); executable_ = std::make_unique<PjRtCApiExecutable>(pjrt_c_api(), args.executable); InitDevices(); } void PjRtCApiLoadedExecutable::InitDevices() { PJRT_LoadedExecutable_AddressableDevices_Args args; args.struct_size = PJRT_LoadedExecutable_AddressableDevices_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = c_loaded_executable(); args.addressable_devices = nullptr; args.num_addressable_devices = 0; const PJRT_Api* api = pjrt_c_api(); pjrt::LogFatalIfPjrtError( api->PJRT_LoadedExecutable_AddressableDevices(&args), api); const size_t num_addressable_devices = args.num_addressable_devices; addressable_devices_.reserve(num_addressable_devices); for (size_t i = 0; i < num_addressable_devices; ++i) { PJRT_Device* device = args.addressable_devices[i]; PjRtCApiDevice* c_api_device = client_->GetCppDevice(device); addressable_devices_.push_back(c_api_device); } } static std::vector<std::vector<PJRT_Buffer*>> Convert2DCppBuffersToCBuffers( absl::Span<const std::vector<PjRtBuffer*>> cpp_lists) { std::vector<std::vector<PJRT_Buffer*>> c_lists; c_lists.reserve(cpp_lists.size()); for (const auto& cpp_list : cpp_lists) { auto& c_list = c_lists.emplace_back(); c_list.reserve(cpp_list.size()); for (PjRtBuffer* buffer : cpp_list) { auto* c_api_argument = tensorflow::down_cast<PjRtCApiBuffer*>(buffer); c_list.push_back(c_api_argument->c_buffer()); } } return c_lists; } static std::vector<std::vector<std::unique_ptr<PjRtBuffer>>> Convert2DCBuffersToCppBuffers(PJRT_Buffer** const* c_lists, size_t outer_size, int inner_size, xla::PjRtCApiClient* client) { std::vector<std::vector<std::unique_ptr<PjRtBuffer>>> ret; for (size_t i = 0; i < outer_size; ++i) { auto& output_list = ret.emplace_back(); output_list.reserve(inner_size); for (size_t j = 0; j < inner_size; ++j) { output_list.push_back( std::make_unique<PjRtCApiBuffer>(client, c_lists[i][j])); } } return ret; } PJRT_SendCallbackInfo CppSendCallbackToC( const xla::SendCallback& cpp_send_callback, PjRtCApiLoadedExecutable::SendCallbackFunction* send_callback_function) { *send_callback_function = [&send_callback = cpp_send_callback.callback]( PJRT_Chunk* chunk, PJRT_CallbackError* callback_error, size_t total_size_in_bytes, bool done) -> PJRT_Error* { xla::Shape dummy_shape; absl::Status status = send_callback(xla::PjRtTransferMetadata{dummy_shape}, ::pjrt::ConvertToCppChunk(*chunk), total_size_in_bytes, done); if (!status.ok()) { absl::string_view message = status.message(); return (*callback_error)(pjrt::StatusCodeToPjrtErrorCode(status.code()), message.data(), message.size()); } return nullptr; }; return PJRT_SendCallbackInfo{ cpp_send_callback.channel_id, send_callback_function, [](PJRT_Chunk* chunk, PJRT_CallbackError* callback_error, size_t total_size_in_bytes, bool done, void* user_arg) -> PJRT_Error* { PjRtCApiLoadedExecutable::SendCallbackFunction* send_callback = reinterpret_cast<PjRtCApiLoadedExecutable::SendCallbackFunction*>( user_arg); return (*send_callback)(chunk, callback_error, total_size_in_bytes, done); }}; } CApiCopyToDeviceStream::CApiCopyToDeviceStream( PJRT_CopyToDeviceStream* c_stream, const PJRT_Api* c_api) : CopyToDeviceStream(0, 0), c_stream_(c_stream), c_api_(c_api) { PJRT_CopyToDeviceStream_TotalBytes_Args total_bytes_args; total_bytes_args.struct_size = PJRT_CopyToDeviceStream_TotalBytes_Args_STRUCT_SIZE; total_bytes_args.extension_start = nullptr; total_bytes_args.stream = c_stream_; pjrt::LogFatalIfPjrtError( c_api_->PJRT_CopyToDeviceStream_TotalBytes(&total_bytes_args), c_api_); total_bytes_ = total_bytes_args.total_bytes; PJRT_CopyToDeviceStream_GranuleSize_Args granule_size_args; granule_size_args.struct_size = PJRT_CopyToDeviceStream_GranuleSize_Args_STRUCT_SIZE; granule_size_args.extension_start = nullptr; granule_size_args.stream = c_stream_; pjrt::LogFatalIfPjrtError( c_api_->PJRT_CopyToDeviceStream_GranuleSize(&granule_size_args), c_api_); granule_bytes_ = granule_size_args.granule_size_in_bytes; } CApiCopyToDeviceStream::~CApiCopyToDeviceStream() { PJRT_CopyToDeviceStream_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_CopyToDeviceStream_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.stream = c_stream_; pjrt::LogFatalIfPjrtError( c_api_->PJRT_CopyToDeviceStream_Destroy(&destroy_args), c_api_); } PjRtFuture<> CApiCopyToDeviceStream::AddChunk(PjRtChunk chunk) { PJRT_Chunk c_chunk = ::pjrt::ConvertFromCppChunk(std::move(chunk)); PJRT_CopyToDeviceStream_AddChunk_Args add_chunk_args; add_chunk_args.struct_size = PJRT_CopyToDeviceStream_AddChunk_Args_STRUCT_SIZE; add_chunk_args.extension_start = nullptr; add_chunk_args.stream = c_stream_; add_chunk_args.chunk = &c_chunk; PJRT_CopyToDeviceStream_CurrentBytes_Args current_bytes_args; current_bytes_args.struct_size = PJRT_CopyToDeviceStream_CurrentBytes_Args_STRUCT_SIZE; current_bytes_args.extension_start = nullptr; current_bytes_args.stream = c_stream_; { absl::MutexLock lock(&mu_); RETURN_FUTURE_IF_ERROR( c_api_->PJRT_CopyToDeviceStream_AddChunk(&add_chunk_args), c_api_); RETURN_FUTURE_IF_ERROR( c_api_->PJRT_CopyToDeviceStream_CurrentBytes(&current_bytes_args), c_api_); current_bytes_ = current_bytes_args.current_bytes; } CHECK(add_chunk_args.transfer_complete != nullptr); return ::pjrt::ConvertCEventToCppFuture(add_chunk_args.transfer_complete, c_api_); } PJRT_RecvCallbackInfo CppRecvCallbackToC( const xla::RecvCallback& cpp_recv_callback, const PJRT_Api* c_api, PjRtCApiLoadedExecutable::RecvCallbackFunction* recv_callback_function) { *recv_callback_function = [&recv_callback = cpp_recv_callback.callback, c_api](PJRT_CopyToDeviceStream* stream) { xla::Shape dummy_shape; recv_callback(xla::PjRtTransferMetadata{dummy_shape}, std::make_unique<CApiCopyToDeviceStream>(stream, c_api)); }; return PJRT_RecvCallbackInfo{ cpp_recv_callback.channel_id, recv_callback_function, [](PJRT_CopyToDeviceStream* stream, void* user_arg) { PjRtCApiLoadedExecutable::RecvCallbackFunction* recv_callback = reinterpret_cast<PjRtCApiLoadedExecutable::RecvCallbackFunction*>( user_arg); (*recv_callback)(stream); }}; } static void CppSendCallbackListsToC( absl::Span<const std::vector<xla::SendCallback>> cpp_lists, std::vector<PjRtCApiLoadedExecutable::SendCallbackFunction>& send_callback_functions, std::vector<std::vector<PJRT_SendCallbackInfo>>& c_lists) { if (cpp_lists.empty()) return; send_callback_functions.resize(cpp_lists.size() * cpp_lists[0].size()); c_lists.reserve(cpp_lists.size()); int func_count = 0; for (const std::vector<xla::SendCallback>& cpp_list : cpp_lists) { std::vector<PJRT_SendCallbackInfo>& c_list = c_lists.emplace_back(); c_list.reserve(cpp_list.size()); for (const xla::SendCallback& cpp_callback : cpp_list) { c_list.emplace_back(CppSendCallbackToC( cpp_callback, &send_callback_functions[func_count++])); } } } static void CppRecvCallbackListsToC( absl::Span<const std::vector<xla::RecvCallback>> cpp_lists, const PJRT_Api* c_api, std::vector<PjRtCApiLoadedExecutable::RecvCallbackFunction>& recv_callback_functions, std::vector<std::vector<PJRT_RecvCallbackInfo>>& c_lists) { if (cpp_lists.empty()) return; recv_callback_functions.resize(cpp_lists.size() * cpp_lists[0].size()); c_lists.reserve(cpp_lists.size()); int func_count = 0; for (const auto& cpp_list : cpp_lists) { std::vector<PJRT_RecvCallbackInfo>& c_list = c_lists.emplace_back(); c_list.reserve(cpp_list.size()); for (const auto& cpp_callback : cpp_list) { c_list.emplace_back(CppRecvCallbackToC( cpp_callback, c_api, &recv_callback_functions[func_count++])); } } } absl::StatusOr<PJRT_LoadedExecutable_Execute_Args> PjRtCApiLoadedExecutable::GetCommonExecuteArgs( absl::Span<const std::vector<PjRtBuffer*>> argument_handles, const ExecuteOptions& options, PJRT_ExecuteOptions& c_options, std::vector<std::vector<PJRT_Buffer*>>& c_argument_lists_storage, std::vector<PJRT_Buffer**>& c_arguments, std::vector<std::vector<PJRT_Buffer*>>& c_output_lists_storage, std::vector<PJRT_Buffer**>& c_output_lists, std::optional<std::vector<PJRT_Event*>>& device_complete_events, SendRecvCallbackData& callback_data, std::vector<int64_t>& non_donatable_input_indices_storage) { bool using_host_callbacks = !options.send_callbacks.empty() || !options.recv_callbacks.empty(); if (using_host_callbacks && !options.use_major_to_minor_data_layout_for_callbacks) { return Unimplemented( "PJRT C API doesn't support " "ExecuteOptions::use_major_to_minor_data_layout_for_callbacks = false"); } PJRT_LoadedExecutable_Execute_Args args; args.struct_size = PJRT_LoadedExecutable_Execute_Args_STRUCT_SIZE; args.executable = c_loaded_executable(); args.options = &c_options; args.options->struct_size = PJRT_ExecuteOptions_STRUCT_SIZE; args.options->launch_id = options.launch_id; for (auto i : options.non_donatable_input_indices) { non_donatable_input_indices_storage.push_back(i); } args.options->num_non_donatable_input_indices = options.non_donatable_input_indices.size(); args.options->non_donatable_input_indices = non_donatable_input_indices_storage.data(); args.num_devices = argument_handles.size(); CHECK_GT(args.num_devices, 0); args.num_args = argument_handles[0].size(); if (device_complete_events.has_value() || using_host_callbacks) { device_complete_events->resize(args.num_devices); args.device_complete_events = device_complete_events->data(); } else { args.device_complete_events = nullptr; } c_argument_lists_storage = Convert2DCppBuffersToCBuffers(argument_handles); c_arguments.reserve(c_argument_lists_storage.size()); for (auto& argument_list : c_argument_lists_storage) { c_arguments.push_back(argument_list.data()); } args.argument_lists = c_arguments.data(); PJRT_Executable_NumOutputs_Args numoutputs_args; numoutputs_args.struct_size = PJRT_Executable_NumOutputs_Args_STRUCT_SIZE; numoutputs_args.extension_start = nullptr; numoutputs_args.executable = c_executable(); RETURN_STATUS_IF_PJRT_ERROR( pjrt_c_api()->PJRT_Executable_NumOutputs(&numoutputs_args), pjrt_c_api()); size_t outer_size = args.num_devices; size_t inner_size = numoutputs_args.num_outputs; c_output_lists_storage.resize(outer_size); c_output_lists.resize(outer_size); for (int i = 0; i < outer_size; ++i) { c_output_lists_storage[i].resize(inner_size); c_output_lists[i] = c_output_lists_storage[i].data(); } args.output_lists = c_output_lists.data(); if (!options.send_callbacks.empty()) { CppSendCallbackListsToC(options.send_callbacks, callback_data.send_callback_functions, callback_data.c_send_callbacks); for (auto& c_send_callback_list : callback_data.c_send_callbacks) { callback_data.c_send_callback_lists.push_back( c_send_callback_list.data()); } args.options->send_callbacks = callback_data.c_send_callback_lists.data(); args.options->num_send_ops = options.send_callbacks[0].size(); } if (!options.recv_callbacks.empty()) { CppRecvCallbackListsToC(options.recv_callbacks, pjrt_c_api(), callback_data.recv_callback_functions, callback_data.c_recv_callbacks); for (auto& c_recv_callback_list : callback_data.c_recv_callbacks) { callback_data.c_recv_callback_lists.push_back( c_recv_callback_list.data()); } args.options->recv_callbacks = callback_data.c_recv_callback_lists.data(); args.options->num_recv_ops = options.recv_callbacks[0].size(); } return args; } absl::StatusOr<std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>> PjRtCApiLoadedExecutable::Execute( absl::Span<const std::vector<PjRtBuffer*>> argument_handles, const ExecuteOptions& options, std::optional<std::vector<PjRtFuture<>>>& returned_futures) { std::vector<std::vector<PJRT_Buffer*>> c_argument_lists_storage; std::vector<std::vector<PJRT_Buffer*>> c_output_lists_storage; std::vector<PJRT_Buffer**> c_output_lists; std::vector<int64_t> non_donatable_input_indices_storage; PJRT_ExecuteOptions c_options; c_options.num_send_ops = 0; c_options.num_recv_ops = 0; std::vector<PJRT_Buffer**> c_arguments; std::optional<std::vector<PJRT_Event*>> device_complete_events; if (returned_futures.has_value()) { device_complete_events.emplace(); } auto callback_data = std::make_shared<SendRecvCallbackData>(); TF_ASSIGN_OR_RETURN( PJRT_LoadedExecutable_Execute_Args args, GetCommonExecuteArgs(argument_handles, options, c_options, c_argument_lists_storage, c_arguments, c_output_lists_storage, c_output_lists, device_complete_events, *callback_data, non_donatable_input_indices_storage)); args.execute_device = nullptr; PJRT_Profiler_Extension profiler_extension = pjrt::CreatePjrtProfilerExtension( "PJRT_LoadedExecutable_Execute linkage"); args.extension_start = reinterpret_cast<PJRT_Extension_Base*>(&profiler_extension); RETURN_STATUS_IF_PJRT_ERROR( pjrt_c_api()->PJRT_LoadedExecutable_Execute(&args), pjrt_c_api()); if (device_complete_events.has_value()) { std::vector<PjRtFuture<>> device_complete_futures; device_complete_futures.reserve(args.num_devices); for (int i = 0; i < args.num_devices; ++i) { device_complete_futures.push_back(pjrt::ConvertCEventToCppFuture( args.device_complete_events[i], pjrt_c_api())); if (!callback_data->c_send_callbacks.empty() || !callback_data->c_recv_callbacks.empty()) { device_complete_futures.back().OnReady( [callback_data](absl::Status status) { }); } } if (returned_futures.has_value()) { *returned_futures = std::move(device_complete_futures); } } return Convert2DCBuffersToCppBuffers(args.output_lists, args.num_devices, c_output_lists_storage[0].size(), client_); } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> PjRtCApiLoadedExecutable::ExecuteWithSingleDevice( absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) { if (!options.send_callbacks.empty() || !options.recv_callbacks.empty()) { return absl::Status(absl::StatusCode::kUnimplemented, "Send/recv callbacks not implemented for " "PjRtCApiLoadedExecutable::ExecuteWithSingleDevice."); } std::vector<std::vector<PjRtBuffer*>> argument_handles_vec = { {argument_handles.begin(), argument_handles.end()}}; std::vector<std::vector<PJRT_Buffer*>> c_argument_lists_storage; std::vector<std::vector<PJRT_Buffer*>> c_output_lists_storage; std::vector<PJRT_Buffer**> c_output_lists; std::vector<int64_t> non_donatable_input_indices_storage; PJRT_ExecuteOptions c_options; c_options.num_send_ops = 0; c_options.num_recv_ops = 0; std::vector<PJRT_Buffer**> c_arguments; std::optional<std::vector<PJRT_Event*>> device_complete_events; if (fill_future) { device_complete_events.emplace(); } auto callback_data = std::make_shared<SendRecvCallbackData>(); TF_ASSIGN_OR_RETURN( PJRT_LoadedExecutable_Execute_Args args, GetCommonExecuteArgs(argument_handles_vec, options, c_options, c_argument_lists_storage, c_arguments, c_output_lists_storage, c_output_lists, device_complete_events, *callback_data, non_donatable_input_indices_storage)); args.execute_device = tensorflow::down_cast<PjRtCApiDevice*>(device)->c_device(); PJRT_Profiler_Extension profiler_extension = pjrt::CreatePjrtProfilerExtension( "PJRT_LoadedExecutable_Execute linkage"); args.extension_start = reinterpret_cast<PJRT_Extension_Base*>(&profiler_extension); RETURN_STATUS_IF_PJRT_ERROR( pjrt_c_api()->PJRT_LoadedExecutable_Execute(&args), pjrt_c_api()); if (fill_future) { returned_future = pjrt::ConvertCEventToCppFuture( args.device_complete_events[0], pjrt_c_api()); } return std::move(Convert2DCBuffersToCppBuffers( args.output_lists, args.num_devices, c_output_lists_storage[0].size(), client_)[0]); } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> PjRtCApiLoadedExecutable::ExecuteSharded( absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) { return ExecuteWithSingleDevice(argument_handles, device, options, returned_future, fill_future); } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> PjRtCApiLoadedExecutable::ExecutePortable( absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) { return ExecuteWithSingleDevice(argument_handles, device, options, returned_future, fill_future); } void PjRtCApiLoadedExecutable::Delete() { PJRT_LoadedExecutable_Delete_Args args; args.struct_size = PJRT_LoadedExecutable_Delete_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = c_loaded_executable(); const PJRT_Api* c_api = pjrt_c_api(); pjrt::LogFatalIfPjrtError(c_api->PJRT_LoadedExecutable_Delete(&args), c_api); } bool PjRtCApiLoadedExecutable::IsDeleted() { PJRT_LoadedExecutable_IsDeleted_Args args; args.struct_size = PJRT_LoadedExecutable_IsDeleted_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = c_loaded_executable(); const PJRT_Api* c_api = pjrt_c_api(); pjrt::LogFatalIfPjrtError(c_api->PJRT_LoadedExecutable_IsDeleted(&args), c_api); return args.is_deleted; } absl::StatusOr<std::string> PjRtCApiLoadedExecutable::FingerprintExecutable() const { absl::StatusOr<std::string> fingerprint = executable_->FingerprintExecutable(); if (fingerprint.ok()) { return *fingerprint; } if (fingerprint.status().code() != absl::StatusCode::kUnimplemented) { return fingerprint.status(); } PJRT_LoadedExecutable_Fingerprint_Args args; args.struct_size = PJRT_LoadedExecutable_Fingerprint_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = c_loaded_executable(); const PJRT_Api* c_api = pjrt_c_api(); std::unique_ptr<PJRT_Error, pjrt::PJRT_ErrorDeleter> error( c_api->PJRT_LoadedExecutable_Fingerprint(&args), pjrt::MakeErrorDeleter(c_api)); if (error) { return ::pjrt::PjrtErrorToStatus(error.get(), c_api); } return std::string(args.executable_fingerprint, args.executable_fingerprint_size); } PjRtCApiBuffer::PjRtCApiBuffer(PjRtCApiClient* client, PJRT_Buffer* buffer) : client_(client), buffer_(buffer, ::pjrt::MakeBufferDeleter(client->pjrt_c_api())), readiness_event_(nullptr, ::pjrt::MakeEventDeleter(client->pjrt_c_api())) {} PrimitiveType PjRtCApiBuffer::element_type() const { PJRT_Buffer_ElementType_Args args; args.struct_size = PJRT_Buffer_ElementType_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); pjrt::LogFatalIfPjrtError(pjrt_c_api()->PJRT_Buffer_ElementType(&args), pjrt_c_api()); return pjrt::ConvertFromPjRtBufferType(args.type); } absl::Span<const int64_t> PjRtCApiBuffer::dimensions() const { PJRT_Buffer_Dimensions_Args args; args.struct_size = PJRT_Buffer_Dimensions_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); pjrt::LogFatalIfPjrtError(pjrt_c_api()->PJRT_Buffer_Dimensions(&args), pjrt_c_api()); return absl::Span<const int64_t>(args.dims, args.num_dims); } std::unique_ptr<PjRtLayout> PjRtCApiBuffer::layout() const { { absl::MutexLock lock(&mu_); if (!layout_.has_value()) { const PJRT_Api* c_api = pjrt_c_api(); PJRT_Layouts_Extension* extension = pjrt::FindExtension<PJRT_Layouts_Extension>( c_api, PJRT_Extension_Type::PJRT_Extension_Type_Layouts); if (extension == nullptr) { layout_.emplace(LayoutUtil::MakeDescendingLayout(dimensions().size())); } else { std::unique_ptr<PJRT_Layouts_MemoryLayout, pjrt::PJRT_Layouts_MemoryLayoutDeleter> layout = pjrt::GetMemoryLayout(c_api, buffer_.get()); PJRT_Layouts_MemoryLayout_Serialize_Args serialize_args; serialize_args.struct_size = PJRT_Layouts_MemoryLayout_Serialize_Args_STRUCT_SIZE; serialize_args.extension_start = nullptr; serialize_args.layout = layout.get(); pjrt::LogFatalIfPjrtError( extension->PJRT_Layouts_MemoryLayout_Serialize(&serialize_args), c_api); absl::Cleanup cleanup = [&serialize_args] { serialize_args.serialized_layout_deleter( serialize_args.serialized_layout); }; std::string serialized_layout(serialize_args.serialized_bytes, serialize_args.serialized_bytes_size); absl::StatusOr<PjRtXlaLayout> pjrt_xla_layout = PjRtXlaLayout::Deserialize(serialized_layout); TF_CHECK_OK(pjrt_xla_layout.status()); layout_.emplace(*pjrt_xla_layout); } } } return std::make_unique<PjRtXlaLayout>(*layout_); } bool PjRtCApiBuffer::has_dynamic_dimensions() const { PJRT_Buffer_DynamicDimensionIndices_Args args; args.struct_size = PJRT_Buffer_DynamicDimensionIndices_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); const PJRT_Api* api = pjrt_c_api(); std::unique_ptr<PJRT_Error, pjrt::PJRT_ErrorDeleter> error( api->PJRT_Buffer_DynamicDimensionIndices(&args), pjrt::MakeErrorDeleter(api)); if (error && pjrt::GetErrorCode(error.get(), api) == PJRT_Error_Code_UNIMPLEMENTED) { return false; } return args.num_dynamic_dims > 0; } absl::Span<const bool> PjRtCApiBuffer::is_dynamic_dimension() const { { absl::MutexLock lock(&mu_); if (!is_dynamic_dimension_.has_value()) { absl::InlinedVector<bool, InlineRank()>& is_dynamic_dimension_value = is_dynamic_dimension_.emplace(); is_dynamic_dimension_value.assign(dimensions().size(), false); PJRT_Buffer_DynamicDimensionIndices_Args args; args.struct_size = PJRT_Buffer_DynamicDimensionIndices_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); const PJRT_Api* api = pjrt_c_api(); std::unique_ptr<PJRT_Error, pjrt::PJRT_ErrorDeleter> error( api->PJRT_Buffer_DynamicDimensionIndices(&args), pjrt::MakeErrorDeleter(api)); if (error && pjrt::GetErrorCode(error.get(), api) == PJRT_Error_Code_UNIMPLEMENTED) { return *is_dynamic_dimension_; } for (int i = 0; i < args.num_dynamic_dims; ++i) { is_dynamic_dimension_value[args.dynamic_dim_indices[i]] = true; } } } return *is_dynamic_dimension_; } absl::StatusOr<std::vector<int64_t>> PjRtCApiBuffer::logical_dimensions() { PJRT_Buffer_UnpaddedDimensions_Args args; args.struct_size = PJRT_Buffer_UnpaddedDimensions_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); RETURN_STATUS_IF_PJRT_ERROR( pjrt_c_api()->PJRT_Buffer_UnpaddedDimensions(&args), pjrt_c_api()); return std::vector<int64_t>(args.unpadded_dims, args.unpadded_dims + args.num_dims); } PjRtFuture<> PjRtCApiBuffer::LazyToLiteral( absl::AnyInvocable<absl::StatusOr<MutableLiteralBase*>() &&> generator) { auto buffer = std::move(generator)(); if (!buffer.ok()) { return PjRtFuture<>(buffer.status()); } return ToLiteral(buffer.value()); } PjRtFuture<> PjRtCApiBuffer::ToLiteral(MutableLiteralBase* literal) { PJRT_Buffer_ToHostBuffer_Args args; args.struct_size = PJRT_Buffer_ToHostBuffer_Args_STRUCT_SIZE; args.extension_start = nullptr; args.src = buffer_.get(); const xla::Shape& shape = literal->shape(); if (!shape.IsArray()) { return PjRtFuture<>( Unimplemented("PjRtCApiBuffer::ToLiteral: Shapes other than array are" "not supported.")); } args.dst_size = ShapeUtil::ByteSizeOfElements(shape); args.dst = literal->untyped_data(); absl::StatusOr<pjrt::BufferMemoryLayoutData> c_layout_data; if (literal->shape().has_layout()) { c_layout_data = pjrt::ConvertToBufferMemoryLayoutData(literal->shape().layout()); if (!c_layout_data.ok()) { return PjRtFuture<>(c_layout_data.status()); } args.host_layout = &(c_layout_data->c_layout); } else { args.host_layout = nullptr; } const PJRT_Api* api = pjrt_c_api(); std::unique_ptr<PJRT_Error, ::pjrt::PJRT_ErrorDeleter> error{ pjrt_c_api()->PJRT_Buffer_ToHostBuffer(&args), ::pjrt::MakeErrorDeleter(api)}; if (error != nullptr) { return PjRtFuture<>(::pjrt::PjrtErrorToStatus(error.get(), api)); } return pjrt::ConvertCEventToCppFuture(args.event, api); } absl::StatusOr<size_t> PjRtCApiBuffer::GetOnDeviceSizeInBytes() const { PJRT_Buffer_OnDeviceSizeInBytes_Args args; args.struct_size = PJRT_Buffer_OnDeviceSizeInBytes_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); RETURN_STATUS_IF_PJRT_ERROR( client_->pjrt_c_api()->PJRT_Buffer_OnDeviceSizeInBytes(&args), client_->pjrt_c_api()); return args.on_device_size_in_bytes; } PjRtMemorySpace* PjRtCApiBuffer::memory_space() const { PJRT_Buffer_Memory_Args args; args.struct_size = PJRT_Buffer_Memory_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); const PJRT_Api* api = pjrt_c_api(); std::unique_ptr<PJRT_Error, pjrt::PJRT_ErrorDeleter> error( api->PJRT_Buffer_Memory(&args), pjrt::MakeErrorDeleter(api)); if (error == nullptr && args.memory != nullptr) { return client_->GetCppMemory(args.memory); } else if (error != nullptr && pjrt::GetErrorCode(error.get(), api) != PJRT_Error_Code_UNIMPLEMENTED) { pjrt::LogFatalIfPjrtError(error.get(), api); } return nullptr; } PjRtDevice* PjRtCApiBuffer::device() const { PJRT_Buffer_Device_Args args; args.struct_size = PJRT_Buffer_Device_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); const PJRT_Api* api = pjrt_c_api(); pjrt::LogFatalIfPjrtError(api->PJRT_Buffer_Device(&args), api); return client_->GetCppDevice(args.device); } void PjRtCApiBuffer::Delete() { PJRT_Buffer_Delete_Args args; args.struct_size = PJRT_Buffer_Delete_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); const PJRT_Api* api = pjrt_c_api(); pjrt::LogFatalIfPjrtError(api->PJRT_Buffer_Delete(&args), api); } bool PjRtCApiBuffer::IsDeleted() { PJRT_Buffer_IsDeleted_Args args; args.struct_size = PJRT_Buffer_IsDeleted_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); const PJRT_Api* api = pjrt_c_api(); pjrt::LogFatalIfPjrtError(api->PJRT_Buffer_IsDeleted(&args), api); return args.is_deleted; } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtCApiBuffer::CopyToDevice( PjRtDevice* dst_device) { if (dst_device->client() == client_) { PJRT_Buffer_CopyToDevice_Args args; args.struct_size = PJRT_Buffer_CopyToDevice_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); args.dst_device = tensorflow::down_cast<PjRtCApiDevice*>(dst_device)->c_device(); const PJRT_Api* api = pjrt_c_api(); RETURN_STATUS_IF_PJRT_ERROR(api->PJRT_Buffer_CopyToDevice(&args), api); return std::unique_ptr<PjRtBuffer>( std::make_unique<PjRtCApiBuffer>(client_, args.dst_buffer)); } else { TF_ASSIGN_OR_RETURN(std::shared_ptr<Literal> literal, ToLiteralSync()); absl::InlinedVector<int64_t, 4> byte_strides( literal->shape().dimensions_size()); TF_RETURN_IF_ERROR( ShapeUtil::ByteStrides(literal->shape(), absl::MakeSpan(byte_strides))); Literal* literal_pointer = literal.get(); return dst_device->client()->BufferFromHostBuffer( literal_pointer->untyped_data(), literal_pointer->shape().element_type(), literal_pointer->shape().dimensions(), byte_strides, PjRtClient::HostBufferSemantics::kImmutableZeroCopy, [literal{std::move(literal)}]() { }, dst_device); } } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtCApiBuffer::CopyToMemorySpace( PjRtMemorySpace* dst_memory) { const PJRT_Api* api = pjrt_c_api(); if (dst_memory->client() == client_) { PJRT_Buffer_CopyToMemory_Args args; args.struct_size = PJRT_Buffer_CopyToMemory_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); args.dst_memory = tensorflow::down_cast<PjRtCApiMemorySpace*>(dst_memory)->c_memory(); RETURN_STATUS_IF_PJRT_ERROR(api->PJRT_Buffer_CopyToMemory(&args), api); return std::unique_ptr<PjRtBuffer>( std::make_unique<PjRtCApiBuffer>(client_, args.dst_buffer)); } else { TF_ASSIGN_OR_RETURN(std::shared_ptr<Literal> literal, ToLiteralSync()); absl::InlinedVector<int64_t, 4> byte_strides( literal->shape().dimensions_size()); TF_RETURN_IF_ERROR( ShapeUtil::ByteStrides(literal->shape(), absl::MakeSpan(byte_strides))); Literal* literal_pointer = literal.get(); return dst_memory->client()->BufferFromHostBuffer( literal_pointer->untyped_data(), literal_pointer->shape().element_type(), literal_pointer->shape().dimensions(), byte_strides, PjRtClient::HostBufferSemantics::kImmutableZeroCopy, [literal{std::move(literal)}]() { }, dst_memory, nullptr); } } bool PjRtCApiBuffer::IsOnCpu() const { PJRT_Buffer_IsOnCpu_Args args; args.struct_size = PJRT_Buffer_IsOnCpu_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); const PJRT_Api* api = pjrt_c_api(); pjrt::LogFatalIfPjrtError(api->PJRT_Buffer_IsOnCpu(&args), api); return args.is_on_cpu; } PJRT_Event* PjRtCApiBuffer::GetReadyEvent() { if (readiness_event_ == nullptr) { const PJRT_Api* api = pjrt_c_api(); PJRT_Buffer_ReadyEvent_Args args; args.struct_size = PJRT_Buffer_ReadyEvent_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); pjrt::LogFatalIfPjrtError(api->PJRT_Buffer_ReadyEvent(&args), api); readiness_event_.reset(args.event); } return readiness_event_.get(); } void PjRtCApiBuffer::MakePromiseTrackEvent() { CHECK(readiness_promise_ != nullptr); const PJRT_Api* api = pjrt_c_api(); PJRT_Event_OnReady_Args args; args.struct_size = PJRT_Event_OnReady_Args_STRUCT_SIZE; args.extension_start = nullptr; args.event = GetReadyEvent(); args.user_arg = new std::function<void(PJRT_Error*)>( [promise = readiness_promise_, api](PJRT_Error* error) -> void { promise->Set(::pjrt::PjrtErrorToStatus(error, api)); ::pjrt::MakeErrorDeleter(api)(error); }); args.callback = [](PJRT_Error* error, void* callback_ptr) { auto callback = static_cast<std::function<void(PJRT_Error*)>*>(callback_ptr); CHECK(callback != nullptr); (*callback)(error); delete callback; }; std::unique_ptr<PJRT_Error, ::pjrt::PJRT_ErrorDeleter> error{ api->PJRT_Event_OnReady(&args), ::pjrt::MakeErrorDeleter(api)}; if (error != nullptr) { readiness_promise_->Set(::pjrt::PjrtErrorToStatus(error.get(), api)); } } PjRtFuture<> PjRtCApiBuffer::GetReadyFuture() { if (readiness_promise_ == nullptr) { readiness_promise_ = std::make_shared<PjRtFuture<>::Promise>(PjRtFuture<>::CreatePromise()); MakePromiseTrackEvent(); } return PjRtFuture<>{*readiness_promise_}; } absl::StatusOr<std::unique_ptr<PjRtBuffer::ExternalReference>> PjRtCApiBuffer::AcquireExternalReference() { PJRT_Buffer_IncreaseExternalReferenceCount_Args increase_reference_count_args; increase_reference_count_args.buffer = c_buffer(); increase_reference_count_args.struct_size = PJRT_Buffer_IncreaseExternalReferenceCount_Args_STRUCT_SIZE; increase_reference_count_args.extension_start = nullptr; RETURN_STATUS_IF_PJRT_ERROR( pjrt_c_api()->PJRT_Buffer_IncreaseExternalReferenceCount( &increase_reference_count_args), pjrt_c_api()); PJRT_Buffer_OpaqueDeviceMemoryDataPointer_Args opaque_device_memory_data_pointer_args; opaque_device_memory_data_pointer_args.struct_size = PJRT_Buffer_OpaqueDeviceMemoryDataPointer_Args_STRUCT_SIZE; opaque_device_memory_data_pointer_args.extension_start = nullptr; opaque_device_memory_data_pointer_args.buffer = c_buffer(); RETURN_STATUS_IF_PJRT_ERROR( pjrt_c_api()->PJRT_Buffer_OpaqueDeviceMemoryDataPointer( &opaque_device_memory_data_pointer_args), pjrt_c_api()); void* device_memory_ptr = opaque_device_memory_data_pointer_args.device_memory_ptr; return std::make_unique<PjRtCApiExternalReference>(client_, this, device_memory_ptr); } PjRtCApiExternalReference::~PjRtCApiExternalReference() { PJRT_Buffer_DecreaseExternalReferenceCount_Args args; args.struct_size = PJRT_Buffer_DecreaseExternalReferenceCount_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_->c_buffer(); pjrt::LogFatalIfPjrtError( client_->pjrt_c_api()->PJRT_Buffer_DecreaseExternalReferenceCount(&args), client_->pjrt_c_api()); } absl::Status PjRtCApiExternalReference::WaitUntilBufferReadyOnStream( std::intptr_t stream) { const PJRT_Api* c_api = buffer_->pjrt_c_api(); PJRT_Stream_Extension* extension = pjrt::FindExtension<PJRT_Stream_Extension>( c_api, PJRT_Extension_Type::PJRT_Extension_Type_Stream); if (extension == nullptr) { return absl::UnimplementedError( "Stream extension not implemented in this PJRT plugin."); } PJRT_Wait_Until_Buffer_Ready_On_Stream_Args args; args.struct_size = PJRT_Wait_Until_Buffer_Ready_On_Stream_Args_STRUCT_SIZE; args.stream = stream; args.buffer = buffer_->c_buffer(); RETURN_STATUS_IF_PJRT_ERROR(extension->wait_stream(&args), c_api); return absl::OkStatus(); } PjRtCApiTopologyDescription::PjRtCApiTopologyDescription( const PJRT_Api* c_api, PJRT_TopologyDescription* c_topology, bool owned) : compiler_(std::make_unique<PjRtCApiCompiler>(c_api)), c_api_(c_api), c_topology_(c_topology) { if (owned) { owned_c_topology_ = std::unique_ptr<PJRT_TopologyDescription, pjrt::PJRT_TopologyDescriptionDeleter>( c_topology, pjrt::MakeTopologyDescriptionDeleter(c_api)); } InitAttributes(); } absl::string_view PjRtCApiTopologyDescription::platform_name() const { PJRT_TopologyDescription_PlatformName_Args args; args.topology = c_topology_; args.struct_size = PJRT_TopologyDescription_PlatformName_Args_STRUCT_SIZE; args.extension_start = nullptr; pjrt::LogFatalIfPjrtError( c_api_->PJRT_TopologyDescription_PlatformName(&args), c_api_); return absl::string_view(args.platform_name, args.platform_name_size); } absl::string_view PjRtCApiTopologyDescription::platform_version() const { PJRT_TopologyDescription_PlatformVersion_Args args; args.struct_size = PJRT_TopologyDescription_PlatformVersion_Args_STRUCT_SIZE; args.extension_start = nullptr; args.topology = c_topology_; pjrt::LogFatalIfPjrtError( c_api_->PJRT_TopologyDescription_PlatformVersion(&args), c_api_); return absl::string_view(args.platform_version, args.platform_version_size); } std::vector<std::unique_ptr<const PjRtDeviceDescription>> PjRtCApiTopologyDescription::DeviceDescriptions() const { PJRT_TopologyDescription_GetDeviceDescriptions_Args args; args.struct_size = PJRT_TopologyDescription_GetDeviceDescriptions_Args_STRUCT_SIZE; args.extension_start = nullptr; args.topology = c_topology_; pjrt::LogFatalIfPjrtError( c_api_->PJRT_TopologyDescription_GetDeviceDescriptions(&args), c_api_); std::vector<std::unique_ptr<const PjRtDeviceDescription>> out; out.reserve(args.num_descriptions); for (PJRT_DeviceDescription* device_desc : absl::Span<PJRT_DeviceDescription* const>(args.descriptions, args.num_descriptions)) { out.push_back( std::make_unique<PjRtCApiDeviceDescription>(c_api_, device_desc)); } return out; } absl::StatusOr<std::string> PjRtCApiTopologyDescription::Serialize() const { PJRT_TopologyDescription_Serialize_Args args; args.struct_size = PJRT_TopologyDescription_Serialize_Args_STRUCT_SIZE; args.extension_start = nullptr; args.topology = c_topology_; RETURN_STATUS_IF_PJRT_ERROR(c_api_->PJRT_TopologyDescription_Serialize(&args), c_api_); auto out = std::string(args.serialized_bytes, args.serialized_bytes_size); args.serialized_topology_deleter(args.serialized_topology); return out; } void PjRtCApiTopologyDescription::InitAttributes() { PJRT_TopologyDescription_Attributes_Args args; args.struct_size = PJRT_TopologyDescription_Attributes_Args_STRUCT_SIZE; args.extension_start = nullptr; args.topology = c_topology_; pjrt::LogFatalIfPjrtError(c_api_->PJRT_TopologyDescription_Attributes(&args), c_api_); attributes_ = pjrt::ConvertFromPjRtNamedValueList(args.attributes, args.num_attributes); } static absl::StatusOr<std::unique_ptr<PjRtExecutable>> InitializeArgsAndCompileAot(const PJRT_Api* c_api, PjRtClient* client, const CompileOptions& options, const PjRtTopologyDescription& topology, const std::string& code, const std::string& format) { PJRT_Compile_Args args; args.struct_size = PJRT_Compile_Args_STRUCT_SIZE; args.extension_start = nullptr; if (client == nullptr) { args.client = nullptr; } else { args.client = tensorflow::down_cast<PjRtCApiClient*>(client)->pjrt_c_client(); } args.topology = tensorflow::down_cast<const PjRtCApiTopologyDescription*>(&topology) ->c_topology(); TF_ASSIGN_OR_RETURN(const CompileOptionsProto options_proto, options.ToProto()); std::string options_str = options_proto.SerializeAsString(); args.compile_options = options_str.c_str(); args.compile_options_size = options_str.size(); PJRT_Program program; program.struct_size = PJRT_Program_STRUCT_SIZE; program.extension_start = nullptr; program.code = const_cast<char*>(code.c_str()); program.code_size = code.size(); program.format = format.c_str(); program.format_size = format.size(); args.program = &program; RETURN_STATUS_IF_PJRT_ERROR(c_api->PJRT_Compile(&args), c_api); std::unique_ptr<PjRtExecutable> ret = std::make_unique<PjRtCApiExecutable>(c_api, args.executable); return ret; } absl::StatusOr<std::unique_ptr<PjRtExecutable>> PjRtCApiCompiler::Compile( CompileOptions options, const XlaComputation& computation, const PjRtTopologyDescription& topology, PjRtClient* client) { std::string module_str = computation.proto().SerializeAsString(); std::string format(pjrt::kHloFormat); return InitializeArgsAndCompileAot(c_api_, client, options, topology, module_str, format); } absl::StatusOr<std::unique_ptr<PjRtExecutable>> PjRtCApiCompiler::Compile( CompileOptions options, mlir::ModuleOp module, const PjRtTopologyDescription& topology, PjRtClient* client) { std::optional<int64_t> plugin_version; if (client) { plugin_version = client->plugin_attributes()->pjrt_c_api_minor_version; } TF_ASSIGN_OR_RETURN( std::string serialized, xla::Serialize(module, xla::GetDefaultStablehloVersion(plugin_version))); std::string format(pjrt::kMlirFormat); return InitializeArgsAndCompileAot(c_api_, client, options, topology, serialized, format); } absl::StatusOr<std::unique_ptr<PjRtClient>> GetCApiClient( absl::string_view device_type, const absl::flat_hash_map<std::string, PjRtValueType>& create_options, std::shared_ptr<KeyValueStoreInterface> kv_store) { TF_ASSIGN_OR_RETURN(const PJRT_Api* c_api, pjrt::PjrtApi(device_type)); if (c_api == nullptr) { return Internal("PJRT C API is nullptr for %s", device_type); } PJRT_Client_Create_Args init_args; init_args.struct_size = PJRT_Client_Create_Args_STRUCT_SIZE; init_args.extension_start = nullptr; TF_ASSIGN_OR_RETURN(std::vector<PJRT_NamedValue> c_options, pjrt::ConvertToPjRtNamedValueList(create_options)); init_args.create_options = c_options.data(); init_args.num_options = c_options.size(); std::unique_ptr<pjrt::PJRT_KeyValueCallbackData> kv_callback_data; if (kv_store) { kv_callback_data = pjrt::ConvertToCKeyValueCallbacks(kv_store); init_args.kv_get_callback = kv_callback_data->c_kv_get; init_args.kv_get_user_arg = &kv_callback_data->kv_get_c_func; init_args.kv_put_callback = kv_callback_data->c_kv_put; init_args.kv_put_user_arg = &kv_callback_data->kv_put_c_func; } RETURN_STATUS_IF_PJRT_ERROR(c_api->PJRT_Client_Create(&init_args), c_api); PJRT_Client* c_client = init_args.client; return std::unique_ptr<PjRtClient>(std::make_unique<PjRtCApiClient>( c_api, c_client, std::move(kv_callback_data))); } absl::StatusOr<std::unique_ptr<PjRtTopologyDescription>> GetCApiTopology( absl::string_view device_type, absl::string_view topology_name, const absl::flat_hash_map<std::string, PjRtValueType>& create_options) { TF_ASSIGN_OR_RETURN(const PJRT_Api* c_api, pjrt::PjrtApi(device_type)); if (c_api == nullptr) { return Internal("PJRT C API is nullptr for %s", device_type); } return GetCApiTopology(c_api, topology_name, create_options); } absl::StatusOr<std::unique_ptr<PjRtTopologyDescription>> GetCApiTopology( const PJRT_Api* c_api, absl::string_view topology_name, const absl::flat_hash_map<std::string, PjRtValueType>& create_options) { PJRT_TopologyDescription_Create_Args init_args; init_args.struct_size = PJRT_TopologyDescription_Create_Args_STRUCT_SIZE; init_args.extension_start = nullptr; TF_ASSIGN_OR_RETURN(std::vector<PJRT_NamedValue> c_options, pjrt::ConvertToPjRtNamedValueList(create_options)); init_args.create_options = c_options.data(); init_args.num_options = c_options.size(); init_args.topology_name = topology_name.data(); init_args.topology_name_size = topology_name.size(); RETURN_STATUS_IF_PJRT_ERROR( c_api->PJRT_TopologyDescription_Create(&init_args), c_api); PJRT_TopologyDescription* c_topology = init_args.topology; return std::unique_ptr<PjRtTopologyDescription>( std::make_unique<PjRtCApiTopologyDescription>(c_api, c_topology, true)); } }
#include "xla/pjrt/pjrt_c_api_client.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "xla/client/xla_builder.h" #include "xla/literal_util.h" #include "xla/pjrt/c/pjrt_c_api_cpu_internal.h" #include "xla/pjrt/pjrt_api.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/literal_test_util.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { static void SetUpCpuPjRtApi() { std::string device_type = "cpu"; auto status = ::pjrt::PjrtApi(device_type); if (!status.ok()) { TF_ASSERT_OK( pjrt::SetPjrtApi(device_type, ::pjrt::cpu_plugin::GetCpuPjrtApi())); } } TEST(PjRtCApiClientTest, IsDynamicDimension) { SetUpCpuPjRtApi(); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<PjRtClient> client, GetCApiClient("cpu")); std::vector<int32_t> data0{1, 2, 3, 4, 5, 6}; Shape shape0 = ShapeUtil::MakeShape(S32, {2, 3}); TF_ASSERT_OK_AND_ASSIGN( auto param0, client->BufferFromHostBuffer( data0.data(), shape0.element_type(), shape0.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); std::vector<int32_t> data1{2}; Shape shape1 = ShapeUtil::MakeShape(S32, {}); TF_ASSERT_OK_AND_ASSIGN( auto param1, client->BufferFromHostBuffer( data1.data(), shape1.element_type(), shape1.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); XlaBuilder builder("DynamicReshape"); auto inp_0 = Parameter(&builder, 0, shape0, "input0"); auto inp_1 = Parameter(&builder, 1, shape1, "input1"); std::vector<bool> dims_are_dynamic = {false, true}; auto reshaped = DynamicReshape(inp_0, {inp_1, inp_1}, {2, 3}, dims_are_dynamic); auto computation = builder.Build(reshaped).value(); std::unique_ptr<PjRtLoadedExecutable> executable = client->Compile(computation, CompileOptions()).value(); ExecuteOptions execute_options; execute_options.non_donatable_input_indices = {0}; std::vector<std::vector<std::unique_ptr<PjRtBuffer>>> results = executable->Execute({{param0.get(), param1.get()}}, execute_options) .value(); ASSERT_EQ(results[0].size(), 1); auto* result_buffer = results[0][0].get(); auto is_dynamic_dimension = result_buffer->is_dynamic_dimension(); EXPECT_THAT(is_dynamic_dimension, ::testing::ElementsAreArray(dims_are_dynamic)); } TEST(PjRtCApiClientTest, PlatformId) { SetUpCpuPjRtApi(); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<PjRtClient> client, GetCApiClient("cpu")); EXPECT_EQ(client->platform_name(), xla::CpuName()); EXPECT_EQ(client->platform_id(), xla::CpuId()); } TEST(PjRtCApiClientTest, EmptyExecutableFingerprint) { SetUpCpuPjRtApi(); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<PjRtClient> client, GetCApiClient("cpu")); Shape shape = ShapeUtil::MakeShapeWithType<float>({4}); XlaBuilder builder("sum"); auto inp_0 = Parameter(&builder, 0, shape, "input0"); auto inp_1 = Parameter(&builder, 1, shape, "input1"); auto sum = Add(inp_0, inp_1); builder.SetUpAlias({}, 0, {}); auto computation = builder.Build(sum).value(); std::unique_ptr<PjRtLoadedExecutable> executable = client->Compile(computation, CompileOptions()).value(); PjRtCApiClient* c_client = dynamic_cast<PjRtCApiClient*>(client.get()); ASSERT_NE(c_client, nullptr); if (c_client->pjrt_c_api()->pjrt_api_version.minor_version >= 35) { EXPECT_FALSE(executable->FingerprintExecutable().ok()); } else { EXPECT_EQ(executable->FingerprintExecutable().status().code(), absl::StatusCode::kUnimplemented); } } TEST(PjRtClientTest, CreateViewAndCopyToDeviceAsyncExternalCpuOnly) { SetUpCpuPjRtApi(); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<PjRtClient> client, GetCApiClient("cpu")); ASSERT_GT(client->addressable_devices().size(), 1); std::vector<int32_t> data(4, 0); auto* data_ptr = data.data(); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->CreateViewOfDeviceBuffer( data_ptr, shape, client->addressable_devices()[0], [data = std::move(data)]() mutable {})); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<PjRtBuffer> result, buffer->CopyToDevice(client->addressable_devices()[1])); buffer.reset(); ASSERT_TRUE(result); TF_ASSERT_OK_AND_ASSIGN(auto literal, result->ToLiteralSync()); std::vector<int32_t> expected(4, 0); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/pjrt_c_api_client.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/pjrt_c_api_client_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9a63a3bc-e6b2-4a16-8ff2-d35b6996183f
cpp
tensorflow/tensorflow
pjrt_stream_executor_client
third_party/xla/xla/pjrt/pjrt_stream_executor_client.cc
third_party/xla/xla/pjrt/pjrt_stream_executor_client_test.cc
#include "xla/pjrt/pjrt_stream_executor_client.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <cstdlib> #include <cstring> #include <functional> #include <initializer_list> #include <limits> #include <memory> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/casts.h" #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "mlir/IR/BuiltinOps.h" #include "xla/client/executable_build_options.h" #include "xla/client/local_client.h" #include "xla/client/xla_computation.h" #include "xla/executable_run_options.h" #include "xla/layout.h" #include "xla/literal.h" #include "xla/pjrt/distributed/protocol.pb.h" #include "xla/pjrt/event_pool.h" #include "xla/pjrt/host_callback.h" #include "xla/pjrt/host_memory_spaces.h" #include "xla/pjrt/local_device_state.h" #include "xla/pjrt/metrics.h" #include "xla/pjrt/mlir_to_hlo.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/pjrt/semaphore.h" #include "xla/pjrt/tracked_device_buffer.h" #include "xla/pjrt/transpose.h" #include "xla/pjrt/utils.h" #include "xla/primitive_util.h" #include "xla/service/compiler.h" #include "xla/service/computation_layout.h" #include "xla/service/executable.h" #include "xla/service/generic_transfer_manager.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/service/shaped_buffer.h" #include "xla/service/transfer_manager.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/stream.h" #include "xla/tsl/framework/allocator.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/casts.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/fingerprint.h" #include "tsl/platform/logging.h" #include "tsl/platform/mem.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tsl/profiler/lib/connected_traceme.h" #include "tsl/profiler/lib/context_types.h" #include "tsl/profiler/lib/traceme.h" namespace xla { PjRtStreamExecutorMemorySpace::PjRtStreamExecutorMemorySpace( int id, PjRtDevice* device, absl::string_view kind, int kind_id) : id_(id), device_(device), kind_(kind), kind_id_(kind_id) { DCHECK(device_ != nullptr && device_->client() != nullptr); auto* client = device_->client(); to_string_ = absl::StrFormat("MEMORY_SPACE_%i", id_); debug_string_ = absl::StrFormat( "PjRtStreamExecutorMemory(id=%i, process_index=%i, client=%s)", id_, client->process_index(), client->platform_name()); } PjRtPlatformId PjRtStreamExecutorDevice::platform_id() const { return client_->platform_id(); } absl::string_view PjRtStreamExecutorDevice::platform_name() const { return client_->platform_name(); } absl::StatusOr<LocalDeviceState*> PjRtStreamExecutorDevice::GetLocalDeviceState() const { if (local_device_state_) { return local_device_state_.get(); } return InvalidArgument("Device %s is not a local device.", DebugString()); } absl::StatusOr<DeviceAssignment> DevicesToDeviceAssignment( absl::Span<const std::vector<PjRtDevice*>> devices) { if (devices.empty()) { return InvalidArgument( "Device assignment passed to Compile() must be non-empty."); } if (devices[0].empty()) { return InvalidArgument( "Device assignment passed to Compile() must have a nonzero number of " "partitions per replica; replica 0 had 0 partitions."); } DeviceAssignment xla_assignment(devices.size(), devices[0].size()); for (int replica = 0; replica < devices.size(); ++replica) { if (devices[replica].size() != devices[0].size()) { return InvalidArgument( "Device assignment passed to Compile() has different numbers of " "partitions between replicas; %d partitions for replica %d versus %d " "partitions for replica 0.", devices[replica].size(), replica, devices[0].size()); } for (int partition = 0; partition < devices[replica].size(); ++partition) { if (devices[0][0]->client()->platform_id() != devices[replica][partition]->client()->platform_id()) { return InvalidArgument( "Device assignment passed to Compile() must have devices of a " "single kind, got %s for replica 0 partition 0 and %s for replica " "%d partition %d.", devices[0][0]->client()->platform_name(), devices[replica][partition]->client()->platform_name(), replica, partition); } xla_assignment(replica, partition) = devices[replica][partition]->id(); } } return xla_assignment; } class CpuAllocator : public tsl::Allocator { public: CpuAllocator() = default; std::string Name() override { return "cpu"; } void* AllocateRaw(size_t alignment, size_t num_bytes) override { return tsl::port::AlignedMalloc(num_bytes, alignment); } void DeallocateRaw(void* ptr) override { return tsl::port::AlignedFree(ptr); } }; PjRtStreamExecutorClient::PjRtStreamExecutorClient( std::string platform_name, LocalClient* client, std::vector<std::unique_ptr<PjRtStreamExecutorDevice>> devices, int process_index, std::unique_ptr<se::DeviceMemoryAllocator> allocator, std::unique_ptr<tsl::Allocator> host_memory_allocator, bool should_stage_host_to_device_transfers, std::unique_ptr<gpu::GpuExecutableRunOptions> gpu_run_options) : platform_id_(tsl::Fingerprint64(platform_name)), platform_name_(std::move(platform_name)), client_(client), host_memory_allocator_(std::move(host_memory_allocator)), owned_allocator_(std::move(allocator)), owned_devices_(std::move(devices)), process_index_(process_index), should_stage_host_to_device_transfers_( should_stage_host_to_device_transfers), gpu_run_options_(std::move(gpu_run_options)), thread_pool_( tsl::Env::Default(), "pjrt_thread_pool", std::max<int>(DefaultThreadPoolSize(), client->device_count())), transpose_cache_(1024) { if (owned_allocator_ != nullptr) { allocator_ = owned_allocator_.get(); } else { allocator_ = client_->backend().memory_allocator(); } if (!host_memory_allocator_) { host_memory_allocator_ = std::make_unique<CpuAllocator>(); } for (const std::unique_ptr<PjRtStreamExecutorDevice>& device : owned_devices_) { devices_.push_back(device.get()); CHECK(id_to_device_.insert({device->id(), device.get()}).second) << "Duplicate device id: " << device->id(); if (device->IsAddressable()) { addressable_devices_.push_back(device.get()); } device->SetClient(this); } absl::c_sort(addressable_devices_, [](const PjRtDevice* a, const PjRtDevice* b) { return a->local_device_id() < b->local_device_id(); }); } absl::StatusOr<DeviceAssignment> PjRtStreamExecutorClient::GetDefaultDeviceAssignment(int num_replicas, int num_partitions) const { return client_->backend().computation_placer()->AssignDevices(num_replicas, num_partitions); } absl::StatusOr<Layout> PjRtStreamExecutorClient::GetDefaultLayout( PrimitiveType element_type, absl::Span<const int64_t> dims) { Shape shape = ShapeUtil::MakeShape(element_type, dims); TF_ASSIGN_OR_RETURN( shape, client()->backend().transfer_manager()->ChooseCompactLayoutForShape( shape)); return shape.layout(); } absl::StatusOr<std::unique_ptr<HloCostAnalysis>> PjRtStreamExecutorClient::GetHloCostAnalysis() const { return std::make_unique<HloCostAnalysis>( client_->backend().compiler()->ShapeSizeBytesFunction()); } namespace { void StallStreamOnError(LocalDeviceState* local_device, se::Stream* stream) { switch (local_device->allocation_model()) { case LocalDeviceState::kAsynchronous: break; case LocalDeviceState::kComputeSynchronized: if (stream != local_device->compute_stream()) { auto status = local_device->compute_stream()->WaitFor(stream); if (!status.ok()) { LOG(ERROR) << "Stalling compute stream failed: " << status; } } break; case LocalDeviceState::kSynchronous: TF_CHECK_OK(stream->BlockHostUntilDone()); break; } } void RecordUsage(PjRtStreamExecutorBuffer::ScopedHold device_buffer, LocalDeviceState* buffer_local_device, LocalDeviceState* stream_local_device, std::shared_ptr<BufferSequencingEvent> event, se::Stream* usage_stream, bool prefer_to_retain_reference, std::vector<std::shared_ptr<TrackedDeviceBuffer>>* buffers_to_release = nullptr) { tsl::profiler::TraceMe traceme("RecordUsage"); bool retain_buffer_until_completion = (stream_local_device != buffer_local_device) || (stream_local_device->allocation_model() == LocalDeviceState::kSynchronous) || (stream_local_device->allocation_model() == LocalDeviceState::kComputeSynchronized && prefer_to_retain_reference); if (retain_buffer_until_completion) { if (buffers_to_release) { buffers_to_release->push_back(device_buffer.buffer()); } else { buffer_local_device->ThenRelease(usage_stream, device_buffer.buffer()) .IgnoreError(); } } device_buffer.ConvertUsageHold(usage_stream, event, retain_buffer_until_completion); } absl::Status AddDestinationBufferSynchronization( LocalDeviceState* local_device, PjRtStreamExecutorBuffer::ScopedHold device_buffer, std::shared_ptr<BufferSequencingEvent> definition_event, se::Stream* copy_stream) { absl::StatusOr<EventPool::Handle> event_or = local_device->event_pool().ThenAllocateAndRecordEvent(copy_stream); if (!event_or.ok()) { StallStreamOnError(local_device, copy_stream); return event_or.status(); } definition_event->SetSequencingEvent(std::move(event_or).value(), copy_stream); RecordUsage(std::move(device_buffer), local_device, local_device, definition_event, copy_stream, false); return absl::OkStatus(); } void MaybeWaitForEventOnStream(BufferSequencingEvent* event, LocalDeviceState* local_device_state, se::Stream*& stream) { if (!event->IsPredeterminedErrorOrDefinedOn( local_device_state->compute_stream()) && !event->IsComplete()) { if (stream == nullptr) { stream = local_device_state->GetFixedSizePoolUsageStream(); } VLOG(2) << "Waiting for event: " << event << "; is_predetermined_error: " << event->IsPredeterminedError() << "; on stream: " << stream; event->WaitForEventOnStream(stream); } } } absl::StatusOr<std::unique_ptr<PjRtStreamExecutorBuffer>> AllocateDestinationBuffer( const Shape& on_host_shape, PjRtDevice* device, LocalDeviceState* local_device, se::Stream* copy_stream, bool is_uninitialized_create, PjRtStreamExecutorClient* client, std::shared_ptr<BufferSequencingEvent> definition_event, PjRtMemorySpace* memory_space) { if (on_host_shape.IsTuple() && on_host_shape.tuple_shapes_size() == 0) { return InvalidArgument("Can't make a buffer from an empty tuple"); } PjRtMemorySpace* default_memory_space = device->default_memory_space().value_or(nullptr); if (!memory_space) { memory_space = default_memory_space; } bool is_pinned_host_memory = memory_space && (memory_space->kind() == PinnedHostMemorySpace::kKind); if (memory_space != default_memory_space && !is_pinned_host_memory) { return InvalidArgument("Buffer allocation: invalid memory space"); } auto* se_client = tensorflow::down_cast<PjRtStreamExecutorClient*>(client); TransferManager* transfer_manager = se_client->client()->backend().transfer_manager(); auto memory_space_shape_fn = [is_pinned_host_memory, transfer_manager](const Shape& shape) { Shape result = transfer_manager->HostShapeToDeviceShape(shape); if (is_pinned_host_memory) { result.mutable_layout()->set_memory_space(Layout::kHostMemorySpace); } return result; }; TF_ASSIGN_OR_RETURN( ScopedShapedBuffer dst_buffer, transfer_manager->AllocateScopedShapedBuffer( on_host_shape, se_client->allocator(), local_device->local_device_id().value(), local_device->local_hardware_id().value(), memory_space_shape_fn)); if (local_device->allocation_model() == LocalDeviceState::kComputeSynchronized) { if (copy_stream == nullptr) { CHECK(is_uninitialized_create); } else { CHECK(copy_stream->WaitFor(local_device->compute_stream()).ok()); } } else { DCHECK(transfer_manager->CanShapedBufferBeAccessedNow( local_device->compute_stream()->parent(), dst_buffer)); } Shape on_device_shape = dst_buffer.on_device_shape(); absl::InlinedVector<std::shared_ptr<BufferSequencingEvent>, 2> definition_events; if (is_uninitialized_create) { if (definition_event) { definition_events.emplace_back(definition_event); } if (local_device->allocation_model() == LocalDeviceState::kComputeSynchronized) { definition_events.emplace_back( std::make_shared<BufferSequencingEvent>(client->thread_pool())); TF_ASSIGN_OR_RETURN(EventPool::Handle event, local_device->event_pool().ThenAllocateAndRecordEvent( local_device->compute_stream())); definition_events.back()->SetSequencingEvent( std::move(event), local_device->compute_stream()); } } else { if (definition_event) { definition_events.emplace_back(definition_event); } else { definition_events.emplace_back( std::make_shared<BufferSequencingEvent>(client->thread_pool())); } } se::Stream* tuple_table_stream = local_device->host_to_device_stream(); if (on_device_shape.IsTuple()) { if (tuple_table_stream != copy_stream) { if (local_device->allocation_model() == LocalDeviceState::kComputeSynchronized) { DCHECK( tuple_table_stream->WaitFor(local_device->compute_stream()).ok()); } else { DCHECK(transfer_manager->CanShapedBufferBeAccessedNow( local_device->compute_stream()->parent(), dst_buffer)); } } TF_RETURN_IF_ERROR(transfer_manager->WriteTupleIndexTablesAsync( tuple_table_stream, dst_buffer)); definition_events.emplace_back( std::make_shared<BufferSequencingEvent>(client->thread_pool())); absl::StatusOr<EventPool::Handle> event_or = local_device->event_pool().ThenAllocateAndRecordEvent( tuple_table_stream); if (!event_or.ok()) { StallStreamOnError(local_device, tuple_table_stream); return event_or.status(); } definition_events.back()->SetSequencingEvent(std::move(event_or).value(), tuple_table_stream); } std::shared_ptr<TrackedDeviceBuffer> dst_device_buffer = TrackedDeviceBuffer::FromScopedShapedBuffer(&dst_buffer, definition_events, device); auto py_buffer = std::make_unique<PjRtStreamExecutorBuffer>( on_device_shape, std::move(dst_device_buffer), client, device, memory_space); if (on_device_shape.IsTuple()) { RecordUsage(py_buffer->GetBufferWithUsageHold(), local_device, local_device, definition_events.back(), tuple_table_stream, false); } return py_buffer; } PjRtStreamExecutorBuffer::ScopedHold::~ScopedHold() { if (ok()) { parent_->DropHold(type_, buffer().get()); } } PjRtStreamExecutorBuffer::ScopedHold::ScopedHold(ScopedHold&& other) : parent_(other.parent_), type_(other.type_), state_(other.state_), status_(std::move(other.status_)), buffer_(std::move(other.buffer_)) { other.SetState(kMoved); } void PjRtStreamExecutorBuffer::ScopedHold::Acquire( absl::StatusOr<std::shared_ptr<TrackedDeviceBuffer>>&& buffer_or) { CHECK(!ok()); if (buffer_or.ok()) { buffer_ = buffer_or.value(); SetState(kValid); } else { status_ = buffer_or.status(); buffer_ = nullptr; SetState(kError); } CHECK(!ok() || buffer_ != nullptr); } PjRtStreamExecutorBuffer::ScopedHold::ForClosure PjRtStreamExecutorBuffer::ScopedHold::ToClosure() { CHECK(ok()); ForClosure for_closure(parent_, type_, state_, std::move(status_), std::move(buffer_)); SetState(kReleased); return for_closure; } void PjRtStreamExecutorBuffer::ScopedHold::ConvertUsageHold( se::Stream* usage_stream, std::shared_ptr<BufferSequencingEvent> event, bool reference_held) { CHECK(ok()); CHECK_EQ(type_, kUsage); parent_->ConvertUsageHold(buffer().get(), usage_stream, std::move(event), reference_held); SetState(kConverted); } void PjRtStreamExecutorBuffer::ScopedHold::ConfirmDonation() { CHECK(ok()); CHECK_EQ(type_, kDonation); parent_->ConfirmDonation(buffer().get()); SetState(kDonated); } void PjRtStreamExecutorBuffer::ScopedHold::AddToInput( ShapeTree<MaybeOwningDeviceMemory>::iterator* iterator, const ShapeTree<MaybeOwningDeviceMemory>::iterator& end, ExecutionInput* execution_input, se::DeviceMemoryAllocator* allocator) const { CHECK(ok()); if (type_ == kDonation) { buffer()->AddToInputAsDonated(iterator, end, execution_input, allocator); } else { CHECK_EQ(type_, kUsage); buffer()->AddToInputAsImmutable(iterator, end); } } bool PjRtStreamExecutorBuffer::IsOnCpu() const { return memory_space() != nullptr && memory_space()->kind() == PinnedHostMemorySpace::kKind; } absl::StatusOr<Shape> PjRtStreamExecutorBuffer::logical_on_device_shape() { if (on_device_shape_.is_static()) { return on_device_shape_; } auto* local_device = device_->local_device_state(); auto* stream = local_device->GetDeviceToHostStream(); ScopedHold device_buffer(this, ScopedHold::kUsage); { absl::MutexLock lock(&mu_); WaitForOutstandingDonationHold(); if (device_buffer_ == nullptr) { return InvalidArgument( "logical_on_device_shape() called on deleted or donated buffer"); } AcquireHoldLocked(&device_buffer); } WaitForBufferDefinitionEventsOnStream(*device_buffer, stream); ShapedBuffer shaped_buffer = device_buffer->AsShapedBuffer(on_device_shape_); absl::StatusOr<EventPool::Handle> event_or = local_device->event_pool().AllocateEvent(stream->parent()); if (!event_or.ok()) { return event_or.status(); } Shape ret_shape = on_device_shape_; TransferManager* transfer_manager = client_->client()->backend().transfer_manager(); TF_RETURN_IF_ERROR( transfer_manager->ReadDynamicShapes(stream, &shaped_buffer, &ret_shape)); return ret_shape; } namespace { class ScopedHoldAsExternalReference : public PjRtBuffer::ExternalReference { public: explicit ScopedHoldAsExternalReference( PjRtStreamExecutorBuffer::ScopedHold hold) : external_reference_(std::move(hold)) { CHECK(external_reference_.type() == PjRtStreamExecutorBuffer::ScopedHold::kExternalReference); data_ptr_ = external_reference_->device_memory().front().opaque(); } ~ScopedHoldAsExternalReference() override = default; absl::Status WaitUntilBufferReadyOnStream(std::intptr_t stream) override { for (const std::shared_ptr<BufferSequencingEvent>& event : external_reference_->definition_events()) { TF_RETURN_IF_ERROR(event->WaitForEventOnExternalStream(stream)); } return absl::OkStatus(); } private: PjRtStreamExecutorBuffer::ScopedHold external_reference_; }; } absl::StatusOr<std::unique_ptr<PjRtBuffer::ExternalReference>> PjRtStreamExecutorBuffer::AcquireExternalReference() { ScopedHold hold = GetBufferWithExternalReference(); absl::Status hold_status = hold.status(); if (!hold_status.ok()) return hold_status; return std::unique_ptr<ExternalReference>( std::make_unique<ScopedHoldAsExternalReference>(std::move(hold))); } class TrackedDeviceBufferExternalReference : public PjRtBuffer::ExternalReference { public: explicit TrackedDeviceBufferExternalReference( std::shared_ptr<TrackedDeviceBuffer> tracked_device_buffer) : tracked_device_buffer_(std::move(tracked_device_buffer)) { data_ptr_ = tracked_device_buffer_->device_memory()[0].opaque(); } ~TrackedDeviceBufferExternalReference() override = default; private: std::shared_ptr<TrackedDeviceBuffer> tracked_device_buffer_; }; absl::StatusOr<std::unique_ptr<PjRtBuffer::ExternalReference>> PjRtStreamExecutorBuffer::ReleaseDeviceMemoryOwnership( bool wait_for_operations_to_complete) { if (on_device_shape_.IsTuple()) { return InvalidArgument( "ReleaseDeviceMemoryOwnership allowed only for non-tuple"); } TF_ASSIGN_OR_RETURN( std::shared_ptr<TrackedDeviceBuffer> tracked_device_buffer, Release(wait_for_operations_to_complete)); std::unique_ptr<PjRtBuffer::ExternalReference> ref; if (tracked_device_buffer) { ref = std::make_unique<TrackedDeviceBufferExternalReference>( std::move(tracked_device_buffer)); } return ref; } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtStreamExecutorBuffer::DonateWithControlDependency(PjRtFuture<> dependency) { VLOG(1) << "PjRtStreamExecutorBuffer::DonateWithControlDependency"; std::unique_ptr<PjRtBuffer> new_buffer; auto tracked_buffer = GetBufferWithHold(PjRtStreamExecutorBuffer::ScopedHold::kDonation); if (!tracked_buffer.ok()) { return InvalidArgument( "Invalid buffer passed to DonateWithControlDependency: %s", tracked_buffer.status().ToString()); } absl::InlinedVector<se::DeviceMemoryBase, 4> buffers( tracked_buffer->device_memory().begin(), tracked_buffer->device_memory().end()); auto original_definition_events = tracked_buffer->definition_events(); absl::InlinedVector<std::shared_ptr<BufferSequencingEvent>, 4> definition_events; auto definition_event_for_status = std::make_shared<BufferSequencingEvent>(client()->thread_pool()); definition_events.push_back(definition_event_for_status); definition_events.insert(definition_events.end(), original_definition_events.begin(), original_definition_events.end()); auto new_device_buffer = std::make_shared<TrackedDeviceBuffer>( tracked_buffer->allocator(), device(), std::move(buffers), std::move(definition_events), nullptr); new_buffer = std::unique_ptr<PjRtBuffer>(std::make_unique<PjRtStreamExecutorBuffer>( on_device_shape(), std::move(new_device_buffer), client(), device(), device()->default_memory_space().value_or(nullptr))); PjRtStreamExecutorDevice* device = this->device(); LocalDeviceState* local_device = device->local_device_state(); dependency.OnReady( [definition_event_for_status = std::move(definition_event_for_status), local_device](absl::Status status) mutable { auto stream = local_device->BorrowStreamFromPool(); auto event = local_device->event_pool().ThenAllocateAndRecordEvent(stream.get()); TF_CHECK_OK(event.status()); definition_event_for_status->SetSequencingEvent( std::move(event).value(), stream.get()); local_device->ReturnStreamToPool(std::move(stream)); }); tracked_buffer.ConfirmDonation(); return new_buffer; } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtStreamExecutorClient::BufferFromHostBufferInternal( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtDevice* device, const Layout* device_layout, PjRtMemorySpace* memory_space) { tsl::profiler::TraceMe traceme( "PjRtStreamExecutorClient::BufferFromHostBuffer"); Shape device_shape = ShapeUtil::MakeShape(type, dims); VLOG(1) << "PjRtStreamExecutorClient::BufferFromHostBuffer: shape: " << device_shape.ToString() << " device: " << device->DebugString(); TF_ASSIGN_OR_RETURN(LocalDeviceState * local_device, tensorflow::down_cast<PjRtStreamExecutorDevice*>(device) ->GetLocalDeviceState()); absl::InlinedVector<int64_t, 4> tmp_strides; if (!byte_strides) { tmp_strides.resize(dims.size()); TF_RETURN_IF_ERROR( ShapeUtil::ByteStrides(device_shape, absl::MakeSpan(tmp_strides))); byte_strides = tmp_strides; } int64_t size = ShapeUtil::ByteSizeOf(device_shape); TransferManager* transfer_manager = client()->backend().transfer_manager(); if (device_layout != nullptr) { *(device_shape.mutable_layout()) = *device_layout; } else { TF_ASSIGN_OR_RETURN( device_shape, transfer_manager->ChooseCompactLayoutForShape(device_shape)); } absl::InlinedVector<int64_t, 4> shape_strides(device_shape.dimensions_size()); TF_RETURN_IF_ERROR( ShapeUtil::ByteStrides(device_shape, absl::MakeSpan(shape_strides))); bool host_and_device_strides_equal = (size == 0 || *byte_strides == shape_strides); TF_ASSIGN_OR_RETURN( std::unique_ptr<PjRtStreamExecutorBuffer> py_buffer, AllocateDestinationBuffer(device_shape, device, local_device, local_device->host_to_device_stream(), false, this, nullptr, memory_space)); PjRtStreamExecutorBuffer::ScopedHold device_buffer( py_buffer->GetBufferWithUsageHold()); CHECK(device_buffer.ok()); std::shared_ptr<TransposePlan> transpose; if (!host_and_device_strides_equal) { absl::InlinedVector<int64_t, 4> permutation(dims.size()); absl::c_reverse_copy(device_shape.layout().minor_to_major(), permutation.begin()); TransposePlan::Options options; options.elem_size_in_bytes = primitive_util::ByteWidth(type); options.dims = dims; options.permutation = permutation; options.input_layout = TransposePlan::Striding{*byte_strides}; absl::MutexLock lock(&transpose_mu_); TF_ASSIGN_OR_RETURN(transpose, transpose_cache_.GetOrCreate(options)); } bool should_pack = primitive_util::IsSubByteNonPredType(type) && transfer_manager->PackSubbyteTypes(); int64_t packed_size; if (should_pack) { packed_size = CeilOfRatio<int64_t>(size, 8 / primitive_util::BitWidth(type)); } else { packed_size = size; } std::shared_ptr<void> staging_buffer; bool must_use_staging_buffer = host_buffer_semantics == HostBufferSemantics::kImmutableOnlyDuringCall || !host_and_device_strides_equal || packed_size != size; if (must_use_staging_buffer || (should_stage_host_to_device_transfers() && packed_size < (int64_t{1} << 30))) { void* ptr = host_memory_allocator()->AllocateRaw( tsl::Allocator::kAllocatorAlignment, transpose ? size : packed_size); staging_buffer = std::shared_ptr<void>( ptr, [host_memory_allocator = host_memory_allocator()](void* ptr) { host_memory_allocator->DeallocateRaw(ptr); }); } if (host_buffer_semantics == HostBufferSemantics::kImmutableOnlyDuringCall) { if (transpose) { transpose->Execute(data, staging_buffer.get()); if (should_pack) { primitive_util::PackIntN( type, absl::MakeConstSpan(static_cast<const char*>(staging_buffer.get()), size), absl::MakeSpan(static_cast<char*>(staging_buffer.get()), packed_size)); } } else { if (should_pack) { primitive_util::PackIntN( type, absl::MakeConstSpan(static_cast<const char*>(data), size), absl::MakeSpan(static_cast<char*>(staging_buffer.get()), packed_size)); } else { std::memcpy(staging_buffer.get(), data, size); } } if (on_done_with_host_buffer) { std::move(on_done_with_host_buffer)(); on_done_with_host_buffer = nullptr; } } auto transfer_h2d = [local_client = client(), transfer_manager, local_device, data, size, type, packed_size, movable_device_buffer{device_buffer.ToClosure()}, device_shape, should_pack, py_buffer{py_buffer.get()}, on_device_shape{py_buffer->on_device_shape()}, staging_buffer{std::move(staging_buffer)}, on_done_with_host_buffer = on_done_with_host_buffer ? std::make_shared<absl::AnyInvocable<void() &&>>( std::move(on_done_with_host_buffer)) : nullptr, host_buffer_semantics, transpose{std::move(transpose)}]() { PjRtStreamExecutorBuffer::ScopedHold device_buffer( movable_device_buffer); se::DeviceMemoryBase device_memory = device_buffer->device_memory()[0]; if (staging_buffer) { if (host_buffer_semantics != HostBufferSemantics::kImmutableOnlyDuringCall) { if (transpose) { transpose->Execute(data, staging_buffer.get()); if (should_pack) { primitive_util::PackIntN( type, absl::MakeConstSpan( static_cast<const char*>(staging_buffer.get()), size), absl::MakeSpan(static_cast<char*>(staging_buffer.get()), packed_size)); } } else { if (should_pack) { primitive_util::PackIntN( type, absl::MakeConstSpan(static_cast<const char*>(data), size), absl::MakeSpan(static_cast<char*>(staging_buffer.get()), packed_size)); } else { std::memcpy(staging_buffer.get(), data, size); } } } TF_CHECK_OK(local_device->host_to_device_stream()->Memcpy( &device_memory, staging_buffer.get(), packed_size)); } else { TF_CHECK_OK(local_device->host_to_device_stream()->Memcpy( &device_memory, data, packed_size)); } std::shared_ptr<BufferSequencingEvent> event = device_buffer->definition_events()[0]; TF_CHECK_OK(AddDestinationBufferSynchronization( local_device, std::move(device_buffer), event, local_device->host_to_device_stream())); TF_CHECK_OK(local_device->ThenExecuteCallback( local_device->host_to_device_stream(), [staging_buffer{std::move(staging_buffer)}, on_done_with_host_buffer{ std::move(on_done_with_host_buffer)}]() mutable { if (on_done_with_host_buffer) { std::move (*on_done_with_host_buffer)(); } })); }; thread_pool()->Schedule(transfer_h2d); return std::unique_ptr<PjRtBuffer>(std::move(py_buffer)); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtStreamExecutorClient::BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtDevice* device, const Layout* device_layout) { return BufferFromHostBufferInternal( data, type, dims, byte_strides, host_buffer_semantics, std::move(on_done_with_host_buffer), device, device_layout, nullptr); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtStreamExecutorClient::BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtDevice* device) { return BufferFromHostBufferInternal( data, type, dims, byte_strides, host_buffer_semantics, std::move(on_done_with_host_buffer), device, nullptr, nullptr); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtStreamExecutorClient::BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtMemorySpace* memory_space, const Layout* device_layout) { return BufferFromHostBufferInternal( data, type, dims, byte_strides, host_buffer_semantics, std::move(on_done_with_host_buffer), memory_space->devices()[0], device_layout, memory_space); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtStreamExecutorClient::CreateUninitializedBuffer(const Shape& shape, PjRtDevice* device) { return CreateUninitializedBuffer(shape, device, nullptr); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtStreamExecutorClient::CreateUninitializedBuffer( const Shape& shape, PjRtDevice* device, std::shared_ptr<BufferSequencingEvent> definition_event) { tsl::profiler::TraceMe traceme( "PjRtStreamExecutorClient::CreateUninitializedBuffer"); VLOG(1) << "PjRtStreamExecutorClient::CreateUninitializedBuffer: shape: " << shape.ToString() << " device: " << device->DebugString(); TF_ASSIGN_OR_RETURN(LocalDeviceState * local_device, tensorflow::down_cast<PjRtStreamExecutorDevice*>(device) ->GetLocalDeviceState()); TransferManager* transfer_manager = client()->backend().transfer_manager(); TF_ASSIGN_OR_RETURN(Shape compact_shape, transfer_manager->ChooseCompactLayoutForShape(shape)); TF_ASSIGN_OR_RETURN( std::unique_ptr<PjRtStreamExecutorBuffer> py_buffer, AllocateDestinationBuffer(compact_shape, device, local_device, nullptr, true, this, definition_event)); return std::unique_ptr<PjRtBuffer>(std::move(py_buffer)); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtStreamExecutorClient::CreateErrorBuffer(absl::Status error, const Shape& shape, PjRtMemorySpace* memory) { if (memory->client() != this) { return absl::InvalidArgumentError( "Memory space is not attached to this client"); } auto* device = memory->devices()[0]; VLOG(1) << "PjRtStreamExecutorClient::CreateErrorBuffer: shape: " << shape.ToString() << " device: " << device->DebugString() << " error: " << error; auto definition_event = std::make_shared<BufferSequencingEvent>(this->thread_pool()); definition_event->SetDefinedStatus(error); auto* se_client = tensorflow::down_cast<PjRtStreamExecutorClient*>(this); absl::Span<se::DeviceMemoryBase> buffers; auto dummy_device_buffer = std::make_shared<TrackedDeviceBuffer>( se_client->allocator(), device, buffers, absl::MakeSpan(&definition_event, 1), nullptr); auto py_buffer = std::make_unique<PjRtStreamExecutorBuffer>( shape, std::move(dummy_device_buffer), this, device, device->default_memory_space().value_or(nullptr)); return py_buffer; } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtStreamExecutorClient::BufferFromHostLiteral(const LiteralSlice& literal, PjRtDevice* device) { tsl::profiler::TraceMe traceme( "PjRtStreamExecutorClient::BufferFromHostLiteral"); VLOG(1) << "PjRtStreamExecutorClient::BufferFromHostLiteral: shape: " << literal.shape().ToString() << " device: " << device->DebugString(); TF_ASSIGN_OR_RETURN(LocalDeviceState * local_device, tensorflow::down_cast<PjRtStreamExecutorDevice*>(device) ->GetLocalDeviceState()); TransferManager* transfer_manager = client()->backend().transfer_manager(); TF_ASSIGN_OR_RETURN( Shape compact_shape, transfer_manager->ChooseCompactLayoutForShape(literal.shape())); TF_ASSIGN_OR_RETURN( std::unique_ptr<PjRtStreamExecutorBuffer> py_buffer, AllocateDestinationBuffer(compact_shape, device, local_device, local_device->host_to_device_stream(), false, this)); PjRtStreamExecutorBuffer::ScopedHold device_buffer( py_buffer->GetBufferWithUsageHold()); CHECK(device_buffer.ok()); auto transfer_h2d = [local_client = client(), transfer_manager, local_device, movable_device_buffer{device_buffer.ToClosure()}, literal, py_buffer{py_buffer.get()}, on_device_shape{py_buffer->on_device_shape()}]() { PjRtStreamExecutorBuffer::ScopedHold device_buffer(movable_device_buffer); se::Stream* h2d_stream = local_device->host_to_device_stream(); ShapedBuffer buffer = device_buffer->AsShapedBuffer(on_device_shape); TF_CHECK_OK(transfer_manager->TransferLiteralToDeviceAsync( h2d_stream, literal, buffer)); std::shared_ptr<BufferSequencingEvent> event = device_buffer->definition_events()[0]; TF_CHECK_OK(AddDestinationBufferSynchronization( local_device, std::move(device_buffer), event, h2d_stream)); h2d_stream->RefreshStatus() .IgnoreError(); QCHECK(h2d_stream->ok()); }; thread_pool()->Schedule(transfer_h2d); return std::unique_ptr<PjRtBuffer>(std::move(py_buffer)); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtStreamExecutorClient::BufferFromHostLiteral(const LiteralSlice& literal, PjRtMemorySpace* memory_space) { if (memory_space->devices().size() == 1) { return BufferFromHostLiteral(literal, memory_space->devices()[0]); } return absl::UnimplementedError(absl::StrCat( "BufferFromHostLiteral with PjRtMemorySpace is not implemented on " "platform: ", platform_name())); } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> PjRtStreamExecutorClient::MakeCrossHostReceiveBuffers( absl::Span<const Shape> shapes, PjRtDevice* device, PjRtCrossHostRecvNotifier notifier) { if (shapes.empty()) { return InvalidArgument( "shapes parameter empty in MakeCrossHostReceiveBuffers"); } TF_ASSIGN_OR_RETURN(LocalDeviceState * local_device, tensorflow::down_cast<PjRtStreamExecutorDevice*>(device) ->GetLocalDeviceState()); std::shared_ptr<BufferSequencingEvent> definition_event = std::make_shared<BufferSequencingEvent>(this->thread_pool()); std::vector<std::unique_ptr<PjRtBuffer>> buffers; buffers.reserve(shapes.size()); for (const auto& shape : shapes) { TF_ASSIGN_OR_RETURN( std::unique_ptr<PjRtBuffer> buffer, AllocateDestinationBuffer(shape, device, local_device, nullptr, false, this, definition_event)); buffers.push_back(std::move(buffer)); } TF_RETURN_IF_ERROR(EnqueueCrossHostReceive( buffers, std::move(definition_event), std::move(notifier), std::nullopt)); return buffers; } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> PjRtStreamExecutorClient::MakeCrossHostReceiveBuffersForGather( absl::Span<const Shape> shapes, std::vector<GatherDetails> gather_details, PjRtDevice* device, PjRtCrossHostRecvNotifier notifier) { VLOG(2) << "Making " << gather_details.size() << " cross host receive buffers for gather"; if (gather_details.empty()) { return InvalidArgument( "gather_details parameter empty in " "MakeCrossHostReceiveBuffersForGather"); } if (shapes.size() != gather_details.size()) { return InvalidArgument( "gather_details parameter has length %lld but shapes " "parameter has length %lld in " "MakeCrossHostReceiveBuffersForGather", gather_details.size(), shapes.size()); } TF_ASSIGN_OR_RETURN(LocalDeviceState * local_device, tensorflow::down_cast<PjRtStreamExecutorDevice*>(device) ->GetLocalDeviceState()); std::shared_ptr<BufferSequencingEvent> definition_event = std::make_shared<BufferSequencingEvent>(this->thread_pool()); std::vector<std::unique_ptr<PjRtBuffer>> buffers; buffers.reserve(shapes.size()); for (int i = 0; i < shapes.size(); ++i) { TF_ASSIGN_OR_RETURN( std::unique_ptr<PjRtBuffer> buffer, AllocateDestinationBuffer(shapes[i], device, local_device, nullptr, false, this, definition_event)); buffers.push_back(std::move(buffer)); } TF_RETURN_IF_ERROR( EnqueueCrossHostReceive(buffers, std::move(definition_event), std::move(notifier), gather_details)); return buffers; } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtStreamExecutorClient::CreateViewOfDeviceBuffer( void* device_ptr, const Shape& shape, PjRtDevice* device, std::function<void()> on_delete_callback, std::optional<std::intptr_t> stream) { se::DeviceMemoryBase buffer(device_ptr, ShapeUtil::ByteSizeOf(shape)); TF_ASSIGN_OR_RETURN(LocalDeviceState * local_device, tensorflow::down_cast<PjRtStreamExecutorDevice*>(device) ->GetLocalDeviceState()); absl::InlinedVector<std::shared_ptr<BufferSequencingEvent>, 2> definition_events; definition_events.emplace_back( std::make_shared<BufferSequencingEvent>(this->thread_pool())); se::Stream* definition_stream; if (!stream) { definition_stream = local_device->compute_stream(); } else { TF_ASSIGN_OR_RETURN(definition_stream, local_device->GetStreamFromExternalStream(*stream)); } TF_ASSIGN_OR_RETURN( EventPool::Handle event, local_device->event_pool().ThenAllocateAndRecordEvent(definition_stream)); definition_events.back()->SetSequencingEvent(std::move(event), definition_stream); auto device_buffer = std::make_shared<TrackedDeviceBuffer>( nullptr, device, std::initializer_list<se::DeviceMemoryBase>{buffer}, definition_events, std::move(on_delete_callback)); return std::unique_ptr<PjRtBuffer>(std::make_unique<PjRtStreamExecutorBuffer>( shape, std::move(device_buffer), this, device, device->default_memory_space().value_or(nullptr))); } absl::Status PjRtStreamExecutorDevice::TransferToInfeed( const LiteralSlice& literal) { TF_ASSIGN_OR_RETURN(LocalDeviceState * local_device, GetLocalDeviceState()); return local_device->client()->TransferToInfeedLocal( literal, local_device->local_hardware_id().value()); } absl::Status PjRtStreamExecutorDevice::TransferFromOutfeed( MutableBorrowingLiteral literal) { VLOG(1) << "PjRtStreamExecutorDevice::TransferFromOutfeed"; TF_ASSIGN_OR_RETURN(LocalDeviceState * local_device, GetLocalDeviceState()); return local_device->client()->TransferFromOutfeedLocal( local_device->local_hardware_id().value(), literal); } void PjRtStreamExecutorDevice::AttachMemorySpace( PjRtMemorySpace* memory_space) { CHECK(memory_space != nullptr); CHECK(client_ == memory_space->client()) << absl::StrFormat( "Could not attach a PjRtStreamExecutorDevice to a PjRtMemorySpace owned " "by a different client, the device's client: %s, the memory space's " "client: %s.", client_->platform_name(), memory_space->client()->platform_name()); memory_spaces_.push_back(memory_space); memory_spaces_by_id_.emplace(memory_space->kind_id(), memory_space); } absl::Span<PjRtMemorySpace* const> PjRtStreamExecutorDevice::memory_spaces() const { return memory_spaces_; } absl::StatusOr<PjRtMemorySpace*> PjRtStreamExecutorDevice::default_memory_space() const { return Unimplemented("default_memory_space is not supported."); } absl::StatusOr<PjRtMemorySpace*> PjRtStreamExecutorDevice::memory_space_by_kind( absl::string_view memory_space_kind) const { auto it = absl::c_find_if(memory_spaces_, [memory_space_kind](PjRtMemorySpace* ms) { return ms->kind() == memory_space_kind; }); if (it != memory_spaces_.end()) { return *it; } return absl::InternalError( absl::StrCat("No memory space found (kind: ", memory_space_kind, ")")); } absl::StatusOr<PjRtMemorySpace*> PjRtStreamExecutorDevice::memory_space_by_kind_id(int id) const { auto it = memory_spaces_by_id_.find(id); if (it == memory_spaces_by_id_.end()) { return absl::InternalError( absl::StrCat("No memory space found (kind_id: ", id, ")")); } return it->second; } absl::StatusOr<std::intptr_t> PjRtStreamExecutorDevice::GetStreamForExternalReadyEvents() const { TF_ASSIGN_OR_RETURN(LocalDeviceState * local_device, GetLocalDeviceState()); se::Stream* stream = local_device->GetExternalReadyEventStream(); void* raw_stream = stream->platform_specific_handle().stream; if (raw_stream == nullptr) { return Unimplemented( "GetStreamForExternalReadyEvents not implemented for platform '%s'.", platform_name()); } return absl::bit_cast<std::intptr_t>(raw_stream); } absl::StatusOr<PjRtDevice*> PjRtStreamExecutorClient::LookupAddressableDevice( xla::PjRtLocalDeviceId local_device_id) const { for (auto* device : addressable_devices_) { if (local_device_id == device->local_device_id()) { return device; } } return InvalidArgument("No matching device found for local_device_id %d", local_device_id.value()); } absl::Span<PjRtMemorySpace* const> PjRtStreamExecutorClient::memory_spaces() const { return memory_spaces_; } PjRtStreamExecutorBuffer::PjRtStreamExecutorBuffer( Shape on_device_shape, std::shared_ptr<TrackedDeviceBuffer> device_buffer, PjRtClient* client, PjRtDevice* device, PjRtMemorySpace* memory_space) : client_(tensorflow::down_cast<PjRtStreamExecutorClient*>(client)), on_device_shape_(std::move(on_device_shape)), device_(tensorflow::down_cast<PjRtStreamExecutorDevice*>(device)), memory_space_(memory_space), device_buffer_(std::move(device_buffer)) { for (int i = 0; i < ScopedHold::Type::kMaxValue; ++i) { holds_[i] = 0; } } PjRtStreamExecutorBuffer::~PjRtStreamExecutorBuffer() { Delete(); for (int i = 0; i < ScopedHold::Type::kMaxValue; ++i) { CHECK_EQ(holds_[i], 0); } } void PjRtStreamExecutorBuffer::WaitForOutstandingUsageHolds() { auto not_in_usage_hold = [&]() ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return holds_[ScopedHold::kUsage] == 0; }; mu_.Await(absl::Condition(&not_in_usage_hold)); } void PjRtStreamExecutorBuffer::WaitForOutstandingDonationHold() { auto not_in_donation_hold = [&]() ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return holds_[ScopedHold::kDonation] == 0; }; mu_.Await(absl::Condition(&not_in_donation_hold)); } absl::StatusOr<std::shared_ptr<TrackedDeviceBuffer>> PjRtStreamExecutorBuffer::Release(bool wait_for_operations_to_complete) { tsl::profiler::TraceMe trace_me("PjRtStreamExecutorBuffer::Release"); std::shared_ptr<TrackedDeviceBuffer> device_buffer; TrackedDeviceBuffer::StreamAndEventContainer events; { absl::MutexLock lock(&mu_); WaitForOutstandingDonationHold(); if (device_buffer_ == nullptr) { return std::shared_ptr<TrackedDeviceBuffer>(); } std::swap(device_buffer_, device_buffer); WaitForOutstandingUsageHolds(); events = device_buffer->LockUseAndTransferUsageEvents(); } LocalDeviceState* local_device_state = device_->local_device_state(); if (wait_for_operations_to_complete) { std::unique_ptr<se::Stream> stream; for (const auto& stream_and_event : events) { if (!stream_and_event.event->IsComplete()) { if (stream == nullptr) { stream = local_device_state->BorrowStreamFromPool(); } stream_and_event.event->WaitForEventOnStream(stream.get()); } } if (stream != nullptr) { TF_RETURN_IF_ERROR(stream->BlockHostUntilDone()); local_device_state->ReturnStreamToPool(std::move(stream)); } } else { if (local_device_state->allocation_model() == LocalDeviceState::kComputeSynchronized) { se::Stream* block_stream = nullptr; absl::InlinedVector<std::shared_ptr<BufferSequencingEvent>, 5> events_to_wait_for_in_a_different_thread; auto maybe_wait_for_event_on_block_stream_or_add_to_events_to_wait = [&events_to_wait_for_in_a_different_thread, local_device_state, &block_stream](const std::shared_ptr<BufferSequencingEvent>& event) { if (local_device_state->allow_delete_before_fulfill() && !event->IsDefined()) { events_to_wait_for_in_a_different_thread.push_back(event); } else { MaybeWaitForEventOnStream(event.get(), local_device_state, block_stream); } }; for (const auto& stream_and_event : events) { VLOG(2) << "Checking whether need to wait for stream_and_event: stream: " << stream_and_event.stream << "; event: " << stream_and_event.event.get() << "; reference_held: " << stream_and_event.reference_held << "; is_predetermined_error: " << stream_and_event.event->IsPredeterminedError(); if (!stream_and_event.reference_held) { maybe_wait_for_event_on_block_stream_or_add_to_events_to_wait( stream_and_event.event); } } for (const auto& definition_event : device_buffer->definition_events()) { VLOG(2) << "Checking whether need to wait for definition_event: " << definition_event.get() << "; is_predetermined_error: " << definition_event->IsPredeterminedError(); maybe_wait_for_event_on_block_stream_or_add_to_events_to_wait( definition_event); } if (!events_to_wait_for_in_a_different_thread.empty()) { VLOG(1) << "Going to wait for " << events_to_wait_for_in_a_different_thread.size() << " events in a different thread."; local_device_state->cleanup_thread()->Schedule( [events_to_wait_for_in_a_different_thread = std::move(events_to_wait_for_in_a_different_thread), local_device_state, device_buffer, block_stream]() mutable { for (const auto& event : events_to_wait_for_in_a_different_thread) { MaybeWaitForEventOnStream(event.get(), local_device_state, block_stream); } if (block_stream != nullptr) { TF_CHECK_OK(local_device_state->ThenExecuteCallback( block_stream, [device_buffer]() { })); } }); } else if (block_stream != nullptr) { TF_RETURN_IF_ERROR(local_device_state->ThenExecuteCallback( block_stream, [device_buffer]() { })); } } } return device_buffer; } void PjRtStreamExecutorBuffer::Delete() { VLOG(1) << "PjRtStreamExecutorBuffer::Delete"; TF_CHECK_OK(Release(false).status()); } bool PjRtStreamExecutorBuffer::IsDeleted() { absl::MutexLock lock(&mu_); return device_buffer_ == nullptr; } absl::StatusOr<std::shared_ptr<TrackedDeviceBuffer>> PjRtStreamExecutorBuffer::GetBufferForHoldLocked(ScopedHold::Type type) { CHECK_EQ(holds_[ScopedHold::kDonation], 0); if (type == ScopedHold::kDonation) { if (device_buffer_ == nullptr) { return InvalidArgument("Donation requested for invalid buffer"); } if (holds_[ScopedHold::kExternalReference] > 0) { return InvalidArgument( "Donation requested for buffer with external reference"); } ++holds_[type]; WaitForOutstandingUsageHolds(); CHECK(device_buffer_ != nullptr); } else { if (device_buffer_ == nullptr) { return InvalidArgument("Buffer has been deleted or donated."); } else { ++holds_[type]; } } return device_buffer_; } void PjRtStreamExecutorBuffer::AcquireHoldLocked(ScopedHold* hold) { hold->Acquire(GetBufferForHoldLocked(hold->type())); } void PjRtStreamExecutorBuffer::ConvertUsageHold( TrackedDeviceBuffer* buffer, se::Stream* usage_stream, std::shared_ptr<BufferSequencingEvent> event, bool reference_held) { absl::MutexLock lock(&mu_); CHECK(device_buffer_.get() == buffer || device_buffer_ == nullptr); buffer->AddUsageEvent(usage_stream, std::move(event), reference_held); CHECK_GT(holds_[ScopedHold::kUsage], 0); --holds_[ScopedHold::kUsage]; } void PjRtStreamExecutorBuffer::ConfirmDonation( TrackedDeviceBuffer* device_buffer) { { absl::MutexLock lock(&mu_); CHECK_EQ(holds_[ScopedHold::kUsage], 0); CHECK_EQ(holds_[ScopedHold::kExternalReference], 0); CHECK_EQ(holds_[ScopedHold::kDonation], 1); holds_[ScopedHold::kDonation] = 0; CHECK(device_buffer_.get() == device_buffer); device_buffer->LockUseAndTransferUsageEvents(); device_buffer->ReleaseDeviceMemory(); device_buffer_.reset(); } } void PjRtStreamExecutorBuffer::DropHold(ScopedHold::Type type, TrackedDeviceBuffer* buffer) { absl::MutexLock lock(&mu_); CHECK(device_buffer_.get() == buffer || device_buffer_ == nullptr); CHECK_GT(holds_[type], 0); --holds_[type]; if (type == ScopedHold::kDonation) { CHECK_EQ(holds_[ScopedHold::kDonation], 0); CHECK_EQ(holds_[ScopedHold::kUsage], 0); CHECK_EQ(holds_[ScopedHold::kExternalReference], 0); } } PjRtFuture<> PjRtStreamExecutorBuffer::LazyToLiteral( absl::AnyInvocable<absl::StatusOr<MutableLiteralBase*>() &&> generator) { auto buffer = std::move(generator)(); if (!buffer.ok()) { return PjRtFuture<>(buffer.status()); } return ToLiteral(buffer.value()); } PjRtFuture<> PjRtStreamExecutorBuffer::ToLiteral(MutableLiteralBase* literal) { VLOG(1) << "PjRtStreamExecutorBuffer::ToLiteral"; if (IsEmptyTuple()) { return PjRtFuture<>(InvalidArgument("ToLiteral called on empty tuple")); } LocalDeviceState* local_device = device_->local_device_state(); se::Stream* stream = local_device->GetDeviceToHostStream(); ScopedHold device_buffer(this, ScopedHold::kUsage); { absl::MutexLock lock(&mu_); WaitForOutstandingDonationHold(); if (device_buffer_ == nullptr) { return PjRtFuture<>(InvalidArgument( "CopyToHostAsync() called on deleted or donated buffer")); } AcquireHoldLocked(&device_buffer); } auto promise = PjRtFuture<>::CreatePromise(); auto usage_event = std::make_shared<BufferSequencingEvent>(client_->thread_pool()); TransferManager* transfer_manager = client_->client()->backend().transfer_manager(); auto tracked_device_buffer = device_buffer.buffer(); device_buffer.ConvertUsageHold(stream, usage_event, true); auto async_to_literal = [usage_event, tracked_device_buffer, stream, transfer_manager = std::move(transfer_manager), on_device_shape{on_device_shape_}, literal, promise, local_device]() mutable { absl::StatusOr<EventPool::Handle> event_or = local_device->event_pool().AllocateEvent(stream->parent()); if (!event_or.ok()) { promise.Set(event_or.status()); return; } absl::Status defined_status = tracked_device_buffer->definition_events()[0]->GetDefinedStatus(); if (!defined_status.ok()) { promise.Set(defined_status); return; } WaitForBufferDefinitionEventsOnStream(*tracked_device_buffer, stream); ShapedBuffer shaped_buffer = tracked_device_buffer->AsShapedBuffer(on_device_shape); GenericTransferManager::LiteralFromDeviceMetadata transfer_metadata; transfer_metadata.callback_is_host_callback_safe = true; TransferManager::TransferMetadata* transfer_metadata_ptr = (dynamic_cast<GenericTransferManager*>(transfer_manager) != nullptr) ? &transfer_metadata : nullptr; transfer_manager->TransferLiteralFromDevice( stream, shaped_buffer, literal, [promise](absl::Status status) mutable { promise.Set(std::move(status)); }, transfer_metadata_ptr); local_device->event_pool().ThenRecordEvent(stream, event_or.value()); usage_event->SetSequencingEvent(std::move(event_or).value(), stream); defined_status = local_device->ThenRelease(stream, tracked_device_buffer); if (!defined_status.ok()) { promise.Set(defined_status); } }; tracked_device_buffer->definition_events()[0]->ExecuteOrAddToFutureTasks( absl::StrFormat("async_to_literal_%p", literal), std::move(async_to_literal)); return PjRtFuture<>( std::move(promise), []() { tsl::profiler::TraceMeProducer traceme( "PjRtStreamExecutorBuffer::ToLiteral"); VLOG(1) << "PjRtStreamExecutorBuffer::ToLiteral"; return PjRtFutureHelpers::ProfilingKeys( {traceme.GetContextId()}); }, [](PjRtFutureHelpers::ProfilingKeys keys) { tsl::profiler::TraceMeConsumer traceme( "PjRtStreamExecutorBuffer::ToLiteral", keys.traceme_context_id); }); } absl::StatusOr<size_t> PjRtStreamExecutorBuffer::GetOnDeviceSizeInBytes() const { absl::MutexLock lock(&mu_); if (device_buffer_ == nullptr) { return InvalidArgument( "GetOnDeviceSizeInBytes called on deleted or donated buffer"); } if (device_buffer_->device_memory().size() != 1) { return InvalidArgument( "GetOnDeviceSizeInBytes called on tuple-shaped buffer"); } return device_buffer_->device_memory()[0].size(); } PjRtFuture<> PjRtStreamExecutorBuffer::CopyRawToHost(void* dst, int64_t offset, int64_t transfer_size) { return client_->CopyRawSubBufferToHost(this, PjRtFuture<void*>(dst), offset, transfer_size); } PjRtFuture<> PjRtStreamExecutorBuffer::CopyRawToHostFuture( PjRtFuture<void*> dst, int64_t offset, int64_t transfer_size) { return client_->CopyRawSubBufferToHost(this, dst, offset, transfer_size); } absl::StatusOr<ShapedBuffer> PjRtStreamExecutorBuffer::AsShapedBuffer() const { absl::MutexLock lock(&mu_); if (device_buffer_ == nullptr) { return InvalidArgument( "Attempted to fetch value of invalid/deleted buffer."); } return device_buffer_->AsShapedBuffer(on_device_shape_); } PjRtStreamExecutorBuffer::ScopedHold PjRtStreamExecutorBuffer::GetBufferWithHold(ScopedHold::Type type) { absl::MutexLock lock(&mu_); WaitForOutstandingDonationHold(); ScopedHold hold(this, type); AcquireHoldLocked(&hold); return hold; } absl::StatusOr<std::pair<std::unique_ptr<PjRtBuffer>, std::shared_ptr<BufferSequencingEvent>>> PjRtStreamExecutorBuffer::CopyToDeviceHelper( PjRtDevice* dst_device, LocalDeviceState* dst_local_device, PjRtMemorySpace* dst_memory_space, LocalDeviceState* transfer_local_device, LocalDeviceState* src_local_device, se::Stream* transfer_stream, std::shared_ptr<TrackedDeviceBuffer> src_device_buffer) { TF_ASSIGN_OR_RETURN(std::unique_ptr<PjRtStreamExecutorBuffer> py_buffer, AllocateDestinationBuffer( ShapeUtil::DeviceShapeToHostShape(on_device_shape_), dst_device, dst_local_device, transfer_stream, false, client_, nullptr, dst_memory_space)); ScopedHold dst_device_buffer(py_buffer->GetBufferWithUsageHold()); CHECK(dst_device_buffer.ok()); std::shared_ptr<BufferSequencingEvent> copy_event = dst_device_buffer->definition_events()[0]; auto async_copy_to_device = [src_device_buffer, dst_device_buffer = std::move(dst_device_buffer.buffer()), transfer_stream = std::move(transfer_stream), copy_event, on_device_shape{py_buffer->on_device_shape()}, src_local_device = std::move(src_local_device), transfer_local_device = std::move(transfer_local_device), dst_local_device = std::move(dst_local_device)]() mutable { tsl::profiler::TraceMe traceme( "PjRtStreamExecutorBuffer::CopyToDeviceHelper::async_copy_to_" "device"); VLOG(1) << "PjRtStreamExecutorBuffer::CopyToDeviceHelper::async_copy_to_device"; absl::Status defined_status = src_device_buffer->definition_events()[0]->GetDefinedStatus(); if (defined_status.ok()) { WaitForBufferDefinitionEventsOnStream(*src_device_buffer, transfer_stream); ShapedBuffer src_buffer = src_device_buffer->AsShapedBuffer(on_device_shape); ShapedBuffer dst_buffer = dst_device_buffer->AsShapedBuffer(on_device_shape); for (const auto& leaf : src_buffer.buffers().leaves()) { const ShapeIndex& index = leaf.first; const se::DeviceMemoryBase& input_buffer = leaf.second; const se::DeviceMemoryBase& output_buffer = dst_buffer.buffer(index); CHECK_EQ(input_buffer.size(), output_buffer.size()); if (input_buffer.size() != 0) { auto status = transfer_local_device->ThenMemcpyDeviceToDevice( transfer_stream, dst_local_device->compute_stream(), input_buffer, output_buffer); if (!status.ok()) { LOG(ERROR) << "D2D memory copy failed due to: " << status; StallStreamOnError(transfer_local_device, transfer_stream); if (transfer_local_device == dst_local_device) { auto status = src_local_device->ThenRelease( transfer_stream, std::move(src_device_buffer)); if (!status.ok()) { LOG(ERROR) << "ThenRelease failed due to: " << status; } } return; } } } absl::StatusOr<EventPool::Handle> event_or = transfer_local_device->event_pool().ThenAllocateAndRecordEvent( transfer_stream); if (!event_or.ok()) { StallStreamOnError(transfer_local_device, transfer_stream); LOG(ERROR) << event_or.status(); return; } copy_event->SetSequencingEvent(std::move(event_or).value(), transfer_stream); } else { copy_event->SetDefinedStatus(defined_status); } auto status = src_local_device->ThenRelease(transfer_stream, std::move(src_device_buffer)); if (!status.ok()) { LOG(ERROR) << "ThenRelease failed due to: " << status; } }; src_device_buffer->definition_events()[0]->ExecuteOrAddToFutureTasks( absl::StrFormat("async_copy_to_device_%p", dst_device_buffer.buffer().get()), std::move(async_copy_to_device)); RecordUsage(std::move(dst_device_buffer), transfer_local_device, transfer_local_device, copy_event, transfer_stream, false); return std::pair<std::unique_ptr<PjRtBuffer>, std::shared_ptr<BufferSequencingEvent>>( std::unique_ptr<PjRtStreamExecutorBuffer>(std::move(py_buffer)), std::move(copy_event)); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtStreamExecutorBuffer::CopyToDevice(PjRtDevice* dst_device) { tsl::profiler::TraceMe traceme("PjRtStreamExecutorBuffer::CopyToDevice"); VLOG(1) << "PjRtStreamExecutorBuffer::CopyToDevice"; if (dst_device == device_) { return InvalidArgument( "CopyToDevice cannot accept the same source and destination devices"); } return CopyToDeviceMemorySpace(dst_device, nullptr); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtStreamExecutorBuffer::CopyToDeviceMemorySpace( PjRtDevice* dst_device, PjRtMemorySpace* dst_memory_space) { if (dst_device == device_ && dst_memory_space == memory_space()) { return InvalidArgument( "CopyToDeviceMemorySpace cannot accept the same source and destination " "devices/memory"); } if (dst_device->client() != client_) { TF_ASSIGN_OR_RETURN(std::shared_ptr<Literal> literal, ToLiteralSync()); Literal* literal_pointer = literal.get(); absl::InlinedVector<int64_t, 4> byte_strides( literal->shape().dimensions_size()); TF_RETURN_IF_ERROR( ShapeUtil::ByteStrides(literal->shape(), absl::MakeSpan(byte_strides))); return dst_device->client()->BufferFromHostBuffer( literal_pointer->untyped_data(), literal_pointer->shape().element_type(), literal_pointer->shape().dimensions(), byte_strides, PjRtStreamExecutorClient::HostBufferSemantics::kImmutableZeroCopy, [literal{std::move(literal)}]() { }, dst_device); } TF_ASSIGN_OR_RETURN( LocalDeviceState * dst_local_device, tensorflow::down_cast<PjRtStreamExecutorDevice*>(dst_device) ->GetLocalDeviceState()); LocalDeviceState* transfer_local_device = client_->EnqueueD2DTransfersOnSrcStream() ? device_->local_device_state() : dst_local_device; CHECK_EQ(dst_local_device->allocation_model(), transfer_local_device->allocation_model()); se::Stream* transfer_stream = transfer_local_device->GetDeviceToDeviceStream(); ScopedHold src_device_buffer(this, ScopedHold::kUsage); { absl::MutexLock lock(&mu_); WaitForOutstandingDonationHold(); if (device_buffer_ == nullptr) { return InvalidArgument( "CopyToDevice called on deleted or donated buffer"); } AcquireHoldLocked(&src_device_buffer); } absl::StatusOr<std::pair<std::unique_ptr<PjRtBuffer>, std::shared_ptr<BufferSequencingEvent>>> buffer_and_event_or = CopyToDeviceHelper( dst_device, dst_local_device, dst_memory_space, transfer_local_device, device_->local_device_state(), transfer_stream, src_device_buffer.buffer()); if (!buffer_and_event_or.ok()) { return buffer_and_event_or.status(); } auto& buffer_and_event = buffer_and_event_or.value(); std::unique_ptr<PjRtBuffer>& buffer = buffer_and_event.first; std::shared_ptr<BufferSequencingEvent>& event = buffer_and_event.second; src_device_buffer.ConvertUsageHold(transfer_stream, event, true); return std::move(buffer); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtStreamExecutorBuffer::CopyToMemorySpace(PjRtMemorySpace* dst_memory_space) { if (dst_memory_space->devices().size() == 1) { return CopyToDeviceMemorySpace(dst_memory_space->devices()[0], dst_memory_space); } return Unimplemented("CopyToMemorySpace is not supported"); } void PjRtStreamExecutorBuffer::CopyToRemoteDevice( PjRtFuture<std::string> serialized_descriptor, RemoteSendCallback on_done) { VLOG(1) << "PjRtStreamExecutorBuffer::CopyToRemoteDevice"; auto desc = serialized_descriptor.Await(); if (desc.ok()) { client_->CopyToRemoteDevice(this, *desc, std::move(on_done)); } else { on_done(desc.status(), false); } } void PjRtStreamExecutorBuffer::CopyToRemoteDeviceScattered( PjRtFuture<std::vector<std::string>> serialized_descriptors, std::vector<RemoteSendCallback> callbacks, const ScatterDetails& scatter_details) { VLOG(1) << "PjRtStreamExecutorBuffer::CopyToRemoteDeviceScattered"; auto res = serialized_descriptors.Await(); if (res.ok()) { client_->CopyToRemoteDeviceScattered(this, *std::move(res), std::move(callbacks), scatter_details); } else { for (const auto& cb : callbacks) { cb(res.status(), false); } } } PjRtFuture<> PjRtStreamExecutorBuffer::GetReadyFuture() { std::shared_ptr<TrackedDeviceBuffer> device_buffer; PjRtFuture<>::Promise definition_promise; { absl::MutexLock lock(&mu_); if (device_buffer_ == nullptr) { return PjRtFuture<>(InvalidArgument( "GetReadyFuture() called on deleted or donated buffer")); } if (!definition_promise_) { device_buffer = device_buffer_; definition_promise_ = PjRtFuture<>::CreatePromise(); } definition_promise = definition_promise_; } if (device_buffer) { LocalDeviceState* local_device_state = device_->local_device_state(); auto async_wait_for_events = [device_buffer, local_device_state = std::move(local_device_state), definition_promise]() mutable { std::unique_ptr<se::Stream> stream; absl::Status defined_status = device_buffer->definition_events()[0]->GetDefinedStatus(); if (!defined_status.ok()) { definition_promise.Set(defined_status); return; } for (auto& event : device_buffer->definition_events()) { if (!event->IsComplete()) { if (stream == nullptr) { stream = local_device_state->BorrowStreamFromPool(); } event->WaitForEventOnStream(stream.get()); } } if (stream != nullptr) { auto* stream_ptr = stream.release(); auto status = stream_ptr->DoHostCallback( [definition_promise, stream_ptr, local_device_state, event_with_status = device_buffer->definition_events()[0]]() mutable { local_device_state->ReturnStreamToPool( std::unique_ptr<se::Stream>(stream_ptr)); definition_promise.Set(event_with_status->GetDefinedStatus()); }); if (!status.ok()) { definition_promise.Set(status); return; } } else { definition_promise.Set( device_buffer->definition_events()[0]->GetDefinedStatus()); } }; device_buffer->definition_events()[0]->ExecuteOrAddToFutureTasks( absl::StrFormat("async_wait_for_events_%p", &async_wait_for_events), std::move(async_wait_for_events)); } return PjRtFuture<>( std::move(definition_promise), []() { tsl::profiler::TraceMeProducer traceme( "PjRtStreamExecutorBuffer::Await"); VLOG(1) << "PjRtStreamExecutorBuffer::Await"; return PjRtFutureHelpers::ProfilingKeys( {traceme.GetContextId()}); }, [](PjRtFutureHelpers::ProfilingKeys keys) { tsl::profiler::TraceMeConsumer traceme( "PjRtStreamExecutorBuffer::Await", keys.traceme_context_id); }); } namespace { struct TupleHandle { ExecutionInput execution_input; std::shared_ptr<BufferSequencingEvent> event; }; absl::Status CheckCompatibleShapes(bool strict_shape_checking, const Shape& buffer_on_device_shape, const Shape& execution_shape, const TransferManager& transfer_manager, int parameter_index) { if (execution_shape.IsToken() && buffer_on_device_shape.element_type() == PrimitiveType::PRED && buffer_on_device_shape.dimensions_size() == 1 && buffer_on_device_shape.dimensions(0) == 0) { return absl::OkStatus(); } if (strict_shape_checking || buffer_on_device_shape.IsTuple()) { if (!ShapeUtil::Compatible(buffer_on_device_shape, execution_shape)) { return InvalidArgument( "Executable expected shape %s for argument %d but got " "incompatible " "shape %s", ShapeUtil::HumanStringWithLayout(execution_shape), parameter_index, ShapeUtil::HumanStringWithLayout(buffer_on_device_shape)); } } else { const int64_t buffer_size = transfer_manager.GetByteSizeRequirement(buffer_on_device_shape); const int64_t execute_size = transfer_manager.GetByteSizeRequirement(execution_shape); if (buffer_on_device_shape.is_static() && buffer_size != execute_size) { return InvalidArgument( "Executable expected shape %s for argument %d but got " "incompatible " "shape %s", ShapeUtil::HumanStringWithLayout(execution_shape), parameter_index, ShapeUtil::HumanStringWithLayout(buffer_on_device_shape)); } if (!buffer_on_device_shape.is_static() && buffer_size < execute_size) { return InvalidArgument( "Executable expected shape %s for argument %d but got " "incompatible " "shape %s", ShapeUtil::HumanStringWithLayout(execution_shape), parameter_index, ShapeUtil::HumanStringWithLayout(buffer_on_device_shape)); } } return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<TupleHandle>> MakeTupleHelper( PjRtStreamExecutorClient* client, LocalDeviceState* local_device, bool strict_shape_checking, const Shape& tupled_parameter_shape, absl::Span<PjRtBuffer* const> py_buffers, absl::Span<const PjRtStreamExecutorBuffer::ScopedHold> device_buffers, int device_ordinal) { se::DeviceMemoryAllocator* allocator = client->allocator(); TransferManager* transfer_manager = client->client()->backend().transfer_manager(); if (tupled_parameter_shape.tuple_shapes_size() != py_buffers.size()) { return InvalidArgument("Executable expected %lld parameters but got %lld", tupled_parameter_shape.tuple_shapes_size(), py_buffers.size()); } for (int i = 0; i < py_buffers.size(); ++i) { TF_RETURN_IF_ERROR(CheckCompatibleShapes( strict_shape_checking, py_buffers[i]->on_device_shape(), tupled_parameter_shape.tuple_shapes(i), *transfer_manager, i)); } se::Stream* stream = local_device->host_to_device_stream(); TF_ASSIGN_OR_RETURN( se::OwningDeviceMemory root_table_memory, allocator->Allocate( device_ordinal, transfer_manager->GetByteSizeRequirement(tupled_parameter_shape))); if (local_device->allocation_model() == LocalDeviceState::kComputeSynchronized) { TF_RETURN_IF_ERROR(stream->WaitFor(local_device->compute_stream())); } else { DCHECK(transfer_manager->CanBufferBeAccessedNow( local_device->compute_stream()->parent(), root_table_memory.cref())); } ExecutionInput execution_input(tupled_parameter_shape); ShapeTree<MaybeOwningDeviceMemory>::iterator input_iterator = execution_input.MutableBuffers()->begin(); ShapeTree<MaybeOwningDeviceMemory>::iterator iterator_end = execution_input.MutableBuffers()->end(); execution_input.SetBuffer( input_iterator->first, MaybeOwningDeviceMemory(std::move(root_table_memory))); ++input_iterator; for (const PjRtStreamExecutorBuffer::ScopedHold& device_buffer : device_buffers) { device_buffer.AddToInput(&input_iterator, iterator_end, &execution_input, allocator); } CHECK(input_iterator == iterator_end); TF_RETURN_IF_ERROR(transfer_manager->WriteRootTupleIndexTable( stream, execution_input.Buffers())); absl::StatusOr<EventPool::Handle> event_or = local_device->event_pool().ThenAllocateAndRecordEvent(stream); if (!event_or.ok()) { StallStreamOnError(local_device, stream); return event_or.status(); } auto transfer_event = std::make_shared<BufferSequencingEvent>(client->thread_pool()); transfer_event->SetSequencingEvent(std::move(event_or).value(), stream); return std::make_unique<TupleHandle>( TupleHandle({std::move(execution_input), std::move(transfer_event)})); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> OutputBufferHelper( ScopedShapedBuffer* result_buffer, std::shared_ptr<BufferSequencingEvent> definition_event, PjRtClient* client, PjRtDevice* device, LocalDeviceState* local_device, std::vector<std::shared_ptr<TrackedDeviceBuffer>>& buffers_to_release) { std::shared_ptr<TrackedDeviceBuffer> out_buffer = TrackedDeviceBuffer::FromScopedShapedBuffer(result_buffer, {definition_event}, device); const Shape& shape = result_buffer->on_device_shape(); PjRtMemorySpace* memory_space = device->default_memory_space().value_or(nullptr); if (shape.has_layout()) { switch (shape.layout().memory_space()) { case Layout::kGenericFastMemorySpace: case Layout::kDefaultMemorySpace: break; case Layout::kHostMemorySpace: { TF_ASSIGN_OR_RETURN( memory_space, tensorflow::down_cast<PjRtStreamExecutorDevice*>(device) ->memory_space_by_kind_id(PinnedHostMemorySpace::kKindId)); break; } default: return absl::InternalError( absl::StrCat("Unsupported memory space in output layout: ", shape.layout().memory_space())); } } auto pjrt_buffer = std::make_unique<PjRtStreamExecutorBuffer>( result_buffer->on_device_shape(), std::move(out_buffer), client, device, memory_space); RecordUsage(pjrt_buffer->GetBufferWithUsageHold(), local_device, local_device, definition_event, local_device->compute_stream(), false, &buffers_to_release); return std::unique_ptr<PjRtBuffer>(std::move(pjrt_buffer)); } bool IsAllZeros(const DeviceAssignment& assignment) { return std::all_of( assignment.begin(), assignment.end(), [](const DeviceAssignment::value_type& v) { return v == 0; }); } } PjRtStreamExecutorLoadedExecutable::PjRtStreamExecutorLoadedExecutable( std::vector<std::unique_ptr<LocalExecutable>> executables, bool parameter_is_tupled_arguments, std::shared_ptr<DeviceAssignment> device_assignment, CompileOptions compile_options, std::vector<LogicalDeviceIds> addressable_device_logical_ids, std::vector<PjRtDevice*> addressable_devices, PjRtStreamExecutorClient* client) : client_(client), device_assignment_(std::move(device_assignment)), compile_options_(std::move(compile_options)), parameter_is_tupled_arguments_(parameter_is_tupled_arguments), addressable_device_logical_ids_( std::move(addressable_device_logical_ids)), addressable_devices_(std::move(addressable_devices)) { TransferManager* transfer_manager = client_->client()->backend().transfer_manager(); executables_.reserve(executables.size()); tsl::Fprint128 fingerprint = tsl::Fingerprint128(fingerprint_); for (auto& executable : executables) { const auto& computation_layout = executable->executable()->module().entry_computation_layout(); std::vector<Shape> parameter_shapes; parameter_shapes.reserve(computation_layout.parameter_count()); for (int i = 0; i < computation_layout.parameter_count(); ++i) { parameter_shapes.push_back(transfer_manager->HostShapeToDeviceShape( computation_layout.parameter_shape(i))); } fingerprint = tsl::FingerprintCat128( fingerprint, tsl::Fingerprint128(executable->executable()->module().ToString())); executables_.emplace_back(std::move(executable)); on_device_executable_parameter_shapes_.push_back( std::move(parameter_shapes)); } fingerprint_ = absl::StrCat(fingerprint.low64, fingerprint.high64); int num_partitions; if (device_assignment_ == nullptr) { VLOG(3) << "PjRtStreamExecutorLoadedExecutable portable single-core"; num_partitions = 1; CHECK(addressable_devices_.empty()); } else { VLOG(3) << "PjRtStreamExecutorLoadedExecutable device_assignment:\n" << device_assignment_->ToString(); CHECK_GE(addressable_devices_.size(), 1) << device_assignment_->ToString(); if ((device_assignment_->replica_count() > 1 || device_assignment_->computation_count() > 1) && IsAllZeros(*device_assignment_)) { LOG(INFO) << "A workaround is in effect to allow compiling multi-device " "HLOs on machines with fewer devices. Don't run this executable."; } else { CHECK_LE(addressable_devices_.size(), client_->addressable_device_count()) << "Inconsistent local device count."; } num_partitions = device_assignment_->computation_count(); } if (executables_.size() > 1) { CHECK_EQ(num_partitions, executables_.size()) << "Number of executables " << executables_.size() << " did not match number of partitions " << num_partitions; } } absl::Status PjRtStreamExecutorLoadedExecutable::SetUpDonation( bool tuple_inputs) { parameters_that_must_be_donated_.reserve(executables_.size()); for (auto& executable : executables_) { TF_ASSIGN_OR_RETURN(std::vector<int> parameters_to_donate, ComputeParametersThatMustBeDonated( executable->executable()->module(), tuple_inputs)); parameters_that_must_be_donated_.emplace_back( std::move(parameters_to_donate)); } return absl::OkStatus(); } absl::string_view PjRtStreamExecutorLoadedExecutable::name() const { Executable* executable = executables_[0]->executable(); if (executable->has_module()) { return executable->module().name(); } else { return "<unknown executable>"; } } absl::Span<int const> PjRtStreamExecutorLoadedExecutable::ParametersThatMustBeDonated( int executable_idx) const { return parameters_that_must_be_donated_[executable_idx]; } absl::StatusOr<std::vector<ExecutionInput>> PjRtStreamExecutorLoadedExecutable::MakeExecutionInputsAndWaitForEvents( int device_ordinal, const ExecuteOptions& options, absl::Span<const Shape> executable_parameter_shapes, absl::Span<PjRtBuffer* const> argument_handles, absl::Span<const PjRtStreamExecutorBuffer::ScopedHold> device_buffers, absl::flat_hash_set<BufferSequencingEvent*>& events) const { std::vector<ExecutionInput> execution_inputs; LocalDeviceState* device_state = &(client_->device_state(device_ordinal)); TransferManager* transfer_manager = client_->client()->backend().transfer_manager(); std::unique_ptr<TupleHandle> tuple_handle; if (parameter_is_tupled_arguments_ && !options.arguments_are_tupled) { TF_ASSIGN_OR_RETURN( tuple_handle, MakeTupleHelper(client_, device_state, options.strict_shape_checking, executable_parameter_shapes[0], argument_handles, device_buffers, device_ordinal)); events.insert(tuple_handle->event.get()); execution_inputs.emplace_back(std::move(tuple_handle->execution_input)); } else { if (argument_handles.size() != executable_parameter_shapes.size()) { return InvalidArgument("Executable expected %lld arguments but got %lld", executable_parameter_shapes.size(), argument_handles.size()); } execution_inputs.reserve(argument_handles.size()); for (int i = 0; i < argument_handles.size(); ++i) { PjRtBuffer* handle = argument_handles[i]; TF_RETURN_IF_ERROR(CheckCompatibleShapes( options.strict_shape_checking, handle->on_device_shape(), executable_parameter_shapes[i], *transfer_manager, i)); execution_inputs.emplace_back(executable_parameter_shapes[i]); ExecutionInput& execution_input = execution_inputs.back(); ShapeTree<MaybeOwningDeviceMemory>::iterator input_iterator = execution_input.MutableBuffers()->begin(); ShapeTree<MaybeOwningDeviceMemory>::iterator iterator_end = execution_input.MutableBuffers()->end(); device_buffers[i].AddToInput(&input_iterator, iterator_end, &execution_input, client_->allocator()); CHECK(input_iterator == iterator_end); } } for (BufferSequencingEvent* event : events) { event->WaitForEventOnStream(device_state->compute_stream()); } return execution_inputs; } template <typename T> static const T* FindCallback(int channel_id, absl::Span<const T> callbacks) { auto it = absl::c_find_if(callbacks, [&](const T& callback) { return callback.channel_id == channel_id; }); return it == callbacks.end() ? nullptr : &*it; } using tsl::AsyncValueRef; using tsl::MakeConstructedAsyncValueRef; static SendDeviceMemoryFunction ConvertSendCallbacksToSendFunction( int replica, const ExecuteOptions& options, tsl::thread::ThreadPool* thread_pool) { if (replica >= options.send_callbacks.size()) { return [replica](int64_t channel_id, se::Stream*, const Shape&, const se::DeviceMemoryBase&, const absl::flat_hash_map<std::string, std::string>&) { return Internal( "Don't send a buffer to the channel_id=%d, there was no send " "callbacks registered for the replica=%d", channel_id, replica); }; } absl::Span<const SendCallback> callbacks = options.send_callbacks[replica]; return [callbacks, thread_pool]( int64_t channel_id, se::Stream* stream, const Shape& shape, const se::DeviceMemoryBase& src, const absl::flat_hash_map<std::string, std::string>&) -> absl::StatusOr<AsyncValueRef<std::unique_ptr<se::Event>>> { VLOG(3) << "Send " << src.size() << " bytes to channel #" << channel_id << " (shape=" << shape.ToString() << ")"; const SendCallback* send = FindCallback(channel_id, callbacks); if (!send) { return InvalidArgument( "Failed to send a buffer to the channel_id=%d, callback not found", channel_id); } TF_ASSIGN_OR_RETURN(auto se_event, stream->parent()->CreateEvent()); auto done_event = MakeConstructedAsyncValueRef<std::unique_ptr<se::Event>>( std::move(se_event)); thread_pool->Schedule([done_event, stream, src, channel_id, shape, send] { tsl::profiler::TraceMe trace([&] { return tsl::profiler::TraceMeEncode( "PjRtStreamExecutorLoadedExecutable::Send", {{"channel_id", channel_id}}); }); PjRtChunk chunk = PjRtChunk::AllocateDefault(src.size()); auto status = stream->Memcpy(chunk.data(), src, src.size()); if (!status.ok()) { done_event.SetError(status); return; } status = stream->RecordEvent(done_event.get().get()); if (!status.ok()) { done_event.SetError(status); return; } if (auto st = stream->BlockHostUntilDone(); !st.ok()) { done_event.SetError(absl::InternalError(absl::StrFormat( "failed to synchronize send operation with a stream: %s", st.message()))); return; } auto sent = send->callback({shape}, std::move(chunk), src.size(), true); if (!sent.ok()) { done_event.SetError(sent); } else { done_event.SetStateConcrete(); } }); return std::move(done_event); }; } namespace { class StreamExecutorCopyToDeviceStream : public CopyToDeviceStream { public: StreamExecutorCopyToDeviceStream( int64_t channel_id, se::Stream* stream, se::DeviceMemoryBase dst, AsyncValueRef<std::unique_ptr<se::Event>> done) : CopyToDeviceStream(dst.size(), 1), channel_id_(channel_id), stream_(stream), dst_(dst), done_(std::move(done)) {} PjRtFuture<> AddChunk(PjRtChunk chunk) final { tsl::profiler::TraceMe trace([&] { return tsl::profiler::TraceMeEncode( "StreamExecutorCopyToDeviceStream::AddChunk", {{"channel_id", channel_id_}}); }); absl::ReleasableMutexLock lock(&mu_); VLOG(3) << "Add chunk to a H2D channel #" << channel_id_ << ": " << "size=" << chunk.size() << ", " << "current_bytes=" << current_bytes_ << ", " << "total_bytes=" << total_bytes_; if (chunk.size() % granule_size_in_bytes() != 0) { done_.SetError(absl::InvalidArgumentError(absl::StrFormat( "Chunk size (%d) was not a multiple of the granule size (%d)", chunk.size(), granule_size_in_bytes()))); return PjRtFuture<>(done_.GetError()); } if (current_bytes_ + chunk.size() > total_bytes_) { done_.SetError(absl::InvalidArgumentError( absl::StrFormat("Adding chunk of size %d would overflow buffer of " "size %d (%d already transferred)", chunk.size(), total_bytes_, current_bytes_))); return PjRtFuture<>(done_.GetError()); } se::DeviceMemoryBase dst( reinterpret_cast<std::byte*>(dst_.opaque()) + current_bytes_, dst_.size() - current_bytes_); current_bytes_ += chunk.size(); bool complete = IsCompleteLocked(); lock.Release(); auto copied = stream_->Memcpy(&dst, chunk.data(), chunk.size()); if (!copied.ok()) { done_.SetError(copied); return PjRtFuture<>(done_.GetError()); } auto* chunk_ptr = std::make_unique<PjRtChunk>(std::move(chunk)).release(); auto deleted = stream_->DoHostCallback([chunk_ptr]() { delete chunk_ptr; }); if (!deleted.ok()) { done_.SetError(deleted); return PjRtFuture<>(done_.GetError()); } if (complete) { auto recorded = stream_->RecordEvent(done_.get().get()); if (!recorded.ok()) { done_.SetError(recorded); return PjRtFuture<>(done_.GetError()); } done_.SetStateConcrete(); } return PjRtFuture<>(absl::OkStatus()); } private: int64_t channel_id_; se::Stream* stream_; se::DeviceMemoryBase dst_; AsyncValueRef<std::unique_ptr<se::Event>> done_; }; } static RecvDeviceMemoryFunction ConvertRecvCallbacksToRecvFunction( int replica, const ExecuteOptions& options) { if (replica >= options.send_callbacks.size()) { return [replica](int64_t channel_id, se::Stream*, const Shape&, se::DeviceMemoryBase*, const absl::flat_hash_map<std::string, std::string>&) { return InvalidArgument( "Failed to receive a buffer from the channel_id=%d, there was no " "recv callbacks registered for the replica=%d", channel_id, replica); }; } absl::Span<const RecvCallback> callbacks = options.recv_callbacks[replica]; return [callbacks](int64_t channel_id, se::Stream* stream, const Shape& shape, se::DeviceMemoryBase* dst, const absl::flat_hash_map<std::string, std::string>&) -> absl::StatusOr<AsyncValueRef<std::unique_ptr<se::Event>>> { VLOG(3) << "Recv from channel #" << channel_id << " (shape=" << shape.ToString() << ")"; tsl::profiler::TraceMe trace([&] { return tsl::profiler::TraceMeEncode( "PjRtStreamExecutorLoadedExecutable::Recv", {{"channel_id", channel_id}}); }); const RecvCallback* recv = FindCallback(channel_id, callbacks); if (!recv) { return InvalidArgument( "Failed to recv a buffer from the channel_id=%d, callback not found", channel_id); } TF_ASSIGN_OR_RETURN(auto event, stream->parent()->CreateEvent()); auto done_event = MakeConstructedAsyncValueRef<std::unique_ptr<se::Event>>( std::move(event)); recv->callback({shape}, std::make_unique<StreamExecutorCopyToDeviceStream>( channel_id, stream, *dst, done_event)); return std::move(done_event); }; } absl::StatusOr<ScopedShapedBuffer> PjRtStreamExecutorLoadedExecutable::EnqueueExecution( absl::Span<PjRtBuffer* const> argument_handles, int replica, int partition, int executable_idx, const RunId& run_id, const ExecuteOptions& options, PjRtDevice* device, std::vector<PjRtStreamExecutorBuffer::ScopedHold>* device_buffers, std::shared_ptr<DeviceAssignment> device_assignment, std::vector<std::function<void()>>& compute_callbacks) const { int device_ordinal = tensorflow::down_cast<PjRtStreamExecutorDevice*>(device) ->local_device_state() ->local_device_id() .value(); LocalDeviceState* device_state = &(client_->device_state(device_ordinal)); tsl::profiler::TraceMeConsumer activity( "PjRtStreamExecutorLoadedExecutable::EnqueueExecution", tsl::profiler::ContextType::kPjRt, run_id.ToInt()); VLOG(3) << "Replica " << replica << ", partition " << partition << " mapped to device ordinal for execution: " << device_ordinal; absl::flat_hash_set<BufferSequencingEvent*> events; device_buffers->reserve(argument_handles.size()); absl::Span<int const> donated_params = ParametersThatMustBeDonated(executable_idx); auto donate_it = donated_params.begin(); absl::flat_hash_set<PjRtStreamExecutorBuffer*> used_buffers; absl::flat_hash_set<PjRtStreamExecutorBuffer*> donated_buffers; for (int i = 0; i < argument_handles.size(); ++i) { auto* handle = tensorflow::down_cast<PjRtStreamExecutorBuffer*>(argument_handles[i]); if (handle->device() != device) { return InvalidArgument( "Buffer passed to Execute() as argument %d to replica %d is on " "device %s, but replica is assigned to device %s.", i, replica, handle->device()->DebugString(), device->DebugString()); } bool donation_denied_at_runtime = options.non_donatable_input_indices.contains(i); bool must_donate = donate_it != donated_params.end() && *donate_it == i && !donation_denied_at_runtime; if (must_donate) { ++donate_it; } bool already_used = !used_buffers.emplace(handle).second; bool already_donated = must_donate ? !donated_buffers.emplace(handle).second : donated_buffers.find(handle) != donated_buffers.end(); if (must_donate && already_donated) { return InvalidArgument( "Attempt to donate the same buffer twice in Execute() (second use: " "flattened argument %d, replica %d). " "Toy example for this bug: `f(donate(a), donate(a))`.", i, replica); } else if (must_donate && already_used) { return InvalidArgument( "Attempt to donate a buffer which is also used by the same call to " "Execute() (second use: flattened argument %d, replica %d). " "Toy example for this bug: `f(a, donate(a))`.", i, replica); } else if (already_donated) { return InvalidArgument( "Attempt to use a buffer that was previously donated in the same " "call to Execute() (second use: flattened argument %d, replica %d). " "Toy example for this bug: `f(donate(a), a)`.", i, replica); } device_buffers->emplace_back(handle->GetBufferWithHold( must_donate ? PjRtStreamExecutorBuffer::ScopedHold::kDonation : PjRtStreamExecutorBuffer::ScopedHold::kUsage)); PjRtStreamExecutorBuffer::ScopedHold& device_buffer = device_buffers->back(); if (!device_buffer.ok()) { return InvalidArgument( "Invalid buffer passed to Execute() as argument %d to replica %d: " "%s", i, replica, device_buffer.status().ToString()); } if (device_state->allocation_model() == LocalDeviceState::kComputeSynchronized) { GetDeviceBufferEvents(*device_buffer, false, &events); } GetDeviceBufferEvents(*device_buffer, must_donate, &events); } if (options.arguments_are_tupled) { if (!parameter_is_tupled_arguments_) { return InvalidArgument( "Arguments may only be supplied as a tuple when the executable was " "compiled with a single tupled parameter"); } if (argument_handles.size() != 1) { return InvalidArgument( "Option arguments_are_tupled was true but %d buffers were passed to " "execution", argument_handles.size()); } } TF_ASSIGN_OR_RETURN( std::vector<ExecutionInput> execution_inputs, MakeExecutionInputsAndWaitForEvents( device_ordinal, options, on_device_executable_parameter_shapes_[executable_idx], argument_handles, *device_buffers, events)); auto* thread_pool = client_->thread_pool(); SendDeviceMemoryFunction send_device_memory = ConvertSendCallbacksToSendFunction(replica, options, thread_pool); RecvDeviceMemoryFunction recv_device_memory = ConvertRecvCallbacksToRecvFunction(replica, options); ExecutableRunOptions run_options; run_options.set_stream(device_state->compute_stream()); run_options.set_device_ordinal(device_state->local_device_id().value()); run_options.set_local_device_count(client_->client()->device_count()); run_options.set_physical_device_ordinal( device_state->local_hardware_id().value()); run_options.set_host_to_device_stream(device_state->host_to_device_stream()); run_options.set_device_to_host_stream(device_state->GetDeviceToHostStream()); run_options.set_allocator(client_->allocator()); run_options.set_intra_op_thread_pool( client_->client()->backend().eigen_intra_op_thread_pool_device()); run_options.set_device_assignment(device_assignment.get()); if (options.launch_id != 0) { run_options.set_run_id(RunId(options.launch_id)); } else { run_options.set_run_id(run_id); } run_options.set_rng_seed(device_state->GetNewPrngSeed()); run_options.set_gpu_executable_run_options(client_->gpu_run_options()); run_options.set_launch_id(options.launch_id); run_options.set_send_device_memory_function(&send_device_memory); run_options.set_recv_device_memory_function(&recv_device_memory); if (run_options.launch_id() != 0) { VLOG(3) << "launch id for " << name() << ": " << run_options.launch_id(); } if (options.context != nullptr) { run_options.set_ffi_execution_context(&options.context->ffi_context()); } std::shared_ptr<Semaphore::ScopedReservation> compute_reservation; { tsl::profiler::TraceMe traceme("ComputeSemaphoreAcquire"); compute_reservation = std::make_shared<Semaphore::ScopedReservation>( device_state->compute_semaphore().ScopedAcquire(1)); } absl::StatusOr<ExecutionOutput> result_buffer_or_status = executables_[executable_idx]->RunAsync(std::move(execution_inputs), run_options); VLOG(1) << "Replica " << replica << " partition " << partition << " completed; ok=" << result_buffer_or_status.ok(); if (!result_buffer_or_status.ok()) { return result_buffer_or_status.status(); } if (device_state->allocation_model() == LocalDeviceState::kSynchronous) { ExecutionOutput& execution_output = result_buffer_or_status.value(); std::vector<se::OwningDeviceMemory> donated_memory = execution_output.ConsumeToBeReleased(); absl::InlinedVector<se::DeviceMemoryBase, 3> donated_ptrs; donated_ptrs.reserve(donated_memory.size()); for (se::OwningDeviceMemory& owning : donated_memory) { donated_ptrs.push_back(owning.Release()); } compute_callbacks.push_back( [references{std::make_tuple(executables_[executable_idx], compute_reservation, device_assignment)}, donated_ptrs{std::move(donated_ptrs)}, allocator{client_->allocator()}, device_ordinal]() { for (const auto& ptr : donated_ptrs) { TF_CHECK_OK(allocator->Deallocate(device_ordinal, ptr)); } }); } else { compute_callbacks.push_back( [to_release{std::make_tuple(executables_[executable_idx], compute_reservation, device_assignment)}]() {}); } return std::move(result_buffer_or_status).value().ConsumeResult(); } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> PjRtStreamExecutorLoadedExecutable::MakeOutputBuffers( int device_ordinal, const ExecuteOptions& options, ScopedShapedBuffer result_buffer, std::shared_ptr<BufferSequencingEvent> definition_event, PjRtDevice* device, std::vector<std::function<void()>>& compute_callbacks, std::vector<std::shared_ptr<TrackedDeviceBuffer>>& buffers_to_release) const { tsl::profiler::TraceMe traceme("MakeOutputBuffers"); std::vector<std::unique_ptr<PjRtBuffer>> outputs; LocalDeviceState* device_state = &(client_->device_state(device_ordinal)); if (options.untuple_result && result_buffer.on_device_shape().IsTuple()) { int tuple_count = result_buffer.on_device_shape().tuple_shapes_size(); outputs.reserve(tuple_count); for (int i = 0; i < tuple_count; ++i) { ScopedShapedBuffer tuple_buffer = result_buffer.TakeSubTree({i}); TF_ASSIGN_OR_RETURN( std::unique_ptr<PjRtBuffer> buffer, OutputBufferHelper(&tuple_buffer, definition_event, client_, device, device_state, buffers_to_release)); outputs.push_back(std::move(buffer)); } if (device_state->allocation_model() == LocalDeviceState::kSynchronous) { ShapedBuffer root_buffer_holder = result_buffer.release(); se::DeviceMemoryBase root_buffer = root_buffer_holder.root_buffer(); compute_callbacks.push_back( [root_buffer, allocator{client_->allocator()}, device_ordinal]() { TF_CHECK_OK(allocator->Deallocate(device_ordinal, root_buffer)); }); } } else { TF_ASSIGN_OR_RETURN( std::unique_ptr<PjRtBuffer> buffer, OutputBufferHelper(&result_buffer, definition_event, client_, device, device_state, buffers_to_release)); outputs.push_back(std::move(buffer)); } return outputs; } static absl::Status GetFirstInputError( absl::Span<PjRtBuffer* const> argument_handles) { for (auto* handle : argument_handles) { auto* buffer = tensorflow::down_cast<PjRtStreamExecutorBuffer*>(handle); PjRtStreamExecutorBuffer::ScopedHold hold = buffer->GetBufferWithUsageHold(); for (const auto& event : hold->definition_events()) { if (event->IsPredeterminedError()) { return event->GetDefinedStatus(); } } } return absl::OkStatus(); } absl::StatusOr<PjRtLoadedExecutable::Result> PjRtStreamExecutorLoadedExecutable::ExecuteHelper( absl::Span<PjRtBuffer* const> argument_handles, int replica, int partition, const RunId& run_id, const ExecuteOptions& options, bool fill_future, PjRtDevice* device) const { const uint64_t start_time_usecs = tsl::Env::Default()->NowMicros(); std::shared_ptr<DeviceAssignment> device_assignment; if (device == nullptr) { CHECK(device_assignment_ != nullptr); const int64_t device_id = (*device_assignment_)(replica, partition); PjRtGlobalDeviceId global_device_id(device_id); TF_ASSIGN_OR_RETURN(device, client_->LookupDevice(global_device_id)); device_assignment = device_assignment_; } else { CHECK(device_assignment_ == nullptr); CHECK_EQ(replica, 0); CHECK_EQ(partition, 0); CHECK(addressable_devices_.empty()); device_assignment = std::make_shared<DeviceAssignment>(1, 1); (*device_assignment)(0, 0) = device->id(); } absl::Status input_error = GetFirstInputError(argument_handles); if (!input_error.ok()) { TF_ASSIGN_OR_RETURN(PjRtMemorySpace * memory_space, device->default_memory_space()); std::vector<std::unique_ptr<PjRtBuffer>> outputs; TF_ASSIGN_OR_RETURN(auto hlo_modules, GetHloModules()); for (const auto& hlo_module : hlo_modules) { TF_ASSIGN_OR_RETURN( auto error_buffer, client_->CreateErrorBuffer(input_error, hlo_module->result_shape(), memory_space)); outputs.push_back(std::move(error_buffer)); } auto future = std::make_optional(PjRtFuture<>(input_error)); return Result({std::move(future), std::move(outputs)}); } CHECK_EQ(device->process_index(), client_->process_index()); int device_ordinal = tensorflow::down_cast<PjRtStreamExecutorDevice*>(device) ->local_device_state() ->local_device_id() .value(); tsl::profiler::TraceMe traceme( "PjRtStreamExecutorLoadedExecutable::ExecuteHelper"); VLOG(1) << "Replica " << replica << ", partition " << partition << " mapped to device ordinal for execution: " << device_ordinal; int executable_idx = executables_.size() > 1 ? partition : 0; std::vector<std::function<void()>> compute_callbacks; std::vector<PjRtStreamExecutorBuffer::ScopedHold> device_buffers; device_buffers.reserve(argument_handles.size()); absl::StatusOr<ScopedShapedBuffer> result_buffer_or_status = EnqueueExecution( argument_handles, replica, partition, executable_idx, run_id, options, device, &device_buffers, std::move(device_assignment), compute_callbacks); if (!result_buffer_or_status.ok()) { LOG(ERROR) << "Execution of replica " << replica << " failed: " << result_buffer_or_status.status(); return result_buffer_or_status.status(); } ScopedShapedBuffer result_buffer = std::move(result_buffer_or_status).value(); LocalDeviceState* device_state = &(client_->device_state(device_ordinal)); se::Stream* stream = device_state->compute_stream(); absl::StatusOr<EventPool::Handle> event_or = device_state->event_pool().ThenAllocateAndRecordEvent(stream); if (!event_or.ok()) { StallStreamOnError(device_state, stream); for (PjRtStreamExecutorBuffer::ScopedHold& b : device_buffers) { if (b.type() == PjRtStreamExecutorBuffer::ScopedHold::kDonation) { b.ConfirmDonation(); } } return event_or.status(); } auto definition_event = std::make_shared<BufferSequencingEvent>(client_->thread_pool()); definition_event->SetSequencingEvent(std::move(event_or).value(), stream); std::vector<std::shared_ptr<TrackedDeviceBuffer>> buffers_to_release; TF_ASSIGN_OR_RETURN( std::vector<std::unique_ptr<PjRtBuffer>> outputs, MakeOutputBuffers(device_ordinal, options, std::move(result_buffer), definition_event, device, compute_callbacks, buffers_to_release)); for (PjRtStreamExecutorBuffer::ScopedHold& b : device_buffers) { if (b.type() == PjRtStreamExecutorBuffer::ScopedHold::kUsage) { RecordUsage(std::move(b), device_state, device_state, definition_event, stream, false, &buffers_to_release); } else { CHECK(b.type() == PjRtStreamExecutorBuffer::ScopedHold::kDonation); b.ConfirmDonation(); } } std::optional<PjRtFuture<>> future; if (fill_future) { auto promise = PjRtFuture<>::CreatePromise(); future = PjRtFuture<>(promise); compute_callbacks.push_back( [promise = std::move(promise)]() mutable { promise.Set(); }); } TF_RETURN_IF_ERROR(device_state->ThenExecuteCallback( stream, [callbacks{std::move(compute_callbacks)}, buffers_to_release{std::move(buffers_to_release)}]() { for (auto& fn : callbacks) { fn(); } })); metrics::ReportExecutableEnqueueTime(tsl::Env::Default()->NowMicros() - start_time_usecs); return Result({std::move(future), std::move(outputs)}); } absl::StatusOr<std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>> PjRtStreamExecutorLoadedExecutable::Execute( absl::Span<const std::vector<PjRtBuffer*>> argument_handles, const ExecuteOptions& options, std::optional<std::vector<PjRtFuture<>>>& returned_futures) { if (device_assignment_ == nullptr) { return InvalidArgument("Execute expects a non-null device_assignment"); } RunId run_id; tsl::profiler::TraceMeProducer activity( "PjRtStreamExecutorLoadedExecutable::Execute", tsl::profiler::ContextType::kPjRt, run_id.ToInt()); const int num_addressable_devices = addressable_devices_.size(); if (argument_handles.size() != num_addressable_devices) { return InvalidArgument( "Attempted to execute with %d argument lists when local device " "count is %d (total replica count: %d, partition count: %d)", argument_handles.size(), num_addressable_devices, num_replicas(), num_partitions()); } VLOG(1) << "Executing computation " << name() << "; num_replicas=" << num_replicas() << " num_partitions=" << num_partitions() << " num_addressable_devices=" << num_addressable_devices; std::vector<absl::StatusOr<Result>> results(num_addressable_devices); if (num_addressable_devices == 1 && !ThisThreadIsInsideHostCallback()) { const int replica = addressable_device_logical_ids_[0].replica; const int partition = addressable_device_logical_ids_[0].partition; results[0] = ExecuteHelper(argument_handles[0], replica, partition, run_id, options, returned_futures.has_value()); } else { absl::Mutex mu; int running = num_addressable_devices; int failed = 0; absl::Status first_failure_status; for (int i = 0; i < num_addressable_devices; ++i) { const int replica = addressable_device_logical_ids_[i].replica; const int partition = addressable_device_logical_ids_[i].partition; PjRtDevice* device = addressable_devices_[i]; const LocalDeviceState& device_state = *tensorflow::down_cast<PjRtStreamExecutorDevice*>(device) ->local_device_state(); device_state.execute_thread()->Schedule([&, replica, partition, i] { results[i] = ExecuteHelper(argument_handles[i], replica, partition, run_id, options, returned_futures.has_value()); absl::MutexLock lock(&mu); --running; if (!results[i].ok()) { if (failed == 0) { first_failure_status = results[i].status(); } ++failed; } }); } auto done_running_or_failed = [&]() { mu.AssertHeld(); return running == 0 || failed > 0; }; absl::MutexLock lock(&mu); mu.Await(absl::Condition(&done_running_or_failed)); if (failed > 0) { auto done_running = [&]() { mu.AssertHeld(); return running == 0; }; if (!mu.AwaitWithTimeout(absl::Condition(&done_running), absl::Seconds(10))) { LOG(FATAL) << "Replicated computation launch failed, but not all replicas " "terminated. Aborting process to work around deadlock. " "Failure message (there may have been multiple failures, see " "the error log for all failures): \n\n" << first_failure_status.message(); } } } VLOG(1) << "Replicated execution complete."; std::vector<std::vector<std::unique_ptr<PjRtBuffer>>> wrapped_results( num_addressable_devices); if (returned_futures.has_value()) { returned_futures->reserve(num_addressable_devices); } for (int i = 0; i < num_addressable_devices; ++i) { const int replica = addressable_device_logical_ids_[i].replica; const int partition = addressable_device_logical_ids_[i].partition; auto& statusor = results[i]; if (!statusor.ok()) { if (returned_futures.has_value()) { returned_futures->clear(); } if (num_addressable_devices == 1) { return statusor.status(); } else { return AppendStatus( statusor.status(), absl::StrFormat("while running replica %d and partition %d of a " "replicated computation (other " "replicas may have failed as well).", replica, partition)); } } wrapped_results[i] = std::move(statusor->buffers); if (returned_futures.has_value()) { returned_futures->push_back(*std::move(statusor->future)); } } return wrapped_results; } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> PjRtStreamExecutorLoadedExecutable::ExecuteSharded( absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) { if (device_assignment_ == nullptr) { return InvalidArgument("ExecuteShard expects a non-null device_assignment"); } for (int i = 0; i < addressable_devices_.size(); ++i) { if (addressable_devices_[i] == device) { VLOG(1) << "ExecuteShard executes computation " << name() << " on assigned replica/partition on device " << device->DebugString(); TF_ASSIGN_OR_RETURN( auto result, ExecuteHelper(argument_handles, addressable_device_logical_ids_[i].replica, addressable_device_logical_ids_[i].partition, RunId(), options, fill_future)); returned_future = std::move(result.future); return std::move(result.buffers); } } return InvalidArgument( "ExecuteShard attempted to execute on device id %d which is not " "addressable by this client", device->id()); } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> PjRtStreamExecutorLoadedExecutable::ExecutePortable( absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) { if (device_assignment_ != nullptr) { return InvalidArgument("ExecutePortable gets a non-portable executable"); } if (num_replicas() != 1 || num_partitions() != 1) { return InvalidArgument( "ExecutePortable expects a single-core executable but gets " "one with %d replica %d partition", num_replicas(), num_partitions()); } if (device == nullptr) { return InvalidArgument("ExecutePortable expects a device to be specified"); } VLOG(1) << "ExecutePortable executes single-core portable executable " << name(); TF_ASSIGN_OR_RETURN(auto result, ExecuteHelper(argument_handles, 0, 0, RunId(), options, fill_future, device)); returned_future = std::move(result.future); return std::move(result.buffers); } absl::StatusOr<std::vector<std::shared_ptr<HloModule>>> PjRtStreamExecutorLoadedExecutable::GetHloModules() const { std::vector<std::shared_ptr<HloModule>> modules; modules.reserve(executables().size()); for (const auto& local_exec : executables()) { if (!local_exec->executable()->has_module()) { return InvalidArgument("Executable does not have HLO modules."); } modules.push_back(local_exec->executable()->shared_module()); } return std::move(modules); } namespace { absl::StatusOr<absl::string_view> MemoryKindFromSimpleShape( const Shape& shape, absl::string_view default_memory_kind) { if (!shape.has_layout()) { return default_memory_kind; } switch (shape.layout().memory_space()) { case Layout::kHostMemorySpace: return PinnedHostMemorySpace::kKind; case Layout::kGenericFastMemorySpace: case Layout::kDefaultMemorySpace: return default_memory_kind; default: return InvalidArgument("Unexpected memory space %d in output layout", shape.layout().memory_space()); } } absl::StatusOr<std::vector<absl::string_view>> MemoryKindsFromShape( const Shape& shape, absl::string_view default_memory_kind) { if (!shape.IsTuple()) { TF_ASSIGN_OR_RETURN(absl::string_view memory_kind, MemoryKindFromSimpleShape(shape, default_memory_kind)); return {{memory_kind}}; } std::vector<absl::string_view> result; result.reserve(shape.tuple_shapes_size()); for (const auto& element_shape : shape.tuple_shapes()) { TF_ASSIGN_OR_RETURN( absl::string_view element_memory_kind, MemoryKindFromSimpleShape(element_shape, default_memory_kind)); result.push_back(element_memory_kind); } return result; } } absl::StatusOr<std::vector<std::vector<absl::string_view>>> PjRtStreamExecutorLoadedExecutable::GetOutputMemoryKinds() const { TF_ASSIGN_OR_RETURN(auto shapes, GetOutputShapes()); if (addressable_devices().empty()) { return Unimplemented( "GetOutputMemoryKinds is not supported when there are no addressable " "devices in PjRtStreamExecutorLoadedExecutable."); } TF_ASSIGN_OR_RETURN(PjRtMemorySpace * default_memory_space, addressable_devices()[0]->default_memory_space()); std::vector<std::vector<absl::string_view>> out; out.reserve(shapes.size()); for (const auto& shape : shapes) { TF_ASSIGN_OR_RETURN( std::vector<absl::string_view> memory_kind, MemoryKindsFromShape(shape, default_memory_space->kind())); out.push_back(memory_kind); } return out; } absl::StatusOr<PjRtStreamExecutorClient::ExecutableExtras> PjRtStreamExecutorClient::GetExecutableExtras(CompileOptions* options) { ExecutableExtras extras; std::shared_ptr<DeviceAssignment>& device_assignment = extras.device_assignment; std::vector<PjRtStreamExecutorLoadedExecutable::LogicalDeviceIds>& addressable_device_logical_ids = extras.addressable_device_logical_ids; std::vector<PjRtDevice*>& addressable_devices = extras.addressable_devices; ExecutableBuildOptions& build_options = options->executable_build_options; if (!build_options.compile_thread_pool()) { build_options.set_compile_thread_pool(thread_pool()); } if (!build_options.device_allocator()) { build_options.set_device_allocator(allocator()); } auto layout_callback = [local_client = client(), options](const HloModule& module) -> absl::StatusOr<std::pair<std::vector<Shape>, Shape>> { ExecutableBuildOptions build_options = options->executable_build_options; std::vector<const Shape*> argument_layout_pointers; std::optional<std::vector<Shape>> argument_layouts = options->argument_layouts; Shape result_layout; TF_RETURN_IF_ERROR(DetermineArgumentLayoutsFromCompileOptions( XlaComputation(module.ToProto()), [local_client = local_client](Shape shape) { return local_client->backend() .transfer_manager() ->ChooseCompactLayoutForShape(shape); }, argument_layouts, &build_options, &argument_layout_pointers)); result_layout = *build_options.result_layout(); return std::make_pair(*argument_layouts, result_layout); }; build_options.set_layout_canonicalization_callback(layout_callback); int num_replicas; int num_partitions; TF_RETURN_IF_ERROR(ParseDeviceAssignmentCompileOptions( options->compile_portable_executable, &options->executable_build_options, [this](int num_replicas, int num_partitions) { return this->GetDefaultDeviceAssignment(num_replicas, num_partitions); }, &num_replicas, &num_partitions, &device_assignment)); if (device_assignment != nullptr) { addressable_device_logical_ids.reserve(num_replicas * num_partitions); addressable_devices.reserve(num_replicas * num_partitions); for (int replica = 0; replica < num_replicas; ++replica) { for (int partition = 0; partition < num_partitions; ++partition) { int64_t device_id = (*device_assignment)(replica, partition); PjRtGlobalDeviceId global_device_id(device_id); TF_ASSIGN_OR_RETURN(PjRtDevice * device, LookupDevice(global_device_id)); if (device->process_index() != process_index()) { VLOG(3) << "Non-local device: " << device_id; continue; } PjRtLoadedExecutable::LogicalDeviceIds logica_device_ids; logica_device_ids.replica = replica; logica_device_ids.partition = partition; addressable_device_logical_ids.push_back(std::move(logica_device_ids)); addressable_devices.push_back(device); } } if (addressable_devices.empty()) { return InvalidArgument( "Device assignment (%s) does not have any local devices.", device_assignment->ToString()); } if (build_options.device_ordinal() < 0) { build_options.set_device_ordinal( addressable_devices.front()->local_hardware_id().value()); } } return extras; } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> PjRtStreamExecutorClient::CompileInternal( const XlaComputation& computation, const std::vector<const Shape*>& argument_layout_pointers, LayoutCanonicalizationCallback layout_canonicalization_callback, CompileOptions options) { tsl::profiler::TraceMe traceme("PjRtStreamExecutorClient::Compile"); VLOG(1) << "PjRtStreamExecutorClient::Compile"; options.executable_build_options.set_process_index(process_index()); TF_RET_CHECK(device_count() % addressable_device_count() == 0) << "Each process is expected to have the same number of devices"; options.executable_build_options.set_process_count( device_count() / addressable_device_count()); auto input_options = options; TF_RETURN_IF_ERROR(options.ApplyAllOptionOverrides()); TF_ASSIGN_OR_RETURN(ExecutableExtras extras, GetExecutableExtras(&options)); std::shared_ptr<DeviceAssignment>& device_assignment = extras.device_assignment; std::vector<PjRtStreamExecutorLoadedExecutable::LogicalDeviceIds>& addressable_device_logical_ids = extras.addressable_device_logical_ids; std::vector<PjRtDevice*>& addressable_devices = extras.addressable_devices; if (layout_canonicalization_callback) { options.executable_build_options.set_layout_canonicalization_callback( layout_canonicalization_callback); } TF_ASSIGN_OR_RETURN( std::vector<std::unique_ptr<LocalExecutable>> local_executables, client()->Compile(computation, argument_layout_pointers, options.executable_build_options)); auto executable = std::make_unique<PjRtStreamExecutorLoadedExecutable>( std::move(local_executables), options.parameter_is_tupled_arguments, std::move(device_assignment), std::move(input_options), std::move(addressable_device_logical_ids), std::move(addressable_devices), this); TF_RETURN_IF_ERROR( executable->SetUpDonation(options.parameter_is_tupled_arguments)); return std::unique_ptr<PjRtLoadedExecutable>(std::move(executable)); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> PjRtStreamExecutorClient::Compile(mlir::ModuleOp module, CompileOptions options) { XlaComputation xla_computation; const ExecutableBuildOptions& exec_build_options = options.executable_build_options; TF_RETURN_IF_ERROR(MlirToXlaComputation( module, xla_computation, options.parameter_is_tupled_arguments, false, exec_build_options.use_shardy_partitioner())); if (options.argument_layouts) { return Compile(xla_computation, options); } TF_ASSIGN_OR_RETURN(std::vector<LayoutMode> arg_layout_modes, GetArgLayoutModes(module)); TF_ASSIGN_OR_RETURN(std::vector<LayoutMode> out_layout_modes, GetOutputLayoutModes(module)); TF_ASSIGN_OR_RETURN(std::vector<MemorySpaceColor> arg_memory_spaces, GetArgMemoryKinds(module)); TF_ASSIGN_OR_RETURN(std::vector<MemorySpaceColor> out_memory_spaces, GetOutputMemoryKinds(module)); auto layout_callback = [local_client = client(), &arg_layout_modes, &out_layout_modes, &arg_memory_spaces, &out_memory_spaces](const HloModule& module) -> absl::StatusOr<std::pair<std::vector<Shape>, Shape>> { XlaComputation xla_computation(XlaComputation(module.ToProto())); return LayoutModesToXlaShapes( xla_computation, arg_layout_modes, out_layout_modes, arg_memory_spaces, out_memory_spaces, [local_client](Shape shape) -> absl::StatusOr<Shape> { return local_client->backend() .transfer_manager() ->ChooseCompactLayoutForShape(shape); }); }; TF_ASSIGN_OR_RETURN(auto arg_layouts_and_pointers, LayoutModesToXla( xla_computation, arg_layout_modes, out_layout_modes, arg_memory_spaces, out_memory_spaces, [this](Shape shape) -> absl::StatusOr<Shape> { return this->client() ->backend() .transfer_manager() ->ChooseCompactLayoutForShape(shape); }, options.executable_build_options)); return CompileInternal(xla_computation, arg_layouts_and_pointers.second, layout_callback, options); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> PjRtStreamExecutorClient::Compile(const XlaComputation& computation, CompileOptions options) { std::vector<const Shape*> argument_layout_pointers; TF_RETURN_IF_ERROR(DetermineArgumentLayoutsFromCompileOptions( computation, [local_client = client()](Shape shape) { return local_client->backend() .transfer_manager() ->ChooseCompactLayoutForShape(shape); }, options.argument_layouts, &options.executable_build_options, &argument_layout_pointers)); return CompileInternal(computation, argument_layout_pointers, nullptr, options); } absl::StatusOr<std::string> PjRtStreamExecutorClient::SerializeExecutable( const PjRtLoadedExecutable& executable) const { const PjRtStreamExecutorLoadedExecutable* se_executable = tensorflow::down_cast<const PjRtStreamExecutorLoadedExecutable*>( &executable); absl::Span<const std::shared_ptr<LocalExecutable>> local_executables = se_executable->executables(); if (local_executables.empty()) { return Internal("No local executable"); } if (local_executables.size() != 1) { return Unimplemented( "PjRtStreamExecutorClient::SerializeExecutable unimplemented for MPMD " "executables"); } Executable* built_executable = local_executables[0]->executable(); Compiler* compiler = client_->backend().compiler(); TF_ASSIGN_OR_RETURN(std::unique_ptr<AotCompilationResult> aot_result, compiler->Export(built_executable)); TF_ASSIGN_OR_RETURN(std::string serialized, aot_result->SerializeAsString()); if (serialized.empty()) { return Internal( "PjRtStreamExecutorClient::SerializeExecutable proto serialization " "failed"); } ExecutableAndOptionsProto proto; *proto.mutable_serialized_executable() = std::move(serialized); TF_ASSIGN_OR_RETURN(*proto.mutable_compile_options(), se_executable->compile_options_.ToProto()); return proto.SerializeAsString(); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> PjRtStreamExecutorClient::DeserializeExecutable( absl::string_view serialized, std::optional<CompileOptions> options) { ExecutableAndOptionsProto proto; if (serialized.size() > std::numeric_limits<int>::max()) { return Internal( "PjRtStreamExecutorClient::DeserializeExecutable proto too large " "(>2GB)"); } if (!proto.ParseFromArray(serialized.data(), serialized.size())) { return Internal( "PjRtStreamExecutorClient::DeserializeExecutable proto " "deserialization " "failed"); } CompileOptions compile_options; if (options.has_value()) { compile_options = *std::move(options); } else { TF_ASSIGN_OR_RETURN(compile_options, CompileOptions::FromProto(proto.compile_options())); } auto input_options = compile_options; tsl::profiler::TraceMe traceme( "PjRtStreamExecutorClient::DeserializeExecutable"); VLOG(1) << "PjRtStreamExecutorClient::DeserializeExecutable"; TF_ASSIGN_OR_RETURN(ExecutableExtras extras, GetExecutableExtras(&compile_options)); std::shared_ptr<DeviceAssignment>& device_assignment = extras.device_assignment; std::vector<PjRtStreamExecutorLoadedExecutable::LogicalDeviceIds>& addressable_device_logical_ids = extras.addressable_device_logical_ids; std::vector<PjRtDevice*>& addressable_devices = extras.addressable_devices; std::string str = std::move(*proto.mutable_serialized_executable()); TF_ASSIGN_OR_RETURN( std::unique_ptr<LocalExecutable> loaded, client()->Load(str, compile_options.executable_build_options)); std::vector<std::unique_ptr<LocalExecutable>> local_executables; local_executables.push_back(std::move(loaded)); auto executable = std::make_unique<PjRtStreamExecutorLoadedExecutable>( std::move(local_executables), compile_options.parameter_is_tupled_arguments, std::move(device_assignment), std::move(input_options), std::move(addressable_device_logical_ids), std::move(addressable_devices), this); TF_RETURN_IF_ERROR( executable->SetUpDonation(compile_options.parameter_is_tupled_arguments)); return std::unique_ptr<PjRtLoadedExecutable>(std::move(executable)); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> PjRtStreamExecutorClient::LoadSerializedExecutable( absl::string_view serialized, std::optional<CompileOptions> options, const LoadOptions& load_options) { return DeserializeExecutable(serialized, options); } }
#include "xla/pjrt/pjrt_stream_executor_client.h" #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include "absl/functional/any_invocable.h" #include "absl/synchronization/mutex.h" #include "xla/client/client_library.h" #include "xla/client/xla_builder.h" #include "xla/literal.h" #include "xla/literal_comparison.h" #include "xla/literal_util.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_future.h" #include "xla/service/platform_util.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace { absl::StatusOr<std::unique_ptr<PjRtStreamExecutorClient>> GetClient() { LocalClient* local_client = xla::ClientLibrary::LocalClientOrDie(); TF_ASSIGN_OR_RETURN(se::Platform * platform, PlatformUtil::GetPlatform("Host")); TF_ASSIGN_OR_RETURN(se::StreamExecutor * executor, platform->ExecutorForDevice(0)); auto device_state = std::make_unique<LocalDeviceState>( executor, local_client, LocalDeviceState::kSynchronous, 32, false, false); auto device = std::make_unique<PjRtStreamExecutorDevice>( 0, std::move(device_state), "cpu"); std::vector<std::unique_ptr<PjRtStreamExecutorDevice>> devices; devices.emplace_back(std::move(device)); return std::make_unique<PjRtStreamExecutorClient>( "cpu", local_client, std::move(devices), 0, nullptr, nullptr, false, nullptr); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> ToyExecutable( PjRtStreamExecutorClient& client, Shape shape, absl::AnyInvocable<void(XlaBuilder&)> set_up_aliases) { CompileOptions compile_options; XlaBuilder builder("Add"); auto a = Parameter(&builder, 0, shape, "a"); auto b = Parameter(&builder, 1, shape, "b"); auto c = Add(a, b); auto d = Add(c, c); Tuple(&builder, {c, d}); set_up_aliases(builder); TF_ASSIGN_OR_RETURN(auto computation, builder.Build(true)); TF_ASSIGN_OR_RETURN(auto executable, client.Compile(computation, compile_options)); return executable; } absl::Status ExecuteWithSameInputBuffer( absl::AnyInvocable<void(XlaBuilder&)> set_up_aliases) { auto shape = xla::ShapeUtil::MakeScalarShape(xla::F32); TF_ASSIGN_OR_RETURN(auto client, GetClient()); TF_RET_CHECK(!client->addressable_devices().empty()); auto* device0 = client->addressable_devices().front(); TF_ASSIGN_OR_RETURN(auto buffer, client->CreateUninitializedBuffer(shape, device0)); TF_ASSIGN_OR_RETURN(auto executable, ToyExecutable(*client, shape, std::move(set_up_aliases))); return executable->Execute({{buffer.get(), buffer.get()}}, {}) .status(); } TEST(PjRtStreamExecutorClientTest, DonateSameBufferTwice) { auto status = ExecuteWithSameInputBuffer([](XlaBuilder& builder) {}); ASSERT_TRUE(status.ok()); status = ExecuteWithSameInputBuffer( [](XlaBuilder& builder) { builder.SetUpAlias({0}, 0, {}); }); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), ::testing::HasSubstr("f(donate(a), a)")); status = ExecuteWithSameInputBuffer( [](XlaBuilder& builder) { builder.SetUpAlias({0}, 1, {}); }); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), ::testing::HasSubstr("f(a, donate(a))")); status = ExecuteWithSameInputBuffer([](XlaBuilder& builder) { builder.SetUpAlias({0}, 0, {}); builder.SetUpAlias({1}, 1, {}); }); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), ::testing::HasSubstr("f(donate(a), donate(a))")); } TEST(PjRtStreamExecutorClientTest, DonateWithControlDependency) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); auto literal = LiteralUtil::CreateR2({{1, 2, 3}, {4, 5, 6}}); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<PjRtBuffer> buffer, client->BufferFromHostLiteral(literal, client->addressable_devices()[0])); PjRtFuture<>::Promise promise = PjRtFuture<>::CreatePromise(); PjRtFuture<> future(promise); auto blocked_buffer = std::move(*(buffer->DonateWithControlDependency(future))); EXPECT_TRUE(buffer->IsDeleted()); buffer.reset(); absl::Mutex mu; auto result_literal = std::make_shared<Literal>( ShapeUtil::DeviceShapeToHostShape(blocked_buffer->on_device_shape())); bool got_literal = false; blocked_buffer->ToLiteral(result_literal.get()).OnReady([&](absl::Status s) { absl::MutexLock l(&mu); TF_ASSERT_OK(s); got_literal = true; }); blocked_buffer.reset(); EXPECT_FALSE(got_literal); promise.Set(); EXPECT_TRUE(future.IsReady()); { absl::MutexLock l(&mu); mu.Await(absl::Condition(&got_literal)); } TF_ASSERT_OK(literal_comparison::Equal(literal, *result_literal)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/pjrt_stream_executor_client.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/pjrt_stream_executor_client_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2ca9acea-9d42-468d-b041-88b5b74e6f47
cpp
tensorflow/tensorflow
semaphore
third_party/xla/xla/pjrt/semaphore.cc
third_party/xla/xla/pjrt/semaphore_test.cc
#include "xla/pjrt/semaphore.h" #include <cstdint> #include "absl/synchronization/mutex.h" #include "tsl/platform/logging.h" namespace xla { Semaphore::Semaphore(int64_t capacity) : value_(capacity), max_capacity_(capacity) { CHECK_GE(capacity, 0); } bool Semaphore::CanAcquire(CanAcquireArgs* args) { return args->semaphore->value_ >= args->amount; } void Semaphore::Acquire(int64_t amount) { CHECK_GE(amount, 0); CanAcquireArgs args; args.semaphore = this; args.amount = amount; mu_.LockWhen(absl::Condition(&CanAcquire, &args)); value_ -= amount; mu_.Unlock(); } bool Semaphore::TryAcquire(int64_t amount) { CHECK_GE(amount, 0); absl::MutexLock lock(&mu_); if (value_ >= amount) { value_ -= amount; return true; } return false; } void Semaphore::Release(int64_t amount) { CHECK_GE(amount, 0); absl::MutexLock lock(&mu_); value_ += amount; } Semaphore::ScopedReservation::~ScopedReservation() { if (semaphore_) { semaphore_->Release(amount_); } } Semaphore::ScopedReservation::ScopedReservation( ScopedReservation&& other) noexcept { semaphore_ = other.semaphore_; amount_ = other.amount_; other.semaphore_ = nullptr; } Semaphore::ScopedReservation& Semaphore::ScopedReservation::operator=( ScopedReservation&& other) noexcept { semaphore_ = other.semaphore_; amount_ = other.amount_; other.semaphore_ = nullptr; return *this; } Semaphore::ScopedReservation Semaphore::ScopedAcquire(int64_t amount) { Acquire(amount); return ScopedReservation(this, amount); } }
#include "xla/pjrt/semaphore.h" #include <gtest/gtest.h> #include "absl/synchronization/notification.h" #include "xla/test.h" #include "tsl/platform/env.h" #include "tsl/platform/threadpool.h" namespace xla { namespace { TEST(SemaphoreTest, UnthreadedTests) { Semaphore semaphore(2); EXPECT_EQ(semaphore.capacity(), 2); EXPECT_FALSE(semaphore.TryAcquire(semaphore.capacity() + 1)); EXPECT_TRUE(semaphore.TryAcquire(semaphore.capacity())); semaphore.Release(semaphore.capacity()); semaphore.Acquire(1); semaphore.Release(1); semaphore.Acquire(2); semaphore.Release(2); semaphore.Acquire(1); semaphore.Acquire(1); semaphore.Release(1); semaphore.Acquire(1); semaphore.Release(1); semaphore.Acquire(1); semaphore.Release(2); { auto a = semaphore.ScopedAcquire(1); EXPECT_EQ(a.amount(), 1); { auto b = semaphore.ScopedAcquire(1); } { auto c = semaphore.ScopedAcquire(1); } } { auto d = semaphore.ScopedAcquire(2); EXPECT_EQ(d.amount(), 2); } } TEST(SemaphoreTest, ConcurrentTest) { tsl::thread::ThreadPool pool(tsl::Env::Default(), "test", 2); Semaphore semaphore(2); semaphore.Acquire(1); absl::Notification a_done; pool.Schedule([&]() { semaphore.Acquire(2); semaphore.Release(2); a_done.Notify(); }); absl::Notification b_done; pool.Schedule([&]() { semaphore.Acquire(1); semaphore.Release(1); b_done.Notify(); }); b_done.WaitForNotification(); EXPECT_FALSE(a_done.HasBeenNotified()); semaphore.Release(1); a_done.WaitForNotification(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/semaphore.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/semaphore_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0e5b51f5-887b-4bbd-86cf-cea50fe6fd3e
cpp
tensorflow/tensorflow
pjrt_future
third_party/xla/xla/pjrt/pjrt_future.cc
third_party/xla/xla/pjrt/pjrt_future_test.cc
#include "xla/pjrt/pjrt_future.h" #include <atomic> #include <cstdint> #include <memory> #include <utility> #include "absl/base/thread_annotations.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "tsl/platform/logging.h" namespace xla { namespace { struct State { explicit State(int32_t size) : pending_count(size), promise(PjRtFuture<>::CreatePromise()) {} std::atomic<int32_t> pending_count; PjRtFuture<>::Promise promise; absl::Mutex mu; absl::Status status ABSL_GUARDED_BY(&mu); }; } PjRtFuture<> JoinFutures(absl::Span<const PjRtFuture<>> futures) { if (futures.empty()) { return PjRtFuture<>(absl::OkStatus()); } else if (futures.size() == 1) { return futures.front(); } auto state = std::make_shared<State>(futures.size()); for (const PjRtFuture<>& future : futures) { future.OnReady([state](absl::Status status) { if (!status.ok()) { absl::MutexLock lock(&state->mu); state->status.Update(status); } const int pending_count = state->pending_count.fetch_sub(1, std::memory_order_acq_rel); CHECK_GE(pending_count, 1) << "Pending count can't drop below 0"; if (pending_count == 1) { absl::MutexLock lock(&state->mu); state->promise.Set(std::move(state->status)); } }); } return PjRtFuture<>(state->promise); } }
#include "xla/pjrt/pjrt_future.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "tsl/platform/test.h" namespace xla { TEST(PjRtFutureTest, StatelessFuture) { auto promise = PjRtFuture<>::CreatePromise(); PjRtFuture<> future(promise); EXPECT_FALSE(future.IsReady()); promise.Set(); EXPECT_TRUE(future.IsReady()); EXPECT_EQ(future.Await(), absl::OkStatus()); future.OnReady( [](absl::Status status) { EXPECT_EQ(status, absl::OkStatus()); }); } TEST(PjRtFutureTest, CopyableFuture) { auto promise = PjRtFuture<int32_t>::CreatePromise(); PjRtFuture<int32_t> future(promise); PjRtFuture<int32_t> copy_constructed(future); PjRtFuture<int32_t> copy_assigned = future; EXPECT_FALSE(copy_constructed.IsReady()); EXPECT_FALSE(copy_assigned.IsReady()); promise.Set(42); EXPECT_TRUE(copy_constructed.IsReady()); EXPECT_TRUE(copy_assigned.IsReady()); } TEST(PjRtFutureTest, MoveConstructedFuture) { auto promise = PjRtFuture<std::unique_ptr<int32_t>>::CreatePromise(); PjRtFuture<std::unique_ptr<int32_t>> future(promise); PjRtFuture<std::unique_ptr<int32_t>> move_constructed(std::move(future)); EXPECT_FALSE(move_constructed.IsReady()); promise.Set(std::make_unique<int32_t>(42)); EXPECT_TRUE(move_constructed.IsReady()); } TEST(PjRtFutureTest, MoveAssignedFuture) { auto promise = PjRtFuture<std::unique_ptr<int32_t>>::CreatePromise(); PjRtFuture<std::unique_ptr<int32_t>> future(promise); PjRtFuture<std::unique_ptr<int32_t>> move_assigned = std::move(future); EXPECT_FALSE(move_assigned.IsReady()); promise.Set(std::make_unique<int32_t>(42)); EXPECT_TRUE(move_assigned.IsReady()); } TEST(PjRtFutureTest, AwaitMoveOnlyFuture) { auto promise = PjRtFuture<std::unique_ptr<int32_t>>::CreatePromise(); PjRtFuture<std::unique_ptr<int32_t>> future(promise); promise.Set(std::make_unique<int32_t>(42)); EXPECT_EQ(**future.Await(), 42); EXPECT_EQ(**std::move(future).Await(), 42); } TEST(PjRtFutureTest, OnReadyRvalueFuture) { auto promise = PjRtFuture<int32_t>::CreatePromise(); PjRtFuture<int32_t> future(promise); promise.Set(42); std::move(future).OnReady( [](absl::StatusOr<int32_t> value) { EXPECT_EQ(*value, 42); }); } TEST(PjRtFutureTest, OnReadyMoveOnlyFuture) { auto promise = PjRtFuture<std::unique_ptr<int32_t>>::CreatePromise(); PjRtFuture<std::unique_ptr<int32_t>> future(promise); promise.Set(std::make_unique<int32_t>(42)); std::move(future).OnReady([](absl::StatusOr<std::unique_ptr<int32_t>> value) { EXPECT_EQ(**value, 42); }); } TEST(PjRtFutureTest, StatelessError) { auto promise = PjRtFuture<>::CreatePromise(); PjRtFuture<> future(promise); EXPECT_FALSE(future.IsReady()); promise.Set(absl::InternalError("test")); EXPECT_TRUE(future.IsReady()); absl::Status status = future.Await(); EXPECT_EQ(status, absl::InternalError("test")); future.OnReady([](absl::Status status) { EXPECT_EQ(status, absl::InternalError("test")); }); } TEST(PjRtFutureTest, StatelessImmediate) { PjRtFuture<> ok_future(absl::OkStatus()); PjRtFuture<> error_future(absl::InternalError("test")); EXPECT_TRUE(ok_future.IsReady()); EXPECT_TRUE(error_future.IsReady()); EXPECT_EQ(ok_future.Await(), absl::OkStatus()); EXPECT_EQ(error_future.Await(), absl::InternalError("test")); ok_future.OnReady( [](absl::Status status) { EXPECT_EQ(status, absl::OkStatus()); }); error_future.OnReady([](absl::Status status) { EXPECT_EQ(status, absl::InternalError("test")); }); } TEST(PjRtFutureTest, StatefulFuture) { auto promise = PjRtFuture<int32_t>::CreatePromise(); PjRtFuture<int32_t> future(promise); EXPECT_FALSE(future.IsReady()); promise.Set(42); EXPECT_TRUE(future.IsReady()); future.OnReady([](absl::StatusOr<int32_t> value) { EXPECT_EQ(*value, 42); }); } TEST(PjRtFutureTest, StatusFuture) { auto promise = PjRtFuture<>::CreatePromise(); PjRtFuture<> future(promise); EXPECT_FALSE(future.IsReady()); promise.Set(absl::OkStatus()); EXPECT_TRUE(future.IsReady()); future.OnReady( [](absl::Status status) { EXPECT_EQ(status, absl::OkStatus()); }); } TEST(PjRtFutureTest, StatusOrFuture) { auto promise = PjRtFuture<int32_t>::CreatePromise(); PjRtFuture<int32_t> future(promise); EXPECT_FALSE(future.IsReady()); promise.Set(42); EXPECT_TRUE(future.IsReady()); future.OnReady([](absl::StatusOr<int32_t> value) { EXPECT_EQ(*value, 42); }); } TEST(PjRtFutureTest, JoinFutures) { auto empty_join = JoinFutures({}); EXPECT_TRUE(empty_join.IsReady()); EXPECT_EQ(empty_join.Await(), absl::OkStatus()); auto promise0 = PjRtFuture<>::CreatePromise(); auto promise1 = PjRtFuture<>::CreatePromise(); std::vector<PjRtFuture<>> futures0 = {PjRtFuture<>(promise0)}; std::vector<PjRtFuture<>> futures1 = {PjRtFuture<>(promise0), PjRtFuture<>(promise1)}; auto join_one = JoinFutures(futures0); EXPECT_FALSE(join_one.IsReady()); auto join_two = JoinFutures(futures1); EXPECT_FALSE(join_two.IsReady()); promise0.Set(); EXPECT_TRUE(join_one.IsReady()); EXPECT_FALSE(join_two.IsReady()); EXPECT_EQ(join_one.Await(), absl::OkStatus()); promise1.Set(); EXPECT_TRUE(join_two.IsReady()); EXPECT_EQ(join_two.Await(), absl::OkStatus()); } TEST(PjRtFutureTest, JoinErrors) { auto empty_join = JoinFutures({}); EXPECT_TRUE(empty_join.IsReady()); EXPECT_EQ(empty_join.Await(), absl::OkStatus()); auto promise0 = PjRtFuture<>::CreatePromise(); auto promise1 = PjRtFuture<>::CreatePromise(); std::vector<PjRtFuture<>> futures0 = {PjRtFuture<>(promise0)}; std::vector<PjRtFuture<>> futures1 = {PjRtFuture<>(promise0), PjRtFuture<>(promise1)}; auto join_one = JoinFutures(futures0); EXPECT_FALSE(join_one.IsReady()); auto join_two = JoinFutures(futures1); EXPECT_FALSE(join_two.IsReady()); promise0.Set(absl::InternalError("error #0")); EXPECT_TRUE(join_one.IsReady()); EXPECT_FALSE(join_two.IsReady()); EXPECT_EQ(join_one.Await(), absl::InternalError("error #0")); promise1.Set(absl::InternalError("error #1")); EXPECT_TRUE(join_two.IsReady()); EXPECT_EQ(join_two.Await(), absl::InternalError("error #0")); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/pjrt_future.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/pjrt_future_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
90a3ea44-24b4-466c-848c-48043121493f
cpp
tensorflow/tensorflow
pjrt_executable
third_party/xla/xla/python/pjrt_ifrt/pjrt_executable.cc
third_party/xla/xla/pjrt/pjrt_executable_test.cc
#include "xla/python/pjrt_ifrt/pjrt_executable.h" #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/Support/Casting.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/translate/mhlo_to_hlo/type_to_shape.h" #include "xla/pjrt/host_callback.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/primitive_util.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/executable.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt/host_callback.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/pjrt_ifrt/pjrt_array.h" #include "xla/python/pjrt_ifrt/pjrt_client.h" #include "xla/python/pjrt_ifrt/pjrt_device.h" #include "xla/python/pjrt_ifrt/pjrt_dtype.h" #include "xla/python/pjrt_ifrt/pjrt_host_callback.h" #include "xla/python/pjrt_ifrt/pjrt_memory.h" #include "xla/python/pjrt_ifrt/xla_compiler.h" #include "xla/service/hlo.pb.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { absl::StatusOr<const xla::HloInstructionProto*> FindRootInstruction( const HloModuleProto& proto) { for (const auto& computation : proto.computations()) { if (computation.id() == proto.entry_computation_id()) { for (const auto& instruction : computation.instructions()) { if (instruction.id() == computation.root_id()) { return &instruction; } } } } return InvalidArgument("Entry computation not found"); } absl::StatusOr<std::vector<xla::PrimitiveType>> GetFirstModuleOutputElementTypes( xla::PjRtLoadedExecutable* pjrt_loaded_executable) { auto element_types = pjrt_loaded_executable->GetOutputElementTypes(); TF_RETURN_IF_ERROR(element_types.status()); if (element_types->empty()) { return FailedPrecondition("No output element types found"); } return element_types->front(); } absl::StatusOr<std::vector<xla::DimensionVector>> GetFirstModuleOutputDimensions( xla::PjRtLoadedExecutable* pjrt_loaded_executable) { auto dimensions = pjrt_loaded_executable->GetOutputDimensions(); TF_RETURN_IF_ERROR(dimensions.status()); if (dimensions->empty()) { return FailedPrecondition("No output dimensions found"); } return dimensions->front(); } absl::StatusOr<std::optional<HloSharding>> GetFirstModuleOutputSharding( xla::PjRtLoadedExecutable* pjrt_loaded_executable, const xla::Shape& shape) { auto output_shardings = pjrt_loaded_executable->GetOutputShardings(); std::optional<xla::HloSharding> result_hlo_sharding; if (output_shardings.has_value()) { std::vector<HloSharding> hlo_shardings; hlo_shardings.reserve(output_shardings->size()); for (const auto& sharding : *output_shardings) { TF_ASSIGN_OR_RETURN(auto hlo_sharding, HloSharding::FromProto(sharding)); hlo_shardings.push_back(hlo_sharding); } if (shape.IsTuple()) { return HloSharding::Tuple(shape, hlo_shardings); } else { return hlo_shardings.front(); } } return std::nullopt; } absl::StatusOr<std::optional<std::vector<absl::string_view>>> GetFirstModuleOutputMemoryKinds( xla::PjRtLoadedExecutable* pjrt_loaded_executable) { auto output_memory_kinds = pjrt_loaded_executable->GetOutputMemoryKinds(); if (absl::IsUnimplemented(output_memory_kinds.status())) { return std::nullopt; } TF_RETURN_IF_ERROR(output_memory_kinds.status()); if (output_memory_kinds->empty()) { return FailedPrecondition("No output memory kinds found"); } return std::move(output_memory_kinds)->front(); } struct ShapePartialInfo { std::vector<xla::PrimitiveType> element_types; std::vector<xla::DimensionVector> dimensions; }; absl::StatusOr<ShapePartialInfo> CreateShapePartialInfo( absl::Span<const xla::Shape> shapes) { ShapePartialInfo partial_info; partial_info.element_types.reserve(shapes.size()); partial_info.dimensions.reserve(shapes.size()); for (const auto& shape : shapes) { if (shape.IsTuple()) { return FailedPrecondition( "Tupled shape is not supported in `CreateShapePartialInfo`."); } partial_info.element_types.push_back(shape.element_type()); partial_info.dimensions.push_back( xla::ShapeUtil::CreateDimensionVectorFromShape(shape)); } return partial_info; } } char PjRtCompatibleExecutable::ID = 0; char PjRtCompatibleLoadedExecutable::ID = 0; char PjRtExecutable::ID = 0; char PjRtLoadedExecutable::ID = 0; absl::StatusOr<std::unique_ptr<Executable>> PjRtExecutable::Create( std::shared_ptr<xla::PjRtExecutable> pjrt_executable, std::unique_ptr<XlaCompileOptions> compile_options) { return std::unique_ptr<Executable>(new PjRtExecutable( std::move(pjrt_executable), std::move(compile_options))); } absl::StatusOr<std::optional<std::string>> PjRtExecutable::Fingerprint() const { DCHECK(this); return pjrt_executable_->FingerprintExecutable(); } absl::StatusOr<std::string> PjRtExecutable::Serialize() const { DCHECK(this); return pjrt_executable_->SerializeExecutable(); } absl::StatusOr<std::unique_ptr<LoadedExecutable>> PjRtLoadedExecutable::Create( PjRtCompatibleClient* client, std::shared_ptr<xla::PjRtLoadedExecutable> pjrt_loaded_executable, std::vector<tsl::RCReference<LoadedHostCallback>> loaded_host_callbacks) { VLOG(3) << "PjRtLoadedExecutable::Create"; VLOG(3) << "Using per-shard shape"; TF_ASSIGN_OR_RETURN( auto result_element_types, GetFirstModuleOutputElementTypes(pjrt_loaded_executable.get())); TF_ASSIGN_OR_RETURN( auto result_dimensions, GetFirstModuleOutputDimensions(pjrt_loaded_executable.get())); TF_ASSIGN_OR_RETURN( auto result_memory_kinds, GetFirstModuleOutputMemoryKinds(pjrt_loaded_executable.get())); return CreateInternal(client, std::move(pjrt_loaded_executable), result_element_types, result_dimensions, std::nullopt, result_memory_kinds, loaded_host_callbacks); } static absl::StatusOr<std::vector<xla::Shape>> ResultShapesOfModule( mlir::ModuleOp module) { auto main = module.lookupSymbol<mlir::func::FuncOp>("main"); if (!main) { return InvalidArgument("MLIR module has no main function"); } auto type = main.getFunctionType(); std::vector<xla::Shape> result_shapes; result_shapes.reserve(type.getNumResults()); for (unsigned i = 0; i < type.getNumResults(); ++i) { auto result_type = type.getResult(i); result_shapes.push_back(xla::TypeToShape(result_type)); } return result_shapes; } absl::StatusOr<std::unique_ptr<LoadedExecutable>> PjRtLoadedExecutable::Create( PjRtCompatibleClient* client, mlir::ModuleOp module, xla::CompileOptions compile_options, std::vector<tsl::RCReference<LoadedHostCallback>> loaded_host_callbacks) { VLOG(3) << "PjRtLoadedExecutable::Create"; if (VLOG_IS_ON(3)) { module.dump(); } VLOG(3) << compile_options.ToProto()->DebugString(); const auto& build_options = compile_options.executable_build_options; const bool auto_spmd_partitioning = build_options.use_spmd_partitioning() && build_options.num_partitions() > 1 && (build_options.use_auto_spmd_partitioning() || build_options.any_allow_spmd_sharding_propagation_to_parameters() || build_options.any_allow_spmd_sharding_propagation_to_output()); TF_ASSIGN_OR_RETURN( auto pjrt_loaded_executable, client->pjrt_client()->Compile(module, std::move(compile_options))); if (auto_spmd_partitioning) { VLOG(3) << "Using per-shard shape"; TF_ASSIGN_OR_RETURN( auto result_element_types, GetFirstModuleOutputElementTypes(pjrt_loaded_executable.get())); TF_ASSIGN_OR_RETURN( auto result_dimensions, GetFirstModuleOutputDimensions(pjrt_loaded_executable.get())); TF_ASSIGN_OR_RETURN( auto result_memory_kinds, GetFirstModuleOutputMemoryKinds(pjrt_loaded_executable.get())); return CreateInternal(client, std::move(pjrt_loaded_executable), result_element_types, result_dimensions, std::nullopt, result_memory_kinds, std::move(loaded_host_callbacks)); } else { VLOG(3) << "Using full shape"; TF_ASSIGN_OR_RETURN(auto result_shapes, ResultShapesOfModule(module)); bool tuple_output = result_shapes.size() != 1; xla::Shape result_shape; std::vector<xla::Shape> output_shapes; if (tuple_output) { result_shape = xla::ShapeUtil::MakeTupleShape(result_shapes); output_shapes = std::move(result_shapes); } else { result_shape = result_shapes.front(); output_shapes = result_shape.IsTuple() ? result_shape.tuple_shapes() : std::vector<xla::Shape>{result_shape}; } TF_ASSIGN_OR_RETURN(auto shape_partial_info, CreateShapePartialInfo(output_shapes)); TF_ASSIGN_OR_RETURN(auto result_hlo_sharding, GetFirstModuleOutputSharding( pjrt_loaded_executable.get(), result_shape)); TF_ASSIGN_OR_RETURN( auto result_memory_kinds, GetFirstModuleOutputMemoryKinds(pjrt_loaded_executable.get())); return CreateInternal(client, std::move(pjrt_loaded_executable), shape_partial_info.element_types, shape_partial_info.dimensions, result_hlo_sharding, result_memory_kinds, std::move(loaded_host_callbacks)); } } absl::StatusOr<std::unique_ptr<LoadedExecutable>> PjRtLoadedExecutable::CreateInternal( PjRtCompatibleClient* client, std::shared_ptr<xla::PjRtLoadedExecutable> pjrt_loaded_executable, absl::Span<const xla::PrimitiveType> result_element_types, absl::Span<const xla::DimensionVector> result_dimensions, const std::optional<xla::HloSharding>& result_hlo_sharding, const std::optional<std::vector<absl::string_view>>& result_memory_kinds, std::vector<tsl::RCReference<LoadedHostCallback>> loaded_host_callbacks) { BasicDeviceList::Devices ds; ds.reserve(pjrt_loaded_executable->addressable_devices().size()); for (xla::PjRtDevice* device : pjrt_loaded_executable->addressable_devices()) { TF_ASSIGN_OR_RETURN(Device * ifrt_device, client->LookupPjRtDevice(device)); ds.push_back(ifrt_device); } tsl::RCReference<DeviceList> devices = BasicDeviceList::Create(std::move(ds)); std::optional<tsl::RCReference<DeviceList>> sharding_devices; if (devices->devices().empty()) { sharding_devices = BasicDeviceList::Create({client->addressable_devices().front()}); } else { sharding_devices = devices; } std::vector<DType> output_dtypes; std::vector<Shape> output_shapes; std::vector<std::shared_ptr<const Sharding>> output_shardings; auto append_arg = [&](const xla::PrimitiveType& element_type, const xla::DimensionVector& dimensions, const xla::HloSharding* sharding, MemoryKind memory_kind) -> absl::Status { TF_ASSIGN_OR_RETURN(auto dtype, ToDType(element_type)); output_dtypes.push_back(dtype); output_shapes.push_back(Shape(dimensions)); CHECK(xla::primitive_util::IsArrayType(element_type)); xla::DimensionVector tile_shape_dimensions = dimensions; if (sharding != nullptr) { CHECK(!sharding->IsTuple()); tile_shape_dimensions = xla::ShapeUtil::CreateDimensionVectorFromShape(sharding->TileShape( xla::ShapeUtil::MakeShape(element_type, dimensions))); } output_shardings.push_back(ifrt::ConcreteEvenSharding::Create( *sharding_devices, memory_kind, ifrt::Shape(dimensions), ifrt::Shape(tile_shape_dimensions))); return absl::OkStatus(); }; auto append_token = [&](MemoryKind memory_kind) { output_dtypes.push_back(DType(DType::kToken)); output_shapes.push_back(Shape({})); output_shardings.push_back( ifrt::ConcreteEvenSharding::Create(*sharding_devices, memory_kind, ifrt::Shape({}), ifrt::Shape({}))); }; auto check_output_sharding_condition = [](absl::Span<const xla::PrimitiveType> element_types, const xla::HloSharding& sharding) { if (sharding.IsTuple()) { return element_types.size() == sharding.tuple_elements().size() || (element_types.empty() && sharding.tuple_elements().size() == 1); } return element_types.size() == 1; }; if (result_memory_kinds.has_value() && result_memory_kinds->size() != result_element_types.size()) { return FailedPrecondition( "Output memory kinds are inconsistent with the output shape"); } if (result_hlo_sharding.has_value() && !check_output_sharding_condition(result_element_types, *result_hlo_sharding)) { return FailedPrecondition( "Output sharding is inconsistent with the output shape"); } CHECK_EQ(result_element_types.size(), result_dimensions.size()); output_dtypes.reserve(result_element_types.size()); output_shapes.reserve(result_element_types.size()); output_shardings.reserve(result_element_types.size()); for (int i = 0; i < result_element_types.size(); ++i) { const auto& element_type = result_element_types[i]; MemoryKind element_memory_kind; if (result_memory_kinds.has_value()) { element_memory_kind = MemoryKind((*result_memory_kinds)[i]); } if (xla::primitive_util::IsArrayType(element_type)) { const xla::HloSharding* element_hlo_sharding = nullptr; if (result_hlo_sharding.has_value()) { element_hlo_sharding = result_hlo_sharding->IsTuple() ? &result_hlo_sharding->tuple_elements()[i] : &*result_hlo_sharding; if (element_hlo_sharding->IsTuple()) { return FailedPrecondition( "Nested-tupled output sharding is not supported"); } } TF_RETURN_IF_ERROR(append_arg(element_type, result_dimensions[i], element_hlo_sharding, element_memory_kind)); } else if (element_type == TOKEN) { append_token(element_memory_kind); } else { return FailedPrecondition( "The element type is not a supported type (array, token)"); } } std::vector<PjRtHostSendAndRecvLoadedHostCallback*> host_send_and_recv_callbacks; host_send_and_recv_callbacks.reserve(loaded_host_callbacks.size()); for (auto& loaded_host_callback : loaded_host_callbacks) { auto* host_send_and_recv_callback = llvm::dyn_cast<PjRtHostSendAndRecvLoadedHostCallback>( loaded_host_callback.get()); if (host_send_and_recv_callback != nullptr) { host_send_and_recv_callbacks.push_back(host_send_and_recv_callback); } } std::vector<Device*> addressable_devices; addressable_devices.reserve( pjrt_loaded_executable->addressable_devices().size()); for (xla::PjRtDevice* device : pjrt_loaded_executable->addressable_devices()) { TF_ASSIGN_OR_RETURN(Device * ifrt_device, client->LookupPjRtDevice(device)); addressable_devices.push_back(ifrt_device); } return std::unique_ptr<LoadedExecutable>(new PjRtLoadedExecutable( client, std::move(pjrt_loaded_executable), std::move(devices), std::move(addressable_devices), std::move(loaded_host_callbacks), std::move(host_send_and_recv_callbacks), std::move(output_dtypes), std::move(output_shapes), std::move(output_shardings))); } PjRtLoadedExecutable::PjRtLoadedExecutable( PjRtCompatibleClient* client, std::shared_ptr<xla::PjRtLoadedExecutable> pjrt_loaded_executable, tsl::RCReference<DeviceList> devices, std::vector<Device*> addressable_devices, std::vector<tsl::RCReference<LoadedHostCallback>> all_loaded_host_callbacks, std::vector<PjRtHostSendAndRecvLoadedHostCallback*> host_send_recv_callbacks, std::vector<DType> output_dtypes, std::vector<Shape> output_shapes, std::vector<std::shared_ptr<const Sharding>> output_shardings) : client_(client), pjrt_loaded_executable_(std::move(pjrt_loaded_executable)), devices_(std::move(devices)), addressable_devices_(std::move(addressable_devices)), all_loaded_host_callbacks_( std::make_shared<std::vector<tsl::RCReference<LoadedHostCallback>>>( std::move(all_loaded_host_callbacks))), host_send_recv_callbacks_(std::move(host_send_recv_callbacks)), output_dtypes_(std::move(output_dtypes)), output_shapes_(std::move(output_shapes)), output_shardings_(std::move(output_shardings)) {} PjRtLoadedExecutable::~PjRtLoadedExecutable() = default; absl::StatusOr<PjRtLoadedExecutable::ExecuteResult> PjRtLoadedExecutable::Execute( absl::Span<tsl::RCReference<Array>> args, const ExecuteOptions& options, std::optional<tsl::RCReference<DeviceList>> devices) { DCHECK(this); std::vector<std::vector<PjRtBuffer*>> argument_handles; std::vector<std::unique_ptr<PjRtBuffer>> owned_buffers; int num_computations; const bool portable_execution = devices.has_value(); PjRtCompatibleDevice* portable_execution_device = nullptr; if (portable_execution) { if ((*devices)->size() != 1) { return InvalidArgument( "Only single-shard portable execution is supported"); } num_computations = 1; portable_execution_device = static_cast<PjRtDevice*>((*devices)->devices().front()); } else { if (devices_->devices().empty()) { return InvalidArgument("No devices provided for portable executable"); } num_computations = devices_->size(); } argument_handles.resize(num_computations); for (int i = 0; i < num_computations; ++i) { argument_handles[i].reserve(args.size()); } for (int i = 0; i < args.size(); ++i) { auto* pjrt_array = llvm::dyn_cast_or_null<PjRtCompatibleArray>(args[i].get()); if (!pjrt_array) { return InvalidArgument( "Only PjRtCompatibleArray is supported, but argument %d is %s", i, pjrt_array->DebugString()); } int j = 0; for (const auto& pjrt_buffer : pjrt_array->pjrt_buffers()) { argument_handles[j].push_back(pjrt_buffer.get()); ++j; } } const bool returned_future_supported = pjrt_loaded_executable_->IsReturnedFutureSupported(); xla::ExecuteOptions opts; opts.untuple_result = true; opts.launch_id = options.launch_id; opts.use_major_to_minor_data_layout_for_callbacks = true; opts.non_donatable_input_indices = options.non_donatable_input_indices; if (!all_loaded_host_callbacks_->empty() && !returned_future_supported) { return Internal( "Host callback not supported without returned future support in " "runtime: %s", client_->runtime_type()); } std::unique_ptr<HostCallbackStates> host_callback_states; if (!host_send_recv_callbacks_.empty()) { host_callback_states = std::make_unique<HostCallbackStates>(); for (int i = 0; i < num_computations; ++i) { auto& contexts = host_callback_states->contexts.emplace_back(); auto& send_callbacks = host_callback_states->send_callbacks.emplace_back(); auto& recv_callbacks = host_callback_states->recv_callbacks.emplace_back(); for (const auto& host_send_recv_callback : host_send_recv_callbacks_) { contexts.push_back(CreateHostCallbackStateAndAppendSendRecvCallbacks( host_send_recv_callback->host_callback(), nullptr, send_callbacks, recv_callbacks, opts.use_major_to_minor_data_layout_for_callbacks)); } } opts.send_callbacks = host_callback_states->send_callbacks; opts.recv_callbacks = host_callback_states->recv_callbacks; } std::vector<std::vector<std::unique_ptr<PjRtBuffer>>> pjrt_outputs; xla::ifrt::Future<> status; if (portable_execution) { std::optional<PjRtFuture<>> returned_pjrt_future; TF_RET_CHECK(portable_execution_device->IsAddressable()); TF_ASSIGN_OR_RETURN( std::vector<std::unique_ptr<PjRtBuffer>> single_device_pjrt_results, pjrt_loaded_executable_->ExecutePortable( argument_handles.front(), portable_execution_device->pjrt_device(), opts, returned_pjrt_future, returned_future_supported)); pjrt_outputs.push_back(std::move(single_device_pjrt_results)); if (returned_future_supported) { status = *std::move(returned_pjrt_future); } else { status = Future<>(absl::OkStatus()); } } else { std::optional<std::vector<PjRtFuture<>>> returned_pjrt_futures; if (returned_future_supported) { returned_pjrt_futures.emplace(); } TF_ASSIGN_OR_RETURN( pjrt_outputs, pjrt_loaded_executable_->Execute(argument_handles, opts, returned_pjrt_futures)); if (returned_future_supported) { status = JoinFutures(absl::MakeSpan(*returned_pjrt_futures)); } else { status = Future<>(absl::OkStatus()); } } if (!all_loaded_host_callbacks_->empty()) { status.OnReady([all_loaded_host_callbacks = all_loaded_host_callbacks_, host_callback_states = std::move(host_callback_states)](absl::Status) mutable { all_loaded_host_callbacks.reset(); }); } std::vector<tsl::RCReference<Array>> outputs; if (pjrt_outputs.size() != num_computations) { return FailedPrecondition( "Unexpected number of computations in outputs: %d vs. %d", pjrt_outputs.size(), num_computations); } const int num_outputs = pjrt_outputs.front().size(); if (num_outputs != output_dtypes_.size()) { return FailedPrecondition("Unexpected number of outputs: %d vs. %d", num_outputs, output_dtypes_.size()); } outputs.reserve(num_outputs); absl::flat_hash_map<MemoryKind, std::shared_ptr<const Sharding>> single_device_shardings; for (int i = 0; i < num_outputs; ++i) { PjRtArray::PjRtBuffers buffers; buffers.reserve(num_computations); const MemoryKind first_memory_kind = MakeMemoryKindFromPjRtBuffer(pjrt_outputs[0][i].get()); const MemoryKind canonical_first_memory_kind = CanonicalizeMemoryKindWithPjRtDevice(first_memory_kind, pjrt_outputs[0][i]->device()); for (int j = 0; j < num_computations; ++j) { if (j > 0) { if (auto memory_kind = MakeMemoryKindFromPjRtBuffer(pjrt_outputs[j][i].get()); canonical_first_memory_kind != CanonicalizeMemoryKindWithPjRtDevice( memory_kind, pjrt_outputs[j][i]->device())) { return FailedPrecondition( "Memory kind mismatch between PjRtBuffers. Got one buffer with " "memory kind '%v' and another with memory_kind '%v'", first_memory_kind, memory_kind); } } buffers.push_back( std::shared_ptr<PjRtBuffer>(pjrt_outputs[j][i].release())); } std::shared_ptr<const Sharding> sharding; if (portable_execution) { if (auto it = single_device_shardings.find(first_memory_kind); it == single_device_shardings.end()) { sharding = single_device_shardings .insert({first_memory_kind, SingleDeviceSharding::Create(portable_execution_device, first_memory_kind)}) .first->second; } else { sharding = it->second; } } else { sharding = output_shardings_[i]; } outputs.push_back(*PjRtArray::Create(client_, output_dtypes_[i], output_shapes_[i], std::move(sharding), std::move(buffers))); } ExecuteResult result; if (options.fill_status) { result.status = status; } result.outputs = std::move(outputs); return result; } absl::StatusOr<std::optional<std::string>> PjRtLoadedExecutable::Fingerprint() const { DCHECK(this); absl::StatusOr<std::string> fingerprint = pjrt_loaded_executable_->FingerprintExecutable(); if (fingerprint.ok()) { return {fingerprint.value()}; } else if (fingerprint.status().code() == absl::StatusCode::kUnimplemented) { return std::nullopt; } else { return fingerprint.status(); } } absl::StatusOr<std::string> PjRtLoadedExecutable::Serialize() const { DCHECK(this); return pjrt_loaded_executable_->SerializeExecutable(); } Future<> PjRtLoadedExecutable::Delete() { DCHECK(this); pjrt_loaded_executable_->Delete(); return Future<>(absl::OkStatus()); } } }
#include "xla/pjrt/pjrt_executable.h" #include <string> #include <utility> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/client/executable_build_options.h" #include "xla/pjrt/compile_options.pb.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status_matchers.h" namespace xla { namespace { using ::tsl::testing::StatusIs; TEST(CompileOptionsTest, Serialization) { CompileOptions src; src.compile_portable_executable = true; src.parameter_is_tupled_arguments = true; src.profile_version = 1; src.argument_layouts = {ShapeUtil::MakeShape(S32, {1})}; ExecutableBuildOptions build_option; build_option.set_device_assignment(DeviceAssignment(1, 1)); src.executable_build_options = build_option; TF_ASSERT_OK_AND_ASSIGN(CompileOptionsProto proto, src.ToProto()); TF_ASSERT_OK_AND_ASSIGN(CompileOptions output, CompileOptions::FromProto(proto)); TF_ASSERT_OK_AND_ASSIGN(CompileOptionsProto output_proto, src.ToProto()); EXPECT_EQ(proto.SerializeAsString(), output_proto.SerializeAsString()); } TEST(CompileOptionsTest, MultiSliceConfigNotSupported) { CompileOptionsProto proto; *proto.mutable_serialized_multi_slice_config() = "multi_size_config"; auto option = CompileOptions::FromProto(proto); EXPECT_THAT( option.status(), StatusIs( absl::StatusCode::kUnimplemented, "multi_slice_config not supported in CompileOptions::FromProto.")); } TEST(ExecuteOptionsTest, Serialization) { ExecuteOptions src; src.arguments_are_tupled = true; src.untuple_result = false; src.launch_id = 1234; src.strict_shape_checking = true; src.execution_mode = ExecuteOptions::ExecutionMode::kAsynchronous; src.non_donatable_input_indices = {2, 3}; TF_ASSERT_OK_AND_ASSIGN(ExecuteOptionsProto proto, src.ToProto()); TF_ASSERT_OK_AND_ASSIGN(ExecuteOptions output, ExecuteOptions::FromProto(proto)); TF_ASSERT_OK_AND_ASSIGN(ExecuteOptionsProto output_proto, src.ToProto()); EXPECT_EQ(proto.SerializeAsString(), output_proto.SerializeAsString()); } TEST(ExecuteOptionsTest, SendRecvNotSupported) { ExecuteOptions options; std::vector<std::vector<SendCallback>> send_callbacks(1); options.send_callbacks = send_callbacks; std::vector<std::vector<RecvCallback>> recv_callbacks(1); options.recv_callbacks = recv_callbacks; EXPECT_THAT( options.ToProto(), StatusIs(absl::StatusCode::kUnimplemented, "ExecuteOptions with send/recv calbacks is not serializable")); } TEST(ExecuteOptionsTest, ApplyOptionsCanParseStringsAndEnums) { using OptionOverride = std::variant<std::string, bool, int64_t, double>; std::vector<std::pair<std::string, OptionOverride>> env_override_options; env_override_options = { {"xla_gpu_use_runtime_fusion", std::string("True")}, {"xla_gpu_graph_min_graph_size", std::string("2")}, {"xla_gpu_disable_async_collectives", std::string("2")}, {"xla_gpu_redzone_scratch_max_megabytes", std::string("3400")}, {"xla_gpu_auto_spmd_partitioning_memory_budget_ratio", 0.9}, {"xla_gpu_pgle_profile_file_or_directory_path", std::string("abc")}}; CompileOptions src; src.env_option_overrides = env_override_options; auto s = src.ApplyAllOptionOverrides(); auto& debug_options = src.executable_build_options.debug_options(); EXPECT_EQ(debug_options.xla_gpu_use_runtime_fusion(), true); EXPECT_EQ(debug_options.xla_gpu_graph_min_graph_size(), 2); EXPECT_EQ(debug_options.xla_gpu_redzone_scratch_max_megabytes(), 3400); EXPECT_FLOAT_EQ( debug_options.xla_gpu_auto_spmd_partitioning_memory_budget_ratio(), 0.9); EXPECT_EQ(debug_options.xla_gpu_pgle_profile_file_or_directory_path(), "abc"); EXPECT_EQ(debug_options.xla_gpu_disable_async_collectives().size(), 1); EXPECT_EQ(debug_options.xla_gpu_disable_async_collectives()[0], 2); } TEST(CompiledMemoryStatsTest, Serialization) { CompiledMemoryStats stats; stats.generated_code_size_in_bytes = 2; stats.argument_size_in_bytes = 3; stats.output_size_in_bytes = 5; stats.alias_size_in_bytes = 7; stats.temp_size_in_bytes = 11; stats.host_generated_code_size_in_bytes = 13; stats.host_argument_size_in_bytes = 17; stats.host_output_size_in_bytes = 19; stats.host_alias_size_in_bytes = 23; stats.host_temp_size_in_bytes = 29; CompiledMemoryStatsProto serialized = stats.ToProto(); CompiledMemoryStats deserialized = CompiledMemoryStats::FromProto(serialized); EXPECT_EQ(serialized.SerializeAsString(), deserialized.ToProto().SerializeAsString()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/pjrt_ifrt/pjrt_executable.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/pjrt_executable_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
95f3e0ae-3580-482c-a923-012cebb9dfb8
cpp
tensorflow/tensorflow
metrics
tensorflow/cc/saved_model/metrics.cc
tensorflow/cc/saved_model/metrics_test.cc
#include "tensorflow/cc/saved_model/metrics.h" #include <cstddef> #include <cstdint> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "json/config.h" #include "json/json.h" #include "json/writer.h" #include "tensorflow/core/lib/monitoring/counter.h" #include "tensorflow/core/lib/monitoring/gauge.h" #include "tensorflow/core/lib/monitoring/sampler.h" #include "tensorflow/core/protobuf/fingerprint.pb.h" namespace tensorflow { namespace metrics { namespace { auto* saved_model_write_counter = monitoring::Counter<1>::New( "/tensorflow/core/saved_model/write/count", "The number of SavedModels successfully written.", "write_version"); auto* saved_model_read_counter = monitoring::Counter<1>::New( "/tensorflow/core/saved_model/read/count", "The number of SavedModels successfully loaded.", "write_version"); auto* saved_model_write_api = monitoring::Counter<1>::New( "/tensorflow/core/saved_model/write/api", "The API used to write the SavedModel.", "api_label"); auto* saved_model_read_api = monitoring::Counter<1>::New( "/tensorflow/core/saved_model/read/api", "The API used to load the SavedModel.", "api_label"); auto* saved_model_write_fingerprint = monitoring::Gauge<std::string, 0>::New( "/tensorflow/core/saved_model/write/fingerprint", "The fingerprint (saved_model_checksum) of the exported SavedModel."); auto* saved_model_write_path = monitoring::Gauge<std::string, 0>::New( "/tensorflow/core/saved_model/write/path", "The path (saved_model_path) of the exported SavedModel."); auto* saved_model_write_path_and_singleprint = monitoring::Gauge<std::string, 0>::New( "/tensorflow/core/saved_model/write/path_and_singleprint", "The path (saved_model_path) and singleprint (concatenation of " "graph_def_program_hash, signature_def_hash, saved_object_graph_hash, " "and checkpoint_hash) of the newly written SavedModel."); auto* saved_model_read_fingerprint = monitoring::Gauge<std::string, 0>::New( "/tensorflow/core/saved_model/read/fingerprint", "The fingerprint (saved_model_checksum) of the loaded SavedModel."); auto* saved_model_read_path = monitoring::Gauge<std::string, 0>::New( "/tensorflow/core/saved_model/read/path", "The path (saved_model_path) of the loaded SavedModel."); auto* saved_model_read_path_and_singleprint = monitoring::Gauge<std::string, 0>::New( "/tensorflow/core/saved_model/read/path_and_singleprint", "The path (saved_model_path) and singleprint (concatenation of " "graph_def_program_hash, signature_def_hash, saved_object_graph_hash, " "and checkpoint_hash) of the loaded SavedModel."); auto* saved_model_found_fingerprint_on_load = monitoring::Gauge<std::string, 0>::New( "/tensorflow/core/saved_model/found_fingerprint_on_load", "Whether or not the fingerprint.pb file was found when loading the " "SavedModel."); auto* checkpoint_write_durations = monitoring::Sampler<1>::New( { "/tensorflow/core/checkpoint/write/write_durations", "Distribution of the wall time duration in microseconds of the " "checkpoint write operation.", "api_label" }, monitoring::Buckets::Exponential(1000, 1.5, 41)); auto* checkpoint_read_durations = monitoring::Sampler<1>::New( { "/tensorflow/core/checkpoint/read/read_durations", "Distribution of the wall time duration in microseconds of the " "checkpoint read operation.", "api_label" }, monitoring::Buckets::Exponential(1000, 1.5, 41)); auto* async_checkpoint_write_durations = monitoring::Sampler<1>::New( { "/tensorflow/core/checkpoint/write/async_write_durations", "Distribution of the wall time duration in microseconds of the async " "checkpoint write operation", "api_label" }, monitoring::Buckets::Exponential(1000, 1.5, 41)); auto* checkpoint_training_time_saved = monitoring::Counter<1>::New( "/tensorflow/core/checkpoint/write/training_time_saved", "Total time in microseconds elapsed between two consecutive write " "operations in a single job or between Checkpoint construction and the " "first write operation.", "api_label"); auto* checkpoint_size = monitoring::Counter<2>::New( "/tensorflow/core/checkpoint/write/checkpoint_size", "Size of checkpoint (.index and sharded data files), rounded to the " "nearest 100 MB.", "api_label", "filesize"); } auto* sharding_callback_duration = monitoring::Counter<0>::New( "/tensorflow/core/checkpoint/sharding/callback_duration", "Sharding callback execution duration in microseconds."); auto* num_checkpoint_shards_written = monitoring::Counter<0>::New( "/tensorflow/core/checkpoint/sharding/num_checkpoint_shards_written", "Number of checkpoint shard files written during saving."); auto* sharding_callback_description = monitoring::Gauge<std::string, 0>::New( "/tensorflow/core/checkpoint/sharding/callback_description", "Describes the callback used to shard the checkpoint during saving."); monitoring::CounterCell& SavedModelWriteCount(absl::string_view write_version) { return *saved_model_write_counter->GetCell(std::string(write_version)); } monitoring::CounterCell& SavedModelReadCount(absl::string_view write_version) { return *saved_model_read_counter->GetCell(std::string(write_version)); } monitoring::CounterCell& SavedModelWriteApi(absl::string_view api_label) { return *saved_model_write_api->GetCell(std::string(api_label)); } monitoring::CounterCell& SavedModelReadApi(absl::string_view api_label) { return *saved_model_read_api->GetCell(std::string(api_label)); } monitoring::GaugeCell<std::string>& SavedModelReadFingerprint() { return *saved_model_read_fingerprint->GetCell(); } monitoring::GaugeCell<std::string>& SavedModelReadPath() { return *saved_model_read_path->GetCell(); } monitoring::GaugeCell<std::string>& SavedModelReadPathAndSingleprint() { return *saved_model_read_path_and_singleprint->GetCell(); } monitoring::GaugeCell<std::string>& SavedModelWriteFingerprint() { return *saved_model_write_fingerprint->GetCell(); } monitoring::GaugeCell<std::string>& SavedModelWritePath() { return *saved_model_write_path->GetCell(); } monitoring::GaugeCell<std::string>& SavedModelWritePathAndSingleprint() { return *saved_model_write_path_and_singleprint->GetCell(); } std::string MakeFingerprintJson(FingerprintDef fingerprint_def) { Json::Value fingerprint = Json::objectValue; fingerprint["saved_model_checksum"] = Json::UInt64(fingerprint_def.saved_model_checksum()); fingerprint["graph_def_program_hash"] = Json::UInt64(fingerprint_def.graph_def_program_hash()); fingerprint["signature_def_hash"] = Json::UInt64(fingerprint_def.signature_def_hash()); fingerprint["saved_object_graph_hash"] = Json::UInt64(fingerprint_def.saved_object_graph_hash()); fingerprint["checkpoint_hash"] = Json::UInt64(fingerprint_def.checkpoint_hash()); Json::StreamWriterBuilder json_factory; return Json::writeString(json_factory, fingerprint); } absl::StatusOr<std::string> MakeSavedModelPathAndSingleprint( std::string path, std::string singleprint) { if (path.empty()) { return absl::InvalidArgumentError( "Invalid path_and_singleprint argument. Empty path."); } if (singleprint.empty()) { return absl::InvalidArgumentError( "Invalid path_and_singleprint argument. Empty singleprint."); } return absl::StrCat(path, ":", singleprint); } absl::StatusOr<std::pair<std::string, std::string>> ParseSavedModelPathAndSingleprint(std::string path_and_singleprint) { size_t delimiter = path_and_singleprint.rfind(':'); if (delimiter == std::string::npos) { return absl::InvalidArgumentError( "Invalid path_and_singleprint argument. Found no delimeter."); } std::string path = path_and_singleprint.substr(0, delimiter); if (path.empty()) { return absl::InvalidArgumentError( "Invalid path_and_singleprint argument. Empty path."); } std::string singleprint = path_and_singleprint.substr(delimiter + 1); if (singleprint.empty()) { return absl::InvalidArgumentError( "Invalid path_and_singleprint argument. Empty singleprint."); } return std::pair<std::string, std::string>(path, singleprint); } monitoring::GaugeCell<std::string>& SavedModelFoundFingerprintOnLoad() { return *saved_model_found_fingerprint_on_load->GetCell(); } monitoring::SamplerCell& CheckpointReadDuration(absl::string_view api_label) { return *checkpoint_read_durations->GetCell(std::string(api_label)); } monitoring::SamplerCell& CheckpointWriteDuration(absl::string_view api_label) { return *checkpoint_write_durations->GetCell(std::string(api_label)); } monitoring::SamplerCell& AsyncCheckpointWriteDuration( absl::string_view api_label) { return *async_checkpoint_write_durations->GetCell(std::string(api_label)); } monitoring::CounterCell& TrainingTimeSaved(absl::string_view api_label) { return *checkpoint_training_time_saved->GetCell(std::string(api_label)); } monitoring::CounterCell& CheckpointSize(absl::string_view api_label, int64_t filesize) { return *checkpoint_size->GetCell(std::string(api_label), std::to_string(filesize)); } monitoring::CounterCell& ShardingCallbackDuration() { return *sharding_callback_duration->GetCell(); } monitoring::CounterCell& NumCheckpointShardsWritten() { return *num_checkpoint_shards_written->GetCell(); } monitoring::GaugeCell<std::string>& ShardingCallbackDescription() { return *sharding_callback_description->GetCell(); } } }
#include "tensorflow/cc/saved_model/metrics.h" #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "json/json.h" #include "json/reader.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/fingerprint.pb.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace metrics { TEST(MetricsTest, TestSavedModelWrite) { EXPECT_EQ(SavedModelWriteApi("foo").value(), 0); SavedModelWriteApi("foo").IncrementBy(1); EXPECT_EQ(SavedModelWriteApi("foo").value(), 1); EXPECT_EQ(SavedModelWriteCount("1").value(), 0); SavedModelWriteCount("1").IncrementBy(1); EXPECT_EQ(SavedModelWriteCount("1").value(), 1); } TEST(MetricsTest, TestSavedModelRead) { SavedModelReadApi("bar").IncrementBy(1); EXPECT_EQ(SavedModelReadApi("bar").value(), 1); SavedModelReadCount("2").IncrementBy(1); EXPECT_EQ(SavedModelReadCount("2").value(), 1); SavedModelReadApi("baz").IncrementBy(1); EXPECT_EQ(SavedModelReadApi("baz").value(), 1); SavedModelReadCount("2").IncrementBy(1); EXPECT_EQ(SavedModelReadCount("2").value(), 2); } TEST(MetricsTest, TestCheckpointRead) { EXPECT_EQ(CheckpointReadDuration("foo").value().num(), 0); CheckpointReadDuration("foo").Add(100); EXPECT_EQ(CheckpointReadDuration("foo").value().num(), 1); } TEST(MetricsTest, TestCheckpointWrite) { EXPECT_EQ(CheckpointWriteDuration("foo").value().num(), 0); CheckpointWriteDuration("foo").Add(100); EXPECT_EQ(CheckpointWriteDuration("foo").value().num(), 1); } TEST(MetricsTest, TestAsyncCheckpointWrite) { EXPECT_EQ(AsyncCheckpointWriteDuration("foo").value().num(), 0); AsyncCheckpointWriteDuration("foo").Add(100); EXPECT_EQ(AsyncCheckpointWriteDuration("foo").value().num(), 1); } TEST(MetricsTest, TestTrainingTimeSaved) { EXPECT_EQ(TrainingTimeSaved("foo").value(), 0); TrainingTimeSaved("foo").IncrementBy(100); EXPECT_EQ(TrainingTimeSaved("foo").value(), 100); } TEST(MetricsTest, TestCheckpointSize) { EXPECT_EQ(CheckpointSize("foo", 10).value(), 0); CheckpointSize("foo", 10).IncrementBy(1); EXPECT_EQ(CheckpointSize("foo", 10).value(), 1); } TEST(MetricsTest, TestWriteFingerprint) { EXPECT_EQ(SavedModelWriteFingerprint().value(), ""); SavedModelWriteFingerprint().Set("foo"); EXPECT_EQ(SavedModelWriteFingerprint().value(), "foo"); SavedModelWriteFingerprint().Set("bar"); EXPECT_EQ(SavedModelWriteFingerprint().value(), "bar"); } TEST(MetricsTest, TestWritePath) { EXPECT_EQ(SavedModelWritePath().value(), ""); SavedModelWritePath().Set("foo"); EXPECT_EQ(SavedModelWritePath().value(), "foo"); SavedModelWritePath().Set("bar"); EXPECT_EQ(SavedModelWritePath().value(), "bar"); } TEST(MetricsTest, TestWritePathAndSingleprint) { EXPECT_EQ(SavedModelWritePathAndSingleprint().value(), ""); SavedModelWritePathAndSingleprint().Set("foo"); EXPECT_EQ(SavedModelWritePathAndSingleprint().value(), "foo"); SavedModelWritePathAndSingleprint().Set("bar"); EXPECT_EQ(SavedModelWritePathAndSingleprint().value(), "bar"); EXPECT_EQ( MakeSavedModelPathAndSingleprint("path", "singleprint").value_or(""), "path:singleprint"); } TEST(MetricsTest, TestInvalidMakePathAndSingleprint) { EXPECT_THAT(MakeSavedModelPathAndSingleprint("", "singleprint"), testing::StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(MakeSavedModelPathAndSingleprint("path", ""), testing::StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(MetricsTest, TestReadFingerprint) { EXPECT_EQ(SavedModelReadFingerprint().value(), ""); SavedModelReadFingerprint().Set("foo"); EXPECT_EQ(SavedModelReadFingerprint().value(), "foo"); SavedModelReadFingerprint().Set("bar"); EXPECT_EQ(SavedModelReadFingerprint().value(), "bar"); } TEST(MetricsTest, TestReadPath) { EXPECT_EQ(SavedModelReadPath().value(), ""); SavedModelReadPath().Set("foo"); EXPECT_EQ(SavedModelReadPath().value(), "foo"); SavedModelReadPath().Set("bar"); EXPECT_EQ(SavedModelReadPath().value(), "bar"); } TEST(MetricsTest, TestReadPathAndSingleprint) { EXPECT_EQ(SavedModelReadPathAndSingleprint().value(), ""); SavedModelReadPathAndSingleprint().Set("foo"); EXPECT_EQ(SavedModelReadPathAndSingleprint().value(), "foo"); SavedModelReadPathAndSingleprint().Set("bar"); EXPECT_EQ(SavedModelReadPathAndSingleprint().value(), "bar"); TF_ASSERT_OK_AND_ASSIGN( auto path_singleprint, ParseSavedModelPathAndSingleprint("path/model:name:singleprint")); auto [path, singleprint] = path_singleprint; EXPECT_EQ(path, "path/model:name"); EXPECT_EQ(singleprint, "singleprint"); } TEST(MetricsTest, TestMakeFingerprintJson) { FingerprintDef fingerprint; fingerprint.set_saved_model_checksum(1); fingerprint.set_graph_def_program_hash(2); fingerprint.set_signature_def_hash(3); fingerprint.set_saved_object_graph_hash(4); fingerprint.set_checkpoint_hash(5); std::string serialized_fingerprint_json = MakeFingerprintJson(fingerprint); EXPECT_EQ( serialized_fingerprint_json, "{\n\t\"checkpoint_hash\" : 5,\n\t\"graph_def_program_hash\" : " "2,\n\t\"saved_model_checksum\" : 1,\n\t\"saved_object_graph_hash\" : " "4,\n\t\"signature_def_hash\" : 3\n}"); Json::Value fingerprint_json = Json::objectValue; Json::Reader reader = Json::Reader(); reader.parse(serialized_fingerprint_json, fingerprint_json); EXPECT_EQ(fingerprint_json["saved_model_checksum"].asUInt64(), 1); EXPECT_EQ(fingerprint_json["graph_def_program_hash"].asUInt64(), 2); EXPECT_EQ(fingerprint_json["signature_def_hash"].asUInt64(), 3); EXPECT_EQ(fingerprint_json["saved_object_graph_hash"].asUInt64(), 4); EXPECT_EQ(fingerprint_json["checkpoint_hash"].asUInt64(), 5); } TEST(MetricsTest, TestFoundFingerprintOnLoad) { EXPECT_EQ(SavedModelFoundFingerprintOnLoad().value(), ""); SavedModelFoundFingerprintOnLoad().Set(kFingerprintFound); EXPECT_EQ(SavedModelFoundFingerprintOnLoad().value(), "FOUND"); SavedModelFoundFingerprintOnLoad().Set(kFingerprintNotFound); EXPECT_EQ(SavedModelFoundFingerprintOnLoad().value(), "NOT_FOUND"); SavedModelFoundFingerprintOnLoad().Set(kFingerprintError); EXPECT_EQ(SavedModelFoundFingerprintOnLoad().value(), "ERROR"); } TEST(MetricsTest, TestShardingCallbackDuration) { EXPECT_EQ(ShardingCallbackDuration().value(), 0); ShardingCallbackDuration().IncrementBy(100); EXPECT_EQ(ShardingCallbackDuration().value(), 100); } TEST(MetricsTest, TestNumCheckpointShardsWritten) { EXPECT_EQ(NumCheckpointShardsWritten().value(), 0); NumCheckpointShardsWritten().IncrementBy(10); EXPECT_EQ(NumCheckpointShardsWritten().value(), 10); } TEST(MetricsTest, TestShardingCallbackDescription) { EXPECT_EQ(ShardingCallbackDescription().value(), ""); ShardingCallbackDescription().Set("foo"); EXPECT_EQ(ShardingCallbackDescription().value(), "foo"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/cc/saved_model/metrics.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/cc/saved_model/metrics_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
05b3a5fb-d17e-46f2-a604-6a0d2c9a26bd
cpp
tensorflow/tensorflow
se_gpu_pjrt_client
third_party/xla/xla/pjrt/gpu/se_gpu_pjrt_client.cc
third_party/xla/xla/pjrt/gpu/se_gpu_pjrt_client_test.cc
#include "xla/pjrt/gpu/se_gpu_pjrt_client.h" #include <array> #include <cstddef> #include <cstdint> #include <cstring> #include <map> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/functional/bind_front.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/client/local_client.h" #include "xla/client/xla_computation.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/pjrt/distributed/in_memory_key_value_store.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/pjrt/distributed/topology_util.h" #include "xla/pjrt/event_pool.h" #include "xla/pjrt/gpu/gpu_helpers.h" #include "xla/pjrt/gpu/gpu_topology.h" #include "xla/pjrt/gpu/gpu_topology.pb.h" #include "xla/pjrt/host_memory_spaces.h" #include "xla/pjrt/local_device_state.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_device_description.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/pjrt/pjrt_stream_executor_client.h" #include "xla/pjrt/stream_executor_executable.h" #include "xla/pjrt/tracked_device_buffer.h" #include "xla/service/compiler.h" #include "xla/service/computation_placer.h" #include "xla/service/global_device_id.h" #include "xla/service/shaped_buffer.h" #include "xla/service/transfer_manager.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/framework/allocator.h" #include "xla/tsl/lib/strings/proto_serialization.h" #include "tsl/platform/casts.h" #include "tsl/platform/errors.h" #include "tsl/platform/fingerprint.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tsl/profiler/lib/connected_traceme.h" #include "tsl/profiler/lib/nvtx_utils.h" #include "tsl/profiler/lib/traceme.h" #if defined(GOOGLE_CUDA) || defined(TENSORFLOW_USE_ROCM) #include "xla/debug_options_flags.h" #include "xla/pjrt/compile_options.pb.h" #include "xla/pjrt/gpu/gpu_metrics.h" #include "xla/pjrt/gpu/nccl_id_store.h" #include "xla/pjrt/stream_executor_executable.pb.h" #include "xla/service/gpu/gpu_compiler.h" #include "xla/service/gpu/gpu_memory_space_assignment.h" #include "xla/xla.pb.h" #endif #if GOOGLE_CUDA #include "third_party/gpus/cuda/include/cuda.h" #include "third_party/gpus/cuda/include/cuda_runtime_api.h" #include "xla/stream_executor/gpu/gpu_cudamallocasync_allocator.h" #elif TENSORFLOW_USE_ROCM #include "rocm/rocm_config.h" #endif #include "xla/service/gpu/gpu_executable_run_options.h" #include "xla/stream_executor/integrations/device_mem_allocator.h" #include "xla/stream_executor/integrations/tf_allocator_adapter.h" #include "xla/util.h" namespace xla { class AsyncHostToDeviceTransferManager : public xla::PjRtClient::AsyncHostToDeviceTransferManager { public: static absl::StatusOr<std::unique_ptr<AsyncHostToDeviceTransferManager>> Create(absl::Span<const PjRtClient::ShapeSpec> shape_specs, std::optional<absl::Span<const Layout>> device_layouts, PjRtStreamExecutorDevice* device, PjRtStreamExecutorClient* client, PjRtMemorySpace* memory_space) { if (device_layouts != std::nullopt && device_layouts->size() != shape_specs.size()) { return InvalidArgument( "Number of layouts %d does not match the number of shapes %d", device_layouts->size(), shape_specs.size()); } absl::InlinedVector<std::unique_ptr<PjRtBuffer>, 4> buffers; absl::InlinedVector<std::shared_ptr<TrackedDeviceBuffer>, 4> buffer_ptrs; absl::InlinedVector<std::shared_ptr<BufferSequencingEvent>, 4> definition_events; absl::InlinedVector<Shape, 4> device_shapes; buffers.reserve(shape_specs.size()); buffer_ptrs.reserve(shape_specs.size()); definition_events.reserve(shape_specs.size()); device_shapes.reserve(shape_specs.size()); for (int i = 0; i < shape_specs.size(); ++i) { const PjRtClient::ShapeSpec& shape_spec = shape_specs[i]; if (shape_spec.element_type == TUPLE) { return Unimplemented( "Async buffer transfer of tuples not implemented."); } definition_events.push_back( std::make_shared<BufferSequencingEvent>(client->thread_pool())); Shape& device_shape = device_shapes.emplace_back( ShapeUtil::MakeShape(shape_spec.element_type, shape_spec.dims)); if (device_layouts == std::nullopt) { TF_ASSIGN_OR_RETURN(device_shape, client->client() ->backend() .transfer_manager() ->ChooseCompactLayoutForShape(device_shape)); } else { *device_shape.mutable_layout() = (*device_layouts)[i]; } LocalDeviceState* local_device = device->local_device_state(); se::Stream* h2d_stream = local_device->host_to_device_stream(); TF_ASSIGN_OR_RETURN(auto buffer, AllocateDestinationBuffer( device_shape, device, local_device, h2d_stream, true, client, definition_events.back(), memory_space)); auto* se_buffer = tensorflow::down_cast<PjRtStreamExecutorBuffer*>(buffer.get()); DCHECK(se_buffer); auto hold = se_buffer->GetBufferWithUsageHold(); buffer_ptrs.push_back(hold.buffer()); buffers.push_back(std::move(buffer)); } return std::make_unique<AsyncHostToDeviceTransferManager>( std::move(buffers), std::move(buffer_ptrs), std::move(definition_events), std::move(device_shapes), device); } AsyncHostToDeviceTransferManager( absl::InlinedVector<std::unique_ptr<PjRtBuffer>, 4> buffers, absl::InlinedVector<std::shared_ptr<TrackedDeviceBuffer>, 4> buffer_ptrs, absl::InlinedVector<std::shared_ptr<BufferSequencingEvent>, 4> definition_events, absl::InlinedVector<Shape, 4> device_shapes, PjRtStreamExecutorDevice* device) : buffers_(std::move(buffers)), buffer_ptrs_(std::move(buffer_ptrs)), definition_events_(std::move(definition_events)), device_shapes_(std::move(device_shapes)), remaining_buffer_count_(buffer_ptrs_.size()), transfers_in_flight_(0), device_(device) { buffer_sizes_.reserve(buffer_ptrs_.size()); for (const auto& ptr : buffer_ptrs_) { DCHECK_EQ(ptr->device_memory().size(), 1); buffer_sizes_.push_back(ptr->device_memory()[0].size()); } last_transfer_started_.resize(buffer_ptrs_.size(), false); } ~AsyncHostToDeviceTransferManager() override { auto transfers_finished = [this]() { mu_.AssertHeld(); return transfers_in_flight_ == 0; }; { absl::MutexLock l(&mu_); mu_.Await(absl::Condition(&transfers_finished)); } } size_t buffer_count() const override { return buffers_.size(); }; size_t buffer_size(int buffer_index) const override { DCHECK_LT(buffer_index, buffer_sizes_.size()); return buffer_sizes_[buffer_index]; } PjRtDevice* device() const override { return device_; } std::unique_ptr<PjRtBuffer> RetrieveBuffer(int buffer_index) override { DCHECK_LT(buffer_index, buffers_.size()); return std::move(buffers_[buffer_index]); }; absl::Status TransferLiteralToBuffer( int buffer_index, const LiteralSlice& literal, absl::AnyInvocable<void() &&> on_done) override { tsl::profiler::TraceMe traceme( "AsyncHostToDeviceTransferManager::TransferLiteralToBuffer"); auto* stream = device_->local_device_state()->host_to_device_stream(); auto* se_client = tensorflow::down_cast<PjRtStreamExecutorClient*>(device_->client()); DCHECK(se_client); TransferManager* transfer_manager = se_client->client()->backend().transfer_manager(); std::shared_ptr<TrackedDeviceBuffer> buffer; { absl::MutexLock l(&mu_); DCHECK_LT(buffer_index, buffer_ptrs_.size()); if (last_transfer_started_[buffer_index]) { return InvalidArgument( "TransferLiteralToBuffer requested for buffer index %d which has " "already been fully transferred", buffer_index); } last_transfer_started_[buffer_index] = true; buffer = buffer_ptrs_[buffer_index]; DCHECK(buffer); if (buffer->device_memory().empty()) { return InvalidArgument( "TransferLiteralToBuffer requested for buffer index %d which has " "been donated. Async transfer of donated buffers is not supported " "in SE:GPU", buffer_index); } DCHECK_EQ(buffer->device_memory().size(), 1); ++transfers_in_flight_; } auto transfer_h2d = [this, buffer_index, stream, transfer_manager, literal, device_buffer = buffer.get(), local_device = std::move(device_->local_device_state()), on_done = std::move(on_done)]() mutable { tsl::profiler::TraceMe traceme( "AsyncHostToDeviceTransferManager::TransferLiteralToBuffer::transfer_" "h2d"); auto event = local_device->event_pool().AllocateEvent(stream->parent()); ShapedBuffer buffer = device_buffer->AsShapedBuffer(device_shapes_[buffer_index]); TF_CHECK_OK(transfer_manager->TransferLiteralToDeviceAsync( stream, literal, buffer)); local_device->event_pool().ThenRecordEvent(stream, event.value()); auto cleanup = [this, buffer_index, stream, on_done = std::move(on_done), event = std::move(event).value()]() mutable { CleanUp(buffer_index, std::move(event), stream, true, std::move(on_done)); }; auto status = stream->DoHostCallback(std::move(cleanup)); if (!status.ok()) { LOG(ERROR) << "DoHostCallback failed: " << status; } }; se_client->thread_pool()->Schedule( ([ptr = new absl::AnyInvocable<void()>(std::move(transfer_h2d))]() { (*ptr)(); delete ptr; })); return absl::OkStatus(); } absl::Status TransferRawDataToBuffer( int buffer_index, absl::string_view data, absl::AnyInvocable<void() &&> on_done) override { return TransferRawDataToSubBuffer(buffer_index, data.data(), 0, data.size(), true, std::move(on_done)); } absl::Status TransferRawDataToSubBuffer( int buffer_index, const void* data, int64_t offset, int64_t transfer_size, bool is_last_transfer, absl::AnyInvocable<void() &&> on_done) override { auto* stream = device_->local_device_state()->host_to_device_stream(); auto* client = tensorflow::down_cast<PjRtStreamExecutorClient*>(device_->client()); bool should_stage_host_to_device_transfers = client->should_stage_host_to_device_transfers(); std::shared_ptr<void> staging_buffer; if (should_stage_host_to_device_transfers) { auto* host_memory_allocator = client->host_memory_allocator(); if (host_memory_allocator == nullptr) { return InvalidArgument( "host_memory_allocator should be initialized for staging buffer " "transfer."); } void* ptr = host_memory_allocator->AllocateRaw( tsl::Allocator::kAllocatorAlignment, transfer_size); staging_buffer = std::shared_ptr<void>( ptr, [host_memory_allocator = host_memory_allocator](void* ptr) { host_memory_allocator->DeallocateRaw(ptr); }); } absl::ReleasableMutexLock l(&mu_); DCHECK_LT(buffer_index, buffer_ptrs_.size()); if (last_transfer_started_[buffer_index]) { return InvalidArgument( "TransferRawData requested for buffer index %d which has " "already been fully transferred", buffer_index); } if (is_last_transfer) { last_transfer_started_[buffer_index] = true; } DCHECK(buffer_ptrs_[buffer_index]); if (buffer_ptrs_[buffer_index]->device_memory().empty()) { return InvalidArgument( "TransferRawDataToSubBuffer requested for buffer index %d which has " "been donated. Async transfer of donated buffers is not supported " "in SE:GPU", buffer_index); } DCHECK_EQ(buffer_ptrs_[buffer_index]->device_memory().size(), 1); auto& buffer_memory = buffer_ptrs_[buffer_index]->device_memory()[0]; se::DeviceMemoryBase sub_buffer; CHECK_LE(offset, buffer_memory.size()); CHECK_LE(transfer_size, buffer_memory.size() - offset); if (transfer_size < buffer_memory.size()) { sub_buffer = buffer_memory.GetByteSlice(offset, transfer_size); } else { sub_buffer = buffer_memory; } ++transfers_in_flight_; l.Release(); auto event = device_->local_device_state()->event_pool().AllocateEvent( stream->parent()); if (transfer_size != 0) { if (staging_buffer != nullptr) { auto copy_to_staging_buffer = [data, transfer_size, staging_buffer]() mutable { std::memcpy(staging_buffer.get(), data, transfer_size); }; if (auto status = stream->DoHostCallback(std::move(copy_to_staging_buffer)); !status.ok()) { return status; } if (auto status = stream->Memcpy(&sub_buffer, staging_buffer.get(), transfer_size); !status.ok()) { return status; } } else if (auto status = stream->Memcpy(&sub_buffer, data, transfer_size); !status.ok()) { return status; } } device_->local_device_state()->event_pool().ThenRecordEvent(stream, event.value()); auto cleanup = [this, buffer_index, event = std::move(event).value(), stream, is_last_transfer, on_done = std::move(on_done), staging_buffer = std::move(staging_buffer)]() mutable { CleanUp(buffer_index, std::move(event), stream, is_last_transfer, std::move(on_done)); }; return stream->DoHostCallback(std::move(cleanup)); } void SetBufferError(int buffer_index, absl::Status error) override { { absl::MutexLock l(&mu_); CHECK(!definition_events_[buffer_index]->IsDefined()); definition_events_[buffer_index]->SetDefinedStatus(error); } VLOG(1) << "SetBufferError sets the " << buffer_index << "th buffer error: " << error; } void AddTransferMetadata(const TransferMetadata& meta) override {} private: absl::Mutex mu_; absl::InlinedVector<std::unique_ptr<PjRtBuffer>, 4> buffers_; absl::InlinedVector<size_t, 4> buffer_sizes_; absl::InlinedVector<std::shared_ptr<TrackedDeviceBuffer>, 4> buffer_ptrs_ ABSL_GUARDED_BY(mu_); absl::InlinedVector<bool, 4> last_transfer_started_ ABSL_GUARDED_BY(mu_); absl::InlinedVector<std::shared_ptr<BufferSequencingEvent>, 4> definition_events_ ABSL_GUARDED_BY(mu_); const absl::InlinedVector<Shape, 4> device_shapes_; size_t remaining_buffer_count_ ABSL_GUARDED_BY(mu_); int transfers_in_flight_ ABSL_GUARDED_BY(mu_); PjRtStreamExecutorDevice* device_; void CleanUp(int buffer_index, EventPool::Handle event, se::Stream* stream, bool is_last_transfer, absl::AnyInvocable<void() &&> on_done) { { absl::MutexLock l(&mu_); CHECK_GT(transfers_in_flight_, 0); --transfers_in_flight_; if (is_last_transfer) { CHECK(buffer_ptrs_[buffer_index]); buffer_ptrs_[buffer_index] = nullptr; CHECK_GT(remaining_buffer_count_, 0); --remaining_buffer_count_; definition_events_[buffer_index]->SetSequencingEvent(std::move(event), stream); if (remaining_buffer_count_ == 0) { VLOG(1) << "TransferLiteralToBuffer for all buffers is done."; } } } std::move(on_done)(); } }; StreamExecutorGpuClient::StreamExecutorGpuClient( std::string platform_name, LocalClient* client, std::vector<std::unique_ptr<PjRtStreamExecutorDevice>> devices, int process_index, std::unique_ptr<se::DeviceMemoryAllocator> allocator, std::unique_ptr<tsl::Allocator> host_memory_allocator, bool should_stage_host_to_device_transfers, std::unique_ptr<gpu::GpuExecutableRunOptions> gpu_run_options, std::shared_ptr<KeyValueStoreInterface> kv_store, std::shared_ptr<const GpuTopology> gpu_topology) : xla::PjRtStreamExecutorClient( platform_name, client, std::move(devices), process_index, std::move(allocator), std::move(host_memory_allocator), should_stage_host_to_device_transfers, std::move(gpu_run_options)), topology_(xla::StreamExecutorGpuTopologyDescription::Create( tsl::Fingerprint64(platform_name), platform_name, std::move(gpu_topology))), kv_store_(std::move(kv_store)) { for (auto* device : addressable_devices()) { const int id = device->id(); auto memory_space = std::make_unique<StreamExecutorGpuHbmMemorySpace>(id, device); tensorflow::down_cast<PjRtStreamExecutorDevice*>(device)->AttachMemorySpace( memory_space.get()); owned_memory_spaces_.push_back(std::move(memory_space)); const size_t basePinnedId = devices.size(); auto pinned = std::make_unique<PinnedHostMemorySpace>(basePinnedId, device); tensorflow::down_cast<PjRtStreamExecutorDevice*>(device)->AttachMemorySpace( pinned.get()); owned_memory_spaces_.push_back(std::move(pinned)); } for (const std::unique_ptr<PjRtMemorySpace>& memory_space : owned_memory_spaces_) { memory_spaces_.push_back(memory_space.get()); } absl::c_sort(memory_spaces_, [](const PjRtMemorySpace* a, const PjRtMemorySpace* b) { return a->id() < b->id(); }); } absl::string_view StreamExecutorGpuClient::platform_version() const { #define STRINGIFY2(X) #X #define STRINGIFY(X) STRINGIFY2(X) #if TENSORFLOW_USE_ROCM && defined(TF_ROCM_VERSION) return "rocm " STRINGIFY(TF_ROCM_VERSION); #elif GOOGLE_CUDA && defined(CUDART_VERSION) return "cuda " STRINGIFY(CUDART_VERSION); #else return "<unknown>"; #endif } absl::StatusOr<std::unique_ptr<PjRtClient::AsyncHostToDeviceTransferManager>> StreamExecutorGpuClient::CreateBuffersForAsyncHostToDevice( absl::Span<const PjRtClient::ShapeSpec> shape_specs, std::optional<absl::Span<const Layout>> device_layouts, PjRtDevice* device) { auto* stream_executor_device = tensorflow::down_cast<PjRtStreamExecutorDevice*>(device); return xla::AsyncHostToDeviceTransferManager::Create( shape_specs, std::move(device_layouts), stream_executor_device, this, nullptr); } absl::StatusOr<std::unique_ptr<PjRtClient::AsyncHostToDeviceTransferManager>> StreamExecutorGpuClient::CreateBuffersForAsyncHostToDevice( absl::Span<const Shape> shapes, PjRtDevice* device) { absl::InlinedVector<PjRtClient::ShapeSpec, 4> shape_specs; shape_specs.reserve(shapes.size()); for (const auto& shape : shapes) { shape_specs.emplace_back(PjRtClient::ShapeSpec{ shape.element_type(), DimensionVector(shape.dimensions().begin(), shape.dimensions().end())}); } return CreateBuffersForAsyncHostToDevice( shape_specs, std::nullopt, device); } absl::StatusOr<std::unique_ptr<PjRtClient::AsyncHostToDeviceTransferManager>> StreamExecutorGpuClient::CreateBuffersForAsyncHostToDevice( absl::Span<const PjRtClient::ShapeSpec> shape_specs, std::optional<absl::Span<const Layout>> device_layouts, PjRtMemorySpace* memory_space) { CHECK_EQ(memory_space->devices().size(), 1); PjRtDevice* device = memory_space->devices()[0]; auto* stream_executor_device = tensorflow::down_cast<PjRtStreamExecutorDevice*>(device); return xla::AsyncHostToDeviceTransferManager::Create( shape_specs, std::move(device_layouts), stream_executor_device, this, memory_space); } absl::StatusOr<std::unique_ptr<PjRtClient::AsyncHostToDeviceTransferManager>> StreamExecutorGpuClient::CreateBuffersForAsyncHostToDevice( absl::Span<const Shape> shapes, PjRtMemorySpace* memory_space) { absl::InlinedVector<PjRtClient::ShapeSpec, 4> shape_specs; shape_specs.reserve(shapes.size()); for (const auto& shape : shapes) { shape_specs.emplace_back(PjRtClient::ShapeSpec{ shape.element_type(), DimensionVector(shape.dimensions().begin(), shape.dimensions().end())}); } return CreateBuffersForAsyncHostToDevice( shape_specs, std::nullopt, memory_space); } absl::StatusOr<xla::DeviceAssignment> StreamExecutorGpuClient::GetDefaultDeviceAssignment(int num_replicas, int num_partitions) const { if (num_partitions == 1 && num_replicas <= addressable_devices().size()) { xla::DeviceAssignment assignment(num_replicas, 1); for (int i = 0; i < num_replicas; ++i) { assignment(i, 0) = addressable_devices().at(i)->id(); } return assignment; } return PjRtStreamExecutorClient::GetDefaultDeviceAssignment(num_replicas, num_partitions); } PjRtFuture<> StreamExecutorGpuClient::CopyRawSubBufferToHost( PjRtBuffer* pjrt_buffer, PjRtFuture<void*> dst, int64_t offset, int64_t transfer_size) { auto* buffer = tensorflow::down_cast<PjRtStreamExecutorBuffer*>(pjrt_buffer); DCHECK(buffer); PjRtStreamExecutorDevice* device = buffer->device(); LocalDeviceState* local_device = device->local_device_state(); se::Stream* stream = local_device->GetDeviceToHostStream(); PjRtStreamExecutorBuffer::ScopedHold hold(buffer->GetBufferWithUsageHold()); if (!hold.ok()) { return PjRtFuture<>(hold.status()); } auto device_buffer = hold.buffer(); if (device_buffer->device_memory().size() != 1) { return PjRtFuture<>(InvalidArgument("Copy raw buffer called on tuple")); } auto promise = PjRtFuture<>::CreatePromise(); auto usage_event = std::make_shared<BufferSequencingEvent>(this->thread_pool()); hold.ConvertUsageHold(stream, usage_event, true); auto async_copy = [this, promise, offset, transfer_size, stream, local_device, device_buffer, usage_event = std::move(usage_event)]( absl::StatusOr<void*> dst) mutable { absl::StatusOr<EventPool::Handle> event = local_device->event_pool().AllocateEvent(stream->parent()); if (!event.ok()) { promise.Set(event.status()); return; } absl::Status defined_status = device_buffer->definition_events()[0]->GetDefinedStatus(); if (!defined_status.ok()) { promise.Set(defined_status); return; } auto& device_memory = device_buffer->device_memory()[0]; if (offset < 0 || offset > device_memory.size() || device_memory.size() - offset < transfer_size) { promise.Set( InvalidArgument("Copy raw buffer called on buffer size %lld with " "invalid offset %lld, transfer size %lld", device_memory.size(), offset, transfer_size)); return; } std::unique_ptr<se::DeviceMemoryBase> sub_buffer; if (transfer_size < device_memory.size()) { sub_buffer = std::make_unique<se::DeviceMemoryBase>( device_memory.GetByteSlice(offset, transfer_size)); } else { sub_buffer = std::make_unique<se::DeviceMemoryBase>(device_memory); } WaitForBufferDefinitionEventsOnStream(*device_buffer, stream); if (transfer_size != 0) { if (should_stage_host_to_device_transfers()) { if (host_memory_allocator() == nullptr) { promise.Set(InvalidArgument( "host_memory_allocator should be initialized for staging buffer " "transfer.")); return; } void* ptr = host_memory_allocator()->AllocateRaw( tsl::Allocator::kAllocatorAlignment, transfer_size); std::shared_ptr<void> staging_buffer = std::shared_ptr<void>( ptr, [host_memory_allocator = host_memory_allocator()](void* ptr) { host_memory_allocator->DeallocateRaw(ptr); }); if (auto status = stream->Memcpy(staging_buffer.get(), *sub_buffer, transfer_size); !status.ok()) { promise.Set(std::move(status)); return; } auto copy_to_staging_buffer = [dst, transfer_size, staging_buffer]() mutable { std::memcpy(*dst, staging_buffer.get(), transfer_size); }; if (auto status = stream->DoHostCallback(copy_to_staging_buffer); !status.ok()) { promise.Set(std::move(status)); return; } } else { auto status = stream->Memcpy(*dst, *sub_buffer, transfer_size); if (!status.ok()) { promise.Set(std::move(status)); return; } } } local_device->event_pool().ThenRecordEvent(stream, event.value()); usage_event->SetSequencingEvent(std::move(event).value(), stream); auto callback_status = local_device->ThenExecuteCallback( stream, [promise, device_buffer = std::move(device_buffer)]() mutable { promise.Set(); }); if (!callback_status.ok()) { promise.Set(std::move(callback_status)); return; } }; device_buffer->definition_events()[0]->ExecuteOrAddToFutureTasks( absl::StrFormat("async_copy_raw_sub_buffer_to_host_%p", &async_copy), [this, dst, async_copy = std::move(async_copy)]() mutable { dst.OnReady([this, async_copy = std::move(async_copy)]( absl::StatusOr<void*> dst) { thread_pool()->Schedule(absl::bind_front(async_copy, std::move(dst))); }); }); return PjRtFuture<>( std::move(promise), []() { tsl::profiler::TraceMeProducer traceme( "StreamExecutorGpuClient::CopyRawSubBufferToHost"); VLOG(1) << "StreamExecutorGpuClient::CopyRawSubBufferToHost"; return PjRtFutureHelpers::ProfilingKeys( {traceme.GetContextId()}); }, [](PjRtFutureHelpers::ProfilingKeys keys) { tsl::profiler::TraceMeConsumer traceme( "StreamExecutorGpuClient::CopyRawSubBufferToHost", keys.traceme_context_id); }); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> StreamExecutorGpuClient::Compile(const XlaComputation& computation, CompileOptions options) { options.executable_build_options.set_key_value_store(kv_store_); auto executable = PjRtStreamExecutorClient::Compile(computation, options); #if defined(GOOGLE_CUDA) || defined(TENSORFLOW_USE_ROCM) for (const PjRtDevice* device : addressable_devices()) { LocalDeviceState* local_device_state = tensorflow::down_cast<const PjRtStreamExecutorDevice*>(device) ->local_device_state(); int64_t free_memory, total_memory; if (local_device_state != nullptr) { se::StreamExecutor* executor = local_device_state->executor(); int device_ordinal = executor->device_ordinal(); if (executor->DeviceMemoryUsage(&free_memory, &total_memory)) { gpu_metrics::RecordFreeGpuSystemMemory(device_ordinal, free_memory); } else { LOG(ERROR) << "Failed to query available memory for GPU " << device_ordinal; } } } #endif return executable; } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> StreamExecutorGpuClient::LoadSerialized(absl::string_view serialized, std::optional<CompileOptions> options, const LoadOptions& load_options) { return PjRtStreamExecutorClient::DeserializeExecutable(serialized, options); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> StreamExecutorGpuClient::Load(std::unique_ptr<PjRtExecutable> executable) { auto se_executable = absl::WrapUnique( tensorflow::down_cast<StreamExecutorExecutable*>(executable.release())); CompileOptions compile_options = se_executable->compile_options(); CompileOptions input_options = compile_options; TF_RETURN_IF_ERROR(compile_options.ApplyAllOptionOverrides()); TF_ASSIGN_OR_RETURN(ExecutableExtras extras, GetExecutableExtras(&compile_options)); std::vector<std::unique_ptr<LocalExecutable>> local_executables; local_executables.reserve(se_executable->aot_executables().size()); for (std::unique_ptr<xla::AotCompilationResult>& aot_executable : se_executable->aot_executables()) { TF_ASSIGN_OR_RETURN(std::string serialized, aot_executable->SerializeAsString()); TF_ASSIGN_OR_RETURN( std::unique_ptr<LocalExecutable> local_executable, client()->Load(serialized, compile_options.executable_build_options)); local_executables.push_back(std::move(local_executable)); } bool parameter_is_tupled_arguments = compile_options.parameter_is_tupled_arguments; auto ret = std::make_unique<PjRtStreamExecutorLoadedExecutable>( std::move(local_executables), parameter_is_tupled_arguments, std::move(extras.device_assignment), std::move(input_options), std::move(extras.addressable_device_logical_ids), std::move(extras.addressable_devices), this); TF_RETURN_IF_ERROR(ret->SetUpDonation(parameter_is_tupled_arguments)); return std::unique_ptr<PjRtLoadedExecutable>(std::move(ret)); } namespace { #if defined(GOOGLE_CUDA) && CUDA_VERSION >= 11020 absl::StatusOr<std::unique_ptr<se::GpuCudaMallocAsyncAllocator>> CreateCudaAsyncAllocator(const LocalDeviceState& device, double memory_fraction, bool reserve_memory, bool create_new_pool, bool sync_mode, bool compute_stats = true) { se::StreamExecutor* executor = device.executor(); int device_ordinal = executor->device_ordinal(); int64_t free_memory; int64_t total_memory; if (!executor->DeviceMemoryUsage(&free_memory, &total_memory)) { return Unavailable("Failed to query available memory from device %i", device_ordinal); } size_t allocator_memory = total_memory * memory_fraction; if (reserve_memory) { LOG(INFO) << "XLA backend allocating " << allocator_memory << " bytes on device " << device_ordinal << " for CudaAsyncAllocator."; } else { LOG(INFO) << "XLA backend will use up to " << allocator_memory << " bytes on device " << device_ordinal << " for CudaAsyncAllocator."; } auto allocator = std::make_unique<se::GpuCudaMallocAsyncAllocator>( tsl::PlatformDeviceId(device_ordinal), create_new_pool, allocator_memory, reserve_memory, reserve_memory ? allocator_memory : 0, sync_mode, compute_stats); allocator->SetStreamAndPreallocateMemory( device.compute_stream()->platform_specific_handle().stream); return allocator; } #else absl::StatusOr<std::unique_ptr<tsl::Allocator>> CreateCudaAsyncAllocator( const LocalDeviceState& device, double memory_fraction, bool reserve_memory, bool create_new_pool, bool sync_mode, bool compute_stats = true) { return FailedPrecondition("CUDA async allocator requires CUDA >= 11.2"); } #endif absl::StatusOr<std::map<int, std::unique_ptr<LocalDeviceState>>> BuildLocalDeviceStates(LocalClient* xla_client) { std::map<int, std::unique_ptr<LocalDeviceState>> addressable_devices; for (se::StreamExecutor* executor : xla_client->backend().stream_executors()) { addressable_devices.emplace( executor->device_ordinal(), std::make_unique<LocalDeviceState>( executor, xla_client, LocalDeviceState::kComputeSynchronized, 32, true, true)); } return std::move(addressable_devices); } absl::StatusOr<std::unique_ptr<se::DeviceMemoryAllocator>> GetStreamExecutorGpuDeviceAllocator( se::Platform* platform, const GpuAllocatorConfig& allocator_config, const std::map<int, std::unique_ptr<LocalDeviceState>>& addressable_devices) { std::vector<se::MultiDeviceAdapter::AllocatorInfo> allocators; switch (allocator_config.kind) { case GpuAllocatorConfig::Kind::kCudaAsync: { for (const auto& ordinal_and_device : addressable_devices) { TF_ASSIGN_OR_RETURN( auto async_allocator, CreateCudaAsyncAllocator( *(ordinal_and_device.second), allocator_config.memory_fraction, allocator_config.preallocate, false, false, true)); allocators.emplace_back(std::move(async_allocator), ordinal_and_device.second->compute_stream(), 0); } break; } case GpuAllocatorConfig::Kind::kDefault: case GpuAllocatorConfig::Kind::kBFC: { LOG(INFO) << "Using BFC allocator."; for (const auto& ordinal_and_device : addressable_devices) { TF_ASSIGN_OR_RETURN( auto bfc_allocator, CreateBFCAllocator(ordinal_and_device.second->executor(), allocator_config.memory_fraction, allocator_config.preallocate, allocator_config.gpu_system_memory_size)); allocators.emplace_back(std::move(bfc_allocator), ordinal_and_device.second->compute_stream(), 0); } break; } case GpuAllocatorConfig::Kind::kPlatform: LOG(INFO) << "Using platform allocator."; if (allocator_config.collective_memory_size != 0) { LOG(WARNING) << "collective_memory_size is non-zero, but allocator kind is set " "to \"platform\". Collective memory will not be allocated."; } return nullptr; } for (const auto& ordinal_and_device : addressable_devices) { TF_ASSIGN_OR_RETURN( auto collective_bfc_allocator, CreateCollectiveBFCAllocator( ordinal_and_device.second->executor(), 1.0 - allocator_config.memory_fraction, allocator_config.collective_memory_size)); allocators.emplace_back(std::move(collective_bfc_allocator), ordinal_and_device.second->compute_stream(), 1); } for (const auto& ordinal_and_device : addressable_devices) { auto host_allocator = GetGpuHostAllocator(ordinal_and_device.second->executor()); allocators.emplace_back(std::move(host_allocator), ordinal_and_device.second->compute_stream(), static_cast<int>(se::MemoryType::kHost)); } #if defined(GOOGLE_CUDA) && CUDA_VERSION >= 11020 const auto& debug_options = xla::GetDebugOptionsFromFlags(); if (debug_options.xla_gpu_temp_buffer_use_separate_color()) { for (const auto& ordinal_and_device : addressable_devices) { TF_ASSIGN_OR_RETURN( auto async_allocator, CreateCudaAsyncAllocator(*(ordinal_and_device.second), 1.0, false, true, true, true)); allocators.emplace_back( std::move(async_allocator), ordinal_and_device.second->compute_stream(), gpu::kTempBufferMemorySpaceColor); } } #endif return std::make_unique<se::MultiDeviceAdapter>(platform, std::move(allocators)); } void NameDeviceAndLauncherThread(const LocalTopologyProto& node, const DeviceProto& device_proto, WorkerThread* launcher_thread) { auto suffix = absl::StrFormat(":#global=%d,local=%d,process=%d,slice=%d#", device_proto.global_device_id(), device_proto.local_device_ordinal(), node.node_id(), device_proto.slice_index()); tsl::profiler::NameDevice(device_proto.local_device_ordinal(), absl::StrCat("Xla", suffix)); launcher_thread->Schedule([name = absl::StrCat("XlaLauncher", suffix)] { tsl::profiler::NameCurrentThread(name); }); } } absl::StatusOr<DeviceTopologyPair> BuildDistributedDevices( std::string_view platform_name, std::map<int, std::unique_ptr<LocalDeviceState>> local_device_states, int node_id, int num_nodes, gpu::GpuExecutableRunOptions* gpu_executable_run_options, std::shared_ptr<KeyValueStoreInterface> kv_store, bool enable_mock_nccl, absl::Duration get_local_topology_timeout, absl::Duration get_global_topology_timeout) { std::vector<std::unique_ptr<PjRtStreamExecutorDevice>> devices; LocalTopologyProto local_topology; local_topology.set_node_id(node_id); std::string boot_id_str; auto boot_id_str_or_status = GetBootIdString(); if (!boot_id_str_or_status.ok()) { LOG(INFO) << boot_id_str_or_status.status(); } else { boot_id_str = boot_id_str_or_status.value(); } local_topology.set_boot_id(boot_id_str); for (const auto& ordinal_and_device : local_device_states) { const se::Platform* platform = ordinal_and_device.second->executor()->GetPlatform(); TF_ASSIGN_OR_RETURN( std::unique_ptr<xla::se::DeviceDescription> desc, platform->DescriptionForDevice( ordinal_and_device.second->local_hardware_id().value())); DeviceProto* device_proto = local_topology.add_devices(); device_proto->set_local_device_ordinal(ordinal_and_device.first); device_proto->set_name(desc->name()); device_proto->set_vendor(desc->device_vendor()); device_proto->set_compute_capability( MakeComputeCapabilityString(desc.get())); device_proto->set_core_count(desc->core_count()); } GlobalTopologyProto global_topology; if (enable_mock_nccl) { std::vector<LocalTopologyProto> local_topologies(num_nodes, local_topology); for (int i = 0; i < num_nodes; ++i) { local_topologies[i].set_node_id(i); local_topologies[i].set_boot_id(absl::StrCat(i)); } global_topology = BuildGlobalTopology(absl::MakeSpan(local_topologies), true); } else { TF_RETURN_IF_ERROR(ExchangeTopologies( platform_name, node_id, num_nodes, get_local_topology_timeout, get_global_topology_timeout, kv_store.get(), local_topology, &global_topology, true)); } std::map<int, GlobalDeviceId> gpu_device_ids; absl::flat_hash_map<GlobalDeviceId, int> device_to_node; for (const LocalTopologyProto& node : global_topology.nodes()) { for (const DeviceProto& device_proto : node.devices()) { GlobalDeviceId global_device_id(device_proto.global_device_id()); device_to_node[global_device_id] = node.node_id(); std::unique_ptr<LocalDeviceState> local_device; if (node.node_id() == node_id) { auto it = local_device_states.find(device_proto.local_device_ordinal()); TF_RET_CHECK(it != local_device_states.end()) << device_proto.local_device_ordinal(); TF_RET_CHECK(it->second != nullptr); local_device = std::move(it->second); gpu_device_ids[device_proto.local_device_ordinal()] = global_device_id; NameDeviceAndLauncherThread(node, device_proto, local_device->execute_thread()); } auto device = std::make_unique<StreamExecutorGpuDevice>( device_proto.global_device_id(), std::move(local_device), device_proto.name(), device_proto.vendor(), device_proto.compute_capability(), device_proto.core_count(), node.node_id(), device_proto.slice_index()); devices.push_back(std::move(device)); } } for (const auto& device : local_device_states) { TF_RET_CHECK(device.second == nullptr); } gpu_executable_run_options->set_gpu_global_device_ids( std::move(gpu_device_ids)); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM if (num_nodes > 1) { auto nccl_id_store = std::make_shared<NcclIdStore>(node_id, device_to_node, std::move(kv_store)); gpu_executable_run_options->set_nccl_clique_id_callback( [nccl_id_store](const gpu::NcclCliqueKey& key) { return nccl_id_store->GetNcclUniqueId(key); }); } #endif TF_ASSIGN_OR_RETURN(GpuTopologyProto gpu_topology, BuildGpuTopology(global_topology)); return std::make_pair(std::move(devices), gpu_topology); } std::string MakeComputeCapabilityString(const se::DeviceDescription* desc) { se::GpuComputeCapability cc = desc->gpu_compute_capability(); if (std::holds_alternative<se::CudaComputeCapability>(cc)) { auto nvcc = std::get<se::CudaComputeCapability>(cc); return absl::StrCat(nvcc.major, ".", nvcc.minor); } else if (std::holds_alternative<se::RocmComputeCapability>(cc)) { auto rocmcc = std::get<se::RocmComputeCapability>(cc); return rocmcc.gfx_version(); } else { return "unknown"; } } StreamExecutorGpuDevice::StreamExecutorGpuDevice( int id, std::unique_ptr<LocalDeviceState> local_device_state, std::string device_kind, std::string device_vendor, std::string compute_capability, int core_count, int node_id, int slice_index) : PjRtStreamExecutorDevice(id, std::move(local_device_state), std::move(device_kind), node_id), device_vendor_(std::move(device_vendor)), slice_index_(slice_index) { std::array<int, 1> coords = {local_device_id().value()}; description().SetCoords(coords); std::vector<int64_t> v_coords(description().coords().begin(), description().coords().end()); description().SetAttributes( {{"coords", xla::PjRtDeviceAttribute(v_coords)}, {"device_vendor", device_vendor_}, {"slice_index", static_cast<int64_t>(slice_index)}, {"compute_capability", xla::PjRtDeviceAttribute(compute_capability)}, {"core_count", static_cast<int64_t>(core_count)}}); description().SetToString(absl::StrFormat( "StreamExecutorGpuDevice(device_kind=%s, id=%i, process_index=%i, " "slice_index=%i))", description().device_kind(), id, process_index(), slice_index)); description().SetDebugString(absl::StrFormat("%s_%i(process=%i,(%i))", description().device_kind(), id, process_index(), v_coords[0])); } int StreamExecutorGpuDevice::slice_index() const { return slice_index_; } absl::string_view StreamExecutorGpuDevice::device_vendor() const { return device_vendor_; } absl::StatusOr<tsl::AllocatorStats> StreamExecutorGpuDevice::GetAllocatorStats() const { if (!IsAddressable()) { return FailedPrecondition( "GetAllocatorStats() is allowed only for addressable devices"); } auto* allocator_adapter = dynamic_cast<se::MultiDeviceAdapter*>( tensorflow::down_cast<PjRtStreamExecutorClient*>(client())->allocator()); if (!allocator_adapter) { return Unimplemented( "GetAllocatorStats() is only implemented with MultiDeviceAdapter " "allocator"); } TF_ASSIGN_OR_RETURN(auto allocator, allocator_adapter->GetAllocator( local_device_id().value())); auto stats = allocator->GetStats(); TF_RET_CHECK(stats.has_value()); return stats.value(); } absl::Span<int const> StreamExecutorGpuDevice::coords() const { return description().coords(); } absl::StatusOr<PjRtMemorySpace*> StreamExecutorGpuDevice::default_memory_space() const { return memory_space_by_kind_id(StreamExecutorGpuHbmMemorySpace::kKindId); } const int StreamExecutorGpuHbmMemorySpace::kKindId = []() { uint32_t kind_id = tsl::Fingerprint32(StreamExecutorGpuHbmMemorySpace::kKind); return static_cast<int>(kind_id); }(); StreamExecutorGpuHbmMemorySpace::StreamExecutorGpuHbmMemorySpace( int id, PjRtDevice* device) : PjRtStreamExecutorMemorySpace(id, device, kKind, kKindId) {} absl::StatusOr<std::unique_ptr<PjRtClient>> GetStreamExecutorGpuClient( const GpuClientOptions& options) { #if TENSORFLOW_USE_ROCM auto pjrt_platform_name = xla::RocmName(); #elif TENSORFLOW_USE_SYCL auto pjrt_platform_name = xla::SyclName(); #else auto pjrt_platform_name = xla::CudaName(); #endif TF_ASSIGN_OR_RETURN( LocalClient * xla_client, GetGpuXlaClient(options.platform_name, options.allowed_devices)); std::map<int, std::unique_ptr<LocalDeviceState>> local_device_states; TF_ASSIGN_OR_RETURN(local_device_states, BuildLocalDeviceStates(xla_client)); EnablePeerAccess(xla_client->backend().stream_executors()); TF_ASSIGN_OR_RETURN(auto allocator, GetStreamExecutorGpuDeviceAllocator( xla_client->platform(), options.allocator_config, local_device_states)); auto host_memory_allocator = GetGpuHostAllocator(local_device_states.begin()->second->executor()); auto gpu_run_options = std::make_unique<gpu::GpuExecutableRunOptions>(); if (options.enable_mock_nccl) { gpu_run_options->set_enable_mock_nccl_collectives(); } std::shared_ptr<KeyValueStoreInterface> kv_store = options.kv_store; if (options.enable_mock_nccl) { kv_store = std::make_shared<InMemoryKeyValueStore>(); } TF_RET_CHECK(options.num_nodes == 1 || kv_store != nullptr); TF_ASSIGN_OR_RETURN( DeviceTopologyPair device_topology_pair, BuildDistributedDevices(pjrt_platform_name, std::move(local_device_states), options.node_id, options.num_nodes, gpu_run_options.get(), kv_store, options.enable_mock_nccl)); auto gpu_topology = std::shared_ptr<const GpuTopology>( GpuTopology::FromProto(device_topology_pair.second)); return std::unique_ptr<PjRtClient>(std::make_unique<StreamExecutorGpuClient>( pjrt_platform_name, xla_client, std::move(device_topology_pair.first), options.node_id, std::move(allocator), std::move(host_memory_allocator), options.should_stage_host_to_device_transfers, std::move(gpu_run_options), std::move(kv_store), std::move(gpu_topology))); } absl::StatusOr<std::string> StreamExecutorGpuTopologyDescription::Serialize() const { std::string result; if (!tsl::SerializeToStringDeterministic(gpu_topology_->ToProto(), &result)) { return absl::InternalError("Failed to serialize gpu_topology"); } return result; } absl::StatusOr<Layout> StreamExecutorGpuTopologyDescription::GetDefaultLayout( PrimitiveType element_type, absl::Span<const int64_t> dims) const { Shape shape = ShapeUtil::MakeShape(element_type, dims); return LayoutUtil::GetWithDefaultLayout(shape).layout(); } std::vector<std::unique_ptr<PjRtStreamExecutorDevice>> BuildLocalDevices( std::map<int, std::unique_ptr<LocalDeviceState>> local_device_states, int node_id) { std::vector<std::unique_ptr<PjRtStreamExecutorDevice>> devices; for (auto& ordinal_and_device : local_device_states) { const se::DeviceDescription& desc = ordinal_and_device.second->executor()->GetDeviceDescription(); auto device = std::make_unique<StreamExecutorGpuDevice>( ordinal_and_device.first, std::move(ordinal_and_device.second), desc.name(), desc.device_vendor(), MakeComputeCapabilityString(&desc), desc.core_count(), node_id); devices.push_back(std::move(device)); } return devices; } }
#include "xla/pjrt/gpu/se_gpu_pjrt_client.h" #include <stdlib.h> #include <array> #include <cstdint> #include <cstring> #include <memory> #include <numeric> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/client/xla_computation.h" #include "xla/ffi/ffi.h" #include "xla/ffi/ffi_api.h" #include "xla/layout.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/pjrt/distributed/in_memory_key_value_store.h" #include "xla/pjrt/gpu/gpu_topology.h" #include "xla/pjrt/host_memory_spaces.h" #include "xla/pjrt/mlir_to_hlo.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/pjrt/pjrt_stream_executor_client.h" #include "xla/service/hlo_parser.h" #include "xla/service/platform_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/stream.h" #include "xla/test.h" #include "xla/tests/literal_test_util.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" namespace xla { namespace { using ::testing::ElementsAre; using ::testing::ElementsAreArray; using ::testing::Eq; using ::testing::FloatEq; using ::testing::Ge; using ::testing::Gt; using ::testing::HasSubstr; using ::testing::SizeIs; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; absl::StatusOr<std::unique_ptr<xla::PjRtLoadedExecutable>> CompileExecutable( absl::string_view program, xla::PjRtClient& client, xla::CompileOptions compile_options = xla::CompileOptions()) { TF_ASSIGN_OR_RETURN(auto hlo_module, ParseAndReturnUnverifiedModule(program, {})); xla::XlaComputation xla_computation(hlo_module->ToProto()); return client.Compile(xla_computation, compile_options); } absl::StatusOr<std::shared_ptr<xla::Literal>> ExtractSingleResult( absl::StatusOr<std::vector<std::vector<std::unique_ptr<xla::PjRtBuffer>>>>& result) { TF_RETURN_IF_ERROR(result.status()); TF_RET_CHECK(result->size() == 1); std::vector<std::unique_ptr<xla::PjRtBuffer>>& result_buffers = (*result)[0]; TF_RET_CHECK(result_buffers.size() == 1); auto literal_or = result_buffers[0]->ToLiteralSync(); if (!literal_or.status().ok()) return literal_or.status(); return *literal_or; } static constexpr char const* kProgram = R"(HloModule HostTransfer ENTRY SendRecvSynchronous() -> f32[2] { in_chain = token[] after-all() data = f32[2] constant({2, 3}) send = (f32[2], u32[], token[]) send(data, in_chain), channel_id=1, is_host_transfer=true, frontend_attributes={ _xla_host_transfer_handler_name="undef", _xla_host_transfer_rendezvous="undef" } send-done = token[] send-done(send), channel_id=1, is_host_transfer=true recv = (f32[2], u32[], token[]) recv(send-done), channel_id=2, is_host_transfer=true, frontend_attributes={ _xla_host_transfer_handler_name="undef", _xla_host_transfer_rendezvous="undef" } recv-done = (f32[2], token[]) recv-done(recv), channel_id=2, is_host_transfer=true ROOT result = f32[2] get-tuple-element(recv-done), index=0 })"; TEST(StreamExecutorGpuClientTest, MemorySpace) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); ASSERT_GE(client->devices().size(), 1); for (auto* device : client->devices()) { TF_ASSERT_OK_AND_ASSIGN(auto* memory_space, device->default_memory_space()); EXPECT_EQ(memory_space->kind(), StreamExecutorGpuHbmMemorySpace::kKind); EXPECT_EQ(memory_space->kind_id(), StreamExecutorGpuHbmMemorySpace::kKindId); EXPECT_THAT( device->memory_space_by_kind(StreamExecutorGpuHbmMemorySpace::kKind), IsOkAndHolds(memory_space)); EXPECT_EQ(device->memory_spaces().size(), 2); auto* pinned = device->memory_spaces()[1]; EXPECT_EQ(pinned->kind_id(), PinnedHostMemorySpace::kKindId); EXPECT_THAT(device->memory_space_by_kind(PinnedHostMemorySpace::kKind), IsOkAndHolds(pinned)); } } TEST(StreamExecutorGpuClientTest, PropagateError) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); auto shape = xla::ShapeUtil::MakeScalarShape(xla::F32); absl::Status input_error = absl::InvalidArgumentError("input error"); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->CreateErrorBuffer( input_error, shape, *client->addressable_devices()[0]->default_memory_space())); static constexpr char const* kAddProgram = R"( HloModule Add.6, entry_computation_layout={(f32[], f32[])->(f32[], f32[])} ENTRY %Add.6 (a.1: f32[], b.2: f32[]) -> (f32[], f32[]) { %a.1 = f32[] parameter(0) %b.2 = f32[] parameter(1) %add.3 = f32[] add(f32[] %a.1, f32[] %b.2) %add.4 = f32[] add(f32[] %add.3, f32[] %add.3) ROOT %tuple.5 = (f32[], f32[]) tuple(f32[] %add.3, f32[] %add.4) } )"; TF_ASSERT_OK_AND_ASSIGN(auto executable, CompileExecutable(kAddProgram, *client)); TF_ASSERT_OK_AND_ASSIGN( auto result, executable->Execute({{buffer.get(), buffer.get()}}, {})); ASSERT_EQ(result.size(), 1); ASSERT_EQ(result[0].size(), 1); EXPECT_EQ(result[0][0]->GetReadyFuture().Await(), input_error); } TEST(StreamExecutorGpuClientTest, SendRecvChunked) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto executable, CompileExecutable(kProgram, *client)); std::array<float, 2> sent_value = {0.0f, 0.0f}; SendCallback send_callback = { 1, [&](const PjRtTransferMetadata& m, PjRtChunk chunk, int64_t total_size_in_bytes, bool done) { float* data = reinterpret_cast<float*>(chunk.data()); sent_value[0] = data[0]; sent_value[1] = data[1]; return absl::OkStatus(); }}; RecvCallback recv_callback = { 2, [&](const PjRtTransferMetadata& m, std::unique_ptr<CopyToDeviceStream> stream) { auto chunk0 = PjRtChunk::AllocateDefault(sizeof(float)); *reinterpret_cast<float*>(chunk0.data()) = 5.0f; TF_CHECK_OK(stream->AddChunk(std::move(chunk0)).Await()); auto chunk1 = PjRtChunk::AllocateDefault(sizeof(float)); *reinterpret_cast<float*>(chunk1.data()) = 6.0f; TF_CHECK_OK(stream->AddChunk(std::move(chunk1)).Await()); return absl::OkStatus(); }}; std::vector<std::vector<SendCallback>> send_callbacks = {{send_callback}}; std::vector<std::vector<RecvCallback>> recv_callbacks = {{recv_callback}}; ExecuteOptions opts; opts.send_callbacks = send_callbacks; opts.recv_callbacks = recv_callbacks; auto result = executable->Execute({{}}, opts); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<xla::Literal> result_literal, ExtractSingleResult(result)); EXPECT_EQ(sent_value[0], 2.0f); EXPECT_EQ(sent_value[1], 3.0f); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<float>({5.0f, 6.0f}), *result_literal)); } TEST(StreamExecutorGpuClientTest, SendErrorNoDeadLock) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto executable, CompileExecutable(kProgram, *client)); SendCallback send_callback = { 1, [&](const PjRtTransferMetadata&, PjRtChunk, int64_t, bool) { return Internal("Uh-oh, can send chunk to host"); }}; RecvCallback recv_callback = { 2, [&](const PjRtTransferMetadata& m, std::unique_ptr<CopyToDeviceStream> stream) { return absl::OkStatus(); }}; std::vector<std::vector<SendCallback>> send_callbacks = {{send_callback}}; std::vector<std::vector<RecvCallback>> recv_callbacks = {{recv_callback}}; ExecuteOptions opts; opts.send_callbacks = send_callbacks; opts.recv_callbacks = recv_callbacks; auto result = executable->Execute({{}}, opts); EXPECT_TRUE(absl::StrContains(result.status().message(), "Uh-oh, can send chunk to host")); } TEST(StreamExecutorGpuClientTest, RecvErrorNoDeadLock) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto executable, CompileExecutable(kProgram, *client)); SendCallback send_callback = { 1, [&](const PjRtTransferMetadata&, PjRtChunk, int64_t, bool) { return absl::OkStatus(); }}; RecvCallback recv_callback = { 2, [&](const PjRtTransferMetadata& m, std::unique_ptr<CopyToDeviceStream> stream) { auto chunk = PjRtChunk::AllocateDefault(10 * sizeof(float)); stream->AddChunk(std::move(chunk)).Await().IgnoreError(); return absl::OkStatus(); }}; std::vector<std::vector<SendCallback>> send_callbacks = {{send_callback}}; std::vector<std::vector<RecvCallback>> recv_callbacks = {{recv_callback}}; ExecuteOptions opts; opts.send_callbacks = send_callbacks; opts.recv_callbacks = recv_callbacks; auto result = executable->Execute({{}}, opts); EXPECT_TRUE(absl::StrContains(result.status().message(), "Adding chunk of size 40 would overflow buffer " "of size 8 (0 already transferred)")); } struct MemsetValue { explicit MemsetValue(float value) : value(value) {} float value; }; static absl::Status MemsetFromValue( se::Stream* stream, ffi::Result<ffi::BufferR1<PrimitiveType::F32>> result, MemsetValue* memset_value) { uint32_t pattern; std::memcpy(&pattern, &memset_value->value, sizeof(pattern)); se::DeviceMemoryBase base = result->device_memory(); return stream->Memset32(&base, pattern, base.size()); } XLA_FFI_DEFINE_HANDLER(kMemsetFromValue, MemsetFromValue, ffi::Ffi::Bind() .Ctx<ffi::Stream>() .Ret<ffi::BufferR1<PrimitiveType::F32>>() .Ctx<ffi::UserData<MemsetValue>>()); XLA_FFI_REGISTER_HANDLER(ffi::GetXlaFfiApi(), "MemsetFromValue", PlatformUtil::CanonicalPlatformName("GPU").value(), kMemsetFromValue); TEST(StreamExecutorGpuClientTest, ForwardUserDataToFfiHandler) { static constexpr char const* kProgram = R"( HloModule ffi_handler ENTRY main { ROOT %custom-call = f32[4] custom-call(), custom_call_target="MemsetFromValue", api_version=API_VERSION_TYPED_FFI })"; TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto executable, CompileExecutable(kProgram, *client)); ExecuteContext context; TF_ASSERT_OK(context.ffi_context().Emplace<MemsetValue>(42.0f)); ExecuteOptions opts; opts.context = &context; auto result = executable->Execute({{}}, opts); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<xla::Literal> result_literal, ExtractSingleResult(result)); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR1<float>({42.0f, 42.0f, 42.0f, 42.0f}), *result_literal)); } TEST(StreamExecutorGpuClientTest, ToLiteralAsync) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); ASSERT_GE(client->addressable_devices().size(), 1); auto src_literal = LiteralUtil::CreateR1<float>({41.0f, 42.0f, 43.0f, 44.0f}); TF_ASSERT_OK_AND_ASSIGN( auto transfer_manager, client->CreateBuffersForAsyncHostToDevice( {src_literal.shape()}, client->addressable_devices()[0])); auto buffer = transfer_manager->RetrieveBuffer(0); absl::Mutex mu; auto literal = std::make_shared<Literal>( ShapeUtil::DeviceShapeToHostShape(buffer->on_device_shape())); bool got_literal = false; TF_ASSERT_OK( transfer_manager->TransferLiteralToBuffer(0, src_literal, [&]() {})); buffer->ToLiteral(literal.get()).OnReady([&](absl::Status s) { absl::MutexLock l(&mu); TF_ASSERT_OK(s); got_literal = true; }); buffer.reset(); { absl::MutexLock l(&mu); mu.Await(absl::Condition(&got_literal)); } ASSERT_TRUE(ShapeUtil::Compatible(src_literal.shape(), literal->shape())); ASSERT_EQ(src_literal.data<float>(), literal->Relayout(src_literal.shape().layout()).data<float>()); } TEST(StreamExecutorGpuClientTest, ToLiteralAsyncWithNonCompactLayout) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); ASSERT_GE(client->addressable_devices().size(), 1); xla::Shape transposed_shape = xla::ShapeUtil::MakeShapeWithDenseLayout( xla::S32, {2, 3}, {0, 1}); xla::Literal src_literal = xla::LiteralUtil::CreateR2WithLayout<int32_t>( {{3, 14, 25}, {36, 47, 58}}, transposed_shape.layout()); PjRtClient::ShapeSpec spec; spec.element_type = src_literal.shape().element_type(); spec.dims = DimensionVector(src_literal.shape().dimensions().begin(), src_literal.shape().dimensions().end()); TF_ASSERT_OK_AND_ASSIGN( auto transfer_manager, client->CreateBuffersForAsyncHostToDevice( {spec}, std::make_optional<absl::Span<const Layout>>( {transposed_shape.layout()}), client->addressable_devices()[0]->memory_spaces()[0])); auto buffer = transfer_manager->RetrieveBuffer(0); absl::Mutex mu; auto literal = std::make_shared<Literal>( ShapeUtil::DeviceShapeToHostShape(buffer->on_device_shape())); bool got_literal = false; TF_ASSERT_OK( transfer_manager->TransferLiteralToBuffer(0, src_literal, [&]() {})); buffer->ToLiteral(literal.get()).OnReady([&](absl::Status s) { absl::MutexLock l(&mu); TF_ASSERT_OK(s); got_literal = true; }); buffer.reset(); { absl::MutexLock l(&mu); mu.Await(absl::Condition(&got_literal)); } ASSERT_TRUE(ShapeUtil::Compatible(src_literal.shape(), literal->shape())); ASSERT_EQ(src_literal.data<int32_t>(), literal->Relayout(src_literal.shape().layout()).data<int32_t>()); } TEST(StreamExecutorGpuClientTest, ToLiteralAsyncBeforeBufferReady) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); ASSERT_GE(client->addressable_devices().size(), 1); auto src_literal = LiteralUtil::CreateR1<float>({41.0f, 42.0f, 43.0f, 44.0f}); TF_ASSERT_OK_AND_ASSIGN( auto transfer_manager, client->CreateBuffersForAsyncHostToDevice( {src_literal.shape()}, client->addressable_devices()[0])); auto buffer = transfer_manager->RetrieveBuffer(0); absl::Mutex mu; auto literal = std::make_shared<Literal>( ShapeUtil::DeviceShapeToHostShape(buffer->on_device_shape())); bool got_literal = false; buffer->ToLiteral(literal.get()).OnReady([&](absl::Status s) { absl::MutexLock l(&mu); TF_ASSERT_OK(s); got_literal = true; }); absl::SleepFor(absl::Milliseconds(10)); ASSERT_FALSE(got_literal); TF_ASSERT_OK( transfer_manager->TransferLiteralToBuffer(0, src_literal, [&]() {})); buffer.reset(); { absl::MutexLock l(&mu); mu.Await(absl::Condition(&got_literal)); } ASSERT_TRUE(ShapeUtil::Compatible(src_literal.shape(), literal->shape())); ASSERT_EQ(src_literal.data<float>(), literal->Relayout(src_literal.shape().layout()).data<float>()); } TEST(StreamExecutorGpuClientTest, FromHostAsync) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); ASSERT_GE(client->addressable_devices().size(), 1); std::vector<Literal> src_literals; std::vector<Shape> src_shapes; for (int i = 0; i < 4; ++i) { std::vector<float> data(i + 1); std::iota(data.begin(), data.end(), static_cast<float>(i + 10)); src_literals.emplace_back(LiteralUtil::CreateR1<float>(data)); src_shapes.push_back(src_literals.back().shape()); } TF_ASSERT_OK_AND_ASSIGN(auto transfer_manager, client->CreateBuffersForAsyncHostToDevice( src_shapes, client->addressable_devices()[0])); std::vector<std::unique_ptr<PjRtBuffer>> buffers; for (int i = 0; i < src_shapes.size(); ++i) { buffers.emplace_back(transfer_manager->RetrieveBuffer(i)); } for (int i = 0; i < src_shapes.size(); ++i) { TF_ASSERT_OK(transfer_manager->TransferRawDataToBuffer( i, absl::string_view(static_cast<char*>(src_literals[i].untyped_data()), src_literals[i].size_bytes()), [&]() {})); } absl::Mutex mu; std::vector<std::shared_ptr<Literal>> literals; int got_literal_count = 0; int got_callback_count = 0; for (auto& buffer : buffers) { literals.push_back(std::make_shared<Literal>( ShapeUtil::DeviceShapeToHostShape(buffer->on_device_shape()))); buffer->ToLiteral(literals.back().get()).OnReady([&](absl::Status s) { absl::MutexLock l(&mu); TF_ASSERT_OK(s); ++got_literal_count; }); buffer->GetReadyFuture().OnReady([&](absl::Status s) { absl::MutexLock l(&mu); TF_ASSERT_OK(s); ++got_callback_count; }); buffer.reset(); } { auto done = [&]() { return got_literal_count == src_literals.size() && got_callback_count == src_literals.size(); }; absl::MutexLock l(&mu); mu.Await(absl::Condition(&done)); } for (int i = 0; i < src_literals.size(); ++i) { ASSERT_TRUE( ShapeUtil::Compatible(src_literals[i].shape(), literals[i]->shape())); ASSERT_EQ( src_literals[i].data<float>(), literals[i]->Relayout(src_literals[i].shape().layout()).data<float>()); } } TEST(StreamExecutorGpuClientTest, FromHostAsyncPinnedHost) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); ASSERT_GE(client->addressable_devices().size(), 1); TF_ASSERT_OK_AND_ASSIGN( auto* pinned_memory_space, client->addressable_devices()[0]->memory_space_by_kind( PinnedHostMemorySpace::kKind)); std::vector<Literal> src_literals; std::vector<Shape> src_shapes; for (int i = 0; i < 4; ++i) { std::vector<float> data(i + 1); std::iota(data.begin(), data.end(), static_cast<float>(i + 10)); src_literals.emplace_back(LiteralUtil::CreateR1<float>(data)); src_shapes.push_back(src_literals.back().shape()); } TF_ASSERT_OK_AND_ASSIGN(auto transfer_manager, client->CreateBuffersForAsyncHostToDevice( src_shapes, pinned_memory_space)); std::vector<std::unique_ptr<PjRtBuffer>> buffers; for (int i = 0; i < src_shapes.size(); ++i) { buffers.emplace_back(transfer_manager->RetrieveBuffer(i)); } for (int i = 0; i < src_shapes.size(); ++i) { TF_ASSERT_OK(transfer_manager->TransferRawDataToBuffer( i, absl::string_view(static_cast<char*>(src_literals[i].untyped_data()), src_literals[i].size_bytes()), [&]() {})); } absl::Mutex mu; std::vector<std::shared_ptr<Literal>> literals; int got_literal_count = 0; int got_callback_count = 0; for (auto& buffer : buffers) { literals.push_back(std::make_shared<Literal>( ShapeUtil::DeviceShapeToHostShape(buffer->on_device_shape()))); buffer->ToLiteral(literals.back().get()).OnReady([&](absl::Status s) { absl::MutexLock l(&mu); TF_ASSERT_OK(s); ++got_literal_count; }); buffer->GetReadyFuture().OnReady([&](absl::Status s) { absl::MutexLock l(&mu); TF_ASSERT_OK(s); ++got_callback_count; }); buffer.reset(); } { auto done = [&]() { return got_literal_count == src_literals.size() && got_callback_count == src_literals.size(); }; absl::MutexLock l(&mu); mu.Await(absl::Condition(&done)); } for (int i = 0; i < src_literals.size(); ++i) { ASSERT_TRUE( ShapeUtil::Compatible(src_literals[i].shape(), literals[i]->shape())); ASSERT_EQ( src_literals[i].data<float>(), literals[i]->Relayout(src_literals[i].shape().layout()).data<float>()); } } TEST(StreamExecutorGpuClientTest, FromHostAsyncPinnedHostChunked) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<PjRtClient> client, GetStreamExecutorGpuClient(GpuClientOptions())); ASSERT_THAT(client->addressable_devices(), SizeIs(Gt(0))); TF_ASSERT_OK_AND_ASSIGN( PjRtMemorySpace * memspace, client->addressable_devices()[0]->memory_space_by_kind( PinnedHostMemorySpace::kKind)); std::vector<float> data{1, 3, 5, 7, 11, 13, 17, 19}; Shape shape = ShapeUtil::MakeShape(F32, {static_cast<int64_t>(data.size())}); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<PjRtClient::AsyncHostToDeviceTransferManager> txm, client->CreateBuffersForAsyncHostToDevice({shape}, memspace)); std::unique_ptr<PjRtBuffer> buf = txm->RetrieveBuffer(0); ASSERT_THAT(buf->GetReadyFuture().IsReady(), Eq(false)); absl::string_view raw_view(reinterpret_cast<char*>(data.data()), data.size() * sizeof(data[0])); int offset = 0; while (true) { int end = offset + 3; if (end > raw_view.size()) { end = raw_view.size(); } int sz = end - offset; bool reaches_end = end == raw_view.size(); TF_ASSERT_OK(txm->TransferRawDataToSubBuffer( 0, raw_view.data() + offset, offset, sz, reaches_end, []() {})); if (reaches_end) { break; } offset = end; } TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<Literal> lit, buf->ToLiteralSync()); EXPECT_THAT(lit->data<float>(), ElementsAreArray(data)); } TEST(StreamExecutorGpuClientTest, DeleteBufferThenFulfillBufferNoDeadLock) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<PjRtClient> client, GetStreamExecutorGpuClient(GpuClientOptions())); ASSERT_THAT(client->addressable_devices(), SizeIs(Gt(0))); TF_ASSERT_OK_AND_ASSIGN( PjRtMemorySpace * memspace, client->addressable_devices()[0]->memory_space_by_kind( PinnedHostMemorySpace::kKind)); std::vector<float> data{1, 3, 5, 7, 11, 13, 17, 19}; Shape shape = ShapeUtil::MakeShape(F32, {static_cast<int64_t>(data.size())}); std::vector<std::unique_ptr<PjRtClient::AsyncHostToDeviceTransferManager>> txms; for (int i = 0; i < 10000; ++i) { TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<PjRtClient::AsyncHostToDeviceTransferManager> txm, client->CreateBuffersForAsyncHostToDevice({shape}, memspace)); std::unique_ptr<PjRtBuffer> buf = txm->RetrieveBuffer(0); ASSERT_THAT(buf->GetReadyFuture().IsReady(), Eq(false)); txms.push_back(std::move(txm)); } absl::string_view raw_view(reinterpret_cast<char*>(data.data()), data.size() * sizeof(data[0])); for (auto& txm : txms) { int offset = 0; while (true) { int end = offset + 3; if (end > raw_view.size()) { end = raw_view.size(); } int sz = end - offset; bool reaches_end = end == raw_view.size(); TF_ASSERT_OK(txm->TransferRawDataToSubBuffer( 0, raw_view.data() + offset, offset, sz, reaches_end, []() {})); if (reaches_end) { break; } offset = end; } } } TEST(StreamExecutorGpuClientTest, CopyRawToHostFullBuffer) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); auto literal = xla::LiteralUtil::CreateR1<float>({41.0f, 42.0f}); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<PjRtBuffer> buffer, client->BufferFromHostLiteral(literal, client->addressable_devices()[0])); void* dst = aligned_alloc(buffer->GetOnDeviceSizeInBytes().value(), 0); auto result = buffer->CopyRawToHost(dst, 0, buffer->GetOnDeviceSizeInBytes().value()); TF_EXPECT_OK(result.Await()); EXPECT_EQ(*(static_cast<float*>(dst)), 41.0f); EXPECT_EQ(*(static_cast<float*>(dst) + 1), 42.0f); free(dst); } TEST(StreamExecutorGpuClientTest, CopyRawToHostSubBuffer) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); auto literal = xla::LiteralUtil::CreateR1<float>({41.0f, 42.0f}); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<PjRtBuffer> buffer, client->BufferFromHostLiteral(literal, client->addressable_devices()[0])); void* dst = aligned_alloc(buffer->GetOnDeviceSizeInBytes().value(), 0); auto result = buffer->CopyRawToHost(dst, 0, sizeof(float)); TF_EXPECT_OK(result.Await()); EXPECT_EQ(*(static_cast<float*>(dst)), 41.0f); free(dst); } TEST(StreamExecutorGpuClientTest, CopyRawToHostOutOfRange) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); auto literal = xla::LiteralUtil::CreateR1<float>({41.0f, 42.0f}); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<PjRtBuffer> buffer, client->BufferFromHostLiteral(literal, client->addressable_devices()[0])); void* dst = aligned_alloc(buffer->GetOnDeviceSizeInBytes().value(), 0); auto result = buffer->CopyRawToHost(dst, 1, buffer->GetOnDeviceSizeInBytes().value()); EXPECT_THAT(result.Await(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("invalid offset 1"))); free(dst); } TEST(StreamExecutorGpuClientTest, CopyRawToHostFuture) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); auto literal = xla::LiteralUtil::CreateR1<float>({41.0f, 42.0f}); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<PjRtBuffer> buffer, client->BufferFromHostLiteral(literal, client->addressable_devices()[0])); auto dst_promise = xla::PjRtFuture<void*>::CreatePromise(); xla::PjRtFuture<void*> dst_future(dst_promise); TF_ASSERT_OK_AND_ASSIGN(int64_t size, buffer->GetOnDeviceSizeInBytes()); auto ready = buffer->GetReadyFuture(); auto result = buffer->CopyRawToHostFuture(dst_future, 0, size); buffer.reset(); ready.OnReady([dst_promise = std::move(dst_promise), size](absl::Status status) mutable { dst_promise.Set(aligned_alloc(size, 0)); }); TF_EXPECT_OK(result.Await()); TF_ASSERT_OK_AND_ASSIGN(auto* dst, dst_future.Await()); EXPECT_EQ(*(static_cast<float*>(dst)), 41.0f); EXPECT_EQ(*(static_cast<float*>(dst) + 1), 42.0f); free(dst); } TEST(StreamExecutorGpuClientTest, AsyncCopyToDevice) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); ASSERT_GE(client->addressable_devices().size(), 2); auto* d0 = client->addressable_devices()[0]; auto* d1 = client->addressable_devices()[1]; auto src_literal = LiteralUtil::CreateR1<float>({41.0f, 42.0f, 43.0f, 44.0f}); TF_ASSERT_OK_AND_ASSIGN( auto transfer_manager, client->CreateBuffersForAsyncHostToDevice({src_literal.shape()}, d0)); auto src_buffer = transfer_manager->RetrieveBuffer(0); auto local_recv_buffer = *src_buffer->CopyToDevice(d1); TF_ASSERT_OK( transfer_manager->TransferLiteralToBuffer(0, src_literal, []() {})); auto literal = std::make_shared<Literal>(src_literal.shape()); auto local_recv_literal = local_recv_buffer->ToLiteral(literal.get()); TF_EXPECT_OK(local_recv_literal.Await()); ASSERT_TRUE(ShapeUtil::Compatible(src_literal.shape(), literal->shape())); ASSERT_EQ(src_literal.data<float>(), literal->Relayout(src_literal.shape().layout()).data<float>()); } TEST(StreamExecutorGpuClientTest, CreateMixOfErrorBuffers) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); ASSERT_GE(client->addressable_devices().size(), 1); std::vector<Literal> src_literals; std::vector<Shape> src_shapes; for (int i = 0; i < 4; ++i) { std::vector<float> data(i + 1); std::iota(data.begin(), data.end(), static_cast<float>(i + 10)); src_literals.emplace_back(LiteralUtil::CreateR1<float>(data)); src_shapes.push_back(src_literals.back().shape()); } TF_ASSERT_OK_AND_ASSIGN( auto transfer_manager, client->CreateBuffersForAsyncHostToDevice( src_shapes, client->addressable_devices()[0]->memory_spaces()[0])); std::vector<std::unique_ptr<PjRtBuffer>> buffers; for (int i = 0; i < src_shapes.size(); ++i) { buffers.emplace_back(transfer_manager->RetrieveBuffer(i)); } absl::Mutex mu; int got_callback_count = 0; for (int i = 0; i < 4; ++i) { auto& buffer = buffers[i]; if (i == 0 || i == 3) { TF_ASSERT_OK(transfer_manager->TransferLiteralToBuffer(i, src_literals[i], [&]() {})); buffer->GetReadyFuture().OnReady([&](absl::Status s) { absl::MutexLock l(&mu); TF_ASSERT_OK(s); ++got_callback_count; }); } else { absl::Status error = Internal("error %d", i); transfer_manager->SetBufferError(i, error); buffer->GetReadyFuture().OnReady( [error, &mu, &got_callback_count](absl::Status s) { absl::MutexLock l(&mu); ASSERT_EQ(s, error); ++got_callback_count; }); } buffer.reset(); } { auto done = [&]() { return got_callback_count == src_literals.size(); }; absl::MutexLock l(&mu); QCHECK(mu.AwaitWithTimeout(absl::Condition(&done), absl::Seconds(60))); } } TEST(GpuTopology, FromProto) { GpuTopologyProto msg; ASSERT_TRUE(tsl::protobuf::TextFormat::ParseFromString( R"pb( device_ids: [ 3, 2, 1 ] platform_version: "platform_version" num_slices: 2 num_hosts_per_slice: 1 num_devices_per_host: 3 )pb", &msg)); std::unique_ptr<const GpuTopology> gpu_topology = GpuTopology::FromProto(msg); EXPECT_THAT(gpu_topology->device_ids(), ElementsAre(3, 2, 1)); EXPECT_THAT(gpu_topology->platform_version(), "platform_version"); EXPECT_THAT(gpu_topology->num_slices(), 2); EXPECT_THAT(gpu_topology->num_hosts_per_slice(), 1); EXPECT_THAT(gpu_topology->num_devices_per_host(), 3); } TEST(GpuTopology, ToProto) { GpuTopology gpu_topology({3, 2, 1}, "platform_version", 2, 1, 3); GpuTopologyProto msg = gpu_topology.ToProto(); EXPECT_THAT(msg.device_ids(), ElementsAre(3, 2, 1)); EXPECT_THAT(msg.platform_version(), "platform_version"); EXPECT_THAT(msg.num_slices(), 2); EXPECT_THAT(msg.num_hosts_per_slice(), 1); EXPECT_THAT(msg.num_devices_per_host(), 3); } TEST(StreamExecutorGpuClientTest, DistributedInit) { auto kv_store = std::make_shared<InMemoryKeyValueStore>(); tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "DistributeInit", 4); int num_nodes = 2; for (int i = 0; i < num_nodes; i++) { thread_pool.Schedule([kv_store, i, num_nodes] { GpuClientOptions options; options.node_id = i; options.num_nodes = num_nodes; options.kv_store = kv_store; TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(options)); EXPECT_TRUE(client->platform_name() == "cuda" || client->platform_name() == "rocm"); EXPECT_EQ(client->addressable_device_count(), 2); EXPECT_EQ(client->device_count(), 4); }); } } TEST(StreamExecutorGpuClientTest, GetAllocatorStatsTest) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); ASSERT_GE(client->addressable_devices().size(), 2); for (auto device : client->addressable_devices()) { const xla::Literal literal = xla::LiteralUtil::CreateR0<int32_t>(0); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<PjRtBuffer> buffer, client->BufferFromHostLiteral(literal, device)); auto stats = device->GetAllocatorStats(); TF_ASSERT_OK(stats.status()); ASSERT_GT(stats.value().peak_bytes_in_use, 0); } } TEST(StreamExecutorGpuClientTest, GpuDeviceDescriptionTest) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); for (int device_index = 0; device_index < client->device_count(); device_index++) { auto coords = static_cast<PjRtStreamExecutorDevice*>(client->devices()[device_index]) ->description() .coords(); EXPECT_EQ(coords[0], device_index); } } TEST(StreamExecutorGpuClientTest, MockNcclClientTest) { const int num_nodes = 4; GpuClientOptions options; options.num_nodes = num_nodes; options.enable_mock_nccl = true; TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(options)); auto devices_per_host = client->addressable_device_count(); EXPECT_EQ(devices_per_host, 2); EXPECT_EQ(client->device_count(), devices_per_host * num_nodes); for (int i = 0; i < client->device_count(); i++) { auto device = client->devices()[i]; auto slice_index = std::get<int64_t>(device->Attributes().at("slice_index")); auto host_index = device->process_index(); EXPECT_EQ(slice_index, host_index); } } TEST(StreamExecutorGpuClientTest, BufferFromHostBufferPinnedMemory) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); std::vector<int32_t> data{1, 2, 3, 4}; Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto* pinned_memory_space, client->addressable_devices()[0]->memory_space_by_kind( PinnedHostMemorySpace::kKind)); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, pinned_memory_space, nullptr)); EXPECT_EQ(buffer->memory_space()->kind(), "pinned_host"); EXPECT_TRUE(buffer->IsOnCpu()); TF_ASSERT_OK_AND_ASSIGN(auto literal, buffer->ToLiteralSync()); std::vector<int32_t> expected{1, 2, 3, 4}; EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } TEST(StreamExecutorGpuClientTest, CopyToPinnedHostMemorySpace) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); std::vector<int32_t> data{1, 2, 3, 4}; Shape shape = ShapeUtil::MakeShape(S32, {4}); auto device = client->addressable_devices()[0]; TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, device)); EXPECT_EQ(buffer->memory_space()->kind(), "device"); auto* pinned_memory_space = device->memory_spaces()[1]; EXPECT_EQ(pinned_memory_space->kind_id(), PinnedHostMemorySpace::kKindId); TF_ASSERT_OK_AND_ASSIGN(auto result, buffer->CopyToMemorySpace(pinned_memory_space)); EXPECT_EQ(result->memory_space()->kind(), "pinned_host"); EXPECT_TRUE(result->IsOnCpu()); TF_ASSERT_OK_AND_ASSIGN(auto literal, result->ToLiteralSync()); std::vector<int32_t> expected{1, 2, 3, 4}; EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } TEST(StreamExecutorGpuClientTest, CopyToPinnedHostMemorySpaceInt4) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); std::vector<int8_t> data{1, 2, 3, 4}; Shape shape = ShapeUtil::MakeShape(S4, {4}); auto device = client->addressable_devices()[0]; TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, device)); EXPECT_EQ(buffer->memory_space()->kind(), "device"); auto* pinned_memory_space = device->memory_spaces()[1]; EXPECT_EQ(pinned_memory_space->kind_id(), PinnedHostMemorySpace::kKindId); TF_ASSERT_OK_AND_ASSIGN(auto result, buffer->CopyToMemorySpace(pinned_memory_space)); EXPECT_EQ(result->memory_space()->kind(), "pinned_host"); EXPECT_TRUE(result->IsOnCpu()); TF_ASSERT_OK_AND_ASSIGN(auto literal, result->ToLiteralSync()); std::vector<xla::s4> expected{xla::s4(1), xla::s4(2), xla::s4(3), xla::s4(4)}; EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<xla::s4>(expected), *literal)); } TEST(StreamExecutorGpuClientTest, OpaqueDeviceMemoryDataPointer) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<PjRtClient> client, GetStreamExecutorGpuClient(GpuClientOptions())); ASSERT_THAT(client->addressable_devices(), SizeIs(Gt(0))); PjRtDevice* device = client->addressable_devices()[0]; TF_ASSERT_OK_AND_ASSIGN( PjRtMemorySpace * memspace, device->memory_space_by_kind(PinnedHostMemorySpace::kKind)); std::vector<float> float_data{12.0, 34.0, 56.0, 78.0}; Shape shape = ShapeUtil::MakeShapeWithType<float>({4}); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<PjRtBuffer> buf, client->BufferFromHostBuffer( static_cast<const void*>(float_data.data()), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, memspace, nullptr)); ASSERT_THAT(buf->IsOnCpu(), true); TF_ASSERT_OK_AND_ASSIGN(size_t buf_sz, buf->GetOnDeviceSizeInBytes()); ASSERT_THAT(buf_sz, Ge(sizeof(float) * 4)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<PjRtBuffer::ExternalReference> ref, buf->AcquireExternalReference()); TF_ASSERT_OK(buf->GetReadyFuture().Await()); const float* float_ptr = reinterpret_cast<const float*>(ref->OpaqueDeviceMemoryDataPointer()); EXPECT_THAT(*float_ptr, FloatEq(12.0)); EXPECT_THAT(*(float_ptr + 1), FloatEq(34.0)); EXPECT_THAT(*(float_ptr + 2), FloatEq(56.0)); EXPECT_THAT(*(float_ptr + 3), FloatEq(78.0)); TF_ASSERT_OK_AND_ASSIGN(PjRtMemorySpace * default_ms, device->default_memory_space()); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<PjRtClient::AsyncHostToDeviceTransferManager> txm, client->CreateBuffersForAsyncHostToDevice({shape}, default_ms)); TF_ASSERT_OK(txm->TransferRawDataToBuffer( 0, absl::string_view( static_cast<const char*>(ref->OpaqueDeviceMemoryDataPointer()), buf_sz), []() {})); std::unique_ptr<PjRtBuffer> hbm_buf = txm->RetrieveBuffer(0); EXPECT_THAT(hbm_buf->GetOnDeviceSizeInBytes(), IsOkAndHolds(buf_sz)); EXPECT_THAT(hbm_buf->HostShape(), IsOkAndHolds(shape)); TF_ASSERT_OK(hbm_buf->GetReadyFuture().Await()); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<xla::Literal> literal, hbm_buf->ToLiteralSync()); EXPECT_THAT(literal->data<float>(), ElementsAreArray(float_data)); } namespace { absl::StatusOr<std::unique_ptr<PjRtBuffer>> CreateDeviceBufferForTest( xla::PjRtClient* client) { auto device = client->addressable_devices()[0]; TF_EXPECT_OK(device->default_memory_space()); std::vector<int32_t> data{1, 2, 3, 4}; Shape shape = ShapeUtil::MakeShapeWithDenseLayout(S32, {4}, {0}); TF_ASSIGN_OR_RETURN( auto input, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, device)); EXPECT_EQ(input->memory_space()->kind(), "device"); return input; } constexpr char const* kD2HProgram = R"( HloModule f ENTRY main.5 { p = s32[4]{0} parameter(0) ROOT cc = s32[4] custom-call(p), custom_call_target="annotate_device_placement", frontend_attributes={_xla_buffer_placement="pinned_host"} } )"; constexpr char const* kD2HProgramTupleOutput = R"( HloModule f ENTRY main.5 { p = s32[4]{0} parameter(0) cc = s32[4] custom-call(p), custom_call_target="annotate_device_placement", frontend_attributes={_xla_buffer_placement="pinned_host"} ROOT tuple = (s32[4]{0}, s32[4]{0}) tuple(s32[4]{0} p, s32[4]{0} cc) } )"; constexpr char const* kCollectiveMemorySpaceOutput = R"( HloModule jit__psum, entry_computation_layout={(s32[1,4]{1,0})->s32[4]{0}} region_0.3 { Arg_0.0 = s32[] parameter(0) Arg_1.0 = s32[] parameter(1) ROOT add.0 = s32[] add(Arg_0.0, Arg_1.0) } ENTRY main.10_spmd { param = s32[1,4]{1,0} parameter(0) reshape = s32[4]{0} reshape(param) ROOT all-reduce = s32[4]{0} all-reduce(reshape), channel_id=1, to_apply=region_0.3 } )"; } TEST(StreamExecutorGpuClientTest, ExecutePinnedHostOutputTest) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto input, CreateDeviceBufferForTest(client.get())); TF_ASSERT_OK_AND_ASSIGN(auto executable, CompileExecutable(kD2HProgram, *client)); TF_ASSERT_OK_AND_ASSIGN( auto result, executable->Execute({{input.get()}}, ExecuteOptions())); std::vector<std::unique_ptr<xla::PjRtBuffer>>& result_buffers = result[0]; EXPECT_EQ(result_buffers[0]->memory_space()->kind(), "pinned_host"); TF_ASSERT_OK_AND_ASSIGN(auto memory_stats, executable->GetCompiledMemoryStats()); EXPECT_EQ(memory_stats.output_size_in_bytes, 0); EXPECT_EQ(memory_stats.host_output_size_in_bytes, 16); } TEST(StreamExecutorGpuClientTest, ExecutePinnedHostOutputTupleTest) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto input, CreateDeviceBufferForTest(client.get())); Shape host_shape = input->on_device_shape(); host_shape.mutable_layout()->set_memory_space(Layout::kHostMemorySpace); Shape out_shape = ShapeUtil::MakeTupleShape({input->on_device_shape(), host_shape}); xla::CompileOptions options; options.executable_build_options.set_result_layout(out_shape); TF_ASSERT_OK_AND_ASSIGN( auto executable, CompileExecutable(kD2HProgramTupleOutput, *client, options)); ExecuteOptions execute_options; execute_options.untuple_result = true; TF_ASSERT_OK_AND_ASSIGN( auto result, executable->Execute({{input.get()}}, execute_options)); std::vector<std::unique_ptr<xla::PjRtBuffer>>& result_buffers = result[0]; EXPECT_EQ(result_buffers.size(), 2); EXPECT_EQ(result_buffers[0]->memory_space()->kind(), "device"); EXPECT_EQ(result_buffers[1]->memory_space()->kind(), "pinned_host"); } TEST(StreamExecutorGpuClientTest, ExecutablePinnedHostOutputMemoryKindTest) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto executable, CompileExecutable(kD2HProgram, *client)); TF_ASSERT_OK_AND_ASSIGN(auto memory_kinds, executable->GetOutputMemoryKinds()); EXPECT_EQ(memory_kinds.size(), 1); EXPECT_EQ(memory_kinds[0].size(), 1); EXPECT_EQ(memory_kinds[0][0], "pinned_host"); } TEST(StreamExecutorGpuClientTest, ExecutableCollectiveMemoryOutputMemoryKindTest) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); xla::CompileOptions options; options.executable_build_options.mutable_debug_options() ->set_xla_gpu_enable_nccl_user_buffers(true); TF_ASSERT_OK_AND_ASSIGN( auto executable, CompileExecutable(kCollectiveMemorySpaceOutput, *client, options)); std::vector<int32_t> data{1, 2, 3, 4}; Shape shape = ShapeUtil::MakeShapeWithDenseLayout(S32, {1, 4}, {1, 0}); shape.mutable_layout()->set_memory_space(Layout::kDefaultMemorySpace); auto device = client->addressable_devices()[0]; TF_EXPECT_OK(device->default_memory_space()); TF_ASSERT_OK_AND_ASSIGN( auto input, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, device)); EXPECT_EQ(input->memory_space()->kind(), "device"); TF_ASSERT_OK_AND_ASSIGN(auto memory_kinds, executable->GetOutputMemoryKinds()); EXPECT_EQ(memory_kinds.size(), 1); EXPECT_EQ(memory_kinds[0].size(), 1); EXPECT_EQ(memory_kinds[0][0], "device"); TF_ASSERT_OK_AND_ASSIGN( auto result, executable->Execute({{input.get()}}, ExecuteOptions())); std::vector<std::unique_ptr<xla::PjRtBuffer>>& result_buffers = result[0]; EXPECT_EQ(result_buffers[0]->memory_space()->kind(), "device"); Shape result_shape = result_buffers[0]->on_device_shape(); auto memory_space = result_shape.layout().memory_space(); EXPECT_EQ(memory_space, 1); } TEST(StreamExecutorGpuClientTest, ExecutablePinnedHostTupleOutputMemoryKindTest) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); Shape shape = ShapeUtil::MakeShapeWithDenseLayout(S32, {4}, {0}); Shape host_shape = shape; host_shape.mutable_layout()->set_memory_space(Layout::kHostMemorySpace); Shape out_shape = ShapeUtil::MakeTupleShape({shape, host_shape}); xla::CompileOptions options; options.executable_build_options.set_result_layout(out_shape); TF_ASSERT_OK_AND_ASSIGN( auto executable, CompileExecutable(kD2HProgramTupleOutput, *client, options)); TF_ASSERT_OK_AND_ASSIGN(auto memory_kinds, executable->GetOutputMemoryKinds()); EXPECT_EQ(memory_kinds.size(), 1); EXPECT_EQ(memory_kinds[0].size(), 2); EXPECT_EQ(memory_kinds[0][0], "device"); EXPECT_EQ(memory_kinds[0][1], "pinned_host"); } TEST(StreamExecutorGpuClientTest, MlirParameterHostMemorySpaceIsSetInHlo) { constexpr char kMlirH2D[] = R"( func.func public @main(%arg0: tensor<8x2xi32> { mhlo.layout_mode = "{1,0}", mhlo.memory_kind = "pinned_host", mhlo.sharding = "{devices=[2,2]<=[4]}" }) -> (tensor<8x2xi32> { jax.result_info = "", mhlo.layout_mode = "default", mhlo.memory_kind = "device", mhlo.sharding = "{devices=[2,2]<=[4]}"}) { %0 = stablehlo.custom_call @annotate_device_placement(%arg0) { has_side_effect = true, mhlo.frontend_attributes = {_xla_buffer_placement = "device"} } : (tensor<8x2xi32>) -> tensor<8x2xi32> return %0 : tensor<8x2xi32> } )"; TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); mlir::MLIRContext context; TF_ASSERT_OK_AND_ASSIGN(auto module, xla::ParseMlirModuleString(kMlirH2D, context)); TF_ASSERT_OK_AND_ASSIGN(auto executable, client->Compile(*module, {})); TF_ASSERT_OK_AND_ASSIGN(auto modules, executable->GetHloModules()); auto first_param_layout = modules[0]->entry_computation_layout().parameter_layout(0).layout(); EXPECT_EQ(first_param_layout.memory_space(), Layout::kHostMemorySpace); auto result_layout = modules[0]->entry_computation_layout().result_layout().layout(); EXPECT_EQ(result_layout.memory_space(), Layout::kDefaultMemorySpace); } TEST(StreamExecutorGpuClientTest, MlirResultHostMemorySpaceIsSetInHlo) { constexpr char kMlirD2H[] = R"( func.func public @main(%arg0: tensor<8x2xi32> { mhlo.layout_mode = "{1,0}", mhlo.memory_kind = "device", mhlo.sharding = "{devices=[2,2]<=[4]}" }) -> (tensor<8x2xi32> { jax.result_info = "", mhlo.layout_mode = "default", mhlo.memory_kind = "pinned_host", mhlo.sharding = "{devices=[2,2]<=[4]}"}) { %0 = stablehlo.custom_call @annotate_device_placement(%arg0) { has_side_effect = true, mhlo.frontend_attributes = {_xla_buffer_placement = "pinned_host"} } : (tensor<8x2xi32>) -> tensor<8x2xi32> return %0 : tensor<8x2xi32> } )"; TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); mlir::MLIRContext context; TF_ASSERT_OK_AND_ASSIGN(auto module, xla::ParseMlirModuleString(kMlirD2H, context)); TF_ASSERT_OK_AND_ASSIGN(auto executable, client->Compile(*module, {})); TF_ASSERT_OK_AND_ASSIGN(auto modules, executable->GetHloModules()); auto first_param_layout = modules[0]->entry_computation_layout().parameter_layout(0).layout(); EXPECT_EQ(first_param_layout.memory_space(), Layout::kDefaultMemorySpace); auto result_layout = modules[0]->entry_computation_layout().result_layout().layout(); EXPECT_EQ(result_layout.memory_space(), Layout::kHostMemorySpace); } TEST(StreamExecutorGpuClientTest, MlirAutoResultLayoutIsSet) { constexpr char kMlirWithParameterLayout[] = R"( func.func public @main(%arg0: tensor<2x4x2xi32> { mhlo.layout_mode = "{2, 1, 0}" }) -> (tensor<2x2x4xi32> { jax.result_info = "", mhlo.layout_mode = "auto"}) { %0 = stablehlo.transpose %arg0, dims = [0, 2, 1] : (tensor<2x4x2xi32>) -> tensor<2x2x4xi32> return %0 : tensor<2x2x4xi32> } )"; TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); mlir::MLIRContext context; TF_ASSERT_OK_AND_ASSIGN(auto module, xla::ParseMlirModuleString( kMlirWithParameterLayout, context)); TF_ASSERT_OK_AND_ASSIGN(auto executable, client->Compile(*module, {})); TF_ASSERT_OK_AND_ASSIGN(auto modules, executable->GetHloModules()); auto result_layout = modules[0]->entry_computation_layout().result_layout().layout(); EXPECT_EQ(result_layout, Layout({1, 2, 0})); } TEST(StreamExecutorGpuClientTest, MlirAutoParameterLayoutIsSet) { constexpr char kMlirWithParameterLayout[] = R"( func.func public @main(%arg0: tensor<2x4x2xi32> { mhlo.layout_mode = "auto" }) -> (tensor<2x2x4xi32> { jax.result_info = "", mhlo.layout_mode = "{2, 1, 0}"}) { %0 = stablehlo.transpose %arg0, dims = [0, 2, 1] : (tensor<2x4x2xi32>) -> tensor<2x2x4xi32> return %0 : tensor<2x2x4xi32> } )"; TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); mlir::MLIRContext context; TF_ASSERT_OK_AND_ASSIGN(auto module, xla::ParseMlirModuleString( kMlirWithParameterLayout, context)); TF_ASSERT_OK_AND_ASSIGN(auto executable, client->Compile(*module, {})); TF_ASSERT_OK_AND_ASSIGN(auto modules, executable->GetHloModules()); auto first_param_layout = modules[0]->entry_computation_layout().parameter_layout(0).layout(); EXPECT_EQ(first_param_layout, Layout({1, 2, 0})); } TEST(StreamExecutorGpuClientTest, MlirParameterLayoutIsSetInHlo) { constexpr char kMlirWithParameterLayout[] = R"( func.func public @main(%arg0: tensor<2x2x2xi32> { mhlo.layout_mode = "{0, 2, 1}" }) -> (tensor<2x2x2xi32> { jax.result_info = "", mhlo.layout_mode = "default"}) { return %arg0 : tensor<2x2x2xi32> } )"; TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); mlir::MLIRContext context; TF_ASSERT_OK_AND_ASSIGN(auto module, xla::ParseMlirModuleString( kMlirWithParameterLayout, context)); TF_ASSERT_OK_AND_ASSIGN(auto executable, client->Compile(*module, {})); TF_ASSERT_OK_AND_ASSIGN(auto modules, executable->GetHloModules()); auto first_param_layout = modules[0]->entry_computation_layout().parameter_layout(0).layout(); EXPECT_EQ(first_param_layout, Layout({0, 2, 1})); } TEST(StreamExecutorGpuClientTest, MlirParameterLayoutFromOptionsIsSetInHlo) { constexpr char kMlirCopy[] = R"( func.func public @main(%arg0: tensor<2x2x2xi32> { mhlo.layout_mode = "default" }) -> (tensor<2x2x2xi32> { jax.result_info = "", mhlo.layout_mode = "default"}) { return %arg0 : tensor<2x2x2xi32> } )"; TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); mlir::MLIRContext context; TF_ASSERT_OK_AND_ASSIGN(auto module, xla::ParseMlirModuleString(kMlirCopy, context)); xla::CompileOptions options; options.argument_layouts = { {ShapeUtil::MakeShapeWithDenseLayout(S32, {2, 2, 2}, {0, 2, 1})}}; TF_ASSERT_OK_AND_ASSIGN(auto executable, client->Compile(*module, options)); TF_ASSERT_OK_AND_ASSIGN(auto modules, executable->GetHloModules()); auto first_param_layout = modules[0]->entry_computation_layout().parameter_layout(0).layout(); EXPECT_EQ(first_param_layout, Layout({0, 2, 1})); } TEST(StreamExecutorGpuClientTest, MlirResultHostMemorySpaceIsSetInHloWithShardingPropagation) { constexpr absl::string_view mlir_mul_explicit_sharding_layout_and_memory = R"mlir( module @jit_f attributes { mhlo.num_partitions = 2 : i32, mhlo.num_replicas = 1 : i32 } { func.func public @main(%arg0: tensor<8x2xi32> { mhlo.layout_mode = "{1,0}", mhlo.memory_kind = "device", mhlo.sharding = "{devices=[1,2]<=[2]}" }) -> (tensor<8x2xi32> { jax.result_info = "", mhlo.layout_mode = "{0,1}", mhlo.memory_kind = "pinned_host" }) { %c = stablehlo.constant dense<2> : tensor<i32> %0 = stablehlo.broadcast_in_dim %c, dims = [] : (tensor<i32>) -> tensor<8x2xi32> %1 = stablehlo.multiply %arg0, %0 : tensor<8x2xi32> %2 = stablehlo.custom_call @Sharding(%1) { mhlo.sharding = "{devices=[1,2]<=[2]}" } : (tensor<8x2xi32>) -> tensor<8x2xi32> %3 = stablehlo.custom_call @annotate_device_placement(%2) { has_side_effect = true, mhlo.frontend_attributes = { _xla_buffer_placement = "pinned_host" } } : (tensor<8x2xi32>) -> tensor<8x2xi32> return %3 : tensor<8x2xi32> } })mlir"; mlir::MLIRContext context; TF_ASSERT_OK_AND_ASSIGN( auto module, xla::ParseMlirModuleString( mlir_mul_explicit_sharding_layout_and_memory, context)); TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); xla::CompileOptions options; options.executable_build_options.set_num_partitions(2) .set_use_spmd_partitioning(true) .set_allow_spmd_sharding_propagation_to_output({true}); TF_ASSERT_OK_AND_ASSIGN(auto executable, client->Compile(*module, options)); TF_ASSERT_OK_AND_ASSIGN(auto modules, executable->GetHloModules()); auto first_param_layout = modules[0]->entry_computation_layout().parameter_layout(0).layout(); EXPECT_EQ(first_param_layout.memory_space(), Layout::kDefaultMemorySpace); auto result_layout = modules[0]->entry_computation_layout().result_layout().layout(); EXPECT_EQ(result_layout, Layout({0, 1}).set_memory_space(Layout::kHostMemorySpace)); EXPECT_EQ(executable->GetCompileOptions() .value() .executable_build_options.layout_canonicalization_callback(), nullptr); } TEST(StreamExecutorGpuClientTest, GetDefaultLayout) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); auto shape = ShapeUtil::MakeShape(S4, {2, 2}); TF_ASSERT_OK_AND_ASSIGN( auto layout, client->GetDefaultLayout(shape.element_type(), shape.dimensions())); EXPECT_EQ(layout.element_size_in_bits(), 4); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/gpu/se_gpu_pjrt_client.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/gpu/se_gpu_pjrt_client_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a9884785-43c1-4307-b823-e878e158c6f3
cpp
tensorflow/tensorflow
se_gpu_pjrt_compiler
third_party/xla/xla/pjrt/gpu/se_gpu_pjrt_compiler.cc
third_party/xla/xla/pjrt/gpu/se_gpu_pjrt_compiler_test.cc
#include "xla/pjrt/gpu/se_gpu_pjrt_compiler.h" #include <memory> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/client/xla_computation.h" #include "xla/pjrt/gpu/se_gpu_pjrt_client.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/stream_executor/platform/initialize.h" #include "tsl/platform/casts.h" #include "tsl/platform/statusor.h" #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #include "xla/client/local_client.h" #include "xla/pjrt/mlir_to_hlo.h" #include "xla/pjrt/stream_executor_executable.h" #include "xla/pjrt/utils.h" #include "xla/service/dump.h" #include "xla/service/gpu/executable.pb.h" #include "xla/service/gpu/gpu_compiler.h" #include "xla/service/hlo_module_util.h" #include "xla/service/hlo_proto_util.h" #include "xla/service/local_service.h" #include "xla/service/local_service_utils.h" #endif #if GOOGLE_CUDA #include "xla/service/gpu/nvptx_compiler.h" #include "xla/stream_executor/cuda/cuda_platform_id.h" #elif TENSORFLOW_USE_ROCM #include "xla/service/gpu/amdgpu_compiler.h" #include "xla/stream_executor/rocm/rocm_platform_id.h" #endif namespace xla { namespace { bool IsGpuClient(const PjRtClient& client) { return client.platform_id() == CudaId() || client.platform_id() == RocmId() || client.platform_id() == SyclId(); } bool IsSameTopology(const PjRtTopologyDescription& topology1, const PjRtTopologyDescription& topology2) { const StreamExecutorGpuTopologyDescription& gpu_topology1 = tensorflow::down_cast<const StreamExecutorGpuTopologyDescription&>( topology1); const StreamExecutorGpuTopologyDescription& gpu_topology2 = tensorflow::down_cast<const StreamExecutorGpuTopologyDescription&>( topology2); return gpu_topology1 == gpu_topology2; } absl::Status IsValidTopologyAndClientForCompile( const PjRtTopologyDescription& topology, PjRtClient* client) { if (client == nullptr) { return absl::UnimplementedError( "SE:GPU compiler requires non-null client."); } if (!IsGpuClient(*client)) { return absl::InvalidArgumentError( "SE:GPU compiler requires a GPU PjRtClient."); } TF_ASSIGN_OR_RETURN(auto client_topology, client->GetTopologyDescription()); if (!IsSameTopology(topology, *client_topology)) { return absl::UnimplementedError( "SE:GPU compiler requires the topology same as the one in the client."); } return absl::OkStatus(); } } absl::StatusOr<std::unique_ptr<PjRtExecutable>> StreamExecutorGpuCompiler::Compile(CompileOptions options, const XlaComputation& computation, const PjRtTopologyDescription& topology, PjRtClient* client) { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #if GOOGLE_CUDA auto gpu_compiler = gpu::NVPTXCompiler(); #else auto gpu_compiler = gpu::AMDGPUCompiler(); #endif CompileOptions input_options = options; if (!options.target_config) { if (client != nullptr) { TF_RETURN_IF_ERROR(IsValidTopologyAndClientForCompile(topology, client)); return client->Compile(computation, options); } auto attr = topology.Attributes(); if (auto it = attr.find("target_config"); it != attr.end()) { auto target_config_str = std::get<std::string>(it->second); stream_executor::GpuTargetConfigProto gpu_target_config_proto; if (!gpu_target_config_proto.ParseFromString(target_config_str)) { return FailedPrecondition("Failed to parse GpuTargetConfigProto"); } options.target_config.emplace( Compiler::TargetConfig(gpu_target_config_proto)); } else { return absl::UnimplementedError( "Compilation without client and without target_config specified is " "not implemented"); } } TF_RETURN_IF_ERROR(options.ApplyAllOptionOverrides()); std::vector<const Shape*> argument_layout_pointers; TF_RETURN_IF_ERROR(DetermineArgumentLayoutsFromCompileOptions( computation, [](Shape shape) { return LayoutUtil::GetWithDefaultLayout(shape); }, options.argument_layouts, &options.executable_build_options, &argument_layout_pointers)); TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModuleConfig> hlo_config, GetHloModuleConfig(computation, argument_layout_pointers, options.executable_build_options)); HloModuleProto hlo_module_proto = computation.proto(); TF_ASSIGN_OR_RETURN( std::unique_ptr<HloModule> hlo_module, HloModule::CreateFromProto(hlo_module_proto, *hlo_config)); UpdateEntryComputationLayout( hlo_module.get(), std::bind(&Compiler::DefaultDeviceShapeRepresentation, &gpu_compiler, std::placeholders::_1)); DumpHloModuleIfEnabled(*hlo_module, kBeforeOptimizationsDumpName); Compiler::CompileOptions opts; opts.target_config = options.target_config; AotCompilationOptions aot_options(gpu_compiler.PlatformId()); aot_options.set_target_config(*options.target_config); aot_options.set_run_backend_only( options.executable_build_options.run_backend_only()); const int num_replicas = hlo_module->config().replica_count(); const int num_partitions = hlo_module->config().num_partitions(); const std::string name = hlo_module->name(); const std::string fingerprint = hlo_module->GetFingerprint128(); const int num_outputs = hlo_module->result_shape().IsTuple() ? hlo_module->result_shape().tuple_shapes_size() : 1; auto unique_module_group = std::make_unique<HloModuleGroup>(std::move(hlo_module)); TF_ASSIGN_OR_RETURN( std::vector<std::unique_ptr<AotCompilationResult>> aot_results, gpu_compiler.CompileAheadOfTime(std::move(unique_module_group), aot_options)); std::vector<std::vector<absl::string_view>> output_memory_kinds(1); output_memory_kinds[0].resize(num_outputs, StreamExecutorGpuHbmMemorySpace::kKind); return std::make_unique<StreamExecutorExecutable>( std::move(input_options), std::move(aot_results), num_replicas, num_partitions, name, fingerprint, std::move(output_memory_kinds)); #else return absl::InternalError( "GPU Compilation requires the target to be built with CUDA or " "ROCm."); #endif } absl::StatusOr<std::unique_ptr<PjRtExecutable>> StreamExecutorGpuCompiler::Compile(CompileOptions options, mlir::ModuleOp module, const PjRtTopologyDescription& topology, PjRtClient* client) { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM CompileOptions input_options = options; XlaComputation xla_computation; TF_RETURN_IF_ERROR(MlirToXlaComputation( module, xla_computation, options.parameter_is_tupled_arguments, false, false)); return Compile(std::move(input_options), xla_computation, topology, client); #else return absl::InternalError( "GPU AOT compilation requires the target to be built with CUDA or " "ROCm."); #endif } #if TENSORFLOW_USE_ROCM STREAM_EXECUTOR_REGISTER_MODULE_INITIALIZER(pjrt_register_se_gpu_compiler, { PjRtRegisterCompiler(RocmName(), std::make_unique<StreamExecutorGpuCompiler>()); }); #else STREAM_EXECUTOR_REGISTER_MODULE_INITIALIZER(pjrt_register_se_gpu_compiler, { PjRtRegisterCompiler(CudaName(), std::make_unique<StreamExecutorGpuCompiler>()); }); #endif }
#include "xla/pjrt/gpu/se_gpu_pjrt_compiler.h" #include <memory> #include <vector> #include <gmock/gmock.h> #include "absl/status/status.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Parser/Parser.h" #include "xla/client/xla_computation.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" #include "xla/pjrt/gpu/gpu_topology.h" #include "xla/pjrt/gpu/se_gpu_pjrt_client.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/service/hlo_parser.h" #include "xla/test.h" #include "xla/tests/literal_test_util.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using ::tsl::testing::StatusIs; constexpr absl::string_view kProgram = R"(HloModule Computation ENTRY Computation() -> s32[] { ROOT result = s32[] constant(2) })"; constexpr absl::string_view mlir_str = R"mlir( module { func.func @main() -> tensor<i32> { %0 = mhlo.constant dense<2> : tensor<i32> return %0 : tensor<i32> } })mlir"; absl::StatusOr<xla::XlaComputation> GetXlaComputation( absl::string_view program) { TF_ASSIGN_OR_RETURN(auto hlo_module, xla::ParseAndReturnUnverifiedModule(program, {})); return XlaComputation(hlo_module->ToProto()); } std::shared_ptr<xla::GpuTopology> GetGpuTopology( std::vector<int> device_ids, absl::string_view platform_version, int num_slices, int num_hosts_per_slice, int num_devices_per_host, int core_count_per_chip) { return std::make_shared<xla::GpuTopology>(device_ids, platform_version, num_slices, num_hosts_per_slice, num_devices_per_host); } TEST(StreamExecutorGpuCompilerTest, NoClientXla) { StreamExecutorGpuCompiler compiler; StreamExecutorGpuTopologyDescription topology( CudaId(), CudaName(), GetGpuTopology({0, 1}, "Fake_device", 1, 1, 2, 10)); TF_ASSERT_OK_AND_ASSIGN(auto computation, GetXlaComputation(kProgram)); EXPECT_THAT(compiler.Compile(xla::CompileOptions(), computation, topology, nullptr), StatusIs(absl::StatusCode::kUnimplemented)); } TEST(StreamExecutorGpuCompilerTest, TopologyNotSameXla) { StreamExecutorGpuCompiler compiler; StreamExecutorGpuTopologyDescription topology( CudaId(), CudaName(), GetGpuTopology({0, 1}, "Fake_device", 1, 1, 2, 10)); TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto computation, GetXlaComputation(kProgram)); EXPECT_THAT(compiler.Compile(xla::CompileOptions(), computation, topology, client.get()), StatusIs(absl::StatusCode::kUnimplemented)); } TEST(StreamExecutorGpuCompilerTest, SuccessXla) { StreamExecutorGpuCompiler compiler; TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto computation, GetXlaComputation(kProgram)); TF_ASSERT_OK_AND_ASSIGN(auto topology, client->GetTopologyDescription()); TF_ASSERT_OK_AND_ASSIGN(auto executable, compiler.Compile(xla::CompileOptions(), computation, *topology, client.get())); const LoadOptions load_options; TF_ASSERT_OK_AND_ASSIGN(auto loaded_executable, client->Load(std::move(executable), load_options)); TF_ASSERT_OK_AND_ASSIGN( auto result, loaded_executable->Execute({{}}, {})); ASSERT_EQ(result.size(), 1); std::vector<std::unique_ptr<xla::PjRtBuffer>>& result_buffers = result[0]; ASSERT_EQ(result_buffers.size(), 1); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<xla::Literal> result_literal, result_buffers[0]->ToLiteralSync()); EXPECT_TRUE( LiteralTestUtil::Equal(LiteralUtil::CreateR0(2), *result_literal)); } TEST(StreamExecutorGpuCompilerTest, NoClientMlir) { StreamExecutorGpuCompiler compiler; mlir::MLIRContext context; context.loadDialect<mlir::mhlo::MhloDialect, mlir::func::FuncDialect>(); auto mlir_module = mlir::parseSourceString<mlir::ModuleOp>(mlir_str, &context); StreamExecutorGpuTopologyDescription topology( CudaId(), CudaName(), GetGpuTopology({0, 1}, "Fake_device", 1, 1, 2, 10)); EXPECT_THAT( compiler.Compile(xla::CompileOptions(), mlir_module.get(), topology, nullptr), StatusIs(absl::StatusCode::kUnimplemented)); } TEST(StreamExecutorGpuCompilerTest, TopologyNotSameMlir) { StreamExecutorGpuCompiler compiler; mlir::MLIRContext context; context.loadDialect<mlir::mhlo::MhloDialect, mlir::func::FuncDialect>(); auto mlir_module = mlir::parseSourceString<mlir::ModuleOp>(mlir_str, &context); StreamExecutorGpuTopologyDescription topology( CudaId(), CudaName(), GetGpuTopology({0, 1}, "Fake_device", 1, 1, 2, 10)); TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); EXPECT_THAT(compiler.Compile(xla::CompileOptions(), mlir_module.get(), topology, client.get()), StatusIs(absl::StatusCode::kUnimplemented)); } TEST(StreamExecutorGpuCompilerTest, SuccessMlir) { StreamExecutorGpuCompiler compiler; mlir::MLIRContext context; context.loadDialect<mlir::mhlo::MhloDialect, mlir::func::FuncDialect>(); auto mlir_module = mlir::parseSourceString<mlir::ModuleOp>(mlir_str, &context); TF_ASSERT_OK_AND_ASSIGN(auto client, GetStreamExecutorGpuClient(GpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto topology, client->GetTopologyDescription()); TF_ASSERT_OK_AND_ASSIGN( auto executable, compiler.Compile(xla::CompileOptions(), mlir_module.get(), *topology, client.get())); const LoadOptions load_options; TF_ASSERT_OK_AND_ASSIGN(auto loaded_executable, client->Load(std::move(executable), load_options)); TF_ASSERT_OK_AND_ASSIGN( auto result, loaded_executable->Execute({{}}, {})); ASSERT_EQ(result.size(), 1); std::vector<std::unique_ptr<xla::PjRtBuffer>>& result_buffers = result[0]; ASSERT_EQ(result_buffers.size(), 1); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<xla::Literal> result_literal, result_buffers[0]->ToLiteralSync()); EXPECT_TRUE( LiteralTestUtil::Equal(LiteralUtil::CreateR0(2), *result_literal)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/gpu/se_gpu_pjrt_compiler.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/gpu/se_gpu_pjrt_compiler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
880f9741-8dae-41d1-975d-c0afa4e453ed
cpp
tensorflow/tensorflow
cpu_topology
third_party/xla/xla/pjrt/cpu/cpu_topology.cc
third_party/xla/xla/pjrt/cpu/cpu_topology_test.cc
#include "xla/pjrt/cpu/cpu_topology.h" #include <cstddef> #include <memory> #include <string> #include <utility> #include <vector> #include "xla/pjrt/cpu/cpu_topology.pb.h" namespace xla { std::unique_ptr<const CpuTopology> CpuTopology::FromProto( const CpuTopologyProto& cpu_topology_proto) { std::vector<CpuTopology::CpuDevice> devices; devices.reserve(cpu_topology_proto.cpu_devices_size()); for (size_t i = 0; i < cpu_topology_proto.cpu_devices_size(); ++i) { auto& cpu_device_proto = cpu_topology_proto.cpu_devices(i); devices.push_back(CpuDevice{cpu_device_proto.process_index(), cpu_device_proto.local_hardware_id()}); } std::vector<std::string> machine_attributes; machine_attributes.reserve(cpu_topology_proto.machine_attributes_size()); for (size_t i = 0; i < cpu_topology_proto.machine_attributes_size(); ++i) { machine_attributes.push_back(cpu_topology_proto.machine_attributes(i)); } return std::make_unique<CpuTopology>(std::move(devices), std::move(machine_attributes)); } CpuTopologyProto CpuTopology::ToProto() const { CpuTopologyProto proto; for (auto& cpu_device : cpu_devices_) { auto* cpu_device_proto = proto.add_cpu_devices(); cpu_device_proto->set_process_index(cpu_device.process_id); cpu_device_proto->set_local_hardware_id(cpu_device.local_device_id); } for (const std::string& machine_attribute : machine_attributes_) { proto.add_machine_attributes(machine_attribute); } return proto; } }
#include "xla/pjrt/cpu/cpu_topology.h" #include <memory> #include "xla/pjrt/cpu/cpu_topology.pb.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/test.h" namespace xla { namespace { TEST(CpuTopology, FromProto) { CpuTopologyProto msg; ASSERT_TRUE(tsl::protobuf::TextFormat::ParseFromString( R"pb( cpu_devices: [ { process_index: 2, local_hardware_id: 3 }] machine_attributes: [ "x86_64", "Intel" ] )pb", &msg)); std::unique_ptr<const CpuTopology> cpu_topology = CpuTopology::FromProto(msg); EXPECT_EQ(cpu_topology->devices().size(), 1); EXPECT_EQ(cpu_topology->devices()[0].process_id, 2); EXPECT_EQ(cpu_topology->devices()[0].local_device_id, 3); EXPECT_EQ(cpu_topology->machine_attributes().size(), 2); EXPECT_EQ(cpu_topology->machine_attributes()[0], "x86_64"); EXPECT_EQ(cpu_topology->machine_attributes()[1], "Intel"); } TEST(CpuTopology, ToProto) { CpuTopology cpu_topology({{2, 3}}, {"ab", "cd"}); CpuTopologyProto msg = cpu_topology.ToProto(); EXPECT_EQ(msg.cpu_devices_size(), 1); EXPECT_EQ(msg.cpu_devices(0).process_index(), 2); EXPECT_EQ(msg.cpu_devices(0).local_hardware_id(), 3); EXPECT_EQ(msg.machine_attributes_size(), 2); EXPECT_EQ(msg.machine_attributes(0), "ab"); EXPECT_EQ(msg.machine_attributes(1), "cd"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/cpu/cpu_topology.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/cpu/cpu_topology_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
69e4171f-276f-4c20-a4b6-d6c7373352d8
cpp
tensorflow/tensorflow
gloo_collectives
third_party/xla/xla/pjrt/cpu/gloo_collectives.cc
third_party/xla/xla/pjrt/cpu/gloo_collectives_test.cc
#include "xla/pjrt/cpu/gloo_collectives.h" #include <complex> #include <cstddef> #include <cstdint> #include <cstring> #include <exception> #include <memory> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "gloo/algorithm.h" #include "gloo/allgather.h" #include "gloo/allreduce.h" #include "gloo/context.h" #include "gloo/math.h" #include "gloo/reduce_scatter.h" #include "gloo/rendezvous/context.h" #include "gloo/rendezvous/prefix_store.h" #include "gloo/rendezvous/store.h" #include "gloo/transport/device.h" #include "gloo/transport/unbound_buffer.h" #include "gloo/types.h" #include "xla/primitive_util.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/cpu/collectives_interface.h" #include "xla/service/global_device_id.h" #include "xla/status_macros.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla::cpu { GlooCollectivesCommunicator::GlooCollectivesCommunicator( std::shared_ptr<gloo::Context> context) : context_(std::move(context)) {} GlooCollectivesCommunicator::~GlooCollectivesCommunicator() = default; template <typename T> static absl::Status SetAllReduceOptions(ReductionKind reduction_kind, const void* input_buffer, void* output_buffer, size_t num_elements, gloo::AllreduceOptions& options) { options.setInput(reinterpret_cast<T*>(const_cast<void*>(input_buffer)), num_elements); options.setOutput(reinterpret_cast<T*>(const_cast<void*>(output_buffer)), num_elements); using ReductionFn = void (*)(void*, const void*, const void*, size_t); switch (reduction_kind) { case ReductionKind::SUM: options.setReduceFunction(static_cast<ReductionFn>(&gloo::sum<T>)); break; case ReductionKind::PRODUCT: options.setReduceFunction(static_cast<ReductionFn>(&gloo::product<T>)); break; case ReductionKind::MIN: if constexpr (!is_complex_v<T>) { options.setReduceFunction(static_cast<ReductionFn>(&gloo::min<T>)); } else { return absl::InvalidArgumentError( "MIN reduction not supported for complex types"); } break; case ReductionKind::MAX: if constexpr (!is_complex_v<T>) { options.setReduceFunction(static_cast<ReductionFn>(&gloo::max<T>)); } else { return absl::InvalidArgumentError( "MAX reduction not supported for complex types"); } break; } return absl::OkStatus(); } absl::Status GlooCollectivesCommunicator::AllReduce( const RendezvousKey& key, ReductionKind reduction_kind, PrimitiveType element_type, size_t num_elements, const void* input_buffer, void* output_buffer, absl::Duration timeout) { gloo::AllreduceOptions options(context_); switch (element_type) { case S8: TF_RETURN_IF_ERROR(SetAllReduceOptions<int8_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case PRED: case U8: TF_RETURN_IF_ERROR(SetAllReduceOptions<uint8_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case S16: TF_RETURN_IF_ERROR(SetAllReduceOptions<int16_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case U16: TF_RETURN_IF_ERROR(SetAllReduceOptions<uint16_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case S32: TF_RETURN_IF_ERROR(SetAllReduceOptions<int32_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case U32: TF_RETURN_IF_ERROR(SetAllReduceOptions<uint32_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case S64: TF_RETURN_IF_ERROR(SetAllReduceOptions<int64_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case U64: TF_RETURN_IF_ERROR(SetAllReduceOptions<uint64_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case F16: TF_RETURN_IF_ERROR(SetAllReduceOptions<gloo::float16>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case BF16: TF_RETURN_IF_ERROR(SetAllReduceOptions<bfloat16>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case F32: TF_RETURN_IF_ERROR(SetAllReduceOptions<float>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case F64: TF_RETURN_IF_ERROR(SetAllReduceOptions<double>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case C64: TF_RETURN_IF_ERROR(SetAllReduceOptions<std::complex<float>>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case C128: TF_RETURN_IF_ERROR(SetAllReduceOptions<std::complex<double>>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; default: return absl::InvalidArgumentError("Unknown datatype in allreduce"); } options.setAlgorithm(gloo::AllreduceOptions::Algorithm::RING); options.setTimeout(absl::ToChronoMilliseconds(timeout)); try { gloo::allreduce(options); } catch (std::exception& e) { return absl::UnknownError( absl::StrCat("Gloo all-reduce failed: ", e.what())); } return absl::OkStatus(); } static constexpr uint8_t kCollectivePermuteSlotPrefix = 0x40; absl::Status GlooCollectivesCommunicator::CollectivePermute( const RendezvousKey& key, size_t num_bytes, std::optional<int> source_rank, absl::Span<int const> target_ranks, const void* input_buffer, void* output_buffer, absl::Duration timeout) { uint32_t tag = 0; const auto slot = gloo::Slot::build(kCollectivePermuteSlotPrefix, tag); try { std::unique_ptr<gloo::transport::UnboundBuffer> in; std::unique_ptr<gloo::transport::UnboundBuffer> out; for (int target : target_ranks) { if (target != context_->rank) { VLOG(1) << "send from " << context_->rank << " to " << target; if (!in) { in = context_->createUnboundBuffer(const_cast<void*>(input_buffer), num_bytes); } in->send(target, slot); } } if (source_rank) { if (*source_rank == context_->rank) { std::memcpy(output_buffer, input_buffer, num_bytes); } else { VLOG(1) << "recv at " << context_->rank << " from " << *source_rank; out = context_->createUnboundBuffer(output_buffer, num_bytes); out->recv(*source_rank, slot); } } else { std::memset(output_buffer, 0, num_bytes); } VLOG(1) << "wait for send at " << context_->rank; auto deadline = absl::ToChronoTime(absl::Now() + timeout); if (in) { in->waitSend(deadline); } VLOG(1) << "wait for recv at " << context_->rank; if (out) { out->waitRecv(deadline); } VLOG(1) << "done waiting at " << context_->rank; } catch (std::exception& e) { return absl::UnknownError( absl::StrCat("Gloo collective permute failed: ", e.what())); } return absl::OkStatus(); } absl::Status GlooCollectivesCommunicator::AllToAll( const RendezvousKey& key, size_t chunk_bytes, absl::Span<const void* const> input_buffers, absl::Span<void* const> output_buffers, absl::Duration timeout) { uint32_t tag = 0; int my_rank = context_->rank; int world_size = context_->size; TF_RET_CHECK(world_size == input_buffers.size()); TF_RET_CHECK(world_size == output_buffers.size()); try { const auto slot = gloo::Slot::build(gloo::kAlltoallSlotPrefix, tag); std::vector<std::unique_ptr<gloo::transport::UnboundBuffer>> ins( context_->size); std::vector<std::unique_ptr<gloo::transport::UnboundBuffer>> outs( context_->size); for (size_t i = 0; i < world_size; ++i) { if (i != my_rank) { ins[i] = context_->createUnboundBuffer( const_cast<void*>(input_buffers[i]), chunk_bytes); outs[i] = context_->createUnboundBuffer(output_buffers[i], chunk_bytes); } } for (int i = 1; i < world_size; i++) { int send_rank = (my_rank + i) % world_size; int recv_rank = (my_rank + world_size - i) % world_size; ins[send_rank]->send(send_rank, slot); outs[recv_rank]->recv(recv_rank, slot); } std::memcpy(output_buffers[my_rank], input_buffers[my_rank], chunk_bytes); auto deadline = absl::ToChronoTime(absl::Now() + timeout); for (int i = 0; i < world_size; i++) { if (i != my_rank) { ins[i]->waitSend(deadline); outs[i]->waitRecv(deadline); } } } catch (std::exception& e) { return absl::UnknownError( absl::StrCat("Gloo all-to-all failed: ", e.what())); } return absl::OkStatus(); } absl::Status GlooCollectivesCommunicator::AllGather(const RendezvousKey& key, size_t chunk_bytes, const void* input_buffer, void* output_buffer, absl::Duration timeout) { uint32_t tag = 0; gloo::AllgatherOptions options(context_); options.setTag(tag); options.setTimeout(absl::ToChronoMilliseconds(timeout)); options.setInput(reinterpret_cast<char*>(const_cast<void*>(input_buffer)), chunk_bytes); options.setOutput(reinterpret_cast<char*>(output_buffer), chunk_bytes * context_->size); try { gloo::allgather(options); } catch (std::exception& e) { return absl::UnknownError( absl::StrCat("Gloo AllGather failed: ", e.what())); } return absl::OkStatus(); } template <typename T> absl::Status ReduceScatterHelper(std::shared_ptr<gloo::Context> context, ReductionKind reduction_kind, void* buffer, size_t chunk_elems) { const gloo::ReductionFunction<T>* reduction_function = nullptr; if constexpr (is_complex_v<T>) { switch (reduction_kind) { case ReductionKind::SUM: reduction_function = gloo::ReductionFunction<T>::sum; break; case ReductionKind::PRODUCT: reduction_function = gloo::ReductionFunction<T>::product; break; default: return absl::InvalidArgumentError(absl::StrCat( "Unsupported reduction kind: ", static_cast<int>(reduction_kind))); } } else { switch (reduction_kind) { case ReductionKind::SUM: reduction_function = gloo::ReductionFunction<T>::sum; break; case ReductionKind::PRODUCT: reduction_function = gloo::ReductionFunction<T>::product; break; case ReductionKind::MAX: reduction_function = gloo::ReductionFunction<T>::max; break; case ReductionKind::MIN: reduction_function = gloo::ReductionFunction<T>::min; break; default: return absl::InvalidArgumentError(absl::StrCat( "Unsupported reduction kind: ", static_cast<int>(reduction_kind))); } } try { std::vector<int> recv_elems(context->size, chunk_elems); gloo::ReduceScatterHalvingDoubling<T> algorithm( context, std::vector<T*>{reinterpret_cast<T*>(buffer)}, chunk_elems * context->size, recv_elems, reduction_function); algorithm.run(); } catch (std::exception& e) { return absl::UnknownError( absl::StrCat("Gloo ReduceScatter failed: ", e.what())); } return absl::OkStatus(); } absl::Status GlooCollectivesCommunicator::ReduceScatter( const RendezvousKey& key, ReductionKind reduction_kind, PrimitiveType element_type, size_t chunk_elems, const void* input_buffer, void* output_buffer, absl::Duration timeout) { size_t chunk_bytes = chunk_elems * primitive_util::ByteWidth(element_type); std::unique_ptr<char[]> temp(new char[chunk_bytes * context_->size]); std::memcpy(temp.get(), input_buffer, chunk_bytes * context_->size); switch (element_type) { case S8: TF_RETURN_IF_ERROR(ReduceScatterHelper<int8_t>(context_, reduction_kind, temp.get(), chunk_elems)); break; case PRED: case U8: TF_RETURN_IF_ERROR(ReduceScatterHelper<uint8_t>(context_, reduction_kind, temp.get(), chunk_elems)); break; case S16: TF_RETURN_IF_ERROR(ReduceScatterHelper<int16_t>(context_, reduction_kind, temp.get(), chunk_elems)); break; case U16: TF_RETURN_IF_ERROR(ReduceScatterHelper<uint16_t>( context_, reduction_kind, temp.get(), chunk_elems)); break; case S32: TF_RETURN_IF_ERROR(ReduceScatterHelper<int32_t>(context_, reduction_kind, temp.get(), chunk_elems)); break; case U32: TF_RETURN_IF_ERROR(ReduceScatterHelper<uint32_t>( context_, reduction_kind, temp.get(), chunk_elems)); break; case S64: TF_RETURN_IF_ERROR(ReduceScatterHelper<int64_t>(context_, reduction_kind, temp.get(), chunk_elems)); break; case U64: TF_RETURN_IF_ERROR(ReduceScatterHelper<uint64_t>( context_, reduction_kind, temp.get(), chunk_elems)); break; case BF16: TF_RETURN_IF_ERROR(ReduceScatterHelper<bfloat16>( context_, reduction_kind, temp.get(), chunk_elems)); break; case F16: TF_RETURN_IF_ERROR(ReduceScatterHelper<gloo::float16>( context_, reduction_kind, temp.get(), chunk_elems)); break; case F32: TF_RETURN_IF_ERROR(ReduceScatterHelper<float>(context_, reduction_kind, temp.get(), chunk_elems)); break; case F64: TF_RETURN_IF_ERROR(ReduceScatterHelper<double>(context_, reduction_kind, temp.get(), chunk_elems)); break; case C64: TF_RETURN_IF_ERROR(ReduceScatterHelper<std::complex<float>>( context_, reduction_kind, temp.get(), chunk_elems)); break; case C128: TF_RETURN_IF_ERROR(ReduceScatterHelper<std::complex<double>>( context_, reduction_kind, temp.get(), chunk_elems)); break; default: return absl::InvalidArgumentError("Unknown datatype in reducescatter"); } std::memcpy(output_buffer, temp.get(), chunk_bytes); return absl::OkStatus(); } GlooCollectives::GlooCollectives( std::unique_ptr<gloo::rendezvous::Store> store, std::shared_ptr<gloo::transport::Device> device) : store_(std::move(store)), device_(std::move(device)) {} GlooCollectives::~GlooCollectives() = default; absl::StatusOr<std::shared_ptr<CollectivesCommunicator>> GlooCollectives::GetCommunicator( absl::Span<GlobalDeviceId const> global_devices, int rank) { Context* context; { absl::MutexLock lock(&mu_); auto& context_ref = contexts_[std::make_tuple( std::vector<GlobalDeviceId>(global_devices.begin(), global_devices.end()), rank)]; if (!context_ref) { context_ref = std::make_unique<Context>(); } context = context_ref.get(); } absl::MutexLock context_lock(&context->mu); if (context->communicator) { return context->communicator; } auto gloo_context = std::make_shared<gloo::rendezvous::Context>(rank, global_devices.size()); auto prefix_store = gloo::rendezvous::PrefixStore( absl::StrCat("gloo/", absl::StrJoin(global_devices, ",", [](std::string* out, GlobalDeviceId id) { absl::StrAppend(out, id.value()); })), *store_); try { gloo_context->connectFullMesh(prefix_store, device_); } catch (std::exception& e) { return absl::UnknownError( absl::StrCat("Gloo context initialization failed: ", e.what())); } context->communicator = std::make_shared<GlooCollectivesCommunicator>(std::move(gloo_context)); return context->communicator; } }
#include "xla/pjrt/cpu/gloo_collectives.h" #include <unistd.h> #include <cstddef> #include <cstdint> #include <memory> #include <vector> #include "absl/status/statusor.h" #include "absl/time/time.h" #include "absl/types/span.h" #if defined(__linux__) #include "gloo/transport/tcp/attr.h" #include "gloo/transport/tcp/device.h" #elif defined(__APPLE__) #include "gloo/transport/uv/device.h" #endif #include "xla/executable_run_options.h" #include "xla/pjrt/cpu/gloo_kv_store.h" #include "xla/pjrt/distributed/in_memory_key_value_store.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/cpu/collectives_interface.h" #include "xla/service/global_device_id.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace xla::cpu { namespace { using ::testing::Each; using ::testing::Eq; constexpr int kNumParticipants = 2; constexpr size_t kBufferSize = 256; constexpr absl::Duration kTimeout = absl::Seconds(5); absl::StatusOr<std::shared_ptr<CollectivesCommunicator>> GetCommunicator( size_t kNumParticipants, absl::Span<GlobalDeviceId const> global_devices, const std::shared_ptr<xla::KeyValueStoreInterface>& kv_store, int rank) { auto collectives = std::make_shared<cpu::GlooCollectives>( std::make_unique<cpu::GlooKeyValueStore>(kv_store), #if defined(__linux__) gloo::transport::tcp::CreateDevice(gloo::transport::tcp::attr())); #elif defined(__APPLE__) gloo::transport::uv::CreateDevice(gloo::transport::uv::attr())); #endif return collectives->GetCommunicator(global_devices, rank); } RendezvousKey MakeRendezvousKey(std::vector<GlobalDeviceId> global_devices) { return RendezvousKey(RunId(0), global_devices, kNumParticipants, RendezvousKey::CollectiveOpKind::kCrossModule, 0); } absl::StatusOr<std::vector<uint8_t>> AllReduce( const std::shared_ptr<xla::KeyValueStoreInterface>& kv_store, const std::vector<uint8_t>& input_buffer, std::vector<GlobalDeviceId> global_devices, int rank) { std::vector<uint8_t> output_buffer(kBufferSize); RendezvousKey rendezvous_key = MakeRendezvousKey(global_devices); TF_ASSIGN_OR_RETURN( auto communicator, GetCommunicator(kNumParticipants, global_devices, kv_store, rank)); TF_RETURN_IF_ERROR(communicator->AllReduce( rendezvous_key, xla::ReductionKind::SUM, xla::PrimitiveType::U8, kBufferSize, input_buffer.data(), output_buffer.data(), kTimeout)); return output_buffer; } TEST(GlooCollectives, AllReduce) { std::vector<GlobalDeviceId> global_devices; global_devices.reserve(kNumParticipants); for (int rank = 0; rank < kNumParticipants; ++rank) { global_devices.push_back(GlobalDeviceId(rank)); } auto kv_store = std::make_shared<xla::InMemoryKeyValueStore>(); std::vector<absl::StatusOr<std::vector<uint8_t>>> output_buffers( kNumParticipants); { tsl::thread::ThreadPool thread_pool( tsl::Env::Default(), "AllReduceParticipants", kNumParticipants); for (int rank = 0; rank < kNumParticipants; ++rank) { thread_pool.Schedule( [rank, &output_buffers, &kv_store, &global_devices]() { std::vector<uint8_t> input_buffer(kBufferSize, rank + 1); output_buffers[rank] = AllReduce(kv_store, input_buffer, global_devices, rank); }); } } for (int rank = 0; rank < kNumParticipants; ++rank) { TF_ASSERT_OK(output_buffers[rank].status()); } for (int rank = 0; rank < kNumParticipants; ++rank) { EXPECT_THAT(output_buffers[rank].value(), Each(Eq(kNumParticipants * (kNumParticipants + 1) / 2))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/cpu/gloo_collectives.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/cpu/gloo_collectives_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
de686d71-386c-4413-83f6-6378d7e0f65c
cpp
tensorflow/tensorflow
cpu_client
third_party/xla/xla/pjrt/cpu/cpu_client.cc
third_party/xla/xla/pjrt/cpu/cpu_client_test.cc
#include "xla/pjrt/cpu/cpu_client.h" #define EIGEN_USE_THREADS #include <algorithm> #include <cfenv> #include <cstddef> #include <cstdint> #include <cstring> #include <functional> #include <limits> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/dynamic_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "unsupported/Eigen/CXX11/Tensor" #include "mlir/IR/BuiltinOps.h" #include "xla/array.h" #include "xla/backends/cpu/runtime/buffer_allocations.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/backends/cpu/runtime/thunk_executor.h" #include "xla/client/executable_build_options.h" #include "xla/debug_options_flags.h" #include "xla/executable_run_options.h" #include "xla/hlo/builder/xla_computation.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/pjrt/compile_options.pb.h" #include "xla/pjrt/cpu/abstract_tfrt_cpu_buffer.h" #include "xla/pjrt/cpu/cpu_topology.h" #include "xla/pjrt/cpu/tracked_tfrt_cpu_device_buffer.h" #include "xla/pjrt/host_memory_spaces.h" #include "xla/pjrt/mlir_to_hlo.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_device_description.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/pjrt/semaphore.h" #include "xla/pjrt/transpose.h" #include "xla/pjrt/utils.h" #include "xla/service/buffer_assignment.h" #include "xla/service/compiler.h" #include "xla/service/computation_placer.h" #include "xla/service/cpu/collectives_interface.h" #include "xla/service/cpu/cpu_compiler.h" #include "xla/service/cpu/cpu_event.h" #include "xla/service/cpu/cpu_executable.h" #include "xla/service/cpu/cpu_executable_run_options.h" #include "xla/service/cpu/cpu_runtime.h" #include "xla/service/cpu/cpu_xfeed.h" #include "xla/service/cpu/simple_orc_jit.h" #include "xla/service/custom_call_status.h" #include "xla/service/custom_call_status_internal.h" #include "xla/service/dump.h" #include "xla/service/executable.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_module_util.h" #include "xla/service/hlo_value.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/tsl/lib/strings/proto_serialization.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/casts.h" #include "tsl/platform/denormal.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/setround.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tsl/profiler/lib/connected_traceme.h" #include "tsl/profiler/lib/context_types.h" #include "tsl/profiler/lib/traceme.h" namespace xla { namespace { absl::StatusOr<std::unique_ptr<TfrtCpuBuffer>> AllocateDestinationBuffer( const Shape& on_device_shape, absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> definition_events, TfrtCpuDevice* device, TfrtCpuClient* client) { TF_ASSIGN_OR_RETURN( std::unique_ptr<TrackedTfrtCpuDeviceBuffer> tracked_device_buffer, AbstractTfrtCpuBuffer::AllocateTrackedDeviceBuffer( on_device_shape, std::move(definition_events))); return std::make_unique<TfrtCpuBuffer>( on_device_shape, std::move(tracked_device_buffer), client, device, *device->default_memory_space()); } absl::StatusOr<std::unique_ptr<TfrtCpuBuffer>> AllocateDestinationBufferAndAvs( const Shape& shape, absl::InlinedVector<tsl::RCReference<tsl::AsyncValue>, 4>* avs, TfrtCpuDevice* device, TfrtCpuClient* client) { absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> definition_events; AbstractTfrtCpuBuffer::AllocateAvsAndEvents(shape, avs, &definition_events); return AllocateDestinationBuffer( shape, std::move(definition_events), tensorflow::down_cast<TfrtCpuDevice*>(device), client); } const char kCpuPlatformName[] = "cpu"; void EnqueueWork(tsl::thread::ThreadPool* pool, absl::AnyInvocable<void()> callee) { pool->Schedule([ptr = new absl::AnyInvocable<void()>(std::move(callee))]() { (*ptr)(); delete ptr; }); } void EnqueueWorkWhenReady( tsl::thread::ThreadPool* pool, absl::Span<const tsl::RCReference<tsl::AsyncValue>> values, absl::AnyInvocable<void()> callee) { RunWhenReady(values, [pool, callee = std::move(callee)]() mutable { EnqueueWork(pool, std::move(callee)); }); } class ThreadPoolAsyncWorkRunner : public AsyncWorkRunner { public: explicit ThreadPoolAsyncWorkRunner(tsl::thread::ThreadPool* pool) : pool_(pool) {} void Schedule(absl::AnyInvocable<void()> work) override { EnqueueWork(pool_, std::move(work)); } void ScheduleWhenReady( absl::Span<const tsl::RCReference<tsl::AsyncValue>> values, absl::AnyInvocable<void()> work) override { EnqueueWorkWhenReady(pool_, values, std::move(work)); } private: tsl::thread::ThreadPool* pool_; }; class TfrtCpuAsyncHostToDeviceTransferManager : public AbstractAsyncHostToHostMemoryTransferManager { public: static absl::StatusOr< std::unique_ptr<TfrtCpuAsyncHostToDeviceTransferManager>> Create(absl::Span<const Shape> shapes, TfrtCpuDevice* device, TfrtCpuClient* client) { absl::InlinedVector<std::unique_ptr<AbstractTfrtCpuBuffer>, 4> buffers; buffers.reserve(shapes.size()); absl::InlinedVector<tsl::RCReference<tsl::AsyncValue>, 4> avs; avs.reserve(shapes.size()); for (const auto& shape : shapes) { if (shape.IsTuple()) { return Unimplemented( "Tuples are not supported by " "TfrtCpuAsyncHostToDeviceTransferManager"); } absl::InlinedVector<tsl::RCReference<tsl::AsyncValue>, 4> local_avs; TF_ASSIGN_OR_RETURN(auto buffer, AllocateDestinationBufferAndAvs( shape, &local_avs, device, client)); CHECK_EQ(local_avs.size(), 1); avs.push_back(std::move(local_avs[0])); buffers.push_back(std::move(buffer)); } absl::InlinedVector<TrackedTfrtCpuDeviceBuffer*, 4> device_buffers; absl::InlinedVector<size_t, 4> buffer_sizes; absl::InlinedVector<int64_t, 4> buffer_transfers_in_flight; absl::InlinedVector<bool, 4> last_transfer_finished; TF_RETURN_IF_ERROR( AbstractAsyncHostToHostMemoryTransferManager:: PopulateAsyncTransferManagerData( buffers, device_buffers, buffer_sizes, buffer_transfers_in_flight, last_transfer_finished)); return absl::WrapUnique(new TfrtCpuAsyncHostToDeviceTransferManager( std::move(avs), std::move(buffers), std::move(device_buffers), std::move(buffer_sizes), std::move(buffer_transfers_in_flight), std::move(last_transfer_finished), client->async_work_runner(), device)); } PjRtDevice* device() const override { return device_; } private: TfrtCpuAsyncHostToDeviceTransferManager( absl::InlinedVector<tsl::RCReference<tsl::AsyncValue>, 4> avs, absl::InlinedVector<std::unique_ptr<AbstractTfrtCpuBuffer>, 4> buffers, absl::InlinedVector<TrackedTfrtCpuDeviceBuffer*, 4> device_buffers, absl::InlinedVector<size_t, 4> buffer_sizes, absl::InlinedVector<int64_t, 4> buffer_transfers_in_flight, absl::InlinedVector<bool, 4> last_transfer_finished, AsyncWorkRunner* async_work_runner, TfrtCpuDevice* device) : AbstractAsyncHostToHostMemoryTransferManager( std::move(avs), std::move(buffers), std::move(device_buffers), std::move(buffer_sizes), std::move(buffer_transfers_in_flight), std::move(last_transfer_finished), async_work_runner), device_(device) {} TfrtCpuDevice* device_; }; } TfrtCpuDeviceDescription::TfrtCpuDeviceDescription(int process_id, int local_device_id) : id_(PackCpuDeviceId(process_id, local_device_id)), process_index_(process_id), local_hardware_id_(local_device_id) { debug_string_ = absl::StrCat("TFRT_CPU_", id_.value()); to_string_ = absl::StrCat("CpuDevice(id=", id_.value(), ")"); } absl::string_view TfrtCpuDeviceDescription::device_kind() const { return kCpuPlatformName; } absl::string_view TfrtCpuDeviceDescription::DebugString() const { return debug_string_; } absl::string_view TfrtCpuDeviceDescription::ToString() const { return to_string_; } TfrtCpuTopologyDescription TfrtCpuTopologyDescription::Create( PjRtPlatformId platform_id, absl::string_view platform_name, absl::string_view platform_version, absl::Span<const std::unique_ptr<TfrtCpuDevice>> devices, absl::Span<const std::string> machine_attributes) { std::vector<CpuTopology::CpuDevice> cpu_devices; cpu_devices.reserve(devices.size()); for (auto& device : devices) { cpu_devices.push_back(CpuTopology::CpuDevice{ device->process_index(), device->local_hardware_id().value()}); } return TfrtCpuTopologyDescription(platform_id, platform_name, platform_version, cpu_devices, machine_attributes); } absl::StatusOr<Layout> TfrtCpuTopologyDescription::GetDefaultLayout( PrimitiveType element_type, absl::Span<const int64_t> dims) const { Shape shape = ShapeUtil::MakeShape(element_type, dims); return LayoutUtil::GetWithDefaultLayout(shape).layout(); } absl::StatusOr<std::string> TfrtCpuTopologyDescription::Serialize() const { std::string result; if (!tsl::SerializeToStringDeterministic(cpu_topology_.ToProto(), &result)) { return absl::InternalError("Failed to serialize cpu_topology"); } return result; } std::vector<std::unique_ptr<const PjRtDeviceDescription>> TfrtCpuTopologyDescription::DeviceDescriptions() const { std::vector<std::unique_ptr<const PjRtDeviceDescription>> devices; devices.reserve(cpu_topology_.number_of_devices()); for (const CpuTopology::CpuDevice& device : cpu_topology_.devices()) { devices.push_back(std::make_unique<TfrtCpuDeviceDescription>( device.process_id, device.local_device_id)); } return devices; } TfrtCpuDevice::TfrtCpuDevice(int process_id, int local_device_id, int max_inflight_computations) : description_(process_id, local_device_id), max_inflight_computations_semaphore_( max_inflight_computations) {} absl::Status TfrtCpuDevice::TransferToInfeed(const LiteralSlice& literal) { return TransferLiteralToInfeedOnCpu(local_hardware_id().value(), literal); } absl::Status TfrtCpuDevice::TransferFromOutfeed( MutableBorrowingLiteral literal) { return TransferLiteralFromOutfeedOnCpu(local_hardware_id().value(), literal); } void TfrtCpuDevice::AttachMemorySpace(PjRtMemorySpace* memory_space) { CHECK(memory_space != nullptr); CHECK(client_ == memory_space->client()) << absl::StrFormat( "Could not attach a TfrtCpuDevice to a PjRtMemorySpace owned by a " "different client, the device's client: %s, the memory space's client: " "%s.", client_->platform_name(), memory_space->client()->platform_name()); memory_spaces_.push_back(memory_space); memory_spaces_by_id_.emplace(memory_space->kind_id(), memory_space); } absl::Span<PjRtMemorySpace* const> TfrtCpuDevice::memory_spaces() const { return memory_spaces_; } absl::StatusOr<PjRtMemorySpace*> TfrtCpuDevice::default_memory_space() const { return memory_space_by_kind_id(UnpinnedHostMemorySpace::kKindId); } absl::StatusOr<PjRtMemorySpace*> TfrtCpuDevice::memory_space_by_kind( absl::string_view memory_space_kind) const { auto it = absl::c_find_if(memory_spaces_, [memory_space_kind](PjRtMemorySpace* ms) { return ms->kind() == memory_space_kind; }); if (it != memory_spaces_.end()) { return *it; } return absl::InternalError( absl::StrCat("No memory space found (kind: ", memory_space_kind, ")")); } absl::StatusOr<PjRtMemorySpace*> TfrtCpuDevice::memory_space_by_kind_id( int id) const { auto it = memory_spaces_by_id_.find(id); if (it == memory_spaces_by_id_.end()) { return absl::InternalError( absl::StrCat("No memory space found (kind_id: ", id, ")")); } return it->second; } static int CpuDeviceCount() { return GetDebugOptionsFromFlags().xla_force_host_platform_device_count(); } absl::StatusOr<std::unique_ptr<PjRtClient>> GetTfrtCpuClient( const CpuClientOptions& options) { int cpu_device_count = options.cpu_device_count.value_or(CpuDeviceCount()); size_t num_threads = std::max(DefaultThreadPoolSize(), cpu_device_count); std::vector<std::unique_ptr<TfrtCpuDevice>> devices; for (int i = 0; i < cpu_device_count; ++i) { auto device = std::make_unique<TfrtCpuDevice>( options.process_id, i, options.max_inflight_computations_per_device); devices.push_back(std::move(device)); } return std::unique_ptr<PjRtClient>(std::make_unique<TfrtCpuClient>( options.process_id, std::move(devices), std::move(options.collectives), num_threads, options.asynchronous)); } static const size_t kMaxIntraOpThreads = 256; static tsl::ThreadOptions GetThreadOptions() { tsl::ThreadOptions thread_options; thread_options.stack_size = 8 * 1024 * 1024; return thread_options; } TfrtCpuClient::TfrtCpuClient( int process_index, std::vector<std::unique_ptr<TfrtCpuDevice>> devices, std::shared_ptr<cpu::CollectivesInterface> collectives, size_t num_threads, bool asynchronous) : process_index_(process_index), owned_devices_(std::move(devices)), computation_placer_(std::make_unique<ComputationPlacer>()), eigen_intraop_pool_(new tsl::thread::ThreadPool( tsl::Env::Default(), GetThreadOptions(), "XLAEigen", std::min(num_threads, kMaxIntraOpThreads))), eigen_intraop_device_( new Eigen::ThreadPoolDevice(eigen_intraop_pool_->AsEigenThreadPool(), eigen_intraop_pool_->NumThreads())), pjrt_client_thread_pool_( new tsl::thread::ThreadPool(tsl::Env::Default(), GetThreadOptions(), "XLATfrtCpuClient", num_threads)), async_work_runner_(std::make_unique<ThreadPoolAsyncWorkRunner>( pjrt_client_thread_pool_.get())), last_collective_launch_event_( tsl::MakeAvailableAsyncValueRef<CpuEvent>()), transpose_cache_(1024), collectives_(std::move(collectives)), topology_(TfrtCpuTopologyDescription::Create( platform_id(), platform_name(), platform_version(), owned_devices_, cpu::DetectMachineAttributes())), asynchronous_(asynchronous) { for (const std::unique_ptr<TfrtCpuDevice>& device : owned_devices_) { devices_.push_back(device.get()); CHECK( id_to_device_.insert({device->global_device_id(), device.get()}).second) << "Duplicate device id: " << device->global_device_id(); device->SetClient(this); if (device->IsAddressable()) { int idx = device->local_hardware_id().value(); if (idx >= addressable_devices_.size()) { addressable_devices_.resize(idx + 1); } CHECK(addressable_devices_[idx] == nullptr) << idx; addressable_devices_[idx] = device.get(); } } for (int idx = 0; idx < addressable_devices_.size(); ++idx) { auto* const device = addressable_devices_[idx]; CHECK(device != nullptr) << idx; const int id = device->id(); auto memory_space = std::make_unique<UnpinnedHostMemorySpace>(id, device); tensorflow::down_cast<TfrtCpuDevice*>(device)->AttachMemorySpace( memory_space.get()); memory_spaces_.push_back(memory_space.get()); owned_memory_spaces_.push_back(std::move(memory_space)); } VLOG(1) << "TfrtCpuClient created."; } TfrtCpuClient::~TfrtCpuClient() { VLOG(1) << "TfrtCpuClient destroyed."; } absl::StatusOr<PjRtDevice*> TfrtCpuClient::LookupDevice( xla::PjRtGlobalDeviceId global_device_id) const { auto it = id_to_device_.find(global_device_id); if (it != id_to_device_.end()) { return it->second; } return InvalidArgument("No matching device found for device_id %d", global_device_id.value()); } absl::StatusOr<PjRtDevice*> TfrtCpuClient::LookupAddressableDevice( PjRtLocalDeviceId local_device_id) const { for (auto* device : addressable_devices_) { if (local_device_id == device->local_device_id()) { return device; } } return InvalidArgument("No matching device found for local_device_id %d", local_device_id.value()); } absl::Span<PjRtMemorySpace* const> TfrtCpuClient::memory_spaces() const { return memory_spaces_; } absl::StatusOr<DeviceAssignment> TfrtCpuClient::GetDefaultDeviceAssignment( int num_replicas, int num_partitions) const { if (num_partitions * num_replicas <= addressable_devices().size()) { xla::DeviceAssignment assignment(num_replicas, num_partitions); for (int i = 0; i < num_replicas; ++i) { for (int j = 0; j < num_partitions; ++j) { assignment(i, j) = addressable_devices().at(i * num_partitions + j)->id(); } } return assignment; } return computation_placer_->AssignDevices(num_replicas, num_partitions); } absl::StatusOr<Layout> TfrtCpuClient::GetDefaultLayout( PrimitiveType element_type, absl::Span<const int64_t> dims) { Shape shape = ShapeUtil::MakeShape(element_type, dims); return LayoutUtil::GetWithDefaultLayout(shape).layout(); } absl::StatusOr<std::unique_ptr<HloCostAnalysis>> TfrtCpuClient::GetHloCostAnalysis() const { return std::make_unique<HloCostAnalysis>(cpu::CpuExecutable::ShapeSizeBytes); } static const InstructionValueSet& GetRootValueSet( const BufferAssignment& assignment, const HloModule& module) { return assignment.dataflow_analysis().GetInstructionValueSet( module.entry_computation()->root_instruction()); } static absl::StatusOr<absl::InlinedVector<BufferAllocation::Index, 4>> FindResultBufferAllocationIndex(const BufferAssignment& assignment, const HloModule& module) { absl::InlinedVector<BufferAllocation::Index, 4> buffer_indices; const InstructionValueSet& root_value_set = GetRootValueSet(assignment, module); const Shape& result_shape = module.result_shape(); if (!result_shape.IsTuple()) { const HloValueSet& sources = root_value_set.element({}); CHECK_EQ(1, sources.values().size()); const HloValue* value_source = sources.values()[0]; HloInstruction* src = value_source->instruction(); TF_ASSIGN_OR_RETURN(const BufferAllocation::Slice slice, assignment.GetUniqueSlice(src, value_source->index())); const BufferAllocation::Index buffer_index = slice.index(); buffer_indices.push_back(buffer_index); return {std::move(buffer_indices)}; } buffer_indices.reserve(result_shape.tuple_shapes_size()); for (int i = 0; i < result_shape.tuple_shapes_size(); ++i) { const HloValueSet& sources = root_value_set.element({i}); CHECK_EQ(1, sources.values().size()); const HloValue* value_source = sources.values()[0]; HloInstruction* src = value_source->instruction(); TF_ASSIGN_OR_RETURN(const BufferAllocation::Slice slice, assignment.GetUniqueSlice(src, value_source->index())); const BufferAllocation::Index buffer_index = slice.index(); buffer_indices.push_back(buffer_index); } return {std::move(buffer_indices)}; } absl::StatusOr<std::string> TfrtCpuExecutable::SerializeExecutable() const { cpu::CpuCompiler compiler; TF_ASSIGN_OR_RETURN(std::unique_ptr<AotCompilationResult> aot_result, compiler.Export(cpu_executable_.get())); TF_ASSIGN_OR_RETURN(std::string serialized, aot_result->SerializeAsString()); if (serialized.empty()) { return Internal( "TfrtCpuClient::SerializeExecutable proto serialization failed"); } ExecutableAndOptionsProto proto; *proto.mutable_serialized_executable() = std::move(serialized); TF_ASSIGN_OR_RETURN(*proto.mutable_compile_options(), compile_options_.ToProto()); return proto.SerializeAsString(); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> TfrtCpuClient::DeserializeExecutable(absl::string_view serialized, std::optional<CompileOptions> options) { ExecutableAndOptionsProto proto; if (serialized.size() > std::numeric_limits<int>::max()) { return Internal( "TfrtCpuClient::DeserializeExecutable proto too large (>2GB)"); } if (!proto.ParseFromArray(serialized.data(), serialized.size())) { return Internal( "TfrtCpuClient::DeserializeExecutable proto deserialization failed"); } CompileOptions compile_options; if (options.has_value()) { compile_options = *std::move(options); } else { TF_ASSIGN_OR_RETURN(compile_options, CompileOptions::FromProto(proto.compile_options())); } auto input_options = compile_options; cpu::CpuCompiler compiler; std::string str = std::move(*proto.mutable_serialized_executable()); TF_ASSIGN_OR_RETURN(std::unique_ptr<AotCompilationResult> aot_result, compiler.LoadAotCompilationResult(str)); TF_ASSIGN_OR_RETURN( std::unique_ptr<Executable> executable, aot_result->LoadExecutable(&compiler, nullptr)); int num_replicas; int num_partitions; std::shared_ptr<DeviceAssignment> device_assignment; TF_RETURN_IF_ERROR(ParseDeviceAssignmentCompileOptions( compile_options.compile_portable_executable, &compile_options.executable_build_options, [this](int num_replicas, int num_partitions) { return this->GetDefaultDeviceAssignment(num_replicas, num_partitions); }, &num_replicas, &num_partitions, &device_assignment)); auto cpu_executable_ptr = tensorflow::down_cast<cpu::CpuExecutable*>(executable.get()); TF_ASSIGN_OR_RETURN( const BufferAllocation::Slice result_slice, cpu_executable_ptr->buffer_assignment().GetUniqueTopLevelOutputSlice()); TF_ASSIGN_OR_RETURN( auto result_buffer_indices, FindResultBufferAllocationIndex(cpu_executable_ptr->buffer_assignment(), executable->module())); std::vector<PjRtLoadedExecutable::LogicalDeviceIds> addressable_device_logical_ids; std::vector<PjRtDevice*> addressable_devices; ExecutableBuildOptions& build_options = compile_options.executable_build_options; if (device_assignment != nullptr) { addressable_device_logical_ids.reserve(num_replicas * num_partitions); addressable_devices.reserve(num_replicas * num_partitions); for (int replica = 0; replica < num_replicas; ++replica) { for (int partition = 0; partition < num_partitions; ++partition) { PjRtGlobalDeviceId device_id((*device_assignment)(replica, partition)); if (UnpackCpuProcessIndex(device_id) != process_index()) { VLOG(3) << "Non-local device: " << device_id; continue; } TF_ASSIGN_OR_RETURN(PjRtDevice * device, LookupDevice(device_id)); PjRtLoadedExecutable::LogicalDeviceIds logica_device_ids; logica_device_ids.replica = replica; logica_device_ids.partition = partition; addressable_device_logical_ids.push_back(std::move(logica_device_ids)); addressable_devices.push_back(device); } } if (addressable_devices.empty()) { return InvalidArgument( "Device assignment (%s) does not have any local devices.", device_assignment->ToString()); } if (build_options.device_ordinal() < 0) { build_options.set_device_ordinal( addressable_devices.front()->local_hardware_id().value()); } } auto tfrt_cpu_executable = std::make_unique<TfrtCpuExecutable>( num_replicas, num_partitions, std::move(device_assignment), compile_options.parameter_is_tupled_arguments, std::move(input_options), std::move(executable), result_slice.index(), std::move(result_buffer_indices), std::move(addressable_device_logical_ids), std::move(addressable_devices), this); TF_RETURN_IF_ERROR(tfrt_cpu_executable->SetUpDonation( compile_options.parameter_is_tupled_arguments)); return std::unique_ptr<PjRtLoadedExecutable>(std::move(tfrt_cpu_executable)); } static absl::StatusOr<std::unique_ptr<xla::Executable>> JitCompile( const XlaComputation& computation, const absl::Span<const Shape* const> argument_layouts, const ExecutableBuildOptions& build_options, const ExecutionOptions& execution_options, const xla::Compiler::CompileOptions& compile_options, int num_threads) { TF_ASSIGN_OR_RETURN(ProgramShape program_shape, computation.GetProgramShape()); TF_ASSIGN_OR_RETURN( std::unique_ptr<HloModuleConfig> hlo_module_config, CreateModuleConfig(program_shape, argument_layouts, &execution_options, execution_options.num_replicas(), num_threads, nullptr)); const xla::HloModuleProto& hlo_module_proto = computation.proto(); TF_ASSIGN_OR_RETURN( std::unique_ptr<HloModule> hlo_module, xla::HloModule::CreateFromProto(hlo_module_proto, *hlo_module_config)); VLOG(3) << "Unoptimized HLO module: " << hlo_module->ToString(); static constexpr char kBeforeOptimizationsDumpName[] = "before_optimizations"; DumpHloModuleIfEnabled(*hlo_module, kBeforeOptimizationsDumpName); cpu::CpuCompiler compiler; TF_ASSIGN_OR_RETURN(hlo_module, compiler.RunHloPasses(std::move(hlo_module), nullptr, compile_options)); return compiler.RunBackend(std::move(hlo_module), nullptr, compile_options); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> TfrtCpuClient::Compile( const XlaComputation& computation, CompileOptions options) { tsl::profiler::TraceMe traceme("TfrtCpuClient::Compile (XlaComputation)"); auto input_options = options; ExecutableBuildOptions& build_options = options.executable_build_options; TF_RETURN_IF_ERROR(options.ApplyAllOptionOverrides()); int num_replicas; int num_partitions; std::shared_ptr<DeviceAssignment> device_assignment; TF_RETURN_IF_ERROR(ParseDeviceAssignmentCompileOptions( options.compile_portable_executable, &options.executable_build_options, [this](int num_replicas, int num_partitions) { return this->GetDefaultDeviceAssignment(num_replicas, num_partitions); }, &num_replicas, &num_partitions, &device_assignment)); if (collectives_ == nullptr && device_assignment) { for (int replica = 0; replica < device_assignment->replica_count(); ++replica) { for (int computation = 0; computation < device_assignment->computation_count(); ++computation) { PjRtGlobalDeviceId id((*device_assignment)(replica, computation)); if (UnpackCpuProcessIndex(id) != process_index()) { return InvalidArgument( "Multiprocess computations aren't implemented on the CPU " "backend."); } } } } std::vector<const Shape*> argument_layout_pointers; TF_RETURN_IF_ERROR(DetermineArgumentLayoutsFromCompileOptions( computation, &LayoutUtil::GetWithDefaultLayout, options.argument_layouts, &options.executable_build_options, &argument_layout_pointers)); std::vector<PjRtLoadedExecutable::LogicalDeviceIds> addressable_device_logical_ids; std::vector<PjRtDevice*> addressable_devices; if (device_assignment != nullptr) { addressable_device_logical_ids.reserve(num_replicas * num_partitions); addressable_devices.reserve(num_replicas * num_partitions); for (int replica = 0; replica < num_replicas; ++replica) { for (int partition = 0; partition < num_partitions; ++partition) { PjRtGlobalDeviceId device_id((*device_assignment)(replica, partition)); if (UnpackCpuProcessIndex(device_id) != process_index()) { VLOG(3) << "Non-local device: " << device_id; continue; } TF_ASSIGN_OR_RETURN(PjRtDevice * device, LookupDevice(device_id)); PjRtLoadedExecutable::LogicalDeviceIds logica_device_ids; logica_device_ids.replica = replica; logica_device_ids.partition = partition; addressable_device_logical_ids.push_back(std::move(logica_device_ids)); addressable_devices.push_back(device); } } if (addressable_devices.empty()) { return InvalidArgument( "Device assignment (%s) does not have any local devices.", device_assignment->ToString()); } if (build_options.device_ordinal() < 0) { build_options.set_device_ordinal( addressable_devices.front()->local_hardware_id().value()); } } TF_ASSIGN_OR_RETURN(ProgramShape program_shape, computation.GetProgramShape()); ExecutionOptions execution_options = CreateExecutionOptions(build_options, &program_shape); xla::Compiler::CompileOptions compile_options{ build_options.device_allocator(), build_options.compile_thread_pool(), build_options.layout_canonicalization_callback()}; if (!compile_options.thread_pool) { compile_options.thread_pool = pjrt_client_thread_pool(); } TF_ASSIGN_OR_RETURN( std::unique_ptr<Executable> cpu_executable, JitCompile(computation, argument_layout_pointers, build_options, execution_options, compile_options, eigen_intraop_device()->getPool()->NumThreads())); auto cpu_executable_ptr = tensorflow::down_cast<cpu::CpuExecutable*>(cpu_executable.get()); TF_ASSIGN_OR_RETURN( const BufferAllocation::Slice result_slice, cpu_executable_ptr->buffer_assignment().GetUniqueTopLevelOutputSlice()); TF_ASSIGN_OR_RETURN( auto result_buffer_indices, FindResultBufferAllocationIndex(cpu_executable_ptr->buffer_assignment(), cpu_executable->module())); auto executable = std::make_unique<TfrtCpuExecutable>( num_replicas, num_partitions, std::move(device_assignment), options.parameter_is_tupled_arguments, std::move(input_options), std::move(cpu_executable), result_slice.index(), std::move(result_buffer_indices), std::move(addressable_device_logical_ids), std::move(addressable_devices), this); TF_RETURN_IF_ERROR( executable->SetUpDonation(options.parameter_is_tupled_arguments)); return std::unique_ptr<PjRtLoadedExecutable>(std::move(executable)); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> TfrtCpuClient::Compile( mlir::ModuleOp module, CompileOptions options) { tsl::profiler::TraceMe traceme("TfrtCpuClient::Compile (mlir::ModuleOp)"); XlaComputation xla_computation; const ExecutableBuildOptions& exec_build_options = options.executable_build_options; TF_RETURN_IF_ERROR(MlirToXlaComputation( module, xla_computation, options.parameter_is_tupled_arguments, false, exec_build_options.use_shardy_partitioner())); return Compile(xla_computation, options); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuClient::CreateViewOfDeviceBuffer( void* device_ptr, const Shape& shape, PjRtDevice* device, std::function<void()> on_delete_callback, std::optional<std::intptr_t> stream) { if (stream) { return Unimplemented( "TfrtCpuClient::CreateViewOfDeviceBuffer does not support `stream` " "argument."); } absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers; size_t byte_size = ShapeUtil::ByteSizeOf(shape); auto non_owning_buffer = tsl::MakeAvailableAsyncValueRef<MaybeOwningCpuMemory>(device_ptr, byte_size); buffers.push_back(std::move(non_owning_buffer)); auto tracked_device_buffer = std::make_unique<TrackedTfrtCpuDeviceBuffer>( false, false, std::move(buffers), tsl::MakeAvailableAsyncValueRef<CpuEvent>(), std::move(on_delete_callback)); return std::unique_ptr<PjRtBuffer>(std::make_unique<TfrtCpuBuffer>( shape, std::move(tracked_device_buffer), this, tensorflow::down_cast<TfrtCpuDevice*>(device), *device->default_memory_space())); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuClient::CreateErrorBuffer( absl::Status error, const Shape& shape, PjRtDevice* device) { if (device->client() != this) { return absl::InvalidArgumentError("Device is not attached to this client"); } return std::make_unique<TfrtCpuBuffer>( shape, std::make_unique<TrackedTfrtCpuDeviceBuffer>( false, true, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4>{}, absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4>{ tsl::AsyncValueRef<CpuEvent>( tsl::MakeErrorAsyncValueRef(std::move(error)))}), this, tensorflow::down_cast<TfrtCpuDevice*>(device), *device->default_memory_space()); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuClient::CreateErrorBuffer( absl::Status error, const Shape& shape, PjRtMemorySpace* memory) { return CreateErrorBuffer(std::move(error), shape, memory->devices()[0]); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuClient::CreateUninitializedBuffer(const Shape& shape, PjRtDevice* device) { tsl::profiler::TraceMe traceme("TfrtCpuClient::CreateUninitializedBuffer"); VLOG(1) << "TfrtCpuClient::CreateUninitializedBuffer: shape: " << shape.DebugString() << " device: " << device->DebugString(); return AllocateDestinationBuffer( shape, {}, tensorflow::down_cast<TfrtCpuDevice*>(device), this); } absl::StatusOr<std::unique_ptr<PjRtClient::AsyncHostToDeviceTransferManager>> TfrtCpuClient::CreateBuffersForAsyncHostToDevice(absl::Span<const Shape> shapes, PjRtDevice* device) { auto* tfrt_device = tensorflow::down_cast<TfrtCpuDevice*>(device); return TfrtCpuAsyncHostToDeviceTransferManager::Create(shapes, tfrt_device, this); } absl::StatusOr<std::unique_ptr<PjRtClient::AsyncHostToDeviceTransferManager>> TfrtCpuClient::CreateBuffersForAsyncHostToDevice( absl::Span<const Shape> shapes, PjRtMemorySpace* memory_space) { CHECK_EQ(memory_space->devices().size(), 1); return CreateBuffersForAsyncHostToDevice(shapes, memory_space->devices()[0]); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuClient::BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtDevice* device) { tsl::profiler::TraceMe traceme("TfrtCpuClient::BufferFromHostBuffer"); Shape shape = ShapeUtil::MakeShape(type, dims); VLOG(2) << "TfrtCpuClient::BufferFromHostBuffer: shape: " << shape.ToString() << " device: " << device->DebugString(); if (!device->IsAddressable()) { return InvalidArgument("Cannot copy array to non-addressable device %s", device->DebugString()); } TF_ASSIGN_OR_RETURN( std::unique_ptr<TrackedTfrtCpuDeviceBuffer> tracked_device_buffer, AbstractTfrtCpuBuffer::BufferFromHostBufferHelper( data, type, dims, byte_strides, host_buffer_semantics, std::move(on_done_with_host_buffer), shape, async_work_runner(), &transpose_mu_, &transpose_cache_)); return std::unique_ptr<PjRtBuffer>(std::make_unique<TfrtCpuBuffer>( shape, std::move(tracked_device_buffer), this, tensorflow::down_cast<TfrtCpuDevice*>(device), *device->default_memory_space())); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuClient::BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtDevice* device, const Layout* device_layout) { if (device_layout != nullptr) { return absl::UnimplementedError(absl::StrCat( "BufferFromHostBuffer with an optional device layout is not " "implemented on platform: ", platform_name())); } return BufferFromHostBuffer(data, type, dims, byte_strides, host_buffer_semantics, std::move(on_done_with_host_buffer), device); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuClient::BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtMemorySpace* memory_space, const Layout* device_layout) { CHECK_EQ(memory_space->devices().size(), 1); return BufferFromHostBuffer(data, type, dims, byte_strides, host_buffer_semantics, std::move(on_done_with_host_buffer), memory_space->devices()[0], device_layout); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuClient::BufferFromHostLiteral(const LiteralSlice& literal, PjRtDevice* device) { tsl::profiler::TraceMe traceme("TfrtCpuClient::BufferFromHostLiteral"); VLOG(1) << "TfrtCpuClient::BufferFromHostLiteral: shape: " << literal.shape().DebugString() << " device: " << device->DebugString(); const Shape& shape = literal.shape(); absl::InlinedVector<tsl::RCReference<tsl::AsyncValue>, 4> avs; TF_ASSIGN_OR_RETURN( std::unique_ptr<TfrtCpuBuffer> output_buffer, AllocateDestinationBufferAndAvs( shape, &avs, tensorflow::down_cast<TfrtCpuDevice*>(device), this)); output_buffer->CopyFromLiteral(literal, shape, &avs, async_work_runner()); return std::unique_ptr<PjRtBuffer>(std::move(output_buffer)); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuClient::BufferFromHostLiteral(const LiteralSlice& literal, PjRtMemorySpace* memory_space) { CHECK_EQ(memory_space->devices().size(), 1); return BufferFromHostLiteral(literal, memory_space->devices()[0]); } TfrtCpuBuffer::TfrtCpuBuffer( Shape on_device_shape, std::unique_ptr<TrackedTfrtCpuDeviceBuffer> tracked_device_buffer, TfrtCpuClient* client, TfrtCpuDevice* device, PjRtMemorySpace* memory_space) : AbstractTfrtCpuBuffer(std::move(on_device_shape), std::move(tracked_device_buffer)), client_(client), device_(device), memory_space_(memory_space) {} static std::vector<tsl::RCReference<tsl::AsyncValue>> CopyAsyncValues( absl::Span<const tsl::RCReference<tsl::AsyncValue>> events) { std::vector<tsl::RCReference<tsl::AsyncValue>> avs; avs.reserve(events.size()); for (const auto& ev : events) { avs.push_back(ev.CopyRef()); } return avs; } PjRtFuture<> TfrtCpuBuffer::ToLiteral(MutableLiteralBase* literal) { return ToLiteralHelper(literal, client()->async_work_runner()); } PjRtFuture<> TfrtCpuBuffer::LazyToLiteral( absl::AnyInvocable<absl::StatusOr<MutableLiteralBase*>() &&> generator) { auto buffer = std::move(generator)(); if (!buffer.ok()) { return PjRtFuture<>(buffer.status()); } return ToLiteralHelper(buffer.value(), client()->async_work_runner()); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuBuffer::CopyToDevice( PjRtDevice* dst_device) { tsl::profiler::TraceMe traceme("TfrtCpuBuffer::CopyToDevice"); if (dst_device == device_) { return InvalidArgument( "CopyToDevice cannot accept the same source and destination devices"); } if (dst_device->client() != client_) { return CopyToDeviceAcrossClients(dst_device); } if (!dst_device->IsAddressable()) { return InvalidArgument("Cannot copy array to non-addressable device %s", dst_device->DebugString()); } TF_ASSIGN_OR_RETURN( std::unique_ptr<TrackedTfrtCpuDeviceBuffer> tracked_device_buffer, CopyToDeviceHelper(client()->async_work_runner())); return std::unique_ptr<PjRtBuffer>(std::make_unique<TfrtCpuBuffer>( on_device_shape_, std::move(tracked_device_buffer), client(), tensorflow::down_cast<TfrtCpuDevice*>(dst_device), *dst_device->default_memory_space())); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuBuffer::CopyToMemorySpace( PjRtMemorySpace* dst_memory_space) { CHECK_EQ(dst_memory_space->devices().size(), 1); return CopyToDevice(dst_memory_space->devices()[0]); } TfrtCpuExecutable::TfrtCpuExecutable( int num_replicas, int num_partitions, std::shared_ptr<DeviceAssignment> device_assignment, bool parameter_is_tupled_arguments, CompileOptions compile_options, std::unique_ptr<Executable> cpu_executable, BufferAllocation::Index result_buffer_index, absl::InlinedVector<BufferAllocation::Index, 4> result_buffer_indices, std::vector<LogicalDeviceIds> addressable_device_logical_ids, std::vector<PjRtDevice*> addressable_devices, TfrtCpuClient* client) : client_(client), num_replicas_(num_replicas), num_partitions_(num_partitions), device_assignment_(std::move(device_assignment)), parameter_is_tupled_arguments_(parameter_is_tupled_arguments), compile_options_(std::move(compile_options)), cpu_executable_(std::move(cpu_executable)), result_buffer_index_(result_buffer_index), result_buffer_indices_(std::move(result_buffer_indices)), addressable_device_logical_ids_( std::move(addressable_device_logical_ids)), addressable_devices_(std::move(addressable_devices)) { auto hlo_cost_analysis = std::make_unique<HloCostAnalysis>(cpu::CpuExecutable::ShapeSizeBytes); CHECK_OK(cpu_executable_->module().entry_computation()->Accept( hlo_cost_analysis.get())); cheap_computation_ = hlo_cost_analysis->flop_count() < 1000; const auto& computation_layout = cpu_executable_->module().entry_computation_layout(); if (computation_layout.parameter_count() == 0) { return; } if (computation_layout.parameter_count() > 1 || !computation_layout.parameter_shape(0).IsTuple()) { input_buffer_sizes_in_bytes_.reserve(computation_layout.parameter_count()); for (int i = 0; i < computation_layout.parameter_count(); ++i) { input_buffer_sizes_in_bytes_.push_back( ShapeUtil::ByteSizeOf(computation_layout.parameter_shape(i))); } } else { input_buffer_sizes_in_bytes_.reserve( computation_layout.parameter_shape(0).tuple_shapes_size()); for (int i = 0; i < computation_layout.parameter_shape(0).tuple_shapes_size(); ++i) { input_buffer_sizes_in_bytes_.push_back(ShapeUtil::ByteSizeOf( computation_layout.parameter_shape(0).tuple_shapes(i))); } } } void TfrtCpuExecutable::Delete() {} bool TfrtCpuExecutable::IsDeleted() { return false; } absl::StatusOr<std::optional<std::string>> TfrtCpuExecutable::Fingerprint() const { return std::optional<std::string>(); } absl::Status TfrtCpuExecutable::SetUpDonation(bool tuple_inputs) { TF_ASSIGN_OR_RETURN(parameters_that_must_be_donated_, ComputeParametersThatMustBeDonated( *cpu_executable_->shared_module(), tuple_inputs)); return absl::OkStatus(); } namespace { struct BufferInfo { tsl::AsyncValueRef<MaybeOwningCpuMemory> buffer; bool owns_buffer; size_t buffer_size; }; struct BufferAlloc { absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers; absl::InlinedVector<size_t, 4> allocation_sizes; void Allocate() { for (int i = 0; i < buffers.size(); ++i) { auto memory = MaybeOwningCpuMemory::Allocate(allocation_sizes[i]); if (!memory.ok()) { buffers[i].SetError(memory.status()); return; } buffers[i].emplace(std::move(*memory)); ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(buffers[i]->data(), allocation_sizes[i]); } } }; struct BufferAllocAndCopy { absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> src_buffers; absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> dst_buffers; absl::InlinedVector<size_t, 4> allocation_sizes; void AllocateAndCopy() { for (int i = 0; i < src_buffers.size(); ++i) { auto memory = MaybeOwningCpuMemory::Allocate(allocation_sizes[i]); if (!memory.ok()) { dst_buffers[i].SetError(memory.status()); return; } dst_buffers[i].emplace(std::move(*memory)); CHECK(src_buffers[i].IsConcrete()); std::memcpy(dst_buffers[i]->data(), src_buffers[i]->data(), allocation_sizes[i]); } } }; } static absl::StatusOr<BufferInfo> MemoryForAllocation( const BufferAllocation& allocation, absl::Span<const cpu::CpuExecutable::ConstantAllocation> constants, absl::Span<std::pair<bool, TrackedTfrtCpuDeviceBuffer*> const> arguments, BufferAlloc& buffer_alloc, BufferAllocAndCopy& buffer_alloc_and_copy) { BufferInfo buffer_info; if (allocation.is_entry_computation_parameter()) { auto [can_donate, arg] = arguments[allocation.parameter_number()]; tsl::AsyncValueRef<MaybeOwningCpuMemory> out = arg->Buffer(allocation.param_shape_index()); CHECK_EQ(allocation.size(), arg->BufferSize(allocation.param_shape_index())) << "Size mismatch on param " << allocation.parameter_number() << " at shape index " << allocation.param_shape_index().ToString(); if ((!can_donate || !arg->owns_buffers()) && !allocation.is_readonly()) { auto copy = tsl::MakeUnconstructedAsyncValueRef<MaybeOwningCpuMemory>(); buffer_alloc_and_copy.src_buffers.push_back(std::move(out)); buffer_alloc_and_copy.dst_buffers.push_back(copy); buffer_alloc_and_copy.allocation_sizes.push_back(allocation.size()); buffer_info.buffer = std::move(copy); buffer_info.owns_buffer = true; buffer_info.buffer_size = allocation.size(); return buffer_info; } buffer_info.buffer = std::move(out); buffer_info.owns_buffer = arg->owns_buffers(); buffer_info.buffer_size = arg->BufferSize(allocation.param_shape_index()); return buffer_info; } else if (allocation.is_constant() && allocation.index() < constants.size()) { se::DeviceMemoryBase constant = constants[allocation.index()].AsDeviceMemoryBase(); buffer_info.buffer = tsl::MakeAvailableAsyncValueRef<MaybeOwningCpuMemory>( constant.opaque(), constant.size()); buffer_info.owns_buffer = false; buffer_info.buffer_size = constant.size(); return buffer_info; } else if (allocation.is_constant() || allocation.is_thread_local()) { buffer_info.buffer = tsl::MakeAvailableAsyncValueRef<MaybeOwningCpuMemory>(); buffer_info.owns_buffer = true; buffer_info.buffer_size = 0; return buffer_info; } auto out = tsl::MakeUnconstructedAsyncValueRef<MaybeOwningCpuMemory>(); buffer_alloc.buffers.push_back(out); buffer_alloc.allocation_sizes.push_back(allocation.size()); buffer_info.buffer = std::move(out); buffer_info.owns_buffer = true; buffer_info.buffer_size = allocation.size(); return buffer_info; } static absl::StatusOr<std::vector<BufferInfo>> CreateBufferTable( const BufferAssignment& assignment, absl::Span<const cpu::CpuExecutable::ConstantAllocation> constants, absl::Span<std::pair<bool, TrackedTfrtCpuDeviceBuffer*> const> arguments, BufferAlloc& buffer_alloc, BufferAllocAndCopy& buffer_alloc_and_copy) { std::vector<BufferInfo> buffer_table(assignment.Allocations().size()); for (BufferAllocation::Index i = 0; i < buffer_table.size(); ++i) { const BufferAllocation& allocation = assignment.GetAllocation(i); TF_ASSIGN_OR_RETURN( buffer_table[i], MemoryForAllocation(allocation, constants, arguments, buffer_alloc, buffer_alloc_and_copy)); } return std::move(buffer_table); } static absl::InlinedVector<BufferInfo, 4> CreateResultBufferInfo( absl::Span<const BufferAllocation::Index> buffer_indices, absl::Span<const BufferInfo> buffer_table) { absl::InlinedVector<BufferInfo, 4> output_buffer_info; output_buffer_info.reserve(buffer_indices.size()); for (int i = 0; i < buffer_indices.size(); ++i) { output_buffer_info.push_back(buffer_table[buffer_indices[i]]); } return output_buffer_info; } absl::Status TfrtCpuExecutable::CheckBufferCompatibilities( absl::Span<std::pair<bool, TrackedTfrtCpuDeviceBuffer*> const> input_buffers) const { if (input_buffers.size() != input_buffer_sizes_in_bytes_.size()) { return InvalidArgument( "Execution supplied %lld buffers but compiled program expected %lld " "buffers", input_buffers.size(), input_buffer_sizes_in_bytes_.size()); } for (int i = 0; i < input_buffers.size(); ++i) { const auto& buffer = input_buffers[i].second; if (input_buffer_sizes_in_bytes_[i] != buffer->BufferSizes()[0]) { return InvalidArgument( "Executable expected parameter %d of size %lld but got buffer with " "incompatible size %lld", i, input_buffer_sizes_in_bytes_[i], buffer->BufferSizes()[0]); } } return absl::OkStatus(); } absl::StatusOr<PjRtLoadedExecutable::Result> TfrtCpuExecutable::ExecuteHelper( absl::Span<PjRtBuffer* const> argument_handles, int replica, int partition, const RunId& run_id, const ExecuteOptions& options, tsl::AsyncValueRef<CpuEvent> last_collective_launch_event, bool fill_future, TfrtCpuDevice* device) { tsl::profiler::TraceMe traceme("TfrtCpuExecutable::ExecuteHelper"); std::shared_ptr<DeviceAssignment> device_assignment; if (device == nullptr) { CHECK(device_assignment_ != nullptr); const int64_t device_id = (*device_assignment_)(replica, partition); PjRtGlobalDeviceId global_device_id(device_id); TF_ASSIGN_OR_RETURN(PjRtDevice * pjrt_device, client_->LookupDevice(global_device_id)); device = tensorflow::down_cast<TfrtCpuDevice*>(pjrt_device); device_assignment = device_assignment_; } else { CHECK(device_assignment_ == nullptr); CHECK_EQ(replica, 0); CHECK_EQ(partition, 0); CHECK(addressable_devices_.empty()); device_assignment = std::make_shared<DeviceAssignment>(1, 1); (*device_assignment)(0, 0) = device->id(); } CHECK_EQ(device->process_index(), client_->process_index()); if (options.arguments_are_tupled) { if (!parameter_is_tupled_arguments_) { return InvalidArgument( "Arguments may only be supplied as a tuple when the executable was " "compiled with a single tupled parameter"); } if (argument_handles.size() != 1) { return InvalidArgument( "Option arguments_are_tupled was true but %d buffers were passed to " "execution", argument_handles.size()); } } auto execute_event = tsl::MakeConstructedAsyncValueRef<CpuEvent>(); MarkEventReadyOnExit ready_on_exit(execute_event); absl::InlinedVector<TfrtCpuBuffer::DonationTransaction, 4> donation_transactions; absl::InlinedVector<std::pair<bool, TrackedTfrtCpuDeviceBuffer*>, 4> tracked_buffers; tracked_buffers.reserve(argument_handles.size()); std::vector<tsl::RCReference<tsl::AsyncValue>> input_deps; input_deps.reserve(argument_handles.size()); auto donate_it = parameters_that_must_be_donated_.begin(); absl::flat_hash_map<const void*, std::pair<bool, int>> donation_clashes; donation_clashes.reserve(argument_handles.size()); for (int i = 0; i < argument_handles.size(); ++i) { PjRtBuffer* handle = argument_handles[i]; auto* tfrt_buffer = tensorflow::down_cast<TfrtCpuBuffer*>(handle); if (tfrt_buffer->device() != device) { return InvalidArgument( "Buffer passed to Execute() as argument %d to replica %d is on " "device %s, but replica is assigned to device %s.", i, replica, tfrt_buffer->device()->DebugString(), device->DebugString()); } TrackedTfrtCpuDeviceBuffer* tracked_buffer; auto get_buffer = [&](int i) -> absl::Status { bool must_donate = donate_it != parameters_that_must_be_donated_.end() && *donate_it == i; TF_RETURN_IF_ERROR(TestBufferDonationClashes( tfrt_buffer, donation_clashes, must_donate, i, replica, partition)); if (must_donate) { ++donate_it; absl::StatusOr<TfrtCpuBuffer::DonationTransaction> donation_transaction = tfrt_buffer->AcquireDonation(); if (donation_transaction.ok()) { for (const auto& ev : donation_transaction->device_buffer()->UsageEvents()) { if (!ev.IsAvailable()) { input_deps.push_back(ev.CopyRCRef()); } } tracked_buffer = donation_transaction->device_buffer(); tracked_buffers.emplace_back(true, tracked_buffer); donation_transactions.push_back(std::move(*donation_transaction)); return absl::OkStatus(); } } tracked_buffer = tfrt_buffer->AcquireUsage(execute_event); if (!tracked_buffer) return InvalidArgument( "Invalid buffer passed: buffer has been deleted or donated."); tracked_buffers.emplace_back(false, tracked_buffer); return absl::OkStatus(); }; TF_RETURN_IF_ERROR(get_buffer(i)); const auto& definition_event = tracked_buffer->definition_event(); if (!definition_event.IsAvailable()) { input_deps.push_back(definition_event.CopyRCRef()); } } TF_RETURN_IF_ERROR(CheckBufferCompatibilities(tracked_buffers)); std::unique_ptr<TrackedTfrtCpuDeviceBuffer> tuplized_arg; if (parameter_is_tupled_arguments_ && !options.arguments_are_tupled) { bool owns_buffers = true; absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> leaf_buffers; absl::InlinedVector<size_t, 4> leaf_buffer_sizes; leaf_buffers.reserve(tracked_buffers.size()); leaf_buffer_sizes.reserve(tracked_buffers.size()); for (const auto& tracked_buffer : tracked_buffers) { owns_buffers = owns_buffers && tracked_buffer.second->owns_buffers(); auto span = tracked_buffer.second->Buffers(); leaf_buffers.insert(leaf_buffers.end(), span.begin(), span.end()); auto size_span = tracked_buffer.second->BufferSizes(); leaf_buffer_sizes.insert(leaf_buffer_sizes.end(), size_span.begin(), size_span.end()); } tracked_buffers.clear(); tuplized_arg = std::make_unique<TrackedTfrtCpuDeviceBuffer>( true, owns_buffers, std::move(leaf_buffers), std::move(leaf_buffer_sizes), tsl::MakeConstructedAsyncValueRef<CpuEvent>()); tracked_buffers.emplace_back(false, tuplized_arg.get()); } auto* cpu_executable = tensorflow::down_cast<cpu::CpuExecutable*>(cpu_executable_.get()); BufferAlloc buffer_alloc; BufferAllocAndCopy buffer_alloc_and_copy; TF_ASSIGN_OR_RETURN( std::vector<BufferInfo> buffer_table, CreateBufferTable(cpu_executable->buffer_assignment(), cpu_executable->constants(), tracked_buffers, buffer_alloc, buffer_alloc_and_copy)); auto result_buffers_info = CreateResultBufferInfo(result_buffer_indices_, buffer_table); auto compute_reservation = std::make_unique<Semaphore::ScopedReservation>( device->max_inflight_computations_semaphore().ScopedAcquire(1)); ExecutableRunOptions run_options; run_options.set_run_id(run_id); run_options.set_device_ordinal(device->id()); run_options.set_device_assignment(device_assignment.get()); run_options.set_intra_op_thread_pool(client_->eigen_intraop_device()); auto cpu_run_options = std::make_shared<cpu::CpuExecutableRunOptions>(); cpu_run_options->set_collectives(client_->collectives_.get()); run_options.set_cpu_executable_run_options(cpu_run_options.get()); bool is_a_collective_launch = !!last_collective_launch_event; if (is_a_collective_launch) { input_deps.push_back(std::move(last_collective_launch_event)); } else { auto last_enqueue_event = client_->GetLastEnqueueEvent(); if (!last_enqueue_event.IsAvailable()) { input_deps.push_back(std::move(last_enqueue_event)); } } if (options.context != nullptr) { run_options.set_ffi_execution_context(&options.context->ffi_context()); } bool execute_inline = cheap_computation_ || !client_->asynchronous_; if (options.execution_mode == ExecuteOptions::ExecutionMode::kAsynchronous) { execute_inline = false; } else if (options.execution_mode == ExecuteOptions::ExecutionMode::kSynchronous) { execute_inline = true; } if (input_deps.empty() && execute_inline) { tsl::port::ScopedFlushDenormal flush; tsl::port::ScopedSetRound round(FE_TONEAREST); XlaCustomCallStatus compute_function_status; tsl::AsyncValueRef<cpu::Thunk::ExecuteEvent> thunks_execute_event; buffer_alloc.Allocate(); buffer_alloc_and_copy.AllocateAndCopy(); std::vector<void*> buffer_pointers; buffer_pointers.reserve(buffer_table.size()); for (const auto& buffer_info : buffer_table) { CHECK(buffer_info.buffer.IsAvailable()); if (buffer_info.buffer.IsError()) { return buffer_info.buffer.GetError(); } buffer_pointers.push_back(buffer_info.buffer->data()); } void* result_buffer = buffer_pointers[result_buffer_index_]; if (cpu_executable->has_compute_function()) { cpu_executable->compute_function()(result_buffer, &run_options, nullptr, buffer_pointers.data(), &compute_function_status, nullptr); } else if (cpu_executable->has_thunks()) { absl::InlinedVector<MaybeOwningDeviceMemory, 8> buffer_device_mem; buffer_device_mem.reserve(buffer_table.size()); for (const auto& buffer_info : buffer_table) { buffer_device_mem.emplace_back(se::DeviceMemoryBase( buffer_info.buffer->data(), buffer_info.buffer->size())); } cpu::BufferAllocations allocations(buffer_device_mem); TF_ASSIGN_OR_RETURN( cpu::Thunk::CollectiveExecuteParams collective_params, cpu::Thunk::CollectiveExecuteParams::Create(&run_options)); TF_ASSIGN_OR_RETURN( cpu::Thunk::CustomCallExecuteParams custom_call_execute_params, cpu::Thunk::CustomCallExecuteParams::Create(&run_options)); cpu::Thunk::TaskRunner task_runner = [&run_options](cpu::Thunk::Task task) { run_options.intra_op_thread_pool()->getPool()->Schedule( std::move(task)); }; cpu::Thunk::ExecuteParams execute_params = { &cpu_executable->function_registry(), &allocations, cpu::runtime::GetXfeedManager(run_options.device_ordinal()), run_options.intra_op_thread_pool(), &task_runner, &collective_params, &custom_call_execute_params}; thunks_execute_event = cpu_executable->thunks().Execute(execute_params); tsl::profiler::TraceMe trace( "ThunkExecutor::Execute (wait for completion)"); tsl::BlockUntilReady(thunks_execute_event); } else { return Internal("CpuExecutable has no compute function or thunks."); } for (auto& donation_transaction : donation_transactions) { std::move(donation_transaction).Commit(); } if (cpu_executable->has_compute_function()) { if (auto error_message = xla::CustomCallStatusGetMessage(&compute_function_status)) { return Internal("Generated function failed: %s", *error_message); } } else if (thunks_execute_event.IsError()) { return thunks_execute_event.GetError(); } } else { if (is_a_collective_launch) { client_->SetLastCollectiveLaunchEvent(execute_event.CopyRef()); } else { client_->SetLastEnqueueEvent(execute_event.CopyRef()); } std::vector<tsl::RCReference<tsl::AsyncValue>> input_deps_avs_copy = CopyAsyncValues(input_deps); EnqueueWorkWhenReady( client()->pjrt_client_thread_pool(), input_deps, [cpu_executable, buffer_alloc = std::move(buffer_alloc), buffer_alloc_and_copy = std::move(buffer_alloc_and_copy), result_buffer_index = result_buffer_index_, buffer_table = std::move(buffer_table), run_options = std::move(run_options), cpu_executable_copy = cpu_executable_, device_assignment = std::move(device_assignment), cpu_run_options = std::move(cpu_run_options), compute_reservation = std::move(compute_reservation), tuplized_arg = std::move(tuplized_arg), donation_transactions = std::move(donation_transactions), execute_event = std::move(ready_on_exit).Release(), input_deps_avs = std::move(input_deps_avs_copy), eigen_device = client()->eigen_intraop_device()]() mutable { buffer_alloc.Allocate(); buffer_alloc_and_copy.AllocateAndCopy(); for (const auto& av : input_deps_avs) { if (auto* error = av->GetErrorIfPresent()) { execute_event.SetError(absl::StrCat( "Error dispatching computation: %s", error->message())); return; } } tsl::port::ScopedFlushDenormal flush; tsl::port::ScopedSetRound round(FE_TONEAREST); std::vector<void*> buffer_pointers; buffer_pointers.reserve(buffer_table.size()); for (const auto& buffer_info : buffer_table) { CHECK(buffer_info.buffer.IsAvailable()); if (buffer_info.buffer.IsError()) { execute_event.SetError( absl::StrCat("Error preparing computation: %s", buffer_info.buffer.GetError().message())); return; } buffer_pointers.push_back(buffer_info.buffer->data()); } void* result_buffer = buffer_pointers[result_buffer_index]; absl::Status status; if (cpu_executable->has_compute_function()) { XlaCustomCallStatus compute_function_status; cpu_executable->compute_function()( result_buffer, &run_options, nullptr, buffer_pointers.data(), &compute_function_status, nullptr); if (auto error_message = xla::CustomCallStatusGetMessage(&compute_function_status)) { status = Internal("Generated function failed: %s", *error_message); } } else if (cpu_executable->has_thunks()) { absl::InlinedVector<MaybeOwningDeviceMemory, 8> buffer_device_mem; buffer_device_mem.reserve(buffer_table.size()); for (const auto& buffer_info : buffer_table) { buffer_device_mem.emplace_back(se::DeviceMemoryBase( buffer_info.buffer->data(), buffer_info.buffer->size())); } cpu::BufferAllocations allocations(buffer_device_mem); absl::StatusOr<cpu::Thunk::CollectiveExecuteParams> collective_params = cpu::Thunk::CollectiveExecuteParams::Create(&run_options); absl::StatusOr<cpu::Thunk::CustomCallExecuteParams> custom_call_params = cpu::Thunk::CustomCallExecuteParams::Create(&run_options); cpu::Thunk::TaskRunner task_runner = [&run_options](cpu::Thunk::Task task) { run_options.intra_op_thread_pool()->getPool()->Schedule( std::move(task)); }; if (collective_params.ok()) { cpu::Thunk::ExecuteParams execute_params = { &cpu_executable->function_registry(), &allocations, cpu::runtime::GetXfeedManager(run_options.device_ordinal()), run_options.intra_op_thread_pool(), &task_runner, &*collective_params, &*custom_call_params}; auto thunks_execute_event = cpu_executable->thunks().Execute(execute_params); tsl::profiler::TraceMe trace( "ThunkExecutor::Execute (wait for completion)"); tsl::BlockUntilReady(thunks_execute_event); status = thunks_execute_event.IsError() ? thunks_execute_event.GetError() : absl::OkStatus(); } else { status = collective_params.status(); } } else { status = Internal("CpuExecutable has no compute function or thunks."); } for (auto& donation_transaction : donation_transactions) { std::move(donation_transaction).Commit(); } if (!status.ok()) { execute_event.SetError(std::move(status)); return; } execute_event.SetStateConcrete(); }); } const Shape& result_shape = cpu_executable_->result_shape(); std::vector<std::unique_ptr<PjRtBuffer>> res; if (options.untuple_result && result_shape.IsTuple()) { res.reserve(result_buffers_info.size()); for (int i = 0; i < result_buffers_info.size(); ++i) { absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> definition_events; definition_events.push_back(execute_event.CopyRef()); auto leaf_tracked_device_buffer = std::make_unique<TrackedTfrtCpuDeviceBuffer>( false, result_buffers_info[i].owns_buffer, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4>{ std::move(result_buffers_info[i].buffer)}, absl::InlinedVector<size_t, 4>{ result_buffers_info[i].buffer_size}, std::move(definition_events)); auto leaf_buffer = std::make_unique<TfrtCpuBuffer>( result_shape.tuple_shapes(i), std::move(leaf_tracked_device_buffer), client_, device, *device->default_memory_space()); res.push_back(std::move(leaf_buffer)); } } else { bool owns_buffers = true; absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> sub_buffers; absl::InlinedVector<size_t, 4> sub_buffer_sizes; sub_buffers.reserve(result_buffers_info.size()); sub_buffer_sizes.reserve(result_buffers_info.size()); for (int i = 0; i < result_buffers_info.size(); ++i) { owns_buffers = owns_buffers && result_buffers_info[i].owns_buffer; sub_buffers.push_back(std::move(result_buffers_info[i].buffer)); sub_buffer_sizes.push_back(result_buffers_info[i].buffer_size); } auto tracked_device_buffer = std::make_unique<TrackedTfrtCpuDeviceBuffer>( result_shape.IsTuple(), owns_buffers, std::move(sub_buffers), std::move(sub_buffer_sizes), execute_event); auto tfrt_output_buffer = std::make_unique<TfrtCpuBuffer>( result_shape, std::move(tracked_device_buffer), client_, device, *device->default_memory_space()); res.push_back(std::move(tfrt_output_buffer)); } std::optional<PjRtFuture<>> future; if (fill_future) { PjRtFuture<>::Promise promise = PjRtFuture<>::CreatePromise(); execute_event.AndThen([promise, event = execute_event.CopyRef()]() mutable { if (auto* error = event.GetErrorIfPresent()) { promise.Set(Internal("Compute error: %s", error->message())); } else { promise.Set(); } }); future = PjRtFuture<>(std::move(promise)); } return Result({std::move(future), std::move(res)}); } static void MaybeDumpHloSnapshot( const HloModule& module, RunId run_id, const std::vector<PjRtBuffer*>& arguments, const std::vector<std::unique_ptr<PjRtBuffer>>& results) { if (!DumpingEnabledForHloModule(module)) { return; } if (!module.config().debug_options().xla_dump_hlo_snapshots()) { return; } xla::HloSnapshot hlo_snapshot; *hlo_snapshot.mutable_hlo()->mutable_hlo_module() = module.ToProto(); for (auto* argument : arguments) { *hlo_snapshot.add_arguments() = (*argument->ToLiteralSync())->ToProto(); } if (results.size() == 1) { *hlo_snapshot.mutable_result() = (*results[0]->ToLiteralSync())->ToProto(); } else { std::vector<Literal> result_literals; result_literals.reserve(results.size()); for (auto& result : results) { result_literals.push_back(std::move(**result->ToLiteralSync())); } *hlo_snapshot.mutable_result() = LiteralUtil::MakeTupleOwned(std::move(result_literals)).ToProto(); } DumpToFileInDir(module, "", absl::StrCat("snapshot.", run_id.ToInt(), ".pb"), hlo_snapshot.SerializeAsString()); } absl::StatusOr<std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>> TfrtCpuExecutable::Execute( absl::Span<const std::vector<PjRtBuffer*>> argument_handles, const ExecuteOptions& options, std::optional<std::vector<PjRtFuture<>>>& returned_futures) { tsl::profiler::TraceMe traceme("TfrtCpuExecutable::Execute"); if (device_assignment_ == nullptr) { return InvalidArgument("Execute expects a non-null device_assignment"); } RunId run_id; tsl::profiler::TraceMeProducer activity("TfrtCpuExecutable::Execute", tsl::profiler::ContextType::kPjRt, run_id.ToInt()); const int num_addressable_devices = addressable_devices_.size(); if (argument_handles.size() != num_addressable_devices) { return InvalidArgument( "Attempted to execute with %d argument lists when local device " "count is %d (total replica count: %d, partition count: %d)", argument_handles.size(), num_addressable_devices, num_replicas(), num_partitions()); } VLOG(1) << "Executing computation " << name() << "; num_replicas=" << num_replicas() << " num_partitions=" << num_partitions() << " num_addressable_devices=" << num_addressable_devices; std::vector<std::vector<std::unique_ptr<PjRtBuffer>>> wrapped_results( num_addressable_devices); if (returned_futures.has_value()) { returned_futures->resize(num_addressable_devices); } if (num_addressable_devices == 1) { const int replica = addressable_device_logical_ids_[0].replica; const int partition = addressable_device_logical_ids_[0].partition; MaybeDumpHloSnapshot(cpu_executable_->module(), run_id, argument_handles[0], {}); auto statusor = ExecuteHelper( argument_handles[0], replica, partition, run_id, options, tsl::AsyncValueRef<CpuEvent>(), returned_futures.has_value()); if (!statusor.ok()) { return std::move(statusor).status(); } wrapped_results[0] = std::move(statusor->buffers); if (returned_futures.has_value()) { (*returned_futures)[0] = std::move(*statusor->future); } MaybeDumpHloSnapshot(cpu_executable_->module(), run_id, argument_handles[0], wrapped_results[0]); } else { tsl::AsyncValueRef<CpuEvent> last_collective_launch_event = client_->GetLastCollectiveLaunchEvent(); absl::Mutex mu; int running = num_addressable_devices; int failed = 0; absl::Status first_failure_status; for (int i = 0; i < num_addressable_devices; ++i) { const int replica = addressable_device_logical_ids_[i].replica; const int partition = addressable_device_logical_ids_[i].partition; auto* thread_pool = client()->pjrt_client_thread_pool(); EnqueueWork(thread_pool, [&, replica, partition, i] { auto statusor = ExecuteHelper(argument_handles[i], replica, partition, run_id, options, last_collective_launch_event.CopyRef(), returned_futures.has_value()); if (statusor.ok()) { wrapped_results[i] = std::move(statusor->buffers); if (returned_futures.has_value()) { (*returned_futures)[i] = std::move(*statusor->future); } } absl::MutexLock lock(&mu); --running; if (!statusor.ok()) { if (failed == 0) { first_failure_status = AppendStatus( std::move(statusor).status(), absl::StrFormat( "while running replica %d and partition %d of a " "replicated computation (other " "replicas may have failed as well).", replica, partition)); } ++failed; } }); } { auto done_running = [&]() { mu.AssertHeld(); return running == 0; }; absl::MutexLock lock(&mu); mu.Await(absl::Condition(&done_running)); } if (!first_failure_status.ok()) return first_failure_status; } VLOG(1) << "Replicated execution complete."; return wrapped_results; } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> TfrtCpuExecutable::ExecuteSharded( absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) { tsl::profiler::TraceMe traceme("TfrtCpuExecutable::ExecuteSharded"); if (device_assignment_ == nullptr) { return InvalidArgument("ExecuteShard expects a non-null device_assignment"); } for (int i = 0; i < addressable_devices_.size(); ++i) { if (addressable_devices_[i] == device) { VLOG(1) << "ExecuteShard executes computation " << name() << " on assigned replica/partition on device " << device->DebugString(); TF_ASSIGN_OR_RETURN( auto result, ExecuteHelper( argument_handles, addressable_device_logical_ids_[i].replica, addressable_device_logical_ids_[i].partition, RunId(), options, tsl::AsyncValueRef<CpuEvent>(), fill_future)); returned_future = std::move(result.future); return std::move(result.buffers); } } return InvalidArgument( "ExecuteShard attempted to execute on device id %d which is not " "addressable by this client", device->id()); } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> TfrtCpuExecutable::ExecutePortable( absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) { tsl::profiler::TraceMe traceme("TfrtCpuExecutable::ExecutePortable"); if (device_assignment_ != nullptr) { return InvalidArgument("ExecutePortable gets a non-portable executable"); } if (num_replicas() != 1 || num_partitions() != 1) { return InvalidArgument( "ExecutePortable expects a single-core executable but gets " "one with %d replica %d partition", num_replicas(), num_partitions()); } if (device == nullptr) { return InvalidArgument("ExecutePortable expects a device to be specified"); } VLOG(1) << "ExecutePortable executes single-core portable executable " << name(); TF_ASSIGN_OR_RETURN( auto result, ExecuteHelper( argument_handles, 0, 0, RunId(), options, tsl::AsyncValueRef<CpuEvent>(), fill_future, tensorflow::down_cast<TfrtCpuDevice*>(device))); returned_future = std::move(result.future); return std::move(result.buffers); } }
#include "xla/pjrt/cpu/cpu_client.h" #include "xla/service/hlo.pb.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #ifndef _WIN32 #include <unistd.h> #endif #include <algorithm> #include <cstdint> #include <cstring> #include <memory> #include <optional> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/synchronization/notification.h" #include "xla/ffi/ffi.h" #include "xla/ffi/ffi_api.h" #include "xla/hlo/builder/xla_computation.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/pjrt/host_memory_spaces.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_utils.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/file_system.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { using ::testing::Each; using ::testing::ElementsAre; using ::testing::ElementsAreArray; using ::testing::HasSubstr; using ::testing::IsFalse; using ::tsl::testing::IsOkAndHolds; static absl::Status TestError(ffi::AnyBuffer, ffi::Result<ffi::AnyBuffer>, ffi::Result<ffi::AnyBuffer>) { return absl::InternalError("test error."); } XLA_FFI_DEFINE_HANDLER(kTestError, TestError, ffi::Ffi::Bind() .Arg<ffi::AnyBuffer>() .Ret<ffi::AnyBuffer>() .Ret<ffi::AnyBuffer>() ); XLA_FFI_REGISTER_HANDLER(ffi::GetXlaFfiApi(), "__xla_test$$TestError", "Host", kTestError); TEST(TfrtCpuClientTest, MemorySpace) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetTfrtCpuClient(CpuClientOptions())); ASSERT_GE(client->devices().size(), 1); ASSERT_EQ(client->memory_spaces().size(), client->addressable_devices().size()); for (auto* device : client->devices()) { TF_ASSERT_OK_AND_ASSIGN(auto* memory_space, device->default_memory_space()); EXPECT_THAT(device->memory_spaces(), ElementsAre(memory_space)); EXPECT_EQ(memory_space->kind(), UnpinnedHostMemorySpace::kKind); EXPECT_EQ(memory_space->kind_id(), UnpinnedHostMemorySpace::kKindId); EXPECT_THAT(device->memory_space_by_kind(UnpinnedHostMemorySpace::kKind), IsOkAndHolds(memory_space)); } } TEST(TfrtCpuClientTest, DonationWithExecutionError) { static constexpr char kProgram[] = R"( HloModule DonationWithExecutionError, input_output_alias={ {}: (0, {}, must-alias) } ENTRY DonationWithExecutionError() -> f32[2, 2] { %input = f32[2, 2] parameter(0) %custom-call = (f32[2, 2], u8[0]) custom-call(%input), custom_call_target="__xla_test$$TestError", api_version=API_VERSION_TYPED_FFI, output_to_operand_aliasing={{0}: (0, {})} ROOT %result = f32[2, 2] get-tuple-element(%custom-call), index=0 })"; TF_ASSERT_OK_AND_ASSIGN(auto client, GetTfrtCpuClient(CpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnUnverifiedModule(kProgram, {})); XlaComputation xla_computation(hlo_module->ToProto()); TF_ASSERT_OK_AND_ASSIGN(auto pjrt_executable, client->Compile(xla_computation, {})); std::vector<float> data(4, 0); Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); auto result = pjrt_executable->Execute({{buffer.get()}}, {}); ASSERT_FALSE(result.ok()); EXPECT_THAT(result.status().message(), HasSubstr("test error.")); result = pjrt_executable->Execute({{buffer.get()}}, {}); ASSERT_FALSE(result.ok()); EXPECT_THAT(result.status().message(), HasSubstr("buffer has been deleted or donated.")); } TEST(TfrtCpuClientTest, HloSnapshot) { static constexpr char kProgram[] = R"( HloModule add ENTRY add { x = f32[3,2] parameter(0) y = f32[3,2] parameter(1) ROOT add = f32[3,2] add(x, y) })"; CpuClientOptions cpu_options; cpu_options.cpu_device_count = 1; TF_ASSERT_OK_AND_ASSIGN(auto client, GetTfrtCpuClient(cpu_options)); TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnUnverifiedModule(kProgram, {})); std::string dir = tsl::testing::TmpDir(); xla::CompileOptions options; auto* debug_opts = options.executable_build_options.mutable_debug_options(); debug_opts->set_xla_dump_to(dir); debug_opts->set_xla_dump_hlo_snapshots(true); XlaComputation xla_computation(hlo_module->ToProto()); TF_ASSERT_OK_AND_ASSIGN(auto pjrt_executable, client->Compile(xla_computation, options)); std::vector<float> data1{1.0, 2.0, 3.0, 4.0, 5.0, 6.0}; std::vector<float> data2{10.0, 20.0, 30.0, 40.0, 50.0, 60.0}; Shape shape = ShapeUtil::MakeShape(F32, {3, 2}); TF_ASSERT_OK_AND_ASSIGN( auto buffer1, client->BufferFromHostBuffer( data1.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); TF_ASSERT_OK_AND_ASSIGN( auto buffer2, client->BufferFromHostBuffer( data2.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); auto result = pjrt_executable->Execute( {{buffer1.get(), buffer2.get()}}, {}); ASSERT_TRUE(result.ok()); tsl::FileSystem* fs; ASSERT_TRUE(tsl::Env::Default()->GetFileSystemForFile(dir, &fs).ok()); std::vector<std::string> paths; ASSERT_TRUE(fs->GetMatchingPaths(dir + "false, []() {})); TF_ASSERT_OK(transfer_manager->TransferRawDataToSubBuffer( 0, raw_data_view.data(), raw_data_size - 1, 1, true, []() {})); TF_ASSERT_OK_AND_ASSIGN(auto literal, buffer->ToLiteralSync()); ASSERT_EQ(literal->element_count(), 3 * 2); EXPECT_THAT(literal->data<uint32_t>(), Each(0x42424242)); } struct MemsetValue { explicit MemsetValue(float value) : value(value) {} float value; }; static absl::Status MemsetFromValue( ffi::Result<ffi::BufferR1<PrimitiveType::F32>> result, MemsetValue* memset_value) { for (size_t i = 0; i < result->element_count(); ++i) { result->typed_data()[i] = memset_value->value; } return absl::OkStatus(); } XLA_FFI_DEFINE_HANDLER(kMemsetFromValue, MemsetFromValue, ffi::Ffi::Bind() .Ret<ffi::BufferR1<PrimitiveType::F32>>() .Ctx<ffi::UserData<MemsetValue>>()); XLA_FFI_REGISTER_HANDLER(ffi::GetXlaFfiApi(), "MemsetFromValue", "HOST", kMemsetFromValue); TEST(TfrtCpuClientTest, ForwardUserDataToFfiHandler) { static constexpr char const* kProgram = R"( HloModule ffi_handler ENTRY main { ROOT %custom-call = f32[4] custom-call(), custom_call_target="MemsetFromValue", api_version=API_VERSION_TYPED_FFI })"; TF_ASSERT_OK_AND_ASSIGN(auto client, GetTfrtCpuClient(CpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnUnverifiedModule(kProgram, {})); XlaComputation xla_computation(hlo_module->ToProto()); TF_ASSERT_OK_AND_ASSIGN(auto executable, client->Compile(xla_computation, {})); ExecuteContext context; TF_ASSERT_OK(context.ffi_context().Emplace<MemsetValue>(42.0f)); ExecuteOptions opts; opts.context = &context; auto result = executable->Execute({{}}, opts); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<xla::Literal> result_literal, result->at(0).at(0)->ToLiteralSync()); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR1<float>({42.0f, 42.0f, 42.0f, 42.0f}), *result_literal)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/cpu/cpu_client.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/cpu/cpu_client_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e93ee444-09bb-4afd-933a-0cbe6a24366c
cpp
tensorflow/tensorflow
tracked_tfrt_cpu_device_buffer
third_party/xla/xla/pjrt/cpu/tracked_tfrt_cpu_device_buffer.cc
third_party/xla/xla/pjrt/cpu/tracked_tfrt_cpu_device_buffer_test.cc
#include "xla/pjrt/cpu/tracked_tfrt_cpu_device_buffer.h" #include <atomic> #include <cstddef> #include <cstdint> #include <utility> #include "absl/base/casts.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/service/cpu/cpu_event.h" #include "xla/shape_util.h" #include "xla/tsl/concurrency/async_value_ref.h" namespace xla { namespace { tsl::AsyncValueRef<CpuEvent> AfterAll( absl::Span<const tsl::AsyncValueRef<CpuEvent>> events) { if (events.empty()) return tsl::MakeAvailableAsyncValueRef<CpuEvent>(); struct State { State(int count, tsl::AsyncValueRef<CpuEvent> after_all) : count(count), after_all(std::move(after_all)) {} std::atomic<int> count; tsl::AsyncValueRef<CpuEvent> after_all; absl::Mutex mutex; absl::Status error; }; auto after_all = tsl::MakeConstructedAsyncValueRef<CpuEvent>(); auto* state = new State(events.size(), after_all); for (auto& event : events) { event.AndThen([state, event = event.AsPtr()]() { if (event.IsError()) { absl::MutexLock lock(&state->mutex); state->error = event.GetError(); } if (state->count.fetch_sub(1, std::memory_order_acq_rel) == 1) { if (!state->error.ok()) { state->after_all.SetError(state->error); } else { state->after_all.SetStateConcrete(); } delete state; } }); } return after_all; } } TrackedTfrtCpuDeviceBuffer::TrackedTfrtCpuDeviceBuffer( bool is_tuple, bool owns_buffers, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers, absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> definition_events, absl::AnyInvocable<void() &&> on_delete_callback) : TrackedTfrtCpuDeviceBuffer(is_tuple, owns_buffers, std::move(buffers), AfterAll(definition_events), std::move(on_delete_callback)) {} TrackedTfrtCpuDeviceBuffer::TrackedTfrtCpuDeviceBuffer( bool is_tuple, bool owns_buffers, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers, absl::InlinedVector<size_t, 4> buffer_sizes, absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> definition_events, absl::AnyInvocable<void() &&> on_delete_callback) : TrackedTfrtCpuDeviceBuffer( is_tuple, owns_buffers, std::move(buffers), std::move(buffer_sizes), AfterAll(definition_events), std::move(on_delete_callback)) {} TrackedTfrtCpuDeviceBuffer::TrackedTfrtCpuDeviceBuffer( bool is_tuple, bool owns_buffers, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers, tsl::AsyncValueRef<CpuEvent> definition_event, absl::AnyInvocable<void() &&> on_delete_callback) : is_tuple_(is_tuple), owns_buffers_(owns_buffers), buffers_(std::move(buffers)), definition_event_(std::move(definition_event)), on_delete_callback_(std::move(on_delete_callback)) { DCHECK(definition_event_); for (const auto& buffer : buffers_) { CHECK(buffer.IsConcrete()); buffer_sizes_.push_back(buffer->size()); } if (is_tuple) { size_t index_table_byte_size = buffers_.size() * sizeof(void*); tuple_index_table_ = MaybeOwningCpuMemory::AllocateAvailableAvr(index_table_byte_size) .value(); uintptr_t* index_table = reinterpret_cast<uintptr_t*>(tuple_index_table_->data()); for (int i = 0; i < buffers_.size(); ++i) { index_table[i] = absl::bit_cast<uintptr_t>(buffers_[i]->data()); } } } TrackedTfrtCpuDeviceBuffer::TrackedTfrtCpuDeviceBuffer( bool is_tuple, bool owns_buffers, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers, absl::InlinedVector<size_t, 4> buffer_sizes, tsl::AsyncValueRef<CpuEvent> definition_event, absl::AnyInvocable<void() &&> on_delete_callback) : is_tuple_(is_tuple), owns_buffers_(owns_buffers), buffers_(std::move(buffers)), buffer_sizes_(std::move(buffer_sizes)), definition_event_(std::move(definition_event)), on_delete_callback_(std::move(on_delete_callback)) { DCHECK(definition_event_); if (is_tuple) { tuple_index_table_ = tsl::MakeUnconstructedAsyncValueRef<MaybeOwningCpuMemory>(); tsl::RunWhenReady( absl::MakeConstSpan(buffers_), [buffers = buffers_, tuple_index_table = tuple_index_table_] { size_t index_table_byte_size = buffers.size() * sizeof(void*); tuple_index_table.emplace( MaybeOwningCpuMemory::Allocate(index_table_byte_size).value()); uintptr_t* index_table = reinterpret_cast<uintptr_t*>(tuple_index_table->data()); for (int i = 0; i < buffers.size(); ++i) { index_table[i] = absl::bit_cast<uintptr_t>(buffers[i]->data()); } }); } } TrackedTfrtCpuDeviceBuffer::~TrackedTfrtCpuDeviceBuffer() { ReleaseDeviceMemory(); if (on_delete_callback_) { std::move(on_delete_callback_)(); } } tsl::AsyncValueRef<MaybeOwningCpuMemory> TrackedTfrtCpuDeviceBuffer::Buffer( const ShapeIndex& shape_index) { if (shape_index.empty()) { if (is_tuple_) return tuple_index_table_; return buffers_[0]; } CHECK(is_tuple_); CHECK_EQ(shape_index.size(), 1) << "nested tuple not supported"; return buffers_[shape_index[0]]; } size_t TrackedTfrtCpuDeviceBuffer::BufferSize(const ShapeIndex& shape_index) { if (shape_index.empty()) { if (is_tuple_) return buffers_.size() * sizeof(void*); return buffer_sizes_[0]; } CHECK(is_tuple_); CHECK_EQ(shape_index.size(), 1) << "nested tuple not supported"; return buffer_sizes_[shape_index[0]]; } void TrackedTfrtCpuDeviceBuffer::AddUsageEvents( absl::Span<tsl::AsyncValueRef<CpuEvent>> events) { if (usage_events_.size() >= 1024) { int i = 0; while (i < usage_events_.size()) { auto& event = usage_events_[i]; if (event.IsAvailable()) { using std::swap; swap(event, usage_events_.back()); usage_events_.pop_back(); continue; } ++i; } } for (auto& ev : events) { usage_events_.push_back(std::move(ev)); } } absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> TrackedTfrtCpuDeviceBuffer::LockUseAndTransferUsageEvents() { return std::move(usage_events_); } void TrackedTfrtCpuDeviceBuffer::ReleaseDeviceMemory() { tuple_index_table_.reset(); buffers_.clear(); definition_event_.reset(); usage_events_.clear(); } }
#include "xla/pjrt/cpu/tracked_tfrt_cpu_device_buffer.h" #include <cstring> #include <string> #include <gtest/gtest.h> #include "xla/service/cpu/cpu_event.h" #include "xla/tsl/concurrency/async_value.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/env.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" namespace xla { namespace { using ::tsl::BlockUntilReady; using ::tsl::MakeConstructedAsyncValueRef; using ::tsl::MakeUnconstructedAsyncValueRef; using ::tsl::thread::ThreadPool; TEST(TrackedTfrtCpuDeviceBufferTest, Basic) { std::string expected = "tracked_tfrt_cpu_device_buffer_test"; TF_ASSERT_OK_AND_ASSIGN( auto buffer, MaybeOwningCpuMemory::AllocateAvailableAvr(expected.size())); auto definition_event = MakeConstructedAsyncValueRef<CpuEvent>(); ThreadPool thread_pool(tsl::Env::Default(), "tracked_buffer_test", 4); thread_pool.Schedule([&]() { std::memcpy(buffer->data(), expected.data(), expected.size()); definition_event.SetStateConcrete(); }); TrackedTfrtCpuDeviceBuffer tracked_buffer( false, true, {buffer}, definition_event, nullptr); BlockUntilReady(tracked_buffer.definition_event().GetAsyncValue()); auto result = tracked_buffer.Buffers()[0]; ASSERT_TRUE(result.IsAvailable()); EXPECT_EQ( std::string(static_cast<const char*>(result->data()), result->size()), expected); } TEST(TrackedTfrtCpuDeviceBufferTest, Tuple) { std::string expected_0 = "tracked_tfrt_cpu_device_buffer_test"; std::string expected_1 = "tuple"; TF_ASSERT_OK_AND_ASSIGN( auto buffer_0, MaybeOwningCpuMemory::AllocateAvailableAvr(expected_0.size())); TF_ASSERT_OK_AND_ASSIGN( auto buffer_1, MaybeOwningCpuMemory::AllocateAvailableAvr(expected_1.size())); auto definition_event_0 = MakeConstructedAsyncValueRef<CpuEvent>(); auto definition_event_1 = MakeConstructedAsyncValueRef<CpuEvent>(); ThreadPool thread_pool(tsl::Env::Default(), "tracked_buffer_test", 4); thread_pool.Schedule([&]() { std::memcpy(buffer_0->data(), expected_0.data(), expected_0.size()); definition_event_0.SetStateConcrete(); }); thread_pool.Schedule([&]() { std::memcpy(buffer_1->data(), expected_1.data(), expected_1.size()); definition_event_1.SetStateConcrete(); }); TrackedTfrtCpuDeviceBuffer tracked_buffer( true, true, {buffer_0, buffer_1}, {definition_event_0, definition_event_1}, nullptr); BlockUntilReady(tracked_buffer.definition_event().GetAsyncValue()); auto result_0 = tracked_buffer.Buffers()[0]; auto result_1 = tracked_buffer.Buffers()[1]; ASSERT_TRUE(result_0.IsAvailable()); ASSERT_TRUE(result_1.IsAvailable()); EXPECT_EQ( std::string(static_cast<const char*>(result_0->data()), result_0->size()), expected_0); EXPECT_EQ( std::string(static_cast<const char*>(result_1->data()), result_1->size()), expected_1); } TEST(TrackedTfrtCpuDeviceBufferTest, BasicError) { TF_ASSERT_OK_AND_ASSIGN(auto buffer, MaybeOwningCpuMemory::AllocateAvailableAvr(64)); auto definition_event = MakeConstructedAsyncValueRef<CpuEvent>(); ThreadPool thread_pool(tsl::Env::Default(), "tracked_buffer_test", 4); thread_pool.Schedule([&]() { definition_event.SetError("tracked_tfrt_cpu_device_buffer_test error."); }); TrackedTfrtCpuDeviceBuffer tracked_buffer( false, true, {buffer}, definition_event, nullptr); BlockUntilReady(tracked_buffer.definition_event().GetAsyncValue()); ASSERT_TRUE(tracked_buffer.definition_event().IsError()); EXPECT_EQ(tracked_buffer.definition_event().GetError().message(), "tracked_tfrt_cpu_device_buffer_test error."); } TEST(TrackedTfrtCpuDeviceBufferTest, TupleError) { std::string expected = "tracked_tfrt_cpu_device_buffer_test"; TF_ASSERT_OK_AND_ASSIGN( auto buffer_0, MaybeOwningCpuMemory::AllocateAvailableAvr(expected.size())); TF_ASSERT_OK_AND_ASSIGN( auto buffer_1, MaybeOwningCpuMemory::AllocateAvailableAvr(expected.size())); auto definition_event_0 = MakeConstructedAsyncValueRef<CpuEvent>(); auto definition_event_1 = MakeConstructedAsyncValueRef<CpuEvent>(); ThreadPool thread_pool(tsl::Env::Default(), "tracked_buffer_test", 4); thread_pool.Schedule([&]() { std::memcpy(buffer_0->data(), expected.data(), expected.size()); definition_event_0.SetStateConcrete(); }); thread_pool.Schedule([&]() { definition_event_1.SetError( "tracked_tfrt_cpu_device_buffer_test tuple error."); }); TrackedTfrtCpuDeviceBuffer tracked_buffer( true, true, {buffer_0, buffer_1}, {definition_event_0, definition_event_1}, nullptr); BlockUntilReady(tracked_buffer.definition_event().GetAsyncValue()); ASSERT_TRUE(tracked_buffer.definition_event().IsError()); EXPECT_EQ(tracked_buffer.definition_event().GetError().message(), "tracked_tfrt_cpu_device_buffer_test tuple error."); } TEST(TrackedTfrtCpuDeviceBufferTest, DelayedAllocation) { std::string expected = "tracked_tfrt_cpu_device_buffer_test"; auto buffer = MakeUnconstructedAsyncValueRef<MaybeOwningCpuMemory>(); auto malloc_event = MakeConstructedAsyncValueRef<CpuEvent>(); malloc_event.AndThen([buffer_copy = buffer.CopyRef(), buffer_size = expected.size()] { buffer_copy.emplace(MaybeOwningCpuMemory::Allocate(buffer_size).value()); }); auto definition_event = MakeConstructedAsyncValueRef<CpuEvent>(); TrackedTfrtCpuDeviceBuffer tracked_buffer(false, true, {buffer}, {expected.size()}, definition_event, nullptr); auto result = tracked_buffer.Buffers()[0]; ASSERT_FALSE(result.IsAvailable()); ASSERT_EQ(tracked_buffer.BufferSizes()[0], expected.size()); ThreadPool thread_pool(tsl::Env::Default(), "tracked_buffer_test", 4); thread_pool.Schedule([&]() { malloc_event.SetStateConcrete(); std::memcpy(buffer->data(), expected.data(), expected.size()); definition_event.SetStateConcrete(); }); BlockUntilReady(tracked_buffer.definition_event().GetAsyncValue()); EXPECT_EQ( std::string(static_cast<const char*>(result->data()), result->size()), expected); } TEST(TrackedTfrtCpuDeviceBufferTest, DelayedAllocationTuple) { std::string expected_0 = "tracked_tfrt_cpu_device_buffer_test"; std::string expected_1 = "tuple"; auto buffer_0 = MakeUnconstructedAsyncValueRef<MaybeOwningCpuMemory>(); auto malloc_event_0 = MakeConstructedAsyncValueRef<CpuEvent>(); malloc_event_0.AndThen( [buffer_0_copy = buffer_0.CopyRef(), buffer_0_size = expected_0.size()] { buffer_0_copy.emplace( MaybeOwningCpuMemory::Allocate(buffer_0_size).value()); }); auto buffer_1 = MakeUnconstructedAsyncValueRef<MaybeOwningCpuMemory>(); auto malloc_event_1 = MakeConstructedAsyncValueRef<CpuEvent>(); malloc_event_1.AndThen( [buffer_1_copy = buffer_1.CopyRef(), buffer_1_size = expected_1.size()] { buffer_1_copy.emplace( MaybeOwningCpuMemory::Allocate(buffer_1_size).value()); }); auto definition_event_0 = MakeConstructedAsyncValueRef<CpuEvent>(); auto definition_event_1 = MakeConstructedAsyncValueRef<CpuEvent>(); TrackedTfrtCpuDeviceBuffer tracked_buffer( true, true, {buffer_0, buffer_1}, {expected_0.size(), expected_1.size()}, {definition_event_0, definition_event_1}, nullptr); auto result_0 = tracked_buffer.Buffers()[0]; auto result_1 = tracked_buffer.Buffers()[1]; ASSERT_FALSE(result_0.IsAvailable()); ASSERT_FALSE(result_1.IsAvailable()); ASSERT_EQ(tracked_buffer.BufferSizes()[0], expected_0.size()); ASSERT_EQ(tracked_buffer.BufferSizes()[1], expected_1.size()); ThreadPool thread_pool(tsl::Env::Default(), "tracked_buffer_test", 4); thread_pool.Schedule([&]() { malloc_event_0.SetStateConcrete(); std::memcpy(buffer_0->data(), expected_0.data(), expected_0.size()); definition_event_0.SetStateConcrete(); }); thread_pool.Schedule([&]() { malloc_event_1.SetStateConcrete(); std::memcpy(buffer_1->data(), expected_1.data(), expected_1.size()); definition_event_1.SetStateConcrete(); }); BlockUntilReady(tracked_buffer.definition_event().GetAsyncValue()); EXPECT_EQ( std::string(static_cast<const char*>(result_0->data()), result_0->size()), expected_0); EXPECT_EQ( std::string(static_cast<const char*>(result_1->data()), result_1->size()), expected_1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/cpu/tracked_tfrt_cpu_device_buffer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/cpu/tracked_tfrt_cpu_device_buffer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
18d40d61-c549-4e2b-ba54-b152b402180e
cpp
tensorflow/tensorflow
client
third_party/xla/xla/client/client.cc
third_party/xla/xla/tests/client_test.cc
#include "xla/client/client.h" #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/types/span.h" #include "xla/execution_options_util.h" #include "xla/hlo/builder/xla_computation.h" #include "xla/layout.h" #include "xla/literal.h" #include "xla/service/hlo.pb.h" #include "xla/service/service.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" namespace xla { Client::Client(Service* stub) : stub_(stub) {} Client::~Client() = default; absl::StatusOr<Literal> Client::Transfer(const GlobalData& data, const Shape* shape_with_layout) { return stub_->TransferToClient(data, shape_with_layout); } absl::StatusOr<std::unique_ptr<GlobalData>> Client::TransferToServer( const LiteralSlice& literal, const DeviceHandle* device_handle) { return stub_->TransferToServer(literal, device_handle); } absl::Status Client::TransferToInfeed(const LiteralSlice& literal, int64_t replica_id, const DeviceHandle* device_handle) { return stub_->TransferToInfeed(literal, replica_id, device_handle); } absl::StatusOr<Literal> Client::TransferFromOutfeed( const Shape* shape_with_layout, int64_t replica_id, const DeviceHandle* device_handle) { return stub_->TransferFromOutfeed(shape_with_layout, replica_id, device_handle); } absl::Status Client::ResetDevice() { return stub_->ResetDevice(); } absl::StatusOr<Literal> Client::ExecuteAndTransfer( const XlaComputation& computation, absl::Span<GlobalData* const> arguments, const ExecutionOptions* execution_options, ExecutionProfile* execution_profile) { TF_ASSIGN_OR_RETURN( std::unique_ptr<GlobalData> data, Execute(computation, arguments, execution_options, execution_profile)); std::optional<Shape> shape_with_output_layout; if (execution_options && execution_options->has_shape_with_output_layout()) { shape_with_output_layout = Shape(execution_options->shape_with_output_layout()); } return Transfer(*data, shape_with_output_layout.has_value() ? &(*shape_with_output_layout) : nullptr); } absl::StatusOr<Literal> Client::ComputeConstant( const XlaComputation& computation, const Layout* output_layout) const { return stub_->ComputeConstantGraph(computation, output_layout); } absl::StatusOr<XlaComputation> Client::LoadSnapshot(const HloSnapshot& module) { TF_RET_CHECK(module.has_hlo() && module.hlo().has_hlo_module()); return XlaComputation(module.hlo().hlo_module()); } absl::StatusOr<ExecutionHandle> Client::Compile( const XlaComputation& computation, absl::Span<const Shape> argument_shapes, const ExecutionOptions* execution_options) { std::optional<ExecutionOptions> opts; if (!execution_options) { opts = CreateDefaultExecutionOptions(); } return stub_->Compile(computation, argument_shapes, execution_options ? *execution_options : *opts); } absl::StatusOr<std::unique_ptr<GlobalData>> Client::Execute( const ExecutionHandle& handle, absl::Span<GlobalData* const> arguments, ExecutionProfile* execution_profile) { return stub_->Execute(handle, arguments, execution_profile); } absl::StatusOr<std::unique_ptr<GlobalData>> Client::Execute( const XlaComputation& computation, absl::Span<GlobalData* const> arguments, const ExecutionOptions* execution_options, ExecutionProfile* execution_profile) { std::optional<ExecutionOptions> options_storage; if (!execution_options || execution_options->device_handles().empty()) { if (execution_options) { options_storage.emplace(*execution_options); } else { options_storage.emplace(CreateDefaultExecutionOptions()); } execution_options = &*options_storage; TF_ASSIGN_OR_RETURN(auto device_handles, GetDeviceHandles(1)); TF_RET_CHECK(!device_handles.empty()); *options_storage->add_device_handles() = std::move(device_handles[0]); } std::vector<XlaComputationInstance> computation_instances = { XlaComputationInstance{ computation, std::vector<GlobalData*>(arguments.begin(), arguments.end()), *execution_options, execution_profile}}; VLOG(1) << "Making ExecuteParallel request: " << execution_options->DebugString(); TF_ASSIGN_OR_RETURN(auto results, ExecuteParallel(computation_instances)); VLOG(1) << "ExecuteParallel request done."; for (int64_t i = 0, end = results.size(); i < end; i++) { TF_ASSIGN_OR_RETURN(const Shape& shape, GetShape(*results[i])); if (!ShapeUtil::IsEmptyTuple(shape)) { VLOG(3) << "Fetching result from device " << i << ": " << ShapeUtil::HumanString(shape); return std::move(results[i]); } } TF_RET_CHECK(!results.empty()); VLOG(1) << "Defaulting to device 0 result"; return std::move(results[0]); } absl::StatusOr<std::vector<std::unique_ptr<GlobalData>>> Client::ExecuteParallel(absl::Span<const XlaComputationInstance> computations) { return stub_->ExecuteGraphParallel(computations); } absl::StatusOr<std::vector<DeviceHandle>> Client::GetDeviceHandles( int64_t device_count) { if (device_count < 1) { return InvalidArgument("device_count must be greater than 0"); } return stub_->GetDeviceHandles(device_count); } absl::Status Client::Unregister(const GlobalData& data) { return stub_->Unregister(data.handle()); } absl::StatusOr<std::vector<std::unique_ptr<GlobalData>>> Client::DeconstructTuple(const GlobalData& data) { return stub_->DeconstructTuple(data); } absl::StatusOr<std::unique_ptr<ProgramShape>> Client::GetComputationShape( const XlaComputation& computation) { TF_ASSIGN_OR_RETURN(const auto& result, computation.GetProgramShape()); return std::make_unique<ProgramShape>(result); } absl::StatusOr<Shape> Client::GetShape(const GlobalData& data) { return stub_->GetShape(data); } absl::StatusOr<ChannelHandle> Client::CreateChannelHandleByType( ChannelHandle::ChannelType type) { return stub_->CreateChannelHandle(type); } absl::StatusOr<ChannelHandle> Client::CreateChannelHandle() { return CreateChannelHandleByType(ChannelHandle::DEVICE_TO_DEVICE); } absl::StatusOr<ChannelHandle> Client::CreateHostToDeviceChannelHandle() { return CreateChannelHandleByType(ChannelHandle::HOST_TO_DEVICE); } absl::StatusOr<ChannelHandle> Client::CreateDeviceToHostChannelHandle() { return CreateChannelHandleByType(ChannelHandle::DEVICE_TO_HOST); } }
#include <memory> #include <vector> #include "absl/status/statusor.h" #include "xla/client/global_data.h" #include "xla/client/local_client.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/hlo/builder/xla_computation.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/test_helpers.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_macros.h" #include "xla/tests/test_utils.h" #include "xla/xla_data.pb.h" #include "tsl/platform/test.h" namespace xla { namespace { class ClientTest : public ClientLibraryTestBase {}; XLA_TEST_F(ClientTest, ExecuteWithLayout) { XlaBuilder b(TestName()); std::vector<std::vector<int64_t>> layouts = {{0, 1}, {1, 0}}; for (const std::vector<int64_t>& execute_layout : layouts) { for (const std::vector<int64_t>& transfer_layout : layouts) { Add(ConstantR2<int32_t>(&b, {{1, 2}, {3, 4}}), ConstantR2<int32_t>(&b, {{10, 20}, {30, 40}})); TF_ASSERT_OK_AND_ASSIGN(auto computation, b.Build()); ExecutionOptions execution_options = execution_options_; *execution_options.mutable_shape_with_output_layout() = ShapeUtil::MakeShapeWithDenseLayout(S32, {2, 2}, execute_layout) .ToProto(); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<GlobalData> data, client_->Execute(computation, {}, &execution_options)); Literal expected_literal = LiteralUtil::CreateR2WithLayout<int32_t>( {{11, 22}, {33, 44}}, LayoutUtil::MakeLayout(transfer_layout)); TF_ASSERT_OK_AND_ASSIGN( auto computed, client_->Transfer(*data, &expected_literal.shape())); ASSERT_TRUE(LiteralTestUtil::EqualShapesAndLayouts( expected_literal.shape(), computed.shape())); EXPECT_TRUE(LiteralTestUtil::Equal(expected_literal, computed)); } } } XLA_TEST_F(ClientTest, ExecuteWithTupleLayout) { XlaBuilder b(TestName()); Tuple(&b, {ConstantR2<int32_t>(&b, {{1, 2}, {3, 4}}), ConstantR2<int32_t>(&b, {{10, 20}, {30, 40}})}); TF_ASSERT_OK_AND_ASSIGN(auto computation, b.Build()); ExecutionOptions execution_options = execution_options_; *execution_options.mutable_shape_with_output_layout() = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShapeWithDenseLayout(S32, {2, 2}, {0, 1}), ShapeUtil::MakeShapeWithDenseLayout(S32, {2, 2}, {1, 0})}) .ToProto(); TF_ASSERT_OK_AND_ASSIGN( auto result, client_->ExecuteAndTransfer(computation, {}, &execution_options)); LiteralTestUtil::ExpectR2Equal<int32_t>({{1, 2}, {3, 4}}, LiteralSlice(result, {0})); LiteralTestUtil::ExpectR2Equal<int32_t>({{10, 20}, {30, 40}}, LiteralSlice(result, {1})); EXPECT_TRUE(result.shape().IsTuple()); EXPECT_EQ(2, ShapeUtil::TupleElementCount(result.shape())); EXPECT_TRUE(ShapeUtil::Equal( ShapeUtil::GetTupleElementShape(result.shape(), 0), ShapeUtil::MakeShapeWithDenseLayout(S32, {2, 2}, {0, 1}))); EXPECT_TRUE(ShapeUtil::Equal( ShapeUtil::GetTupleElementShape(result.shape(), 1), ShapeUtil::MakeShapeWithDenseLayout(S32, {2, 2}, {1, 0}))); } XLA_TEST_F(ClientTest, DISABLED_ON_INTERPRETER(DISABLED_ON_GPU(ExecuteParallel))) { XlaComputation add_with_one_arg, mul_with_two_args, dot_with_one_arg; Shape shape = ShapeUtil::MakeShape(S32, {2, 2}); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<GlobalData> const_arg, client_->TransferToServer( LiteralUtil::CreateR2<int32_t>({{5, 6}, {7, 8}}))); XlaBuilder b(TestName() + ".add"); Add(Parameter(&b, 0, shape, "param_0"), ConstantR2<int32_t>(&b, {{1, 2}, {3, 4}})); TF_ASSERT_OK_AND_ASSIGN(add_with_one_arg, b.Build()); std::vector<XlaComputationInstance> computation_instances; TF_ASSERT_OK_AND_ASSIGN(std::vector<xla::DeviceHandle> devices, client_->GetDeviceHandles(1)); ASSERT_EQ(devices.size(), 1); ExecutionOptions options = execution_options_; *options.add_device_handles() = devices[0]; computation_instances.push_back(XlaComputationInstance( add_with_one_arg, {const_arg.get()}, options, nullptr)); TF_ASSERT_OK_AND_ASSIGN(auto results, client_->ExecuteParallel(computation_instances)); auto expected_result = LiteralUtil::CreateR2<int32_t>({{6, 8}, {10, 12}}); TF_ASSERT_OK_AND_ASSIGN( auto result_literal, client_->Transfer(*results[0], &expected_result.shape())); EXPECT_TRUE(LiteralTestUtil::Equal(expected_result, result_literal)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/client/client.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tests/client_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d2611c8d-f70c-4648-a29c-f15b9d7fb929
cpp
tensorflow/tensorflow
topology_util
third_party/xla/xla/pjrt/distributed/topology_util.cc
third_party/xla/xla/pjrt/distributed/topology_util_test.cc
#include "xla/pjrt/distributed/topology_util.h" #include <algorithm> #include <fstream> #include <map> #include <set> #include <string> #include <string_view> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/ascii.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/synchronization/blocking_counter.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/pjrt/distributed/protocol.pb.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/utils.h" #include "xla/util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" namespace xla { static constexpr char kBootIdPath[] = "/proc/sys/kernel/random/boot_id"; absl::StatusOr<std::string> GetBootIdString() { std::string boot_id_str; #ifdef __linux__ std::ifstream file(kBootIdPath); if (!file) { return NotFound("%s not found.", kBootIdPath); } std::string line; while (std::getline(file, line)) { absl::StripAsciiWhitespace(&line); absl::StrAppend(&boot_id_str, line); } #endif return boot_id_str; } static std::string GetLocalTopologyKey(std::string_view platform, int node_id) { return absl::StrCat("local_topology/", platform, "/", node_id); } static std::string GetGlobalTopologyKey(std::string_view platform) { return absl::StrCat("global_topology/", platform); } static absl::StatusOr<std::vector<LocalTopologyProto>> GetAllLocalTopologies( std::string_view platform, int num_nodes, KeyValueStoreInterface* kv_store, absl::Duration timeout) { std::vector<absl::StatusOr<std::string>> local_topology_strs(num_nodes); tsl::thread::ThreadPool thread_pool( tsl::Env::Default(), "GetAllLocalTopologies", DefaultThreadPoolSize()); absl::BlockingCounter blocking_counter(num_nodes); absl::Mutex mu; for (int i = 0; i < num_nodes; i++) { thread_pool.Schedule([&, i] { absl::StatusOr<std::string> local_topology_str = kv_store->Get(GetLocalTopologyKey(platform, i), timeout); { absl::MutexLock lock(&mu); local_topology_strs[i] = local_topology_str; } blocking_counter.DecrementCount(); }); } blocking_counter.Wait(); std::vector<std::string> error_messages; std::vector<LocalTopologyProto> local_topologies; int max_num_failed_message = 10; int failed_count = 0; for (const absl::StatusOr<std::string>& str : local_topology_strs) { if (str.ok()) { LocalTopologyProto local; local.ParseFromString(*str); local_topologies.push_back(local); } else { error_messages.push_back( absl::StrCat("Error ", ++failed_count, ": ", str.status().message())); if (failed_count > max_num_failed_message) { break; } } } if (error_messages.empty()) { return local_topologies; } return absl::InternalError( absl::StrCat("Getting local topologies failed: ", absl::StrJoin(error_messages, "\n\n"))); } GlobalTopologyProto BuildGlobalTopology( absl::Span<LocalTopologyProto> local_topologies, bool assign_global_device_ids) { GlobalTopologyProto global_topology; int next_global_device_id = 0; int next_slice_index = 0; absl::flat_hash_map<std::string, int> boot_id_to_slice_index; for (LocalTopologyProto& local : local_topologies) { std::string_view boot_id = local.boot_id(); auto [it, inserted] = boot_id_to_slice_index.try_emplace(boot_id, next_slice_index); if (inserted) { ++next_slice_index; } for (DeviceProto& device : *local.mutable_devices()) { if (assign_global_device_ids) { device.set_global_device_id(next_global_device_id++); } device.set_slice_index(it->second); } global_topology.add_nodes()->Swap(&local); } if (VLOG_IS_ON(10)) { for (auto it = boot_id_to_slice_index.begin(); it != boot_id_to_slice_index.end(); ++it) { LOG(INFO) << "BuildGlobalTopology boot_id_to_slice_index " << it->first << "->" << it->second; } } return global_topology; } absl::Status ExchangeTopologies(std::string_view platform, int node_id, int num_nodes, absl::Duration get_local_topology_timeout, absl::Duration get_global_topology_timeout, KeyValueStoreInterface* kv_store, const LocalTopologyProto& local_topology, GlobalTopologyProto* global_topology, bool assign_global_device_ids) { VLOG(3) << "Local Topology for platform" << platform << ":\n" << local_topology.DebugString(); if (num_nodes == 1) { LocalTopologyProto* topology = global_topology->add_nodes(); *topology = local_topology; for (DeviceProto& device : *topology->mutable_devices()) { device.set_global_device_id(device.local_device_ordinal()); } return absl::OkStatus(); } CHECK(kv_store != nullptr); TF_RETURN_IF_ERROR(kv_store->Set(GetLocalTopologyKey(platform, node_id), local_topology.SerializeAsString())); std::string global_topology_key = GetGlobalTopologyKey(platform); if (node_id == 0) { TF_ASSIGN_OR_RETURN(std::vector<LocalTopologyProto> local_topologies, GetAllLocalTopologies(platform, num_nodes, kv_store, get_local_topology_timeout)); *global_topology = BuildGlobalTopology(absl::Span<LocalTopologyProto>(local_topologies), assign_global_device_ids); TF_RETURN_IF_ERROR(kv_store->Set(global_topology_key, global_topology->SerializeAsString())); } else { TF_ASSIGN_OR_RETURN( std::string global_topology_str, kv_store->Get(global_topology_key, get_global_topology_timeout)); global_topology->ParseFromString(global_topology_str); } VLOG(3) << "Global topology for platform " << platform << ":\n" << global_topology->DebugString(); return absl::OkStatus(); } bool IsGpuTopologySymmetric( const std::map<int, std::set<int>>& slice_id_to_node_ids, const std::map<int, int>& node_id_to_device_count) { CHECK(!slice_id_to_node_ids.empty()); CHECK(!node_id_to_device_count.empty()); int num_hosts_per_slice = slice_id_to_node_ids.begin()->second.size(); int num_devices_per_host = node_id_to_device_count.begin()->second; for (const auto& [slice_id, node_ids] : slice_id_to_node_ids) { if (node_ids.size() != num_hosts_per_slice) { LOG(INFO) << "GpuTopology is asymmetric as it has different number " "of hosts per slice."; return false; } } for (const auto& [node_id, device_count] : node_id_to_device_count) { if (device_count != num_devices_per_host) { LOG(INFO) << "GpuTopology is asymmetric as it has different number " "of devices per host."; return false; } } return true; } absl::StatusOr<GpuTopologyProto> BuildGpuTopology( const GlobalTopologyProto& global_topology) { GpuTopologyProto gpu_topology; std::map<int, std::set<int>> slice_id_to_node_ids; std::map<int, int> node_id_to_device_count; std::vector<int> device_ids; for (int i = 0; i < global_topology.nodes_size(); ++i) { const LocalTopologyProto& local_topology = global_topology.nodes(i); node_id_to_device_count[local_topology.node_id()] = local_topology.devices_size(); for (const DeviceProto& device : local_topology.devices()) { if (gpu_topology.platform_version().empty()) { gpu_topology.set_platform_version(device.name()); } slice_id_to_node_ids[device.slice_index()].insert( local_topology.node_id()); device_ids.push_back(device.global_device_id()); } } if (IsGpuTopologySymmetric(slice_id_to_node_ids, node_id_to_device_count)) { gpu_topology.set_num_slices(slice_id_to_node_ids.size()); gpu_topology.set_num_hosts_per_slice( slice_id_to_node_ids.begin()->second.size()); gpu_topology.set_num_devices_per_host( node_id_to_device_count.begin()->second); } else { gpu_topology.set_num_slices(-1); gpu_topology.set_num_hosts_per_slice(-1); gpu_topology.set_num_devices_per_host(-1); } std::sort(device_ids.begin(), device_ids.end()); gpu_topology.mutable_device_ids()->Add(device_ids.begin(), device_ids.end()); return gpu_topology; } }
#include "xla/pjrt/distributed/topology_util.h" #include <string> #include <string_view> #include <vector> #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/pjrt/distributed/in_memory_key_value_store.h" #include "xla/pjrt/distributed/protocol.pb.h" #include "xla/test_helpers.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace xla { namespace { TEST(TopologyTest, BuildGlobalTopology) { std::vector<LocalTopologyProto> locals(2); DeviceProto* d0 = locals[0].add_devices(); d0->set_local_device_ordinal(0); DeviceProto* d1 = locals[0].add_devices(); d1->set_local_device_ordinal(0); DeviceProto* d2 = locals[1].add_devices(); d2->set_local_device_ordinal(0); DeviceProto* d3 = locals[1].add_devices(); d3->set_local_device_ordinal(1); GlobalTopologyProto global = BuildGlobalTopology(absl::Span<LocalTopologyProto>(locals), true); EXPECT_EQ(global.nodes_size(), 2); EXPECT_EQ(global.nodes()[0].devices_size(), 2); EXPECT_EQ(global.nodes()[1].devices_size(), 2); } TEST(TopologyTest, ExchangeTopology) { int num_nodes = 2; std::vector<LocalTopologyProto> locals(num_nodes); DeviceProto* d0 = locals[0].add_devices(); d0->set_local_device_ordinal(0); DeviceProto* d1 = locals[0].add_devices(); d1->set_local_device_ordinal(0); DeviceProto* d2 = locals[1].add_devices(); d2->set_local_device_ordinal(0); DeviceProto* d3 = locals[1].add_devices(); d3->set_local_device_ordinal(1); InMemoryKeyValueStore kv_store; std::vector<GlobalTopologyProto> globals(num_nodes); { tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "TestPool", num_nodes); for (int i = 0; i < num_nodes; i++) { thread_pool.Schedule([&, i] { TF_ASSERT_OK(ExchangeTopologies( "cuda", i, num_nodes, absl::Seconds(10), absl::Seconds(10), &kv_store, locals[i], &globals[i], true)); }); } } for (const GlobalTopologyProto& global : globals) { EXPECT_EQ(global.nodes_size(), 2); EXPECT_EQ(global.nodes()[0].devices_size(), 2); EXPECT_EQ(global.nodes()[1].devices_size(), 2); } } TEST(TopologyTest, BuildGpuTopology) { std::string slice_0_boot_id = "foo"; std::string slice_1_boot_id = "bar"; std::vector<LocalTopologyProto> locals(2); locals[0].set_boot_id(slice_0_boot_id); locals[1].set_boot_id(slice_1_boot_id); locals[0].set_node_id(0); locals[1].set_node_id(1); DeviceProto* d0 = locals[0].add_devices(); d0->set_local_device_ordinal(0); d0->set_core_count(20); DeviceProto* d1 = locals[0].add_devices(); d1->set_local_device_ordinal(1); d1->set_core_count(20); DeviceProto* d2 = locals[1].add_devices(); d2->set_local_device_ordinal(0); d2->set_core_count(20); DeviceProto* d3 = locals[1].add_devices(); d3->set_local_device_ordinal(1); d3->set_core_count(20); GlobalTopologyProto global = BuildGlobalTopology(absl::Span<LocalTopologyProto>(locals), true); TF_ASSERT_OK_AND_ASSIGN(auto gpu_topology, BuildGpuTopology(global)); EXPECT_EQ(gpu_topology.device_ids_size(), 4); EXPECT_EQ(gpu_topology.num_slices(), 2); EXPECT_EQ(gpu_topology.num_hosts_per_slice(), 1); EXPECT_EQ(gpu_topology.num_devices_per_host(), 2); } TEST(TopologyTest, BuildGpuTopologyWithDifferentNumHostsPerSlice) { std::string slice_0_boot_id = "foo"; std::string slice_1_boot_id = "bar"; std::vector<LocalTopologyProto> locals(3); locals[0].set_boot_id(slice_0_boot_id); locals[1].set_boot_id(slice_0_boot_id); locals[2].set_boot_id(slice_1_boot_id); locals[0].set_node_id(0); locals[1].set_node_id(1); locals[2].set_node_id(2); DeviceProto* d0 = locals[0].add_devices(); d0->set_local_device_ordinal(0); DeviceProto* d1 = locals[1].add_devices(); d1->set_local_device_ordinal(0); DeviceProto* d2 = locals[2].add_devices(); d2->set_local_device_ordinal(0); GlobalTopologyProto global = BuildGlobalTopology(absl::Span<LocalTopologyProto>(locals), true); TF_ASSERT_OK_AND_ASSIGN(auto gpu_topology, BuildGpuTopology(global)); EXPECT_EQ(gpu_topology.device_ids_size(), 3); EXPECT_EQ(gpu_topology.num_slices(), -1); EXPECT_EQ(gpu_topology.num_hosts_per_slice(), -1); EXPECT_EQ(gpu_topology.num_devices_per_host(), -1); } TEST(TopologyTest, BuildGpuTopologyWithDifferentNumDevicesPerHost) { std::string slice_0_boot_id = "foo"; std::string slice_1_boot_id = "bar"; std::vector<LocalTopologyProto> locals(2); locals[0].set_boot_id(slice_0_boot_id); locals[1].set_boot_id(slice_1_boot_id); locals[0].set_node_id(0); locals[1].set_node_id(1); DeviceProto* d0 = locals[0].add_devices(); d0->set_local_device_ordinal(0); DeviceProto* d1 = locals[0].add_devices(); d1->set_local_device_ordinal(1); DeviceProto* d2 = locals[1].add_devices(); d2->set_local_device_ordinal(0); GlobalTopologyProto global = BuildGlobalTopology(absl::Span<LocalTopologyProto>(locals), true); TF_ASSERT_OK_AND_ASSIGN(auto gpu_topology, BuildGpuTopology(global)); EXPECT_EQ(gpu_topology.device_ids_size(), 3); EXPECT_EQ(gpu_topology.num_slices(), -1); EXPECT_EQ(gpu_topology.num_hosts_per_slice(), -1); EXPECT_EQ(gpu_topology.num_devices_per_host(), -1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/distributed/topology_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/distributed/topology_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
983decde-fe7b-4ef5-bfc6-14c31e95fc7b
cpp
tensorflow/tensorflow
pjrt_c_api_gpu
third_party/xla/xla/pjrt/c/pjrt_c_api_gpu.cc
third_party/xla/xla/pjrt/c/pjrt_c_api_gpu_test.cc
#include "xla/pjrt/c/pjrt_c_api_gpu.h" #include "absl/base/call_once.h" #include "absl/log/initialize.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_gpu_internal.h" #include "tsl/platform/platform.h" const PJRT_Api* GetPjrtApi() { #ifndef PLATFORM_GOOGLE static absl::once_flag once; absl::call_once(once, []() { absl::InitializeLog(); }); #endif return pjrt::gpu_plugin::GetGpuPjrtApi(); }
#include "xla/pjrt/c/pjrt_c_api_gpu.h" #include <cstdint> #include <functional> #include <memory> #include <numeric> #include <string> #include <thread> #include <utility> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/client/client_library.h" #include "xla/ffi/api/ffi.h" #include "xla/ffi/execution_context.h" #include "xla/ffi/ffi_api.h" #include "xla/ffi/type_id_registry.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_ffi_extension.h" #include "xla/pjrt/c/pjrt_c_api_gpu_extension.h" #include "xla/pjrt/c/pjrt_c_api_gpu_internal.h" #include "xla/pjrt/c/pjrt_c_api_helpers.h" #include "xla/pjrt/c/pjrt_c_api_test.h" #include "xla/pjrt/c/pjrt_c_api_test_base.h" #include "xla/pjrt/c/pjrt_c_api_wrapper_impl.h" #include "xla/pjrt/distributed/in_memory_key_value_store.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_future.h" #include "xla/service/custom_call_target_registry.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/gpu/gpu_init.h" #include "xla/tests/literal_test_util.h" #include "tsl/platform/status.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace pjrt { namespace { #ifdef TENSORFLOW_USE_ROCM const bool kUnused = (RegisterPjRtCApiTestFactory([]() { return GetPjrtApi(); }, "rocm"), true); #else const bool kUnused = (RegisterPjRtCApiTestFactory([]() { return GetPjrtApi(); }, "cuda"), true); #endif class PjrtCApiGpuTest : public PjrtCApiTestBase { public: PjrtCApiGpuTest() : PjrtCApiTestBase(GetPjrtApi()) {} }; TEST_F(PjrtCApiGpuTest, CreateViewOfDeviceBuffer) { auto [buffer, buffer_future] = create_buffer(); TF_CHECK_OK(buffer_future.Await()); PJRT_Buffer_OpaqueDeviceMemoryDataPointer_Args device_buffer_ptr_args; device_buffer_ptr_args.struct_size = PJRT_Buffer_OpaqueDeviceMemoryDataPointer_Args_STRUCT_SIZE; device_buffer_ptr_args.extension_start = nullptr; device_buffer_ptr_args.buffer = buffer.get(); PJRT_Error* device_buffer_ptr_error = api_->PJRT_Buffer_OpaqueDeviceMemoryDataPointer(&device_buffer_ptr_args); ASSERT_EQ(device_buffer_ptr_error, nullptr); PJRT_Buffer_Device_Args device_args = PJRT_Buffer_Device_Args{ PJRT_Buffer_Device_Args_STRUCT_SIZE, nullptr, buffer.get(), }; PJRT_Error* device_error = api_->PJRT_Buffer_Device(&device_args); ASSERT_EQ(device_error, nullptr); PJRT_Client_CreateViewOfDeviceBuffer_Args create_view_args; create_view_args.struct_size = PJRT_Client_CreateViewOfDeviceBuffer_Args_STRUCT_SIZE; create_view_args.extension_start = nullptr; create_view_args.client = client_; create_view_args.device_buffer_ptr = device_buffer_ptr_args.device_memory_ptr; xla::Shape shape = xla::ShapeUtil::MakeShape(xla::S32, {4}); create_view_args.dims = shape.dimensions().data(); create_view_args.num_dims = shape.dimensions().size(); create_view_args.element_type = pjrt::ConvertToPjRtBufferType(shape.element_type()); pjrt::BufferMemoryLayoutData c_layout_data; TF_ASSERT_OK_AND_ASSIGN( c_layout_data, pjrt::ConvertToBufferMemoryLayoutData(shape.layout())); create_view_args.layout = &(c_layout_data.c_layout); create_view_args.device = device_args.device; std::function<void()> on_delete_callback = []() mutable {}; create_view_args.on_delete_callback_arg = new std::function(on_delete_callback); create_view_args.on_delete_callback = [](void* device_buffer_ptr, void* user_arg) { auto c_func = reinterpret_cast<std::function<void()>*>(user_arg); (*c_func)(); delete c_func; }; create_view_args.stream = reinterpret_cast<intptr_t>(nullptr); PJRT_Error* error = api_->PJRT_Client_CreateViewOfDeviceBuffer(&create_view_args); ASSERT_EQ(error, nullptr); std::unique_ptr<PJRT_Buffer, ::pjrt::PJRT_BufferDeleter> view_buffer( create_view_args.buffer, ::pjrt::MakeBufferDeleter(api_)); PJRT_Buffer_ToHostBuffer_Args to_host_args; to_host_args.struct_size = PJRT_Buffer_ToHostBuffer_Args_STRUCT_SIZE; to_host_args.extension_start = nullptr; to_host_args.src = view_buffer.get(); xla::Shape host_shape = xla::ShapeUtil::MakeShape(xla::F32, {4}); auto literal = std::make_shared<xla::Literal>(host_shape); to_host_args.host_layout = nullptr; to_host_args.dst = literal->untyped_data(); to_host_args.dst_size = xla::ShapeUtil::ByteSizeOfElements(host_shape); to_host_args.event = nullptr; PJRT_Error* to_host_error = api_->PJRT_Buffer_ToHostBuffer(&to_host_args); ASSERT_EQ(to_host_error, nullptr); xla::PjRtFuture<> transfer_to_host = ::pjrt::ConvertCEventToCppFuture(to_host_args.event, api_); TF_CHECK_OK(transfer_to_host.Await()); ASSERT_EQ(literal->data<float>().size(), 4); std::vector<float> float_data(4); std::iota(float_data.begin(), float_data.end(), 41.0f); EXPECT_TRUE(xla::LiteralTestUtil::Equal( xla::LiteralUtil::CreateR1<float>(float_data), *literal)); } TEST_F(PjrtCApiGpuTest, CreateAndDestroyExecuteContext) { PJRT_ExecuteContext_Create_Args create_arg; create_arg.struct_size = PJRT_ExecuteContext_Create_Args_STRUCT_SIZE; create_arg.extension_start = nullptr; create_arg.context = nullptr; EXPECT_EQ(api_->PJRT_ExecuteContext_Create(&create_arg), nullptr); EXPECT_NE(create_arg.context, nullptr); const PJRT_FFI_Extension* ffi_extension = pjrt::FindExtension<PJRT_FFI_Extension>( api_, PJRT_Extension_Type::PJRT_Extension_Type_FFI); ASSERT_NE(ffi_extension, nullptr); std::string string_data = "string_data"; PJRT_FFI_UserData_Add_Args add_args; add_args.struct_size = PJRT_FFI_UserData_Add_Args_STRUCT_SIZE; add_args.extension_start = nullptr; add_args.user_data.type_id = 42; add_args.user_data.data = &string_data; add_args.user_data.deleter = nullptr; add_args.context = create_arg.context; EXPECT_EQ(ffi_extension->user_data_add(&add_args), nullptr); TF_ASSERT_OK_AND_ASSIGN( auto lookup_user_data, create_arg.context->execute_context->ffi_context().Lookup( xla::ffi::TypeIdRegistry::TypeId(42))); EXPECT_EQ(lookup_user_data, &string_data); PJRT_ExecuteContext_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_Error_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.context = create_arg.context; api_->PJRT_ExecuteContext_Destroy(&destroy_args); } absl::StatusOr<PJRT_Client_Create_Args> BuildCreateArg( ::pjrt::PJRT_KeyValueCallbackData* kv_callback_data, std::vector<PJRT_NamedValue>& c_options) { PJRT_Client_Create_Args args; args.struct_size = PJRT_Client_Create_Args_STRUCT_SIZE; args.extension_start = nullptr; args.create_options = c_options.data(); args.num_options = c_options.size(); args.kv_get_callback = kv_callback_data->c_kv_get; args.kv_get_user_arg = &kv_callback_data->kv_get_c_func; args.kv_put_callback = kv_callback_data->c_kv_put; args.kv_put_user_arg = &kv_callback_data->kv_put_c_func; args.client = nullptr; return args; } TEST(PjrtCApiGpuKVStoreTest, CreateClientWithKVCallback) { auto api = GetPjrtApi(); auto kv_store = std::make_shared<xla::InMemoryKeyValueStore>(); std::shared_ptr<::pjrt::PJRT_KeyValueCallbackData> kv_callback_data = ::pjrt::ConvertToCKeyValueCallbacks(kv_store); xla::ClientLibrary::DestroyLocalInstances(); int num_nodes = 2; std::vector<std::thread> threads; for (int i = 0; i < num_nodes; i++) { threads.emplace_back([api, i, num_nodes, kv_callback_data = kv_callback_data, kv_store = kv_store] { absl::flat_hash_map<std::string, xla::PjRtValueType> options = { {"num_nodes", static_cast<int64_t>(num_nodes)}, {"node_id", static_cast<int64_t>(i)}, {"visible_devices", std::vector<int64_t>({0})}}; TF_ASSERT_OK_AND_ASSIGN(std::vector<PJRT_NamedValue> c_options, ::pjrt::ConvertToPjRtNamedValueList(options)); TF_ASSERT_OK_AND_ASSIGN( PJRT_Client_Create_Args create_arg, BuildCreateArg(kv_callback_data.get(), c_options)); PJRT_Error* error = api->PJRT_Client_Create(&create_arg); EXPECT_EQ(error, nullptr) << error->status.message(); PJRT_Client_Devices_Args device_args; device_args.struct_size = PJRT_Client_Devices_Args_STRUCT_SIZE; device_args.extension_start = nullptr; device_args.client = create_arg.client; PJRT_Error* device_error = api->PJRT_Client_Devices(&device_args); EXPECT_EQ(device_error, nullptr); EXPECT_EQ(device_args.num_devices, 2); PJRT_Client_AddressableDevices_Args addressable_device_args; addressable_device_args.struct_size = PJRT_Client_AddressableDevices_Args_STRUCT_SIZE; addressable_device_args.extension_start = nullptr; addressable_device_args.client = create_arg.client; PJRT_Error* addressable_device_error = api->PJRT_Client_AddressableDevices(&addressable_device_args); EXPECT_EQ(addressable_device_error, nullptr); EXPECT_EQ(addressable_device_args.num_addressable_devices, 1); PJRT_Client_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_Client_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.client = create_arg.client; PJRT_Error* destroy_error = api->PJRT_Client_Destroy(&destroy_args); CHECK_EQ(destroy_error, nullptr); }); } for (auto& t : threads) { t.join(); } } TEST(PjrtCApiGpuAllocatorTest, ValidOptionsParsing) { auto api = GetPjrtApi(); std::vector<std::string> allocator_options = {"default", "platform", "bfc", "cuda_async"}; for (const std::string& allocator_option : allocator_options) { #ifdef TENSORFLOW_USE_ROCM if (allocator_option == "cuda_async") { VLOG(1) << "cuda_async allocator not available on ROCm!"; continue; } #endif absl::flat_hash_map<std::string, xla::PjRtValueType> options = { {"allocator", allocator_option}, {"visible_devices", xla::PjRtValueType(std::vector<int64_t>{0, 1})}, }; if (allocator_option == "bfc" || allocator_option == "cuda_async") { options["memory_fraction"] = 0.5f; } if (allocator_option == "cuda_async") { options["preallocate"] = true; } TF_ASSERT_OK_AND_ASSIGN(std::vector<PJRT_NamedValue> c_options, ::pjrt::ConvertToPjRtNamedValueList(options)); PJRT_Client_Create_Args create_arg; create_arg.struct_size = PJRT_Client_Create_Args_STRUCT_SIZE; create_arg.extension_start = nullptr; create_arg.client = nullptr; create_arg.create_options = c_options.data(); create_arg.num_options = c_options.size(); PJRT_Error* error = api->PJRT_Client_Create(&create_arg); EXPECT_EQ(error, nullptr) << error->status.message(); PJRT_Client_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_Client_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.client = create_arg.client; PJRT_Error* destroy_error = api->PJRT_Client_Destroy(&destroy_args); CHECK_EQ(destroy_error, nullptr); } } TEST(PjrtCApiGpuAllocatorTest, InvalidAllocatorOptionsParsing) { auto api = GetPjrtApi(); absl::flat_hash_map<std::string, xla::PjRtValueType> options = { {"allocator", static_cast<std::string>("invalid_allocator")}, {"memory_fraction", 0.5f}, {"preallocate", true}, }; TF_ASSERT_OK_AND_ASSIGN(std::vector<PJRT_NamedValue> c_options, ::pjrt::ConvertToPjRtNamedValueList(options)); PJRT_Client_Create_Args create_arg; create_arg.struct_size = PJRT_Client_Create_Args_STRUCT_SIZE; create_arg.extension_start = nullptr; create_arg.client = nullptr; create_arg.create_options = c_options.data(); create_arg.num_options = c_options.size(); PJRT_Error* error = api->PJRT_Client_Create(&create_arg); EXPECT_NE(error, nullptr); EXPECT_THAT(error->status, ::tsl::testing::StatusIs( absl::StatusCode::kUnimplemented, "Allocator invalid_allocator not supported for PJRT GPU " "plugin. Supported allocator options are: 'default', " "'platform', 'bfc' and 'cuda_async'.")); PJRT_Error_Destroy_Args error_destroy_args; error_destroy_args.struct_size = PJRT_Error_Destroy_Args_STRUCT_SIZE; error_destroy_args.extension_start = nullptr; error_destroy_args.error = error; api->PJRT_Error_Destroy(&error_destroy_args); } TEST(PjrtCApiPlatformNameTest, AvailablePlatformName) { auto api = GetPjrtApi(); std::string expected_platform_name_for_cuda = "cuda"; std::string expected_platform_name_for_rocm = "rocm"; absl::flat_hash_map<std::string, xla::PjRtValueType> options = { {"platform_name", static_cast<std::string>("gpu")}, {"allocator", static_cast<std::string>("default")}, {"visible_devices", xla::PjRtValueType(std::vector<int64_t>{0, 1})}, }; TF_ASSERT_OK_AND_ASSIGN(std::vector<PJRT_NamedValue> c_options, ::pjrt::ConvertToPjRtNamedValueList(options)); PJRT_Client_Create_Args create_arg; create_arg.struct_size = PJRT_Client_Create_Args_STRUCT_SIZE; create_arg.extension_start = nullptr; create_arg.client = nullptr; create_arg.create_options = c_options.data(); create_arg.num_options = c_options.size(); PJRT_Error* error = api->PJRT_Client_Create(&create_arg); EXPECT_EQ(error, nullptr) << error->status.message(); PJRT_Client_PlatformName_Args platform_name_args; platform_name_args.struct_size = PJRT_Client_PlatformName_Args_STRUCT_SIZE; platform_name_args.extension_start = nullptr; platform_name_args.client = create_arg.client; PJRT_Error* platform_name_error = api->PJRT_Client_PlatformName(&platform_name_args); EXPECT_EQ(platform_name_error, nullptr); #if TENSORFLOW_USE_ROCM EXPECT_EQ(platform_name_args.platform_name, expected_platform_name_for_rocm); #else EXPECT_EQ(platform_name_args.platform_name, expected_platform_name_for_cuda); #endif PJRT_Client_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_Client_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.client = create_arg.client; PJRT_Error* destroy_error = api->PJRT_Client_Destroy(&destroy_args); CHECK_EQ(destroy_error, nullptr); } TEST(PjrtCApiPlatformNameTest, UnavailablePlatformName) { auto api = GetPjrtApi(); absl::flat_hash_map<std::string, xla::PjRtValueType> options = { {"platform_name", static_cast<std::string>("invalid_platform_name")}, {"allocator", static_cast<std::string>("default")}, {"visible_devices", xla::PjRtValueType(std::vector<int64_t>{0, 1})}, }; TF_ASSERT_OK_AND_ASSIGN(std::vector<PJRT_NamedValue> c_options, ::pjrt::ConvertToPjRtNamedValueList(options)); PJRT_Client_Create_Args create_arg; create_arg.struct_size = PJRT_Client_Create_Args_STRUCT_SIZE; create_arg.extension_start = nullptr; create_arg.client = nullptr; create_arg.create_options = c_options.data(); create_arg.num_options = c_options.size(); PJRT_Error* error = api->PJRT_Client_Create(&create_arg); EXPECT_NE(error, nullptr); EXPECT_THAT(error->status, ::tsl::testing::StatusIs( absl::StatusCode::kNotFound, testing::StartsWith("Could not find registered platform with " "name: \"invalid_platform_name\". " "Available platform names are:"))); PJRT_Error_Destroy_Args error_destroy_args; error_destroy_args.struct_size = PJRT_Error_Destroy_Args_STRUCT_SIZE; error_destroy_args.extension_start = nullptr; error_destroy_args.error = error; api->PJRT_Error_Destroy(&error_destroy_args); } TEST(PJRTGpuDeviceTopologyTest, CreateGpuTopology) { auto pjrt_api = gpu_plugin::GetGpuPjrtApi(); PJRT_TopologyDescription_Create_Args args; args.struct_size = PJRT_TopologyDescription_Create_Args_STRUCT_SIZE; args.extension_start = nullptr; args.topology = nullptr; args.num_options = 0; args.create_options = nullptr; PJRT_Error* error = pjrt_api->PJRT_TopologyDescription_Create(&args); EXPECT_EQ(error, nullptr) << error->status.message(); auto pjrt_topology = reinterpret_cast<const PJRT_TopologyDescription*>(args.topology); ASSERT_NE(pjrt_topology, nullptr); #ifdef TENSORFLOW_USE_ROCM EXPECT_EQ(pjrt_topology->topology->platform_id(), xla::RocmId()); EXPECT_EQ(pjrt_topology->topology->platform_name(), xla::RocmName()); #else EXPECT_EQ(pjrt_topology->topology->platform_id(), xla::CudaId()); EXPECT_EQ(pjrt_topology->topology->platform_name(), xla::CudaName()); #endif PJRT_TopologyDescription_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_TopologyDescription_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.topology = const_cast<PJRT_TopologyDescription*>(pjrt_topology); PJRT_Error* destroy_error = pjrt_api->PJRT_TopologyDescription_Destroy(&destroy_args); EXPECT_EQ(destroy_error, nullptr) << destroy_error->status.message(); } constexpr char const* kTargetConfigString = R"(gpu_device_info { threads_per_block_limit: 1024 threads_per_warp: 32 shared_memory_per_block: 49152 shared_memory_per_core: 98304 threads_per_core_limit: 2048 core_count: 80 fpus_per_core: 64 block_dim_limit_x: 2147483647 block_dim_limit_y: 65535 block_dim_limit_z: 65535 memory_bandwidth: 898048000000 l2_cache_size: 6291456 clock_rate_ghz: 1.53 device_memory_size: 34072559616 shared_memory_per_block_optin: 98304 cuda_compute_capability { major: 7 } registers_per_core_limit: 65536 registers_per_block_limit: 65536 } platform_name: "CUDA" dnn_version_info { major: 9 minor: 3 } device_description_str: "Tesla V100-SXM2-32GB" )"; TEST(PJRTGpuDeviceTopologyTest, CreateExplicitGpuTopologyAndTargetConfig) { auto pjrt_api = gpu_plugin::GetGpuPjrtApi(); absl::flat_hash_map<std::string, xla::PjRtValueType> options = { {"topology", static_cast<std::string>("16 x 2 x 4")}, {"target_config", static_cast<std::string>(kTargetConfigString)}}; TF_ASSERT_OK_AND_ASSIGN(std::vector<PJRT_NamedValue> c_options, ::pjrt::ConvertToPjRtNamedValueList(options)); PJRT_TopologyDescription_Create_Args args; args.struct_size = PJRT_TopologyDescription_Create_Args_STRUCT_SIZE; args.extension_start = nullptr; args.topology = nullptr; args.num_options = c_options.size(); args.create_options = c_options.data(); PJRT_Error* error = pjrt_api->PJRT_TopologyDescription_Create(&args); EXPECT_EQ(error, nullptr) << error->status.message(); auto pjrt_topology = reinterpret_cast<const PJRT_TopologyDescription*>(args.topology); ASSERT_NE(pjrt_topology, nullptr); EXPECT_EQ(pjrt_topology->topology->platform_id(), xla::CudaId()); EXPECT_EQ(pjrt_topology->topology->platform_name(), xla::CudaName()); EXPECT_EQ(pjrt_topology->topology->ProcessCount().value(), 16 * 2); EXPECT_EQ(pjrt_topology->topology->DeviceDescriptions().size(), 16 * 2 * 4); EXPECT_EQ(pjrt_topology->topology->DeviceDescriptions()[0]->device_kind(), "Tesla V100-SXM2-32GB"); PJRT_TopologyDescription_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_TopologyDescription_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.topology = const_cast<PJRT_TopologyDescription*>(pjrt_topology); PJRT_Error* destroy_error = pjrt_api->PJRT_TopologyDescription_Destroy(&destroy_args); EXPECT_EQ(destroy_error, nullptr) << destroy_error->status.message(); } TEST(PJRTGpuDeviceTopologyTest, CreateExplicitGpuTopology) { auto pjrt_api = gpu_plugin::GetGpuPjrtApi(); absl::flat_hash_map<std::string, xla::PjRtValueType> options = { {"topology", static_cast<std::string>("16 x 2 x 4")}}; TF_ASSERT_OK_AND_ASSIGN(std::vector<PJRT_NamedValue> c_options, ::pjrt::ConvertToPjRtNamedValueList(options)); PJRT_TopologyDescription_Create_Args args; args.struct_size = PJRT_TopologyDescription_Create_Args_STRUCT_SIZE; args.extension_start = nullptr; args.topology = nullptr; args.num_options = c_options.size(); args.create_options = c_options.data(); PJRT_Error* error = pjrt_api->PJRT_TopologyDescription_Create(&args); EXPECT_EQ(error, nullptr) << error->status.message(); auto pjrt_topology = reinterpret_cast<const PJRT_TopologyDescription*>(args.topology); ASSERT_NE(pjrt_topology, nullptr); EXPECT_EQ(pjrt_topology->topology->ProcessCount().value(), 16 * 2); EXPECT_EQ(pjrt_topology->topology->DeviceDescriptions().size(), 16 * 2 * 4); PJRT_TopologyDescription_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_TopologyDescription_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.topology = const_cast<PJRT_TopologyDescription*>(pjrt_topology); PJRT_Error* destroy_error = pjrt_api->PJRT_TopologyDescription_Destroy(&destroy_args); EXPECT_EQ(destroy_error, nullptr) << destroy_error->status.message(); } void TestCustomCallV2() {} TEST(PjrtCApiGpuExtensionTest, CustomCallUntyped) { PJRT_Gpu_Register_Custom_Call_Args args; args.struct_size = PJRT_Gpu_Register_Custom_Call_Args_STRUCT_SIZE; std::string function_name = "untyped_function_name"; args.function_name = function_name.c_str(); args.function_name_size = function_name.size(); args.api_version = 0; args.handler_instantiate = nullptr; args.handler_prepare = nullptr; args.handler_initialize = nullptr; args.handler_execute = reinterpret_cast<void*>(&TestCustomCallV2); auto api = GetPjrtApi(); const PJRT_Extension_Base* next = reinterpret_cast<const PJRT_Extension_Base*>(api->extension_start); while (next != nullptr && next->type != PJRT_Extension_Type::PJRT_Extension_Type_Gpu_Custom_Call) { next = next->next; } ASSERT_NE(next, nullptr); PJRT_Error* error = reinterpret_cast<const PJRT_Gpu_Custom_Call*>(next)->custom_call(&args); CHECK_EQ(error, nullptr); void* custom_call = xla::CustomCallTargetRegistry::Global()->Lookup( function_name, stream_executor::GpuPlatformName()); EXPECT_EQ(custom_call, reinterpret_cast<void*>(&TestCustomCallV2)); } TEST(PjrtCApiGpuExtensionTest, CustomCallTyped) { static constexpr auto* noop = +[] { return xla::ffi::Error::Success(); }; XLA_FFI_DEFINE_HANDLER(kNoop, noop, xla::ffi::Ffi::Bind()); PJRT_Gpu_Register_Custom_Call_Args args; args.struct_size = PJRT_Gpu_Register_Custom_Call_Args_STRUCT_SIZE; std::string function_name = "typed_function_name"; args.function_name = function_name.c_str(); args.function_name_size = function_name.size(); args.api_version = 1; args.handler_instantiate = nullptr; args.handler_prepare = nullptr; args.handler_initialize = nullptr; args.handler_execute = reinterpret_cast<void*>(kNoop); auto api = GetPjrtApi(); const PJRT_Extension_Base* next = reinterpret_cast<const PJRT_Extension_Base*>(api->extension_start); while (next != nullptr && next->type != PJRT_Extension_Type::PJRT_Extension_Type_Gpu_Custom_Call) { next = next->next; } ASSERT_NE(next, nullptr); PJRT_Error* error = reinterpret_cast<const PJRT_Gpu_Custom_Call*>(next)->custom_call(&args); CHECK_EQ(error, nullptr); auto registration = xla::ffi::FindHandler(function_name, stream_executor::GpuPlatformName()) .value(); EXPECT_EQ(reinterpret_cast<void*>(registration.bundle.execute), kNoop); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/c/pjrt_c_api_gpu.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/c/pjrt_c_api_gpu_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b157befa-2457-49ea-98c8-27c339742c71
cpp
tensorflow/tensorflow
pjrt_c_api_cpu
third_party/xla/xla/pjrt/c/pjrt_c_api_cpu.cc
third_party/xla/xla/pjrt/c/pjrt_c_api_cpu_test.cc
#include "xla/pjrt/c/pjrt_c_api_cpu.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_cpu_internal.h" const PJRT_Api* GetPjrtApi() { return pjrt::cpu_plugin::GetCpuPjrtApi(); }
#include "xla/pjrt/c/pjrt_c_api_cpu.h" #include "xla/pjrt/c/pjrt_c_api_test.h" #include "xla/pjrt/c/pjrt_c_api_wrapper_impl.h" namespace pjrt { namespace { const bool kUnused = (RegisterPjRtCApiTestFactory([]() { return GetPjrtApi(); }, "cpu"), true); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/c/pjrt_c_api_cpu.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/c/pjrt_c_api_cpu_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8a6d5e13-b058-42e0-b8ea-d7b62c632acd
cpp
tensorflow/tensorflow
pjrt_c_api_helpers
third_party/xla/xla/pjrt/c/pjrt_c_api_helpers.cc
third_party/xla/xla/pjrt/c/pjrt_c_api_helpers_test.cc
#include "xla/pjrt/c/pjrt_c_api_helpers.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <string> #include <string_view> #include <utility> #include <variant> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/layout.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_layouts_extension.h" #include "xla/pjrt/c/pjrt_c_api_profiler_extension.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/primitive_util.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/connected_traceme.h" #include "tsl/profiler/lib/context_types.h" namespace pjrt { const absl::string_view kHloFormat = "hlo"; const absl::string_view kMlirFormat = "mlir"; const absl::string_view kHloWithConfigFormat = "hlo_with_config"; PJRT_ClientDeleter MakeClientDeleter(const PJRT_Api* api) { return [api](PJRT_Client* client) -> void { PJRT_Client_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_Client_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.client = client; PJRT_Error* error = api->PJRT_Client_Destroy(&destroy_args); CHECK(error == nullptr); }; } PJRT_ErrorDeleter MakeErrorDeleter(const PJRT_Api* api) { return [api](PJRT_Error* error) -> void { PJRT_Error_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_Error_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.error = error; api->PJRT_Error_Destroy(&destroy_args); }; } PJRT_BufferDeleter MakeBufferDeleter(const PJRT_Api* api) { return [api](PJRT_Buffer* buffer) -> void { PJRT_Buffer_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_Buffer_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.buffer = buffer; pjrt::LogFatalIfPjrtError(api->PJRT_Buffer_Destroy(&destroy_args), api); }; } PJRT_ExecutableDeleter MakeExecutableDeleter(const PJRT_Api* api) { return [api](PJRT_Executable* executable) -> void { PJRT_Executable_Destroy_Args args; args.struct_size = PJRT_Executable_Destroy_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = executable; pjrt::LogFatalIfPjrtError(api->PJRT_Executable_Destroy(&args), api); }; } PJRT_LoadedExecutableDeleter MakeLoadedExecutableDeleter(const PJRT_Api* api) { return [api](PJRT_LoadedExecutable* executable) -> void { PJRT_LoadedExecutable_Destroy_Args args; args.struct_size = PJRT_LoadedExecutable_Destroy_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = executable; pjrt::LogFatalIfPjrtError(api->PJRT_LoadedExecutable_Destroy(&args), api); }; } absl::Status PjrtErrorToStatus(const PJRT_Error* error, const PJRT_Api* api) { absl::Status status; if (error != nullptr) { status = absl::Status(PjrtErrorToStatusCode(error, api), GetPjrtErrorMessage(error, api)); } return status; } PJRT_TopologyDescriptionDeleter MakeTopologyDescriptionDeleter( const PJRT_Api* api) { return [api](PJRT_TopologyDescription* topology) -> void { PJRT_TopologyDescription_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_TopologyDescription_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.topology = topology; pjrt::LogFatalIfPjrtError( api->PJRT_TopologyDescription_Destroy(&destroy_args), api); }; } PJRT_Layouts_MemoryLayoutDeleter MakeMemoryLayoutDeleter(const PJRT_Api* api) { PJRT_Layouts_Extension* ext_api = FindExtension<PJRT_Layouts_Extension>(api, PJRT_Extension_Type_Layouts); CHECK_NE(ext_api, nullptr) << "MakeMemoryLayoutDeleter passed PJRT_Api that " "doesn't support layouts extension"; return [api, ext_api](PJRT_Layouts_MemoryLayout* layout) -> void { PJRT_Layouts_MemoryLayout_Destroy_Args args; args.struct_size = PJRT_Layouts_MemoryLayout_Destroy_Args_STRUCT_SIZE; args.extension_start = nullptr; args.layout = layout; pjrt::LogFatalIfPjrtError(ext_api->PJRT_Layouts_MemoryLayout_Destroy(&args), api); }; } PJRT_Error_Code GetErrorCode(const PJRT_Error* error, const PJRT_Api* api) { PJRT_Error_GetCode_Args args; args.struct_size = PJRT_Error_GetCode_Args_STRUCT_SIZE; args.extension_start = nullptr; args.error = error; pjrt::LogFatalIfPjrtError(api->PJRT_Error_GetCode(&args), api); return args.code; } absl::StatusCode PjrtErrorToStatusCode(const PJRT_Error* error, const PJRT_Api* api) { return PjrtErrorCodeToStatusCode(GetErrorCode(error, api)); } absl::StatusCode PjrtErrorCodeToStatusCode(PJRT_Error_Code code) { switch (code) { case PJRT_Error_Code_CANCELLED: case PJRT_Error_Code_UNKNOWN: case PJRT_Error_Code_INVALID_ARGUMENT: case PJRT_Error_Code_DEADLINE_EXCEEDED: case PJRT_Error_Code_NOT_FOUND: case PJRT_Error_Code_ALREADY_EXISTS: case PJRT_Error_Code_PERMISSION_DENIED: case PJRT_Error_Code_RESOURCE_EXHAUSTED: case PJRT_Error_Code_FAILED_PRECONDITION: case PJRT_Error_Code_ABORTED: case PJRT_Error_Code_OUT_OF_RANGE: case PJRT_Error_Code_UNIMPLEMENTED: case PJRT_Error_Code_INTERNAL: case PJRT_Error_Code_UNAVAILABLE: case PJRT_Error_Code_DATA_LOSS: case PJRT_Error_Code_UNAUTHENTICATED: return static_cast<absl::StatusCode>(code); } } PJRT_Error_Code StatusCodeToPjrtErrorCode(absl::StatusCode code) { switch (static_cast<tsl::error::Code>(code)) { case tsl::error::CANCELLED: case tsl::error::UNKNOWN: case tsl::error::INVALID_ARGUMENT: case tsl::error::DEADLINE_EXCEEDED: case tsl::error::NOT_FOUND: case tsl::error::ALREADY_EXISTS: case tsl::error::PERMISSION_DENIED: case tsl::error::UNAUTHENTICATED: case tsl::error::RESOURCE_EXHAUSTED: case tsl::error::FAILED_PRECONDITION: case tsl::error::ABORTED: case tsl::error::OUT_OF_RANGE: case tsl::error::UNIMPLEMENTED: case tsl::error::INTERNAL: case tsl::error::UNAVAILABLE: case tsl::error::DATA_LOSS: return static_cast<PJRT_Error_Code>(code); case tsl::error::OK: CHECK(false) << "Status::OK() cannot be converted to PJRT_Error code, " "use nullptr instead"; case tensorflow::error:: DO_NOT_USE_RESERVED_FOR_FUTURE_EXPANSION_USE_DEFAULT_IN_SWITCH_INSTEAD_: CHECK(false) << "got DO_NOT_USE_RESERVED_FOR_FUTURE_EXPANSION_" "USE_DEFAULT_IN_SWITCH_INSTEAD_"; case tensorflow::error::Code_INT_MIN_SENTINEL_DO_NOT_USE_: CHECK(false) << "got Code_INT_MIN_SENTINEL_DO_NOT_USE_"; case tensorflow::error::Code_INT_MAX_SENTINEL_DO_NOT_USE_: CHECK(false) << "got Code_INT_MAX_SENTINEL_DO_NOT_USE_"; } } absl::string_view GetPjrtErrorMessage(const PJRT_Error* error, const PJRT_Api* api) { PJRT_Error_Message_Args message_args; message_args.struct_size = PJRT_Error_Message_Args_STRUCT_SIZE; message_args.extension_start = nullptr; message_args.error = error; api->PJRT_Error_Message(&message_args); return absl::string_view(message_args.message, message_args.message_size); } void LogFatalIfPjrtError(PJRT_Error* error, const PJRT_Api* api) { std::unique_ptr<PJRT_Error, pjrt::PJRT_ErrorDeleter> _error( error, MakeErrorDeleter(api)); absl::Status _status = PjrtErrorToStatus(_error.get(), api); if (!_status.ok()) { LOG(FATAL) << "Unexpected error status " << _status.message(); } } PJRT_EventDeleter MakeEventDeleter(const PJRT_Api* api) { CHECK(api != nullptr); return [api](PJRT_Event* managed) { PJRT_Event_Destroy_Args args; args.struct_size = PJRT_Event_Destroy_Args_STRUCT_SIZE; args.extension_start = nullptr; args.event = managed; LogFatalIfPjrtError(api->PJRT_Event_Destroy(&args), api); }; } PJRT_Buffer_Type ConvertToPjRtBufferType(xla::PrimitiveType type) { switch (type) { case xla::PrimitiveType::PRIMITIVE_TYPE_INVALID: return PJRT_Buffer_Type::PJRT_Buffer_Type_INVALID; case xla::PrimitiveType::PRED: return PJRT_Buffer_Type::PJRT_Buffer_Type_PRED; case xla::PrimitiveType::TOKEN: return PJRT_Buffer_Type::PJRT_Buffer_Type_TOKEN; case xla::PrimitiveType::S2: return PJRT_Buffer_Type::PJRT_Buffer_Type_S2; case xla::PrimitiveType::S4: return PJRT_Buffer_Type::PJRT_Buffer_Type_S4; case xla::PrimitiveType::S8: return PJRT_Buffer_Type::PJRT_Buffer_Type_S8; case xla::PrimitiveType::S16: return PJRT_Buffer_Type::PJRT_Buffer_Type_S16; case xla::PrimitiveType::S32: return PJRT_Buffer_Type::PJRT_Buffer_Type_S32; case xla::PrimitiveType::S64: return PJRT_Buffer_Type::PJRT_Buffer_Type_S64; case xla::PrimitiveType::U2: return PJRT_Buffer_Type::PJRT_Buffer_Type_U2; case xla::PrimitiveType::U4: return PJRT_Buffer_Type::PJRT_Buffer_Type_U4; case xla::PrimitiveType::U8: return PJRT_Buffer_Type::PJRT_Buffer_Type_U8; case xla::PrimitiveType::U16: return PJRT_Buffer_Type::PJRT_Buffer_Type_U16; case xla::PrimitiveType::U32: return PJRT_Buffer_Type::PJRT_Buffer_Type_U32; case xla::PrimitiveType::U64: return PJRT_Buffer_Type::PJRT_Buffer_Type_U64; case xla::PrimitiveType::F16: return PJRT_Buffer_Type::PJRT_Buffer_Type_F16; case xla::PrimitiveType::F32: return PJRT_Buffer_Type::PJRT_Buffer_Type_F32; case xla::PrimitiveType::BF16: return PJRT_Buffer_Type::PJRT_Buffer_Type_BF16; case xla::PrimitiveType::F64: return PJRT_Buffer_Type::PJRT_Buffer_Type_F64; case xla::PrimitiveType::F8E5M2: return PJRT_Buffer_Type::PJRT_Buffer_Type_F8E5M2; case xla::PrimitiveType::F8E4M3: return PJRT_Buffer_Type::PJRT_Buffer_Type_F8E4M3; case xla::PrimitiveType::F8E4M3FN: return PJRT_Buffer_Type::PJRT_Buffer_Type_F8E4M3FN; case xla::PrimitiveType::F8E4M3B11FNUZ: return PJRT_Buffer_Type::PJRT_Buffer_Type_F8E4M3B11FNUZ; case xla::PrimitiveType::F8E5M2FNUZ: return PJRT_Buffer_Type::PJRT_Buffer_Type_F8E5M2FNUZ; case xla::PrimitiveType::F8E4M3FNUZ: return PJRT_Buffer_Type::PJRT_Buffer_Type_F8E4M3FNUZ; case xla::PrimitiveType::F8E3M4: return PJRT_Buffer_Type::PJRT_Buffer_Type_F8E3M4; case xla::PrimitiveType::C64: return PJRT_Buffer_Type::PJRT_Buffer_Type_C64; case xla::PrimitiveType::C128: return PJRT_Buffer_Type::PJRT_Buffer_Type_C128; default: CHECK(false) << "Element type of the shape is not supported in C API layer: " << xla::primitive_util::LowercasePrimitiveTypeName(type); } } xla::PrimitiveType ConvertFromPjRtBufferType(PJRT_Buffer_Type type) { switch (type) { case PJRT_Buffer_Type::PJRT_Buffer_Type_PRED: return xla::PrimitiveType::PRED; case PJRT_Buffer_Type::PJRT_Buffer_Type_TOKEN: return xla::PrimitiveType::TOKEN; case PJRT_Buffer_Type::PJRT_Buffer_Type_S2: return xla::PrimitiveType::S2; case PJRT_Buffer_Type::PJRT_Buffer_Type_S4: return xla::PrimitiveType::S4; case PJRT_Buffer_Type::PJRT_Buffer_Type_S8: return xla::PrimitiveType::S8; case PJRT_Buffer_Type::PJRT_Buffer_Type_S16: return xla::PrimitiveType::S16; case PJRT_Buffer_Type::PJRT_Buffer_Type_S32: return xla::PrimitiveType::S32; case PJRT_Buffer_Type::PJRT_Buffer_Type_S64: return xla::PrimitiveType::S64; case PJRT_Buffer_Type::PJRT_Buffer_Type_U2: return xla::PrimitiveType::U2; case PJRT_Buffer_Type::PJRT_Buffer_Type_U4: return xla::PrimitiveType::U4; case PJRT_Buffer_Type::PJRT_Buffer_Type_U8: return xla::PrimitiveType::U8; case PJRT_Buffer_Type::PJRT_Buffer_Type_U16: return xla::PrimitiveType::U16; case PJRT_Buffer_Type::PJRT_Buffer_Type_U32: return xla::PrimitiveType::U32; case PJRT_Buffer_Type::PJRT_Buffer_Type_U64: return xla::PrimitiveType::U64; case PJRT_Buffer_Type::PJRT_Buffer_Type_F16: return xla::PrimitiveType::F16; case PJRT_Buffer_Type::PJRT_Buffer_Type_F32: return xla::PrimitiveType::F32; case PJRT_Buffer_Type::PJRT_Buffer_Type_BF16: return xla::PrimitiveType::BF16; case PJRT_Buffer_Type::PJRT_Buffer_Type_F64: return xla::PrimitiveType::F64; case PJRT_Buffer_Type::PJRT_Buffer_Type_C64: return xla::PrimitiveType::C64; case PJRT_Buffer_Type::PJRT_Buffer_Type_C128: return xla::PrimitiveType::C128; case PJRT_Buffer_Type::PJRT_Buffer_Type_F8E5M2: return xla::PrimitiveType::F8E5M2; case PJRT_Buffer_Type::PJRT_Buffer_Type_F8E4M3: return xla::PrimitiveType::F8E4M3; case PJRT_Buffer_Type::PJRT_Buffer_Type_F8E4M3FN: return xla::PrimitiveType::F8E4M3FN; case PJRT_Buffer_Type::PJRT_Buffer_Type_F8E4M3B11FNUZ: return xla::PrimitiveType::F8E4M3B11FNUZ; case PJRT_Buffer_Type::PJRT_Buffer_Type_F8E5M2FNUZ: return xla::PrimitiveType::F8E5M2FNUZ; case PJRT_Buffer_Type::PJRT_Buffer_Type_F8E4M3FNUZ: return xla::PrimitiveType::F8E4M3FNUZ; case PJRT_Buffer_Type::PJRT_Buffer_Type_F8E3M4: return xla::PrimitiveType::F8E3M4; case PJRT_Buffer_Type::PJRT_Buffer_Type_INVALID: CHECK(false) << "Buffer type is not supported in C API layer."; } } const char* HostBufferSemanticsToString( xla::PjRtClient::HostBufferSemantics h) { switch (h) { case xla::PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall: return "xla::PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall"; case xla::PjRtClient::HostBufferSemantics::kImmutableZeroCopy: return "xla::PjRtClient::HostBufferSemantics::kImmutableZeroCopy"; case xla::PjRtClient::HostBufferSemantics::kMutableZeroCopy: return "xla::PjRtClient::HostBufferSemantics::kMutableZeroCopy"; case xla::PjRtClient::HostBufferSemantics::kImmutableUntilTransferCompletes: return "xla::PjRtClient::HostBufferSemantics::" "kImmutableUntilTransferCompletes"; } } PJRT_HostBufferSemantics ConvertToPjRtHostBufferSemantics( xla::PjRtClient::HostBufferSemantics buffer_semantics) { switch (buffer_semantics) { case xla::PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall: return PJRT_HostBufferSemantics:: PJRT_HostBufferSemantics_kImmutableOnlyDuringCall; case xla::PjRtClient::HostBufferSemantics::kImmutableUntilTransferCompletes: return PJRT_HostBufferSemantics:: PJRT_HostBufferSemantics_kImmutableUntilTransferCompletes; case xla::PjRtClient::HostBufferSemantics::kImmutableZeroCopy: return PJRT_HostBufferSemantics:: PJRT_HostBufferSemantics_kImmutableZeroCopy; case xla::PjRtClient::HostBufferSemantics::kMutableZeroCopy: return PJRT_HostBufferSemantics:: PJRT_HostBufferSemantics_kMutableZeroCopy; default: CHECK(false) << "Input host buffer semantics is not supported in C API layer: " << HostBufferSemanticsToString(buffer_semantics); } } xla::PjRtClient::HostBufferSemantics ConvertFromPjRtHostBufferSemantics( PJRT_HostBufferSemantics buffer_semantics) { switch (buffer_semantics) { case PJRT_HostBufferSemantics:: PJRT_HostBufferSemantics_kImmutableOnlyDuringCall: return xla::PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall; case PJRT_HostBufferSemantics:: PJRT_HostBufferSemantics_kImmutableUntilTransferCompletes: return xla::PjRtClient::HostBufferSemantics:: kImmutableUntilTransferCompletes; case PJRT_HostBufferSemantics::PJRT_HostBufferSemantics_kImmutableZeroCopy: return xla::PjRtClient::HostBufferSemantics::kImmutableZeroCopy; case PJRT_HostBufferSemantics::PJRT_HostBufferSemantics_kMutableZeroCopy: return xla::PjRtClient::HostBufferSemantics::kMutableZeroCopy; } } xla::PjRtFuture<> ConvertCEventToCppFuture(PJRT_Event* c_event, const PJRT_Api* c_api) { using xla::PjRtFuture; PJRT_Event_OnReady_Args event_onready_args; event_onready_args.struct_size = PJRT_Event_OnReady_Args_STRUCT_SIZE; event_onready_args.extension_start = nullptr; event_onready_args.event = c_event; PjRtFuture<>::Promise promise = PjRtFuture<>::CreatePromise(); event_onready_args.user_arg = new std::function<void(PJRT_Error*)>( [promise, c_event, c_api](PJRT_Error* error) mutable { if (error != nullptr) { promise.Set(::pjrt::PjrtErrorToStatus(error, c_api)); ::pjrt::MakeErrorDeleter(c_api)(error); } else { promise.Set(); } ::pjrt::MakeEventDeleter(c_api)(c_event); }); event_onready_args.callback = [](PJRT_Error* error, void* arg) { std::function<void(PJRT_Error*)>* set_future = reinterpret_cast<std::function<void(PJRT_Error*)>*>(arg); (*set_future)(error); delete set_future; }; PJRT_Error* error = c_api->PJRT_Event_OnReady(&event_onready_args); if (error != nullptr) { return PjRtFuture<>(::pjrt::PjrtErrorToStatus(error, c_api)); } return PjRtFuture<>(std::move(promise)); } static absl::StatusOr<PJRT_NamedValue> ConvertToPjRtNamedValue( const std::string& name, const xla::PjRtValueType& value) { PJRT_NamedValue c_value; c_value.struct_size = PJRT_NamedValue_STRUCT_SIZE; c_value.extension_start = nullptr; c_value.name = name.c_str(); c_value.name_size = name.size(); if (std::holds_alternative<std::string>(value)) { c_value.type = PJRT_NamedValue_Type::PJRT_NamedValue_kString; const std::string& option_string_value = std::get<std::string>(value); c_value.string_value = option_string_value.c_str(); c_value.value_size = option_string_value.size(); } else if (std::holds_alternative<int64_t>(value)) { c_value.type = PJRT_NamedValue_Type::PJRT_NamedValue_kInt64; c_value.int64_value = std::get<int64_t>(value); c_value.value_size = 1; } else if (std::holds_alternative<std::vector<int64_t>>(value)) { c_value.type = PJRT_NamedValue_Type::PJRT_NamedValue_kInt64List; const std::vector<int64_t>& option_int_list_value = std::get<std::vector<int64_t>>(value); c_value.int64_array_value = option_int_list_value.data(); c_value.value_size = option_int_list_value.size(); } else if (std::holds_alternative<float>(value)) { c_value.type = PJRT_NamedValue_Type::PJRT_NamedValue_kFloat; c_value.float_value = std::get<float>(value); c_value.value_size = 1; } else if (std::holds_alternative<bool>(value)) { c_value.type = PJRT_NamedValue_Type::PJRT_NamedValue_kBool; c_value.bool_value = std::get<bool>(value); c_value.value_size = 1; } else { return tsl::errors::InvalidArgument("Unexpected PjRtValueType: '", value.index(), " with name: ", name); } return c_value; } absl::StatusOr<std::vector<PJRT_NamedValue>> ConvertToPjRtNamedValueList( const absl::flat_hash_map<std::string, xla::PjRtValueType>& cpp_value_map) { std::vector<PJRT_NamedValue> c_value_list; c_value_list.reserve(cpp_value_map.size()); for (const auto& [name, value] : cpp_value_map) { TF_ASSIGN_OR_RETURN(PJRT_NamedValue c_value, ConvertToPjRtNamedValue(name, value)); c_value_list.push_back(c_value); } return c_value_list; } absl::flat_hash_map<std::string, xla::PjRtValueType> ConvertFromPjRtNamedValueList(const PJRT_NamedValue* c_value_list, size_t list_size) { absl::flat_hash_map<std::string, xla::PjRtValueType> cpp_value_map; for (int i = 0; i < list_size; ++i) { const PJRT_NamedValue& c_value = c_value_list[i]; absl::string_view name = absl::string_view(c_value.name, c_value.name_size); switch (c_value.type) { case PJRT_NamedValue_Type::PJRT_NamedValue_kString: { std::string string_value(c_value.string_value, c_value.value_size); cpp_value_map[name] = xla::PjRtValueType(string_value); break; } case PJRT_NamedValue_Type::PJRT_NamedValue_kInt64: { cpp_value_map[name] = xla::PjRtValueType(c_value.int64_value); break; } case PJRT_NamedValue_Type::PJRT_NamedValue_kInt64List: { const int64_t* array_ptr(c_value.int64_array_value); std::vector<int64_t> int64_array(array_ptr, array_ptr + c_value.value_size); cpp_value_map[name] = xla::PjRtValueType(int64_array); break; } case PJRT_NamedValue_Type::PJRT_NamedValue_kFloat: { cpp_value_map[name] = xla::PjRtValueType(c_value.float_value); break; } case PJRT_NamedValue_Type::PJRT_NamedValue_kBool: { cpp_value_map[name] = xla::PjRtValueType(c_value.bool_value); break; } default: { LOG(FATAL) << "Unexpected PJRT_NamedValue type: " << c_value.type << " with name: " << name; break; } } } return cpp_value_map; } static absl::StatusOr<PJRT_NamedValue_Type> GetPjrtNamedValueType( xla::PjRtValueType cpp_value) { if (std::holds_alternative<std::string>(cpp_value)) { return PJRT_NamedValue_Type::PJRT_NamedValue_kString; } if (std::holds_alternative<int64_t>(cpp_value)) { return PJRT_NamedValue_Type::PJRT_NamedValue_kInt64; } if (std::holds_alternative<std::vector<int64_t>>(cpp_value)) { return PJRT_NamedValue_Type::PJRT_NamedValue_kInt64List; } if (std::holds_alternative<float>(cpp_value)) { return PJRT_NamedValue_Type::PJRT_NamedValue_kFloat; } if (std::holds_alternative<bool>(cpp_value)) { return PJRT_NamedValue_Type::PJRT_NamedValue_kBool; } return tsl::errors::InvalidArgument("Unexpected PjRtValueType with index", cpp_value.index()); } absl::Status ValidateCreateOptions( const absl::flat_hash_map<std::string, xla::PjRtValueType>& value_map, const absl::flat_hash_map<std::string, PJRT_NamedValue_Type>& expected_name_and_types) { for (const auto& [name, value] : value_map) { auto it = expected_name_and_types.find(name); if (it == expected_name_and_types.end()) { return tsl::errors::InvalidArgument( "Unexpected option name passed to PJRT_Client_Create: ", name); } TF_ASSIGN_OR_RETURN(PJRT_NamedValue_Type type, GetPjrtNamedValueType(value)); if (type != it->second) { return tsl::errors::InvalidArgument( "Option passed to PJRT_Client_Create with name ", name, " has type index ", value.index(), " but expected type index is ", it->second); } } return absl::OkStatus(); } const std::vector<PJRT_NamedValue>& GetXlaPluginCAttributes() { constexpr absl::string_view kXlaVersion = "xla_version"; PJRT_NamedValue c_value; c_value.struct_size = PJRT_NamedValue_STRUCT_SIZE; c_value.extension_start = nullptr; c_value.name = kXlaVersion.data(); c_value.name_size = kXlaVersion.size(); c_value.type = PJRT_NamedValue_Type::PJRT_NamedValue_kInt64; c_value.int64_value = 2; c_value.value_size = 1; static const std::vector<PJRT_NamedValue>* c_values = new std::vector<PJRT_NamedValue>({c_value}); return *c_values; } static std::string StructSizeErrorMsg(absl::string_view struct_name, size_t expected_size, size_t actual_size) { std::string error_msg = absl::StrCat( "Unexpected ", struct_name, " size: expected ", expected_size, ", got ", actual_size, ". Check installed software versions."); #if defined(PJRT_API_MAJOR) absl::StrAppend(&error_msg, " The framework PJRT API version is ", PJRT_API_MAJOR, ".", PJRT_API_MINOR, "."); #endif return error_msg; } absl::Status ActualStructSizeIsGreaterOrEqual(absl::string_view struct_name, size_t expected_size, size_t actual_size) { if (actual_size < expected_size) { return tsl::errors::InvalidArgument( StructSizeErrorMsg(struct_name, expected_size, actual_size)); } if (actual_size > expected_size) { VLOG(2) << StructSizeErrorMsg(struct_name, expected_size, actual_size); } return absl::OkStatus(); } absl::string_view GetPlatformVersion(PJRT_Client* client, const PJRT_Api* api) { PJRT_Client_PlatformVersion_Args args; args.struct_size = PJRT_Client_PlatformVersion_Args_STRUCT_SIZE; args.extension_start = nullptr; args.client = client; LogFatalIfPjrtError(api->PJRT_Client_PlatformVersion(&args), api); absl::string_view platform_version(args.platform_version, args.platform_version_size); return platform_version; } absl::string_view GetPlatformName(PJRT_Client* client, const PJRT_Api* api) { PJRT_Client_PlatformName_Args args; args.client = client; args.struct_size = PJRT_Client_PlatformName_Args_STRUCT_SIZE; args.extension_start = nullptr; pjrt::LogFatalIfPjrtError(api->PJRT_Client_PlatformName(&args), api); absl::string_view platform_name(args.platform_name, args.platform_name_size); return platform_name; } absl::StatusOr<PJRT_TopologyDescription*> GetTopologyDescription( PJRT_Client* client, const PJRT_Api* api) { PJRT_Client_TopologyDescription_Args args; args.struct_size = PJRT_Client_TopologyDescription_Args_STRUCT_SIZE; args.extension_start = nullptr; args.client = client; RETURN_STATUS_IF_PJRT_ERROR(api->PJRT_Client_TopologyDescription(&args), api); return args.topology; } PJRT_Chunk ConvertFromCppChunk(xla::PjRtChunk chunk) { PJRT_Chunk c_chunk; c_chunk.data = chunk.data(); c_chunk.size = static_cast<size_t>(chunk.size()); c_chunk.deleter_arg = new std::function(chunk.deleter()); c_chunk.deleter = [](void* data, void* deleter_arg) { auto* deleter = reinterpret_cast<std::function<void(void*)>*>(deleter_arg); (*deleter)(data); delete deleter; }; chunk.release(); return c_chunk; } xla::PjRtChunk ConvertToCppChunk(const PJRT_Chunk& chunk) { return xla::PjRtChunk( chunk.data, chunk.size, [deleter_arg = chunk.deleter_arg, deleter = chunk.deleter](void* data) { deleter(data, deleter_arg); }); } PJRT_DeviceDescription* GetDeviceDescription(const PJRT_Api* api, PJRT_Device* device) { PJRT_Device_GetDescription_Args args; args.struct_size = PJRT_Device_GetDescription_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device = device; pjrt::LogFatalIfPjrtError(api->PJRT_Device_GetDescription(&args), api); return args.device_description; } absl::Span<PJRT_Memory* const> GetAddressableMemories(const PJRT_Api* api, PJRT_Device* device) { PJRT_Device_AddressableMemories_Args args; args.struct_size = PJRT_Device_AddressableMemories_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device = device; pjrt::LogFatalIfPjrtError(api->PJRT_Device_AddressableMemories(&args), api); return absl::MakeSpan(args.memories, args.num_memories); } int GetId(const PJRT_Api* api, PJRT_DeviceDescription* device_desc) { PJRT_DeviceDescription_Id_Args args = PJRT_DeviceDescription_Id_Args{ PJRT_DeviceDescription_Id_Args_STRUCT_SIZE, nullptr, device_desc}; pjrt::LogFatalIfPjrtError(api->PJRT_DeviceDescription_Id(&args), api); return args.id; } static void PjRtValueDeleterCallback(char* value) { delete[] value; } static PJRT_KeyValueGetCFunc ToKVGetCFunc( xla::KeyValueStoreInterface* kv_store) { return [kv_store](PJRT_KeyValueGetCallback_Args* args) -> PJRT_Error* { absl::StatusOr<std::string> output = kv_store->Get(std::string_view(args->key, args->key_size), absl::Milliseconds(args->timeout_in_ms)); if (!output.ok()) { absl::string_view message = output.status().message(); return (*args->callback_error)( StatusCodeToPjrtErrorCode(output.status().code()), message.data(), message.size()); } args->value = new char[output->size()]; std::copy(output->begin(), output->end(), args->value); args->value_size = output->size(); args->value_deleter_callback = &PjRtValueDeleterCallback; return nullptr; }; } static PJRT_KeyValuePutCFunc ToKVPutCFunc( xla::KeyValueStoreInterface* kv_store) { return [kv_store](PJRT_KeyValuePutCallback_Args* args) -> PJRT_Error* { absl::Status status = kv_store->Set(std::string_view(args->key, args->key_size), std::string_view(args->value, args->value_size)); if (!status.ok()) { absl::string_view message = status.message(); return (*args->callback_error)(StatusCodeToPjrtErrorCode(status.code()), message.data(), message.size()); } return nullptr; }; } static PJRT_KeyValueGetCallback ToCKVGetCallback( PJRT_KeyValueGetCFunc* kv_get_c_func) { return [](PJRT_KeyValueGetCallback_Args* args) -> PJRT_Error* { PJRT_KeyValueGetCFunc* kv_get_c_func = reinterpret_cast<PJRT_KeyValueGetCFunc*>(args->user_arg); if (kv_get_c_func == nullptr) { absl::Status status = xla::InvalidArgument( "got nullptr for PJRT_KeyValueGet_Args.user_arg"); return (*args->callback_error)(StatusCodeToPjrtErrorCode(status.code()), status.message().data(), status.message().size()); } return (*kv_get_c_func)(args); }; } static PJRT_KeyValuePutCallback ToCKVPutCallback( PJRT_KeyValuePutCFunc* kv_put_c_func) { return [](PJRT_KeyValuePutCallback_Args* args) -> PJRT_Error* { PJRT_KeyValuePutCFunc* kv_put_c_func = reinterpret_cast<PJRT_KeyValuePutCFunc*>(args->user_arg); if (kv_put_c_func == nullptr) { absl::Status status = xla::InvalidArgument( "got nullptr for PJRT_KeyValuePut_Args.user_arg"); return (*args->callback_error)(StatusCodeToPjrtErrorCode(status.code()), status.message().data(), status.message().size()); } return (*kv_put_c_func)(args); }; } std::unique_ptr<PJRT_KeyValueCallbackData> ConvertToCKeyValueCallbacks( std::shared_ptr<xla::KeyValueStoreInterface> kv_store) { auto kv_callback_data = std::make_unique<PJRT_KeyValueCallbackData>(); kv_callback_data->kv_get_c_func = ToKVGetCFunc(kv_store.get()); kv_callback_data->kv_put_c_func = ToKVPutCFunc(kv_store.get()); kv_callback_data->c_kv_get = ToCKVGetCallback(&kv_callback_data->kv_get_c_func); kv_callback_data->c_kv_put = ToCKVPutCallback(&kv_callback_data->kv_put_c_func); kv_callback_data->kv_store = std::move(kv_store); return kv_callback_data; } PJRT_SendCallbackInfo CppSendCallbackToCSendCallback( xla::SendCallback cpp_send_callback, PJRT_SendCallbackFunction* send_callback_function) { return PJRT_SendCallbackInfo{ cpp_send_callback.channel_id, send_callback_function, [](PJRT_Chunk* chunk, PJRT_CallbackError* callback_error, size_t total_size_in_bytes, bool done, void* user_arg) -> PJRT_Error* { PJRT_SendCallbackFunction* send_callback = reinterpret_cast<PJRT_SendCallbackFunction*>(user_arg); return (*send_callback)(chunk, callback_error, total_size_in_bytes, done); }}; } PJRT_RecvCallbackInfo CppRecvCallbackToCRecvCallback( xla::RecvCallback cpp_recv_callback, PJRT_RecvCallbackFunction* recv_callback_function) { return PJRT_RecvCallbackInfo{ cpp_recv_callback.channel_id, recv_callback_function, [](PJRT_CopyToDeviceStream* stream, void* user_arg) { auto* recv_callback = reinterpret_cast<std::function<void(PJRT_CopyToDeviceStream*)>*>( user_arg); (*recv_callback)(stream); }}; } absl::StatusOr<BufferMemoryLayoutData> ConvertToBufferMemoryLayoutData( const xla::Layout& cpp_layout) { BufferMemoryLayoutData layout_data; layout_data.c_layout.type = PJRT_Buffer_MemoryLayout_Type::PJRT_Buffer_MemoryLayout_Type_Tiled; PJRT_Buffer_MemoryLayout_Tiled c_tiled; layout_data.minor_to_major.assign(cpp_layout.minor_to_major().begin(), cpp_layout.minor_to_major().end()); c_tiled.minor_to_major = layout_data.minor_to_major.data(); c_tiled.minor_to_major_size = layout_data.minor_to_major.size(); c_tiled.num_tiles = cpp_layout.tiles().size(); if (c_tiled.num_tiles >= 0) { layout_data.tile_dim_sizes.reserve(c_tiled.num_tiles); for (int i = 0; i < c_tiled.num_tiles; ++i) { absl::Span<const int64_t> tile_dim = cpp_layout.tiles()[i].dimensions(); layout_data.tile_dims.insert(layout_data.tile_dims.end(), tile_dim.begin(), tile_dim.end()); layout_data.tile_dim_sizes.push_back(tile_dim.size()); } c_tiled.tile_dims = layout_data.tile_dims.data(); c_tiled.tile_dim_sizes = layout_data.tile_dim_sizes.data(); } layout_data.c_layout.tiled = c_tiled; return layout_data; } absl::StatusOr<BufferMemoryLayoutData> ConvertToBufferMemoryLayoutData( absl::Span<int64_t const> byte_strides) { BufferMemoryLayoutData layout_data; layout_data.c_layout.type = PJRT_Buffer_MemoryLayout_Type::PJRT_Buffer_MemoryLayout_Type_Strides; layout_data.c_layout.strides.byte_strides = byte_strides.data(); layout_data.c_layout.strides.num_byte_strides = byte_strides.size(); return layout_data; } absl::StatusOr<xla::Layout> ConvertToLayout( const PJRT_Buffer_MemoryLayout_Tiled& c_tiled) { absl::Span<const int64_t> minor_to_major(c_tiled.minor_to_major, c_tiled.minor_to_major_size); absl::InlinedVector<xla::Tile, 1> tiles; tiles.reserve(c_tiled.num_tiles); const int64_t* current_tile = c_tiled.tile_dims; for (int i = 0; i < c_tiled.num_tiles; ++i) { tiles.push_back(xla::Tile( absl::Span<const int64_t>(current_tile, c_tiled.tile_dim_sizes[i]))); current_tile += c_tiled.tile_dim_sizes[i]; } xla::Layout layout = xla::Layout(minor_to_major); layout.mutable_tiles()->assign(tiles.begin(), tiles.end()); return layout; } PJRT_Buffer_Type GetElementType(const PJRT_Api* api, PJRT_Buffer* buffer) { PJRT_Buffer_ElementType_Args args; args.struct_size = PJRT_Buffer_ElementType_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer; LogFatalIfPjrtError(api->PJRT_Buffer_ElementType(&args), api); return args.type; } absl::Span<const int64_t> GetDimensions(const PJRT_Api* api, PJRT_Buffer* buffer) { PJRT_Buffer_Dimensions_Args args; args.struct_size = PJRT_Buffer_Dimensions_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer; LogFatalIfPjrtError(api->PJRT_Buffer_Dimensions(&args), api); return {args.dims, args.num_dims}; } std::unique_ptr<PJRT_Layouts_MemoryLayout, PJRT_Layouts_MemoryLayoutDeleter> GetMemoryLayout(const PJRT_Api* api, PJRT_Buffer* buffer) { PJRT_Layouts_PJRT_Buffer_MemoryLayout_Args args; args.struct_size = PJRT_Layouts_PJRT_Buffer_MemoryLayout_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer; PJRT_Layouts_Extension* ext_api = FindExtension<PJRT_Layouts_Extension>(api, PJRT_Extension_Type_Layouts); CHECK_NE(ext_api, nullptr) << "GetMemoryLayout called with PJRT_Api that " "doesn't support layouts extension"; LogFatalIfPjrtError(ext_api->PJRT_Layouts_PJRT_Buffer_MemoryLayout(&args), api); return std::unique_ptr<PJRT_Layouts_MemoryLayout, PJRT_Layouts_MemoryLayoutDeleter>( args.layout, MakeMemoryLayoutDeleter(api)); } absl::StatusOr<xla::Shape> BuildXlaShapeFromC( PJRT_Buffer_Type element_type, const int64_t* dims, size_t num_dims, PJRT_Buffer_MemoryLayout* layout) { xla::Shape shape = xla::ShapeUtil::MakeShape(ConvertFromPjRtBufferType(element_type), absl::Span<const int64_t>(dims, num_dims)); xla::Layout cpp_layout; if (layout != nullptr) { switch (layout->type) { case PJRT_Buffer_MemoryLayout_Type::PJRT_Buffer_MemoryLayout_Type_Tiled: { TF_ASSIGN_OR_RETURN(cpp_layout, ConvertToLayout(layout->tiled)); break; } case PJRT_Buffer_MemoryLayout_Type:: PJRT_Buffer_MemoryLayout_Type_Strides: { TF_RETURN_IF_ERROR(absl::InvalidArgumentError( "PJRT_Buffer_MemoryLayout_Type_Strides is not supported to be " "converted to a xla::Shape")); break; } default: { TF_RETURN_IF_ERROR(absl::InvalidArgumentError(absl::StrCat( "Unexpected PJRT_Buffer_MemoryLayout_Type type: ", layout->type))); } } *shape.mutable_layout() = cpp_layout; } return shape; } absl::string_view PlatformName(const PJRT_Api* api, const PJRT_TopologyDescription* topo_desc) { PJRT_TopologyDescription_PlatformName_Args args; args.struct_size = PJRT_TopologyDescription_PlatformName_Args_STRUCT_SIZE; args.extension_start = nullptr; args.topology = const_cast<PJRT_TopologyDescription*>(topo_desc); LogFatalIfPjrtError(api->PJRT_TopologyDescription_PlatformName(&args), api); return {args.platform_name, args.platform_name_size}; } absl::Span<PJRT_DeviceDescription* const> DeviceDescriptions( const PJRT_Api* api, const PJRT_TopologyDescription* topo_desc) { PJRT_TopologyDescription_GetDeviceDescriptions_Args args; args.struct_size = PJRT_TopologyDescription_GetDeviceDescriptions_Args_STRUCT_SIZE; args.extension_start = nullptr; args.topology = const_cast<PJRT_TopologyDescription*>(topo_desc); LogFatalIfPjrtError( api->PJRT_TopologyDescription_GetDeviceDescriptions(&args), api); return {args.descriptions, args.num_descriptions}; } absl::StatusOr<xla::CompiledMemoryStats> GetCompiledMemoryStats( const PJRT_Api* api, PJRT_Executable* executable) { PJRT_Executable_GetCompiledMemoryStats_Args args; args.struct_size = PJRT_Executable_GetCompiledMemoryStats_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = executable; RETURN_STATUS_IF_PJRT_ERROR( api->PJRT_Executable_GetCompiledMemoryStats(&args), api); xla::CompiledMemoryStats results; results.generated_code_size_in_bytes = args.generated_code_size_in_bytes; results.argument_size_in_bytes = args.argument_size_in_bytes; results.output_size_in_bytes = args.output_size_in_bytes; results.alias_size_in_bytes = args.alias_size_in_bytes; results.temp_size_in_bytes = args.temp_size_in_bytes; results.host_generated_code_size_in_bytes = args.host_generated_code_size_in_bytes; results.host_argument_size_in_bytes = args.host_argument_size_in_bytes; results.host_output_size_in_bytes = args.host_output_size_in_bytes; results.host_alias_size_in_bytes = args.host_alias_size_in_bytes; results.host_temp_size_in_bytes = args.host_temp_size_in_bytes; return results; } PJRT_Profiler_Extension CreatePjrtProfilerExtension( absl::string_view traceme_name) { tsl::profiler::TraceMeProducer producer( traceme_name, tsl::profiler::ContextType::kPjrtLibraryCall); int64_t traceme_context_id = producer.GetContextId(); PJRT_Profiler_Extension profiler_extension{ PJRT_Profiler_Extension_STRUCT_SIZE, PJRT_Extension_Type::PJRT_Extension_Type_Profiler, nullptr, nullptr, traceme_context_id, }; return profiler_extension; } }
#include "xla/pjrt/c/pjrt_c_api_helpers.h" #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "xla/layout.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_wrapper_impl.h" #include "xla/pjrt/distributed/in_memory_key_value_store.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/status.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace pjrt { namespace { using ::testing::HasSubstr; TEST(PjRtCApiHelperTest, ConvertValidPjRtValueType) { std::vector<int64_t> int64_list = {static_cast<int64_t>(1), static_cast<int64_t>(2)}; absl::flat_hash_map<std::string, xla::PjRtValueType> original_cpp_map = { {"string", "v1"}, {"int64", static_cast<int64_t>(1)}, {"int64_list", int64_list}, {"float", static_cast<float>(1.0)}}; TF_ASSERT_OK_AND_ASSIGN(std::vector<PJRT_NamedValue> c_map, ConvertToPjRtNamedValueList(original_cpp_map)); auto converted_back_cpp_map = ConvertFromPjRtNamedValueList(c_map.data(), c_map.size()); EXPECT_THAT(converted_back_cpp_map, testing::UnorderedElementsAreArray(original_cpp_map)); } TEST(PjRtCApiHelperTest, ValidOptionNameAndPjRtValueTypeIndex) { const auto expected = absl::flat_hash_map<std::string, PJRT_NamedValue_Type>({ {"string", PJRT_NamedValue_Type::PJRT_NamedValue_kString}, {"int64", PJRT_NamedValue_Type::PJRT_NamedValue_kInt64}, }); absl::flat_hash_map<std::string, xla::PjRtValueType> valid_map = { {"string", static_cast<std::string>("v1")}, {"int64", static_cast<int64_t>(1)}}; TF_EXPECT_OK(ValidateCreateOptions(valid_map, expected)); } TEST(PjRtCApiHelperTest, InvalidOptionName) { const auto expected = absl::flat_hash_map<std::string, PJRT_NamedValue_Type>({ {"string", PJRT_NamedValue_Type::PJRT_NamedValue_kString}, {"int64", PJRT_NamedValue_Type::PJRT_NamedValue_kInt64}, }); absl::flat_hash_map<std::string, xla::PjRtValueType> invalid_map = { {"invalid", "v1"}}; auto status = ValidateCreateOptions(invalid_map, expected); EXPECT_NE(status, absl::OkStatus()); EXPECT_THAT(status.message(), HasSubstr("Unexpected option name passed to PJRT_Client_Create")); } TEST(PjRtCApiHelperTest, InvalidOptionTypeIndex) { const auto expected = absl::flat_hash_map<std::string, PJRT_NamedValue_Type>({ {"string", PJRT_NamedValue_Type::PJRT_NamedValue_kString}, {"int64", PJRT_NamedValue_Type::PJRT_NamedValue_kInt64}, }); absl::flat_hash_map<std::string, xla::PjRtValueType> invalid_map = { {"string", static_cast<int64_t>(1)}}; auto status = ValidateCreateOptions(invalid_map, expected); EXPECT_NE(status, absl::OkStatus()); EXPECT_THAT(status.message(), HasSubstr("Option passed to PJRT_Client_Create with name string " "has type index 2 but expected type index is 0")); } TEST(PjRtCApiHelperTest, Callback) { auto kv_store = std::make_shared<xla::InMemoryKeyValueStore>(); auto kv_callback_data = ConvertToCKeyValueCallbacks(kv_store); auto converted_kv_store = ToCppKeyValueStore( kv_callback_data->c_kv_get, &kv_callback_data->kv_get_c_func, kv_callback_data->c_kv_put, &kv_callback_data->kv_put_c_func); auto s = converted_kv_store->Set("key", "value"); TF_EXPECT_OK(s); auto v = converted_kv_store->Get("key", absl::Seconds(1)); TF_EXPECT_OK(v.status()); EXPECT_EQ(*v, "value"); } TEST(PjRtCApiHelperTest, ConvertToCLayoutFromStrides) { std::vector<int64_t> strides = {4, 8}; absl::StatusOr<BufferMemoryLayoutData> layout_data = ConvertToBufferMemoryLayoutData(strides); EXPECT_TRUE(layout_data.ok()); EXPECT_EQ( layout_data->c_layout.type, PJRT_Buffer_MemoryLayout_Type::PJRT_Buffer_MemoryLayout_Type_Strides); EXPECT_EQ(layout_data->c_layout.strides.num_byte_strides, 2); EXPECT_EQ(layout_data->c_layout.strides.byte_strides[0], strides[0]); EXPECT_EQ(layout_data->c_layout.strides.byte_strides[1], strides[1]); } TEST(PjRtCApiHelperTest, ConvertToCLayoutFromLayoutNoTiles) { std::vector<int64_t> minor_to_major = {1, 0}; xla::Layout layout(minor_to_major); TF_ASSERT_OK_AND_ASSIGN(BufferMemoryLayoutData layout_data, ConvertToBufferMemoryLayoutData(layout)); EXPECT_EQ(layout_data.c_layout.type, PJRT_Buffer_MemoryLayout_Type::PJRT_Buffer_MemoryLayout_Type_Tiled); EXPECT_EQ(layout_data.c_layout.tiled.num_tiles, 0); PJRT_Buffer_MemoryLayout_Tiled tiled = layout_data.c_layout.tiled; EXPECT_EQ(tiled.minor_to_major_size, 2); EXPECT_EQ(tiled.minor_to_major[0], minor_to_major[0]); EXPECT_EQ(tiled.minor_to_major[1], minor_to_major[1]); } TEST(PjRtCApiHelperTest, ConvertToCLayoutFromLayoutWithTiles) { std::vector<int64_t> minor_to_major = {1, 0}; xla::Layout layout(minor_to_major); std::vector<int64_t> tile_dims_1 = {2, 4}; std::vector<int64_t> tile_dims_2 = {1}; layout.mutable_tiles()->push_back(xla::Tile(tile_dims_1)); layout.mutable_tiles()->push_back(xla::Tile(tile_dims_2)); TF_ASSERT_OK_AND_ASSIGN(BufferMemoryLayoutData layout_data, ConvertToBufferMemoryLayoutData(layout)); EXPECT_EQ(layout_data.c_layout.type, PJRT_Buffer_MemoryLayout_Type::PJRT_Buffer_MemoryLayout_Type_Tiled); PJRT_Buffer_MemoryLayout_Tiled tiled = layout_data.c_layout.tiled; EXPECT_EQ(tiled.minor_to_major_size, 2); EXPECT_EQ(tiled.minor_to_major[0], minor_to_major[0]); EXPECT_EQ(tiled.minor_to_major[1], minor_to_major[1]); EXPECT_EQ(tiled.num_tiles, 2); EXPECT_EQ(tiled.tile_dim_sizes[0], tile_dims_1.size()); EXPECT_EQ(tiled.tile_dim_sizes[1], tile_dims_2.size()); EXPECT_EQ(tiled.tile_dims[0], tile_dims_1[0]); EXPECT_EQ(tiled.tile_dims[1], tile_dims_1[1]); EXPECT_EQ(tiled.tile_dims[2], tile_dims_2[0]); } TEST(PjRtCApiHelperTest, ConvertFromCLayoutToLayout) { PJRT_Buffer_MemoryLayout c_layout; c_layout.type = PJRT_Buffer_MemoryLayout_Type::PJRT_Buffer_MemoryLayout_Type_Tiled; std::vector<int64_t> minor_to_major = {1, 0}; c_layout.tiled.minor_to_major_size = 2; c_layout.tiled.minor_to_major = minor_to_major.data(); c_layout.tiled.num_tiles = 2; std::vector<size_t> tile_dim_sizes = {2, 1}; c_layout.tiled.tile_dim_sizes = tile_dim_sizes.data(); std::vector<int64_t> tile_dims = {2, 4, 1}; c_layout.tiled.tile_dims = tile_dims.data(); TF_ASSERT_OK_AND_ASSIGN(xla::Layout layout, ConvertToLayout(c_layout.tiled)); EXPECT_EQ(layout.ToString(), "{1,0:T(2,4)(1)}"); } TEST(PjRtCApiHelperTest, ConvertFromCLayoutToLayoutNoTile) { PJRT_Buffer_MemoryLayout c_layout; c_layout.type = PJRT_Buffer_MemoryLayout_Type::PJRT_Buffer_MemoryLayout_Type_Tiled; c_layout.tiled.num_tiles = 0; std::vector<int64_t> minor_to_major = {1, 0}; c_layout.tiled.minor_to_major_size = 2; c_layout.tiled.minor_to_major = minor_to_major.data(); TF_ASSERT_OK_AND_ASSIGN(xla::Layout layout, ConvertToLayout(c_layout.tiled)); EXPECT_EQ(layout.ToString(), "{1,0}"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/c/pjrt_c_api_helpers.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/c/pjrt_c_api_helpers_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
17d19366-2d7f-45aa-9c96-4b5ac5ca6c8d
cpp
tensorflow/tensorflow
hlo_control_flow_flattening
third_party/xla/xla/tools/hlo_control_flow_flattening.cc
third_party/xla/xla/tools/hlo_control_flow_flattening_test.cc
#include "xla/tools/hlo_control_flow_flattening.h" #include <algorithm> #include <cstdint> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/call_graph.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/hlo_dce.h" #include "xla/service/tuple_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { HloInstruction* CreateConstant(const Shape& shape, HloComputation* computation) { if (shape.IsTuple()) { std::vector<HloInstruction*> tuple_arguments(shape.tuple_shapes_size()); for (int index = 0; index < shape.tuple_shapes_size(); ++index) { tuple_arguments[index] = CreateConstant(shape.tuple_shapes(index), computation); } return computation->AddInstruction( HloInstruction::CreateTuple(tuple_arguments)); } else { return computation->AddInstruction( HloInstruction::CreateConstant(Literal::CreateFromShape(shape))); } } void PrintSubexpression(HloInstruction* inst, int depth) { if (depth == 0) { return; } for (auto* operand : inst->operands()) { PrintSubexpression(operand, depth - 1); } VLOG(2) << inst->ToString(); } bool IsConstantScalarInt(const HloInstruction* inst) { return inst->opcode() == HloOpcode::kConstant && ShapeUtil::IsEffectiveScalar(inst->shape()) && inst->shape().IsInteger(); } bool IsNotContainedInLoop(const HloInstruction& while_hlo, const CallGraph& call_graph) { const HloComputation* computation = while_hlo.parent(); while (!computation->IsEntryComputation()) { auto& node = call_graph.GetNode(computation); CHECK_EQ(node.caller_callsites().size(), 1) << "The module is not flattened!"; auto& callsite = node.caller_callsites()[0]; if (callsite.instruction()->opcode() == HloOpcode::kWhile) { return false; } computation = callsite.instruction()->parent(); } return true; } } int GetLoopBound(const HloInstruction& while_hlo, const int default_loop_count, const int max_loop_count) { HloInstruction* condition = while_hlo.while_condition()->root_instruction(); if (condition->opcode() == HloOpcode::kCompare) { int64_t value = 0; Comparison::Direction cmp = condition->comparison_direction(); if ((cmp == Comparison::Direction::kLt || cmp == Comparison::Direction::kLe || cmp == Comparison::Direction::kNe) && IsConstantScalarInt(condition->operand(1))) { value = *condition->operand(1)->literal().GetFirstInteger(); } else if ((cmp == Comparison::Direction::kGt || cmp == Comparison::Direction::kGe || cmp == Comparison::Direction::kNe) && IsConstantScalarInt(condition->operand(0))) { value = *condition->operand(0)->literal().GetFirstInteger(); } if (value > 0) { return std::min(value, static_cast<int64_t>(max_loop_count)); } } return default_loop_count; } int GetLoopBoundWithOuterLoopMax(const HloInstruction& while_hlo, const CallGraph& call_graph, const int default_loop_count, const int max_outer_loop_count, const int max_loop_count) { int loop_bound = GetLoopBound(while_hlo, default_loop_count, max_loop_count); if (loop_bound > max_outer_loop_count) { if (IsNotContainedInLoop(while_hlo, call_graph)) { return max_outer_loop_count; } } return loop_bound; } absl::Status HloControlFlowFlattening::FlattenWhileLoop( HloInstruction* while_hlo, const CallGraph& call_graph) const { CHECK_EQ(while_hlo->opcode(), HloOpcode::kWhile); HloComputation* computation = while_hlo->parent(); HloInstruction* initialization = computation->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(0))); HloInstruction* old_tuple = while_hlo->mutable_operand(0); HloInstruction* new_tuple = TupleUtil::AppendSuffix(old_tuple, {initialization}); int new_tuple_size = new_tuple->shape().tuple_shapes().size(); TF_RETURN_IF_ERROR(while_hlo->ReplaceOperandWithDifferentShape(0, new_tuple)); auto change_op_shape = [&](HloInstruction* instruction) { Shape* shape = instruction->mutable_shape(); CHECK(shape->IsTuple()); CHECK_EQ(shape->tuple_shapes().size(), new_tuple_size - 1); Shape* subshape = shape->add_tuple_shapes(); return ShapeUtil::PopulateShape(S32, {}, subshape); }; auto replace_non_gte_users = [](HloInstruction* new_tuple) -> absl::StatusOr<HloInstruction*> { CHECK(new_tuple->shape().IsTuple()); HloInstruction* prefix = nullptr; std::vector<HloInstruction*> users(new_tuple->users()); for (HloInstruction* user : users) { if (user->opcode() == HloOpcode::kGetTupleElement) { continue; } if (prefix == nullptr) { prefix = TupleUtil::ExtractPrefix( new_tuple, new_tuple->shape().tuple_shapes_size() - 1); } TF_RETURN_IF_ERROR(new_tuple->ReplaceUseWithDifferentShape(user, prefix)); } return prefix; }; { HloComputation* condition = while_hlo->while_condition(); TF_RETURN_IF_ERROR(change_op_shape(condition->parameter_instruction(0))); TF_RETURN_IF_ERROR( replace_non_gte_users(condition->parameter_instruction(0)).status()); if (VLOG_IS_ON(2)) { VLOG(2) << "Loop condition in " << while_hlo->parent()->name(); PrintSubexpression(condition->root_instruction(), 3); } const int loop_bound = GetLoopBoundWithOuterLoopMax( *while_hlo, call_graph, while_execution_count_, max_outer_loop_count_, max_loop_count_); VLOG(1) << "loop_bound = " << loop_bound; HloInstruction* limit = condition->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(loop_bound))); Shape shape = initialization->shape(); HloInstruction* induction_variable = condition->AddInstruction(HloInstruction::CreateGetTupleElement( shape, condition->parameter_instruction(0), new_tuple_size - 1)); HloInstruction* compare = condition->AddInstruction(HloInstruction::CreateCompare( ShapeUtil::MakeShape(PRED, {}), induction_variable, limit, ComparisonDirection::kLt)); TF_RETURN_IF_ERROR( condition->ReplaceInstruction(condition->root_instruction(), compare)); } { HloComputation* body = while_hlo->while_body(); TF_RETURN_IF_ERROR(change_op_shape(body->parameter_instruction(0))); TF_RETURN_IF_ERROR( replace_non_gte_users(body->parameter_instruction(0)).status()); HloInstruction* old_root = body->root_instruction(); Shape shape = initialization->shape(); HloInstruction* induction_variable = body->AddInstruction(HloInstruction::CreateGetTupleElement( shape, body->parameter_instruction(0), new_tuple_size - 1)); HloInstruction* increment = body->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(1))); induction_variable = body->AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, induction_variable, increment)); HloInstruction* new_root = TupleUtil::AppendSuffix(old_root, {induction_variable}); body->set_root_instruction(new_root, true); } std::vector<HloInstruction*> while_users(while_hlo->users().begin(), while_hlo->users().end()); TF_RETURN_IF_ERROR(change_op_shape(while_hlo)); TF_ASSIGN_OR_RETURN(HloInstruction * prefix, replace_non_gte_users(while_hlo)); if (while_hlo->parent()->root_instruction() == while_hlo) { if (prefix == nullptr) { prefix = TupleUtil::ExtractPrefix(while_hlo, new_tuple_size - 1); } while_hlo->parent()->set_root_instruction(prefix, true); } return absl::OkStatus(); } absl::Status HloControlFlowFlattening::RemoveInfeed( HloInstruction* infeed_hlo) const { CHECK_EQ(infeed_hlo->opcode(), HloOpcode::kInfeed); HloComputation* computation = infeed_hlo->parent(); CHECK_EQ(infeed_hlo->shape().tuple_shapes_size(), 2); const Shape& infeed_shape = ShapeUtil::GetSubshape(infeed_hlo->shape(), {0}); HloInstruction* custom_call = computation->AddInstruction( HloInstruction::CreateCustomCall(infeed_shape, {}, kNopCustomCallTarget)); auto new_tuple = HloInstruction::CreateTuple( {custom_call, infeed_hlo->mutable_operand(0)}); TF_RETURN_IF_ERROR( computation->ReplaceWithNewInstruction(infeed_hlo, std::move(new_tuple))); custom_call->SetAndSanitizeName(infeed_hlo->name()); return absl::OkStatus(); } absl::StatusOr<std::pair<HloInstruction*, HloInstruction*>> HloControlFlowFlattening::RemoveRecvAndRecvDone( HloInstruction* recv_done, absl::flat_hash_set<HloInstruction*>* additional_removed) const { CHECK_EQ(recv_done->opcode(), HloOpcode::kRecvDone); CHECK_EQ(recv_done->operand_count(), 1); HloInstruction* recv = recv_done->mutable_operand(0); CHECK_EQ(recv->opcode(), HloOpcode::kRecv); HloComputation* computation = recv_done->parent(); CHECK_EQ(recv_done->shape().tuple_shapes_size(), 2); HloModule* module = computation->parent(); HloInstruction* custom_call_recv = computation->AddInstruction(HloInstruction::CreateCustomCall( recv->shape(), recv->operands(), kNopCustomCallTarget)); std::string original_recv_name(recv->name()); if (module->has_schedule() && module->schedule().is_computation_scheduled(computation)) { module->schedule().replace_instruction(computation, recv, custom_call_recv); } TF_RETURN_IF_ERROR(computation->ReplaceInstruction(recv, custom_call_recv)); custom_call_recv->SetAndSanitizeName(original_recv_name); std::string original_recv_done_name(recv_done->name()); HloInstruction* custom_call_recv_done = computation->AddInstruction( HloInstruction::CreateCustomCall( recv_done->shape(), recv_done->operands(), kNopCustomCallTarget), recv_done->name()); if (module->has_schedule() && module->schedule().is_computation_scheduled(computation)) { module->schedule().replace_instruction(computation, recv_done, custom_call_recv_done); } TF_RETURN_IF_ERROR( computation->ReplaceInstruction(recv_done, custom_call_recv_done)); custom_call_recv_done->SetAndSanitizeName(original_recv_done_name); return std::make_pair(custom_call_recv, custom_call_recv_done); } absl::Status HloControlFlowFlattening::RemoveOutfeed( HloInstruction* outfeed_hlo) const { CHECK_EQ(outfeed_hlo->opcode(), HloOpcode::kOutfeed); HloComputation* computation = outfeed_hlo->parent(); HloInstruction* custom_call = computation->AddInstruction(HloInstruction::CreateCustomCall( outfeed_hlo->shape(), outfeed_hlo->operands(), kNopReturnTokenCustomCallTarget)); Cast<HloCustomCallInstruction>(custom_call) ->set_custom_call_has_side_effect(true); custom_call->set_sharding(HloSharding::Manual()); TF_RETURN_IF_ERROR(computation->ReplaceInstruction(outfeed_hlo, custom_call)); custom_call->SetAndSanitizeName(outfeed_hlo->name()); return absl::OkStatus(); } absl::StatusOr<std::pair<HloInstruction*, HloInstruction*>> HloControlFlowFlattening::RemoveSendAndSendDone( HloInstruction* send_done, absl::flat_hash_set<HloInstruction*>* additional_removed) const { CHECK_EQ(send_done->opcode(), HloOpcode::kSendDone); CHECK_EQ(send_done->operand_count(), 1); HloInstruction* send = send_done->mutable_operand(0); CHECK_EQ(send->opcode(), HloOpcode::kSend); HloComputation* computation = send_done->parent(); HloModule* module = computation->parent(); HloInstruction* custom_call_send = computation->AddInstruction(HloInstruction::CreateCustomCall( send->shape(), send->operands(), kNopCustomCallTarget)); std::string original_send_name(send->name()); if (module->has_schedule() && module->schedule().is_computation_scheduled(computation)) { module->schedule().replace_instruction(computation, send, custom_call_send); } TF_RETURN_IF_ERROR(computation->ReplaceInstruction(send, custom_call_send)); custom_call_send->SetAndSanitizeName(original_send_name); HloInstruction* custom_call_send_done = computation->AddInstruction(HloInstruction::CreateCustomCall( send_done->shape(), send_done->operands(), kNopReturnTokenCustomCallTarget)); std::string original_send_done_name(send_done->name()); Cast<HloCustomCallInstruction>(custom_call_send_done) ->set_custom_call_has_side_effect(true); if (module->has_schedule() && module->schedule().is_computation_scheduled(computation)) { module->schedule().replace_instruction(computation, send_done, custom_call_send_done); } TF_RETURN_IF_ERROR( computation->ReplaceInstruction(send_done, custom_call_send_done)); custom_call_send_done->SetAndSanitizeName(original_send_done_name); return std::make_pair(custom_call_send, custom_call_send_done); } absl::StatusOr<HloInstruction*> HloControlFlowFlattening::RemoveCollective( HloInstruction* hlo) const { HloComputation* computation = hlo->parent(); HloInstruction* custom_call = computation->AddInstruction(HloInstruction::CreateCustomCall( hlo->shape(), hlo->operands(), kNopCustomCallTarget)); custom_call->CopyBackendConfigFrom(hlo); HloModule* module = computation->parent(); if (module->has_schedule() && module->schedule().is_computation_scheduled(computation)) { module->schedule().replace_instruction(computation, hlo, custom_call); } std::string original_op_name(hlo->name()); TF_RETURN_IF_ERROR(computation->ReplaceInstruction(hlo, custom_call)); custom_call->SetAndSanitizeName(original_op_name); return custom_call; } absl::Status HloControlFlowFlattening::RemoveId(HloInstruction* hlo) const { HloComputation* computation = hlo->parent(); HloInstruction* zero = CreateConstant(hlo->shape(), computation); std::string original_op_name(hlo->name()); TF_RETURN_IF_ERROR(computation->ReplaceInstruction(hlo, zero)); zero->SetAndSanitizeName(original_op_name); return absl::OkStatus(); } absl::StatusOr<bool> HloControlFlowFlattening::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { auto call_graph = CallGraph::Build(module); bool changed = false; absl::flat_hash_set<HloInstruction*> removed; for (HloComputation* computation : module->computations(execution_threads)) { if (computation->IsAsyncComputation()) { continue; } for (HloInstruction* instruction : computation->MakeInstructionPostOrder()) { if (removed.contains(instruction)) { continue; } if (flatten_while_loop_ && instruction->opcode() == HloOpcode::kWhile) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(FlattenWhileLoop(instruction, *call_graph)); changed = true; } else if (remove_infeed_outfeed_ && instruction->opcode() == HloOpcode::kInfeed) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(RemoveInfeed(instruction)); changed = true; } else if (remove_infeed_outfeed_ && instruction->opcode() == HloOpcode::kOutfeed) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(RemoveOutfeed(instruction)); changed = true; } else if (instruction->opcode() == HloOpcode::kSendDone) { auto send_done_instruction = DynCast<HloSendDoneInstruction>(instruction); CHECK(send_done_instruction); if (remove_comm_ || (remove_host_transfer_ && send_done_instruction->is_host_transfer())) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR( RemoveSendAndSendDone(instruction, &removed).status()); changed = true; } } else if (instruction->opcode() == HloOpcode::kRecvDone) { auto recv_done_instruction = DynCast<HloRecvDoneInstruction>(instruction); CHECK(recv_done_instruction); if (remove_comm_ || (remove_host_transfer_ && recv_done_instruction->is_host_transfer())) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR( RemoveRecvAndRecvDone(instruction, &removed).status()); changed = true; } } else if (remove_comm_ && IsCollective(instruction) && !instruction->parent()->IsFusionComputation() && (instruction->opcode() != HloOpcode::kAsyncStart && instruction->opcode() != HloOpcode::kAsyncUpdate)) { if (instruction->opcode() == HloOpcode::kAsyncDone) { while (instruction->opcode() == HloOpcode::kAsyncDone || instruction->opcode() == HloOpcode::kAsyncUpdate || instruction->opcode() == HloOpcode::kAsyncStart) { HloInstruction* operand = instruction->mutable_operand(0); VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(RemoveCollective(instruction).status()); instruction = operand; } } else { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(RemoveCollective(instruction).status()); } changed = true; } else if ((remove_comm_ || remove_id_) && (instruction->opcode() == HloOpcode::kPartitionId || instruction->opcode() == HloOpcode::kReplicaId || (instruction->opcode() == HloOpcode::kCustomCall && instruction->custom_call_target() == "SliceId"))) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(RemoveId(instruction)); changed = true; } } } HloDCE hlo_dce; TF_ASSIGN_OR_RETURN(bool dce_changed, hlo_dce.Run(module, execution_threads)); changed |= dce_changed; if (changed && module->has_schedule()) { TF_RETURN_IF_ERROR(module->schedule().Update()); } XLA_VLOG_LINES(3, module->ToString()); return changed; } }
#include "xla/tools/hlo_control_flow_flattening.h" #include <memory> #include <utility> #include "absl/strings/str_replace.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/despecializer.h" #include "xla/service/hlo_verifier.h" #include "xla/service/spmd/spmd_partitioner.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; class HloControlFlowFlatteningTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> PartitionComputation( std::unique_ptr<VerifiedHloModule> hlo_module, int64_t num_devices = 2) { spmd::SpmdPartitionerOptions options; auto collective_ops_creator = spmd::GetDefaultCollectiveOpsCreator(num_devices, 1); collective_ops_creator.create_cross_partition_all_gather = nullptr; HloModuleConfig config = GetModuleConfigForTest(); config.set_use_spmd_partitioning(true); config.set_num_partitions(num_devices); HloPassPipeline pass("spmd-partitioning"); pass.AddPass<HloVerifier>(false, false); pass.AddPass<spmd::SpmdPartitioner>(num_devices, 1, options, collective_ops_creator); pass.AddPass<HloVerifier>(false, false); TF_RETURN_IF_ERROR(pass.Run(hlo_module.get()).status()); return absl::StatusOr<std::unique_ptr<HloModule>>(std::move(hlo_module)); } }; constexpr int kDefaultMaxLoopCount = 1000; TEST_F(HloControlFlowFlatteningTest, WhileRoot) { absl::string_view hlo_string = R"( HloModule While While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(100) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto root = module->entry_computation()->root_instruction(); auto while_op = module->entry_computation()->GetInstructionWithName("while"); EXPECT_THAT(root, op::Tuple(op::GetTupleElement(while_op, 0), op::GetTupleElement(while_op, 1))); EXPECT_THAT(while_op, op::While(op::Tuple(op::GetTupleElement(), op::GetTupleElement(), op::Constant()))); auto condition = while_op->while_condition(); EXPECT_THAT( condition->root_instruction(), op::Compare(op::GetTupleElement(op::Parameter(0), 2), op::Constant())); auto body = while_op->while_body(); EXPECT_THAT(body->root_instruction(), op::Tuple(op::GetTupleElement(), op::GetTupleElement(), op::Add(op::GetTupleElement(op::Parameter(0), 2), op::Constant()))); } TEST_F(HloControlFlowFlatteningTest, WhileConditionCallComputation) { absl::string_view hlo_string = R"( HloModule While While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition.called { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] custom-call(), custom_call_target="AllocateBuffer", custom_call_has_side_effect=true less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT ROOT tuple.2 = (pred[]) tuple(less-than) } While.condition { loop_var.3 = (s32[], s32[3]{0}) parameter(0) call = (pred[]) call(loop_var.3), to_apply=While.condition.called ROOT get-tuple-element.4 = pred[] get-tuple-element(call), index=0 } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); XLA_VLOG_LINES(3, "Loaded HLO module: " + module->ToString()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto root = module->entry_computation()->root_instruction(); auto while_op = module->entry_computation()->GetInstructionWithName("while"); EXPECT_THAT(root, op::Tuple(op::GetTupleElement(while_op, 0), op::GetTupleElement(while_op, 1))); EXPECT_THAT(while_op, op::While(op::Tuple(op::GetTupleElement(), op::GetTupleElement(), op::Constant()))); auto condition = while_op->while_condition(); EXPECT_THAT( condition->root_instruction(), op::Compare(op::GetTupleElement(op::Parameter(0), 2), op::Constant())); auto body = while_op->while_body(); EXPECT_THAT(body->root_instruction(), op::Tuple(op::GetTupleElement(), op::GetTupleElement(), op::Add(op::GetTupleElement(op::Parameter(0), 2), op::Constant()))); } TEST_F(HloControlFlowFlatteningTest, WhileRootScheduled) { absl::string_view hlo_string = R"( HloModule While, is_scheduled=true While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(100) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto root = module->entry_computation()->root_instruction(); auto while_op = module->entry_computation()->GetInstructionWithName("while"); EXPECT_THAT(root, op::Tuple(op::GetTupleElement(while_op, 0), op::GetTupleElement(while_op, 1))); EXPECT_THAT(while_op, op::While(op::Tuple(op::GetTupleElement(), op::GetTupleElement(), op::Constant()))); auto condition = while_op->while_condition(); EXPECT_THAT( condition->root_instruction(), op::Compare(op::GetTupleElement(op::Parameter(0), 2), op::Constant())); } TEST_F(HloControlFlowFlatteningTest, WhileUser) { absl::string_view hlo_string = R"( HloModule While While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(100) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } FusedComputation { param = (s32[], s32[3]{0}) parameter(0) get-tuple-element.4 = s32[] get-tuple-element(param), index=0 get-tuple-element.5 = s32[3]{0} get-tuple-element(param), index=1 broadcast = s32[3]{0} broadcast(get-tuple-element.4), dimensions={} ROOT add = s32[3]{0} add(broadcast, get-tuple-element.5) } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body ROOT fusion = s32[3]{0} fusion(while), kind=kLoop, calls=FusedComputation } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto fusion = module->entry_computation()->root_instruction(); auto while_op = module->entry_computation()->GetInstructionWithName("while"); EXPECT_THAT(fusion, op::Fusion(op::Tuple(op::GetTupleElement(while_op, 0), op::GetTupleElement(while_op, 1)))); } TEST_F(HloControlFlowFlatteningTest, Infeed) { absl::string_view hlo_string = R"( HloModule Infeed ENTRY Infeed { after-all = token[] after-all() ROOT infeed.23 = ((bf16[3]{0}, s32[12,5]{0,1}), token[]) infeed(after-all) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto custom_call = module->entry_computation()->GetInstructionWithName("infeed.23"); EXPECT_THAT(custom_call, op::CustomCall()); auto tuple = module->entry_computation()->root_instruction(); EXPECT_THAT(tuple, op::Tuple(custom_call, op::AfterAll())); } TEST_F(HloControlFlowFlatteningTest, InfeedPreserveLayout) { absl::string_view hlo_string = R"( HloModule Infeed ENTRY Infeed { after-all = token[] after-all() ROOT infeed = ((bf16[3]{0}, s32[12,5]{0,1:T(8,128)}), token[]) infeed(after-all) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); Shape root_shape = module->entry_computation()->root_instruction()->shape(); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto tuple = module->entry_computation()->root_instruction(); EXPECT_THAT(tuple, op::Tuple(op::CustomCall(), op::AfterAll())); EXPECT_EQ(tuple->shape(), root_shape); } TEST_F(HloControlFlowFlatteningTest, OutfeedCustomCallIsPartitionable) { absl::string_view hlo_string = R"( HloModule Outfeed ENTRY Outfeed { param = (bf16[3]{0}, s32[12,5]{0,1}) parameter(0) after-all = token[] after-all() ROOT outfeed.23 = token[] outfeed(param, after-all) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening(HloControlFlowFlattening::Options{ 3, 3, 3, true}); EXPECT_TRUE(flattening.Run(module.get()).value()); auto custom_call = module->entry_computation()->root_instruction(); EXPECT_EQ(custom_call->name(), "outfeed.23"); EXPECT_TRUE(custom_call->has_sharding()); TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, PartitionComputation(std::move(module))); } TEST_F(HloControlFlowFlatteningTest, Outfeed) { absl::string_view hlo_string = R"( HloModule Outfeed ENTRY Outfeed { param = (bf16[3]{0}, s32[12,5]{0,1}) parameter(0) after-all = token[] after-all() ROOT outfeed.23 = token[] outfeed(param, after-all) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto custom_call = module->entry_computation()->root_instruction(); EXPECT_EQ(custom_call->name(), "outfeed.23"); EXPECT_THAT(custom_call, op::CustomCall(op::Parameter(0), op::AfterAll())); } TEST_F(HloControlFlowFlatteningTest, AllReduce) { absl::string_view hlo_string = R"( HloModule AllReduce sum { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } ENTRY AllReduce { param0 = f32[3]{0} parameter(0) param1 = f32[12,5]{0,1} parameter(1) ROOT all-reduce = (bf16[3]{0}, bf16[12,5]{0,1}) all-reduce(param0, param1), to_apply=sum, replica_groups={} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0), op::Parameter(1))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "all-reduce"); } TEST_F(HloControlFlowFlatteningTest, AllReduceStartAndDone) { absl::string_view hlo_string = R"( HloModule CRS add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY CRS { input = f32[8]{0} parameter(0) crs = f32[8]{0} all-reduce-start(input), replica_groups={}, to_apply=add ROOT done = f32[8]{0} all-reduce-done(crs) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall(op::Parameter(0)))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "crs"); } TEST_F(HloControlFlowFlatteningTest, AllGather) { absl::string_view hlo_string = R"( HloModule AllGather ENTRY AllGather { input = f32[128,32]{0,1} parameter(0) ROOT ag = f32[128,128]{0,1} all-gather(input), replica_groups={}, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "ag"); } TEST_F(HloControlFlowFlatteningTest, AllToAll) { absl::string_view hlo_string = R"( HloModule AllToAll ENTRY AllToAll { input = f32[128,32]{0,1} parameter(0) ROOT a2a = (f32[128,32]{0,1}) all-to-all(input), replica_groups={} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "a2a"); } TEST_F(HloControlFlowFlatteningTest, CollectivePermute) { absl::string_view hlo_string = R"( HloModule CollectivePermute ENTRY CollectivePermute { input = f32[128,32]{0,1} parameter(0) ROOT collective-permute = f32[128,32]{0,1} collective-permute(input), source_target_pairs={{0,1},{1,2},{2,3}} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "collective-permute"); } TEST_F(HloControlFlowFlatteningTest, ReplicaIdSucceedsWithChange) { absl::string_view hlo_string = R"( HloModule ReplicaId ENTRY ReplicaId { ROOT replica-id.18600 = u32[]{:T(128)} replica-id() } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening(HloControlFlowFlattening::Options{}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Constant()); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "replica-id.18600"); } TEST_F(HloControlFlowFlatteningTest, RemoveReplicaIdButKeepAllReduce) { absl::string_view kHloText = R"( HloModule RemoveReplicaIdButKeepCollective %sum (a: f32[], b: f32[]) -> f32[] { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(f32[] a, f32[] b) } ENTRY ReplicaId { replica-id.1 = u32[]{:T(128)} replica-id() ROOT all-reduce.1 = u32[]{:T(128)} all-reduce(replica-id.1), to_apply=sum, replica_groups={} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); HloControlFlowFlattening flattening(HloControlFlowFlattening::Options{ 1, 1, 1, false, false, false, false, true}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::AllReduce()); EXPECT_THAT(module->entry_computation()->root_instruction()->operand(0), op::Constant()); } TEST_F(HloControlFlowFlatteningTest, CollectivePermuteInPlaceUpdate) { absl::string_view hlo_string = R"( HloModule CollectivePermuteInPlaceUpdate ENTRY CollectivePermuteInPlaceUpdate { input = f32[128,32]{0,1} parameter(0) constant = f32[] constant(1) output = f32[128,128]{0,1} broadcast(constant), dimensions={} constant.1 = s32[] constant(0) tuple.1 = (s32[], s32[]) tuple(constant.1, constant.1) constant.2 = s32[] constant(64) tuple.2 = (s32[], s32[]) tuple(constant.1, constant.2) ROOT collective-permute = f32[128,128]{0,1} collective-permute(input, output, tuple.1, tuple.2), source_target_pairs={{0,1},{1,2},{2,3}}, slice_sizes={{128,32}} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0), op::Broadcast(op::Constant()), op::Tuple(op::Constant(), op::Constant()), op::Tuple(op::Constant(), op::Constant()))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "collective-permute"); } TEST_F(HloControlFlowFlatteningTest, CollectivePermuteStartAndDone) { absl::string_view hlo_string = R"( HloModule CollectivePermuteStartAndDone ENTRY CollectivePermuteStartAndDone { input = f32[128,32]{0,1} parameter(0) collective-permute-start.1 = (f32[128,32]{0,1}, f32[128,32]{0,1}, u32[], u32[]) collective-permute-start(input), source_target_pairs={{0,1},{1,2},{2,3}} ROOT collective-permute-done.1 = f32[128,32]{0,1} collective-permute-done(collective-permute-start.1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall(op::Parameter(0)))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "collective-permute-done.1"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "collective-permute-start.1"); } TEST_F(HloControlFlowFlatteningTest, Recv) { absl::string_view hlo_string = R"( HloModule Recv ENTRY %Recv () -> (f32[], token[]) { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15 ROOT %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15 %constant = f32[] constant(2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, control-predecessors={%recv} %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ControlDepRemover control_remover; HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); TF_ASSERT_OK(control_remover.Run(module.get()).status()); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall())); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "recv-done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "recv"); } TEST_F(HloControlFlowFlatteningTest, RecvHostTransfer) { absl::string_view hlo_string = R"( HloModule Recv ENTRY %Recv () -> (f32[], token[]) { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15, is_host_transfer=true ROOT %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15, is_host_transfer=true %constant = f32[] constant(2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, control-predecessors={%recv} %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ControlDepRemover control_remover; HloControlFlowFlattening flattening(HloControlFlowFlattening::Options{ 3, 3, 3, true, true, false, true}); TF_ASSERT_OK(control_remover.Run(module.get()).status()); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall())); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "recv-done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "recv"); } TEST_F(HloControlFlowFlatteningTest, Send) { absl::string_view hlo_string = R"( HloModule Send ENTRY %Send () -> token[] { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15 %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15 %constant = f32[] constant(2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, control-predecessors={%recv} ROOT %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ControlDepRemover control_remover; HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); TF_ASSERT_OK(control_remover.Run(module.get()).status()); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall())); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "send-done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "send"); } TEST_F(HloControlFlowFlatteningTest, SendHostTransfer) { absl::string_view hlo_string = R"( HloModule Send ENTRY %Send () -> token[] { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15 %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15 %constant = f32[] constant(2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, is_host_transfer=true, control-predecessors={%recv} ROOT %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16, is_host_transfer=true } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ControlDepRemover control_remover; HloControlFlowFlattening flattening(HloControlFlowFlattening::Options{ 3, 3, 3, true, true, false, true}); TF_ASSERT_OK(control_remover.Run(module.get()).status()); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall())); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "send-done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "send"); } TEST_F(HloControlFlowFlatteningTest, AllGatherStartAndDone) { absl::string_view hlo_string = R"( HloModule AllGatherStartAndDone ENTRY AllGatherStartAndDone { %input = f32[8,256,256] parameter(0) %ag-start = (f32[8,256,256], f32[16,256,256]) all-gather-start( f32[8,256,256] %input), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag0"} ROOT %ag-done = f32[16,256,256] all-gather-done( (f32[8,256,256], f32[16,256,256]) %ag-start), metadata={op_type="AllGather" op_name="ag0"} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall(op::Parameter(0)))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "ag-done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "ag-start"); } TEST_F(HloControlFlowFlatteningTest, CollectiveFusion) { absl::string_view hlo_template = R"( HloModule collective-fusion, is_scheduled=true %sum (a: f32[], b: f32[]) -> f32[] { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(f32[] a, f32[] b) } %all-gather { %constant.3 = f32[] constant(0) %broadcast = f32[full_size,8,128]{2,1,0} broadcast(%constant.3), dimensions={} %input.0 = f32[4,8,128]{2,1,0} parameter(0) %input.1 = f32[4,8,128]{2,1,0} parameter(1) %replica-id.1 = u32[] replica-id() %constant.4 = u32[] constant(4) %multiply.1 = u32[] multiply(%replica-id.1, %constant.4) %constant.5 = u32[] constant(0) %constant.6 = u32[] constant(0) %dynamic-update-slice = f32[full_size,8,128]{2,1,0} dynamic-update-slice(%broadcast, %input.0, %multiply.1, %constant.5, %constant.6) %dynamic-update-slice.1 = f32[full_size,8,128]{2,1,0} dynamic-update-slice(%broadcast, %input.1, %multiply.1, %constant.5, %constant.6) %all-reduce = (f32[full_size,8,128]{2,1,0}, f32[full_size,8,128]{2,1,0}) all-reduce(%dynamic-update-slice, %dynamic-update-slice.1), replica_groups={}, backend_config="{barrier_config:{barrier_type:3,id:0}}", to_apply=%sum %gte0 = f32[full_size,8,128]{2,1,0} get-tuple-element(%all-reduce), index=0 %slice = f32[unpadded_size,8,128]{2,1,0} slice(%gte0), slice={[0:unpadded_size], [0:8], [0:128]} %bitcast = f32[unpadded_size,1,8,128]{3,2,1,0} bitcast(%slice) %gte1 = f32[full_size,8,128]{2,1,0} get-tuple-element(%all-reduce), index=1 ROOT %tuple = (f32[unpadded_size,1,8,128]{3,2,1,0}, f32[full_size,8,128]{2,1,0}) tuple(%bitcast, %gte1) } ENTRY main { %add.1 = f32[4,8,128]{2,1,0} parameter(0) %add.2 = f32[4,8,128]{2,1,0} parameter(1) ROOT %fusion = (f32[unpadded_size,1,8,128]{3,2,1,0}, f32[full_size,8,128]{2,1,0}) fusion(%add.1, %add.2), kind=kCustom, calls=%all-gather } )"; auto hlo_string = absl::StrReplaceAll( hlo_template, {{"full_size", absl::StrCat(12288)}, {"unpadded_size", absl::StrCat(12285)}}); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_TRUE(IsCollective(module->entry_computation()->root_instruction())); HloControlFlowFlattening flattening({}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0), op::Parameter(1))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "fusion"); } TEST_F(HloControlFlowFlatteningTest, AsyncAllToAll) { absl::string_view hlo = R"( ENTRY main { param = f32[4,8,128]{2,1,0} parameter(0) all-to-all-start = ((f32[4,8,128]{2,1,0}), f32[4,8,128]{2,1,0}, u32[], u32[]) all-to-all-start(param), channel_id=1, replica_groups={{0,1,2,3,4,5,6,7}}, dimensions={1} ROOT all-to-all-done = f32[4,8,128]{2,1,0} all-to-all-done(all-to-all-start) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo)); EXPECT_TRUE(IsCollective(module->entry_computation()->root_instruction())); HloControlFlowFlattening flattening({}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall(op::Parameter(0)))); } void CheckWhileBound(HloInstruction* while_op, int expected_bound) { auto* cond = while_op->while_condition(); ASSERT_NE(cond, nullptr); auto* hlo_bound = cond->root_instruction()->operand(1); EXPECT_TRUE(hlo_bound->IsConstant()); if (hlo_bound->IsConstant()) { EXPECT_TRUE(hlo_bound->literal().IsAll(expected_bound)); } } TEST_F(HloControlFlowFlatteningTest, MaxOuterLoopCount) { absl::string_view hlo_string = R"( HloModule NestedWhileComp InnerBody { constant.8 = pred[] constant(false) parameter.5 = (s32[], s32[]) parameter(0) get-tuple-element.6 = s32[] get-tuple-element(parameter.5), index=0 constant.9 = s32[] constant(1) add.10 = s32[] add(get-tuple-element.6, constant.9) get-tuple-element.7 = s32[] get-tuple-element(parameter.5), index=1 constant.11 = s32[] constant(1) add.12 = s32[] add(get-tuple-element.7, constant.11) ROOT tuple.13 = (s32[], s32[]) tuple(add.10, add.12) } InnerCond { parameter.15 = (s32[], s32[]) parameter(0) get-tuple-element.17 = s32[] get-tuple-element(parameter.15), index=1 constant.18 = pred[] constant(false) get-tuple-element.16 = s32[] get-tuple-element(parameter.15), index=0 inner_bound = s32[] constant(100) ROOT compare.20 = pred[] compare(get-tuple-element.16, inner_bound), direction=LT } OuterBody { constant.24 = pred[] constant(false) constant.25 = s32[] constant(0) parameter.22 = (s32[]) parameter(0) get-tuple-element.23 = s32[] get-tuple-element(parameter.22), index=0 tuple.26 = (s32[], s32[]) tuple(constant.25, get-tuple-element.23) inner_while = (s32[], s32[]) while(tuple.26), condition=InnerCond, body=InnerBody get-tuple-element.28 = s32[] get-tuple-element(inner_while), index=0 get-tuple-element.29 = s32[] get-tuple-element(inner_while), index=1 tuple.30 = (s32[], s32[]) tuple(get-tuple-element.28, get-tuple-element.29) get-tuple-element.31 = s32[] get-tuple-element(tuple.30), index=0 get-tuple-element.32 = s32[] get-tuple-element(tuple.30), index=1 ROOT tuple.33 = (s32[]) tuple(get-tuple-element.32) } OuterCond { constant.37 = pred[] constant(false) parameter.35 = (s32[]) parameter(0) get-tuple-element.36 = s32[] get-tuple-element(parameter.35), index=0 outer_bound = s32[] constant(1000) ROOT compare.39 = pred[] compare(get-tuple-element.36, outer_bound), direction=LT } ENTRY NestedWhileComp { constant.1 = pred[] constant(false) constant.2 = s32[] constant(0) tuple.3 = (s32[]) tuple(constant.2) outer_while = (s32[]) while(tuple.3), condition=OuterCond, body=OuterBody get-tuple-element.41 = s32[] get-tuple-element(outer_while), index=0 tuple.42 = (s32[]) tuple(get-tuple-element.41) get-tuple-element.43 = s32[] get-tuple-element(tuple.42), index=0 ROOT tuple.44 = (s32[]) tuple(get-tuple-element.43) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); constexpr int kWhileExecutionCount = 5; constexpr int kExistingInnerLoopCount = 100; constexpr int kMaxLoopCount = 10; HloControlFlowFlattening flattening(HloControlFlowFlattening::Options{ kWhileExecutionCount, kMaxLoopCount}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); LOG(INFO) << module->ToString(); auto* outer_while = module->entry_computation()->GetInstructionWithName("outer_while"); ASSERT_NE(outer_while, nullptr); CheckWhileBound(outer_while, kMaxLoopCount); auto* while_body = outer_while->while_body(); ASSERT_NE(while_body, nullptr); auto* inner_while = while_body->GetInstructionWithName("inner_while"); ASSERT_NE(inner_while, nullptr); CheckWhileBound(inner_while, kExistingInnerLoopCount); } TEST_F(HloControlFlowFlatteningTest, MatchLtUseInferedLoopCount) { absl::string_view hlo_string = R"( HloModule While While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(100) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_EQ(GetLoopBound(*module->entry_computation()->root_instruction(), 123, kDefaultMaxLoopCount), 100); } TEST_F(HloControlFlowFlatteningTest, MatchGtUseInferedLoopCount) { absl::string_view hlo_string = R"( HloModule While While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(50) ROOT greater-than = pred[] compare(constant.2, get-tuple-element.3), direction=GT } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_EQ(GetLoopBound(*module->entry_computation()->root_instruction(), 123, kDefaultMaxLoopCount), 50); } TEST_F(HloControlFlowFlatteningTest, NotMatchEqUseDefaultLoopCount) { absl::string_view hlo_string = R"( HloModule While While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(100) ROOT equal = pred[] compare(get-tuple-element.3, constant.2), direction=EQ } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_EQ(GetLoopBound(*module->entry_computation()->root_instruction(), 123, kDefaultMaxLoopCount), 123); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/hlo_control_flow_flattening.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/hlo_control_flow_flattening_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
cd79ef1a-6098-42da-9354-dac192ad1ce8
cpp
tensorflow/tensorflow
hlo_decomposer
third_party/xla/xla/tools/hlo_decomposer.cc
third_party/xla/xla/tools/hlo_decomposer_test.cc
#include "xla/tools/hlo_decomposer.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/call_graph.h" #include "xla/service/compilation_environments.h" #include "tsl/platform/statusor.h" namespace xla { namespace { bool ShouldIsolateOpcode(HloOpcode opcode) { switch (opcode) { case HloOpcode::kConstant: case HloOpcode::kGetTupleElement: case HloOpcode::kParameter: case HloOpcode::kTuple: return false; default: return true; } } absl::StatusOr<std::vector<std::unique_ptr<HloModule>>> Decompose( const HloModule& module) { std::vector<std::unique_ptr<HloModule>> modules; absl::flat_hash_set<const HloComputation*> computations_to_visit{ module.entry_computation()}; absl::flat_hash_set<const HloComputation*> visited_computations; while (!computations_to_visit.empty()) { const HloComputation* computation = *computations_to_visit.begin(); computations_to_visit.erase(computations_to_visit.begin()); visited_computations.insert(computation); for (const HloInstruction* instruction : computation->instructions()) { if (GetInstructionCallContext(instruction->opcode()) != CallContext::kEmbedded) { for (const HloComputation* called_computation : instruction->called_computations()) { if (!visited_computations.contains(called_computation)) { computations_to_visit.insert(called_computation); } } } if (ShouldIsolateOpcode(instruction->opcode())) { modules.push_back(ExtractInstructionIntoNewModule(*instruction)); } } } return modules; } } absl::StatusOr<std::vector<std::unique_ptr<HloModule>>> DecomposeHloModule( const HloModule& module, bool deduplicate_modules) { std::vector<std::unique_ptr<HloModule>> modules; absl::flat_hash_set<std::string> module_fingerprints; auto should_add_module = [&](const HloModule* module) { if (!deduplicate_modules) { return true; } const std::string fingerprint = module->GetFingerprint128(); if (module_fingerprints.contains(fingerprint)) { return false; } module_fingerprints.insert(fingerprint); return true; }; TF_ASSIGN_OR_RETURN(std::vector<std::unique_ptr<HloModule>> isolated_modules, Decompose(module)); for (auto& module : isolated_modules) { if (should_add_module(module.get())) { modules.push_back(std::move(module)); } } return modules; } std::unique_ptr<HloModule> ExtractInstructionIntoNewModule( const std::vector<HloInstruction*>& instructions) { CHECK(!instructions.empty()); HloInstruction& first_instruction = *instructions[0]; auto new_hlo_module = std::make_unique<HloModule>( first_instruction.GetModule()->name() + "_collective_ops", HloModuleConfig{}, std::make_unique<CompilationEnvironments>( first_instruction.GetModule()->comp_envs())); int parameter_number = 0; HloComputation::Builder builder("entry_computation"); HloCloneContext clone_context(new_hlo_module.get()); std::vector<HloInstruction*> new_instructions; for (auto* hlo : instructions) { std::vector<HloInstruction*> new_operands; for (const HloInstruction* operand : hlo->operands()) { std::unique_ptr<HloInstruction> new_parameter = HloInstruction::CreateParameter(parameter_number, operand->shape(), operand->name()); ++parameter_number; new_operands.push_back(builder.AddInstruction(std::move(new_parameter))); } std::unique_ptr<HloInstruction> new_instruction = hlo->CloneWithNewOperands(hlo->shape(), new_operands, &clone_context); new_instructions.push_back( builder.AddInstruction(std::move(new_instruction))); } std::unique_ptr<HloInstruction> tuple_instruction = HloInstruction::CreateTuple(new_instructions); builder.AddInstruction(std::move(tuple_instruction)); new_hlo_module->AddEntryComputationWithLayouts(builder.Build()); return new_hlo_module; } std::unique_ptr<HloModule> ExtractInstructionIntoNewModule( const HloInstruction& hlo) { auto new_hlo_module = std::make_unique<HloModule>( std::string(hlo.name()), HloModuleConfig{}, std::make_unique<CompilationEnvironments>(hlo.GetModule()->comp_envs())); int parameter_number = 0; HloComputation::Builder builder("entry_computation"); HloCloneContext clone_context(new_hlo_module.get()); std::vector<HloInstruction*> new_operands; for (const HloInstruction* operand : hlo.operands()) { std::unique_ptr<HloInstruction> new_parameter = HloInstruction::CreateParameter(parameter_number, operand->shape(), operand->name()); ++parameter_number; new_operands.push_back(builder.AddInstruction(std::move(new_parameter))); } std::unique_ptr<HloInstruction> new_instruction = hlo.CloneWithNewOperands(hlo.shape(), new_operands, &clone_context); builder.AddInstruction(std::move(new_instruction)); new_hlo_module->AddEntryComputationWithLayouts(builder.Build()); return new_hlo_module; } std::unique_ptr<HloModule> ExtractProducerConsumerIntoNewModule( const HloInstruction& producer, const HloInstruction& consumer) { auto new_hlo_module = std::make_unique<HloModule>("extracted", HloModuleConfig{}, std::make_unique<CompilationEnvironments>( consumer.GetModule()->comp_envs())); int parameter_number = 0; HloComputation::Builder builder("entry_computation"); HloCloneContext clone_context(new_hlo_module.get()); absl::InlinedVector<HloInstruction*, 8> producer_operands; for (const HloInstruction* operand : producer.operands()) { HloInstruction* new_parameter = builder.AddInstruction(HloInstruction::CreateParameter( parameter_number, operand->shape(), operand->name())); ++parameter_number; producer_operands.push_back(new_parameter); } HloInstruction* new_producer = builder.AddInstruction(producer.CloneWithNewOperands( producer.shape(), producer_operands, &clone_context)); absl::flat_hash_map<const HloInstruction*, HloInstruction*> operand_map; operand_map.emplace(&producer, new_producer); absl::InlinedVector<HloInstruction*, 8> consumer_operands; for (const HloInstruction* operand : consumer.operands()) { auto it = operand_map.find(operand); if (it != operand_map.end()) { consumer_operands.push_back(it->second); } else { HloInstruction* new_parameter = builder.AddInstruction(HloInstruction::CreateParameter( parameter_number, operand->shape(), operand->name())); ++parameter_number; consumer_operands.push_back(new_parameter); } } builder.AddInstruction(consumer.CloneWithNewOperands( consumer.shape(), consumer_operands, &clone_context)); new_hlo_module->AddEntryComputationWithLayouts(builder.Build()); return new_hlo_module; } std::unique_ptr<HloModule> ExtractComputationIntoNewModule( const HloComputation& computation) { auto new_hlo_module = std::make_unique<HloModule>("extracted", HloModuleConfig{}, std::make_unique<CompilationEnvironments>( computation.parent()->comp_envs())); HloCloneContext clone_context(new_hlo_module.get()); new_hlo_module->AddEntryComputationWithLayouts( computation.CloneInContext(clone_context)); return new_hlo_module; } }
#include "xla/tools/hlo_decomposer.h" #include <memory> #include <vector> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class HloDecomposerTest : public HloTestBase { protected: std::unique_ptr<HloModule> GetModule() { absl::string_view kHlo = R"( HloModule test_module, entry_computation_layout={(bf16[1024,8192]{1,0}, f32[8192]{0}, f32[16384]{0})->(bf16[1024]{0}, bf16[1024]{0}, f32[16384]{0}, f32[16384]{0})} add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add.1 = f32[] add(p0, p1) } fused_computation.1 { param_1.3 = f32[8192]{0} parameter(1) broadcast.2 = f32[1024,8192]{1,0} broadcast(param_1.3), dimensions={1} param_0.3 = bf16[1024,8192]{1,0} parameter(0) convert.5 = f32[1024,8192]{1,0} convert(param_0.3) multiply.2 = f32[1024,8192]{1,0} multiply(broadcast.2, convert.5) c0_1 = f32[] constant(0) reduce.1 = f32[1024]{0} reduce(multiply.2, c0_1), dimensions={1}, to_apply=add ROOT convert.4 = bf16[1024]{0} convert(reduce.1) } fused_computation.2 { p0.0 = bf16[1024,8192]{1,0} parameter(0) c.0 = f32[1024,8192]{1,0} convert(p0.0) co0_1.1 = f32[] constant(0) p.0 = f32[8192]{0} parameter(1) b.0 = f32[1024,8192]{1,0} broadcast(p.0), dimensions={1} m.0 = f32[1024,8192]{1,0} multiply(b.0, c.0) r.0 = f32[1024]{0} reduce(m.0, co0_1.1), dimensions={1}, to_apply=add ROOT c.1 = bf16[1024]{0} convert(r.0) } exp { param_0.5 = f32[16384]{0} parameter(0) m.4 = f32[16384]{0} multiply(param_0.5, param_0.5) e = f32[16384]{0} exponential(m.4) l.clone.1 = f32[16384]{0} log(m.4) ROOT tuple = (f32[16384]{0}, f32[16384]{0}) tuple(e, l.clone.1) } ENTRY main { p0.1 = bf16[1024,8192]{1,0} parameter(0) p1.1 = f32[8192]{0} parameter(1) fusion.1 = bf16[1024]{0} fusion(p0.1, p1.1), kind=kInput, calls=fused_computation.1 fusion.2 = bf16[1024]{0} fusion(p0.1, p1.1), kind=kInput, calls=fused_computation.2 p2 = f32[16384]{0} parameter(2) e.1 = (f32[16384]{0}, f32[16384]{0}) fusion(p2), kind=kInput, calls=exp get-tuple-element.1 = f32[16384]{0} get-tuple-element(e.1), index=1 get-tuple-element = f32[16384]{0} get-tuple-element(e.1), index=0 ROOT result = (bf16[1024]{0}, bf16[1024]{0}, f32[16384]{0}, f32[16384]{0}) tuple(fusion.1, fusion.2, get-tuple-element.1, get-tuple-element) })"; return ParseAndReturnVerifiedModule(kHlo).value(); } void FindAndCompare(const std::vector<std::unique_ptr<HloModule>>& modules, absl::string_view module_name, absl::string_view pattern) { auto iter = absl::c_find_if(modules, [&](const std::unique_ptr<HloModule>& module) { return module->name() == module_name; }); EXPECT_NE(iter, modules.end()) << "No module named " << module_name; if (iter == modules.end()) { return; } EXPECT_TRUE(*RunFileCheck((*iter)->ToString(), pattern)); } }; TEST_F(HloDecomposerTest, DecomposeNoDedup) { auto module = GetModule(); TF_ASSERT_OK_AND_ASSIGN( auto decomposed, DecomposeHloModule(*module, false)); EXPECT_EQ(decomposed.size(), 3); FindAndCompare(decomposed, "fusion.1", R"( CHECK: %add{{.*}} { CHECK: %fused_computation.1 CHECK: ENTRY CHECK-THEN: %parameter.0 = bf16[1024,8192]{1,0} parameter(0) CHECK-THEN: %parameter.1 = f32[8192]{0} parameter(1) CHECK-THEN: ROOT %fusion.1 )"); FindAndCompare(decomposed, "fusion.2", R"( CHECK: %add{{.*}} { CHECK: %fused_computation.2 CHECK: ENTRY CHECK-THEN: %parameter.0 = bf16[1024,8192]{1,0} parameter(0) CHECK-THEN: %parameter.1 = f32[8192]{0} parameter(1) CHECK-THEN: ROOT %fusion.2 )"); FindAndCompare(decomposed, "e.1", R"( CHECK: %exp{{.*}} { CHECK: ENTRY CHECK-THEN: %parameter.0 = f32[16384]{0} parameter(0) CHECK-THEN: ROOT %e.1 )"); } TEST_F(HloDecomposerTest, DecomposeDedup) { auto module = GetModule(); TF_ASSERT_OK_AND_ASSIGN( auto decomposed, DecomposeHloModule(*module, true)); EXPECT_EQ(decomposed.size(), 2); FindAndCompare(decomposed, "fusion.1", R"( CHECK: %add{{.*}} { CHECK: %fused_computation.1 CHECK: ENTRY CHECK-THEN: %parameter.0 = bf16[1024,8192]{1,0} parameter(0) CHECK-THEN: %parameter.1 = f32[8192]{0} parameter(1) CHECK-THEN: ROOT %fusion.1 )"); FindAndCompare(decomposed, "e.1", R"( CHECK: %exp{{.*}} { CHECK: ENTRY CHECK-THEN: %parameter.0 = f32[16384]{0} parameter(0) CHECK-THEN: ROOT %e.1 )"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/hlo_decomposer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/hlo_decomposer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9674d4bc-cfba-40fa-9ad2-05cea053501d
cpp
tensorflow/tensorflow
prepare_reference_module
third_party/xla/xla/tools/prepare_reference_module.cc
third_party/xla/xla/tools/prepare_reference_module_test.cc
#include "xla/tools/prepare_reference_module.h" #include <functional> #include <memory> #include "absl/status/statusor.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/despecializer.h" #include "xla/service/hlo_module_config.h" #include "xla/stream_executor/platform.h" #include "xla/xla.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" namespace xla { absl::StatusOr<std::unique_ptr<HloModule>> PrepareReferenceModule( const HloModule& test_module, HloRunnerInterface* test_runner, const std::function<void(HloModuleConfig*)>& config_modifier_hook, const std::function<absl::Status(const HloModule&, HloRunnerInterface*, HloModule*)>& module_modifier_hook, bool skip_despecialization) { DebugOptions debug_options = GetDebugOptionsFromFlags(); debug_options.set_xla_cpu_enable_fast_math(false); debug_options.set_xla_gpu_enable_fast_min_max(false); HloModuleConfig reference_config = test_module.config(); reference_config.set_debug_options(debug_options); if (config_modifier_hook) { config_modifier_hook(&reference_config); } std::unique_ptr<HloModule> reference_module = test_module.Clone(reference_config, "reference"); if (module_modifier_hook) { TF_RETURN_IF_ERROR( module_modifier_hook(test_module, test_runner, reference_module.get())); } else if (!skip_despecialization) { TF_RETURN_IF_ERROR(Despecializer().Run(reference_module.get()).status()); } return std::move(reference_module); } };
#include "xla/tools/prepare_reference_module.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { const char* const kModuleStr = R"( HloModule jit_step %fused_computation (param_0.2: f32[1,4]) -> f32[1,3] { %param_0.2 = f32[1,4]{1,0} parameter(0) ROOT %slice.11 = f32[1,3]{1,0} slice(f32[1,4]{1,0} %param_0.2), slice={[0:1], [0:3]} } ENTRY %main.3491 (Arg_0.0: f32[1,4]) -> f32[1,3] { %Arg_0.0 = f32[1,4]{1,0} parameter(0) ROOT %fusion = f32[1,3]{1,0} fusion(f32[1,4]{1,0} %Arg_0.0), kind=kLoop, calls=%fused_computation } )"; using PrepareReferenceModuleTest = HloTestBase; TEST_F(PrepareReferenceModuleTest, PerformDespecialization) { TF_ASSERT_OK_AND_ASSIGN(auto test_module, ParseAndReturnVerifiedModule(kModuleStr)); TF_ASSERT_OK_AND_ASSIGN( auto reference_module, PrepareReferenceModule(*test_module, nullptr, {}, {}, false)); EXPECT_THAT(reference_module->ToString(), Not(::testing::HasSubstr("fusion"))); } TEST_F(PrepareReferenceModuleTest, SkipDespecialization) { TF_ASSERT_OK_AND_ASSIGN(auto test_module, ParseAndReturnVerifiedModule(kModuleStr)); TF_ASSERT_OK_AND_ASSIGN( auto reference_module, PrepareReferenceModule(*test_module, nullptr, {}, {}, true)); EXPECT_THAT(reference_module->ToString(), ::testing::HasSubstr("fusion")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/prepare_reference_module.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/prepare_reference_module_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ef6cb643-5703-419f-9a58-6885cf50b9d9
cpp
tensorflow/tensorflow
run_hlo_module
third_party/xla/xla/tools/run_hlo_module.cc
third_party/xla/xla/tools/run_hlo_module_test.cc
#include "xla/tools/run_hlo_module.h" #include <functional> #include <iomanip> #include <iostream> #include <map> #include <memory> #include <optional> #include <random> #include <sstream> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/literal_comparison.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_verifier.h" #include "xla/tests/test_utils.h" #include "xla/tools/hlo_control_flow_flattening.h" #include "xla/tools/hlo_decomposer.h" #include "xla/tools/hlo_module_loader.h" #include "xla/tools/prepare_reference_module.h" #include "xla/tools/run_hlo_module.pb.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace { enum class ModuleResult { kMatched, kRan, kSkipped, kDidntRun, kOtherError, kCompilationError, kRuntimeError, kMismatch, }; constexpr absl::string_view ModuleResultToString(ModuleResult result) { switch (result) { case ModuleResult::kMatched: return "MATCHED"; case ModuleResult::kRan: return "RAN"; case ModuleResult::kSkipped: return "SKIPPED"; case ModuleResult::kDidntRun: return "DIDN'T RUN"; case ModuleResult::kOtherError: return "OTHER ERROR"; case ModuleResult::kCompilationError: return "COMPILATION ERROR"; case ModuleResult::kRuntimeError: return "RUNTIME ERROR"; case ModuleResult::kMismatch: return "MISMATCH"; } } void WriteLiteralToTempFile(const LiteralSlice& literal, const std::string& name) { auto* env = tsl::Env::Default(); std::string binary_filename; std::string text_filename; std::string outdir; if (tsl::io::GetTestUndeclaredOutputsDir(&outdir)) { std::string filename = tsl::io::JoinPath( outdir, absl::StrFormat("tempfile-%d-%s", env->NowMicros(), name)); binary_filename = absl::StrCat(filename, ".pb"); text_filename = absl::StrCat(filename, ".txt"); } else { binary_filename = tsl::io::GetTempFilename(absl::StrCat(name, ".pb")); text_filename = tsl::io::GetTempFilename(absl::StrCat(name, ".txt")); } TF_CHECK_OK(tsl::WriteBinaryProto(env, binary_filename, literal.ToProto())); TF_CHECK_OK(tsl::WriteStringToFile(env, text_filename, literal.ToString())); LOG(ERROR) << "wrote Literal to " << name << " binary: " << binary_filename << " text: " << text_filename; } void OnMiscompare(const LiteralSlice& expected, const LiteralSlice& actual, const LiteralSlice& mismatches, const ShapeIndex& , const literal_comparison::ErrorBuckets& ) { LOG(INFO) << "expected: " << ShapeUtil::HumanString(expected.shape()) << " " << literal_comparison::ToStringTruncated(expected); LOG(INFO) << "actual: " << ShapeUtil::HumanString(actual.shape()) << " " << literal_comparison::ToStringTruncated(actual); LOG(INFO) << "Dumping literals to temp files..."; WriteLiteralToTempFile(expected, "expected"); WriteLiteralToTempFile(actual, "actual"); WriteLiteralToTempFile(mismatches, "mismatches"); } absl::StatusOr<Literal> ExecuteWithRunner( std::unique_ptr<HloModule> module, const BufferAssignmentProto* buffer_assignment_proto, absl::Span<const Literal> args, HloRunnerInterface* runner, bool run_hlo_passes) { TF_RETURN_WITH_CONTEXT_IF_ERROR( VerifyHloModule(module.get(), false, true), absl::StrCat("(on ", runner->Name(), ")")); std::cerr << "Running HLO module with runner " << runner->Name() << "...\n"; XLA_VLOG_LINES(1, module->ToString()); const auto start = std::chrono::high_resolution_clock::now(); ExecutionProfile profile; auto result_status = (buffer_assignment_proto == nullptr) ? runner->Execute(std::move(module), args, run_hlo_passes, &profile) : runner->ExecuteWithBufferAssignment(std::move(module), buffer_assignment_proto, args, run_hlo_passes, &profile); const auto end = std::chrono::high_resolution_clock::now(); std::chrono::duration<double> diff = end - start; std::cerr << "... compiled and ran in " << diff.count() << "s.\n"; double run_time = static_cast<double>(profile.compute_time_ns()) / 1e9; std::cerr << "execution time for runner " << runner->Name() << ": " << run_time << "s.\n"; TF_RETURN_WITH_CONTEXT_IF_ERROR( result_status.status(), absl::StrCat("Failed to execute on ", runner->Name())); return std::move(result_status).value(); } void UseCpuThunkRuntime(HloModule& module) { auto debug_options = module.config().debug_options(); debug_options.set_xla_cpu_use_thunk_runtime(true); module.mutable_config().set_debug_options(debug_options); } absl::Status RunAndCompareInternal( std::unique_ptr<HloModule> test_module, const BufferAssignmentProto* buffer_assignment_proto, HloRunnerInterface* test_runner, HloRunnerInterface* reference_runner, std::minstd_rand0* engine, const RunHloModuleOptions& options, xla::RunHloModuleIterationLiterals* iteration_literals_proto, std::function<absl::Status(const HloModule&, HloRunnerInterface*, HloModule*)> reference_module_modifier_hook, std::function<void(HloModuleConfig*)> config_modifier_hook, ModuleResult* test_run_result, ModuleResult* reference_run_result) { auto copy_result_on_failure = [](auto status, ModuleResult result, ModuleResult* out_result) { if (!status.ok() && out_result != nullptr) { *out_result = result; } return status; }; if (!config_modifier_hook) { config_modifier_hook = [](HloModuleConfig* config) { config->set_seed(42); }; } if (options.flatten_control_flow) { HloControlFlowFlattening control_flow_flattening( HloControlFlowFlattening::Options{1}); TF_RETURN_IF_ERROR( copy_result_on_failure(control_flow_flattening.Run(test_module.get()), ModuleResult::kCompilationError, test_run_result) .status()); } TF_ASSIGN_OR_RETURN( auto args, copy_result_on_failure( MakeFakeArguments(test_module.get(), engine, options.use_large_float_range, options.treat_gte_as_data_formatting), ModuleResult::kOtherError, test_run_result)); if (iteration_literals_proto != nullptr && iteration_literals_proto->arguments_size() != 0) { if (iteration_literals_proto->arguments_size() != args.size()) { if (test_run_result != nullptr) { *test_run_result = ModuleResult::kOtherError; } return xla::InvalidArgument( "Failed to use input literals as arguments; mismatched " "number of expected arguments."); } else { for (int i = 0; i < args.size(); ++i) { if (!literal_comparison::EqualShapes( xla::Shape(args[i].shape()), xla::Shape(iteration_literals_proto->arguments(i).shape())) .ok()) { if (test_run_result != nullptr) { *test_run_result = ModuleResult::kOtherError; } return xla::InvalidArgument( "Failed to use input literals for argument %d " "because of a shape mismatch.", i); } TF_ASSIGN_OR_RETURN( args[i], copy_result_on_failure(xla::Literal::CreateFromProto( iteration_literals_proto->arguments(i)), ModuleResult::kOtherError, test_run_result)); } } } if (options.print_literals) { for (int i = 0; i < args.size(); ++i) { std::cout << "\n** Argument " << i << " **\n" << args[i].ToString() << "\n"; } } if (iteration_literals_proto != nullptr && iteration_literals_proto->arguments_size() == 0) { for (int i = 0; i < args.size(); ++i) { *iteration_literals_proto->add_arguments() = args[i].ToProto(); } } std::unique_ptr<HloModule> reference_module; if (reference_runner != nullptr) { bool skip_deoptimization = options.reference_platform == options.platform; TF_ASSIGN_OR_RETURN( reference_module, copy_result_on_failure( PrepareReferenceModule( *test_module, test_runner, config_modifier_hook, reference_module_modifier_hook, skip_deoptimization), ModuleResult::kCompilationError, reference_run_result)); } if (options.force_use_cpu_thunk_runtime_for_test) { UseCpuThunkRuntime(*test_module); } TF_ASSIGN_OR_RETURN( auto test_result, copy_result_on_failure( ExecuteWithRunner(std::move(test_module), buffer_assignment_proto, args, test_runner, options.run_test_hlo_passes), ModuleResult::kRuntimeError, test_run_result)); if (test_run_result != nullptr) { *test_run_result = ModuleResult::kRan; } if (options.print_literals) { std::cout << "\n** Result with test runner " << test_runner->Name() << " **\n" << test_result.ToString() << "\n"; } if (iteration_literals_proto != nullptr) { LiteralProto test_result_proto = test_result.ToProto(); iteration_literals_proto->mutable_result()->Swap(&test_result_proto); } if (reference_module == nullptr) { std::cerr << "Skipping reference runner\n"; return absl::OkStatus(); } if (const HloInstruction* root_instruction = reference_module->entry_computation()->root_instruction(); root_instruction->opcode() == HloOpcode::kCustomCall) { std::cerr << "Skipping reference runner for a custom call " << root_instruction->custom_call_target() << "\n"; if (reference_run_result != nullptr) { *reference_run_result = ModuleResult::kSkipped; } return absl::OkStatus(); } TF_ASSIGN_OR_RETURN( auto reference_result, copy_result_on_failure( ExecuteWithRunner(std::move(reference_module), nullptr, args, reference_runner, options.run_reference_hlo_passes), ModuleResult::kRuntimeError, reference_run_result)); if (reference_run_result != nullptr) { *reference_run_result = ModuleResult::kRan; } if (options.print_literals) { std::cout << "\n** Result with reference runner " << reference_runner->Name() << " **\n" << reference_result.ToString() << "\n"; } if (iteration_literals_proto != nullptr) { LiteralProto reference_result_proto = reference_result.ToProto(); iteration_literals_proto->mutable_reference_result()->Swap( &reference_result_proto); } ErrorSpec error_spec(static_cast<float>(options.abs_error_bound), static_cast<float>(options.rel_error_bound)); absl::Status comparison_status = literal_comparison::Near(reference_result, test_result, error_spec, true, &OnMiscompare); const ModuleResult comparison_result = comparison_status.ok() ? ModuleResult::kMatched : ModuleResult::kMismatch; if (test_run_result != nullptr) { *test_run_result = comparison_result; } if (reference_run_result != nullptr) { *reference_run_result = comparison_result; } return comparison_status; } struct ChunkResult { std::string module_name; ModuleResult test_result = ModuleResult::kDidntRun; ModuleResult reference_result = ModuleResult::kDidntRun; absl::Status status; bool operator<(const ChunkResult& other) const { if (test_result != other.test_result) { return test_result < other.test_result; } return reference_result < other.reference_result; } }; std::string BuildResultsTable(absl::Span<const ChunkResult> chunk_results, size_t num_modules) { constexpr int kStatusWidth = 21; constexpr int kNameWidth = 30; constexpr int kThreeColumnsWidth = 5 + 2 * kStatusWidth + kNameWidth; constexpr int kTableWidth = kThreeColumnsWidth + 30; std::ostringstream strstr; auto print_row = [&](absl::string_view reference, absl::string_view test, absl::string_view module_name, absl::string_view error) { std::string formatted_error = absl::StrReplaceAll( error, {{"\n", absl::StrCat("\n", std::string(kThreeColumnsWidth, ' '), "|")}}); strstr << " " << std::left << std::setw(kStatusWidth) << reference << "| " << std::setw(kStatusWidth) << test << "| " << std::setw(kNameWidth) << module_name << "| " << formatted_error << "\n"; }; auto print_line = [&](int line_width) { strstr << std::string(line_width, '-') << "\n"; }; print_row("Reference", "Test", "Module", "Status"); print_line(kTableWidth); std::map<std::pair<ModuleResult, ModuleResult>, int> result_counts; for (const ChunkResult& chunk_result : chunk_results) { const std::pair<ModuleResult, ModuleResult> result_pair( chunk_result.reference_result, chunk_result.test_result); ++result_counts[result_pair]; print_row(ModuleResultToString(chunk_result.reference_result), ModuleResultToString(chunk_result.test_result), chunk_result.module_name, chunk_result.status.ToString()); } print_line(kTableWidth); print_row("Reference", "Test", "Module", "Status"); print_line(kTableWidth); strstr << "\n\n"; print_line(kThreeColumnsWidth); print_row("Reference", "Test", "Total count", ""); print_line(kThreeColumnsWidth); for (const auto& [result, count] : result_counts) { print_row(ModuleResultToString(result.first), ModuleResultToString(result.second), absl::StrCat(count), ""); } print_line(kThreeColumnsWidth); if (chunk_results.size() < num_modules) { strstr << "\n(did not " << (num_modules - chunk_results.size()) << " modules due to earlier failures)\n\n"; } return strstr.str(); } absl::Status RunIsolatedAndCompare( std::unique_ptr<HloModule> test_module, const BufferAssignmentProto* buffer_assignment_proto, HloRunnerInterface* test_runner, HloRunnerInterface* reference_runner, std::minstd_rand0* engine, const RunHloModuleOptions& options, xla::RunHloModuleIterationLiterals* iteration_literals_proto, std::function<absl::Status(const HloModule&, HloRunnerInterface*, HloModule*)> reference_module_modifier_hook, std::function<void(HloModuleConfig*)> config_modifier_hook) { CHECK(test_module); CHECK(iteration_literals_proto == nullptr) << "Cannot run decomposed module if input literals are provided."; if (options.run_test_hlo_passes || (options.run_reference_hlo_passes && !options.reference_platform.empty())) { LOG(WARNING) << "!!! Warning !!! When running decomposed module, running HLO " "passes is likely not what you want. If you have unoptimized " "HLO, first convert it to the optimized e.g. using the " "hlo-opt tool, and then isolate without HLO passes."; } std::vector<ChunkResult> chunk_results; TF_ASSIGN_OR_RETURN( std::vector<std::unique_ptr<HloModule>> modules, DecomposeHloModule(*test_module, true)); absl::Status status = absl::OkStatus(); for (std::unique_ptr<HloModule>& module : modules) { const std::string module_name = module->name(); ModuleResult test_module_result = ModuleResult::kDidntRun; ModuleResult reference_module_result = ModuleResult::kDidntRun; absl::Status chunk_status = RunAndCompareInternal( std::move(module), buffer_assignment_proto, test_runner, reference_runner, engine, options, iteration_literals_proto, reference_module_modifier_hook, config_modifier_hook, &test_module_result, &reference_module_result); chunk_results.push_back({std::move(module_name), test_module_result, reference_module_result, chunk_status}); status.Update(chunk_status); } absl::c_sort(chunk_results); std::cout << BuildResultsTable(chunk_results, modules.size()); return status; } } absl::Status RunAndCompare( std::unique_ptr<HloModule> test_module, const BufferAssignmentProto* buffer_assignment_proto, HloRunnerInterface* test_runner, HloRunnerInterface* reference_runner, std::minstd_rand0* engine, const RunHloModuleOptions& options, xla::RunHloModuleIterationLiterals* iteration_literals_proto, std::function<absl::Status(const HloModule&, HloRunnerInterface*, HloModule*)> reference_module_modifier_hook, std::function<void(HloModuleConfig*)> config_modifier_hook) { if (options.isolate_instructions) { return RunIsolatedAndCompare( std::move(test_module), buffer_assignment_proto, test_runner, reference_runner, engine, options, iteration_literals_proto, reference_module_modifier_hook, config_modifier_hook); } return RunAndCompareInternal( std::move(test_module), buffer_assignment_proto, test_runner, reference_runner, engine, options, iteration_literals_proto, reference_module_modifier_hook, config_modifier_hook, nullptr, nullptr); } absl::Status RunAndCompare( const std::string& hlo_filename, HloRunnerInterface* test_runner, HloRunnerInterface* reference_runner, std::minstd_rand0* engine, const RunHloModuleOptions& options, xla::RunHloModuleIterationLiterals* iteration_literals_proto, std::function<absl::Status(const HloModule&, HloRunnerInterface*, HloModule*)> reference_module_modifier_hook, std::function<void(HloModuleConfig*)> config_modifier_hook, std::function<absl::Status(const RunHloModuleOptions& options, HloModule& module)> compilation_env_modifier_hook) { std::string input_format = options.input_format; if (input_format.empty()) { input_format = std::string(tsl::io::Extension(hlo_filename)); } BufferAssignmentProto buffer_assignment_proto; TF_ASSIGN_OR_RETURN( auto test_module, LoadModuleFromFile( hlo_filename, input_format, hlo_module_loader_details::Config(), config_modifier_hook, options.use_buffer_assignment_from_proto ? &buffer_assignment_proto : nullptr)); HloVerifier verifier( HloVerifierOpts{}.WithLayoutSensitive(false).WithAllowMixedPrecision( true)); TF_RETURN_IF_ERROR(verifier.Run(test_module.get()).status()); if (compilation_env_modifier_hook) { TF_CHECK_OK(compilation_env_modifier_hook(options, *test_module)) << "Could not adjust the compilation environment for user provided " "hlo module."; } if (options.print_literals) { std::cout << "\n** Buffer assignment proto **\n" << buffer_assignment_proto.DebugString() << "\n"; } std::unique_ptr<RunHloModuleIterationLiterals> iteration_literals_proto_local; if (iteration_literals_proto == nullptr) { if (!options.force_fake_data && !options.isolate_instructions && (input_format == "pb" || input_format == "pbtxt")) { LOG(INFO) << "Using input data from the user-provided snapshot."; TF_ASSIGN_OR_RETURN(iteration_literals_proto_local, LoadInputFromFile(hlo_filename, input_format)); iteration_literals_proto = iteration_literals_proto_local.get(); } else if (input_format == "pb" || input_format == "pbtxt") { LOG(INFO) << "Ignoring input data from snapshot and using fake data instead."; } } return RunAndCompare( std::move(test_module), options.use_buffer_assignment_from_proto ? &buffer_assignment_proto : nullptr, test_runner, reference_runner, engine, options, iteration_literals_proto, reference_module_modifier_hook, config_modifier_hook); } void ReadInputLiteralsFromFile(const std::string& file_path, RunHloModuleLiterals* input_literals_proto) { if (!tsl::ReadTextOrBinaryProto(tsl::Env::Default(), file_path, input_literals_proto) .ok() || input_literals_proto->iterations().empty()) { xla::RunHloModuleIterationLiterals iteration_literals_proto; if (!tsl::ReadTextOrBinaryProto(tsl::Env::Default(), file_path, &iteration_literals_proto) .ok()) { LOG(QFATAL) << "Failed to deserialize input literals from file " << file_path << "\n"; } input_literals_proto->clear_iterations(); *input_literals_proto->add_iterations() = iteration_literals_proto; } } }
#include "xla/tools/run_hlo_module.h" #include <string> #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/tools/run_hlo_module.pb.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" namespace xla { namespace { RunHloModuleIterationLiterals GetTestProto() { RunHloModuleIterationLiterals result; *result.add_arguments() = LiteralUtil::CreateR1<float>({0.1, 0.2}).ToProto(); *result.add_arguments() = LiteralUtil::CreateR1<float>({0.3, 0.4}).ToProto(); *result.mutable_result() = LiteralUtil::CreateR1<float>({0.5, 0.6}).ToProto(); *result.mutable_reference_result() = LiteralUtil::CreateR1<float>({0.5, 0.6}).ToProto(); return result; } TEST(ReadInputLiteralsFromFile, ReadRunHloModuleLiteralsBinaryProto) { std::string file_path; auto env = tsl::Env::Default(); EXPECT_TRUE(env->LocalTempFilename(&file_path)); auto proto = GetTestProto(); RunHloModuleLiterals wrapped_proto; *wrapped_proto.add_iterations() = proto; TF_ASSERT_OK(tsl::WriteBinaryProto(env, file_path, wrapped_proto)); RunHloModuleLiterals result; ReadInputLiteralsFromFile(file_path, &result); EXPECT_EQ(result.SerializeAsString(), wrapped_proto.SerializeAsString()); } TEST(ReadInputLiteralsFromFile, ReadRunHloModuleLiteralsTextProto) { std::string file_path; auto env = tsl::Env::Default(); EXPECT_TRUE(env->LocalTempFilename(&file_path)); auto proto = GetTestProto(); RunHloModuleLiterals wrapped_proto; *wrapped_proto.add_iterations() = proto; TF_ASSERT_OK(tsl::WriteTextProto(env, file_path, wrapped_proto)); RunHloModuleLiterals result; ReadInputLiteralsFromFile(file_path, &result); EXPECT_EQ(result.SerializeAsString(), wrapped_proto.SerializeAsString()); } TEST(ReadInputLiteralsFromFile, ReadRunHloModuleIterationLiteralsBinaryProto) { std::string file_path; auto env = tsl::Env::Default(); EXPECT_TRUE(env->LocalTempFilename(&file_path)); auto proto = GetTestProto(); TF_ASSERT_OK(tsl::WriteBinaryProto(env, file_path, proto)); RunHloModuleLiterals result; ReadInputLiteralsFromFile(file_path, &result); EXPECT_EQ(result.iterations_size(), 1); EXPECT_EQ(result.iterations(0).SerializeAsString(), proto.SerializeAsString()); } TEST(ReadInputLiteralsFromFile, ReadRunHloModuleIterationLiteralsTextProto) { std::string file_path; auto env = tsl::Env::Default(); EXPECT_TRUE(env->LocalTempFilename(&file_path)); auto proto = GetTestProto(); TF_ASSERT_OK(tsl::WriteTextProto(env, file_path, proto)); RunHloModuleLiterals result; ReadInputLiteralsFromFile(file_path, &result); EXPECT_EQ(result.iterations_size(), 1); EXPECT_EQ(result.iterations(0).SerializeAsString(), proto.SerializeAsString()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/run_hlo_module.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/run_hlo_module_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
49d9476b-8f73-4dda-9115-ac8a5af6998f
cpp
tensorflow/tensorflow
hlo_slicer
third_party/xla/xla/tools/hlo_slicer.cc
third_party/xla/xla/tools/hlo_slicer_test.cc
#include "xla/tools/hlo_slicer.h" #include <deque> #include <memory> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/call_graph.h" #include "xla/service/hlo_verifier.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tools/hlo_extractor.h" #include "tsl/platform/status.h" namespace xla { namespace { void ReduceTupleParameterHelper(HloModule* hlo_module, HloInstruction* tuple_parameter) { for (HloInstruction* user_inst : tuple_parameter->users()) { if (user_inst->opcode() != HloOpcode::kGetTupleElement) { return; } } VLOG(1) << "Parameter instruction to be reduced: " << tuple_parameter->ToString() << " shape size: " << tuple_parameter->shape().tuple_shapes_size() << " users size: " << tuple_parameter->users().size(); std::vector<Shape> used_shapes; for (HloInstruction* user_inst : tuple_parameter->users()) { used_shapes.push_back(user_inst->shape()); } Shape new_tuple_shape = ShapeUtil::MakeTupleShape(absl::MakeSpan(used_shapes)); tuple_parameter->mutable_shape()->mutable_tuple_shapes()->clear(); for (const auto& shape : used_shapes) { tuple_parameter->mutable_shape()->mutable_tuple_shapes()->push_back(shape); } for (int i = 0; i < tuple_parameter->users().size(); ++i) { tuple_parameter->users()[i]->set_tuple_index(i); } hlo_module->mutable_config().SetComputationLayoutIfExists( hlo_module->entry_computation()->ComputeProgramShape()); } void ReduceTupleParameter(HloModule* hlo_module) { std::vector<HloInstruction*> tuple_parameters; for (HloInstruction* parameter : hlo_module->entry_computation()->parameter_instructions()) { if (parameter->shape().IsTuple()) { tuple_parameters.push_back(parameter); } } for (HloInstruction* tuple_parameter : tuple_parameters) { ReduceTupleParameterHelper(hlo_module, tuple_parameter); } } HloInstruction* FindShardingInstruction(HloModule* hlo_module) { for (HloComputation* computation : hlo_module->computations()) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kCustomCall && instruction->custom_call_target() == "Sharding") { CHECK_EQ(instruction->operand_count(), 1); return instruction; } } } return nullptr; } void RemoveSharding(HloModule* hlo_module) { while (HloInstruction* custom_call_instruction = FindShardingInstruction(hlo_module)) { for (HloInstruction* user_instruction : custom_call_instruction->users()) { CHECK_OK(custom_call_instruction->ReplaceUseWith( user_instruction, custom_call_instruction->mutable_operand(0))); } custom_call_instruction->DetachFromOperandsAndUsers(); CHECK_OK(custom_call_instruction->parent()->RemoveInstruction( custom_call_instruction)); VLOG(1) << "Removed sharding custom-call: " << custom_call_instruction->ToString(); HloVerifier verifier(false, true); TF_CHECK_OK(verifier.Run(hlo_module).status()); } } void IntraComputationSlicing( const HloComputation* computation, absl::flat_hash_set<const HloInstruction*>& sliced_instructions, absl::flat_hash_set<const HloInstruction*>& frontier_instructions, bool forward_slice, FrontierSelector frontier_selector, bool ignore_control_dependency) { std::deque<const HloInstruction*> worklist(sliced_instructions.begin(), sliced_instructions.end()); while (!worklist.empty()) { const HloInstruction* inst = worklist.back(); worklist.pop_back(); if (frontier_selector && !frontier_selector(inst)) { frontier_instructions.insert(inst); continue; } std::vector<HloInstruction*> instructions_to_propagate = forward_slice ? std::vector<HloInstruction*>(inst->users().begin(), inst->users().end()) : std::vector<HloInstruction*>(inst->operands().begin(), inst->operands().end()); if (!ignore_control_dependency) { if (forward_slice) { instructions_to_propagate.insert(instructions_to_propagate.end(), inst->control_successors().begin(), inst->control_successors().end()); } else { instructions_to_propagate.insert(instructions_to_propagate.end(), inst->control_predecessors().begin(), inst->control_predecessors().end()); } } for (auto next_inst : instructions_to_propagate) { if (!sliced_instructions.contains(next_inst)) { worklist.push_front(next_inst); sliced_instructions.insert(next_inst); } } } } SliceOutput SliceModuleHelper( const HloModule* hlo_module, absl::Span<const HloInstruction*> slice_starting_instructions, FrontierSelector frontier_selector, bool ignore_control_dependency, bool forward_slice, bool nearest_common_ancestor_as_root) { absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> sliced_computation_instructions_map; for (auto inst : slice_starting_instructions) { sliced_computation_instructions_map[inst->parent()].insert(inst); } absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> frontier_computation_instructions_map; std::unique_ptr<CallGraph> call_graph = CallGraph::Build(hlo_module); std::vector<HloComputation*> post_order_computations = hlo_module->MakeComputationPostOrder(); std::vector<HloComputation*> computations_to_traverse = forward_slice ? post_order_computations : std::vector<HloComputation*>(post_order_computations.rbegin(), post_order_computations.rend()); absl::flat_hash_set<const HloComputation*> nearest_common_ancestor_computations; if (nearest_common_ancestor_as_root) { std::vector<const HloComputation*> starting_computations; for (const auto& [computation, instructions] : sliced_computation_instructions_map) { starting_computations.push_back(computation); } nearest_common_ancestor_computations = call_graph->NearestCommonAncestorComputations(starting_computations); CHECK(!nearest_common_ancestor_computations.empty()); } for (auto computation : computations_to_traverse) { if (sliced_computation_instructions_map.contains(computation)) { auto slicing_starting_instructions = std::vector<const HloInstruction*>( sliced_computation_instructions_map[computation].begin(), sliced_computation_instructions_map[computation].end()); IntraComputationSlicing( computation, sliced_computation_instructions_map[computation], frontier_computation_instructions_map[computation], forward_slice, frontier_selector, ignore_control_dependency); if (forward_slice) { if (nearest_common_ancestor_as_root && nearest_common_ancestor_computations.contains(computation)) { const HloInstruction* nearest_common_ancestor_instruction = *(call_graph->NearestCommonAncestorInstructions( slicing_starting_instructions)) .begin(); CHECK_NE(nearest_common_ancestor_instruction, nullptr); return SliceOutput{sliced_computation_instructions_map, frontier_computation_instructions_map, nearest_common_ancestor_instruction}; } if (!sliced_computation_instructions_map[computation].contains( computation->root_instruction()) || frontier_computation_instructions_map[computation].contains( computation->root_instruction())) { continue; } for (auto caller_inst : call_graph->GetComputationCallers(computation)) { sliced_computation_instructions_map[caller_inst->parent()].insert( caller_inst); } } if (!forward_slice) { for (const auto& callsite : call_graph->GetNode(computation).callsites()) { if (sliced_computation_instructions_map[computation].contains( callsite.instruction())) { for (auto callee : callsite.called_computations()) { sliced_computation_instructions_map[callee].insert( callee->root_instruction()); } } } } } } return SliceOutput{sliced_computation_instructions_map, frontier_computation_instructions_map}; } } SliceOutput SliceModule( const HloModule* hlo_module, absl::Span<const HloInstruction*> slice_starting_instructions, FrontierSelector frontier_selector, bool ignore_control_dependency, bool forward_slice, bool nearest_common_ancestor_as_root) { if (forward_slice) { if (!nearest_common_ancestor_as_root) { return SliceModuleHelper(hlo_module, slice_starting_instructions, frontier_selector, ignore_control_dependency, true, false); } else { CHECK(forward_slice) << "Option `nearest_common_ancestor_as_root` can " "only be enabled when " "forward slicing"; CHECK((frontier_selector == nullptr)) << "Option `nearest_common_ancestor_as_root` can not be specified " "with `frontier_selector`"; SliceOutput forward_slice_output = SliceModuleHelper(hlo_module, slice_starting_instructions, nullptr, ignore_control_dependency, true, true); std::vector<const HloInstruction*> nearest_common_ancestor( {forward_slice_output.nearest_common_ancestor_root()}); CHECK_EQ(nearest_common_ancestor.size(), 1); SliceOutput backward_slice_output = SliceModuleHelper(hlo_module, absl::MakeSpan(nearest_common_ancestor), nullptr, ignore_control_dependency, false, false); return SliceOutput{SliceOutput::IntersectSlicedInstructions( forward_slice_output, backward_slice_output), backward_slice_output.frontier_instructions(), forward_slice_output.nearest_common_ancestor_root()}; } } else { return SliceModuleHelper(hlo_module, slice_starting_instructions, frontier_selector, ignore_control_dependency, false, false); } } std::vector<std::unique_ptr<HloModule>> SliceModuleAndExtract( const HloModule* hlo_module, absl::Span<const HloInstruction*> slice_starting_instructions, const SlicingConfiguration& slicing_configuration) { std::vector<std::unique_ptr<HloModule>> sliced_modules; int slicing_group = slicing_configuration.slicing_group; CHECK(slicing_group >= 1 || slicing_group == -1); std::vector<absl::Span<const HloInstruction*>> grouped_instructions; if (slicing_group == -1) { grouped_instructions = {slice_starting_instructions}; } else { for (int i = 0; i < slice_starting_instructions.size(); i += slicing_group) { grouped_instructions.push_back( slice_starting_instructions.subspan(i, slicing_group)); } } for (const auto& grouped_slice_starting_instructions : grouped_instructions) { SliceOutput forward_slice_output; if (slicing_configuration.forward_slicing == SlicingConfiguration::ForwardSlicingConfig::kRoot) { forward_slice_output = SliceModule( hlo_module, grouped_slice_starting_instructions, nullptr, false, true, false); } else if (slicing_configuration.forward_slicing == SlicingConfiguration::ForwardSlicingConfig::kNca) { forward_slice_output = SliceModule( hlo_module, grouped_slice_starting_instructions, nullptr, false, true, true); } VLOG(1) << "[Num of forward sliced insts]: " << forward_slice_output.NumSlicedInstructions(); SliceOutput backward_slice_output; if (slicing_configuration.backward_slicing) { backward_slice_output = SliceModule( hlo_module, grouped_slice_starting_instructions, nullptr, false, false); } else { backward_slice_output = SliceOutput(); } auto sliced_result = SliceOutput(SliceOutput::UnionSlicedInstructions( forward_slice_output, backward_slice_output)); const HloInstruction* extraction_root = slicing_configuration.forward_slicing == SlicingConfiguration::ForwardSlicingConfig::kNca ? forward_slice_output.nearest_common_ancestor_root() : hlo_module->entry_computation()->root_instruction(); VLOG(1) << "[Root instruction of the sliced module]: " << extraction_root->ToString(); auto extract_selector = [&sliced_result](const HloInstruction* hlo_inst) { for (const auto& [computation, instructions] : sliced_result.sliced_instructions()) { if (instructions.contains(hlo_inst)) { return true; } } return false; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceZeroBroadcast; }; auto extracted_module = ExtractModule(extraction_root, -1, extract_selector, replace_type_selector, true); if (slicing_configuration.remove_sharding) { RemoveSharding(extracted_module.get()); } if (slicing_configuration.reduce_tuple_parameter) { ReduceTupleParameter(extracted_module.get()); } HloVerifier verifier(false, true); TF_CHECK_OK(verifier.Run(extracted_module.get()).status()); sliced_modules.emplace_back(std::move(extracted_module)); } CHECK_EQ(sliced_modules.size(), grouped_instructions.size()); return sliced_modules; } }
#include "xla/tools/hlo_slicer.h" #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = testing::opcode_matchers; using HloSlicerTest = HloTestBase; TEST_F(HloSlicerTest, SingleComputationForwardSlice) { const std::string& hlo_string = R"( HloModule axpy_module ENTRY axpy_computation { p.0 = f32[10] parameter(0) p.1 = f32[10] parameter(1) add.0 = f32[10] add(p.0, p.1) alpha = f32[] constant(1) broadcast = f32[10] broadcast(alpha), dimensions={} p.2 = f32[10] parameter(2) y = f32[10] multiply(broadcast, p.2) x = f32[10] subtract(y, add.0) p.3 = f32[10] parameter(3) ROOT add.1 = f32[10] add(x, p.3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto p2 = FindInstruction(hlo_module.get(), "p.2"); EXPECT_THAT(p2, op::Parameter()); auto p3 = FindInstruction(hlo_module.get(), "p.3"); EXPECT_THAT(p3, op::Parameter()); auto x = FindInstruction(hlo_module.get(), "x"); EXPECT_THAT(x, op::Subtract()); auto y = FindInstruction(hlo_module.get(), "y"); EXPECT_THAT(y, op::Multiply()); auto add0 = FindInstruction(hlo_module.get(), "add.0"); EXPECT_THAT(add0, op::Add()); auto add1 = FindInstruction(hlo_module.get(), "add.1"); EXPECT_THAT(add1, op::Add()); auto entry_comp = FindComputation(hlo_module.get(), "axpy_computation"); EXPECT_NE(entry_comp, nullptr); auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return true; }; { std::vector<const HloInstruction*> relevant_instructions({p2, x}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_EQ(sliced_instructions[entry_comp].size(), 4); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p2)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(x)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(y)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add1)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } { std::vector<const HloInstruction*> relevant_instructions({add0, p3}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_EQ(sliced_instructions[entry_comp].size(), 4); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add0)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(x)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p3)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add1)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } } TEST_F(HloSlicerTest, MultipleComputationForwardSlice) { const std::string& hlo_string = R"( HloModule test calculate_alpha { constant.5 = s32[] constant(2) constant.6 = s32[] constant(3) ROOT ret = s32[] subtract(constant.5, constant.6) } While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get_tuple_element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(23) add.3 = s32[] add(get_tuple_element.1, constant.1) get_tuple_element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get_tuple_element.2, get_tuple_element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add.3, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get_tuple_element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(100) ROOT less_than = pred[] compare(get_tuple_element.3, constant.2), direction=LT } ENTRY Test { p.1 = s32[] parameter(0) p.2 = s32[] parameter(1) add.1 = s32[] add(p.1, p.2) constant.3 = s32[] call(), to_apply=calculate_alpha constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) while.1 = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body loop_count = s32[] get-tuple-element(while.1), index=0 ROOT add.2 = s32[] add(loop_count, add.1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto add1 = FindInstruction(hlo_module.get(), "add.1"); EXPECT_THAT(add1, op::Add()); auto while1 = FindInstruction(hlo_module.get(), "while.1"); EXPECT_THAT(while1, op::While()); auto loop_count = FindInstruction(hlo_module.get(), "loop_count"); EXPECT_THAT(loop_count, op::GetTupleElement()); auto add2 = FindInstruction(hlo_module.get(), "add.2"); EXPECT_THAT(add2, op::Add()); auto gte1 = FindInstruction(hlo_module.get(), "get_tuple_element.1"); EXPECT_THAT(gte1, op::GetTupleElement()); auto gte2 = FindInstruction(hlo_module.get(), "get_tuple_element.2"); EXPECT_THAT(gte2, op::GetTupleElement()); auto constant5 = FindInstruction(hlo_module.get(), "constant.5"); EXPECT_THAT(constant5, op::Constant()); auto tuple1 = FindInstruction(hlo_module.get(), "tuple.1"); EXPECT_THAT(tuple1, op::Tuple()); auto entry_comp = FindComputation(hlo_module.get(), "Test"); EXPECT_NE(entry_comp, nullptr); auto while_cond_comp = FindComputation(hlo_module.get(), "While.condition"); EXPECT_NE(while_cond_comp, nullptr); auto while_body_comp = FindComputation(hlo_module.get(), "While.body"); EXPECT_NE(while_body_comp, nullptr); auto calculate_alpha_comp = FindComputation(hlo_module.get(), "calculate_alpha"); EXPECT_NE(calculate_alpha_comp, nullptr); auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return true; }; { std::vector<const HloInstruction*> relevant_instructions({add1, while1}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_EQ(sliced_instructions[entry_comp].size(), 4); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add2)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add1)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(while1)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(loop_count)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } { std::vector<const HloInstruction*> relevant_instructions({constant5}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 2); EXPECT_TRUE(sliced_instructions.contains(entry_comp)); EXPECT_TRUE(sliced_instructions.contains(calculate_alpha_comp)); EXPECT_FALSE(sliced_instructions[entry_comp].contains(add1)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } { std::vector<const HloInstruction*> relevant_instructions({gte2}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 2); EXPECT_TRUE(sliced_instructions.contains(entry_comp)); EXPECT_TRUE(sliced_instructions.contains(while_body_comp)); EXPECT_FALSE(sliced_instructions.contains(while_cond_comp)); EXPECT_FALSE(sliced_instructions[entry_comp].contains(tuple1)); EXPECT_FALSE(sliced_instructions[entry_comp].contains(add1)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add2)); EXPECT_FALSE(sliced_instructions[while_body_comp].contains(gte1)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } } TEST_F(HloSlicerTest, SingleComputationForwardFrontier) { const std::string& hlo_string = R"( HloModule axpy_module ENTRY axpy_computation { p.0 = f32[10] parameter(0) p.1 = f32[10] parameter(1) add.0 = f32[10] add(p.0, p.1) alpha = f32[] constant(1) broadcast = f32[10] broadcast(alpha), dimensions={} p.2 = f32[10] parameter(2) y = f32[10] multiply(broadcast, p.2) x = f32[10] subtract(y, add.0) p.3 = f32[10] parameter(3) p.4 = f32[10] parameter(4) p.5 = f32[10] parameter(5) sub.1 = f32[10] subtract(p.4, p.5) add.2 = f32[10] add(p.3, sub.1) ROOT add.1 = f32[10] add(x, add.2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto broadcast = FindInstruction(hlo_module.get(), "broadcast"); EXPECT_THAT(broadcast, op::Broadcast()); auto x = FindInstruction(hlo_module.get(), "x"); EXPECT_THAT(x, op::Subtract()); auto y = FindInstruction(hlo_module.get(), "y"); EXPECT_THAT(y, op::Multiply()); auto add0 = FindInstruction(hlo_module.get(), "add.0"); EXPECT_THAT(add0, op::Add()); auto p5 = FindInstruction(hlo_module.get(), "p.5"); EXPECT_THAT(p5, op::Parameter()); auto sub1 = FindInstruction(hlo_module.get(), "sub.1"); EXPECT_THAT(sub1, op::Subtract()); auto entry_comp = FindComputation(hlo_module.get(), "axpy_computation"); EXPECT_NE(entry_comp, nullptr); { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kSubtract; }; std::vector<const HloInstruction*> relevant_instructions({broadcast, add0}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 4); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add0)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(broadcast)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(y)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(x)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 1); auto frontier_instructions = sliced_result.frontier_instructions(); EXPECT_TRUE(frontier_instructions[entry_comp].contains(x)); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kSubtract; }; std::vector<const HloInstruction*> relevant_instructions({add0, y, p5}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 5); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add0)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(y)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(x)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p5)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(sub1)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 2); auto frontier_instructions = sliced_result.frontier_instructions(); EXPECT_TRUE(frontier_instructions[entry_comp].contains(x)); EXPECT_TRUE(frontier_instructions[entry_comp].contains(sub1)); } } TEST_F(HloSlicerTest, MultipleComputationForwardFrontier) { const std::string& hlo_string = R"( HloModule axpy_module calculate_alpha { c.0 = f32[] constant(1) c.1 = f32[] constant(2) c.2 = f32[] add(c.0, c.1) c.3 = f32[] constant(4) ROOT ret = f32[] multiply(c.2, c.3) } ENTRY axpy_computation { p.0 = f32[] parameter(0) alpha = f32[] call(), to_apply=calculate_alpha ROOT add = f32[] add(p.0, alpha) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto entry_comp = FindComputation(hlo_module.get(), "axpy_computation"); EXPECT_NE(entry_comp, nullptr); auto calculate_alpha_comp = FindComputation(hlo_module.get(), "calculate_alpha"); EXPECT_NE(calculate_alpha_comp, nullptr); auto ret = FindInstruction(hlo_module.get(), "ret"); EXPECT_THAT(ret, op::Multiply()); auto c2 = FindInstruction(hlo_module.get(), "c.2"); EXPECT_THAT(c2, op::Add()); auto c3 = FindInstruction(hlo_module.get(), "c.3"); EXPECT_THAT(c3, op::Constant()); auto alpha = FindInstruction(hlo_module.get(), "alpha"); EXPECT_THAT(alpha, op::Call()); { auto hlo_selector = [&ret](const HloInstruction* hlo_inst) -> bool { return hlo_inst != ret; }; std::vector<const HloInstruction*> relevant_instructions({c2}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 2); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_TRUE(sliced_instructions.contains(calculate_alpha_comp)); EXPECT_EQ(sliced_instructions[calculate_alpha_comp].size(), 2); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c2)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(ret)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 1); auto frontier_instructions = sliced_result.frontier_instructions(); EXPECT_TRUE(frontier_instructions.contains(calculate_alpha_comp)); EXPECT_TRUE(frontier_instructions[calculate_alpha_comp].contains(ret)); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kCall; }; std::vector<const HloInstruction*> relevant_instructions({c2}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 2); EXPECT_TRUE(sliced_instructions.contains(calculate_alpha_comp)); EXPECT_EQ(sliced_instructions[calculate_alpha_comp].size(), 2); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c2)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(ret)); EXPECT_TRUE(sliced_instructions.contains(entry_comp)); EXPECT_EQ(sliced_instructions[entry_comp].size(), 1); EXPECT_TRUE(sliced_instructions[entry_comp].contains(alpha)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 1); auto frontier_instructions = sliced_result.frontier_instructions(); EXPECT_TRUE(frontier_instructions.contains(entry_comp)); EXPECT_TRUE(frontier_instructions[entry_comp].contains(alpha)); } } TEST_F(HloSlicerTest, SingleComputationBackwardSliceAndFrontier) { const std::string& hlo_string = R"( HloModule axpy_module ENTRY axpy_computation { p.0 = f32[10] parameter(0) p.1 = f32[10] parameter(1) add.0 = f32[10] add(p.0, p.1) alpha = f32[] constant(1) broadcast = f32[10] broadcast(alpha), dimensions={} p.2 = f32[10] parameter(2) y = f32[10] multiply(broadcast, p.2) x = f32[10] subtract(y, add.0) p.3 = f32[10] parameter(3) ROOT add.1 = f32[10] add(x, p.3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto alpha = FindInstruction(hlo_module.get(), "alpha"); EXPECT_THAT(alpha, op::Constant()); auto p0 = FindInstruction(hlo_module.get(), "p.0"); EXPECT_THAT(p0, op::Parameter()); auto p1 = FindInstruction(hlo_module.get(), "p.1"); EXPECT_THAT(p1, op::Parameter()); auto p2 = FindInstruction(hlo_module.get(), "p.2"); EXPECT_THAT(p2, op::Parameter()); auto p3 = FindInstruction(hlo_module.get(), "p.3"); EXPECT_THAT(p3, op::Parameter()); auto broadcast = FindInstruction(hlo_module.get(), "broadcast"); EXPECT_THAT(broadcast, op::Broadcast()); auto x = FindInstruction(hlo_module.get(), "x"); EXPECT_THAT(x, op::Subtract()); auto y = FindInstruction(hlo_module.get(), "y"); EXPECT_THAT(y, op::Multiply()); auto add0 = FindInstruction(hlo_module.get(), "add.0"); EXPECT_THAT(add0, op::Add()); auto entry_comp = FindComputation(hlo_module.get(), "axpy_computation"); EXPECT_NE(entry_comp, nullptr); auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return true; }; { std::vector<const HloInstruction*> relevant_instructions({y}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector, false, false); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_EQ(sliced_instructions[entry_comp].size(), 4); EXPECT_TRUE(sliced_instructions[entry_comp].contains(y)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(broadcast)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p2)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(alpha)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } { std::vector<const HloInstruction*> relevant_instructions({add0, y}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector, false, false); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_EQ(sliced_instructions[entry_comp].size(), 7); EXPECT_TRUE(sliced_instructions[entry_comp].contains(y)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(broadcast)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p2)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(alpha)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add0)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p0)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p1)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } auto broadcast_slicer = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kBroadcast; }; { std::vector<const HloInstruction*> relevant_instructions({y}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), broadcast_slicer, false, false); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_EQ(sliced_instructions[entry_comp].size(), 3); EXPECT_TRUE(sliced_instructions[entry_comp].contains(y)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p2)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(broadcast)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 1); auto frontier_instructions = sliced_result.frontier_instructions(); EXPECT_TRUE(frontier_instructions[entry_comp].contains(broadcast)); } } TEST_F(HloSlicerTest, MultipleComputationBackwardSliceAndFrontier) { const std::string& hlo_string = R"( HloModule axpy_module calculate_alpha { c.0 = f32[] constant(1) c.1 = f32[] constant(2) c.2 = f32[] add(c.0, c.1) c.3 = f32[] constant(4) ROOT ret = f32[] multiply(c.2, c.3) } ENTRY axpy_computation { p.0 = f32[] parameter(0) alpha = f32[] call(), to_apply=calculate_alpha ROOT add = f32[] add(p.0, alpha) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto entry_comp = FindComputation(hlo_module.get(), "axpy_computation"); EXPECT_NE(entry_comp, nullptr); auto calculate_alpha_comp = FindComputation(hlo_module.get(), "calculate_alpha"); EXPECT_NE(calculate_alpha_comp, nullptr); auto ret = FindInstruction(hlo_module.get(), "ret"); EXPECT_THAT(ret, op::Multiply()); auto c0 = FindInstruction(hlo_module.get(), "c.0"); EXPECT_THAT(c0, op::Constant()); auto c1 = FindInstruction(hlo_module.get(), "c.1"); EXPECT_THAT(c1, op::Constant()); auto c2 = FindInstruction(hlo_module.get(), "c.2"); EXPECT_THAT(c2, op::Add()); auto c3 = FindInstruction(hlo_module.get(), "c.3"); EXPECT_THAT(c3, op::Constant()); auto alpha = FindInstruction(hlo_module.get(), "alpha"); EXPECT_THAT(alpha, op::Call()); { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return true; }; std::vector<const HloInstruction*> relevant_instructions({c2}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector, false, false); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 3); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_TRUE(sliced_instructions.contains(calculate_alpha_comp)); EXPECT_EQ(sliced_instructions[calculate_alpha_comp].size(), 3); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c0)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c1)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c2)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return true; }; std::vector<const HloInstruction*> relevant_instructions({alpha}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector, false, false); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 2); EXPECT_TRUE(sliced_instructions.contains(calculate_alpha_comp)); EXPECT_EQ(sliced_instructions[calculate_alpha_comp].size(), 5); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c0)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c1)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c2)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c3)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(ret)); EXPECT_TRUE(sliced_instructions.contains(entry_comp)); EXPECT_EQ(sliced_instructions[entry_comp].size(), 1); EXPECT_TRUE(sliced_instructions[entry_comp].contains(alpha)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } { auto add_slicer = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kAdd; }; std::vector<const HloInstruction*> relevant_instructions({ret}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), add_slicer, false, false); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 3); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_TRUE(sliced_instructions.contains(calculate_alpha_comp)); EXPECT_EQ(sliced_instructions[calculate_alpha_comp].size(), 3); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(ret)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c3)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c2)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 1); auto frontier_instructions = sliced_result.frontier_instructions(); EXPECT_TRUE(frontier_instructions.contains(calculate_alpha_comp)); EXPECT_TRUE(frontier_instructions[calculate_alpha_comp].contains(c2)); } { auto mul_slicer = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kMultiply; }; std::vector<const HloInstruction*> relevant_instructions({alpha}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), mul_slicer, false, false); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 2); EXPECT_EQ(sliced_instructions.size(), 2); EXPECT_TRUE(sliced_instructions.contains(calculate_alpha_comp)); EXPECT_EQ(sliced_instructions[calculate_alpha_comp].size(), 1); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(ret)); EXPECT_TRUE(sliced_instructions.contains(entry_comp)); EXPECT_EQ(sliced_instructions[entry_comp].size(), 1); EXPECT_TRUE(sliced_instructions[entry_comp].contains(alpha)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 1); auto frontier_instructions = sliced_result.frontier_instructions(); EXPECT_TRUE(frontier_instructions.contains(calculate_alpha_comp)); EXPECT_TRUE(frontier_instructions[calculate_alpha_comp].contains(ret)); } } TEST_F(HloSlicerTest, ForwardSlicingNearestCommonAncestor) { const std::string& hlo_string = R"( HloModule module ENTRY computation { p.0 = f32[10] parameter(0) p.1 = f32[10] parameter(1) add.0 = f32[10] add(p.0, p.1) p.2 = f32[10] parameter(2) mul.0 = f32[10] multiply(p.1, p.2) sub.0 = f32[10] subtract(add.0, mul.0) add.1 = f32[10] add(add.0, p.2) ROOT add.2 = f32[10] add(sub.0, add.1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto p0 = FindInstruction(hlo_module.get(), "p.0"); auto p2 = FindInstruction(hlo_module.get(), "p.2"); auto mul0 = FindInstruction(hlo_module.get(), "mul.0"); auto add0 = FindInstruction(hlo_module.get(), "add.0"); auto sub0 = FindInstruction(hlo_module.get(), "sub.0"); auto add1 = FindInstruction(hlo_module.get(), "add.1"); const HloComputation* computation = hlo_module->entry_computation(); { std::vector<const HloInstruction*> relevant_instructions({p0}); auto sliced_result = SliceModule(hlo_module.get(), absl::MakeSpan(relevant_instructions), nullptr, false, true, true); EXPECT_NE(sliced_result.nearest_common_ancestor_root(), nullptr); EXPECT_EQ(sliced_result.nearest_common_ancestor_root(), p0); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 1); } { std::vector<const HloInstruction*> relevant_instructions({p0, p2}); auto sliced_result = SliceModule(hlo_module.get(), absl::MakeSpan(relevant_instructions), nullptr, false, true, true); EXPECT_NE(sliced_result.nearest_common_ancestor_root(), nullptr); EXPECT_TRUE(sliced_result.nearest_common_ancestor_root() == sub0 || sliced_result.nearest_common_ancestor_root() == add1); EXPECT_TRUE(sliced_result.sliced_instructions().contains(computation)); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_TRUE(sliced_instructions[computation].contains(add0)); } { std::vector<const HloInstruction*> relevant_instructions({p0, mul0}); auto sliced_result = SliceModule(hlo_module.get(), absl::MakeSpan(relevant_instructions), nullptr, false, true, true); EXPECT_NE(sliced_result.nearest_common_ancestor_root(), nullptr); EXPECT_EQ(sliced_result.nearest_common_ancestor_root(), sub0); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 4); EXPECT_TRUE(sliced_result.sliced_instructions().contains(computation)); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_TRUE(sliced_instructions[computation].contains(p0)); EXPECT_TRUE(sliced_instructions[computation].contains(add0)); EXPECT_TRUE(sliced_instructions[computation].contains(mul0)); EXPECT_TRUE(sliced_instructions[computation].contains(sub0)); } } TEST_F(HloSlicerTest, MultipleComputationForwardSlicingNearestCommonAncestor) { const std::string& hlo_string = R"( HloModule axpy_module calculate_alpha { c.0 = f32[] constant(1) c.1 = f32[] constant(2) ROOT ret.0 = f32[] multiply(c.0, c.1) } calculate_y { c.2 = f32[] constant(2) c.3 = f32[] constant(3) ROOT ret.1 = f32[] add(c.2, c.3) } ENTRY axpy_computation { alpha = f32[] call(), to_apply=calculate_alpha y = f32[] call(), to_apply=calculate_y add.0 = f32[] add(alpha, y) p.0 = f32[] parameter(0) ROOT add.1 = f32[] add(add.0, p.0) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto c0 = FindInstruction(hlo_module.get(), "c.0"); auto ret0 = FindInstruction(hlo_module.get(), "ret.0"); auto c2 = FindInstruction(hlo_module.get(), "c.2"); auto ret1 = FindInstruction(hlo_module.get(), "ret.1"); auto alpha = FindInstruction(hlo_module.get(), "alpha"); auto y = FindInstruction(hlo_module.get(), "y"); auto add0 = FindInstruction(hlo_module.get(), "add.0"); const HloComputation* computation = hlo_module->entry_computation(); const HloComputation* calculate_alpha = FindComputation(hlo_module.get(), "calculate_alpha"); const HloComputation* calculate_y = FindComputation(hlo_module.get(), "calculate_y"); { std::vector<const HloInstruction*> relevant_instructions({c0, c2}); auto sliced_result = SliceModule(hlo_module.get(), absl::MakeSpan(relevant_instructions), nullptr, false, true, true); EXPECT_NE(sliced_result.nearest_common_ancestor_root(), nullptr); EXPECT_EQ(sliced_result.nearest_common_ancestor_root(), add0); EXPECT_EQ(sliced_result.sliced_instructions().size(), 3); EXPECT_TRUE(sliced_result.sliced_instructions().contains(computation)); EXPECT_TRUE(sliced_result.sliced_instructions().contains(calculate_alpha)); EXPECT_TRUE(sliced_result.sliced_instructions().contains(calculate_y)); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 7); EXPECT_TRUE(sliced_instructions[calculate_alpha].contains(c0)); EXPECT_TRUE(sliced_instructions[calculate_alpha].contains(ret0)); EXPECT_TRUE(sliced_instructions[calculate_y].contains(c2)); EXPECT_TRUE(sliced_instructions[calculate_y].contains(ret1)); EXPECT_TRUE(sliced_instructions[computation].contains(alpha)); EXPECT_TRUE(sliced_instructions[computation].contains(y)); EXPECT_TRUE(sliced_instructions[computation].contains(add0)); } } TEST_F(HloSlicerTest, TestSliceModuleAndExtract) { const std::string& hlo_string = R"( HloModule axpy_module calculate_alpha { c.0 = f32[] constant(1) c.1 = f32[] constant(2) ROOT ret.0 = f32[] multiply(c.0, c.1) } calculate_y { c.2 = f32[] constant(2) c.3 = f32[] constant(3) ROOT ret.1 = f32[] add(c.2, c.3) } ENTRY axpy_computation { alpha = f32[] call(), to_apply=calculate_alpha y = f32[] call(), to_apply=calculate_y add.0 = f32[] add(alpha, y) p.0 = f32[] parameter(0) ROOT add.1 = f32[] add(add.0, p.0) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto alpha = FindInstruction(hlo_module.get(), "alpha"); auto y = FindInstruction(hlo_module.get(), "y"); auto add0 = FindInstruction(hlo_module.get(), "add.0"); { std::vector<const HloInstruction*> relevant_instructions({alpha, y}); SlicingConfiguration slicing_config = { SlicingConfiguration::ForwardSlicingConfig::kNca, true}; std::vector<std::unique_ptr<HloModule>> sliced_modules = SliceModuleAndExtract(hlo_module.get(), absl::MakeSpan(relevant_instructions), slicing_config); CHECK_EQ(sliced_modules.size(), 1); auto sliced_module = std::move(sliced_modules[0]); EXPECT_EQ(sliced_module->entry_computation()->root_instruction()->name(), "add.0"); EXPECT_EQ(sliced_module->entry_computation()->root_instruction()->opcode(), HloOpcode::kAdd); EXPECT_EQ(sliced_module->computation_count(), 3); HloInstruction* c0 = FindInstruction(sliced_module.get(), "c.0"); EXPECT_NE(c0, nullptr); HloInstruction* c1 = FindInstruction(sliced_module.get(), "c.1"); EXPECT_NE(c1, nullptr); HloInstruction* c2 = FindInstruction(sliced_module.get(), "c.2"); EXPECT_NE(c2, nullptr); HloInstruction* c3 = FindInstruction(sliced_module.get(), "c.3"); EXPECT_NE(c3, nullptr); } { std::vector<const HloInstruction*> relevant_instructions({alpha, y}); SlicingConfiguration slicing_config = { SlicingConfiguration::ForwardSlicingConfig::kRoot, true}; std::vector<std::unique_ptr<HloModule>> sliced_modules = SliceModuleAndExtract(hlo_module.get(), absl::MakeSpan(relevant_instructions), slicing_config); CHECK_EQ(sliced_modules.size(), 1); auto sliced_module = std::move(sliced_modules[0]); EXPECT_EQ(sliced_module->entry_computation()->root_instruction()->name(), "add.1"); EXPECT_EQ(sliced_module->entry_computation()->root_instruction()->opcode(), HloOpcode::kAdd); EXPECT_EQ(sliced_module->computation_count(), 3); HloInstruction* c0 = FindInstruction(sliced_module.get(), "c.0"); EXPECT_NE(c0, nullptr); HloInstruction* c1 = FindInstruction(sliced_module.get(), "c.1"); EXPECT_NE(c1, nullptr); HloInstruction* c2 = FindInstruction(sliced_module.get(), "c.2"); EXPECT_NE(c2, nullptr); HloInstruction* c3 = FindInstruction(sliced_module.get(), "c.3"); EXPECT_NE(c3, nullptr); } { std::vector<const HloInstruction*> relevant_instructions({y}); SlicingConfiguration slicing_config = { SlicingConfiguration::ForwardSlicingConfig::kRoot, true}; std::vector<std::unique_ptr<HloModule>> sliced_modules = SliceModuleAndExtract(hlo_module.get(), absl::MakeSpan(relevant_instructions), slicing_config); CHECK_EQ(sliced_modules.size(), 1); auto sliced_module = std::move(sliced_modules[0]); EXPECT_EQ(sliced_module->entry_computation()->root_instruction()->name(), "add.1"); EXPECT_EQ(sliced_module->entry_computation()->root_instruction()->opcode(), HloOpcode::kAdd); EXPECT_EQ(sliced_module->computation_count(), 2); HloInstruction* c0 = FindInstruction(sliced_module.get(), "c.0"); EXPECT_EQ(c0, nullptr); HloInstruction* c1 = FindInstruction(sliced_module.get(), "c.1"); EXPECT_EQ(c1, nullptr); HloInstruction* c2 = FindInstruction(sliced_module.get(), "c.2"); EXPECT_NE(c2, nullptr); HloInstruction* c3 = FindInstruction(sliced_module.get(), "c.3"); EXPECT_NE(c3, nullptr); } { std::vector<const HloInstruction*> relevant_instructions({add0}); SlicingConfiguration slicing_config = { SlicingConfiguration::ForwardSlicingConfig::kRoot, false}; std::vector<std::unique_ptr<HloModule>> sliced_modules = SliceModuleAndExtract(hlo_module.get(), absl::MakeSpan(relevant_instructions), slicing_config); CHECK_EQ(sliced_modules.size(), 1); auto sliced_module = std::move(sliced_modules[0]); EXPECT_EQ(sliced_module->entry_computation()->root_instruction()->name(), "add.1"); EXPECT_EQ(sliced_module->entry_computation()->root_instruction()->opcode(), HloOpcode::kAdd); EXPECT_EQ(sliced_module->computation_count(), 1); } } TEST_F(HloSlicerTest, TestSliceModuleAndExtractRemoveSharding) { const std::string& hlo_string = R"( HloModule axpy_module ENTRY axpy_computation { %constant.39733 = bf16[] constant(111) %broadcast.39734 = bf16[8,1,12288]{2,1,0} broadcast(bf16[] %constant.39733), dimensions={} %multiply.39766 = bf16[8,1,12288]{2,1,0} multiply(bf16[8,1,12288]{2,1,0} %broadcast.39734, bf16[8,1,12288]{2,1,0} %broadcast.39734) %custom-call.39767 = bf16[8,1,12288]{2,1,0} custom-call(bf16[8,1,12288]{2,1,0} %multiply.39766), custom_call_target="Sharding", sharding={replicated} ROOT %add.39786 = bf16[8,1,12288]{2,1,0} add(bf16[8,1,12288]{2,1,0} %custom-call.39767, bf16[8,1,12288]{2,1,0} %custom-call.39767) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* multiply_39766 = FindInstruction(hlo_module.get(), "multiply.39766"); { std::vector<const HloInstruction*> relevant_instructions({multiply_39766}); SlicingConfiguration slicing_config = { SlicingConfiguration::ForwardSlicingConfig::kRoot, false, true}; std::vector<std::unique_ptr<HloModule>> sliced_modules = SliceModuleAndExtract(hlo_module.get(), absl::MakeSpan(relevant_instructions), slicing_config); EXPECT_EQ(sliced_modules.size(), 1); auto sliced_module = std::move(sliced_modules[0]); for (HloInstruction* instruction : sliced_module->entry_computation()->instructions()) { EXPECT_NE(instruction->opcode(), HloOpcode::kCustomCall); } for (HloInstruction* instruction : sliced_module->entry_computation()->root_instruction()->operands()) { EXPECT_EQ(instruction->name(), "multiply.39766"); } } } TEST_F(HloSlicerTest, TestSliceModuleAndExtractReduceTupleParameter) { const std::string& hlo_string = R"( HloModule axpy_module ENTRY axpy_computation (p.0: (s32[], s32[3]{0}), p.1: (s32[3]{0}, s32[])) -> s32[] { p.0 = (s32[], s32[3]{0}) parameter(0) gte.0 = s32[] get-tuple-element(p.0), index=0 p.1 = (s32[3]{0}, s32[]) parameter(1) gte.1 = s32[] get-tuple-element(p.1), index=1 ROOT add.0 = s32[] add(gte.0, gte.1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* add_0 = FindInstruction(hlo_module.get(), "add.0"); CHECK_NE(add_0, nullptr); { std::vector<const HloInstruction*> relevant_instructions({add_0}); SlicingConfiguration slicing_config = { SlicingConfiguration::ForwardSlicingConfig::kRoot, true, false, true}; std::vector<std::unique_ptr<HloModule>> sliced_modules = SliceModuleAndExtract(hlo_module.get(), absl::MakeSpan(relevant_instructions), slicing_config); EXPECT_EQ(sliced_modules.size(), 1); auto sliced_module = std::move(sliced_modules[0]); HloInstruction* p_0 = FindInstruction(sliced_module.get(), "p.0"); EXPECT_NE(p_0, nullptr); EXPECT_EQ(p_0->shape().tuple_shapes_size(), 1); HloInstruction* p_1 = FindInstruction(sliced_module.get(), "p.1"); EXPECT_NE(p_1, nullptr); EXPECT_EQ(p_1->shape().tuple_shapes_size(), 1); } } TEST_F(HloSlicerTest, TestSliceModuleAndExtractSlicingGroup) { const std::string& hlo_string = R"( HloModule axpy_module ENTRY axpy_computation (p.0: (s32[], s32[3]{0}), p.1: (s32[3]{0}, s32[])) -> s32[] { p.0 = (s32[], s32[3]{0}) parameter(0) gte.0 = s32[] get-tuple-element(p.0), index=0 p.1 = (s32[3]{0}, s32[]) parameter(1) gte.1 = s32[] get-tuple-element(p.1), index=1 ROOT add.0 = s32[] add(gte.0, gte.1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* gte_0 = FindInstruction(hlo_module.get(), "gte.0"); CHECK_NE(gte_0, nullptr); HloInstruction* gte_1 = FindInstruction(hlo_module.get(), "gte.1"); CHECK_NE(gte_1, nullptr); { std::vector<const HloInstruction*> relevant_instructions({gte_0, gte_1}); SlicingConfiguration slicing_config = { SlicingConfiguration::ForwardSlicingConfig::kNca, true, false, false, 1}; std::vector<std::unique_ptr<HloModule>> sliced_modules = SliceModuleAndExtract(hlo_module.get(), absl::MakeSpan(relevant_instructions), slicing_config); EXPECT_EQ(sliced_modules.size(), 2); auto sliced_module_0 = std::move(sliced_modules[0]); EXPECT_EQ(sliced_module_0->entry_computation()->instruction_count(), 2); HloInstruction* p_0 = FindInstruction(sliced_module_0.get(), "p.0"); EXPECT_NE(p_0, nullptr); auto sliced_module_1 = std::move(sliced_modules[1]); EXPECT_EQ(sliced_module_0->entry_computation()->instruction_count(), 2); HloInstruction* p_1 = FindInstruction(sliced_module_1.get(), "p.1"); EXPECT_NE(p_1, nullptr); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/hlo_slicer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/hlo_slicer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
25ccb5a1-cdaa-4877-a165-ec2b78f26bea
cpp
tensorflow/tensorflow
hlo_extractor
third_party/xla/xla/tools/hlo_extractor.cc
third_party/xla/xla/tools/hlo_extractor_test.cc
#include "xla/tools/hlo_extractor.h" #ifndef _WIN32 #include <unistd.h> #endif #include <cstdint> #include <deque> #include <memory> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/compilation_environments.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_verifier.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/test_utils.h" #include "tsl/platform/status.h" namespace xla { namespace { class ExtractionVisitor : public ConstDfsHloVisitorWithDefault { public: explicit ExtractionVisitor( const HloInstruction* root_instruction, absl::flat_hash_set<const HloInstruction*>* boundary, ExtractSelector extract_selector, ReplaceTypeSelector replace_type_selector) : root_instruction_(root_instruction), old_module_(root_instruction->GetModule()), module_(std::make_unique<HloModule>( "extracted", config_, std::make_unique<CompilationEnvironments>( old_module_->comp_envs()))), clone_context_(module_.get()), boundary_(boundary), extract_selector_(extract_selector), replace_type_selector_(replace_type_selector) { for (auto computation : old_module_->computations()) { old_computations_to_builders_.insert( {computation, std::make_unique<HloComputation::Builder>(computation->name())}); } for (auto computation : old_module_->computations()) { parameter_numbers_[computation] = 0; } } absl::Status HandleParameter(const HloInstruction* parameter) override { return ReplaceWithParameter(parameter); } absl::Status DefaultAction(const HloInstruction* hlo) override { if ((boundary_ != nullptr && boundary_->contains(hlo) > 0) || (extract_selector_ != nullptr && !extract_selector_(hlo))) { if (replace_type_selector_ != nullptr) { switch (replace_type_selector_(hlo)) { case ReplaceType::kReplaceConst: return ReplaceWithConstant(hlo); case ReplaceType::kReplaceParam: CHECK(hlo->parent() == root_instruction_->parent()) << "Replacing instructions at non-entry computation with " "parameters is not supported."; return ReplaceWithParameter(hlo); case ReplaceType::kReplaceZeroBroadcast: return ReplaceWithConstantBroadcast( hlo, ReplaceType::kReplaceZeroBroadcast); case ReplaceType::kReplaceRandomBroadcast: return ReplaceWithConstantBroadcast( hlo, ReplaceType::kReplaceRandomBroadcast); default: QCHECK(false) << "Unsupported replacement type"; } } return ReplaceWithParameter(hlo); } std::vector<HloInstruction*> new_operands; for (auto operand : hlo->operands()) { new_operands.push_back(clone_context_.GetInstruction(operand)); } auto instruction = hlo->CloneWithNewOperands(hlo->shape(), new_operands, &clone_context_); auto it = old_computations_to_builders_.find(hlo->parent()); CHECK(it != old_computations_to_builders_.end()); auto builder = it->second.get(); builder->AddInstruction(std::move(instruction)); if (hlo->IsRoot() && hlo != root_instruction_) { CHECK(clone_context_.FindComputation(hlo->parent()) == nullptr); auto new_computation = module_->AddEmbeddedComputation(builder->Build()); clone_context_.MapComputation(hlo->parent(), new_computation); } return absl::OkStatus(); } absl::Status FinishVisit(const HloInstruction* ) override { auto new_entry_computation = module_->AddEntryComputation( old_computations_to_builders_.at(root_instruction_->parent())->Build()); clone_context_.MapComputation(root_instruction_->parent(), new_entry_computation); for (auto computation : old_module_->MakeComputationPostOrder()) { for (auto old_instruction : computation->MakeInstructionPostOrder()) { if (auto new_instruction = clone_context_.FindInstruction(old_instruction)) { new_instruction->SetAndSanitizeName(old_instruction->name()); } } } for (HloInstruction* instruction : extra_created_instructions_) { module_->SetAndUniquifyInstrName(instruction, instruction->name()); } return absl::OkStatus(); } HloModule* module() { return module_.get(); } std::unique_ptr<HloModule> ConsumeModule() { return std::move(module_); } private: absl::Status ReplaceWithConstant(const HloInstruction* hlo) { absl::StatusOr<Literal> literal_status = MakeFakeLiteral(hlo->shape()); TF_CHECK_OK(literal_status.status()); auto new_const = HloInstruction::CreateConstant(std::move(literal_status.value())); clone_context_.MapInstruction(hlo, new_const.get()); auto it = old_computations_to_builders_.find(hlo->parent()); CHECK(it != old_computations_to_builders_.end()); auto builder = it->second.get(); builder->AddInstruction(std::move(new_const)); return absl::OkStatus(); } absl::Status ReplaceWithParameter(const HloInstruction* hlo) { CHECK(parameter_numbers_.contains(hlo->parent())); auto new_parameter = HloInstruction::CreateParameter( parameter_numbers_.at(hlo->parent())++, hlo->shape(), hlo->name()); clone_context_.MapInstruction(hlo, new_parameter.get()); CHECK(old_computations_to_builders_.contains(hlo->parent())); auto builder = old_computations_to_builders_[hlo->parent()].get(); builder->AddInstruction(std::move(new_parameter)); return absl::OkStatus(); } HloInstruction* ReplaceWithConstantBroadcastHelper( const Shape& shape, HloComputation::Builder* builder, ReplaceType replace_type) { if (shape.IsTuple()) { std::vector<HloInstruction*> tuple_operands; for (const auto& subshape : shape.tuple_shapes()) { tuple_operands.push_back(ReplaceWithConstantBroadcastHelper( subshape, builder, replace_type)); } auto zero_tuple = builder->AddInstruction(HloInstruction::CreateTuple(tuple_operands)); extra_created_instructions_.push_back(zero_tuple); return zero_tuple; } else { Shape constant_shape = ShapeUtil::MakeShape(shape.element_type(), {}); HloInstruction* constant_instruction; CHECK(replace_type == ReplaceType::kReplaceZeroBroadcast || replace_type == ReplaceType::kReplaceRandomBroadcast); if (replace_type == ReplaceType::kReplaceZeroBroadcast) { constant_instruction = builder->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(constant_shape.element_type()))); } else { absl::StatusOr<Literal> literal_status = MakeFakeLiteral(constant_shape); TF_CHECK_OK(literal_status.status()); constant_instruction = builder->AddInstruction( HloInstruction::CreateConstant(std::move(literal_status.value()))); } extra_created_instructions_.push_back(constant_instruction); auto broadcast_constant_instruction = builder->AddInstruction( HloInstruction::CreateBroadcast(shape, constant_instruction, {})); extra_created_instructions_.push_back(broadcast_constant_instruction); return broadcast_constant_instruction; } } absl::Status ReplaceWithConstantBroadcast(const HloInstruction* hlo, ReplaceType replace_type) { CHECK(replace_type == ReplaceType::kReplaceZeroBroadcast || replace_type == ReplaceType::kReplaceRandomBroadcast); CHECK(old_computations_to_builders_.contains(hlo->parent())); auto builder = old_computations_to_builders_[hlo->parent()].get(); HloInstruction* zero_broadcast = ReplaceWithConstantBroadcastHelper(hlo->shape(), builder, replace_type); clone_context_.MapInstruction(hlo, zero_broadcast); return absl::OkStatus(); } const HloInstruction* root_instruction_; HloModule* old_module_; HloModuleConfig config_; std::unique_ptr<HloModule> module_; HloCloneContext clone_context_; absl::flat_hash_map<const HloComputation*, std::unique_ptr<HloComputation::Builder>> old_computations_to_builders_; absl::flat_hash_map<const HloComputation*, int> parameter_numbers_; absl::flat_hash_set<const HloInstruction*>* boundary_; ExtractSelector extract_selector_; ReplaceTypeSelector replace_type_selector_; std::vector<HloInstruction*> extra_created_instructions_; }; void ComputeBoundary(const HloInstruction* root, int64_t limit, absl::flat_hash_set<const HloInstruction*>* boundary) { std::deque<const HloInstruction*> worklist; absl::flat_hash_map<const HloInstruction*, int64_t> visited; worklist.push_back(root); visited.emplace(root, 0); while (!worklist.empty()) { auto hlo = worklist.front(); worklist.pop_front(); int64_t hops = visited[hlo]; if (hops > limit) { boundary->insert(hlo); continue; } for (const HloInstruction* operand : hlo->operands()) { if (visited.count(operand)) { continue; } worklist.push_back(operand); visited.emplace(operand, hops + 1); } } } } std::unique_ptr<HloModule> ExtractModule( const HloInstruction* instruction, int64_t height, ExtractSelector extract_selector, ReplaceTypeSelector replace_type_selector, bool cross_computation) { QCHECK(height == -1 || !cross_computation) << "Boundary cannnot be calculated across the computations."; absl::flat_hash_set<const HloInstruction*> boundary; if (height != -1) { ComputeBoundary(instruction, height, &boundary); } ExtractionVisitor visitor(instruction, &boundary, extract_selector, replace_type_selector); TF_CHECK_OK(instruction->Accept(&visitor, true, false, cross_computation)); ExtractionVisitor cleanup_visitor( visitor.module()->entry_computation()->root_instruction(), nullptr, nullptr, nullptr); TF_CHECK_OK(visitor.module()->entry_computation()->root_instruction()->Accept( &cleanup_visitor, true, false, false)); HloVerifier verifier(false, true); TF_CHECK_OK(verifier.Run(cleanup_visitor.module()).status()); return cleanup_visitor.ConsumeModule(); } }
#include "xla/tools/hlo_extractor.h" #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = testing::opcode_matchers; using HloExtractorTest = HloTestBase; TEST_F(HloExtractorTest, ExtractTopLevel) { const std::string& hlo_string = R"( HloModule test ENTRY %entry { param.0 = f32[4]{0} parameter(0) negate = f32[4]{0} negate(f32[4]{0} param.0) ROOT exp = f32[4]{0} exponential(f32[4]{0} negate) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "exp")); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Exp(op::Negate(op::Parameter(0)))); } { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "exp"), 0); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Exp(op::Parameter(0))); } { auto extracted_module = ExtractModule( FindInstruction(hlo_module.get(), "negate"), 0); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Negate(op::Parameter(0))); } } TEST_F(HloExtractorTest, ExtractDag) { const std::string& hlo_string = R"( HloModule test ENTRY %entry { param.0 = f32[4]{0} parameter(0) tanh = f32[4]{0} tanh(f32[4]{0} param.0) negate = f32[4]{0} negate(f32[4]{0} tanh) exp = f32[4]{0} exponential(f32[4]{0} negate) ROOT add = f32[4]{0} add(f32[4]{0} negate, f32[4]{0} exp) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "exp")); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Exp(op::Negate(op::Tanh(op::Parameter(0))))); } { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), 0); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Parameter(0), op::Parameter(1))); } { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Negate(op::Parameter(0)), op::Exp(op::Negate(op::Parameter(0))))); } { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), 2); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Negate(op::Tanh(op::Parameter(0))), op::Exp(op::Negate(op::Tanh(op::Parameter(0)))))); } } TEST_F(HloExtractorTest, ExtractWithConstant) { const std::string& hlo_string = R"( HloModule test ENTRY %entry { p = f32[4]{0} parameter(0) tanh = f32[4]{0} tanh(p) c = f32[4]{0} constant({1, 2, 3, 4}) ROOT add = f32[4]{0} add(tanh, c) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), 0); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Parameter(0), op::Parameter(1))); } { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Tanh(op::Parameter(0)), op::Constant())); } } TEST_F(HloExtractorTest, ExtractFromMultipleComputation) { const std::string& hlo_string = R"( HloModule axpy_module calculate_alpha { c.1 = f32[] constant(1) c.2 = f32[] constant(2) add.0 = f32[] add(c.1, c.2) c.3 = f32[] constant(4) ROOT ret = f32[] subtract(add.0, c.3) } ENTRY axpy_computation { alpha = f32[] call(), to_apply=calculate_alpha broadcast = f32[10] broadcast(alpha), dimensions={} x = f32[10] parameter(0) ax = f32[10] multiply(broadcast, x) y = f32[10] parameter(1) ROOT add.1 = f32[10] add(ax, y) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* inst = FindInstruction(hlo_module.get(), "add.0"); EXPECT_THAT(inst, op::Add()); auto extract_selector = [&inst](const HloInstruction* hlo_inst) { return hlo_inst != inst; }; { auto replace_type_selector = [](const HloInstruction* hlo_inst) { return ReplaceType::kReplaceConst; }; auto extracted_module = ExtractModule(hlo_module->entry_computation()->root_instruction(), -1, extract_selector, replace_type_selector, true); EXPECT_EQ(extracted_module->computation_count(), 2); auto calculate_alpha_root_instruction = FindComputation(extracted_module.get(), "calculate_alpha") ->root_instruction(); EXPECT_THAT(calculate_alpha_root_instruction, op::Subtract(op::Constant(), op::Constant())); } { auto replace_type_selector = [](const HloInstruction* hlo_inst) { return ReplaceType::kReplaceZeroBroadcast; }; auto extracted_module = ExtractModule(hlo_module->entry_computation()->root_instruction(), -1, extract_selector, replace_type_selector, true); EXPECT_EQ(extracted_module->computation_count(), 2); auto calculate_alpha_root_instruction = FindComputation(extracted_module.get(), "calculate_alpha") ->root_instruction(); EXPECT_THAT(calculate_alpha_root_instruction, op::Subtract(op::Broadcast(op::Constant()), op::Constant())); } } TEST_F(HloExtractorTest, HloSelector) { const std::string& hlo_string = R"( HloModule axpy_module calculate_alpha { c.1 = f32[] constant(1) c.2 = f32[] constant(2) c.3 = f32[] add(c.1, c.2) c.4 = f32[] constant(4) ROOT ret = f32[] multiply(c.4, c.3) } ENTRY axpy_computation { p.0 = f32[10] parameter(0) p.1 = f32[10] parameter(1) add.0 = f32[10] add(p.0, p.1) alpha = f32[] call(), to_apply=calculate_alpha broadcast = f32[10] broadcast(alpha), dimensions={} p.2 = f32[10] parameter(2) y = f32[10] multiply(broadcast, p.2) x = f32[10] subtract(y, add.0) p.3 = f32[10] parameter(3) ROOT add = f32[10] add(x, p.3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* inst = FindInstruction(hlo_module.get(), HloOpcode::kSubtract); EXPECT_NE(inst, nullptr); EXPECT_THAT(inst, op::Subtract(op::Multiply(), op::Add())); { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kCall; }; auto extracted_module = ExtractModule(inst, -1, hlo_selector); EXPECT_EQ(extracted_module->computation_count(), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Subtract(op::Multiply(op::Broadcast(op::Parameter()), op::Parameter()), op::Add(op::Parameter(), op::Parameter()))); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kBroadcast; }; auto extracted_module = ExtractModule(inst, 2, hlo_selector); EXPECT_EQ(extracted_module->computation_count(), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Subtract(op::Multiply(op::Parameter(), op::Parameter()), op::Add(op::Parameter(), op::Parameter()))); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kBroadcast; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceConst; }; auto extracted_module = ExtractModule(inst, 2, hlo_selector, replace_type_selector); EXPECT_EQ(extracted_module->computation_count(), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Subtract(op::Multiply(op::Constant(), op::Parameter()), op::Add(op::Parameter(), op::Parameter()))); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kAdd; }; auto extracted_module = ExtractModule(inst, -1, hlo_selector); EXPECT_EQ(extracted_module->computation_count(), 2); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Subtract(op::Multiply(), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kSubtract; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceConst; }; auto extracted_module = ExtractModule(hlo_module->entry_computation()->root_instruction(), 2, hlo_selector, replace_type_selector); EXPECT_EQ(extracted_module->computation_count(), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Constant(), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { if (hlo_inst->opcode() != HloOpcode::kBroadcast && hlo_inst->opcode() != HloOpcode::kAdd) { return true; } return false; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { if (hlo_inst->opcode() == HloOpcode::kBroadcast) { return ReplaceType::kReplaceConst; } return ReplaceType::kReplaceParam; }; auto extracted_module = ExtractModule(inst, 2, hlo_selector, replace_type_selector); EXPECT_EQ(extracted_module->computation_count(), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Subtract(op::Multiply(op::Constant(), op::Parameter()), op::Parameter())); } } TEST_F(HloExtractorTest, ReplaceTupleWithConstant) { const std::string& hlo_string = R"( HloModule test ENTRY %entry { param.0 = f32[4]{0} parameter(0) tuple.0 = (f32[4]{0}, f32[4]{0}) rng-bit-generator(f32[4]{0} param.0), algorithm=rng_default negate = f32[4]{0} negate(f32[4]{0} param.0) tuple.1 = ((f32[4]{0}, f32[4]{0}), f32[4]{0}) tuple(tuple.0, negate) element = f32[4]{0} get-tuple-element(((f32[4]{0}, f32[4]{0}), f32[4]{0}) tuple.1), index=1 ROOT add = f32[4]{0} add(element, param.0) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kTuple; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceConst; }; auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), -1, hlo_selector, replace_type_selector); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::GetTupleElement(op::Constant()), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kGetTupleElement; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceZeroBroadcast; }; auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), -1, hlo_selector, replace_type_selector); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Broadcast(), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kGetTupleElement; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceRandomBroadcast; }; auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), -1, hlo_selector, replace_type_selector); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Broadcast(), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kTuple; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceZeroBroadcast; }; auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), -1, hlo_selector, replace_type_selector); EXPECT_THAT( extracted_module->entry_computation()->root_instruction(), op::Add(op::GetTupleElement(op::Tuple(op::Tuple(), op::Broadcast())), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kTuple; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceRandomBroadcast; }; auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), -1, hlo_selector, replace_type_selector); EXPECT_THAT( extracted_module->entry_computation()->root_instruction(), op::Add(op::GetTupleElement(op::Tuple(op::Tuple(), op::Broadcast())), op::Parameter())); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/hlo_extractor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/hlo_extractor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
01655d2e-ef4c-487f-b26b-7a6ff14cd974
cpp
tensorflow/tensorflow
hlo_expand
third_party/xla/xla/tools/hlo_expand.cc
third_party/xla/xla/tools/tests/hlo_expand_test.cc
#include "xla/tools/hlo_expand.h" #include <vector> #include "xla/hlo/pass/hlo_pass_pipeline.h" #include "xla/service/batchnorm_expander.h" #include "xla/service/cholesky_expander.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_verifier.h" #include "xla/service/rng_bit_generator_expander.h" #include "xla/service/rng_expander.h" #include "xla/service/sharding_propagation.h" #include "xla/service/spmd/stateful_rng_spmd_partitioner.h" #include "xla/service/triangular_solve_expander.h" #include "xla/tsl/util/command_line_flags.h" #include "xla/xla_data.pb.h" namespace xla { void AddPassesToPipeline(HloExpandConfig& config, HloPassPipeline& pipeline, const HloModuleConfig& hlo_module_config) { if (config.batch_norm_grad_expander || config.batch_norm_inference_expander || config.batch_norm_training_expander) { pipeline.AddPass<xla::BatchNormExpander>( config.batch_norm_training_expander, config.batch_norm_inference_expander, config.batch_norm_grad_expander); } if (config.cholesky_expander) { pipeline.AddPass<xla::CholeskyExpander>(); } if (config.rng_expander) { pipeline.AddPass<xla::RngExpander>(); } if (config.rng_bit_generator_philox_expander) { pipeline.AddPass<xla::RngBitGeneratorExpander>( xla::RandomAlgorithm::RNG_PHILOX); } if (config.rng_bit_generator_three_fry_expander) { pipeline.AddPass<xla::RngBitGeneratorExpander>( xla::RandomAlgorithm::RNG_THREE_FRY); } if (config.triangular_solve_expander) { pipeline.AddPass<xla::TriangularSolveExpander>(); } if (config.spmd_expander) { pipeline.AddPass<ShardingPropagation>( true, false, hlo_module_config.allow_spmd_sharding_propagation_to_output(), hlo_module_config.allow_spmd_sharding_propagation_to_parameters()); pipeline.AddPass<spmd::StatefulRngSpmdPartitioner>( hlo_module_config.num_partitions(), hlo_module_config.replica_count(), hlo_module_config.debug_options() .xla_gpu_threshold_for_windowed_einsum_mib()); } if (config.verify_hlo) { pipeline.AddPass<xla::HloVerifier>(false, false); } } std::vector<tsl::Flag> GetFlags(HloExpandConfig& config) { return { tsl::Flag("h", &config.help, "Alias of --help"), tsl::Flag("help", &config.help, "Display available options"), tsl::Flag( "input_format", &config.input_format, "The format of the input file. If this flag is not specified, it's" "inferred from the file extension instead. Valid values:\n " "* hlo|txt : HLO textual format\n" "* pb : xla::HloProto in binary proto format\n" "* pbtxt : xla::HloProto in text proto format"), tsl::Flag("o", &config.output_file, "Alias of --output_file="), tsl::Flag("output_file", &config.output_file, "Full output file path"), tsl::Flag("output_format", &config.output_format, "The format of the output file. Defaults to input_format. " "Valid values:\n" "* hlo|txt : HLO textual format\n" "* pb : xla::HloProto in binary proto format\n" "* pbtxt : xla::HloProto in text proto format"), tsl::Flag("batch_norm_expander", &config.batch_norm_expander, "Overrides and expands batch_norm_grad, batch_norm_inference, " "and batch_norm_training ops"), tsl::Flag("batch_norm_grad_expander", &config.batch_norm_grad_expander, "Expands batch_norm_grad op"), tsl::Flag("batch_norm_inference_expander", &config.batch_norm_inference_expander, "Expands batch_norm_inference_grad op"), tsl::Flag("batch_norm_training_expander", &config.batch_norm_training_expander, "Expands batch_norm_training_grad op"), tsl::Flag("cholesky_expander", &config.cholesky_expander, "Expands cholesky op"), tsl::Flag("spmd_expander", &config.spmd_expander, "Expands SPMD sharding"), tsl::Flag("expand_all", &config.expand_all, "Overrides and expands all supported passes below"), tsl::Flag("rng_expander", &config.rng_expander, "Expands rng op"), tsl::Flag( "rng_bit_generator_expander", &config.rng_bit_generator_expander, "Overrides and expands rng_bit_generator op on all prng algorithms"), tsl::Flag("rng_bit_generator_philox_expander", &config.rng_bit_generator_philox_expander, "Expands rng_bit_generator op using philox prng algorithm"), tsl::Flag("rng_bit_generator_three_fry_expander", &config.rng_bit_generator_three_fry_expander, "Expands rng_bit_generator op using three_fry prng algorithm"), tsl::Flag("triangular_solve_expander", &config.triangular_solve_expander, "Expands triangular_solve op"), tsl::Flag("verify_hlo", &config.verify_hlo, "Run HLO verifier after passes"), }; } void ParseCompoundFlags(HloExpandConfig& config) { config.batch_norm_grad_expander |= config.expand_all || config.batch_norm_expander; config.batch_norm_inference_expander |= config.expand_all || config.batch_norm_expander; config.batch_norm_training_expander |= config.expand_all || config.batch_norm_expander; config.cholesky_expander |= config.expand_all; config.rng_bit_generator_philox_expander |= config.expand_all || config.rng_bit_generator_expander; config.rng_bit_generator_three_fry_expander |= config.expand_all || config.rng_bit_generator_expander; config.rng_expander |= config.expand_all; config.triangular_solve_expander |= config.expand_all; } }
#include <string> #include <vector> #include <gmock/gmock.h> #include "tsl/platform/path.h" #include "tsl/platform/subprocess.h" #include "tsl/platform/test.h" namespace xla { namespace { class HloExpandTest : public ::testing::Test { protected: void HloOpt(std::vector<std::string>& additional_flags) { std::string hlo_opt_bin = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "hlo-expand"); tsl::SubProcess proc; std::vector<std::string> argv = {hlo_opt_bin}; argv.insert(argv.end(), additional_flags.begin(), additional_flags.end()); proc.SetProgram(hlo_opt_bin, argv); proc.SetChannelAction(tsl::CHAN_STDOUT, tsl::ACTION_PIPE); proc.SetChannelAction(tsl::CHAN_STDERR, tsl::ACTION_PIPE); EXPECT_TRUE(proc.Start()); stdout_output_ = stderr_output_ = ""; int status = proc.Communicate(nullptr, &stdout_output_, &stderr_output_); #if defined(_WIN32) || defined(_WIN64) exited_normally_ = (status == 0); exit_status_ = status; #else exited_normally_ = WIFEXITED(status); exit_status_ = exited_normally_ ? WEXITSTATUS(status) : -1; #endif } std::string stdout_output_; std::string stderr_output_; bool exited_normally_ = false; int exit_status_ = -1; }; TEST_F(HloExpandTest, CholeskyHlo) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "cholesky.hlo"); std::vector<std::string> additional_flags = {"--input_format=hlo", hlo_path}; HloOpt(additional_flags); const std::string& expected_hlo_string = R"(HloModule main, entry_computation_layout={()->f64[3,3]{1,0}} ENTRY %main.3 () -> f64[3,3] { %constant.1 = f64[3,3]{1,0} constant({ { 1, 2, 3 }, { 2, 20, 26 }, { 3, 26, 70 } }) ROOT %cholesky.2 = f64[3,3]{1,0} cholesky(f64[3,3]{1,0} %constant.1), lower=true })"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 0); EXPECT_THAT(stdout_output_, testing::HasSubstr(expected_hlo_string)); } TEST_F(HloExpandTest, SpmdHlo) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "spmd.hlo"); std::vector<std::string> additional_flags = {"--spmd_expander", hlo_path}; HloOpt(additional_flags); const std::string& expected_hlo_string = R"(HloModule module, entry_computation_layout={(f32[24,64]{1,0}, f32[39296,64]{1,0})->f32[24,19648]{1,0}}, num_partitions=2 ENTRY %entry_spmd (param: f32[24,64], param.1: f32[39296,64]) -> f32[24,19648] { %param = f32[24,64]{1,0} parameter(0), sharding={replicated} %lhs.copy.1 = f32[24,64]{1,0} copy(f32[24,64]{1,0} %param) %param.1 = f32[39296,64]{1,0} parameter(1), sharding={replicated} %constant = s32[2]{0} constant({0, 19648}) %partition-id = u32[] partition-id() %dynamic-slice = s32[1]{0} dynamic-slice(s32[2]{0} %constant, u32[] %partition-id), dynamic_slice_sizes={1} %reshape = s32[] reshape(s32[1]{0} %dynamic-slice) %constant.1 = s32[] constant(0) %dynamic-slice.1 = f32[19648,64]{1,0} dynamic-slice(f32[39296,64]{1,0} %param.1, s32[] %reshape, s32[] %constant.1), dynamic_slice_sizes={19648,64} %rhs.copy.1 = f32[19648,64]{1,0} copy(f32[19648,64]{1,0} %dynamic-slice.1) ROOT %dot.1 = f32[24,19648]{1,0} dot(f32[24,64]{1,0} %lhs.copy.1, f32[19648,64]{1,0} %rhs.copy.1), lhs_contracting_dims={1}, rhs_contracting_dims={1} })"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 0); EXPECT_THAT(stdout_output_, testing::HasSubstr(expected_hlo_string)); } TEST_F(HloExpandTest, CholeskyExpanderHlo) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "cholesky.hlo"); std::vector<std::string> additional_flags = {"--input_format=hlo", hlo_path, "--expand_all"}; HloOpt(additional_flags); const std::string& expected_hlo_string = "%xla.cholesky_f64"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 0); EXPECT_THAT(stdout_output_, testing::HasSubstr(expected_hlo_string)); } TEST_F(HloExpandTest, InvalidArgc) { std::vector<std::string> additional_flags = {"--input_format=hlo", "foo", "bar", "baz"}; HloOpt(additional_flags); const std::string& expected_string = "Cannot parse more than one argument. See usage below:"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, InvalidInputFileExtension) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "foo.bar"); std::vector<std::string> additional_flags = {hlo_path}; HloOpt(additional_flags); const std::string& expected_string = "input_format must be specified as [hlo|pb|pbtxt|txt]."; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, InvalidInputFormat) { std::vector<std::string> additional_flags = {"--input_format=foo"}; HloOpt(additional_flags); const std::string& expected_string = "input_format must be specified as [hlo|pb|pbtxt|txt]."; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, InvalidOutputFileExtension) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "cholesky.hlo"); std::string output_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "foo.bar"); std::vector<std::string> additional_flags = {"--input_format=", hlo_path, "--output_file=" + output_path}; HloOpt(additional_flags); const std::string& expected_string = "output_format must be specified as [hlo|pb|pbtxt]."; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, InvalidOutputFormat) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "cholesky.hlo"); std::vector<std::string> additional_flags = {"--input_format=", hlo_path, "--output_format=foo"}; HloOpt(additional_flags); const std::string& expected_string = "output_format must be specified as [hlo|pb|pbtxt]."; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, InvalidFile) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "foo.bar"); std::vector<std::string> additional_flags = {"--input_format=hlo", hlo_path}; HloOpt(additional_flags); const std::string& expected_string = "Try: hlo-expand --help"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, UnsupportedOutputFormat) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "cholesky.hlo"); std::vector<std::string> additional_flags = {"--input_format=hlo", "--output_format=pb", hlo_path}; HloOpt(additional_flags); const std::string& expected_string = "Printing to stdout must specify supported " "output_format=[hlo|pbtxt|txt]."; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, VerificationFailure) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "invalid_concat.hlo"); std::vector<std::string> additional_flags = {"--verify_hlo", hlo_path}; HloOpt(additional_flags); const std::string& expected_string = "Cannot concatenate arrays that differ in dimensions"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/hlo_expand.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/tests/hlo_expand_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
173476fa-45cf-4802-805d-da921a8259f2
cpp
tensorflow/tensorflow
hlo_module_loader
third_party/xla/xla/tools/hlo_module_loader.cc
third_party/xla/xla/tools/hlo_module_loader_test.cc
#include "xla/tools/hlo_module_loader.h" #include <functional> #include <memory> #include <string> #include <string_view> #include <utility> #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "re2/re2.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "tsl/platform/env.h" #include "tsl/platform/logging.h" #include "tsl/platform/path.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" namespace xla { namespace { absl::Status OverrideConfig(const hlo_module_loader_details::Config& ovr_config, HloModuleConfig* config) { config->set_replica_count(ovr_config.num_replicas); config->set_num_partitions(ovr_config.num_partitions); return absl::OkStatus(); } } std::string StripLogHeaders(std::string_view hlo_string) { static RE2* matcher = new RE2( "[IWEF]\\d{4} " "\\d{2}:\\d{2}:\\d{2}\\.\\d+\\s+\\d+\\s+[^:]+:\\d+\\]\\s?(.*)"); std::string_view matches[4]; std::vector<std::string> lines = absl::StrSplit(hlo_string, '\n'); for (auto& line : lines) { if (matcher->Match(line, 0, line.size(), RE2::ANCHOR_START, matches, 4)) { line = std::string(matches[1]); } } return absl::StrJoin(lines, "\n", [](std::string* out, const std::string& line) { absl::StrAppend(out, line); }); } absl::StatusOr<std::unique_ptr<HloModule>> LoadModuleFromData( const std::string& data, std::string_view format, const hlo_module_loader_details::Config& ovr_config, const std::function<void(HloModuleConfig*)>& config_modifier_hook, BufferAssignmentProto* buffer_assignment_proto, bool fill_missing_layouts) { DebugOptions debug_options = GetDebugOptionsFromFlags(); std::unique_ptr<HloModule> module; if (format == "hlo" || format == "txt") { std::string hlo_string = StripLogHeaders(data); HloModuleConfig config; config.set_debug_options(debug_options); TF_RETURN_IF_ERROR(OverrideConfig(ovr_config, &config)); if (config_modifier_hook) { config_modifier_hook(&config); } HloParserOptions options; options.set_fill_missing_layouts(fill_missing_layouts); TF_ASSIGN_OR_RETURN( module, ParseAndReturnUnverifiedModule(hlo_string, config, options)); } else { HloSnapshot proto; if (format == "pb") { if (!proto.ParseFromString(data) && !proto.mutable_hlo()->ParseFromString(data) && !proto.mutable_hlo()->mutable_hlo_module()->ParseFromString(data)) { return InvalidArgument("Failed to parse input as HLO protobuf binary"); } if (buffer_assignment_proto != nullptr) { if (proto.hlo().has_buffer_assignment()) { *buffer_assignment_proto = proto.hlo().buffer_assignment(); } else { return InvalidArgument( "Expected buffer assignment in HLO protobuf binary."); } } } else if (format == "pbtxt") { if (!tsl::protobuf::TextFormat::ParseFromString(data, &proto) && !tsl::protobuf::TextFormat::ParseFromString(data, proto.mutable_hlo()) && !tsl::protobuf::TextFormat::ParseFromString( data, proto.mutable_hlo()->mutable_hlo_module())) { return InvalidArgument("Failed to parse input as HLO protobuf text"); } } else { return InvalidArgument( "Invalid format from file extension: '%s'. Expected: hlo, txt, pb, " "or pbtxt", format); } TF_ASSIGN_OR_RETURN(HloModuleConfig config, HloModule::CreateModuleConfigFromProto( proto.hlo().hlo_module(), debug_options)); TF_RETURN_IF_ERROR(OverrideConfig(ovr_config, &config)); if (config_modifier_hook) { config_modifier_hook(&config); } TF_ASSIGN_OR_RETURN( module, HloModule::CreateFromProto(proto.hlo().hlo_module(), config)); } return std::move(module); } absl::StatusOr<std::unique_ptr<HloModule>> LoadModuleFromFile( const std::string& path, std::string format, const hlo_module_loader_details::Config& ovr_config, const std::function<void(HloModuleConfig*)>& config_modifier_hook, BufferAssignmentProto* buffer_assignment_proto, bool fill_missing_layouts) { std::string data; if (format.empty()) { format = std::string(tsl::io::Extension(path)); } TF_RETURN_IF_ERROR(tsl::ReadFileToString(tsl::Env::Default(), path, &data)); return LoadModuleFromData(data, format, ovr_config, config_modifier_hook, buffer_assignment_proto, fill_missing_layouts); } absl::StatusOr<std::unique_ptr<RunHloModuleIterationLiterals>> LoadInputFromData(const std::string& data, std::string_view format) { HloSnapshot proto; if (format == "pb") { if (!proto.ParseFromString(data) && !proto.mutable_hlo()->ParseFromString(data) && !proto.mutable_hlo()->mutable_hlo_module()->ParseFromString(data)) { return InvalidArgument("Failed to parse input as HLO protobuf binary"); } } else if (format == "pbtxt") { if (!tsl::protobuf::TextFormat::ParseFromString(data, &proto) && !tsl::protobuf::TextFormat::ParseFromString(data, proto.mutable_hlo()) && !tsl::protobuf::TextFormat::ParseFromString( data, proto.mutable_hlo()->mutable_hlo_module())) { return InvalidArgument("Failed to parse input as HLO protobuf text"); } } else { return InvalidArgument( "Invalid format from file extension: '%s'. Expected: pb, " "or pbtxt", format); } auto iteration_literals_proto = std::make_unique<RunHloModuleIterationLiterals>(); for (const auto& i : proto.arguments()) { *iteration_literals_proto->add_arguments() = i; } return std::move(iteration_literals_proto); } absl::StatusOr<std::unique_ptr<RunHloModuleIterationLiterals>> LoadInputFromFile(const std::string& path, std::string format) { std::string data; if (format.empty()) { format = std::string(tsl::io::Extension(path)); } TF_RETURN_IF_ERROR(tsl::ReadFileToString(tsl::Env::Default(), path, &data)); return LoadInputFromData(data, format); } }
#include "xla/tools/hlo_module_loader.h" #include <string> #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/test.h" namespace xla { namespace { class HloModuleLoaderTest : public HloTestBase {}; TEST_F(HloModuleLoaderTest, StripsLogHeaders) { const std::string& hlo_string = R"( I0521 12:04:45.883483 1509 service.cc:186] HloModule test_log_stripping I0521 12:04:45.883483 1509 service.cc:186] I0521 12:04:45.883483 1509 service.cc:186] ENTRY entry { I0521 12:04:45.883483 1509 service.cc:186] p0 = f32[4]{0} parameter(0) I0521 12:04:45.883483 1509 service.cc:186] p1 = f32[4]{0} parameter(1) I0521 12:04:45.883483 1509 service.cc:186] add = f32[4]{0} add(p0, p1) I0521 12:04:45.883483 1509 service.cc:186] ROOT rooty = (f32[4]{0}, f32[4]{0}) tuple(p1, add) I0521 12:04:45.883483 1509 service.cc:186] } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, LoadModuleFromData(hlo_string, "txt")); EXPECT_NE(FindInstruction(hlo_module.get(), "p0"), nullptr); EXPECT_NE(FindInstruction(hlo_module.get(), "p1"), nullptr); EXPECT_NE(FindInstruction(hlo_module.get(), "add"), nullptr); EXPECT_NE(FindInstruction(hlo_module.get(), "rooty"), nullptr); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/hlo_module_loader.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/hlo_module_loader_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
60b3f1ce-5ea1-464a-9c6d-070957e277da
cpp
tensorflow/tensorflow
hlo_bisect_state
third_party/xla/xla/tools/hlo_bisect/hlo_bisect_state.cc
third_party/xla/xla/tools/hlo_bisect/hlo_bisect_state_test.cc
#include "xla/tools/hlo_bisect/hlo_bisect_state.h" #include <iterator> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_dce.h" #include "xla/tests/test_utils.h" #include "xla/util.h" namespace xla { namespace bisect { namespace { std::vector<HloInstruction*> GetModifiedInstructionPostOrder( HloComputation* computation) { std::vector<HloInstruction*> instructions( computation->parameter_instructions().begin(), computation->parameter_instructions().end()); absl::c_copy_if(computation->MakeInstructionPostOrder(), std::back_inserter(instructions), [&](const HloInstruction* instr) { return instr->opcode() != HloOpcode::kParameter; }); return instructions; } absl::Status MorphModuleWithOutputs(HloModule* module, absl::Span<HloInstruction* const> outputs) { HloComputation* entry_computation = module->entry_computation(); HloInstruction* new_root = outputs.size() == 1 ? outputs[0] : entry_computation->AddInstruction( HloInstruction::CreateTuple(outputs)); entry_computation->set_root_instruction(new_root, true); *module->mutable_entry_computation_layout() = module->compute_computation_layout(); HloDCE dce; absl::StatusOr<bool> dce_result = dce.Run(module); return dce_result.status(); } absl::Status MorphModuleWithInstructions( HloModule* module, absl::Span<HloInstruction* const> instructions) { ConstHloInstructionSet in_range_instructions(instructions.begin(), instructions.end()); auto keep_result = [&](const HloInstruction* instruction) { return instruction->opcode() != HloOpcode::kParameter && !absl::c_any_of(instruction->users(), [&](const HloInstruction* user) { return in_range_instructions.count(user) != 0; }); }; std::vector<HloInstruction*> outputs; absl::c_copy_if(instructions, std::back_inserter(outputs), keep_result); return MorphModuleWithOutputs(module, outputs); } absl::Status MorphModuleWithInstructions(HloModule* module, size_t num_instructions) { std::vector<HloInstruction*> ordered_instructions = GetModifiedInstructionPostOrder(module->entry_computation()); HloInstruction* const* instructions_begin = &ordered_instructions.front(); return MorphModuleWithInstructions( module, absl::MakeSpan(instructions_begin, num_instructions)); } absl::Status MorphModuleWithLiterals( HloModule* module, absl::flat_hash_map<std::string, Literal> literal_map) { HloComputation* entry_computation = module->entry_computation(); absl::flat_hash_map<HloInstruction*, Literal> replace_map; for (HloInstruction* instruction : entry_computation->instructions()) { auto it = literal_map.find(instruction->name()); if (it != literal_map.end()) { replace_map.emplace(instruction, std::move(it->second)); } } for (auto& [instruction, literal] : replace_map) { if (!instruction->IsDead()) { HloInstruction* new_instruction = entry_computation->AddInstruction( HloInstruction::CreateConstant(std::move(literal))); absl::Status replace_status = entry_computation->ReplaceInstruction(instruction, new_instruction); TF_RETURN_IF_ERROR(replace_status); } } xla::HloDCE dce; absl::StatusOr<bool> dce_status = dce.Run(module); return dce_status.status(); } bool InstructionNotReplaceableWithConstant(HloInstruction* instruction) { return instruction->shape().is_dynamic() || instruction->opcode() == HloOpcode::kConstant || instruction->opcode() == HloOpcode::kTuple || instruction->opcode() == HloOpcode::kParameter; } } absl::StatusOr<bool> HloBisectState::ShouldProcess() { return RunModule(*module_); } absl::StatusOr<bool> HloBisectState::TrimEntryComputation() { bool changed_in_loop = false; bool changed = false; for (int iter = 0; changed || iter < 2; iter++) { if (iter % 2 == 0) { VLOG(2) << "Trimming by outputs, iteration " << iter; TF_ASSIGN_OR_RETURN(changed, TrimByOutputs()); } else { VLOG(2) << "Trimming by instructions, iteration " << iter; TF_ASSIGN_OR_RETURN(changed, TrimByInstructions()); } changed_in_loop |= changed; } VLOG(2) << "Trimming by replacing instructions with literals"; TF_ASSIGN_OR_RETURN(changed, TrimByUsingConstants()); VLOG(2) << "Final module: " << module_->ToString(); return changed || changed_in_loop; } std::unique_ptr<xla::HloModule>&& HloBisectState::GetResult() { return std::move(module_); } absl::StatusOr<bool> HloBisectState::RunModule(const HloModule& module) { VLOG(3) << "Modified module: " << module.ToString(); absl::StatusOr<bool> bug_result = bug_checker_->Run(module); TF_RETURN_IF_ERROR(bug_result.status()); VLOG(3) << "Bug checker result: " << bug_result.value(); if (!bug_result.value()) { for (HloInstruction* instr : module.entry_computation()->instructions()) { foldable_instructions_.emplace(instr->name()); } for (auto& [key, value] : bug_checker_->GetResults()) { foldable_instructions_values_[key] = std::move(value); } } return bug_result; } absl::StatusOr<bool> HloBisectState::TrimByOutputs() { HloInstruction* root_instruction = module_->entry_computation()->root_instruction(); if (root_instruction->opcode() != HloOpcode::kTuple || root_instruction->operand_count() < 2) { return false; } auto run_modified = [&](int64_t start, int64_t end) -> absl::StatusOr<bool> { std::unique_ptr<HloModule> new_module = module_->Clone(""); HloInstruction* const* new_operands = new_module->entry_computation()->root_instruction()->operands().begin(); TF_RETURN_IF_ERROR(MorphModuleWithOutputs( new_module.get(), absl::MakeSpan(new_operands + start, end - start + 1))); return RunModule(*new_module); }; int64_t bisect_low = 0; int64_t bisect_high = root_instruction->operand_count() - 1; while (bisect_low < bisect_high) { int64_t cur = bisect_low + (bisect_high - bisect_low) / 2; VLOG(2) << "Number of outputs: " << (cur - bisect_low + 1) << " [" << bisect_low << ".." << cur << "]"; TF_ASSIGN_OR_RETURN(bool has_bug, run_modified(bisect_low, cur)); if (has_bug) { bisect_high = cur; } else { TF_ASSIGN_OR_RETURN(has_bug, run_modified(cur + 1, bisect_high)); if (has_bug) { bisect_low = cur + 1; } else { break; } } } bool changed = (bisect_high - bisect_low) < (root_instruction->operand_count() - 1); if (changed) { TF_RETURN_IF_ERROR(MorphModuleWithOutputs( module_.get(), absl::MakeSpan(root_instruction->operands().begin() + bisect_low, bisect_high - bisect_low + 1))); TF_RETURN_IF_ERROR(ExpectModuleIsBuggy()); } return changed; } absl::StatusOr<bool> HloBisectState::TrimByInstructions() { HloComputation* computation = module_->entry_computation(); int64_t upper_bound = computation->instruction_count() - computation->root_instruction()->shape().IsTuple(); int64_t bisect_low = computation->num_parameters() - 1; int64_t bisect_high = upper_bound; while (bisect_low + 1 < bisect_high) { int64_t cur = bisect_low + (bisect_high - bisect_low) / 2; VLOG(2) << "Number of instructions: " << cur << " (of " << computation->instruction_count() << ")"; std::unique_ptr<HloModule> new_module = module_->Clone(""); TF_RETURN_IF_ERROR(MorphModuleWithInstructions(new_module.get(), cur)); TF_ASSIGN_OR_RETURN(bool has_bug, RunModule(*new_module)); if (has_bug) { bisect_high = cur; } else { bisect_low = cur; } } if (bisect_high == computation->num_parameters()) { return Internal( "The checker fails on an empty computation! Something is not right. " "Can't bisect."); } bool changed = bisect_high < upper_bound; if (changed) { TF_RETURN_IF_ERROR(MorphModuleWithInstructions(module_.get(), bisect_high)); TF_RETURN_IF_ERROR(ExpectModuleIsBuggy()); } return changed; } absl::StatusOr<bool> HloBisectState::TrimByUsingConstants() { absl::flat_hash_map<std::string, Literal> literal_map; int64_t random_literals_count = 0; for (HloInstruction* instr : module_->entry_computation()->instructions()) { if (InstructionNotReplaceableWithConstant(instr)) { continue; } if (foldable_instructions_values_.contains(instr->name())) { auto it = foldable_instructions_values_.extract(instr->name()); literal_map.insert(std::move(it)); } else if (foldable_instructions_.contains(instr->name())) { absl::StatusOr<Literal> literal_status = MakeFakeLiteral(instr->shape()); TF_RETURN_IF_ERROR(literal_status.status()); literal_map[instr->name()] = std::move(literal_status).value(); ++random_literals_count; } } VLOG(2) << "Number of literals: " << literal_map.size() << " (random: " << random_literals_count << ")"; std::unique_ptr<HloModule> new_module = module_->Clone(""); TF_RETURN_IF_ERROR( MorphModuleWithLiterals(new_module.get(), std::move(literal_map))); TF_ASSIGN_OR_RETURN(bool has_bug, RunModule(*new_module)); if (has_bug) { std::swap(module_, new_module); } return has_bug; } absl::Status HloBisectState::ExpectModuleIsBuggy() { TF_ASSIGN_OR_RETURN(bool has_bug, RunModule(*module_)); if (has_bug) { return absl::OkStatus(); } const int retry_count = 5; int bug_count = 0; for (int i = 0; i < retry_count; i++) { TF_ASSIGN_OR_RETURN(has_bug, bug_checker_->Run(*module_)); if (has_bug) { bug_count++; } } if (bug_count != 0) { return InternalStrCat("The checker is non deterministic! (only ", bug_count, " failures seen in ", (retry_count + 1), " runs)"); } return Internal("We \"lost\" the bug while bisecting!"); } } }
#include "xla/tools/hlo_bisect/hlo_bisect_state.h" #include <initializer_list> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace bisect { namespace { namespace m = match; using HloBisectStateTest = HloTestBase; class TestBugSearch : public BugCheckerInterface { public: TestBugSearch(std::initializer_list<HloOpcode> opcodes) : opcodes_(opcodes) {} absl::StatusOr<bool> Run(const HloModule& module) override { auto has_opcode = [&](HloOpcode opcode) { return absl::c_any_of(module.entry_computation()->instructions(), [opcode](const HloInstruction* instr) { return instr->opcode() == opcode; }); }; return absl::c_all_of(opcodes_, has_opcode); } absl::flat_hash_map<std::string, Literal> GetResults() override { return {}; } private: std::vector<HloOpcode> opcodes_; }; Literal CreateLiteral(float value) { Literal result = Literal::CreateFromShape(ShapeUtil::MakeShape(F32, {})); result.PopulateWithValue(value); return result; } TEST_F(HloBisectStateTest, TrimByOutputs) { const char* kModuleStr = R"( HloModule test_module ENTRY test_computation { p1 = s32[8] parameter(0) p2 = s32[8] parameter(1) a = s32[8] add(p1, p2) b = s32[8] multiply(p1, p2) c = s32[8] subtract(p1, p2) ROOT sum = tuple(a, b, c) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); TestBugSearch bug_checker({HloOpcode::kMultiply}); HloBisectState bisect(std::move(module), &bug_checker); TF_ASSERT_OK_AND_ASSIGN(bool changed, bisect.TrimEntryComputation()); EXPECT_TRUE(changed); auto reduced_module = std::move(bisect).GetResult(); EXPECT_THAT(reduced_module->entry_computation()->root_instruction(), GmockMatch(m::Multiply(m::Parameter(0), m::Parameter(1)))); } TEST_F(HloBisectStateTest, TrimByInstructions) { const char* kModuleStr = R"( HloModule axpy_module ENTRY axpy_computation { alpha = f32[] parameter(0) broadcast = f32[10] broadcast(alpha), dimensions={} x = f32[10] parameter(1) ax = f32[10] multiply(broadcast, x) y = f32[10] parameter(2) ROOT add = f32[10] add(ax, y) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); TestBugSearch bug_checker({HloOpcode::kMultiply, HloOpcode::kBroadcast}); HloBisectState bisect(std::move(module), &bug_checker); TF_ASSERT_OK_AND_ASSIGN(bool changed, bisect.TrimEntryComputation()); EXPECT_TRUE(changed); auto reduced_module = std::move(bisect).GetResult(); EXPECT_THAT( reduced_module->entry_computation()->root_instruction(), GmockMatch(m::Multiply(m::Broadcast(m::Parameter(0)), m::Parameter(1)))); } TEST_F(HloBisectStateTest, TrimByUsingRandomConstants) { const char* kModuleStr = R"( HloModule test_module ENTRY test_computation { p1 = f32[4] parameter(0) p2 = f32[4] parameter(1) a = f32[4] multiply(p1, p2) b = f32[4] add(p1, p2) ROOT result = f32[4] power(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); TestBugSearch bug_checker({HloOpcode::kPower}); HloBisectState bisect(std::move(module), &bug_checker); TF_ASSERT_OK_AND_ASSIGN(bool changed, bisect.TrimEntryComputation()); EXPECT_TRUE(changed); auto reduced_module = std::move(bisect).GetResult(); EXPECT_THAT(reduced_module->entry_computation()->root_instruction(), GmockMatch(m::Power(m::Constant(), m::Constant()))); } TEST_F(HloBisectStateTest, TrimByUsingReferenceConstants) { class TestBugSearchWithReferenceConstants : public TestBugSearch { public: TestBugSearchWithReferenceConstants() : TestBugSearch({HloOpcode::kPower}) {} absl::flat_hash_map<std::string, Literal> GetResults() override { absl::flat_hash_map<std::string, Literal> results; results["a"] = CreateLiteral(2.0f); results["b"] = CreateLiteral(3.0f); return results; } }; const char* kModuleStr = R"( HloModule test_module ENTRY test_computation { p1 = f32[] parameter(0) p2 = f32[] parameter(1) a = f32[] multiply(p1, p2) b = f32[] add(p1, p2) ROOT result = f32[] power(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); TestBugSearchWithReferenceConstants bug_checker; HloBisectState bisect(std::move(module), &bug_checker); TF_ASSERT_OK_AND_ASSIGN(bool changed, bisect.TrimEntryComputation()); EXPECT_TRUE(changed); auto reduced_module = std::move(bisect).GetResult(); EXPECT_THAT(reduced_module->entry_computation()->root_instruction(), GmockMatch(m::Power(m::Constant(), m::Constant()))); } TEST_F(HloBisectStateTest, TrimByOutputsLostBug) { class CustomBugSearch : public TestBugSearch { public: CustomBugSearch() : TestBugSearch({HloOpcode::kConstant}) {} absl::StatusOr<bool> Run(const HloModule& module) override { TF_ASSIGN_OR_RETURN(bool has_constants, TestBugSearch::Run(module)); int program_size = module.entry_computation()->instruction_count(); return program_size == 5 && !has_constants; } }; const char* kModuleStr = R"( HloModule test_module ENTRY test_computation { p1 = s32[8] parameter(0) p2 = s32[8] parameter(1) a = s32[8] add(p1, p2) b = s32[8] multiply(p1, p2) ROOT sum = tuple(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); CustomBugSearch bug_checker; HloBisectState bisect(std::move(module), &bug_checker); TF_ASSERT_OK_AND_ASSIGN(bool changed, bisect.TrimEntryComputation()); EXPECT_FALSE(changed); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/hlo_bisect/hlo_bisect_state.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/hlo_bisect/hlo_bisect_state_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
cfec4fa1-43f2-4e44-bf38-a8522b629bac
cpp
tensorflow/tensorflow
functional_hlo_runner
third_party/xla/xla/tools/multihost_hlo_runner/functional_hlo_runner.cc
third_party/xla/xla/tools/multihost_hlo_runner/functional_hlo_runner_test.cc
#include "xla/tools/multihost_hlo_runner/functional_hlo_runner.h" #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <random> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/btree_map.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/client/executable_build_options.h" #include "xla/client/xla_computation.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/pass/hlo_pass_pipeline.h" #include "xla/layout.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/pjrt/host_memory_spaces.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/primitive_util.h" #include "xla/service/computation_layout.h" #include "xla/service/computation_placer.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tests/test_utils.h" #include "xla/tools/hlo_control_flow_flattening.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace { absl::StatusOr<std::unique_ptr<HloModule>> HloTextToModule( absl::string_view hlo_text) { return ParseAndReturnUnverifiedModule(hlo_text); } absl::StatusOr<std::unique_ptr<HloModule>> HloProtoToModule( const HloModuleProto& proto) { TF_ASSIGN_OR_RETURN( HloModuleConfig config, HloModule::CreateModuleConfigFromProto(proto, DebugOptions())); TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> module, HloModule::CreateFromProto(proto, config)); return std::move(module); } template <typename ElementType> void PopulateWithSameValue(Literal* literal, ElementType val) { for (ElementType& element : literal->data<ElementType>()) { element = static_cast<ElementType>(val); } } absl::StatusOr<Literal> MakeFakeLiteralWithSameValue(const Shape& shape, int value) { if (shape.IsArray()) { Shape new_shape = shape; new_shape.mutable_layout()->clear_tiles(); return primitive_util::PrimitiveTypeSwitch<absl::StatusOr<Literal>>( [&](auto type) -> absl::StatusOr<Literal> { if constexpr (primitive_util::IsArrayType(type)) { using NativeT = primitive_util::NativeTypeOf<type>; Literal literal(new_shape); PopulateWithSameValue( &literal, static_cast<NativeT>(type == PRED ? (value % 2) == 0 : value)); return literal; } return Unimplemented( "Unsupported type for fake literal generation: %s", ShapeUtil::HumanString(shape)); }, new_shape.element_type()); } else if (shape.IsTuple()) { std::vector<Literal> subliterals; for (const Shape& subshape : shape.tuple_shapes()) { TF_ASSIGN_OR_RETURN(Literal subliteral, MakeFakeLiteralWithSameValue(subshape, value)); subliterals.push_back(std::move(subliteral)); } return LiteralUtil::MakeTupleOwned(std::move(subliterals)); } return InvalidArgument("Unsupported type for fake literal generation: %s", ShapeUtil::HumanString(shape)); } } bool AbslParseFlag(absl::string_view text, InputFormat* input_format, std::string* error) { if (text == "text") { *input_format = InputFormat::kText; return true; } if (text == "proto_text") { *input_format = InputFormat::kProtoText; return true; } if (text == "proto_binary") { *input_format = InputFormat::kProtoBinary; return true; } if (text == "snapshot_proto_binary") { *input_format = InputFormat::kSnapshotProtoBinary; return true; } *error = "unknown value for enumeration"; return false; } std::string AbslUnparseFlag(InputFormat input_format) { switch (input_format) { case InputFormat::kText: return "text"; case InputFormat::kProtoText: return "proto_text"; case InputFormat::kProtoBinary: return "proto_binary"; case InputFormat::kSnapshotProtoBinary: return "snapshot_proto_binary"; default: return absl::StrCat(input_format); } } bool AbslParseFlag(absl::string_view text, FunctionalHloRunner::ModuleArgumentMode* argument_mode, std::string* error) { if (text == "use_device_id_as_input") { *argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUseDeviceIdAsInput; return true; } if (text == "use_random_inputs") { *argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUseRandomInputs; return true; } if (text == "use_shared_random_inputs") { *argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUseSharedRandomInputs; return true; } if (text == "use_zeros_as_input") { *argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUseZerosAsInput; return true; } if (text == "uninitialized") { *argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUninitialized; return true; } *error = "Unrecognized module argument mode specified. Expect " "\"use_device_id_as_input\", \"use_random_inputs\", or " "\"use_shared_random_inputs\"."; return false; } std::string AbslUnparseFlag( FunctionalHloRunner::ModuleArgumentMode argument_mode) { switch (argument_mode) { case FunctionalHloRunner::ModuleArgumentMode::kUseDeviceIdAsInput: return "use_device_id_as_input"; case FunctionalHloRunner::ModuleArgumentMode::kUseRandomInputs: return "use_random_inputs"; case FunctionalHloRunner::ModuleArgumentMode::kUseSharedRandomInputs: return "use_shared_random_inputs"; case FunctionalHloRunner::ModuleArgumentMode::kUseZerosAsInput: return "use_zeros_as_input"; case FunctionalHloRunner::ModuleArgumentMode::kUninitialized: return "uninitialized"; default: LOG(FATAL) << "Unexpected argument mode."; } } bool AbslParseFlag(absl::string_view text, FunctionalHloRunner::ModuleOutputMode* output_mode, std::string* error) { if (text == "return_outputs") { *output_mode = FunctionalHloRunner::ModuleOutputMode::kReturnOutputs; return true; } if (text == "not_return_outputs") { *output_mode = FunctionalHloRunner::ModuleOutputMode::kNotReturnOutputs; return true; } if (text == "return_device_0_outputs") { *output_mode = FunctionalHloRunner::ModuleOutputMode::kReturnDevice0Outputs; return true; } *error = "Unrecognized module output mode specified. Expect \"return_outputs\", " "\"not_return_outputs\", or \"return_device_0_outputs\"."; return false; } std::string AbslUnparseFlag(FunctionalHloRunner::ModuleOutputMode output_mode) { switch (output_mode) { case FunctionalHloRunner::ModuleOutputMode::kReturnOutputs: return "return_outputs"; case FunctionalHloRunner::ModuleOutputMode::kNotReturnOutputs: return "not_return_outputs"; case FunctionalHloRunner::ModuleOutputMode::kReturnDevice0Outputs: return "return_device_0_outputs"; default: LOG(FATAL) << "Unexpected output mode."; } } void AddShardingAnnotationsToSpmdPartitionedModule(HloModule* hlo_module) { auto set_manual_sharding = [](HloInstruction* hlo) { if (!hlo->has_sharding()) { hlo->set_sharding( HloSharding::Manual().NormalizeTupleSharding(hlo->shape())); } }; for (int64_t i = 0; i < hlo_module->entry_computation()->num_parameters(); ++i) { HloInstruction* param = hlo_module->entry_computation()->parameter_instruction(i); set_manual_sharding(param); } HloInstruction* entry_root = hlo_module->entry_computation()->root_instruction(); set_manual_sharding(entry_root); } absl::StatusOr<ExecutionOptions> FunctionalHloRunner::LoadExecutionOptions( absl::string_view path) { ExecutionOptions execution_options; TF_RETURN_IF_ERROR(tsl::ReadTextOrBinaryProto( tsl::Env::Default(), std::string(path), &execution_options)); return execution_options; } absl::StatusOr<CompileOptions> FunctionalHloRunner::CreateCompileOptions( const PjRtClient& client, const FunctionalHloRunner::RawCompileOptions& raw_options, int task_id, int num_nodes, std::shared_ptr<xla::KeyValueStoreInterface> kv_store) { CompileOptions compile_options; if (raw_options.execution_options.has_value()) { compile_options.executable_build_options = CreateExecutableBuildOptionsFromExecutionOptions( raw_options.execution_options.value()); } ExecutableBuildOptions& build_options = compile_options.executable_build_options; ReplicasAndPartitions replicas_and_partitions = FunctionalHloRunner::GetReplicasAndPartitions( raw_options.execution_options, client.device_count(), raw_options.num_replicas, raw_options.num_partitions, raw_options.num_slices.value_or(1)); build_options.set_num_replicas(replicas_and_partitions.replicas); build_options.set_num_partitions(replicas_and_partitions.partitions); build_options.set_process_index(task_id); build_options.set_process_count(num_nodes); build_options.set_key_value_store(kv_store); if (raw_options.spmd_mode == SpmdMode::kUseSpmdPartitioning || raw_options.spmd_mode == SpmdMode::kUseShardyPartitioning) { build_options.set_use_spmd_partitioning(true); if (raw_options.spmd_mode == SpmdMode::kUseShardyPartitioning) { build_options.set_use_shardy_partitioner(true); } } if (!build_options.has_device_assignment() && !raw_options.num_slices.has_value()) { TF_ASSIGN_OR_RETURN( DeviceAssignment device_assignment, client.GetDefaultDeviceAssignment(replicas_and_partitions.replicas, replicas_and_partitions.partitions)); build_options.set_device_assignment(device_assignment); } DebugOptions& debug_options = *build_options.mutable_debug_options(); if (task_id == 0) { if (!raw_options.xla_dump_to.empty()) { debug_options.set_xla_dump_to(raw_options.xla_dump_to); } debug_options.set_xla_dump_hlo_as_text(raw_options.xla_text_dump_mode == XlaTextDumpMode::kDumpAsText); debug_options.set_xla_dump_hlo_as_proto(raw_options.xla_proto_dump_mode == XlaProtoDumpMode::kDumpAsProto); } switch (raw_options.hlo_passes_mode) { case HloPassesMode::kRunXLABackendOnly: build_options.set_run_backend_only(true); break; case HloPassesMode::kDisableAllHloPasses: debug_options.set_xla_disable_all_hlo_passes(true); break; case HloPassesMode::kStandardCompile: break; } return compile_options; } FunctionalHloRunner::ReplicasAndPartitions FunctionalHloRunner::GetReplicasAndPartitionsInternal( const std::optional<ExecutionOptions>& execution_options, int device_count, const std::optional<int>& num_replicas, const std::optional<int>& num_partitions, int num_slices) { if (num_replicas.has_value() && num_partitions.has_value()) { return ReplicasAndPartitions{num_replicas.value(), num_partitions.value()}; } if (execution_options.has_value()) { return ReplicasAndPartitions{execution_options->num_replicas(), execution_options->num_partitions()}; } if (num_replicas.has_value()) { return ReplicasAndPartitions{ num_replicas.value(), device_count * num_slices / num_replicas.value()}; } if (num_partitions.has_value()) { return ReplicasAndPartitions{ device_count * num_slices / num_partitions.value(), num_partitions.value()}; } return ReplicasAndPartitions{device_count * num_slices, 1}; } FunctionalHloRunner::ReplicasAndPartitions FunctionalHloRunner::GetReplicasAndPartitions( const std::optional<ExecutionOptions>& execution_options, int device_count, const std::optional<int>& num_replicas, const std::optional<int>& num_partitions, int num_slices) { CHECK_GE(num_slices, 1); ReplicasAndPartitions result = GetReplicasAndPartitionsInternal( execution_options, device_count, num_replicas, num_partitions, num_slices); VLOG(1) << "Calculated replicas: " << result.replicas << ", partitions: " << result.partitions; CHECK_GE(result.replicas, 1); CHECK_GE(result.partitions, 1); return result; } ExecutableBuildOptions FunctionalHloRunner::CreateExecutableBuildOptionsFromExecutionOptions( const ExecutionOptions& execution_options) { ExecutableBuildOptions build_options; if (execution_options.has_debug_options()) { *build_options.mutable_debug_options() = execution_options.debug_options(); build_options.mutable_debug_options()->set_xla_dump_to(""); } if (execution_options.has_shape_with_output_layout()) { build_options.set_result_layout( Shape(execution_options.shape_with_output_layout())); } build_options.set_num_replicas(execution_options.num_replicas()); build_options.set_num_partitions(execution_options.num_partitions()); build_options.set_use_spmd_partitioning( execution_options.use_spmd_partitioning()); build_options.set_use_shardy_partitioner( execution_options.use_shardy_partitioner()); build_options.set_use_auto_spmd_partitioning( execution_options.use_auto_spmd_partitioning()); build_options.set_deduplicate_hlo(execution_options.deduplicate_hlo()); build_options.set_allow_spmd_sharding_propagation_to_parameters( execution_options.allow_spmd_sharding_propagation_to_parameters()); build_options.set_allow_spmd_sharding_propagation_to_output( execution_options.allow_spmd_sharding_propagation_to_output()); if (execution_options.has_device_assignment()) { absl::StatusOr<std::unique_ptr<DeviceAssignment>> device_assignment = DeviceAssignment::Deserialize(execution_options.device_assignment()); TF_CHECK_OK(device_assignment.status()); build_options.set_device_assignment(**device_assignment); } build_options.set_alias_passthrough_params( execution_options.alias_passthrough_params()); return build_options; } absl::Status FunctionalHloRunner::DumpOutput( const FunctionalHloRunner::PerDeviceLiteralVecType& output, absl::string_view dump_output_to, int task_id) { std::vector<std::string> output_path_vec = absl::StrSplit(dump_output_to, '.'); std::string suffix = output_path_vec.back(); output_path_vec.pop_back(); output_path_vec.push_back(absl::StrCat("task_", task_id)); output_path_vec.push_back(""); int device_id_index = output_path_vec.size() - 1; output_path_vec.push_back(""); int literal_id_index = output_path_vec.size() - 1; output_path_vec.push_back(suffix); for (const auto& [device_id, literal_vec] : output) { output_path_vec[device_id_index] = absl::StrCat("device_", device_id); for (int literal_id = 0; literal_id < literal_vec.size(); ++literal_id) { output_path_vec[literal_id_index] = absl::StrCat("literal_", literal_id); std::string literal_path = absl::StrJoin(output_path_vec, "."); CHECK_EQ(suffix, std::string("txt")); absl::Status write_status = tsl::WriteStringToFile(tsl::Env::Default(), literal_path, literal_vec[literal_id].ToString()); if (!write_status.ok()) { return write_status; } } } return absl::OkStatus(); } absl::Span<PjRtDevice* const> FunctionalHloRunner::GetLocalDevices( const PjRtClient& client) { return client.addressable_devices(); } absl::StatusOr<FunctionalHloRunner::HloModuleAndArguments> FunctionalHloRunner::LoadHloModuleAndArguments(absl::string_view hlo_file, InputFormat input_format) { HloModuleAndArguments hlo_module_and_arguments; switch (input_format) { case InputFormat::kText: { std::string hlo_text; TF_ASSIGN_OR_RETURN(hlo_module_and_arguments.hlo_module, ReadModuleFromHloTextFile(hlo_file)); } break; case InputFormat::kProtoText: { TF_ASSIGN_OR_RETURN(hlo_module_and_arguments.hlo_module, ReadModuleFromTextProtoFile(hlo_file)); } break; case InputFormat::kProtoBinary: { TF_ASSIGN_OR_RETURN(hlo_module_and_arguments.hlo_module, ReadModuleFromBinaryProtoFile(hlo_file)); } break; case InputFormat::kSnapshotProtoBinary: { TF_ASSIGN_OR_RETURN(hlo_module_and_arguments, ReadModuleFromSnapshotBinaryProtoFile(hlo_file)); } break; default: LOG(FATAL) << "Cannot process input format: " << AbslUnparseFlag(input_format); } return hlo_module_and_arguments; } absl::Status FunctionalHloRunner::LoadAndRunAndDump( PjRtClient& client, const DebugOptions& debug_options, const xla::FunctionalHloRunner::PreprocessingOptions& preproc_options, const xla::FunctionalHloRunner::RawCompileOptions& raw_compile_options, const xla::FunctionalHloRunner::RunningOptions& running_options, absl::string_view hlo_text, InputFormat input_format, std::string dump_output_to, int task_id, int num_nodes, std::shared_ptr<xla::KeyValueStoreInterface> kv_store) { TF_ASSIGN_OR_RETURN( CompileOptions compile_options, FunctionalHloRunner::CreateCompileOptions(client, raw_compile_options, task_id, num_nodes, kv_store)); TF_ASSIGN_OR_RETURN( FunctionalHloRunner::PerDeviceLiteralVecType output, FunctionalHloRunner::LoadAndRun(client, debug_options, preproc_options, compile_options, running_options, hlo_text, input_format)); return dump_output_to.empty() ? absl::OkStatus() : FunctionalHloRunner::DumpOutput(output, dump_output_to, task_id); } absl::StatusOr<FunctionalHloRunner::PerDeviceLiteralVecType> FunctionalHloRunner::LoadAndRun(PjRtClient& client, const DebugOptions& debug_options, const PreprocessingOptions& preproc_options, const CompileOptions& compile_options, const RunningOptions& running_options, absl::string_view hlo_text, InputFormat input_format, const PerDeviceLiteralVecType& arguments) { HloModuleAndArguments hlo_module_and_arguments; PerDeviceLiteralVecType loaded_arguments; TF_ASSIGN_OR_RETURN(hlo_module_and_arguments, LoadHloModuleAndArguments(hlo_text, input_format)); if (input_format == InputFormat::kSnapshotProtoBinary) { loaded_arguments[client.devices()[0]->id()] = std::move(hlo_module_and_arguments.arguments); } if (!arguments.empty()) { return CompileAndRun(client, debug_options, preproc_options, compile_options, running_options, hlo_module_and_arguments.hlo_module.get(), arguments); } return CompileAndRun( client, debug_options, preproc_options, compile_options, running_options, hlo_module_and_arguments.hlo_module.get(), loaded_arguments); } absl::Status FunctionalHloRunner::LoadAndCompile( PjRtClient& client, const DebugOptions& debug_options, const PreprocessingOptions& preproc_options, const RawCompileOptions& raw_compile_options, std::string_view hlo_file, InputFormat input_format, int task_id, int num_nodes, std::shared_ptr<xla::KeyValueStoreInterface> kv_store) { TF_ASSIGN_OR_RETURN( CompileOptions compile_options, FunctionalHloRunner::CreateCompileOptions(client, raw_compile_options, task_id, num_nodes, kv_store)); int num_replicas = compile_options.executable_build_options.num_replicas(); int num_partitions = compile_options.executable_build_options.num_partitions(); int needed_devices = num_replicas * num_partitions; if (client.addressable_device_count() < needed_devices) { LOG(INFO) << "Applying a workaround to allow compiling multi-device HLOs " "on machines with fewer devices."; DeviceAssignment assignment(num_replicas, num_partitions); assignment.Fill(0); compile_options.executable_build_options.set_device_assignment(assignment); } TF_ASSIGN_OR_RETURN( FunctionalHloRunner::HloModuleAndArguments hlo_module_and_arguments, FunctionalHloRunner::LoadHloModuleAndArguments(hlo_file, input_format)); TF_RETURN_IF_ERROR(FunctionalHloRunner::Compile( client, hlo_module_and_arguments.hlo_module.get(), debug_options, preproc_options, compile_options) .status()); return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<HloModule>> FunctionalHloRunner::ReadModuleFromHloTextFile(absl::string_view hlo_file) { std::string hlo_string; TF_RETURN_IF_ERROR(tsl::ReadFileToString(tsl::Env::Default(), std::string(hlo_file), &hlo_string)); return ParseAndReturnUnverifiedModule(hlo_string); } absl::StatusOr<std::unique_ptr<HloModule>> FunctionalHloRunner::ReadModuleFromBinaryProtoFile(absl::string_view hlo_file) { HloProto proto; TF_RETURN_IF_ERROR( tsl::ReadBinaryProto(tsl::Env::Default(), std::string(hlo_file), &proto)); return HloProtoToModule(proto.hlo_module()); } absl::StatusOr<std::unique_ptr<HloModule>> FunctionalHloRunner::ReadModuleFromTextProtoFile(absl::string_view hlo_file) { HloProto proto; TF_RETURN_IF_ERROR( tsl::ReadTextProto(tsl::Env::Default(), std::string(hlo_file), &proto)); return HloProtoToModule(proto.hlo_module()); } absl::StatusOr<FunctionalHloRunner::HloModuleAndArguments> FunctionalHloRunner::ReadModuleFromSnapshotBinaryProtoFile( absl::string_view hlo_file) { HloSnapshot proto; HloModuleAndArguments hlo_module_and_arguments; TF_RETURN_IF_ERROR( tsl::ReadBinaryProto(tsl::Env::Default(), std::string(hlo_file), &proto)); hlo_module_and_arguments.arguments.resize(proto.arguments_size()); for (int i = 0; i < proto.arguments_size(); i++) { TF_ASSIGN_OR_RETURN(hlo_module_and_arguments.arguments[i], Literal::CreateFromProto(proto.arguments()[i])); } TF_ASSIGN_OR_RETURN(hlo_module_and_arguments.hlo_module, HloProtoToModule(proto.hlo().hlo_module())); return hlo_module_and_arguments; } absl::StatusOr<std::unique_ptr<HloModule>> FunctionalHloRunner::ReadModuleFromString(absl::string_view hlo_text) { return HloTextToModule(hlo_text); } absl::StatusOr<std::unique_ptr<HloModule>> FunctionalHloRunner::ReadModuleFromProto(const HloModuleProto& proto) { return HloProtoToModule(proto); } absl::StatusOr<FunctionalHloRunner::PerDeviceLiteralVecType> FunctionalHloRunner::CompileAndRun(PjRtClient& client, const DebugOptions& debug_options, const PreprocessingOptions& preproc_options, const CompileOptions& compile_options, const RunningOptions& running_options, HloModule* hlo_module, const PerDeviceLiteralVecType& arguments) { TF_ASSIGN_OR_RETURN(std::unique_ptr<PjRtLoadedExecutable> executable, Compile(client, hlo_module, debug_options, preproc_options, compile_options)); return Run(client, executable.get(), arguments, running_options); } namespace { enum class ParameterType { kOneTupleOfArrays = 0, kOneListOfArrays = 1, kOther = 2 }; ParameterType GetParameterType(const HloModule& module) { int num_parameters = module.entry_computation()->num_parameters(); if (num_parameters == 1) { const Shape& shape = module.entry_computation()->parameter_instruction(0)->shape(); if (shape.IsTuple()) { bool is_tuple_of_arrays = absl::c_all_of( shape.tuple_shapes(), [](const Shape& subshape) { return subshape.IsArray(); }); if (is_tuple_of_arrays) { return ParameterType::kOneTupleOfArrays; } return ParameterType::kOther; } } bool is_list_of_arrays = absl::c_all_of(module.entry_computation()->parameter_instructions(), [](const HloInstruction* parameter) { return parameter->shape().IsArray(); }); return is_list_of_arrays ? ParameterType::kOneListOfArrays : ParameterType::kOther; } } absl::Status FunctionalHloRunner::PrepareHloModuleForCompilation( HloModule* hlo_module, const DebugOptions& debug_options, const PreprocessingOptions& preproc_options) { hlo_module->mutable_config().set_debug_options(debug_options); if (preproc_options.is_spmd_partitioned_module()) { AddShardingAnnotationsToSpmdPartitionedModule(hlo_module); } if (preproc_options.flatten_while_loop() || preproc_options.remove_infeed_outfeed) { HloPassPipeline pipeline("control-flow-flattening-pipeline"); int while_execution_count = preproc_options.while_execution_count.value_or(0); pipeline.AddPass<HloControlFlowFlattening>( HloControlFlowFlattening::Options{ while_execution_count, while_execution_count, while_execution_count, preproc_options.remove_infeed_outfeed, preproc_options.flatten_while_loop(), false, true}); TF_RETURN_IF_ERROR(pipeline.Run(hlo_module).status()); } return absl::OkStatus(); } CompileOptions FunctionalHloRunner::CompleteCompileOptions( const HloModule& hlo_module, CompileOptions compile_options) { ParameterType parameter_type = GetParameterType(hlo_module); compile_options.parameter_is_tupled_arguments = (parameter_type == ParameterType::kOneTupleOfArrays); return compile_options; } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> FunctionalHloRunner::Compile(PjRtClient& client, HloModule* hlo_module, const DebugOptions& debug_options, const PreprocessingOptions& preproc_options, const CompileOptions& compile_options) { TF_RETURN_IF_ERROR(PrepareHloModuleForCompilation(hlo_module, debug_options, preproc_options)); CompileOptions modified_compile_options = CompleteCompileOptions(*hlo_module, compile_options); XlaComputation computation(hlo_module->ToProto()); VLOG(1) << "FunctionalHloRunner: compilation started."; TF_ASSIGN_OR_RETURN(std::unique_ptr<PjRtLoadedExecutable> executable, client.Compile(computation, modified_compile_options)); VLOG(1) << "FunctionalHloRunner: compile succeeded."; return executable; } absl::StatusOr<std::unique_ptr<PjRtExecutable>> FunctionalHloRunner::Compile( PjRtClient& client, HloModule* hlo_module, const DebugOptions& debug_options, const PreprocessingOptions& preproc_options, const CompileOptions& compile_options, const PjRtTopologyDescription& topology) { TF_RETURN_IF_ERROR(PrepareHloModuleForCompilation(hlo_module, debug_options, preproc_options)); CompileOptions modified_compile_options = CompleteCompileOptions(*hlo_module, compile_options); XlaComputation computation(hlo_module->ToProto()); VLOG(1) << "FunctionalHloRunner: compilation started."; TF_ASSIGN_OR_RETURN( std::unique_ptr<PjRtExecutable> executable, PjRtCompile(modified_compile_options, computation, topology, &client)); VLOG(1) << "FunctionalHloRunner: compile succeeded."; return executable; } absl::StatusOr<FunctionalHloRunner::PerDeviceLiteralVecType> FunctionalHloRunner::Run(PjRtClient& client, PjRtLoadedExecutable* executable, const PerDeviceLiteralVecType& arguments, const RunningOptions& running_options, std::minstd_rand0* engine) { auto create_argument_buffers_on_device = [&client, &executable, &arguments, &running_options, engine]( bool flatten_tupled_arguments) { if (arguments.empty()) { return CreateArgumentsOnDevice(client, executable, running_options, flatten_tupled_arguments, engine); } if (flatten_tupled_arguments && arguments.begin()->second.size() == 1 && arguments.begin()->second.front().shape().IsTuple()) { PerDeviceLiteralVecType flattened_arguments; for (const auto& device_id_and_arguments : arguments) { Literal tupled_argument = device_id_and_arguments.second.front().Clone(); LiteralVec flattened_argument = tupled_argument.DecomposeTuple(); int device_id = device_id_and_arguments.first; flattened_arguments.insert({device_id, std::move(flattened_argument)}); } return CopyArgumentsToDevice(client, executable, flattened_arguments, running_options, true); } return CopyArgumentsToDevice(client, executable, arguments, running_options, false); }; return RunInternal(client, executable, create_argument_buffers_on_device, running_options); } namespace { std::vector<std::vector<PjRtBuffer*>> CreateArgumentPointersFromDeviceBuffers( absl::Span<const std::vector<std::unique_ptr<PjRtBuffer>>> device_buffers) { std::vector<std::vector<PjRtBuffer*>> argument_ptrs(device_buffers.size()); for (int i = 0; i < device_buffers.size(); i++) { argument_ptrs[i].resize(device_buffers[i].size()); for (int j = 0; j < device_buffers[i].size(); j++) { argument_ptrs[i][j] = device_buffers[i][j].get(); } } return argument_ptrs; } std::vector<std::vector<PjRtBuffer*>> CreateArgumentPointersBasedOnAliasing( absl::Span<const std::vector<std::unique_ptr<PjRtBuffer>>> output_buffers, absl::Span<const std::vector<std::unique_ptr<PjRtBuffer>>> input_buffers, std::function<std::optional<int64_t>(int64_t)> get_output_buffer_index) { int num_arguments = input_buffers.front().size(); std::vector<std::vector<PjRtBuffer*>> argument_ptrs(output_buffers.size()); for (int i = 0; i < input_buffers.size(); i++) { argument_ptrs[i].resize(num_arguments); for (int argument_index = 0; argument_index < num_arguments; argument_index++) { std::optional<int> output_buffer_index = get_output_buffer_index(argument_index); if (!output_buffer_index.has_value()) { argument_ptrs[i][argument_index] = input_buffers[i][argument_index].get(); } else { argument_ptrs[i][argument_index] = output_buffers[i][*output_buffer_index].get(); } } } return argument_ptrs; } std::vector<Shape> GetArgumentShapes(const HloModule& module) { const auto& params = module.entry_computation()->parameter_instructions(); std::vector<Shape> argument_shapes; argument_shapes.reserve(params.size()); for (int i = 0; i < static_cast<int>(params.size()); ++i) { const HloModuleConfig& module_config = module.config(); argument_shapes.push_back((module_config.has_entry_computation_layout() && module_config.entry_computation_layout() .parameter_layout(i) .shape() .is_static()) ? module_config.entry_computation_layout() .parameter_layout(i) .shape() : params[i]->shape()); } return argument_shapes; } absl::Status EnsureSingleTupleForFlattening(const HloModule& module) { if (module.entry_computation()->num_parameters() != 1) { return InvalidArgument( "Flattening arguments requires the number of parameters to be 1. " "The actual number of parameters is %d", module.entry_computation()->num_parameters()); } if (!module.entry_computation() ->parameter_instructions() .front() ->shape() .IsTuple()) { return InvalidArgument( "Flattening arguments requires the module parameter to be a single " "tuple. But the actual parameter shape is %s", module.entry_computation() ->parameter_instructions() .front() ->shape() .ToString()); } return absl::OkStatus(); } } absl::StatusOr<FunctionalHloRunner::PerDeviceLiteralVecType> FunctionalHloRunner::RunInternal( PjRtClient& client, PjRtLoadedExecutable* executable, std::function<absl::StatusOr< std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>>(bool)> create_argument_buffers_on_device, const RunningOptions& running_options) { ExecuteOptions execute_options; if (running_options.multi_slice_config != nullptr) { execute_options.multi_slice_config = running_options.multi_slice_config; } if (running_options.untuple_result.has_value()) { execute_options.untuple_result = *running_options.untuple_result; } TF_ASSIGN_OR_RETURN(std::vector<std::shared_ptr<HloModule>> hlo_modules, executable->GetHloModules()); CHECK_EQ(hlo_modules.size(), 1); const HloModule& module = *(hlo_modules.front()); ParameterType parameter_type = GetParameterType(module); bool flatten_arguments = parameter_type == ParameterType::kOneTupleOfArrays; auto get_output_index_for_one_tuple_of_arrays = [&module](int64_t parameter_index) -> std::optional<int64_t> { const HloInputOutputAliasConfig& alias_config = module.input_output_alias_config(); std::optional<ShapeIndex> output_index = alias_config.GetAliasedOutput(0, {parameter_index}); if (!output_index.has_value()) { return std::nullopt; } if (module.entry_computation()->root_instruction()->shape().IsTuple()) { return std::optional<int64_t>(output_index->front()); } CHECK(output_index->empty()); return 0; }; auto get_output_index_for_one_list_of_arrays = [&module](int64_t parameter_index) -> std::optional<int64_t> { const HloInputOutputAliasConfig& alias_config = module.input_output_alias_config(); std::optional<ShapeIndex> output_index = alias_config.GetAliasedOutput(parameter_index, {}); if (!output_index.has_value()) { return std::nullopt; } if (module.entry_computation()->root_instruction()->shape().IsTuple()) { return std::optional<int64_t>(output_index->front()); } CHECK(output_index->empty()); return 0; }; std::vector<std::vector<std::unique_ptr<PjRtBuffer>>> output_buffers; auto output_has_tuple_leaf_on_host_memory_space = [&module]() { if (!module.result_shape().IsTuple()) { return false; } return absl::c_any_of( module.result_shape().tuple_shapes(), [](const Shape& shape) { return shape.has_layout() && shape.layout().memory_space() == Layout::kHostMemorySpace; }); }; bool must_untuple_result = output_has_tuple_leaf_on_host_memory_space(); bool default_untuple_result = must_untuple_result || execute_options.untuple_result; switch (parameter_type) { case ParameterType::kOneTupleOfArrays: execute_options.arguments_are_tupled = false; execute_options.untuple_result = module.entry_computation()->root_instruction()->shape().IsTuple(); break; case ParameterType::kOneListOfArrays: execute_options.arguments_are_tupled = false; execute_options.untuple_result = module.entry_computation()->root_instruction()->shape().IsTuple(); break; case ParameterType::kOther: execute_options.arguments_are_tupled = false; execute_options.untuple_result = false; break; } if (must_untuple_result) { execute_options.untuple_result = true; } std::optional<std::vector<PjRtFuture<>>> futures; futures.emplace(); std::vector<std::vector<std::unique_ptr<PjRtBuffer>>> device_buffers; std::vector<std::vector<PjRtBuffer*>> argument_ptrs; for (int repeat = 0; repeat < running_options.num_repeats; ++repeat) { VLOG(1) << "FunctionalHloRunner: ExecuteOnDevices started (repeat = " << repeat << ")."; if (repeat == 0 || running_options.recreate_buffers_between_repeats) { VLOG(1) << "Creating argument buffers. repeat = " << repeat; device_buffers.clear(); argument_ptrs.clear(); TF_ASSIGN_OR_RETURN(device_buffers, create_argument_buffers_on_device(flatten_arguments)); argument_ptrs = CreateArgumentPointersFromDeviceBuffers(device_buffers); } if (repeat == running_options.num_repeats - 1) { execute_options.untuple_result = default_untuple_result; if (running_options.profiler != nullptr) { running_options.profiler->CreateSession(); } } execute_options.launch_id = repeat; futures->clear(); TF_ASSIGN_OR_RETURN( output_buffers, executable->Execute(argument_ptrs, execute_options, futures)); for (auto& future : *futures) { TF_RETURN_IF_ERROR(future.Await()); } VLOG(1) << "FunctionalHloRunner: ExecuteOnDevices succeeded (repeat = " << repeat << ")"; if (repeat < running_options.num_repeats - 1) { switch (parameter_type) { case ParameterType::kOneTupleOfArrays: argument_ptrs = CreateArgumentPointersBasedOnAliasing( output_buffers, device_buffers, get_output_index_for_one_tuple_of_arrays); break; case ParameterType::kOneListOfArrays: argument_ptrs = CreateArgumentPointersBasedOnAliasing( output_buffers, device_buffers, get_output_index_for_one_list_of_arrays); break; case ParameterType::kOther: argument_ptrs = CreateArgumentPointersFromDeviceBuffers(device_buffers); break; } } } TF_ASSIGN_OR_RETURN(PerDeviceLiteralVecType results, FetchAndLogOutput(client, output_buffers, running_options.module_output_mode, running_options.log_input_output())); if (running_options.profiler != nullptr) { running_options.profiler->UploadSession(); } return results; } absl::StatusOr<std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>> FunctionalHloRunner::CreateArgumentsOnDevice( PjRtClient& client, const PjRtLoadedExecutable* executable, const RunningOptions& running_options, bool flatten_arguments, std::minstd_rand0* engine) { if (running_options.module_argument_mode == ModuleArgumentMode::kUninitialized) { return CreateUninitializedArgumentsOnDevice( client, executable, running_options, flatten_arguments); } absl::Span<PjRtDevice* const> addressable_devices = executable->addressable_devices(); size_t num_addressable_devices = addressable_devices.size(); PerDeviceLiteralVecType per_device_argument_literals; absl::Span<const PjRtLoadedExecutable::LogicalDeviceIds> addressable_device_logical_ids = executable->addressable_device_logical_ids(); TF_ASSIGN_OR_RETURN(std::vector<std::shared_ptr<HloModule>> hlo_modules, executable->GetHloModules()); VLOG(1) << "FunctionalHloRunner: local_executable count = " << hlo_modules.size(); const bool kUseRandomInputs = running_options.module_argument_mode == ModuleArgumentMode::kUseRandomInputs || running_options.module_argument_mode == ModuleArgumentMode::kUseSharedRandomInputs; const bool kUseSharedInputs = running_options.module_argument_mode == ModuleArgumentMode::kUseSharedRandomInputs || running_options.module_argument_mode == ModuleArgumentMode::kUseZerosAsInput; for (int i = 0; i < num_addressable_devices; ++i) { VLOG(3) << "Creating fake argument for device " << i; LiteralVec& argument_literals = per_device_argument_literals[addressable_devices[i]->id()]; int executable_idx = hlo_modules.size() == 1 ? 0 : addressable_device_logical_ids[i].partition; HloModule* my_hlo_module = hlo_modules[executable_idx].get(); if (flatten_arguments) { TF_RETURN_IF_ERROR(EnsureSingleTupleForFlattening(*my_hlo_module)); } if (running_options.module_argument_mode == ModuleArgumentMode::kUseDeviceIdAsInput) { const auto params = my_hlo_module->entry_computation()->parameter_instructions(); if (flatten_arguments) { CHECK_EQ(params.size(), 1); CHECK(params.front()->shape().IsTuple()); argument_literals.reserve(params.front()->shape().tuple_shapes_size()); } else { argument_literals.reserve(params.size()); } for (int j = 0; j < params.size(); ++j) { TF_ASSIGN_OR_RETURN( Literal argument_literal_j, MakeFakeLiteralWithSameValue(params[j]->shape(), addressable_devices[i]->id())); if (flatten_arguments) { std::vector<Literal> decomposed_argument_literals = argument_literal_j.DecomposeTuple(); for (auto& literal : decomposed_argument_literals) { argument_literals.push_back(std::move(literal)); } } else { argument_literals.push_back(std::move(argument_literal_j)); } } } else { if (flatten_arguments) { TF_ASSIGN_OR_RETURN( LiteralVec tupled_argument_literals, MakeFakeArguments(my_hlo_module, kUseRandomInputs, false, false, std::nullopt, engine)); CHECK_EQ(tupled_argument_literals.size(), 1); CHECK(tupled_argument_literals.front().shape().IsTuple()); argument_literals = tupled_argument_literals.front().DecomposeTuple(); } else { TF_ASSIGN_OR_RETURN( argument_literals, MakeFakeArguments(my_hlo_module, kUseRandomInputs, false, false, std::nullopt, engine)); } if (kUseSharedInputs) { break; } } } if (kUseSharedInputs) { return CopyArgumentsToDevice(client, executable, per_device_argument_literals, running_options, flatten_arguments, true); } return CopyArgumentsToDevice(client, executable, per_device_argument_literals, running_options, flatten_arguments); } absl::StatusOr<std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>> FunctionalHloRunner::CreateUninitializedArgumentsOnDevice( PjRtClient& client, const PjRtLoadedExecutable* executable, const RunningOptions& running_options, bool flatten_arguments) { absl::Span<PjRtDevice* const> addressable_devices = executable->addressable_devices(); absl::Span<const PjRtLoadedExecutable::LogicalDeviceIds> addressable_device_logical_ids = executable->addressable_device_logical_ids(); TF_ASSIGN_OR_RETURN(std::vector<std::shared_ptr<HloModule>> hlo_modules, executable->GetHloModules()); VLOG(1) << "FunctionalHloRunner: local_executable count = " << hlo_modules.size(); LOG(INFO) << "Starting argument buffer shape calculation."; PerDeviceShapeVecType argument_shapes_per_device; CHECK_EQ(addressable_devices.size(), addressable_device_logical_ids.size()); for (int i = 0; i < static_cast<int>(addressable_devices.size()); ++i) { VLOG(3) << "Calculating fake argument shapes for device " << i; PjRtDevice* device = addressable_devices[i]; int executable_idx = hlo_modules.size() == 1 ? 0 : addressable_device_logical_ids[i].partition; const HloModule& hlo_module = *hlo_modules[executable_idx]; std::vector<Shape> argument_shapes; if (flatten_arguments) { TF_RETURN_IF_ERROR(EnsureSingleTupleForFlattening(hlo_module)); std::vector<Shape> original_argument_shapes = GetArgumentShapes(hlo_module); CHECK_EQ(original_argument_shapes.size(), 1); CHECK(original_argument_shapes.front().IsTuple()); argument_shapes = original_argument_shapes.front().tuple_shapes(); } else { argument_shapes = GetArgumentShapes(hlo_module); } argument_shapes_per_device[device->id()] = std::move(argument_shapes); } LOG(INFO) << "Starting argument buffer allocation."; int buffer_count = 0; std::vector<std::vector<std::unique_ptr<PjRtBuffer>>> argument_buffers_per_device; argument_buffers_per_device.reserve(addressable_devices.size()); for (int i = 0; i < static_cast<int>(addressable_devices.size()); ++i) { VLOG(3) << "Allocating fake arguments for device " << i; PjRtDevice* device = addressable_devices[i]; CHECK(argument_shapes_per_device.contains(device->id())); const std::vector<Shape>& argument_shapes = argument_shapes_per_device.at(device->id()); std::vector<std::unique_ptr<PjRtBuffer>> argument_buffers; argument_buffers.reserve(argument_shapes.size()); for (const Shape& shape : argument_shapes) { if (running_options.log_input_output()) { LOG(INFO) << "device_id=" << device->id() << ", input = " << shape.ToString(); } TF_ASSIGN_OR_RETURN(std::unique_ptr<PjRtBuffer> argument_buffer, client.CreateUninitializedBuffer(shape, device)); argument_buffers.push_back(std::move(argument_buffer)); buffer_count += 1; } argument_buffers_per_device.push_back(std::move(argument_buffers)); } LOG(INFO) << "Allocated argument buffers: " << buffer_count; for (const auto& argument_buffers : argument_buffers_per_device) { for (const auto& buffer : argument_buffers) { TF_RETURN_IF_ERROR(buffer->BlockHostUntilReady()); } } LOG(INFO) << "Argument buffers are ready."; return argument_buffers_per_device; } absl::StatusOr<std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>> FunctionalHloRunner::CopyArgumentsToDevice( PjRtClient& client, const PjRtLoadedExecutable* executable, const PerDeviceLiteralVecType& arguments, const RunningOptions& running_options, bool flattened_arguments, bool clone_device0_arguments) { const bool log_input = running_options.log_input_output(); absl::Span<PjRtDevice* const> addressable_devices = executable->addressable_devices(); size_t num_addressable_devices = addressable_devices.size(); if (!clone_device0_arguments && num_addressable_devices != arguments.size()) { return InvalidArgument( "The number of provided arguments does not match " "the number of logical devices."); } std::vector<std::vector<std::unique_ptr<PjRtBuffer>>> argument_buffers; argument_buffers.resize(num_addressable_devices); auto argument_memory_space = [&flattened_arguments](const HloModule* module, PjRtDevice* device, int arg_i) -> absl::StatusOr<PjRtMemorySpace*> { auto non_tuple_memory_space = [&device](const Shape& shape) { if (shape.has_layout() && shape.layout().memory_space() == Layout::kHostMemorySpace) { return device->memory_space_by_kind(PinnedHostMemorySpace::kKind); } return device->default_memory_space(); }; const ComputationLayout& entry_layout = module->entry_computation_layout(); TF_RET_CHECK(entry_layout.parameter_count() > 0); if (entry_layout.parameter_shape(0).IsTuple() && flattened_arguments) { TF_RET_CHECK(entry_layout.parameter_count() == 1) << "entry_layout.parameter_count(): " << entry_layout.parameter_count(); TF_RET_CHECK(arg_i < entry_layout.parameter_shape(0).tuple_shapes_size()); const Shape& shape = entry_layout.parameter_shape(0).tuple_shapes(arg_i); TF_RET_CHECK(!shape.IsTuple()) << "Nested tuples are not supported"; return non_tuple_memory_space(shape); } TF_RET_CHECK(arg_i < entry_layout.parameter_count()); const Shape& shape = entry_layout.parameter_shape(arg_i); TF_RET_CHECK(!shape.IsTuple()) << "Param tuple without flattened_arguments"; return non_tuple_memory_space(shape); }; auto buffer_from_host_literal = [&client, &argument_memory_space, &running_options]( const HloModule* module, PjRtDevice* device, int arg_i, const Literal& literal) -> absl::StatusOr<std::unique_ptr<PjRtBuffer>> { const Layout* layout = nullptr; if (running_options.use_argument_host_layout && literal.shape().has_layout()) { layout = &literal.shape().layout(); } if (client.memory_spaces().empty()) { return client.BufferFromHostLiteral(literal, device, layout); } TF_ASSIGN_OR_RETURN(PjRtMemorySpace * memory_space, argument_memory_space(module, device, arg_i)); return client.BufferFromHostLiteral(literal, memory_space, layout); }; absl::Span<const PjRtLoadedExecutable::LogicalDeviceIds> addressable_device_logical_ids = executable->addressable_device_logical_ids(); TF_ASSIGN_OR_RETURN(std::vector<std::shared_ptr<HloModule>> hlo_modules, executable->GetHloModules()); for (int i = 0; i < num_addressable_devices; ++i) { PjRtDevice* curr_device = addressable_devices[i]; int curr_device_id = curr_device->id(); PjRtDevice* source_device = addressable_devices[clone_device0_arguments ? 0 : i]; int source_device_id = source_device->id(); if (!arguments.contains(source_device_id)) { return InvalidArgument( "The provided argument map does not contain arguments " "for device: %d", curr_device_id); } const std::vector<Literal>& curr_device_arguments = arguments.at(source_device_id); int executable_idx = hlo_modules.size() == 1 ? 0 : addressable_device_logical_ids[i].partition; HloModule* module = hlo_modules[executable_idx].get(); argument_buffers[i].reserve(curr_device_arguments.size()); for (int arg_i = 0; arg_i < curr_device_arguments.size(); ++arg_i) { const Literal& literal = curr_device_arguments[arg_i]; if (log_input) { LOG(INFO) << "device_id=" << curr_device_id << ", input = " << literal.ToString(); } TF_ASSIGN_OR_RETURN( std::unique_ptr<PjRtBuffer> argument_buffer, buffer_from_host_literal(module, curr_device, arg_i, literal)); argument_buffers[i].push_back(std::move(argument_buffer)); } } for (const auto& device_argument_buffers : argument_buffers) { for (const auto& device_buffer : device_argument_buffers) { TF_RETURN_IF_ERROR(device_buffer->BlockHostUntilReady()); } } return argument_buffers; } absl::StatusOr<FunctionalHloRunner::PerDeviceLiteralVecType> FunctionalHloRunner::FetchAndLogOutput( PjRtClient& client, const std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>& output_buffers, ModuleOutputMode module_output_mode, bool log_output) { CHECK(!output_buffers.empty()); absl::Mutex mu; absl::Status status; size_t num_pending_transfers = 0; bool device_0_is_local = false; for (PjRtDevice* device : GetLocalDevices(client)) { if (device->id() == 0) { device_0_is_local = true; } } if (module_output_mode == ModuleOutputMode::kReturnDevice0Outputs && device_0_is_local) { num_pending_transfers = output_buffers[0].size(); } else if (module_output_mode == ModuleOutputMode::kReturnOutputs) { for (const auto& bs : output_buffers) { num_pending_transfers += bs.size(); } } PerDeviceLiteralVecType outputs; for (int i = 0; i < output_buffers.size(); ++i) { if (output_buffers[i].empty()) { continue; } const int device_id = output_buffers[i][0]->device()->id(); std::vector<Literal>& output_slice = outputs[device_id]; if (module_output_mode == ModuleOutputMode::kReturnOutputs || (module_output_mode == ModuleOutputMode::kReturnDevice0Outputs && device_id == 0)) { output_slice.reserve(output_buffers[i].size()); for (const auto& buffer : output_buffers[i]) { TF_RET_CHECK(buffer->device() == output_buffers[i][0]->device()) << "All outputs from a given vector of outputs should be for the " "same device"; output_slice.emplace_back( ShapeUtil::DeviceShapeToHostShape(buffer->on_device_shape())); buffer->ToLiteral(&output_slice.back()).OnReady([&](absl::Status s) { absl::MutexLock lock(&mu); --num_pending_transfers; status.Update(s); }); } } else { for (const auto& buffer : output_buffers[i]) { TF_RET_CHECK(buffer->device() == output_buffers[i][0]->device()) << "All outputs from a given vector of outputs should be for the " "same device"; TF_RETURN_IF_ERROR(buffer->BlockHostUntilReady()); } } } if (module_output_mode == ModuleOutputMode::kReturnOutputs || (module_output_mode == ModuleOutputMode::kReturnDevice0Outputs && device_0_is_local)) { auto cond = [&]() { return !status.ok() || num_pending_transfers == 0; }; absl::MutexLock lock(&mu); mu.Await(absl::Condition(&cond)); TF_RETURN_IF_ERROR(status); if (log_output) { for (const PjRtDevice* device : GetLocalDevices(client)) { int device_id = device->id(); if (module_output_mode == ModuleOutputMode::kReturnDevice0Outputs && device_id != 0) { continue; } LOG(INFO) << "Outputs for device_id: " << device_id; const std::vector<Literal>& output_slice = outputs[device_id]; for (int i = 0; i < output_slice.size(); ++i) { LOG(INFO) << "output[" << i << "]: " << output_slice[i].ToString(); } } } } return outputs; } }
#include "xla/tools/multihost_hlo_runner/functional_hlo_runner.h" #include <memory> #include <string> #include <vector> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/str_format.h" #include "absl/time/time.h" #include "xla/debug_options_flags.h" #include "xla/pjrt/pjrt_client.h" #include "xla/tests/filecheck.h" #include "xla/tools/multihost_hlo_runner/create_client.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/util/command_line_flags.h" #include "xla/xla.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/file_system.h" #include "tsl/platform/path.h" #include "tsl/platform/statusor.h" #include "tsl/platform/subprocess.h" #include "tsl/platform/test.h" namespace xla { namespace { using ::testing::SizeIs; bool IsTestingCpu() { #ifdef XLA_TEST_BACKEND_CPU return true; #endif return false; } std::string GetHloPath(std::string file_name) { return tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "multihost_hlo_runner", "data", file_name); } absl::StatusOr<std::unique_ptr<xla::PjRtClient>> GetPjRtClient() { if (IsTestingCpu()) { return CreateHostClient(); } return CreateGpuClient({}); } using FunctionalHloRunnerTest = ::testing::Test; TEST_F(FunctionalHloRunnerTest, SingleDeviceHlo) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::PjRtClient> client, GetPjRtClient()); xla::DebugOptions debug_options; FunctionalHloRunner::PreprocessingOptions preproc_options; FunctionalHloRunner::RawCompileOptions raw_compile_options; raw_compile_options.num_replicas = 1; raw_compile_options.num_partitions = 1; FunctionalHloRunner::RunningOptions running_options; TF_EXPECT_OK(FunctionalHloRunner::LoadAndRunAndDump( *client, debug_options, preproc_options, raw_compile_options, running_options, {GetHloPath("single_device.hlo")}, InputFormat::kText)); } TEST_F(FunctionalHloRunnerTest, Sharded2Devices) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::PjRtClient> client, GetPjRtClient()); constexpr int kRequiredDeviceCount = 2; const int kDeviceCount = client->device_count(); if (kDeviceCount < kRequiredDeviceCount) { GTEST_SKIP() << "Requires " << kRequiredDeviceCount << " devices, but found only " << kDeviceCount; return; } xla::DebugOptions debug_options; FunctionalHloRunner::PreprocessingOptions preproc_options; FunctionalHloRunner::RawCompileOptions raw_compile_options; raw_compile_options.spmd_mode = FunctionalHloRunner::SpmdMode::kUseSpmdPartitioning; raw_compile_options.num_replicas = 1; raw_compile_options.num_partitions = 2; FunctionalHloRunner::RunningOptions running_options; TF_EXPECT_OK(FunctionalHloRunner::LoadAndRunAndDump( *client, debug_options, preproc_options, raw_compile_options, running_options, {GetHloPath("sharded_2_devices.hlo")}, InputFormat::kText)); } TEST_F(FunctionalHloRunnerTest, UseZerosAsInputs) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::PjRtClient> client, GetPjRtClient()); constexpr int kRequiredDeviceCount = 2; const int kDeviceCount = client->device_count(); if (kDeviceCount < kRequiredDeviceCount) { GTEST_SKIP() << "Requires " << kRequiredDeviceCount << " devices, but found only " << kDeviceCount; return; } xla::DebugOptions debug_options; FunctionalHloRunner::PreprocessingOptions preproc_options; FunctionalHloRunner::RawCompileOptions raw_compile_options; raw_compile_options.spmd_mode = FunctionalHloRunner::SpmdMode::kUseSpmdPartitioning; raw_compile_options.num_replicas = 1; raw_compile_options.num_partitions = 2; FunctionalHloRunner::RunningOptions running_options; running_options.module_argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUseZerosAsInput; TF_EXPECT_OK(FunctionalHloRunner::LoadAndRunAndDump( *client, debug_options, preproc_options, raw_compile_options, running_options, {GetHloPath("sharded_2_devices.hlo")}, InputFormat::kText)); } TEST_F(FunctionalHloRunnerTest, UseUninitializedInputs) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::PjRtClient> client, GetPjRtClient()); constexpr int kRequiredDeviceCount = 2; const int kDeviceCount = client->device_count(); if (kDeviceCount < kRequiredDeviceCount) { GTEST_SKIP() << "Requires " << kRequiredDeviceCount << " devices, but found only " << kDeviceCount; return; } xla::DebugOptions debug_options; FunctionalHloRunner::PreprocessingOptions preproc_options; FunctionalHloRunner::RawCompileOptions raw_compile_options; raw_compile_options.spmd_mode = FunctionalHloRunner::SpmdMode::kUseSpmdPartitioning; raw_compile_options.num_replicas = 1; raw_compile_options.num_partitions = 2; FunctionalHloRunner::RunningOptions running_options; running_options.module_argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUninitialized; TF_EXPECT_OK(FunctionalHloRunner::LoadAndRunAndDump( *client, debug_options, preproc_options, raw_compile_options, running_options, {GetHloPath("sharded_2_devices.hlo")}, InputFormat::kText)); } TEST_F(FunctionalHloRunnerTest, UseUninitializedInputsWithTupledArguments) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::PjRtClient> client, GetPjRtClient()); xla::DebugOptions debug_options; FunctionalHloRunner::PreprocessingOptions preproc_options; FunctionalHloRunner::RawCompileOptions raw_compile_options; raw_compile_options.spmd_mode = FunctionalHloRunner::SpmdMode::kUseSpmdPartitioning; raw_compile_options.num_replicas = 1; raw_compile_options.num_partitions = 1; FunctionalHloRunner::RunningOptions running_options; running_options.module_argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUninitialized; TF_EXPECT_OK(FunctionalHloRunner::LoadAndRunAndDump( *client, debug_options, preproc_options, raw_compile_options, running_options, {GetHloPath("single_device_tupled.hlo")}, InputFormat::kText)); } TEST_F(FunctionalHloRunnerTest, CanCompileWithoutHavingEnoughGpus) { tsl::Env* env = tsl::Env::Default(); std::string dump_dir; ASSERT_TRUE(env->LocalTempFilename(&dump_dir)); tsl::FileSystem* fs = nullptr; TF_ASSERT_OK(env->GetFileSystemForFile(dump_dir, &fs)); xla::DebugOptions debug_options; FunctionalHloRunner::PreprocessingOptions preproc_options; FunctionalHloRunner::RawCompileOptions raw_compile_options; raw_compile_options.spmd_mode = FunctionalHloRunner::SpmdMode::kUseSpmdPartitioning; raw_compile_options.num_replicas = 1; raw_compile_options.num_partitions = 16; raw_compile_options.xla_dump_to = dump_dir; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::PjRtClient> client, GetPjRtClient()); TF_EXPECT_OK(FunctionalHloRunner::LoadAndCompile( *client, debug_options, preproc_options, raw_compile_options, GetHloPath("sharded_16_devices.hlo"), InputFormat::kText)); { std::vector<std::string> after_opt_hlo_paths; TF_ASSERT_OK( fs->GetMatchingPaths(fs->JoinPath(dump_dir, "*after_optimizations.txt"), &after_opt_hlo_paths)); ASSERT_THAT(after_opt_hlo_paths, SizeIs(1)); std::string after_opt_hlo; TF_ASSERT_OK( tsl::ReadFileToString(env, after_opt_hlo_paths[0], &after_opt_hlo)); absl::StatusOr<bool> file_check_result = RunFileCheck(after_opt_hlo, R"( )"); TF_ASSERT_OK(file_check_result.status()); EXPECT_TRUE(file_check_result.value()); } { std::vector<std::string> ir_paths; TF_ASSERT_OK(fs->GetMatchingPaths(fs->JoinPath(dump_dir, "*ir-no-opt.ll"), &ir_paths)); ASSERT_THAT(ir_paths, SizeIs(1)); } } static const char* binary_name; constexpr int kNumNodes = 2; TEST_F(FunctionalHloRunnerTest, ShardedAutotuningWorks) { if (IsTestingCpu()) { GTEST_SKIP() << "GPU-only test."; } tsl::SubProcess child[kNumNodes]; for (int node_id = 0; node_id < kNumNodes; ++node_id) { std::vector<std::string> argv; argv.push_back(binary_name); argv.push_back("--xla_gpu_shard_autotuning"); argv.push_back(absl::StrFormat("--node_id=%d", node_id)); child[node_id].SetProgram(binary_name, argv); child[node_id].SetChannelAction(tsl::CHAN_STDOUT, tsl::ACTION_PIPE); child[node_id].SetChannelAction(tsl::CHAN_STDERR, tsl::ACTION_PIPE); ASSERT_TRUE(child[node_id].Start()) << "node " << node_id; } for (int node_id = 0; node_id < kNumNodes; ++node_id) { std::string stdout_str; std::string stderr_str; int child_status = child[node_id].Communicate(nullptr, &stdout_str, &stderr_str); ASSERT_EQ(child_status, 0) << " node " << node_id << "\nstdout:\n" << stdout_str << "\nstderr:\n" << stderr_str; } } absl::Status ShardedAutotuningWorksTestBody(const int node_id) { tsl::setenv("CUDA_VISIBLE_DEVICES", std::to_string(node_id).data(), true); TF_ASSIGN_OR_RETURN( PjRtEnvironment env, xla::GetPjRtClient("gpu", "127.0.0.1:12345", node_id, kNumNodes, false, absl::Seconds(120))); CHECK(env.kv_store != nullptr); TF_RETURN_IF_ERROR(FunctionalHloRunner::LoadAndCompile( *env.client, GetDebugOptionsFromFlags(), FunctionalHloRunner::PreprocessingOptions{}, FunctionalHloRunner::RawCompileOptions{}, GetHloPath("multiple_gemm_fusions.hlo"), InputFormat::kText)); if (node_id == 0) { TF_ASSIGN_OR_RETURN(std::string results0, env.kv_store->Get("gemm_fusion_autotuning_results_1_0", absl::Seconds(1))); CHECK(absl::StrContains(results0, "run_time")); TF_ASSIGN_OR_RETURN(std::string results1, env.kv_store->Get("gemm_fusion_autotuning_results_1_1", absl::Seconds(1))); CHECK(absl::StrContains(results1, "run_time")); CHECK_NE(results0, results1); } return absl::OkStatus(); } TEST_F(FunctionalHloRunnerTest, CanRunWithMockCollectives) { if (IsTestingCpu()) { GTEST_SKIP() << "GPU-only test"; } xla::DebugOptions debug_options; FunctionalHloRunner::PreprocessingOptions preproc_options; FunctionalHloRunner::RawCompileOptions raw_compile_options; raw_compile_options.spmd_mode = FunctionalHloRunner::SpmdMode::kUseSpmdPartitioning; raw_compile_options.num_replicas = 1; raw_compile_options.num_partitions = 16; FunctionalHloRunner::RunningOptions running_options; running_options.module_argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUseZerosAsInput; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::PjRtClient> client, CreateMockGpuClient(16)); TF_EXPECT_OK(FunctionalHloRunner::LoadAndRunAndDump( *client, debug_options, preproc_options, raw_compile_options, running_options, {GetHloPath("sharded_16_devices.hlo")}, InputFormat::kText)); } } } int main(int argc, char* argv[]) { xla::binary_name = argv[0]; int node_id = -1; std::vector<tsl::Flag> flag_list = { tsl::Flag("node_id", &node_id, "Node ID for ShardedAutotuningWorks test."), }; xla::AppendDebugOptionsFlags(&flag_list); std::string usage = tsl::Flags::Usage(argv[0], flag_list); tsl::Flags::Parse(&argc, argv, flag_list); testing::InitGoogleTest(&argc, argv); if (node_id >= 0) { return !xla::ShardedAutotuningWorksTestBody(node_id).ok(); } return RUN_ALL_TESTS(); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/multihost_hlo_runner/functional_hlo_runner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/multihost_hlo_runner/functional_hlo_runner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a1fba7d6-3851-4dfe-a221-936f5f6a1256
cpp
tensorflow/tensorflow
profiler
tensorflow/lite/profiling/telemetry/profiler.cc
tensorflow/lite/profiling/telemetry/profiler_test.cc
#include "tensorflow/lite/profiling/telemetry/profiler.h" #include <cstdint> #include "tensorflow/lite/core/api/profiler.h" namespace tflite::telemetry { void TelemetryProfiler::AddEvent(const char* tag, EventType event_type, uint64_t metric, int64_t event_metadata1, int64_t event_metadata2) { switch (event_type) { case EventType::TELEMETRY_EVENT: case EventType::TELEMETRY_DELEGATE_EVENT: { if (event_metadata1 == -1) { ReportTelemetryEvent(tag, TelemetryStatusCode(metric)); } else { ReportTelemetryOpEvent(tag, event_metadata1, event_metadata2, TelemetryStatusCode(metric)); } break; } case EventType::OPERATOR_INVOKE_EVENT: case EventType::DELEGATE_OPERATOR_INVOKE_EVENT: case EventType::DELEGATE_PROFILED_OPERATOR_INVOKE_EVENT: { ReportOpInvokeEvent(tag, metric, event_metadata1, event_metadata2); break; } default: return; } } void TelemetryProfiler::AddEventWithData(const char* tag, EventType event_type, const void* data) { switch (event_type) { case EventType::TELEMETRY_REPORT_SETTINGS: case EventType::TELEMETRY_DELEGATE_REPORT_SETTINGS: { auto* settings = reinterpret_cast<const TfLiteTelemetrySettings*>(data); if (settings) { ReportSettings(tag, settings); } break; } default: return; } } uint32_t TelemetryProfiler::BeginEvent(const char* tag, EventType event_type, int64_t event_metadata1, int64_t event_metadata2) { switch (event_type) { case EventType::OPERATOR_INVOKE_EVENT: case EventType::DELEGATE_OPERATOR_INVOKE_EVENT: case EventType::DELEGATE_PROFILED_OPERATOR_INVOKE_EVENT: { return ReportBeginOpInvokeEvent(tag, event_metadata1, event_metadata2); } default: return UINT32_MAX; } } void TelemetryProfiler::EndEvent(uint32_t event_handle) { if (event_handle == UINT32_MAX) return; ReportEndOpInvokeEvent(event_handle); } class TfLiteTelemetryProfiler : public TelemetryProfiler { public: explicit TfLiteTelemetryProfiler(TfLiteTelemetryProfilerStruct* profiler) : profiler_(profiler) {} void ReportTelemetryEvent(const char* event_name, TelemetryStatusCode status) override; void ReportTelemetryOpEvent(const char* event_name, int64_t op_idx, int64_t subgraph_idx, TelemetryStatusCode status) override; void ReportSettings(const char* setting_name, const TfLiteTelemetrySettings* settings) override; uint32_t ReportBeginOpInvokeEvent(const char* op_name, int64_t op_idx, int64_t subgraph_idx) override; void ReportEndOpInvokeEvent(uint32_t event_handle) override; void ReportOpInvokeEvent(const char* op_name, uint64_t elapsed_time, int64_t op_idx, int64_t subgraph_idx) override; private: TfLiteTelemetryProfilerStruct* profiler_ = nullptr; }; void TfLiteTelemetryProfiler::ReportTelemetryEvent(const char* event_name, TelemetryStatusCode status) { profiler_->ReportTelemetryEvent(profiler_, event_name, status.code()); } void TfLiteTelemetryProfiler::ReportTelemetryOpEvent( const char* event_name, int64_t op_idx, int64_t subgraph_idx, TelemetryStatusCode status) { profiler_->ReportTelemetryOpEvent(profiler_, event_name, op_idx, subgraph_idx, status.code()); } void TfLiteTelemetryProfiler::ReportSettings( const char* setting_name, const TfLiteTelemetrySettings* settings) { profiler_->ReportSettings(profiler_, setting_name, settings); } uint32_t TfLiteTelemetryProfiler::ReportBeginOpInvokeEvent( const char* op_name, int64_t op_idx, int64_t subgraph_idx) { return profiler_->ReportBeginOpInvokeEvent(profiler_, op_name, op_idx, subgraph_idx); } void TfLiteTelemetryProfiler::ReportEndOpInvokeEvent(uint32_t event_handle) { profiler_->ReportEndOpInvokeEvent(profiler_, event_handle); } void TfLiteTelemetryProfiler::ReportOpInvokeEvent(const char* op_name, uint64_t elapsed_time, int64_t op_idx, int64_t subgraph_idx) { profiler_->ReportOpInvokeEvent(profiler_, op_name, elapsed_time, op_idx, subgraph_idx); } TelemetryProfiler* MakeTfLiteTelemetryProfiler( TfLiteTelemetryProfilerStruct* profiler) { return new TfLiteTelemetryProfiler(profiler); } }
#include "tensorflow/lite/profiling/telemetry/profiler.h" #include <cstdint> #include <iostream> #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/profiling/telemetry/c/telemetry_setting.h" #include "tensorflow/lite/profiling/telemetry/telemetry_status.h" namespace tflite::telemetry { namespace { constexpr char kEventName[] = "event_name"; constexpr char kSettingName[] = "setting_name"; class MockTelemtryProfiler : public TelemetryProfiler { public: MOCK_METHOD(void, ReportTelemetryEvent, (const char* event_name, TelemetryStatusCode status), (override)); MOCK_METHOD(void, ReportTelemetryOpEvent, (const char* event_name, int64_t op_idx, int64_t subgraph_idx, TelemetryStatusCode status), (override)); MOCK_METHOD(void, ReportSettings, (const char* setting_name, const TfLiteTelemetrySettings* settings), (override)); MOCK_METHOD(uint32_t, ReportBeginOpInvokeEvent, (const char* op_name, int64_t op_idx, int64_t subgraph_idx), (override)); MOCK_METHOD(void, ReportEndOpInvokeEvent, (uint32_t event_handle), (override)); MOCK_METHOD(void, ReportOpInvokeEvent, (const char* op_name, uint64_t elapsed_time, int64_t op_idx, int64_t subgraph_idx), (override)); }; class TelemetryStructTest : public ::testing::Test { protected: TelemetryStructTest() { context_.profiler = &profiler_; profiler_struct_.data = &mock_profiler_; profiler_struct_.ReportTelemetryEvent = [](struct TfLiteTelemetryProfilerStruct* profiler, const char* event_name, uint64_t status) { static_cast<MockTelemtryProfiler*>(profiler->data) ->ReportTelemetryEvent( event_name, tflite::telemetry::TelemetryStatusCode(status)); }; profiler_struct_.ReportTelemetryOpEvent = [](struct TfLiteTelemetryProfilerStruct* profiler, const char* event_name, int64_t op_idx, int64_t subgraph_idx, uint64_t status) { static_cast<MockTelemtryProfiler*>(profiler->data) ->ReportTelemetryOpEvent( event_name, op_idx, subgraph_idx, tflite::telemetry::TelemetryStatusCode(status)); }; profiler_struct_.ReportSettings = [](struct TfLiteTelemetryProfilerStruct* profiler, const char* setting_name, const TfLiteTelemetrySettings* settings) { static_cast<MockTelemtryProfiler*>(profiler->data) ->ReportSettings(setting_name, settings); }; profiler_struct_.ReportBeginOpInvokeEvent = [](struct TfLiteTelemetryProfilerStruct* profiler, const char* op_name, int64_t op_idx, int64_t subgraph_idx) -> uint32_t { return static_cast<MockTelemtryProfiler*>(profiler->data) ->ReportBeginOpInvokeEvent(op_name, op_idx, subgraph_idx); }; profiler_struct_.ReportEndOpInvokeEvent = [](struct TfLiteTelemetryProfilerStruct* profiler, uint32_t event_handle) { return static_cast<MockTelemtryProfiler*>(profiler->data) ->ReportEndOpInvokeEvent(event_handle); }; profiler_struct_.ReportOpInvokeEvent = [](struct TfLiteTelemetryProfilerStruct* profiler, const char* op_name, uint64_t elapsed_time, int64_t op_idx, int64_t subgraph_idx) { return static_cast<MockTelemtryProfiler*>(profiler->data) ->ReportOpInvokeEvent(op_name, elapsed_time, op_idx, subgraph_idx); }; profiler_.reset(telemetry::MakeTfLiteTelemetryProfiler(&profiler_struct_)); } MockTelemtryProfiler mock_profiler_; std::unique_ptr<TelemetryProfiler> profiler_; TfLiteContext context_; TfLiteTelemetryProfilerStruct profiler_struct_; }; TEST_F(TelemetryStructTest, TelemetryReportEvent) { EXPECT_CALL(mock_profiler_, ReportTelemetryEvent(kEventName, TelemetryStatusCode(kTfLiteOk))); profiler_->ReportTelemetryEvent(kEventName, TelemetryStatusCode(kTfLiteOk)); } TEST_F(TelemetryStructTest, TelemetryReportOpEvent) { EXPECT_CALL( mock_profiler_, ReportTelemetryOpEvent(kEventName, 1, 2, TelemetryStatusCode(kTfLiteOk))); profiler_->ReportTelemetryOpEvent(kEventName, 1, 2, TelemetryStatusCode(kTfLiteOk)); } TEST_F(TelemetryStructTest, TelemetryReportSettings) { EXPECT_CALL(mock_profiler_, ReportSettings(kSettingName, testing::_)); TfLiteTelemetrySettings settings{}; profiler_->ReportSettings(kSettingName, &settings); } TEST_F(TelemetryStructTest, TelemetryReportBeginOpInvokeEvent) { EXPECT_CALL(mock_profiler_, ReportBeginOpInvokeEvent(kSettingName, 1, 2)); profiler_->ReportBeginOpInvokeEvent(kSettingName, 1, 2); } TEST_F(TelemetryStructTest, TelemetryReportEndOpInvokeEvent) { EXPECT_CALL(mock_profiler_, ReportEndOpInvokeEvent(1)); profiler_->ReportEndOpInvokeEvent(1); } TEST_F(TelemetryStructTest, TelemetryReportOpInvokeEvent) { EXPECT_CALL(mock_profiler_, ReportOpInvokeEvent(kSettingName, 1, 2, 3)); profiler_->ReportOpInvokeEvent(kSettingName, 1, 2, 3); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/profiling/telemetry/profiler.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/profiling/telemetry/profiler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
665bfea1-89ee-49d0-99c1-042637e13beb
cpp
tensorflow/tensorflow
outfeed_receiver
third_party/xla/xla/python/outfeed_receiver.cc
third_party/xla/xla/python/outfeed_receiver_test.cc
#include "xla/python/outfeed_receiver.h" #include <sys/types.h> #include <cstdint> #include <memory> #include <optional> #include <queue> #include <string> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/client/executable_build_options.h" #include "xla/client/sharding_builder.h" #include "xla/client/xla_builder.h" #include "xla/client/xla_computation.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/python/pjrt_ifrt/pjrt_client.h" #include "xla/python/pjrt_ifrt/pjrt_device.h" #include "xla/service/computation_placer.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/casts.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tsl/profiler/lib/traceme.h" namespace xla { int constexpr kOutfeedHeaderWords = 2; uint32_t constexpr kOutfeedHeaderStart = 271828; uint32_t constexpr kOutfeedCidShutdown = 0; class OutfeedData { public: OutfeedData(ifrt::PjRtDevice* device, uint32_t consumer_id, Shape shape) : device_(device), consumer_id_(consumer_id), shape_(shape), literal_(nullptr), literal_size_bytes_(0) {} ifrt::PjRtDevice* device() { return device_; } uint32_t consumer_id() const { return consumer_id_; } Shape shape() const { return shape_; } std::unique_ptr<Literal> literal() { CHECK(literal_); return std::move(literal_); } void SetLiteral(std::unique_ptr<Literal> literal); ssize_t literal_size_bytes() const { return literal_size_bytes_; } std::string DebugString() const; private: ifrt::PjRtDevice* device_; uint32_t consumer_id_; Shape shape_; std::unique_ptr<Literal> literal_; ssize_t literal_size_bytes_; }; void OutfeedData::SetLiteral(std::unique_ptr<Literal> literal) { literal_ = std::move(literal); shape_ = literal_->shape(); int total_size_bytes = 0; ShapeUtil::ForEachSubshape( shape_, [&](const Shape& literal_subshape, const ShapeIndex& index) { if (!literal_subshape.IsTuple()) { total_size_bytes += ShapeUtil::ByteSizeOf(literal_subshape, 8); } }); literal_size_bytes_ = total_size_bytes; } std::string OutfeedData::DebugString() const { return absl::StrFormat("dev=%s; cons=%d; shape=%s", device_->DebugString(), consumer_id_, shape_.ToString()); } class OutfeedReceiverImpl { public: OutfeedReceiverImpl( OutfeedReceiver::Callback callback, absl::Span<ifrt::PjRtClient* const> clients, ssize_t max_callback_queue_size_bytes, const std::optional<ExecutableBuildOptions>& executable_build_options); OutfeedReceiverImpl(const OutfeedReceiverImpl&) = delete; OutfeedReceiverImpl& operator=(const OutfeedReceiverImpl&) = delete; ~OutfeedReceiverImpl(); void Start(); absl::StatusOr<XlaOp> AddOutfeedToBuilder(XlaBuilder* builder, XlaOp token, uint32_t consumer_id, std::vector<XlaOp> arrays, uint32_t device_idx); absl::Status RegisterOutfeed(uint32_t consumer_id, const Shape& shape); private: bool CallbackQueueHasSpace() ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return callback_queue_size_bytes_ < max_callback_queue_size_bytes_; } bool ShutdownDone() ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return (num_working_callback_threads_ == 0 && num_listening_threads_ == 0); } void CallbackThreadLoop(int device_idx); void DeviceListenerThreadLoop(int device_idx); absl::Status SendShutdownOutfeedHeader(int device_idx); absl::StatusOr<std::unique_ptr<Literal>> ReceiveRawFromOutfeed( ifrt::PjRtDevice* device, const Shape& shape); void EnqueueReceivedData(uint32_t device_idx, std::unique_ptr<OutfeedData> received) ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_); void Shutdown(); OutfeedReceiver::Callback callback_; std::vector<ifrt::PjRtDevice*> devices_; uint64_t max_callback_queue_size_bytes_; std::optional<ExecutableBuildOptions> executable_build_options_; absl::Mutex mu_; absl::flat_hash_map<uint32_t, Shape> shape_registry_ ABSL_GUARDED_BY(mu_); uint64_t callback_queue_size_bytes_ ABSL_GUARDED_BY(mu_); int num_listening_threads_ ABSL_GUARDED_BY(mu_); bool shutdown_started_ ABSL_GUARDED_BY(mu_); int num_working_callback_threads_ ABSL_GUARDED_BY(mu_); std::vector<std::queue<std::unique_ptr<OutfeedData>>> callback_queues_ ABSL_GUARDED_BY(mu_); std::unique_ptr<tsl::thread::ThreadPool> threads_; }; OutfeedReceiverImpl::OutfeedReceiverImpl( OutfeedReceiver::Callback callback, absl::Span<ifrt::PjRtClient* const> clients, ssize_t max_callback_queue_size_bytes, const std::optional<ExecutableBuildOptions>& executable_build_options) : executable_build_options_(executable_build_options) { callback_ = callback; max_callback_queue_size_bytes_ = max_callback_queue_size_bytes; for (const auto& client : clients) { for (auto device : client->addressable_devices()) { devices_.push_back(tensorflow::down_cast<ifrt::PjRtDevice*>(device)); } } CHECK_GT(devices_.size(), 0); callback_queues_ = std::vector<std::queue<std::unique_ptr<OutfeedData>>>(devices_.size()); callback_queue_size_bytes_ = 0; num_listening_threads_ = 0; num_working_callback_threads_ = 0; shutdown_started_ = false; } void OutfeedReceiverImpl::Start() { { absl::MutexLock lock(&mu_); CHECK(!shutdown_started_); } int num_threads = 2 * devices_.size(); threads_ = std::make_unique<tsl::thread::ThreadPool>( tsl::Env::Default(), "outfeed_receiver", num_threads); for (int device_idx = 0; device_idx < devices_.size(); ++device_idx) { threads_->Schedule( [this, device_idx]() { DeviceListenerThreadLoop(device_idx); }); threads_->Schedule( [this, device_idx]() { CallbackThreadLoop(device_idx); }); } } void OutfeedReceiverImpl::Shutdown() { VLOG(2) << "Shutdown start"; { absl::MutexLock lock(&mu_); CHECK(!shutdown_started_); shutdown_started_ = true; } for (int device_idx = 0; device_idx < devices_.size(); ++device_idx) { TF_CHECK_OK(SendShutdownOutfeedHeader(device_idx)); } VLOG(2) << "Shutdown waiting for listening and callback threads to stop"; absl::MutexLock lock(&mu_); mu_.Await(absl::Condition(this, &OutfeedReceiverImpl::ShutdownDone)); VLOG(2) << "Shutdown done"; } OutfeedReceiverImpl::~OutfeedReceiverImpl() { VLOG(2) << "~OutfeedReceiverImpl"; Shutdown(); } void OutfeedReceiverImpl::DeviceListenerThreadLoop(int device_idx) { { absl::MutexLock lock(&mu_); ++num_listening_threads_; } ifrt::PjRtDevice* device = devices_[device_idx]; while (true) { Shape header_shape = ShapeUtil::MakeShape(U32, {kOutfeedHeaderWords}); std::unique_ptr<Literal> header = ReceiveRawFromOutfeed(device, header_shape).value(); absl::Span<uint32_t> header_data = header->data<uint32_t>(); CHECK_EQ(header_data.size(), kOutfeedHeaderWords); CHECK_EQ(header_data[0], kOutfeedHeaderStart); uint32_t consumer_id = header_data[1]; Shape shape; { absl::MutexLock lock(&mu_); auto registered_shape = shape_registry_.find(consumer_id); if (registered_shape == shape_registry_.end()) { LOG(FATAL) << "[" << device->DebugString() << "] Cannot find registered shape for consumer ID " << consumer_id << ". Perhaps the code was compiled with a different instance " << "of OutfeedReceiver."; } shape = registered_shape->second; } auto received = std::make_unique<OutfeedData>(device, consumer_id, shape); VLOG(2) << "Listener received header " << received->DebugString(); if (consumer_id == kOutfeedCidShutdown) { VLOG(2) << "[" << device->DebugString() << "] Listener received shutdown header"; absl::MutexLock lock(&mu_); --num_listening_threads_; VLOG(2) << "[" << device->DebugString() << "] Enqueue shutdown callback"; EnqueueReceivedData(device_idx, std::move(received)); return; } std::unique_ptr<Literal> data = ReceiveRawFromOutfeed(device, shape).value(); received->SetLiteral(std::move(data)); absl::MutexLock lock(&mu_); EnqueueReceivedData(device_idx, std::move(received)); } } void OutfeedReceiverImpl::EnqueueReceivedData( uint32_t device_idx, std::unique_ptr<OutfeedData> received) ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_) { mu_.Await(absl::Condition(this, &OutfeedReceiverImpl::CallbackQueueHasSpace)); ssize_t literal_size_bytes = received->literal_size_bytes(); callback_queue_size_bytes_ += literal_size_bytes; VLOG(2) << "Listener enqueues data " << received->DebugString() << " of size " << literal_size_bytes << " bytes; " << (1 + callback_queues_[device_idx].size()) << " callbacks in queue of total size " << callback_queue_size_bytes_ << " bytes.\n"; callback_queues_[device_idx].push(std::move(received)); } absl::StatusOr<std::unique_ptr<Literal>> OutfeedReceiverImpl::ReceiveRawFromOutfeed(ifrt::PjRtDevice* device, const Shape& shape) { auto literal = std::make_unique<Literal>(shape); TF_RETURN_IF_ERROR( device->client()->TransferFromOutfeed(device, literal.get())); return literal; } void OutfeedReceiverImpl::CallbackThreadLoop(int device_idx) { const ifrt::PjRtDevice* device = devices_[device_idx]; { absl::MutexLock lock(&mu_); num_working_callback_threads_++; } while (true) { std::unique_ptr<OutfeedData> received; { absl::MutexLock lock(&mu_); mu_.Await(absl::Condition( +[](std::queue<std::unique_ptr<OutfeedData>>* queue) { return !queue->empty(); }, &callback_queues_[device_idx])); received = std::move(callback_queues_[device_idx].front()); callback_queues_[device_idx].pop(); callback_queue_size_bytes_ -= received->literal_size_bytes(); VLOG(2) << "[" << device->DebugString() << "] Dequeued callback for " << received->DebugString() << "; " << callback_queues_[device_idx].size() << " callbacks in queue of total size " << callback_queue_size_bytes_ << " bytes.\n"; } if (received->consumer_id() == kOutfeedCidShutdown) { VLOG(2) << "[" << device->DebugString() << "] Callback loop received shutdown signal"; { absl::MutexLock lock(&mu_); CHECK(callback_queues_[device_idx].empty()); --num_working_callback_threads_; } VLOG(2) << "[" << device->DebugString() << "] Callback loop done"; return; } { tsl::profiler::TraceMe traceme("OutfeedReceiver::Callback"); callback_(received->device(), received->consumer_id(), received->literal()); } } } absl::Status OutfeedReceiverImpl::SendShutdownOutfeedHeader(int device_idx) { const ifrt::PjRtDevice* device = devices_[device_idx]; constexpr int consumer_id = kOutfeedCidShutdown; VLOG(2) << "[" << device->DebugString() << "] SendSpecialHeader cons=" << consumer_id; XlaBuilder builder( absl::StrFormat("special_outfeed_header_%d_%d", consumer_id, device_idx)); XlaOp cst_operand = xla::ConstantR0<int32_t>(&builder, 0); XlaOp outfeed = AddOutfeedToBuilder(&builder, CreateToken(&builder), consumer_id, {}, 0) .value(); XlaOp add_dep = xla::internal::XlaBuilderFriend::BuildAddDependency( &builder, cst_operand, outfeed, ShapeUtil::MakeScalarShape(S32)); XlaComputation computation = builder.Build(add_dep).value(); CompileOptions compile_options; if (executable_build_options_) { compile_options.executable_build_options = *executable_build_options_; } compile_options.executable_build_options.set_num_replicas(1); compile_options.executable_build_options.set_num_partitions(1); DeviceAssignment device_assignment(1, 1); device_assignment(0, 0) = device->Id().value(); compile_options.executable_build_options.set_device_assignment( device_assignment); TF_ASSIGN_OR_RETURN(std::unique_ptr<PjRtLoadedExecutable> executable, devices_[device_idx]->client()->pjrt_client()->Compile( computation, std::move(compile_options))); ExecuteOptions execute_options; TF_ASSIGN_OR_RETURN( std::vector<std::vector<std::unique_ptr<PjRtBuffer>>> output_buffers, executable->Execute({{}}, execute_options)); return absl::OkStatus(); } absl::Status OutfeedReceiverImpl::RegisterOutfeed(uint32_t consumer_id, const Shape& shape) { VLOG(2) << "RegisterShape cons=" << consumer_id << "; shape=" << shape.ToString(); { absl::MutexLock lock(&mu_); auto found = shape_registry_.find(consumer_id); if (found != shape_registry_.end()) { if (!ShapeUtil::Equal(shape, found->second)) { return InvalidArgument( "Shape %s does not match previous shape %s used " "for consumer id %d", shape.DebugString(), found->second.DebugString(), consumer_id); } } else { shape_registry_.insert({consumer_id, shape}); } } return absl::OkStatus(); } absl::StatusOr<XlaOp> OutfeedReceiverImpl::AddOutfeedToBuilder( XlaBuilder* builder, XlaOp token, uint32_t consumer_id, std::vector<XlaOp> arrays, uint32_t device_idx) { XlaOp data = Tuple(builder, std::move(arrays)); Shape shape_with_layout = builder->GetShape(data).value(); ShapeUtil::ForEachMutableSubshape( &shape_with_layout, [](Shape* subshape, const ShapeIndex&) { if (!subshape->has_layout()) { LayoutUtil::SetToDefaultLayout(subshape); } }); TF_RETURN_IF_ERROR(RegisterOutfeed(consumer_id, shape_with_layout)); std::vector<uint32_t> header{kOutfeedHeaderStart, consumer_id}; XlaOp header_op = ConstantR1<uint32_t>(builder, header); builder->SetSharding(sharding_builder::AssignDevice(device_idx)); token = OutfeedWithToken( header_op, token, ShapeUtil::MakeShape(U32, {kOutfeedHeaderWords}), ""); if (consumer_id != kOutfeedCidShutdown) { token = OutfeedWithToken(data, token, shape_with_layout, ""); } builder->ClearSharding(); return token; } OutfeedReceiver::OutfeedReceiver( Callback callback, absl::Span<ifrt::PjRtClient* const> clients, ssize_t max_callback_queue_size_bytes, const std::optional<ExecutableBuildOptions>& executable_build_options) { p_impl_ = std::make_unique<OutfeedReceiverImpl>(callback, clients, max_callback_queue_size_bytes, executable_build_options); } OutfeedReceiver::~OutfeedReceiver() = default; void OutfeedReceiver::Start() { p_impl_->Start(); } absl::StatusOr<XlaOp> OutfeedReceiver::AddOutfeedToBuilder( XlaBuilder* builder, XlaOp token, uint32_t consumer_id, std::vector<XlaOp> arrays, uint32_t device_idx) { if (consumer_id == kOutfeedCidShutdown) { return InvalidArgument("Consumer ID cannot be a reserved value: %d", consumer_id); } return p_impl_->AddOutfeedToBuilder(builder, token, consumer_id, arrays, device_idx); } absl::Status OutfeedReceiver::RegisterOutfeed(uint32_t consumer_id, const Shape& shape) { if (consumer_id == kOutfeedCidShutdown) { return InvalidArgument("Consumer ID cannot be a reserved value: %d", consumer_id); } return p_impl_->RegisterOutfeed(consumer_id, shape); } }
#include "xla/python/outfeed_receiver.h" #include <memory> #include <optional> #include <vector> #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "xla/client/client_library.h" #include "xla/client/executable_build_options.h" #include "xla/client/xla_builder.h" #include "xla/pjrt/cpu/cpu_client.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_stream_executor_client.h" #include "xla/service/platform_util.h" #include "xla/test.h" namespace xla { namespace { absl::Status CompileAndExecute(XlaBuilder* builder, XlaOp root, int device_id, PjRtClient* client) { XlaComputation computation = builder->Build(root).value(); CompileOptions compile_options; compile_options.executable_build_options.set_num_replicas(1); compile_options.executable_build_options.set_num_partitions(1); DeviceAssignment device_assignment(1, 1); device_assignment(0, 0) = device_id; compile_options.executable_build_options.set_device_assignment( device_assignment); TF_ASSIGN_OR_RETURN(std::unique_ptr<PjRtLoadedExecutable> executable, client->Compile(computation, std::move(compile_options))); ExecuteOptions execute_options; TF_ASSIGN_OR_RETURN( std::vector<std::vector<std::unique_ptr<PjRtBuffer>>> output_buffers, executable->Execute({{}}, execute_options)); return absl::OkStatus(); } class Accumulator { public: struct Data { uint32_t consumer_id; std::shared_ptr<Literal> data; }; void Receive(uint32_t consumer_id, std::shared_ptr<Literal> data) { absl::MutexLock lock(&mutex_); received_.push_back(Data{consumer_id, data}); } std::vector<Data> received() { absl::MutexLock lock(&mutex_); return received_; } private: absl::Mutex mutex_; std::vector<Data> received_ ABSL_GUARDED_BY(mutex_); }; TEST(OutfeedReceiverTest, ReceiveOutfeedSimple) { TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<PjRtClient> cpu_client, GetTfrtCpuClient(CpuClientOptions())); auto ifrt_cpu_client = ifrt::PjRtClient::Create(cpu_client); std::vector<ifrt::PjRtClient*> clients{ifrt_cpu_client.get()}; auto receiver = std::make_unique<Accumulator>(); OutfeedReceiver::Callback callback = [&receiver](xla::ifrt::PjRtDevice* device, uint32_t consumer_id, std::shared_ptr<Literal> data) { receiver->Receive(consumer_id, data); }; auto outfeed_receiver = std::make_shared<OutfeedReceiver>(callback, clients, 128, std::nullopt); outfeed_receiver->Start(); XlaBuilder builder("execute_test_outfeed"); constexpr int consumer_id0 = 5; const Shape shape0 = ShapeUtil::MakeShape(U32, {16}); XlaOp data = Iota(&builder, shape0, 0); XlaOp send = outfeed_receiver ->AddOutfeedToBuilder(&builder, CreateToken(&builder), consumer_id0, {data}, 0) .value(); EXPECT_TRUE(CompileAndExecute(&builder, send, 0, cpu_client.get()).ok()); outfeed_receiver = nullptr; std::vector<Accumulator::Data> received = receiver->received(); EXPECT_EQ(1, received.size()); EXPECT_EQ(consumer_id0, received[0].consumer_id); EXPECT_EQ(ShapeUtil::MakeTupleShape({shape0}), received[0].data->shape()); } TEST(OutfeedReceiverTest, ReceiveOutfeedTwoComputations) { TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<PjRtClient> cpu_client, GetTfrtCpuClient(CpuClientOptions())); auto ifrt_cpu_client = ifrt::PjRtClient::Create(cpu_client); std::vector<ifrt::PjRtClient*> clients{ifrt_cpu_client.get()}; auto receiver = std::make_unique<Accumulator>(); OutfeedReceiver::Callback callback = [&receiver](xla::ifrt::PjRtDevice* device, uint32_t consumer_id, std::shared_ptr<Literal> data) { receiver->Receive(consumer_id, data); }; auto outfeed_receiver = std::make_shared<OutfeedReceiver>(callback, clients, 128, std::nullopt); outfeed_receiver->Start(); XlaBuilder builder0("execute_test_outfeed_0"); constexpr int consumer_id0 = 5; const Shape shape0 = ShapeUtil::MakeShape(U32, {16}); XlaOp data0 = Iota(&builder0, shape0, 0); XlaOp send0 = outfeed_receiver ->AddOutfeedToBuilder(&builder0, CreateToken(&builder0), consumer_id0, {data0}, 0) .value(); EXPECT_TRUE(CompileAndExecute(&builder0, send0, 0, cpu_client.get()).ok()); XlaBuilder builder1("execute_test_outfeed_1"); constexpr int consumer_id1 = 6; const Shape shape1 = ShapeUtil::MakeShape(U32, {128}); XlaOp data1 = Iota(&builder1, shape1, 0); XlaOp send1 = outfeed_receiver ->AddOutfeedToBuilder(&builder1, CreateToken(&builder1), consumer_id1, {data1}, 0) .value(); EXPECT_TRUE(CompileAndExecute(&builder1, send1, 0, cpu_client.get()).ok()); outfeed_receiver = nullptr; std::vector<Accumulator::Data> received = receiver->received(); EXPECT_EQ(2, received.size()); EXPECT_EQ(consumer_id0, received[0].consumer_id); EXPECT_EQ(ShapeUtil::MakeTupleShape({shape0}), received[0].data->shape()); EXPECT_EQ(consumer_id1, received[1].consumer_id); EXPECT_EQ(ShapeUtil::MakeTupleShape({shape1}), received[1].data->shape()); } TEST(OutfeedReceiverTest, ReceiveOutfeedTwoOutfeed) { TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<PjRtClient> cpu_client, GetTfrtCpuClient(CpuClientOptions())); auto ifrt_cpu_client = ifrt::PjRtClient::Create(cpu_client); std::vector<ifrt::PjRtClient*> clients{ifrt_cpu_client.get()}; auto receiver = std::make_unique<Accumulator>(); OutfeedReceiver::Callback callback = [&receiver](xla::ifrt::PjRtDevice* device, uint32_t consumer_id, std::shared_ptr<Literal> data) { receiver->Receive(consumer_id, data); }; auto outfeed_receiver = std::make_shared<OutfeedReceiver>(callback, clients, 128, std::nullopt); outfeed_receiver->Start(); XlaBuilder builder("execute_test_outfeed"); constexpr int consumer_id0 = 5; const Shape shape0 = ShapeUtil::MakeShape(U32, {16}); XlaOp data0 = Iota(&builder, shape0, 0); XlaOp send0 = outfeed_receiver ->AddOutfeedToBuilder(&builder, CreateToken(&builder), consumer_id0, {data0}, 0) .value(); constexpr int consumer_id1 = 6; const Shape shape1 = ShapeUtil::MakeShape(U32, {128}); XlaOp data1 = Iota(&builder, shape1, 0); XlaOp send1 = outfeed_receiver ->AddOutfeedToBuilder(&builder, send0, consumer_id1, {data1}, 0) .value(); EXPECT_TRUE(CompileAndExecute(&builder, send1, 0, cpu_client.get()).ok()); outfeed_receiver = nullptr; std::vector<Accumulator::Data> received = receiver->received(); EXPECT_EQ(2, received.size()); EXPECT_EQ(consumer_id0, received[0].consumer_id); EXPECT_EQ(ShapeUtil::MakeTupleShape({shape0}), received[0].data->shape()); EXPECT_EQ(consumer_id1, received[1].consumer_id); EXPECT_EQ(ShapeUtil::MakeTupleShape({shape1}), received[1].data->shape()); } TEST(OutfeedReceiverTest, DifferentShapeForConsumerIdError) { TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<PjRtClient> cpu_client, GetTfrtCpuClient(CpuClientOptions())); auto ifrt_cpu_client = ifrt::PjRtClient::Create(cpu_client); std::vector<ifrt::PjRtClient*> clients{ifrt_cpu_client.get()}; auto receiver = std::make_unique<Accumulator>(); OutfeedReceiver::Callback callback = [&receiver](xla::ifrt::PjRtDevice* device, uint32_t consumer_id, std::shared_ptr<Literal> data) { receiver->Receive(consumer_id, data); }; auto outfeed_receiver = std::make_shared<OutfeedReceiver>(callback, clients, 128, std::nullopt); outfeed_receiver->Start(); XlaBuilder builder("execute_test_outfeed"); constexpr int consumer_id0 = 5; const Shape shape0 = ShapeUtil::MakeShape(U32, {16}); XlaOp data0 = Iota(&builder, shape0, 0); XlaOp send0 = outfeed_receiver ->AddOutfeedToBuilder(&builder, CreateToken(&builder), consumer_id0, {data0}, 0) .value(); const Shape shape1 = ShapeUtil::MakeShape(U32, {128}); XlaOp data1 = Iota(&builder, shape1, 0); absl::StatusOr<XlaOp> send1 = outfeed_receiver->AddOutfeedToBuilder( &builder, send0, consumer_id0, {data1}, 0); EXPECT_FALSE(send1.ok()); EXPECT_THAT( send1.status().ToString(), testing::ContainsRegex( #if defined(PLATFORM_WINDOWS) "does not match previous shape \\w*/*\\w* *\\n?element_type")); #else "does not match previous shape (go/\\w+[ " "]+\\n)?element_type")); #endif } TEST(OutfeedReceiverTest, InvalidConsumerIdError) { TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<PjRtClient> cpu_client, GetTfrtCpuClient(CpuClientOptions())); auto ifrt_cpu_client = ifrt::PjRtClient::Create(cpu_client); std::vector<ifrt::PjRtClient*> clients{ifrt_cpu_client.get()}; auto receiver = std::make_unique<Accumulator>(); OutfeedReceiver::Callback callback = [&receiver](xla::ifrt::PjRtDevice* device, uint32_t consumer_id, std::shared_ptr<Literal> data) { receiver->Receive(consumer_id, data); }; auto outfeed_receiver = std::make_shared<OutfeedReceiver>(callback, clients, 128, std::nullopt); outfeed_receiver->Start(); XlaBuilder builder("execute_test_outfeed"); const Shape shape0 = ShapeUtil::MakeShape(U32, {16}); XlaOp data0 = Iota(&builder, shape0, 0); absl::StatusOr<XlaOp> send0 = outfeed_receiver->AddOutfeedToBuilder( &builder, CreateToken(&builder), 0, {data0}, 0); EXPECT_FALSE(send0.ok()); EXPECT_THAT(send0.status().ToString(), testing::HasSubstr("Consumer ID cannot be a reserved value")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/outfeed_receiver.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/outfeed_receiver_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
92843351-d9ed-433d-8b94-3590ca2b505e
cpp
tensorflow/tensorflow
ops
tensorflow/compiler/mlir/python/mlir_wrapper/ops.cc
tensorflow/c/ops_test.cc
#include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/Operation.h" #include "tensorflow/compiler/mlir/python/mlir_wrapper/mlir_wrapper.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" void init_ops(py::module& m) { py::class_<mlir::Operation, std::unique_ptr<mlir::Operation, py::nodelete>>( m, "Operation") .def("getRegion", &mlir::Operation::getRegion, py::return_value_policy::reference) .def("getResult", &mlir::Operation::getResult) .def("dump", &mlir::Operation::dump) .def("getNumResults", &mlir::Operation::getNumResults); py::class_<mlir::OperationState>(m, "OperationState") .def(py::init([](mlir::Location loc, std::string name) { return mlir::OperationState(loc, llvm::StringRef(name)); })) .def("addTypes", [](mlir::OperationState& state, std::vector<mlir::Type> tys) { state.addTypes(mlir::ArrayRef<mlir::Type>(tys)); }) .def("addOperands", [](mlir::OperationState& os, std::vector<mlir::Value> ops) { os.addOperands(mlir::ArrayRef<mlir::Value>(ops)); }) .def("addRegion", py::overload_cast<>(&mlir::OperationState::addRegion), py::return_value_policy::reference); py::class_<mlir::ModuleOp>(m, "ModuleOp") .def("create", [](mlir::Location loc) { return mlir::ModuleOp::create(loc); }) .def("push_back", [](mlir::ModuleOp& m, mlir::func::FuncOp f) { m.push_back(f); }) .def("dump", &mlir::ModuleOp::dump) .def("getAsStr", [](mlir::ModuleOp& m) { std::string str; llvm::raw_string_ostream os(str); m.print(os); return os.str(); }); py::class_<mlir::func::FuncOp>(m, "FuncOp") .def("create", [](mlir::Location location, std::string name, mlir::FunctionType type) { auto func = mlir::func::FuncOp::create(location, name, type); func.addEntryBlock(); return func; }) .def( "getBody", [](mlir::func::FuncOp& f) -> mlir::Region& { return f.getBody(); }, py::return_value_policy::reference) .def("getArguments", [](mlir::func::FuncOp& f) { return f.getArguments().vec(); }) .def("getName", [](mlir::func::FuncOp& f) { return f.getName().str(); }) .def("getType", &mlir::func::FuncOp::getFunctionType); py::class_<mlir::func::ReturnOp>(m, "ReturnOp") .def("create", [](mlir::OpBuilder& opb, mlir::Location loc, std::vector<mlir::Value> values) -> mlir::Operation* { return opb .create<mlir::func::ReturnOp>( loc, mlir::ArrayRef<mlir::Value>(values)) .getOperation(); }); py::class_<mlir::TF::AddV2Op>(m, "Tf_AddV2Op") .def("create", [](mlir::OpBuilder& opb, mlir::Location loc, mlir::Value x, mlir::Value y) -> mlir::Operation* { return opb.create<mlir::TF::AddV2Op>(loc, x, y).getOperation(); }); py::class_<mlir::TF::AnyOp>(m, "Tf_AnyOp") .def("create", [](mlir::OpBuilder& opb, mlir::Location loc, mlir::Value input, mlir::Value reduction_indices, bool keep_dims = false) -> mlir::Operation* { return opb .create<mlir::TF::AnyOp>(loc, opb.getI1Type(), input, reduction_indices, keep_dims) .getOperation(); }); py::class_<mlir::TF::ConstOp>(m, "Tf_ConstOp") .def("create", [](mlir::OpBuilder& opb, mlir::Location loc, mlir::Attribute value) -> mlir::Operation* { return opb.create<mlir::TF::ConstOp>(loc, value).getOperation(); }); py::class_<mlir::TF::EqualOp>(m, "Tf_EqualOp") .def("create", [](mlir::OpBuilder& opb, mlir::Location loc, mlir::Value x, mlir::Value y) -> mlir::Operation* { return opb .create<mlir::TF::EqualOp>(loc, x, y, opb.getBoolAttr(true)) .getOperation(); }); py::class_<mlir::TF::GreaterEqualOp>(m, "Tf_GreaterEqualOp") .def("create", [](mlir::OpBuilder& opb, mlir::Location loc, mlir::Value x, mlir::Value y) -> mlir::Operation* { return opb.create<mlir::TF::GreaterEqualOp>(loc, x, y) .getOperation(); }); py::class_<mlir::TF::GreaterOp>(m, "Tf_GreaterOp") .def("create", [](mlir::OpBuilder& opb, mlir::Location loc, mlir::Value x, mlir::Value y) -> mlir::Operation* { return opb.create<mlir::TF::GreaterOp>(loc, x, y).getOperation(); }); py::class_<mlir::TF::LegacyCallOp>(m, "Tf_LegacyCallOp") .def("create", [](mlir::OpBuilder& opb, mlir::Location loc, std::vector<mlir::Type> output, std::vector<mlir::Value> args, std::string f) -> mlir::Operation* { return opb .create<mlir::TF::LegacyCallOp>( loc, mlir::ArrayRef<mlir::Type>(output), mlir::ArrayRef<mlir::Value>(args), mlir::StringRef(f)) .getOperation(); }); py::class_<mlir::TF::LessEqualOp>(m, "Tf_LessEqualOp") .def("create", [](mlir::OpBuilder& opb, mlir::Location loc, mlir::Value x, mlir::Value y) -> mlir::Operation* { return opb.create<mlir::TF::LessEqualOp>(loc, x, y).getOperation(); }); py::class_<mlir::TF::LessOp>(m, "Tf_LessOp") .def("create", [](mlir::OpBuilder& opb, mlir::Location loc, mlir::Value x, mlir::Value y) -> mlir::Operation* { return opb.create<mlir::TF::LessOp>(loc, x, y).getOperation(); }); py::class_<mlir::TF::NegOp>(m, "Tf_NegOp") .def("create", [](mlir::OpBuilder& opb, mlir::Location loc, mlir::Value x) -> mlir::Operation* { return opb.create<mlir::TF::NegOp>(loc, x).getOperation(); }); py::class_<mlir::TF::NotEqualOp>(m, "Tf_NotEqualOp") .def("create", [](mlir::OpBuilder& opb, mlir::Location loc, mlir::Value x, mlir::Value y) { return opb .create<mlir::TF::NotEqualOp>( loc, x, y, mlir::BoolAttr::get(opb.getContext(), true)) .getOperation(); }); py::class_<mlir::TF::SubOp>(m, "Tf_SubOp") .def("create", [](mlir::OpBuilder& opb, mlir::Location loc, mlir::Value x, mlir::Value y) -> mlir::Operation* { return opb.create<mlir::TF::SubOp>(loc, x, y).getOperation(); }); }
#include "tensorflow/c/ops.h" #include "absl/strings/str_cat.h" #include "tensorflow/c/c_api.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/op_def_builder.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(OpsTest, TestBasicOpRegistration) { TF_OpDefinitionBuilder* builder = TF_NewOpDefinitionBuilder("SomeOp"); TF_OpDefinitionBuilderAddAttr(builder, "attr1: string"); TF_OpDefinitionBuilderAddInput(builder, "input1: uint8"); TF_OpDefinitionBuilderAddInput(builder, "input2: uint16"); TF_OpDefinitionBuilderAddOutput(builder, "output1: uint32"); TF_Status* status = TF_NewStatus(); TF_RegisterOpDefinition(builder, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_Buffer* op_list_buffer = TF_GetAllOpList(); ::tensorflow::OpList op_list; op_list.ParseFromArray(op_list_buffer->data, op_list_buffer->length); bool found = false; for (const auto& op : op_list.op()) { if (op.name() == "SomeOp") { ASSERT_EQ(2, op.input_arg_size()); ASSERT_EQ("input1", op.input_arg(0).name()); ASSERT_EQ(::tensorflow::DT_UINT8, op.input_arg(0).type()); ASSERT_EQ(1, op.attr_size()); ASSERT_EQ("string", op.attr(0).type()); found = true; } } EXPECT_TRUE(found); TF_DeleteStatus(status); TF_DeleteBuffer(op_list_buffer); } void identity_shape_fn(TF_ShapeInferenceContext* ctx, TF_Status* status) { TF_ShapeHandle* handle = TF_NewShapeHandle(); TF_ShapeInferenceContextGetInput(ctx, 0, handle, status); ASSERT_EQ(TF_OK, TF_GetCode(status)); TF_ShapeInferenceContextSetOutput(ctx, 0, handle, status); TF_DeleteShapeHandle(handle); } TEST(OpsTest, TestShapeInference_IdentityFunction) { ShapeInferenceTestOp op("SomeTestOp"); TF_OpDefinitionBuilder* builder = TF_NewOpDefinitionBuilder("SomeTestOp"); TF_OpDefinitionBuilderAddInput(builder, "input1: uint8"); TF_OpDefinitionBuilderAddOutput(builder, "output1: uint8"); TF_OpDefinitionBuilderSetShapeInferenceFunction(builder, &identity_shape_fn); TF_Status* status = TF_NewStatus(); TF_RegisterOpDefinition(builder, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_ASSERT_OK( shape_inference::ShapeInferenceTestutil::InferShapes(op, "[1,2]", "in0")); TF_DeleteStatus(status); } TEST(OpsTest, TestShapeInference_UnknownShape) { ShapeInferenceTestOp op("UnknownShapeOp"); TF_OpDefinitionBuilder* builder = TF_NewOpDefinitionBuilder("UnknownShapeOp"); TF_OpDefinitionBuilderAddInput(builder, "input1: uint8"); TF_OpDefinitionBuilderAddInput(builder, "input2: uint32"); TF_OpDefinitionBuilderAddOutput(builder, "output1: uint8"); TF_OpDefinitionBuilderAddOutput(builder, "output2: uint8"); TF_OpDefinitionBuilderSetShapeInferenceFunction( builder, &TF_ShapeInferenceContextSetUnknownShape); TF_Status* status = TF_NewStatus(); TF_RegisterOpDefinition(builder, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_ASSERT_OK(shape_inference::ShapeInferenceTestutil::InferShapes( op, "[1,2];[3,4]", "?;?")); TF_DeleteStatus(status); } void vectorize_shape_fn(TF_ShapeInferenceContext* ctx, TF_Status* status) { TF_ShapeHandle* handle = TF_NewShapeHandle(); TF_ShapeInferenceContextGetInput(ctx, 0, handle, status); ASSERT_EQ(TF_OK, TF_GetCode(status)); TF_ShapeHandle* new_shape = TF_ShapeInferenceContextVectorFromSize( ctx, TF_ShapeInferenceContextRank(ctx, handle)); TF_ShapeInferenceContextSetOutput(ctx, 0, new_shape, status); TF_DeleteShapeHandle(handle); TF_DeleteShapeHandle(new_shape); } TEST(OpsTest, TestShapeInference_VectorizeFunction) { ShapeInferenceTestOp op("VectorizeTestOp"); TF_OpDefinitionBuilder* builder = TF_NewOpDefinitionBuilder("VectorizeTestOp"); TF_OpDefinitionBuilderAddInput(builder, "input1: uint8"); TF_OpDefinitionBuilderAddOutput(builder, "output1: uint8"); TF_OpDefinitionBuilderSetShapeInferenceFunction(builder, &vectorize_shape_fn); TF_Status* status = TF_NewStatus(); TF_RegisterOpDefinition(builder, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_ASSERT_OK(shape_inference::ShapeInferenceTestutil::InferShapes( op, "[4,5,9]", "[3]")); TF_DeleteStatus(status); } TEST(OpsTest, AttributeAccessors) { TF_OpDefinitionBuilder* builder = TF_NewOpDefinitionBuilder("AttributeAccessorsOp"); TF_OpDefinitionBuilderAddAttr(builder, "foo1: int >= 2"); TF_OpDefinitionBuilderAddAttr(builder, "foo2: string=\"my string\""); TF_OpDefinitionBuilderSetIsCommutative(builder, true); TF_OpDefinitionBuilderSetIsAggregate(builder, true); TF_OpDefinitionBuilderSetAllowsUninitializedInput(builder, true); std::string deprecation_msg = "use something else instead"; TF_OpDefinitionBuilderDeprecated(builder, 4, deprecation_msg.c_str()); TF_Status* status = TF_NewStatus(); TF_RegisterOpDefinition(builder, status); ASSERT_EQ(TF_OK, TF_GetCode(status)); TF_Buffer* op_list_buffer = TF_GetAllOpList(); ::tensorflow::OpList op_list; op_list.ParseFromArray(op_list_buffer->data, op_list_buffer->length); bool found = false; for (const auto& op : op_list.op()) { if (op.name() == "AttributeAccessorsOp") { ASSERT_TRUE(op.is_commutative()); ASSERT_TRUE(op.is_aggregate()); ASSERT_TRUE(op.allows_uninitialized_input()); ASSERT_EQ(4, op.deprecation().version()); ASSERT_EQ(deprecation_msg, op.deprecation().explanation()); ASSERT_EQ(2, op.attr_size()); ASSERT_EQ("int", op.attr(0).type()); ASSERT_EQ(2, op.attr(0).minimum()); ASSERT_EQ("string", op.attr(1).type()); ASSERT_EQ("my string", op.attr(1).default_value().s()); found = true; } } ASSERT_TRUE(found); TF_DeleteStatus(status); TF_DeleteBuffer(op_list_buffer); } #define C_CTX(x) reinterpret_cast<TF_ShapeInferenceContext*>(x) #define C_SHP(x) reinterpret_cast<TF_ShapeHandle*>(x) static OpDef MakeOpDef(int num_inputs, int num_outputs) { OpRegistrationData op_reg_data; OpDefBuilder b("dummy"); for (int i = 0; i < num_inputs; ++i) { b.Input(strings::StrCat("i", i, ": float")); } for (int i = 0; i < num_outputs; ++i) { b.Output(strings::StrCat("o", i, ": float")); } CHECK(b.Attr("foo:string").Finalize(&op_reg_data).ok()); return op_reg_data.op_def; } PartialTensorShape S(std::initializer_list<int64_t> dims) { return PartialTensorShape(dims); } PartialTensorShape Unknown() { return PartialTensorShape(); } TEST(OpsTest, ShapeInferenceWithRank) { NodeDef def; shape_inference::InferenceContext c(0, def, MakeOpDef(1, 0), {S({10, 20, 30})}, {}, {}, {}); shape_inference::ShapeHandle in0 = c.input(0); shape_inference::ShapeHandle s1; TF_Status* status = TF_NewStatus(); TF_ShapeInferenceContextWithRankAtMost(C_CTX(&c), C_SHP(&in0), 3, C_SHP(&s1), status); EXPECT_EQ("[10,20,30]", c.DebugString(s1)); EXPECT_EQ(TF_OK, TF_GetCode(status)); TF_ShapeInferenceContextWithRankAtLeast(C_CTX(&c), C_SHP(&in0), 3, C_SHP(&s1), status); EXPECT_EQ("[10,20,30]", c.DebugString(s1)); EXPECT_EQ(TF_OK, TF_GetCode(status)); TF_ShapeInferenceContextWithRankAtLeast(C_CTX(&c), C_SHP(&in0), 6, C_SHP(&s1), status); ASSERT_NE(TF_OK, TF_GetCode(status)); TF_SetStatus(status, TF_OK, ""); TF_ShapeInferenceContextWithRankAtMost(C_CTX(&c), C_SHP(&in0), 1, C_SHP(&s1), status); ASSERT_NE(TF_OK, TF_GetCode(status)); TF_SetStatus(status, TF_OK, ""); TF_ShapeInferenceContextWithRank(C_CTX(&c), C_SHP(&in0), 3, C_SHP(&s1), status); ASSERT_EQ(TF_OK, TF_GetCode(status)); TF_ShapeInferenceContextWithRank(C_CTX(&c), C_SHP(&in0), 4, C_SHP(&s1), status); ASSERT_NE(TF_OK, TF_GetCode(status)); TF_DeleteStatus(status); } TEST(OpsTest, ShapeInferenceWithRank_UnknownRank) { NodeDef def; shape_inference::InferenceContext c(0, def, MakeOpDef(2, 2), {Unknown(), S({1, -1, 3})}, {}, {}, {}); shape_inference::ShapeHandle in0 = c.input(0); shape_inference::ShapeHandle s1; TF_Status* status = TF_NewStatus(); TF_ShapeInferenceContextWithRankAtMost(C_CTX(&c), C_SHP(&in0), 1, C_SHP(&s1), status); EXPECT_EQ("?", c.DebugString(s1)); EXPECT_EQ(TF_OK, TF_GetCode(status)); TF_ShapeInferenceContextWithRankAtLeast(C_CTX(&c), C_SHP(&in0), 1, C_SHP(&s1), status); EXPECT_EQ("?", c.DebugString(s1)); EXPECT_EQ(TF_OK, TF_GetCode(status)); TF_DeleteStatus(status); } TEST(OpsTest, ShapeInferenceConcatenateShapes) { NodeDef def; shape_inference::InferenceContext c(0, def, MakeOpDef(2, 0), {S({1, 2}), S({3, 4})}, {}, {}, {}); ASSERT_EQ(2, TF_ShapeInferenceContextNumInputs(C_CTX(&c))); shape_inference::ShapeHandle a = c.input(0); shape_inference::ShapeHandle b = c.input(1); TF_ShapeHandle* result = TF_NewShapeHandle(); TF_Status* status = TF_NewStatus(); TF_ShapeInferenceContextConcatenateShapes(C_CTX(&c), C_SHP(&a), C_SHP(&b), result, status); EXPECT_EQ( "[1,2,3,4]", c.DebugString(*reinterpret_cast<shape_inference::ShapeHandle*>(result))); EXPECT_EQ(TF_OK, TF_GetCode(status)); TF_DeleteShapeHandle(result); TF_DeleteStatus(status); } TEST(OpsTest, DimensionHandleValueKnown) { NodeDef def; shape_inference::InferenceContext c(0, def, MakeOpDef(2, 0), {S({1, 2}), S({3, 4})}, {}, {}, {}); TF_ShapeHandle* handle = TF_ShapeInferenceContextVectorFromSize(C_CTX(&c), 43); ASSERT_EQ( "[43]", c.DebugString(*reinterpret_cast<shape_inference::ShapeHandle*>(handle))); ASSERT_EQ(1, TF_ShapeInferenceContextRankKnown(C_CTX(&c), handle)); ASSERT_EQ(1, TF_ShapeInferenceContextRank(C_CTX(&c), handle)); TF_DimensionHandle* dim_handle = TF_NewDimensionHandle(); TF_ShapeInferenceContextDim(C_CTX(&c), handle, 0, dim_handle); ASSERT_EQ(1, TF_DimensionHandleValueKnown(dim_handle)); ASSERT_EQ(43, TF_DimensionHandleValue(dim_handle)); TF_DeleteShapeHandle(handle); TF_DeleteDimensionHandle(dim_handle); } TEST(OpsTest, ShapeInferenceSubshape) { NodeDef def; shape_inference::InferenceContext c(0, def, MakeOpDef(1, 0), {S({10, 20, 30, 40, 50})}, {}, {}, {}); ASSERT_EQ("[10,20,30,40,50]", c.DebugString(c.input(0))); TF_ShapeHandle* handle = TF_NewShapeHandle(); TF_Status* status = TF_NewStatus(); TF_ShapeInferenceContextGetInput(C_CTX(&c), 0, handle, status); ASSERT_EQ(TF_OK, TF_GetCode(status)); TF_ShapeInferenceContextSubshape(C_CTX(&c), handle, 1, -1, handle, status); ASSERT_EQ(TF_OK, TF_GetCode(status)); ASSERT_EQ( "[20,30,40]", c.DebugString(*reinterpret_cast<shape_inference::ShapeHandle*>(handle))); TF_DeleteStatus(status); TF_DeleteShapeHandle(handle); } TEST(OpsTest, ShapeInferenceScalarShape) { NodeDef def; shape_inference::InferenceContext c(0, def, MakeOpDef(0, 0), {S({})}, {}, {}, {}); TF_ShapeHandle* TF_scalar_shape = TF_ShapeInferenceContextScalar(C_CTX(&c)); shape_inference::ShapeHandle* scalar_shape = reinterpret_cast<shape_inference::ShapeHandle*>(TF_scalar_shape); ASSERT_EQ("[]", c.DebugString(*scalar_shape)); TF_DeleteShapeHandle(TF_scalar_shape); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/python/mlir_wrapper/ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
aa9eb069-6e9e-4c5a-9df4-5d8c7ab16540
cpp
tensorflow/tensorflow
xplane_to_profile_instructions
third_party/xla/xla/python/xplane_to_profile_instructions.cc
third_party/xla/xla/python/xplane_to_profile_instructions_test.cc
#include "xla/python/xplane_to_profile_instructions.h" #include <cstdint> #include <memory> #include <numeric> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/types/optional.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo.pb.h" #include "xla/tsl/profiler/convert/xla_op_utils.h" #include "xla/tsl/profiler/utils/file_system_utils.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "xla/tsl/profiler/utils/xplane_utils.h" #include "xla/tsl/profiler/utils/xplane_visitor.h" #include "xla/xla.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/types.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace xla { namespace { constexpr char kXPlanePb[] = "xplane.pb"; constexpr char kCostNameSep[] = "::"; using tensorflow::profiler::XPlane; using tensorflow::profiler::XSpace; using tsl::profiler::CreateTfXPlaneVisitor; using tsl::profiler::FindPlanesWithPrefix; using tsl::profiler::FindPlaneWithName; using tsl::profiler::GetStatTypeStr; using tsl::profiler::HostEventType; using tsl::profiler::IsInternalEvent; using tsl::profiler::ProfilerJoinPath; using tsl::profiler::StatType; using tsl::profiler::XEventMetadataVisitor; using tsl::profiler::XEventVisitor; using tsl::profiler::XLineVisitor; using tsl::profiler::XPlaneVisitor; using tsl::profiler::XStatVisitor; void GetXPlaneLatencyInfo( const XPlaneVisitor& xplane, const absl::flat_hash_map<std::string, std::string>& hlo_module_info, absl::flat_hash_map<std::string, HloLatencyInfo>* hlo_latency_info) { xplane.ForEachLine([hlo_latency_info, hlo_module_info](const XLineVisitor& xline) { if (xline.DisplayName() == tsl::profiler::kXlaAsyncOpLineName) { return; } xline.ForEachEvent([hlo_latency_info, hlo_module_info](const XEventVisitor& xevent) { int64_t event_type = xevent.Type().value_or(HostEventType::kUnknownHostEventType); if (IsInternalEvent(event_type)) return; std::optional<std::string> hlo_name = std::nullopt; std::optional<std::string> hlo_module_name = std::nullopt; std::optional<std::string> fingerprint = std::nullopt; std::optional<int64_t> program_id = std::nullopt; auto for_each_stat = [&](const XStatVisitor& stat) { if (stat.ValueCase() == tsl::profiler::XStat::VALUE_NOT_SET) return; if (stat.Name() == GetStatTypeStr(StatType::kHloOp)) { hlo_name = stat.ToString(); } if (stat.Name() == GetStatTypeStr(StatType::kProgramId)) { program_id = stat.IntValue(); } if (stat.Name() == GetStatTypeStr(StatType::kHloModule)) { hlo_module_name = stat.ToString(); } }; xevent.Metadata().ForEachStat(for_each_stat); xevent.ForEachStat(for_each_stat); if (!hlo_name.has_value() || !hlo_module_name.has_value()) { return; } if (hlo_module_name.has_value()) { std::string fingerprint_key = hlo_module_name.value(); if (program_id.has_value()) { fingerprint_key = tsl::profiler::HloModuleNameWithProgramId( hlo_module_name.value(), program_id.value()); } if (hlo_module_info.contains(fingerprint_key)) { fingerprint = hlo_module_info.at(fingerprint_key); } } double latency = static_cast<double>(xevent.DurationNs()) / 1e3; std::string key = hlo_name.value(); if (fingerprint.has_value()) { key = absl::StrCat(fingerprint.value(), kCostNameSep, hlo_name.value()); } (*hlo_latency_info)[key].durations.emplace_back(latency); }); }); } std::unique_ptr<xla::HloModule> CreateModuleFromProto( const xla::HloModuleProto& proto) { auto config = xla::HloModule::CreateModuleConfigFromProto(proto, {}); if (config.ok()) { auto module = xla::HloModule::CreateFromProto(proto, config.value()); if (module.ok()) { return std::move(*module); } } return nullptr; } std::optional<std::string> GetHloModuleFingerprint( const xla::HloModuleProto& hlo_module_proto) { std::unique_ptr<xla::HloModule> hlo_module = CreateModuleFromProto(hlo_module_proto); if (hlo_module == nullptr) { return std::nullopt; } const auto& map = hlo_module->entry_computation() ->root_instruction() ->frontend_attributes() .map(); auto it = map.find("fingerprint_before_lhs"); if (it != map.end()) { return it->second; } return std::nullopt; } void GetXPlaneHloModuleInfo( const XPlaneVisitor& xplane, absl::flat_hash_map<std::string, std::string>* hlo_module_info) { xplane.ForEachEventMetadata([&](const XEventMetadataVisitor& event_metadata) { event_metadata.ForEachStat([&](const XStatVisitor& stat) { xla::HloProto hlo_proto; if (tsl::ParseProtoUnlimited(&hlo_proto, stat.BytesValue().data(), stat.BytesValue().size())) { const xla::HloModuleProto& hlo_module_proto = hlo_proto.hlo_module(); std::optional<std::string> fingerprint = GetHloModuleFingerprint(hlo_module_proto); if (fingerprint.has_value()) { std::string key_with_id = tsl::profiler::HloModuleNameWithProgramId( hlo_module_proto.name(), hlo_module_proto.id()); (*hlo_module_info)[key_with_id] = fingerprint.value(); } } }); }); } } absl::Status ConvertXplaneUnderLogdirToProfiledInstructionsProto( const std::string& logdir, tensorflow::profiler::ProfiledInstructionsProto* profiled_instructions_proto) { std::vector<std::string> children_path; TF_RETURN_IF_ERROR(tsl::Env::Default()->GetChildren(logdir, &children_path)); if (children_path.empty()) { return absl::NotFoundError( absl::StrCat("Could not find file under: ", logdir)); } std::vector<tensorflow::profiler::XSpace> xspaces; for (const std::string& child_path : children_path) { if (absl::StrContains(child_path, kXPlanePb)) { std::string xspace_path = ProfilerJoinPath(logdir, child_path); tensorflow::profiler::XSpace xspace; TF_RETURN_IF_ERROR( ReadBinaryProto(tsl::Env::Default(), xspace_path, &xspace)); xspaces.emplace_back(xspace); } } return ConvertXplaneToProfiledInstructionsProto(xspaces, profiled_instructions_proto); } absl::Status ConvertXplaneToProfiledInstructionsProto( std::vector<tensorflow::profiler::XSpace> xspaces, tensorflow::profiler::ProfiledInstructionsProto* profiled_instructions_proto) { absl::flat_hash_map<std::string, HloLatencyInfo> hlo_latency_info; absl::flat_hash_map<std::string, std::string> hlo_module_info; for (const XSpace& xspace : xspaces) { const XPlane* metadata_plane = FindPlaneWithName(xspace, tsl::profiler::kMetadataPlaneName); if (metadata_plane != nullptr) { XPlaneVisitor xplane = CreateTfXPlaneVisitor(metadata_plane); GetXPlaneHloModuleInfo(xplane, &hlo_module_info); } std::vector<const XPlane*> device_planes = FindPlanesWithPrefix(xspace, tsl::profiler::kGpuPlanePrefix); if (device_planes.empty()) { device_planes = FindPlanesWithPrefix(xspace, tsl::profiler::kTpuPlanePrefix); } if (device_planes.empty()) { device_planes = FindPlanesWithPrefix(xspace, tsl::profiler::kCustomPlanePrefix); } for (const XPlane* device_plane : device_planes) { XPlaneVisitor xplane = CreateTfXPlaneVisitor(device_plane); GetXPlaneLatencyInfo(xplane, hlo_module_info, &hlo_latency_info); } } for (const auto& iter : hlo_latency_info) { auto* cost = profiled_instructions_proto->add_costs(); std::vector<double> durations = iter.second.durations; double sum = std::accumulate(durations.begin(), durations.end(), 0.0); cost->set_cost_us(sum / durations.size()); cost->set_name(iter.first); } return absl::OkStatus(); } }
#include "xla/python/xplane_to_profile_instructions.h" #include <cstdint> #include <memory> #include <string> #include "xla/service/hlo.pb.h" #include "xla/tests/verified_hlo_module.h" #include "xla/tsl/profiler/convert/xla_op_utils.h" #include "xla/tsl/profiler/rpc/client/save_profile.h" #include "xla/tsl/profiler/utils/file_system_utils.h" #include "xla/tsl/profiler/utils/xplane_builder.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "tsl/platform/test.h" #include "tsl/profiler/protobuf/profiled_instructions.pb.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace xla { namespace { using tensorflow::profiler::XSpace; using tsl::profiler::GetStatTypeStr; using tsl::profiler::GpuPlaneName; using tsl::profiler::kHostThreadsPlaneName; using tsl::profiler::kMetadataPlaneName; using tsl::profiler::StatType; using tsl::profiler::XEventBuilder; using tsl::profiler::XLineBuilder; using tsl::profiler::XPlaneBuilder; void CreateXSpace(XSpace* space, int first_device_latency, int second_device_latency) { XPlaneBuilder host_plane(space->add_planes()); host_plane.SetName(kHostThreadsPlaneName); XLineBuilder thread1 = host_plane.GetOrCreateLine(10); thread1.SetName("thread1"); XEventBuilder event1 = thread1.AddEvent(*host_plane.GetOrCreateEventMetadata("event1")); event1.SetTimestampNs(150000); event1.SetDurationNs(10000); event1.AddStatValue(*host_plane.GetOrCreateStatMetadata("tf_op"), *host_plane.GetOrCreateStatMetadata("Relu")); XLineBuilder thread2 = host_plane.GetOrCreateLine(20); thread2.SetName("thread2"); XEventBuilder event2 = thread2.AddEvent(*host_plane.GetOrCreateEventMetadata("event2")); event2.SetTimestampNs(160000); event2.SetDurationNs(10000); event2.AddStatValue(*host_plane.GetOrCreateStatMetadata("tf_op"), *host_plane.GetOrCreateStatMetadata("Conv2D")); int64_t program_id = 1; XPlaneBuilder device_plane(space->add_planes()); device_plane.SetName(GpuPlaneName(0)); device_plane.SetId(0); XLineBuilder stream1 = device_plane.GetOrCreateLine(30); stream1.SetName("gpu stream 1"); XEventBuilder event3 = stream1.AddEvent(*device_plane.GetOrCreateEventMetadata("kernel1")); event3.SetTimestampNs(180000); event3.SetDurationNs(first_device_latency); event3.AddStatValue( *device_plane.GetOrCreateStatMetadata(GetStatTypeStr(StatType::kHloOp)), *device_plane.GetOrCreateStatMetadata("custom-call")); event3.AddStatValue(*device_plane.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kHloModule)), *device_plane.GetOrCreateStatMetadata("test_module")); event3.AddStatValue(*device_plane.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kProgramId)), program_id); XPlaneBuilder device_plane_2(space->add_planes()); device_plane_2.SetName(GpuPlaneName(1)); device_plane_2.SetId(0); XLineBuilder stream2 = device_plane.GetOrCreateLine(30); stream2.SetName("gpu stream 1"); XEventBuilder event5 = stream1.AddEvent(*device_plane.GetOrCreateEventMetadata("kernel1")); event5.SetTimestampNs(180000); event5.SetDurationNs(second_device_latency); event5.AddStatValue( *device_plane.GetOrCreateStatMetadata(GetStatTypeStr(StatType::kHloOp)), *device_plane.GetOrCreateStatMetadata("custom-call")); event5.AddStatValue(*device_plane.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kHloModule)), *device_plane.GetOrCreateStatMetadata("test_module")); event5.AddStatValue(*device_plane.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kProgramId)), program_id); } void CreateXSpaceWithFingerprint(XSpace* space, int first_device_latency, int second_device_latency) { XPlaneBuilder metadata_plane(space->add_planes()); metadata_plane.SetName(kMetadataPlaneName); const char* hlo_text = R"( HloModule test_module apply_op { x = f32[] parameter(0) y = f32[] parameter(1) ROOT apply_op = f32[] add(x, y) } ENTRY ar { p0 = f32[32] parameter(0) p1 = f32[32, 32] parameter(1) p2 = f32[32, 32] parameter(2) p3 = f32[32] parameter(3) dot0 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm" dot1 = f32[32,32]{1,0} custom-call(dot0, p2), custom_call_target="__cublas$gemm" dot2 = f32[32,32]{1,0} custom-call(dot1, p2), custom_call_target="__cublas$gemm" dot3 = f32[32,32]{1,0} custom-call(dot2, p2), custom_call_target="__cublas$gemm" dot4 = f32[32,32]{1,0} custom-call(dot3, p2), custom_call_target="__cublas$gemm" dot5 = f32[32,32]{1,0} custom-call(dot4, p2), custom_call_target="__cublas$gemm" dot6 = f32[32,32]{1,0} custom-call(dot5, p2), custom_call_target="__cublas$gemm" ar-start = f32[32] all-reduce-start(p0), to_apply=apply_op ar-done = f32[32] all-reduce-done(ar-start) %ag-start = (f32[32], f32[64]) all-gather-start(p3), dimensions={0} %ag-done = f32[64] all-gather-done(%ag-start) add0 = f32[32,32] add(dot0, dot1) add1 = f32[32,32] add(add0, dot2) add2 = f32[32,32] add(add1, dot3) add3 = f32[32,32] add(add2, dot4) add4 = f32[32,32] add(add3, dot5) add5 = f32[32,32] add(add4, dot6) ROOT t = (f32[32], f32[64], f32[32,32]) tuple(ar-done, %ag-done, add5) })"; xla::HloModuleConfig config; auto module = std::make_unique<VerifiedHloModule>( "test_module", config, false, true, ShapeUtil::ByteSizeOfElements); if (module->ParseHloStringAndVerifyModule(hlo_text).ok()) { HloInstruction* root = module->entry_computation()->root_instruction(); FrontendAttributes attributes; (*attributes.mutable_map())["fingerprint_before_lhs"] = "08a5"; root->add_frontend_attributes(attributes); xla::HloModuleProto hlo_module_proto = module->ToProto(); hlo_module_proto.set_id(1); xla::HloProto hlo_proto; *hlo_proto.mutable_hlo_module() = hlo_module_proto; int64_t program_id = 1; tsl::profiler::XEventMetadata* event_metadata = metadata_plane.GetOrCreateEventMetadata(program_id); event_metadata->set_name(tsl::profiler::HloModuleNameWithProgramId( hlo_proto.hlo_module().name(), program_id)); tsl::profiler::XStatsBuilder<tsl::profiler::XEventMetadata> event_stats( event_metadata, &metadata_plane); auto* hlo_proto_stat = metadata_plane.GetOrCreateStatMetadata( GetStatTypeStr(tsl::profiler::StatType::kHloProto)); event_stats.AddStatValue(*hlo_proto_stat, hlo_proto); } return CreateXSpace(space, first_device_latency, second_device_latency); } TEST(XplaneToProfiledInstructionsProtoTest, ConvertXplaneUnderLogdirToProfiledInstructionsProto) { tensorflow::profiler::ProfiledInstructionsProto profile_proto; std::string logdir = testing::TempDir() + "/logdir"; std::string run = tsl::profiler::GetCurrentTimeStampAsString(); const std::string path = tsl::profiler::ProfilerJoinPath(logdir, run); XSpace xspace_first_host; CreateXSpace(&xspace_first_host, 10000, 10000); auto status = tsl::profiler::SaveXSpace(logdir, run, "host_0", xspace_first_host); EXPECT_TRUE(status.ok()); XSpace xspace_2nd_host; CreateXSpace(&xspace_2nd_host, 15000, 5000); status = tsl::profiler::SaveXSpace(logdir, run, "host_1", xspace_2nd_host); EXPECT_TRUE(status.ok()); EXPECT_TRUE( ConvertXplaneUnderLogdirToProfiledInstructionsProto(path, &profile_proto) .ok()); EXPECT_EQ(profile_proto.costs_size(), 1); EXPECT_EQ(profile_proto.costs(0).cost_us(), 10); EXPECT_EQ(profile_proto.costs(0).name(), "custom-call"); } TEST(XplaneToProfiledInstructionsProtoTest, ConvertXplaneUnderLogdirToProfiledInstructionsProtoWithFingerprint) { tensorflow::profiler::ProfiledInstructionsProto profile_proto; std::string logdir = testing::TempDir() + "/logdir"; std::string run = tsl::profiler::GetCurrentTimeStampAsString(); const std::string path = tsl::profiler::ProfilerJoinPath(logdir, run); XSpace xspace_first_host; CreateXSpaceWithFingerprint(&xspace_first_host, 10000, 10000); auto status = tsl::profiler::SaveXSpace(logdir, run, "host_0", xspace_first_host); EXPECT_TRUE(status.ok()); XSpace xspace_2nd_host; CreateXSpaceWithFingerprint(&xspace_2nd_host, 15000, 5000); status = tsl::profiler::SaveXSpace(logdir, run, "host_1", xspace_2nd_host); EXPECT_TRUE(status.ok()); EXPECT_TRUE( ConvertXplaneUnderLogdirToProfiledInstructionsProto(path, &profile_proto) .ok()); EXPECT_EQ(profile_proto.costs_size(), 1); EXPECT_EQ(profile_proto.costs(0).cost_us(), 10); EXPECT_EQ(profile_proto.costs(0).name(), "08a5::custom-call"); } TEST(XplaneToProfiledInstructionsProtoTest, ConvertXplaneToProfiledInstructionsProto) { tensorflow::profiler::ProfiledInstructionsProto profile_proto; XSpace xspace_a; CreateXSpace(&xspace_a, 10000, 10000); XSpace xspace_b; CreateXSpace(&xspace_b, 15000, 5000); EXPECT_TRUE(ConvertXplaneToProfiledInstructionsProto({xspace_a, xspace_b}, &profile_proto) .ok()); EXPECT_EQ(profile_proto.costs_size(), 1); EXPECT_EQ(profile_proto.costs(0).cost_us(), 10); EXPECT_EQ(profile_proto.costs(0).name(), "custom-call"); } TEST(XplaneToProfiledInstructionsProtoTest, ConvertXplaneToProfiledInstructionsProtoWithFingerprint) { tensorflow::profiler::ProfiledInstructionsProto profile_proto; XSpace xspace_a; CreateXSpaceWithFingerprint(&xspace_a, 10000, 10000); XSpace xspace_b; CreateXSpaceWithFingerprint(&xspace_b, 15000, 5000); EXPECT_TRUE(ConvertXplaneToProfiledInstructionsProto({xspace_a, xspace_b}, &profile_proto) .ok()); EXPECT_EQ(profile_proto.costs_size(), 1); EXPECT_EQ(profile_proto.costs(0).cost_us(), 10); EXPECT_EQ(profile_proto.costs(0).name(), "08a5::custom-call"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/xplane_to_profile_instructions.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/xplane_to_profile_instructions_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c14d0579-faed-4c33-bc1a-ab53d3937844
cpp
tensorflow/tensorflow
aggregate_profile
third_party/xla/xla/python/aggregate_profile.cc
third_party/xla/xla/python/aggregate_profile_test.cc
#include "xla/python/aggregate_profile.h" #include <algorithm> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/types/span.h" #include "xla/python/xplane_to_profile_instructions.h" namespace xla { void AggregateProfiledInstructionsProto( absl::Span<const tensorflow::profiler::ProfiledInstructionsProto> profiles, int percentile, tensorflow::profiler::ProfiledInstructionsProto *result_profile) { if (percentile < 0 || percentile > 100) return; absl::flat_hash_map<std::string, HloLatencyInfo> hlo_latency_info; for (const auto &profile : profiles) { for (const auto &cost : profile.costs()) { hlo_latency_info[cost.name()].durations.emplace_back(cost.cost_us()); } } for (const auto &iter : hlo_latency_info) { auto *cost = result_profile->add_costs(); std::vector<double> durations = iter.second.durations; int index = 0; if (durations.size() > 1) { std::sort(durations.begin(), durations.end()); index = percentile / 100.0 * (durations.size() - 1); } cost->set_cost_us(durations[index]); cost->set_name(iter.first); } } }
#include "xla/python/aggregate_profile.h" #include <map> #include <string> #include <vector> #include "absl/types/span.h" #include "tsl/platform/test.h" #include "tsl/profiler/protobuf/profiled_instructions.pb.h" namespace xla { namespace { using tensorflow::profiler::ProfiledInstructionsProto; TEST(AggregateProfiledInstructionsProtoTest, aggregateAndGetPercentile) { tensorflow::profiler::ProfiledInstructionsProto profile_a; { auto *cost_a = profile_a.add_costs(); cost_a->set_cost_us(10); cost_a->set_name("reduce"); } { auto *cost_a = profile_a.add_costs(); cost_a->set_cost_us(30); cost_a->set_name("copy"); } tensorflow::profiler::ProfiledInstructionsProto profile_c; { auto *cost_c = profile_c.add_costs(); cost_c->set_cost_us(30); cost_c->set_name("reduce"); } std::vector<tensorflow::profiler::ProfiledInstructionsProto> profiles = { profile_a, profile_c}; std::vector<int> custom_call_costs = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}; for (int cost : custom_call_costs) { tensorflow::profiler::ProfiledInstructionsProto profile_custom_call; { auto *cost_c = profile_custom_call.add_costs(); cost_c->set_cost_us(cost); cost_c->set_name("custom-call"); } profiles.push_back(profile_custom_call); } tensorflow::profiler::ProfiledInstructionsProto result_90th; AggregateProfiledInstructionsProto( absl::Span<const tensorflow::profiler::ProfiledInstructionsProto>( profiles.data(), profiles.size()), 90, &result_90th); EXPECT_EQ(result_90th.costs_size(), 3); std::map<std::string, float> costs; for (const auto &cost : result_90th.costs()) { costs[cost.name()] = cost.cost_us(); } EXPECT_EQ(costs["copy"], 30); EXPECT_EQ(costs["custom-call"], 90); EXPECT_EQ(costs["reduce"], 10); tensorflow::profiler::ProfiledInstructionsProto result_10th; AggregateProfiledInstructionsProto( absl::Span<const tensorflow::profiler::ProfiledInstructionsProto>( profiles.data(), profiles.size()), 10, &result_10th); EXPECT_EQ(result_10th.costs_size(), 3); for (const auto &cost : result_10th.costs()) { costs[cost.name()] = cost.cost_us(); } EXPECT_EQ(costs["copy"], 30); EXPECT_EQ(costs["custom-call"], 10); EXPECT_EQ(costs["reduce"], 10); } TEST(AggregateProfiledInstructionsProtoTest, getIncorrectPercentile) { tensorflow::profiler::ProfiledInstructionsProto profile_a; { auto *cost_a = profile_a.add_costs(); cost_a->set_cost_us(10); cost_a->set_name("reduce"); } std::vector<tensorflow::profiler::ProfiledInstructionsProto> profiles = { profile_a}; tensorflow::profiler::ProfiledInstructionsProto result; AggregateProfiledInstructionsProto( absl::Span<const tensorflow::profiler::ProfiledInstructionsProto>( profiles.data(), profiles.size()), -1, &result); EXPECT_EQ(result.costs_size(), 0); AggregateProfiledInstructionsProto( absl::Span<const tensorflow::profiler::ProfiledInstructionsProto>( profiles.data(), profiles.size()), 101, &result); EXPECT_EQ(result.costs_size(), 0); AggregateProfiledInstructionsProto( absl::Span<const tensorflow::profiler::ProfiledInstructionsProto>( profiles.data(), profiles.size()), 100, &result); EXPECT_EQ(result.costs_size(), 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/aggregate_profile.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/aggregate_profile_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c1927ee1-1ede-4759-a812-191e2251d57c
cpp
tensorflow/tensorflow
dlpack
tensorflow/c/eager/dlpack.cc
tensorflow/c/eager/dlpack_test.cc
#include "tensorflow/c/eager/dlpack.h" #include <string> #include "include/dlpack/dlpack.h" #include "tensorflow/c/eager/c_api.h" #include "tensorflow/c/eager/c_api_experimental.h" #include "tensorflow/c/eager/tfe_tensorhandle_internal.h" #include "tensorflow/c/tf_status_internal.h" #include "tensorflow/core/common_runtime/eager/tensor_handle.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_reference.h" #include "tensorflow/core/platform/logging.h" namespace tensorflow { namespace { struct TfDlManagedTensorCtx { TensorReference reference; std::vector<int64_t> shape; std::vector<int64_t> strides; DLManagedTensor tensor; explicit TfDlManagedTensorCtx(const TensorReference& ref) : reference(ref) {} }; const Tensor* GetTensorFromHandle(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } tensorflow::TensorHandle* handle = tensorflow::TensorHandleFromInterface(tensorflow::unwrap(h)); if (handle->Type() != TensorHandle::LOCAL) { status->status = tensorflow::errors::InvalidArgument( "DLPack doesn't support ", handle->TypeString(), " tensor"); return nullptr; } const tensorflow::Tensor* tensor; status->status = handle->Tensor(&tensor); if (!status->status.ok()) { return nullptr; } return tensor; } void DLManagedTensorDeleter(DLManagedTensor* arg) { TfDlManagedTensorCtx* owner = static_cast<TfDlManagedTensorCtx*>(arg->manager_ctx); owner->reference.Unref(); delete owner; } DLDataType GetDlDataType(TF_DataType data_type, TF_Status* status) { DLDataType dtype; dtype.lanes = 1; dtype.bits = TF_DataTypeSize(data_type) * 8; switch (data_type) { case TF_DataType::TF_BOOL: dtype.code = DLDataTypeCode::kDLBool; break; case TF_DataType::TF_HALF: case TF_DataType::TF_FLOAT: case TF_DataType::TF_DOUBLE: dtype.code = DLDataTypeCode::kDLFloat; break; case TF_DataType::TF_INT8: case TF_DataType::TF_INT16: case TF_DataType::TF_INT32: case TF_DataType::TF_INT64: dtype.code = DLDataTypeCode::kDLInt; break; case TF_DataType::TF_UINT8: case TF_DataType::TF_UINT16: case TF_DataType::TF_UINT32: case TF_DataType::TF_UINT64: dtype.code = DLDataTypeCode::kDLUInt; break; case TF_DataType::TF_BFLOAT16: dtype.code = DLDataTypeCode::kDLBfloat; break; case TF_DataType::TF_COMPLEX64: case TF_DataType::TF_COMPLEX128: dtype.code = DLDataTypeCode::kDLComplex; break; default: status->status = tensorflow::errors::InvalidArgument( DataType_Name(static_cast<DataType>(data_type)), " is not supported by dlpack"); break; } return dtype; } DLDevice GetDlContext(TFE_TensorHandle* h, TF_Status* status) { DLDevice ctx; const char* device_name = tensorflow::unwrap(h)->BackingDeviceName(&status->status); DeviceNameUtils::ParsedName parsed_name; tensorflow::DeviceNameUtils::ParseFullName(device_name, &parsed_name); std::string device_type = parsed_name.type; int device_id = 0; if (parsed_name.has_id) { device_id = parsed_name.id; } ctx.device_id = device_id; if (device_type == "CPU") { ctx.device_type = DLDeviceType::kDLCPU; } else if (device_type == "GPU") { #if TENSORFLOW_USE_ROCM ctx.device_type = DLDeviceType::kDLROCM; #else ctx.device_type = DLDeviceType::kDLCUDA; #endif } else { status->status = tensorflow::errors::InvalidArgument( "Unsupported Device Type for dlpack"); } return ctx; } absl::optional<std::string> DeviceNameFromDlContext(const DLDevice& ctx, TF_Status* status) { switch (ctx.device_type) { case DLDeviceType::kDLCPU: return "CPU:0"; case DLDeviceType::kDLCUDA: return absl::StrCat("GPU:", ctx.device_id); case DLDeviceType::kDLROCM: return absl::StrCat("GPU:", ctx.device_id); default: return absl::nullopt; } } Status TfDataTypeFormDlDataType(const DLDataType& dtype, TF_DataType* tf_dtype) { switch (dtype.code) { case DLDataTypeCode::kDLBool: if (dtype.bits != 8) { return tensorflow::errors::InvalidArgument( "Only DLPack bools of bitwidth 8 are supported, got: ", dtype.bits); } *tf_dtype = TF_DataType::TF_BOOL; return absl::OkStatus(); case DLDataTypeCode::kDLUInt: switch (dtype.bits) { case 8: *tf_dtype = TF_DataType::TF_UINT8; return absl::OkStatus(); case 16: *tf_dtype = TF_DataType::TF_UINT16; return absl::OkStatus(); case 32: *tf_dtype = TF_DataType::TF_UINT32; return absl::OkStatus(); case 64: *tf_dtype = TF_DataType::TF_UINT64; return absl::OkStatus(); default: return tensorflow::errors::InvalidArgument("Unsupported UInt bits: ", dtype.bits); } return absl::OkStatus(); case DLDataTypeCode::kDLInt: switch (dtype.bits) { case 8: *tf_dtype = TF_DataType::TF_INT8; return absl::OkStatus(); case 16: *tf_dtype = TF_DataType::TF_INT16; return absl::OkStatus(); case 32: *tf_dtype = TF_DataType::TF_INT32; return absl::OkStatus(); case 64: *tf_dtype = TF_DataType::TF_INT64; return absl::OkStatus(); default: return tensorflow::errors::InvalidArgument("Unsupported Int bits: ", dtype.bits); } return absl::OkStatus(); case DLDataTypeCode::kDLFloat: switch (dtype.bits) { case 16: *tf_dtype = TF_DataType::TF_HALF; return absl::OkStatus(); case 32: *tf_dtype = TF_DataType::TF_FLOAT; return absl::OkStatus(); case 64: *tf_dtype = TF_DataType::TF_DOUBLE; return absl::OkStatus(); default: return tensorflow::errors::InvalidArgument("Unsupported Float bits: ", dtype.bits); } break; case DLDataTypeCode::kDLBfloat: switch (dtype.bits) { case 16: *tf_dtype = TF_DataType::TF_BFLOAT16; return absl::OkStatus(); default: return tensorflow::errors::InvalidArgument( "Unsupported BFloat bits: ", dtype.bits); } break; case DLDataTypeCode::kDLComplex: switch (dtype.bits) { case 64: *tf_dtype = TF_DataType::TF_COMPLEX64; return absl::OkStatus(); case 128: *tf_dtype = TF_DataType::TF_COMPLEX128; return absl::OkStatus(); default: return tensorflow::errors::InvalidArgument( "Unsupported Complex bits: ", dtype.bits); } break; default: return tensorflow::errors::InvalidArgument("Unsupported Type Codes: ", dtype.code); } } void DeallocatorWrapperFunc(void* data, size_t len, void* dlmt_vptr) { TFE_CallDLManagedTensorDeleter(dlmt_vptr); } bool IsValidStrideCompactRowMajorData(int64_t* shape_arr, int64_t* stride_arr, int ndim) { bool valid = true; int64_t expected_stride = 1; for (int i = ndim - 1; i >= 0; --i) { if (shape_arr[i] == 0) return true; if (shape_arr[i] != 1 && stride_arr[i] != expected_stride) { valid = false; } expected_stride *= shape_arr[i]; } return valid; } } void TFE_CallDLManagedTensorDeleter(void* dlm_ptr) { DLManagedTensor* dlMTensor = static_cast<DLManagedTensor*>(dlm_ptr); if (dlMTensor->deleter != nullptr) { dlMTensor->deleter(dlMTensor); } } void* TFE_HandleToDLPack(TFE_TensorHandle* h, TF_Status* status) { auto tf_dlm_context = GetDlContext(h, status); if (!status->status.ok()) { return nullptr; } auto* tf_dlm_data = TFE_TensorHandleDevicePointer(h, status); if (!status->status.ok()) { return nullptr; } const Tensor* tensor = GetTensorFromHandle(h, status); TF_DataType data_type = static_cast<TF_DataType>(tensor->dtype()); auto tf_dlm_type = GetDlDataType(data_type, status); if (!status->status.ok()) { return nullptr; } TensorReference tensor_ref(*tensor); auto* tf_dlm_tensor_ctx = new TfDlManagedTensorCtx(tensor_ref); tf_dlm_tensor_ctx->reference = tensor_ref; DLManagedTensor* dlm_tensor = &tf_dlm_tensor_ctx->tensor; dlm_tensor->manager_ctx = tf_dlm_tensor_ctx; dlm_tensor->deleter = &DLManagedTensorDeleter; dlm_tensor->dl_tensor.device = tf_dlm_context; int ndim = tensor->dims(); dlm_tensor->dl_tensor.ndim = ndim; dlm_tensor->dl_tensor.data = tf_dlm_data; dlm_tensor->dl_tensor.dtype = tf_dlm_type; std::vector<int64_t>* shape_arr = &tf_dlm_tensor_ctx->shape; std::vector<int64_t>* stride_arr = &tf_dlm_tensor_ctx->strides; shape_arr->resize(ndim); stride_arr->resize(ndim, 1); for (int i = 0; i < ndim; i++) { (*shape_arr)[i] = tensor->dim_size(i); } for (int i = ndim - 2; i >= 0; --i) { (*stride_arr)[i] = (*shape_arr)[i + 1] * (*stride_arr)[i + 1]; } dlm_tensor->dl_tensor.shape = shape_arr->data(); dlm_tensor->dl_tensor.strides = stride_arr->data(); dlm_tensor->dl_tensor.byte_offset = 0; return static_cast<void*>(dlm_tensor); } TFE_TensorHandle* TFE_HandleFromDLPack(void* dlm, TF_Status* status, TFE_Context* ctx) { DLManagedTensor* dlmt = static_cast<DLManagedTensor*>(dlm); DLTensor* dl_tensor = &dlmt->dl_tensor; absl::optional<std::string> device_name = DeviceNameFromDlContext(dl_tensor->device, status); if (!device_name.has_value()) { status->status = tensorflow::errors::InvalidArgument("Unsupported Device Type"); return nullptr; } TF_DataType dtype; Status s = TfDataTypeFormDlDataType(dl_tensor->dtype, &dtype); if (!s.ok()) { status->status = std::move(s); return nullptr; } int num_dims = dl_tensor->ndim; const int64_t* dims = dl_tensor->shape; void* data = dl_tensor->data; if (dl_tensor->byte_offset != 0) { status->status = tensorflow::errors::InvalidArgument( "Unsupported byte_offset (", dl_tensor->byte_offset, ") from DLPack, must be zero"); return nullptr; } size_t total_bytes = dl_tensor->dtype.bits / 8; for (int i = 0; i < num_dims; i++) { total_bytes *= dims[i]; } if (dl_tensor->strides != nullptr && !IsValidStrideCompactRowMajorData(dl_tensor->shape, dl_tensor->strides, num_dims)) { status->status = tensorflow::errors::InvalidArgument( "Invalid strides array from DLPack"); return nullptr; } TFE_TensorHandle* handle = TFE_NewTensorHandleFromDeviceMemory( ctx, device_name.value().c_str(), dtype, dims, num_dims, data, total_bytes, &DeallocatorWrapperFunc, dlmt, status); return handle; } }
#include "tensorflow/c/eager/dlpack.h" #include <vector> #include "absl/strings/str_join.h" #include "include/dlpack/dlpack.h" #include "tensorflow/c/eager/c_api.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { void TestHandleFromDLPack(TF_Status* status, TFE_Context* ctx, std::vector<int64_t> shape, std::vector<int64_t> strides) { size_t num_elements = 1; for (int i = 0; i < static_cast<int32_t>(shape.size()); ++i) { num_elements *= shape[i]; } std::vector<float> data(num_elements); for (size_t j = 0; j < num_elements; ++j) { data[j] = j; } DLManagedTensor dlm_in = {}; DLTensor* dltensor_in = &dlm_in.dl_tensor; dltensor_in->data = data.data(); dltensor_in->device = {kDLCPU, 0}; dltensor_in->ndim = static_cast<int32_t>(shape.size()); dltensor_in->dtype = {kDLFloat, 32, 1}; dltensor_in->shape = shape.data(); dltensor_in->strides = strides.data(); TFE_TensorHandle* handle = TFE_HandleFromDLPack(&dlm_in, status, ctx); ASSERT_NE(handle, nullptr) << TF_Message(status) << " (shape=[" << absl::StrJoin(shape, ",") << "], strides=[" << absl::StrJoin(strides, ",") << "])"; auto* dlm_out = static_cast<DLManagedTensor*>(TFE_HandleToDLPack(handle, status)); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); const DLTensor* dltensor_out = &dlm_out->dl_tensor; EXPECT_EQ(dltensor_out->device.device_type, dltensor_in->device.device_type); EXPECT_EQ(dltensor_out->device.device_id, dltensor_in->device.device_id); EXPECT_EQ(dltensor_out->ndim, dltensor_in->ndim); EXPECT_EQ(dltensor_out->dtype.code, dltensor_in->dtype.code); EXPECT_EQ(dltensor_out->dtype.bits, dltensor_in->dtype.bits); EXPECT_EQ(dltensor_out->dtype.lanes, dltensor_in->dtype.lanes); for (int i = 0; i < dltensor_in->ndim; ++i) { EXPECT_EQ(dltensor_out->shape[i], dltensor_in->shape[i]); if (dltensor_out->strides) { if (i == dltensor_in->ndim - 1) { EXPECT_EQ(dltensor_out->strides[i], 1); } else { EXPECT_EQ(dltensor_out->strides[i], dltensor_out->shape[i + 1] * dltensor_out->strides[i + 1]); } } } const float* data_in = static_cast<const float*>(dltensor_in->data); const float* data_out = static_cast<const float*>(dltensor_out->data); for (size_t j = 0; j < num_elements; ++j) { EXPECT_EQ(data_out[j], data_in[j]); } TFE_CallDLManagedTensorDeleter(dlm_out); TFE_DeleteTensorHandle(handle); } TEST(DLPack, HandleFromDLPackStrides) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TestHandleFromDLPack(status, ctx, {}, {}); TestHandleFromDLPack(status, ctx, {4}, {}); TestHandleFromDLPack(status, ctx, {4}, {1}); TestHandleFromDLPack(status, ctx, {4, 3, 2}, {}); TestHandleFromDLPack(status, ctx, {4, 3, 2}, {6, 2, 1}); TestHandleFromDLPack(status, ctx, {1}, {1}); TestHandleFromDLPack(status, ctx, {1}, {0}); TestHandleFromDLPack(status, ctx, {4, 1, 2}, {2, 1, 1}); TestHandleFromDLPack(status, ctx, {4, 1, 2}, {2, 0, 1}); TestHandleFromDLPack(status, ctx, {4, 3, 1}, {3, 1, 1}); TestHandleFromDLPack(status, ctx, {4, 3, 1}, {3, 1, 0}); TestHandleFromDLPack(status, ctx, {4, 0, 2}, {0, 2, 1}); TestHandleFromDLPack(status, ctx, {4, 0, 2}, {0, 1, 1}); TestHandleFromDLPack(status, ctx, {4, 0, 2}, {0, 0, 1}); TestHandleFromDLPack(status, ctx, {4, 0, 2}, {0, 2, 0}); TFE_DeleteContext(ctx); TF_DeleteStatus(status); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/eager/dlpack.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/eager/dlpack_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0d8a30af-9d88-44c6-8cd3-014ba40aa72e
cpp
tensorflow/tensorflow
types
tensorflow/compiler/mlir/python/mlir_wrapper/types.cc
tensorflow/lite/toco/tflite/types_test.cc
#include "mlir/IR/BuiltinTypes.h" #include "tensorflow/compiler/mlir/python/mlir_wrapper/mlir_wrapper.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_types.h" void init_types(py::module& m) { py::class_<mlir::Type> Type(m, "Type"); py::class_<mlir::FunctionType, mlir::Type>(m, "FunctionType") .def("getResults", [](mlir::FunctionType& ft) { return ft.getResults().vec(); }); py::class_<mlir::FloatType, mlir::Type>(m, "FloatType") .def("getBF16", &mlir::FloatType::getBF16) .def("getF16", &mlir::FloatType::getF16) .def("getF32", &mlir::FloatType::getF32) .def("getF64", &mlir::FloatType::getF64); py::class_<mlir::IntegerType, mlir::Type>(m, "IntegerType") .def("get", [](mlir::MLIRContext* context, unsigned width) { return mlir::IntegerType::get(context, width, mlir::IntegerType::Signless); }); py::class_<mlir::UnrankedTensorType, mlir::Type>(m, "UnrankedTensorType") .def("get", &mlir::UnrankedTensorType::get); py::class_<mlir::RankedTensorType, mlir::Type>(m, "RankedTensorType") .def("get", [](std::vector<int64_t> shape, mlir::Type ty) { return mlir::RankedTensorType::get(mlir::ArrayRef<int64_t>(shape), ty); }); }
#include "tensorflow/lite/toco/tflite/types.h" #include <complex> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/runtime/types.h" namespace toco { namespace tflite { namespace { using flatbuffers::Offset; using flatbuffers::Vector; static const ArrayDataType kUnsupportedTocoTypes[] = {ArrayDataType::kNone}; static const ::tflite::TensorType kUnsupportedTfLiteTypes[] = { ::tflite::TensorType_FLOAT16}; MATCHER_P(HasOffset, value, "") { return arg.o == value; } template <ArrayDataType T> Array ToFlatBufferAndBack(std::initializer_list<::toco::DataType<T>> items) { Array src; src.data_type = T; src.GetMutableBuffer<T>().data = items; Array result; flatbuffers::FlatBufferBuilder builder; builder.Finish(CreateTensor(builder, 0, DataType::Serialize(T), 1)); flatbuffers::FlatBufferBuilder buffer_builder; Offset<Vector<uint8_t>> data_buffer = DataBuffer::Serialize(src, &buffer_builder); buffer_builder.Finish(::tflite::CreateBuffer(buffer_builder, data_buffer)); auto* tensor = flatbuffers::GetRoot<::tflite::Tensor>(builder.GetBufferPointer()); auto* buffer = flatbuffers::GetRoot<::tflite::Buffer>(buffer_builder.GetBufferPointer()); DataBuffer::Deserialize(*tensor, *buffer, &result); return result; } TEST(DataType, SupportedTypes) { std::vector<std::pair<ArrayDataType, ::tflite::TensorType>> testdata = { {ArrayDataType::kUint8, ::tflite::TensorType_UINT8}, {ArrayDataType::kInt32, ::tflite::TensorType_INT32}, {ArrayDataType::kUint32, ::tflite::TensorType_UINT32}, {ArrayDataType::kInt64, ::tflite::TensorType_INT64}, {ArrayDataType::kFloat, ::tflite::TensorType_FLOAT32}, {ArrayDataType::kBool, ::tflite::TensorType_BOOL}, {ArrayDataType::kComplex64, ::tflite::TensorType_COMPLEX64}}; for (auto x : testdata) { EXPECT_EQ(x.second, DataType::Serialize(x.first)); EXPECT_EQ(x.first, DataType::Deserialize(x.second)); } } TEST(DataType, UnsupportedTypes) { for (::tflite::TensorType t : kUnsupportedTfLiteTypes) { EXPECT_DEATH(DataType::Deserialize(t), "Unhandled tensor type."); } for (ArrayDataType t : kUnsupportedTocoTypes) { EXPECT_EQ(::tflite::TensorType_FLOAT32, DataType::Serialize(t)); } } TEST(DataBuffer, EmptyBuffers) { flatbuffers::FlatBufferBuilder builder; Array array; EXPECT_THAT(DataBuffer::Serialize(array, &builder), HasOffset(0)); builder.Finish(::tflite::CreateTensor(builder)); auto* tensor = flatbuffers::GetRoot<::tflite::Tensor>(builder.GetBufferPointer()); flatbuffers::FlatBufferBuilder buffer_builder; Offset<Vector<uint8_t>> v = buffer_builder.CreateVector<uint8_t>({}); buffer_builder.Finish(::tflite::CreateBuffer(buffer_builder, v)); auto* buffer = flatbuffers::GetRoot<::tflite::Buffer>(buffer_builder.GetBufferPointer()); DataBuffer::Deserialize(*tensor, *buffer, &array); EXPECT_EQ(nullptr, array.buffer); } TEST(DataBuffer, UnsupportedTypes) { for (ArrayDataType t : kUnsupportedTocoTypes) { flatbuffers::FlatBufferBuilder builder; Array array; array.data_type = t; array.GetMutableBuffer<ArrayDataType::kFloat>(); EXPECT_DEATH(DataBuffer::Serialize(array, &builder), "Unhandled array data type."); } for (::tflite::TensorType t : kUnsupportedTfLiteTypes) { flatbuffers::FlatBufferBuilder builder; builder.Finish(::tflite::CreateTensor(builder, 0, t, 1)); flatbuffers::FlatBufferBuilder buffer_builder; Offset<Vector<uint8_t>> v = buffer_builder.CreateVector<uint8_t>({1}); buffer_builder.Finish(::tflite::CreateBuffer(buffer_builder, v)); auto* buffer = flatbuffers::GetRoot<::tflite::Buffer>( buffer_builder.GetBufferPointer()); auto* tensor = flatbuffers::GetRoot<::tflite::Tensor>(builder.GetBufferPointer()); Array array; EXPECT_DEATH(DataBuffer::Deserialize(*tensor, *buffer, &array), "Unhandled tensor type."); } } TEST(DataBuffer, Float) { Array recovered = ToFlatBufferAndBack<ArrayDataType::kFloat>({1.0f, 2.0f}); EXPECT_THAT(recovered.GetBuffer<ArrayDataType::kFloat>().data, ::testing::ElementsAre(1.0f, 2.0f)); } TEST(DataBuffer, Uint8) { Array recovered = ToFlatBufferAndBack<ArrayDataType::kUint8>({127, 244}); EXPECT_THAT(recovered.GetBuffer<ArrayDataType::kUint8>().data, ::testing::ElementsAre(127, 244)); } TEST(DataBuffer, Int32) { Array recovered = ToFlatBufferAndBack<ArrayDataType::kInt32>({1, 1 << 30}); EXPECT_THAT(recovered.GetBuffer<ArrayDataType::kInt32>().data, ::testing::ElementsAre(1, 1 << 30)); } TEST(DataBuffer, Uint32) { Array recovered = ToFlatBufferAndBack<ArrayDataType::kUint32>({1, 1U << 31}); EXPECT_THAT(recovered.GetBuffer<ArrayDataType::kUint32>().data, ::testing::ElementsAre(1, 1U << 31)); } TEST(DataBuffer, Int16) { Array recovered = ToFlatBufferAndBack<ArrayDataType::kInt16>({1, 1 << 14}); EXPECT_THAT(recovered.GetBuffer<ArrayDataType::kInt16>().data, ::testing::ElementsAre(1, 1 << 14)); } TEST(DataBuffer, String) { Array recovered = ToFlatBufferAndBack<ArrayDataType::kString>( {"AA", "BBB", "Best. String. Ever."}); EXPECT_THAT(recovered.GetBuffer<ArrayDataType::kString>().data, ::testing::ElementsAre("AA", "BBB", "Best. String. Ever.")); } TEST(DataBuffer, Bool) { Array recovered = ToFlatBufferAndBack<ArrayDataType::kBool>({true, false, true}); EXPECT_THAT(recovered.GetBuffer<ArrayDataType::kBool>().data, ::testing::ElementsAre(true, false, true)); } TEST(DataBuffer, Complex64) { Array recovered = ToFlatBufferAndBack<ArrayDataType::kComplex64>( {std::complex<float>(1.0f, 2.0f), std::complex<float>(3.0f, 4.0f)}); EXPECT_THAT(recovered.GetBuffer<ArrayDataType::kComplex64>().data, ::testing::ElementsAre(std::complex<float>(1.0f, 2.0f), std::complex<float>(3.0f, 4.0f))); } TEST(Padding, All) { EXPECT_EQ(::tflite::Padding_SAME, Padding::Serialize(PaddingType::kSame)); EXPECT_EQ(PaddingType::kSame, Padding::Deserialize(::tflite::Padding_SAME)); EXPECT_EQ(::tflite::Padding_VALID, Padding::Serialize(PaddingType::kValid)); EXPECT_EQ(PaddingType::kValid, Padding::Deserialize(::tflite::Padding_VALID)); EXPECT_DEATH(Padding::Serialize(static_cast<PaddingType>(10000)), "Unhandled padding type."); EXPECT_DEATH(Padding::Deserialize(10000), "Unhandled padding."); } TEST(ActivationFunction, All) { std::vector< std::pair<FusedActivationFunctionType, ::tflite::ActivationFunctionType>> testdata = {{FusedActivationFunctionType::kNone, ::tflite::ActivationFunctionType_NONE}, {FusedActivationFunctionType::kRelu, ::tflite::ActivationFunctionType_RELU}, {FusedActivationFunctionType::kRelu6, ::tflite::ActivationFunctionType_RELU6}, {FusedActivationFunctionType::kRelu1, ::tflite::ActivationFunctionType_RELU_N1_TO_1}}; for (auto x : testdata) { EXPECT_EQ(x.second, ActivationFunction::Serialize(x.first)); EXPECT_EQ(x.first, ActivationFunction::Deserialize(x.second)); } EXPECT_DEATH(ActivationFunction::Serialize( static_cast<FusedActivationFunctionType>(10000)), "Unhandled fused activation function type."); EXPECT_DEATH(ActivationFunction::Deserialize(10000), "Unhandled fused activation function type."); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/python/mlir_wrapper/types.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/toco/tflite/types_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
07beb975-db15-4cb1-a542-c80f31965a03
cpp
tensorflow/tensorflow
sharding
third_party/xla/xla/python/ifrt/sharding.cc
third_party/xla/xla/python/ifrt/sharding_test.cc
#include "xla/python/ifrt/sharding.h" #include <cstdint> #include <functional> #include <memory> #include <optional> #include <ostream> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/log/check.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ExtensibleRTTI.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/index.h" #include "xla/python/ifrt/index_domain.h" #include "xla/python/ifrt/ir/sharding_param.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/serdes.h" #include "xla/python/ifrt/shape.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { MemoryKind CanonicalizeMemoryKindWithDevices( const MemoryKind& memory_kind, const tsl::RCReference<DeviceList>& devices) { CHECK(devices != nullptr); CHECK(!devices->devices().empty()); return CanonicalizeMemoryKind(memory_kind, devices->devices().front()); } bool ComputeIsFullyReplicated(const ShardingParam& sharding_param) { return llvm::all_of(sharding_param.dim_shards(), [](auto shards) { return shards == 1; }); } template <typename ContainerT> class MajorToMinorIter { public: using IteratorT = typename ContainerT::const_iterator; using ValueT = typename ContainerT::value_type; static MajorToMinorIter<ContainerT> cbegin( absl::Span<const ContainerT> containers) { std::vector<IteratorT> iters; iters.reserve(containers.size()); for (const ContainerT& container : containers) { iters.push_back(container.cbegin()); } return MajorToMinorIter(containers, std::move(iters)); } std::vector<ValueT> operator*() const { std::vector<ValueT> result; result.reserve(iters_.size()); for (const auto& iter : iters_) { result.push_back(*iter); } return result; } void operator++() { for (int i = iters_.size() - 1; i >= 0; --i) { ++iters_[i]; if (iters_[i] != containers_[i].end()) { break; } if (i != 0) { iters_[i] = containers_[i].begin(); } } } bool IsEnd() const { return iters_.empty() || iters_[0] == containers_[0].end(); } private: MajorToMinorIter(absl::Span<const ContainerT> containers, std::vector<IteratorT> iters) : containers_(containers), iters_(iters) { DCHECK_EQ(iters.size(), containers.size()); } absl::Span<const ContainerT> containers_; std::vector<IteratorT> iters_; }; std::vector<Index> GetTileIndices(absl::Span<const int64_t> dim_shards) { std::vector<std::vector<int64_t>> indices; indices.reserve(dim_shards.size()); for (const int64_t dim_shard : dim_shards) { std::vector<int64_t> index(dim_shard); absl::c_iota(index, 0); indices.push_back(std::move(index)); } std::vector<Index> result; int64_t shard_count = absl::c_accumulate(dim_shards, 1, std::multiplies<int64_t>()); result.reserve(shard_count); for (auto iter = MajorToMinorIter<std::vector<int64_t>>::cbegin(indices); !iter.IsEnd(); ++iter) { result.push_back(Index(*iter)); } return result; } } char Sharding::ID = 0; char SingleDeviceSharding::ID = 0; char OpaqueSharding::ID = 0; char ConcreteSharding::ID = 0; char ConcreteEvenSharding::ID = 0; char ShardingParamSharding::ID = 0; char DeserializeShardingOptions::ID = 0; Sharding::Sharding(tsl::RCReference<DeviceList> devices, MemoryKind memory_kind, bool is_fully_replicated) : devices_(std::move(devices)), memory_kind_(memory_kind), is_fully_replicated_(is_fully_replicated) {} bool Sharding::operator==(const Sharding& other) const { if (this == &other) { return true; } return HasSamePartitioning(other) && memory_kind_ == other.memory_kind_ && *devices() == *other.devices(); } absl::StatusOr<std::unique_ptr<Sharding>> Sharding::FromProto( DeviceList::LookupDeviceFunc lookup_device, const ShardingProto& sharding_proto) { return Deserialize<Sharding>( sharding_proto.serialized_sharding(), std::make_unique<DeserializeShardingOptions>(std::move(lookup_device))); } absl::StatusOr<ShardingProto> Sharding::ToProto() const { ShardingProto sharding_proto; TF_ASSIGN_OR_RETURN(*sharding_proto.mutable_serialized_sharding(), Serialize(const_cast<Sharding&>(*this))); return sharding_proto; } std::ostream& operator<<(std::ostream& os, const Sharding& sharding) { return os << sharding.DebugString(); } std::unique_ptr<SingleDeviceSharding> SingleDeviceSharding::Create( Device* device, MemoryKind memory_kind) { CHECK(device != nullptr); memory_kind = CanonicalizeMemoryKind(memory_kind, device); return std::unique_ptr<SingleDeviceSharding>( new SingleDeviceSharding(device, memory_kind)); } absl::StatusOr<Shape> SingleDeviceSharding::GetShardShape( const Shape& shape) const { return shape; } bool SingleDeviceSharding::HasSamePartitioning(const Sharding& other) const { if (this == &other) { return true; } return llvm::isa<SingleDeviceSharding>(&other); } absl::StatusOr<std::unique_ptr<Sharding>> SingleDeviceSharding::WithDeviceAssignment( std::optional<tsl::RCReference<DeviceList>> devices, std::optional<MemoryKind> memory_kind) const { if (devices.has_value() && (*devices)->size() != 1) { return InvalidArgument( "SingleDeviceSharding can only have one device, but was asked to have " "%d devices", (*devices)->size()); } return Create(devices.value_or(devices_)->devices().front(), memory_kind.value_or(memory_kind_)); } absl::StatusOr<std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>>> SingleDeviceSharding::Disassemble(const Shape& shape) const { DCHECK(this); return std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>>{ {shape, SingleDeviceSharding::Create(devices_->devices().front(), memory_kind_)}}; } absl::StatusOr< std::vector<std::pair<DynamicShape, std::shared_ptr<const Sharding>>>> SingleDeviceSharding::Disassemble(const DynamicShape& dynamic_shape) const { DCHECK(this); return std::vector<std::pair<DynamicShape, std::shared_ptr<const Sharding>>>{ {dynamic_shape, SingleDeviceSharding::Create(devices_->devices().front(), memory_kind_)}}; } absl::StatusOr<std::vector<IndexDomain>> SingleDeviceSharding::IndexDomains( const Shape& shape) const { DCHECK(this); std::vector<IndexDomain> result; result.reserve(1); result.push_back(IndexDomain(shape)); return result; } std::string SingleDeviceSharding::DebugString() const { DCHECK(this); return absl::StrFormat("SingleDeviceSharding(%s, memory_kind: %v)", devices_->devices().front()->DebugString(), memory_kind_); } std::unique_ptr<OpaqueSharding> OpaqueSharding::Create( tsl::RCReference<DeviceList> devices, MemoryKind memory_kind) { memory_kind = CanonicalizeMemoryKindWithDevices(memory_kind, devices); return std::unique_ptr<OpaqueSharding>( new OpaqueSharding(std::move(devices), memory_kind)); } OpaqueSharding::OpaqueSharding(tsl::RCReference<DeviceList> devices, MemoryKind memory_kind) : llvm::RTTIExtends<OpaqueSharding, Sharding>( std::move(devices), memory_kind, false) {} absl::StatusOr<Shape> OpaqueSharding::GetShardShape(const Shape& shape) const { return InvalidArgument( "OpaqueSharding does not have shard shape information"); } bool OpaqueSharding::HasSamePartitioning(const Sharding& other) const { if (this == &other) { return true; } return false; } absl::StatusOr<std::unique_ptr<Sharding>> OpaqueSharding::WithDeviceAssignment( std::optional<tsl::RCReference<DeviceList>> devices, std::optional<MemoryKind> memory_kind) const { if (devices.has_value() && (*devices)->size() != devices_->size()) { return InvalidArgument( "OpaqueSharding should have the same number of devices as the current " "sharding, but was asked to have %d devices", (*devices)->size()); } return Create(devices.value_or(devices_), memory_kind.value_or(memory_kind_)); } absl::StatusOr<std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>>> OpaqueSharding::Disassemble(const Shape& shape) const { DCHECK(this); return InvalidArgument( "OpaqueSharding does not have shard shape information"); } absl::StatusOr< std::vector<std::pair<DynamicShape, std::shared_ptr<const Sharding>>>> OpaqueSharding::Disassemble(const DynamicShape& dynamic_shape) const { DCHECK(this); return InvalidArgument( "OpaqueSharding does not have shard shape information"); } absl::StatusOr<std::vector<IndexDomain>> OpaqueSharding::IndexDomains( const Shape& shape) const { DCHECK(this); return InvalidArgument( "OpaqueSharding does not have index domain information"); } std::string OpaqueSharding::DebugString() const { DCHECK(this); return absl::StrFormat("OpaqueSharding(devices: %v, memory_kind: %v)", *devices_, memory_kind_); } std::unique_ptr<ConcreteSharding> ConcreteSharding::Create( tsl::RCReference<DeviceList> devices, MemoryKind memory_kind, Shape shape, std::vector<Shape> shard_shapes) { CHECK_EQ(devices->size(), shard_shapes.size()); memory_kind = CanonicalizeMemoryKindWithDevices(memory_kind, devices); return std::unique_ptr<ConcreteSharding>( new ConcreteSharding(std::move(devices), memory_kind, std::move(shape), std::move(shard_shapes))); } std::unique_ptr<ConcreteSharding> ConcreteSharding::Create( tsl::RCReference<DeviceList> devices, MemoryKind memory_kind, DynamicShape dynamic_shape, std::vector<DynamicShape> shard_dynamic_shapes) { CHECK_EQ(devices->size(), shard_dynamic_shapes.size()); memory_kind = CanonicalizeMemoryKindWithDevices(memory_kind, devices); return std::unique_ptr<ConcreteSharding>(new ConcreteSharding( std::move(devices), memory_kind, std::move(dynamic_shape), std::move(shard_dynamic_shapes))); } ConcreteSharding::ConcreteSharding(tsl::RCReference<DeviceList> devices, MemoryKind memory_kind, Shape shape, std::vector<Shape> shard_shapes) : llvm::RTTIExtends<ConcreteSharding, Sharding>( std::move(devices), memory_kind, false), shape_(std::move(shape)), shard_shapes_(std::move(shard_shapes)) {} ConcreteSharding::ConcreteSharding( tsl::RCReference<DeviceList> devices, MemoryKind memory_kind, DynamicShape dynamic_shape, std::vector<DynamicShape> shard_dynamic_shapes) : llvm::RTTIExtends<ConcreteSharding, Sharding>( std::move(devices), memory_kind, false), shape_(std::move(dynamic_shape)), shard_shapes_(std::move(shard_dynamic_shapes)) {} absl::StatusOr<Shape> ConcreteSharding::GetShardShape( const Shape& shape) const { return InvalidArgument("ConcreteSharding does not have a fixed shard shape"); } bool ConcreteSharding::HasSamePartitioning(const Sharding& other) const { if (this == &other) { return true; } const auto* other_concrete_sharding = llvm::dyn_cast<ConcreteSharding>(&other); if (!other_concrete_sharding) { return false; } return shape_ == other_concrete_sharding->shape_ && shard_shapes_ == other_concrete_sharding->shard_shapes_; } absl::StatusOr<std::unique_ptr<Sharding>> ConcreteSharding::WithDeviceAssignment( std::optional<tsl::RCReference<DeviceList>> devices, std::optional<MemoryKind> memory_kind) const { if (devices.has_value() && (*devices)->size() != devices_->size()) { return InvalidArgument( "ConcreteSharding should have the same number of devices as the " "current sharding, but was asked to have %d devices", (*devices)->size()); } if (has_static_shape()) { return Create(devices.value_or(devices_), memory_kind.value_or(memory_kind_), std::get<Shape>(shape_), std::get<std::vector<Shape>>(shard_shapes_)); } else { return Create(devices.value_or(devices_), memory_kind.value_or(memory_kind_), std::get<DynamicShape>(shape_), std::get<std::vector<DynamicShape>>(shard_shapes_)); } } absl::StatusOr<std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>>> ConcreteSharding::Disassemble(const Shape& shape) const { DCHECK(this); if (!has_static_shape()) { return InvalidArgument( "ConcreteSharding holds dynamic shape, but was asked " "to disassemble static shape %s", shape.DebugString()); } if (shape != std::get<Shape>(shape_)) { return InvalidArgument( "ConcreteSharding can only disassemble shape %s, but was asked " "to disassemble shape %s", std::get<Shape>(shape_).DebugString(), shape.DebugString()); } std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>> result; const std::vector<Shape>& shard_shapes = std::get<std::vector<Shape>>(shard_shapes_); const absl::Span<Device* const> devices = devices_->devices(); result.reserve(devices.size()); for (int i = 0; i < devices.size(); ++i) { result.push_back({shard_shapes[i], SingleDeviceSharding::Create(devices[i], memory_kind_)}); } return result; } absl::StatusOr< std::vector<std::pair<DynamicShape, std::shared_ptr<const Sharding>>>> ConcreteSharding::Disassemble(const DynamicShape& dynamic_shape) const { DCHECK(this); if (!has_dynamic_shape()) { return InvalidArgument( "ConcreteSharding holds static shape, but was asked " "to disassemble dynamic shape %s", dynamic_shape.DebugString()); } if (dynamic_shape != std::get<DynamicShape>(shape_)) { return InvalidArgument( "ConcreteSharding can only disassemble dynamic shape %s, but was asked " "to disassemble dynamic shape %s", std::get<DynamicShape>(shape_).DebugString(), dynamic_shape.DebugString()); } std::vector<std::pair<DynamicShape, std::shared_ptr<const Sharding>>> result; const std::vector<DynamicShape>& shard_dynamic_shapes = std::get<std::vector<DynamicShape>>(shard_shapes_); const absl::Span<Device* const> devices = devices_->devices(); result.reserve(devices.size()); for (int i = 0; i < devices.size(); ++i) { result.push_back({shard_dynamic_shapes[i], SingleDeviceSharding::Create(devices[i], memory_kind_)}); } return result; } absl::StatusOr<std::vector<IndexDomain>> ConcreteSharding::IndexDomains( const Shape& shape) const { DCHECK(this); return InvalidArgument( "ConcreteSharding does not have index domain information"); } std::string ConcreteSharding::DebugString() const { DCHECK(this); return std::visit( [this](const auto& shape, const auto& shard_shapes) { return absl::StrFormat( "ConcreteSharding(devices: %v, shape: %s, shard_shapes: %s, " "memory_kind: %v)", *devices_, shape.DebugString(), absl::StrJoin(shard_shapes, ",", [](std::string* out, const auto& shard_shape) { absl::StrAppend(out, shard_shape.DebugString()); }), memory_kind_); }, shape_, shard_shapes_); } std::unique_ptr<ConcreteEvenSharding> ConcreteEvenSharding::Create( tsl::RCReference<DeviceList> devices, MemoryKind memory_kind, Shape shape, Shape shard_shape, bool is_fully_replicated) { memory_kind = CanonicalizeMemoryKindWithDevices(memory_kind, devices); return std::unique_ptr<ConcreteEvenSharding>(new ConcreteEvenSharding( std::move(devices), memory_kind, std::move(shape), std::move(shard_shape), is_fully_replicated)); } ConcreteEvenSharding::ConcreteEvenSharding(tsl::RCReference<DeviceList> devices, MemoryKind memory_kind, Shape shape, Shape shard_shape, bool is_fully_replicated) : llvm::RTTIExtends<ConcreteEvenSharding, Sharding>( std::move(devices), memory_kind, is_fully_replicated), shape_(std::move(shape)), shard_shape_(std::move(shard_shape)) {} absl::StatusOr<Shape> ConcreteEvenSharding::GetShardShape( const Shape& shape) const { if (shape != shape_) { return InvalidArgument( "ConcreteEvenSharding has a shard shape for shape %s, but was asked " "to get a shard shape for shape %s", shape_.DebugString(), shape.DebugString()); } return shard_shape_; } bool ConcreteEvenSharding::HasSamePartitioning(const Sharding& other) const { if (this == &other) { return true; } const auto* other_concrete_even_sharding = llvm::dyn_cast<ConcreteEvenSharding>(&other); if (!other_concrete_even_sharding) { return false; } return devices_->size() == other_concrete_even_sharding->devices_->size() && shape_ == other_concrete_even_sharding->shape_ && shard_shape_ == other_concrete_even_sharding->shard_shape_ && is_fully_replicated_ == other_concrete_even_sharding->is_fully_replicated_; } absl::StatusOr<std::unique_ptr<Sharding>> ConcreteEvenSharding::WithDeviceAssignment( std::optional<tsl::RCReference<DeviceList>> devices, std::optional<MemoryKind> memory_kind) const { if (devices.has_value() && (*devices)->size() != devices_->size()) { return InvalidArgument( "ConcreteEvenSharding should have the same number of devices as the " "current sharding, but was asked to have %d devices", (*devices)->size()); } return Create(devices.value_or(devices_), memory_kind.value_or(memory_kind_), shape_, shard_shape_, is_fully_replicated_); } absl::StatusOr<std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>>> ConcreteEvenSharding::Disassemble(const Shape& shape) const { DCHECK(this); if (shape != shape_) { return InvalidArgument( "ConcreteEvenSharding can only disassemble shape %s, but was asked " "to disassemble shape %s", shape_.DebugString(), shape.DebugString()); } std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>> result; const absl::Span<Device* const> devices = devices_->devices(); result.reserve(devices.size()); for (int i = 0; i < devices.size(); ++i) { result.push_back( {shard_shape_, SingleDeviceSharding::Create(devices[i], memory_kind_)}); } return result; } absl::StatusOr< std::vector<std::pair<DynamicShape, std::shared_ptr<const Sharding>>>> ConcreteEvenSharding::Disassemble(const DynamicShape& dynamic_shape) const { return InvalidArgument( "ConcreteEvenSharding can only disassemble static shape, but was asked " "to disassemble dynamic shape %s", dynamic_shape.DebugString()); } absl::StatusOr<std::vector<IndexDomain>> ConcreteEvenSharding::IndexDomains( const Shape& shape) const { DCHECK(this); return InvalidArgument( "ConcreteEvenSharding does not have index domain information"); } std::string ConcreteEvenSharding::DebugString() const { DCHECK(this); return absl::StrFormat( "ConcreteEvenSharding(devices: %v, shape: %s, shard_shape: %s, " "memory_kind: %v)", *devices_, shape_.DebugString(), shard_shape_.DebugString(), memory_kind_); } absl::StatusOr<std::unique_ptr<ShardingParamSharding>> ShardingParamSharding::Create(ShardingParam sharding_param, tsl::RCReference<DeviceList> devices, MemoryKind memory_kind) { memory_kind = CanonicalizeMemoryKindWithDevices(memory_kind, devices); int64_t device_count = absl::c_accumulate(sharding_param.minor_to_major().axis_sizes, 1, std::multiplies<int64_t>()); if (device_count != devices->size()) { return InvalidArgument( "Device counts don't match. From ShardingParam %d vs from DeviceList " "%d", device_count, devices->size()); } return std::unique_ptr<ShardingParamSharding>(new ShardingParamSharding( std::move(sharding_param), std::move(devices), memory_kind)); } ShardingParamSharding::ShardingParamSharding( ShardingParam sharding_param, tsl::RCReference<DeviceList> devices, MemoryKind memory_kind) : llvm::RTTIExtends<ShardingParamSharding, Sharding>( std::move(devices), memory_kind, ComputeIsFullyReplicated(sharding_param)), sharding_param_(sharding_param) {} absl::StatusOr<std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>>> ShardingParamSharding::Disassemble(const Shape& shape) const { DCHECK(this); TF_ASSIGN_OR_RETURN(Shape local_shape, GetShardShape(shape)); std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>> result; for (Device* device : devices_->devices()) { result.push_back( {local_shape, SingleDeviceSharding::Create(device, memory_kind_)}); } return result; } absl::StatusOr<Shape> ShardingParamSharding::GetShardShape( const Shape& shape) const { if (shape.dims().size() != sharding_param_.dim_shards().size()) { return InvalidArgument( "Numbers of dimensions don't match. From Shape %d vs from " "ShardingParam %d", shape.dims().size(), sharding_param_.dim_shards().size()); } std::vector<int64_t> dims; dims.reserve(shape.dims().size()); for (const auto [dim, dim_shards] : llvm::zip(shape.dims(), sharding_param_.dim_shards())) { if (dim % dim_shards != 0) { return InvalidArgument( "Uneven shard is not supported. dim: %d, dim_shards: %d", dim, dim_shards); } dims.push_back(dim / dim_shards); } return Shape(dims); } bool ShardingParamSharding::HasSamePartitioning(const Sharding& other) const { if (this == &other) { return true; } const auto* other_sharding_param_sharding = llvm::dyn_cast<ShardingParamSharding>(&other); if (!other_sharding_param_sharding) { return false; } return sharding_param_ == other_sharding_param_sharding->sharding_param_; } absl::StatusOr<std::unique_ptr<Sharding>> ShardingParamSharding::WithDeviceAssignment( std::optional<tsl::RCReference<DeviceList>> devices, std::optional<MemoryKind> memory_kind) const { if (devices.has_value() && (*devices)->size() != devices_->size()) { return InvalidArgument( "ShardingParamSharding should have the same number of devices as the " "current sharding, but was asked to have %d devices", (*devices)->size()); } return Create(sharding_param_, devices.value_or(devices_), memory_kind.value_or(memory_kind_)); } absl::StatusOr< std::vector<std::pair<DynamicShape, std::shared_ptr<const Sharding>>>> ShardingParamSharding::Disassemble(const DynamicShape& dynamic_shape) const { return InvalidArgument( "ShardingParamSharding can only disassemble static shape, but was asked " "to disassemble dynamic shape %s", dynamic_shape.DebugString()); } absl::StatusOr<std::vector<IndexDomain>> ShardingParamSharding::IndexDomains( const Shape& shape) const { DCHECK(this); TF_ASSIGN_OR_RETURN(Shape local_shape, GetShardShape(shape)); std::vector<Index> tile_indices = GetTileIndices(sharding_param_.dim_shards()); std::vector<Index> origins; origins.reserve(tile_indices.size()); for (const Index& tile_index : tile_indices) { origins.push_back(tile_index * local_shape.dims()); } static constexpr int kInvalidIndex = -1; llvm::SmallVector<int, 4> device_list; sharding_param_.minor_to_major().ToDeviceList(device_list); std::vector<int> device_to_index(device_list.size(), kInvalidIndex); for (int i = 0; i < device_list.size(); ++i) { device_to_index[device_list[i]] = i; } DCHECK_EQ(device_to_index.size() % origins.size(), 0); int replication = device_to_index.size() / origins.size(); std::vector<IndexDomain> result; result.reserve(device_to_index.size()); for (int i = 0; i < device_to_index.size(); ++i) { int index = device_to_index[i]; DCHECK_NE(index, kInvalidIndex); result.push_back(IndexDomain(origins[index / replication], local_shape)); } return result; } std::string ShardingParamSharding::DebugString() const { DCHECK(this); return absl::StrFormat( "ShardingParamSharding(%s, devices: %v, memory_kind: %v)", sharding_param_.DebugString(), *devices_, memory_kind_); } } }
#include "xla/python/ifrt/sharding.h" #include <memory> #include <optional> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "llvm/Support/Casting.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/device_test_util.h" #include "xla/python/ifrt/index.h" #include "xla/python/ifrt/index_domain.h" #include "xla/python/ifrt/ir/sharding_param.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/shape.h" #include "xla/tsl/concurrency/ref_count.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { using ::testing::ElementsAre; using ::testing::ElementsAreArray; using ::testing::HasSubstr; using ::testing::SizeIs; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; class SingleDeviceShardingTest : public test_util::DeviceTest {}; class OpaqueShardingTest : public test_util::DeviceTest {}; class ConcreteShardingTest : public test_util::DeviceTest {}; class ConcreteEvenShardingTest : public test_util::DeviceTest {}; class ShardingParamShardingTest : public test_util::DeviceTest {}; TEST_P(SingleDeviceShardingTest, CreateWithBadDevice) { EXPECT_DEATH(SingleDeviceSharding::Create(nullptr, MemoryKind()), ""); } TEST_P(SingleDeviceShardingTest, IsFullyReplicated) { auto device_list = GetDevices({0}); std::shared_ptr<const Sharding> sharding = SingleDeviceSharding::Create( device_list->devices().front(), MemoryKind()); EXPECT_TRUE(sharding->IsFullyReplicated()); } TEST_P(SingleDeviceShardingTest, GetShardShape) { auto device_list = GetDevices({0}); std::shared_ptr<const Sharding> sharding = SingleDeviceSharding::Create( device_list->devices().front(), MemoryKind()); EXPECT_THAT(sharding->GetShardShape(Shape({10, 20})), IsOkAndHolds(Shape({10, 20}))); } TEST_P(SingleDeviceShardingTest, HasSamePartitioning) { auto device_list0 = GetDevices({0}); std::shared_ptr<const Sharding> sharding0 = SingleDeviceSharding::Create( device_list0->devices().front(), MemoryKind()); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding0)); { auto device_list1 = GetDevices({1}); std::shared_ptr<const Sharding> sharding1 = SingleDeviceSharding::Create( device_list1->devices().front(), MemoryKind()); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding1)); } } TEST_P(SingleDeviceShardingTest, WithDeviceAssignment) { auto device_list0 = GetDevices({0}); std::shared_ptr<const Sharding> sharding0 = SingleDeviceSharding::Create( device_list0->devices().front(), MemoryKind()); { auto device_list1 = GetDevices({1}); std::shared_ptr<const Sharding> sharding1 = SingleDeviceSharding::Create( device_list1->devices().front(), MemoryKind()); TF_ASSERT_OK_AND_ASSIGN( auto new_sharding, sharding0->WithDeviceAssignment(device_list1, std::nullopt)); EXPECT_EQ(*new_sharding, *sharding1); } { auto device_list1 = GetDevices({0, 1}); EXPECT_THAT(sharding0->WithDeviceAssignment(device_list1, std::nullopt), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("SingleDeviceSharding can only have one " "device, but was asked to have 2 devices"))); } } TEST_P(SingleDeviceShardingTest, IndexDomains) { auto device_list = GetDevices({0}); std::shared_ptr<const Sharding> sharding = SingleDeviceSharding::Create( device_list->devices().front(), MemoryKind()); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto index_domains, sharding->IndexDomains(shape)); EXPECT_THAT(index_domains, ElementsAre(IndexDomain(shape))); } TEST_P(SingleDeviceShardingTest, Disassemble) { auto device_list = GetDevices({0}); std::shared_ptr<const Sharding> sharding = SingleDeviceSharding::Create( device_list->devices().front(), MemoryKind()); { Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(shape)); ASSERT_THAT(disassembled, SizeIs(1)); const auto& [result_shape, result_sharding] = disassembled[0]; EXPECT_EQ(shape, result_shape); EXPECT_EQ(*result_sharding, *sharding); } { TF_ASSERT_OK_AND_ASSIGN( DynamicShape dynamic_shape, DynamicShape::Create(Shape({10, 20}), BoundedDynamicShapeTag({true, true}))); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(dynamic_shape)); ASSERT_THAT(disassembled, SizeIs(1)); const auto& [result_shape, result_sharding] = disassembled[0]; EXPECT_EQ(dynamic_shape, result_shape); EXPECT_EQ(*result_sharding, *sharding); } } TEST_P(OpaqueShardingTest, CreateWithBadDeviceList) { EXPECT_DEATH( OpaqueSharding::Create(tsl::RCReference<DeviceList>(), MemoryKind()), ""); EXPECT_DEATH( OpaqueSharding::Create(BasicDeviceList::Create({}), MemoryKind()), ""); } TEST_P(OpaqueShardingTest, IsFullyReplicated) { auto device_list = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding = OpaqueSharding::Create(device_list, MemoryKind()); EXPECT_FALSE(sharding->IsFullyReplicated()); } TEST_P(OpaqueShardingTest, GetShardShape) { auto device_list = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding = OpaqueSharding::Create(device_list, MemoryKind()); EXPECT_THAT(sharding->GetShardShape(Shape({10, 20})), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("OpaqueSharding does not have shard shape"))); } TEST_P(OpaqueShardingTest, HasSamePartitioning) { auto device_list0 = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding0 = OpaqueSharding::Create(device_list0, MemoryKind()); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding0)); { auto device_list1 = GetDevices({2, 3}); std::shared_ptr<const Sharding> sharding1 = OpaqueSharding::Create(device_list0, MemoryKind()); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } } TEST_P(OpaqueShardingTest, WithDeviceAssignment) { auto device_list0 = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding0 = OpaqueSharding::Create(device_list0, MemoryKind()); { auto device_list1 = GetDevices({2, 3}); std::shared_ptr<const Sharding> sharding1 = OpaqueSharding::Create(device_list0, MemoryKind()); TF_ASSERT_OK_AND_ASSIGN( auto new_sharding, sharding0->WithDeviceAssignment(device_list1, std::nullopt)); ASSERT_TRUE(llvm::isa<OpaqueSharding>(*new_sharding)); EXPECT_THAT(new_sharding->devices()->devices(), ElementsAreArray(device_list1->devices())); } { auto device_list1 = GetDevices({0, 1, 2, 3}); EXPECT_THAT( sharding0->WithDeviceAssignment(device_list1, std::nullopt), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("OpaqueSharding should have the same number of " "devices as the current sharding, but was asked to " "have 4 devices"))); } } TEST_P(OpaqueShardingTest, FailedToDisassemble) { auto device_list = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding = OpaqueSharding::Create(device_list, MemoryKind()); EXPECT_THAT( sharding->Disassemble(Shape({30})), StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("OpaqueSharding does not have shard shape information"))); TF_ASSERT_OK_AND_ASSIGN( DynamicShape dynamic_shape, DynamicShape::Create(Shape({30}), BoundedDynamicShapeTag({true}))); EXPECT_THAT( sharding->Disassemble(dynamic_shape), StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("OpaqueSharding does not have shard shape information"))); } TEST_P(OpaqueShardingTest, IndexDomainsFails) { auto device_list = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding = OpaqueSharding::Create(device_list, MemoryKind()); EXPECT_THAT( sharding->IndexDomains(Shape({30})), StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("OpaqueSharding does not have index domain information"))); } TEST_P(ConcreteShardingTest, CreateWithBadDeviceList) { EXPECT_DEATH(ConcreteSharding::Create(tsl::RCReference<DeviceList>(), MemoryKind(), Shape({}), {Shape({})}), ""); EXPECT_DEATH(ConcreteSharding::Create(BasicDeviceList::Create({}), MemoryKind(), Shape({}), {Shape({})}), ""); } TEST_P(ConcreteShardingTest, IsFullyReplicated) { auto device_list = GetDevices({0, 1}); std::vector<Shape> shard_shapes; shard_shapes.reserve(2); shard_shapes.push_back(Shape({10})); shard_shapes.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding = ConcreteSharding::Create( device_list, MemoryKind(), Shape({30}), shard_shapes); EXPECT_FALSE(sharding->IsFullyReplicated()); } TEST_P(ConcreteShardingTest, GetShardShape) { auto device_list = GetDevices({0, 1}); std::vector<Shape> shard_shapes; shard_shapes.reserve(2); shard_shapes.push_back(Shape({10})); shard_shapes.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding = ConcreteSharding::Create( device_list, MemoryKind(), Shape({30}), shard_shapes); EXPECT_THAT( sharding->GetShardShape(Shape({30})), StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("ConcreteSharding does not have a fixed shard shape"))); } TEST_P(ConcreteShardingTest, HasSamePartitioning) { auto device_list0 = GetDevices({0, 1}); std::vector<Shape> shard_shapes0; shard_shapes0.reserve(2); shard_shapes0.push_back(Shape({10})); shard_shapes0.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding0 = ConcreteSharding::Create( device_list0, MemoryKind(), Shape({30}), shard_shapes0); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding0)); { auto device_list1 = GetDevices({2, 3}); std::vector<Shape> shard_shapes1; shard_shapes1.reserve(2); shard_shapes1.push_back(Shape({10})); shard_shapes1.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding1 = ConcreteSharding::Create( device_list1, MemoryKind(), Shape({30}), shard_shapes1); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({2, 3, 4}); std::vector<Shape> shard_shapes1; shard_shapes1.reserve(3); shard_shapes1.push_back(Shape({10})); shard_shapes1.push_back(Shape({20})); shard_shapes1.push_back(Shape({30})); std::shared_ptr<const Sharding> sharding1 = ConcreteSharding::Create( device_list1, MemoryKind(), Shape({60}), shard_shapes1); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({2, 3}); std::vector<Shape> shard_shapes1; shard_shapes1.reserve(2); shard_shapes1.push_back(Shape({10})); shard_shapes1.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding1 = ConcreteSharding::Create( device_list1, MemoryKind(), Shape({40}), shard_shapes1); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({2, 3}); std::vector<Shape> shard_shapes1; shard_shapes1.reserve(2); shard_shapes1.push_back(Shape({10000})); shard_shapes1.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding1 = ConcreteSharding::Create( device_list1, MemoryKind(), Shape({30}), shard_shapes1); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } } TEST_P(ConcreteShardingTest, WithDeviceAssignment) { auto device_list0 = GetDevices({0, 1}); std::vector<Shape> shard_shapes0; shard_shapes0.reserve(2); shard_shapes0.push_back(Shape({10})); shard_shapes0.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding0 = ConcreteSharding::Create( device_list0, MemoryKind(), Shape({30}), shard_shapes0); { auto device_list1 = GetDevices({0, 1}); std::vector<Shape> shard_shapes1; shard_shapes1.reserve(2); shard_shapes1.push_back(Shape({10})); shard_shapes1.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding1 = ConcreteSharding::Create( device_list1, MemoryKind(), Shape({30}), shard_shapes1); TF_ASSERT_OK_AND_ASSIGN( auto new_sharding, sharding0->WithDeviceAssignment(device_list1, std::nullopt)); EXPECT_EQ(*new_sharding, *sharding1); } { auto device_list1 = GetDevices({0, 1, 2, 3}); EXPECT_THAT( sharding0->WithDeviceAssignment(device_list1, std::nullopt), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("ConcreteSharding should have the same number of " "devices as the current sharding, but was asked to " "have 4 devices"))); } } TEST_P(ConcreteShardingTest, Disassemble) { auto device_list = GetDevices({0, 1}); std::vector<Shape> shard_shapes; shard_shapes.reserve(2); shard_shapes.push_back(Shape({10})); shard_shapes.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding = ConcreteSharding::Create( device_list, MemoryKind(), Shape({30}), shard_shapes); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(Shape({30}))); ASSERT_THAT(disassembled, SizeIs(2)); for (int i = 0; i < 2; ++i) { const auto& [shape, sharding] = disassembled[i]; EXPECT_EQ(shape, shard_shapes[i]); EXPECT_EQ(*sharding, *SingleDeviceSharding::Create( device_list->devices()[i], MemoryKind())); } } TEST_P(ConcreteShardingTest, DisassembleDynamicShape) { auto device_list = GetDevices({0, 1}); TF_ASSERT_OK_AND_ASSIGN( DynamicShape dynamic_shape, DynamicShape::Create(Shape({10}), BoundedDynamicShapeTag({true}))); TF_ASSERT_OK_AND_ASSIGN( DynamicShape shard_dynamic_shape1, DynamicShape::Create(Shape({3}), BoundedDynamicShapeTag({true}))); TF_ASSERT_OK_AND_ASSIGN( DynamicShape shard_dynamic_shape2, DynamicShape::Create(Shape({7}), BoundedDynamicShapeTag({true}))); std::vector<DynamicShape> shard_dynamic_shapes{ std::move(shard_dynamic_shape1), std::move(shard_dynamic_shape2)}; auto sharding = ConcreteSharding::Create(device_list, MemoryKind(), dynamic_shape, shard_dynamic_shapes); EXPECT_THAT(sharding->Disassemble(Shape({10})), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("ConcreteSharding holds dynamic shape"))); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(DynamicShape(dynamic_shape))); ASSERT_THAT(disassembled, SizeIs(2)); for (int i = 0; i < disassembled.size(); ++i) { const auto& [dynamic_shape, sharding] = disassembled[i]; EXPECT_EQ(dynamic_shape, shard_dynamic_shapes[i]); EXPECT_EQ(*sharding, *SingleDeviceSharding::Create( device_list->devices()[i], MemoryKind())); } } TEST_P(ConcreteShardingTest, DisassembleFailsForUnexpectedShape) { auto device_list = GetDevices({0, 1}); std::vector<Shape> shard_shapes; shard_shapes.reserve(2); shard_shapes.push_back(Shape({10})); shard_shapes.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding = ConcreteSharding::Create( device_list, MemoryKind(), Shape({30}), shard_shapes); EXPECT_THAT(sharding->Disassemble(Shape({40})), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("ConcreteSharding can only disassemble"))); } TEST_P(ConcreteShardingTest, IndexDomainsFails) { auto device_list = GetDevices({0, 1}); std::vector<Shape> shard_shapes; shard_shapes.reserve(2); shard_shapes.push_back(Shape({10})); shard_shapes.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding = ConcreteSharding::Create( device_list, MemoryKind(), Shape({30}), shard_shapes); EXPECT_THAT(sharding->IndexDomains(Shape({30})), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("ConcreteSharding does not have index " "domain information"))); } TEST_P(ConcreteEvenShardingTest, CreateWithBadDeviceList) { EXPECT_DEATH(ConcreteEvenSharding::Create(tsl::RCReference<DeviceList>(), MemoryKind(), Shape({}), Shape({}), true), ""); EXPECT_DEATH(ConcreteEvenSharding::Create(BasicDeviceList::Create({}), MemoryKind(), Shape({}), Shape({}), true), ""); } TEST_P(ConcreteEvenShardingTest, IsFullyReplicated) { auto device_list = GetDevices({0, 1}); { std::shared_ptr<const Sharding> sharding = ConcreteEvenSharding::Create(device_list, MemoryKind(), Shape({30}), Shape({15}), true); EXPECT_TRUE(sharding->IsFullyReplicated()); } { std::shared_ptr<const Sharding> sharding = ConcreteEvenSharding::Create( device_list, MemoryKind(), Shape({30}), Shape({15}), false); EXPECT_FALSE(sharding->IsFullyReplicated()); } } TEST_P(ConcreteEvenShardingTest, GetShardShape) { auto device_list = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding = ConcreteEvenSharding::Create(device_list, MemoryKind(), Shape({30}), Shape({15}), true); EXPECT_THAT(sharding->GetShardShape(Shape({30})), IsOkAndHolds(Shape({15}))); EXPECT_THAT( sharding->GetShardShape(Shape({45})), StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("ConcreteEvenSharding has a shard shape for shape [30], " "but was asked to get a shard shape for shape [45]"))); } TEST_P(ConcreteEvenShardingTest, HasSamePartitioning) { auto device_list0 = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding0 = ConcreteEvenSharding::Create(device_list0, MemoryKind(), Shape({30}), Shape({15}), true); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding0)); { auto device_list1 = GetDevices({2, 3}); std::shared_ptr<const Sharding> sharding1 = ConcreteEvenSharding::Create(device_list1, MemoryKind(), Shape({30}), Shape({15}), true); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({2, 3, 4}); std::shared_ptr<const Sharding> sharding1 = ConcreteEvenSharding::Create(device_list1, MemoryKind(), Shape({30}), Shape({15}), true); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({2, 3}); std::shared_ptr<const Sharding> sharding1 = ConcreteEvenSharding::Create(device_list1, MemoryKind(), Shape({45}), Shape({15}), true); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({2, 3}); std::shared_ptr<const Sharding> sharding1 = ConcreteEvenSharding::Create(device_list1, MemoryKind(), Shape({30}), Shape({10}), true); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({2, 3}); std::shared_ptr<const Sharding> sharding1 = ConcreteEvenSharding::Create( device_list1, MemoryKind(), Shape({30}), Shape({15}), false); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } } TEST_P(ConcreteEvenShardingTest, WithDeviceAssignment) { auto device_list0 = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding0 = ConcreteEvenSharding::Create(device_list0, MemoryKind(), Shape({30}), Shape({15}), true); { auto device_list1 = GetDevices({2, 3}); std::shared_ptr<const Sharding> sharding1 = ConcreteEvenSharding::Create(device_list1, MemoryKind(), Shape({30}), Shape({15}), true); TF_ASSERT_OK_AND_ASSIGN( auto new_sharding, sharding0->WithDeviceAssignment(device_list1, std::nullopt)); EXPECT_EQ(*new_sharding, *sharding1); } { auto device_list1 = GetDevices({0, 1, 2, 3}); EXPECT_THAT( sharding0->WithDeviceAssignment(device_list1, std::nullopt), StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("ConcreteEvenSharding should have the same number of " "devices as the current sharding, but was asked to " "have 4 devices"))); } } TEST_P(ConcreteEvenShardingTest, Disassemble) { auto device_list = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding = ConcreteEvenSharding::Create(device_list, MemoryKind(), Shape({30}), Shape({15}), false); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(Shape({30}))); ASSERT_THAT(disassembled, SizeIs(2)); for (int i = 0; i < 2; ++i) { const auto& [shape, sharding] = disassembled[i]; EXPECT_EQ(shape, Shape({15})); EXPECT_EQ(*sharding, *SingleDeviceSharding::Create( device_list->devices()[i], MemoryKind())); } } TEST_P(ConcreteEvenShardingTest, DisassembleFailsForUnexpectedShape) { auto device_list = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding = ConcreteEvenSharding::Create(device_list, MemoryKind(), Shape({30}), Shape({15}), false); EXPECT_THAT(sharding->Disassemble(Shape({40})), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("ConcreteEvenSharding can only disassemble"))); } TEST_P(ConcreteEvenShardingTest, IndexDomainsFails) { auto device_list = GetDevices({0, 1}); std::vector<Shape> shard_shapes; std::shared_ptr<const Sharding> sharding = ConcreteEvenSharding::Create(device_list, MemoryKind(), Shape({30}), Shape({15}), false); EXPECT_THAT( sharding->IndexDomains(Shape({30})), StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr( "ConcreteEvenSharding does not have index domain information"))); } TEST_P(ShardingParamShardingTest, CreateWithBadDeviceList) { ShardingParam param{{2, 3}, {{1, 0}, {3, 2}}}; EXPECT_DEATH(ShardingParamSharding::Create( param, tsl::RCReference<DeviceList>(), MemoryKind()) .value(), ""); EXPECT_DEATH(ShardingParamSharding::Create(param, BasicDeviceList::Create({}), MemoryKind()) .value(), ""); } TEST_P(ShardingParamShardingTest, CreateFailsWhenDeviceCountNotMatch) { auto device_list = GetDevices({0, 1}); ShardingParam param{{2, 3}, {{1, 0}, {3, 2}}}; EXPECT_THAT(ShardingParamSharding::Create(param, device_list, MemoryKind()), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("Device counts don't match. From " "ShardingParam 6 vs from DeviceList 2"))); } TEST_P(ShardingParamShardingTest, IsFullyReplicated) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); { ShardingParam param{{1, 1}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> param_sharding, ShardingParamSharding::Create(param, device_list, MemoryKind())); EXPECT_TRUE(param_sharding->IsFullyReplicated()); } { ShardingParam param{{1, 6}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> param_sharding, ShardingParamSharding::Create(param, device_list, MemoryKind())); EXPECT_FALSE(param_sharding->IsFullyReplicated()); } { ShardingParam param{{2, 3}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> param_sharding, ShardingParamSharding::Create(param, device_list, MemoryKind())); EXPECT_FALSE(param_sharding->IsFullyReplicated()); } } TEST_P(ShardingParamShardingTest, GetShardShape) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); ShardingParam param{{2, 3}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> sharding, ShardingParamSharding::Create(param, device_list, MemoryKind())); EXPECT_THAT(sharding->GetShardShape(Shape({6, 6})), IsOkAndHolds(Shape({3, 2}))); EXPECT_THAT(sharding->GetShardShape(Shape({6, 6, 6})), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("Numbers of dimensions don't match. From " "Shape 3 vs from ShardingParam 2"))); } TEST_P(ShardingParamShardingTest, HasSamePartitioning) { auto device_list0 = GetDevices({0, 1, 2, 3, 4, 5}); ShardingParam param0{{2, 3}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> sharding0, ShardingParamSharding::Create(param0, device_list0, MemoryKind())); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding0)); { auto device_list1 = GetDevices({3, 4, 5, 0, 1, 2}); ShardingParam param1{{2, 3}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> sharding1, ShardingParamSharding::Create(param1, device_list1, MemoryKind())); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({3, 4, 5}); ShardingParam param1{{3, 1}, {{1, 0}, {1, 3}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> sharding1, ShardingParamSharding::Create(param1, device_list1, MemoryKind())); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({3, 4, 5, 0, 1, 2}); ShardingParam param1{{3, 2}, {{0, 1}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> sharding1, ShardingParamSharding::Create(param1, device_list1, MemoryKind())); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } } TEST_P(ShardingParamShardingTest, WithDeviceAssignment) { auto device_list0 = GetDevices({0, 1, 2, 3, 4, 5}); ShardingParam param0{{2, 3}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> sharding0, ShardingParamSharding::Create(param0, device_list0, MemoryKind())); { auto device_list1 = GetDevices({3, 4, 5, 0, 1, 2}); ShardingParam param1{{2, 3}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> sharding1, ShardingParamSharding::Create(param1, device_list1, MemoryKind())); TF_ASSERT_OK_AND_ASSIGN( auto new_sharding, sharding0->WithDeviceAssignment(device_list1, std::nullopt)); EXPECT_EQ(*new_sharding, *sharding1); } { auto device_list1 = GetDevices({0, 1, 2}); EXPECT_THAT( sharding0->WithDeviceAssignment(device_list1, std::nullopt), StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("ShardingParamSharding should have the same number of " "devices as the current sharding, but was asked to " "have 3 devices"))); } } TEST_P(ShardingParamShardingTest, Disassemble) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); ShardingParam param{{2, 3}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> param_sharding, ShardingParamSharding::Create(param, device_list, MemoryKind())); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, param_sharding->Disassemble(Shape({6, 6}))); ASSERT_THAT(disassembled, SizeIs(6)); for (int i = 0; i < 6; ++i) { const auto& [shape, sharding] = disassembled[i]; EXPECT_EQ(shape, Shape({3, 2})); EXPECT_EQ(*sharding, *SingleDeviceSharding::Create( device_list->devices()[i], MemoryKind())); } } TEST_P(ShardingParamShardingTest, DisassembleFailsWhenRankNotMatch) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); ShardingParam param{{2, 3}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> param_sharding, ShardingParamSharding::Create(param, device_list, MemoryKind())); EXPECT_THAT(param_sharding->Disassemble(Shape({6, 6, 6})), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("Numbers of dimensions don't match. From " "Shape 3 vs from ShardingParam 2"))); } TEST_P(ShardingParamShardingTest, DisassembleFailsForUnevenSharding) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); ShardingParam param{{2, 3}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> param_sharding, ShardingParamSharding::Create(param, device_list, MemoryKind())); EXPECT_THAT( param_sharding->Disassemble(Shape({7, 6})), StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("Uneven shard is not supported. dim: 7, dim_shards: 2"))); } TEST_P(ShardingParamShardingTest, IndexDomain) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); ShardingParam param{{2, 3}, {{0, 1}, {2, 3}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> param_sharding, ShardingParamSharding::Create(param, device_list, MemoryKind())); TF_ASSERT_OK_AND_ASSIGN(auto index_domains, param_sharding->IndexDomains(Shape({6, 6}))); EXPECT_THAT(index_domains, ElementsAre(IndexDomain(Index({0, 0}), Shape({3, 2})), IndexDomain(Index({0, 2}), Shape({3, 2})), IndexDomain(Index({0, 4}), Shape({3, 2})), IndexDomain(Index({3, 0}), Shape({3, 2})), IndexDomain(Index({3, 2}), Shape({3, 2})), IndexDomain(Index({3, 4}), Shape({3, 2})))); } TEST_P(ShardingParamShardingTest, IndexDomainWithPermutation) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); ShardingParam param{{2, 3}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> param_sharding, ShardingParamSharding::Create(param, device_list, MemoryKind())); TF_ASSERT_OK_AND_ASSIGN(auto index_domains, param_sharding->IndexDomains(Shape({6, 6}))); EXPECT_THAT(index_domains, ElementsAre(IndexDomain(Index({0, 0}), Shape({3, 2})), IndexDomain(Index({0, 4}), Shape({3, 2})), IndexDomain(Index({3, 2}), Shape({3, 2})), IndexDomain(Index({0, 2}), Shape({3, 2})), IndexDomain(Index({3, 0}), Shape({3, 2})), IndexDomain(Index({3, 4}), Shape({3, 2})))); } TEST_P(ShardingParamShardingTest, IndexDomainWithReplication) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); ShardingParam param{{2, 1}, {{0, 1}, {2, 3}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> param_sharding, ShardingParamSharding::Create(param, device_list, MemoryKind())); TF_ASSERT_OK_AND_ASSIGN(auto index_domains, param_sharding->IndexDomains(Shape({6, 6}))); EXPECT_THAT(index_domains, ElementsAre(IndexDomain(Index({0, 0}), Shape({3, 6})), IndexDomain(Index({0, 0}), Shape({3, 6})), IndexDomain(Index({0, 0}), Shape({3, 6})), IndexDomain(Index({3, 0}), Shape({3, 6})), IndexDomain(Index({3, 0}), Shape({3, 6})), IndexDomain(Index({3, 0}), Shape({3, 6})))); } INSTANTIATE_TEST_SUITE_P(NumDevices, SingleDeviceShardingTest, testing::Values(test_util::DeviceTestParam{ 6, 6})); INSTANTIATE_TEST_SUITE_P(NumDevices, OpaqueShardingTest, testing::Values(test_util::DeviceTestParam{ 6, 6})); INSTANTIATE_TEST_SUITE_P(NumDevices, ConcreteShardingTest, testing::Values(test_util::DeviceTestParam{ 6, 6})); INSTANTIATE_TEST_SUITE_P(NumDevices, ConcreteEvenShardingTest, testing::Values(test_util::DeviceTestParam{ 6, 6})); INSTANTIATE_TEST_SUITE_P(NumDevices, ShardingParamShardingTest, testing::Values(test_util::DeviceTestParam{ 6, 4})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/sharding.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/sharding_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ff4abb2c-ab85-4700-8461-1d3ad21f9d18
cpp
tensorflow/tensorflow
xla_compiler
tensorflow/compiler/tf2xla/xla_compiler.cc
tensorflow/compiler/tf2xla/xla_compiler_test.cc
#include "tensorflow/compiler/tf2xla/xla_compiler.h" #include <algorithm> #include <array> #include <map> #include <memory> #include <numeric> #include <optional> #include <set> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "tensorflow/compiler/mlir/tf2xla/mlir_bridge_rollout_policy.h" #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/variant.h" #include "tensorflow/compiler/jit/defs.h" #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/jit/shape_inference.h" #include "tensorflow/compiler/jit/xla_compile_util.h" #include "tensorflow/compiler/mlir/tensorflow/utils/attribute_utils.h" #include "tensorflow/compiler/mlir/tf2xla/api/v1/compile_mlir_util.h" #include "tensorflow/compiler/mlir/utils/array_container_utils.h" #include "tensorflow/compiler/tf2xla/graph_compiler.h" #include "tensorflow/compiler/tf2xla/layout_util.h" #include "tensorflow/compiler/tf2xla/rearrange_function_argument.h" #include "tensorflow/compiler/tf2xla/shape_util.h" #include "tensorflow/compiler/tf2xla/sharding_util.h" #include "tensorflow/compiler/tf2xla/side_effect_util.h" #include "tensorflow/compiler/tf2xla/tf2xla_util.h" #include "tensorflow/compiler/tf2xla/type_util.h" #include "tensorflow/compiler/tf2xla/xla_compilation_device.h" #include "tensorflow/compiler/tf2xla/xla_context.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "xla/client/client_library.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/hlo/builder/xla_computation.h" #include "xla/protobuf_util.h" #include "xla/service/hlo.pb.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/executor.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_optimizer.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph_debug_info.pb.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/tpu/tpu_defs.h" #include "tensorflow/core/util/debug_data_dumper.h" #include "tensorflow/core/util/dump_graph.h" #include "tsl/platform/errors.h" #include "tsl/platform/tensor_float_32_utils.h" namespace tensorflow { namespace { constexpr char kSingleOpComponent[] = "TF2XLA_XLA_COMPILER_COMPILE_SINGLE_OP"; constexpr char kCompileFunctionComponent[] = "TF2XLA_XLA_COMPILER_COMPILE_FUNCTION"; Status CheckSignature(const DataTypeVector& types, absl::Span<const XlaCompiler::Argument> args) { if (args.size() != types.size()) { return errors::Internal("Compilation arguments have ", args.size(), " elements while function has ", types.size()); } for (int i = 0, end = types.size(); i < end; ++i) { if (types[i] != args[i].type && types[i] != DT_RESOURCE && types[i] != DT_VARIANT) { return errors::Internal( "Argument ", i, " has declared type ", DataTypeString(args[i].type), " but function parameter has type ", DataTypeString(types[i])); } } return absl::OkStatus(); } absl::StatusOr< std::pair<std::map<int, xla::OpSharding>, std::map<int, xla::OpSharding>>> ComputeArgAndRetvalShardings(const Graph& graph) { auto get_sharding_for_node = [](const Node* n) -> absl::StatusOr<std::optional<xla::OpSharding>> { TF_ASSIGN_OR_RETURN( auto sharding, ParseShardingFromDevice(*n, std::numeric_limits<int32>::max(), false)); return sharding; }; std::map<int, xla::OpSharding> arg_shardings; std::map<int, xla::OpSharding> retval_shardings; for (const Node* n : graph.nodes()) { if (n->IsArg()) { TF_ASSIGN_OR_RETURN(auto sharding, get_sharding_for_node(n)); if (!sharding.has_value()) continue; int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "index", &index)); TF_RET_CHECK(index >= 0) << "Negative _Arg index"; arg_shardings[index] = std::move(*sharding); } else if (n->IsRetval()) { TF_ASSIGN_OR_RETURN(auto sharding, get_sharding_for_node(n)); if (!sharding.has_value()) continue; int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "index", &index)); TF_RET_CHECK(index >= 0) << "Negative _Retval index"; retval_shardings[index] = std::move(*sharding); } } return std::make_pair(std::move(arg_shardings), std::move(retval_shardings)); } Status ExecuteGraph(XlaContext* xla_context, std::unique_ptr<Graph> graph, XlaCompilationDevice* device, FunctionLibraryRuntime* flib, int64_t step_id) { xla_context->Ref(); Status status; auto step_container = std::make_unique<ScopedStepContainer>( step_id, [&status, device](const string& name) { status = device->resource_manager()->Cleanup(name); }); TF_RETURN_IF_ERROR(step_container->Create(device->resource_manager(), XlaContext::kXlaContextResourceName, xla_context)); GraphCompiler graph_compiler(device, graph.get(), flib, step_container.get()); TF_RETURN_IF_ERROR(graph_compiler.Compile()); step_container.reset(); return status; } Status BuildComputation( const std::vector<XlaCompiler::Argument>& args, const std::vector<XlaExpression>& retvals, const std::map<int, xla::OpSharding>& arg_shardings, const std::map<int, xla::OpSharding>& retval_shardings, const std::vector<std::unique_ptr<XlaResource>>& resources, std::unique_ptr<xla::XlaOp> token_output, const XlaShapeLayoutHelpers::ShapeDeterminationFns& shape_determination_fns, bool is_entry_computation, bool return_updated_values_for_all_resources, bool always_return_tuple, bool use_tuple_arg, bool alias_resource_update, xla::XlaBuilder* builder, xla::XlaComputation* computation, int* num_computation_outputs, int* num_nonconst_outputs, std::vector<XlaCompiler::OutputDescription>* outputs, std::vector<XlaCompiler::ResourceUpdate>* resource_updates, xla::Shape* output_shape, absl::Span<int const> input_mapping) { xla::OpMetadata retval_metadata; retval_metadata.set_op_name("XLA_Retvals"); builder->SetOpMetadata(retval_metadata); VLOG(1) << "Building new computation"; auto cleanup = gtl::MakeCleanup([builder]() { builder->ClearOpMetadata(); }); auto identity_op = [builder](xla::XlaOp op, const std::optional<xla::OpSharding>& sharding) { xla::XlaScopedShardingAssignment assign_sharding(builder, sharding); return xla::Copy(op); }; std::vector<xla::XlaOp> elems; elems.reserve(retvals.size()); std::unordered_map<int, xla::OpSharding> retval_index_and_sharding; for (int i = 0, end = retvals.size(); i < end; ++i) { XlaCompiler::OutputDescription& output = (*outputs)[i]; const XlaExpression& retval = retvals[i]; output.type = retval.dtype(); switch (retval.kind()) { case XlaExpression::Kind::kConstant: output.is_constant = true; output.constant_value = *retval.constant_value(); output.shape = output.constant_value.shape(); break; case XlaExpression::Kind::kTensorList: { output.is_tensor_list = true; xla::XlaOp value = retval.handle(); elems.push_back(value); break; } case XlaExpression::Kind::kXlaOp: { output.is_constant = false; TF_ASSIGN_OR_RETURN(output.shape, retval.GetShape()); xla::XlaOp value = retval.handle(); auto it = retval_shardings.find(i); std::optional<xla::OpSharding> sharding = it == retval_shardings.end() ? std::optional<xla::OpSharding>() : it->second; if (it != retval_shardings.end()) { retval_index_and_sharding[elems.size()] = it->second; } if (shape_determination_fns.shape_representation_fn) { TF_ASSIGN_OR_RETURN(auto original_shape, builder->GetShape(value)); TF_ASSIGN_OR_RETURN(value, ReshapeWithCorrectRepresentationAndSharding( builder, value, original_shape, shape_determination_fns, sharding, false)); } if (it != retval_shardings.end()) { value = identity_op(value, sharding); } elems.push_back(value); break; } case XlaExpression::Kind::kResource: output.is_constant = false; output.input_index = retval.resource()->arg_num(); output.shape = retval.resource()->shape(); break; case XlaExpression::Kind::kInvalid: return errors::InvalidArgument( "Invalid expression returned by computation. " "This probably means a return value was not set."); } } *num_nonconst_outputs = elems.size(); std::vector<const XlaResource*> arg_resources; arg_resources.reserve(resources.size()); for (const auto& resource : resources) { if (resource->arg_num() >= 0) { arg_resources.push_back(resource.get()); } } std::sort(arg_resources.begin(), arg_resources.end(), [](const XlaResource* a, const XlaResource* b) { return a->arg_num() < b->arg_num(); }); absl::flat_hash_map<int, int> argument_to_xla_arg; for (int xla_arg = 0; xla_arg < input_mapping.size(); xla_arg++) { argument_to_xla_arg[input_mapping[xla_arg]] = xla_arg; } std::vector<xla::XlaBuilder::InputOutputAlias> aliases; for (const XlaResource* resource : arg_resources) { DCHECK_LT(resource->arg_num(), args.size()); const XlaCompiler::Argument& arg = args[resource->arg_num()]; auto it = arg_shardings.find(resource->arg_num()); bool modified = !resource->value().IsIdenticalTo(resource->initial_value()); for (const auto& grad : resource->tensor_array_gradients()) { modified = modified || !grad.second->value().IsIdenticalTo(grad.second->initial_value()) || arg.tensor_array_gradients.count(grad.first) == 0; } if (return_updated_values_for_all_resources || modified || arg.requires_broadcast) { resource_updates->emplace_back(); XlaCompiler::ResourceUpdate& update = resource_updates->back(); update.input_index = resource->arg_num(); update.type = resource->type(); update.shape = resource->shape(); update.modified = modified; int param_num = use_tuple_arg ? 0 : update.input_index; if (is_entry_computation && arg.resource_kind != XlaResource::kTensorArray && alias_resource_update && argument_to_xla_arg.count(param_num)) { xla::ShapeIndex param_index = use_tuple_arg ? xla::ShapeIndex({update.input_index}) : xla::ShapeIndex{}; int xla_param_num = argument_to_xla_arg[param_num]; int64_t output_index_num = elems.size(); xla::ShapeIndex output_index = xla::ShapeIndex({output_index_num}); VLOG(3) << "Storing alias: " << output_index.ToString() << ": (" << xla_param_num << ", " << param_index.ToString() << ")"; aliases.push_back({output_index, xla_param_num, param_index}); } for (const auto& grad : resource->tensor_array_gradients()) { update.tensor_array_gradients_accessed.insert(grad.first); } xla::XlaOp handle; TF_RETURN_IF_ERROR(resource->Pack(&handle, builder)); auto sharding = it == arg_shardings.end() ? std::optional<xla::OpSharding>() : it->second; if (shape_determination_fns.layout_preference_fn && shape_determination_fns.shape_representation_fn) { TF_ASSIGN_OR_RETURN(auto original_shape, builder->GetShape(handle)); TF_ASSIGN_OR_RETURN( handle, ReshapeWithCorrectRepresentationAndSharding( builder, handle, original_shape, shape_determination_fns, sharding, arg.fast_mem)); } if (it != arg_shardings.end()) { retval_index_and_sharding[elems.size()] = it->second; } handle = identity_op(handle, sharding); elems.push_back(handle); } } if (token_output) { elems.push_back(*token_output); } *num_computation_outputs = elems.size(); xla::XlaOp tuple; if (retval_index_and_sharding.empty() || !is_entry_computation) { tuple = xla::Tuple(builder, elems); } else { std::vector<xla::Shape> elem_shapes; for (const auto& elem : elems) { TF_ASSIGN_OR_RETURN(xla::Shape elem_shape, elem.builder()->GetShape(elem)); elem_shapes.push_back(elem_shape); } xla::Shape shape = xla::ShapeUtil::MakeTupleShape(elem_shapes); std::vector<xla::HloSharding> sharding_elems; for (int i = 0, end = elems.size(); i < end; i++) { const auto& iter = retval_index_and_sharding.find(i); TF_RET_CHECK(iter != retval_index_and_sharding.end()); const xla::OpSharding& sub_op_sharding = iter->second; TF_ASSIGN_OR_RETURN(xla::HloSharding sub_sharding, xla::HloSharding::FromProto(sub_op_sharding)); if (elem_shapes[i].IsTuple()) { const std::vector<xla::HloSharding> sub_sharding_elems = sub_sharding.tuple_elements(); const int64_t sub_sharding_elems_size = sub_sharding_elems.size(); TF_RET_CHECK(sub_sharding_elems_size == xla::ShapeUtil::GetLeafCount(elem_shapes[i])); for (const auto& sub_sharding_elem : sub_sharding_elems) { sharding_elems.push_back(sub_sharding_elem); } } else { sharding_elems.push_back(sub_sharding); } } xla::HloSharding modified_sharding = xla::HloSharding::Tuple(shape, sharding_elems); xla::OpSharding op_sharding = modified_sharding.ToProto(); xla::XlaScopedShardingAssignment assign_sharding(builder, op_sharding); tuple = xla::Tuple(builder, elems); } bool returns_tuple = always_return_tuple || elems.size() != 1; VLOG(3) << "Computation returns a tuple=" << returns_tuple; if (!returns_tuple) { xla::GetTupleElement(tuple, 0); for (xla::XlaBuilder::InputOutputAlias& alias : aliases) { if (alias.output_index == xla::ShapeIndex({0})) { VLOG(3) << "For aliased parameter " << alias.param_number << ": " << alias.param_index.ToString() << " normalizing output_index from {0} to {}, as a scalar is " "returned from the cluster"; alias.output_index = xla::ShapeIndex({}); } } } for (xla::XlaBuilder::InputOutputAlias& alias : aliases) { builder->SetUpAlias(alias.output_index, alias.param_number, alias.param_index); } TF_ASSIGN_OR_RETURN(*computation, builder->Build()); TF_ASSIGN_OR_RETURN(auto program_shape, computation->GetProgramShape()); *output_shape = program_shape.result(); return absl::OkStatus(); } } string XlaCompiler::Argument::HumanString() const { string common; if (!name.empty()) { common = absl::StrCat(" name=", name); } absl::StrAppend(&common, " type=", DataTypeString(type), " shape=", ShapeHumanString()); absl::StrAppend( &common, " is_same_data_across_replicas=", is_same_data_across_replicas); switch (kind) { case kInvalid: return "invalid"; case kConstant: return absl::StrCat("kind=constant", common, " value=", constant_value.DebugString()); case kConstantResource: return absl::StrCat("kind=constant-resource", common, " value=", constant_value.DebugString()); case kResource: { string output = absl::StrCat( "kind=resource", common, " resource_kind=", XlaResource::KindToString(resource_kind), " initialized=", initialized, " is_fast_mem=", fast_mem); if (max_array_size >= 0) { absl::StrAppend(&output, " max_array_size=", max_array_size); } if (!tensor_array_gradients.empty()) { absl::StrAppend(&output, " tensor_array_gradients=", absl::StrJoin(tensor_array_gradients, ",")); } return output; } case kParameter: return absl::StrCat("kind=parameter", common); case kTensorList: return absl::StrCat("kind=tensorlist", common); case kToken: return absl::StrCat("token", common); } } std::vector<int64_t> XlaCompiler::Argument::DimensionSizes() const { if (absl::holds_alternative<TensorShape>(shape)) { return xla::InlinedVectorToVector(std::get<TensorShape>(shape).dim_sizes()); } else { return xla::SpanToVector(std::get<xla::Shape>(shape).dimensions()); } } absl::InlinedVector<int64_t, 4> XlaCompiler::Argument::DimensionSizesAsInlinedVector() const { if (absl::holds_alternative<TensorShape>(shape)) { return std::get<TensorShape>(shape).dim_sizes(); } else { auto v = std::get<xla::Shape>(shape).dimensions(); return absl::InlinedVector<int64_t, 4>(v.begin(), v.end()); } } string XlaCompiler::Argument::ShapeHumanString() const { if (absl::holds_alternative<TensorShape>(shape)) { return std::get<TensorShape>(shape).DebugString(); } else { return std::get<xla::Shape>(shape).DebugString(); } } XlaCompiler::XlaCompiler(XlaCompiler::Options options) : options_(options), initialization_status_(absl::OkStatus()), next_step_id_(1), device_(new XlaCompilationDevice(SessionOptions(), options_.device_type)), device_mgr_(absl::WrapUnique(device_)) { CHECK(!options_.device_type.type_string().empty()); if (options_.populate_resource_manager) { initialization_status_ = (*options_.populate_resource_manager)(device_->resource_manager()); } local_flib_def_.reset(new FunctionLibraryDefinition(OpRegistry::Global(), FunctionDefLibrary())); local_pflr_.reset(new ProcessFunctionLibraryRuntime( &device_mgr_, Env::Default(), nullptr, options.graph_def_version, local_flib_def_.get(), OptimizerOptions())); pflr_.reset(new ProcessFunctionLibraryRuntime( &device_mgr_, Env::Default(), nullptr, options.graph_def_version, options.flib_def, OptimizerOptions())); local_flib_runtime_ = local_pflr_->GetFLR(device_->name()); flib_runtime_ = pflr_->GetFLR(device_->name()); XlaShapeLayoutHelpers::ShapeDeterminationFns& shape_determination_fns = options_.shape_determination_fns; if (!shape_determination_fns.shape_representation_fn) { shape_determination_fns.shape_representation_fn = IdentityShapeRepresentationFn(); } if (!shape_determination_fns.layout_preference_fn) { shape_determination_fns.layout_preference_fn = UseNoPreferenceLayoutFn(); } } XlaCompiler::~XlaCompiler() = default; int64_t XlaCompiler::NextStepId() { return next_step_id_++; } uint64 XlaCompiler::SignatureHash::operator()( const std::pair<string, std::vector<Argument>>& signature) const { return std::hash<string>()(signature.first); } static Status GetFunctionBody(const NameAttrList& function, FunctionLibraryRuntime* flib_runtime, const FunctionBody** fbody) { FunctionLibraryRuntime::Handle handle; TF_RETURN_IF_ERROR(flib_runtime->Instantiate( function.name(), AttrSlice(&function.attr()), &handle)); *fbody = flib_runtime->GetFunctionBody(handle); TF_RET_CHECK(*fbody); return absl::OkStatus(); } Status XlaCompiler::FindFunctionBody(const NameAttrList& function, const FunctionBody** fbody, const ConfigProto** config_proto) { auto status = GetFunctionBody(function, local_flib_runtime_, fbody); if (!status.ok()) { if (!absl::IsNotFound(status)) { return status; } TF_RETURN_WITH_CONTEXT_IF_ERROR( GetFunctionBody(function, flib_runtime_, fbody), "Local lookup failed with: ", status.message()); if (config_proto) { *config_proto = flib_runtime_->config_proto(); } VLOG(4) << "Function " << function.name() << " in flib_runtime_"; } else { if (config_proto) { *config_proto = local_flib_runtime_->config_proto(); } VLOG(4) << "Function " << function.name() << " in local_flib_runtime_"; } return absl::OkStatus(); } std::unique_ptr<Graph> XlaCompiler::GetGraph(const FunctionBody* fbody) { std::unique_ptr<Graph> graph(new Graph(options_.flib_def)); CopyGraph(*fbody->graph, graph.get()); bool is_inside_mustcompile = false; TryGetNodeAttr(AttrSlice(&fbody->record->fdef().attr()), kXlaMustCompileAttr, &is_inside_mustcompile); auto flags = GetBuildXlaOpsPassFlags(); OptimizerOptions opts; opts.set_opt_level(OptimizerOptions::L0); opts.set_do_common_subexpression_elimination(false); opts.set_do_function_inlining(true); opts.set_do_constant_folding(!flags->tf_xla_disable_constant_folding); GraphOptimizer optimizer(opts); auto cf_consider_fn = [](const Node* n) { for (const auto& output_arg : n->op_def().output_arg()) { if (output_arg.type() == DT_VARIANT) { return false; } } const auto& ts = n->type_string(); if (ts == "Shape" || ts == "ShapeN" || ts == "Size") { return false; } return true; }; GraphOptimizer::Options graph_optimizer_options; graph_optimizer_options.cf_consider_fn = cf_consider_fn; graph_optimizer_options.inline_multi_device_functions = true; graph_optimizer_options.inline_impl_selection_group_functions = true; graph_optimizer_options.inline_with_single_device_body_placer = true; graph_optimizer_options.ignore_noinline = is_inside_mustcompile; { GraphShapeInfo shape_info; InferShapes(graph.get(), {}, flib_runtime_->GetFunctionLibraryDefinition(), &shape_info) .IgnoreError(); auto node_name_index = graph->BuildNodeNameIndex(); std::unordered_map<string, std::vector<PartialTensorShape>> shape_map; for (const auto& node_shape_info : shape_info) { const string& node_name = node_shape_info.first; const std::vector<InferredShape>& output_shapes = node_shape_info.second; const auto& node_iter = node_name_index.find(node_name); if (node_iter != node_name_index.end()) { auto& partial_shapes = shape_map[node_name]; for (const auto& inferred_shape : output_shapes) { partial_shapes.push_back(inferred_shape.shape); } } } graph_optimizer_options.shape_map = &shape_map; optimizer.Optimize(flib_runtime_, flib_runtime_->env(), nullptr, &graph, graph_optimizer_options); } GraphShapeInfo shape_info; InferShapes(graph.get(), {}, flib_runtime_->GetFunctionLibraryDefinition(), &shape_info) .IgnoreError(); auto node_name_index = graph->BuildNodeNameIndex(); std::unordered_map<string, std::vector<PartialTensorShape>> shape_map; for (const auto& node_shape_info : shape_info) { const string& node_name = node_shape_info.first; const std::vector<InferredShape>& output_shapes = node_shape_info.second; const auto& node_iter = node_name_index.find(node_name); if (node_iter != node_name_index.end()) { auto& partial_shapes = shape_map[node_name]; for (const auto& inferred_shape : output_shapes) { partial_shapes.push_back(inferred_shape.shape); } } } graph_optimizer_options.shape_map = &shape_map; optimizer.Optimize(flib_runtime_, flib_runtime_->env(), nullptr, &graph, graph_optimizer_options); return graph; } std::vector<std::string> GetValidControlRets( absl::Span<Node* const> orig_control_ret_nodes, const Graph& graph) { absl::flat_hash_map<string, int> control_ret_nodes_map; for (int i = 0; i < orig_control_ret_nodes.size(); ++i) { const Node* n = orig_control_ret_nodes[i]; control_ret_nodes_map[n->name()] = i; } std::vector<bool> is_valid_control_ret(orig_control_ret_nodes.size(), false); int num_valid_control_rets = 0; for (const Node* n : graph.nodes()) { auto iter = control_ret_nodes_map.find(n->name()); if (iter != control_ret_nodes_map.end()) { ++num_valid_control_rets; is_valid_control_ret[iter->second] = true; } } std::vector<std::string> valid_control_rets; valid_control_rets.reserve(num_valid_control_rets); for (int i = 0; i < orig_control_ret_nodes.size(); ++i) { if (is_valid_control_ret[i]) { valid_control_rets.push_back(orig_control_ret_nodes[i]->name()); } } return valid_control_rets; } Status XlaCompiler::CompileSingleOp( const XlaCompiler::CompileOptions& compile_options, const XlaCompiler::SingleOpCompileArgument& single_op_compile_argument, absl::Span<const Argument> args, XlaCompiler::CompilationResult* result) { const NodeDef& node_def = single_op_compile_argument.node_def; TF_ASSIGN_OR_RETURN( auto graph, CreateSingleOpGraph(node_def, args, single_op_compile_argument.output_dtypes)); *result = {}; Status status = ADD_SOURCE_LOCATION(CompileGraph( compile_options, node_def.name(), std::move(graph), args, result)); if (status.ok()) { tensorflow::metrics::IncrementPhase2XlaCompilerCounter( tensorflow::metrics::Phase2XlaCompilerMetric:: kCompileSingleOpXlaBuilderSuccess); } else { tensorflow::metrics::IncrementPhase2XlaCompilerCounter( tensorflow::metrics::Phase2XlaCompilerMetric:: kCompileSingleOpXlaBuilderFailure); tsl::error_logging::Log(mlir::TF::kBridgeComponent, kSingleOpComponent, status.ToString()) .IgnoreError(); } return status; } Status XlaCompiler::CompileFunction( const XlaCompiler::CompileOptions& options, const NameAttrList& fn_name_attrs, absl::Span<const XlaCompiler::Argument> args, XlaCompiler::CompilationResult* result) { string function_id = Canonicalize(fn_name_attrs.name(), AttrSlice(&fn_name_attrs.attr())); VLOG(1) << "XlaCompiler::CompileFunction " << function_id; const std::vector<XlaCompiler::Argument> arg_vector(args.begin(), args.end()); auto it = cache_.find({function_id, arg_vector}); if (it != cache_.end()) { *result = it->second; return absl::OkStatus(); } const FunctionBody* fbody; const ConfigProto* config = nullptr; TF_RETURN_IF_ERROR(FindFunctionBody(fn_name_attrs, &fbody, &config)); std::optional<ConfigProto> config_proto; if (config) { config_proto = *config; } TF_RETURN_WITH_CONTEXT_IF_ERROR( CheckSignature(fbody->arg_types, args), "Signature check failure while compiling: ", fn_name_attrs.name()); for (int i = 0, end = args.size(); i < end; i++) { DataType dtype; TF_RETURN_IF_ERROR(GetNodeAttr(fbody->arg_nodes[i]->def(), "T", &dtype)); if (dtype == DT_RESOURCE || dtype == DT_VARIANT) { continue; } if (absl::holds_alternative<xla::Shape>(args[i].shape)) { xla::Shape xla_shape = std::get<xla::Shape>(args[i].shape); TensorShape tensor_shape; if (XLAShapeToTensorShape(xla_shape, &tensor_shape).ok() && xla_shape.is_static()) { fbody->arg_nodes[i]->ClearAttr("_output_shapes"); fbody->arg_nodes[i]->AddAttr("_output_shapes", std::vector<TensorShape>{tensor_shape}); } } else { TensorShape tensor_shape = std::get<TensorShape>(args[i].shape); fbody->arg_nodes[i]->ClearAttr("_output_shapes"); fbody->arg_nodes[i]->AddAttr("_output_shapes", std::vector<TensorShape>{tensor_shape}); } } std::unique_ptr<Graph> graph = GetGraph(fbody); for (Node* n : graph->nodes()) { if (n->IsArg()) { TF_RETURN_IF_ERROR(SetNodeShardingFromNeighbors(n, true)); } } for (Node* n : graph->nodes()) { if (n->IsRetval()) { TF_RETURN_IF_ERROR(SetNodeShardingFromNeighbors(n, false)); } } if (VLOG_IS_ON(2)) { VLOG(2) << "XlaCompiler::CompileFunction: " << DumpGraphToFile( absl::StrCat("xla_compile_function_", function_id), *graph); } VLOG(1) << "===================================================="; VLOG(1) << "CompileFunction with XlaBuilder"; auto status = CompileGraph(options, function_id, std::move(graph), args, result); if (!status.ok()) { tensorflow::metrics::IncrementPhase2XlaCompilerCounter( tensorflow::metrics::Phase2XlaCompilerMetric:: kCompileFunctionXlaBuilderFailure); ::tsl::errors::AppendToMessage( &status, "tf2xla conversion failed while converting ", std::move(function_id), ". Run with TF_DUMP_GRAPH_PREFIX=/path/to/dump/dir and " "--vmodule=xla_compiler=2 to obtain a dump of the compiled " "functions."); tsl::error_logging::Log(mlir::TF::kBridgeComponent, kCompileFunctionComponent, status.ToString()) .IgnoreError(); return status; } tensorflow::metrics::IncrementPhase2XlaCompilerCounter( tensorflow::metrics::Phase2XlaCompilerMetric:: kCompileFunctionXlaBuilderSuccess); VLOG(1) << "===================================================="; cache_[{function_id, arg_vector}] = *result; return absl::OkStatus(); } Status XlaCompiler::XLAShapeForArgument( const XlaCompiler::Argument& arg, bool is_entry_computation, const std::optional<xla::HloSharding>& arg_sharding, xla::Shape* xla_shape) const { switch (arg.kind) { case XlaCompiler::Argument::kConstant: LOG(FATAL) << "Unreachable case"; case XlaCompiler::Argument::kParameter: { if (is_entry_computation) { TensorShape shape; if (std::holds_alternative<TensorShape>(arg.shape)) { shape = std::get<TensorShape>(arg.shape); } else { TF_RETURN_IF_ERROR( XLAShapeToTensorShape(std::get<xla::Shape>(arg.shape), &shape)); } auto layout_preference = options_.shape_determination_fns.layout_preference_fn( shape, arg.type, arg.kind); TF_ASSIGN_OR_RETURN( *xla_shape, options_.shape_determination_fns.shape_representation_fn( shape, arg.type, false, layout_preference)); TF_RETURN_IF_ERROR(RewriteLayoutWithShardedShape( arg_sharding, false, options_.shape_determination_fns, xla_shape)); if (std::holds_alternative<xla::Shape>(arg.shape) && std::get<xla::Shape>(arg.shape).is_dynamic()) { xla::Shape dynamic_shape = std::get<xla::Shape>(arg.shape); for (int i = 0; i < xla_shape->dimensions_size(); ++i) { xla_shape->set_dynamic_dimension( i, dynamic_shape.is_dynamic_dimension(i)); } } } else { if (std::holds_alternative<xla::Shape>(arg.shape)) { *xla_shape = std::get<xla::Shape>(arg.shape); } else { TF_RETURN_IF_ERROR(TensorShapeToXLAShape( arg.type, std::get<TensorShape>(arg.shape), xla_shape)); } } return absl::OkStatus(); } case XlaCompiler::Argument::kTensorList: { TF_RET_CHECK(absl::holds_alternative<xla::Shape>(arg.shape)); *xla_shape = std::get<xla::Shape>(arg.shape); return absl::OkStatus(); } case XlaCompiler::Argument::kConstantResource: case XlaCompiler::Argument::kResource: { TF_RET_CHECK(arg.initialized); switch (arg.resource_kind) { case XlaResource::kVariable: { TF_RET_CHECK(absl::holds_alternative<TensorShape>(arg.shape)); auto layout_preference = options_.shape_determination_fns.layout_preference_fn( std::get<TensorShape>(arg.shape), arg.type, arg.kind); TF_ASSIGN_OR_RETURN( *xla_shape, options_.shape_determination_fns.shape_representation_fn( std::get<TensorShape>(arg.shape), arg.type, arg.fast_mem, layout_preference)); TF_RETURN_IF_ERROR(RewriteLayoutWithShardedShape( arg_sharding, arg.fast_mem, options_.shape_determination_fns, xla_shape)); return absl::OkStatus(); } case XlaResource::kTensorArray: { if (arg.max_array_size < 0) { return errors::InvalidArgument( "Negative max_array_size in XLAShapeForArgument"); } TF_RET_CHECK(absl::holds_alternative<TensorShape>(arg.shape)); TensorShape shape; TF_RETURN_IF_ERROR(shape.AddDimWithStatus(arg.max_array_size)); shape.AppendShape(std::get<TensorShape>(arg.shape)); TF_RETURN_IF_ERROR(TensorShapeToXLAShape(arg.type, shape, xla_shape)); if (!arg.tensor_array_gradients.empty()) { std::vector<xla::Shape> tuple_shape( arg.tensor_array_gradients.size() + 1, *xla_shape); *xla_shape = xla::ShapeUtil::MakeTupleShape(tuple_shape); } return absl::OkStatus(); } case XlaResource::kStack: { if (arg.max_array_size < 0) { return errors::InvalidArgument( "Negative max_array_size in XLAShapeForArgument"); } TF_RET_CHECK(absl::holds_alternative<TensorShape>(arg.shape)); TensorShape shape; TF_RETURN_IF_ERROR(shape.AddDimWithStatus(arg.max_array_size)); shape.AppendShape(std::get<TensorShape>(arg.shape)); xla::Shape buffer_shape; TF_RETURN_IF_ERROR( TensorShapeToXLAShape(arg.type, shape, &buffer_shape)); *xla_shape = xla::ShapeUtil::MakeTupleShape( {buffer_shape, xla::ShapeUtil::MakeShape(xla::S32, {})}); return absl::OkStatus(); } case XlaResource::kInvalid: return errors::Internal( "Invalid resource type in XLAShapeForArgument()"); } } case XlaCompiler::Argument::kToken: { *xla_shape = xla::ShapeUtil::MakeTokenShape(); return absl::OkStatus(); } case XlaCompiler::Argument::kInvalid: return errors::Internal("Invalid argument type in XLAShapeForArgument()"); } } void XlaCompiler::PopulateArgumentFromResource(const XlaResource& resource, Argument* arg) { arg->initialized = resource.initialized(); arg->kind = XlaCompiler::Argument::kResource; arg->resource_kind = resource.kind(); arg->type = resource.type(); arg->shape = resource.shape(); arg->max_array_size = resource.max_array_size(); for (const auto& gradient : resource.tensor_array_gradients()) { arg->tensor_array_gradients.insert(gradient.first); } arg->name = resource.name(); } XlaCompiler::SingleOpCompileArgument::SingleOpCompileArgument( const OpKernelContext& ctx) { std::vector<DataType> output_dtypes(ctx.num_outputs()); for (int i = 0; i < output_dtypes.size(); ++i) { output_dtypes[i] = ctx.expected_output_dtype(i); } this->output_dtypes = output_dtypes; this->node_def = ctx.op_kernel().def(); auto* config_proto = ctx.function_library()->config_proto(); if (config_proto != nullptr) { this->config_proto = *config_proto; } } Status XlaCompiler::BuildArguments( const Graph& graph, const std::vector<XlaCompiler::Argument>& args, bool use_tuple_arg, xla::XlaBuilder* builder, XlaContext* context, const std::map<int, xla::OpSharding>& arg_shardings, std::vector<XlaExpression>* arg_expressions, std::vector<int>* input_to_args, std::vector<xla::Shape>* input_shapes, bool is_entry_computation) { arg_expressions->resize(args.size()); input_to_args->clear(); input_to_args->reserve(args.size()); for (std::vector<XlaCompiler::Argument>::size_type i = 0; i < args.size(); ++i) { const XlaCompiler::Argument& arg = args[i]; XlaExpression& arg_expression = (*arg_expressions)[i]; switch (arg.kind) { case XlaCompiler::Argument::kConstantResource: case XlaCompiler::Argument::kResource: { TF_RET_CHECK(arg.resource_kind != XlaResource::kInvalid); TF_RET_CHECK(absl::holds_alternative<TensorShape>(arg.shape)); XlaResource* resource = context->AddResource(std::make_unique<XlaResource>( arg.resource_kind, i, arg.name, arg.type, std::get<TensorShape>(arg.shape), xla::XlaOp(), arg.max_array_size, arg.tensor_array_gradients, true, arg.definition_stack_trace)); arg_expression = arg.kind == XlaCompiler::Argument::kResource ? XlaExpression::Resource(resource) : XlaExpression::ConstantResource(arg.constant_value, resource); if (arg.initialized) { input_to_args->push_back(i); } break; } case XlaCompiler::Argument::kParameter: case XlaCompiler::Argument::kTensorList: case XlaCompiler::Argument::kToken: { input_to_args->push_back(i); break; } case XlaCompiler::Argument::kConstant: arg_expression = XlaExpression::Constant(arg.constant_value); break; case XlaCompiler::Argument::kInvalid: return errors::Internal( "Unreachable case in BuildArguments() while filling constant args"); } } if (input_to_args->empty() && !use_tuple_arg) { return absl::OkStatus(); } std::vector<int> arg_to_inputs(args.size(), -1); for (int i = 0, end = input_to_args->size(); i < end; i++) { arg_to_inputs[input_to_args->at(i)] = i; } std::vector<xla::Shape> arg_shapes(input_to_args->size()); for (std::vector<int>::size_type i = 0; i < input_to_args->size(); ++i) { auto arg_sharding = arg_shardings.find((*input_to_args)[i]); std::optional<xla::HloSharding> sharding; if (arg_sharding != arg_shardings.end()) { TF_ASSIGN_OR_RETURN(auto hlo_sharding, xla::HloSharding::FromProto(arg_sharding->second)); sharding = hlo_sharding; } TF_RETURN_IF_ERROR(XLAShapeForArgument(args[(*input_to_args)[i]], is_entry_computation, sharding, &arg_shapes[i])); } if (use_tuple_arg) { input_shapes->push_back(xla::ShapeUtil::MakeTupleShape(arg_shapes)); } else { *input_shapes = arg_shapes; } xla::OpMetadata arg_metadata; arg_metadata.set_op_name("XLA_Args"); builder->SetOpMetadata(arg_metadata); std::vector<xla::XlaOp> arg_handles(input_to_args->size()); if (use_tuple_arg) { xla::XlaOp tuple; if (is_entry_computation) { xla::OpSharding tuple_sharding; tuple_sharding.set_type(xla::OpSharding::TUPLE); for (int64_t parameter : *input_to_args) { auto it = arg_shardings.find(parameter); *tuple_sharding.add_tuple_shardings() = it == arg_shardings.end() ? xla::sharding_builder::AssignDevice(0) : it->second; } std::vector<bool> is_same_across_replicas; for (int i = 0, end = input_to_args->size(); i < end; ++i) { is_same_across_replicas.insert( is_same_across_replicas.end(), xla::ShapeUtil::GetLeafCount(arg_shapes[i]), args[input_to_args->at(i)].is_same_data_across_replicas); } xla::XlaScopedShardingAssignment assign_tuple_sharding( builder, input_to_args->empty() ? std::optional<xla::OpSharding>() : tuple_sharding); tuple = xla::Parameter(builder, 0, (*input_shapes)[0], "arg_tuple", is_same_across_replicas); } else { tuple = xla::Parameter(builder, 0, (*input_shapes)[0], "arg_tuple"); } for (std::vector<int>::size_type i = 0; i < input_to_args->size(); ++i) { auto it = arg_shardings.find(i); xla::XlaScopedShardingAssignment assign_sharding( builder, it == arg_shardings.end() ? std::optional<xla::OpSharding>() : it->second); auto& arg = args[input_to_args->at(i)]; xla::OpMetadata arg_metadata; arg_metadata.set_op_name(arg.node_name); builder->SetOneShotOpMetadata(arg_metadata); arg_handles[i] = xla::GetTupleElement(tuple, i); } } else { for (std::vector<int>::size_type i = 0; i < input_to_args->size(); ++i) { auto it = arg_shardings.find(i); xla::XlaScopedShardingAssignment assign_sharding( builder, it == arg_shardings.end() ? std::optional<xla::OpSharding>() : it->second); if (is_entry_computation) { std::vector<bool> is_same_across_replicas( xla::ShapeUtil::GetLeafCount((*input_shapes)[i]), args[input_to_args->at(i)].is_same_data_across_replicas); arg_handles[i] = xla::Parameter(builder, i, (*input_shapes)[i], absl::StrCat("arg", i), is_same_across_replicas); } else { arg_handles[i] = xla::Parameter(builder, i, (*input_shapes)[i], absl::StrCat("arg", i)); } } } builder->ClearOpMetadata(); VLOG(2) << "XLA computation inputs:"; for (std::vector<int>::size_type i = 0; i < input_to_args->size(); ++i) { const XlaCompiler::Argument& arg = args[input_to_args->at(i)]; VLOG(2) << " XLA arg " << i << " shape: " << xla::ShapeUtil::HumanString(arg_shapes[i]) << " name: " << arg.name << " TF arg " << input_to_args->at(i) << " node name: " << arg.node_name << (arg_shardings.find(i) == arg_shardings.end() ? "" : absl::StrCat(" sharding: ", arg_shardings.at(i).DebugString())); XlaExpression& arg_expression = (*arg_expressions)[input_to_args->at(i)]; switch (arg.kind) { case XlaCompiler::Argument::kConstantResource: case XlaCompiler::Argument::kResource: { TF_RET_CHECK(arg.initialized); XlaResource* resource = arg_expression.resource(); TF_RETURN_IF_ERROR(resource->SetFromPack(arg.tensor_array_gradients, arg_handles[i], builder)); VLOG(2) << " resource: num_gradients: " << arg.tensor_array_gradients.size(); break; } case XlaCompiler::Argument::kParameter: if (is_entry_computation) { arg_expression = XlaExpression::XlaOp( xla::Reshape(arg_handles[i], arg.DimensionSizes()), arg.type); } else { arg_expression = XlaExpression::XlaOp(arg_handles[i], arg.type); if (arg.value_bound) { TF_RET_CHECK(arg.value_dynamism); arg_expression.set_value_bound(arg.value_bound.value()); arg_expression.set_value_dynamism(arg.value_dynamism.value()); } } break; case XlaCompiler::Argument::kTensorList: { arg_expression = XlaExpression::TensorList(arg_handles[i]); break; } case XlaCompiler::Argument::kToken: { arg_expression = XlaExpression::XlaOp(arg_handles[i], arg.type); break; } case XlaCompiler::Argument::kConstant: case XlaCompiler::Argument::kInvalid: return errors::Internal( "Unreachable case in BuildArguments() while filling handles"); } } return absl::OkStatus(); } namespace { Status ValidateFunctionDef(const FunctionDef* fdef, const FunctionLibraryDefinition& flib_def) { for (const NodeDef& node : fdef->node_def()) { const string& op = node.op(); if (op == FunctionLibraryDefinition::kGradientOp || flib_def.Find(op)) { continue; } const OpDef* op_def; TF_RETURN_IF_ERROR(OpRegistry::Global()->LookUpOpDef(op, &op_def)); } return absl::OkStatus(); } Status GetPotentialFunctionName(const Node& node, const string** name) { if (node.IsPartitionedCall()) { const AttrValue* attr_value; TF_RETURN_IF_ERROR( node.attrs().Find(FunctionLibraryDefinition::kFuncAttr, &attr_value)); if (!attr_value->has_func()) { return errors::InvalidArgument( "The attribute value for attribute 'f' in node ", node.DebugString(), " does not have 'func' field set"); } *name = &attr_value->func().name(); return absl::OkStatus(); } *name = &node.type_string(); return absl::OkStatus(); } Status ValidateGraph(const Graph* graph, const FunctionLibraryDefinition& flib_def, const DeviceType& device_type, const string& name) { XlaOpRegistry::RegisterCompilationKernels(); auto maybe_error = [&](const Node* node, const Status& s) -> Status { if (!s.ok()) { std::string errmsg = absl::StrCat( "Detected unsupported operations when trying to compile graph ", name, " on ", device_type.type_string(), ": ", node->def().op(), " (", s.message(), ")", FormatNodeForError(*node)); if (absl::StrContains(device_type.type_string(), "TPU")) { absl::StrAppend(&errmsg, "\nOne approach is to outside compile the unsupported " "ops to run on CPUs by enabling soft placement " "`tf.config.set_soft_device_placement(True)`." " This has a potential performance penalty.\n"); } if (std::shared_ptr<AbstractStackTrace> stack_trace = node->GetStackTrace()) { absl::StrAppend( &errmsg, "\nThe op is created at: \n", stack_trace->ToString({true, true, true})); } return errors::InvalidArgument(errmsg); } return absl::OkStatus(); }; for (const Node* node : graph->nodes()) { if (node->type_string() == FunctionLibraryDefinition::kGradientOp) { continue; } const string* function_name; TF_RETURN_IF_ERROR(GetPotentialFunctionName(*node, &function_name)); const FunctionDef* fdef = flib_def.Find(*function_name); Status s; if (fdef) { s = ValidateFunctionDef(fdef, flib_def); TF_RETURN_IF_ERROR(maybe_error(node, s)); continue; } const OpDef* op_def; s = OpRegistry::Global()->LookUpOpDef(node->def().op(), &op_def); TF_RETURN_IF_ERROR(maybe_error(node, s)); TF_RETURN_IF_ERROR(ValidateNodeDef(node->def(), *op_def)); s = FindKernelDef(device_type, node->def(), nullptr, nullptr); TF_RETURN_IF_ERROR(maybe_error(node, s)); } return absl::OkStatus(); } void ConvertConstantsToExpressions(xla::XlaBuilder* builder, absl::Span<XlaExpression> expressions) { for (XlaExpression& expression : expressions) { if (expression.kind() == XlaExpression::Kind::kConstant) { expression = XlaExpression::XlaOp(expression.AsXlaOp(builder), expression.dtype()); } } } } class DummyStackTrace : public AbstractStackTrace { absl::Span<StackFrame const> ToFrames() const override { return frames_; } std::vector<StackFrame> ToUncachedFrames() const override { return frames_; } StackFrame LastUserFrame() const override { return frames_.back(); } std::vector<StackFrame> GetUserFrames(int ) const override { return frames_; } std::string ToString(const TracePrintingOptions& opts) const override { auto frame = LastUserFrame(); return absl::StrCat(frame.file_name, ":", frame.line_number, ":", frame.function_name); } std::vector<StackFrame> frames_{ StackFrame({"dummy_file_name", 10, "dummy_function_name"})}; }; namespace { void IncreasePrecisionsToAvoidTF32(xla::HloModuleProto& module) { static constexpr std::array<absl::string_view, 2> kOpsPossiblyUsingTF32 = { "dot", "convolution"}; xla::PrecisionConfig precision_config; precision_config.add_operand_precision(xla::PrecisionConfig::HIGHEST); precision_config.add_operand_precision(xla::PrecisionConfig::HIGHEST); for (xla::HloComputationProto& computation : *module.mutable_computations()) { for (xla::HloInstructionProto& instruction : *computation.mutable_instructions()) { if (absl::c_find(kOpsPossiblyUsingTF32, instruction.opcode()) != kOpsPossiblyUsingTF32.end()) { *instruction.mutable_precision_config() = precision_config; } } } } } Status XlaCompiler::CompileGraph(const XlaCompiler::CompileOptions& options, string const& name, std::unique_ptr<Graph> graph, absl::Span<const XlaCompiler::Argument> args, CompilationResult* result) { VLOG(1) << "Executing graph symbolically to populate XlaBuilder.: " << name; if (VLOG_IS_ON(2) || DEBUG_DATA_DUMPER()->ShouldDump(name, kDebugGroupMain)) { VLOG(2) << "XlaCompiler::CompileGraph: " << DumpGraphToFile(absl::StrCat("xla_compile_graph_", name), *graph, flib_runtime_->GetFunctionLibraryDefinition()); } DummyStackTrace stack_trace; for (auto node : graph->nodes()) { if (node->GetStackTrace() == nullptr) { node->SetStackTrace(std::make_shared<DummyStackTrace>(stack_trace)); } } TF_RETURN_IF_ERROR(PropagateConstIntoFunctionalNodes( graph.get(), options_.flib_def, local_flib_def_.get())); TF_RETURN_IF_ERROR(RearrangeFunctionArguments( [this](const NameAttrList& function, const FunctionBody** fbody) { return FindFunctionBody(function, fbody); }, graph.get(), local_flib_def_.get(), pflr_->GetFunctionLibraryDefinition())); TF_RETURN_IF_ERROR(initialization_status_); TF_RETURN_IF_ERROR(ValidateGraph(graph.get(), *options_.flib_def, options_.device_type, name)); auto builder = std::make_unique<xla::XlaBuilder>(name); XlaContext* context = new XlaContext(this, builder.get(), graph.get()); core::ScopedUnref context_unref(context); std::vector<XlaCompiler::Argument> real_args(args.begin(), args.end()); int token_input_index = -1; std::unique_ptr<xla::XlaOp> token_output; if (options.add_token_input_output) { token_input_index = real_args.size(); XlaCompiler::Argument token_arg; token_arg.kind = XlaCompiler::Argument::kToken; real_args.push_back(token_arg); } std::map<int, xla::OpSharding> arg_shardings; std::map<int, xla::OpSharding> retval_shardings; TF_ASSIGN_OR_RETURN(std::tie(arg_shardings, retval_shardings), ComputeArgAndRetvalShardings(*graph)); std::vector<XlaExpression> arg_expressions; TF_RETURN_IF_ERROR(BuildArguments( *graph, real_args, options.use_tuple_arg, builder.get(), context, arg_shardings, &arg_expressions, &result->input_mapping, &result->xla_input_shapes, options.is_entry_computation)); context->set_args(std::move(arg_expressions)); PushNodeTokenMapping(); std::set<std::string> output_node_token_inputs; if (token_input_index != -1) { auto arg_expression = context->args()[token_input_index]; TF_RETURN_IF_ERROR( SetNodeToken(kXlaTokenArgNodeName, arg_expression.handle())); output_node_token_inputs = CalculateTokenInputsForOutputToken(*graph); if (output_node_token_inputs.empty()) { output_node_token_inputs.insert(kXlaTokenArgNodeName); } } else if (options.is_entry_computation) { if (HasSideEffectingNodes(*graph)) { TF_RETURN_IF_ERROR( SetNodeToken(kXlaTokenArgNodeName, xla::CreateToken(builder.get()))); } } Status execute_status = ExecuteGraph(context, std::move(graph), device_, flib_runtime_, NextStepId()); if (!execute_status.ok()) { VLOG(1) << "Failed executing graph " << name; return execute_status; } if (token_input_index != -1) { std::vector<xla::XlaOp> token_inputs; for (const auto& node_name : output_node_token_inputs) { auto token_or = GetNodeToken(node_name); TF_RETURN_IF_ERROR(token_or.status()); token_inputs.push_back(token_or.value()); } token_output = std::make_unique<xla::XlaOp>( xla::AfterAll(builder.get(), token_inputs)); } TF_RETURN_IF_ERROR(PopNodeTokenMapping()); int num_nonconst_outputs; int num_computation_outputs; result->computation = std::make_shared<xla::XlaComputation>(); result->outputs.resize(context->retvals().size()); std::vector<XlaExpression> retvals = context->retvals(); ConvertConstantsToExpressions(builder.get(), absl::Span<XlaExpression>(retvals)); XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns{ UseNoPreferenceLayoutFn(), IdentityShapeRepresentationFn()}; TF_RETURN_IF_ERROR(BuildComputation( real_args, retvals, arg_shardings, retval_shardings, context->resources(), std::move(token_output), options.is_entry_computation ? options_.shape_determination_fns : shape_determination_fns, options.is_entry_computation, options.return_updated_values_for_all_resources, options.always_return_tuple, options.use_tuple_arg, options.alias_resource_update, builder.get(), result->computation.get(), &num_computation_outputs, &num_nonconst_outputs, &result->outputs, &result->resource_updates, &result->xla_output_shape, result->input_mapping)); for (const auto& [key, send] : host_compute_sends_) { auto* d2h = result->host_compute_metadata.add_device_to_host(); *d2h = send; for (int i = 0; i < d2h->metadata_size(); ++i) { const std::string channel_name = GetDeviceToHostChannelName(d2h->key(), i); xla::ChannelHandle handle; TF_RETURN_IF_ERROR(GetDeviceToHostChannelHandle(channel_name, &handle)); d2h->mutable_metadata(i)->set_channel_id(handle.handle()); } } for (const auto& [key, recv] : host_compute_recvs_) { auto* h2d = result->host_compute_metadata.add_host_to_device(); *h2d = recv; for (int i = 0; i < h2d->metadata_size(); ++i) { const std::string channel_name = GetHostToDeviceChannelName(h2d->key(), i); xla::ChannelHandle handle; TF_RETURN_IF_ERROR(GetHostToDeviceChannelHandle(channel_name, &handle)); h2d->mutable_metadata(i)->set_channel_id(handle.handle()); } } if (!tsl::tensor_float_32_execution_enabled()) { IncreasePrecisionsToAvoidTF32(*result->computation->mutable_proto()); } VLOG(2) << "Outputs: total: " << context->retvals().size() << " nonconstant: " << num_nonconst_outputs; VLOG(2) << "XLA output shape: " << xla::ShapeUtil::HumanStringWithLayout(result->xla_output_shape); result->collective_info = context->GetCollectiveInfo(); return absl::OkStatus(); } Status XlaCompiler::GetChannelHandle(const string& key, xla::ChannelHandle* channel) { auto result = channels_.emplace(key, xla::ChannelHandle()); if (result.second) { TF_ASSIGN_OR_RETURN(result.first->second, client()->CreateChannelHandle()); } *channel = result.first->second; VLOG(1) << "Channel: " << key << " " << channel->DebugString(); return absl::OkStatus(); } Status XlaCompiler::GetHostToDeviceChannelHandle(const string& key, xla::ChannelHandle* channel) { auto result = channels_.emplace(key, xla::ChannelHandle()); if (result.second) { TF_ASSIGN_OR_RETURN(result.first->second, client()->CreateHostToDeviceChannelHandle()); } *channel = result.first->second; VLOG(1) << "Host to device channel: " << key << " " << channel->DebugString(); return absl::OkStatus(); } Status XlaCompiler::GetDeviceToHostChannelHandle(const string& key, xla::ChannelHandle* channel) { auto result = channels_.emplace(key, xla::ChannelHandle()); if (result.second) { TF_ASSIGN_OR_RETURN(result.first->second, client()->CreateDeviceToHostChannelHandle()); } *channel = result.first->second; VLOG(1) << "Device to host channel: " << key << " " << channel->DebugString(); return absl::OkStatus(); } namespace { void SetTransfer(const string& key, absl::Span<const DataType> types, absl::Span<const TensorShape> shapes, tf2xla::HostTransferMetadata* transfer) { transfer->set_key(key); CHECK(types.size() == shapes.size()); for (int i = 0, end = types.size(); i < end; ++i) { tf2xla::TensorMetadata* metadata = transfer->add_metadata(); metadata->set_type(types[i]); shapes[i].AsProto(metadata->mutable_shape()); } } } Status XlaCompiler::SetDeviceToHostMetadata( const string& key, absl::Span<const DataType> types, absl::Span<const TensorShape> shapes) { if (host_compute_sends_.find(key) != host_compute_sends_.end()) { tf2xla::HostTransferMetadata& existing_transfer = host_compute_sends_[key]; tf2xla::HostTransferMetadata new_transfer; SetTransfer(key, types, shapes, &new_transfer); if (xla::protobuf_util::ProtobufEquals(existing_transfer, new_transfer)) { return absl::OkStatus(); } else { return errors::InvalidArgument( "Duplicate calls to SetDeviceToHostMetadata with key ", key); } } tf2xla::HostTransferMetadata& transfer = host_compute_sends_[key]; SetTransfer(key, types, shapes, &transfer); return absl::OkStatus(); } Status XlaCompiler::GetDeviceToHostShapes( const string& key, std::vector<TensorShape>* shapes) const { const auto iter = host_compute_sends_.find(key); if (iter == host_compute_sends_.end()) { return errors::InvalidArgument( "No host compute send shapes registered for key ", key); } shapes->clear(); for (int i = 0; i < iter->second.metadata_size(); ++i) { TensorShape shape(iter->second.metadata(i).shape()); shapes->push_back(shape); } return absl::OkStatus(); } Status XlaCompiler::SetHostToDeviceMetadata( const string& key, absl::Span<const DataType> types, absl::Span<const TensorShape> shapes) { if (host_compute_recvs_.find(key) != host_compute_recvs_.end()) { tf2xla::HostTransferMetadata& existing_transfer = host_compute_recvs_[key]; tf2xla::HostTransferMetadata new_transfer; SetTransfer(key, types, shapes, &new_transfer); if (xla::protobuf_util::ProtobufEquals(existing_transfer, new_transfer)) { return absl::OkStatus(); } else { return errors::InvalidArgument( "Duplicate calls to SetHostToDeviceMetadata with key ", key); } } tf2xla::HostTransferMetadata& transfer = host_compute_recvs_[key]; SetTransfer(key, types, shapes, &transfer); return absl::OkStatus(); } Status XlaCompiler::GetHostComputeControlDependency( const string& host_compute_name, xla::XlaOp* handle) { const auto iter = host_compute_control_output_.find(host_compute_name); if (iter == host_compute_control_output_.end()) { return errors::InvalidArgument( "No registered control handle for host compute Op '", host_compute_name, "'"); } else { *handle = iter->second; } return absl::OkStatus(); } Status XlaCompiler::SetHostComputeControlDependency( const string& host_compute_name, const xla::XlaOp handle) { if (host_compute_control_output_.find(host_compute_name) != host_compute_control_output_.end()) { return errors::InvalidArgument( "Duplicate control handles registered for host compute Op ", host_compute_name); } host_compute_control_output_[host_compute_name] = handle; return absl::OkStatus(); } void XlaCompiler::PushNodeTokenMapping() { node_token_mapping_stack_.emplace(std::map<string, xla::XlaOp>{}); } Status XlaCompiler::PopNodeTokenMapping() { if (node_token_mapping_stack_.empty()) { return errors::FailedPrecondition( "Calling PopNodeTokenMapping() when node_token_mapping_stack_ is " "empty."); } node_token_mapping_stack_.pop(); return absl::OkStatus(); } Status XlaCompiler::SetNodeToken(const string& node_name, const xla::XlaOp op) { if (node_token_mapping_stack_.empty()) { return errors::FailedPrecondition( "Calling SetNodeToken() when node_token_mapping_stack_ is " "empty."); } auto insert_result = node_token_mapping_stack_.top().insert({node_name, op}); if (!insert_result.second) { return errors::FailedPrecondition("Token mapping already exists for node ", node_name); } return absl::OkStatus(); } absl::StatusOr<xla::XlaOp> XlaCompiler::GetNodeToken(const string& node_name) { if (node_token_mapping_stack_.empty()) { return errors::FailedPrecondition( "Calling GetNodeToken() when node_token_mapping_stack_ is " "empty."); } auto iter = node_token_mapping_stack_.top().find(node_name); if (iter == node_token_mapping_stack_.top().end()) { return errors::FailedPrecondition("Cannot find token mapping for node ", node_name); } return iter->second; } }
#include "tensorflow/compiler/tf2xla/xla_compiler.h" #include "absl/strings/match.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/data_flow_ops.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/functional_ops.h" #include "tensorflow/cc/ops/list_ops.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/cc/ops/resource_variable_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/compiler/tf2xla/literal_util.h" #include "tensorflow/compiler/tf2xla/shape_util.h" #include "tensorflow/compiler/tf2xla/side_effect_util.h" #include "tensorflow/compiler/tf2xla/type_util.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/client/client_library.h" #include "xla/client/local_client.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/literal.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_proto_util.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tests/literal_test_util.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/version.h" #include "tsl/platform/statusor.h" namespace tensorflow { class XlaCompilerTest : public ::testing::Test { protected: void SetUp() override { client_ = xla::ClientLibrary::LocalClientOrDie(); XlaOpRegistry::RegisterCompilationKernels(); FunctionDefLibrary flib; flib_def_.reset(new FunctionLibraryDefinition(OpRegistry::Global(), flib)); } XlaCompiler::Options DefaultOptions() { XlaCompiler::Options options; options.device_type = DeviceType(DEVICE_CPU_XLA_JIT); options.client = client_; options.flib_def = flib_def_.get(); return options; } FunctionLibraryDefinition* LocalFlibDef(XlaCompiler* compiler) { return compiler->local_flib_def_.get(); } xla::Client* client_; std::unique_ptr<FunctionLibraryDefinition> flib_def_; }; namespace { class DummyResourceForTest : public ResourceBase { public: string DebugString() const override { return "dummy"; } void Increment() { ++value_; } int Get() { return value_; } private: int value_ = 0; }; class DummyReadResourceOp : public XlaOpKernel { public: explicit DummyReadResourceOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {} void Compile(XlaOpKernelContext* ctx) override { ResourceMgr* rm = ctx->op_kernel_context()->resource_manager(); OP_REQUIRES(ctx, rm, errors::Internal("No resource manager.")); DummyResourceForTest* dummy; OP_REQUIRES_OK(ctx, rm->Lookup<DummyResourceForTest>( rm->default_container(), "dummy", &dummy)); dummy->Increment(); dummy->Unref(); ctx->SetOutput(0, ctx->Input(0)); ctx->SetOutput(1, ctx->Input(0)); } }; class DummyReadResourceCC { public: DummyReadResourceCC(const Scope& scope, const Input& value) { if (!scope.ok()) return; auto _value = ops::AsNodeOut(scope, value); if (!scope.ok()) return; Node* ret; const auto unique_name = scope.GetUniqueNameForOp("DummyReadResource"); auto builder = NodeBuilder(unique_name, "DummyReadResource").Input(_value); scope.UpdateBuilder(&builder); scope.UpdateStatus(builder.Finalize(scope.graph(), &ret)); if (!scope.ok()) return; scope.UpdateStatus(scope.DoShapeInference(ret)); if (!scope.ok()) return; this->output1_ = Output(ret, 0); this->output2_ = Output(ret, 1); } Output output1_; Output output2_; }; REGISTER_OP("DummyReadResource") .Input("input: int32") .Output("output1: int32") .Output("output2: int32") .SetShapeFn(shape_inference::UnknownShape) .Doc(R"doc( A dummy Op. input: dummy input. output1: dummy output. output2: dummy output. )doc"); REGISTER_XLA_OP(Name("DummyReadResource"), DummyReadResourceOp); class DummyDuplicateOp : public XlaOpKernel { public: explicit DummyDuplicateOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {} void Compile(XlaOpKernelContext* ctx) override { ctx->SetOutput(0, ctx->Input(0)); } }; REGISTER_OP("DummyDuplicateOp") .Input("input: int32") .Output("output: int32") .Doc(R"doc( A dummy Op. input: dummy input. output: dummy output. )doc"); REGISTER_XLA_OP(Name("DummyDuplicateOp").Device(DEVICE_CPU_XLA_JIT), DummyDuplicateOp); REGISTER_XLA_OP(Name("DummyDuplicateOp").Device(DEVICE_GPU_XLA_JIT), DummyDuplicateOp); TEST_F(XlaCompilerTest, EmptyReturnValues) { XlaCompiler compiler(DefaultOptions()); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), {}, &result)); TF_ASSERT_OK(client_->Execute(*result.computation, {}).status()); } TEST_F(XlaCompilerTest, Simple) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = ops::_Arg(scope.WithOpName("B"), DT_INT32, 1); auto c = ops::Add(scope.WithOpName("C"), a, b); auto d = ops::_Retval(scope.WithOpName("D"), c, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); args[1].kind = XlaCompiler::Argument::kParameter; args[1].type = DT_INT32; args[1].shape = TensorShape({2}); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), args, &result)); xla::Literal param0_literal = xla::LiteralUtil::CreateR1<int32>({7, 42}); xla::Literal param1_literal = xla::LiteralUtil::CreateR1<int32>({-3, 101}); std::unique_ptr<xla::GlobalData> param0_data = client_->TransferToServer(param0_literal).value(); std::unique_ptr<xla::GlobalData> param1_data = client_->TransferToServer(param1_literal).value(); std::unique_ptr<xla::GlobalData> actual = client_ ->Execute(*result.computation, {param0_data.get(), param1_data.get()}) .value(); xla::Literal actual_literal = client_->Transfer(*actual).value(); xla::Literal expected0 = xla::LiteralUtil::CreateR1<int32>({4, 143}); xla::Literal expected_literal = xla::LiteralUtil::MakeTuple({&expected0}); EXPECT_TRUE(xla::LiteralTestUtil::Equal(expected_literal, actual_literal)); } absl::StatusOr<std::unique_ptr<xla::HloModule>> LoadModuleFromHloProto( const xla::HloModuleProto& module_proto) { TF_ASSIGN_OR_RETURN(auto module_config, xla::HloModule::CreateModuleConfigFromProto( module_proto, xla::GetDebugOptionsFromFlags())); return xla::CreateModuleFromProto(module_proto, module_config); } TEST_F(XlaCompilerTest, SimpleDynamicShapeParameter) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = ops::_Arg(scope.WithOpName("B"), DT_INT32, 1); auto c = ops::Add(scope.WithOpName("C"), a, b); auto d = ops::_Retval(scope.WithOpName("D"), c, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = xla::ShapeUtil::MakeShape(xla::S32, {2}, {true}); args[1].kind = XlaCompiler::Argument::kParameter; args[1].type = DT_INT32; args[1].shape = TensorShape({2}); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), args, &result)); auto hlo = result.computation->proto(); TF_ASSERT_OK_AND_ASSIGN(auto module, LoadModuleFromHloProto(hlo)); EXPECT_EQ(module->computation_count(), 1); EXPECT_TRUE(module->mutable_computation(0) ->parameter_instruction(0) ->shape() .is_dynamic()); } TEST_F(XlaCompilerTest, OutOfOrderGraph) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = ops::_Arg(scope.WithOpName("B"), DT_INT32, 1); auto d = ops::_Retval(scope.WithOpName("D"), a, 0); auto c = ops::Add(scope.WithOpName("C"), a, b); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); args[1].kind = XlaCompiler::Argument::kParameter; args[1].type = DT_INT32; args[1].shape = TensorShape({2}); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompileOptions compile_options; compile_options.always_return_tuple = false; XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "add", std::move(graph), args, &result)); xla::Literal param0_literal = xla::LiteralUtil::CreateR1<int32>({7, 42}); xla::Literal param1_literal = xla::LiteralUtil::CreateR1<int32>({-3, 101}); std::unique_ptr<xla::GlobalData> param0_data = client_->TransferToServer(param0_literal).value(); std::unique_ptr<xla::GlobalData> param1_data = client_->TransferToServer(param1_literal).value(); std::unique_ptr<xla::GlobalData> actual = client_ ->Execute(*result.computation, {param0_data.get(), param1_data.get()}) .value(); xla::Literal actual_literal = client_->Transfer(*actual).value(); EXPECT_TRUE(xla::LiteralTestUtil::Equal(param0_literal, actual_literal)); } TEST_F(XlaCompilerTest, HonorShapeRepresentationFnForUnwrittenResource) { Scope scope = Scope::NewRootScope().ExitOnError(); auto var = ops::_Arg(scope.WithOpName("V"), DT_RESOURCE, 0); auto d = ops::_Retval(scope.WithOpName("D"), var, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kResource; args[0].resource_kind = XlaResource::kVariable; args[0].initialized = true; args[0].type = DT_INT32; args[0].shape = TensorShape({2, 3}); auto options = DefaultOptions(); XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns; shape_determination_fns.shape_representation_fn = [](const TensorShape& shape, DataType dt, bool use_fast_memory, XlaLayoutPreference layout_preference) -> absl::StatusOr<xla::Shape> { xla::Shape xla_shape; TF_RETURN_IF_ERROR(TensorShapeToXLAShape(dt, shape, &xla_shape)); *xla_shape.mutable_layout() = xla::LayoutUtil::MakeLayout({0, 1}); return xla_shape; }; options.shape_determination_fns = shape_determination_fns; XlaCompiler compiler(options); XlaCompiler::CompilationResult result; XlaCompiler::CompileOptions compile_options; compile_options.return_updated_values_for_all_resources = true; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "add", std::move(graph), args, &result)); xla::Shape transposed = xla::ShapeUtil::MakeShapeWithDenseLayout(xla::S32, {2, 3}, {0, 1}); EXPECT_EQ(result.xla_output_shape, xla::ShapeUtil::MakeTupleShape({transposed})); } TEST_F(XlaCompilerTest, HonorShapeRepresentationFnForFastMemVar) { Scope scope = Scope::NewRootScope().ExitOnError(); auto var = ops::_Arg(scope.WithOpName("V"), DT_RESOURCE, 0); auto d = ops::_Retval(scope.WithOpName("D"), var, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kResource; args[0].resource_kind = XlaResource::kVariable; args[0].initialized = true; args[0].type = DT_INT32; args[0].shape = TensorShape({2, 3}); args[0].fast_mem = true; auto options = DefaultOptions(); int fast_mem_arg_count = 0; XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns; shape_determination_fns.shape_representation_fn = [&fast_mem_arg_count]( const TensorShape& shape, DataType dt, bool use_fast_memory, XlaLayoutPreference layout_preference) -> absl::StatusOr<xla::Shape> { xla::Shape xla_shape; TF_RETURN_IF_ERROR(TensorShapeToXLAShape(dt, shape, &xla_shape)); *xla_shape.mutable_layout() = xla::LayoutUtil::MakeLayout({0, 1}); if (use_fast_memory) { fast_mem_arg_count++; } return xla_shape; }; options.shape_determination_fns = shape_determination_fns; XlaCompiler compiler(options); XlaCompiler::CompilationResult result; XlaCompiler::CompileOptions compile_options; compile_options.return_updated_values_for_all_resources = true; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "add", std::move(graph), args, &result)); EXPECT_EQ(fast_mem_arg_count, 2); } TEST_F(XlaCompilerTest, HonorShapeRepresentationFnForRetVal) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto var = ops::_Arg(scope.WithOpName("V"), DT_RESOURCE, 1); auto identity = ops::Identity(scope.WithOpName("VIdentity"), var); auto write = ops::AssignAddVariableOp(scope, identity, a); auto read = ops::ReadVariableOp( scope.WithControlDependencies(std::vector<Operation>{write}), var, DT_INT32); auto read_plus_one = ops::Add(scope, read, ops::Const<int32>(scope, 1)); auto d = ops::_Retval(scope.WithOpName("D"), read_plus_one, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2, 3}); args[1].kind = XlaCompiler::Argument::kResource; args[1].resource_kind = XlaResource::kVariable; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({2, 3}); auto options = DefaultOptions(); XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns; shape_determination_fns.shape_representation_fn = [](const TensorShape& shape, DataType dt, bool use_fast_memory, XlaLayoutPreference layout_preference) -> absl::StatusOr<xla::Shape> { xla::Shape xla_shape; TF_RETURN_IF_ERROR(TensorShapeToXLAShape(dt, shape, &xla_shape)); *xla_shape.mutable_layout() = xla::LayoutUtil::MakeLayout({0, 1}); return xla_shape; }; options.shape_determination_fns = shape_determination_fns; XlaCompiler compiler(options); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), args, &result)); xla::Shape transposed = xla::ShapeUtil::MakeShapeWithDenseLayout(xla::S32, {2, 3}, {0, 1}); EXPECT_EQ(result.xla_output_shape, xla::ShapeUtil::MakeTupleShape({transposed, transposed})); EXPECT_EQ(result.computation->GetProgramShape().value().result(), xla::ShapeUtil::MakeTupleShape({transposed, transposed})); } TEST_F(XlaCompilerTest, TransposeVariables) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto var = ops::_Arg(scope.WithOpName("V"), DT_RESOURCE, 1); auto identity = ops::Identity(scope.WithOpName("VIdentity"), var); auto write = ops::AssignAddVariableOp(scope, identity, a); auto read = ops::ReadVariableOp( scope.WithControlDependencies(std::vector<Operation>{write}), var, DT_INT32); auto transposed_read = ops::Transpose(scope, read, {1, 0}); auto reshape = ops::Reshape(scope, transposed_read, {2, 3}); auto d = ops::_Retval(scope.WithOpName("D"), reshape, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2, 3}); args[1].kind = XlaCompiler::Argument::kResource; args[1].resource_kind = XlaResource::kVariable; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({2, 3}); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "transpose", std::move(graph), args, &result)); xla::Shape transposed = xla::ShapeUtil::MakeShapeWithDenseLayout(xla::S32, {2, 3}, {1, 0}); EXPECT_EQ(result.xla_output_shape, xla::ShapeUtil::MakeTupleShape({transposed, transposed})); } TEST_F(XlaCompilerTest, UnrankedFakeParam) { Scope scope = Scope::NewRootScope().ExitOnError(); PartialTensorShape shape; auto a = ops::FakeParam(scope, DT_INT32, shape); auto ret = ops::_Retval(scope.WithOpName("D"), a, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "compile", std::move(graph), {}, &result)); EXPECT_EQ(result.xla_output_shape, xla::ShapeUtil::MakeTupleShape( {xla::ShapeUtil::MakeShape(xla::S32, {0})})); } TEST_F(XlaCompilerTest, MixedOrderArguments) { for (bool swap_order : {false, true}) { Scope scope = Scope::NewRootScope().ExitOnError(); auto var = ops::_Arg(scope.WithOpName("V"), DT_RESOURCE, swap_order ? 0 : 1); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, swap_order ? 1 : 0); auto identity = ops::Identity(scope.WithOpName("VIdentity"), var); auto write = ops::AssignAddVariableOp(scope, identity, a); auto read = ops::ReadVariableOp( scope.WithControlDependencies(std::vector<Operation>{write}), var, DT_INT32); auto read_plus_one = ops::Add(scope, read, ops::Const<int32>(scope, 1)); auto d = ops::_Retval(scope.WithOpName("D"), read_plus_one, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); args[1].kind = XlaCompiler::Argument::kResource; args[1].resource_kind = XlaResource::kVariable; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({2}); if (swap_order) { std::swap(args[0], args[1]); } XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompileOptions compile_options; compile_options.always_return_tuple = false; XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "add", std::move(graph), args, &result)); EXPECT_THAT(result.input_mapping, ::testing::ElementsAre(0, 1)); } } TEST_F(XlaCompilerTest, HasSaneErrorOnNonCompileTimeConstantInputToReshape) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = ops::_Arg(scope.WithOpName("B"), DT_INT32, 1); auto c = ops::Reshape(scope.WithOpName("C"), a, b); auto d = ops::_Retval(scope.WithOpName("D"), c, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); args[1].kind = XlaCompiler::Argument::kParameter; args[1].type = DT_INT32; args[1].shape = TensorShape({2}); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; Status status = compiler.CompileGraph(XlaCompiler::CompileOptions(), "reshape", std::move(graph), args, &result); EXPECT_FALSE(status.ok()); EXPECT_TRUE(absl::StrContains(status.message(), "depends on a parameter")) << status.message(); EXPECT_TRUE(absl::StrContains(status.message(), "{{node C}}")) << status.message(); EXPECT_TRUE( absl::StrContains(status.message(), "must be a compile-time constant")) << status.message(); } TEST_F(XlaCompilerTest, ConstantOutputs) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = ops::Const<int32>(scope.WithOpName("B"), 7); auto c = ops::Neg(scope.WithOpName("C"), a); auto d = ops::_Retval(scope.WithOpName("D"), b, 0); auto e = ops::_Retval(scope.WithOpName("E"), c, 1); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); XlaCompiler::Options options = DefaultOptions(); XlaCompiler compiler(options); { std::unique_ptr<Graph> graph_copy(new Graph(OpRegistry::Global())); CopyGraph(*graph, graph_copy.get()); XlaCompiler::CompileOptions compile_options; XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "constants", std::move(graph_copy), args, &result)); ASSERT_EQ(2, result.outputs.size()); EXPECT_FALSE(result.outputs[0].is_constant); EXPECT_FALSE(result.outputs[1].is_constant); xla::Literal param0_literal = xla::LiteralUtil::CreateR1<int32>({7, 42}); std::unique_ptr<xla::GlobalData> param0_data = client_->TransferToServer(param0_literal).value(); std::unique_ptr<xla::GlobalData> actual = client_->Execute(*result.computation, {param0_data.get()}).value(); xla::Literal actual_literal = client_->Transfer(*actual).value(); xla::Literal expected0 = xla::LiteralUtil::CreateR0<int32>(7); xla::Literal expected1 = xla::LiteralUtil::CreateR1<int32>({-7, -42}); xla::Literal expected = xla::LiteralUtil::MakeTuple({&expected0, &expected1}); EXPECT_TRUE(xla::LiteralTestUtil::Equal(expected, actual_literal)); } } TEST_F(XlaCompilerTest, ConstantOutputsOfFunctionalNode) { const Tensor seven = test::AsScalar<int>(7); FunctionDef fdef = FunctionDefHelper::Create( "foo", {"a_0:int32"}, {"const:int32", "a:int32"}, {}, { {{"Const"}, "Const", {}, {{"dtype", DT_INT32}, {"value", seven}}}, }, {{"a", "a_0"}, {"const", "Const:output:0"}}); (*fdef.mutable_attr())["_noinline"].set_b(true); FunctionDefLibrary fdef_lib; *(fdef_lib.add_function()) = fdef; std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); { Scope scope = Scope::NewRootScope().ExitOnError(); TF_EXPECT_OK(scope.graph()->AddFunctionLibrary(fdef_lib)); auto arg = ops::_Arg(scope.WithOpName("input_arg"), DT_INT32, 0); NodeDef foo; foo.set_name("foo"); foo.set_op("foo"); *foo.add_input() = "input_arg"; Status status; scope.graph()->AddNode(foo, &status); TF_ASSERT_OK(status); NodeDef retval_1; retval_1.set_name("retval_0"); retval_1.set_op(FunctionLibraryDefinition::kRetOp); *retval_1.add_input() = "foo"; (*retval_1.mutable_attr())["T"].set_type(DT_INT32); (*retval_1.mutable_attr())["index"].set_i(0); scope.graph()->AddNode(retval_1, &status); TF_ASSERT_OK(status); NodeDef retval_2; retval_2.set_name("retval_1"); retval_2.set_op(FunctionLibraryDefinition::kRetOp); *retval_2.add_input() = "foo:1"; (*retval_2.mutable_attr())["T"].set_type(DT_INT32); (*retval_2.mutable_attr())["index"].set_i(1); scope.graph()->AddNode(retval_2, &status); TF_ASSERT_OK(status); TF_ASSERT_OK(scope.ToGraph(graph.get())); } std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({1}); XlaCompiler::Options options = DefaultOptions(); FunctionLibraryDefinition flib_def(OpRegistry::Global(), fdef_lib); options.flib_def = &flib_def; XlaCompiler compiler(options); XlaCompiler::CompileOptions compile_options; XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "constants", std::move(graph), args, &result)); ASSERT_EQ(2, result.outputs.size()); EXPECT_FALSE(result.outputs[1].is_constant); } TEST_F(XlaCompilerTest, ResourceManager) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = DummyReadResourceCC(scope.WithOpName("B"), a); auto c = ops::Add(scope.WithOpName("C"), b.output2_, b.output1_); auto d = ops::_Retval(scope.WithOpName("D"), c, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); DummyResourceForTest* resource = new DummyResourceForTest(); auto options = DefaultOptions(); std::function<Status(ResourceMgr*)> populate_function = [resource](ResourceMgr* rm) { resource->Ref(); return rm->Create(rm->default_container(), "dummy", resource); }; options.populate_resource_manager = &populate_function; XlaCompiler compiler(options); EXPECT_EQ(0, resource->Get()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "dummy", std::move(graph), args, &result)); EXPECT_EQ(1, resource->Get()); resource->Unref(); } TEST_F(XlaCompilerTest, DeterministicCompilation) { const int64_t test_count = 2; std::vector<XlaCompiler::CompilationResult> results(test_count); for (int64_t i = 0; i < test_count; ++i) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = ops::Neg(scope.WithOpName("B"), a); auto c = ops::Neg(scope.WithOpName("C"), a); auto d = ops::Add(scope.WithOpName("D"), b, c); auto e = ops::_Retval(scope.WithOpName("E"), d, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); auto options = DefaultOptions(); XlaCompiler compiler(options); TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "dummy", std::move(graph), args, &results[i])); } for (int64_t i = 1; i < test_count; ++i) { const auto& m1 = results[i - 1].computation->proto(); const auto& m2 = results[i].computation->proto(); ASSERT_EQ(m1.computations_size(), m2.computations_size()); for (int k = 0; k < m1.computations_size(); k++) { const auto& c1 = m1.computations(k); const auto& c2 = m2.computations(k); ASSERT_EQ(c1.instructions_size(), c2.instructions_size()); for (int j = 0; j < c1.instructions_size(); j++) { auto instr1 = c1.instructions(j); auto instr2 = c2.instructions(j); instr1.clear_name(); instr1.clear_id(); instr1.clear_operand_ids(); instr2.clear_name(); instr2.clear_id(); instr2.clear_operand_ids(); string str1, str2; LOG(INFO) << "instr1 = " << instr1.DebugString(); LOG(INFO) << "instr2 = " << instr2.DebugString(); instr1.AppendPartialToString(&str1); instr2.AppendPartialToString(&str2); EXPECT_EQ(str1, str2); } } } } TEST_F(XlaCompilerTest, CanPassTensorArraysToAndFromComputation) { Scope scope = Scope::NewRootScope().ExitOnError(); auto arg = ops::_Arg(scope.WithOpName("arg"), DT_RESOURCE, 0); auto flow = ops::Const<float>(scope, {}); auto grad1 = ops::TensorArrayGrad(scope, arg, flow, "grad1"); auto grad2 = ops::TensorArrayGrad(scope, arg, grad1.flow_out, "grad2"); auto index = ops::Const<int32>(scope, 1); auto write = ops::TensorArrayWrite(scope, grad1.grad_handle, index, index, grad2.flow_out); auto read = ops::TensorArrayRead(scope, arg, index, write.flow_out, DT_INT32); auto retval = ops::_Retval(scope.WithOpName("retval"), read, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kResource; args[0].resource_kind = XlaResource::kTensorArray; args[0].initialized = true; args[0].type = DT_INT32; args[0].shape = TensorShape({}); args[0].max_array_size = 2; args[0].tensor_array_gradients = {"grad2"}; XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), args, &result)); ASSERT_EQ(1, result.resource_updates.size()); const XlaCompiler::ResourceUpdate& update = result.resource_updates[0]; EXPECT_EQ(0, update.input_index); EXPECT_EQ(DT_INT32, update.type); EXPECT_EQ((std::set<string>{"grad1", "grad2"}), update.tensor_array_gradients_accessed); xla::Literal input_base = xla::LiteralUtil::CreateR1<int32>({7, 42}); xla::Literal input_grad2 = xla::LiteralUtil::CreateR1<int32>({-3, 101}); xla::Literal input = xla::LiteralUtil::MakeTuple({&input_base, &input_grad2}); std::unique_ptr<xla::GlobalData> param0_data = client_->TransferToServer(input).value(); std::unique_ptr<xla::GlobalData> actual = client_->Execute(*result.computation, {param0_data.get()}).value(); xla::Literal actual_literal = client_->Transfer(*actual).value(); xla::Literal output_read = xla::LiteralUtil::CreateR0<int32>(42); xla::Literal output_base = xla::LiteralUtil::CreateR1<int32>({7, 42}); xla::Literal output_grad1 = xla::LiteralUtil::CreateR1<int32>({0, 1}); xla::Literal output_grad2 = xla::LiteralUtil::CreateR1<int32>({-3, 101}); xla::Literal output_resource = xla::LiteralUtil::MakeTuple({&output_base, &output_grad1, &output_grad2}); xla::Literal expected_literal = xla::LiteralUtil::MakeTuple({&output_read, &output_resource}); EXPECT_TRUE(xla::LiteralTestUtil::Equal(expected_literal, actual_literal)); } TEST_F(XlaCompilerTest, UnwrittenTensorArrayGradientsAreNotComputationOutputs) { Scope scope = Scope::NewRootScope().ExitOnError(); auto arg = ops::_Arg(scope.WithOpName("arg"), DT_RESOURCE, 0); auto flow = ops::Const<float>(scope, {}); auto grad1 = ops::TensorArrayGrad(scope, arg, flow, "grad1"); auto index = ops::Const<int32>(scope, 1); auto read = ops::TensorArrayRead(scope, arg, index, grad1.flow_out, DT_INT32); auto retval = ops::_Retval(scope.WithOpName("retval"), read, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kResource; args[0].resource_kind = XlaResource::kTensorArray; args[0].initialized = true; args[0].type = DT_INT32; args[0].shape = TensorShape({}); args[0].max_array_size = 2; args[0].tensor_array_gradients = {"grad1"}; XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), args, &result)); EXPECT_EQ(0, result.resource_updates.size()); } TEST_F(XlaCompilerTest, NewTensorArrayGradientsAreComputationOutputs) { Scope scope = Scope::NewRootScope().ExitOnError(); auto arg = ops::_Arg(scope.WithOpName("arg"), DT_RESOURCE, 0); auto flow = ops::Const<float>(scope, {}); auto grad1 = ops::TensorArrayGrad(scope, arg, flow, "grad2"); auto index = ops::Const<int32>(scope, 1); auto read = ops::TensorArrayRead(scope, arg, index, grad1.flow_out, DT_INT32); auto retval = ops::_Retval(scope.WithOpName("retval"), read, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kResource; args[0].resource_kind = XlaResource::kTensorArray; args[0].initialized = true; args[0].type = DT_INT32; args[0].shape = TensorShape({}); args[0].max_array_size = 2; args[0].tensor_array_gradients = {"grad1"}; XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), args, &result)); EXPECT_EQ(1, result.resource_updates.size()); } TEST_F(XlaCompilerTest, UndefinedFunctionFails) { XlaCompiler compiler(DefaultOptions()); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); XlaCompiler::CompilationResult result; NameAttrList name_attr; name_attr.set_name("Function_NotDefined_"); Status status = compiler.CompileFunction(XlaCompiler::CompileOptions(), name_attr, {}, &result); EXPECT_FALSE(status.ok()); EXPECT_TRUE(absl::StrContains(status.message(), "is not defined.")) << status.message(); } FunctionDef FillFn() { return FunctionDefHelper::Define( "FillFn", {"x: T", "dims: int32"}, {"y: T"}, {"T: {float, double, int32, int64}"}, {{{"y"}, "Fill", {"dims", "x"}, {{"T", "$T"}}}}); } TEST_F(XlaCompilerTest, FunctionCallWithConstants) { XlaCompiler compiler(DefaultOptions()); FunctionDefLibrary flib; *flib.add_function() = FillFn(); TF_ASSERT_OK(flib_def_->AddFunctionDef(FillFn())); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); Scope scope = Scope::NewRootScope().ExitOnError(); auto value = ops::Const<int32>(scope.WithOpName("value"), 1, {}); auto shape = ops::Const<int32>(scope.WithOpName("shape"), {5}, {1}); TF_EXPECT_OK(scope.graph()->AddFunctionLibrary(flib)); NodeDef def; TF_ASSERT_OK(NodeDefBuilder("fill", "FillFn", flib_def_.get()) .Input(value.name(), 0, DT_INT32) .Input(shape.name(), 1, DT_INT32) .Finalize(&def)); Status status; Node* fill = scope.graph()->AddNode(def, &status); TF_ASSERT_OK(status); TF_ASSERT_OK(scope.DoShapeInference(fill)); scope.graph()->AddEdge(value.node(), 0, fill, 0); scope.graph()->AddEdge(shape.node(), 0, fill, 1); auto retval = ops::_Retval(scope.WithOpName("retval"), Output(fill), 0); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args; XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "fill", std::move(graph), args, &result)); } TEST_F(XlaCompilerTest, LocalFunctionWithWrongArgumentsFail) { XlaCompiler compiler(DefaultOptions()); auto local_flib_def = LocalFlibDef(&compiler); TF_ASSERT_OK(local_flib_def->AddFunctionDef(test::function::XTimesTwo())); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); XlaCompiler::CompilationResult result; NameAttrList name_attr; name_attr.set_name("XTimesTwo"); Status status = compiler.CompileFunction(XlaCompiler::CompileOptions(), name_attr, {}, &result); ASSERT_FALSE(status.ok()); EXPECT_TRUE(absl::StrContains(status.message(), "is not defined.")) << status.message(); EXPECT_TRUE(absl::StrContains(status.message(), "Attr T is not found")) << status.message(); } FunctionDef SliceFn() { return FunctionDefHelper::Define( "SliceFn", {"x: T", "begin: Index", "size: Index"}, {"y: T"}, {"T: {float, double, int32, int64}", "Index: {int32,int64}"}, {{{"y"}, "Slice", {"x", "begin", "size"}, {{"T", "$T"}, {"Index", "$Index"}}}}); } TEST_F(XlaCompilerTest, SliceWithDynamicBegins) { XlaCompiler compiler(DefaultOptions()); FunctionDefLibrary flib; *flib.add_function() = SliceFn(); TF_ASSERT_OK(flib_def_->AddFunctionDef(SliceFn())); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); Scope scope = Scope::NewRootScope().ExitOnError(); auto value = ops::Const<int32>(scope.WithOpName("shape"), {5}, {1}); auto begin = ops::_Arg(scope.WithOpName("arg"), DT_INT32, 0); auto size = ops::Const<int32>(scope.WithOpName("value"), {1}, {1}); TF_EXPECT_OK(scope.graph()->AddFunctionLibrary(flib)); NodeDef def; TF_ASSERT_OK(NodeDefBuilder("slice", "SliceFn", flib_def_.get()) .Input(value.name(), 0, DT_INT32) .Input(begin.node()->name(), 1, DT_INT32) .Input(size.name(), 2, DT_INT32) .Finalize(&def)); Status status; Node* slice = scope.graph()->AddNode(def, &status); TF_ASSERT_OK(status); TF_ASSERT_OK(scope.DoShapeInference(slice)); scope.graph()->AddEdge(value.node(), 0, slice, 0); scope.graph()->AddEdge(begin.node(), 0, slice, 1); scope.graph()->AddEdge(size.node(), 0, slice, 2); auto retval = ops::_Retval(scope.WithOpName("retval"), Output(slice), 0); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({1}); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "slice", std::move(graph), args, &result)); } void RunAndCheckVariablesComputation( xla::Client* client, const XlaCompiler::CompilationResult& result) { xla::Literal param0_literal = xla::LiteralUtil::CreateR1<int32>({7, 42}); xla::Literal param1_literal = xla::LiteralUtil::CreateR1<int32>({-3, 101}); std::unique_ptr<xla::GlobalData> param0_data = client->TransferToServer(param0_literal).value(); std::unique_ptr<xla::GlobalData> param1_data = client->TransferToServer(param1_literal).value(); std::unique_ptr<xla::GlobalData> actual = client ->Execute(*result.computation, {param0_data.get(), param1_data.get()}) .value(); xla::Literal actual_literal = client->Transfer(*actual).value(); xla::Literal expected0 = xla::LiteralUtil::CreateR1<int32>({5, 144}); xla::Literal expected1 = xla::LiteralUtil::CreateR1<int32>({4, 143}); xla::Literal expected_literal = xla::LiteralUtil::MakeTuple({&expected0, &expected1}); EXPECT_TRUE(xla::LiteralTestUtil::Equal(expected_literal, actual_literal)); } TEST_F(XlaCompilerTest, Variables) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto var = ops::_Arg(scope.WithOpName("V"), DT_RESOURCE, 1); auto identity = ops::Identity(scope.WithOpName("VIdentity"), var); auto write = ops::AssignAddVariableOp(scope, identity, a); auto read = ops::ReadVariableOp( scope.WithControlDependencies(std::vector<Operation>{write}), var, DT_INT32); auto read_plus_one = ops::Add(scope, read, ops::Const<int32>(scope, 1)); auto d = ops::_Retval(scope.WithOpName("D"), read_plus_one, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); args[1].kind = XlaCompiler::Argument::kResource; args[1].resource_kind = XlaResource::kVariable; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({2}); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), args, &result)); RunAndCheckVariablesComputation(client_, result); } TEST_F(XlaCompilerTest, ResultLayoutSingle) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = ops::_Retval(scope.WithOpName("RET"), a, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2, 3}); auto options = DefaultOptions(); XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns; shape_determination_fns.shape_representation_fn = [](const TensorShape& shape, DataType type, bool use_fast_memory, XlaLayoutPreference layout_preference) -> absl::StatusOr<xla::Shape> { xla::Shape xla_shape; TF_RETURN_IF_ERROR(TensorShapeToXLAShape(type, shape, &xla_shape)); *xla_shape.mutable_layout() = xla::LayoutUtil::MakeLayout({0, 1}); return xla_shape; }; options.shape_determination_fns = shape_determination_fns; XlaCompiler compiler(options); XlaCompiler::CompilationResult result; auto compile_options = XlaCompiler::CompileOptions(); compile_options.always_return_tuple = false; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "id", std::move(graph), args, &result)); EXPECT_TRUE(xla::ShapeUtil::Equal( result.xla_output_shape, xla::ShapeUtil::MakeShapeWithDenseLayout(xla::S32, {2, 3}, {0, 1}))); EXPECT_EQ(result.computation->GetProgramShape().value().result(), result.xla_output_shape); } TEST_F(XlaCompilerTest, ResultLayoutMultiple) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = ops::_Retval(scope.WithOpName("RET1"), a, 0); auto c = ops::_Retval(scope.WithOpName("RET2"), a, 1); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2, 3}); auto options = DefaultOptions(); XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns; shape_determination_fns.shape_representation_fn = [](const TensorShape& shape, DataType type, bool use_fast_memory, XlaLayoutPreference layout_preference) -> absl::StatusOr<xla::Shape> { xla::Shape xla_shape; TF_RETURN_IF_ERROR(TensorShapeToXLAShape(type, shape, &xla_shape)); *xla_shape.mutable_layout() = xla::LayoutUtil::MakeLayout({0, 1}); return xla_shape; }; shape_determination_fns.layout_preference_fn = UseNoPreferenceLayoutFn(); options.shape_determination_fns = shape_determination_fns; XlaCompiler compiler(options); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "id", std::move(graph), args, &result)); xla::Shape result_shape = xla::ShapeUtil::MakeShapeWithDenseLayout(xla::S32, {2, 3}, {0, 1}); EXPECT_TRUE(xla::ShapeUtil::Equal( result.xla_output_shape, xla::ShapeUtil::MakeTupleShape({result_shape, result_shape}))); EXPECT_EQ(result.computation->GetProgramShape().value().result(), result.xla_output_shape); } TEST_F(XlaCompilerTest, ReturnResourceHandleOnly) { Scope scope = Scope::NewRootScope().ExitOnError(); auto var = ops::_Arg(scope.WithOpName("V"), DT_RESOURCE, 0); auto d = ops::_Retval(scope.WithOpName("D"), var, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kResource; args[0].resource_kind = XlaResource::kVariable; args[0].initialized = true; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), args, &result)); xla::Literal param1_literal = xla::LiteralUtil::CreateR1<int32>({-3, 101}); std::unique_ptr<xla::GlobalData> param1_data = client_->TransferToServer(param1_literal).value(); std::unique_ptr<xla::GlobalData> actual = client_->Execute(*result.computation, {param1_data.get()}).value(); xla::Literal actual_literal = client_->Transfer(*actual).value(); xla::Literal expected_literal = xla::LiteralUtil::MakeTuple({}); EXPECT_TRUE(xla::LiteralTestUtil::Equal(expected_literal, actual_literal)); } TEST_F(XlaCompilerTest, ReturnResourceHandle) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto var = ops::_Arg(scope.WithOpName("V"), DT_RESOURCE, 1); auto identity = ops::Identity(scope.WithOpName("VIdentity"), var); auto write = ops::AssignAddVariableOp(scope, identity, a); auto read = ops::ReadVariableOp( scope.WithControlDependencies(std::vector<Operation>{write}), var, DT_INT32); auto read_plus_one = ops::Add(scope, read, ops::Const<int32>(scope, 1)); auto r = ops::_Retval(scope.WithOpName("R"), var, 0); auto d = ops::_Retval(scope.WithOpName("D"), read_plus_one, 1); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); args[1].kind = XlaCompiler::Argument::kResource; args[1].resource_kind = XlaResource::kVariable; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({2}); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), args, &result)); RunAndCheckVariablesComputation(client_, result); } absl::StatusOr<std::unique_ptr<Graph>> BuildTestGraph() { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto var = ops::_Arg(scope.WithOpName("V"), DT_RESOURCE, 1); auto write = ops::AssignAddVariableOp(scope, var, a); auto read = ops::ReadVariableOp( scope.WithControlDependencies(std::vector<Operation>{write}), var, DT_INT32); auto read_plus_one = ops::Add(scope, read, ops::Const<int32>(scope, 1)); auto d = ops::_Retval(scope.WithOpName("D"), read_plus_one, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_RETURN_IF_ERROR(scope.ToGraph(graph.get())); return std::move(graph); } TEST_F(XlaCompilerTest, VariableRepresentationShapeFunction) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<Graph> graph, BuildTestGraph()); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2, 2}); args[1].kind = XlaCompiler::Argument::kResource; args[1].resource_kind = XlaResource::kVariable; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({2, 2}); XlaCompiler::Options options = DefaultOptions(); XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns; shape_determination_fns.shape_representation_fn = [](const TensorShape& shape, DataType type, bool use_fast_memory, XlaLayoutPreference layout_preference) -> absl::StatusOr<xla::Shape> { xla::PrimitiveType ptype; TF_RETURN_IF_ERROR(DataTypeToPrimitiveType(type, &ptype)); return xla::ShapeUtil::MakeShape(ptype, {shape.num_elements()}); }; options.shape_determination_fns = shape_determination_fns; XlaCompiler compiler(options); XlaCompiler::CompileOptions compile_options; compile_options.is_entry_computation = false; XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "add", std::move(graph), args, &result)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::ProgramShape> program_shape, client_->GetComputationShape(*result.computation)); ASSERT_EQ(program_shape->parameters_size(), 2); EXPECT_TRUE( xla::ShapeUtil::Compatible(program_shape->parameters(0), xla::ShapeUtil::MakeShape(xla::S32, {2, 2}))); EXPECT_TRUE(xla::ShapeUtil::Compatible( program_shape->parameters(1), xla::ShapeUtil::MakeShape(xla::S32, {4}))); EXPECT_TRUE(xla::ShapeUtil::Compatible( program_shape->result(), xla::ShapeUtil::MakeTupleShape( {xla::ShapeUtil::MakeShape(xla::S32, {2, 2}), xla::ShapeUtil::MakeShape(xla::S32, {4})}))); xla::Literal param0_literal = xla::LiteralUtil::CreateR2<int32>({{4, 55}, {1, -3}}); xla::Literal param1_literal = xla::LiteralUtil::CreateR1<int32>({22, 11, 33, 404}); std::unique_ptr<xla::GlobalData> param0_data = client_->TransferToServer(param0_literal).value(); std::unique_ptr<xla::GlobalData> param1_data = client_->TransferToServer(param1_literal).value(); std::unique_ptr<xla::GlobalData> actual = client_ ->Execute(*result.computation, {param0_data.get(), param1_data.get()}) .value(); xla::Literal actual_literal = client_->Transfer(*actual).value(); xla::Literal expected0 = xla::LiteralUtil::CreateR2<int32>({{27, 67}, {35, 402}}); xla::Literal expected1 = xla::LiteralUtil::CreateR1<int32>({26, 66, 34, 401}); xla::Literal expected_literal = xla::LiteralUtil::MakeTuple({&expected0, &expected1}); EXPECT_TRUE(xla::LiteralTestUtil::Equal(expected_literal, actual_literal)); } TEST_F(XlaCompilerTest, ArgRetvalShapeRepresentationFunction) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<Graph> graph, BuildTestGraph()); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2, 2}); args[1].kind = XlaCompiler::Argument::kResource; args[1].resource_kind = XlaResource::kVariable; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({2, 2}); XlaCompiler::Options options = DefaultOptions(); XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns; shape_determination_fns.shape_representation_fn = [](const TensorShape& shape, DataType type, bool use_fast_memory, XlaLayoutPreference layout_preference) -> absl::StatusOr<xla::Shape> { xla::PrimitiveType ptype; TF_RETURN_IF_ERROR(DataTypeToPrimitiveType(type, &ptype)); return xla::ShapeUtil::MakeShape(ptype, {shape.num_elements()}); }; options.shape_determination_fns = shape_determination_fns; XlaCompiler compiler(options); XlaCompiler::CompileOptions compile_options; compile_options.is_entry_computation = true; XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "add", std::move(graph), args, &result)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::ProgramShape> program_shape, client_->GetComputationShape(*result.computation)); ASSERT_EQ(program_shape->parameters_size(), 2); EXPECT_TRUE(xla::ShapeUtil::Compatible( program_shape->parameters(0), xla::ShapeUtil::MakeShape(xla::S32, {4}))); EXPECT_TRUE(xla::ShapeUtil::Compatible( program_shape->parameters(1), xla::ShapeUtil::MakeShape(xla::S32, {4}))); EXPECT_TRUE(xla::ShapeUtil::Compatible( program_shape->result(), xla::ShapeUtil::MakeTupleShape( {xla::ShapeUtil::MakeShape(xla::S32, {4}), xla::ShapeUtil::MakeShape(xla::S32, {4})}))); xla::Literal param0_literal = xla::LiteralUtil::CreateR1<int32>({4, 55, 1, -3}); xla::Literal param1_literal = xla::LiteralUtil::CreateR1<int32>({22, 11, 33, 404}); std::unique_ptr<xla::GlobalData> param0_data = client_->TransferToServer(param0_literal).value(); std::unique_ptr<xla::GlobalData> param1_data = client_->TransferToServer(param1_literal).value(); std::unique_ptr<xla::GlobalData> actual = client_ ->Execute(*result.computation, {param0_data.get(), param1_data.get()}) .value(); xla::Literal actual_literal = client_->Transfer(*actual).value(); xla::Literal expected0 = xla::LiteralUtil::CreateR1<int32>({27, 67, 35, 402}); xla::Literal expected1 = xla::LiteralUtil::CreateR1<int32>({26, 66, 34, 401}); xla::Literal expected_literal = xla::LiteralUtil::MakeTuple({&expected0, &expected1}); EXPECT_TRUE(xla::LiteralTestUtil::Equal(expected_literal, actual_literal)); } TEST_F(XlaCompilerTest, FunctionWithInvalidOp) { XlaCompiler compiler(DefaultOptions()); FunctionDefLibrary flib; FunctionDef fn = FillFn(); NodeDef* node = fn.add_node_def(); node->set_name("Invalid"); node->set_op("InvalidOp"); node = fn.add_node_def(); node->set_name("Switch"); node->set_op("Switch"); *flib.add_function() = fn; TF_ASSERT_OK(flib_def_->AddFunctionDef(fn)); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); Scope scope = Scope::NewRootScope().ExitOnError(); auto value = ops::Const<int32>(scope.WithOpName("value"), 1, {}); auto shape = ops::Const<int32>(scope.WithOpName("shape"), {5}, {1}); TF_ASSERT_OK(scope.graph()->AddFunctionLibrary(flib)); NodeDef def; TF_ASSERT_OK(NodeDefBuilder("fill_fn", "FillFn", flib_def_.get()) .Input(value.name(), 0, DT_INT32) .Input(shape.name(), 1, DT_INT32) .Finalize(&def)); Status status; Node* fill = scope.graph()->AddNode(def, &status); TF_ASSERT_OK(status); TF_ASSERT_OK(scope.DoShapeInference(fill)); scope.graph()->AddEdge(value.node(), 0, fill, 0); scope.graph()->AddEdge(shape.node(), 0, fill, 1); auto retval = ops::_Retval(scope.WithOpName("retval"), Output(fill), 0); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args; XlaCompiler::CompilationResult result; status = compiler.CompileGraph(XlaCompiler::CompileOptions(), "fill", std::move(graph), args, &result); ASSERT_FALSE(status.ok()); EXPECT_TRUE(absl::StrContains(status.message(), "InvalidOp")) << status.message(); EXPECT_TRUE(absl::StrContains(status.message(), "{{node fill_fn}}")) << status.message(); } TEST_F(XlaCompilerTest, NodeWithInvalidDataType) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); NodeDef shape; shape.set_name("Shape"); shape.set_op("Shape"); (*shape.mutable_attr())["T"].set_type(DT_INT32); (*shape.mutable_attr())["out_type"].set_type(DT_BOOL); Status status; Node* shape_node = graph->AddNode(shape, &status); TF_ASSERT_OK(status); graph->AddControlEdge(graph->source_node(), shape_node); std::vector<XlaCompiler::Argument> args; XlaCompiler::CompilationResult result; XlaCompiler compiler(DefaultOptions()); status = compiler.CompileGraph(XlaCompiler::CompileOptions(), "invalid_type", std::move(graph), args, &result); ASSERT_FALSE(status.ok()); EXPECT_TRUE(absl::StrContains(status.message(), "is not in the list of allowed values")) << status.message(); EXPECT_TRUE(absl::StrContains(status.message(), "{{node Shape}}")) << status.message(); } TEST_F(XlaCompilerTest, SingleOpWithoutInputs) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); NodeDef no_op; no_op.set_name("NoOp"); no_op.set_op("NoOp"); Status status; graph->AddNode(no_op, &status); TF_ASSERT_OK(status); std::vector<XlaCompiler::Argument> args; XlaCompiler compiler(DefaultOptions()); { std::unique_ptr<Graph> graph_copy(new Graph(OpRegistry::Global())); CopyGraph(*graph, graph_copy.get()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "NoOp", std::move(graph_copy), args, &result)); } } class DummySideEffectingOp : public XlaOpKernel { public: explicit DummySideEffectingOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {} void Compile(XlaOpKernelContext* ctx) override { OP_REQUIRES_OK(ctx, ctx->compiler()->SetNodeToken( name(), xla::CreateToken(ctx->builder()))); } }; REGISTER_OP("DummySideEffectingOp"); REGISTER_XLA_OP(Name("DummySideEffectingOp"), DummySideEffectingOp); TEST_F(XlaCompilerTest, TokenInputAndOutput) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); NodeDef side_effecting_op; side_effecting_op.set_name("DummySideEffectingOp"); side_effecting_op.set_op("DummySideEffectingOp"); AddNodeAttr(kXlaTokenInputNodesAttrName, std::vector<string>{kXlaTokenArgNodeName}, &side_effecting_op); AddNodeAttr(kXlaOriginalOutsideCompilationNodeName, side_effecting_op.name(), &side_effecting_op); Status status; graph->AddNode(side_effecting_op, &status); TF_ASSERT_OK(status); EXPECT_TRUE(FixupSourceAndSinkEdges(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kResource; args[0].resource_kind = XlaResource::kVariable; args[0].initialized = true; args[0].type = DT_INT32; args[0].shape = TensorShape({2, 2}); { XlaCompiler::CompileOptions options; options.is_entry_computation = true; options.add_token_input_output = false; options.return_updated_values_for_all_resources = true; XlaCompiler compiler(DefaultOptions()); std::unique_ptr<Graph> graph_copy(new Graph(OpRegistry::Global())); CopyGraph(*graph, graph_copy.get()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(options, "NoOp", std::move(graph_copy), args, &result)); EXPECT_EQ(result.xla_input_shapes.size(), 1); EXPECT_TRUE(result.xla_output_shape.IsTuple()); EXPECT_EQ(xla::ShapeUtil::TupleElementCount(result.xla_output_shape), 1); } { XlaCompiler::CompileOptions options; options.is_entry_computation = false; options.add_token_input_output = true; options.return_updated_values_for_all_resources = true; XlaCompiler compiler(DefaultOptions()); std::unique_ptr<Graph> graph_copy(new Graph(OpRegistry::Global())); CopyGraph(*graph, graph_copy.get()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(options, "NoOp", std::move(graph_copy), args, &result)); EXPECT_EQ(result.xla_input_shapes.size(), 2); EXPECT_TRUE(result.xla_input_shapes[1].IsToken()); EXPECT_TRUE(result.xla_output_shape.IsTuple()); EXPECT_EQ(xla::ShapeUtil::TupleElementCount(result.xla_output_shape), 2); EXPECT_TRUE(xla::ShapeUtil::GetTupleElementShape(result.xla_output_shape, 1) .IsToken()); } } TEST_F(XlaCompilerTest, OpsWithTensorListInput) { FunctionDefLibrary fdef_lib; FunctionLibraryDefinition flib_def(OpRegistry::Global(), fdef_lib); { Scope scope = Scope::NewRootScope().ExitOnError(); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); ops::_Arg(scope.WithOpName("arg"), DT_VARIANT, 0); auto result = ops::Const<bool>(scope, {true}, {}); ops::_Retval(scope.WithOpName("ret"), result, 0); TF_ASSERT_OK(scope.ToGraph(graph.get())); FunctionDef fdef; TF_ASSERT_OK(GraphToFunctionDef(*graph, "cond", &fdef)); TF_ASSERT_OK(flib_def.AddFunctionDef(fdef)); } { Scope scope = Scope::NewRootScope().ExitOnError(); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); auto arg = ops::_Arg(scope.WithOpName("arg"), DT_VARIANT, 0); ops::_Retval(scope.WithOpName("ret"), arg, 0); TF_ASSERT_OK(scope.ToGraph(graph.get())); FunctionDef fdef; TF_ASSERT_OK(GraphToFunctionDef(*graph, "body", &fdef)); TF_ASSERT_OK(flib_def.AddFunctionDef(fdef)); } Scope scope = Scope::NewRootScope().ExitOnError(); auto element_shape = ops::Const<int32>(scope, {1}, {1}); auto max_elements = ops::Const<int32>(scope, {10}, {}); auto arg = ops::_Arg(scope.WithOpName("arg"), DT_VARIANT, 0); std::initializer_list<Output> out = {arg, arg}; auto add_n = ops::AddN(scope, out); NameAttrList cond_fn, body_fn; cond_fn.set_name("cond"); body_fn.set_name("body"); auto while_op = ops::While(scope, std::initializer_list<Input>{arg}, cond_fn, body_fn); auto ret0 = ops::_Retval(scope.WithOpName("ret0"), add_n, 0); auto ret1 = ops::_Retval(scope.WithOpName("ret1"), while_op.output[0], 1); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kTensorList; xla::Shape tensor_list_element_shape; TF_ASSERT_OK(TensorShapeToXLAShape(DT_INT32, TensorShape{1}, &tensor_list_element_shape)); xla::Shape index_shape; TF_ASSERT_OK(TensorShapeToXLAShape(DT_INT32, TensorShape{}, &index_shape)); std::vector<xla::Shape> shapes{tensor_list_element_shape, index_shape}; xla::Shape arg_shape = xla::ShapeUtil::MakeTupleShape(shapes); args[0].shape = arg_shape; XlaCompiler::Options options = DefaultOptions(); options.flib_def = &flib_def; XlaCompiler compiler(options); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), args, &result)); ASSERT_EQ(result.outputs.size(), 2); const XlaCompiler::OutputDescription& output0 = result.outputs[0]; ASSERT_TRUE(output0.is_tensor_list); const XlaCompiler::OutputDescription& output1 = result.outputs[1]; ASSERT_TRUE(output1.is_tensor_list); } TEST_F(XlaCompilerTest, WhileWithResources) { FunctionDefLibrary fdef_lib; FunctionLibraryDefinition flib_def(OpRegistry::Global(), fdef_lib); { Scope scope = Scope::NewRootScope().ExitOnError(); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); auto arg0 = ops::_Arg(scope.WithOpName("arg0"), DT_INT32, 0); auto arg1 = ops::_Arg(scope.WithOpName("arg1"), DT_RESOURCE, 1); auto arg2 = ops::_Arg(scope.WithOpName("arg2"), DT_RESOURCE, 2); auto less = ops::Less(scope, arg0, ops::Const<int32>(scope, 10)); (void)ops::_Retval(scope.WithOpName("ret"), less, 0); TF_ASSERT_OK(scope.ToGraph(graph.get())); FunctionDef fdef; TF_ASSERT_OK(GraphToFunctionDef(*graph, "cond", &fdef)); TF_ASSERT_OK(flib_def.AddFunctionDef(fdef)); } { Scope scope = Scope::NewRootScope().ExitOnError(); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); auto arg0 = ops::_Arg(scope.WithOpName("arg0"), DT_INT32, 0); auto arg1 = ops::_Arg(scope.WithOpName("arg1"), DT_RESOURCE, 1); auto arg2 = ops::_Arg(scope.WithOpName("arg2"), DT_RESOURCE, 2); auto read1 = ops::ReadVariableOp(scope.WithOpName("read1"), arg1, DT_INT32); auto plus_read1 = ops::Add(scope, arg0, read1); auto read2 = ops::ReadVariableOp(scope.WithOpName("read2"), arg2, DT_INT32); auto minus_read2 = ops::Sub(scope, plus_read1, read2); (void)ops::_Retval(scope.WithOpName("ret0"), minus_read2, 0); (void)ops::_Retval(scope.WithOpName("ret1"), arg1, 1); (void)ops::_Retval(scope.WithOpName("ret2"), arg2, 2); TF_ASSERT_OK(scope.ToGraph(graph.get())); FunctionDef fdef; TF_ASSERT_OK(GraphToFunctionDef(*graph, "body", &fdef)); TF_ASSERT_OK(flib_def.AddFunctionDef(fdef)); } Scope scope = Scope::NewRootScope().ExitOnError(); auto arg0 = ops::_Arg(scope.WithOpName("arg0"), DT_INT32, 0); auto arg1 = ops::_Arg(scope.WithOpName("arg1"), DT_RESOURCE, 1); auto arg2 = ops::_Arg(scope.WithOpName("arg2"), DT_RESOURCE, 2); NameAttrList cond_fn, body_fn; cond_fn.set_name("cond"); body_fn.set_name("body"); auto while_op = ops::While( scope, std::initializer_list<Input>{arg0, arg1, arg2}, cond_fn, body_fn); (void)ops::_Retval(scope.WithOpName("ret0"), while_op.output[0], 0); (void)ops::_Retval(scope.WithOpName("ret1"), while_op.output[1], 1); (void)ops::_Retval(scope.WithOpName("ret2"), while_op.output[2], 2); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(3); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({}); args[1].kind = XlaCompiler::Argument::kResource; args[1].resource_kind = XlaResource::kVariable; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({}); args[2].kind = XlaCompiler::Argument::kResource; args[2].resource_kind = XlaResource::kVariable; args[2].initialized = true; args[2].type = DT_INT32; args[2].shape = TensorShape({}); XlaCompiler::Options options = DefaultOptions(); options.flib_def = &flib_def; XlaCompiler compiler(options); XlaCompiler::CompileOptions compile_options = XlaCompiler::CompileOptions(); compile_options.return_updated_values_for_all_resources = true; XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "tested_while_with_vars", std::move(graph), args, &result)); ASSERT_EQ(result.outputs.size(), 3); const XlaCompiler::OutputDescription& output1 = result.outputs[1]; ASSERT_EQ(output1.input_index, 1); const XlaCompiler::OutputDescription& output2 = result.outputs[2]; ASSERT_EQ(output2.input_index, 2); xla::Literal literal0 = xla::LiteralUtil::CreateR0<int32>(0); xla::Literal literal1 = xla::LiteralUtil::CreateR0<int32>(2); xla::Literal literal2 = xla::LiteralUtil::CreateR0<int32>(1); std::unique_ptr<xla::GlobalData> data0 = client_->TransferToServer(literal0).value(); std::unique_ptr<xla::GlobalData> data1 = client_->TransferToServer(literal1).value(); std::unique_ptr<xla::GlobalData> data2 = client_->TransferToServer(literal2).value(); std::unique_ptr<xla::GlobalData> actual = client_ ->Execute(*result.computation, {data0.get(), data1.get(), data2.get()}) .value(); xla::Literal actual_literal = client_->Transfer(*actual).value(); xla::Literal expected0 = xla::LiteralUtil::CreateR0<int32>(10); xla::Literal expected1 = xla::LiteralUtil::CreateR0<int32>(2); xla::Literal expected2 = xla::LiteralUtil::CreateR0<int32>(1); xla::Literal expected_literal = xla::LiteralUtil::MakeTuple({&expected0, &expected1, &expected2}); EXPECT_TRUE(xla::LiteralTestUtil::Equal(expected_literal, actual_literal)); } TEST_F(XlaCompilerTest, SetShardingForReturnedTuple) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = ops::_Retval(scope.WithOpName("B"), a, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); auto node_name_index = graph->BuildNodeNameIndex(); Node* ret_node = node_name_index["B"]; ASSERT_NE(ret_node, nullptr); xla::Array<int64_t> tile_assignment({2}); tile_assignment.FillIota(0); xla::HloSharding sharding = xla::HloSharding::Tile(tile_assignment); ret_node->AddAttr("_XlaSharding", sharding.ToProto().SerializeAsString()); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "test", std::move(graph), args, &result)); const auto& hlo_module_proto = result.computation->proto(); ASSERT_EQ(hlo_module_proto.computations_size(), 1); const auto& hlo_computation_proto = hlo_module_proto.computations(0); std::optional<xla::HloInstructionProto> root_instruction_proto; for (const auto& inst : hlo_computation_proto.instructions()) { if (inst.id() == hlo_computation_proto.root_id()) { root_instruction_proto = inst; break; } } ASSERT_TRUE(root_instruction_proto); xla::Shape tuple_shape = xla::ShapeUtil::MakeTupleShape( {xla::ShapeUtil::MakeShape(xla::S32, {2})}); xla::HloSharding tuple_sharding = xla::HloSharding::Tuple( tuple_shape, std::vector<xla::HloSharding>{sharding}); EXPECT_EQ(root_instruction_proto->sharding().SerializeAsString(), tuple_sharding.ToProto().SerializeAsString()); } TEST_F(XlaCompilerTest, AliasResourceUpdates) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::Const<int32>(scope.WithOpName("A"), {1, 2}); auto var = ops::_Arg(scope.WithOpName("V"), DT_RESOURCE, 1); auto write = ops::AssignAddVariableOp(scope, var, a); auto read = ops::ReadVariableOp( scope.WithControlDependencies(std::vector<Operation>{write}), var, DT_INT32); auto d = ops::_Retval(scope.WithOpName("D"), read, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kConstant; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); args[0].constant_value = Tensor(DT_INT32, {1, 1}); args[0].initialized = true; args[1].kind = XlaCompiler::Argument::kResource; args[1].resource_kind = XlaResource::kVariable; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({2}); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompileOptions compile_options; compile_options.alias_resource_update = true; XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "add", std::move(graph), args, &result)); const xla::HloInputOutputAliasProto& alias = result.computation->proto().input_output_alias(); EXPECT_EQ(alias.entries_size(), 1); EXPECT_EQ(alias.entries(0).parameter_number(), 0); } TEST_F(XlaCompilerTest, SetDeviceToHostMetadataExactDuplicate) { XlaCompiler compiler(DefaultOptions()); const string& key = "comm_key"; std::vector<DataType> types{DT_INT32}; std::vector<TensorShape> shapes{TensorShape({2})}; TF_ASSERT_OK(compiler.SetDeviceToHostMetadata(key, types, shapes)); TF_ASSERT_OK(compiler.SetDeviceToHostMetadata(key, types, shapes)); } TEST_F(XlaCompilerTest, SetDeviceToHostMetadataMismatchedDuplicate) { XlaCompiler compiler(DefaultOptions()); const string& key = "comm_key"; std::vector<DataType> types{DT_INT32}; std::vector<TensorShape> shapes{TensorShape({2})}; std::vector<DataType> types2{DT_FLOAT}; std::vector<TensorShape> shapes2{TensorShape({1})}; TF_ASSERT_OK(compiler.SetDeviceToHostMetadata(key, types, shapes)); Status status = compiler.SetDeviceToHostMetadata(key, types2, shapes2); EXPECT_EQ(status.code(), error::Code::INVALID_ARGUMENT); } TEST_F(XlaCompilerTest, SetHostToDeviceMetadataExactDuplicate) { XlaCompiler compiler(DefaultOptions()); const string& key = "comm_key"; std::vector<DataType> types{DT_INT32}; std::vector<TensorShape> shapes{TensorShape({2})}; TF_ASSERT_OK(compiler.SetHostToDeviceMetadata(key, types, shapes)); TF_ASSERT_OK(compiler.SetHostToDeviceMetadata(key, types, shapes)); } TEST_F(XlaCompilerTest, SetHostToDeviceMetadataMismatchedDuplicate) { XlaCompiler compiler(DefaultOptions()); const string& key = "comm_key"; std::vector<DataType> types{DT_INT32}; std::vector<TensorShape> shapes{TensorShape({2})}; std::vector<DataType> types2{DT_FLOAT}; std::vector<TensorShape> shapes2{TensorShape({1})}; TF_ASSERT_OK(compiler.SetHostToDeviceMetadata(key, types, shapes)); Status status = compiler.SetHostToDeviceMetadata(key, types2, shapes2); EXPECT_EQ(status.code(), error::Code::INVALID_ARGUMENT); } TEST_F(OpsTestBase, BuildSingleOpCompileArgument) { TF_EXPECT_OK(NodeDefBuilder("identity_op", "Identity") .Input(FakeInput(DT_FLOAT)) .Attr("T", DT_FLOAT) .Finalize(node_def())); TF_EXPECT_OK(InitOp()); AddInputFromArray<float>(TensorShape({1, 2}), {0, 1}); TF_EXPECT_OK(RunOpKernel()); XlaCompiler::SingleOpCompileArgument arg(*context_); EXPECT_THAT(arg.output_dtypes, ::testing::ElementsAreArray({DT_FLOAT})); EXPECT_EQ(arg.node_def.SerializeAsString(), context_->op_kernel().def().SerializeAsString()); EXPECT_EQ(arg.config_proto.ByteSizeLong(), 0); } TEST_F(OpsTestBase, CompileSingleOp) { TF_EXPECT_OK(NodeDefBuilder("identity_op", "Identity") .Input(FakeInput(DT_FLOAT)) .Attr("T", DT_FLOAT) .Finalize(node_def())); TF_EXPECT_OK(InitOp()); AddInputFromArray<float>(TensorShape({1, 2}), {6.9, 4.2}); TF_EXPECT_OK(RunOpKernel()); XlaCompiler::SingleOpCompileArgument single_op_arg(*context_); xla::Client* client = xla::ClientLibrary::LocalClientOrDie(); XlaOpRegistry::RegisterCompilationKernels(); FunctionDefLibrary flib; std::unique_ptr<FunctionLibraryDefinition> flib_def( new FunctionLibraryDefinition(OpRegistry::Global(), flib)); XlaCompiler::Options options; options.device_type = DeviceType(DEVICE_CPU_XLA_JIT); options.client = client; options.flib_def = flib_def.get(); XlaCompiler compiler(options); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kConstant; args[0].type = DT_FLOAT; args[0].shape = TensorShape({1, 2}); args[0].constant_value = GetInput(0); args[0].initialized = true; XlaCompiler::CompilationResult result; TF_EXPECT_OK(compiler.CompileSingleOp(XlaCompiler::CompileOptions(), single_op_arg, args, &result)); std::unique_ptr<xla::GlobalData> actual = client->Execute(*result.computation, {}).value(); xla::Literal actual_literal = client->Transfer(*actual).value(); xla::Literal expected0 = xla::LiteralUtil::CreateR2<float>({{6.9, 4.2}}); xla::Literal expected_literal = xla::LiteralUtil::MakeTuple({&expected0}); EXPECT_TRUE(xla::LiteralTestUtil::Equal(expected_literal, actual_literal)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/xla_compiler.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/xla_compiler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
85d220d5-9ed3-477a-8730-5b2484f55ad5
cpp
tensorflow/tensorflow
logging
tensorflow/c/logging.cc
third_party/xla/third_party/tsl/tsl/platform/logging_test.cc
#include "tensorflow/c/logging.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/stringprintf.h" static ::tensorflow::string BuildMessage(const char* fmt, va_list args) { ::tensorflow::string message; ::tensorflow::strings::Appendv(&message, fmt, args); return message; } void TF_Log(TF_LogLevel level, const char* fmt, ...) { if (level < TF_INFO || level > TF_FATAL) return; va_list args; va_start(args, fmt); auto message = BuildMessage(fmt, args); va_end(args); switch (level) { case TF_INFO: LOG(INFO) << message; break; case TF_WARNING: LOG(WARNING) << message; break; case TF_ERROR: LOG(ERROR) << message; break; case TF_FATAL: LOG(FATAL) << message; break; } } void TF_VLog(int level, const char* fmt, ...) { va_list args; va_start(args, fmt); auto message = BuildMessage(fmt, args); va_end(args); VLOG(level) << message; } void TF_DVLog(int level, const char* fmt, ...) { va_list args; va_start(args, fmt); auto message = BuildMessage(fmt, args); va_end(args); DVLOG(level) << message; }
#include "tsl/platform/logging.h" #include <cerrno> #include <cstddef> #include <cstdio> #include <cstdlib> #include <memory> #include <sstream> #include <vector> #include "absl/base/log_severity.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "tsl/platform/path.h" #include "tsl/platform/stacktrace_handler.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #ifdef PLATFORM_WINDOWS #define popen _popen #define pclose _pclose #endif static char* program_name; namespace tsl { namespace { using ::testing::HasSubstr; using ::testing::Not; TEST(Logging, Log) { LOG(INFO) << "Hello"; LOG(INFO) << "Another log message"; LOG(ERROR) << "Error message"; VLOG(1) << "A VLOG message"; VLOG(2) << "A higher VLOG message"; DVLOG(1) << "A DVLOG message"; DVLOG(2) << "A higher DVLOG message"; } TEST(Logging, CheckChecks) { CHECK(true); CHECK(7 > 5); string a("abc"); string b("xyz"); CHECK_EQ(a, a); CHECK_NE(a, b); CHECK_EQ(3, 3); CHECK_NE(4, 3); CHECK_GT(4, 3); CHECK_GE(3, 3); CHECK_LT(2, 3); CHECK_LE(2, 3); DCHECK(true); DCHECK(7 > 5); DCHECK_EQ(a, a); DCHECK_NE(a, b); DCHECK_EQ(3, 3); DCHECK_NE(4, 3); DCHECK_GT(4, 3); DCHECK_GE(3, 3); DCHECK_LT(2, 3); DCHECK_LE(2, 3); } TEST(LoggingDeathTest, FailedChecks) { string a("abc"); string b("xyz"); const char* p_const = "hello there"; const char* p_null_const = nullptr; char mybuf[10]; char* p_non_const = mybuf; char* p_null = nullptr; CHECK_NOTNULL(p_const); CHECK_NOTNULL(p_non_const); ASSERT_DEATH(CHECK(false), "false"); ASSERT_DEATH(CHECK(9 < 7), "9 < 7"); ASSERT_DEATH(CHECK_EQ(a, b), "a == b"); ASSERT_DEATH(CHECK_EQ(3, 4), "3 == 4"); ASSERT_DEATH(CHECK_NE(3, 3), "3 != 3"); ASSERT_DEATH(CHECK_GT(2, 3), "2 > 3"); ASSERT_DEATH(CHECK_GE(2, 3), "2 >= 3"); ASSERT_DEATH(CHECK_LT(3, 2), "3 < 2"); ASSERT_DEATH(CHECK_LE(3, 2), "3 <= 2"); ASSERT_DEATH(CHECK(false), "false"); ASSERT_DEATH(printf("%s", CHECK_NOTNULL(p_null)), "Must be non NULL"); ASSERT_DEATH(printf("%s", CHECK_NOTNULL(p_null_const)), "Must be non NULL"); #ifndef NDEBUG ASSERT_DEATH(DCHECK(9 < 7), "9 < 7"); ASSERT_DEATH(DCHECK(9 < 7), "9 < 7"); ASSERT_DEATH(DCHECK_EQ(a, b), "a == b"); ASSERT_DEATH(DCHECK_EQ(3, 4), "3 == 4"); ASSERT_DEATH(DCHECK_NE(3, 3), "3 != 3"); ASSERT_DEATH(DCHECK_GT(2, 3), "2 > 3"); ASSERT_DEATH(DCHECK_GE(2, 3), "2 >= 3"); ASSERT_DEATH(DCHECK_LT(3, 2), "3 < 2"); ASSERT_DEATH(DCHECK_LE(3, 2), "3 <= 2"); #endif } TEST(InternalLogString, Basic) { internal::LogString(__FILE__, __LINE__, absl::LogSeverity::kInfo, "Hello there"); } class TestSink : public TFLogSink { public: void Send(const TFLogEntry& entry) override { ss_ << entry.text_message() << std::endl; } std::string Get() const { return ss_.str(); } private: std::stringstream ss_; }; TEST(LogSinkTest, testLogSinks) { const int sinks_initial_size = TFGetLogSinks().size(); TestSink sink; TFAddLogSink(&sink); EXPECT_EQ(TFGetLogSinks().size(), sinks_initial_size + 1); LOG(INFO) << "Foo"; LOG(INFO) << "Bar"; EXPECT_EQ(sink.Get(), "Foo\nBar\n"); TFRemoveLogSink(&sink); EXPECT_EQ(TFGetLogSinks().size(), sinks_initial_size); } std::string ReadFromFilePointer(FILE* fp) { std::string result; while (!feof(fp)) { char buf[512]; size_t len = fread(buf, sizeof(buf[0]), 512, fp); result.append(buf, len); } return result; } absl::StatusOr<std::string> ReadFromFile(const std::string& filename) { std::shared_ptr<FILE> fp(fopen(filename.c_str(), "r"), fclose); if (fp == nullptr) { return absl::ErrnoToStatus(errno, absl::StrFormat("Cannot fopen '%s'", filename)); } return ReadFromFilePointer(fp.get()); } class SubcommandTest : public ::testing::Test { public: static constexpr absl::string_view kLogVLog = "log_and_vlog"; static bool IsSubcommand(absl::string_view subcommand) { return subcommand == kLogVLog; } static int Run(absl::string_view subcommand) { CHECK_EQ(subcommand, kLogVLog); LOG(INFO) << "LOG INFO"; LOG(WARNING) << "LOG WARNING"; LOG(ERROR) << "LOG ERROR"; LOG(INFO) << absl::StrFormat("VLOG_IS_ON(1)? %d", VLOG_IS_ON(1)); LOG(INFO) << absl::StrFormat("VLOG_IS_ON(2)? %d", VLOG_IS_ON(2)); LOG(INFO) << absl::StrFormat("VLOG_IS_ON(3)? %d", VLOG_IS_ON(3)); VLOG(1) << "VLevel 1"; VLOG(2) << "VLevel 2"; VLOG(3) << "VLevel 3"; return EXIT_SUCCESS; } protected: absl::StatusOr<std::string> CaptureOutput(const char* invocation) { std::shared_ptr<FILE> fp(popen(invocation, "r"), pclose); if (fp == nullptr) { return absl::ErrnoToStatus( errno, absl::StrFormat("Cannot popen '%s'", invocation)); } return ReadFromFilePointer(fp.get()); } }; TEST_F(SubcommandTest, LogDefaultTest) { std::string command = absl::StrFormat("%s %s", program_name, kLogVLog); #if defined(PLATFORM_GOOGLE) command += " --alsologtostderr"; #endif command += " 2>&1"; TF_ASSERT_OK_AND_ASSIGN(std::string out, CaptureOutput(command.c_str())); EXPECT_THAT(out, HasSubstr("LOG INFO")); EXPECT_THAT(out, HasSubstr("LOG WARNING")); EXPECT_THAT(out, HasSubstr("LOG ERROR")); EXPECT_THAT(out, HasSubstr("VLOG_IS_ON(1)? 0")); EXPECT_THAT(out, HasSubstr("VLOG_IS_ON(2)? 0")); EXPECT_THAT(out, HasSubstr("VLOG_IS_ON(3)? 0")); } TEST_F(SubcommandTest, MinLogLevelTest) { std::string command = absl::StrFormat("%s %s", program_name, kLogVLog); #if defined(PLATFORM_GOOGLE) command += " --minloglevel=1 --alsologtostderr"; #elif defined(PLATFORM_WINDOWS) command = absl::StrFormat("set TF_CPP_MIN_LOG_LEVEL=1 && %s", command); #else command = absl::StrFormat("TF_CPP_MIN_LOG_LEVEL=1 %s", command); #endif command += " 2>&1"; TF_ASSERT_OK_AND_ASSIGN(std::string out, CaptureOutput(command.c_str())); EXPECT_THAT(out, Not(HasSubstr("LOG INFO"))); EXPECT_THAT(out, HasSubstr("LOG WARNING")); EXPECT_THAT(out, HasSubstr("LOG ERROR")); } TEST_F(SubcommandTest, VLogDefaultTest) { std::string command = absl::StrFormat("%s %s", program_name, kLogVLog); #if defined(PLATFORM_GOOGLE) command += " --alsologtostderr"; #endif command += " 2>&1"; TF_ASSERT_OK_AND_ASSIGN(std::string out, CaptureOutput(command.c_str())); EXPECT_THAT(out, Not(HasSubstr("VLevel 1"))); EXPECT_THAT(out, Not(HasSubstr("VLevel 2"))); EXPECT_THAT(out, Not(HasSubstr("VLevel 3"))); } TEST_F(SubcommandTest, MaxVLogLevelTest) { std::string command = absl::StrFormat("%s %s", program_name, kLogVLog); #if defined(PLATFORM_GOOGLE) command += " --v=2 --alsologtostderr"; #elif defined(PLATFORM_WINDOWS) command = absl::StrFormat("set TF_CPP_MAX_VLOG_LEVEL=2 && %s", command); #else command = absl::StrFormat("TF_CPP_MAX_VLOG_LEVEL=2 %s", command); #endif command += " 2>&1"; TF_ASSERT_OK_AND_ASSIGN(std::string out, CaptureOutput(command.c_str())); EXPECT_THAT(out, HasSubstr("VLevel 1")); EXPECT_THAT(out, HasSubstr("VLevel 2")); EXPECT_THAT(out, Not(HasSubstr("VLevel 3"))); EXPECT_THAT(out, HasSubstr("VLOG_IS_ON(1)? 1")); EXPECT_THAT(out, HasSubstr("VLOG_IS_ON(2)? 1")); EXPECT_THAT(out, HasSubstr("VLOG_IS_ON(3)? 0")); } TEST_F(SubcommandTest, VModuleTest) { std::string command = absl::StrFormat("%s %s", program_name, kLogVLog); #if defined(PLATFORM_GOOGLE) command += " --vmodule=logging_test=2,shoobadooba=3 --alsologtostderr"; #elif defined(PLATFORM_WINDOWS) command = absl::StrFormat( "set TF_CPP_VMODULE=logging_test=2,shoobadooba=3 && %s", command); #else command = absl::StrFormat("TF_CPP_VMODULE=logging_test=2,shoobadooba=3 %s", command); #endif command += " 2>&1"; TF_ASSERT_OK_AND_ASSIGN(std::string out, CaptureOutput(command.c_str())); EXPECT_THAT(out, HasSubstr("VLevel 1")); EXPECT_THAT(out, HasSubstr("VLevel 2")); EXPECT_THAT(out, Not(HasSubstr("VLevel 3"))); EXPECT_THAT(out, HasSubstr("VLOG_IS_ON(1)? 1")); EXPECT_THAT(out, HasSubstr("VLOG_IS_ON(2)? 1")); EXPECT_THAT(out, HasSubstr("VLOG_IS_ON(3)? 0")); } TEST_F(SubcommandTest, VLogFilenameTest) { #if defined(PLATFORM_GOOGLE) constexpr bool kVLogFilenameEnvVarIsSupported = false; #else constexpr bool kVLogFilenameEnvVarIsSupported = true; #endif if (!kVLogFilenameEnvVarIsSupported) { GTEST_SKIP() << "Not supported on this platform"; } std::string command = absl::StrFormat("%s %s", program_name, kLogVLog); std::string filename = io::GetTempFilename("logging_test"); #if defined(PLATFORM_WINDOWS) command = absl::StrFormat( "set TF_CPP_VLOG_FILENAME=%s && set TF_CPP_MAX_VLOG_LEVEL=1 && %s", filename, command); #else command = absl::StrFormat( "TF_CPP_VLOG_FILENAME=%s TF_CPP_MAX_VLOG_LEVEL=1 %s", filename, command); #endif command += " 2>&1"; TF_ASSERT_OK_AND_ASSIGN(std::string out, CaptureOutput(command.c_str())); EXPECT_THAT(out, Not(HasSubstr("LOG INFO"))); EXPECT_THAT(out, Not(HasSubstr("LOG WARNING"))); EXPECT_THAT(out, Not(HasSubstr("LOG ERROR"))); EXPECT_THAT(out, Not(HasSubstr("VLOG_IS_ON(1)?"))); EXPECT_THAT(out, Not(HasSubstr("VLOG_IS_ON(2)?"))); EXPECT_THAT(out, Not(HasSubstr("VLOG_IS_ON(3)?"))); EXPECT_THAT(out, Not(HasSubstr("VLevel 1"))); EXPECT_THAT(out, Not(HasSubstr("VLevel 2"))); EXPECT_THAT(out, Not(HasSubstr("VLevel 3"))); TF_ASSERT_OK_AND_ASSIGN(std::string log_file, ReadFromFile(filename)); EXPECT_THAT(log_file, HasSubstr("LOG INFO")); EXPECT_THAT(log_file, HasSubstr("LOG WARNING")); EXPECT_THAT(log_file, HasSubstr("LOG ERROR")); EXPECT_THAT(log_file, HasSubstr("VLOG_IS_ON(1)")); EXPECT_THAT(log_file, HasSubstr("VLOG_IS_ON(2)")); EXPECT_THAT(log_file, HasSubstr("VLOG_IS_ON(3)")); EXPECT_THAT(log_file, HasSubstr("VLevel 1")); EXPECT_THAT(log_file, Not(HasSubstr("VLevel 2"))); EXPECT_THAT(log_file, Not(HasSubstr("VLevel 3"))); } } } GTEST_API_ int main(int argc, char** argv) { tsl::testing::InstallStacktraceHandler(); testing::InitGoogleTest(&argc, argv); program_name = argv[0]; if (argc >= 2 && tsl::SubcommandTest::IsSubcommand(argv[1])) { return tsl::SubcommandTest::Run(argv[1]); } return RUN_ALL_TESTS(); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/logging.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/logging_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
131efe9b-b444-418c-9737-d0c1475dd8de
cpp
tensorflow/tensorflow
pjrt_attribute_map_util
third_party/xla/xla/python/pjrt_ifrt/pjrt_attribute_map_util.cc
third_party/xla/xla/python/pjrt_ifrt/pjrt_attribute_map_util_test.cc
#include "xla/python/pjrt_ifrt/pjrt_attribute_map_util.h" #include <cstdint> #include <string> #include <type_traits> #include <utility> #include <variant> #include <vector> #include "absl/container/flat_hash_map.h" #include "xla/pjrt/pjrt_common.h" #include "xla/python/ifrt/attribute_map.h" namespace xla { namespace ifrt { AttributeMap FromPjRtAttributeMap( absl::flat_hash_map<std::string, xla::PjRtValueType> attributes) { AttributeMap::Map result; result.reserve(attributes.size()); for (auto& item : attributes) { std::visit( [&](auto& value) { using T = std::decay_t<decltype(value)>; const auto& key = item.first; if constexpr (std::is_same_v<T, std::string>) { result.insert({key, AttributeMap::StringValue(std::move(value))}); } else if constexpr (std::is_same_v<T, bool>) { result.insert({key, AttributeMap::BoolValue(value)}); } else if constexpr (std::is_same_v<T, int64_t>) { result.insert({key, AttributeMap::Int64Value(value)}); } else if constexpr (std::is_same_v<T, std::vector<int64_t>>) { result.insert( {key, AttributeMap::Int64ListValue(std::move(value))}); } else if constexpr (std::is_same_v<T, float>) { result.insert({key, AttributeMap::FloatValue(value)}); } }, item.second); } return AttributeMap(std::move(result)); } absl::flat_hash_map<std::string, xla::PjRtValueType> ToPjRtAttributeMap( AttributeMap attributes) { absl::flat_hash_map<std::string, xla::PjRtValueType> result; result.reserve(attributes.map().size()); for (auto& item : attributes.map()) { std::visit( [&](auto& value) { using T = std::decay_t<decltype(value)>; const auto& key = item.first; if constexpr (std::is_same_v<T, AttributeMap::StringValue>) { result.insert({key, std::move(value.value)}); } else if constexpr (std::is_same_v<T, AttributeMap::BoolValue>) { result.insert({key, value.value}); } else if constexpr (std::is_same_v<T, AttributeMap::Int64Value>) { result.insert({key, value.value}); } else if constexpr (std::is_same_v<T, AttributeMap::Int64ListValue>) { result.insert({key, std::move(value.value)}); } else if constexpr (std::is_same_v<T, AttributeMap::FloatValue>) { result.insert({key, value.value}); } }, item.second); } return result; } } }
#include "xla/python/pjrt_ifrt/pjrt_attribute_map_util.h" #include <cstdint> #include <string> #include <vector> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "xla/pjrt/pjrt_common.h" #include "xla/python/ifrt/attribute_map.h" namespace xla { namespace ifrt { namespace { TEST(PjRtAttributeMapUtilTest, FromPjRtAttributeMap) { absl::flat_hash_map<std::string, PjRtValueType> pjrt_map({ {"string", xla::PjRtValueType(std::string("value"))}, {"bool", xla::PjRtValueType(true)}, {"int64", xla::PjRtValueType(int64_t{123})}, {"int64_list", xla::PjRtValueType(std::vector<int64_t>({int64_t{1}, int64_t{2}}))}, {"float", xla::PjRtValueType(1.23f)}, }); EXPECT_EQ(FromPjRtAttributeMap(pjrt_map).map(), AttributeMap::Map({ {"string", AttributeMap::StringValue("value")}, {"bool", AttributeMap::BoolValue(true)}, {"int64", AttributeMap::Int64Value(123)}, {"int64_list", AttributeMap::Int64ListValue({int64_t{1}, int64_t{2}})}, {"float", AttributeMap::FloatValue(1.23f)}, })); } TEST(PjRtAttributeMapUtilTest, ToPjRtAttributeMap) { AttributeMap map({ {"string", AttributeMap::StringValue("value")}, {"bool", AttributeMap::BoolValue(true)}, {"int64", AttributeMap::Int64Value(123)}, {"int64_list", AttributeMap::Int64ListValue({int64_t{1}, int64_t{2}})}, {"float", AttributeMap::FloatValue(1.23f)}, }); EXPECT_EQ( ToPjRtAttributeMap(map), (absl::flat_hash_map<std::string, xla::PjRtValueType>({ {"string", xla::PjRtValueType(std::string("value"))}, {"bool", xla::PjRtValueType(true)}, {"int64", xla::PjRtValueType(int64_t{123})}, {"int64_list", xla::PjRtValueType(std::vector<int64_t>({int64_t{1}, int64_t{2}}))}, {"float", xla::PjRtValueType(1.23f)}, }))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/pjrt_ifrt/pjrt_attribute_map_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/pjrt_ifrt/pjrt_attribute_map_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
cea0912d-1692-4ae8-ae3b-f70f75185623
cpp
tensorflow/tensorflow
basic_string_array
third_party/xla/xla/python/pjrt_ifrt/basic_string_array.cc
third_party/xla/xla/python/pjrt_ifrt/basic_string_array_test.cc
#include "xla/python/pjrt_ifrt/basic_string_array.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/hash/hash.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/pjrt/pjrt_layout.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { std::string BasicStringArrayLayout::Serialize() const { return std::string(); } std::string BasicStringArrayLayout::ToString() const { return "BasicStringArrayLayout: Dense, major-to-minor."; } bool BasicStringArrayLayout::operator==(const PjRtLayout& other) const { auto* other_basic_string_array_layout = dynamic_cast<const xla::ifrt::BasicStringArrayLayout*>(&other); if (other_basic_string_array_layout == nullptr) { return false; } return true; } void BasicStringArrayLayout::Hash(absl::HashState state) const { } char BasicStringArray::ID = 0; absl::StatusOr<tsl::RCReference<BasicStringArray>> BasicStringArray::Create( Client* client, Shape shape, std::shared_ptr<const Sharding> sharding, Future<Buffers> buffers, OnDoneWithBuffer on_done_with_buffer) { if (!buffers.IsValid()) { return absl::InvalidArgumentError("Got buffers_ future is invalid"); } auto buffers_promise = Future<Buffers>::CreatePromise(); auto buffers_future = Future<Buffers>(buffers_promise); auto ready_promise = Future<>::CreatePromise(); auto ready_future = Future<>(ready_promise); auto buffer_validator = [buffers_promise = std::move(buffers_promise), ready_promise = std::move(ready_promise), sharding = sharding](absl::StatusOr<Buffers> buffers) mutable { if (!buffers.ok()) { buffers_promise.Set(buffers.status()); ready_promise.Set(buffers.status()); return; } if (sharding->devices()->size() != (*buffers).size()) { auto error = absl::FailedPreconditionError(absl::StrCat( "Number of buffers: ", (*buffers).size(), " does not match the number of devices in sharding: ", sharding->devices()->size())); buffers_promise.Set(error); ready_promise.Set(error); return; } buffers_promise.Set(std::move(buffers)); ready_promise.Set(absl::OkStatus()); }; buffers.OnReady(std::move(buffer_validator)); return tsl::MakeRef<BasicStringArray>( client, std::move(shape), std::move(sharding), std::move(buffers_future), std::move(ready_future), std::move(on_done_with_buffer)); } BasicStringArray::BasicStringArray(Client* client, Shape shape, std::shared_ptr<const Sharding> sharding, Future<Buffers> buffers, Future<> ready_future, OnDoneWithBuffer on_done_with_buffer) : client_(client), shape_(std::move(shape)), sharding_(std::move(sharding)), buffers_(std::move(buffers)), ready_future_(std::move(ready_future)), on_done_with_buffer_(std::move(on_done_with_buffer)) {} BasicStringArray::~BasicStringArray() { DeleteInternal(); } Future<> BasicStringArray::Delete() { DeleteInternal(); return Future<>(absl::OkStatus()); } bool BasicStringArray::IsDeleted() const { absl::MutexLock lock(&mu_); return is_deleted_; } void BasicStringArray::DeleteInternal() { absl::MutexLock lock(&mu_); if (is_deleted_) { return; } if (on_done_with_buffer_) { std::move(on_done_with_buffer_)(); } is_deleted_ = true; } Future<> BasicStringArray::GetReadyFuture() const { DCHECK(this); absl::MutexLock lock(&mu_); if (is_deleted_) { return Future<>( absl::FailedPreconditionError("Array has already been deleted")); } return ready_future_; } absl::StatusOr<std::vector<tsl::RCReference<Array>>> BasicStringArray::DisassembleIntoSingleDeviceArrays( ArrayCopySemantics semantics) { DCHECK(this); absl::MutexLock lock(&mu_); if (is_deleted_) { return absl::FailedPreconditionError("Array has already been deleted"); } int num_shards = sharding_->devices()->size(); std::vector<Promise<Buffers>> buffer_promises; buffer_promises.reserve(num_shards); std::vector<Future<Buffers>> buffer_futures; buffer_futures.reserve(num_shards); struct PerShardBufferBackingStore { void CopyFrom(absl::Span<const absl::string_view> input_buffer) { strings.reserve(input_buffer.size()); string_views.reserve(input_buffer.size()); for (absl::string_view buf : input_buffer) { strings.push_back(std::string(buf.data(), buf.size())); string_views.push_back(strings.back()); } } std::vector<std::string> strings; std::vector<absl::string_view> string_views; }; std::vector<std::shared_ptr<PerShardBufferBackingStore>> per_shard_buffer_backing_stores; per_shard_buffer_backing_stores.reserve(num_shards); std::vector<OnDoneWithBuffer> on_done_with_buffer_callbacks; on_done_with_buffer_callbacks.reserve(num_shards); for (int i = 0; i < num_shards; ++i) { buffer_promises.push_back(Future<Buffers>::CreatePromise()); buffer_futures.push_back(Future<Buffers>(buffer_promises.back())); auto backing_store = std::make_shared<PerShardBufferBackingStore>(); per_shard_buffer_backing_stores.push_back(backing_store); on_done_with_buffer_callbacks.push_back( [backing_store = std::move(backing_store)]() {}); } buffers_.OnReady([buffer_promises = std::move(buffer_promises), per_shard_buffer_backing_stores = std::move(per_shard_buffer_backing_stores)]( absl::StatusOr<Buffers> buffers) mutable { if (!buffers.ok()) { for (auto& promise : buffer_promises) { promise.Set(buffers.status()); } per_shard_buffer_backing_stores.clear(); return; } auto num_shards = buffers->size(); for (int i = 0; i < num_shards; ++i) { per_shard_buffer_backing_stores[i]->CopyFrom((*buffers)[i]); Buffers buffers; buffers.push_back(per_shard_buffer_backing_stores[i]->string_views); buffer_promises[i].Set(std::move(buffers)); } }); TF_ASSIGN_OR_RETURN(auto shapes_and_shadings, sharding_->Disassemble(shape_)); std::vector<tsl::RCReference<Array>> arrays; arrays.reserve(num_shards); for (int i = 0; i < num_shards; ++i) { TF_ASSIGN_OR_RETURN(auto array, BasicStringArray::Create( client_, std::move(shapes_and_shadings[i].first), std::move(shapes_and_shadings[i].second), std::move(buffer_futures[i]), std::move(on_done_with_buffer_callbacks[i]))); arrays.push_back(array); } return arrays; } Future<> BasicStringArray::CopyToHostBuffer( void* data, std::optional<absl::Span<const int64_t>> byte_strides, ArrayCopySemantics semantics) { DCHECK(this); return Future<>(absl::UnimplementedError("Not implemented")); } absl::StatusOr<tsl::RCReference<Array>> BasicStringArray::Copy( std::optional<tsl::RCReference<xla::ifrt::DeviceList>> devices, std::optional<xla::ifrt::MemoryKind> memory_kind, ArrayCopySemantics semantics) { DCHECK(this); absl::MutexLock lock(&mu_); if (is_deleted_) { return absl::FailedPreconditionError("Array has already been deleted"); } TF_ASSIGN_OR_RETURN(auto new_sharding, sharding().WithDeviceAssignment( std::move(devices), memory_kind)); if (new_sharding->devices()->size() != sharding_->devices()->size()) { return absl::InvalidArgumentError(absl::StrCat( "Number of devices in new sharding: ", new_sharding->devices()->size(), " does not match the number of devices in the current sharding: ", sharding_->devices()->size())); } struct BufferBackingStore { void AddShardData(absl::Span<const absl::string_view> input_buffer) { auto& shard_strings = strings.emplace_back(); shard_strings.reserve(input_buffer.size()); auto& shard_string_views = string_views.emplace_back(); shard_string_views.reserve(input_buffer.size()); for (absl::string_view buf : input_buffer) { shard_strings.push_back(std::string(buf.data(), buf.size())); shard_string_views.push_back(shard_strings.back()); } } std::vector<std::vector<std::string>> strings; std::vector<std::vector<absl::string_view>> string_views; }; auto backing_store = std::make_shared<BufferBackingStore>(); auto on_done_with_buffer = [backing_store]() {}; auto buffers_promise = Future<Buffers>::CreatePromise(); auto buffers_future = Future<Buffers>(buffers_promise); auto copier = [backing_store = std::move(backing_store), buffers_promise = std::move(buffers_promise)]( absl::StatusOr<Buffers> input_buffers) mutable { if (!input_buffers.ok()) { buffers_promise.Set(input_buffers.status()); return; } Buffers buffers; buffers.reserve(input_buffers->size()); for (auto& input_buffer : *input_buffers) { backing_store->AddShardData(input_buffer); buffers.push_back(backing_store->string_views.back()); } buffers_promise.Set(std::move(buffers)); }; buffers_.OnReady(std::move(copier)); return BasicStringArray::Create(client_, shape_, std::move(new_sharding), std::move(buffers_future), std::move(on_done_with_buffer)); } absl::StatusOr<tsl::RCReference<Array>> BasicStringArray::FullyReplicatedShard( ArrayCopySemantics semantics) { absl::MutexLock lock(&mu_); if (is_deleted_) { return absl::FailedPreconditionError("Array has already been deleted"); } if (!sharding_->IsFullyReplicated()) { return absl::FailedPreconditionError("This array is not fully replicated"); } struct BufferBackingStore { void CopyFrom(absl::Span<const absl::string_view> input_buffer) { strings.reserve(input_buffer.size()); string_views.reserve(input_buffer.size()); for (absl::string_view buf : input_buffer) { strings.push_back(std::string(buf.data(), buf.size())); string_views.push_back(strings.back()); } } std::vector<std::string> strings; std::vector<absl::string_view> string_views; }; auto backing_store = std::make_shared<BufferBackingStore>(); auto on_done_with_buffer = [backing_store]() {}; auto buffers_promise = Future<Buffers>::CreatePromise(); auto buffers_future = Future<Buffers>(buffers_promise); auto copier = [backing_store = std::move(backing_store), buffers_promise = std::move(buffers_promise)]( absl::StatusOr<Buffers> input_buffers) mutable { if (!input_buffers.ok()) { buffers_promise.Set(input_buffers.status()); return; } auto& input_buffer = (*input_buffers)[0]; backing_store->CopyFrom(input_buffer); Buffers buffers; buffers.push_back(backing_store->string_views); buffers_promise.Set(std::move(buffers)); }; buffers_.OnReady(std::move(copier)); return BasicStringArray::Create( client_, shape_, SingleDeviceSharding::Create(sharding_->devices()->devices().front(), MemoryKind()), std::move(buffers_future), std::move(on_done_with_buffer)); } absl::StatusOr<std::unique_ptr<PjRtLayout>> BasicStringArray::layout() const { absl::MutexLock lock(&mu_); if (is_deleted_) { return absl::FailedPreconditionError("Array has already been deleted"); } return std::make_unique<BasicStringArrayLayout>(); } std::string BasicStringArray::DebugString() const { DCHECK(this); return absl::StrFormat( "BasicStringArray(shape=%s; sharding=%s; layout=major-to-minor-dense)", shape_.DebugString(), sharding_->DebugString()); } } }
#include "xla/python/pjrt_ifrt/basic_string_array.h" #include <cstdint> #include <memory> #include <numeric> #include <optional> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/notification.h" #include "absl/types/span.h" #include "llvm/Support/Casting.h" #include "xla/layout.h" #include "xla/pjrt/pjrt_future.h" #include "xla/pjrt/pjrt_layout.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/ifrt/test_util.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace ifrt { namespace { using ::testing::HasSubstr; using ::tsl::testing::StatusIs; absl::StatusOr<tsl::RCReference<BasicStringArray>> CreateTestArray( Client* client, Future<BasicStringArray::Buffers> buffers, BasicStringArray::OnDoneWithBuffer on_done_with_buffer) { Shape shape({1}); Device* device = client->addressable_devices().at(0); std::shared_ptr<const Sharding> sharding = SingleDeviceSharding::Create(device, MemoryKind()); return BasicStringArray::Create(client, shape, sharding, std::move(buffers), std::move(on_done_with_buffer)); } std::pair<BasicStringArray::Buffers, BasicStringArray::OnDoneWithBuffer> MakeBuffersAndOnDoneWithBuffer( absl::Span<const absl::string_view> input_strings) { BasicStringArray::Buffers buffers; auto string_holder = std::make_shared<std::vector<std::string>>(); string_holder->reserve(input_strings.size()); auto string_view_holder = std::make_shared<std::vector<absl::string_view>>(); string_view_holder->reserve(input_strings.size()); for (const auto str : input_strings) { string_holder->push_back(std::string(str)); } for (const auto& str : *string_holder) { string_view_holder->push_back(absl::string_view(str)); } buffers.push_back(*string_view_holder); BasicStringArray::OnDoneWithBuffer on_done_with_buffer = [string_holder = std::move(string_holder), string_view_holder = std::move(string_view_holder)]() {}; return std::make_pair(std::move(buffers), std::move(on_done_with_buffer)); } absl::StatusOr<std::pair<tsl::RCReference<BasicStringArray>, Promise<BasicStringArray::Buffers>>> CreateNonReadyTestArray( Client* client, Device* const device, BasicStringArray::OnDoneWithBuffer on_done_with_buffer) { auto buffers_promise = Future<BasicStringArray::Buffers>::CreatePromise(); auto buffers_future = Future<BasicStringArray::Buffers>(buffers_promise); Shape shape({1}); std::shared_ptr<const Sharding> sharding = SingleDeviceSharding::Create(device, MemoryKind()); TF_ASSIGN_OR_RETURN(auto array, BasicStringArray::Create(client, shape, sharding, std::move(buffers_future), std::move(on_done_with_buffer))); return std::make_pair(std::move(array), std::move(buffers_promise)); } TEST(BasicStringArrayLayoutTest, Serialize) { BasicStringArrayLayout layout; EXPECT_TRUE(layout.Serialize().empty()); } TEST(BasicStringArrayLayoutTest, ToString) { BasicStringArrayLayout layout; auto output_str = layout.ToString(); EXPECT_THAT(output_str, HasSubstr("major-to-minor")); } TEST(BasicStringArrayLayoutTest, Equality) { BasicStringArrayLayout layout_1; BasicStringArrayLayout layout_2; const PjRtLayout& layout_3 = layout_2; EXPECT_EQ(layout_1, layout_3); xla::PjRtXlaLayout layout_6((xla::Layout())); const PjRtLayout& layout_7 = layout_6; EXPECT_FALSE(layout_7 == layout_1); } TEST(BasicStringArrayTest, CreateSuccess) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); BasicStringArray::Buffers buffers; buffers.push_back({"abc", "def"}); TF_EXPECT_OK(CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(buffers), nullptr)); } TEST(BasicStringArrayTest, CreateFailureWithInvalidFuture) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); EXPECT_THAT(CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(), nullptr), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(BasicStringArrayTest, Destruction) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); BasicStringArray::Buffers buffers; buffers.push_back({"abc", "def"}); absl::Notification on_done_with_buffer_called; BasicStringArray::OnDoneWithBuffer on_done_with_buffer = [&on_done_with_buffer_called]() { on_done_with_buffer_called.Notify(); }; auto array_creation_status_promise = PjRtFuture<>::CreatePromise(); tsl::Env::Default()->SchedClosure(([&]() { auto array = CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(buffers), std::move(on_done_with_buffer)); array_creation_status_promise.Set(array.status()); })); TF_ASSERT_OK(Future<>(array_creation_status_promise).Await()); on_done_with_buffer_called.WaitForNotification(); } TEST(BasicStringArrayTest, InvalidBuffersAreHandledCorrectly) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto devices = client->addressable_devices(); ASSERT_GE(devices.size(), 1); auto shard0_data = std::make_shared<std::vector<absl::string_view>>(); shard0_data->push_back("abc"); auto shard1_data = std::make_shared<std::vector<absl::string_view>>(); shard1_data->push_back("def"); BasicStringArray::Buffers buffers; buffers.push_back(*shard0_data); buffers.push_back(*shard1_data); auto on_done_with_buffer = [shard0_data = std::move(shard0_data), shard1_data = std::move(shard1_data)]() {}; TF_ASSERT_OK_AND_ASSIGN( auto ret, CreateNonReadyTestArray(client.get(), devices[0], std::move(on_done_with_buffer))); auto array = ret.first; auto promise = ret.second; auto basic_string_array = llvm::dyn_cast<BasicStringArray>(array.get()); tsl::Env::Default()->SchedClosure([&]() { promise.Set(buffers); }); EXPECT_THAT(basic_string_array->GetReadyFuture().Await(), StatusIs(absl::StatusCode::kFailedPrecondition)); EXPECT_THAT(basic_string_array->buffers().Await(), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST(BasicStringArrayTest, Delete) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); BasicStringArray::Buffers buffers; buffers.push_back({"abc", "def"}); absl::Notification on_done_with_buffer_called; BasicStringArray::OnDoneWithBuffer on_done_with_buffer = [&on_done_with_buffer_called]() { on_done_with_buffer_called.Notify(); }; TF_ASSERT_OK_AND_ASSIGN( auto array, CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(buffers), std::move(on_done_with_buffer))); tsl::Env::Default()->SchedClosure([&]() { array->Delete(); }); on_done_with_buffer_called.WaitForNotification(); EXPECT_TRUE(array->IsDeleted()); } TEST(GetReadyFutureTest, SuccessCase) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto promise = Future<BasicStringArray::Buffers>::CreatePromise(); auto buffers_future = Future<BasicStringArray::Buffers>(promise); TF_ASSERT_OK_AND_ASSIGN(auto array, CreateTestArray(client.get(), buffers_future, nullptr)); auto ready_future = array->GetReadyFuture(); EXPECT_FALSE(ready_future.IsKnownReady()); BasicStringArray::Buffers buffers; buffers.push_back({"abc", "def"}); tsl::Env::Default()->SchedClosure([&]() { promise.Set(buffers); }); TF_EXPECT_OK(ready_future.Await()); } TEST(GetReadyFutureTest, FailureCases) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto promise = Future<BasicStringArray::Buffers>::CreatePromise(); auto buffers_future = Future<BasicStringArray::Buffers>(promise); TF_ASSERT_OK_AND_ASSIGN(auto array, CreateTestArray(client.get(), buffers_future, nullptr)); auto ready_future = array->GetReadyFuture(); EXPECT_FALSE(ready_future.IsKnownReady()); tsl::Env::Default()->SchedClosure( [&]() { promise.Set(absl::InternalError("injected error")); }); EXPECT_THAT(ready_future.Await(), StatusIs(absl::StatusCode::kInternal)); } TEST(MakeArrayFromHostBufferTest, SuccessCase) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); Shape shape({1}); Device* device = client->addressable_devices().at(0); std::shared_ptr<const Sharding> sharding = SingleDeviceSharding::Create(device, MemoryKind()); auto string_views = std::make_shared<std::vector<absl::string_view>>(); string_views->push_back("abc"); string_views->push_back("def"); const void* data = string_views->data(); auto on_done_with_host_buffer = [string_views = std::move(string_views)]() {}; TF_ASSERT_OK(client->MakeArrayFromHostBuffer( data, DType(DType::kString), shape, std::nullopt, std::move(sharding), Client::HostBufferSemantics::kImmutableOnlyDuringCall, std::move(on_done_with_host_buffer))); } TEST(MakeArrayFromHostBufferTest, FailureCases) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); Shape shape({1}); Device* device = client->addressable_devices().at(0); std::shared_ptr<const Sharding> single_device_sharding = SingleDeviceSharding::Create(device, MemoryKind()); auto string_views = std::make_shared<std::vector<absl::string_view>>(); string_views->push_back("abc"); string_views->push_back("def"); const void* data = string_views->data(); auto on_done_with_host_buffer = [string_views = std::move(string_views)]() {}; EXPECT_THAT( client->MakeArrayFromHostBuffer( data, DType(DType::kString), shape, std::optional<absl::Span<const int64_t>>({8}), single_device_sharding, Client::HostBufferSemantics::kImmutableOnlyDuringCall, on_done_with_host_buffer), StatusIs(absl::StatusCode::kInvalidArgument)); std::shared_ptr<const Sharding> opaque_sharding = OpaqueSharding::Create(BasicDeviceList::Create({device}), MemoryKind()); EXPECT_THAT(client->MakeArrayFromHostBuffer( data, DType(DType::kString), shape, std::nullopt, opaque_sharding, Client::HostBufferSemantics::kImmutableOnlyDuringCall, on_done_with_host_buffer), StatusIs(absl::StatusCode::kInvalidArgument)); for (Client::HostBufferSemantics host_buffer_semantics : {Client::HostBufferSemantics::kImmutableUntilTransferCompletes, Client::HostBufferSemantics::kImmutableZeroCopy, Client::HostBufferSemantics::kMutableZeroCopy}) { SCOPED_TRACE( absl::StrCat("host_buffer_semantics: ", host_buffer_semantics)); EXPECT_THAT(client->MakeArrayFromHostBuffer( data, DType(DType::kString), shape, std::nullopt, single_device_sharding, host_buffer_semantics, on_done_with_host_buffer), StatusIs(absl::StatusCode::kInvalidArgument)); } } absl::StatusOr<tsl::RCReference<Array>> MakeSingleDeviceStringTestArray( absl::Span<const std::string> contents, Client* client, Device* const device) { Shape shape({1}); std::shared_ptr<const Sharding> sharding = SingleDeviceSharding::Create(device, MemoryKind()); auto string_views = std::make_shared<std::vector<absl::string_view>>(); for (const auto& content : contents) { string_views->push_back(content); } const void* data = string_views->data(); auto on_done_with_host_buffer = [string_views = std::move(string_views)]() {}; return client->MakeArrayFromHostBuffer( data, DType(DType::kString), shape, std::nullopt, std::move(sharding), Client::HostBufferSemantics::kImmutableOnlyDuringCall, std::move(on_done_with_host_buffer)); } absl::StatusOr<tsl::RCReference<Array>> MakeSingleDeviceFloatTestArray( Client* client, Device* const device) { DType dtype(DType::kF32); Shape shape({2, 3}); auto data = std::make_unique<std::vector<float>>(6); std::iota(data->begin(), data->end(), 0); std::shared_ptr<const Sharding> sharding = SingleDeviceSharding::Create(device, MemoryKind()); return client->MakeArrayFromHostBuffer( data->data(), dtype, shape, std::nullopt, sharding, Client::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr); } absl::StatusOr<tsl::RCReference<Array>> MakeShardedStringTestArray( Client* client, absl::Span<const std::string> data, bool is_fully_replicated) { if (data.size() < 2) { return absl::InvalidArgumentError(absl::StrCat( "Input data has too few strings. Need at least 2. got: ", data.size())); } auto devices = client->addressable_devices(); if (devices.size() < 2) { return absl::InvalidArgumentError(absl::StrCat( "Test client has too few devices. Need 2, got:", devices.size())); } std::shared_ptr<const Sharding> sharding = ConcreteEvenSharding::Create( BasicDeviceList::Create({devices[0], devices[1]}), MemoryKind(), Shape({2, 1}), Shape({1}), is_fully_replicated); std::vector<tsl::RCReference<Array>> arrays; for (int i = 0; i < 2; ++i) { TF_ASSIGN_OR_RETURN(auto array, MakeSingleDeviceStringTestArray( {data[i]}, client, devices[i])); arrays.push_back(std::move(array)); } return client->AssembleArrayFromSingleDeviceArrays( Shape({2, 1}), std::move(sharding), absl::MakeSpan(arrays), ArrayCopySemantics::kAlwaysCopy); } TEST(AssembleArrayFromSingleDeviceArraysTest, SuccessWithReadySingleDeviceArrays) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); const std::vector<std::string> per_shard_contents({"shard 0", "shard 1"}); TF_ASSERT_OK_AND_ASSIGN( auto array, MakeShardedStringTestArray(client.get(), per_shard_contents, false)); auto basic_string_array = llvm::dyn_cast<BasicStringArray>(array.get()); ASSERT_NE(basic_string_array, nullptr); TF_ASSERT_OK_AND_ASSIGN(auto buffers, basic_string_array->buffers().Await()); EXPECT_EQ(buffers.size(), 2); for (int i = 0; i < buffers.size(); ++i) { SCOPED_TRACE(absl::StrCat("buffer #", i)); auto buffer = buffers[i]; EXPECT_THAT(buffer, testing::ElementsAre(per_shard_contents[i])); } } TEST(AssembleArrayFromSingleDeviceArraysTest, FailsWithNonStringArrays) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto devices = client->addressable_devices(); ASSERT_GE(devices.size(), 2); std::shared_ptr<const Sharding> opaque_sharding = OpaqueSharding::Create( BasicDeviceList::Create({devices[0], devices[1]}), MemoryKind()); std::vector<tsl::RCReference<Array>> arrays(2); TF_ASSERT_OK_AND_ASSIGN( arrays[0], MakeSingleDeviceFloatTestArray(client.get(), devices[0])); TF_ASSERT_OK_AND_ASSIGN( arrays[1], MakeSingleDeviceStringTestArray({"string_array_contents"}, client.get(), devices[1])); EXPECT_THAT(client->AssembleArrayFromSingleDeviceArrays( Shape({2}), std::move(opaque_sharding), absl::MakeSpan(arrays), ArrayCopySemantics::kAlwaysCopy), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(AssembleArrayFromSingleDeviceArraysTest, FailsWithNonSingleDeviceStringArrays) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto devices = client->addressable_devices(); ASSERT_GE(devices.size(), 2); std::shared_ptr<const Sharding> opaque_sharding = OpaqueSharding::Create( BasicDeviceList::Create({devices[0], devices[1]}), MemoryKind()); std::vector<tsl::RCReference<Array>> arrays(2); const std::vector<std::string> per_shard_contents({"abc", "def"}); TF_ASSERT_OK_AND_ASSIGN( arrays[0], MakeShardedStringTestArray(client.get(), per_shard_contents, false)); TF_ASSERT_OK_AND_ASSIGN( arrays[1], MakeSingleDeviceStringTestArray({"string_array_contents"}, client.get(), devices[1])); EXPECT_THAT(client->AssembleArrayFromSingleDeviceArrays( Shape({2}), std::move(opaque_sharding), absl::MakeSpan(arrays), ArrayCopySemantics::kAlwaysCopy), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(AssembleArrayFromSingleDeviceArraysTest, FromNonReadySingleDeviceArraysSuccess) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto devices = client->addressable_devices(); ASSERT_GE(devices.size(), 2); std::shared_ptr<const Sharding> opaque_sharding = OpaqueSharding::Create( BasicDeviceList::Create({devices[0], devices[1]}), MemoryKind()); std::vector<tsl::RCReference<Array>> arrays; std::vector<Promise<BasicStringArray::Buffers>> promises; arrays.reserve(2); auto buf_and_on_done_with_buffer = MakeBuffersAndOnDoneWithBuffer({"abc"}); auto buffers0 = buf_and_on_done_with_buffer.first; auto on_done_with_buffer0 = buf_and_on_done_with_buffer.second; TF_ASSERT_OK_AND_ASSIGN( auto ret, CreateNonReadyTestArray(client.get(), devices[0], std::move(on_done_with_buffer0))); arrays.push_back(std::move(ret.first)); promises.push_back(std::move(ret.second)); buf_and_on_done_with_buffer = MakeBuffersAndOnDoneWithBuffer({"def"}); auto buffers1 = buf_and_on_done_with_buffer.first; auto on_done_with_buffer1 = buf_and_on_done_with_buffer.second; TF_ASSERT_OK_AND_ASSIGN( ret, CreateNonReadyTestArray(client.get(), devices[1], std::move(on_done_with_buffer1))); arrays.push_back(std::move(ret.first)); promises.push_back(std::move(ret.second)); TF_ASSERT_OK_AND_ASSIGN( auto array, client->AssembleArrayFromSingleDeviceArrays( Shape({1}), std::move(opaque_sharding), absl::MakeSpan(arrays), ArrayCopySemantics::kAlwaysCopy)); tsl::Env::Default()->SchedClosure(([&]() mutable { promises[0].Set(buffers0); promises[1].Set(buffers1); })); auto basic_string_array = llvm::dyn_cast<BasicStringArray>(array.get()); ASSERT_NE(basic_string_array, nullptr); auto buffers_future = basic_string_array->buffers(); TF_ASSERT_OK_AND_ASSIGN(auto buffers, buffers_future.Await()); EXPECT_EQ(buffers.size(), 2); EXPECT_THAT(buffers[0], testing::ElementsAre("abc")); EXPECT_THAT(buffers[1], testing::ElementsAre("def")); } TEST(AssembleArrayFromSingleDeviceArraysTest, FromNonReadySingleDeviceArraysFailure) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto devices = client->addressable_devices(); ASSERT_GE(devices.size(), 2); std::shared_ptr<const Sharding> opaque_sharding = OpaqueSharding::Create( BasicDeviceList::Create({devices[0], devices[1]}), MemoryKind()); std::vector<tsl::RCReference<Array>> arrays; std::vector<Promise<BasicStringArray::Buffers>> promises; arrays.reserve(2); TF_ASSERT_OK_AND_ASSIGN( auto ret, CreateNonReadyTestArray(client.get(), devices[0], nullptr)); arrays.push_back(std::move(ret.first)); promises.push_back(std::move(ret.second)); TF_ASSERT_OK_AND_ASSIGN( ret, CreateNonReadyTestArray(client.get(), devices[1], nullptr)); arrays.push_back(std::move(ret.first)); promises.push_back(std::move(ret.second)); TF_ASSERT_OK_AND_ASSIGN( auto array, client->AssembleArrayFromSingleDeviceArrays( Shape({1}), std::move(opaque_sharding), absl::MakeSpan(arrays), ArrayCopySemantics::kAlwaysCopy)); absl::Notification done_readying_single_device_arrays; tsl::Env::Default()->SchedClosure(([&]() mutable { promises[0].Set(absl::InternalError("injected from the test")); promises[1].Set(absl::InternalError("injected from the test")); done_readying_single_device_arrays.Notify(); })); auto basic_string_array = llvm::dyn_cast<BasicStringArray>(array.get()); ASSERT_NE(basic_string_array, nullptr); auto buffers_future = basic_string_array->buffers(); EXPECT_THAT(buffers_future.Await(), StatusIs(absl::StatusCode::kInternal, HasSubstr("injected from the test"))); done_readying_single_device_arrays.WaitForNotification(); } TEST(DisassembleArrayIntoSingleDeviceArrays, SingleDeviceArrayDisassembleSuccess) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto [buffers, on_done_with_buffer] = MakeBuffersAndOnDoneWithBuffer({"abc"}); TF_ASSERT_OK_AND_ASSIGN( auto array, CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(buffers), std::move(on_done_with_buffer))); TF_ASSERT_OK_AND_ASSIGN(auto disassembled_arrays, array->DisassembleIntoSingleDeviceArrays( ArrayCopySemantics::kAlwaysCopy)); ASSERT_EQ(disassembled_arrays.size(), 1); auto basic_string_array = llvm::dyn_cast<BasicStringArray>(disassembled_arrays[0].get()); TF_ASSERT_OK_AND_ASSIGN(auto new_buffers, basic_string_array->buffers().Await()); ASSERT_EQ(buffers.size(), 1); EXPECT_THAT(buffers[0], testing::ElementsAre("abc")); } TEST(DisassembleArrayIntoSingleDeviceArrays, ShardedArrayDisassembleSuccess) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); const std::vector<std::string> per_shard_contents({"abc", "def"}); TF_ASSERT_OK_AND_ASSIGN( auto array, MakeShardedStringTestArray(client.get(), per_shard_contents, false)); TF_ASSERT_OK_AND_ASSIGN(auto disassembled_arrays, array->DisassembleIntoSingleDeviceArrays( ArrayCopySemantics::kAlwaysCopy)); ASSERT_EQ(disassembled_arrays.size(), 2); for (int i = 0; i < disassembled_arrays.size(); ++i) { SCOPED_TRACE(absl::StrCat("dissembled array: ", i)); auto basic_string_array = llvm::dyn_cast<BasicStringArray>(disassembled_arrays[i].get()); TF_ASSERT_OK_AND_ASSIGN(auto buffer, basic_string_array->buffers().Await()); ASSERT_EQ(buffer.size(), 1); EXPECT_THAT(buffer[0], testing::ElementsAre(per_shard_contents[i])); } } TEST(DisassembleArrayIntoSingleDeviceArrays, FailsIfTheArrayHasBeenDeleted) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto [buffers, on_done_with_buffer] = MakeBuffersAndOnDoneWithBuffer({"abc"}); TF_ASSERT_OK_AND_ASSIGN( auto array, CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(buffers), std::move(on_done_with_buffer))); array->Delete(); EXPECT_THAT( array->DisassembleIntoSingleDeviceArrays(ArrayCopySemantics::kAlwaysCopy), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST(CopyTest, SuccessSingleDeviceShardedArray) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto devices = client->addressable_devices(); ASSERT_GE(devices.size(), 2); auto [buffers, on_done_with_buffer] = MakeBuffersAndOnDoneWithBuffer({"abc"}); std::vector<tsl::RCReference<Array>> arrays; TF_ASSERT_OK_AND_ASSIGN( arrays.emplace_back(), CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(buffers), std::move(on_done_with_buffer))); TF_ASSERT_OK_AND_ASSIGN( auto new_arrays, client->CopyArrays(absl::MakeSpan(arrays), BasicDeviceList::Create({devices[1]}), MemoryKind(), ArrayCopySemantics::kAlwaysCopy)); auto new_basic_string_array = llvm::dyn_cast<BasicStringArray>(new_arrays[0].get()); TF_ASSERT_OK_AND_ASSIGN(auto new_buffers, new_basic_string_array->buffers().Await()); ASSERT_EQ(new_buffers.size(), 1); EXPECT_THAT(new_buffers[0], testing::ElementsAre("abc")); } TEST(CopyTest, SuccessMultiDeviceShardedArray) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto devices = client->addressable_devices(); ASSERT_GE(devices.size(), 4); const std::vector<std::string> per_shard_contents({"shard 0", "shard 1"}); std::vector<tsl::RCReference<Array>> arrays; TF_ASSERT_OK_AND_ASSIGN( arrays.emplace_back(), MakeShardedStringTestArray(client.get(), per_shard_contents, false)); TF_ASSERT_OK_AND_ASSIGN( auto new_arrays, client->CopyArrays(absl::MakeSpan(arrays), BasicDeviceList::Create({devices[2], devices[3]}), MemoryKind(), ArrayCopySemantics::kAlwaysCopy)); auto new_basic_string_array = llvm::dyn_cast<BasicStringArray>(new_arrays[0].get()); TF_ASSERT_OK_AND_ASSIGN(auto new_buffers, new_basic_string_array->buffers().Await()); ASSERT_EQ(new_buffers.size(), 2); EXPECT_THAT(new_buffers[0], testing::ElementsAre("shard 0")); EXPECT_THAT(new_buffers[1], testing::ElementsAre("shard 1")); } TEST(CopyTest, FailsAfterDeletion) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto devices = client->addressable_devices(); ASSERT_GE(devices.size(), 2); auto [buffers, on_done_with_buffer] = MakeBuffersAndOnDoneWithBuffer({"abc"}); std::vector<tsl::RCReference<Array>> arrays; TF_ASSERT_OK_AND_ASSIGN( arrays.emplace_back(), CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(buffers), std::move(on_done_with_buffer))); arrays[0]->Delete(); EXPECT_THAT(client->CopyArrays(absl::MakeSpan(arrays), BasicDeviceList::Create({devices[1]}), MemoryKind(), ArrayCopySemantics::kAlwaysCopy), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST(CopyTest, FailsWithDifferentNumbersDevices) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto devices = client->addressable_devices(); ASSERT_GE(devices.size(), 2); auto [buffers, on_done_with_buffer] = MakeBuffersAndOnDoneWithBuffer({"abc"}); std::vector<tsl::RCReference<Array>> arrays; TF_ASSERT_OK_AND_ASSIGN( arrays.emplace_back(), CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(buffers), std::move(on_done_with_buffer))); EXPECT_THAT( client->CopyArrays(absl::MakeSpan(arrays), BasicDeviceList::Create({devices[0], devices[1]}), MemoryKind(), ArrayCopySemantics::kAlwaysCopy), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(CopyTest, NonReadySourceArraySuccessfullyBecomesReadyAfterCopy) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto devices = client->addressable_devices(); ASSERT_GE(devices.size(), 2); auto buf_and_on_done_with_buffer = MakeBuffersAndOnDoneWithBuffer({"abc"}); auto buffers = buf_and_on_done_with_buffer.first; auto on_done_with_buffer = buf_and_on_done_with_buffer.second; TF_ASSERT_OK_AND_ASSIGN( auto ret, CreateNonReadyTestArray(client.get(), devices[0], std::move(on_done_with_buffer))); std::vector<tsl::RCReference<Array>> arrays; arrays.push_back(std::move(ret.first)); auto promise = std::move(ret.second); TF_ASSERT_OK(client->CopyArrays( absl::MakeSpan(arrays), BasicDeviceList::Create({devices[1]}), MemoryKind(), ArrayCopySemantics::kAlwaysCopy)); absl::Notification done_readying_single_device_arrays; tsl::Env::Default()->SchedClosure(([&]() mutable { promise.Set(std::move(buffers)); done_readying_single_device_arrays.Notify(); })); auto basic_string_array = llvm::dyn_cast<BasicStringArray>(arrays[0].get()); ASSERT_NE(basic_string_array, nullptr); TF_ASSERT_OK_AND_ASSIGN(auto new_buffers, basic_string_array->buffers().Await()); ASSERT_EQ(new_buffers.size(), 1); EXPECT_THAT(new_buffers[0], testing::ElementsAre("abc")); done_readying_single_device_arrays.WaitForNotification(); } TEST(CopyTest, NonReadySourceArrayFailsToBecomeReadyAfterCopy) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto devices = client->addressable_devices(); ASSERT_GE(devices.size(), 2); auto buf_and_on_done_with_buffer = MakeBuffersAndOnDoneWithBuffer({"abc"}); auto buffers = buf_and_on_done_with_buffer.first; auto on_done_with_buffer = buf_and_on_done_with_buffer.second; TF_ASSERT_OK_AND_ASSIGN( auto ret, CreateNonReadyTestArray(client.get(), devices[0], std::move(on_done_with_buffer))); std::vector<tsl::RCReference<Array>> arrays; arrays.push_back(std::move(ret.first)); auto promise = std::move(ret.second); TF_ASSERT_OK(client->CopyArrays( absl::MakeSpan(arrays), BasicDeviceList::Create({devices[1]}), MemoryKind(), ArrayCopySemantics::kAlwaysCopy)); absl::Notification done_readying_single_device_arrays; tsl::Env::Default()->SchedClosure(([&]() mutable { promise.Set(absl::InternalError("injected from the test")); done_readying_single_device_arrays.Notify(); })); auto basic_string_array = llvm::dyn_cast<BasicStringArray>(arrays[0].get()); ASSERT_NE(basic_string_array, nullptr); auto buffers_future = basic_string_array->buffers(); EXPECT_THAT(buffers_future.Await(), StatusIs(absl::StatusCode::kInternal, HasSubstr("injected from the test"))); done_readying_single_device_arrays.WaitForNotification(); } TEST(FullyReplicatedShardTest, SuccessSingleDeviceShardedArray) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); constexpr char kContents[] = "abc"; auto [buffers, on_done_with_buffer] = MakeBuffersAndOnDoneWithBuffer({kContents}); TF_ASSERT_OK_AND_ASSIGN( auto array, CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(buffers), std::move(on_done_with_buffer))); TF_ASSERT_OK_AND_ASSIGN( auto relicated_shard, array->FullyReplicatedShard(ArrayCopySemantics::kAlwaysCopy)); auto replicated_basic_string_array = llvm::dyn_cast<BasicStringArray>(relicated_shard.get()); TF_ASSERT_OK_AND_ASSIGN(auto replicated_buffers, replicated_basic_string_array->buffers().Await()); ASSERT_EQ(replicated_buffers.size(), 1); EXPECT_THAT(replicated_buffers[0], testing::ElementsAre(kContents)); } TEST(FullyReplicatedShardTest, SuccessMultiDeviceShardedArray) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); constexpr char kReplicatedContents[] = "abc"; const std::vector<std::string> per_shard_contents( {kReplicatedContents, kReplicatedContents}); TF_ASSERT_OK_AND_ASSIGN( auto array, MakeShardedStringTestArray(client.get(), per_shard_contents, true)); TF_ASSERT_OK_AND_ASSIGN( auto replicated_shard, array->FullyReplicatedShard(ArrayCopySemantics::kAlwaysCopy)); auto replicated_basic_string_array = llvm::dyn_cast<BasicStringArray>(replicated_shard.get()); TF_ASSERT_OK_AND_ASSIGN(auto replicated_buffers, replicated_basic_string_array->buffers().Await()); ASSERT_EQ(replicated_buffers.size(), 1); EXPECT_THAT(replicated_buffers[0], testing::ElementsAre(kReplicatedContents)); } TEST(FullyReplicatedShardTest, FailsWithNonFullyReplicatedArrays) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); const std::vector<std::string> per_shard_contents({"abc", "def"}); TF_ASSERT_OK_AND_ASSIGN( auto array, MakeShardedStringTestArray(client.get(), per_shard_contents, false)); EXPECT_THAT(array->FullyReplicatedShard(ArrayCopySemantics::kAlwaysCopy), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST(FullyReplicatedShardTest, FailsAfterDeletion) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); constexpr char kContents[] = "abc"; auto [buffers, on_done_with_buffer] = MakeBuffersAndOnDoneWithBuffer({kContents}); TF_ASSERT_OK_AND_ASSIGN( auto array, CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(buffers), std::move(on_done_with_buffer))); array->Delete(); EXPECT_THAT(array->FullyReplicatedShard(ArrayCopySemantics::kAlwaysCopy), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST(LayoutTest, Success) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); constexpr char kContents[] = "abc"; auto [buffers, on_done_with_buffer] = MakeBuffersAndOnDoneWithBuffer({kContents}); TF_ASSERT_OK_AND_ASSIGN( auto array, CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(std::move(buffers)), std::move(on_done_with_buffer))); TF_ASSERT_OK_AND_ASSIGN(auto layout, array->layout()); EXPECT_TRUE(layout->Serialize().empty()); } TEST(LayoutTest, FailsAfterDeletion) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); constexpr char kContents[] = "abc"; auto [buffers, on_done_with_buffer] = MakeBuffersAndOnDoneWithBuffer({kContents}); TF_ASSERT_OK_AND_ASSIGN( auto array, CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(buffers), std::move(on_done_with_buffer))); array->Delete(); EXPECT_THAT(array->layout(), StatusIs(absl::StatusCode::kFailedPrecondition)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/pjrt_ifrt/basic_string_array.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/pjrt_ifrt/basic_string_array_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d37fb101-53be-457f-b13d-5254be7b4fa6
cpp
tensorflow/tensorflow
xla_sharding_serdes
third_party/xla/xla/python/pjrt_ifrt/xla_sharding_serdes.cc
third_party/xla/xla/python/pjrt_ifrt/xla_sharding_serdes_test.cc
#include <memory> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ExtensibleRTTI.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/serdes.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/pjrt_ifrt/xla_sharding.h" #include "xla/python/pjrt_ifrt/xla_sharding.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { class HloShardingSerDes : public llvm::RTTIExtends<HloSharding, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::HloSharding"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { const HloSharding& sharding = llvm::cast<HloSharding>(serializable); HloShardingProto proto; *proto.mutable_devices() = sharding.devices()->ToProto(); if (sharding.memory_kind().memory_kind().has_value()) { proto.set_memory_kind(std::string(*sharding.memory_kind().memory_kind())); } *proto.mutable_xla_op_sharding() = sharding.xla_hlo_sharding().ToProto(); return proto.SerializeAsString(); } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions> options) override { const auto* deserialize_sharding_options = llvm::cast<DeserializeShardingOptions>(options.get()); HloShardingProto proto; if (!proto.ParseFromString(serialized)) { return absl::InvalidArgumentError( "Failed to parse serialized HloSharding"); } TF_ASSIGN_OR_RETURN( auto devices, DeviceList::FromProto(deserialize_sharding_options->lookup_device, proto.devices())); MemoryKind memory_kind; if (proto.has_memory_kind()) { memory_kind = MemoryKind(proto.memory_kind()); } TF_ASSIGN_OR_RETURN(auto xla_hlo_sharding, xla::HloSharding::FromProto(proto.xla_op_sharding())); return HloSharding::Create(std::move(devices), memory_kind, std::move(xla_hlo_sharding)); } static char ID; }; [[maybe_unused]] char HloShardingSerDes::ID = 0; bool register_hlo_sharding_serdes = ([] { RegisterSerDes<HloSharding>( std::make_unique<HloShardingSerDes>()); }(), true); } } }
#include <cstdint> #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/functional/bind_front.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/python/ifrt/client.h" #include "xla/python/ifrt/device_test_util.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/serdes.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/pjrt_ifrt/xla_sharding.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { using ::testing::ElementsAreArray; class XlaShardingSerDesTest : public test_util::DeviceTest {}; TEST_P(XlaShardingSerDesTest, HloShardingRoundTrip) { auto device_list = GetDevices({0, 1}); auto xla_hlo_sharding = xla::HloSharding::Tile(xla::TileAssignment({2, 1})); auto sharding = HloSharding::Create(device_list, MemoryKind("abc"), xla_hlo_sharding); TF_ASSERT_OK_AND_ASSIGN(auto serialized, Serialize(*sharding)); TF_ASSERT_OK_AND_ASSIGN( auto out_sharding, Deserialize<HloSharding>( serialized, std::make_unique<DeserializeShardingOptions>( absl::bind_front(&Client::LookupDevice, client())))); EXPECT_THAT(out_sharding->devices()->devices(), ElementsAreArray(sharding->devices()->devices())); EXPECT_EQ(out_sharding->xla_hlo_sharding(), sharding->xla_hlo_sharding()); } INSTANTIATE_TEST_SUITE_P(NumDevices, XlaShardingSerDesTest, testing::Values(test_util::DeviceTestParam{ .num_devices = 2, .num_addressable_devices = 2})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/pjrt_ifrt/xla_sharding_serdes.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/pjrt_ifrt/xla_sharding_serdes_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
134c7f20-751e-43a1-9c82-a54fe7d13ce3
cpp
tensorflow/tensorflow
xla_sharding
third_party/xla/xla/python/pjrt_ifrt/xla_sharding.cc
third_party/xla/xla/python/pjrt_ifrt/xla_sharding_test.cc
#include "xla/python/pjrt_ifrt/xla_sharding.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ExtensibleRTTI.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/index.h" #include "xla/python/ifrt/index_domain.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/shape_util.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { char XlaCompatibleSharding::ID = 0; char HloSharding::ID = 0; namespace { bool NextIndex(Index::Elements* index, absl::Span<const int64_t> limit) { DCHECK_LE(index->size(), limit.size()); for (int64_t i = index->size() - 1; i >= 0; --i) { ++(*index)[i]; if ((*index)[i] < limit[i]) { return true; } (*index)[i] = 0; } return false; } std::vector<IndexDomain> IndexDomainsSlowPath( const xla::HloSharding& hlo_sharding, const tsl::RCReference<DeviceList>& devices, const Shape& shape) { auto xla_shape = xla::ShapeUtil::MakeShapeWithDescendingLayout( xla::PrimitiveType::S32, shape.dims()); if (devices->size() > 8) { LOG_FIRST_N(WARNING, 1) << "Taking a slow path for HloSharding::IndexDomains(). This will not " "scale for a large number of devices."; } std::vector<IndexDomain> result; result.reserve(devices->size()); Index::Elements origin(shape.dims().size()); Shape::Dimensions shard_shape(shape.dims().size()); for (int device_idx = 0; device_idx < devices->size(); ++device_idx) { auto tile_offset = hlo_sharding.TileOffsetForDevice(xla_shape, device_idx); auto tile_limit = hlo_sharding.TileLimitForDevice(xla_shape, device_idx); for (int i = 0; i < shape.dims().size(); ++i) { origin[i] = tile_offset[i]; shard_shape[i] = tile_limit[i] - tile_offset[i]; } result.push_back(IndexDomain(Index(origin), Shape(shard_shape))); } return result; } MemoryKind CanonicalizeMemoryKindWithDevices( const MemoryKind& memory_kind, const tsl::RCReference<DeviceList>& devices) { CHECK(devices != nullptr); CHECK(!devices->devices().empty()); return CanonicalizeMemoryKind(memory_kind, devices->devices().front()); } } std::unique_ptr<HloSharding> HloSharding::Create( tsl::RCReference<DeviceList> devices, MemoryKind memory_kind, xla::HloSharding xla_hlo_sharding) { memory_kind = CanonicalizeMemoryKindWithDevices(memory_kind, devices); return std::unique_ptr<HloSharding>(new HloSharding( std::move(devices), memory_kind, std::move(xla_hlo_sharding))); } HloSharding::HloSharding(tsl::RCReference<DeviceList> devices, MemoryKind memory_kind, xla::HloSharding xla_hlo_sharding) : llvm::RTTIExtends<HloSharding, XlaCompatibleSharding>( std::move(devices), memory_kind, xla_hlo_sharding.IsReplicated()), xla_hlo_sharding_(std::move(xla_hlo_sharding)) {} absl::StatusOr<Shape> HloSharding::GetShardShape(const Shape& shape) const { if (xla_hlo_sharding_.IsTileMaximal() || xla_hlo_sharding_.IsManual() || xla_hlo_sharding_.IsUnknown()) { return shape; } if (xla_hlo_sharding_.TotalNumTiles() != devices_->size()) { return absl::InvalidArgumentError( absl::StrFormat("sharding's tile count and device count does not " "match: %d vs. %d; shape=%s, sharding=%s", xla_hlo_sharding_.TotalNumTiles(), devices_->size(), shape.DebugString(), xla_hlo_sharding_.ToString())); } if (shape.dims().size() != xla_hlo_sharding_.TiledDataRank()) { return InvalidArgument( "Numbers of dimensions don't match. From Shape %d vs from " "HloSharding %d", shape.dims().size(), xla_hlo_sharding_.TiledDataRank()); } const absl::Span<const int64_t> tile_assignment_dims = xla_hlo_sharding_.tile_assignment().dimensions(); Shape::Dimensions tile_shape; tile_shape.reserve(shape.dims().size()); for (int64_t i = 0; i < shape.dims().size(); ++i) { tile_shape.push_back( xla::CeilOfRatio(shape.dims()[i], tile_assignment_dims[i])); } return Shape(std::move(tile_shape)); } bool HloSharding::HasSamePartitioning(const Sharding& other) const { if (this == &other) { return true; } if (devices()->size() != other.devices()->size()) { return false; } const auto* other_hlo_sharding = llvm::dyn_cast<HloSharding>(&other); if (!other_hlo_sharding) { return false; } return xla_hlo_sharding_ == other_hlo_sharding->xla_hlo_sharding_; } absl::StatusOr<std::unique_ptr<Sharding>> HloSharding::WithDeviceAssignment( std::optional<tsl::RCReference<DeviceList>> devices, std::optional<MemoryKind> memory_kind) const { if (devices.has_value() && (*devices)->size() != devices_->size()) { return InvalidArgument( "HloSharding should have the same number of devices as the current " "sharding, but was asked to have %d devices", (*devices)->size()); } return Create(devices.value_or(devices_), memory_kind.value_or(memory_kind_), xla_hlo_sharding_); } absl::StatusOr<std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>>> HloSharding::Disassemble(const Shape& shape) const { bool is_even_sharding = false; if (xla_hlo_sharding_.IsReplicated() || xla_hlo_sharding_.IsTileMaximal()) { is_even_sharding = true; } else if (xla_hlo_sharding_.IsTiled()) { const int64_t tiled_data_rank = xla_hlo_sharding_.TiledDataRank(); if (shape.dims().size() != tiled_data_rank) { return absl::InvalidArgumentError(absl::StrFormat( "shape must have %d dimensions, but has %d dimensions: " "shape=%s, sharding=%s", tiled_data_rank, shape.dims().size(), shape.DebugString(), xla_hlo_sharding_.ToString())); } is_even_sharding = true; for (int i = 0; i < tiled_data_rank; ++i) { if (shape.dims()[i] % xla_hlo_sharding_.tile_assignment().dim(i) != 0) { is_even_sharding = false; break; } } } else if (xla_hlo_sharding_.IsManual()) { is_even_sharding = true; } const absl::Span<Device* const> devices = devices_->devices(); if (is_even_sharding) { TF_ASSIGN_OR_RETURN(xla::ifrt::Shape shard_shape, GetShardShape(shape)); std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>> result; result.reserve(devices_->size()); for (int i = 0; i < devices_->size(); ++i) { result.push_back({ shard_shape, SingleDeviceSharding::Create(devices[i], memory_kind_), }); } return result; } else { TF_ASSIGN_OR_RETURN(std::vector<IndexDomain> index_domains, IndexDomains(shape)); CHECK_EQ(index_domains.size(), devices_->size()); std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>> result; result.reserve(index_domains.size()); for (int i = 0; i < index_domains.size(); ++i) { result.push_back({ index_domains[i].shape(), SingleDeviceSharding::Create(devices[i], memory_kind_), }); } return result; } } absl::StatusOr< std::vector<std::pair<DynamicShape, std::shared_ptr<const Sharding>>>> HloSharding::Disassemble(const DynamicShape& dynamic_shape) const { return InvalidArgument( "HloSharding can only disassemble static shape, but was asked " "to disassemble dynamic shape %s", dynamic_shape.DebugString()); } absl::StatusOr<std::vector<IndexDomain>> HloSharding::IndexDomains( const Shape& shape) const { std::vector<IndexDomain> result; const int num_devices = devices_->size(); if (xla_hlo_sharding_.IsManual()) { return absl::InvalidArgumentError( "Manual sharding does not support IndexDomains"); } if (xla_hlo_sharding_.IsReplicated() || xla_hlo_sharding_.IsTileMaximal()) { IndexDomain element(shape); result.resize(num_devices, element); return result; } if (!xla_hlo_sharding_.IsTiled()) { return IndexDomainsSlowPath(xla_hlo_sharding_, devices_, shape); } for (const xla::OpSharding::Type subgroup_type : xla_hlo_sharding_.subgroup_types()) { if (subgroup_type != xla::OpSharding::REPLICATED) { return IndexDomainsSlowPath(xla_hlo_sharding_, devices_, shape); } } if (xla_hlo_sharding_.tile_assignment().num_elements() != num_devices) { return absl::InvalidArgumentError(absl::StrFormat( "sharding's tile_assignment_devices and device count does not " "match: %d vs. %d; shape=%s, sharding=%s", xla_hlo_sharding_.tile_assignment().num_elements(), num_devices, shape.DebugString(), DebugString())); } const int64_t tiled_data_rank = xla_hlo_sharding_.TiledDataRank(); if (shape.dims().size() != tiled_data_rank) { return absl::InvalidArgumentError( absl::StrFormat("shape must have %d dimensions, but has %d dimensions: " "shape=%s, sharding=%s", tiled_data_rank, shape.dims().size(), shape.DebugString(), xla_hlo_sharding_.ToString())); } TF_ASSIGN_OR_RETURN(Shape tile_shape, GetShardShape(shape)); const absl::Span<const int64_t> tile_shape_dims = tile_shape.dims(); const absl::Span<const int64_t> tile_assignment_dims = xla_hlo_sharding_.tile_assignment().dimensions(); const int64_t replication_dim = xla_hlo_sharding_.SubgroupReplicationDim(); int64_t num_replicas; if (replication_dim == -1) { num_replicas = 1; } else { num_replicas = tile_assignment_dims[replication_dim]; } Index::Elements unique_tile_index(shape.dims().size()); std::vector<Index::Elements> origins(num_devices); Index::Elements origin(shape.dims().size()); int64_t device_assignment_index = 0; do { for (int64_t i = 0; i < shape.dims().size(); ++i) { origin[i] = std::min(tile_shape_dims[i] * unique_tile_index[i], shape.dims()[i]); } for (int64_t i = 0; i < num_replicas; ++i) { CHECK_LT(device_assignment_index, num_devices); const int64_t device_id = xla_hlo_sharding_.tile_assignment() .array() .data()[device_assignment_index]; if (device_id < 0 || device_id >= num_devices) { return absl::InvalidArgumentError( absl::StrFormat("Out of range device id in device_assignment: %d; " "valid range: [0, %d)", device_id, num_devices)); } origins[device_id] = origin; ++device_assignment_index; } } while (NextIndex(&unique_tile_index, tile_assignment_dims)); result.reserve(num_devices); for (int device_idx = 0; device_idx < num_devices; ++device_idx) { Shape::Dimensions actual_tile_shape; actual_tile_shape.reserve(tile_shape_dims.size()); for (int i = 0; i < tile_shape_dims.size(); ++i) { actual_tile_shape.push_back(std::min( tile_shape_dims[i], shape.dims()[i] - origins[device_idx][i])); } result.push_back(IndexDomain(Index(origins[device_idx]), Shape(std::move(actual_tile_shape)))); } return result; } std::string HloSharding::DebugString() const { return absl::StrFormat("HloSharding(memory_kind: %v, hlo_sharding: %s)", memory_kind_, xla_hlo_sharding_.ToString()); } std::vector<IndexDomain> TEST_HloShardingIndexDomainsSlowPath( const HloSharding& hlo_sharding, const Shape& shape) { return IndexDomainsSlowPath(hlo_sharding.xla_hlo_sharding(), hlo_sharding.devices(), shape); } } }
#include "xla/python/pjrt_ifrt/xla_sharding.h" #include <memory> #include <optional> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/span.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/ir/tile_assignment.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/device_test_util.h" #include "xla/python/ifrt/index.h" #include "xla/python/ifrt/index_domain.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { using ::testing::ElementsAre; using ::testing::ElementsAreArray; using ::testing::HasSubstr; using ::testing::SizeIs; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; class HloShardingTest : public test_util::DeviceTest {}; TEST_P(HloShardingTest, CreateWithBadDeviceList) { auto xla_hlo_sharding = xla::HloSharding::Replicate(); EXPECT_DEATH(HloSharding::Create(tsl::RCReference<DeviceList>(), MemoryKind(), xla_hlo_sharding), ""); EXPECT_DEATH(HloSharding::Create(BasicDeviceList::Create({}), MemoryKind(), xla_hlo_sharding), ""); } TEST_P(HloShardingTest, IsFullyReplicated) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); { auto xla_hlo_sharding = xla::HloSharding::Replicate(); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); EXPECT_TRUE(sharding->IsFullyReplicated()); } { auto xla_hlo_sharding = xla::HloSharding::IotaTile({1, 6}); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); EXPECT_FALSE(sharding->IsFullyReplicated()); } { auto xla_hlo_sharding = xla::HloSharding::IotaTile({2, 3}); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); EXPECT_FALSE(sharding->IsFullyReplicated()); } } TEST_P(HloShardingTest, GetShardShape) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); auto xla_hlo_sharding = xla::HloSharding::IotaTile({2, 3}); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); EXPECT_THAT(sharding->GetShardShape(Shape({6, 6})), IsOkAndHolds(Shape({3, 2}))); EXPECT_THAT(sharding->GetShardShape(Shape({6, 6, 6})), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("Numbers of dimensions don't match. From " "Shape 3 vs from HloSharding 2"))); } TEST_P(HloShardingTest, HasSamePartitioning) { auto device_list0 = GetDevices({0, 1, 2, 3, 4, 5}); auto xla_hlo_sharding0 = xla::HloSharding::IotaTile({2, 3}); std::shared_ptr<const HloSharding> sharding0 = HloSharding::Create(device_list0, MemoryKind(), xla_hlo_sharding0); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding0)); { auto device_list1 = GetDevices({3, 4, 5, 0, 1, 2}); auto xla_hlo_sharding1 = xla::HloSharding::IotaTile({2, 3}); std::shared_ptr<const HloSharding> sharding1 = HloSharding::Create(device_list1, MemoryKind(), xla_hlo_sharding1); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({3, 4, 5}); auto xla_hlo_sharding1 = xla::HloSharding::IotaTile({3, 1}); std::shared_ptr<const HloSharding> sharding1 = HloSharding::Create(device_list1, MemoryKind(), xla_hlo_sharding1); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({3, 4, 5, 0, 1, 2}); auto xla_hlo_sharding1 = xla::HloSharding::IotaTile({3, 2}); std::shared_ptr<const HloSharding> sharding1 = HloSharding::Create(device_list1, MemoryKind(), xla_hlo_sharding1); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({0, 1, 2}); std::shared_ptr<const HloSharding> hlo_sharding0 = HloSharding::Create( device_list0, MemoryKind(), xla::HloSharding::Replicate()); std::shared_ptr<const HloSharding> hlo_sharding1 = HloSharding::Create( device_list1, MemoryKind(), xla::HloSharding::Replicate()); EXPECT_FALSE(hlo_sharding0->HasSamePartitioning(*hlo_sharding1)); } } TEST_P(HloShardingTest, WithDeviceAssignment) { auto device_list0 = GetDevices({0, 1, 2, 3, 4, 5}); auto xla_hlo_sharding0 = xla::HloSharding::IotaTile({2, 3}); std::shared_ptr<const HloSharding> sharding0 = HloSharding::Create(device_list0, MemoryKind(), xla_hlo_sharding0); { auto device_list1 = GetDevices({3, 4, 5, 0, 1, 2}); auto xla_hlo_sharding1 = xla::HloSharding::IotaTile({2, 3}); std::shared_ptr<const HloSharding> sharding1 = HloSharding::Create(device_list1, MemoryKind(), xla_hlo_sharding1); TF_ASSERT_OK_AND_ASSIGN( auto new_sharding, sharding0->WithDeviceAssignment(device_list1, std::nullopt)); EXPECT_EQ(*new_sharding, *sharding1); } { auto device_list1 = GetDevices({0, 1, 2}); EXPECT_THAT( sharding0->WithDeviceAssignment(device_list1, std::nullopt), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("HloSharding should have the same number of " "devices as the current sharding, but was asked to " "have 3 devices"))); } } TEST_P(HloShardingTest, IndexDomainsWithReplication) { auto device_list = GetDevices({0, 1}); auto xla_hlo_sharding = xla::HloSharding::Replicate(); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto index_domains, sharding->IndexDomains(shape)); EXPECT_THAT(index_domains, ElementsAre(IndexDomain(shape), IndexDomain(shape))); EXPECT_THAT( index_domains, ElementsAreArray(TEST_HloShardingIndexDomainsSlowPath(*sharding, shape))); } TEST_P(HloShardingTest, DisassembleWithReplication) { auto device_list = GetDevices({0, 1}); auto xla_hlo_sharding = xla::HloSharding::Replicate(); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(shape)); ASSERT_THAT(disassembled, SizeIs(2)); for (int i = 0; i < 2; ++i) { const auto& [shape, sharding] = disassembled[i]; EXPECT_EQ(shape, Shape({10, 20})); EXPECT_EQ(*sharding, *SingleDeviceSharding::Create( device_list->devices()[i], MemoryKind())); } } TEST_P(HloShardingTest, IndexDomainsWithTile) { auto device_list = GetDevices({0, 1}); auto xla_hlo_sharding = xla::HloSharding::Tile(xla::TileAssignment({2, 1})); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto index_domains, sharding->IndexDomains(shape)); EXPECT_THAT(index_domains, ElementsAre(IndexDomain(Index({0, 0}), Shape({5, 20})), IndexDomain(Index({5, 0}), Shape({5, 20})))); EXPECT_THAT( index_domains, ElementsAreArray(TEST_HloShardingIndexDomainsSlowPath(*sharding, shape))); } TEST_P(HloShardingTest, DisassembleWithTile) { auto device_list = GetDevices({0, 1}); auto xla_hlo_sharding = xla::HloSharding::Tile(xla::TileAssignment({2, 1})); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(shape)); ASSERT_THAT(disassembled, SizeIs(2)); for (int i = 0; i < 2; ++i) { const auto& [shape, sharding] = disassembled[i]; EXPECT_EQ(shape, Shape({5, 20})); EXPECT_EQ(*sharding, *SingleDeviceSharding::Create( device_list->devices()[i], MemoryKind())); } } TEST_P(HloShardingTest, IndexDomainsWithUnevenTile) { auto device_list = GetDevices({0, 1}); auto xla_hlo_sharding = xla::HloSharding::Tile(xla::TileAssignment({2, 1})); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({11, 20}); TF_ASSERT_OK_AND_ASSIGN(auto index_domains, sharding->IndexDomains(shape)); EXPECT_THAT(index_domains, ElementsAre(IndexDomain(Index({0, 0}), Shape({6, 20})), IndexDomain(Index({6, 0}), Shape({5, 20})))); EXPECT_THAT( index_domains, ElementsAreArray(TEST_HloShardingIndexDomainsSlowPath(*sharding, shape))); } TEST_P(HloShardingTest, DisassembleWithUnevenTile) { auto device_list = GetDevices({0, 1}); auto xla_hlo_sharding = xla::HloSharding::Tile(xla::TileAssignment({2, 1})); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({11, 20}); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(shape)); ASSERT_THAT(disassembled, SizeIs(2)); for (int i = 0; i < 2; ++i) { const auto& [shape, sharding] = disassembled[i]; if (i == 0) { EXPECT_EQ(shape, Shape({6, 20})); } else { EXPECT_EQ(shape, Shape({5, 20})); } EXPECT_EQ(*sharding, *SingleDeviceSharding::Create( device_list->devices()[i], MemoryKind())); } } TEST_P(HloShardingTest, IndexDomainsWithPartialTile) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); auto xla_hlo_sharding = xla::HloSharding::PartialTile(xla::TileAssignment({2, 1, 3})); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto index_domains, sharding->IndexDomains(shape)); EXPECT_THAT(index_domains, ElementsAre(IndexDomain(Index({0, 0}), Shape({5, 20})), IndexDomain(Index({0, 0}), Shape({5, 20})), IndexDomain(Index({0, 0}), Shape({5, 20})), IndexDomain(Index({5, 0}), Shape({5, 20})), IndexDomain(Index({5, 0}), Shape({5, 20})), IndexDomain(Index({5, 0}), Shape({5, 20})))); EXPECT_THAT( index_domains, ElementsAreArray(TEST_HloShardingIndexDomainsSlowPath(*sharding, shape))); } TEST_P(HloShardingTest, DisassembleWithPartialTile) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); auto xla_hlo_sharding = xla::HloSharding::PartialTile(xla::TileAssignment({2, 1, 3})); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(shape)); ASSERT_THAT(disassembled, SizeIs(6)); for (int i = 0; i < 6; ++i) { const auto& [shape, sharding] = disassembled[i]; EXPECT_EQ(shape, Shape({5, 20})); EXPECT_EQ(*sharding, *SingleDeviceSharding::Create( device_list->devices()[i], MemoryKind())); } } TEST_P(HloShardingTest, IndexDomainsWithSubgroupReplicated) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); auto xla_hlo_sharding = xla::HloSharding::Subgroup( xla::TileAssignment({2, 1, 3}), {xla::OpSharding::REPLICATED}); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto index_domains, sharding->IndexDomains(shape)); EXPECT_THAT(index_domains, ElementsAre(IndexDomain(Index({0, 0}), Shape({5, 20})), IndexDomain(Index({0, 0}), Shape({5, 20})), IndexDomain(Index({0, 0}), Shape({5, 20})), IndexDomain(Index({5, 0}), Shape({5, 20})), IndexDomain(Index({5, 0}), Shape({5, 20})), IndexDomain(Index({5, 0}), Shape({5, 20})))); EXPECT_THAT( index_domains, ElementsAreArray(TEST_HloShardingIndexDomainsSlowPath(*sharding, shape))); } TEST_P(HloShardingTest, DisassembleWithSubgroupReplicated) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); auto xla_hlo_sharding = xla::HloSharding::Subgroup( xla::TileAssignment({2, 1, 3}), {xla::OpSharding::REPLICATED}); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(shape)); ASSERT_THAT(disassembled, SizeIs(6)); for (int i = 0; i < 6; ++i) { const auto& [shape, sharding] = disassembled[i]; EXPECT_EQ(shape, Shape({5, 20})); EXPECT_EQ(*sharding, *SingleDeviceSharding::Create( device_list->devices()[i], MemoryKind())); } } TEST_P(HloShardingTest, IndexDomainsWithSubgroupMaximalSlowPath) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); auto xla_hlo_sharding = xla::HloSharding::Subgroup( xla::TileAssignment({2, 1, 3}), {xla::OpSharding::MAXIMAL}); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto index_domains, sharding->IndexDomains(shape)); EXPECT_THAT(index_domains, ElementsAre(IndexDomain(Index({0, 0}), Shape({5, 20})), IndexDomain(Index({0, 0}), Shape({5, 20})), IndexDomain(Index({0, 0}), Shape({5, 20})), IndexDomain(Index({5, 0}), Shape({5, 20})), IndexDomain(Index({5, 0}), Shape({5, 20})), IndexDomain(Index({5, 0}), Shape({5, 20})))); EXPECT_THAT( index_domains, ElementsAreArray(TEST_HloShardingIndexDomainsSlowPath(*sharding, shape))); } TEST_P(HloShardingTest, DisassembleWithSubgroupMaximalSlowPath) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); auto xla_hlo_sharding = xla::HloSharding::Subgroup( xla::TileAssignment({2, 1, 3}), {xla::OpSharding::MAXIMAL}); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(shape)); ASSERT_THAT(disassembled, SizeIs(6)); for (int i = 0; i < 6; ++i) { const auto& [shape, sharding] = disassembled[i]; EXPECT_EQ(shape, Shape({5, 20})); EXPECT_EQ(*sharding, *SingleDeviceSharding::Create( device_list->devices()[i], MemoryKind())); } } TEST_P(HloShardingTest, IndexDomainsWithManual) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); auto xla_hlo_sharding = xla::HloSharding::Manual(); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); EXPECT_THAT( sharding->IndexDomains(shape).status(), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("Manual sharding does not support IndexDomains"))); } TEST_P(HloShardingTest, DisassembleWithManual) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); auto xla_hlo_sharding = xla::HloSharding::Manual(); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(shape)); ASSERT_THAT(disassembled, SizeIs(6)); for (int i = 0; i < 6; ++i) { const auto& [shape, sharding] = disassembled[i]; EXPECT_EQ(shape, Shape({10, 20})); EXPECT_EQ(*sharding, *SingleDeviceSharding::Create( device_list->devices()[i], MemoryKind())); } } TEST_P(HloShardingTest, DisassembleFailsWithInvalidDeviceCount) { auto device_list = GetDevices({0}); auto xla_hlo_sharding = xla::HloSharding::Tile(xla::TileAssignment({2, 1})); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); EXPECT_THAT( sharding->Disassemble(shape), StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("sharding's tile count and device count does not match"))); } TEST_P(HloShardingTest, DisassembleFailsWithMismatchingShapeDimsSize) { auto device_list = GetDevices({0, 1}); auto xla_hlo_sharding = xla::HloSharding::Tile(xla::TileAssignment({2, 1})); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10}); EXPECT_THAT( sharding->Disassemble(shape), StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("shape must have 2 dimensions, but has 1 dimensions"))); } TEST_P(HloShardingTest, DisassembleFailsWithDynamicShape) { auto device_list = GetDevices({0, 1}); auto xla_hlo_sharding = xla::HloSharding::Tile(xla::TileAssignment({2})); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); TF_ASSERT_OK_AND_ASSIGN( DynamicShape dynamic_shape, DynamicShape::Create(Shape({10}), BoundedDynamicShapeTag({true}))); EXPECT_THAT(sharding->Disassemble(dynamic_shape), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("can only disassemble static shape"))); } INSTANTIATE_TEST_SUITE_P(NumDevices, HloShardingTest, testing::Values(test_util::DeviceTestParam{ .num_devices = 6, .num_addressable_devices = 4})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/pjrt_ifrt/xla_sharding.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/pjrt_ifrt/xla_sharding_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fc72ca28-1a60-4ddb-be48-f5dd209aa2ef
cpp
tensorflow/tensorflow
ifrt_backend
third_party/xla/xla/python/ifrt_proxy/server/ifrt_backend.cc
third_party/xla/xla/python/ifrt_proxy/server/ifrt_backend_test.cc
#include "xla/python/ifrt_proxy/server/ifrt_backend.h" #include <cstdint> #include <cstring> #include <functional> #include <memory> #include <numeric> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/cleanup/cleanup.h" #include "absl/container/flat_hash_map.h" #include "absl/functional/bind_front.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "llvm/Support/Casting.h" #include "xla/layout.h" #include "xla/pjrt/pjrt_layout.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/compiler.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/executable.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt/host_callback.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/program.h" #include "xla/python/ifrt/program_serdes.h" #include "xla/python/ifrt/remap_plan.h" #include "xla/python/ifrt/serdes.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/ifrt/value.h" #include "xla/python/ifrt_proxy/common/array_util.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "xla/python/ifrt_proxy/common/proto_util.h" #include "xla/python/ifrt_proxy/common/types.h" #include "xla/python/ifrt_proxy/common/types.pb.h" #include "xla/python/ifrt_proxy/server/host_buffer.h" #include "xla/python/ifrt_proxy/server/host_callback.h" #include "xla/python/ifrt_proxy/server/version.h" #include "xla/python/pjrt_ifrt/xla_compiler.h" #include "xla/status_macros.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/xla_data.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" namespace xla { namespace ifrt { namespace proxy { IfrtBackend::IfrtBackend(IfrtProxyVersion version, uint64_t session_id, std::shared_ptr<xla::ifrt::Client> ifrt_client, std::shared_ptr<HostBufferStore> host_buffer_store) : version_(std::move(version)), session_id_(session_id), client_(std::move(ifrt_client)), host_buffer_store_(std::move(host_buffer_store)), compile_thread_pool_( tsl::Env::Default(), []() { tsl::ThreadOptions options; options.stack_size = 240 * 1024; return options; }(), "IfrtBackend", 32) {} absl::StatusOr<std::unique_ptr<IfrtBackend>> IfrtBackend::Create( IfrtProxyVersion version, uint64_t session_id, std::shared_ptr<xla::ifrt::Client> ifrt_client, std::shared_ptr<HostBufferStore> host_buffer_store) { if (ifrt_client == nullptr) { return absl::InvalidArgumentError("ifrt_client cannot be a nullptr."); } if (version.protocol_version() < kServerMinVersion || version.protocol_version() > kServerMaxVersion) { return absl::FailedPreconditionError(absl::StrCat( "Protocol version ", version.protocol_version(), " is unsupported by IFRT Proxy server; supported versions: [", kServerMinVersion, ",", kServerMaxVersion, "]")); } return absl::WrapUnique<IfrtBackend>( new IfrtBackend(std::move(version), session_id, std::move(ifrt_client), std::move(host_buffer_store))); } IfrtBackend::~IfrtBackend() { { absl::MutexLock lock(&host_callback_queues_mutex_); for (const auto& [key, queue] : host_callback_queues_) { queue->Close(); } } absl::flat_hash_map<uint64_t, RemoteLoadedHostCallbackQueue::ExecutionRequest> host_callback_executions; { absl::MutexLock lock(&host_callback_executions_mutex_); host_callback_executions.swap(host_callback_executions_); } for (auto& [handle, execution_request] : host_callback_executions) { std::move(execution_request) .status.Set(absl::CancelledError("IFRT backend has shut down")); } { auto done = [this]() ABSL_SHARED_LOCKS_REQUIRED(in_flight_count_mutex_) { return in_flight_count_ == 0; }; absl::MutexLock lock(&in_flight_count_mutex_, absl::Condition(&done)); } } Future<BackendInterface::Response> IfrtBackend::Process( std::unique_ptr<IfrtRequest> request) { switch (request->request_case()) { case IfrtRequest::RequestCase::kInitRequest: return Future<Response>(HandleInit(std::move(request))); case IfrtRequest::RequestCase::kCheckFutureRequest: return HandleCheckFutureRequest(std::move(request)); case IfrtRequest::RequestCase::kMakeArrayFromHostBufferRequest: return Future<Response>( HandleMakeArrayFromHostBufferRequest(std::move(request))); case IfrtRequest::RequestCase::kAssembleArrayFromSingleDeviceArraysRequest: return Future<Response>( HandleAssembleArrayFromSingleDeviceArraysRequest(std::move(request))); case IfrtRequest::RequestCase::kRemapArraysRequest: return Future<Response>(HandleRemapArraysRequest(std::move(request))); case IfrtRequest::RequestCase::kCopyToHostBufferRequest: return HandleCopyToHostBufferRequest(std::move(request)); case IfrtRequest::RequestCase::kDisassembleIntoSingleDeviceArraysRequest: return Future<Response>( HandleDisassembleIntoSingleDeviceArraysRequest(std::move(request))); case IfrtRequest::RequestCase::kCheckValueReadyRequest: return Future<Response>(HandleCheckValueReadyRequest(std::move(request))); case IfrtRequest::RequestCase::kCopyArraysRequest: return Future<Response>(HandleCopyArraysRequest(std::move(request))); case IfrtRequest::RequestCase::kReshardRequest: return Future<Response>(HandleReshardRequest(std::move(request))); case IfrtRequest::RequestCase::kFullyReplicatedShardRequest: return Future<Response>( HandleFullyReplicatedShardRequest(std::move(request))); case IfrtRequest::RequestCase::kDeleteArrayRequest: return Future<Response>(HandleDeleteArrayRequest(std::move(request))); case IfrtRequest::RequestCase::kIsArrayDeletedRequest: return Future<Response>(HandleIsArrayDeletedRequest(std::move(request))); case IfrtRequest::RequestCase::kDestructArrayRequest: return Future<Response>(HandleDestructArrayRequest(std::move(request))); case IfrtRequest::RequestCase::kCompileRequest: return Future<Response>(HandleCompileRequest(std::move(request))); case IfrtRequest::RequestCase::kLoadedExecutableMetadataRequest: return HandleLoadedExecutableMetadataRequest(std::move(request)); case IfrtRequest::RequestCase::kLoadedExecutableExecuteRequest: return Future<Response>( HandleLoadedExecutableExecuteRequest(std::move(request))); case IfrtRequest::RequestCase::kLoadedExecutableDeleteRequest: return Future<Response>( HandleLoadedExecutableDeleteRequest(std::move(request))); case IfrtRequest::RequestCase::kLoadedExecutableIsDeletedRequest: return Future<Response>( HandleLoadedExecutableIsDeletedRequest(std::move(request))); case IfrtRequest::RequestCase::kLoadedExecutableDestructRequest: return Future<Response>( HandleLoadedExecutableDestructRequest(std::move(request))); case IfrtRequest::RequestCase::kLoadedHostCallbackPollRequest: return HandleLoadedHostCallbackPollRequest(std::move(request)); case IfrtRequest::RequestCase::kLoadedHostCallbackReturnRequest: return Future<Response>( HandleLoadedHostCallbackReturnRequest(std::move(request))); case IfrtRequest::RequestCase::kGetDefaultDeviceAssignmentRequest: return Future<Response>( HandleGetDefaultDeviceAssignmentRequest(std::move(request))); default: LOG(ERROR) << "Got unimplemented request type: " << request->DebugString(); return Future<Response>(absl::UnimplementedError(absl::StrCat( "Got unimplemented request type: ", request->request_case()))); } } uint64_t IfrtBackend::HandleGenerator::New() { absl::MutexLock lock(&mu_); return current_++; } void IfrtBackend::HandleGenerator::BulkNew(absl::Span<uint64_t> handles) { absl::MutexLock lock(&mu_); std::iota(handles.begin(), handles.end(), current_); current_ += handles.size(); } Future<BackendInterface::Response> IfrtBackend::AsyncExecute( std::function<absl::StatusOr<Response>()> handle_fn, tsl::thread::ThreadPool* thread_pool) { { absl::MutexLock lock(&in_flight_count_mutex_); ++in_flight_count_; } auto promise = Future<Response>::CreatePromise(); auto f = [this, promise, handle_fn = std::move(handle_fn)]() mutable { promise.Set(handle_fn()); { absl::MutexLock lock(&in_flight_count_mutex_); --in_flight_count_; } }; if (thread_pool != nullptr) { thread_pool->Schedule(std::move(f)); } else { tsl::Env::Default()->SchedClosure(std::move(f)); } return Future<Response>(std::move(promise)); } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleInit( std::unique_ptr<IfrtRequest> request) { std::unique_ptr<IfrtResponse> response = NewIfrtResponse(request->request_metadata().op_id()); auto* init_resp = response->mutable_init_response(); init_resp->set_session_id(session_id_); init_resp->set_platform_name(AsProtoStringData(client_->platform_name())); init_resp->set_platform_version( AsProtoStringData(client_->platform_version())); init_resp->set_platform_id(client_->platform_id()); init_resp->set_runtime_type(AsProtoStringData(client_->runtime_type())); init_resp->set_process_index(client_->process_index()); for (auto* device : client_->devices()) { InitResponse::Device* d = init_resp->add_devices(); d->set_id(device->Id().value()); d->set_device_kind(AsProtoStringData(device->Kind())); if (auto default_memory = device->DefaultMemory(); default_memory.ok()) { d->set_default_memory_id((*default_memory)->Id().value()); } for (const auto* memory : device->Memories()) { d->add_memory_ids(memory->Id().value()); } d->set_debug_string(AsProtoStringData(device->DebugString())); d->set_to_string(AsProtoStringData(device->ToString())); if (version_.protocol_version() <= 3) { for (const auto& [name, attr] : device->Attributes().map()) { TF_ASSIGN_OR_RETURN( (*d->mutable_deprecated_attributes())[name], std::visit( [&](const auto& attr) { return ToVariantProto(attr.value); }, attr)); } } else { *d->mutable_attributes() = device->Attributes().ToProto(); } } for (auto* addressable_device : client_->addressable_devices()) { init_resp->add_addressable_device_ids(addressable_device->Id().value()); } absl::flat_hash_map<int, xla::ifrt::Memory*> memories; for (auto* device : client_->devices()) { for (xla::ifrt::Memory* memory : device->Memories()) { const auto [it, inserted] = memories.insert({memory->Id().value(), memory}); if (!inserted && it->second != memory) { return absl::FailedPreconditionError(absl::StrCat( "Two memories cannot have the same id: ", memory->ToString(), " vs. ", it->second->ToString())); } } } for (const auto& [id, memory] : memories) { auto* m = init_resp->add_memories(); m->set_id(id); m->set_memory_space_kind(AsProtoStringData(*memory->Kind().memory_kind())); for (const auto* device : memory->Devices()) { m->add_device_ids(device->Id().value()); } m->set_debug_string(AsProtoStringData(memory->DebugString())); m->set_to_string(AsProtoStringData(memory->ToString())); } return response; } Future<BackendInterface::Response> IfrtBackend::HandleCheckFutureRequest( std::unique_ptr<IfrtRequest> request) { const CheckFutureRequest& check_request = request->check_future_request(); Future<> future; { absl::MutexLock lock(&futures_mutex_); const auto it = futures_.find(check_request.future_handle()); if (it == futures_.end()) { return Future<Response>(absl::NotFoundError(absl::StrCat( "Unknown future handle: ", check_request.future_handle()))); } future = std::move(it->second); futures_.erase(it); } auto promise = Future<BackendInterface::Response>::CreatePromise(); future.OnReady([op_id = request->request_metadata().op_id(), promise, hold = future](absl::Status status) mutable { if (!status.ok()) { promise.Set(std::move(status)); return; } auto ifrt_resp = NewIfrtResponse(op_id); ifrt_resp->mutable_check_future_response(); promise.Set(std::move(ifrt_resp)); }); return Future<BackendInterface::Response>(std::move(promise)); } Future<BackendInterface::Response> IfrtBackend::HandleCheckValueReadyRequest( std::unique_ptr<IfrtRequest> request) { std::vector<tsl::RCReference<xla::ifrt::Value>> values; values.reserve(request->check_value_ready_request().value_handles_size()); for (const auto& value_handle : request->check_value_ready_request().value_handles()) { auto array = GetArray(value_handle); if (!array.ok()) { return Future<Response>(array.status()); } values.push_back(*std::move(array)); } auto ifrt_response_promise = Future<BackendInterface::Response>::CreatePromise(); Future<BackendInterface::Response> ifrt_response_future( ifrt_response_promise); client_->GetReadyFuture(values).OnReady( [op_id = request->request_metadata().op_id(), promise = std::move(ifrt_response_promise)]( absl::Status status) mutable -> void { if (!status.ok()) { promise.Set(std::move(status)); return; } auto ifrt_response = NewIfrtResponse(op_id); ifrt_response->mutable_check_value_ready_response(); promise.Set(std::move(ifrt_response)); }); return ifrt_response_future; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleMakeArrayFromHostBufferRequest( std::unique_ptr<IfrtRequest> request) { if (!request->has_make_array_from_host_buffer_request()) { return absl::InternalError( "MakeArrayFromHostBuffer got an IfrtRequest with no " "MakeArrayFromHostBufferRequest in it."); } auto* make_array_request = request->mutable_make_array_from_host_buffer_request(); TF_ASSIGN_OR_RETURN( auto sharding, Sharding::FromProto( absl::bind_front(&Client::LookupDevice, client_.get()), make_array_request->sharding())); const auto byte_strides = [&]() -> std::optional<std::vector<int64_t>> { if (!make_array_request->has_byte_strides()) return std::nullopt; return FromByteStridesProto(make_array_request->byte_strides()); }(); TF_ASSIGN_OR_RETURN(const auto shape, Shape::FromProto(make_array_request->shape())); TF_ASSIGN_OR_RETURN(const auto dtype, DType::FromProto(make_array_request->dtype())); const uint64_t host_buffer_handle = make_array_request->host_buffer_handle(); absl::Cleanup cleanup = [&] { CHECK_OK(host_buffer_store_->Delete(host_buffer_handle)); }; TF_ASSIGN_OR_RETURN(std::shared_ptr<const std::string> host_buffer, host_buffer_store_->Lookup(host_buffer_handle)); std::move(cleanup).Invoke(); TF_ASSIGN_OR_RETURN(const auto mem_region, ArrayMemRegion::FromMinimalMemRegion( *host_buffer, dtype, shape, byte_strides)); TF_ASSIGN_OR_RETURN( auto array, client_->MakeArrayFromHostBuffer( mem_region.zeroth_element(), dtype, std::move(shape), std::move(byte_strides), std::move(sharding), xla::ifrt::Client::HostBufferSemantics:: kImmutableUntilTransferCompletes, [hold = std::move(host_buffer)]() mutable { hold.reset(); })); uint64_t handle = handle_generator_.New(); { absl::MutexLock lock(&arrays_mutex_); arrays_.insert({handle, std::move(array)}); } std::unique_ptr<IfrtResponse> response = NewIfrtResponse(request->request_metadata().op_id()); auto* make_array_resp = response->mutable_make_array_from_host_buffer_response(); make_array_resp->set_array_handle(handle); return response; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleAssembleArrayFromSingleDeviceArraysRequest( std::unique_ptr<IfrtRequest> request) { const auto& assemble_request = request->assemble_array_from_single_device_arrays_request(); std::vector<tsl::RCReference<xla::ifrt::Array>> arrays; { absl::ReaderMutexLock lock(&arrays_mutex_); for (const uint64_t handle : assemble_request.single_device_array_handles()) { TF_ASSIGN_OR_RETURN(arrays.emplace_back(), GetArrayLocked(handle)); } } TF_ASSIGN_OR_RETURN(Shape shape, Shape::FromProto(assemble_request.shape())); TF_ASSIGN_OR_RETURN( auto sharding, Sharding::FromProto( absl::bind_front(&Client::LookupDevice, client_.get()), assemble_request.sharding())); TF_ASSIGN_OR_RETURN(auto semantics, FromArrayCopySemanticsProto( assemble_request.copy_semantics())); TF_ASSIGN_OR_RETURN(auto array, client_->AssembleArrayFromSingleDeviceArrays( std::move(shape), std::move(sharding), absl::MakeSpan(arrays), semantics)); auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); uint64_t handle = handle_generator_.New(); ifrt_resp->mutable_assemble_array_from_single_device_arrays_response() ->set_array_handle(handle); { absl::MutexLock lock(&arrays_mutex_); arrays_.insert({handle, std::move(array)}); } return ifrt_resp; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleRemapArraysRequest(std::unique_ptr<IfrtRequest> request) { const auto& remap_request = request->remap_arrays_request(); std::vector<tsl::RCReference<xla::ifrt::Array>> arrays; { absl::ReaderMutexLock lock(&arrays_mutex_); for (const uint64_t handle : remap_request.array_handles()) { TF_ASSIGN_OR_RETURN(arrays.emplace_back(), GetArrayLocked(handle)); } } TF_ASSIGN_OR_RETURN( RemapPlan plan, RemapPlan::FromProto( absl::bind_front(&Client::LookupDevice, client_.get()), remap_request.plan())); TF_ASSIGN_OR_RETURN(auto semantics, FromArrayCopySemanticsProto( remap_request.copy_semantics())); TF_ASSIGN_OR_RETURN( auto out_arrays, client_->RemapArrays(plan, absl::MakeSpan(arrays), semantics)); int64_t num_arrays = out_arrays.size(); auto response = NewIfrtResponse(request->request_metadata().op_id()); auto* handles = response->mutable_remap_arrays_response()->mutable_array_handles(); handles->Reserve(num_arrays); uint64_t* handles_buf = handles->AddNAlreadyReserved(num_arrays); handle_generator_.BulkNew(absl::MakeSpan(handles_buf, num_arrays)); { absl::MutexLock lock(&arrays_mutex_); for (int i = 0; i < num_arrays; ++i) { arrays_.insert({handles_buf[i], out_arrays[i]}); } } return response; } Future<BackendInterface::Response> IfrtBackend::HandleCopyToHostBufferRequest( std::unique_ptr<IfrtRequest> request) { const CopyToHostBufferRequest& copy_to_host = request->copy_to_host_buffer_request(); auto array = GetArray(copy_to_host.array_handle()); if (!array.ok()) { return Future<Response>(array.status()); } std::optional<int> element_size = (*array)->dtype().byte_size(); if (element_size == std::nullopt) { return Future<Response>( absl::InternalError("Array element size is unknown.")); } int64_t host_buffer_size = (*array)->shape().num_elements() * element_size.value(); auto host_buffer = std::make_unique<std::string>(); host_buffer->resize(host_buffer_size); const auto byte_strides = [&]() -> std::optional<std::vector<int64_t>> { if (!copy_to_host.has_byte_strides()) { return std::nullopt; } return FromByteStridesProto(copy_to_host.byte_strides()); }(); const auto mem_region = ArrayMemRegion::FromMinimalMemRegion( absl::string_view(*host_buffer), (*array)->dtype(), (*array)->shape(), byte_strides); if (!mem_region.ok()) { return Future<Response>(mem_region.status()); } Future<> copy_status = (*array)->CopyToHostBuffer(mem_region->zeroth_element(), byte_strides, ArrayCopySemantics::kAlwaysCopy); auto resp_promise = Future<BackendInterface::Response>::CreatePromise(); Future<BackendInterface::Response> resp_future(resp_promise); auto on_ready = [this, op_id = request->request_metadata().op_id(), host_buffer = std::move(host_buffer), host_buffer_handle = copy_to_host.host_buffer_handle()]( absl::Status status) mutable -> absl::StatusOr<std::unique_ptr<IfrtResponse>> { TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR( host_buffer_store_->Store(host_buffer_handle, *std::move(host_buffer))); std::unique_ptr<IfrtResponse> response = NewIfrtResponse(op_id); response->mutable_copy_to_host_buffer_response(); return response; }; copy_status.OnReady( [promise = std::move(resp_promise), on_ready = std::move(on_ready)]( absl::Status status) mutable { promise.Set(on_ready(status)); }); return resp_future; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleDisassembleIntoSingleDeviceArraysRequest( std::unique_ptr<IfrtRequest> request) { TF_ASSIGN_OR_RETURN( auto array, GetArray(request->disassemble_into_single_device_arrays_request() .array_handle())); TF_ASSIGN_OR_RETURN(auto single_device_arrays, array->DisassembleIntoSingleDeviceArrays( xla::ifrt::ArrayCopySemantics::kAlwaysCopy)); int64_t num_arrays = single_device_arrays.size(); auto response = NewIfrtResponse(request->request_metadata().op_id()); auto* handles = response->mutable_disassemble_into_single_device_arrays_response() ->mutable_single_device_array_handles(); handles->Reserve(num_arrays); uint64_t* handles_buf = handles->AddNAlreadyReserved(num_arrays); handle_generator_.BulkNew(absl::MakeSpan(handles_buf, num_arrays)); { absl::MutexLock lock(&arrays_mutex_); for (int i = 0; i < num_arrays; ++i) { arrays_.insert({handles_buf[i], single_device_arrays[i]}); } } return response; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleCopyArraysRequest( std::unique_ptr<IfrtRequest> request) { const auto& copy_arrays_request = request->copy_arrays_request(); std::vector<tsl::RCReference<xla::ifrt::Array>> arrays; arrays.reserve(copy_arrays_request.array_handles_size()); for (const auto& handle : copy_arrays_request.array_handles()) { TF_ASSIGN_OR_RETURN(arrays.emplace_back(), GetArray(handle)); } std::optional<tsl::RCReference<DeviceList>> devices; if (!copy_arrays_request.device_ids().empty()) { BasicDeviceList::Devices ds; for (const auto& device_id : copy_arrays_request.device_ids()) { TF_ASSIGN_OR_RETURN(ds.emplace_back(), client_->LookupDevice(DeviceId(device_id))); } devices.emplace(BasicDeviceList::Create(std::move(ds))); } std::optional<MemoryKind> memory_kind; if (copy_arrays_request.has_memory_kind()) { if (const absl::string_view m = copy_arrays_request.memory_kind(); !m.empty()) { memory_kind.emplace(MemoryKind(m)); } else { memory_kind.emplace(MemoryKind()); } } TF_ASSIGN_OR_RETURN( auto semantics, FromArrayCopySemanticsProto(copy_arrays_request.copy_semantics())); TF_ASSIGN_OR_RETURN( auto new_arrays, client_->CopyArrays(absl::MakeSpan(arrays), std::move(devices), memory_kind, semantics)); std::unique_ptr<IfrtResponse> ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); auto* const copy_arrays_resp = ifrt_resp->mutable_copy_arrays_response(); std::vector<uint64_t> new_handles(new_arrays.size()); handle_generator_.BulkNew(absl::MakeSpan(new_handles)); { absl::MutexLock lock(&arrays_mutex_); for (int i = 0; i < new_arrays.size(); ++i) { arrays_.insert({new_handles[i], new_arrays[i]}); copy_arrays_resp->add_array_handles(new_handles[i]); } } return ifrt_resp; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleReshardRequest( std::unique_ptr<IfrtRequest> request) { const auto& reshard_request = request->reshard_request(); TF_ASSIGN_OR_RETURN(auto array, GetArray(reshard_request.array_handle())); TF_ASSIGN_OR_RETURN( std::shared_ptr<const Sharding> sharding, Sharding::FromProto( absl::bind_front(&Client::LookupDevice, client_.get()), reshard_request.sharding())); TF_ASSIGN_OR_RETURN(auto semantics, FromArrayCopySemanticsProto( reshard_request.copy_semantics())); if (!array->sharding().HasSamePartitioning(*sharding)) { return absl::InvalidArgumentError(absl::StrCat( "IFRT Proxy does not support resharding, but got ", array->sharding().DebugString(), " as the original sharding and ", sharding->DebugString(), " as the target sharding")); } TF_ASSIGN_OR_RETURN( auto copied_arrays, client_->CopyArrays(absl::MakeSpan(&array, 1), sharding->devices(), sharding->memory_kind(), semantics)); uint64_t resharded_array_handle = handle_generator_.New(); { absl::MutexLock lock(&arrays_mutex_); arrays_.insert({resharded_array_handle, std::move(copied_arrays[0])}); } auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); ifrt_resp->mutable_reshard_response()->set_array_handle( resharded_array_handle); return ifrt_resp; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleFullyReplicatedShardRequest( std::unique_ptr<IfrtRequest> request) { const auto& fully_replicated_shard_request = request->fully_replicated_shard_request(); TF_ASSIGN_OR_RETURN(auto array, GetArray(fully_replicated_shard_request.array_handle())); TF_ASSIGN_OR_RETURN(auto semantics, FromArrayCopySemanticsProto( fully_replicated_shard_request.copy_semantics())); TF_ASSIGN_OR_RETURN(auto new_array, array->FullyReplicatedShard(semantics)); uint64_t new_array_handle = handle_generator_.New(); { absl::MutexLock lock(&arrays_mutex_); arrays_.insert({new_array_handle, std::move(new_array)}); } auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); ifrt_resp->mutable_fully_replicated_shard_response()->set_array_handle( new_array_handle); return ifrt_resp; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleDeleteArrayRequest(std::unique_ptr<IfrtRequest> request) { std::vector<uint64_t> bad_handles; std::vector<Future<>> deletion_futures; auto delete_handle = [&](uint64_t handle) { auto array = GetArray(handle); if (array.ok()) { deletion_futures.push_back(array.value()->Delete()); } else { deletion_futures.push_back(Future<>(array.status())); } }; if (request->delete_array_request().has_array_handle_deprecated()) { delete_handle(request->delete_array_request().array_handle_deprecated()); } for (auto array_handle : request->delete_array_request().array_handle()) { delete_handle(array_handle); } uint64_t future_handle = handle_generator_.New(); { absl::MutexLock lock(&futures_mutex_); futures_.insert({future_handle, JoinFutures(deletion_futures)}); } auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); ifrt_resp->mutable_delete_array_response()->set_deletion_future_handle( future_handle); return ifrt_resp; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleIsArrayDeletedRequest(std::unique_ptr<IfrtRequest> request) { TF_ASSIGN_OR_RETURN( auto array, GetArray(request->is_array_deleted_request().array_handle())); auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); ifrt_resp->mutable_is_array_deleted_response()->set_deleted( array->IsDeleted()); return ifrt_resp; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleDestructArrayRequest(std::unique_ptr<IfrtRequest> request) { std::vector<uint64_t> bad_handles; { absl::MutexLock lock(&arrays_mutex_); for (const uint64_t array_handle : request->destruct_array_request().array_handle()) { if (!arrays_.erase(array_handle)) { bad_handles.push_back(array_handle); } } if (request->destruct_array_request().has_array_handle_deprecated()) { const uint64_t array_handle = request->destruct_array_request().array_handle_deprecated(); if (!arrays_.erase(array_handle)) { bad_handles.push_back(array_handle); } } } if (!bad_handles.empty()) { return absl::NotFoundError(absl::StrCat("Unknown array handle(s): ", absl::StrJoin(bad_handles, ","))); } auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); ifrt_resp->mutable_destruct_array_response(); return ifrt_resp; } Future<BackendInterface::Response> IfrtBackend::HandleCompileRequest( std::unique_ptr<IfrtRequest> request) { auto f = [this, request = std::shared_ptr<IfrtRequest>( std::move(request))]() -> absl::StatusOr<Response> { const CompileRequest& compile_request = request->compile_request(); auto deserialize_program_options = std::make_unique<DeserializeProgramOptions>( absl::bind_front(&Client::LookupDevice, client_.get())); TF_ASSIGN_OR_RETURN( auto program, Deserialize<xla::ifrt::Program>( compile_request.program(), std::move(deserialize_program_options))); TF_ASSIGN_OR_RETURN(auto options, Deserialize<xla::ifrt::CompileOptions>( compile_request.compile_options(), nullptr)); std::vector<std::shared_ptr<RemoteLoadedHostCallbackQueue>> host_callback_queues; { std::vector<tsl::RCReference<xla::ifrt::LoadedHostCallback>> loaded_host_callbacks; for (int i = 0; i < compile_request.host_callbacks_size(); ++i) { host_callback_queues.emplace_back( std::make_shared<RemoteLoadedHostCallbackQueue>()); TF_ASSIGN_OR_RETURN( loaded_host_callbacks.emplace_back(), RemoteLoadedHostCallback::CreateFromSerialized( client_.get(), compile_request.host_callbacks(i), host_callback_queues.back())); } if (!loaded_host_callbacks.empty()) { if (auto xla_options = llvm::dyn_cast<xla::ifrt::XlaCompileOptions>(options.get())) { xla_options->loaded_host_callbacks = std::move(loaded_host_callbacks); } else { return absl::UnimplementedError( "Host callbacks are supported only for XLA-like IFRT " "implementations using `xla::ifrt::XlaCompileOptions`"); } } } TF_ASSIGN_OR_RETURN(auto executable, client_->GetDefaultCompiler()->Compile( std::move(program), std::move(options))); std::unique_ptr<IfrtResponse> ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); auto* compile_resp = ifrt_resp->mutable_compile_response(); uint64_t handle = handle_generator_.New(); compile_resp->set_loaded_executable_handle(handle); std::vector<uint64_t> host_callback_handles(host_callback_queues.size()); handle_generator_.BulkNew(absl::MakeSpan(host_callback_handles)); compile_resp->mutable_loaded_host_callback_handles()->Add( host_callback_handles.begin(), host_callback_handles.end()); compile_resp->set_name(AsProtoStringData(executable->name())); compile_resp->set_num_devices(executable->num_devices()); for (const auto* device : executable->addressable_devices()) { compile_resp->add_addressable_device_ids(device->Id().value()); } auto fingerprint = executable->Fingerprint(); if (!fingerprint.ok()) { *compile_resp->mutable_fingerprint_error() = tsl::StatusToProto(fingerprint.status()); } else if (fingerprint->has_value()) { compile_resp->set_fingerprint_value(std::move(fingerprint)->value()); } { absl::MutexLock lock(&futures_mutex_); compile_resp->set_ready_future_handle(handle_generator_.New()); futures_.insert( {compile_resp->ready_future_handle(), executable->GetReadyFuture()}); } { absl::MutexLock lock(&executables_mutex_); executables_.insert({handle, std::move(executable)}); } { absl::MutexLock lock(&host_callback_queues_mutex_); for (int i = 0; i < host_callback_queues.size(); ++i) { host_callback_queues_.insert( {host_callback_handles[i], std::move(host_callback_queues[i])}); } } return ifrt_resp; }; return AsyncExecute(std::move(f), &compile_thread_pool_); } Future<BackendInterface::Response> IfrtBackend::HandleLoadedExecutableMetadataRequest( std::unique_ptr<IfrtRequest> request) { return AsyncExecute([this, request = std::shared_ptr<IfrtRequest>(std::move( request))]() -> absl::StatusOr<Response> { const uint64_t handle = request->loaded_executable_metadata_request() .loaded_executable_handle(); TF_ASSIGN_OR_RETURN(std::shared_ptr<xla::ifrt::LoadedExecutable> executable, GetLoadedExecutable(handle)); std::unique_ptr<IfrtResponse> ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); auto* metadata_resp = ifrt_resp->mutable_loaded_executable_metadata_response(); if (auto parameter_shardings = executable->GetParameterShardings(); parameter_shardings.has_value()) { metadata_resp->mutable_parameter_shardings()->mutable_shardings()->Add( parameter_shardings->begin(), parameter_shardings->end()); } if (auto output_shardings = executable->GetOutputShardings(); output_shardings.has_value()) { metadata_resp->mutable_output_shardings()->mutable_shardings()->Add( output_shardings->begin(), output_shardings->end()); } if (auto parameter_layouts = executable->GetParameterLayouts(); parameter_layouts.ok()) { auto* const layouts = metadata_resp->mutable_parameter_layouts_list()->mutable_layouts(); for (const std::unique_ptr<xla::PjRtLayout>& parameter_layout : *parameter_layouts) { const xla::PjRtXlaLayout* layout = dynamic_cast<const xla::PjRtXlaLayout*>(parameter_layout.get()); TF_RET_CHECK(layout != nullptr) << "IFRT proxy only supports PjRtXlaLayout, got a different " "subclass"; layouts->Add(layout->xla_layout().ToProto()); } } else { *metadata_resp->mutable_parameter_layouts_error() = tsl::StatusToProto(parameter_layouts.status()); } if (auto output_layouts = executable->GetOutputLayouts(); output_layouts.ok()) { auto* const layouts = metadata_resp->mutable_output_layouts_list()->mutable_layouts(); for (const std::unique_ptr<xla::PjRtLayout>& output_layout : *output_layouts) { const xla::PjRtXlaLayout* layout = dynamic_cast<const xla::PjRtXlaLayout*>(output_layout.get()); TF_RET_CHECK(layout != nullptr) << "IFRT proxy only supports PjRtXlaLayout, got a different " "subclass"; layouts->Add(layout->xla_layout().ToProto()); } } else { *metadata_resp->mutable_output_layouts_error() = tsl::StatusToProto(output_layouts.status()); } auto output_memory_kinds = executable->GetOutputMemoryKinds(); if (output_memory_kinds.ok()) { for (const auto& memory_kinds : *output_memory_kinds) { auto* const list = metadata_resp->mutable_output_memory_kinds() ->add_memory_kind_lists() ->mutable_memory_kinds(); list->Reserve(memory_kinds.size()); list->Add(memory_kinds.begin(), memory_kinds.end()); } } else { *metadata_resp->mutable_output_memory_kinds()->mutable_status() = tsl::StatusToProto(output_memory_kinds.status()); } return ifrt_resp; }); } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleLoadedExecutableExecuteRequest( std::unique_ptr<IfrtRequest> request) { const LoadedExecutableExecuteRequest& execute = request->loaded_executable_execute_request(); TF_ASSIGN_OR_RETURN(std::shared_ptr<xla::ifrt::LoadedExecutable> executable, GetLoadedExecutable(execute.loaded_executable_handle())); std::vector<tsl::RCReference<xla::ifrt::Array>> args; args.reserve(execute.args_handles_size()); { absl::ReaderMutexLock lock(&arrays_mutex_); for (const uint64_t handle : execute.args_handles()) { TF_ASSIGN_OR_RETURN(args.emplace_back(), GetArrayLocked(handle)); } } TF_ASSIGN_OR_RETURN(auto execute_options, xla::ifrt::LoadedExecutable::ExecuteOptions::FromProto( execute.execute_options())); if (version_.protocol_version() < 6) { execute_options.fill_status = true; } std::optional<tsl::RCReference<DeviceList>> devices; if (!execute.device_ids().empty()) { BasicDeviceList::Devices d; d.reserve(execute.device_ids_size()); for (const int32_t device_id : execute.device_ids()) { TF_ASSIGN_OR_RETURN(d.emplace_back(), client_->LookupDevice(DeviceId(device_id))); } devices = BasicDeviceList::Create(std::move(d)); } TF_ASSIGN_OR_RETURN( xla::ifrt::LoadedExecutable::ExecuteResult result, executable->Execute(absl::MakeSpan(args), execute_options, devices)); auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); LoadedExecutableExecuteResponse* execute_response = ifrt_resp->mutable_loaded_executable_execute_response(); if (version_.protocol_version() < 6 || execute_options.fill_status) { absl::MutexLock lock(&futures_mutex_); execute_response->set_status_handle(handle_generator_.New()); futures_.insert( {execute_response->status_handle(), std::move(result.status)}); } std::vector<uint64_t> output_handles(result.outputs.size()); handle_generator_.BulkNew(absl::MakeSpan(output_handles)); { absl::MutexLock lock(&arrays_mutex_); for (int i = 0; i < result.outputs.size(); ++i) { tsl::RCReference<xla::ifrt::Array>& array = result.outputs[i]; LoadedExecutableExecuteResponse::Output* output = execute_response->add_outputs(); *output->mutable_dtype() = array->dtype().ToProto(); *output->mutable_shape() = array->shape().ToProto(); TF_ASSIGN_OR_RETURN(*output->mutable_sharding(), array->sharding().ToProto()); output->set_array_handle(output_handles[i]); arrays_.insert({output_handles[i], std::move(array)}); } } return ifrt_resp; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleLoadedExecutableDeleteRequest( std::unique_ptr<IfrtRequest> request) { const auto& del = request->loaded_executable_delete_request(); TF_ASSIGN_OR_RETURN(std::shared_ptr<xla::ifrt::LoadedExecutable> executable, GetLoadedExecutable(del.loaded_executable_handle())); Future<> future = executable->Delete(); auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); auto* del_response = ifrt_resp->mutable_loaded_executable_delete_response(); { absl::MutexLock lock(&futures_mutex_); del_response->set_future_handle(handle_generator_.New()); futures_.insert({del_response->future_handle(), std::move(future)}); } return ifrt_resp; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleLoadedExecutableIsDeletedRequest( std::unique_ptr<IfrtRequest> request) { const auto& is_deleted = request->loaded_executable_is_deleted_request(); TF_ASSIGN_OR_RETURN( std::shared_ptr<xla::ifrt::LoadedExecutable> executable, GetLoadedExecutable(is_deleted.loaded_executable_handle())); auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); auto* is_deleted_response = ifrt_resp->mutable_loaded_executable_is_deleted_response(); is_deleted_response->set_is_deleted(executable->IsDeleted()); return ifrt_resp; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleLoadedExecutableDestructRequest( std::unique_ptr<IfrtRequest> request) { const auto& destruct = request->loaded_executable_destruct_request(); std::shared_ptr<xla::ifrt::LoadedExecutable> executable; { absl::MutexLock lock(&executables_mutex_); const auto it = executables_.find(destruct.loaded_executable_handle()); if (it == executables_.end()) { return absl::NotFoundError( absl::StrCat("Unknown loaded executable handle: ", destruct.loaded_executable_handle())); } executable = std::move(it->second); executables_.erase(it); } executable.reset(); auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); ifrt_resp->mutable_loaded_executable_destruct_response(); return ifrt_resp; } Future<BackendInterface::Response> IfrtBackend::HandleLoadedHostCallbackPollRequest( std::unique_ptr<IfrtRequest> request) { return AsyncExecute([this, request = std::shared_ptr<IfrtRequest>(std::move( request))]() -> absl::StatusOr<Response> { const auto& poll = request->loaded_host_callback_poll_request(); const uint64_t handle = poll.loaded_host_callback_handle(); std::shared_ptr<RemoteLoadedHostCallbackQueue> queue; { absl::MutexLock lock(&host_callback_queues_mutex_); auto it = host_callback_queues_.find(handle); if (it == host_callback_queues_.end()) { return absl::NotFoundError( absl::StrCat("Unknown loaded host callback handle: ", handle)); } queue = it->second; } auto execution_request = queue->Pop(); if (!execution_request.has_value()) { { absl::MutexLock lock(&host_callback_queues_mutex_); host_callback_queues_.erase(handle); } auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); ifrt_resp->mutable_loaded_host_callback_poll_response(); return ifrt_resp; } absl::Cleanup cleanup = [&] { std::move(execution_request) ->status.Set(absl::UnknownError( "Unable to enqueue the host callback execution")); }; { std::string buffer; for (const auto& operand : execution_request->operands) { buffer.append(static_cast<const char*>(operand.data), operand.size); } TF_RETURN_IF_ERROR(host_buffer_store_->Store( poll.operand_host_buffer_handle(), std::move(buffer))); } const uint64_t execution_handle = handle_generator_.New(); { absl::MutexLock lock(&host_callback_executions_mutex_); host_callback_executions_.insert( {execution_handle, *std::move(execution_request)}); } std::move(cleanup).Cancel(); auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); auto* poll_response = ifrt_resp->mutable_loaded_host_callback_poll_response(); poll_response->set_host_callback_execution_handle(execution_handle); return ifrt_resp; }); } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleLoadedHostCallbackReturnRequest( std::unique_ptr<IfrtRequest> request) { const auto& ret = request->loaded_host_callback_return_request(); RemoteLoadedHostCallbackQueue::ExecutionRequest execution_request; { absl::MutexLock lock(&host_callback_executions_mutex_); const auto it = host_callback_executions_.find(ret.host_callback_execution_handle()); if (it == host_callback_executions_.end()) { return absl::NotFoundError( absl::StrCat("Unknown host callback execution: ", ret.host_callback_execution_handle())); } execution_request = std::move(it->second); host_callback_executions_.erase(it); } absl::Cleanup cleanup = [&] { std::move(execution_request) .status.Set(absl::UnknownError( "Unable to process the host callback execution results")); }; absl::Status status; if (ret.has_result_host_buffer_handle()) { TF_ASSIGN_OR_RETURN( std::shared_ptr<const std::string> buffer, host_buffer_store_->Lookup(ret.result_host_buffer_handle())); absl::Cleanup cleanup = [&] { CHECK_OK(host_buffer_store_->Delete(ret.result_host_buffer_handle())); }; int64_t offset = 0; for (const auto& result : execution_request.results) { if (offset + result.size > buffer->size()) { return absl::InternalError( absl::StrCat("Buffer overflow while reading host callback " "execution results; ", "range: [", offset, ", ", offset + result.size, "), ", "buffer size: ", buffer->size())); } std::memcpy(result.data, buffer->data() + offset, result.size); offset += result.size; } if (offset != buffer->size()) { return absl::InternalError( absl::StrCat("Host callback execution did not consume the entire " "result buffer; size: ", buffer->size(), "; consumed: ", offset)); } } else { status = tsl::StatusFromProto(ret.error()); } std::move(execution_request).status.Set(std::move(status)); std::move(cleanup).Cancel(); auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); ifrt_resp->mutable_loaded_host_callback_return_response(); return ifrt_resp; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleGetDefaultDeviceAssignmentRequest( std::unique_ptr<IfrtRequest> request) { const auto& get_default_device_assignment_request = request->get_default_device_assignment_request(); TF_ASSIGN_OR_RETURN( auto assignment, client_->GetDefaultDeviceAssignment( get_default_device_assignment_request.num_replicas(), get_default_device_assignment_request.num_partitions())); auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); assignment.Serialize( ifrt_resp->mutable_get_default_device_assignment_response() ->mutable_device_assignment()); return ifrt_resp; } absl::StatusOr<std::shared_ptr<xla::ifrt::LoadedExecutable>> IfrtBackend::GetLoadedExecutable(uint64_t handle) { absl::MutexLock lock(&executables_mutex_); auto it = executables_.find(handle); if (it == executables_.end()) { return absl::NotFoundError( absl::StrCat("Unknown loaded executable handle: ", handle)); } return it->second; } absl::StatusOr<tsl::RCReference<xla::ifrt::Array>> IfrtBackend::GetArray( uint64_t array_handle) { absl::ReaderMutexLock lock(&arrays_mutex_); return GetArrayLocked(array_handle); } absl::StatusOr<tsl::RCReference<xla::ifrt::Array>> IfrtBackend::GetArrayLocked( uint64_t array_handle) { auto it = arrays_.find(array_handle); if (it == arrays_.end()) { return absl::NotFoundError( absl::StrCat("Unknown array handle: ", array_handle)); } return it->second; } } } }
#include "xla/python/ifrt_proxy/server/ifrt_backend.h" #include <sys/types.h> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ExtensibleRTTI.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/pjrt/host_callback.h" #include "xla/pjrt/pjrt_layout.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/attribute_map.h" #include "xla/python/ifrt/compiler.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/executable.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt/host_callback.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/mock.h" #include "xla/python/ifrt/program.h" #include "xla/python/ifrt/serdes.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "xla/python/ifrt_proxy/common/types.pb.h" #include "xla/python/ifrt_proxy/server/host_buffer.h" #include "xla/python/ifrt_proxy/server/host_callback.h" #include "xla/python/ifrt_proxy/server/version.h" #include "xla/python/pjrt_ifrt/xla_compiler.h" #include "xla/service/computation_placer.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/test.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/protobuf/status.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::testing::_; using ::testing::ByMove; using ::testing::DoAll; using ::testing::ElementsAreArray; using ::testing::HasSubstr; using ::testing::Invoke; using ::testing::Not; using ::testing::NotNull; using ::testing::Optional; using ::testing::Pointee; using ::testing::Return; using ::testing::ReturnRef; using ::testing::SizeIs; using ::testing::StrEq; using ::tsl::protobuf::TextFormat; using ::tsl::testing::IsOk; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; #if defined(PLATFORM_GOOGLE) using ::testing::EquivToProto; using ::testing::proto::IgnoringRepeatedFieldOrdering; using ::testing::proto::Partially; #endif constexpr uint64_t kSessionId = 12345; class IfrtBackendTest : public ::testing::TestWithParam<int> { protected: IfrtProxyVersion Version() { IfrtProxyVersion version; version.set_protocol_version(GetParam()); return version; } }; std::unique_ptr<IfrtRequest> NewIfrtRequest(uint64_t op_id) { auto ifrt_request = std::make_unique<IfrtRequest>(); auto* request_metadata = ifrt_request->mutable_request_metadata(); request_metadata->set_op_id(op_id); return ifrt_request; } TEST_P(IfrtBackendTest, CreationFailsWithNullIfrtClient) { EXPECT_THAT(IfrtBackend::Create(Version(), kSessionId, nullptr, nullptr), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST_P(IfrtBackendTest, SuccessfulCreation) { auto ifrt_client = std::make_unique<MockClient>(); ASSERT_THAT(IfrtBackend::Create(Version(), kSessionId, std::move(ifrt_client), std::make_shared<HostBufferStore>()), IsOk()); } TEST_P(IfrtBackendTest, ShutdownSucceeds) { auto ifrt_client = std::make_unique<MockClient>(); TF_ASSERT_OK_AND_ASSIGN( auto ifrt_backend, IfrtBackend::Create(Version(), kSessionId, std::move(ifrt_client), std::make_shared<HostBufferStore>())); } TEST_P(IfrtBackendTest, ProcessFailsWithNoRequestSet) { auto ifrt_client = std::make_unique<MockClient>(); TF_ASSERT_OK_AND_ASSIGN( auto ifrt_backend, IfrtBackend::Create(Version(), kSessionId, std::move(ifrt_client), std::make_shared<HostBufferStore>())); auto request = std::make_unique<IfrtRequest>(); auto process_status = ifrt_backend->Process(std::move(request)).Await(); ASSERT_THAT(process_status, Not(IsOk())); } INSTANTIATE_TEST_SUITE_P( IfrtBackendTestWithAllVersions, IfrtBackendTest, testing::Range(kServerMinVersion, kServerMaxVersion + 1), [](const testing::TestParamInfo<IfrtBackendTest::ParamType>& info) { return absl::StrCat(info.param); }); struct TestProgram : llvm::RTTIExtends<TestProgram, Program> { static char ID; }; [[maybe_unused]] char TestProgram::ID = 0; class TestProgramSerDes : public llvm::RTTIExtends<TestProgramSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::proxy::TestProgram"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { CHECK(llvm::isa<TestProgram>(serializable)); return ""; } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions> options) override { return std::make_unique<TestProgram>(); } static char ID; }; [[maybe_unused]] char TestProgramSerDes::ID = 0; struct TestCompileOptions : llvm::RTTIExtends<TestCompileOptions, CompileOptions> { static char ID; }; [[maybe_unused]] char TestCompileOptions::ID = 0; class TestCompileOptionsSerDes : public llvm::RTTIExtends<TestCompileOptionsSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::proxy::TestCompileOptions"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { CHECK(llvm::isa<TestCompileOptions>(serializable)); return ""; } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions> options) override { return std::make_unique<TestCompileOptions>(); } static char ID; }; [[maybe_unused]] char TestCompileOptionsSerDes::ID = 0; class IfrtBackendHandlerTest : public IfrtBackendTest { protected: static void SetUpTestSuite() { RegisterSerDes<TestProgram>(std::make_unique<TestProgramSerDes>()); RegisterSerDes<TestCompileOptions>( std::make_unique<TestCompileOptionsSerDes>()); } void SetUp() override { auto mock_client = std::make_unique<xla::ifrt::MockClient>(); std::vector<xla::ifrt::Device*> raw_device_ptrs; for (int i = 0; i < 2; ++i) { auto mock_device = std::make_unique<xla::ifrt::MockDevice>(); ON_CALL(*mock_device, Id()).WillByDefault(Return(DeviceId(i))); raw_device_ptrs.push_back(mock_device.get()); mock_devices_.push_back(std::move(mock_device)); } ON_CALL(*mock_client, devices()).WillByDefault(Return(raw_device_ptrs)); ON_CALL(*mock_client, LookupDevice(_)) .WillByDefault( Invoke([this](DeviceId id) -> absl::StatusOr<xla::ifrt::Device*> { if (id.value() < 0 || id.value() >= mock_devices_.size()) { return absl::NotFoundError( absl::StrCat("Unknown device id: ", id.value())); } return mock_devices_[id.value()].get(); })); mock_client_ = mock_client.get(); EXPECT_CALL(*mock_client_, GetDefaultCompiler) .WillRepeatedly(Return(&mock_compiler_)); host_buffer_store_ = std::make_shared<HostBufferStore>(); TF_ASSERT_OK_AND_ASSIGN( backend_, IfrtBackend::Create(Version(), kSessionId, std::move(mock_client), host_buffer_store_)); } absl::StatusOr<std::shared_ptr<IfrtResponse>> CallBackend( std::unique_ptr<IfrtRequest> request) { auto response_future = backend_->Process(std::move(request)); return std::move(response_future).Await(); } uint64_t NewOpId() { absl::MutexLock lock(&mu_); return current_op_id_++; } uint64_t NewHostBufferHandle() { return current_host_buffer_handle_++; } absl::StatusOr<uint64_t> MakeTestArray(tsl::RCReference<Array> mock_array) { EXPECT_CALL(*mock_client_, MakeArrayFromHostBuffer(_, _, _, _, _, _, _)) .WillOnce(Return(std::move(mock_array))); auto ifrt_request = NewIfrtRequest(NewOpId()); { const uint64_t host_buffer_handle = NewHostBufferHandle(); TF_RETURN_IF_ERROR( host_buffer_store_->Store(host_buffer_handle, "01234567")); auto* make_array = ifrt_request->mutable_make_array_from_host_buffer_request(); make_array->mutable_dtype()->set_kind(DTypeProto::KIND_S32); make_array->mutable_shape()->add_dims(2); make_array->set_host_buffer_handle(host_buffer_handle); TF_ASSIGN_OR_RETURN(auto* device, mock_client_->LookupDevice(DeviceId(1))); TF_ASSIGN_OR_RETURN( *make_array->mutable_sharding(), SingleDeviceSharding::Create(device, MemoryKind())->ToProto()); } TF_ASSIGN_OR_RETURN(auto make_array_response, CallBackend(std::move(ifrt_request))); TF_RETURN_IF_ERROR(tsl::StatusFromProto( make_array_response->response_metadata().status())); return make_array_response->make_array_from_host_buffer_response() .array_handle(); } absl::StatusOr<CompileResponse> CompileTestLoadedExecutable( absl::StatusOr<std::unique_ptr<LoadedExecutable>> loaded_executable) { auto request = NewIfrtRequest(NewOpId()); CompileRequest* compile_request = request->mutable_compile_request(); TestProgram program; TF_ASSIGN_OR_RETURN(*compile_request->mutable_program(), Serialize(program)); TestCompileOptions compile_options; TF_ASSIGN_OR_RETURN(*compile_request->mutable_compile_options(), Serialize(compile_options)); EXPECT_CALL(mock_compiler_, Compile(_, _)) .WillOnce(Return(ByMove(std::move(loaded_executable)))); TF_ASSIGN_OR_RETURN(std::shared_ptr<IfrtResponse> response, CallBackend(std::move(request))); TF_RET_CHECK(response->has_compile_response()); return response->compile_response(); } absl::Status CheckFuture(uint64_t handle) { if (handle == 0) { return absl::InternalError("Test error, future handle is 0"); } auto request = NewIfrtRequest(NewOpId()); request->mutable_check_future_request()->set_future_handle(handle); TF_ASSIGN_OR_RETURN(std::shared_ptr<IfrtResponse> response, CallBackend(std::move(request))); return tsl::StatusFromProto(response->response_metadata().status()); } xla::ifrt::MockClient* mock_client_; xla::ifrt::MockCompiler mock_compiler_; std::vector<std::unique_ptr<xla::ifrt::MockDevice>> mock_devices_; std::shared_ptr<HostBufferStore> host_buffer_store_; private: absl::Mutex mu_; uint64_t current_op_id_ ABSL_GUARDED_BY(mu_) = 1; uint64_t current_host_buffer_handle_ = 1; std::unique_ptr<IfrtBackend> backend_; }; #if defined(PLATFORM_GOOGLE) TEST_P(IfrtBackendHandlerTest, Init) { EXPECT_CALL(*mock_client_, platform_name()) .WillRepeatedly(Return("ifrt_backend")); EXPECT_CALL(*mock_client_, platform_version()).WillRepeatedly(Return("n/a")); EXPECT_CALL(*mock_client_, platform_id()).WillRepeatedly(Return(42)); EXPECT_CALL(*mock_client_, process_index()).WillRepeatedly(Return(1)); EXPECT_CALL(*mock_client_, runtime_type()) .WillRepeatedly(Return("ifrt-service")); std::vector<std::vector<xla::ifrt::Device*>> mock_memory_devices; mock_memory_devices.reserve(mock_devices_.size()); for (const auto& mock_device : mock_devices_) { mock_memory_devices.push_back({mock_device.get()}); } std::vector<MockMemory> mock_memories(mock_devices_.size()); MemoryKind kind("mock"); for (int i = 0; i < mock_memories.size(); ++i) { MockMemory& memory = mock_memories[i]; EXPECT_CALL(memory, Devices()) .WillRepeatedly(Return(mock_memory_devices[i])); EXPECT_CALL(memory, Id()).WillRepeatedly(Return(MemoryId(i))); EXPECT_CALL(memory, Kind()).WillRepeatedly(ReturnRef(kind)); } std::vector<std::vector<Memory*>> device_memories; device_memories.reserve(mock_devices_.size()); for (int i = 0; i < mock_devices_.size(); ++i) { device_memories.push_back({&mock_memories[i]}); } std::vector<AttributeMap> device_attributes; device_attributes.reserve(mock_devices_.size()); for (int i = 0; i < mock_devices_.size(); ++i) { AttributeMap::Map map; map.insert({"name", AttributeMap::StringValue(absl::StrCat("device", i))}); device_attributes.push_back(AttributeMap(std::move(map))); MockDevice& mock_device = *mock_devices_[i]; EXPECT_CALL(mock_device, Kind()).WillRepeatedly(Return("mock")); EXPECT_CALL(mock_device, Memories()) .WillRepeatedly(Return(device_memories[i])); EXPECT_CALL(mock_device, DefaultMemory()) .WillRepeatedly(Return(&mock_memories[i])); EXPECT_CALL(mock_device, Attributes()) .WillRepeatedly(ReturnRef(device_attributes[i])); } auto request = NewIfrtRequest(NewOpId()); request->mutable_init_request(); if (Version().protocol_version() <= 3) { EXPECT_THAT(CallBackend(std::move(request)), IsOkAndHolds(Pointee( Partially(IgnoringRepeatedFieldOrdering(EquivToProto(R"pb( init_response { session_id: 12345 platform_name: "ifrt_backend" platform_version: "n/a" platform_id: 42 process_index: 1 runtime_type: "ifrt-service" devices { id: 0 device_kind: "mock" default_memory_id: 0 memory_ids: [ 0 ] deprecated_attributes { key: "name" value { string_value: "device0" } } } devices { id: 1 device_kind: "mock" default_memory_id: 1 memory_ids: [ 1 ] deprecated_attributes { key: "name" value { string_value: "device1" } } } memories { id: 0 memory_space_kind: "mock" device_ids: [ 0 ] } memories { id: 1 memory_space_kind: "mock" device_ids: [ 1 ] } } )pb")))))); } else { EXPECT_THAT(CallBackend(std::move(request)), IsOkAndHolds(Pointee( Partially(IgnoringRepeatedFieldOrdering(EquivToProto(R"pb( init_response { session_id: 12345 platform_name: "ifrt_backend" platform_version: "n/a" platform_id: 42 process_index: 1 runtime_type: "ifrt-service" devices { id: 0 device_kind: "mock" default_memory_id: 0 memory_ids: [ 0 ] attributes { attributes { key: "name" value { string_value: "device0" } } } } devices { id: 1 device_kind: "mock" default_memory_id: 1 memory_ids: [ 1 ] attributes { attributes { key: "name" value { string_value: "device1" } } } } memories { id: 0 memory_space_kind: "mock" device_ids: [ 0 ] } memories { id: 1 memory_space_kind: "mock" device_ids: [ 1 ] } } )pb")))))); } } #endif TEST_P(IfrtBackendHandlerTest, DisassembleIntoSingleDeviceArraysSucceeds) { std::vector<tsl::RCReference<xla::ifrt::Array>> single_device_arrays; single_device_arrays.push_back(tsl::MakeRef<xla::ifrt::MockArray>()); single_device_arrays.push_back(tsl::MakeRef<xla::ifrt::MockArray>()); tsl::RCReference<xla::ifrt::MockArray> source_mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*source_mock_array, DisassembleIntoSingleDeviceArrays(_)) .WillOnce(Return(std::move(single_device_arrays))); TF_ASSERT_OK_AND_ASSIGN(auto array_handle, MakeTestArray(std::move(source_mock_array))); auto disassemble_request = NewIfrtRequest(NewOpId()); disassemble_request->mutable_disassemble_into_single_device_arrays_request() ->set_array_handle(array_handle); TF_ASSERT_OK_AND_ASSIGN(auto disassemble_response, CallBackend(std::move(disassemble_request))); EXPECT_THAT( disassemble_response->disassemble_into_single_device_arrays_response() .single_device_array_handles(), SizeIs(2)); } TEST_P(IfrtBackendHandlerTest, MakeArrayFromHostBufferSuccess) { const uint64_t kHostBufferHandle = 1234; ASSERT_THAT( host_buffer_store_->Store(kHostBufferHandle, std::string(480, 'a')), IsOk()); auto ifrt_request = NewIfrtRequest(NewOpId()); { auto* make_array = ifrt_request->mutable_make_array_from_host_buffer_request(); ASSERT_TRUE( TextFormat::ParseFromString(R"pb( dtype { kind: KIND_F64 } shape { dims: [ 5, 3, 4 ] } byte_strides { strides: [ 8, 40, 120 ] } )pb", make_array)); make_array->set_host_buffer_handle(kHostBufferHandle); TF_ASSERT_OK_AND_ASSIGN(auto* device, mock_client_->LookupDevice(DeviceId(1))); TF_ASSERT_OK_AND_ASSIGN( *make_array->mutable_sharding(), SingleDeviceSharding::Create(device, MemoryKind())->ToProto()); } const Shape expected_shape({5, 3, 4}); const std::vector<int64_t> expected_byte_strides_vec = {8, 40, 120}; const std::optional<absl::Span<const int64_t>> expected_byte_strides = absl::Span<const int64_t>(expected_byte_strides_vec); tsl::RCReference<xla::ifrt::MockArray> mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*mock_client_, MakeArrayFromHostBuffer(_, DType(DType::kF64), expected_shape, expected_byte_strides, _, _, _)) .WillOnce(Return(std::move(mock_array))); TF_ASSERT_OK_AND_ASSIGN(auto response, CallBackend(std::move(ifrt_request))); EXPECT_NE(response->make_array_from_host_buffer_response().array_handle(), 0); } TEST_P(IfrtBackendHandlerTest, AssembleArrayFromSingleDeviceArrays) { auto ifrt_request = NewIfrtRequest(NewOpId()); { ASSERT_TRUE(TextFormat::ParseFromString( R"pb( shape { dims: [ 2, 2 ] } copy_semantics: ARRAY_COPY_SEMANTICS_ALWAYS_COPY )pb", ifrt_request ->mutable_assemble_array_from_single_device_arrays_request())); TF_ASSERT_OK_AND_ASSIGN(auto* device, mock_client_->LookupDevice(DeviceId(1))); TF_ASSERT_OK_AND_ASSIGN( *ifrt_request ->mutable_assemble_array_from_single_device_arrays_request() ->mutable_sharding(), SingleDeviceSharding::Create(device, MemoryKind())->ToProto()); } std::vector<tsl::RCReference<xla::ifrt::MockArray>> single_device_arrays; for (int i = 0; i < 2; ++i) { auto array = tsl::MakeRef<xla::ifrt::MockArray>(); single_device_arrays.push_back(array); TF_ASSERT_OK_AND_ASSIGN(uint64_t array_handle, MakeTestArray(array)); ifrt_request->mutable_assemble_array_from_single_device_arrays_request() ->add_single_device_array_handles(array_handle); } tsl::RCReference<xla::ifrt::MockArray> result = tsl::MakeRef<xla::ifrt::MockArray>(); const Shape expected_shape({2, 2}); EXPECT_CALL(*mock_client_, AssembleArrayFromSingleDeviceArrays( expected_shape, _, ElementsAreArray(single_device_arrays), _)) .WillOnce(Return(std::move(result))); TF_ASSERT_OK_AND_ASSIGN(auto response, CallBackend(std::move(ifrt_request))); EXPECT_NE(response->assemble_array_from_single_device_arrays_response() .array_handle(), 0); } TEST_P(IfrtBackendHandlerTest, CopyToHostSuccess) { Shape shape({5, 3, 4}); tsl::RCReference<xla::ifrt::MockArray> array = tsl::MakeRef<xla::ifrt::MockArray>(); ON_CALL(*array, shape()).WillByDefault(ReturnRef(shape)); ON_CALL(*array, dtype()).WillByDefault(Return(DType(DType::kF64))); TF_ASSERT_OK_AND_ASSIGN(auto array_handle, MakeTestArray(array)); auto ifrt_request = NewIfrtRequest(NewOpId()); auto* copy_to_host = ifrt_request->mutable_copy_to_host_buffer_request(); ASSERT_TRUE( TextFormat::ParseFromString(R"pb( byte_strides { strides: [ 8, 40, 120 ] } )pb", copy_to_host)); copy_to_host->set_array_handle(array_handle); const uint64_t host_buffer_handle = NewHostBufferHandle(); copy_to_host->set_host_buffer_handle(host_buffer_handle); const std::vector<int64_t> expected_byte_strides_vec = {8, 40, 120}; const std::optional<absl::Span<const int64_t>> expected_byte_strides = absl::Span<const int64_t>(expected_byte_strides_vec); EXPECT_CALL(*array, CopyToHostBuffer(_, expected_byte_strides, _)) .WillOnce(Return(Future<>(absl::OkStatus()))); TF_ASSERT_OK_AND_ASSIGN(auto response, CallBackend(std::move(ifrt_request))); EXPECT_THAT(host_buffer_store_->Lookup(host_buffer_handle), IsOkAndHolds(Pointee(SizeIs(480)))); } TEST_P(IfrtBackendHandlerTest, CopyToHostFailsWithNonExistentArrays) { auto ifrt_request = NewIfrtRequest(NewOpId()); ASSERT_TRUE(TextFormat::ParseFromString( R"pb( byte_strides { strides: [ 8, 40, 120 ] } )pb", ifrt_request->mutable_copy_to_host_buffer_request())); ifrt_request->mutable_copy_to_host_buffer_request()->set_array_handle(0); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kNotFound)); } TEST_P(IfrtBackendHandlerTest, DisassembleIntoSingleArrayFailsWhenBackendRuntimeFails) { constexpr absl::string_view kDisassembleErrorMessage = "Some test-injected error message that is unlikely to match other error " "messages - 1234"; tsl::RCReference<xla::ifrt::MockArray> source_mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*source_mock_array, DisassembleIntoSingleDeviceArrays(_)) .WillOnce(Return(absl::UnknownError(kDisassembleErrorMessage))); TF_ASSERT_OK_AND_ASSIGN(auto array_handle, MakeTestArray(std::move(source_mock_array))); auto disassemble_request = NewIfrtRequest(NewOpId()); disassemble_request->mutable_disassemble_into_single_device_arrays_request() ->set_array_handle(array_handle); ASSERT_THAT( CallBackend(std::move(disassemble_request)), StatusIs(absl::StatusCode::kUnknown, StrEq(kDisassembleErrorMessage))); } MATCHER_P(EqualsDeviceList, device_list, "") { return *arg == *device_list; } TEST_P(IfrtBackendHandlerTest, CopyArrays) { std::vector<tsl::RCReference<xla::ifrt::Array>> src_arrays; src_arrays.push_back(tsl::MakeRef<xla::ifrt::MockArray>()); std::vector<tsl::RCReference<xla::ifrt::Array>> copied_arrays; copied_arrays.push_back(tsl::MakeRef<xla::ifrt::MockArray>()); BasicDeviceList::Devices ds; TF_ASSERT_OK_AND_ASSIGN(ds.emplace_back(), mock_client_->LookupDevice(DeviceId(1))); tsl::RCReference<DeviceList> devices = BasicDeviceList::Create(std::move(ds)); MemoryKind memory_kind("device"); EXPECT_CALL(*mock_client_, CopyArrays(ElementsAreArray(src_arrays), Optional(EqualsDeviceList(devices)), Optional(memory_kind), ArrayCopySemantics::kAlwaysCopy)) .WillOnce(Return( std::vector<tsl::RCReference<xla::ifrt::Array>>(copied_arrays))); auto ifrt_request = NewIfrtRequest(NewOpId()); auto* copy_arrays_request = ifrt_request->mutable_copy_arrays_request(); for (const auto& src_array : src_arrays) { TF_ASSERT_OK_AND_ASSIGN(auto src_array_handle, MakeTestArray(src_array)); copy_arrays_request->add_array_handles(src_array_handle); } for (const auto& device : devices->devices()) { copy_arrays_request->add_device_ids(device->Id().value()); } copy_arrays_request->set_memory_kind(std::string(*memory_kind.memory_kind())); copy_arrays_request->set_copy_semantics( proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY); TF_ASSERT_OK_AND_ASSIGN(auto response, CallBackend(std::move(ifrt_request))); EXPECT_THAT(tsl::StatusFromProto(response->response_metadata().status()), IsOk()); EXPECT_THAT(response->copy_arrays_response().array_handles(), SizeIs(copied_arrays.size())); } TEST_P(IfrtBackendHandlerTest, ReshardSuccess) { auto src_mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); TF_ASSERT_OK_AND_ASSIGN(auto* device, mock_client_->LookupDevice(DeviceId(0))); auto src_sharding = SingleDeviceSharding::Create(device, MemoryKind()); ON_CALL(*src_mock_array, sharding()).WillByDefault(ReturnRef(*src_sharding)); TF_ASSERT_OK_AND_ASSIGN(auto src_array_handle, MakeTestArray(std::move(src_mock_array))); auto copied_mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*mock_client_, CopyArrays(_, _, _, _)) .WillOnce(Return(std::vector<tsl::RCReference<xla::ifrt::Array>>( {copied_mock_array}))); auto ifrt_request = NewIfrtRequest(NewOpId()); auto* reshard_request = ifrt_request->mutable_reshard_request(); reshard_request->set_array_handle(src_array_handle); reshard_request->set_copy_semantics(proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY); TF_ASSERT_OK_AND_ASSIGN(auto* new_device, mock_client_->LookupDevice(DeviceId(1))); TF_ASSERT_OK_AND_ASSIGN( *ifrt_request->mutable_reshard_request()->mutable_sharding(), SingleDeviceSharding::Create(new_device, MemoryKind())->ToProto()); TF_ASSERT_OK_AND_ASSIGN(auto response, CallBackend(std::move(ifrt_request))); EXPECT_THAT(tsl::StatusFromProto(response->response_metadata().status()), IsOk()); EXPECT_NE(response->reshard_response().array_handle(), 0); } TEST_P(IfrtBackendHandlerTest, ReshardFailsWhenTheBackendFails) { auto mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); TF_ASSERT_OK_AND_ASSIGN(auto* device, mock_client_->LookupDevice(DeviceId(1))); auto sharding = SingleDeviceSharding::Create(device, MemoryKind()); ON_CALL(*mock_array, sharding()).WillByDefault(ReturnRef(*sharding)); TF_ASSERT_OK_AND_ASSIGN(auto array_handle, MakeTestArray(std::move(mock_array))); EXPECT_CALL(*mock_client_, CopyArrays(_, _, _, _)) .WillOnce(Return(absl::UnknownError("injected error"))); auto ifrt_request = NewIfrtRequest(NewOpId()); auto* reshard_request = ifrt_request->mutable_reshard_request(); reshard_request->set_array_handle(array_handle); reshard_request->set_copy_semantics(proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY); TF_ASSERT_OK_AND_ASSIGN(auto* new_device, mock_client_->LookupDevice(DeviceId(1))); TF_ASSERT_OK_AND_ASSIGN( *ifrt_request->mutable_reshard_request()->mutable_sharding(), SingleDeviceSharding::Create(new_device, MemoryKind())->ToProto()); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kUnknown, StrEq("injected error"))); } TEST_P(IfrtBackendHandlerTest, ReshardFailsWithNonExistentArrayHandle) { auto ifrt_request = NewIfrtRequest(NewOpId()); auto* reshard_request = ifrt_request->mutable_reshard_request(); reshard_request->set_array_handle(0); reshard_request->set_copy_semantics(proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY); reshard_request->mutable_sharding(); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kNotFound)); } TEST_P(IfrtBackendHandlerTest, FullyReplicatedShardSuccess) { auto fully_replicated_mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); auto resultant_array = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*fully_replicated_mock_array, FullyReplicatedShard(_)) .WillOnce(Return(std::move(resultant_array))); TF_ASSERT_OK_AND_ASSIGN( auto fully_replicated_array_handle, MakeTestArray(std::move(fully_replicated_mock_array))); auto ifrt_request = NewIfrtRequest(NewOpId()); auto* fully_replicated_shard_request = ifrt_request->mutable_fully_replicated_shard_request(); fully_replicated_shard_request->set_array_handle( fully_replicated_array_handle); fully_replicated_shard_request->set_copy_semantics( proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY); TF_ASSERT_OK_AND_ASSIGN(auto response, CallBackend(std::move(ifrt_request))); EXPECT_NE(response->fully_replicated_shard_response().array_handle(), 0); } TEST_P(IfrtBackendHandlerTest, FullyReplicatedShardFailure) { auto fully_replicated_mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*fully_replicated_mock_array, FullyReplicatedShard(_)) .WillOnce(Return(absl::UnknownError("injected error"))); TF_ASSERT_OK_AND_ASSIGN( auto fully_replicated_array_handle, MakeTestArray(std::move(fully_replicated_mock_array))); auto ifrt_request = NewIfrtRequest(NewOpId()); auto* fully_replicated_shard_request = ifrt_request->mutable_fully_replicated_shard_request(); fully_replicated_shard_request->set_array_handle( fully_replicated_array_handle); fully_replicated_shard_request->set_copy_semantics( proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kUnknown, StrEq("injected error"))); } TEST_P(IfrtBackendHandlerTest, FullyReplicatedShardFailsWithNonExistentArrayHandle) { auto ifrt_request = NewIfrtRequest(NewOpId()); auto* fully_replicated_shard_request = ifrt_request->mutable_fully_replicated_shard_request(); fully_replicated_shard_request->set_array_handle(0); fully_replicated_shard_request->set_copy_semantics( proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kNotFound)); } TEST_P(IfrtBackendHandlerTest, CheckArrayReadyRequestRelaysTheResultFromBackend) { auto mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); TF_ASSERT_OK_AND_ASSIGN(auto array_handle, MakeTestArray(std::move(mock_array))); EXPECT_CALL(*mock_client_, GetReadyFuture(_)) .WillOnce(Return(Future<>(absl::OkStatus()))) .WillOnce(Return(Future<>(absl::UnknownError("injected error")))); { auto ifrt_request = NewIfrtRequest(NewOpId()); ifrt_request->mutable_check_value_ready_request()->add_value_handles( array_handle); TF_ASSERT_OK_AND_ASSIGN(auto ifrt_response, CallBackend(std::move(ifrt_request))); EXPECT_THAT(ifrt_response->response_metadata().status().code(), tensorflow::error::OK); EXPECT_TRUE(ifrt_response->has_check_value_ready_response()); } { auto ifrt_request = NewIfrtRequest(NewOpId()); ifrt_request->mutable_check_value_ready_request()->add_value_handles( array_handle); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kUnknown, StrEq("injected error"))); } } TEST_P(IfrtBackendHandlerTest, CheckArrayReadyRequestFailsWithNonExistentArrayHandle) { auto ifrt_request = NewIfrtRequest(NewOpId()); ifrt_request->mutable_check_value_ready_request()->add_value_handles(0); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kNotFound)); } TEST_P(IfrtBackendHandlerTest, DeleteArraySuccess) { auto mock_array1 = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*mock_array1, Delete()) .WillOnce(Return(Future<>(absl::OkStatus()))); auto mock_array2 = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*mock_array2, Delete()) .WillOnce(Return(Future<>(absl::OkStatus()))); TF_ASSERT_OK_AND_ASSIGN(auto array_handle1, MakeTestArray(std::move(mock_array1))); TF_ASSERT_OK_AND_ASSIGN(auto array_handle2, MakeTestArray(std::move(mock_array2))); uint64_t op_id = NewOpId(); auto ifrt_request = NewIfrtRequest(op_id); ifrt_request->mutable_delete_array_request()->add_array_handle(array_handle1); ifrt_request->mutable_delete_array_request()->add_array_handle(array_handle2); TF_ASSERT_OK_AND_ASSIGN(auto resp, CallBackend(std::move(ifrt_request))); EXPECT_THAT(tsl::StatusFromProto(resp->response_metadata().status()), IsOk()); TF_EXPECT_OK( CheckFuture(resp->delete_array_response().deletion_future_handle())); } TEST_P(IfrtBackendHandlerTest, DeleteArrayReturnsFutureWithNonExistentArrayHandle) { auto mock_array1 = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*mock_array1, Delete()) .WillOnce(Return(Future<>(absl::OkStatus()))); TF_ASSERT_OK_AND_ASSIGN(auto real_handle, MakeTestArray(std::move(mock_array1))); constexpr int kBadHandle = 400; auto ifrt_request = NewIfrtRequest(NewOpId()); ifrt_request->mutable_delete_array_request()->add_array_handle(real_handle); ifrt_request->mutable_delete_array_request()->add_array_handle(kBadHandle); TF_ASSERT_OK_AND_ASSIGN(auto resp, CallBackend(std::move(ifrt_request))); EXPECT_THAT( CheckFuture(resp->delete_array_response().deletion_future_handle()), StatusIs(absl::StatusCode::kNotFound)); } TEST_P(IfrtBackendHandlerTest, IsDeleteRelaysBackTheReturnValueFromBackendRuntime) { tsl::RCReference<xla::ifrt::MockArray> mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*mock_array, IsDeleted()) .WillOnce(Return(true)) .WillOnce(Return(false)); TF_ASSERT_OK_AND_ASSIGN(auto array_handle, MakeTestArray(std::move(mock_array))); auto ifrt_request = NewIfrtRequest(NewOpId()); ifrt_request->mutable_is_array_deleted_request()->set_array_handle( array_handle); TF_ASSERT_OK_AND_ASSIGN(auto resp, CallBackend(std::move(ifrt_request))); EXPECT_TRUE(resp->is_array_deleted_response().deleted()); ifrt_request = NewIfrtRequest(NewOpId()); ifrt_request->mutable_is_array_deleted_request()->set_array_handle( array_handle); TF_ASSERT_OK_AND_ASSIGN(resp, CallBackend(std::move(ifrt_request))); EXPECT_FALSE(resp->is_array_deleted_response().deleted()); } TEST_P(IfrtBackendHandlerTest, IsDeleteFailsForNonExistentArrays) { auto ifrt_request = NewIfrtRequest(NewOpId()); ifrt_request->mutable_is_array_deleted_request()->set_array_handle(0); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kNotFound)); } TEST_P(IfrtBackendHandlerTest, DestructArrayTest) { tsl::RCReference<xla::ifrt::MockArray> mock_array1 = tsl::MakeRef<xla::ifrt::MockArray>(); TF_ASSERT_OK_AND_ASSIGN(auto array_handle1, MakeTestArray(std::move(mock_array1))); tsl::RCReference<xla::ifrt::MockArray> mock_array2 = tsl::MakeRef<xla::ifrt::MockArray>(); TF_ASSERT_OK_AND_ASSIGN(auto array_handle2, MakeTestArray(std::move(mock_array2))); auto ifrt_request = NewIfrtRequest(NewOpId()); ifrt_request->mutable_destruct_array_request()->add_array_handle( array_handle1); ifrt_request->mutable_destruct_array_request()->add_array_handle( array_handle2); TF_ASSERT_OK_AND_ASSIGN(auto ifrt_resp, CallBackend(std::move(ifrt_request))); EXPECT_TRUE(ifrt_resp->has_destruct_array_response()); ifrt_request = NewIfrtRequest(NewOpId()); ifrt_request->mutable_destruct_array_request()->add_array_handle( array_handle1); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kNotFound)); } #if defined(PLATFORM_GOOGLE) TEST_P(IfrtBackendHandlerTest, CompileSuccess) { std::vector<MockDevice> devices(4); for (int i = 0; i < 4; ++i) { EXPECT_CALL(devices[i], Id()).WillOnce(Return(DeviceId(i))); } std::vector<xla::ifrt::Device*> addressable_devices; for (int i = 0; i < 4; ++i) { addressable_devices.push_back(&devices[i]); } auto executable = std::make_unique<MockLoadedExecutable>(); EXPECT_CALL(*executable, name()).WillOnce(Return("executable_name")); EXPECT_CALL(*executable, num_devices()).WillOnce(Return(4)); EXPECT_CALL(*executable, addressable_devices()) .WillOnce(Return(absl::MakeSpan(addressable_devices))); EXPECT_CALL(*executable, Fingerprint()).WillOnce(Return("fingerprint")); EXPECT_CALL(*executable, GetReadyFuture()) .WillOnce(Return(Future<>(absl::OkStatus()))); ASSERT_OK_AND_ASSIGN(CompileResponse response, CompileTestLoadedExecutable(std::move(executable))); EXPECT_THAT(response, Partially(EquivToProto(R"pb( name: "executable_name" num_devices: 4 addressable_device_ids: [ 0, 1, 2, 3 ] fingerprint_value: "fingerprint" )pb"))); TF_EXPECT_OK(CheckFuture(response.ready_future_handle())); } #endif TEST_P(IfrtBackendHandlerTest, CompileFailure) { ASSERT_THAT( CompileTestLoadedExecutable(absl::InternalError("injected error")), StatusIs(absl::StatusCode::kInternal, StrEq("injected error"))); } #if defined(PLATFORM_GOOGLE) TEST_P(IfrtBackendHandlerTest, LoadedExecutableMetadata) { MockLoadedExecutable* executable; uint64_t handle; { auto e = std::make_unique<MockLoadedExecutable>(); executable = e.get(); TF_ASSERT_OK_AND_ASSIGN(CompileResponse response, CompileTestLoadedExecutable(std::move(e))); handle = response.loaded_executable_handle(); } { OpSharding op_sharding1; ASSERT_TRUE( TextFormat::ParseFromString(R"pb(type: REPLICATED)pb", &op_sharding1)); OpSharding op_sharding2; ASSERT_TRUE(TextFormat::ParseFromString( R"pb(type: OTHER tile_shape { element_type: BF16 dimensions: [ 2, 2 ] } tile_assignment_dimensions: [ 0, 1 ])pb", &op_sharding2)); EXPECT_CALL(*executable, GetParameterShardings()) .WillOnce(Return(std::vector<OpSharding>{op_sharding1, op_sharding2})); EXPECT_CALL(*executable, GetOutputShardings()) .WillOnce(Return(std::vector<OpSharding>{op_sharding1})); std::vector<std::unique_ptr<xla::PjRtLayout>> parameter_layouts; parameter_layouts.push_back(std::make_unique<xla::PjRtXlaLayout>( xla::LayoutUtil::MakeDescendingLayout(1))); parameter_layouts.push_back(std::make_unique<xla::PjRtXlaLayout>( xla::LayoutUtil::MakeDescendingLayout(2))); EXPECT_CALL(*executable, GetParameterLayouts()) .WillOnce(Return(std::move(parameter_layouts))); std::vector<std::unique_ptr<xla::PjRtLayout>> output_layouts; output_layouts.push_back(std::make_unique<xla::PjRtXlaLayout>( xla::LayoutUtil::MakeDescendingLayout(2))); EXPECT_CALL(*executable, GetOutputLayouts()) .WillOnce(Return(std::move(output_layouts))); EXPECT_CALL(*executable, GetOutputMemoryKinds()) .WillOnce(Return(std::vector<std::vector<absl::string_view>>{{"foo"}})); auto request = NewIfrtRequest(NewOpId()); LoadedExecutableMetadataRequest* metadata_request = request->mutable_loaded_executable_metadata_request(); metadata_request->set_loaded_executable_handle(handle); EXPECT_THAT(CallBackend(std::move(request)), IsOkAndHolds(Pointee(Partially(EquivToProto(R"pb( loaded_executable_metadata_response { parameter_shardings { shardings { type: REPLICATED } shardings { type: OTHER tile_shape { element_type: BF16 dimensions: [ 2, 2 ] } tile_assignment_dimensions: [ 0, 1 ] } } output_shardings { shardings { type: REPLICATED } } parameter_layouts_list { layouts { minor_to_major: 0 } layouts { minor_to_major: [ 1, 0 ] } } output_layouts_list { layouts { minor_to_major: [ 1, 0 ] } } output_memory_kinds { memory_kind_lists { memory_kinds: [ "foo" ] } } } )pb"))))); } { EXPECT_CALL(*executable, GetParameterShardings()) .WillOnce(Return(std::nullopt)); EXPECT_CALL(*executable, GetOutputShardings()) .WillOnce(Return(std::nullopt)); EXPECT_CALL(*executable, GetParameterLayouts()) .WillOnce(Return(absl::UnimplementedError("unimplemented"))); EXPECT_CALL(*executable, GetOutputLayouts()) .WillOnce(Return(absl::UnimplementedError("unimplemented"))); EXPECT_CALL(*executable, GetOutputMemoryKinds()) .WillOnce(Return(std::vector<std::vector<absl::string_view>>{})); auto request = NewIfrtRequest(NewOpId()); LoadedExecutableMetadataRequest* metadata_request = request->mutable_loaded_executable_metadata_request(); metadata_request->set_loaded_executable_handle(handle); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<IfrtResponse> response, CallBackend(std::move(request))); const auto& metadata_response = response->loaded_executable_metadata_response(); EXPECT_FALSE(metadata_response.has_parameter_shardings()); EXPECT_FALSE(metadata_response.has_output_shardings()); EXPECT_TRUE(metadata_response.has_parameter_layouts_error()); EXPECT_TRUE(metadata_response.has_output_layouts_error()); } } #endif #if defined(PLATFORM_GOOGLE) TEST_P(IfrtBackendHandlerTest, LoadedExecutableExecute) { MockDevice device; ON_CALL(device, Id()).WillByDefault(Return(DeviceId(0))); MockLoadedExecutable* executable; uint64_t handle; { auto e = std::make_unique<MockLoadedExecutable>(); executable = e.get(); TF_ASSERT_OK_AND_ASSIGN(CompileResponse response, CompileTestLoadedExecutable(std::move(e))); handle = response.loaded_executable_handle(); } constexpr int kNumArgs = 3; constexpr int kNumOutputs = 2; Shape shape({2, 2}); auto sharding = SingleDeviceSharding::Create(&device, MemoryKind()); auto make_array = [&]() { auto array = tsl::MakeRef<MockArray>(); ON_CALL(*array, dtype()).WillByDefault(Return(DType(DType::kF32))); ON_CALL(*array, shape()).WillByDefault(ReturnRef(shape)); ON_CALL(*array, sharding()).WillByDefault(ReturnRef(*sharding)); return array; }; std::vector<tsl::RCReference<Array>> outputs; outputs.reserve(kNumOutputs); for (int i = 0; i < kNumOutputs; ++i) { outputs.push_back(make_array()); } EXPECT_CALL(*executable, Execute(SizeIs(kNumArgs), _, _)) .WillOnce( Invoke([&](absl::Span<tsl::RCReference<Array>> args, const xla::ifrt::LoadedExecutable::ExecuteOptions& options, std::optional<tsl::RCReference<DeviceList>> devices) -> absl::StatusOr<LoadedExecutable::ExecuteResult> { return LoadedExecutable::ExecuteResult{ .status = Future<>(absl::InternalError("injected error")), .outputs = outputs, }; })); auto request = NewIfrtRequest(NewOpId()); LoadedExecutableExecuteRequest* execute_request = request->mutable_loaded_executable_execute_request(); for (int i = 0; i < kNumArgs; ++i) { TF_ASSERT_OK_AND_ASSIGN(uint64_t arg_handle, MakeTestArray(make_array())); execute_request->add_args_handles(arg_handle); } execute_request->set_loaded_executable_handle(handle); xla::ifrt::LoadedExecutable::ExecuteOptions execute_options; execute_options.fill_status = true; TF_ASSERT_OK_AND_ASSIGN(*execute_request->mutable_execute_options(), execute_options.ToProto()); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<IfrtResponse> response, CallBackend(std::move(request))); EXPECT_THAT(response, Pointee(Partially(EquivToProto(R"pb( loaded_executable_execute_response { outputs { dtype { kind: KIND_F32 } shape { dims: [ 2, 2 ] } } outputs { dtype { kind: KIND_F32 } shape { dims: [ 2, 2 ] } } } )pb")))); TF_ASSERT_OK_AND_ASSIGN( auto sharding_proto, SingleDeviceSharding::Create(&device, MemoryKind())->ToProto()); for (const auto& output : response->loaded_executable_execute_response().outputs()) { EXPECT_THAT(output.sharding(), EquivToProto(sharding_proto)); EXPECT_NE(output.array_handle(), 0); } EXPECT_THAT( CheckFuture( response->loaded_executable_execute_response().status_handle()), StatusIs(absl::StatusCode::kInternal, StrEq("injected error"))); EXPECT_THAT( CheckFuture( response->loaded_executable_execute_response().status_handle()), StatusIs(absl::StatusCode::kNotFound, HasSubstr("Unknown future handle"))); } #endif #if defined(PLATFORM_GOOGLE) TEST_P(IfrtBackendHandlerTest, LoadedExecutableDelete) { MockLoadedExecutable* executable; uint64_t handle; { auto e = std::make_unique<MockLoadedExecutable>(); executable = e.get(); TF_ASSERT_OK_AND_ASSIGN(CompileResponse response, CompileTestLoadedExecutable(std::move(e))); handle = response.loaded_executable_handle(); } { EXPECT_CALL(*executable, Delete()) .WillOnce(Return(Future<>(absl::OkStatus()))); auto request = NewIfrtRequest(NewOpId()); LoadedExecutableDeleteRequest* delete_request = request->mutable_loaded_executable_delete_request(); delete_request->set_loaded_executable_handle(handle); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<IfrtResponse> response, CallBackend(std::move(request))); ASSERT_TRUE(response->has_loaded_executable_delete_response()); EXPECT_THAT( CheckFuture( response->loaded_executable_delete_response().future_handle()), IsOk()); } { EXPECT_CALL(*executable, IsDeleted()).WillOnce(Return(true)); auto request = NewIfrtRequest(NewOpId()); LoadedExecutableIsDeletedRequest* is_deleted_request = request->mutable_loaded_executable_is_deleted_request(); is_deleted_request->set_loaded_executable_handle(handle); EXPECT_THAT(CallBackend(std::move(request)), IsOkAndHolds(Pointee(Partially(EquivToProto(R"pb( loaded_executable_is_deleted_response { is_deleted: true } )pb"))))); } } #endif TEST_P(IfrtBackendHandlerTest, LoadedExecutableDestruct) { MockLoadedExecutable* executable; uint64_t handle; { auto e = std::make_unique<MockLoadedExecutable>(); executable = e.get(); TF_ASSERT_OK_AND_ASSIGN(CompileResponse response, CompileTestLoadedExecutable(std::move(e))); handle = response.loaded_executable_handle(); } { auto request = NewIfrtRequest(NewOpId()); LoadedExecutableDestructRequest* destruct_request = request->mutable_loaded_executable_destruct_request(); destruct_request->set_loaded_executable_handle(handle); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<IfrtResponse> response, CallBackend(std::move(request))); ASSERT_TRUE(response->has_loaded_executable_destruct_response()); } { auto request = NewIfrtRequest(NewOpId()); LoadedExecutableDestructRequest* destruct_request = request->mutable_loaded_executable_destruct_request(); destruct_request->set_loaded_executable_handle(handle); EXPECT_THAT(CallBackend(std::move(request)), StatusIs(absl::StatusCode::kNotFound, HasSubstr("Unknown loaded executable handle"))); } } TEST_P(IfrtBackendHandlerTest, LoadedHostCallbackExecute) { std::vector<xla::HostCallbackArgInfo> hcb_args = {{ .channel_id = 1, .shape = xla::ShapeUtil::MakeShape(xla::F32, {}), }}; std::vector<xla::HostCallbackArgInfo> hcb_results = {{ .channel_id = 2, .shape = xla::ShapeUtil::MakeShape(xla::F32, {}), }}; auto hcb = tsl::MakeRef<RemoteLoadedHostCallback>( mock_client_, std::move(hcb_args), std::move(hcb_results), nullptr); MockLoadedExecutable* executable; tsl::RCReference<xla::ifrt::LoadedHostCallback> loaded_host_callback; uint64_t loaded_host_callback_handle; { auto request = NewIfrtRequest(NewOpId()); CompileRequest* compile_request = request->mutable_compile_request(); TestProgram program; TF_ASSERT_OK_AND_ASSIGN(*compile_request->mutable_program(), Serialize(program)); xla::ifrt::XlaCompileOptions compile_options; TF_ASSERT_OK_AND_ASSIGN(*compile_request->mutable_compile_options(), Serialize(compile_options)); TF_ASSERT_OK_AND_ASSIGN(std::string host_callback_serialized, hcb->Serialize()); compile_request->add_host_callbacks(std::move(host_callback_serialized)); auto e = std::make_unique<MockLoadedExecutable>(); executable = e.get(); EXPECT_CALL(mock_compiler_, Compile(_, _)) .WillOnce(DoAll( Invoke( [&](const std::unique_ptr<xla::ifrt::Program>& program, const std::unique_ptr<xla::ifrt::CompileOptions>& options) { auto* xla_compile_options = llvm::cast<xla::ifrt::XlaCompileOptions>(options.get()); auto& loaded_host_callbacks = xla_compile_options->loaded_host_callbacks; ASSERT_EQ(loaded_host_callbacks.size(), 1); loaded_host_callback = loaded_host_callbacks.front(); }), Return(ByMove(std::move(e))))); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<IfrtResponse> response, CallBackend(std::move(request))); ASSERT_TRUE(response->has_compile_response()); CompileResponse compile_response = response->compile_response(); loaded_host_callback_handle = compile_response.loaded_host_callback_handles(0); ASSERT_THAT(loaded_host_callback, NotNull()); } auto host_callback_thread = absl::WrapUnique(tsl::Env::Default()->StartThread( tsl::ThreadOptions(), "HostCallback", [&]() { xla::Literal x = xla::LiteralUtil::CreateR0(1.0f); std::vector<void*> operands; operands.push_back(x.untyped_data()); xla::Literal out = xla::LiteralUtil::CreateR0(0.0f); std::vector<void*> results; results.push_back(out.untyped_data()); const xla::HostCallback* xla_host_callback = &llvm::cast<RemoteLoadedHostCallback>(loaded_host_callback.get()) ->host_callback(); ASSERT_THAT( xla_host_callback->callback(results.data(), operands.data()), IsOk()); EXPECT_EQ(out, xla::LiteralUtil::CreateR0(2.0f)); })); uint64_t host_callback_execution_handle; { const uint64_t operand_host_buffer_handle = NewHostBufferHandle(); auto request = NewIfrtRequest(NewOpId()); LoadedHostCallbackPollRequest* poll_request = request->mutable_loaded_host_callback_poll_request(); poll_request->set_loaded_host_callback_handle(loaded_host_callback_handle); poll_request->set_operand_host_buffer_handle(operand_host_buffer_handle); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<IfrtResponse> response, CallBackend(std::move(request))); ASSERT_TRUE(response->has_loaded_host_callback_poll_response()); const LoadedHostCallbackPollResponse& poll_response = response->loaded_host_callback_poll_response(); host_callback_execution_handle = poll_response.host_callback_execution_handle(); TF_ASSERT_OK_AND_ASSIGN( const std::shared_ptr<const std::string> operands, host_buffer_store_->Lookup(operand_host_buffer_handle)); EXPECT_EQ(xla::BorrowingLiteral(operands->data(), xla::ShapeUtil::MakeShape(xla::F32, {})), xla::LiteralUtil::CreateR0(1.0f)); } { auto result = xla::LiteralUtil::CreateR0(2.0f); std::string result_buffer(absl::string_view( static_cast<const char*>(result.untyped_data()), result.size_bytes())); const uint64_t result_host_buffer_handle = NewHostBufferHandle(); ASSERT_THAT(host_buffer_store_->Store(result_host_buffer_handle, std::move(result_buffer)), IsOk()); auto request = NewIfrtRequest(NewOpId()); LoadedHostCallbackReturnRequest* ret_request = request->mutable_loaded_host_callback_return_request(); ret_request->set_host_callback_execution_handle( host_callback_execution_handle); ret_request->set_result_host_buffer_handle(result_host_buffer_handle); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<IfrtResponse> response, CallBackend(std::move(request))); ASSERT_TRUE(response->has_loaded_host_callback_return_response()); } } TEST_P(IfrtBackendHandlerTest, GetDefaultDeviceAssignmentSuccess) { const int kNumReplicas = 1; const int kNumPartitions = 3; EXPECT_CALL(*mock_client_, GetDefaultDeviceAssignment(kNumReplicas, kNumPartitions)) .WillOnce(Return(xla::DeviceAssignment(kNumReplicas, kNumPartitions))); auto request = NewIfrtRequest(NewOpId()); auto* default_device_assignment_request = request->mutable_get_default_device_assignment_request(); default_device_assignment_request->set_num_replicas(kNumReplicas); default_device_assignment_request->set_num_partitions(kNumPartitions); TF_ASSERT_OK_AND_ASSIGN(auto response, CallBackend(std::move(request))); TF_ASSERT_OK_AND_ASSIGN(auto assignment_got, xla::DeviceAssignment::Deserialize( response->get_default_device_assignment_response() .device_assignment())); EXPECT_EQ(assignment_got->replica_count(), kNumReplicas); EXPECT_EQ(assignment_got->computation_count(), kNumPartitions); } TEST_P(IfrtBackendHandlerTest, GetDefaultDeviceAssignmentFailsIfTheBackendFails) { const int kNumReplicas = 1; const int kNumPartitions = 3; EXPECT_CALL(*mock_client_, GetDefaultDeviceAssignment(kNumReplicas, kNumPartitions)) .WillOnce(Return(absl::UnknownError("injected error"))); auto request = NewIfrtRequest(NewOpId()); auto* default_device_assignment_request = request->mutable_get_default_device_assignment_request(); default_device_assignment_request->set_num_replicas(kNumReplicas); default_device_assignment_request->set_num_partitions(kNumPartitions); EXPECT_THAT(CallBackend(std::move(request)), StatusIs(absl::StatusCode::kUnknown, StrEq("injected error"))); } INSTANTIATE_TEST_SUITE_P( IfrtBackendHandlerTestWithAllVersions, IfrtBackendHandlerTest, testing::Range(kServerMinVersion, kServerMaxVersion + 1), [](const testing::TestParamInfo<IfrtBackendHandlerTest::ParamType>& info) { return absl::StrCat(info.param); }); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/server/ifrt_backend.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/server/ifrt_backend_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5d9b7217-eb9e-46b0-9e7b-11565ed43a00
cpp
tensorflow/tensorflow
host_buffer
third_party/xla/xla/python/ifrt_proxy/server/host_buffer.cc
third_party/xla/xla/python/ifrt_proxy/server/host_buffer_test.cc
#include "xla/python/ifrt_proxy/server/host_buffer.h" #include <memory> #include <string> #include <utility> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" namespace xla { namespace ifrt { namespace proxy { absl::Status HostBufferStore::Store(uint64_t handle, std::string data) { absl::MutexLock lock(&mu_); const bool inserted = buffers_.insert({handle, std::make_shared<std::string>(std::move(data))}) .second; if (!inserted) { return absl::AlreadyExistsError( absl::StrCat("Host buffer handle ", handle, " already exists")); } return absl::OkStatus(); } absl::StatusOr<std::shared_ptr<const std::string>> HostBufferStore::Lookup( uint64_t handle) { absl::MutexLock lock(&mu_); const auto it = buffers_.find(handle); if (it == buffers_.end()) { return absl::NotFoundError( absl::StrCat("Host buffer handle ", handle, " not found")); } return it->second; } absl::Status HostBufferStore::Delete(uint64_t handle) { absl::MutexLock lock(&mu_); if (buffers_.erase(handle) == 0) { return absl::NotFoundError( absl::StrCat("Host buffer handle ", handle, " not found")); } return absl::OkStatus(); } } } }
#include "xla/python/ifrt_proxy/server/host_buffer.h" #include <cstdint> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tsl/platform/status_matchers.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::testing::Pointee; using ::tsl::testing::IsOk; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; TEST(HostBufferStoreTest, ReadAfterWrite) { HostBufferStore store; const uint64_t kHandle = 1; ASSERT_THAT(store.Store(kHandle, "foo"), IsOk()); EXPECT_THAT(store.Lookup(kHandle), IsOkAndHolds(Pointee(std::string("foo")))); ASSERT_THAT(store.Delete(kHandle), IsOk()); EXPECT_THAT(store.Lookup(kHandle), StatusIs(absl::StatusCode::kNotFound)); } TEST(HostBufferStoreTest, UnknownHandle) { HostBufferStore store; const uint64_t kHandle = 1; EXPECT_THAT(store.Lookup(kHandle), StatusIs(absl::StatusCode::kNotFound)); EXPECT_THAT(store.Delete(kHandle), StatusIs(absl::StatusCode::kNotFound)); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/server/host_buffer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/server/host_buffer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0cade028-d640-4047-8bf8-abf849d918d7
cpp
tensorflow/tensorflow
grpc_service_impl
third_party/xla/xla/python/ifrt_proxy/server/grpc_service_impl.cc
third_party/xla/xla/python/ifrt_proxy/server/grpc_service_impl_test.cc
#include "xla/python/ifrt_proxy/server/grpc_service_impl.h" #include <atomic> #include <cstdint> #include <memory> #include <string> #include <utility> #include "absl/cleanup/cleanup.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "grpcpp/server_context.h" #include "grpcpp/support/status.h" #include "grpcpp/support/sync_stream.h" #include "xla/pjrt/distributed/util.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.pb.h" #include "xla/python/ifrt_proxy/common/proto_util.h" #include "xla/python/ifrt_proxy/server/host_buffer.h" #include "xla/python/ifrt_proxy/server/version.h" namespace xla { namespace ifrt { namespace proxy { ::grpc::Status GrpcServiceImpl::GetVersion(::grpc::ServerContext* context, const GrpcGetVersionRequest* request, GrpcGetVersionResponse* response) { auto protocol_version = ChooseVersion(request->min_version().protocol_version(), request->max_version().protocol_version()); if (!protocol_version.ok()) { return xla::ToGrpcStatus(protocol_version.status()); } response->mutable_version()->set_protocol_version(*protocol_version); return ::grpc::Status::OK; } ::grpc::Status GrpcServiceImpl::IfrtSession( ::grpc::ServerContext* context, ::grpc::ServerReaderWriter<IfrtResponse, IfrtRequest>* stream) { GrpcIfrtSessionMetadata metadata; { const auto it = context->client_metadata().find( "ifrt-proxy-grpc-ifrt-session-metadata-bin"); if (it == context->client_metadata().end()) { return ::grpc::Status(::grpc::StatusCode::INVALID_ARGUMENT, "Missing metadata for GrpcIfrtService.IfrtSession: " "ifrt-proxy-grpc-ifrt-session-metadata-bin"); } if (!metadata.ParseFromString(AsProtoStringData( absl::string_view(it->second.data(), it->second.size())))) { return ::grpc::Status(::grpc::StatusCode::INVALID_ARGUMENT, "Unable to parse GrpcIfrtSessionMetadata"); } } const uint64_t session_id = next_session_id_.fetch_add(1, std::memory_order_relaxed); VLOG(0) << "Starting a new IFRT session with session_id=" << session_id; auto host_buffer_store = std::make_shared<xla::ifrt::proxy::HostBufferStore>(); { absl::MutexLock l(&host_buffer_store_mu_); CHECK(host_buffer_stores_.insert({session_id, host_buffer_store}).second); } absl::Cleanup cleanup = [&] { absl::MutexLock l(&host_buffer_store_mu_); CHECK_GT(host_buffer_stores_.erase(session_id), 0); }; auto backend = backend_factory_(metadata.version(), session_id, std::move(host_buffer_store)); if (!backend.ok()) { LOG(INFO) << "Creating IFRT backend " << session_id << " failed: " << backend.status(); return xla::ToGrpcStatus(backend.status()); } absl::Mutex writer_mu; bool first_request_read = false; while (true) { auto request = std::make_unique<IfrtRequest>(); if (!stream->Read(request.get())) { break; } if (!first_request_read) { VLOG(0) << "First request read for session " << session_id; first_request_read = true; } const uint64_t op_id = request->request_metadata().op_id(); auto response = (*backend)->Process(std::move(request)); response.OnReady( [op_id, stream, &writer_mu](absl::StatusOr<std::shared_ptr<IfrtResponse>> response) { absl::MutexLock l(&writer_mu); if (response.ok()) { stream->Write(**response); } else { stream->Write(*NewIfrtResponse(op_id, response.status())); } }); } backend->reset(); VLOG(0) << "Finishing IFRT session " << session_id; return ::grpc::Status::OK; } ::grpc::Status GrpcServiceImpl::HostBufferStore( ::grpc::ServerContext* context, ::grpc::ServerReader<GrpcHostBufferStoreRequest>* stream, GrpcHostBufferStoreResponse* response) { const auto it = context->client_metadata().find( "ifrt-proxy-grpc-host-buffer-store-metadata-bin"); if (it == context->client_metadata().end()) { return ::grpc::Status( ::grpc::StatusCode::INTERNAL, "Missing gRPC metadata for GrpcHostBufferService.Store"); } GrpcHostBufferStoreMetadata metadata; if (!metadata.ParseFromString(AsProtoStringData( absl::string_view(it->second.data(), it->second.size())))) { return ::grpc::Status(::grpc::StatusCode::DATA_LOSS, "Unable to parse GrpcHostBufferStoreMetadata"); } std::string data; data.reserve(metadata.buffer_size()); GrpcHostBufferStoreRequest request; while (stream->Read(&request)) { data.append(request.data()); } if (data.size() != metadata.buffer_size()) { return ::grpc::Status( ::grpc::StatusCode::DATA_LOSS, absl::StrCat("Potential data loss for host buffers: expected ", metadata.buffer_size(), " bytes but got ", data.size(), " bytes")); } auto store = GetHostBufferStore(metadata.session_id()); if (!store.ok()) { return xla::ToGrpcStatus(store.status()); } return xla::ToGrpcStatus((*store)->Store(metadata.handle(), std::move(data))); } ::grpc::Status GrpcServiceImpl::HostBufferLookup( ::grpc::ServerContext* context, const GrpcHostBufferLookupRequest* request, ::grpc::ServerWriter<GrpcHostBufferLookupResponse>* stream) { static constexpr int64_t kChunkSize = 1024 * 1024; auto store = GetHostBufferStore(request->session_id()); if (!store.ok()) { return xla::ToGrpcStatus(store.status()); } auto data = (*store)->Lookup(request->handle()); if (!data.ok()) { return xla::ToGrpcStatus(data.status()); } GrpcHostBufferLookupResponse response; if (!(*data)->empty()) { for (int64_t offset = 0; offset < (*data)->size(); offset += kChunkSize) { #if defined(PLATFORM_GOOGLE) response.set_alias_data( absl::string_view(**data).substr(offset, kChunkSize)); #else response.set_data((*data)->substr(offset, kChunkSize)); #endif stream->Write(response); response.Clear(); } } else { stream->Write(response); } return ::grpc::Status::OK; } ::grpc::Status GrpcServiceImpl::HostBufferDelete( ::grpc::ServerContext* context, const GrpcHostBufferDeleteRequest* request, GrpcHostBufferDeleteResponse* response) { auto store = GetHostBufferStore(request->session_id()); if (!store.ok()) { return xla::ToGrpcStatus(store.status()); } return xla::ToGrpcStatus((*store)->Delete(request->handle())); } bool GrpcServiceImpl::Test_InsertHostBufferStore( uint64_t session_id, std::shared_ptr<xla::ifrt::proxy::HostBufferStore> store) { absl::MutexLock l(&host_buffer_store_mu_); return host_buffer_stores_.insert({session_id, std::move(store)}).second; } bool GrpcServiceImpl::Test_DeleteHostBufferStore(uint64_t session_id) { absl::MutexLock l(&host_buffer_store_mu_); return host_buffer_stores_.erase(session_id) > 0; } absl::StatusOr<std::shared_ptr<xla::ifrt::proxy::HostBufferStore>> GrpcServiceImpl::GetHostBufferStore(uint64_t session_id) { absl::MutexLock l(&host_buffer_store_mu_); const auto it = host_buffer_stores_.find(session_id); if (it == host_buffer_stores_.end()) { return absl::NotFoundError( absl::StrCat("Session id ", session_id, " does not exist")); } return it->second; } } } }
#include "xla/python/ifrt_proxy/server/grpc_service_impl.h" #include <cstdint> #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "grpcpp/server.h" #include "grpcpp/server_builder.h" #include "grpcpp/support/channel_arguments.h" #include "grpcpp/support/status.h" #include "xla/python/ifrt_proxy/client/grpc_host_buffer.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.grpc.pb.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "xla/python/ifrt_proxy/server/grpc_server.h" #include "xla/python/ifrt_proxy/server/host_buffer.h" #include "xla/python/ifrt_proxy/server/version.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/test.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::tsl::testing::IsOk; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; IfrtProxyVersion Version() { IfrtProxyVersion version; version.set_protocol_version(kServerMaxVersion); return version; } absl::StatusOr<std::unique_ptr<GrpcServer>> MakeGrpcServer() { auto addr = absl::StrCat("[::1]:", tsl::testing::PickUnusedPortOrDie()); return GrpcServer::CreateFromIfrtClientFactory(addr, []() { return absl::UnimplementedError( "IFRT client creation fails. This test is not expected to " "instantiate any IFRT client"); }); } TEST(GrpcServiceImplTest, CanBeUsedToSetupAnGrpcServer) { ASSERT_THAT(MakeGrpcServer(), IsOk()); } class GrpcIfrtServiceImplHostBufferTest : public testing::TestWithParam<int64_t> { protected: GrpcIfrtServiceImplHostBufferTest() : impl_([](IfrtProxyVersion version, uint64_t session_id, std::shared_ptr<HostBufferStore> host_buffer_store) { return absl::UnimplementedError( "IFRT backend creation is not implemented"); }) { ::grpc::ServerBuilder builder; builder.RegisterService(&impl_); server_ = builder.BuildAndStart(); stub_ = grpc::GrpcIfrtService::NewStub( server_->InProcessChannel(::grpc::ChannelArguments())); } std::string GetTestData() const { std::string data; for (int i = 0; i < GetParam(); ++i) { data.push_back(i % 7); } return data; } GrpcServiceImpl impl_; std::unique_ptr<::grpc::Server> server_; std::shared_ptr<grpc::GrpcIfrtService::Stub> stub_; }; TEST_P(GrpcIfrtServiceImplHostBufferTest, StoreAndLookupStringView) { static constexpr uint64_t kSessionId = 1; auto store = std::make_shared<HostBufferStore>(); ASSERT_TRUE(impl_.Test_InsertHostBufferStore(kSessionId, store)); GrpcClientHostBufferStore client(stub_, Version(), kSessionId); constexpr uint64_t kHandle = 2; const std::string data = GetTestData(); absl::string_view source(data); ASSERT_THAT(client.Store(kHandle, source).Await(), IsOk()); EXPECT_THAT(client.Lookup(kHandle).Await(), IsOkAndHolds(data)); EXPECT_TRUE(impl_.Test_DeleteHostBufferStore(kSessionId)); } TEST_P(GrpcIfrtServiceImplHostBufferTest, StoreAndLookupCord) { static constexpr uint64_t kSessionId = 1; auto store = std::make_shared<HostBufferStore>(); ASSERT_TRUE(impl_.Test_InsertHostBufferStore(kSessionId, store)); GrpcClientHostBufferStore client(stub_, Version(), kSessionId); constexpr uint64_t kHandle = 2; const std::string data = GetTestData(); absl::Cord source(data); ASSERT_THAT(client.Store(kHandle, source).Await(), IsOk()); EXPECT_THAT(client.Lookup(kHandle).Await(), IsOkAndHolds(data)); EXPECT_TRUE(impl_.Test_DeleteHostBufferStore(kSessionId)); } TEST_P(GrpcIfrtServiceImplHostBufferTest, Lookup) { static constexpr uint64_t kSessionId = 1; auto store = std::make_shared<HostBufferStore>(); ASSERT_TRUE(impl_.Test_InsertHostBufferStore(kSessionId, store)); GrpcClientHostBufferStore client(stub_, Version(), kSessionId); constexpr uint64_t kHandle = 2; const std::string data = GetTestData(); ASSERT_THAT(store->Store(kHandle, data), IsOk()); EXPECT_THAT(client.Lookup(kHandle).Await(), IsOkAndHolds(data)); EXPECT_TRUE(impl_.Test_DeleteHostBufferStore(kSessionId)); } TEST_P(GrpcIfrtServiceImplHostBufferTest, Delete) { static constexpr uint64_t kSessionId = 1; auto store = std::make_shared<HostBufferStore>(); ASSERT_TRUE(impl_.Test_InsertHostBufferStore(kSessionId, store)); GrpcClientHostBufferStore client(stub_, Version(), kSessionId); constexpr uint64_t kHandle = 2; const std::string data = GetTestData(); ASSERT_THAT(store->Store(kHandle, data), IsOk()); ASSERT_THAT(client.Delete(kHandle).Await(), IsOk()); EXPECT_THAT(client.Lookup(kHandle).Await(), StatusIs(absl::StatusCode::kNotFound)); EXPECT_TRUE(impl_.Test_DeleteHostBufferStore(kSessionId)); } INSTANTIATE_TEST_SUITE_P( DataSize, GrpcIfrtServiceImplHostBufferTest, testing::Values(0, 16, 3 * 1024 * 1024)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/server/grpc_service_impl.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/server/grpc_service_impl_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
04433fb2-7496-4b2a-81ed-6816e4136e92
cpp
tensorflow/tensorflow
grpc_server
third_party/xla/xla/python/ifrt_proxy/server/grpc_server.cc
third_party/xla/xla/python/ifrt_proxy/server/grpc_server_test.cc
#include "xla/python/ifrt_proxy/server/grpc_server.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include "absl/functional/any_invocable.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "grpc/grpc.h" #include "grpcpp/completion_queue.h" #include "grpcpp/grpcpp.h" #include "grpcpp/server_builder.h" #include "xla/python/ifrt/client.h" #include "xla/python/ifrt_proxy/common/grpc_credentials.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.grpc.pb.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "xla/python/ifrt_proxy/server/grpc_service_impl.h" #include "xla/python/ifrt_proxy/server/host_buffer.h" #include "xla/python/ifrt_proxy/server/ifrt_backend.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace proxy { GrpcServer::~GrpcServer() { server_->Shutdown(); server_->Wait(); } absl::StatusOr<std::unique_ptr<GrpcServer>> GrpcServer::Create( absl::string_view address, std::unique_ptr<grpc::GrpcIfrtService::Service> impl) { if (impl == nullptr) { return absl::InvalidArgumentError( "Service implementation cannot be a nullptr."); } ::grpc::ServerBuilder builder; builder.AddChannelArgument(GRPC_ARG_MAX_SEND_MESSAGE_LENGTH, -1); builder.AddChannelArgument(GRPC_ARG_MAX_RECEIVE_MESSAGE_LENGTH, -1); builder.RegisterService(impl.get()); builder.AddListeningPort(std::string(address), GetServerCredentials()); auto server = builder.BuildAndStart(); if (server == nullptr) { return absl::UnavailableError( absl::StrCat("Failed to initialize gRPC server at address:", address)); } return absl::WrapUnique<GrpcServer>( new GrpcServer(address, std::move(impl), std::move(server))); } absl::StatusOr<std::unique_ptr<GrpcServer>> GrpcServer::CreateFromIfrtClientFactory( absl::string_view address, absl::AnyInvocable<absl::StatusOr<std::shared_ptr<xla::ifrt::Client>>()> backend_ifrt_client_factory) { if (backend_ifrt_client_factory == nullptr) { return absl::InvalidArgumentError( "backend_ifrt_client_factory cannot be nullptr."); } auto service = std::make_unique<GrpcServiceImpl>( [ifrt_client_factory = std::move(backend_ifrt_client_factory)]( IfrtProxyVersion version, uint64_t session_id, std::shared_ptr<HostBufferStore> host_buffer_store) mutable -> absl::StatusOr<std::unique_ptr<BackendInterface>> { TF_ASSIGN_OR_RETURN(auto ifrt_client, ifrt_client_factory()); return IfrtBackend::Create(version, session_id, std::move(ifrt_client), std::move(host_buffer_store)); }); return Create(address, std::move(service)); } } } }
#include "xla/python/ifrt_proxy/server/grpc_server.h" #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.grpc.pb.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::testing::Not; using ::tsl::testing::IsOk; using ::tsl::testing::StatusIs; class FakeIfrtService : public grpc::GrpcIfrtService::Service {}; TEST(GrpcServerTest, CreationTest) { auto addr = absl::StrCat("[::1]:", tsl::testing::PickUnusedPortOrDie()); auto grpc_service_impl = std::make_unique<FakeIfrtService>(); ASSERT_THAT(GrpcServer::Create(addr, std::move(grpc_service_impl)), IsOk()); } TEST(GrpcServerTest, CreationFailsIfImplIsNullptr) { auto addr = absl::StrCat("[::1]:", tsl::testing::PickUnusedPortOrDie()); EXPECT_THAT(GrpcServer::Create(addr, nullptr), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(GrpcServerTest, CreationFailsWithInvalidAddress) { auto grpc_service_impl = std::make_unique<FakeIfrtService>(); EXPECT_THAT(GrpcServer::Create("invalid-address", std::move(grpc_service_impl)), Not(IsOk())); } TEST(GrpcServerTest, RetrievingServerAddressWorks) { auto addr = absl::StrCat("[::1]:", tsl::testing::PickUnusedPortOrDie()); auto grpc_service_impl = std::make_unique<FakeIfrtService>(); TF_ASSERT_OK_AND_ASSIGN( auto grpc_server, GrpcServer::Create(addr, std::move(grpc_service_impl))); EXPECT_EQ(grpc_server->address(), addr); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/server/grpc_server.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/server/grpc_server_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
160aad35-3fdd-4e79-a85d-a8b2a9e081e4
cpp
tensorflow/tensorflow
version
third_party/xla/xla/python/ifrt_proxy/server/version.cc
third_party/xla/xla/python/ifrt_proxy/server/version_test.cc
#include "xla/python/ifrt_proxy/server/version.h" #include <algorithm> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" namespace xla { namespace ifrt { namespace proxy { absl::StatusOr<int> ChooseVersion(int client_min_version, int client_max_version, int server_min_version, int server_max_version) { const int version = std::min(server_max_version, client_max_version); if (version < server_min_version || version < client_min_version) { return absl::InvalidArgumentError(absl::StrCat( "IFRT Proxy client and server failed to agree on the " "protocol version; supported versions: client = [", client_min_version, ", ", client_max_version, "], server = [", server_min_version, ", ", server_max_version, "]")); } return version; } } } }
#include "xla/python/ifrt_proxy/server/version.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tsl/platform/status_matchers.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::tsl::testing::IsOk; using ::tsl::testing::StatusIs; struct Param { int client_min_version; int client_max_version; int server_min_version; int server_max_version; }; class CompatibleVersionTest : public ::testing::TestWithParam<Param> {}; TEST_P(CompatibleVersionTest, Verify) { const Param& param = GetParam(); EXPECT_THAT(ChooseVersion(param.client_min_version, param.client_max_version, param.server_min_version, param.server_max_version), IsOk()); } INSTANTIATE_TEST_SUITE_P(CompatibleVersionTest, CompatibleVersionTest, ::testing::Values(Param{1, 1, 1, 1}, Param{1, 2, 2, 2}, Param{2, 2, 1, 2}, Param{1, 3, 3, 4})); class IncompatibleVersionTest : public ::testing::TestWithParam<Param> {}; TEST_P(IncompatibleVersionTest, Verify) { const Param& param = GetParam(); EXPECT_THAT(ChooseVersion(param.client_min_version, param.client_max_version, param.server_min_version, param.server_max_version), StatusIs(absl::StatusCode::kInvalidArgument)); } INSTANTIATE_TEST_SUITE_P(IncompatibleVersionTest, IncompatibleVersionTest, ::testing::Values(Param{1, 2, 3, 3}, Param{1, 3, 4, 6}, Param{1, 1, 2, 2})); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/server/version.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/server/version_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
363476b4-86dd-4517-8a90-829165178641
cpp
tensorflow/tensorflow
array_util
third_party/xla/xla/python/ifrt_proxy/common/array_util.cc
third_party/xla/xla/python/ifrt_proxy/common/array_util_test.cc
#include "xla/python/ifrt_proxy/common/array_util.h" #include <string> #include <vector> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/shape.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace proxy { namespace { std::string StridesAsStr(const ArrayMemRegion::ByteStrides& strides) { if (!strides.has_value()) return "strides{nullopt}"; return absl::StrCat("strides{", absl::StrJoin(*strides, ","), "}"); } } absl::StatusOr<std::vector<int64_t>> DefaultByteStrides(const DType dtype, const Shape& shape) { if (!dtype.byte_size().has_value()) { return absl::InvalidArgumentError( absl::StrCat("Unsupported data type to query byte-strides for: ", dtype.DebugString())); } std::vector<int64_t> result(shape.dims().size()); int64_t stride = *dtype.byte_size(); for (int i = static_cast<int>(shape.dims().size()) - 1; i >= 0; --i) { result[i] = stride; stride *= shape.dims()[i]; } return result; } absl::StatusOr<ArrayMemRegion> ArrayMemRegion::FromZerothElementPointer( const void* zeroth_element, const DType dtype, const Shape& shape, ByteStrides byte_strides) { if (!dtype.byte_size().has_value()) { return absl::InvalidArgumentError( absl::StrCat("Unsupported data type to construct ArrayMemRegion: ", dtype.DebugString())); } void* const mem_region_start = const_cast<void*>(zeroth_element); if (!byte_strides.has_value() || (byte_strides->empty() && shape.dims().empty())) { return ArrayMemRegion(mem_region_start, dtype.byte_size().value() * shape.num_elements()); } if (shape.num_elements() == 0) { return ArrayMemRegion(mem_region_start, 0); } if (shape.dims().size() != byte_strides->size()) { return absl::InvalidArgumentError( absl::StrCat("Shape has different dimensions from byte_strides: ", shape.DebugString(), " vs ", StridesAsStr(byte_strides))); } uint64_t last_element_byte_offset = 0; for (int i = 0; i < byte_strides->size(); ++i) { int stride = (*byte_strides)[i]; if (shape.dims()[i] < 0) { return absl::InvalidArgumentError( absl::StrCat("A shape dimension is negative: ", shape.DebugString())); } else if (shape.dims()[i] == 1) { continue; } else if (stride <= 0) { return absl::UnimplementedError( absl::StrCat("Negative or zero strides are not fully supported: ", StridesAsStr(byte_strides))); } else if (stride % dtype.byte_size().value() != 0) { return absl::UnimplementedError(absl::StrCat( "byte_stride[", i, "] is not a multiple of the data-type's size: ", StridesAsStr(byte_strides), ", dtype=", dtype.DebugString())); } else { DCHECK_GT(shape.dims()[i], 0); last_element_byte_offset += (stride * (shape.dims()[i] - 1)); } } return ArrayMemRegion(mem_region_start, last_element_byte_offset + dtype.byte_size().value()); } absl::StatusOr<ArrayMemRegion> ArrayMemRegion::FromMinimalMemRegion( absl::string_view mem_region, const DType dtype, const Shape& shape, ByteStrides byte_strides) { TF_ASSIGN_OR_RETURN( auto result, FromZerothElementPointer(mem_region.data(), dtype, shape, byte_strides)); if (result.mem_region().size() != mem_region.size()) { return absl::InvalidArgumentError( absl::StrCat("Incorrect size ", result.mem_region().size(), " vs ", mem_region.size(), "; is provided memory region minimal? ", dtype.DebugString(), " ", shape.DebugString(), " ", StridesAsStr(byte_strides))); } CHECK_EQ(result.mem_region().data(), mem_region.data()); return result; } absl::string_view ArrayMemRegion::mem_region() const { return absl::string_view(static_cast<char*>(mem_region_start_), nbytes_); } void* ArrayMemRegion::zeroth_element() const { return mem_region_start_; } } } }
#include "xla/python/ifrt_proxy/common/array_util.h" #include <cstddef> #include <cstdint> #include <optional> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/shape.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::testing::ElementsAre; using ::testing::Not; using ::testing::TestWithParam; using ::tsl::testing::IsOk; using ::tsl::testing::IsOkAndHolds; constexpr DType::Kind kF64 = DType::Kind::kF64; constexpr DType::Kind kS32 = DType::Kind::kS32; constexpr DType::Kind kString = DType::Kind::kString; using Strides = std::vector<int64_t>; TEST(DefaultByteStrides, ErrorsIfBadDtype) { EXPECT_THAT(DefaultByteStrides(DType(kString), Shape({1})), Not(IsOk())); } TEST(DefaultByteStrides, HappyCase) { EXPECT_THAT(DefaultByteStrides(DType(kF64), Shape({4, 3, 5})), IsOkAndHolds(ElementsAre(120, 40, 8))); } struct TC { const std::string test_name; const DType::Kind dtype_kind; const std::vector<int64_t> shape; const std::optional<std::vector<int64_t>> byte_strides; const std::optional<size_t> expected_size; }; std::string PrintToString(const TC& tc) { return tc.test_name; } class ArrayMemRegionSuccess : public TestWithParam<TC> {}; INSTANTIATE_TEST_SUITE_P( Tests, ArrayMemRegionSuccess, testing::Values( TC{"DefaultF64", kF64, {4, 3, 5}, std::nullopt}, TC{"MajorToMinorStridesF64", kF64, {4, 3, 5}, Strides({120, 40, 8})}, TC{"NotMajorToMinorF64", kF64, {3, 4, 5}, Strides({40, 120, 8})}, TC{"TransposedF64", kF64, {5, 3, 4}, Strides({8, 40, 120})}, TC{"DefaultS32", kS32, {4, 3, 5}, std::nullopt}, TC{"MajorToMinorStridesS32", kS32, {4, 3, 5}, Strides({60, 20, 4})}, TC{"NotMajorToMinorS32", kS32, {3, 4, 5}, Strides({20, 60, 4})}, TC{"TransposedS32", kS32, {5, 3, 4}, Strides({4, 20, 60})}, TC{"ScalarF64DefaultStrides", kF64, {}, std::nullopt}, TC{"ScalarF64EmptyStrides", kF64, {}, Strides({})}, TC{"NoColsDefaultStrides", kF64, {5, 0}, std::nullopt}, TC{"NoColsStridesNonZero", kF64, {5, 0}, Strides({40, 4})}, TC{"NoColsStridesZero", kF64, {5, 0}, Strides({0, 0})}, TC{"NoRowsDefaultStrides", kF64, {0, 5}, std::nullopt}, TC{"NoRowsStridesNonZero", kF64, {0, 5}, Strides({40, 4})}, TC{"NoRowsStridesZero", kF64, {0, 5}, Strides({0, 0})}, TC{"SingleElementArbitraryStrides", kF64, {1, 1}, Strides({100, 100})}, TC{"OneRowArbitraryColStride", kF64, {1, 5}, Strides({100, 8})}, TC{"OneColArbitraryRowStride", kF64, {5, 1}, Strides({8, 100})}, TC{"OneRowZeroColStride", kF64, {1, 5}, Strides({0, 8})}, TC{"OneColZeroRowStride", kF64, {5, 1}, Strides({8, 0})}, TC{"NonCompactSingleDimension", kS32, {5}, Strides({16}), 68}, TC{"NonCompactDim0", kS32, {4, 3, 5}, Strides({120, 20, 4}), 420}, TC{"PaddedElements", kS32, {4, 3, 5}, Strides({120, 40, 8}), 476}), testing::PrintToStringParamName()); TEST_P(ArrayMemRegionSuccess, TestCase) { const TC tc = GetParam(); const DType dtype(tc.dtype_kind); const Shape shape(tc.shape); const size_t expected_size = tc.expected_size.value_or( dtype.byte_size().value() * shape.num_elements()); std::string data(expected_size, 'a'); TF_ASSERT_OK_AND_ASSIGN(auto mem_region1, ArrayMemRegion::FromZerothElementPointer( data.data(), dtype, shape, tc.byte_strides)); EXPECT_EQ(mem_region1.zeroth_element(), data.data()); EXPECT_EQ(mem_region1.mem_region().data(), data.data()); EXPECT_EQ(mem_region1.mem_region().size(), data.size()); TF_ASSERT_OK_AND_ASSIGN( auto mem_region2, ArrayMemRegion::FromMinimalMemRegion(data, dtype, shape, tc.byte_strides)); EXPECT_EQ(mem_region2.zeroth_element(), data.data()); EXPECT_EQ(mem_region2.mem_region().data(), data.data()); EXPECT_EQ(mem_region2.mem_region().size(), data.size()); } class ArrayMemRegionFailure : public TestWithParam<TC> {}; INSTANTIATE_TEST_SUITE_P( Tests, ArrayMemRegionFailure, testing::Values( TC{"OneString", kString, {}, std::nullopt}, TC{"ManyStrings", kString, {5}, std::nullopt}, TC{"NegativeByteStrides", kS32, {4, 3, 5}, Strides({-60, -20, -4})}, TC{"ZeroByteStride", kS32, {5, 5}, Strides({0, 0})}, TC{"SmallerByteStrideThanDataType", kS32, {5, 5}, Strides({1, 1})}, TC{"ByteStrideIndivisibleByDataType", kS32, {5, 5}, Strides({7, 7})}, TC{"NegativeShapeDimension", kS32, {-5, -5}, Strides({20, 4})}), testing::PrintToStringParamName()); TEST_P(ArrayMemRegionFailure, TestCase) { const TC tc = GetParam(); const DType dtype(tc.dtype_kind); const Shape shape(tc.shape); char const* kSomeAddr = reinterpret_cast<char*>(1UL << 48); auto mem_region1 = ArrayMemRegion::FromZerothElementPointer( kSomeAddr, dtype, shape, tc.byte_strides); EXPECT_THAT(mem_region1.status(), Not(IsOk())); const size_t kSomeSize = 1024; auto mem_region2 = ArrayMemRegion::FromMinimalMemRegion( absl::string_view(kSomeAddr, kSomeSize), dtype, shape, tc.byte_strides); EXPECT_THAT(mem_region2.status(), Not(IsOk())); } TEST(ArrayMemRegion, FromBadMemRegionSizeFails) { const DType kDType(kS32); const Shape kShape({5, 5}); const size_t kDataBytes = kDType.byte_size().value() * kShape.num_elements(); const size_t kExtraSuffixBytes = 10; std::string data_with_extra_suffix(kDataBytes + kExtraSuffixBytes, 'a'); TF_ASSERT_OK_AND_ASSIGN( auto mem_region1, ArrayMemRegion::FromZerothElementPointer( data_with_extra_suffix.data(), kDType, kShape, std::nullopt)); EXPECT_EQ(mem_region1.mem_region().data(), data_with_extra_suffix.data()); EXPECT_EQ(mem_region1.zeroth_element(), data_with_extra_suffix.data()); EXPECT_LT(mem_region1.mem_region().size(), data_with_extra_suffix.size()); EXPECT_EQ(mem_region1.mem_region().size(), kDataBytes); auto mem_region2 = ArrayMemRegion::FromMinimalMemRegion( data_with_extra_suffix, kDType, kShape, std::nullopt); EXPECT_THAT(mem_region2.status(), Not(IsOk())); std::string data_without_some_bytes(kDataBytes - kExtraSuffixBytes, 'a'); auto mem_region3 = ArrayMemRegion::FromMinimalMemRegion( data_without_some_bytes, kDType, kShape, std::nullopt); EXPECT_THAT(mem_region3.status(), Not(IsOk())); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/common/array_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/common/array_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
392aa368-f3b4-4624-abe5-8318bc62bf19
cpp
tensorflow/tensorflow
test_utils
tensorflow/compiler/mlir/tfrt/translate/mlrt/test_utils.cc
tensorflow/core/lib/monitoring/test_utils_test.cc
#include "tensorflow/compiler/mlir/tfrt/translate/mlrt/test_utils.h" #include <algorithm> #include <cstring> #include <functional> #include <numeric> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/tfrt/mlrt/attribute/attribute.h" #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" #include "tensorflow/core/tfrt/mlrt/bytecode/kernel.h" #include "tensorflow/core/tfrt/mlrt/interpreter/context.h" #include "tensorflow/core/tfrt/mlrt/interpreter/interpreter_testutil.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace mlrt { namespace testing { absl::StatusOr<std::string> EncodeAttribute(const tensorflow::AttrValue& attr) { if (attr.has_b()) { std::string result; result.resize(sizeof(uint8_t)); uint8_t v = attr.b(); std::memcpy(result.data(), &v, sizeof(v)); return result; } if (attr.has_i()) { std::string result; result.resize(sizeof(int64_t)); int64_t v = attr.i(); std::memcpy(result.data(), &v, sizeof(v)); return result; } if (attr.has_f()) { std::string result; result.resize(sizeof(float)); float v = attr.f(); std::memcpy(result.data(), &v, sizeof(v)); return result; } if (attr.has_s()) { return attr.s(); } if (attr.has_list()) { if (attr.list().s_size() > 0) { mlrt::bc::Buffer buffer; mlrt::bc::Allocator allocator(&buffer); auto ctor = mlrt::bc::New<mlrt::bc::Vector<mlrt::bc::String>>( &allocator, attr.list().s_size()); for (int i = 0; i < attr.list().s_size(); ++i) { ctor.ConstructAt(i, attr.list().s(i)); } return std::string(buffer.data(), buffer.size()); } } if (attr.has_tensor()) { mlrt::bc::Buffer buffer; mlrt::bc::Allocator allocator(&buffer); tensorflow::Tensor tensor; if (!tensor.FromProto(attr.tensor())) { return absl::InvalidArgumentError("Invalid tensor proto."); } auto tensor_attr_ctor = mlrt::bc::New<tensorflow::tf_mlrt::TensorAttr>( &allocator, tensor.dtype()); auto shape = tensor.shape().dim_sizes(); tensor_attr_ctor.construct_shape(shape.size()) .Assign(shape.begin(), shape.end()); auto tensor_data = tensor.tensor_data(); tensor_attr_ctor.construct_data(tensor_data.size()) .Place(tensor_data.data(), tensor_data.size()); return std::string(buffer.data(), buffer.size()); } return absl::InvalidArgumentError("Unsupported attribute."); } namespace { bool CanBeInlined(const tensorflow::AttrValue& attr) { return attr.has_b() || attr.has_f(); } } absl::Status EncodeAttributes(AttributeTable& attributes, const tensorflow::AttrValueMap& attr_map) { std::vector<std::pair<std::string, tensorflow::AttrValue>> attrs( attr_map.begin(), attr_map.end()); std::sort(attrs.begin(), attrs.end(), [](const auto& x, const auto& y) { return x.first < y.first; }); for (int i = 0; i < attrs.size(); ++i) { const tensorflow::AttrValue& attr = attrs[i].second; TF_ASSIGN_OR_RETURN(auto attr_str, EncodeAttribute(attr)); if (CanBeInlined(attr)) { attributes.AddInline(absl::StrCat(i), attr_str); } else { attributes.Add(absl::StrCat(i), attr_str); } } return absl::OkStatus(); } absl::StatusOr<std::pair<mlrt::bc::Kernel, mlrt::bc::Vector<mlrt::bc::String>>> CreateKernelAndAttrs(int num_inputs, int num_outputs, mlrt::ExecutionContext& exec_ctx, mlrt::bc::Buffer* buffer, const tensorflow::AttrValueMap& attrs) { mlrt::bc::Allocator allocator(buffer); auto attributes_ctor = mlrt::bc::New<mlrt::bc::Vector<mlrt::bc::String>>( &allocator, attrs.size()); AttributeTable attribute_table(attributes_ctor); TF_RETURN_IF_ERROR(EncodeAttributes(attribute_table, attrs)); auto kernel_ctor = mlrt::bc::New<mlrt::bc::Kernel>(&allocator); kernel_ctor.set_code(0); std::vector<int> input_indices(num_inputs); std::iota(input_indices.begin(), input_indices.end(), 0); kernel_ctor.construct_arguments(input_indices.size()) .Assign(input_indices.begin(), input_indices.end()); std::vector<int> output_indices(num_outputs); std::iota(output_indices.begin(), output_indices.end(), num_inputs); kernel_ctor.construct_results(output_indices.size()) .Assign(output_indices.begin(), output_indices.end()); std::vector<uint32_t> attr_indices; attr_indices.reserve(attrs.size()); for (int i = 0; i < attrs.size(); ++i) { attr_indices.push_back(attribute_table.GetHandle(absl::StrCat(i))); } kernel_ctor.construct_attributes(attr_indices.size()) .Assign(attr_indices.begin(), attr_indices.end()); mlrt::bc::Vector<mlrt::bc::String> attributes( buffer->Get(attributes_ctor.address())); mlrt::bc::Kernel kernel(buffer->Get(kernel_ctor.address())); return std::make_pair(kernel, attributes); } } }
#include "tensorflow/core/lib/monitoring/test_utils.h" #include <string> #include "tensorflow/core/lib/monitoring/types.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { namespace monitoring { namespace testing { namespace { using ::tensorflow::testing::StatusIs; using ::testing::HasSubstr; template <typename MessageType> StatusOr<MessageType> ParseTextProto(const std::string& text_proto) { protobuf::TextFormat::Parser parser; MessageType parsed_proto; protobuf::io::ArrayInputStream input_stream(text_proto.data(), text_proto.size()); if (!parser.Parse(&input_stream, &parsed_proto)) { return errors::InvalidArgument("Could not parse text proto: ", text_proto); } return parsed_proto; } TEST(HistogramTest, Subtract) { TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram1, ParseTextProto<HistogramProto>(R"pb( min: 0.0 max: 500.0 num: 3.0 sum: 555.0 sum_squares: 252525.0 bucket_limit: 0.0 bucket_limit: 10.0 bucket_limit: 100.0 bucket: 0 bucket: 1 bucket: 1 bucket: 1 )pb")); TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram2, ParseTextProto<HistogramProto>(R"pb( min: 0.0 max: 5.0 num: 1.0 sum: 5.0 sum_squares: 25.0 bucket_limit: 0.0 bucket_limit: 10.0 bucket_limit: 100.0 bucket: 0 bucket: 1 bucket: 0 bucket: 0 )pb")); TF_ASSERT_OK_AND_ASSIGN( Histogram delta, Histogram(histogram1).Subtract(Histogram(histogram2))); EXPECT_FLOAT_EQ(delta.num(), 2.0); EXPECT_FLOAT_EQ(delta.sum(), 550.0); EXPECT_FLOAT_EQ(delta.sum_squares(), 252500.0); EXPECT_FLOAT_EQ(delta.num(0), 0.0); EXPECT_FLOAT_EQ(delta.num(1), 0.0); EXPECT_FLOAT_EQ(delta.num(2), 1.0); EXPECT_FLOAT_EQ(delta.num(3), 1.0); } TEST(HistogramTest, ReverseSubtract) { TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram1, ParseTextProto<HistogramProto>(R"pb( min: 0.0 max: 500.0 num: 3.0 sum: 555.0 sum_squares: 252525.0 bucket_limit: 0.0 bucket_limit: 10.0 bucket_limit: 100.0 bucket: 0 bucket: 1 bucket: 1 bucket: 1 )pb")); TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram2, ParseTextProto<HistogramProto>(R"pb( min: 0.0 max: 5.0 num: 1.0 sum: 5.0 sum_squares: 25.0 bucket_limit: 0.0 bucket_limit: 10.0 bucket_limit: 100.0 bucket: 0 bucket: 1 bucket: 0 bucket: 0 )pb")); EXPECT_THAT( Histogram(histogram2).Subtract(Histogram(histogram1)), StatusIs( error::INVALID_ARGUMENT, HasSubstr("Failed to subtract a histogram by a larger histogram."))); } TEST(HistogramTest, NegativeSubtract) { TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram1, ParseTextProto<HistogramProto>(R"pb( min: -100.0 max: 0.0 num: 5.0 sum: -500.0 sum_squares: 50000.0 bucket_limit: 0.0 bucket_limit: 10.0 bucket_limit: 100.0 bucket: 5 bucket: 0 bucket: 0 bucket: 0 )pb")); TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram2, ParseTextProto<HistogramProto>(R"pb( min: -100.0 max: 0.0 num: 2.0 sum: -200.0 sum_squares: 20000.0 bucket_limit: 0.0 bucket_limit: 10.0 bucket_limit: 100.0 bucket: 2 bucket: 0 bucket: 0 bucket: 0 )pb")); TF_ASSERT_OK_AND_ASSIGN( Histogram delta, Histogram(histogram1).Subtract(Histogram(histogram2))); EXPECT_FLOAT_EQ(delta.num(), 3.0); EXPECT_FLOAT_EQ(delta.sum(), -300.0); EXPECT_FLOAT_EQ(delta.sum_squares(), 30000.0); EXPECT_FLOAT_EQ(delta.num(0), 3.0); EXPECT_FLOAT_EQ(delta.num(1), 0.0); EXPECT_FLOAT_EQ(delta.num(2), 0.0); EXPECT_FLOAT_EQ(delta.num(3), 0.0); } TEST(HistogramTest, SingleBucketSubtract) { TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram1, ParseTextProto<HistogramProto>(R"pb( min: 0.0 max: 1.0 num: 100.0 sum: 100.0 sum_squares: 100.0 bucket: 100 )pb")); TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram2, ParseTextProto<HistogramProto>(R"pb( min: 0.0 max: 1.0 num: 50.0 sum: 50.0 sum_squares: 50.0 bucket: 50 )pb")); TF_ASSERT_OK_AND_ASSIGN( Histogram delta, Histogram(histogram1).Subtract(Histogram(histogram2))); EXPECT_FLOAT_EQ(delta.num(), 50.0); EXPECT_FLOAT_EQ(delta.sum(), 50.0); EXPECT_FLOAT_EQ(delta.sum_squares(), 50.0); EXPECT_FLOAT_EQ(delta.num(0), 50.0); } TEST(HistogramTest, SelfSubtract) { TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram, ParseTextProto<HistogramProto>(R"pb( min: 0.0 max: 500.0 num: 3.0 sum: 555.0 sum_squares: 252525.0 bucket_limit: 0.0 bucket_limit: 10.0 bucket_limit: 100.0 bucket: 0 bucket: 1 bucket: 1 bucket: 1 )pb")); TF_ASSERT_OK_AND_ASSIGN(Histogram delta, Histogram(histogram).Subtract(Histogram(histogram))); EXPECT_FLOAT_EQ(delta.num(), 0.0); EXPECT_FLOAT_EQ(delta.sum(), 0.0); EXPECT_FLOAT_EQ(delta.sum_squares(), 0.0); EXPECT_FLOAT_EQ(delta.num(0), 0.0); EXPECT_FLOAT_EQ(delta.num(1), 0.0); EXPECT_FLOAT_EQ(delta.num(2), 0.0); EXPECT_FLOAT_EQ(delta.num(3), 0.0); } TEST(HistogramTest, SubtractEmptyHistogram) { TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram, ParseTextProto<HistogramProto>(R"pb( min: 0.0 max: 500.0 num: 3.0 sum: 555.0 sum_squares: 252525.0 bucket_limit: 0.0 bucket_limit: 10.0 bucket_limit: 100.0 bucket: 0 bucket: 1 bucket: 1 bucket: 1 )pb")); const HistogramProto empty; TF_ASSERT_OK_AND_ASSIGN(Histogram delta, Histogram(histogram).Subtract(Histogram(empty))); EXPECT_FLOAT_EQ(delta.num(), 3.0); EXPECT_FLOAT_EQ(delta.sum(), 555.0); EXPECT_FLOAT_EQ(delta.sum_squares(), 252525.0); EXPECT_FLOAT_EQ(delta.num(0), 0.0); EXPECT_FLOAT_EQ(delta.num(1), 1.0); EXPECT_FLOAT_EQ(delta.num(2), 1.0); EXPECT_FLOAT_EQ(delta.num(3), 1.0); } TEST(HistogramTest, SubtractTwoEmptyHistograms) { const HistogramProto histogram1; const HistogramProto histogram2; TF_ASSERT_OK_AND_ASSIGN( Histogram delta, Histogram(histogram1).Subtract(Histogram(histogram2))); EXPECT_FLOAT_EQ(delta.num(), 0.0); EXPECT_FLOAT_EQ(delta.sum(), 0.0); EXPECT_FLOAT_EQ(delta.sum_squares(), 0.0); EXPECT_FLOAT_EQ(delta.num(0), 0.0); EXPECT_FLOAT_EQ(delta.num(1), 0.0); EXPECT_FLOAT_EQ(delta.num(2), 0.0); EXPECT_FLOAT_EQ(delta.num(3), 0.0); } TEST(HistogramTest, DifferentBuckets) { TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram1, ParseTextProto<HistogramProto>(R"pb( min: 0.0 max: 500.0 num: 3.0 sum: 555.0 sum_squares: 252525.0 bucket_limit: 0.0 bucket_limit: 10.0 bucket_limit: 100.0 bucket: 0 bucket: 1 bucket: 1 bucket: 1 )pb")); TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram2, ParseTextProto<HistogramProto>(R"pb( min: 0.0 max: 50000.0 num: 5.0 sum: 55555.0 sum_squares: 2525252525.0 bucket_limit: 0.0 bucket_limit: 10.0 bucket_limit: 100.0 bucket_limit: 1000.0 bucket: 0 bucket: 1 bucket: 1 bucket: 1 bucket: 2 )pb")); EXPECT_THAT( Histogram(histogram1).Subtract(Histogram(histogram2)), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Subtracting a histogram with different buckets."))); } TEST(PercentilesTest, Percentiles) { tensorflow::monitoring::Percentiles percentiles_value; percentiles_value.total_samples = 100; percentiles_value.accumulator = -100; Percentiles percentiles(percentiles_value); EXPECT_EQ(percentiles.num(), 100); EXPECT_FLOAT_EQ(percentiles.sum(), -100); Percentiles delta = percentiles.Subtract(percentiles); EXPECT_EQ(delta.num(), 0); EXPECT_FLOAT_EQ(delta.sum(), 0); delta = delta.Subtract(percentiles); EXPECT_EQ(delta.num(), -100); EXPECT_FLOAT_EQ(delta.sum(), 100); } TEST(PercentilesTest, Subtract) { tensorflow::monitoring::Percentiles percentiles_value1; percentiles_value1.total_samples = 100; percentiles_value1.accumulator = 100; Percentiles percentiles1(percentiles_value1); EXPECT_EQ(percentiles1.num(), 100); EXPECT_FLOAT_EQ(percentiles1.sum(), 100); tensorflow::monitoring::Percentiles percentiles_value2; percentiles_value2.total_samples = 90; percentiles_value2.accumulator = 90; Percentiles percentiles2(percentiles_value2); EXPECT_EQ(percentiles2.num(), 90); EXPECT_FLOAT_EQ(percentiles2.sum(), 90); Percentiles delta = percentiles1.Subtract(percentiles2); EXPECT_EQ(delta.num(), 10); EXPECT_FLOAT_EQ(delta.sum(), 10); } TEST(PercentilesTest, ReverseSubtract) { tensorflow::monitoring::Percentiles percentiles_value1; percentiles_value1.total_samples = 100; percentiles_value1.accumulator = 100; Percentiles percentiles1(percentiles_value1); EXPECT_EQ(percentiles1.num(), 100); EXPECT_FLOAT_EQ(percentiles1.sum(), 100); tensorflow::monitoring::Percentiles percentiles_value2; percentiles_value2.total_samples = 90; percentiles_value2.accumulator = 90; Percentiles percentiles2(percentiles_value2); EXPECT_EQ(percentiles2.num(), 90); EXPECT_FLOAT_EQ(percentiles2.sum(), 90); Percentiles delta = percentiles2.Subtract(percentiles1); EXPECT_EQ(delta.num(), -10); EXPECT_FLOAT_EQ(delta.sum(), -10); } TEST(PercentilesTest, SubtractEmptyPercentile) { tensorflow::monitoring::Percentiles percentiles_value; percentiles_value.total_samples = 1; percentiles_value.accumulator = 1; Percentiles percentiles(percentiles_value); EXPECT_EQ(percentiles.num(), 1); EXPECT_FLOAT_EQ(percentiles.sum(), 1); Percentiles empty_percentile((tensorflow::monitoring::Percentiles())); EXPECT_EQ(empty_percentile.num(), 0); EXPECT_FLOAT_EQ(empty_percentile.sum(), 0); Percentiles delta = percentiles.Subtract(empty_percentile); EXPECT_EQ(delta.num(), 1); EXPECT_FLOAT_EQ(delta.sum(), 1); } TEST(PercentilesTest, EmptyPercentiles) { Percentiles empty_percentile((tensorflow::monitoring::Percentiles())); EXPECT_EQ(empty_percentile.num(), 0); EXPECT_FLOAT_EQ(empty_percentile.sum(), 0); Percentiles delta = empty_percentile.Subtract(empty_percentile); EXPECT_EQ(delta.num(), 0); EXPECT_FLOAT_EQ(delta.sum(), 0); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tfrt/translate/mlrt/test_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/monitoring/test_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8ba9fb26-5b1e-47d3-8a9e-005dcae536cb
cpp
tensorflow/tensorflow
executable
third_party/xla/xla/service/executable.cc
tensorflow/core/tfrt/mlrt/bytecode/executable_test.cc
#include "xla/service/executable.h" #include <memory> #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "xla/debug_options_flags.h" #include "xla/service/dump.h" #include "xla/service/hlo_graph_dumper.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_description.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" namespace xla { ExecutionInput::~ExecutionInput() { for (auto& index : unowned_indices_) { auto buffer = buffers_.mutable_element(index)->Release(); if (buffer) { buffer->Release(); } } } absl::Status ExecutionInput::SetDynamicShape(Shape dynamic_shape) { const Shape& input_shape = shape(); if (!ShapeUtil::DynamicShapeIsCompatible(input_shape, dynamic_shape)) { return tsl::errors::InvalidArgument( "Cannot set dynamic shape: ", input_shape.DebugString(), " vs. ", dynamic_shape.DebugString()); } dynamic_shape_ = std::make_unique<Shape>(std::move(dynamic_shape)); return absl::OkStatus(); } void ExecutionInput::SetUnownedBuffer(const ShapeIndex& index, MaybeOwningDeviceMemory buffer) { *buffers_.mutable_element(index) = std::move(buffer); unowned_indices_.insert(index); } absl::StatusOr<ShapedBuffer> ExecutionInput::ToShapedBuffer( se::DeviceMemoryAllocator* allocator, int device_ordinal) const { const Shape& input_shape = shape(); ShapedBuffer shaped_buffer(input_shape, device_ordinal); for (const auto& index_buffer : Buffers()) { const tensorflow::se::OwningDeviceMemory* mem = index_buffer.second.AsOwningDeviceMemory(); if (mem != nullptr && (mem->allocator() != allocator || mem->device_ordinal() != device_ordinal)) { return tsl::errors::InvalidArgument("Device buffer at index ", index_buffer.first.ToString(), " has mismatching allocator/device"); } shaped_buffer.set_buffer(index_buffer.second.AsDeviceMemoryBase(), index_buffer.first); } return std::move(shaped_buffer); } absl::StatusOr<ScopedShapedBuffer> Executable::ExecuteOnStream( const ServiceExecutableRunOptions* run_options, absl::Span<const ShapedBuffer* const> arguments, HloExecutionProfile* hlo_execution_profile) { absl::StatusOr<ScopedShapedBuffer> result = ExecuteAsyncOnStream(run_options, arguments, hlo_execution_profile); absl::Status blocking_status = run_options->stream()->BlockHostUntilDone(); TF_RETURN_IF_ERROR(result.status()); TF_RETURN_IF_ERROR(blocking_status); return result; } static ExecutionInput MakeMaybeOwningDeviceMemoryTree( const ShapedBuffer& shaped_buffer) { ExecutionInput result(shaped_buffer.on_device_shape()); shaped_buffer.buffers().ForEachElement( [&](const ShapeIndex& index, const se::DeviceMemoryBase& mem) { result.SetBuffer(index, MaybeOwningDeviceMemory(mem)); }); return result; } absl::StatusOr<ScopedShapedBuffer> Executable::ExecuteAsyncOnStream( const ServiceExecutableRunOptions* run_options, absl::Span<const ShapedBuffer* const> arguments, HloExecutionProfile* hlo_execution_profile) { std::vector<ExecutionInput> args; args.reserve(arguments.size()); for (const ShapedBuffer* arg : arguments) { args.emplace_back(MakeMaybeOwningDeviceMemoryTree(*arg)); } TF_ASSIGN_OR_RETURN(ExecutionOutput out, ExecuteAsyncOnStream(run_options, std::move(args), hlo_execution_profile)); return out.ConsumeResult(); } absl::StatusOr<ExecutionOutput> Executable::ExecuteOnStream( const ServiceExecutableRunOptions* run_options, std::vector<ExecutionInput> arguments, HloExecutionProfile* hlo_execution_profile) { absl::StatusOr<ExecutionOutput> result = ExecuteAsyncOnStream( run_options, std::move(arguments), hlo_execution_profile); absl::Status blocking_status = run_options->stream()->BlockHostUntilDone(); TF_RETURN_IF_ERROR(result.status()); TF_RETURN_IF_ERROR(blocking_status); return result; } absl::StatusOr<std::vector<ScopedShapedBuffer>> Executable::ExecuteOnStreams( absl::Span<const ServiceExecutableRunOptions> run_options, absl::Span<const absl::Span<const ShapedBuffer* const>> arguments) { TF_RET_CHECK(run_options.size() == arguments.size()); std::vector<ScopedShapedBuffer> return_values; return_values.reserve(run_options.size()); if (run_options.size() == 1) { TF_ASSIGN_OR_RETURN(auto rv, ExecuteOnStream(&run_options[0], arguments[0], nullptr)); return_values.push_back(std::move(rv)); return std::move(return_values); } for (size_t i = 0; i < run_options.size(); ++i) { TF_ASSIGN_OR_RETURN( auto rv, ExecuteAsyncOnStream(&run_options[i], arguments[i], nullptr)); return_values.push_back(std::move(rv)); } for (const auto& options : run_options) { TF_RET_CHECK(options.stream() != nullptr); TF_RETURN_IF_ERROR(options.stream()->BlockHostUntilDone()); } return std::move(return_values); } absl::StatusOr<ScopedShapedBuffer> Executable::ExecuteOnStreamWrapper( const ServiceExecutableRunOptions* run_options, absl::Span<const ShapedBuffer* const> arguments) { absl::StatusOr<ScopedShapedBuffer> result = ExecuteAsyncOnStreamWrapper(run_options, arguments); absl::Status block_status = run_options->stream()->BlockHostUntilDone(); TF_RETURN_IF_ERROR(result.status()); TF_RETURN_IF_ERROR(block_status); return result; } absl::StatusOr<ExecutionOutput> Executable::ExecuteOnStreamWrapper( const ServiceExecutableRunOptions* run_options, std::vector<ExecutionInput> arguments) { absl::StatusOr<ExecutionOutput> result = ExecuteAsyncOnStreamWrapper(run_options, std::move(arguments)); absl::Status block_status = run_options->stream()->BlockHostUntilDone(); TF_RETURN_IF_ERROR(result.status()); TF_RETURN_IF_ERROR(block_status); return result; } struct ExecuteAsyncOnStreamWrapperState { ExecutionProfile* profile; }; static ExecuteAsyncOnStreamWrapperState ExecuteWrapperBeforeExecution( const Executable& executable, const ServiceExecutableRunOptions* run_options) { ExecuteAsyncOnStreamWrapperState state; state.profile = run_options->run_options().execution_profile(); VLOG(1) << "enqueueing executable on stream..."; return state; } absl::Status ExecuteWrapperAfterExecution( Executable* executable, const ExecuteAsyncOnStreamWrapperState& state, absl::Status return_status, se::Stream* stream) { if (!return_status.ok()) { if (state.profile != nullptr) { absl::Status status = stream->BlockHostUntilDone(); if (!status.ok()) { LOG(ERROR) << "Failed to BlockHostUntilDone: " << status; } } return return_status; } if (state.profile != nullptr) { TF_RETURN_IF_ERROR(stream->BlockHostUntilDone()); const int64_t executable_size_in_bytes = executable->SizeOfGeneratedCodeInBytes(); if (state.profile->compute_time_ns() == 0) { state.profile->set_compute_time_ns( state.profile->compute_and_transfer_time_ns()); } if (executable_size_in_bytes != 0) { state.profile->set_executable_size_in_bytes(executable_size_in_bytes); } } return return_status; } absl::StatusOr<ScopedShapedBuffer> Executable::ExecuteAsyncOnStreamWrapper( const ServiceExecutableRunOptions* run_options, absl::Span<const ShapedBuffer* const> arguments) { auto state = ExecuteWrapperBeforeExecution(*this, run_options); absl::StatusOr<ScopedShapedBuffer> return_value = ExecuteAsyncOnStream(run_options, arguments, nullptr); TF_RETURN_IF_ERROR(ExecuteWrapperAfterExecution( this, state, return_value.status(), run_options->stream())); return return_value; } absl::StatusOr<ExecutionOutput> Executable::ExecuteAsyncOnStreamWrapper( const ServiceExecutableRunOptions* run_options, std::vector<ExecutionInput> arguments) { auto state = ExecuteWrapperBeforeExecution(*this, run_options); absl::StatusOr<ExecutionOutput> return_value = ExecuteAsyncOnStream(run_options, std::move(arguments), nullptr); TF_RETURN_IF_ERROR(ExecuteWrapperAfterExecution( this, state, return_value.status(), run_options->stream())); return return_value; } int64_t Executable::SizeOfGeneratedCodeInBytes() const { return -1; } void Executable::MarkToBeReleasedArguments(absl::Span<ExecutionInput> arguments, ExecutionOutput& result) { for (ExecutionInput& argument : arguments) { for (auto& index_buffer : *argument.MutableBuffers()) { if (std::optional<se::OwningDeviceMemory> maybe_owning_buffer = index_buffer.second.Release()) { result.AddToBeReleased(std::move(*maybe_owning_buffer)); } } } } }
#include "tensorflow/core/tfrt/mlrt/bytecode/executable.h" #include <cstring> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" namespace mlrt { namespace bc { namespace { TEST(ExecutableTest, Executable) { bc::Buffer buffer; bc::Allocator allocator(&buffer); Executable::Constructor executable_ctor = bc::New<bc::Executable>(&allocator); Vector<String>::Constructor kernel_names_ctor = executable_ctor.construct_kernel_names(2); kernel_names_ctor.ConstructAt(0, "add"); kernel_names_ctor.ConstructAt(1, "return"); auto attributes_ctor = executable_ctor.construct_attributes(1); int32_t constant = 1; std::string constant_str(sizeof(int32_t), '\0'); std::memcpy(constant_str.data(), &constant, sizeof(int32_t)); attributes_ctor.ConstructAt(0, constant_str); executable_ctor.construct_functions(1); Executable executable(buffer.Get(executable_ctor.address())); EXPECT_THAT(executable.kernel_names(), ::testing::ElementsAreArray({"add", "return"})); EXPECT_EQ(executable.attributes().size(), 1); int32_t value; ASSERT_EQ(executable.attributes()[0].size(), sizeof(value)); std::memcpy(&value, executable.attributes()[0].data(), sizeof(int32_t)); EXPECT_EQ(value, constant); EXPECT_EQ(executable.functions().size(), 1); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/executable.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/mlrt/bytecode/executable_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f724d8e5-774c-4366-8f95-a977c6960432
cpp
tensorflow/tensorflow
grpc_client_session
third_party/xla/xla/python/ifrt_proxy/client/grpc_client_session.cc
third_party/xla/xla/python/ifrt_proxy/client/grpc_client_session_test.cc
#include "xla/python/ifrt_proxy/client/grpc_client_session.h" #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/base/call_once.h" #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/functional/bind_front.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "grpc/grpc.h" #include "grpcpp/channel.h" #include "grpcpp/client_context.h" #include "grpcpp/create_channel.h" #include "grpcpp/security/credentials.h" #include "grpcpp/support/channel_arguments.h" #include "xla/pjrt/distributed/util.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt_proxy/common/grpc_credentials.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.grpc.pb.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/threadpool.h" #include "tsl/platform/unbounded_work_queue.h" namespace xla { namespace ifrt { namespace proxy { class GrpcClientSession::ResponseCallbackTable { public: absl::Status Add(OpId op_id, ResponseCallback callback) { absl::MutexLock l(&mu_); const bool inserted = table_.insert({op_id, std::move(callback)}).second; if (!inserted) { return absl::AlreadyExistsError( absl::StrCat("Op id ", op_id, " already exists")); } return absl::OkStatus(); } std::optional<ResponseCallback> Pop(OpId op_id) { absl::MutexLock l(&mu_); auto it = table_.find(op_id); if (it == table_.end()) { return std::nullopt; } auto cb = std::move(it->second); table_.erase(it); return std::move(cb); } absl::flat_hash_map<OpId, ResponseCallback> PopAll() { absl::flat_hash_map<OpId, ResponseCallback> result; absl::MutexLock l(&mu_); result = std::move(table_); table_ = absl::flat_hash_map<OpId, ResponseCallback>(); return result; } private: absl::Mutex mu_; absl::flat_hash_map<OpId, ResponseCallback> table_ ABSL_GUARDED_BY(mu_); }; std::shared_ptr<GrpcClientSession> GrpcClientSession::Create( std::shared_ptr<grpc::GrpcIfrtService::StubInterface> stub, GrpcIfrtSessionMetadata metadata, StreamTerminatedCallback stream_terminated_cb) { auto context = std::make_unique<::grpc::ClientContext>(); context->AddMetadata("ifrt-proxy-grpc-ifrt-session-metadata-bin", metadata.SerializeAsString()); std::shared_ptr<GrpcClientSession> result(new GrpcClientSession( std::move(stub), std::move(context), std::move(stream_terminated_cb))); return result; } GrpcClientSession::GrpcClientSession( std::shared_ptr<grpc::GrpcIfrtService::StubInterface> stub, std::unique_ptr<::grpc::ClientContext> context, StreamTerminatedCallback stream_terminated_cb) : response_callbacks_(std::make_unique<ResponseCallbackTable>()), reader_thread_(std::make_unique<tsl::thread::ThreadPool>( tsl::Env::Default(), "ifrt_proxy_client_grpc_reader", 1)), stub_(std::move(stub)), context_(std::move(context)), stream_(stub_->IfrtSession(context_.get())), stream_terminated_cb_(std::move(stream_terminated_cb)), user_futures_work_queue_(std::make_unique<tsl::UnboundedWorkQueue>( tsl::Env::Default(), "GrpcClientSessionUserFuturesWorkQueue")) { reader_thread_->Schedule( absl::bind_front(&GrpcClientSession::ReadLoop, this)); } Future<std::shared_ptr<IfrtResponse>> GrpcClientSession::Enqueue( std::unique_ptr<IfrtRequest> request) { auto promise = Future<std::shared_ptr<IfrtResponse>>::CreatePromise(); absl::Status status = Enqueue( std::move(request), [promise, queue = user_futures_work_queue_.get()]( absl::StatusOr<std::shared_ptr<IfrtResponse>> response) mutable { queue->Schedule([promise = std::move(promise), response = std::move(response)]() mutable -> void { promise.Set(std::move(response)); }); }); if (!status.ok()) { user_futures_work_queue_->Schedule([promise, status]() mutable -> void { promise.Set(std::move(status)); }); } return Future<std::shared_ptr<IfrtResponse>>(std::move(promise)); } absl::Status GrpcClientSession::Enqueue(std::unique_ptr<IfrtRequest> req, ResponseCallback callback) { absl::MutexLock l(&writer_mu_); const OpId op_id = writer_next_op_id_++; if (writes_stopped_) { return absl::FailedPreconditionError( "GrpcClientSession: writes no longer allowed."); } TF_RETURN_IF_ERROR(response_callbacks_->Add(op_id, std::move(callback))); CHECK_EQ(req->mutable_request_metadata()->op_id(), 0); req->mutable_request_metadata()->set_op_id(op_id); if (!stream_->Write(*req)) { CHECK(response_callbacks_->Pop(op_id).has_value()); return absl::UnknownError("GrpcClientSession: writing to stream failed."); } return absl::OkStatus(); } void GrpcClientSession::ReadLoop() { while (true) { auto read_buffer = std::make_unique<IfrtResponse>(); if (!stream_->Read(read_buffer.get())) { LOG(INFO) << "GrpcClientSession: reader loop is exiting."; break; } const OpId op_id = read_buffer->response_metadata().op_id(); std::optional<ResponseCallback> callback = response_callbacks_->Pop(op_id); if (callback.has_value()) { VLOG(1) << "GrpcClientSession: Issuing callback for " << op_id; (*callback)(std::move(read_buffer)); VLOG(1) << "GrpcClientSession: Done with callback for " << op_id; } else { LOG(ERROR) << "Received response with no remaining registered callback: " << read_buffer->DebugString(); } } reader_thread_stopped_.Notify(); Finish(absl::OkStatus()); } void GrpcClientSession::Finish(const absl::Status& client_status) { LOG(INFO) << "GrpcClientSession: Finish() called with client status " << client_status; absl::call_once(finish_once_, [&] { context_->TryCancel(); LOG(INFO) << "GrpcClientSession: Waiting for reader thread to stop."; reader_thread_stopped_.WaitForNotification(); auto finish_stream_and_get_server_status = [&]() -> absl::Status { LOG(INFO) << "GrpClientSession: Attempting to call stream->Finish()"; absl::MutexLock l(&writer_mu_); LOG(INFO) << "GrpClientSession: Attempting to call stream->Finish(), " "mutex acquired"; absl::Status server_status = xla::FromGrpcStatus(stream_->Finish()); LOG(INFO) << "GrpClientSession: stream->Finish() returned server status " << server_status; CHECK(!writes_stopped_); writes_stopped_ = true; return server_status; }; absl::Status combined_status = finish_stream_and_get_server_status(); combined_status.Update(client_status); auto all_callbacks = response_callbacks_->PopAll(); for (auto& [_, cb] : all_callbacks) { if (combined_status.ok()) { cb(absl::AbortedError("Finish(OK) called.")); } else { cb(combined_status); } } LOG(INFO) << "GrpClientSession::Finish(): calling terminated cb with " << combined_status; stream_terminated_cb_(combined_status); }); } GrpcClientSession::~GrpcClientSession() { GrpcClientSession::Finish(absl::CancelledError("~GrpcClientSession called.")); reader_thread_.reset(); LOG(INFO) << "Deleting GrpcClientSession.user_futures_work_queue_ ..."; user_futures_work_queue_.reset(); LOG(INFO) << "Deleted GrpcClientSession.user_futures_work_queue_."; } std::shared_ptr<grpc::GrpcIfrtService::StubInterface> CreateGrpcStub( absl::string_view server_address) { ::grpc::ChannelArguments args; args.SetInt(GRPC_ARG_MAX_SEND_MESSAGE_LENGTH, -1); args.SetInt(GRPC_ARG_MAX_RECEIVE_MESSAGE_LENGTH, -1); std::shared_ptr<::grpc::Channel> channel = ::grpc::CreateCustomChannel( std::string(server_address), GetClientCredentials(), args); VLOG(0) << " Established channel."; CHECK(channel != nullptr); std::shared_ptr<grpc::GrpcIfrtService::StubInterface> stub = grpc::GrpcIfrtService::NewStub(channel); VLOG(0) << " Created stub."; CHECK(stub != nullptr); return stub; } } } }
#include "xla/python/ifrt_proxy/client/grpc_client_session.h" #include <atomic> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/log/log_sink_registry.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "absl/time/time.h" #include "grpc/support/time.h" #include "grpcpp/channel.h" #include "grpcpp/create_channel.h" #include "grpcpp/server_builder.h" #include "grpcpp/server_context.h" #include "grpcpp/support/status.h" #include "grpcpp/support/sync_stream.h" #include "xla/python/ifrt_proxy/client/version.h" #include "xla/python/ifrt_proxy/common/grpc_credentials.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.grpc.pb.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.pb.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "xla/python/ifrt_proxy/common/test_utils.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::testing::Not; using ::tsl::testing::IsOk; constexpr absl::Duration kSufficientTime = absl::Seconds(5); GrpcIfrtSessionMetadata Metadata() { GrpcIfrtSessionMetadata metadata; metadata.mutable_version()->set_protocol_version(kClientMaxVersion); return metadata; } absl::Status TestError() { return absl::UnknownError("test error"); } struct Queue : public TestQueue<absl::Status> { Queue() : TestQueue<absl::Status>(kSufficientTime) {} }; void ExpectHeadAndTail( std::vector<std::variant<absl::StatusOr<Queue*>, absl::Status>> var_list) { std::vector<absl::Status> status_list; for (const auto& v : var_list) { if (std::holds_alternative<absl::StatusOr<Queue*>>(v)) { status_list.push_back(std::get<absl::StatusOr<Queue*>>(v).status()); } else { status_list.push_back(std::get<absl::Status>(v)); } } bool seen_not_ok = false; std::string str; for (const auto& s : status_list) { absl::StrAppend(&str, "\n", s.ToString(), "\n-----\n"); } for (const auto& s : status_list) { if (!s.ok()) seen_not_ok = true; if (seen_not_ok) { EXPECT_THAT(s, Not(IsOk())) << str; } } } using ServerStream = ::grpc::ServerReaderWriter<IfrtResponse, IfrtRequest>; using SessionAction = bool; constexpr SessionAction kContinueSession = true; constexpr SessionAction kStopSession = false; using OnSessionStart = std::function<SessionAction()>; using OnReqReceived = std::function<SessionAction(const IfrtRequest&, ServerStream*)>; class SimpleIfrtService : public grpc::GrpcIfrtService::Service { public: SimpleIfrtService(OnReqReceived on_req_received, OnSessionStart on_session_start) : on_req_received_(std::move(on_req_received)), on_session_start_(std::move(on_session_start)) {} ::grpc::Status IfrtSession(::grpc::ServerContext* context, ServerStream* stream) override { if (on_session_start_ && on_session_start_() == kStopSession) { return ::grpc::Status::OK; } { absl::MutexLock l(&mu_); CHECK(contexts_.insert(context).second); } while (true) { IfrtRequest request; LOG(INFO) << "Server: waiting on Read()."; if (!stream->Read(&request)) { LOG(INFO) << "Server: Read() returned false."; break; } LOG(INFO) << "Server: Read() returned true."; if (!on_req_received_) { IfrtResponse response; response.mutable_response_metadata()->set_op_id( request.request_metadata().op_id()); stream->Write(response); } else if (on_req_received_(request, stream) == kStopSession) { break; } } { absl::MutexLock l(&mu_); CHECK_EQ(contexts_.erase(context), 1); } LOG(INFO) << "Finishing IFRT session"; return ::grpc::Status::OK; } void CancelAllServerSessions() { absl::MutexLock l(&mu_); for (const auto& context : contexts_) { context->TryCancel(); } } private: const OnReqReceived on_req_received_; const OnSessionStart on_session_start_; absl::Mutex mu_; absl::flat_hash_set<::grpc::ServerContext*> contexts_ ABSL_GUARDED_BY(mu_); }; class ClientAndServer { public: explicit ClientAndServer(OnReqReceived on_req_received = nullptr, OnSessionStart on_session_start = nullptr) { std::string address = absl::StrCat("localhost:", tsl::testing::PickUnusedPortOrDie()); ::grpc::ServerBuilder builder; builder.AddListeningPort(address, GetServerCredentials()); ifrt_service_ = std::make_unique<SimpleIfrtService>(on_req_received, on_session_start); builder.RegisterService(ifrt_service_.get()); server_ = builder.BuildAndStart(); LOG(INFO) << "Server started and listening on " << address; absl::FlushLogSinks(); std::shared_ptr<::grpc::Channel> channel = ::grpc::CreateChannel(address, GetClientCredentials()); channel->WaitForConnected(gpr_time_add( gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_seconds(10, GPR_TIMESPAN))); LOG(INFO) << "conn_state = " << channel->GetState(false); auto stub = grpc::GrpcIfrtService::NewStub(channel); CHECK(stub != nullptr); client_session_ = GrpcClientSession::Create( std::move(stub), Metadata(), [this](absl::Status s) { client_finished_q_.Push(s); client_finished_notification_.Notify(); }); client_finished_q_.AllowNonEmptyDestruction(true); } void StopServer() { ifrt_service_->CancelAllServerSessions(); server_->Shutdown(); server_->Wait(); } ~ClientAndServer() { StopServer(); client_session_->Finish(absl::CancelledError("~ClientAndServer")); client_finished_notification_.WaitForNotificationWithTimeout( kSufficientTime); CHECK(client_finished_notification_.HasBeenNotified()); } GrpcClientSession* client_session() { return client_session_.get(); } Queue* client_finished_q() { return &client_finished_q_; } absl::StatusOr<Queue*> SendSimpleRequest() { owned_queues_.push_back(std::make_unique<Queue>()); Queue* q = owned_queues_.back().get(); auto req = std::make_unique<IfrtRequest>(); TF_RETURN_IF_ERROR(client_session_->Enqueue( std::move(req), [q](absl::StatusOr<GrpcClientSession::Response> resp) { q->Push(resp.status()); })); return q; } private: std::vector<std::unique_ptr<Queue>> owned_queues_; Queue client_finished_q_; absl::Notification client_finished_notification_; std::shared_ptr<GrpcClientSession> client_session_; std::unique_ptr<::grpc::Server> server_; std::unique_ptr<SimpleIfrtService> ifrt_service_; }; TEST(GrpcClientSessionTest, HappyCaseOneRequestWithServerTermination) { ClientAndServer cs; TF_ASSERT_OK_AND_ASSIGN(Queue * response_q, cs.SendSimpleRequest()); EXPECT_THAT(response_q->Pop(), IsOk()); EXPECT_EQ(cs.client_finished_q()->PopOrTimeout(), std::nullopt); cs.StopServer(); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, HappyCaseTwoRequestsWithClientFinish) { ClientAndServer cs; TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_1, cs.SendSimpleRequest()); TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_2, cs.SendSimpleRequest()); EXPECT_THAT(response_q_1->Pop(), IsOk()); EXPECT_THAT(response_q_2->Pop(), IsOk()); EXPECT_EQ(cs.client_finished_q()->PopOrTimeout(), std::nullopt); cs.client_session()->Finish(TestError()); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, ServerFinishesDuringFirstRead) { ClientAndServer cs( [](auto, auto) { return kStopSession; }); TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_1, cs.SendSimpleRequest()); EXPECT_THAT(response_q_1->Pop(), Not(IsOk())); absl::StatusOr<Queue*> response_q_2 = cs.SendSimpleRequest(); EXPECT_THAT(response_q_2.status(), Not(IsOk())); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, ServerFinishesDuringConstruction) { ClientAndServer cs(nullptr, []() { return kStopSession; }); absl::StatusOr<Queue*> response_q_1 = cs.SendSimpleRequest(); absl::StatusOr<Queue*> response_q_2 = cs.SendSimpleRequest(); ExpectHeadAndTail({response_q_1, response_q_2}); if (response_q_1.ok()) EXPECT_THAT(response_q_1.value()->Pop(), Not(IsOk())); if (response_q_2.ok()) EXPECT_THAT(response_q_2.value()->Pop(), Not(IsOk())); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, ClientFinishesAfterServerConsumesFirstRequest) { std::atomic<GrpcClientSession*> session_ptr; ClientAndServer cs( [session_ptr = &session_ptr](auto, auto) { session_ptr->load()->Finish(TestError()); return kContinueSession; }); session_ptr.store(cs.client_session()); TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_1, cs.SendSimpleRequest()); EXPECT_THAT(response_q_1->Pop(), Not(IsOk())); absl::StatusOr<Queue*> response_q_2 = cs.SendSimpleRequest(); EXPECT_THAT(response_q_2.status(), Not(IsOk())); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, ClientFinishesAfterServerWritesFirstResponse) { std::atomic<GrpcClientSession*> session_ptr; ClientAndServer cs( [session_ptr = &session_ptr](const IfrtRequest& r, ServerStream* s) { IfrtResponse response; response.mutable_response_metadata()->set_op_id( r.request_metadata().op_id()); s->Write(response); session_ptr->load()->Finish(TestError()); return kContinueSession; }); session_ptr.store(cs.client_session()); TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_1, cs.SendSimpleRequest()); absl::StatusOr<Queue*> response_q_2 = cs.SendSimpleRequest(); response_q_1->Pop().IgnoreError(); if (response_q_2.ok()) { EXPECT_THAT(response_q_2.value()->Pop(), Not(IsOk())); } EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, ClientFinishesDuringServerConstruction) { std::atomic<GrpcClientSession*> session_ptr; absl::Notification init_done; ClientAndServer cs(nullptr, [session_ptr = &session_ptr, init_done = &init_done]() { init_done->WaitForNotification(); session_ptr->load()->Finish(TestError()); return kContinueSession; }); session_ptr.store(cs.client_session()); init_done.Notify(); absl::StatusOr<Queue*> response_q_1 = cs.SendSimpleRequest(); absl::StatusOr<Queue*> response_q_2 = cs.SendSimpleRequest(); if (response_q_1.ok()) { EXPECT_THAT(response_q_1.value()->Pop(), Not(IsOk())); } if (response_q_2.ok()) { EXPECT_THAT(response_q_2.value()->Pop(), Not(IsOk())); } ExpectHeadAndTail({response_q_1, response_q_2}); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, MethodsAfterFinishReturnError) { ClientAndServer cs; TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_1, cs.SendSimpleRequest()); cs.client_session()->Finish(TestError()); EXPECT_THAT(cs.SendSimpleRequest(), Not(IsOk())); response_q_1->AllowNonEmptyDestruction(true); } TEST(GrpcClientSessionTest, ReceivingBadIfrtResponseDoesNotCrash) { ClientAndServer cs( [](const IfrtRequest& r, ServerStream* s) mutable { IfrtResponse resp; resp.mutable_response_metadata()->set_op_id(2000); s->Write(resp); resp.mutable_response_metadata()->set_op_id( r.request_metadata().op_id()); s->Write(resp); return kContinueSession; }); TF_ASSERT_OK_AND_ASSIGN(Queue * response_q, cs.SendSimpleRequest()); EXPECT_THAT(response_q->Pop(), IsOk()); } TEST(GrpcClientSessionTest, BadInitialChannelFailsPromptly) { std::string address = absl::StrCat("localhost:", tsl::testing::PickUnusedPortOrDie()); std::shared_ptr<::grpc::Channel> channel = ::grpc::CreateChannel(address, GetClientCredentials()); std::unique_ptr<grpc::GrpcIfrtService::StubInterface> stub = grpc::GrpcIfrtService::NewStub(channel); EXPECT_TRUE(stub != nullptr); auto session_finished = std::make_shared<Queue>(); auto session = GrpcClientSession::Create( std::move(stub), Metadata(), [session_finished](absl::Status s) { session_finished->Push(s); }); EXPECT_THAT(session_finished->Pop(), Not(IsOk())); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/client/grpc_client_session.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/client/grpc_client_session_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4649cce1-3b5d-4cf7-8780-4bdd02283558
cpp
tensorflow/tensorflow
rpc_helper
third_party/xla/xla/python/ifrt_proxy/client/rpc_helper.cc
third_party/xla/xla/python/ifrt_proxy/client/rpc_helper_test.cc
#include "xla/python/ifrt_proxy/client/rpc_helper.h" #include <array> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/functional/bind_front.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt_proxy/client/client_session.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "xla/python/ifrt_proxy/common/test_utils.h" #include "xla/python/ifrt_proxy/common/types.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "tsl/platform/env.h" #include "tsl/platform/random.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/threadpool.h" #include "tsl/profiler/lib/traceme.h" #include "tsl/profiler/lib/traceme_encode.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::tsl::profiler::XFlow; constexpr absl::Duration kPeriodicFlushInterval = absl::Microseconds(50); class XFlowHelper { public: explicit XFlowHelper(absl::string_view name) : xflow_id_(tsl::random::New64() >> 8 ), name_(name) {} typedef enum { kSend, kRecv, kRecvSend } Direction; template <Direction D> tsl::profiler::TraceMe Span() const { return tsl::profiler::TraceMe([xflow_id = xflow_id_, name = name_] { return Encode<D>(xflow_id, name); }); } template <Direction D> void InstantActivity() const { return tsl::profiler::TraceMe::InstantActivity( [xflow_id = xflow_id_, name = name_] { return Encode<D>(xflow_id, name); }); } private: template <Direction D> static std::string Encode(uint64_t xflow_id, absl::string_view name) { static constexpr absl::string_view flow_dir_str = D == kSend ? "send" : (D == kRecv ? "recv" : "recv_send"); const XFlow flow(xflow_id, D == kRecvSend ? XFlow::kFlowInOut : (D == kRecv ? XFlow::kFlowIn : XFlow::kFlowOut)); return tsl::profiler::TraceMeEncode( name, {{"dir", flow_dir_str}, {"flow", flow.ToStatValue()}}); }; const uint64_t xflow_id_; const absl::string_view name_; }; class BatchedOps { public: using BatchOperation = RpcHelper::BatchOperation; void Add(BatchOperation op, ArrayHandle handle) { absl::MutexLock l(&mu_); batched_[op].push_back(handle); } struct IfrtRequests { std::unique_ptr<IfrtRequest> delete_req; std::unique_ptr<IfrtRequest> destruct_req; }; IfrtRequests Consume() { IfrtRequests result; absl::MutexLock l(&mu_); if (!batched_[BatchOperation::kDeleteArray].empty()) { result.delete_req = std::make_unique<IfrtRequest>(); for (const auto& arr_handle : batched_[BatchOperation::kDeleteArray]) { result.delete_req->mutable_delete_array_request()->add_array_handle( arr_handle.handle); } batched_[BatchOperation::kDeleteArray].clear(); } if (!batched_[BatchOperation::kDestructArray].empty()) { result.destruct_req = std::make_unique<IfrtRequest>(); for (const auto& arr_handle : batched_[BatchOperation::kDestructArray]) { result.destruct_req->mutable_destruct_array_request()->add_array_handle( arr_handle.handle); } batched_[BatchOperation::kDestructArray].clear(); } return result; } private: absl::Mutex mu_; std::array<std::vector<ArrayHandle>, BatchOperation::kSentinelDoNotUse> batched_ ABSL_GUARDED_BY(mu_); }; } class RpcHelper::Batcher { public: explicit Batcher(std::shared_ptr<ClientSession> session) : session_(std::move(session)) { thread_pool_.emplace(tsl::Env::Default(), "IfrtProxyRpcHelperBatcher", 1); thread_pool_->Schedule(absl::bind_front(&Batcher::PeriodicFlusher, this)); } Future<ClientSession::Response> Immediate( std::unique_ptr<IfrtRequest> request) { absl::MutexLock l(&mu_); if (finished_) { LOG(WARNING) << "After RpcHelper::Finish(): " << request->DebugString(); return Future<ClientSession::Response>( absl::FailedPreconditionError("RpcHelper::Finish() already called.")); } Flush(); return session_->Enqueue(std::move(request)); } void Batch(BatchOperation op, ArrayHandle handle) { batched_.Add(op, handle); } void Finish(absl::Status s) { { absl::MutexLock l(&mu_); finished_ = true; auto remaining = batched_.Consume(); if (remaining.delete_req != nullptr) { LOG(WARNING) << "RpcHelper::Batch: Finish() called while there are " "still batched delete operations"; } if (remaining.destruct_req != nullptr) { LOG(WARNING) << "RpcHelper::Batch: Finish() called while there are " "still batched destruct operations"; } } thread_pool_.reset(); session_->Finish(s); } private: void PeriodicFlusher() { while (true) { absl::SleepFor(kPeriodicFlushInterval); absl::MutexLock l(&mu_); if (finished_) { return; } { bool periodic_flush_paused = false; TestHookCall(TestHookName::kRpcBatcherPausePeriodicFlush, &periodic_flush_paused); if (periodic_flush_paused) { continue; } } tsl::profiler::TraceMe traceme("proxy_periodic_flush"); Flush(); } } void Flush() ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_) { auto reqs = batched_.Consume(); if (reqs.delete_req != nullptr) { XFlowHelper x_flow_helper("batch_delete"); auto traceme = x_flow_helper.Span<XFlowHelper::kSend>(); session_->Enqueue(std::move(reqs.delete_req)) .OnReady( absl::bind_front(HandleBatchResponse, session_, x_flow_helper)); } if (reqs.destruct_req != nullptr) { XFlowHelper x_flow_helper("batch_destruct"); auto traceme = x_flow_helper.Span<XFlowHelper::kSend>(); session_->Enqueue(std::move(reqs.destruct_req)) .OnReady( absl::bind_front(HandleBatchResponse, session_, x_flow_helper)); } } static void HandleBatchResponse( std::shared_ptr<ClientSession> session, XFlowHelper x_flow_helper, absl::StatusOr<std::shared_ptr<IfrtResponse>> r) { if (!r.ok()) { x_flow_helper.InstantActivity<XFlowHelper::kRecv>(); LOG(WARNING) << "Batched response from ifrt proxy server: " << r.status(); return; } if (r.value()->has_delete_array_response()) { auto traceme = x_flow_helper.Span<XFlowHelper::kRecvSend>(); auto ifrt_req = std::make_unique<IfrtRequest>(); ifrt_req->mutable_check_future_request()->set_future_handle( r.value()->delete_array_response().deletion_future_handle()); session->Enqueue(std::move(ifrt_req)) .OnReady( absl::bind_front(HandleBatchResponse, session, x_flow_helper)); } else if (r.value()->has_destruct_array_response() || r.value()->has_check_future_response()) { x_flow_helper.InstantActivity<XFlowHelper::kRecv>(); } else { LOG(ERROR) << "Unrecognized response from server for batched request: " << (*r)->DebugString(); } } const std::shared_ptr<ClientSession> session_; BatchedOps batched_; absl::Mutex mu_; bool finished_ ABSL_GUARDED_BY(mu_) = false; std::optional<tsl::thread::ThreadPool> thread_pool_; }; template <typename Req, typename Resp> Future<std::shared_ptr<Resp>> DoRpc(RpcHelper::Batcher* batcher, void (IfrtRequest::*set_req)(Req*), Resp* (IfrtResponse::*get_resp)(), bool (IfrtResponse::*has_resp)() const, std::unique_ptr<Req> req, absl::string_view profiling_name) { auto ifrt_req = std::make_unique<IfrtRequest>(); (ifrt_req.get()->*set_req)(req.release()); XFlowHelper x_flow_helper(profiling_name); auto traceme = x_flow_helper.Span<XFlowHelper::kSend>(); auto promise = Future<std::shared_ptr<Resp>>::CreatePromise(); auto on_ready = [promise, has_resp, get_resp, x_flow_helper]( absl::StatusOr<std::shared_ptr<IfrtResponse>> r) mutable { auto traceme = x_flow_helper.Span<XFlowHelper::kRecv>(); if (!r.ok()) { LOG_EVERY_N_SEC(ERROR, 10) << "Connection to IFRT proxy server was terminated: " << r.status(); promise.Set(absl::UnavailableError( absl::StrCat("Connection to IFRT proxy server was terminated: ", r.status().ToString()))); return; } std::shared_ptr<IfrtResponse> response = *std::move(r); if (!response->has_response_metadata()) { promise.Set(absl::InternalError( absl::StrCat("IFRT server sent a message without metadata: ", response->DebugString()))); return; } const absl::Status metadata_status = tsl::StatusFromProto(response->response_metadata().status()); const bool has_expected_response = (response.get()->*has_resp)(); const auto has_some_response = response->response_case() != IfrtResponse::RESPONSE_NOT_SET; if (metadata_status.ok() && !has_some_response) { promise.Set(absl::InternalError( absl::StrCat("OK response with no actual response set: ", response->DebugString()))); return; } if (!has_expected_response && has_some_response) { promise.Set(absl::InternalError(absl::StrCat( "Response with wrong type (expected ", Resp::GetDescriptor()->name(), "): ", response->DebugString()))); return; } if (!has_some_response) { promise.Set(metadata_status); } else { promise.Set( std::make_shared<Resp>(*std::move((response.get()->*get_resp)()))); } }; batcher->Immediate(std::move(ifrt_req)).OnReady(on_ready); return Future<std::shared_ptr<Resp>>(promise); } #define RPC(METHOD, PROPERTY) \ RpcHelper::ResponseFuture<METHOD##Response> RpcHelper::METHOD( \ std::unique_ptr<METHOD##Request> req) { \ return DoRpc( \ batcher_.get(), &IfrtRequest::set_allocated_##PROPERTY##_request, \ &IfrtResponse::mutable_##PROPERTY##_response, \ &IfrtResponse::has_##PROPERTY##_response, std::move(req), #PROPERTY); \ } RPC(Init, init); RPC(GetDefaultDeviceAssignment, get_default_device_assignment); RPC(CheckFuture, check_future); RPC(CheckValueReady, check_value_ready); RPC(MakeArrayFromHostBuffer, make_array_from_host_buffer); RPC(AssembleArrayFromSingleDeviceArrays, assemble_array_from_single_device_arrays); RPC(RemapArrays, remap_arrays); RPC(DisassembleIntoSingleDeviceArrays, disassemble_into_single_device_arrays); RPC(CopyToHostBuffer, copy_to_host_buffer); RPC(IsArrayDeleted, is_array_deleted); RPC(DestructArray, destruct_array) RPC(CopyArrays, copy_arrays); RPC(Reshard, reshard); RPC(FullyReplicatedShard, fully_replicated_shard); RPC(DeleteArray, delete_array); RPC(Compile, compile); RPC(LoadedExecutableMetadata, loaded_executable_metadata); RPC(LoadedExecutableExecute, loaded_executable_execute); RPC(LoadedExecutableDelete, loaded_executable_delete); RPC(LoadedExecutableIsDeleted, loaded_executable_is_deleted); RPC(LoadedExecutableDestruct, loaded_executable_destruct); RPC(LoadedHostCallbackPoll, loaded_host_callback_poll); RPC(LoadedHostCallbackReturn, loaded_host_callback_return); Future<> RpcHelper::CheckFuture(uint64_t handle) { auto req = std::make_unique<CheckFutureRequest>(); req->set_future_handle(handle); auto promise = Future<>::CreatePromise(); CheckFuture(std::move(req)) .OnReady( [promise](absl::StatusOr<std::shared_ptr<CheckFutureResponse>> response) mutable { promise.Set(response.status()); }); return Future<>(std::move(promise)); } RpcHelper::RpcHelper(IfrtProxyVersion version, std::shared_ptr<ClientSession> session) : batcher_(std::make_unique<Batcher>(std::move(session))), version_(std::move(version)) {} RpcHelper::~RpcHelper() { Disconnect(); } void RpcHelper::Batch(BatchOperation op, ArrayHandle handle) { return batcher_->Batch(op, handle); } void RpcHelper::Disconnect() { batcher_->Finish(absl::CancelledError("Disconnected by client")); } } } }
#include "xla/python/ifrt_proxy/client/rpc_helper.h" #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt_proxy/client/client_session.h" #include "xla/python/ifrt_proxy/client/mock_client_session.h" #include "xla/python/ifrt_proxy/client/version.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "xla/python/ifrt_proxy/common/test_utils.h" #include "xla/python/ifrt_proxy/common/types.h" #include "xla/python/ifrt_proxy/common/types.pb.h" #include "tsl/platform/test.h" using ::testing::_; using ::testing::UnorderedElementsAre; namespace xla { namespace ifrt { namespace proxy { namespace { constexpr absl::Duration kMaxFlushTimeout = absl::Seconds(10); void PausePeriodicFlushes() { struct AtomicBool { absl::Mutex mu; bool b = false; }; auto called_at_least_once = std::make_shared<AtomicBool>(); auto periodic_flusher_pause_hook = [called_at_least_once](bool* paused) { *paused = true; absl::MutexLock l(&called_at_least_once->mu); called_at_least_once->b = true; }; TestHookSet(TestHookName::kRpcBatcherPausePeriodicFlush, std::move(periodic_flusher_pause_hook)); absl::MutexLock l(&called_at_least_once->mu); CHECK(called_at_least_once->mu.AwaitWithTimeout( absl::Condition(&called_at_least_once->b), kMaxFlushTimeout)); } void ResumePeriodicFlushes() { TestHookClear(TestHookName::kRpcBatcherPausePeriodicFlush); } class RpcHelperTest : public ::testing::Test { public: RpcHelperTest() : requests_(kMaxFlushTimeout) { session_ = std::make_shared<MockClientSession>(); IfrtProxyVersion version; version.set_protocol_version(kClientMaxVersion); rpc_helper_ = std::make_shared<RpcHelper>(version, session_); EXPECT_CALL(*session_, Finish(_)).Times(1); ON_CALL(*session_, Enqueue) .WillByDefault([this](std::unique_ptr<IfrtRequest> req) { requests_.Push(std::move(req)); return Future<ClientSession::Response>( absl::InternalError("Fake error response")); }); } std::shared_ptr<MockClientSession> session_; std::shared_ptr<RpcHelper> rpc_helper_; TestQueue<std::unique_ptr<IfrtRequest>> requests_; }; TEST_F(RpcHelperTest, BatchedPeriodicFlush) { PausePeriodicFlushes(); rpc_helper_->Batch(RpcHelper::kDestructArray, ArrayHandle{1}); rpc_helper_->Batch(RpcHelper::kDeleteArray, ArrayHandle{2}); rpc_helper_->Batch(RpcHelper::kDestructArray, ArrayHandle{3}); rpc_helper_->Batch(RpcHelper::kDeleteArray, ArrayHandle{4}); rpc_helper_->Batch(RpcHelper::kDestructArray, ArrayHandle{9}); rpc_helper_->Batch(RpcHelper::kDeleteArray, ArrayHandle{8}); rpc_helper_->Batch(RpcHelper::kDestructArray, ArrayHandle{7}); rpc_helper_->Batch(RpcHelper::kDeleteArray, ArrayHandle{6}); ResumePeriodicFlushes(); auto delete_req = requests_.Pop(); auto destruct_req = requests_.Pop(); if (destruct_req->has_delete_array_request()) { destruct_req.swap(delete_req); } EXPECT_THAT(destruct_req->destruct_array_request().array_handle(), UnorderedElementsAre(1, 3, 9, 7)); EXPECT_THAT(delete_req->delete_array_request().array_handle(), UnorderedElementsAre(2, 4, 8, 6)); } TEST_F(RpcHelperTest, BatchedNoPeriodicFlush) { PausePeriodicFlushes(); rpc_helper_->Batch(RpcHelper::kDestructArray, ArrayHandle{1}); rpc_helper_->Batch(RpcHelper::kDeleteArray, ArrayHandle{2}); rpc_helper_->Batch(RpcHelper::kDestructArray, ArrayHandle{3}); rpc_helper_->Batch(RpcHelper::kDeleteArray, ArrayHandle{4}); rpc_helper_->Batch(RpcHelper::kDestructArray, ArrayHandle{9}); rpc_helper_->Batch(RpcHelper::kDeleteArray, ArrayHandle{8}); rpc_helper_->Batch(RpcHelper::kDestructArray, ArrayHandle{7}); rpc_helper_->Batch(RpcHelper::kDeleteArray, ArrayHandle{6}); { auto dummy_request = std::make_unique<CheckFutureRequest>(); dummy_request->set_future_handle(1); rpc_helper_->CheckFuture(std::move(dummy_request)); requests_.AllowNonEmptyDestruction(true); } auto delete_req = requests_.Pop(); auto destruct_req = requests_.Pop(); if (destruct_req->has_delete_array_request()) { destruct_req.swap(delete_req); } EXPECT_THAT(destruct_req->destruct_array_request().array_handle(), UnorderedElementsAre(1, 3, 9, 7)); EXPECT_THAT(delete_req->delete_array_request().array_handle(), UnorderedElementsAre(2, 4, 8, 6)); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/client/rpc_helper.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/client/rpc_helper_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
957c48a5-fd83-42db-b8cb-de8f81d5dac2
cpp
tensorflow/tensorflow
compiler
tensorflow/lite/delegates/gpu/gl/compiler.cc
third_party/xla/xla/service/compiler_test.cc
#include "tensorflow/lite/delegates/gpu/gl/compiler.h" #include <algorithm> #include <any> #include <memory> #include <string> #include <unordered_set> #include <utility> #include <variant> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/memory/memory.h" #include "absl/types/any.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/gpu_info.h" #include "tensorflow/lite/delegates/gpu/common/model_transformer.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/gl/compiler/compiled_node.h" #include "tensorflow/lite/delegates/gpu/gl/compiler/fuse_auto_input.h" #include "tensorflow/lite/delegates/gpu/gl/compiler/fuse_inline.h" #include "tensorflow/lite/delegates/gpu/gl/compiler/fuse_inplace.h" #include "tensorflow/lite/delegates/gpu/gl/compiler/shader_codegen.h" #include "tensorflow/lite/delegates/gpu/gl/float16_conversions.h" #ifdef __ANDROID__ #include <sys/system_properties.h> #endif namespace tflite { namespace gpu { namespace gl { namespace { struct ExceedSizeChecker { bool operator()(uint32_t v) const { return v > max_size.x; } bool operator()(const uint2& v) const { return v.x > max_size.x || v.y > max_size.y; } bool operator()(const uint3& v) const { return v.x > max_size.x || v.y > max_size.y || v.z > max_z_size; } int2 max_size; int max_z_size; }; bool ExceedsMaxSize(const Object& object, const GpuInfo& gpu_info) { ExceedSizeChecker size_checker; size_checker.max_size = int2(gpu_info.GetMaxImage2DWidth(), gpu_info.GetMaxImage2DHeight()); size_checker.max_z_size = gpu_info.GetMaxImage2DArrayLayers(); return std::visit(size_checker, object.size); } ObjectType ChooseFastestObjectType(const GpuInfo& gpu_info) { return gpu_info.IsAdreno() ? ObjectType::TEXTURE : ObjectType::BUFFER; } ObjectType ChooseFastestRefObjectType(const GpuInfo& gpu_info, const CompilationOptions& options) { if (!gpu_info.IsAdreno()) { return ObjectType::BUFFER; } if (gpu_info.adreno_info.adreno_gpu == AdrenoGpu::kAdreno630) { return ObjectType::TEXTURE; } else { return options.allow_precision_loss ? ObjectType::TEXTURE : ObjectType::BUFFER; } } class CompilerImpl : public Compiler { public: CompilerImpl(const NodeShader* node_shader, const GpuInfo* gpu_info, const CompilationOptions& options) : node_shader_(*node_shader), gpu_info_(*gpu_info), options_(options) { if (options_.preferred_obj_type == ObjectType::UNKNOWN) { options_.preferred_obj_type = ChooseFastestObjectType(*gpu_info); } if (options_.ref_obj_type == ObjectType::UNKNOWN) { options_.ref_obj_type = ChooseFastestRefObjectType(*gpu_info, options); } #ifdef __ANDROID__ if (gpu_info_.IsAdreno() && gpu_info_.adreno_info.adreno_gpu == AdrenoGpu::kAdreno660) { char sdk_version[PROP_VALUE_MAX]; __system_property_get("ro.build.version.sdk", sdk_version); if (!strcmp(sdk_version, "30")) options_.allow_precision_loss = false; } #endif } absl::Status Compile( const GraphFloat32& graph, const std::unordered_set<int>& tflite_graph_io, const ShaderCodeCallback& callback) final { RETURN_IF_ERROR(graph.MakeExactCopy(&compiled_graph_)); if (options_.dynamic_batch) { for (auto value : compiled_graph_.values()) { value->tensor.shape.b = 1; } } for (auto node : compiled_graph_.nodes()) { CompiledNodeAttributes attr; attr.node_indices.push_back(node->id); NodeShader::GenerationContext ctx = {&gpu_info_, options_, node->operation.type, node->operation.attributes}; for (const auto& tensor : graph.FindInputs(node->id)) { const auto& shape = tensor->tensor.shape; ctx.input_shapes.push_back({shape.b, shape.h, shape.w, shape.c}); } for (const auto& tensor : graph.FindOutputs(node->id)) { const auto& shape = tensor->tensor.shape; ctx.output_shapes.push_back({shape.b, shape.h, shape.w, shape.c}); } RETURN_IF_ERROR(node_shader_.GenerateCode(ctx, &attr.code)); node->operation.attributes = std::move(attr); } ModelTransformer transformer(&compiled_graph_); if (options_.fuse_operations) { FuseAutoOutputWithInline fuse_inline; if (!transformer.Apply("fuse_auto_with_inline", &fuse_inline)) { return absl::InternalError("fuse_auto_with_inline failed"); } FuseInplaceUpdate fuse_inplace; if (!transformer.Apply("fuse_inplace_update", &fuse_inplace)) { return absl::InternalError("fuse_inplace failed"); } if (options_.auto_input_fusion) { FuseAutoInput fuse_auto_input; if (!transformer.Apply("fuse_auto_input", &fuse_auto_input)) { return absl::InternalError("fuse_auto_input failed"); } } } RemoveUnusedInplaceUpdates remove_inplace_updates; if (!transformer.Apply("remove_inplace_updates", &remove_inplace_updates)) { return absl::InternalError("remove_inplace_updates failed"); } absl::flat_hash_map<ValueId, Object> objects; for (auto value : compiled_graph_.values()) { Object object = MakePHWC4Ref(value->id, value->tensor.shape); object.data_type = value->tensor.type; const bool is_external = graph.IsGraphInput(value->id) || graph.IsGraphOutput(value->id) || tflite_graph_io.find(value->tensor.ref) != tflite_graph_io.end(); if (is_external) { object.object_type = ObjectType::BUFFER; } else if (options_.allow_precision_loss) { MaybeConvertToFloat16(&object); } objects[value->id] = std::move(object); } for (auto node : compiled_graph_.nodes()) { auto& attr = std::any_cast<CompiledNodeAttributes&>(node->operation.attributes); if (attr.code.workload == uint3()) { auto outputs = compiled_graph_.FindOutputs(node->id); auto shape = outputs[0]->tensor.shape; for (auto output : outputs) { if (shape != output->tensor.shape) { return absl::FailedPreconditionError( "Workload uint3() requires all output sizes to match"); } } attr.code.workload = uint3(shape.w, shape.h, DivideRoundUp(shape.c, 4)); } int num_textures = 0; auto set_object_type = [&](Object* object) { if (object->object_type == ObjectType::BUFFER) { return; } bool is_ref = IsRef(*object); if (num_textures < gpu_info_.GetMaxImageArguments() && !ExceedsMaxSize(*object, gpu_info_) && (object->object_type == ObjectType::TEXTURE || (is_ref && options_.ref_obj_type == ObjectType::TEXTURE) || (!is_ref && options_.preferred_obj_type == ObjectType::TEXTURE))) { object->object_type = ObjectType::TEXTURE; num_textures++; } else { object->object_type = ObjectType::BUFFER; } }; for (auto& object : attr.code.objects) { if (options_.allow_precision_loss) { MaybeConvertToFloat16(&object.second); } set_object_type(&object.second); } for (auto ref : compiled_graph_.FindInputs(node->id)) { set_object_type(&objects[ref->id]); } for (auto ref : compiled_graph_.FindOutputs(node->id)) { set_object_type(&objects[ref->id]); } } ShaderCodegen codegen(options_, gpu_info_); for (auto node : compiled_graph_.nodes()) { auto& attr = std::any_cast<CompiledNodeAttributes&>(node->operation.attributes); if (attr.code.source_code.empty()) { continue; } for (auto ref : compiled_graph_.FindInputs(node->id)) { auto object = objects[ref->id]; object.access = AccessType::READ; attr.inputs.push_back(object); } for (auto ref : compiled_graph_.FindOutputs(node->id)) { auto object = objects[ref->id]; object.access = AccessType::WRITE; attr.outputs.push_back(object); } uint32_t binding = 0; auto set_binding = [&](ObjectType type, Object& object) { if (object.object_type == type) { object.binding = binding++; } }; for (auto& object : attr.inputs) { set_binding(ObjectType::TEXTURE, object); } for (auto& object : attr.outputs) { set_binding(ObjectType::TEXTURE, object); } for (auto& object : attr.code.objects) { set_binding(ObjectType::TEXTURE, object.second); } for (auto& object : attr.inputs) { set_binding(ObjectType::BUFFER, object); } for (auto& object : attr.outputs) { set_binding(ObjectType::BUFFER, object); } for (auto& object : attr.code.objects) { set_binding(ObjectType::BUFFER, object.second); } ShaderCode shader_code; RETURN_IF_ERROR(codegen.Build(std::move(attr), &shader_code)); RETURN_IF_ERROR(callback(std::move(shader_code))); } return absl::OkStatus(); } private: const NodeShader& node_shader_; const GpuInfo& gpu_info_; CompilationOptions options_; GraphFloat32 compiled_graph_; }; } std::unique_ptr<Compiler> NewCompiler(const NodeShader* node_shader, const GpuInfo* gpu_info, const CompilationOptions& options) { return std::make_unique<CompilerImpl>(node_shader, gpu_info, options); } } } }
#include "xla/service/compiler.h" #include <gtest/gtest.h> #include "xla/autotune_results.pb.h" #include "xla/stream_executor/device_description.pb.h" #include "xla/stream_executor/gpu/gpu_init.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tests/test_macros.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { TEST(TargetConfigTest, DISABLED_ON_CPU(ExecutorConstructorFillsAllFields)) { TF_ASSERT_OK(stream_executor::ValidateGPUMachineManager()); TF_ASSERT_OK_AND_ASSIGN( stream_executor::StreamExecutor * executor, stream_executor::GPUMachineManager()->ExecutorForDevice(0)); Compiler::TargetConfig config(executor); stream_executor::GpuTargetConfigProto target = config.ToProto(); EXPECT_GT(target.dnn_version_info().major(), 0) << target.DebugString(); EXPECT_GT(target.gpu_device_info().threads_per_block_limit(), 0) << target.DebugString(); EXPECT_NE(target.device_description_str(), "") << target.DebugString(); EXPECT_NE(target.platform_name(), "") << target.DebugString(); EXPECT_EQ(target.autotune_results().version(), 0); EXPECT_EQ(5, stream_executor::GpuTargetConfigProto::descriptor()->field_count()) << "Make sure all the fields in GpuTargetConfigProto are set and " "validated!"; } TEST(TargetConfigTest, ProtoConstructorFillsAllFields) { stream_executor::GpuTargetConfigProto config_proto; config_proto.set_platform_name("platform"); config_proto.mutable_dnn_version_info()->set_major(2); config_proto.mutable_gpu_device_info()->set_threads_per_block_limit(5); config_proto.set_device_description_str("foo"); Compiler::TargetConfig config(config_proto); stream_executor::GpuTargetConfigProto target = config.ToProto(); EXPECT_EQ(target.dnn_version_info().major(), config_proto.dnn_version_info().major()) << target.DebugString(); EXPECT_EQ(target.gpu_device_info().threads_per_block_limit(), 5) << target.DebugString(); EXPECT_EQ(target.device_description_str(), "foo") << target.DebugString(); EXPECT_EQ(target.platform_name(), "platform") << target.DebugString(); EXPECT_EQ(target.autotune_results().version(), 0); EXPECT_EQ(5, stream_executor::GpuTargetConfigProto::descriptor()->field_count()) << "Make sure all the fields in GpuTargetConfigProto are set and " "validated!"; } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/compiler.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/compiler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f3b52274-8026-4ff3-9390-a910d61136c0
cpp
tensorflow/tensorflow
array_spec
third_party/xla/xla/python/ifrt/array_spec.cc
third_party/xla/xla/python/ifrt/array_spec_test.cc
#include "xla/python/ifrt/array_spec.h" #include <string> #include <utility> #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "xla/python/ifrt/array_spec.pb.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { absl::StatusOr<ArraySpec> ArraySpec::FromProto( DeviceList::LookupDeviceFunc lookup_device, const ArraySpecProto& proto) { TF_ASSIGN_OR_RETURN(auto dtype, DType::FromProto(proto.dtype())); TF_ASSIGN_OR_RETURN(auto shape, Shape::FromProto(proto.shape())); TF_ASSIGN_OR_RETURN(auto sharding, Sharding::FromProto(lookup_device, proto.sharding())); return ArraySpec{dtype, std::move(shape), std::move(sharding)}; } absl::StatusOr<ArraySpecProto> ArraySpec::ToProto() const { ArraySpecProto proto; *proto.mutable_dtype() = dtype.ToProto(); *proto.mutable_shape() = shape.ToProto(); TF_ASSIGN_OR_RETURN(*proto.mutable_sharding(), sharding->ToProto()); return proto; } std::string ArraySpec::DebugString() const { return absl::StrCat("ArraySpec(dtype=", dtype.DebugString(), ",shape=", shape.DebugString(), ",sharding=", sharding->DebugString(), ")"); } } }
#include "xla/python/ifrt/array_spec.h" #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "llvm/Support/Casting.h" #include "xla/python/ifrt/array_spec.pb.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device_test_util.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { class ArraySpecTest : public test_util::DeviceTest {}; TEST_P(ArraySpecTest, ToFromProto) { auto device_list = GetDevices({0, 1}); DType dtype(DType::kS32); Shape shape({4, 2}); Shape shard_shape({2, 2}); ArraySpec spec{dtype, shape, ConcreteEvenSharding::Create(device_list, MemoryKind(), shape, shard_shape)}; auto lookup_device_func = [&](DeviceId device_id) -> absl::StatusOr<Device*> { return client()->LookupDevice(device_id); }; TF_ASSERT_OK_AND_ASSIGN(const ArraySpecProto proto, spec.ToProto()); TF_ASSERT_OK_AND_ASSIGN(const ArraySpec array_spec_copy, ArraySpec::FromProto(lookup_device_func, proto)); EXPECT_EQ(array_spec_copy.dtype, dtype); EXPECT_EQ(array_spec_copy.shape, shape); const auto* sharding = llvm::dyn_cast<ConcreteEvenSharding>(array_spec_copy.sharding.get()); ASSERT_NE(sharding, nullptr); EXPECT_EQ(*sharding->devices(), *spec.sharding->devices()); EXPECT_EQ(sharding->memory_kind(), spec.sharding->memory_kind()); EXPECT_EQ(sharding->shape(), shape); EXPECT_EQ(sharding->shard_shape(), shard_shape); } INSTANTIATE_TEST_SUITE_P(NumDevices, ArraySpecTest, testing::Values(test_util::DeviceTestParam{ 2, 2})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/array_spec.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/array_spec_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
387533af-8dbc-4729-9ca7-b372cd4e2a20
cpp
tensorflow/tensorflow
value
third_party/xla/xla/python/ifrt/value.cc
tensorflow/core/tfrt/mlrt/interpreter/value_test.cc
#include "xla/python/ifrt/value.h" namespace xla { namespace ifrt { char Value::ID = 0; } }
#include "tensorflow/core/tfrt/mlrt/interpreter/value.h" #include <utility> #include <gtest/gtest.h> #include "absl/strings/string_view.h" namespace mlrt { namespace { TEST(ValueTest, SmallCopyable) { struct SmallCopyable { int v; }; Value value(SmallCopyable{100}); EXPECT_EQ(value.Get<SmallCopyable>().v, 100); Value value_copy(value); EXPECT_EQ(value_copy.Get<SmallCopyable>().v, 100); EXPECT_EQ(value.Get<SmallCopyable>().v, 100); Value value_move = std::move(value); EXPECT_EQ(value_move.Get<SmallCopyable>().v, 100); EXPECT_FALSE(value.HasValue()); ASSERT_TRUE(value_move.HasValue()); value_move.Destroy<SmallCopyable>(); EXPECT_FALSE(value_move.HasValue()); value_move = SmallCopyable{100}; EXPECT_EQ(value_move.Get<SmallCopyable>().v, 100); } TEST(ValueTest, LargeCopyable) { constexpr char kData[] = "<<This line contains 32 bytes>>\n" "<<This line contains 32 bytes>>\n" "<<This line contains 32 bytes>>\n" "<<This line contains 32 bytes>>"; static_assert(sizeof(kData) == 128); struct LargeCopyable { char data[128] = "<<This line contains 32 bytes>>\n" "<<This line contains 32 bytes>>\n" "<<This line contains 32 bytes>>\n" "<<This line contains 32 bytes>>"; }; Value value(LargeCopyable{}); EXPECT_EQ(absl::string_view(value.Get<LargeCopyable>().data), kData); Value value_copy = value; EXPECT_EQ(absl::string_view(value_copy.Get<LargeCopyable>().data), kData); EXPECT_EQ(absl::string_view(value.Get<LargeCopyable>().data), kData); Value value_move = std::move(value); EXPECT_EQ(absl::string_view(value_move.Get<LargeCopyable>().data), kData); EXPECT_FALSE(value.HasValue()); ASSERT_TRUE(value_move.HasValue()); value_move.Destroy<LargeCopyable>(); EXPECT_FALSE(value_move.HasValue()); value_move = LargeCopyable{}; EXPECT_EQ(absl::string_view(value_move.Get<LargeCopyable>().data), kData); } TEST(ValueTest, SmallMoveOnly) { struct SmallMoveOnly { int v; explicit SmallMoveOnly(int v) : v(v) {} SmallMoveOnly(const SmallMoveOnly&) = delete; SmallMoveOnly& operator=(const SmallMoveOnly&) = delete; SmallMoveOnly(SmallMoveOnly&&) = default; SmallMoveOnly& operator=(SmallMoveOnly&&) = default; }; Value value(SmallMoveOnly(100)); EXPECT_EQ(value.Get<SmallMoveOnly>().v, 100); Value value_move = std::move(value); EXPECT_EQ(value_move.Get<SmallMoveOnly>().v, 100); EXPECT_FALSE(value.HasValue()); } TEST(ValueTest, LargeMoveOnly) { constexpr char kData[] = "<<This line contains 32 bytes>>\n" "<<This line contains 32 bytes>>\n" "<<This line contains 32 bytes>>\n" "<<This line contains 32 bytes>>"; static_assert(sizeof(kData) == 128); struct LargeMoveOnly { char data[128] = "<<This line contains 32 bytes>>\n" "<<This line contains 32 bytes>>\n" "<<This line contains 32 bytes>>\n" "<<This line contains 32 bytes>>"; LargeMoveOnly() = default; LargeMoveOnly(const LargeMoveOnly&) = delete; LargeMoveOnly& operator=(const LargeMoveOnly&) = delete; LargeMoveOnly(LargeMoveOnly&&) = default; LargeMoveOnly& operator=(LargeMoveOnly&&) = default; }; Value value(LargeMoveOnly{}); EXPECT_EQ(absl::string_view(value.Get<LargeMoveOnly>().data), kData); Value value_move = std::move(value); EXPECT_EQ(absl::string_view(value_move.Get<LargeMoveOnly>().data), kData); EXPECT_FALSE(value.HasValue()); } TEST(ValueTest, Error) { Value arg(100); arg.HandleError(arg); EXPECT_EQ(arg.Get<int>(), 100); struct Small { int* v = nullptr; void HandleError(Value* arg) { *v = arg->Get<int>(); } }; int v = 0; Value value(Small{&v}); value.HandleError(arg); EXPECT_EQ(v, 100); EXPECT_EQ(*value.Get<Small>().v, 100); struct Large { int* v = nullptr; char data[128]; void HandleError(Value* arg) { *v = arg->Get<int>(); } }; v = 0; value = Value(Large{&v}); value.HandleError(arg); EXPECT_EQ(v, 100); EXPECT_EQ(*value.Get<Large>().v, 100); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/value.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/mlrt/interpreter/value_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8065cdc5-9bf1-4411-a088-8e357458b8c8
cpp
tensorflow/tensorflow
custom_call_program_serdes
third_party/xla/xla/python/ifrt/custom_call_program_serdes.cc
third_party/xla/xla/python/ifrt/custom_call_program_serdes_test.cc
#include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ExtensibleRTTI.h" #include "xla/python/ifrt/array_spec.h" #include "xla/python/ifrt/array_spec.pb.h" #include "xla/python/ifrt/custom_call_program.h" #include "xla/python/ifrt/custom_call_program.pb.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/program_serdes.h" #include "xla/python/ifrt/serdes.h" #include "xla/python/ifrt/sharding.pb.h" #include "xla/tsl/concurrency/ref_count.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { class CustomCallProgramSerDes : public llvm::RTTIExtends<CustomCallProgramSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::CustomCallProgram"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { const CustomCallProgram& program = llvm::cast<CustomCallProgram>(serializable); CustomCallProgramProto proto; proto.set_type(program.type); proto.set_name(program.name); absl::CopyCordToString(program.serialized_program_text, proto.mutable_serialized_program_text()); *proto.mutable_devices() = program.devices->ToProto(); for (const ArraySpec& spec : program.input_specs) { TF_ASSIGN_OR_RETURN(*proto.add_input_specs(), spec.ToProto()); } for (const ArraySpec& spec : program.output_specs) { TF_ASSIGN_OR_RETURN(*proto.add_output_specs(), spec.ToProto()); } return proto.SerializeAsString(); } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions> options) override { const auto* deserialize_program_options = llvm::cast<DeserializeProgramOptions>(options.get()); CustomCallProgramProto proto; if (!proto.ParseFromString(serialized)) { return absl::InvalidArgumentError( "Failed to parse serialized CustomCallProgramProto"); } TF_ASSIGN_OR_RETURN( tsl::RCReference<DeviceList> devices, DeviceList::FromProto(deserialize_program_options->lookup_device, proto.devices())); std::vector<ArraySpec> input_specs; input_specs.reserve(proto.input_specs_size()); for (const ArraySpecProto& spec_proto : proto.input_specs()) { TF_ASSIGN_OR_RETURN( ArraySpec spec, ArraySpec::FromProto(deserialize_program_options->lookup_device, spec_proto)); input_specs.push_back(std::move(spec)); } std::vector<ArraySpec> output_specs; output_specs.reserve(proto.output_specs_size()); for (const ArraySpecProto& spec_proto : proto.output_specs()) { TF_ASSIGN_OR_RETURN( ArraySpec spec, ArraySpec::FromProto(deserialize_program_options->lookup_device, spec_proto)); output_specs.push_back(std::move(spec)); } return std::make_unique<CustomCallProgram>( proto.type(), proto.name(), absl::Cord(std::move(*proto.mutable_serialized_program_text())), std::move(devices), std::move(input_specs), std::move(output_specs)); } static char ID; }; class CustomCallCompileOptionsSerDes : public llvm::RTTIExtends<CustomCallCompileOptionsSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::CustomCallCompileOptions"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { return ""; } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions> options) override { if (!serialized.empty()) { return absl::InvalidArgumentError( "Invalid serialized CustomCallCompileOptions; a serialized " "CustomCallCompileOptions is expected to be an empty string"); } return std::make_unique<CustomCallCompileOptions>(); } static char ID; }; [[maybe_unused]] char CustomCallProgramSerDes::ID = 0; [[maybe_unused]] char CustomCallCompileOptionsSerDes::ID = 0; bool register_custom_call_program_serdes = ([]{ RegisterSerDes<CustomCallProgram>( std::make_unique<CustomCallProgramSerDes>()); }(), true); bool register_custom_call_compile_options_serdes = ([]{ RegisterSerDes<CustomCallCompileOptions>( std::make_unique<CustomCallCompileOptionsSerDes>()); }(), true); } } }
#include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/functional/bind_front.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "llvm/Support/Casting.h" #include "xla/python/ifrt/array_spec.h" #include "xla/python/ifrt/client.h" #include "xla/python/ifrt/custom_call_program.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/device_test_util.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/program_serdes.h" #include "xla/python/ifrt/serdes.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace ifrt { namespace { using ::testing::MatchesRegex; using ::testing::SizeIs; using ::tsl::testing::StatusIs; class CustomCallProgramSerDesTest : public test_util::DeviceTest {}; TEST_P(CustomCallProgramSerDesTest, RoundTrip) { Shape shape0({10, 20}); Shape shard_shape0({5, 20}); tsl::RCReference<DeviceList> devices = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding0 = ConcreteEvenSharding::Create(devices, MemoryKind(), shape0, shard_shape0); Shape shape1({}); Shape shard_shape1({}); std::shared_ptr<const Sharding> sharding1 = ConcreteEvenSharding::Create(devices, MemoryKind(), shape1, shard_shape1); CustomCallProgram orig( "test type", "test name", absl::Cord("test\0program\0text\0"), std::move(devices), { ArraySpec{DType(DType::kF32), shape0, sharding0}, }, { ArraySpec{DType(DType::kF32), shape1, sharding1}, }); TF_ASSERT_OK_AND_ASSIGN(Serialized serialized, Serialize(orig)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<CustomCallProgram> deserialized_program, Deserialize<CustomCallProgram>( serialized, std::make_unique<DeserializeProgramOptions>( absl::bind_front(&Client::LookupDevice, client())))); EXPECT_EQ(deserialized_program->type, "test type"); EXPECT_EQ(deserialized_program->name, "test name"); EXPECT_EQ(deserialized_program->serialized_program_text, absl::Cord("test\0program\0text\0").Flatten()); EXPECT_EQ(*deserialized_program->devices, *orig.devices); ASSERT_THAT(deserialized_program->input_specs, SizeIs(1)); EXPECT_EQ(deserialized_program->input_specs.front().dtype, DType(DType::kF32)); EXPECT_EQ(deserialized_program->input_specs.front().shape, shape0); const auto* deserialized_sharding0 = llvm::dyn_cast<ConcreteEvenSharding>( deserialized_program->input_specs.front().sharding.get()); ASSERT_NE(deserialized_sharding0, nullptr); EXPECT_EQ(*deserialized_sharding0->devices(), *sharding0->devices()); EXPECT_EQ(deserialized_sharding0->shape(), shape0); EXPECT_EQ(deserialized_sharding0->shard_shape(), shard_shape0); ASSERT_THAT(deserialized_program->output_specs, SizeIs(1)); EXPECT_EQ(deserialized_program->output_specs.front().dtype, DType(DType::kF32)); EXPECT_EQ(deserialized_program->output_specs.front().shape, shape1); const auto* deserialized_sharding1 = llvm::dyn_cast<ConcreteEvenSharding>( deserialized_program->output_specs.front().sharding.get()); ASSERT_NE(deserialized_sharding1, nullptr); EXPECT_EQ(*deserialized_sharding1->devices(), *sharding1->devices()); EXPECT_EQ(deserialized_sharding1->shape(), shape1); EXPECT_EQ(deserialized_sharding1->shard_shape(), shard_shape1); } INSTANTIATE_TEST_SUITE_P(NumDevices, CustomCallProgramSerDesTest, testing::Values(test_util::DeviceTestParam{ 2, 2})); TEST(CustomCallCompileOptionsSerDesTest, RoundTrip) { CustomCallCompileOptions orig; TF_ASSERT_OK_AND_ASSIGN(Serialized serialized, Serialize(orig)); TF_EXPECT_OK( Deserialize<CustomCallCompileOptions>(serialized, nullptr) .status()); } TEST(CustomCallCompileOptionsSerDesTest, InvalidSerialized) { CustomCallCompileOptions orig; TF_ASSERT_OK_AND_ASSIGN(Serialized serialized, Serialize(orig)); serialized.set_data("abc"); EXPECT_THAT( Deserialize<CustomCallCompileOptions>(serialized, nullptr), StatusIs(absl::StatusCode::kInvalidArgument, MatchesRegex("Invalid serialized CustomCallCompileOptions.*"))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/custom_call_program_serdes.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/custom_call_program_serdes_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4c398408-d0f2-4cfb-a406-fe8a0f809c2d
cpp
tensorflow/tensorflow
device_list
third_party/xla/xla/python/ifrt/device_list.cc
third_party/xla/xla/python/ifrt/device_list_test.cc
#include "xla/python/ifrt/device_list.h" #include <atomic> #include <cstdint> #include <string> #include <utility> #include <vector> #include "absl/base/call_once.h" #include "absl/base/optimization.h" #include "absl/hash/hash.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device.pb.h" #include "xla/tsl/concurrency/ref_count.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { char DeviceList::ID = 0; char BasicDeviceList::ID = 0; absl::StatusOr<tsl::RCReference<DeviceList>> DeviceList::FromProto( LookupDeviceFunc lookup_device, const DeviceListProto& proto) { BasicDeviceList::Devices devices; devices.reserve(proto.device_ids_size()); for (int device_id : proto.device_ids()) { TF_ASSIGN_OR_RETURN(Device * device, lookup_device(DeviceId(device_id))); devices.push_back(device); } return BasicDeviceList::Create(std::move(devices)); } DeviceListProto DeviceList::ToProto() const { DeviceListProto proto; proto.mutable_device_ids()->Reserve(devices().size()); for (Device* device : devices()) { proto.mutable_device_ids()->AddAlreadyReserved(device->Id().value()); } return proto; } tsl::RCReference<DeviceList> BasicDeviceList::Create(Devices devices) { return tsl::MakeRef<BasicDeviceList>(std::move(devices)); } BasicDeviceList::BasicDeviceList(Devices devices) : devices_(std::move(devices)), hash_(kUnsetHash) {} DeviceList* BasicDeviceList::AddressableDeviceList() const { absl::call_once(addressable_device_list_cache_.once_flag, [this] { Devices addressable_devices; for (Device* device : devices_) { if (device->IsAddressable()) { addressable_devices.push_back(device); } } const bool already_fully_addressable = addressable_devices.size() == devices_.size(); if (already_fully_addressable) { addressable_device_list_cache_.device_list = const_cast<BasicDeviceList*>(this); } else { addressable_device_list_cache_.device_list_holder = BasicDeviceList::Create(std::move(addressable_devices)); addressable_device_list_cache_.device_list = addressable_device_list_cache_.device_list_holder.get(); } }); return addressable_device_list_cache_.device_list; } uint64_t BasicDeviceList::hash() const { uint64_t hash = hash_.load(std::memory_order_relaxed); if (ABSL_PREDICT_FALSE(hash == kUnsetHash)) { hash = absl::HashOf(devices()); if (ABSL_PREDICT_FALSE(hash == kUnsetHash)) { ++hash; } hash_.store(hash, std::memory_order_relaxed); } return hash; } std::string BasicDeviceList::ToString() const { return absl::StrCat("BasicDeviceList([", absl::StrJoin(devices_, ",", [](std::string* out, Device* device) { absl::StrAppend(out, device->DebugString()); }), "])"); } std::vector<DeviceId> GetDeviceIds( const tsl::RCReference<DeviceList>& device_list) { std::vector<DeviceId> ids; ids.reserve(device_list->devices().size()); for (const Device* device : device_list->devices()) { ids.push_back(device->Id()); } return ids; } } }
#include "xla/python/ifrt/device_list.h" #include <algorithm> #include <cstdint> #include <memory> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device.pb.h" #include "xla/python/ifrt/device_test_util.h" #include "tsl/platform/cpu_info.h" #include "tsl/platform/env.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" namespace xla { namespace ifrt { namespace { using ::testing::ElementsAreArray; class DeviceListTest : public test_util::DeviceTest {}; TEST_P(DeviceListTest, ToFromProto) { auto device_list = GetDevices({0, 1}); DeviceListProto proto = device_list->ToProto(); auto lookup_device_func = [&](DeviceId device_id) -> absl::StatusOr<Device*> { return client()->LookupDevice(device_id); }; TF_ASSERT_OK_AND_ASSIGN(auto device_list_copy, DeviceList::FromProto(lookup_device_func, proto)); EXPECT_EQ(*device_list_copy, *device_list); } TEST_P(DeviceListTest, AddressableDevices) { auto device_list = GetDevices({0, 1}); std::vector<Device*> addressable_devices; for (Device* device : device_list->devices()) { if (device->IsAddressable()) { addressable_devices.push_back(device); } } EXPECT_THAT(device_list->AddressableDeviceList()->devices(), ElementsAreArray(addressable_devices)); } TEST_P(DeviceListTest, AddressableDevicesFromConcurrentCalls) { auto device_list = GetDevices({0, 1}); const int num_threads = 16; auto thread_pool = std::make_unique<tsl::thread::ThreadPool>( tsl::Env::Default(), tsl::ThreadOptions(), "test_pool", std::min(num_threads, tsl::port::MaxParallelism())); std::vector<DeviceList*> addressable_device_lists(num_threads); for (int i = 0; i < num_threads; ++i) { thread_pool->Schedule([&, i]() { addressable_device_lists[i] = device_list->AddressableDeviceList(); addressable_device_lists[i]->devices().front()->Id(); }); } thread_pool.reset(); for (int i = 0; i < num_threads; ++i) { EXPECT_EQ(*addressable_device_lists[i], *device_list->AddressableDeviceList()); } } TEST_P(DeviceListTest, IdenticalHashFromConcurrentCalls) { auto device_list = GetDevices({0, 1}); const int num_threads = 16; auto thread_pool = std::make_unique<tsl::thread::ThreadPool>( tsl::Env::Default(), tsl::ThreadOptions(), "test_pool", std::min(num_threads, tsl::port::MaxParallelism())); std::vector<uint64_t> hashes(num_threads); for (int i = 0; i < num_threads; ++i) { thread_pool->Schedule([&, i]() { hashes[i] = device_list->hash(); }); } thread_pool.reset(); for (int i = 0; i < num_threads; ++i) { EXPECT_EQ(hashes[i], device_list->hash()); } EXPECT_NE(device_list->hash(), 0); } TEST_P(DeviceListTest, EqualityTest) { auto device_list1 = GetDevices({0, 1}); auto device_list2 = GetDevices({0, 1}); EXPECT_EQ(*device_list1, *device_list2); auto device_list3 = device_list1; EXPECT_EQ(*device_list1, *device_list3); auto device_list4 = std::move(device_list2); EXPECT_EQ(*device_list1, *device_list4); auto device_list5 = GetDevices({0}); EXPECT_NE(*device_list1, *device_list5); auto device_list6 = GetDevices({1, 0}); EXPECT_NE(*device_list1, *device_list6); } INSTANTIATE_TEST_SUITE_P( NumDevices, DeviceListTest, testing::Values(test_util::DeviceTestParam{2, 1}, test_util::DeviceTestParam{2, 2})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/device_list.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/device_list_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
86b85201-3336-4062-a4b9-5007b589da3e
cpp
tensorflow/tensorflow
index_domain
third_party/xla/xla/python/ifrt/index_domain.cc
third_party/xla/xla/python/ifrt/index_domain_test.cc
#include "xla/python/ifrt/index_domain.h" #include <ostream> #include <string> #include "absl/strings/str_cat.h" namespace xla { namespace ifrt { std::string IndexDomain::DebugString() const { return absl::StrCat("IndexDomain(origin=", origin_.DebugString(), ",shape=", shape_.DebugString(), ")"); } std::ostream& operator<<(std::ostream& os, const IndexDomain& index_domain) { return os << index_domain.DebugString(); } } }
#include "xla/python/ifrt/index_domain.h" #include <memory> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/hash/hash_testing.h" #include "xla/python/ifrt/index.h" #include "xla/python/ifrt/shape.h" namespace xla { namespace ifrt { namespace { TEST(IndexDomainTest, Construction) { IndexDomain a(Index({1, 2}), Shape({3, 4})); EXPECT_EQ(a.origin(), Index({1, 2})); EXPECT_EQ(a.shape(), Shape({3, 4})); IndexDomain b(Shape({3, 4})); EXPECT_EQ(b.origin(), Index({0, 0})); EXPECT_EQ(b.shape(), Shape({3, 4})); } TEST(IndexDomainTest, Operations) { IndexDomain a(Index({1, 2}), Shape({3, 4})); Index b({1, 2}); EXPECT_EQ(a + b, IndexDomain(Index({2, 4}), Shape({3, 4}))); { IndexDomain c = a; EXPECT_EQ(c += b, IndexDomain(Index({2, 4}), Shape({3, 4}))); } EXPECT_EQ(a - b, IndexDomain(Index({0, 0}), Shape({3, 4}))); { IndexDomain c = a; EXPECT_EQ(c -= b, IndexDomain(Index({0, 0}), Shape({3, 4}))); } } TEST(IndexDomainTest, Hash) { EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( {IndexDomain(Index({1, 2}), Shape({3, 4})), IndexDomain(Index({1, 2}), Shape({4, 3})), IndexDomain(Index({2, 1}), Shape({3, 4})), IndexDomain(Index({2, 1}), Shape({4, 3}))})); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/index_domain.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/index_domain_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c504c794-17d6-46c9-82b6-e56d0e7dac4f
cpp
tensorflow/tensorflow
serdes
third_party/xla/xla/python/ifrt/serdes.cc
third_party/xla/xla/python/ifrt/serdes_test.cc
#include "xla/python/ifrt/serdes.h" #include <memory> #include <string> #include <utility> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "xla/python/ifrt/serdes.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { struct Registry { absl::Mutex mu; absl::flat_hash_map<const void*, SerDes*> type_id_to_serdes ABSL_GUARDED_BY(mu); absl::flat_hash_map<absl::string_view, SerDes*> name_to_serdes ABSL_GUARDED_BY(mu); }; Registry* registry() { static auto* r = new Registry(); return r; } } char Serializable::ID = 0; char DeserializeOptions::ID = 0; char SerDes::ID = 0; void RegisterSerDes(const void* type_id, std::unique_ptr<SerDes> serdes) { Registry* const r = registry(); absl::MutexLock l(&r->mu); CHECK(r->type_id_to_serdes.insert({type_id, serdes.get()}).second) << "xla::ifrt::SerDes cannot be registered more than once for the same " "type id: " << type_id; const absl::string_view name = serdes->type_name(); CHECK(r->name_to_serdes.insert({name, serdes.get()}).second) << "xla::ifrt::SerDes cannot be registered more than once for the same " "name: " << name; serdes.release(); } absl::StatusOr<Serialized> Serialize(Serializable& serializable) { SerDes* serdes; { Registry* const r = registry(); absl::MutexLock l(&r->mu); auto it = r->type_id_to_serdes.find(serializable.dynamicClassID()); if (it == r->type_id_to_serdes.end()) { return absl::UnimplementedError( "Serialize call failed. Serializable has no associated SerDes " "implementation"); } serdes = it->second; } TF_ASSIGN_OR_RETURN(std::string data, serdes->Serialize(serializable)); Serialized proto; proto.set_type_name(std::string(serdes->type_name())); proto.set_data(std::move(data)); return proto; } namespace serdes_internal { absl::StatusOr<std::unique_ptr<Serializable>> DeserializeUnchecked( const Serialized& serialized, std::unique_ptr<DeserializeOptions> options) { SerDes* serdes; { Registry* const r = registry(); absl::MutexLock l(&r->mu); auto it = r->name_to_serdes.find(serialized.type_name()); if (it == r->name_to_serdes.end()) { return absl::UnimplementedError(absl::StrCat( "Deserialize call failed. Serializable has no associated SerDes ", "implementation. type_name: ", serialized.type_name())); } serdes = it->second; } return serdes->Deserialize(serialized.data(), std::move(options)); } } } }
#include "xla/python/ifrt/serdes.h" #include <memory> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ExtensibleRTTI.h" #include "xla/python/ifrt/serdes.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { using ::tsl::testing::StatusIs; struct TestNumberDeserializeOptions; struct TestNumber : llvm::RTTIExtends<TestNumber, Serializable> { using DeserializeOptions = TestNumberDeserializeOptions; int number; explicit TestNumber(int number) : number(number) {} static char ID; }; [[maybe_unused]] char TestNumber::ID = 0; struct TestNumberDeserializeOptions : llvm::RTTIExtends<TestNumberDeserializeOptions, DeserializeOptions> { absl::Status injected_failure; static char ID; }; [[maybe_unused]] char TestNumberDeserializeOptions::ID = 0; class TestNumberSerDes : public llvm::RTTIExtends<TestNumberSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::TestNumber"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { const TestNumber& obj = llvm::cast<TestNumber>(serializable); return absl::StrCat(obj.number); } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions> options) override { if (options != nullptr) { auto* deserialize_options = llvm::cast<TestNumberDeserializeOptions>(options.get()); TF_RETURN_IF_ERROR(deserialize_options->injected_failure); } int number; if (!absl::SimpleAtoi(serialized, &number)) { return absl::DataLossError("Unable to parse serialized TestNumber"); } return std::make_unique<TestNumber>(number); } static char ID; }; [[maybe_unused]] char TestNumberSerDes::ID = 0; class TestNumberTest : public testing::Test { protected: static void SetUpTestSuite() { RegisterSerDes<TestNumber>(std::make_unique<TestNumberSerDes>()); } }; TEST_F(TestNumberTest, RoundTrip) { auto obj = std::make_unique<TestNumber>(1234); TF_ASSERT_OK_AND_ASSIGN(Serialized serialized, Serialize(*obj)); TF_ASSERT_OK_AND_ASSIGN( auto deserialized, Deserialize<TestNumber>(serialized, nullptr)); EXPECT_EQ(obj->number, deserialized->number); } TEST_F(TestNumberTest, WithOptions) { auto obj = std::make_unique<TestNumber>(1234); TF_ASSERT_OK_AND_ASSIGN(Serialized serialized, Serialize(*obj)); auto options = std::make_unique<TestNumberDeserializeOptions>(); options->injected_failure = absl::InternalError("injected failure"); EXPECT_THAT(Deserialize<TestNumber>(serialized, std::move(options)), StatusIs(absl::StatusCode::kInternal, "injected failure")); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/serdes.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/serdes_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
901d41c8-873e-4d38-b328-5d78ce6e163b
cpp
tensorflow/tensorflow
dtype
third_party/xla/xla/python/ifrt/dtype.cc
third_party/xla/xla/python/ifrt/dtype_test.cc
#include "xla/python/ifrt/dtype.h" #include <optional> #include <ostream> #include <string> #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "xla/python/ifrt/dtype.pb.h" namespace xla { namespace ifrt { std::optional<int> DType::byte_size() const { switch (kind_) { case kS2: case kU2: case kS4: case kU4: return std::nullopt; case kPred: case kS8: case kU8: case kF8E3M4: case kF8E4M3: case kF8E4M3FN: case kF8E4M3B11FNUZ: case kF8E4M3FNUZ: case kF8E5M2: case kF8E5M2FNUZ: return 1; case kS16: case kU16: case kF16: case kBF16: return 2; case kS32: case kU32: case kF32: return 4; case kS64: case kU64: case kF64: case kC64: return 8; case kC128: return 16; case kToken: case kInvalid: case kString: return std::nullopt; } } std::optional<int> DType::bit_size() const { switch (kind_) { case kS2: case kU2: return 2; case kS4: case kU4: return 4; case kPred: case kS8: case kU8: case kF8E3M4: case kF8E4M3: case kF8E4M3FN: case kF8E4M3B11FNUZ: case kF8E4M3FNUZ: case kF8E5M2: case kF8E5M2FNUZ: return 8; case kS16: case kU16: case kF16: case kBF16: return 16; case kS32: case kU32: case kF32: return 32; case kS64: case kU64: case kF64: case kC64: return 64; case kC128: return 128; case kToken: case kInvalid: case kString: return std::nullopt; } } absl::StatusOr<DType> DType::FromProto(const DTypeProto& dtype_proto) { switch (dtype_proto.kind()) { case DTypeProto::KIND_PRED: return DType(DType::Kind::kPred); case DTypeProto::KIND_TOKEN: return DType(DType::Kind::kToken); #define CASE(X) \ case DTypeProto::KIND_##X: \ return DType(DType::Kind::k##X); CASE(S4); CASE(S8); CASE(S16); CASE(S32); CASE(S64); CASE(U4); CASE(U8); CASE(U16); CASE(U32); CASE(U64); CASE(F16); CASE(F32); CASE(F64); CASE(BF16); CASE(C64); CASE(C128); CASE(F8E4M3FN); CASE(F8E4M3B11FNUZ); CASE(F8E4M3FNUZ); CASE(F8E5M2); CASE(F8E5M2FNUZ); #undef CASE case DTypeProto::KIND_STRING: return DType(DType::Kind::kString); default: return DType(DType::Kind::kInvalid); } } DTypeProto DType::ToProto() const { DTypeProto dtype_proto; switch (kind()) { case DType::Kind::kPred: dtype_proto.set_kind(DTypeProto::KIND_PRED); break; case DType::Kind::kToken: dtype_proto.set_kind(DTypeProto::KIND_TOKEN); break; #define CASE(X) \ case DType::Kind::k##X: \ dtype_proto.set_kind(DTypeProto::KIND_##X); \ break; CASE(S4); CASE(S8); CASE(S16); CASE(S32); CASE(S64); CASE(U4); CASE(U8); CASE(U16); CASE(U32); CASE(U64); CASE(F16); CASE(F32); CASE(F64); CASE(BF16); CASE(C64); CASE(C128); CASE(F8E4M3FN); CASE(F8E4M3B11FNUZ); CASE(F8E4M3FNUZ); CASE(F8E5M2); CASE(F8E5M2FNUZ); #undef CASE case DType::Kind::kString: dtype_proto.set_kind(DTypeProto::KIND_STRING); break; default: dtype_proto.set_kind(DTypeProto::KIND_UNSPECIFIED); break; } return dtype_proto; } std::string DType::DebugString() const { switch (kind_) { case kInvalid: return "INVALID"; case kPred: return "PRED"; case kS8: return "S8"; case kS16: return "S16"; case kS32: return "S32"; case kS64: return "S64"; case kU8: return "U8"; case kU16: return "U16"; case kU32: return "U32"; case kU64: return "U64"; case kF16: return "F16"; case kF32: return "F32"; case kF64: return "F64"; case kBF16: return "BF16"; case kC64: return "C64"; case kC128: return "C128"; case kToken: return "TOKEN"; case kString: return "STRING"; default: return absl::StrCat("UNKNOWN(", static_cast<int>(kind_), ")"); } } std::ostream& operator<<(std::ostream& os, const DType& dtype) { return os << dtype.DebugString(); } } }
#include "xla/python/ifrt/dtype.h" #include <optional> #include <tuple> #include <vector> #include <gtest/gtest.h> #include "xla/python/ifrt/dtype.pb.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace ifrt { namespace { TEST(DTypeTest, FromToFromProto) { for (int i = 0; i < DTypeProto::Kind_descriptor()->value_count(); ++i) { DTypeProto proto; proto.set_kind(static_cast<DTypeProto::Kind>( DTypeProto::Kind_descriptor()->value(i)->number())); TF_ASSERT_OK_AND_ASSIGN(DType dtype, DType::FromProto(proto)); TF_ASSERT_OK_AND_ASSIGN(DType dtype_copy, DType::FromProto(dtype.ToProto())); EXPECT_EQ(dtype_copy, dtype); } } TEST(DTypeTest, ByteSize) { for (const auto& [kind, byte_size] : std::vector<std::tuple<DType::Kind, int>>({ {DType::kS2, -1}, {DType::kU2, -1}, {DType::kS4, -1}, {DType::kU4, -1}, {DType::kPred, 1}, {DType::kS8, 1}, {DType::kU8, 1}, {DType::kF8E3M4, 1}, {DType::kF8E4M3, 1}, {DType::kF8E4M3FN, 1}, {DType::kF8E4M3B11FNUZ, 1}, {DType::kF8E4M3FNUZ, 1}, {DType::kF8E5M2, 1}, {DType::kF8E5M2FNUZ, 1}, {DType::kS16, 2}, {DType::kU16, 2}, {DType::kF16, 2}, {DType::kBF16, 2}, {DType::kS32, 4}, {DType::kU32, 4}, {DType::kF32, 4}, {DType::kS64, 8}, {DType::kU64, 8}, {DType::kF64, 8}, {DType::kC64, 8}, {DType::kC128, 16}, {DType::kToken, -1}, {DType::kInvalid, -1}, {DType::kString, -1}, })) { EXPECT_EQ(DType(kind).byte_size(), byte_size == -1 ? std::nullopt : std::make_optional(byte_size)); } } TEST(DTypeTest, BitSize) { for (const auto& [kind, bit_size] : std::vector<std::tuple<DType::Kind, int>>({ {DType::kS2, 2}, {DType::kU2, 2}, {DType::kS4, 4}, {DType::kU4, 4}, {DType::kPred, 8}, {DType::kS8, 8}, {DType::kU8, 8}, {DType::kF8E3M4, 8}, {DType::kF8E4M3, 8}, {DType::kF8E4M3FN, 8}, {DType::kF8E4M3B11FNUZ, 8}, {DType::kF8E4M3FNUZ, 8}, {DType::kF8E5M2, 8}, {DType::kF8E5M2FNUZ, 8}, {DType::kS16, 16}, {DType::kU16, 16}, {DType::kF16, 16}, {DType::kBF16, 16}, {DType::kS32, 32}, {DType::kU32, 32}, {DType::kF32, 32}, {DType::kS64, 64}, {DType::kU64, 64}, {DType::kF64, 64}, {DType::kC64, 64}, {DType::kC128, 128}, {DType::kToken, -1}, {DType::kInvalid, -1}, {DType::kString, -1}, })) { EXPECT_EQ(DType(kind).bit_size(), bit_size == -1 ? std::nullopt : std::make_optional(bit_size)); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/dtype.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/dtype_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
28604415-bb4e-4d01-bd3b-610ccff48128
cpp
tensorflow/tensorflow
test_util
tensorflow/compiler/jit/test_util.cc
tensorflow/lite/kernels/shim/test_util_test.cc
#include "tensorflow/compiler/jit/test_util.h" #include <memory> #include <optional> #include <string> #include <utility> #include "tensorflow/compiler/jit/shape_inference.h" #include "xla/status_macros.h" #include "tensorflow/core/framework/device_factory.h" #include "tensorflow/core/public/version.h" namespace tensorflow { Status ShapeAnnotationsMatch( const Graph& graph, const GraphShapeInfo& shape_info, std::map<string, std::vector<PartialTensorShape>> expected_shapes) { for (Node* node : graph.op_nodes()) { auto sit = shape_info.find(node->name()); TF_RET_CHECK(sit != shape_info.end()) << "Missing shape information for node " << node->name(); std::vector<PartialTensorShape> shapes; for (const auto& output : sit->second) shapes.push_back(output.shape); auto it = expected_shapes.find(node->name()); if (it != expected_shapes.end()) { if (!PartialTensorShapeUtils::AreIdentical(shapes, it->second)) { return errors::InvalidArgument( "Shape mismatch for ", node->name(), ". Expected: ", PartialTensorShapeUtils::PartialShapeListString(it->second), ", actual: ", PartialTensorShapeUtils::PartialShapeListString(shapes)); } expected_shapes.erase(it); } } if (!expected_shapes.empty()) { std::vector<string> missing; missing.reserve(expected_shapes.size()); for (const auto& entry : expected_shapes) { missing.push_back(entry.first); } return errors::InvalidArgument("Missing shapes for nodes: ", absl::StrJoin(missing, ",")); } return absl::OkStatus(); } void DeviceSetup::AddDevicesAndSetUp( const std::vector<std::string>& device_names, const std::optional<FunctionDef>& fdef) { SessionOptions options; auto* device_count = options.config.mutable_device_count(); for (const auto& device_name : device_names) { device_count->insert({device_name, 1}); } std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::AddDevices( options, "/job:localhost/replica:0/task:0", &devices)); device_mgr_ = std::make_unique<StaticDeviceMgr>(std::move(devices)); OptimizerOptions opts; lib_def_ = std::make_unique<FunctionLibraryDefinition>(OpRegistry::Global(), FunctionDefLibrary()); if (fdef.has_value()) { TF_CHECK_OK(lib_def_->AddFunctionDef(*fdef)); } pflr_ = std::make_unique<ProcessFunctionLibraryRuntime>( device_mgr_.get(), Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, lib_def_.get(), opts, nullptr, nullptr); flr_ = pflr_->GetFLR("/job:localhost/replica:0/task:0/cpu:0"); } Device* DeviceSetup::GetDevice(const string& device_name) { if (device_mgr_ == nullptr) { return nullptr; } string full_device_name = absl::StrCat( "/job:localhost/replica:0/task:0/device:", device_name, ":0"); Device* device; TF_CHECK_OK(device_mgr_->LookupDevice(full_device_name, &device)); return device; } }
#include "tensorflow/lite/kernels/shim/test_util.h" #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/core/interpreter.h" namespace tflite { namespace { TEST(TfliteTensorDebugString, Basic) { ::tflite::Interpreter interpreter; interpreter.AddTensors(3); interpreter.AllocateTensors(); auto t_int32 = UniqueTfLiteTensor(interpreter.tensor(0)); PopulateTfLiteTensor<int32_t>({1, 2, 3, 4, 5}, {5}, t_int32.get()); EXPECT_EQ("[1, 2, 3, 4, 5]", TfliteTensorDebugString(t_int32.get())); auto t_int64 = UniqueTfLiteTensor(interpreter.tensor(1)); PopulateTfLiteTensor<int32_t>({1, 2, 3, 4}, {2, 2}, t_int64.get()); EXPECT_EQ("[[1, 2], [3, 4]]", TfliteTensorDebugString(t_int64.get())); auto t_str = UniqueTfLiteTensor(interpreter.tensor(2)); PopulateTfLiteTensor<std::string>({"ab", "cde", "f"}, {1, 3}, t_str.get()); EXPECT_EQ("[[ab, cde, f]]", TfliteTensorDebugString(t_str.get())); } TEST(TfliteTensorDebugString, MaxVal) { ::tflite::Interpreter interpreter; interpreter.AddTensors(2); interpreter.AllocateTensors(); auto t_int32 = UniqueTfLiteTensor(interpreter.tensor(0)); PopulateTfLiteTensor<int32_t>({1, 2, 3, 4}, {4}, t_int32.get()); EXPECT_EQ("[1, 2, 3, 4]", TfliteTensorDebugString(t_int32.get(), 4)); t_int32 = UniqueTfLiteTensor(interpreter.tensor(0)); PopulateTfLiteTensor<int32_t>({1, 2, 3, 4, 5}, {5}, t_int32.get()); EXPECT_EQ("[1, 2, 3, 4, ...]", TfliteTensorDebugString(t_int32.get(), 4)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/test_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/shim/test_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
cd5d9ea9-18fe-4df4-93c5-bc52f4a12e63
cpp
tensorflow/tensorflow
plugin_program_serdes
third_party/xla/xla/python/ifrt/plugin_program_serdes.cc
third_party/xla/xla/python/ifrt/plugin_program_serdes_test.cc
#include <memory> #include <string> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ExtensibleRTTI.h" #include "xla/python/ifrt/plugin_program.h" #include "xla/python/ifrt/serdes.h" namespace xla { namespace ifrt { namespace { constexpr absl::string_view kSerializationPrefix = "__serialized_plugin_program "; class PluginProgramSerDes : public llvm::RTTIExtends<PluginProgramSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::PluginProgram"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { return absl::StrCat(kSerializationPrefix, llvm::cast<PluginProgram>(serializable).data); } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions>) override { if (!absl::StartsWith(serialized, kSerializationPrefix)) { return absl::InvalidArgumentError( absl::StrCat("Bad serialized ", type_name())); } absl::string_view data(serialized); data.remove_prefix(kSerializationPrefix.size()); auto result = std::make_unique<PluginProgram>(); result->data = data; return result; } static char ID; }; [[maybe_unused]] char PluginProgramSerDes::ID = 0; bool register_plugin_program_serdes = ([]() { RegisterSerDes<PluginProgram>( std::make_unique<PluginProgramSerDes>()); }(), true); class PluginCompileOptionsSerDes : public llvm::RTTIExtends<PluginCompileOptionsSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::PluginCompileOptions"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { return ""; } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions>) override { return std::make_unique<PluginCompileOptions>(); } static char ID; }; [[maybe_unused]] char PluginCompileOptionsSerDes::ID = 0; bool register_plugin_compile_options_serdes = ([]() { RegisterSerDes<PluginCompileOptions>( std::make_unique<PluginCompileOptionsSerDes>()); }(), true); } } }
#include <memory> #include <gtest/gtest.h> #include "xla/python/ifrt/plugin_program.h" #include "xla/python/ifrt/serdes.h" #include "xla/python/ifrt/serdes.pb.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/protobuf/status.pb.h" #include "tsl/platform/statusor.h" #include "tsl/protobuf/error_codes.pb.h" namespace xla { namespace ifrt { namespace { TEST(PluginProgramSerDesTest, RoundTrip) { PluginProgram orig; orig.data = "foo"; TF_ASSERT_OK_AND_ASSIGN(Serialized serialized, Serialize(orig)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<PluginProgram> deserialized_program, Deserialize<PluginProgram>(serialized, nullptr)); EXPECT_EQ(deserialized_program->data, "foo"); } TEST(PluginCompileOptionsSerDesTest, RoundTrip) { PluginCompileOptions orig; TF_ASSERT_OK_AND_ASSIGN(Serialized serialized, Serialize(orig)); TF_EXPECT_OK( Deserialize<PluginCompileOptions>(serialized, nullptr) .status()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/plugin_program_serdes.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/plugin_program_serdes_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
eab7bed0-da11-471e-bab9-a472e9e04c08
cpp
tensorflow/tensorflow
remap_plan
third_party/xla/xla/python/ifrt/remap_plan.cc
third_party/xla/xla/python/ifrt/remap_plan_test.cc
#include "xla/python/ifrt/remap_plan.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "xla/python/ifrt/array_spec.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/remap_plan.pb.h" #include "xla/status_macros.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { absl::StatusOr<RemapPlan::Mapping> MappingFromProto( const RemapPlanProto::MappingProto& mapping_proto) { RemapPlan::Mapping mapping; mapping.in_array = mapping_proto.in_array(); mapping.out_array = mapping_proto.out_array(); const int64_t num_intervals = mapping_proto.from_start_size(); TF_RET_CHECK(mapping_proto.from_end_size() == num_intervals); TF_RET_CHECK(mapping_proto.from_step_size() == num_intervals); TF_RET_CHECK(mapping_proto.to_start_size() == num_intervals); TF_RET_CHECK(mapping_proto.to_end_size() == num_intervals); TF_RET_CHECK(mapping_proto.to_step_size() == num_intervals); mapping.from.reserve(num_intervals); mapping.to.reserve(num_intervals); for (int64_t i = 0; i < num_intervals; ++i) { mapping.from.push_back( RemapPlan::Interval{mapping_proto.from_start(i), mapping_proto.from_end(i), mapping_proto.from_step(i)}); mapping.to.push_back( RemapPlan::Interval{mapping_proto.to_start(i), mapping_proto.to_end(i), mapping_proto.to_step(i)}); } return mapping; } absl::StatusOr<RemapPlanProto::MappingProto> MappingToProto( const RemapPlan::Mapping& mapping) { TF_RET_CHECK(mapping.from.size() == mapping.to.size()); RemapPlanProto::MappingProto proto; proto.set_in_array(mapping.in_array); proto.set_out_array(mapping.out_array); const int64_t num_intervals = mapping.from.size(); proto.mutable_from_start()->Reserve(num_intervals); proto.mutable_from_end()->Reserve(num_intervals); proto.mutable_from_step()->Reserve(num_intervals); proto.mutable_to_start()->Reserve(num_intervals); proto.mutable_to_end()->Reserve(num_intervals); proto.mutable_to_step()->Reserve(num_intervals); for (int64_t i = 0; i < mapping.from.size(); ++i) { proto.add_from_start(mapping.from[i].start); proto.add_from_end(mapping.from[i].end); proto.add_from_step(mapping.from[i].step); proto.add_to_start(mapping.to[i].start); proto.add_to_end(mapping.to[i].end); proto.add_to_step(mapping.to[i].step); } return proto; } absl::Status CheckRange(int64_t num_shards, const RemapPlan::Interval& interval) { if (interval.start < 0 || interval.start > num_shards - 1) { return InvalidArgument("start must be in [0, %d], but is %d", num_shards - 1, interval.start); } if (interval.end < 0 || interval.end > num_shards) { return InvalidArgument("end must be in [0, %d], but is %d", num_shards, interval.end); } if (interval.step <= 0) { return InvalidArgument("step must be positive, but is %d", interval.step); } return absl::OkStatus(); } int64_t GetNumberOfSteps(const RemapPlan::Interval& interval) { return (interval.end - interval.start + interval.step - 1) / interval.step; } } std::string RemapPlan::Interval::DebugString() const { return absl::StrCat("[", start, ":", end, ":", step, "]"); } std::string RemapPlan::Mapping::DebugString() const { auto format_intervals = [](absl::Span<const RemapPlan::Interval> intervals) { return absl::StrCat( "[", absl::StrJoin( intervals, ",", [](std::string* out, const RemapPlan::Interval& interval) { absl::StrAppend(out, interval.DebugString()); }), "]"); }; return absl::StrCat("Mapping(in_array=", in_array, ",", "out_array=", out_array, ",from=", format_intervals(from), ",to=", format_intervals(to), ")"); } absl::Status RemapPlan::Validate() const { const int num_inputs = input_specs.size(); if (num_inputs == 0) { return InvalidArgument("Must have at least one input"); } for (int i = 0; i < num_inputs; ++i) { if (input_specs[i].dtype != input_specs.front().dtype) { return InvalidArgument( "Input must have the same dtype: %s (input 0) vs. %s (input " "%d)", input_specs.front().dtype.DebugString(), input_specs[i].dtype.DebugString(), i); } } const int num_outputs = output_specs.size(); for (int i = 0; i < num_outputs; ++i) { if (output_specs[i].dtype != input_specs.front().dtype) { return InvalidArgument( "Input and output must have the same dtype: %s (input 0) vs. %s " "(output %d)", output_specs.front().dtype.DebugString(), output_specs[i].dtype.DebugString(), i); } } std::vector<std::vector<bool>> in_used_buffers_list(num_inputs); for (int i = 0; i < num_inputs; ++i) { in_used_buffers_list[i].resize( input_specs[i].sharding->devices()->size(), false); } std::vector<BasicDeviceList::Devices> out_assigned_devices_list(num_outputs); for (int i = 0; i < num_outputs; ++i) { out_assigned_devices_list[i].resize( output_specs[i].sharding->devices()->size(), nullptr); } for (int64_t i = 0; i < mappings->size(); ++i) { const RemapPlan::Mapping& mapping = (*mappings)[i]; if (mapping.in_array < 0 || mapping.in_array >= num_inputs) { return InvalidArgument( "mappings[%d].in_array must be in [0, %d], but is %d", i, num_inputs - 1, mapping.in_array); } if (mapping.out_array < 0 || mapping.out_array >= num_outputs) { return InvalidArgument( "mappings[%d].out_array must be in [0, %d], but is %d", i, num_outputs - 1, mapping.out_array); } if (mapping.from.size() != mapping.to.size()) { return InvalidArgument( "mappings[%d].from and mappings[%d].to must have the same number of " "intervals, but has %d and %d intervals", i, i, mapping.from.size(), mapping.to.size()); } std::vector<bool>& in_used_buffers = in_used_buffers_list[mapping.in_array]; absl::Span<Device* const> in_devices = input_specs[mapping.in_array].sharding->devices()->devices(); BasicDeviceList::Devices& out_assigned_devices = out_assigned_devices_list[mapping.out_array]; const int64_t in_shards_count = in_used_buffers.size(); const int64_t out_shards_count = out_assigned_devices.size(); for (int s = 0; s < mapping.from.size(); ++s) { const RemapPlan::Interval& in_interval = mapping.from[s]; const RemapPlan::Interval& out_interval = mapping.to[s]; TF_RETURN_IF_ERROR(CheckRange(in_shards_count, in_interval)); TF_RETURN_IF_ERROR(CheckRange(out_shards_count, out_interval)); if (GetNumberOfSteps(in_interval) != GetNumberOfSteps(out_interval)) { return InvalidArgument( "mappings[%d].from[%d] and mappings[%d].to[%d] must have the same " "number of steps, but were %d and %d " "(%s vs. %s)", i, s, i, s, GetNumberOfSteps(in_interval), GetNumberOfSteps(out_interval), in_interval.DebugString(), out_interval.DebugString()); } int64_t in_shard = in_interval.start; int64_t out_shard = out_interval.start; while (in_shard < in_interval.end) { if (in_used_buffers[in_shard]) { return InvalidArgument("Input array %d shard %d is already used", mapping.in_array, in_shard); } in_used_buffers[in_shard] = true; if (out_assigned_devices[out_shard] != nullptr) { return InvalidArgument("Output array %d shard %d is already assigned", mapping.out_array, out_shard); } out_assigned_devices[out_shard] = in_devices[in_shard]; in_shard += in_interval.step; out_shard += out_interval.step; } } } for (int i = 0; i < num_outputs; ++i) { for (int out_shard = 0; out_shard < output_specs[i].sharding->devices()->size(); ++out_shard) { if (out_assigned_devices_list[i][out_shard] == nullptr) { return InvalidArgument("Output array %d shard %d is unassigned", i, out_shard); } } if (out_assigned_devices_list[i] != output_specs[i].sharding->devices()->devices()) { return InvalidArgument( "Output array %d devices and sharding devices do not match: " "Expected %v, but got %v", i, *output_specs[i].sharding->devices(), *BasicDeviceList::Create(std::move(out_assigned_devices_list[i]))); } } return absl::OkStatus(); } absl::StatusOr<RemapPlan> RemapPlan::FromProto( DeviceList::LookupDeviceFunc lookup_device, const RemapPlanProto& proto) { RemapPlan plan; plan.input_specs.reserve(proto.input_specs_size()); for (const auto& input_spec_proto : proto.input_specs()) { TF_ASSIGN_OR_RETURN(ArraySpec input_spec, ArraySpec::FromProto(lookup_device, input_spec_proto)); plan.input_specs.push_back(std::move(input_spec)); } plan.output_specs.reserve(proto.output_specs_size()); for (const auto& output_spec_proto : proto.output_specs()) { TF_ASSIGN_OR_RETURN(ArraySpec output_spec, ArraySpec::FromProto(lookup_device, output_spec_proto)); plan.output_specs.push_back(std::move(output_spec)); } plan.mappings = std::make_shared<std::vector<Mapping>>(); plan.mappings->reserve(proto.mappings_size()); for (const auto& mapping_proto : proto.mappings()) { TF_ASSIGN_OR_RETURN(auto mapping, MappingFromProto(mapping_proto)); plan.mappings->push_back(std::move(mapping)); } return plan; } absl::StatusOr<RemapPlanProto> RemapPlan::ToProto() const { RemapPlanProto proto; proto.mutable_input_specs()->Reserve(input_specs.size()); for (const auto& input_spec : input_specs) { TF_ASSIGN_OR_RETURN(*proto.add_input_specs(), input_spec.ToProto()); } proto.mutable_output_specs()->Reserve(output_specs.size()); for (const auto& output_spec : output_specs) { TF_ASSIGN_OR_RETURN(*proto.add_output_specs(), output_spec.ToProto()); } proto.mutable_mappings()->Reserve(mappings->size()); for (const auto& mapping : *mappings) { TF_ASSIGN_OR_RETURN(*proto.add_mappings(), MappingToProto(mapping)); } return proto; } std::string RemapPlan::DebugString() const { auto format_array_specs = [](absl::Span<const ArraySpec> array_specs) { return absl::StrCat( "[", absl::StrJoin(array_specs, ",", [](std::string* out, const ArraySpec& spec) { absl::StrAppend(out, spec.DebugString()); }), "]"); }; auto format_mappings = [](absl::Span<const Mapping> mappings) { return absl::StrCat( "[", absl::StrJoin(mappings, ",", [](std::string* out, const Mapping& mapping) { absl::StrAppend(out, mapping.DebugString()); }), "]"); }; return absl::StrCat("RemapPlan(input_specs=", format_array_specs(input_specs), ",output_specs=", format_array_specs(output_specs), ",", "mappings=", format_mappings(*mappings), ")"); } } }
#include "xla/python/ifrt/remap_plan.h" #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/functional/bind_front.h" #include "absl/status/status.h" #include "llvm/Support/Casting.h" #include "xla/python/ifrt/array_spec.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/device_test_util.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/tsl/concurrency/ref_count.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace ifrt { namespace { using ::testing::ElementsAreArray; using ::testing::HasSubstr; using ::testing::SizeIs; using ::tsl::testing::StatusIs; class RemapPlanTest : public test_util::DeviceTest {}; TEST_P(RemapPlanTest, ToFromProto) { RemapPlan plan; Shape shape({20, 20}); Shape shard_shape({5, 20}); tsl::RCReference<DeviceList> devices = GetDevices({0, 1, 2, 3}); std::shared_ptr<const Sharding> sharding = ConcreteEvenSharding::Create(devices, MemoryKind(), shape, shard_shape); plan.input_specs.reserve(2); plan.input_specs.push_back(ArraySpec{DType(DType::kF32), shape, sharding}); plan.input_specs.push_back(ArraySpec{DType(DType::kF32), shape, sharding}); plan.output_specs.reserve(2); plan.output_specs.push_back(ArraySpec{ DType(DType::kF32), shape, sharding}); plan.output_specs.push_back(ArraySpec{ DType(DType::kF32), shape, sharding}); plan.mappings = std::make_shared<std::vector<RemapPlan::Mapping>>(); plan.mappings->reserve(2); plan.mappings->push_back(RemapPlan::Mapping{ 0, 1, {RemapPlan::Interval{0, 2, 1}, RemapPlan::Interval{2, 4, 1}}, {RemapPlan::Interval{1, 4, 2}, RemapPlan::Interval{0, 4, 2}}}); plan.mappings->push_back(RemapPlan::Mapping{ 1, 0, {RemapPlan::Interval{0, 4, 2}, RemapPlan::Interval{1, 4, 2}}, {RemapPlan::Interval{0, 2, 1}, RemapPlan::Interval{2, 4, 1}}}); TF_ASSERT_OK_AND_ASSIGN(RemapPlanProto plan_proto, plan.ToProto()); TF_ASSERT_OK_AND_ASSIGN( RemapPlan plan_copy, RemapPlan::FromProto(absl::bind_front(&Client::LookupDevice, client()), plan_proto)); EXPECT_THAT(*plan_copy.mappings, ElementsAreArray(*plan.mappings)); EXPECT_THAT(plan_copy.output_specs, SizeIs(2)); for (const auto& spec : plan_copy.input_specs) { EXPECT_EQ(spec.dtype, DType(DType::kF32)); EXPECT_EQ(spec.shape, shape); const auto* sharding_copy = llvm::dyn_cast<ConcreteEvenSharding>(spec.sharding.get()); ASSERT_NE(sharding_copy, nullptr); EXPECT_EQ(*sharding_copy->devices(), *devices); EXPECT_EQ(sharding_copy->shape(), shape); EXPECT_EQ(sharding_copy->shard_shape(), shard_shape); } for (const auto& spec : plan_copy.output_specs) { EXPECT_EQ(spec.dtype, DType(DType::kF32)); EXPECT_EQ(spec.shape, shape); const auto* sharding_copy = llvm::dyn_cast<ConcreteEvenSharding>(spec.sharding.get()); ASSERT_NE(sharding_copy, nullptr); EXPECT_EQ(*sharding_copy->devices(), *devices); EXPECT_EQ(sharding_copy->shape(), shape); EXPECT_EQ(sharding_copy->shard_shape(), shard_shape); } } TEST_P(RemapPlanTest, InvalidInputDtype) { RemapPlan plan; plan.input_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.input_specs.push_back( ArraySpec{DType(DType::kF32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); EXPECT_THAT(plan.Validate(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Input must have the same dtype"))); } TEST_P(RemapPlanTest, InvalidOutputDtype) { RemapPlan plan; plan.input_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.output_specs.push_back( ArraySpec{DType(DType::kF32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); EXPECT_THAT(plan.Validate(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Input and output must have the same dtype"))); } TEST_P(RemapPlanTest, InvalidInputArrayIndex) { RemapPlan plan; plan.input_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.output_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.mappings = std::make_shared<std::vector<RemapPlan::Mapping>>(); plan.mappings->push_back( RemapPlan::Mapping{1, 0, {RemapPlan::Interval{0, 1, 1}}, {RemapPlan::Interval{0, 1, 1}}}); EXPECT_THAT( plan.Validate(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("mappings[0].in_array must be in [0, 0], but is 1"))); } TEST_P(RemapPlanTest, InvalidOutputArrayIndex) { RemapPlan plan; plan.input_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.output_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.mappings = std::make_shared<std::vector<RemapPlan::Mapping>>(); plan.mappings->push_back( RemapPlan::Mapping{0, 1, {RemapPlan::Interval{0, 1, 1}}, {RemapPlan::Interval{0, 1, 1}}}); EXPECT_THAT( plan.Validate(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("mappings[0].out_array must be in [0, 0], but is 1"))); } TEST_P(RemapPlanTest, InvalidIntervalCount) { RemapPlan plan; plan.input_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.output_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.mappings = std::make_shared<std::vector<RemapPlan::Mapping>>(); plan.mappings->push_back(RemapPlan::Mapping{ 0, 0, {RemapPlan::Interval{0, 1, 1}, RemapPlan::Interval{0, 1, 1}}, {RemapPlan::Interval{0, 1, 1}}}); EXPECT_THAT( plan.Validate(), StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr("mappings[0].from and mappings[0].to must have the same " "number of intervals, but has 2 and 1 intervals"))); } TEST_P(RemapPlanTest, InvalidShardIndex) { auto run = [&](RemapPlan::Interval from, RemapPlan::Interval to) { RemapPlan plan; plan.input_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.output_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.mappings = std::make_shared<std::vector<RemapPlan::Mapping>>(); plan.mappings->push_back(RemapPlan::Mapping{0, 0, {from}, {to}}); return plan.Validate(); }; EXPECT_THAT(run(RemapPlan::Interval{-1, 1, 1}, RemapPlan::Interval{0, 1, 1}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("start must be in [0, 0], but is -1"))); EXPECT_THAT(run(RemapPlan::Interval{1, 1, 1}, RemapPlan::Interval{0, 1, 1}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("start must be in [0, 0], but is 1"))); EXPECT_THAT(run(RemapPlan::Interval{0, 1, 1}, RemapPlan::Interval{-1, 1, 1}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("start must be in [0, 0], but is -1"))); EXPECT_THAT(run(RemapPlan::Interval{0, 1, 1}, RemapPlan::Interval{1, 1, 1}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("start must be in [0, 0], but is 1"))); EXPECT_THAT(run(RemapPlan::Interval{0, -1, 1}, RemapPlan::Interval{0, 1, 1}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("end must be in [0, 1], but is -1"))); EXPECT_THAT(run(RemapPlan::Interval{0, 2, 1}, RemapPlan::Interval{0, 1, 1}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("end must be in [0, 1], but is 2"))); EXPECT_THAT(run(RemapPlan::Interval{0, 1, 1}, RemapPlan::Interval{0, -1, 1}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("end must be in [0, 1], but is -1"))); EXPECT_THAT(run(RemapPlan::Interval{0, 1, 1}, RemapPlan::Interval{0, 2, 1}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("end must be in [0, 1], but is 2"))); EXPECT_THAT(run(RemapPlan::Interval{0, 1, 0}, RemapPlan::Interval{0, 1, 1}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("step must be positive, but is 0"))); EXPECT_THAT(run(RemapPlan::Interval{0, 1, 1}, RemapPlan::Interval{0, 1, -1}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("step must be positive, but is -1"))); } TEST_P(RemapPlanTest, AlreadyUsedInputShard) { RemapPlan plan; plan.input_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.output_specs.push_back( ArraySpec{DType(DType::kS32), Shape({4, 3}), ConcreteEvenSharding::Create(GetDevices({0, 1}), MemoryKind(), Shape({4, 3}), Shape({2, 3}))}); plan.mappings = std::make_shared<std::vector<RemapPlan::Mapping>>(); plan.mappings->push_back(RemapPlan::Mapping{ 0, 0, {RemapPlan::Interval{0, 1, 1}, RemapPlan::Interval{0, 1, 1}}, {RemapPlan::Interval{0, 1, 1}, RemapPlan::Interval{1, 2, 1}}}); EXPECT_THAT(plan.Validate(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Input array 0 shard 0 is already used"))); } TEST_P(RemapPlanTest, UnassignedOutputShard) { RemapPlan plan; plan.input_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.output_specs.push_back( ArraySpec{DType(DType::kS32), Shape({4, 3}), ConcreteEvenSharding::Create(GetDevices({0, 1}), MemoryKind(), Shape({4, 3}), Shape({2, 3}))}); plan.mappings = std::make_shared<std::vector<RemapPlan::Mapping>>(); plan.mappings->push_back( RemapPlan::Mapping{0, 0, {RemapPlan::Interval{0, 1, 1}}, {RemapPlan::Interval{0, 1, 1}}}); EXPECT_THAT(plan.Validate(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Output array 0 shard 1 is unassigned"))); } TEST_P(RemapPlanTest, AlreadyAssignedOutputShard) { RemapPlan plan; plan.input_specs.push_back( ArraySpec{DType(DType::kS32), Shape({4, 3}), ConcreteEvenSharding::Create(GetDevices({0, 1}), MemoryKind(), Shape({4, 3}), Shape({2, 3}))}); plan.output_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.mappings = std::make_shared<std::vector<RemapPlan::Mapping>>(); plan.mappings->push_back(RemapPlan::Mapping{ 0, 0, {RemapPlan::Interval{0, 1, 1}, RemapPlan::Interval{1, 2, 1}}, {RemapPlan::Interval{0, 1, 1}, RemapPlan::Interval{0, 1, 1}}}); EXPECT_THAT( plan.Validate(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Output array 0 shard 0 is already assigned"))); } TEST_P(RemapPlanTest, InvalidOutputDevices) { RemapPlan plan; plan.input_specs.push_back( ArraySpec{DType(DType::kS32), Shape({4, 3}), ConcreteEvenSharding::Create(GetDevices({0, 1}), MemoryKind(), Shape({4, 3}), Shape({2, 3}))}); plan.output_specs.push_back( ArraySpec{DType(DType::kS32), Shape({4, 3}), ConcreteEvenSharding::Create(GetDevices({1, 0}), MemoryKind(), Shape({4, 3}), Shape({2, 3}))}); plan.mappings = std::make_shared<std::vector<RemapPlan::Mapping>>(); plan.mappings->push_back( RemapPlan::Mapping{0, 0, {RemapPlan::Interval{0, 2, 1}}, {RemapPlan::Interval{0, 2, 1}}}); EXPECT_THAT( plan.Validate(), StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr( "Output array 0 devices and sharding devices do not match"))); } INSTANTIATE_TEST_SUITE_P(NumDevices, RemapPlanTest, testing::Values(test_util::DeviceTestParam{ 4, 4})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/remap_plan.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/remap_plan_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ed33b6cb-931a-44ad-a7c0-aa72370d85d7
cpp
tensorflow/tensorflow
tuple
third_party/xla/xla/hlo/builder/lib/tuple.cc
third_party/xla/xla/hlo/builder/lib/tuple_test.cc
#include "xla/hlo/builder/lib/tuple.h" #include <utility> #include "absl/container/inlined_vector.h" #include "absl/status/statusor.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "tsl/platform/statusor.h" namespace xla { absl::StatusOr<ShapeTree<XlaOp>> DisassembleTuple(XlaOp tuple) { TF_ASSIGN_OR_RETURN(Shape shape, tuple.builder()->GetShape(tuple)); ShapeTree<XlaOp> result(shape); result.ForEachMutableElement([&](ShapeIndexView index, XlaOp* element) { if (index.empty()) { *element = tuple; } else { ShapeIndexView parent_index = index.subspan(0, index.size() - 1); XlaOp parent = result.element(parent_index); *element = GetTupleElement(parent, index.back()); } }); return std::move(result); } XlaOp AssembleTuple(XlaBuilder* builder, ShapeTree<XlaOp> elements) { elements.ForEachMutableElementPostOrder( [&](const ShapeIndex& index, XlaOp* element) { const Shape& subshape = ShapeUtil::GetSubshape(elements.shape(), index); if (subshape.IsTuple()) { absl::InlinedVector<XlaOp, 2> children; ShapeIndex child_index = index; for (int i = 0; i < subshape.tuple_shapes_size(); ++i) { child_index.push_back(i); children.push_back(elements.element(child_index)); child_index.pop_back(); } *element = Tuple(builder, children); } }); return elements.element({}); } }
#include "xla/hlo/builder/lib/tuple.h" #include <cstdint> #include <memory> #include <utility> #include "xla/error_spec.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/service.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class TupleTest : public ClientLibraryTestBase {}; XLA_TEST_F(TupleTest, DisassembleAssemble) { XlaBuilder builder(TestName()); Shape shape = ShapeUtil::MakeTupleShape({ ShapeUtil::MakeShape(S32, {3}), ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(S32, {4}), ShapeUtil::MakeShape(S32, {5})}), ShapeUtil::MakeShape(S32, {6}), }); Literal input = LiteralUtil::MakeTupleOwned( LiteralUtil::CreateFullWithDescendingLayout({3}, int32_t{42}), LiteralUtil::MakeTupleOwned( LiteralUtil::CreateFullWithDescendingLayout({4}, int32_t{43}), LiteralUtil::CreateFullWithDescendingLayout({5}, int32_t{44})), LiteralUtil::CreateFullWithDescendingLayout({6}, int32_t{45})); XlaOp param = Parameter(&builder, 0, shape, "param"); TF_ASSERT_OK_AND_ASSIGN(ShapeTree<XlaOp> disassembled_tuple, DisassembleTuple(param)); int32_t addend = 1; disassembled_tuple.ForEachMutableElement([&](const ShapeIndex& index, XlaOp* element) { const Shape& subshape = ShapeUtil::GetSubshape(shape, index); if (subshape.IsArray()) { *element = Add( *element, ConstantLiteral(&builder, LiteralUtil::CreateFullWithDescendingLayout( subshape.dimensions(), addend))); ++addend; } }); AssembleTuple(&builder, std::move(disassembled_tuple)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<GlobalData> data, client_->TransferToServer(input)); Literal expected = LiteralUtil::MakeTupleOwned( LiteralUtil::CreateFullWithDescendingLayout({3}, int32_t{43}), LiteralUtil::MakeTupleOwned( LiteralUtil::CreateFullWithDescendingLayout({4}, int32_t{45}), LiteralUtil::CreateFullWithDescendingLayout({5}, int32_t{47})), LiteralUtil::CreateFullWithDescendingLayout({6}, int32_t{49})); ComputeAndCompareLiteral(&builder, expected, {data.get()}, ErrorSpec(0), &shape); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/lib/tuple.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/lib/tuple_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
080bb713-9ec6-4917-8c00-a8802f2a3a3c
cpp
tensorflow/tensorflow
attribute_map
tensorflow/lite/core/async/interop/c/attribute_map.cc
tensorflow/lite/core/async/interop/c/attribute_map_test.cc
#include "tensorflow/lite/core/async/interop/c/attribute_map.h" #include <cstddef> #include <cstdint> #include "tensorflow/lite/core/async/interop/attribute_map_internal.h" #include "tensorflow/lite/core/async/interop/c/types.h" extern "C" { TfLiteAttributeMap* TfLiteAttributeMapCreate(TfLiteAttrMapType type) { return new TfLiteAttributeMap(type); } void TfLiteAttributeMapDelete(TfLiteAttributeMap* attrs) { delete attrs; } bool TfLiteAttributeMapIsBufferAttributeMap(const TfLiteAttributeMap* attrs) { if (attrs) return attrs->impl.IsBufferAttributeMap(); return false; } bool TfLiteAttributeMapIsSyncAttributeMap(const TfLiteAttributeMap* attrs) { if (attrs) return attrs->impl.IsSyncAttributeMap(); return false; } void TfLiteAttributeMapCopy(const TfLiteAttributeMap* src, TfLiteAttributeMap* dst) { if (src && dst) { dst->impl = src->impl; } } bool TfLiteAttributeMapGetSizeTBufferAttr(const TfLiteAttributeMap* attrs, TfLiteBufferAttrKey key, size_t* val) { return attrs && attrs->impl.IsBufferAttributeMap() && attrs->impl.GetAttr(key, val); } bool TfLiteAttributeMapSetSizeTBufferAttr(TfLiteAttributeMap* attrs, TfLiteBufferAttrKey key, size_t val) { if (attrs && attrs->impl.IsBufferAttributeMap()) { attrs->impl.SetAttr(key, val); return true; } return false; } bool TfLiteAttributeMapGetStringBufferAttr(const TfLiteAttributeMap* attrs, TfLiteBufferAttrKey key, const char** val) { return attrs && attrs->impl.IsBufferAttributeMap() && attrs->impl.GetAttr(key, val); } bool TfLiteAttributeMapSetStringBufferAttr(TfLiteAttributeMap* attrs, TfLiteBufferAttrKey key, const char* val) { if (attrs && attrs->impl.IsBufferAttributeMap()) { attrs->impl.SetAttr(key, val); return true; } return false; } bool TfLiteAttributeMapGetBoolBufferAttr(const TfLiteAttributeMap* attrs, TfLiteBufferAttrKey key, bool* val) { return attrs && attrs->impl.IsBufferAttributeMap() && attrs->impl.GetAttr(key, val); } bool TfLiteAttributeMapSetBoolBufferAttr(TfLiteAttributeMap* attrs, TfLiteBufferAttrKey key, bool val) { if (attrs && attrs->impl.IsBufferAttributeMap()) { attrs->impl.SetAttr(key, val); return true; } return false; } bool TfLiteAttributeMapGetStringSyncAttr(const TfLiteAttributeMap* attrs, TfLiteSynchronizationAttrKey key, const char** val) { return attrs && attrs->impl.IsSyncAttributeMap() && attrs->impl.GetAttr(key, val); } bool TfLiteAttributeMapSetStringSyncAttr(TfLiteAttributeMap* attrs, TfLiteSynchronizationAttrKey key, const char* val) { if (attrs && attrs->impl.IsSyncAttributeMap()) { attrs->impl.SetAttr(key, val); return true; } return false; } #define DEFINE_ATTR_MAP_ACCESSOR(type, type_name) \ bool TfLiteAttributeMapGet##type_name##Attr(const TfLiteAttributeMap* attrs, \ uint32_t key, type* val) { \ return attrs ? attrs->impl.GetAttr(static_cast<TfLiteBufferAttrKey>(key), \ val) \ : false; \ } \ void TfLiteAttributeMapSet##type_name##Attr(TfLiteAttributeMap* attrs, \ uint32_t key, type val) { \ if (attrs) { \ attrs->impl.SetAttr(static_cast<TfLiteBufferAttrKey>(key), val); \ } \ } \ bool TfLiteAttributeMapGetCustom##type_name##Attr( \ const TfLiteAttributeMap* attrs, const char* key, type* val) { \ return attrs ? attrs->impl.GetCustomAttr(key, val) : false; \ } \ void TfLiteAttributeMapSetCustom##type_name##Attr( \ TfLiteAttributeMap* attrs, const char* key, type val) { \ if (attrs) { \ attrs->impl.SetCustomAttr(key, val); \ } \ } DEFINE_ATTR_MAP_ACCESSOR(int, Int); DEFINE_ATTR_MAP_ACCESSOR(size_t, SizeT); DEFINE_ATTR_MAP_ACCESSOR(const char*, String); DEFINE_ATTR_MAP_ACCESSOR(bool, Bool); #undef DEFINE_ATTR_MAP_ACCESSOR }
#include "tensorflow/lite/core/async/interop/c/attribute_map.h" #include <cstddef> #include <cstdint> #include <gtest/gtest.h> #include "tensorflow/lite/core/async/interop/c/types.h" namespace { TEST(AttributeMapTest, AttributeMapCreateTypeCheckTest) { { auto* attr = TfLiteAttributeMapCreate(kTfLiteAttrMapTypeBuffer); EXPECT_TRUE(TfLiteAttributeMapIsBufferAttributeMap(attr)); EXPECT_FALSE(TfLiteAttributeMapIsSyncAttributeMap(attr)); TfLiteAttributeMapDelete(attr); } { auto* attr = TfLiteAttributeMapCreate(kTfLiteAttrMapTypeSync); EXPECT_FALSE(TfLiteAttributeMapIsBufferAttributeMap(attr)); EXPECT_TRUE(TfLiteAttributeMapIsSyncAttributeMap(attr)); TfLiteAttributeMapDelete(attr); } } TEST(AttributeMapTest, AttributeMapAccessor) { auto* attr = TfLiteAttributeMapCreate(kTfLiteAttrMapTypeBuffer); { TfLiteAttributeMapSetSizeTBufferAttr(attr, kTfLiteBufferAttrKeyAlignment, 42); size_t result = 0; EXPECT_TRUE(TfLiteAttributeMapGetSizeTBufferAttr( attr, kTfLiteBufferAttrKeyAlignment, &result)); EXPECT_EQ(42, result); EXPECT_FALSE(TfLiteAttributeMapGetSizeTBufferAttr( attr, kTfLiteBufferAttrKeyOffset, &result)); } { const char str[] = "some string"; TfLiteAttributeMapSetStringBufferAttr( attr, kTfLiteBufferAttrKeyResourceTypeName, str); const char* result = nullptr; EXPECT_TRUE(TfLiteAttributeMapGetStringBufferAttr( attr, kTfLiteBufferAttrKeyResourceTypeName, &result)); EXPECT_EQ(str, result); EXPECT_FALSE(TfLiteAttributeMapGetStringBufferAttr( attr, kTfLiteBufferAttrKeyAlignment, &result)); EXPECT_FALSE(TfLiteAttributeMapSetStringSyncAttr( attr, kTfLiteSynchronizationAttrKeyObjectTypeName, str)); EXPECT_FALSE(TfLiteAttributeMapGetStringSyncAttr( attr, kTfLiteSynchronizationAttrKeyObjectTypeName, &result)); } TfLiteAttributeMapDelete(attr); } TEST(AttributeMapTest, UnCheckedAttributeMapAccessor) { auto* attr = TfLiteAttributeMapCreate(kTfLiteAttrMapTypeBuffer); { TfLiteAttributeMapSetSizeTAttr(attr, 1, 42); size_t result = 0; EXPECT_TRUE(TfLiteAttributeMapGetSizeTAttr(attr, 1, &result)); EXPECT_EQ(42, result); EXPECT_FALSE(TfLiteAttributeMapGetSizeTAttr(attr, 2, &result)); } { TfLiteAttributeMapSetIntAttr(attr, 3, 21); int result = 0; EXPECT_TRUE(TfLiteAttributeMapGetIntAttr(attr, 3, &result)); EXPECT_EQ(21, result); EXPECT_FALSE(TfLiteAttributeMapGetIntAttr(attr, 4, &result)); } { const char str[] = "some string"; TfLiteAttributeMapSetStringAttr(attr, 1, str); const char* result = nullptr; EXPECT_TRUE(TfLiteAttributeMapGetStringAttr(attr, 1, &result)); EXPECT_EQ(str, result); EXPECT_FALSE(TfLiteAttributeMapGetStringAttr(attr, 2, &result)); } { TfLiteAttributeMapSetBoolAttr( attr, kTfLiteBufferAttrKeyCurrentHostCoherencyState, true); bool result = false; EXPECT_TRUE(TfLiteAttributeMapGetBoolAttr( attr, kTfLiteBufferAttrKeyCurrentHostCoherencyState, &result)); EXPECT_TRUE(result); EXPECT_FALSE(TfLiteAttributeMapGetBoolAttr( attr, kTfLiteBufferAttrKeyPreferredHostCoherencyState, &result)); } TfLiteAttributeMapDelete(attr); } TEST(AttributeMapTest, UnCheckedAttributeMapCustomAccessor) { auto* attr = TfLiteAttributeMapCreate(kTfLiteAttrMapTypeBuffer); { TfLiteAttributeMapSetCustomSizeTAttr(attr, "foo", 42); size_t result = 0; EXPECT_TRUE(TfLiteAttributeMapGetCustomSizeTAttr(attr, "foo", &result)); EXPECT_EQ(42, result); EXPECT_FALSE(TfLiteAttributeMapGetCustomSizeTAttr(attr, "bar", &result)); } { TfLiteAttributeMapSetCustomIntAttr(attr, "baz", 21); int result = 0; EXPECT_TRUE(TfLiteAttributeMapGetCustomIntAttr(attr, "baz", &result)); EXPECT_EQ(21, result); EXPECT_FALSE(TfLiteAttributeMapGetCustomIntAttr(attr, "quux", &result)); } { const char str[] = "some string"; TfLiteAttributeMapSetCustomStringAttr(attr, "foo", str); const char* result = nullptr; EXPECT_TRUE(TfLiteAttributeMapGetCustomStringAttr(attr, "foo", &result)); EXPECT_EQ(str, result); EXPECT_FALSE(TfLiteAttributeMapGetCustomStringAttr(attr, "bar", &result)); } { TfLiteAttributeMapSetCustomBoolAttr(attr, "foo", true); bool result = false; EXPECT_TRUE(TfLiteAttributeMapGetCustomBoolAttr(attr, "foo", &result)); EXPECT_TRUE(result); EXPECT_FALSE(TfLiteAttributeMapGetCustomBoolAttr(attr, "bar", &result)); } TfLiteAttributeMapDelete(attr); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/async/interop/c/attribute_map.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/async/interop/c/attribute_map_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
56ea50e1-e04c-4cea-bb42-857fa1568bc0
cpp
tensorflow/tensorflow
index
third_party/xla/xla/python/ifrt/index.cc
third_party/xla/xla/python/ifrt/index_test.cc
#include "xla/python/ifrt/index.h" #include <ostream> #include <string> #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" namespace xla { namespace ifrt { std::string Index::DebugString() const { return absl::StrCat("[", absl::StrJoin(elements_, ","), "]"); } std::ostream& operator<<(std::ostream& os, const Index& index) { return os << index.DebugString(); } } }
#include "xla/python/ifrt/index.h" #include <memory> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/hash/hash_testing.h" namespace xla { namespace ifrt { namespace { using ::testing::ElementsAre; TEST(IndexTest, Construction) { EXPECT_THAT(Index({1, 2}).elements(), ElementsAre(1, 2)); EXPECT_THAT(Index::Zeros(2).elements(), ElementsAre(0, 0)); } TEST(IndexTest, Operations) { EXPECT_EQ(Index({1, 2}), Index({1, 2})); EXPECT_NE(Index({1, 2}), Index({1, 3})); Index a({11, 22}); Index b({2, 3}); EXPECT_EQ(a + b, Index({13, 25})); { Index c = a; EXPECT_EQ(c += b, Index({13, 25})); } EXPECT_EQ(a - b, Index({9, 19})); { Index c = a; EXPECT_EQ(c -= b, Index({9, 19})); } EXPECT_EQ(a * std::vector<int64_t>({1, 2}), Index({11, 44})); { Index c = a; EXPECT_EQ(c *= std::vector<int64_t>({1, 2}), Index({11, 44})); } } TEST(IndexTest, Hash) { EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ Index({}), Index({1}), Index({2}), Index({1, 2}), Index({1, 3}), Index({2, 1}), Index({1, 2, 3}), Index({1, 2, 4}), })); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/index.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/index_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
eb5aeb38-bfcb-4297-bbdf-da5dfa1107c5
cpp
tensorflow/tensorflow
memory
third_party/xla/xla/python/ifrt/memory.cc
third_party/xla/xla/python/ifrt/memory_test.cc
#include "xla/python/ifrt/memory.h" #include <optional> #include <string> #include <utility> #include "absl/base/thread_annotations.h" #include "absl/container/node_hash_set.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "xla/python/ifrt/device.h" namespace xla { namespace ifrt { namespace { struct MemoryKindsSet { absl::Mutex mu; absl::node_hash_set<std::string> memory_kinds_set ABSL_GUARDED_BY(mu); }; } MemoryKind::MemoryKind(std::optional<absl::string_view> memory_kind) { static auto* const global_set = new MemoryKindsSet(); if (!memory_kind.has_value()) { return; } absl::MutexLock lock(&global_set->mu); auto it = global_set->memory_kinds_set.find(*memory_kind); if (it == global_set->memory_kinds_set.end()) { memory_kind_ = *global_set->memory_kinds_set.insert(std::string(*memory_kind)).first; } else { memory_kind_ = *it; } } std::string MemoryKind::ToString() const { if (memory_kind_.has_value()) { return std::string(*memory_kind_); } return "(default)"; } MemoryKind CanonicalizeMemoryKind(MemoryKind memory_kind, Device* device) { if (memory_kind.memory_kind().has_value()) { return memory_kind; } auto default_memory = device->DefaultMemory(); if (default_memory.ok()) { return (*default_memory)->Kind(); } return MemoryKind(); } char Memory::ID = 0; } }
#include "xla/python/ifrt/memory.h" #include <memory> #include <optional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" using ::testing::Optional; namespace xla { namespace ifrt { namespace { TEST(MemoryKindTest, EqualityForUnspecified) { MemoryKind memory_kind1; MemoryKind memory_kind2; EXPECT_EQ(memory_kind1, memory_kind2); } TEST(MemoryKindTest, EqualityForSameString) { MemoryKind memory_kind1("abc"); MemoryKind memory_kind2("abc"); EXPECT_EQ(memory_kind1, memory_kind2); } TEST(MemoryKindTest, EqualityForSameStringContent) { MemoryKind memory_kind1("abc"); MemoryKind memory_kind2(absl::StrCat("ab", "c")); EXPECT_EQ(memory_kind1, memory_kind2); } TEST(MemoryKindTest, InequalityForDifferentStringContent) { MemoryKind memory_kind1("abc"); MemoryKind memory_kind2("def"); EXPECT_NE(memory_kind1, memory_kind2); } TEST(MemoryKindTest, InequalityBetweenSpecifiedAndUnspecified) { { MemoryKind memory_kind1("abc"); MemoryKind memory_kind2; EXPECT_NE(memory_kind1, memory_kind2); } { MemoryKind memory_kind1; MemoryKind memory_kind2("abc"); EXPECT_NE(memory_kind1, memory_kind2); } } TEST(MemoryKindTest, MemorySafety) { auto memory_kind_str = std::make_unique<std::string>("abc"); MemoryKind memory_kind(*memory_kind_str); memory_kind_str.reset(); EXPECT_THAT(memory_kind.memory_kind(), Optional(absl::string_view("abc"))); } TEST(MemoryKindTest, EqualityForUnspecifiedAndNullopt) { MemoryKind memory_kind1; MemoryKind memory_kind2(std::nullopt); EXPECT_EQ(memory_kind1, memory_kind2); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/memory.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/memory_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a94ec4bd-38b0-43ce-b94c-ab20abb9e699
cpp
tensorflow/tensorflow
sharding_serdes
third_party/xla/xla/python/ifrt/sharding_serdes.cc
third_party/xla/xla/python/ifrt/sharding_serdes_test.cc
#include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ExtensibleRTTI.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/serdes.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/ifrt/sharding_serdes.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { class SingleDeviceShardingSerDes : public llvm::RTTIExtends<SingleDeviceShardingSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::SingleDeviceSharding"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { const SingleDeviceSharding& sharding = llvm::cast<SingleDeviceSharding>(serializable); SingleDeviceShardingProto proto; proto.set_device_id(sharding.devices()->devices().front()->Id().value()); if (sharding.memory_kind().memory_kind().has_value()) { proto.set_memory_kind(std::string(*sharding.memory_kind().memory_kind())); } return proto.SerializeAsString(); } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions> options) override { const auto* deserialize_sharding_options = llvm::cast<DeserializeShardingOptions>(options.get()); SingleDeviceShardingProto proto; if (!proto.ParseFromString(serialized)) { return absl::InvalidArgumentError( "Failed to parse serialized SimpleDeviceSharding"); } TF_ASSIGN_OR_RETURN(Device * device, deserialize_sharding_options->lookup_device( DeviceId(proto.device_id()))); MemoryKind memory_kind; if (proto.has_memory_kind()) { memory_kind = MemoryKind(proto.memory_kind()); } return SingleDeviceSharding::Create(device, memory_kind); } static char ID; }; class OpaqueShardingSerDes : public llvm::RTTIExtends<OpaqueShardingSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::OpaqueSharding"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { const OpaqueSharding& sharding = llvm::cast<OpaqueSharding>(serializable); OpaqueShardingProto proto; *proto.mutable_devices() = sharding.devices()->ToProto(); if (sharding.memory_kind().memory_kind().has_value()) { proto.set_memory_kind(std::string(*sharding.memory_kind().memory_kind())); } return proto.SerializeAsString(); } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions> options) override { const auto* deserialize_sharding_options = llvm::cast<DeserializeShardingOptions>(options.get()); OpaqueShardingProto proto; if (!proto.ParseFromString(serialized)) { return absl::InvalidArgumentError( "Failed to parse serialized OpaqueSharding"); } TF_ASSIGN_OR_RETURN( auto devices, DeviceList::FromProto(deserialize_sharding_options->lookup_device, proto.devices())); MemoryKind memory_kind; if (proto.has_memory_kind()) { memory_kind = MemoryKind(proto.memory_kind()); } return OpaqueSharding::Create(std::move(devices), memory_kind); } static char ID; }; class ConcreteShardingSerDes : public llvm::RTTIExtends<ConcreteShardingSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::ConcreteSharding"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { const ConcreteSharding& sharding = llvm::cast<ConcreteSharding>(serializable); ConcreteShardingProto proto; *proto.mutable_devices() = sharding.devices()->ToProto(); if (sharding.memory_kind().memory_kind().has_value()) { proto.set_memory_kind(std::string(*sharding.memory_kind().memory_kind())); } if (sharding.has_static_shape()) { *proto.mutable_shape() = sharding.shape().ToProto(); for (const Shape& shape : sharding.shard_shapes()) { *proto.add_shard_shapes() = shape.ToProto(); } } else { *proto.mutable_dynamic_shape() = sharding.dynamic_shape().ToProto(); for (const DynamicShape& dynamic_shape : sharding.shard_dynamic_shapes()) { *proto.add_shard_dynamic_shapes() = dynamic_shape.ToProto(); } } return proto.SerializeAsString(); } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions> options) override { const auto* deserialize_sharding_options = llvm::cast<DeserializeShardingOptions>(options.get()); ConcreteShardingProto proto; if (!proto.ParseFromString(serialized)) { return absl::InvalidArgumentError( "Failed to parse serialized ConcreteSharding"); } TF_ASSIGN_OR_RETURN( auto devices, DeviceList::FromProto(deserialize_sharding_options->lookup_device, proto.devices())); MemoryKind memory_kind; if (proto.has_memory_kind()) { memory_kind = MemoryKind(proto.memory_kind()); } if (proto.has_shape()) { TF_ASSIGN_OR_RETURN(auto shape, Shape::FromProto(proto.shape())); std::vector<Shape> shard_shapes; shard_shapes.reserve(proto.shard_shapes_size()); for (const auto& shard_shape_proto : proto.shard_shapes()) { TF_ASSIGN_OR_RETURN(auto shard_shape, Shape::FromProto(shard_shape_proto)); shard_shapes.push_back(std::move(shard_shape)); } return ConcreteSharding::Create(std::move(devices), memory_kind, std::move(shape), std::move(shard_shapes)); } if (!proto.has_dynamic_shape()) { return absl::InvalidArgumentError( "ConcreteSharding must have Shape or DynamicShape."); } TF_ASSIGN_OR_RETURN(auto dynamic_shape, DynamicShape::FromProto(proto.dynamic_shape())); std::vector<DynamicShape> shard_dynamic_shapes; shard_dynamic_shapes.reserve(proto.shard_dynamic_shapes_size()); for (const auto& shard_dynamic_shape_proto : proto.shard_dynamic_shapes()) { TF_ASSIGN_OR_RETURN(auto dynamic_shape, DynamicShape::FromProto(shard_dynamic_shape_proto)); shard_dynamic_shapes.push_back(std::move(dynamic_shape)); } return ConcreteSharding::Create(std::move(devices), memory_kind, std::move(dynamic_shape), std::move(shard_dynamic_shapes)); } static char ID; }; class ConcreteEvenShardingSerDes : public llvm::RTTIExtends<ConcreteEvenShardingSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::ConcreteEvenSharding"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { const ConcreteEvenSharding& sharding = llvm::cast<ConcreteEvenSharding>(serializable); ConcreteEvenShardingProto proto; *proto.mutable_devices() = sharding.devices()->ToProto(); if (sharding.memory_kind().memory_kind().has_value()) { proto.set_memory_kind(std::string(*sharding.memory_kind().memory_kind())); } *proto.mutable_shape() = sharding.shape().ToProto(); *proto.mutable_shard_shape() = sharding.shard_shape().ToProto(); proto.set_is_fully_replicated(sharding.IsFullyReplicated()); return proto.SerializeAsString(); } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions> options) override { const auto* deserialize_sharding_options = llvm::cast<DeserializeShardingOptions>(options.get()); ConcreteEvenShardingProto proto; if (!proto.ParseFromString(serialized)) { return absl::InvalidArgumentError( "Failed to parse serialized ConcreteEvenSharding"); } TF_ASSIGN_OR_RETURN( auto devices, DeviceList::FromProto(deserialize_sharding_options->lookup_device, proto.devices())); MemoryKind memory_kind; if (proto.has_memory_kind()) { memory_kind = MemoryKind(proto.memory_kind()); } TF_ASSIGN_OR_RETURN(auto shape, Shape::FromProto(proto.shape())); TF_ASSIGN_OR_RETURN(auto shard_shape, Shape::FromProto(proto.shard_shape())); return ConcreteEvenSharding::Create( std::move(devices), memory_kind, std::move(shape), std::move(shard_shape), proto.is_fully_replicated()); } static char ID; }; [[maybe_unused]] char SingleDeviceShardingSerDes::ID = 0; [[maybe_unused]] char OpaqueShardingSerDes::ID = 0; [[maybe_unused]] char ConcreteShardingSerDes::ID = 0; [[maybe_unused]] char ConcreteEvenShardingSerDes::ID = 0; bool register_single_device_sharding_serdes = ([]{ RegisterSerDes<SingleDeviceSharding>( std::make_unique<SingleDeviceShardingSerDes>()); }(), true); bool register_opaque_sharding_serdes = ([]{ RegisterSerDes<OpaqueSharding>( std::make_unique<OpaqueShardingSerDes>()); }(), true); bool register_concrete_sharding_serdes = ([]{ RegisterSerDes<ConcreteSharding>( std::make_unique<ConcreteShardingSerDes>()); }(), true); bool register_concrete_even_sharding_serdes = ([]{ RegisterSerDes<ConcreteEvenSharding>( std::make_unique<ConcreteEvenShardingSerDes>()); }(), true); } } }
#include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/functional/bind_front.h" #include "xla/python/ifrt/client.h" #include "xla/python/ifrt/device_test_util.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/serdes.h" #include "xla/python/ifrt/serdes.pb.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { using ::testing::ElementsAreArray; class ShardingSerDesTest : public test_util::DeviceTest {}; TEST_P(ShardingSerDesTest, SingleDeviceShardingRoundTrip) { auto sharding = SingleDeviceSharding::Create( GetDevices({0})->devices().front(), MemoryKind("abc")); TF_ASSERT_OK_AND_ASSIGN(auto serialized, Serialize(*sharding)); TF_ASSERT_OK_AND_ASSIGN( auto out_sharding, Deserialize<SingleDeviceSharding>( serialized, std::make_unique<DeserializeShardingOptions>( absl::bind_front(&Client::LookupDevice, client())))); EXPECT_THAT(out_sharding->devices()->devices(), ElementsAreArray(sharding->devices()->devices())); } TEST_P(ShardingSerDesTest, OpaqueShardingRoundTrip) { auto sharding = OpaqueSharding::Create(GetDevices({0, 1}), MemoryKind("abc")); TF_ASSERT_OK_AND_ASSIGN(auto serialized, Serialize(*sharding)); TF_ASSERT_OK_AND_ASSIGN( auto out_sharding, Deserialize<OpaqueSharding>( serialized, std::make_unique<DeserializeShardingOptions>( absl::bind_front(&Client::LookupDevice, client())))); EXPECT_THAT(out_sharding->devices()->devices(), ElementsAreArray(sharding->devices()->devices())); } TEST_P(ShardingSerDesTest, ConcreteShardingRoundTrip) { auto sharding = ConcreteSharding::Create( GetDevices({0, 1}), MemoryKind("abc"), Shape({10, 20}), {Shape({3, 20}), Shape({7, 20})}); TF_ASSERT_OK_AND_ASSIGN(auto serialized, Serialize(*sharding)); TF_ASSERT_OK_AND_ASSIGN( auto out_sharding, Deserialize<ConcreteSharding>( serialized, std::make_unique<DeserializeShardingOptions>( absl::bind_front(&Client::LookupDevice, client())))); EXPECT_THAT(out_sharding->devices()->devices(), ElementsAreArray(sharding->devices()->devices())); EXPECT_THAT(out_sharding->shape(), sharding->shape()); EXPECT_THAT(out_sharding->shard_shapes(), ElementsAreArray(sharding->shard_shapes())); } TEST_P(ShardingSerDesTest, ConcreteShardingWithDynamicShapeRoundTrip) { TF_ASSERT_OK_AND_ASSIGN( DynamicShape dynamic_shape, DynamicShape::Create(Shape({10, 20}), BoundedDynamicShapeTag({false, true}))); TF_ASSERT_OK_AND_ASSIGN( DynamicShape shard_dynamic_shape1, DynamicShape::Create(Shape({3, 20}), BoundedDynamicShapeTag({false, true}))); TF_ASSERT_OK_AND_ASSIGN( DynamicShape shard_dynamic_shape2, DynamicShape::Create(Shape({7, 20}), BoundedDynamicShapeTag({false, true}))); auto sharding = ConcreteSharding::Create( GetDevices({0, 1}), MemoryKind("abc"), dynamic_shape, {shard_dynamic_shape1, shard_dynamic_shape2}); TF_ASSERT_OK_AND_ASSIGN(Serialized serialized, Serialize(*sharding)); TF_ASSERT_OK_AND_ASSIGN( auto out_sharding, Deserialize<ConcreteSharding>( serialized, std::make_unique<DeserializeShardingOptions>( absl::bind_front(&Client::LookupDevice, client())))); EXPECT_THAT(out_sharding->devices()->devices(), ElementsAreArray(sharding->devices()->devices())); EXPECT_THAT(out_sharding->dynamic_shape(), sharding->dynamic_shape()); EXPECT_THAT(out_sharding->shard_dynamic_shapes(), ElementsAreArray(sharding->shard_dynamic_shapes())); } TEST_P(ShardingSerDesTest, ConcreteEvenShardingRoundTrip) { auto sharding = ConcreteEvenSharding::Create( GetDevices({0, 1}), MemoryKind("abc"), Shape({10, 20}), Shape({5, 20}), true); TF_ASSERT_OK_AND_ASSIGN(auto serialized, Serialize(*sharding)); TF_ASSERT_OK_AND_ASSIGN( auto out_sharding, Deserialize<ConcreteEvenSharding>( serialized, std::make_unique<DeserializeShardingOptions>( absl::bind_front(&Client::LookupDevice, client())))); EXPECT_THAT(out_sharding->devices()->devices(), ElementsAreArray(sharding->devices()->devices())); EXPECT_THAT(out_sharding->shape(), sharding->shape()); EXPECT_THAT(out_sharding->shard_shape(), sharding->shard_shape()); EXPECT_THAT(out_sharding->IsFullyReplicated(), sharding->IsFullyReplicated()); } INSTANTIATE_TEST_SUITE_P(NumDevices, ShardingSerDesTest, testing::Values(test_util::DeviceTestParam{ 2, 2})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/sharding_serdes.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/sharding_serdes_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
acbd2b8c-12d1-4da6-b36c-77c6289018e6
cpp
tensorflow/tensorflow
ifrt_ir_program_serdes
third_party/xla/xla/python/ifrt/ir/ifrt_ir_program_serdes.cc
third_party/xla/xla/python/ifrt/ir/ifrt_ir_program_serdes_test.cc
#include <memory> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ExtensibleRTTI.h" #include "llvm/Support/raw_ostream.h" #include "mlir/Bytecode/BytecodeWriter.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Support/LLVM.h" #include "xla/mlir/utils/error_util.h" #include "xla/python/ifrt/ir/ifrt_ir_program.h" #include "xla/python/ifrt/serdes.h" #include "xla/python/ifrt/support/module_parsing.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { class IfrtIRProgramSerDes : public llvm::RTTIExtends<IfrtIRProgramSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::IfrtIRProgram"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { const auto& program = llvm::cast<IfrtIRProgram>(serializable); if (program.mlir_module == nullptr) { return absl::InvalidArgumentError("Unable to serialize null MLIR module"); } std::string serialized; llvm::raw_string_ostream out(serialized); mlir::BytecodeWriterConfig config; mlir::BaseScopedDiagnosticHandler diagnostic_handler( program.mlir_module->getContext()); if (mlir::failed( mlir::writeBytecodeToFile(program.mlir_module, out, config))) { return absl::InvalidArgumentError( absl::StrFormat("Failed to serialize IFRT IR module string: %s", diagnostic_handler.ConsumeStatus().message())); } return serialized; } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions>) override { auto context = std::make_unique<mlir::MLIRContext>(); TF_ASSIGN_OR_RETURN(auto module, support::ParseMlirModuleString(serialized, *context)); return std::make_unique<IfrtIRProgram>(std::move(context), std::move(module)); } static char ID; }; char IfrtIRProgramSerDes::ID = 0; bool register_ifrt_ir_program_serdes = ([]() { RegisterSerDes<IfrtIRProgram>(std::make_unique<IfrtIRProgramSerDes>()); }(), true); } } }
#include <memory> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "llvm/Support/raw_ostream.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OperationSupport.h" #include "mlir/IR/OwningOpRef.h" #include "xla/python/ifrt/ir/ifrt_ir_program.h" #include "xla/python/ifrt/serdes.h" #include "xla/python/ifrt/support/module_parsing.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { using ::testing::HasSubstr; using ::testing::Not; using ::tsl::testing::StatusIs; std::string PrintModule(mlir::ModuleOp module) { std::string module_str; llvm::raw_string_ostream os(module_str); module->print(os, mlir::OpPrintingFlags().enableDebugInfo()); return module_str; } TEST(IfrtIRProgramSerDesTest, RoundTrip) { static constexpr absl::string_view kMlirModuleStr = R"( !array = !ifrt.array<tensor<2xi32>, #ifrt.sharding_param<1 to [0] on 1>, [0]> module { func.func @main(%arg0: !array) -> !array attributes {ifrt.function} { %0, %ctrl_0 = ifrt.Call @add_one::@main(%arg0) on devices [0] : (!array) -> !array return %0 : !array } module @add_one { func.func @main(%arg0: tensor<2xi32>) -> tensor<2xi32> { %0 = mhlo.constant dense<1> : tensor<2xi32> %1 = mhlo.add %arg0, %0 : tensor<2xi32> return %1 : tensor<2xi32> } } } )"; Serialized serialized; auto context = std::make_unique<mlir::MLIRContext>(); TF_ASSERT_OK_AND_ASSIGN( mlir::OwningOpRef<mlir::ModuleOp> module, support::ParseMlirModuleString(kMlirModuleStr, *context)); auto initial_program = std::make_unique<IfrtIRProgram>(std::move(context), std::move(module)); TF_ASSERT_OK_AND_ASSIGN(serialized, Serialize(*initial_program)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<IfrtIRProgram> deserialized_program, Deserialize<IfrtIRProgram>(serialized, nullptr)); EXPECT_EQ(PrintModule(initial_program->mlir_module), PrintModule(deserialized_program->mlir_module)); } TEST(IfrtIRProgramSerDesTest, DeserializationError) { static constexpr absl::string_view kMlirModuleStr = R"( !array = !ifrt.array<tensor<2xi32>, #ifrt.sharding_param<1 to [0] on 1>, [0]> module { func.func @main(%arg0: !array) -> !array attributes {ifrt.function} { %0, %ctrl_0 = ifrt.Call @add_one::@main(%arg0) on devices [0] : (!array) -> !array return %0 : !array } module @add_one { func.func @main(%arg0: tensor<2xi32>) -> tensor<2xi32> { %0 = mhlo.constant dense<1> : tensor<2xi32> %1 = mhlo.add %arg0, %0 : tensor<2xi32> return %1 : tensor<2xi32> } } } )"; Serialized serialized; { auto context = std::make_unique<mlir::MLIRContext>(); TF_ASSERT_OK_AND_ASSIGN( mlir::OwningOpRef<mlir::ModuleOp> module, support::ParseMlirModuleString(kMlirModuleStr, *context)); auto program = std::make_unique<IfrtIRProgram>(std::move(context), std::move(module)); TF_ASSERT_OK_AND_ASSIGN(serialized, Serialize(*program)); } serialized.set_data("invalid data"); EXPECT_THAT(Deserialize<IfrtIRProgram>(serialized, nullptr), StatusIs(Not(absl::StatusCode::kOk), HasSubstr("Failed to parse IFRT IR module string"))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/ir/ifrt_ir_program_serdes.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/ir/ifrt_ir_program_serdes_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
134ec802-5d04-47ce-83bd-c7083b178e4b
cpp
tensorflow/tensorflow
sharding_conversions
third_party/xla/xla/python/ifrt/support/sharding_conversions.cc
third_party/xla/xla/python/ifrt/support/sharding_conversions_test.cc
#include "xla/python/ifrt/support/sharding_conversions.h" #include <cstdint> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Casting.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/ir/sharding_param.h" #include "xla/python/ifrt/sharding.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/xla_data.pb.h" namespace xla { namespace ifrt { namespace support { absl::StatusOr<OpSharding> ToOpSharding(const Sharding& sharding) { if (auto* sharding_param_sharding = llvm::dyn_cast<xla::ifrt::ShardingParamSharding>(&sharding)) { return ToOpSharding(sharding_param_sharding->sharding_param(), sharding_param_sharding->devices()); } else { return absl::InvalidArgumentError( "Only conversion from `ShardingParamSharding` to `OpSharding` is " "supported."); } } absl::StatusOr<OpSharding> ToOpSharding( const ShardingParam& sharding_param, const tsl::RCReference<xla::ifrt::DeviceList>& device_mapping) { OpSharding op_sharding; { bool all_dim_replicated = true; for (const int64_t dim_shard : sharding_param.dim_shards()) { if (dim_shard != 1) { all_dim_replicated = false; break; } } if (all_dim_replicated) { op_sharding.set_type(OpSharding::REPLICATED); return op_sharding; } } op_sharding.set_type(OpSharding::OTHER); auto* tile_assignment_dims = op_sharding.mutable_tile_assignment_dimensions(); int64_t cum_size = 1; tile_assignment_dims->Reserve(sharding_param.dim_shards().size() + 1); for (const int64_t dim_shard : sharding_param.dim_shards()) { cum_size *= dim_shard; tile_assignment_dims->Add(dim_shard); } int device_count = 1; for (const int axis_size : sharding_param.minor_to_major().axis_sizes) { device_count *= axis_size; } if (device_count != cum_size) { op_sharding.set_replicate_on_last_tile_dim(true); tile_assignment_dims->Add(device_count / cum_size); } llvm::SmallVector<int> logical_device_ids; sharding_param.minor_to_major().ToDeviceList(logical_device_ids); auto* tile_assignment_devices = op_sharding.mutable_tile_assignment_devices(); tile_assignment_devices->Reserve(logical_device_ids.size()); const absl::Span<Device* const> device_mapping_devices = device_mapping->devices(); for (const int logical_device_id : logical_device_ids) { if (logical_device_id < 0 || logical_device_id >= device_mapping_devices.size()) { return absl::OutOfRangeError( absl::StrCat("Can't map device with logical id ", logical_device_id, ". The logical device id should be within [0, ", device_mapping_devices.size(), ").")); } tile_assignment_devices->Add( device_mapping_devices[logical_device_id]->Id().value()); } return op_sharding; } absl::StatusOr<HloSharding> ToHloSharding(const ShardingParam& sharding_param) { auto axis_sizes = sharding_param.minor_to_major().axis_sizes; llvm::SmallVector<int64_t> reshape_dims; reshape_dims.reserve(axis_sizes.size()); int device_count = 1; for (auto axis_size : llvm::reverse(axis_sizes)) { reshape_dims.push_back(axis_size); device_count *= axis_size; } if (device_count == 1) { return HloSharding::Replicate(); } int64_t cum_size = 1; llvm::SmallVector<int64_t> dims; dims.reserve(sharding_param.dim_shards().size()); for (const int64_t dim_shard : sharding_param.dim_shards()) { cum_size *= dim_shard; dims.push_back(dim_shard); } llvm::SmallVector<int, 4> permutation; int num_axis = sharding_param.minor_to_major().permutation.size(); permutation.reserve(num_axis); for (const int axis_id : llvm::reverse(sharding_param.minor_to_major().permutation)) { permutation.push_back(num_axis - axis_id - 1); } if (device_count != cum_size) { dims.push_back(device_count / cum_size); return HloSharding::PartialTile( TileAssignment(dims, reshape_dims, permutation)); } else { return HloSharding::IotaTile(dims, reshape_dims, permutation); } } absl::StatusOr<ShardingParam> ToShardingParam(const HloSharding& hlo_sharding, int rank, int num_devices) { ShardingParam::MinorToMajor minor_to_major; if (hlo_sharding.IsReplicated() || (hlo_sharding.IsTileMaximal() && hlo_sharding.HasUniqueDevice() && num_devices == 1)) { llvm::SmallVector<int64_t> dim_shards(rank, 1); minor_to_major.permutation.push_back(0); minor_to_major.axis_sizes.push_back(num_devices); return ShardingParam(dim_shards, std::move(minor_to_major)); } else if (hlo_sharding.IsTiled()) { const xla::TileAssignment& tile_assignment = hlo_sharding.tile_assignment(); if (!tile_assignment.iota()) { return absl::InvalidArgumentError(absl::StrCat( "Conversion from `HloSharding` without `IotaTileAssignment` is not " "supported; sharding=", hlo_sharding.ToString())); } if (rank != hlo_sharding.TiledDataRank()) { return absl::InvalidArgumentError(absl::StrFormat( "`TiledData` expected to have have %d dimensions, but has %d " "dimensions; sharding=%s", rank, hlo_sharding.TiledDataRank(), hlo_sharding.ToString())); } if (hlo_sharding.subgroup_types().size() > 1 || (hlo_sharding.subgroup_types().size() == 1 && hlo_sharding.subgroup_types()[0] != xla::OpSharding::REPLICATED)) { return absl::InvalidArgumentError(absl::StrCat( "Unsupported conversion to `ShardingParam` from `HloSharding` that " "has more than a subgroup or a subgroup that is not REPLICATED; " "sharding=", hlo_sharding.ToString())); } llvm::SmallVector<int64_t> dim_shards(tile_assignment.dimensions().begin(), tile_assignment.dimensions().end()); if (hlo_sharding.ReplicateOnLastTileDim() || (hlo_sharding.subgroup_types().size() == 1 && hlo_sharding.subgroup_types()[0] == xla::OpSharding::REPLICATED)) { dim_shards.pop_back(); } if (tile_assignment.iota()->reshape_dims().empty()) { minor_to_major.permutation.push_back(0); minor_to_major.axis_sizes.push_back(num_devices); } else { for (auto reshape_dim : llvm::reverse(tile_assignment.iota()->reshape_dims())) { minor_to_major.axis_sizes.push_back(reshape_dim); } int num_axis = tile_assignment.iota()->transpose_perm().size(); for (int axis_id : llvm::reverse(tile_assignment.iota()->transpose_perm())) { minor_to_major.permutation.push_back(num_axis - axis_id - 1); } } return ShardingParam(dim_shards, std::move(minor_to_major)); } return absl::UnimplementedError( absl::StrCat("Unsupported conversion to `ShardingParam` from " "`HloSharding`; sharding=", hlo_sharding.ToString())); } } } }
#include "xla/python/ifrt/support/sharding_conversions.h" #include <memory> #include <numeric> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/ir/tile_assignment.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/index_domain.h" #include "xla/python/ifrt/ir/sharding_param.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/mock.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/ifrt/test_util.h" #include "xla/shape.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace support { namespace { using ::testing::Return; using ::tsl::testing::StatusIs; using xla::HloSharding; absl::StatusOr<HloSharding> ToHloShardingViaOpSharding( const ShardingParam& sharding_param, const tsl::RCReference<DeviceList>& device_list) { TF_ASSIGN_OR_RETURN(xla::OpSharding op_sharding, ToOpSharding(sharding_param, device_list)); return HloSharding::FromProto(op_sharding); } struct ShardingConversionTestClientState { absl::flat_hash_map<DeviceId, std::unique_ptr<Device>> device_map; std::vector<Device*> devices; }; std::shared_ptr<MockClient> MakeTestClient(int num_devices) { auto state = std::make_shared<ShardingConversionTestClientState>(); state->devices.reserve(num_devices); for (int i = 0; i < num_devices; ++i) { auto device = std::make_unique<MockDevice>(); ON_CALL(*device, Id).WillByDefault(Return(DeviceId(i))); state->devices.push_back(device.get()); state->device_map.insert({DeviceId(i), std::move(device)}); } auto client = std::make_shared<MockClient>(); ON_CALL(*client, devices) .WillByDefault( [state]() -> absl::Span<Device* const> { return state->devices; }); return client; } class ShardingConversionsTest : public testing::TestWithParam<int> { public: void SetUp() override { client_ = MakeTestClient(GetParam()); } tsl::RCReference<DeviceList> GetDevices( absl::Span<const int> device_indices) { return test_util::GetDevices(client_.get(), device_indices).value(); } void AssertSameTiling(const ShardingParam& sharding_param, const HloSharding& hlo_sharding, const Shape& shape) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<const Sharding> sharding, ShardingParamSharding::Create( sharding_param, device_list, MemoryKind())); const xla::Shape xla_shape(PrimitiveType::F16, shape.dims(), {}, {}); TF_ASSERT_OK_AND_ASSIGN(const std::vector<IndexDomain> index_domains, sharding->IndexDomains(shape)); ASSERT_EQ(index_domains.size(), hlo_sharding.tile_assignment().num_elements()); const xla::Shape xla_tile_shape = hlo_sharding.TileShape(xla_shape); for (int i = 0; i < index_domains.size(); ++i) { SCOPED_TRACE(absl::StrCat("on device ", i)); EXPECT_EQ(index_domains[i].origin().elements(), hlo_sharding.TileOffsetForDevice(xla_shape, i)); EXPECT_EQ(index_domains[i].shape().dims(), xla_tile_shape.dimensions()); } } private: std::shared_ptr<Client> client_; }; TEST_P(ShardingConversionsTest, Replicated) { ShardingParam expected_sharding_param{ {1, 1, 1}, {{0, 1}, {2, 3}}}; TF_EXPECT_OK(expected_sharding_param.verify()); TF_ASSERT_OK_AND_ASSIGN(const HloSharding hlo_iota_sharding, ToHloSharding(expected_sharding_param)); TF_ASSERT_OK_AND_ASSIGN( const HloSharding hlo_sharding, ToHloShardingViaOpSharding(expected_sharding_param, GetDevices({0, 1, 2, 3, 4, 5}))); EXPECT_EQ(hlo_sharding.ToString(), "{replicated}"); EXPECT_EQ(hlo_sharding, hlo_iota_sharding); TF_ASSERT_OK_AND_ASSIGN(auto sharding_param, ToShardingParam(hlo_iota_sharding, 3, 6)); TF_ASSERT_OK_AND_ASSIGN(const HloSharding actual_hlo_sharding, ToHloSharding(sharding_param)); EXPECT_EQ(hlo_iota_sharding, actual_hlo_sharding); } TEST_P(ShardingConversionsTest, SingleDeviceReplicated) { ShardingParam expected_sharding_param{ {1, 1}, {{0}, {1}}}; TF_EXPECT_OK(expected_sharding_param.verify()); TF_ASSERT_OK_AND_ASSIGN(const HloSharding hlo_iota_sharding, ToHloSharding(expected_sharding_param)); TF_ASSERT_OK_AND_ASSIGN( const HloSharding hlo_sharding, ToHloShardingViaOpSharding(expected_sharding_param, GetDevices({0}))); EXPECT_EQ(hlo_sharding.ToString(), "{replicated}"); EXPECT_EQ(hlo_sharding, hlo_iota_sharding); TF_ASSERT_OK_AND_ASSIGN(auto sharding_param, ToShardingParam(hlo_iota_sharding, 2, 1)); EXPECT_EQ(expected_sharding_param, sharding_param); } TEST_P(ShardingConversionsTest, Permutation) { ShardingParam expected_sharding_param{ {2, 1, 3}, {{1, 0}, {3, 2}}}; TF_EXPECT_OK(expected_sharding_param.verify()); TF_ASSERT_OK_AND_ASSIGN(const HloSharding hlo_iota_sharding, ToHloSharding(expected_sharding_param)); TF_ASSERT_OK_AND_ASSIGN( const HloSharding hlo_sharding, ToHloShardingViaOpSharding(expected_sharding_param, GetDevices({0, 1, 2, 3, 4, 5}))); EXPECT_EQ(hlo_sharding.ToString(), "{devices=[2,1,3]0,3,1,4,2,5}"); EXPECT_EQ(hlo_sharding, hlo_iota_sharding); TF_ASSERT_OK_AND_ASSIGN(auto sharding_param, ToShardingParam(hlo_iota_sharding, 3, 6)); EXPECT_EQ(expected_sharding_param, sharding_param); } TEST_P(ShardingConversionsTest, Partial) { ShardingParam expected_sharding_param{ {2, 1}, {{0, 1}, {2, 3}}}; TF_EXPECT_OK(expected_sharding_param.verify()); TF_ASSERT_OK_AND_ASSIGN(const HloSharding hlo_iota_sharding, ToHloSharding(expected_sharding_param)); TF_ASSERT_OK_AND_ASSIGN( const HloSharding hlo_sharding, ToHloShardingViaOpSharding(expected_sharding_param, GetDevices({0, 1, 2, 3, 4, 5}))); EXPECT_EQ(hlo_sharding.ToString(), "{devices=[2,1,3]0,1,2,3,4,5 last_tile_dim_replicate}"); EXPECT_EQ(hlo_sharding, hlo_iota_sharding); TF_ASSERT_OK_AND_ASSIGN(auto sharding_param, ToShardingParam(hlo_iota_sharding, 2, 6)); TF_ASSERT_OK_AND_ASSIGN(const HloSharding actual_hlo_sharding, ToHloSharding(sharding_param)); EXPECT_EQ(hlo_iota_sharding, actual_hlo_sharding); } TEST_P(ShardingConversionsTest, OneDimToTwoAxes) { ShardingParam expected_sharding_param{ {4}, {{1, 0}, {2, 2}}}; TF_EXPECT_OK(expected_sharding_param.verify()); TF_ASSERT_OK_AND_ASSIGN(const HloSharding hlo_iota_sharding, ToHloSharding(expected_sharding_param)); TF_ASSERT_OK_AND_ASSIGN(const HloSharding hlo_sharding, ToHloShardingViaOpSharding(expected_sharding_param, GetDevices({0, 1, 2, 3}))); EXPECT_EQ(hlo_sharding.ToString(), "{devices=[4]0,2,1,3}"); EXPECT_EQ(hlo_sharding, hlo_iota_sharding); TF_ASSERT_OK_AND_ASSIGN(auto sharding_param, ToShardingParam(hlo_iota_sharding, 1, 4)); EXPECT_EQ(expected_sharding_param, sharding_param); } TEST_P(ShardingConversionsTest, NonTrivialDeviceAssignment) { ShardingParam expected_sharding_param{ {2, 1, 3}, {{1, 0}, {3, 2}}}; TF_EXPECT_OK(expected_sharding_param.verify()); TF_ASSERT_OK_AND_ASSIGN( const HloSharding hlo_sharding, ToHloShardingViaOpSharding(expected_sharding_param, GetDevices({6, 5, 4, 3, 2, 1}))); EXPECT_EQ(hlo_sharding.ToString(), "{devices=[2,1,3]6,3,5,2,4,1}"); } TEST_P(ShardingConversionsTest, VerifyIncorrectShardings) { ShardingParam different_permutation_and_axis{ {1, 1}, {{0, 1}, {2}}}; EXPECT_FALSE(different_permutation_and_axis.verify().ok()); ShardingParam too_many_slices{{2, 2}, {{0}, {2}}}; EXPECT_FALSE(too_many_slices.verify().ok()); ShardingParam incorrect_permutation{ {4, 1}, {{0, 1, 1}, {2, 2, 2}}}; EXPECT_FALSE(incorrect_permutation.verify().ok()); } TEST_P(ShardingConversionsTest, ErrorOnDeviceAssignment) { ShardingParam sharding_param{{2, 1, 3}, {{1, 0}, {3, 2}}}; TF_EXPECT_OK(sharding_param.verify()); EXPECT_THAT( ToHloShardingViaOpSharding(sharding_param, GetDevices({6, 5, 4, 3, 2})), StatusIs(absl::StatusCode::kOutOfRange, ::testing::HasSubstr("Can't map device with logical id 5"))); } TEST_P(ShardingConversionsTest, ShardingParamFullySharded) { ShardingParam sharding_param{{2, 3}, {{0, 1}, {2, 3}}}; TF_EXPECT_OK(sharding_param.verify()); TF_ASSERT_OK_AND_ASSIGN(const HloSharding hlo_sharding, ToHloShardingViaOpSharding( sharding_param, GetDevices({0, 1, 2, 3, 4, 5}))); AssertSameTiling(sharding_param, hlo_sharding, Shape({6, 6})); } TEST_P(ShardingConversionsTest, ShardingParamWithPermutation) { ShardingParam sharding_param{{2, 3}, {{1, 0}, {3, 2}}}; TF_EXPECT_OK(sharding_param.verify()); TF_ASSERT_OK_AND_ASSIGN(const HloSharding hlo_sharding, ToHloShardingViaOpSharding( sharding_param, GetDevices({0, 1, 2, 3, 4, 5}))); AssertSameTiling(sharding_param, hlo_sharding, Shape({6, 6})); } TEST_P(ShardingConversionsTest, ShardingParamWithReplication) { ShardingParam sharding_param{{2, 1}, {{0, 1}, {2, 3}}}; TF_EXPECT_OK(sharding_param.verify()); TF_ASSERT_OK_AND_ASSIGN(const HloSharding hlo_sharding, ToHloShardingViaOpSharding( sharding_param, GetDevices({0, 1, 2, 3, 4, 5}))); AssertSameTiling(sharding_param, hlo_sharding, Shape({6, 6})); } TEST_P(ShardingConversionsTest, OpShardingReplicated) { OpSharding op_sharding; op_sharding.set_type(OpSharding::REPLICATED); TF_ASSERT_OK_AND_ASSIGN(auto hlo_sharding, HloSharding::FromProto(op_sharding)); TF_ASSERT_OK_AND_ASSIGN(auto actual, ToShardingParam(hlo_sharding, 2, 6)); ShardingParam expected{{1, 1}, {{0}, {6}}}; TF_EXPECT_OK(expected.verify()); EXPECT_EQ(actual, expected); } INSTANTIATE_TEST_SUITE_P(NumDevices, ShardingConversionsTest, testing::Values(7)); struct HloShardingTestStruct { HloSharding hlo_sharding; int rank; int num_devices; }; class HloShardingToShardingParamTest : public testing::TestWithParam<HloShardingTestStruct> { public: void SetUp() override { const auto& param = GetParam(); client_ = MakeTestClient(param.num_devices); } tsl::RCReference<DeviceList> GetDevices( absl::Span<const int> device_indices) { return test_util::GetDevices(client_.get(), device_indices).value(); } private: std::shared_ptr<Client> client_; }; TEST_P(HloShardingToShardingParamTest, HloShardingToShardingParam) { const auto& param = GetParam(); TF_ASSERT_OK_AND_ASSIGN( auto sharding_param, ToShardingParam(param.hlo_sharding, param.rank, param.num_devices)); EXPECT_TRUE(sharding_param.verify().ok()); TF_ASSERT_OK_AND_ASSIGN(auto actual_hlo_sharding, ToHloSharding(sharding_param)); EXPECT_EQ(param.hlo_sharding, actual_hlo_sharding); std::vector<int> device_ids(param.num_devices); std::iota(device_ids.begin(), device_ids.end(), 0); TF_ASSERT_OK_AND_ASSIGN( auto hlo_via_op_sharding, ToHloShardingViaOpSharding(sharding_param, GetDevices(absl::MakeSpan(device_ids)))); EXPECT_EQ(param.hlo_sharding, hlo_via_op_sharding); } INSTANTIATE_TEST_SUITE_P( HloShardingConversionTests, HloShardingToShardingParamTest, testing::ValuesIn<HloShardingTestStruct>({ {HloSharding::IotaTile({4, 2}), 2, 8}, {HloSharding::IotaTile({2, 4}, {4, 2}, {1, 0}), 2, 8}, {HloSharding::IotaTile({8, 1}), 2, 8}, {HloSharding::IotaTile({8, 1}, {4, 2}, {1, 0}), 2, 8}, {HloSharding::PartialTile(TileAssignment({4, 1, 2}, {8}, {0})), 2, 8}, {HloSharding::PartialTile(TileAssignment({2, 1, 4}, {4, 2}, {1, 0})), 2, 8}, {HloSharding::PartialTile(TileAssignment({1, 4, 2}, {8}, {0})), 2, 8}, {HloSharding::PartialTile(TileAssignment({1, 2, 4}, {4, 2}, {1, 0})), 2, 8}, {HloSharding::PartialTile(TileAssignment({4, 3, 2}, {2, 3, 4}, {2, 1, 0})), 2, 24}, {HloSharding::PartialTile(TileAssignment({4, 2, 3}, {6, 4}, {1, 0})), 2, 24}, {HloSharding::PartialTile(TileAssignment({6, 1, 4}, {24}, {0})), 2, 24}, {HloSharding::PartialTile(TileAssignment({12, 1, 2}, {2, 12}, {1, 0})), 2, 24}, {HloSharding::PartialTile(TileAssignment({8, 1, 3}, {6, 4}, {1, 0})), 2, 24}, {HloSharding::PartialTile(TileAssignment({2, 1, 12}, {24}, {0})), 2, 24}, {HloSharding::PartialTile(TileAssignment({3, 1, 8}, {2, 3, 4}, {1, 0, 2})), 2, 24}, {HloSharding::PartialTile(TileAssignment({1, 4, 6}, {6, 4}, {1, 0})), 2, 24}, {HloSharding::PartialTile(TileAssignment({1, 12, 2}, {2, 12}, {1, 0})), 2, 24}, {HloSharding::PartialTile(TileAssignment({3, 2, 1, 4}, {2, 3, 4}, {1, 0, 2})), 3, 24}, {HloSharding::PartialTile(TileAssignment({2, 4, 1, 3}, {2, 3, 4}, {0, 2, 1})), 3, 24}, {HloSharding::PartialTile(TileAssignment({4, 3, 1, 2}, {2, 3, 4}, {2, 1, 0})), 3, 24}, {HloSharding::PartialTile(TileAssignment({12, 1, 1, 2}, {2, 12}, {1, 0})), 3, 24}, })); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/support/sharding_conversions.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/support/sharding_conversions_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d0c9aec6-77ab-4a35-8e60-bb07389258da
cpp
tensorflow/tensorflow
hlo_program_serdes
third_party/xla/xla/python/ifrt/hlo/hlo_program_serdes.cc
third_party/xla/xla/python/ifrt/hlo/hlo_program_serdes_test.cc
#include <memory> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ExtensibleRTTI.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LogicalResult.h" #include "stablehlo/dialect/Serialization.h" #include "xla/mlir/utils/error_util.h" #include "xla/mlir_hlo/mhlo/transforms/passes.h" #include "xla/pjrt/mlir_to_hlo.h" #include "xla/python/ifrt/hlo/hlo_program.h" #include "xla/python/ifrt/serdes.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { class HloProgramSerDes : public llvm::RTTIExtends<HloProgramSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::XlaProgram"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { const auto& program = llvm::cast<HloProgram>(serializable); if (program.mlir_module == nullptr) { return absl::InvalidArgumentError("Unable to serialize null MLIR module"); } mlir::OwningOpRef<mlir::ModuleOp> module( llvm::cast<mlir::ModuleOp>(program.mlir_module->clone())); TF_ASSIGN_OR_RETURN(std::string serialized, xla::SerializeUsingVersionedStablehlo( *module, xla::GetDefaultStablehloVersion())); return serialized; } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions>) override { auto context = std::make_unique<mlir::MLIRContext>( mlir::MLIRContext::Threading::DISABLED); mlir::BaseScopedDiagnosticHandler diagnostic_handler(context.get()); mlir::OwningOpRef<mlir::ModuleOp> module = mlir::stablehlo::deserializePortableArtifact(serialized, context.get()); if (!module) { const absl::Status status = diagnostic_handler.ConsumeStatus(); return absl::InvalidArgumentError( absl::StrCat("Failed to deserialize StableHLO module;\n\nDetailed " "error from MLIR: ", status.message())); } mlir::PassManager pm(context.get()); pm.addPass(mlir::mhlo::createStablehloLegalizeToHloPass()); if (!mlir::succeeded(pm.run(*module))) { const absl::Status status = diagnostic_handler.ConsumeStatus(); return absl::InvalidArgumentError(absl::StrCat( "Failed to legalize StableHLO to MHLO;\n\nDetailed error from MLIR: ", status.message())); } return std::make_unique<HloProgram>(std::move(context), std::move(module)); } static char ID; }; char HloProgramSerDes::ID = 0; bool register_xla_program_serdes = ([]() { RegisterSerDes<HloProgram>(std::make_unique<HloProgramSerDes>()); }(), true); } } }
#include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "llvm/Support/Casting.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinDialect.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Support/DebugStringHelper.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" #include "xla/pjrt/mlir_to_hlo.h" #include "xla/python/ifrt/hlo/hlo_program.h" #include "xla/python/ifrt/serdes.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { using ::testing::HasSubstr; using ::testing::Not; using ::tsl::testing::StatusIs; TEST(HloProgramSerDesTest, RoundTrip) { static constexpr absl::string_view kMlirModuleStr = R"( module { func.func @main(%arg0: tensor<2x3xf32>) -> tensor<2x3xf32> { %0 = "mhlo.copy"(%arg0) : (tensor<2x3xf32>) -> tensor<2x3xf32> %1 = mhlo.constant dense<1.000000e+00> : tensor<f32> %2 = "mhlo.broadcast"(%1) {broadcast_sizes = dense<[2, 3]> : tensor<2xi64>} : (tensor<f32>) -> tensor<2x3xf32> %3 = mhlo.add %0, %2 : tensor<2x3xf32> return %3 : tensor<2x3xf32> } })"; Serialized serialized; { auto context = std::make_unique<mlir::MLIRContext>(); TF_ASSERT_OK_AND_ASSIGN( mlir::OwningOpRef<mlir::ModuleOp> module, xla::ParseMlirModuleString(kMlirModuleStr, *context)); auto program = std::make_unique<HloProgram>(std::move(context), std::move(module)); TF_ASSERT_OK_AND_ASSIGN(serialized, Serialize(*program)); } TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloProgram> xla_program, Deserialize<HloProgram>(serialized, nullptr)); bool has_unsupported_dialect = false; xla_program->mlir_module->walk([&](mlir::Operation *op) { if (!llvm::isa<mlir::BuiltinDialect, mlir::func::FuncDialect, mlir::mhlo::MhloDialect>(op->getDialect())) { LOG(ERROR) << "Found an op with an unsupported dialect: " << mlir::debugString(op); has_unsupported_dialect = true; } }); EXPECT_FALSE(has_unsupported_dialect); } TEST(HloProgramSerDesTest, SerializationError) { static constexpr absl::string_view kMlirModuleStr = R"( module { func.func @main(%arg0: tensor<f32>) -> tensor<f32> { %0 = "UnknownOp"(%arg0) : (tensor<f32>) -> tensor<f32> return %0 : tensor<f32> } })"; Serialized serialized; { auto context = std::make_unique<mlir::MLIRContext>(); context->allowUnregisteredDialects(); TF_ASSERT_OK_AND_ASSIGN( mlir::OwningOpRef<mlir::ModuleOp> module, xla::ParseMlirModuleString(kMlirModuleStr, *context)); auto program = std::make_unique<HloProgram>(std::move(context), std::move(module)); EXPECT_THAT(Serialize(*program), StatusIs(Not(absl::StatusCode::kOk), HasSubstr("Failed to serialize StableHLO"))); } } TEST(HloProgramSerDesTest, DeserializationError) { static constexpr absl::string_view kMlirModuleStr = R"( module { func.func @main(%arg0: tensor<f32>) -> tensor<f32> { return %arg0 : tensor<f32> } })"; Serialized serialized; { auto context = std::make_unique<mlir::MLIRContext>(); TF_ASSERT_OK_AND_ASSIGN( mlir::OwningOpRef<mlir::ModuleOp> module, xla::ParseMlirModuleString(kMlirModuleStr, *context)); auto program = std::make_unique<HloProgram>(std::move(context), std::move(module)); TF_ASSERT_OK_AND_ASSIGN(serialized, Serialize(*program)); } serialized.set_data("invalid data"); EXPECT_THAT(Deserialize<HloProgram>(serialized, nullptr), StatusIs(Not(absl::StatusCode::kOk), HasSubstr("Failed to deserialize StableHLO module"))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/hlo/hlo_program_serdes.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/hlo/hlo_program_serdes_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
174c1317-0ac1-4d0d-8fe0-760a2818d5a4
cpp
tensorflow/tensorflow
stats_calculator
third_party/xla/xla/tsl/util/stats_calculator.cc
third_party/xla/xla/tsl/util/stats_calculator_test.cc
#include "xla/tsl/util/stats_calculator.h" #include <iomanip> #include <map> #include <queue> #include <sstream> #include <string> namespace tsl { constexpr int kNodeTypeWidth = 40; StatsCalculator::StatsCalculator(const StatSummarizerOptions& options) : options_(options) {} std::string StatsCalculator::GetShortSummary() const { std::stringstream stream; stream << "Timings (microseconds): "; run_total_us_.OutputToStream(&stream); stream << std::endl; stream << "Memory (bytes): "; memory_.OutputToStream(&stream); stream << std::endl; stream << details_.size() << " nodes observed" << std::endl; return stream.str(); } std::ostream& InitField(std::ostream& stream, int width) { stream << "\t" << std::right << std::setw(width) << std::fixed << std::setprecision(3); return stream; } std::string StatsCalculator::HeaderString(const std::string& title) const { std::stringstream stream; stream << "============================== " << title << " ==============================" << std::endl; if (options_.format_as_csv) { stream << "node type, first, avg_ms, %, cdf%, mem KB, times called, " "name"; } else { InitField(stream, kNodeTypeWidth) << "[node type]"; InitField(stream, 9) << "[first]"; InitField(stream, 9) << "[avg ms]"; InitField(stream, 8) << "[%]"; InitField(stream, 8) << "[cdf%]"; InitField(stream, 10) << "[mem KB]"; InitField(stream, 9) << "[times called]"; stream << "\t" << "[Name]"; } return stream.str(); } std::string StatsCalculator::ColumnString(const Detail& detail, const int64_t cumulative_stat_on_node, const Stat<int64_t>& stat) const { const double first_time_ms = detail.elapsed_time.first() / 1000.0; const double avg_time_ms = detail.elapsed_time.avg() / 1000.0; const double percentage = detail.elapsed_time.sum() * 100.0 / stat.sum(); const double cdf_percentage = (cumulative_stat_on_node * 100.0f) / stat.sum(); const int64_t times_called = detail.times_called / num_runs(); std::stringstream stream; if (options_.format_as_csv) { std::string name(detail.name); std::replace(name.begin(), name.end(), ',', '\t'); stream << detail.type << ", " << first_time_ms << ", " << avg_time_ms << ", " << percentage << "%, " << cdf_percentage << "%, " << detail.mem_used.newest() / 1000.0 << ", " << times_called << ", " << name; } else { InitField(stream, kNodeTypeWidth) << detail.type; InitField(stream, 9) << first_time_ms; InitField(stream, 9) << avg_time_ms; InitField(stream, 7) << percentage << "%"; InitField(stream, 7) << cdf_percentage << "%"; InitField(stream, 10) << detail.mem_used.newest() / 1000.0; InitField(stream, 9) << times_called; stream << "\t" << detail.name; } return stream.str(); } void StatsCalculator::OrderNodesByMetric( SortingMetric metric, std::vector<const Detail*>* details) const { std::priority_queue<std::pair<std::string, const Detail*>> sorted_list; const int num_nodes = details_.size(); for (const auto& det : details_) { const Detail* detail = &(det.second); std::stringstream stream; stream << std::setw(20) << std::right << std::setprecision(10) << std::fixed; switch (metric) { case BY_NAME: stream << detail->name; break; case BY_RUN_ORDER: stream << num_nodes - detail->run_order; break; case BY_TIME: stream << detail->elapsed_time.avg(); break; case BY_MEMORY: stream << detail->mem_used.avg(); break; case BY_TYPE: stream << detail->type; break; default: stream << ""; break; } sorted_list.emplace(stream.str(), detail); } while (!sorted_list.empty()) { auto entry = sorted_list.top(); sorted_list.pop(); details->push_back(entry.second); } } void StatsCalculator::ComputeStatsByType( std::map<std::string, int64_t>* node_type_map_count, std::map<std::string, int64_t>* node_type_map_time, std::map<std::string, int64_t>* node_type_map_memory, std::map<std::string, int64_t>* node_type_map_times_called, int64_t* accumulated_us) const { int64_t run_count = run_total_us_.count(); for (const auto& det : details_) { const std::string node_name = det.first; const Detail& detail = det.second; int64_t curr_time_val = static_cast<int64_t>(detail.elapsed_time.sum() / run_count); *accumulated_us += curr_time_val; int64_t curr_memory_val = detail.mem_used.newest(); const std::string& node_type = detail.type; (*node_type_map_count)[node_type] += 1; (*node_type_map_time)[node_type] += curr_time_val; (*node_type_map_memory)[node_type] += curr_memory_val; (*node_type_map_times_called)[node_type] += detail.times_called / run_count; } } std::string StatsCalculator::GetStatsByNodeType() const { std::stringstream stream; stream << "Number of nodes executed: " << details_.size() << std::endl; stream << "============================== Summary by node type " "==============================" << std::endl; std::map<std::string, int64_t> node_type_map_count; std::map<std::string, int64_t> node_type_map_time; std::map<std::string, int64_t> node_type_map_memory; std::map<std::string, int64_t> node_type_map_times_called; int64_t accumulated_us = 0; ComputeStatsByType(&node_type_map_count, &node_type_map_time, &node_type_map_memory, &node_type_map_times_called, &accumulated_us); std::priority_queue<std::pair<int64_t, std::pair<std::string, int64_t>>> timings; for (const auto& node_type : node_type_map_time) { const int64_t mem_used = node_type_map_memory[node_type.first]; timings.emplace(node_type.second, std::pair<std::string, int64_t>(node_type.first, mem_used)); } if (options_.format_as_csv) { stream << "node type, count, avg_ms, avg %, cdf %, mem KB, times called\n"; } else { InitField(stream, kNodeTypeWidth) << "[Node type]"; InitField(stream, 9) << "[count]"; InitField(stream, 10) << "[avg ms]"; InitField(stream, 11) << "[avg %]"; InitField(stream, 11) << "[cdf %]"; InitField(stream, 10) << "[mem KB]"; InitField(stream, 10) << "[times called]"; stream << std::endl; } float cdf = 0.0f; while (!timings.empty()) { auto entry = timings.top(); timings.pop(); const std::string node_type = entry.second.first; const float memory = entry.second.second / 1000.0f; const int64_t node_type_total_us = entry.first; const float time_per_run_ms = node_type_total_us / 1000.0f; const float percentage = ((entry.first / static_cast<float>(accumulated_us)) * 100.0f); cdf += percentage; if (options_.format_as_csv) { stream << node_type << ", " << node_type_map_count[node_type] << ", " << time_per_run_ms << ", " << percentage << "%, " << cdf << "%, " << memory << ", " << node_type_map_times_called[node_type] << std::endl; } else { InitField(stream, kNodeTypeWidth) << node_type; InitField(stream, 9) << node_type_map_count[node_type]; InitField(stream, 10) << time_per_run_ms; InitField(stream, 10) << percentage << "%"; InitField(stream, 10) << cdf << "%"; InitField(stream, 10) << memory; InitField(stream, 9) << node_type_map_times_called[node_type]; stream << std::endl; } } stream << std::endl; return stream.str(); } std::string StatsCalculator::GetStatsByMetric(const std::string& title, SortingMetric sorting_metric, int num_stats) const { std::vector<const Detail*> details; OrderNodesByMetric(sorting_metric, &details); double cumulative_stat_on_node = 0; std::stringstream stream; stream << HeaderString(title) << std::endl; int stat_num = 0; for (auto detail : details) { ++stat_num; if (num_stats > 0 && stat_num > num_stats) { break; } cumulative_stat_on_node += detail->elapsed_time.sum(); stream << ColumnString(*detail, cumulative_stat_on_node, run_total_us_) << std::endl; } stream << std::endl; return stream.str(); } std::string StatsCalculator::GetOutputString() const { std::stringstream stream; if (options_.show_run_order) { stream << GetStatsByMetric("Run Order", BY_RUN_ORDER, options_.run_order_limit); } if (options_.show_time) { stream << GetStatsByMetric("Top by Computation Time", BY_TIME, options_.time_limit); } if (options_.show_memory) { stream << GetStatsByMetric("Top by Memory Use", BY_MEMORY, options_.memory_limit); } if (options_.show_type) { stream << GetStatsByNodeType(); } if (options_.show_summary) { stream << GetShortSummary() << std::endl; } return stream.str(); } void StatsCalculator::AddNodeStats(const std::string& name, const std::string& type, int64_t run_order, int64_t elapsed_time, int64_t mem_used) { Detail* detail = nullptr; if (details_.find(name) == details_.end()) { details_.insert({name, {}}); detail = &details_.at(name); detail->type = type; detail->name = name; detail->run_order = run_order; } else { detail = &details_.at(name); } detail->elapsed_time.UpdateStat(elapsed_time); detail->mem_used.UpdateStat(mem_used); detail->times_called++; } }
#include "xla/tsl/util/stats_calculator.h" #include <cfloat> #include "tsl/platform/test.h" namespace tsl { namespace { using Detail = StatsCalculator::Detail; TEST(StatsCalculatorTest, TotalTimeMs) { auto options = StatSummarizerOptions(); StatsCalculator calc(options); EXPECT_EQ(0, calc.num_runs()); calc.UpdateRunTotalUs(1); EXPECT_EQ(1, calc.num_runs()); calc.UpdateRunTotalUs(2); EXPECT_EQ(2, calc.num_runs()); auto run_time_us = calc.run_total_us(); EXPECT_EQ(1, run_time_us.min()); EXPECT_FLOAT_EQ(1.5, run_time_us.avg()); } TEST(StatsCalculatorTest, AddNodeStatsUpdate) { auto options = StatSummarizerOptions(); StatsCalculator calc(options); EXPECT_TRUE(calc.GetDetails().empty()); const int64_t node1_run_order = 1; const int64_t run1_start_us = 1; const int64_t run1_end_us = 2; const int64_t run1_mem_used = 45; calc.AddNodeStats("node1", "type_1", node1_run_order, run1_end_us - run1_start_us, run1_mem_used); ASSERT_EQ(1, calc.GetDetails().size()); const Detail& detail = calc.GetDetails().at("node1"); EXPECT_EQ(1, detail.times_called); EXPECT_EQ("node1", detail.name); EXPECT_EQ("type_1", detail.type); EXPECT_EQ(node1_run_order, detail.run_order); const int64_t run2_start_us = 3; const int64_t run2_end_us = 5; const int64_t run2_mem_used = 145; calc.AddNodeStats("node1", "type_1", node1_run_order, run2_end_us - run2_start_us, run2_mem_used); EXPECT_EQ(1, calc.GetDetails().size()); EXPECT_EQ(2, detail.times_called); EXPECT_EQ("node1", detail.name); EXPECT_EQ("type_1", detail.type); EXPECT_EQ(node1_run_order, detail.run_order); EXPECT_EQ((run1_end_us - run1_start_us) + (run2_end_us - run2_start_us), detail.elapsed_time.sum()); EXPECT_EQ(run1_mem_used + run2_mem_used, detail.mem_used.sum()); } TEST(StatsCalculatorTest, UpdateStat) { Stat<double> stat; EXPECT_TRUE(stat.empty()); EXPECT_TRUE(stat.all_same()); stat.UpdateStat(1); EXPECT_TRUE(stat.all_same()); stat.UpdateStat(-1.0); EXPECT_FALSE(stat.all_same()); stat.UpdateStat(100); stat.UpdateStat(0); EXPECT_EQ(4, stat.count()); EXPECT_EQ(-1, stat.min()); EXPECT_EQ(100, stat.max()); EXPECT_EQ(25, stat.avg()); EXPECT_EQ(1, stat.first()); EXPECT_EQ(0, stat.newest()); EXPECT_EQ(10002, stat.squared_sum()); EXPECT_EQ(625, stat.avg() * stat.avg()); EXPECT_EQ(7502.0 / 3, stat.sample_variance()); EXPECT_NEAR(50.00666622228147160678152, std::sqrt(stat.sample_variance()), FLT_EPSILON); EXPECT_NEAR(7502.0 / 4, stat.variance(), FLT_EPSILON); EXPECT_NEAR(43.30704330706496060826769, stat.std_deviation(), FLT_EPSILON); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/util/stats_calculator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/util/stats_calculator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8ff2a112-c796-41ea-bcf0-13b123b8378b
cpp
tensorflow/tensorflow
device_name_utils
third_party/xla/xla/tsl/util/device_name_utils.cc
third_party/xla/xla/tsl/util/device_name_utils_test.cc
#include "xla/tsl/util/device_name_utils.h" #include <algorithm> #include "tsl/platform/errors.h" namespace tsl { static bool IsAlpha(char c) { return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'); } static bool IsAlphaNumOrUnderscore(char c) { return IsAlpha(c) || (c >= '0' && c <= '9') || c == '_'; } static bool IsJobName(absl::string_view in) { return !in.empty() && IsAlpha(in.front()) && std::all_of(in.begin(), in.end(), IsAlphaNumOrUnderscore); } static bool ConsumePrefix(absl::string_view* in, string* out, absl::string_view prefix_terminators) { if (in->empty() || !IsAlpha(in->front())) return false; const auto end_it = std::find_first_of(in->begin(), in->end(), prefix_terminators.begin(), prefix_terminators.end()); if (!std::all_of(in->begin(), end_it, IsAlphaNumOrUnderscore)) { return false; } out->assign(in->begin(), end_it); in->remove_prefix(end_it - in->begin()); return true; } static bool ConsumeJobName(absl::string_view* in, string* job) { return ConsumePrefix(in, job, "/"); } static bool ConsumeDeviceType(absl::string_view* in, string* device_type) { return ConsumePrefix(in, device_type, "/:"); } static bool ConsumeNumber(absl::string_view* in, int* val) { uint64 tmp; if (str_util::ConsumeLeadingDigits(in, &tmp)) { *val = tmp; return true; } else { return false; } } static string DeviceName(const string& job, int replica, int task, const string& device_prefix, const string& device_type, int id) { CHECK(IsJobName(job)) << job; CHECK_LE(0, replica); CHECK_LE(0, task); CHECK(!device_type.empty()); CHECK_LE(0, id); return strings::StrCat("/job:", job, "/replica:", replica, "/task:", task, device_prefix, device_type, ":", id); } string DeviceNameUtils::FullName(const string& job, int replica, int task, const string& type, int id) { return DeviceName(job, replica, task, "/device:", type, id); } namespace { string LegacyName(const string& job, int replica, int task, const string& type, int id) { return DeviceName(job, replica, task, "/", absl::AsciiStrToLower(type), id); } } bool DeviceNameUtils::ParseFullName(absl::string_view fullname, ParsedName* p) { p->Clear(); if (fullname == "/") { return true; } while (!fullname.empty()) { bool progress = false; if (absl::ConsumePrefix(&fullname, "/job:")) { p->has_job = !absl::ConsumePrefix(&fullname, "*"); if (p->has_job && !ConsumeJobName(&fullname, &p->job)) { return false; } progress = true; } if (absl::ConsumePrefix(&fullname, "/replica:")) { p->has_replica = !absl::ConsumePrefix(&fullname, "*"); if (p->has_replica && !ConsumeNumber(&fullname, &p->replica)) { return false; } progress = true; } if (absl::ConsumePrefix(&fullname, "/task:")) { p->has_task = !absl::ConsumePrefix(&fullname, "*"); if (p->has_task && !ConsumeNumber(&fullname, &p->task)) { return false; } progress = true; } if (absl::ConsumePrefix(&fullname, "/device:")) { p->has_type = !absl::ConsumePrefix(&fullname, "*"); if (p->has_type && !ConsumeDeviceType(&fullname, &p->type)) { return false; } if (!absl::ConsumePrefix(&fullname, ":")) { p->has_id = false; } else { p->has_id = !absl::ConsumePrefix(&fullname, "*"); if (p->has_id && !ConsumeNumber(&fullname, &p->id)) { return false; } } progress = true; } if (absl::ConsumePrefix(&fullname, "/cpu:") || absl::ConsumePrefix(&fullname, "/CPU:")) { p->has_type = true; p->type = "CPU"; p->has_id = !absl::ConsumePrefix(&fullname, "*"); if (p->has_id && !ConsumeNumber(&fullname, &p->id)) { return false; } progress = true; } if (absl::ConsumePrefix(&fullname, "/gpu:") || absl::ConsumePrefix(&fullname, "/GPU:")) { p->has_type = true; p->type = "GPU"; p->has_id = !absl::ConsumePrefix(&fullname, "*"); if (p->has_id && !ConsumeNumber(&fullname, &p->id)) { return false; } progress = true; } if (!progress) { return false; } } return true; } bool DeviceNameUtils::ParseFullOrLocalName(absl::string_view fullname, ParsedName* p) { return ParseFullName(fullname, p) || ParseLocalName(fullname, p); } namespace { void CompleteName(const DeviceNameUtils::ParsedName& parsed_basename, DeviceNameUtils::ParsedName* parsed_name) { if (!parsed_name->has_job) { parsed_name->job = parsed_basename.job; parsed_name->has_job = true; } if (!parsed_name->has_replica) { parsed_name->replica = parsed_basename.replica; parsed_name->has_replica = true; } if (!parsed_name->has_task) { parsed_name->task = parsed_basename.task; parsed_name->has_task = true; } if (!parsed_name->has_type) { parsed_name->type = parsed_basename.type; parsed_name->has_type = true; } if (!parsed_name->has_id) { parsed_name->id = parsed_basename.id; parsed_name->has_id = true; } } } absl::Status DeviceNameUtils::CanonicalizeDeviceName(absl::string_view fullname, absl::string_view basename, string* canonical_name) { *canonical_name = ""; ParsedName parsed_basename; if (!ParseFullName(basename, &parsed_basename)) { return errors::InvalidArgument("Could not parse basename: ", basename, " into a device specification."); } if (!(parsed_basename.has_job && parsed_basename.has_replica && parsed_basename.has_task && parsed_basename.has_type && parsed_basename.has_id)) { return errors::InvalidArgument("Basename: ", basename, " should be fully " "specified."); } ParsedName parsed_name; if (ParseLocalName(fullname, &parsed_name)) { CompleteName(parsed_basename, &parsed_name); *canonical_name = ParsedNameToString(parsed_name); return absl::OkStatus(); } if (ParseFullName(fullname, &parsed_name)) { CompleteName(parsed_basename, &parsed_name); *canonical_name = ParsedNameToString(parsed_name); return absl::OkStatus(); } return errors::InvalidArgument("Could not parse ", fullname, " into a device " "specification."); } string DeviceNameUtils::ParsedNameToString(const ParsedName& pn) { string buf; if (pn.has_job) strings::StrAppend(&buf, "/job:", pn.job); if (pn.has_replica) strings::StrAppend(&buf, "/replica:", pn.replica); if (pn.has_task) strings::StrAppend(&buf, "/task:", pn.task); if (pn.has_type) { strings::StrAppend(&buf, "/device:", pn.type, ":"); if (pn.has_id) { strings::StrAppend(&buf, pn.id); } else { strings::StrAppend(&buf, "*"); } } return buf; } bool DeviceNameUtils::IsSpecification(const ParsedName& less_specific, const ParsedName& more_specific) { if (less_specific.has_job && (!more_specific.has_job || (less_specific.job != more_specific.job))) { return false; } if (less_specific.has_replica && (!more_specific.has_replica || (less_specific.replica != more_specific.replica))) { return false; } if (less_specific.has_task && (!more_specific.has_task || (less_specific.task != more_specific.task))) { return false; } if (less_specific.has_type && (!more_specific.has_type || (less_specific.type != more_specific.type))) { return false; } if (less_specific.has_id && (!more_specific.has_id || (less_specific.id != more_specific.id))) { return false; } return true; } bool DeviceNameUtils::AreCompatibleDevNames(const ParsedName& a, const ParsedName& b) { if (a.has_job && b.has_job && (a.job != b.job)) { return false; } if (a.has_replica && b.has_replica && (a.replica != b.replica)) { return false; } if (a.has_task && b.has_task && (a.task != b.task)) { return false; } if (a.has_type && b.has_type && (a.type != b.type)) { return false; } if (a.has_id && b.has_id && (a.id != b.id)) { return false; } return true; } void DeviceNameUtils::EnsureSpecification(ParsedName* more_specific, const ParsedName& less_specific) { if (less_specific.has_job) { more_specific->has_job = true; more_specific->job = less_specific.job; } if (less_specific.has_replica) { more_specific->has_replica = true; more_specific->replica = less_specific.replica; } if (less_specific.has_task) { more_specific->has_task = true; more_specific->task = less_specific.task; } if (less_specific.has_type) { more_specific->has_type = true; more_specific->type = less_specific.type; } if (less_specific.has_id) { more_specific->has_id = true; more_specific->id = less_specific.id; } } bool DeviceNameUtils::IsCompleteSpecification(const ParsedName& pattern, const ParsedName& name) { CHECK(name.has_job && name.has_replica && name.has_task && name.has_type && name.has_id); if (pattern.has_job && (pattern.job != name.job)) return false; if (pattern.has_replica && (pattern.replica != name.replica)) return false; if (pattern.has_task && (pattern.task != name.task)) return false; if (pattern.has_type && (pattern.type != name.type)) return false; if (pattern.has_id && (pattern.id != name.id)) return false; return true; } namespace { absl::Status MergeDevNamesImpl(DeviceNameUtils::ParsedName* target, const DeviceNameUtils::ParsedName& other, bool allow_soft_placement, bool override_conflicts) { const auto& ParsedNameToString = DeviceNameUtils::ParsedNameToString; if (other.has_job) { if (target->has_job && target->job != other.job) { return errors::InvalidArgument( "Cannot merge devices with incompatible jobs: '", ParsedNameToString(*target), "' and '", ParsedNameToString(other), "'"); } else { target->has_job = other.has_job; target->job = other.job; } } if (other.has_replica) { if (target->has_replica && target->replica != other.replica) { return errors::InvalidArgument( "Cannot merge devices with incompatible replicas: '", ParsedNameToString(*target), "' and '", ParsedNameToString(other), "'"); } else { target->has_replica = other.has_replica; target->replica = other.replica; } } if (other.has_task) { if (target->has_task && target->task != other.task) { return errors::InvalidArgument( "Cannot merge devices with incompatible tasks: '", ParsedNameToString(*target), "' and '", ParsedNameToString(other), "'"); } else { target->has_task = other.has_task; target->task = other.task; } } if (other.has_type) { if (target->has_type && target->type != other.type) { if (!allow_soft_placement) { return errors::InvalidArgument( "Cannot merge devices with incompatible types: '", ParsedNameToString(*target), "' and '", ParsedNameToString(other), "'"); } else if (override_conflicts) { target->type = other.type; } else { target->has_id = false; target->has_type = false; return absl::OkStatus(); } } else { target->has_type = other.has_type; target->type = other.type; } } if (other.has_id) { if (target->has_id && target->id != other.id) { if (!allow_soft_placement) { return errors::InvalidArgument( "Cannot merge devices with incompatible ids: '", ParsedNameToString(*target), "' and '", ParsedNameToString(other), "'"); } else if (override_conflicts) { target->id = other.id; } else { target->has_id = false; return absl::OkStatus(); } } else { target->has_id = other.has_id; target->id = other.id; } } return absl::OkStatus(); } } absl::Status DeviceNameUtils::MergeDevNames(ParsedName* target, const ParsedName& other, bool allow_soft_placement) { return MergeDevNamesImpl(target, other, allow_soft_placement, false); } absl::Status DeviceNameUtils::MergeOverrideDevNames(ParsedName* target, const ParsedName& other) { return MergeDevNamesImpl(target, other, true, true); } void DeviceNameUtils::MergeUnsetDevNames(ParsedName* target, const ParsedName& other) { if (other.has_job && !target->has_job) { target->has_job = other.has_job; target->job = other.job; } if (other.has_replica && !target->has_replica) { target->has_replica = other.has_replica; target->replica = other.replica; } if (other.has_task && !target->has_task) { target->has_task = other.has_task; target->task = other.task; } if (other.has_type && !target->has_type) { target->has_type = other.has_type; target->type = other.type; } if (other.has_id && !target->has_id) { target->has_id = other.has_id; target->id = other.id; } } bool DeviceNameUtils::IsSameAddressSpace(const ParsedName& a, const ParsedName& b) { return (a.has_job && b.has_job && (a.job == b.job)) && (a.has_replica && b.has_replica && (a.replica == b.replica)) && (a.has_task && b.has_task && (a.task == b.task)); } bool DeviceNameUtils::IsSameAddressSpace(absl::string_view src, absl::string_view dst) { ParsedName x; ParsedName y; return ParseFullName(src, &x) && ParseFullName(dst, &y) && IsSameAddressSpace(x, y); } bool DeviceNameUtils::IsDifferentAddressSpace(const ParsedName& a, const ParsedName& b) { return (a.has_job && b.has_job && (a.job != b.job)) || (a.has_replica && b.has_replica && (a.replica != b.replica)) || (a.has_task && b.has_task && (a.task != b.task)); } const DeviceNameUtils::ParsedName DeviceNameUtils::AddressSpace( const ParsedName& name) { ParsedName address_space; address_space.has_job = name.has_job; address_space.has_replica = name.has_replica; address_space.has_task = name.has_task; address_space.job = name.job; address_space.replica = name.replica; address_space.task = name.task; return address_space; } string DeviceNameUtils::LocalName(absl::string_view type, int id) { return strings::StrCat("/device:", type, ":", id); } namespace { string LegacyLocalName(absl::string_view type, int id) { return strings::StrCat(type, ":", id); } } string DeviceNameUtils::LocalName(absl::string_view fullname) { ParsedName x; CHECK(ParseFullName(fullname, &x)) << fullname; return LocalName(x.type, x.id); } bool DeviceNameUtils::ParseLocalName(absl::string_view name, ParsedName* p) { if (!ConsumeDeviceType(&name, &p->type)) { return false; } p->has_type = true; if (!absl::ConsumePrefix(&name, ":")) { return false; } if (!ConsumeNumber(&name, &p->id)) { return false; } p->has_id = true; return name.empty(); } bool DeviceNameUtils::SplitDeviceName(absl::string_view name, string* task, string* device) { ParsedName pn; if (ParseFullName(name, &pn) && pn.has_type && pn.has_id) { task->clear(); task->reserve( (pn.has_job ? (5 + pn.job.size()) : 0) + (pn.has_replica ? (9 + 4 ) : 0) + (pn.has_task ? (6 + 4 ) : 0)); if (pn.has_job) { strings::StrAppend(task, "/job:", pn.job); } if (pn.has_replica) { strings::StrAppend(task, "/replica:", pn.replica); } if (pn.has_task) { strings::StrAppend(task, "/task:", pn.task); } device->clear(); strings::StrAppend(device, pn.type, ":", pn.id); return true; } return false; } bool DeviceNameUtils::GetTaskName(const ParsedName& pn, string* task) { if (pn.has_job && pn.has_replica && pn.has_task) { task->clear(); task->reserve((5 + pn.job.size()) + (9 + 4 ) + (6 + 4 )); strings::StrAppend(task, "/job:", pn.job); strings::StrAppend(task, "/replica:", pn.replica); strings::StrAppend(task, "/task:", pn.task); return true; } return false; } std::vector<string> DeviceNameUtils::GetNamesForDeviceMappings( const ParsedName& pn) { if (pn.has_job && pn.has_replica && pn.has_task && pn.has_type && pn.has_id) { return { DeviceNameUtils::FullName(pn.job, pn.replica, pn.task, pn.type, pn.id), LegacyName(pn.job, pn.replica, pn.task, pn.type, pn.id)}; } else { return {}; } } std::vector<string> DeviceNameUtils::GetLocalNamesForDeviceMappings( const ParsedName& pn) { if (pn.has_type && pn.has_id) { return {DeviceNameUtils::LocalName(pn.type, pn.id), LegacyLocalName(pn.type, pn.id)}; } else { return {}; } } absl::Status DeviceNameUtils::DeviceNameToCpuDeviceName( const string& device_name, string* host_device_name) { DeviceNameUtils::ParsedName device; if (!DeviceNameUtils::ParseFullName(device_name, &device)) { return errors::Internal("Could not parse device name ", device_name); } device.type = "CPU"; device.has_type = true; device.id = 0; device.has_id = true; *host_device_name = DeviceNameUtils::ParsedNameToString(device); return absl::OkStatus(); } std::ostream& operator<<(std::ostream& os, const DeviceNameUtils::ParsedName& x) { os << DeviceNameUtils::ParsedNameToString(x); return os; } }
#include "xla/tsl/util/device_name_utils.h" #include <vector> #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/strcat.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace tsl { namespace { bool RoundTripParsedName(const string& original, const string& expected) { DeviceNameUtils::ParsedName p; if (!DeviceNameUtils::ParseFullName(original, &p)) { return false; } string round_tripped = DeviceNameUtils::ParsedNameToString(p); return (round_tripped == expected); } enum NamePart { kJob = 0x01, kReplica = 0x02, kTask = 0x04, kDevice = 0x08 }; bool RoundTripPartialName(int parts_to_test, const std::vector<string>& parts, bool explicitDevice) { string original, expected; if (parts_to_test & kJob) { strings::StrAppend(&original, "/job:", parts[0]); strings::StrAppend(&expected, "/job:", parts[0]); } if (parts_to_test & kReplica) { strings::StrAppend(&original, "/replica:", parts[1]); strings::StrAppend(&expected, "/replica:", parts[1]); } if (parts_to_test & kTask) { strings::StrAppend(&original, "/task:", parts[2]); strings::StrAppend(&expected, "/task:", parts[2]); } if (parts_to_test & kDevice) { if (explicitDevice) { strings::StrAppend(&original, "/device:", parts[3]); strings::StrAppend(&expected, "/device:", parts[3]); } else { strings::StrAppend(&original, "/", parts[3]); strings::StrAppend(&expected, "/device:", absl::AsciiStrToUpper(parts[3])); } } return RoundTripParsedName(original, expected); } } TEST(DeviceNameUtilsTest, Basic) { EXPECT_EQ(DeviceNameUtils::FullName("hello", 1, 2, "CPU", 3), "/job:hello/replica:1/task:2/device:CPU:3"); { DeviceNameUtils::ParsedName p; EXPECT_FALSE(DeviceNameUtils::ParseFullName("foobar", &p)); EXPECT_FALSE(DeviceNameUtils::ParseFullName( "/job:123/replica:1/task:2/device:GPU:3", &p)); EXPECT_FALSE( DeviceNameUtils::ParseFullName("/job:123/replica:1/task:2/gpu:", &p)); EXPECT_FALSE(DeviceNameUtils::ParseFullName( "/job:123/replica:1/task:2/device:gpu:", &p)); EXPECT_FALSE(DeviceNameUtils::ParseFullName( "/job:foo/replica:-1/task:2/device:GPU:3", &p)); EXPECT_FALSE(DeviceNameUtils::ParseFullName( "/job:foo/replica:1/task:-2/device:GPU:3", &p)); EXPECT_FALSE( DeviceNameUtils::ParseFullName("/job:foo/replica:1/task:2/bar:3", &p)); EXPECT_FALSE(DeviceNameUtils::ParseFullName( "/job:foo/replica:1/task:2/device:GPU:3/extra", &p)); EXPECT_TRUE(DeviceNameUtils::ParseFullName( "/job:foo/replica:1/task:2/device:GPU:3", &p)); EXPECT_TRUE(p.has_job); EXPECT_TRUE(p.has_replica); EXPECT_TRUE(p.has_task); EXPECT_TRUE(p.has_type); EXPECT_TRUE(p.has_id); EXPECT_EQ(p.job, "foo"); EXPECT_EQ(p.replica, 1); EXPECT_EQ(p.task, 2); EXPECT_EQ(p.type, "GPU"); EXPECT_EQ(p.id, 3); } { DeviceNameUtils::ParsedName p; EXPECT_TRUE(DeviceNameUtils::ParseFullName( "/job:foo_bar/replica:1/task:2/device:GPU:3", &p)); EXPECT_TRUE(DeviceNameUtils::ParseFullOrLocalName( "/job:foo_bar/replica:1/task:2/device:GPU:3", &p)); EXPECT_TRUE(p.has_job); EXPECT_TRUE(p.has_replica); EXPECT_TRUE(p.has_task); EXPECT_TRUE(p.has_type); EXPECT_TRUE(p.has_id); EXPECT_EQ(p.job, "foo_bar"); EXPECT_EQ(p.replica, 1); EXPECT_EQ(p.task, 2); EXPECT_EQ(p.type, "GPU"); EXPECT_EQ(p.id, 3); } { DeviceNameUtils::ParsedName p; EXPECT_TRUE(DeviceNameUtils::ParseFullName( "/job:foo_bar/replica:1/task:2/device:GPU:3", &p)); EXPECT_TRUE(p.has_job); EXPECT_TRUE(p.has_replica); EXPECT_TRUE(p.has_task); EXPECT_TRUE(p.has_type); EXPECT_TRUE(p.has_id); EXPECT_EQ(p.job, "foo_bar"); EXPECT_EQ(p.replica, 1); EXPECT_EQ(p.task, 2); EXPECT_EQ(p.type, "GPU"); EXPECT_EQ(p.id, 3); } { DeviceNameUtils::ParsedName p; EXPECT_TRUE(DeviceNameUtils::ParseFullName("/job:*/replica:4/gpu:*", &p)); EXPECT_FALSE(p.has_job); EXPECT_TRUE(p.has_replica); EXPECT_FALSE(p.has_task); EXPECT_TRUE(p.has_type); EXPECT_FALSE(p.has_id); EXPECT_EQ(p.replica, 4); EXPECT_EQ(p.type, "GPU"); } { DeviceNameUtils::ParsedName p; EXPECT_TRUE( DeviceNameUtils::ParseFullName("/job:*/replica:4/device:GPU:*", &p)); EXPECT_FALSE(p.has_job); EXPECT_TRUE(p.has_replica); EXPECT_FALSE(p.has_task); EXPECT_TRUE(p.has_type); EXPECT_FALSE(p.has_id); EXPECT_EQ(p.replica, 4); EXPECT_EQ(p.type, "GPU"); } { DeviceNameUtils::ParsedName p; EXPECT_TRUE( DeviceNameUtils::ParseFullName("/job:*/device:GPU/replica:4", &p)); EXPECT_FALSE(p.has_job); EXPECT_TRUE(p.has_replica); EXPECT_FALSE(p.has_task); EXPECT_TRUE(p.has_type); EXPECT_FALSE(p.has_id); EXPECT_EQ(p.replica, 4); EXPECT_EQ(p.type, "GPU"); } { DeviceNameUtils::ParsedName p; EXPECT_TRUE(DeviceNameUtils::ParseFullName( "/job:*/replica:4/device:myspecialdevice:13", &p)); EXPECT_FALSE(p.has_job); EXPECT_TRUE(p.has_replica); EXPECT_FALSE(p.has_task); EXPECT_TRUE(p.has_type); EXPECT_TRUE(p.has_id); EXPECT_EQ(p.replica, 4); EXPECT_EQ(p.type, "myspecialdevice"); EXPECT_EQ(p.id, 13); } { DeviceNameUtils::ParsedName p; EXPECT_TRUE(DeviceNameUtils::ParseFullName("/", &p)); EXPECT_FALSE(p.has_job); EXPECT_FALSE(p.has_replica); EXPECT_FALSE(p.has_task); EXPECT_FALSE(p.has_type); EXPECT_FALSE(p.has_id); } { DeviceNameUtils::ParsedName p; EXPECT_TRUE( DeviceNameUtils::ParseFullName("/job:*/replica:4/device:GPU:5", &p)); EXPECT_FALSE(p.has_job); EXPECT_TRUE(p.has_replica); EXPECT_FALSE(p.has_task); EXPECT_TRUE(p.has_type); EXPECT_TRUE(p.has_id); EXPECT_EQ(p.replica, 4); EXPECT_EQ(p.type, "GPU"); EXPECT_EQ(p.id, 5); } { DeviceNameUtils::ParsedName p; EXPECT_TRUE(DeviceNameUtils::ParseFullName("/gpu:*/job:*/replica:4", &p)); EXPECT_FALSE(p.has_job); EXPECT_TRUE(p.has_replica); EXPECT_FALSE(p.has_task); EXPECT_TRUE(p.has_type); EXPECT_FALSE(p.has_id); EXPECT_EQ(p.replica, 4); EXPECT_EQ(p.type, "GPU"); } EXPECT_TRUE(DeviceNameUtils::IsSameAddressSpace( "/job:foo/replica:1/task:2/cpu:3", "/job:foo/replica:1/task:2/device:GPU:4")); EXPECT_FALSE(DeviceNameUtils::IsSameAddressSpace( "/job:foo/replica:1/task:2/cpu:3", "/job:foo/replica:1/task:3/device:GPU:4")); EXPECT_FALSE(DeviceNameUtils::IsSameAddressSpace( "/job:foo/replica:1/task:2/cpu:3", "/job:foo/replica:10/task:2/device:GPU:4")); EXPECT_FALSE(DeviceNameUtils::IsSameAddressSpace( "/job:foo/replica:1/task:2/cpu:3", "/job:bar/replica:1/task:2/device:GPU:4")); EXPECT_EQ(DeviceNameUtils::LocalName("CPU", 1), "/device:CPU:1"); EXPECT_EQ(DeviceNameUtils::LocalName("GPU", 2), "/device:GPU:2"); EXPECT_EQ(DeviceNameUtils::LocalName("MySpecialDevice", 13), "/device:MySpecialDevice:13"); EXPECT_EQ( DeviceNameUtils::LocalName("/job:foo/replica:1/task:2/device:CPU:3"), "/device:CPU:3"); EXPECT_EQ(DeviceNameUtils::LocalName("/job:foo/replica:1/task:2/cpu:3"), "/device:CPU:3"); EXPECT_EQ( DeviceNameUtils::LocalName("/job:foo/replica:1/task:2/device:abc:73"), "/device:abc:73"); { DeviceNameUtils::ParsedName p; EXPECT_TRUE(DeviceNameUtils::ParseLocalName("CPU:10", &p)); EXPECT_TRUE(DeviceNameUtils::ParseFullOrLocalName("CPU:10", &p)); EXPECT_EQ(p.type, "CPU"); EXPECT_EQ(p.id, 10); EXPECT_FALSE(DeviceNameUtils::ParseLocalName("cpu:abc", &p)); EXPECT_FALSE(DeviceNameUtils::ParseLocalName("abc:", &p)); EXPECT_FALSE(DeviceNameUtils::ParseLocalName("abc", &p)); EXPECT_FALSE(DeviceNameUtils::ParseLocalName("myspecialdevice", &p)); EXPECT_FALSE(DeviceNameUtils::ParseFullOrLocalName("myspecialdevice", &p)); } { for (int i = 0; i < 0x10; ++i) { EXPECT_TRUE(RoundTripPartialName(i, {"foo", "3", "2", "CPU:3"}, false)); EXPECT_TRUE(RoundTripPartialName(i, {"foo", "3", "2", "GPU:3"}, false)); EXPECT_TRUE(RoundTripPartialName(i, {"foo", "3", "2", "cpu:3"}, false)); EXPECT_TRUE(RoundTripPartialName(i, {"foo", "3", "2", "gpu:3"}, false)); EXPECT_TRUE(RoundTripPartialName(i, {"foo", "3", "2", "CPU:3"}, true)); EXPECT_TRUE(RoundTripPartialName(i, {"foo", "3", "2", "GPU:3"}, true)); EXPECT_TRUE(RoundTripPartialName(i, {"foo", "3", "2", "cpu:3"}, true)); EXPECT_TRUE(RoundTripPartialName(i, {"foo", "3", "2", "gpu:3"}, true)); EXPECT_TRUE(RoundTripPartialName(i, {"foo", "3", "2", "someDevice:3"}, true)); } } { DeviceNameUtils::ParsedName x, y; DeviceNameUtils::ParseFullName("/job:work/replica:1/task:3/device:GPU:*", &x); DeviceNameUtils::ParseFullName("/device:CPU:*", &y); EXPECT_FALSE(DeviceNameUtils::AreCompatibleDevNames(x, y)); } { DeviceNameUtils::ParsedName x, y; DeviceNameUtils::ParseFullName("/job:work/replica:1/task:3", &x); DeviceNameUtils::ParseFullName("/device:CPU:*", &y); EXPECT_TRUE(DeviceNameUtils::AreCompatibleDevNames(x, y)); } } static bool IsCSHelper(absl::string_view pattern, absl::string_view actual) { DeviceNameUtils::ParsedName p, a; EXPECT_TRUE(DeviceNameUtils::ParseFullName(pattern, &p)); EXPECT_TRUE(DeviceNameUtils::ParseFullName(actual, &a)); return DeviceNameUtils::IsCompleteSpecification(p, a); } TEST(DeviceNameUtilsTest, IsCompleteSpecification) { EXPECT_TRUE(IsCSHelper("/job:*", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsCSHelper("/job:*/replica:*", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_TRUE( IsCSHelper("/job:*/task:*", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsCSHelper("/job:*/replica:*/task:*", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsCSHelper("/job:*/replica:*/gpu:*", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_FALSE( IsCSHelper("/cpu:*", "/job:worker/replica:1/task:2/device:GPU:3")); EXPECT_FALSE( IsCSHelper("/device:GPU:2", "/job:worker/replica:1/task:2/device:GPU:1")); EXPECT_TRUE( IsCSHelper("/gpu:*", "/job:worker/replica:1/task:2/device:GPU:3")); } static bool IsSpecHelper(absl::string_view pattern, absl::string_view actual) { DeviceNameUtils::ParsedName p, a; EXPECT_TRUE(DeviceNameUtils::ParseFullName(pattern, &p)); EXPECT_TRUE(DeviceNameUtils::ParseFullName(actual, &a)); return DeviceNameUtils::IsSpecification(p, a); } TEST(DeviceNameUtilsTest, IsSpecification) { EXPECT_TRUE( IsSpecHelper("/job:*", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsSpecHelper("/job:*", "/job:work/replica:1/device:GPU:3")); EXPECT_TRUE(IsSpecHelper("/job:*", "/job:work/replica:1")); EXPECT_TRUE(IsSpecHelper("/job:*", "/replica:1")); EXPECT_TRUE(IsSpecHelper("/job:*", "/job:work")); EXPECT_TRUE(IsSpecHelper("/job:*/replica:*", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsSpecHelper("/job:work/replica:1/gpu:*", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsSpecHelper("/job:work/replica:1/device:GPU:3", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsSpecHelper("/job:work/replica:1/task:2", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsSpecHelper("/job:work/replica:*/task:2", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsSpecHelper("/task:*", "/job:*/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsSpecHelper("/task:2", "/job:*/replica:1/task:2/device:GPU:3")); EXPECT_TRUE(IsSpecHelper("/cpu:*", "/job:*/replica:1/task:2/cpu:1")); EXPECT_TRUE(IsSpecHelper("/cpu:0", "/cpu:0")); EXPECT_TRUE( IsSpecHelper("/gpu:*", "/job:worker/replica:1/task:2/device:GPU:3")); EXPECT_FALSE( IsSpecHelper("/job:worker/replica:1/task:2/device:GPU:3", "/gpu:*")); EXPECT_FALSE(IsSpecHelper("/cpu:*", "/job:*/replica:1/task:2")); EXPECT_FALSE(IsSpecHelper("/cpu:*", "/job:*/replica:1/task:2/device:GPU:1")); EXPECT_FALSE( IsSpecHelper("/cpu:*", "/job:worker/replica:1/task:2/device:GPU:3")); EXPECT_FALSE(IsSpecHelper("/device:GPU:2", "/job:worker/replica:1/task:2/device:GPU:1")); EXPECT_FALSE(IsSpecHelper("/job:work/replica:*/task:0", "/job:work/replica:1/task:2/device:GPU:3")); EXPECT_FALSE(IsSpecHelper("/job:work/replica:0/task:2", "/job:work/replica:*/task:2/device:GPU:3")); } TEST(DeviceNameUtilsTest, SplitDeviceName) { string task; string device; EXPECT_TRUE(DeviceNameUtils::SplitDeviceName( "/job:foo/replica:1/task:2/cpu:1", &task, &device)); EXPECT_EQ("/job:foo/replica:1/task:2", task); EXPECT_EQ("CPU:1", device); EXPECT_TRUE(DeviceNameUtils::SplitDeviceName( "/job:foo/cpu:1/task:2/replica:1", &task, &device)); EXPECT_EQ("/job:foo/replica:1/task:2", task); EXPECT_EQ("CPU:1", device); EXPECT_TRUE( DeviceNameUtils::SplitDeviceName("/device:GPU:3", &task, &device)); EXPECT_EQ("", task); EXPECT_EQ("GPU:3", device); EXPECT_FALSE(DeviceNameUtils::SplitDeviceName("gpu:3", &task, &device)); EXPECT_FALSE(DeviceNameUtils::SplitDeviceName("/job:foo/task:2/replica:1", &task, &device)); EXPECT_TRUE(DeviceNameUtils::SplitDeviceName("/device:myspecialdevice:3", &task, &device)); EXPECT_EQ("", task); EXPECT_EQ("myspecialdevice:3", device); } static DeviceNameUtils::ParsedName Name(const string& str) { DeviceNameUtils::ParsedName ret; CHECK(DeviceNameUtils::ParseFullName(str, &ret)) << "Invalid name: " << str; return ret; } static void MergeDevNamesHelperImpl(const string& name_a, const string& name_b, const string& expected_merge_name, bool allow_soft_placement) { DeviceNameUtils::ParsedName target_a = Name(name_a); TF_EXPECT_OK(DeviceNameUtils::MergeDevNames(&target_a, Name(name_b), allow_soft_placement)); DeviceNameUtils::ParsedName target_b = Name(name_b); TF_EXPECT_OK(DeviceNameUtils::MergeDevNames(&target_b, Name(name_a), allow_soft_placement)); EXPECT_EQ(target_a, target_b); EXPECT_EQ(target_a, Name(expected_merge_name)); EXPECT_EQ(target_b, Name(expected_merge_name)); } static void MergeDevNamesHelper(const string& name_a, const string& name_b, const string& expected_merge_name) { MergeDevNamesHelperImpl(name_a, name_b, expected_merge_name, false); } static void MergeDevNamesHelperAllowSoftPlacement( const string& name_a, const string& name_b, const string& expected_merge_name) { MergeDevNamesHelperImpl(name_a, name_b, expected_merge_name, true); } static void MergeDevNamesError(const string& name_a, const string& name_b, const string& expected_error_substr) { DeviceNameUtils::ParsedName target_a = Name(name_a); absl::Status s = DeviceNameUtils::MergeDevNames(&target_a, Name(name_b)); EXPECT_EQ(s.code(), error::INVALID_ARGUMENT); EXPECT_TRUE(absl::StrContains(s.message(), expected_error_substr)) << s; } static void MergeOverrideHelper(const string& target, const string& name, const string& expected_merge_name) { DeviceNameUtils::ParsedName parsed_target = Name(target); TF_EXPECT_OK( DeviceNameUtils::MergeOverrideDevNames(&parsed_target, Name(name))); DeviceNameUtils::ParsedName parsed_expected = Name(expected_merge_name); EXPECT_EQ(parsed_target, parsed_expected) << "parsed_target: " << DeviceNameUtils::ParsedNameToString(parsed_target) << " expected_name: " << DeviceNameUtils::ParsedNameToString(parsed_expected); } static void MergeUnsetDevNamesHelper(const string& name_a, const string& name_b, const string& expected_merge_name_ab, const string& expected_merge_name_ba) { DeviceNameUtils::ParsedName target_a = Name(name_a); DeviceNameUtils::MergeUnsetDevNames(&target_a, Name(name_b)); EXPECT_EQ(target_a, Name(expected_merge_name_ab)); DeviceNameUtils::ParsedName target_b = Name(name_b); DeviceNameUtils::MergeUnsetDevNames(&target_b, Name(name_a)); EXPECT_EQ(target_b, Name(expected_merge_name_ba)); } TEST(DeviceNameUtilsTest, MergeDevNames) { MergeDevNamesHelper("", "", ""); MergeDevNamesHelper("/job:foo/replica:1/task:2/cpu:1", "/job:foo/replica:1/task:2/cpu:1", "/job:foo/replica:1/task:2/cpu:1"); MergeDevNamesHelper("", "/job:foo", "/job:foo"); MergeDevNamesHelper("", "/replica:2", "/replica:2"); MergeDevNamesHelper("", "/task:7", "/task:7"); MergeDevNamesHelper("", "/device:GPU:1", "/device:GPU:1"); MergeDevNamesHelper("/job:foo", "/task:7", "/job:foo/task:7"); MergeDevNamesHelper("/job:foo", "/device:GPU:1", "/job:foo/device:GPU:1"); MergeDevNamesHelper("/job:foo/replica:0", "/replica:0/task:1", "/job:foo/replica:0/task:1"); MergeDevNamesHelper("", "/gpu:*", "/gpu:*"); MergeDevNamesHelper("/gpu:*", "/gpu:*", "/gpu:*"); MergeDevNamesHelper("/device:GPU:1", "/gpu:*", "/device:GPU:1"); MergeDevNamesError("/job:foo", "/job:bar", "incompatible jobs"); MergeDevNamesError("/replica:0", "/replica:1", "incompatible replicas"); MergeDevNamesError("/task:0", "/task:1", "incompatible tasks"); MergeDevNamesError("/gpu:*", "/cpu:*", "incompatible types"); MergeDevNamesError("/device:GPU:0", "/device:GPU:1", "incompatible ids"); } TEST(DeviceNameUtilsTest, MergeDevNamesAllowSoftPlacement) { MergeDevNamesHelperAllowSoftPlacement("/gpu:*", "/cpu:1", ""); MergeDevNamesHelperAllowSoftPlacement("/cpu:*", "/device:GPU:1", ""); MergeDevNamesHelperAllowSoftPlacement("/device:GPU:1", "/device:GPU:2", "/device:GPU:*"); } TEST(DeviceNameUtilsTest, MergeOverrideDevNames) { MergeOverrideHelper("", "", ""); MergeOverrideHelper("/job:foo/replica:1/task:2/cpu:1", "/job:foo/replica:1/task:2/cpu:1", "/job:foo/replica:1/task:2/cpu:1"); MergeOverrideHelper("", "/job:foo", "/job:foo"); MergeOverrideHelper("", "/replica:2", "/replica:2"); MergeOverrideHelper("", "/task:7", "/task:7"); MergeOverrideHelper("", "/device:GPU:1", "/device:GPU:1"); MergeOverrideHelper("/job:foo", "/task:7", "/job:foo/task:7"); MergeOverrideHelper("/job:foo", "/device:GPU:1", "/job:foo/device:GPU:1"); MergeOverrideHelper("/job:foo/replica:0", "/replica:0/task:1", "/job:foo/replica:0/task:1"); MergeOverrideHelper("", "/gpu:*", "/gpu:*"); MergeOverrideHelper("/gpu:*", "/gpu:*", "/gpu:*"); MergeOverrideHelper("/device:GPU:1", "/gpu:*", "/device:GPU:1"); MergeOverrideHelper("/gpu:0", "/cpu:1", "/cpu:1"); MergeOverrideHelper("/gpu:*", "/cpu:1", "/cpu:1"); MergeOverrideHelper("/cpu:*", "/device:GPU:1", "/gpu:1"); MergeOverrideHelper("/device:GPU:1", "/device:GPU:2", "/device:GPU:2"); MergeOverrideHelper("/job:foo/CPU:*", "/device:GPU:1", "/job:foo/GPU:1"); MergeOverrideHelper("/cpu:*", "/job:foo/device:GPU:1", "/job:foo/GPU:1"); MergeOverrideHelper("/task:0/cpu:*", "/device:GPU:1", "/task:0/GPU:1"); MergeOverrideHelper("/cpu:*", "/task:0/device:GPU:1", "/task:0/GPU:1"); } TEST(DeviceNameUtilsTest, MergeUnsetDevNames) { MergeUnsetDevNamesHelper("", "", "", ""); MergeUnsetDevNamesHelper( "/job:foo/replica:1/task:2/cpu:1", "/job:foo/replica:1/task:2/cpu:1", "/job:foo/replica:1/task:2/cpu:1", "/job:foo/replica:1/task:2/cpu:1"); MergeUnsetDevNamesHelper("", "/job:foo", "/job:foo", "/job:foo"); MergeUnsetDevNamesHelper("", "/replica:2", "/replica:2", "/replica:2"); MergeUnsetDevNamesHelper("", "/task:7", "/task:7", "/task:7"); MergeUnsetDevNamesHelper("", "/device:GPU:1", "/device:GPU:1", "/device:GPU:1"); MergeUnsetDevNamesHelper("/job:foo", "/task:7", "/job:foo/task:7", "/job:foo/task:7"); MergeUnsetDevNamesHelper("/job:foo", "/device:GPU:1", "/job:foo/device:GPU:1", "/job:foo/device:GPU:1"); MergeUnsetDevNamesHelper("/job:foo/replica:0", "/replica:0/task:1", "/job:foo/replica:0/task:1", "/job:foo/replica:0/task:1"); MergeUnsetDevNamesHelper("", "/gpu:*", "/gpu:*", "/gpu:*"); MergeUnsetDevNamesHelper("/gpu:*", "/gpu:*", "/gpu:*", "/gpu:*"); MergeUnsetDevNamesHelper("/device:GPU:1", "/gpu:*", "/device:GPU:1", "/device:GPU:1"); MergeUnsetDevNamesHelper("/job:foo", "/job:bar", "/job:foo", "/job:bar"); MergeUnsetDevNamesHelper("/replica:0", "/replica:1", "/replica:0", "/replica:1"); MergeUnsetDevNamesHelper("/task:0", "/task:1", "/task:0", "/task:1"); MergeUnsetDevNamesHelper("/gpu:*", "/cpu:*", "/gpu:*", "/cpu:*"); MergeUnsetDevNamesHelper("/device:GPU:0", "/device:GPU:1", "/device:GPU:0", "/device:GPU:1"); MergeUnsetDevNamesHelper("/job:foo/device:GPU", "/job:bar", "/job:foo/device:GPU", "/job:bar/device:GPU"); } TEST(DeviceNameUtilsTest, GetNamesForDeviceMappings) { DeviceNameUtils::ParsedName p = Name("/job:foo/replica:10/task:0/device:GPU:1"); EXPECT_EQ(absl::StrJoin(DeviceNameUtils::GetNamesForDeviceMappings(p), ","), "/job:foo/replica:10/task:0/device:GPU:1," "/job:foo/replica:10/task:0/gpu:1"); p.has_task = false; EXPECT_EQ(absl::StrJoin(DeviceNameUtils::GetNamesForDeviceMappings(p), ","), ""); } TEST(DeviceNameUtilsTest, CanonicalizeDeviceName) { string canonical_name; { string basename = "/job:foo/replica:10/task:0/device:CPU:0"; TF_EXPECT_OK(DeviceNameUtils::CanonicalizeDeviceName( "/job:foo/replica:10/task:0/device:CPU:1", basename, &canonical_name)); EXPECT_EQ("/job:foo/replica:10/task:0/device:CPU:1", canonical_name); TF_EXPECT_OK(DeviceNameUtils::CanonicalizeDeviceName( "/job:foo/task:0/replica:10/device:CPU:1", basename, &canonical_name)); EXPECT_EQ("/job:foo/replica:10/task:0/device:CPU:1", canonical_name); TF_EXPECT_OK(DeviceNameUtils::CanonicalizeDeviceName( "/job:foo/task:0/replica:10/cpu:1", basename, &canonical_name)); EXPECT_EQ("/job:foo/replica:10/task:0/device:CPU:1", canonical_name); TF_EXPECT_OK(DeviceNameUtils::CanonicalizeDeviceName("CPU:0", basename, &canonical_name)); EXPECT_EQ("/job:foo/replica:10/task:0/device:CPU:0", canonical_name); absl::Status s = DeviceNameUtils::CanonicalizeDeviceName( "/job:foo/task:0/replica/cpu:1", basename, &canonical_name); EXPECT_EQ(s.code(), error::INVALID_ARGUMENT); EXPECT_EQ("", canonical_name); } { string fullname = "/device:CPU:0"; absl::Status s = DeviceNameUtils::CanonicalizeDeviceName( fullname, "/device:CPU:0", &canonical_name); EXPECT_EQ(s.code(), error::INVALID_ARGUMENT); EXPECT_EQ("", canonical_name); s = DeviceNameUtils::CanonicalizeDeviceName( fullname, "/job:foo/task:0/replica/cpu:1", &canonical_name); EXPECT_EQ(s.code(), error::INVALID_ARGUMENT); EXPECT_EQ("", canonical_name); } } TEST(DeviceNameUtilsTest, CompareFullNames) { EXPECT_FALSE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:0/task:0/cpu:0", "/job:foo/replica:0/task:0/cpu:0")); EXPECT_FALSE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:0/task:0/device:CPU:1", "/job:foo/replica:0/task:0/device:CPU:0")); EXPECT_FALSE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:0/task:1/device:CPU:0", "/job:foo/replica:0/task:0/device:CPU:0")); EXPECT_FALSE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:1/task:0/device:CPU:0", "/job:foo/replica:0/task:0/device:CPU:0")); EXPECT_FALSE(DeviceNameUtils::CompareFullNames( "/job:goo/replica:0/task:0/device:CPU:0", "/job:foo/replica:0/task:0/device:CPU:0")); EXPECT_FALSE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:0/task:0/device:GPU:0", "/job:foo/replica:0/task:0/device:CPU:0")); EXPECT_TRUE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:0/task:0/device:CPU:0", "/job:foo/replica:0/task:0/device:CPU:1")); EXPECT_TRUE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:0/task:0/device:CPU:0", "/job:foo/replica:0/task:1/device:CPU:0")); EXPECT_TRUE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:0/task:0/device:CPU:0", "/job:foo/replica:1/task:0/device:CPU:0")); EXPECT_TRUE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:0/task:0/device:CPU:0", "/job:goo/replica:0/task:0/device:CPU:0")); EXPECT_TRUE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:0/task:0/device:CPU:0", "/job:foo/replica:0/task:0/device:GPU:0")); EXPECT_FALSE( DeviceNameUtils::CompareFullNames("/device:CPU:1", "unparseablename")); EXPECT_TRUE( DeviceNameUtils::CompareFullNames("unparseablename", "/device:CPU:1")); EXPECT_TRUE(DeviceNameUtils::CompareFullNames( "/replica:0/task:0/device:CPU:1", "/job:foo/replica:0/task:0/device:CPU:0")); EXPECT_FALSE(DeviceNameUtils::CompareFullNames( "/job:foo/replica:0/task:0/device:CPU:0", "/replica:0/task:0/device:CPU:0")); EXPECT_TRUE(DeviceNameUtils::CompareFullNames( "/replica:0/task:0/device:CPU:0", "/replica:0/task:0/device:CPU:1")); EXPECT_TRUE(DeviceNameUtils::CompareFullNames("/task:0/device:CPU:0", "/task:0/device:CPU:1")); EXPECT_TRUE( DeviceNameUtils::CompareFullNames("/device:CPU:0", "/device:CPU:1")); } static void BM_ParseFullName(::testing::benchmark::State& state) { DeviceNameUtils::ParsedName p; for (auto s : state) { DeviceNameUtils::ParseFullName("/job:worker/replica:3/task:0/cpu:0", &p); } } BENCHMARK(BM_ParseFullName); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/util/device_name_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/util/device_name_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fd61695f-2245-4ebc-8116-3b853ed9f474
cpp
tensorflow/tensorflow
command_line_flags
tensorflow/compiler/mlir/lite/tools/command_line_flags.cc
tensorflow/lite/tools/command_line_flags_test.cc
#include "tensorflow/compiler/mlir/lite/tools/command_line_flags.h" #include <algorithm> #include <cstring> #include <functional> #include <iomanip> #include <numeric> #include <sstream> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "absl/log/log.h" #include "absl/strings/match.h" namespace mlir { namespace { template <typename T> std::string ToString(T val) { std::ostringstream stream; stream << val; return stream.str(); } template <> std::string ToString(bool val) { return val ? "true" : "false"; } template <> std::string ToString(const std::string& val) { return val; } bool ParseFlag(const std::string& arg, int argv_position, const std::string& flag, bool positional, const std::function<bool(const std::string&, int argv_position)>& parse_func, bool* value_parsing_ok) { if (positional) { *value_parsing_ok = parse_func(arg, argv_position); return true; } *value_parsing_ok = true; std::string flag_prefix = "--" + flag + "="; if (!absl::StartsWith(arg, flag_prefix)) { return false; } bool has_value = arg.size() >= flag_prefix.size(); *value_parsing_ok = has_value; if (has_value) { *value_parsing_ok = parse_func(arg.substr(flag_prefix.size()), argv_position); } return true; } template <typename T> bool ParseFlag(const std::string& flag_value, int argv_position, const std::function<void(const T&, int)>& hook) { std::istringstream stream(flag_value); T read_value; stream >> read_value; if (!stream.eof() && !stream.good()) { return false; } hook(read_value, argv_position); return true; } template <> bool ParseFlag(const std::string& flag_value, int argv_position, const std::function<void(const bool&, int)>& hook) { if (flag_value != "true" && flag_value != "false" && flag_value != "0" && flag_value != "1") { return false; } hook(flag_value == "true" || flag_value == "1", argv_position); return true; } template <typename T> bool ParseFlag(const std::string& flag_value, int argv_position, const std::function<void(const std::string&, int)>& hook) { hook(flag_value, argv_position); return true; } } #define CONSTRUCTOR_IMPLEMENTATION(flag_T, default_value_T, flag_enum_val) \ Flag::Flag(const char* name, \ const std::function<void(const flag_T& , \ int )>& hook, \ default_value_T default_value, const std::string& usage_text, \ FlagType flag_type) \ : name_(name), \ type_(flag_enum_val), \ value_hook_([hook](const std::string& flag_value, int argv_position) { \ return ParseFlag<flag_T>(flag_value, argv_position, hook); \ }), \ default_for_display_(ToString<default_value_T>(default_value)), \ usage_text_(usage_text), \ flag_type_(flag_type) {} CONSTRUCTOR_IMPLEMENTATION(int32_t, int32_t, TYPE_INT32) CONSTRUCTOR_IMPLEMENTATION(int64_t, int64_t, TYPE_INT64) CONSTRUCTOR_IMPLEMENTATION(float, float, TYPE_FLOAT) CONSTRUCTOR_IMPLEMENTATION(bool, bool, TYPE_BOOL) CONSTRUCTOR_IMPLEMENTATION(std::string, const std::string&, TYPE_STRING) #undef CONSTRUCTOR_IMPLEMENTATION bool Flag::Parse(const std::string& arg, int argv_position, bool* value_parsing_ok) const { return ParseFlag( arg, argv_position, name_, flag_type_ == kPositional, [&](const std::string& read_value, int argv_position) { return value_hook_(read_value, argv_position); }, value_parsing_ok); } bool Flags::Parse(int* argc, const char** argv, const std::vector<Flag>& flag_list) { bool result = true; std::vector<bool> unknown_argvs(*argc, true); std::unordered_map<std::string, int> processed_flags; std::vector<int> sorted_idx(flag_list.size()); std::iota(std::begin(sorted_idx), std::end(sorted_idx), 0); std::sort(sorted_idx.begin(), sorted_idx.end(), [&flag_list](int a, int b) { return flag_list[a].GetFlagType() < flag_list[b].GetFlagType(); }); int positional_count = 0; for (int idx = 0; idx < sorted_idx.size(); ++idx) { const Flag& flag = flag_list[sorted_idx[idx]]; const auto it = processed_flags.find(flag.name_); if (it != processed_flags.end()) { #ifndef NDEBUG LOG(WARNING) << "Duplicate flags: " << flag.name_; #endif if (it->second != -1) { bool value_parsing_ok; flag.Parse(argv[it->second], it->second, &value_parsing_ok); if (!value_parsing_ok) { LOG(ERROR) << "Failed to parse flag '" << flag.name_ << "' against argv '" << argv[it->second] << "'"; result = false; } continue; } else if (flag.flag_type_ == Flag::kRequired) { LOG(ERROR) << "Required flag not provided: " << flag.name_; result = false; break; } } if (flag.flag_type_ == Flag::kPositional) { if (++positional_count >= *argc) { LOG(ERROR) << "Too few command line arguments."; return false; } bool value_parsing_ok; flag.Parse(argv[positional_count], positional_count, &value_parsing_ok); if (!value_parsing_ok) { LOG(ERROR) << "Failed to parse positional flag: " << flag.name_; return false; } unknown_argvs[positional_count] = false; processed_flags[flag.name_] = positional_count; continue; } bool was_found = false; for (int i = positional_count + 1; i < *argc; ++i) { if (!unknown_argvs[i]) continue; bool value_parsing_ok; was_found = flag.Parse(argv[i], i, &value_parsing_ok); if (!value_parsing_ok) { LOG(ERROR) << "Failed to parse flag '" << flag.name_ << "' against argv '" << argv[i] << "'"; result = false; } if (was_found) { unknown_argvs[i] = false; processed_flags[flag.name_] = i; break; } } if (was_found) continue; processed_flags[flag.name_] = -1; if (flag.flag_type_ == Flag::kRequired) { LOG(ERROR) << "Required flag not provided: " << flag.name_; result = false; break; } } int dst = 1; for (int i = 1; i < *argc; ++i) { if (unknown_argvs[i]) { argv[dst++] = argv[i]; } } *argc = dst; return result && (*argc < 2 || std::strcmp(argv[1], "--help") != 0); } }
#include "tensorflow/lite/tools/command_line_flags.h" #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/tools/tool_params.h" namespace tflite { namespace { TEST(CommandLineFlagsTest, BasicUsage) { int some_int32 = 10; int some_int1 = 8; int some_int2 = 9; int64_t some_int64 = 21474836470; bool some_switch = false; std::string some_name = "something_a"; float some_float = -23.23f; float float_1 = -23.23f; bool some_bool = false; bool some_numeric_bool = true; const char* argv_strings[] = {"program_name", "12.2", "--some_int32=20", "--some_int2=5", "--some_int64=214748364700", "--some_switch=true", "--some_name=somethingelse", "--some_float=42.0", "--some_bool=true", "--some_numeric_bool=0"}; int argc = 10; bool parsed_ok = Flags::Parse( &argc, reinterpret_cast<const char**>(argv_strings), { Flag::CreateFlag("some_int32", &some_int32, "some int32"), Flag::CreateFlag("some_int64", &some_int64, "some int64"), Flag::CreateFlag("some_switch", &some_switch, "some switch"), Flag::CreateFlag("some_name", &some_name, "some name"), Flag::CreateFlag("some_float", &some_float, "some float"), Flag::CreateFlag("some_bool", &some_bool, "some bool"), Flag::CreateFlag("some_numeric_bool", &some_numeric_bool, "some numeric bool"), Flag::CreateFlag("some_int1", &some_int1, "some int"), Flag::CreateFlag("some_int2", &some_int2, "some int", Flag::kRequired), Flag::CreateFlag("float_1", &float_1, "some float", Flag::kPositional), }); EXPECT_TRUE(parsed_ok); EXPECT_EQ(20, some_int32); EXPECT_EQ(8, some_int1); EXPECT_EQ(5, some_int2); EXPECT_EQ(214748364700, some_int64); EXPECT_TRUE(some_switch); EXPECT_EQ("somethingelse", some_name); EXPECT_NEAR(42.0f, some_float, 1e-5f); EXPECT_NEAR(12.2f, float_1, 1e-5f); EXPECT_TRUE(some_bool); EXPECT_FALSE(some_numeric_bool); EXPECT_EQ(argc, 1); } TEST(CommandLineFlagsTest, EmptyStringFlag) { int argc = 2; std::string some_string = "invalid"; const char* argv_strings[] = {"program_name", "--some_string="}; bool parsed_ok = Flags::Parse( &argc, reinterpret_cast<const char**>(argv_strings), {Flag::CreateFlag("some_string", &some_string, "some string")}); EXPECT_TRUE(parsed_ok); EXPECT_EQ(some_string, ""); EXPECT_EQ(argc, 1); } TEST(CommandLineFlagsTest, BadIntValue) { int some_int = 10; int argc = 2; const char* argv_strings[] = {"program_name", "--some_int=notanumber"}; bool parsed_ok = Flags::Parse(&argc, reinterpret_cast<const char**>(argv_strings), {Flag::CreateFlag("some_int", &some_int, "some int")}); EXPECT_FALSE(parsed_ok); EXPECT_EQ(10, some_int); EXPECT_EQ(argc, 1); } TEST(CommandLineFlagsTest, BadBoolValue) { bool some_switch = false; int argc = 2; const char* argv_strings[] = {"program_name", "--some_switch=notabool"}; bool parsed_ok = Flags::Parse( &argc, reinterpret_cast<const char**>(argv_strings), {Flag::CreateFlag("some_switch", &some_switch, "some switch")}); EXPECT_FALSE(parsed_ok); EXPECT_FALSE(some_switch); EXPECT_EQ(argc, 1); } TEST(CommandLineFlagsTest, BadFloatValue) { float some_float = -23.23f; int argc = 2; const char* argv_strings[] = {"program_name", "--some_float=notanumber"}; bool parsed_ok = Flags::Parse(&argc, reinterpret_cast<const char**>(argv_strings), {Flag::CreateFlag("some_float", &some_float, "some float")}); EXPECT_FALSE(parsed_ok); EXPECT_NEAR(-23.23f, some_float, 1e-5f); EXPECT_EQ(argc, 1); } TEST(CommandLineFlagsTest, RequiredFlagNotFound) { float some_float = -23.23f; int argc = 2; const char* argv_strings[] = {"program_name", "--flag=12"}; bool parsed_ok = Flags::Parse( &argc, reinterpret_cast<const char**>(argv_strings), {Flag::CreateFlag("some_flag", &some_float, "", Flag::kRequired)}); EXPECT_FALSE(parsed_ok); EXPECT_NEAR(-23.23f, some_float, 1e-5f); EXPECT_EQ(argc, 2); } TEST(CommandLineFlagsTest, NoArguments) { float some_float = -23.23f; int argc = 1; const char* argv_strings[] = {"program_name"}; bool parsed_ok = Flags::Parse( &argc, reinterpret_cast<const char**>(argv_strings), {Flag::CreateFlag("some_flag", &some_float, "", Flag::kRequired)}); EXPECT_FALSE(parsed_ok); EXPECT_NEAR(-23.23f, some_float, 1e-5f); EXPECT_EQ(argc, 1); } TEST(CommandLineFlagsTest, NotEnoughArguments) { float some_float = -23.23f; int argc = 1; const char* argv_strings[] = {"program_name"}; bool parsed_ok = Flags::Parse( &argc, reinterpret_cast<const char**>(argv_strings), {Flag::CreateFlag("some_flag", &some_float, "", Flag::kPositional)}); EXPECT_FALSE(parsed_ok); EXPECT_NEAR(-23.23f, some_float, 1e-5f); EXPECT_EQ(argc, 1); } TEST(CommandLineFlagsTest, PositionalFlagFailed) { float some_float = -23.23f; int argc = 2; const char* argv_strings[] = {"program_name", "string"}; bool parsed_ok = Flags::Parse( &argc, reinterpret_cast<const char**>(argv_strings), {Flag::CreateFlag("some_flag", &some_float, "", Flag::kPositional)}); EXPECT_FALSE(parsed_ok); EXPECT_NEAR(-23.23f, some_float, 1e-5f); EXPECT_EQ(argc, 2); } static bool MatchWithAnyWhitespace(const std::string& str, const std::string& pat) { bool matching = true; int pat_i = 0; for (int str_i = 0; str_i != str.size() && matching; str_i++) { if (isspace(str[str_i])) { matching = (pat_i != pat.size() && isspace(pat[pat_i])); } else { while (pat_i != pat.size() && isspace(pat[pat_i])) { pat_i++; } matching = (pat_i != pat.size() && str[str_i] == pat[pat_i++]); } } while (pat_i != pat.size() && isspace(pat[pat_i])) { pat_i++; } return (matching && pat_i == pat.size()); } TEST(CommandLineFlagsTest, UsageString) { int some_int = 10; int64_t some_int64 = 21474836470; bool some_switch = false; std::string some_name = "something"; int some_int2 = 4; const std::string tool_name = "some_tool_name"; std::string usage = Flags::Usage( tool_name, {Flag::CreateFlag("some_int", &some_int, "some int"), Flag::CreateFlag("some_int64", &some_int64, "some int64"), Flag::CreateFlag("some_switch", &some_switch, "some switch"), Flag::CreateFlag("some_name", &some_name, "some name", Flag::kRequired), Flag::CreateFlag("some_int2", &some_int2, "some int", Flag::kPositional)}); const char* expected_usage = " usage: some_tool_name <some_int2> <flags>\n" "Where:\n" "some_int2\tint32\trequired\tsome int\n" "Flags:\n" "--some_name=something\tstring\trequired\tsome name\n" "--some_int=10\tint32\toptional\tsome int\n" "--some_int64=21474836470\tint64\toptional\tsome int64\n" "--some_switch=false\tbool\toptional\tsome switch\n"; ASSERT_EQ(MatchWithAnyWhitespace(usage, expected_usage), true) << usage; usage = Flags::Usage(tool_name, {}); ASSERT_EQ(MatchWithAnyWhitespace(usage, " usage: some_tool_name\n"), true) << usage; } TEST(CommandLineFlagsTest, DuplicateArgsParsableValues) { int some_int = -23; int argc = 3; const char* argv_strings[] = {"program_name", "--some_int=1", "--some_int=2"}; bool parsed_ok = Flags::Parse(&argc, reinterpret_cast<const char**>(argv_strings), {Flag::CreateFlag("some_int", &some_int, "some int")}); EXPECT_TRUE(parsed_ok); EXPECT_EQ(1, some_int); EXPECT_EQ(argc, 2); EXPECT_EQ("--some_int=2", argv_strings[1]); } TEST(CommandLineFlagsTest, DuplicateArgsBadValueAppearFirst) { int some_int = -23; int argc = 3; const char* argv_strings[] = {"program_name", "--some_int=value", "--some_int=1"}; bool parsed_ok = Flags::Parse(&argc, reinterpret_cast<const char**>(argv_strings), {Flag::CreateFlag("some_int", &some_int, "some int")}); EXPECT_FALSE(parsed_ok); EXPECT_EQ(-23, some_int); EXPECT_EQ(argc, 2); EXPECT_EQ("--some_int=1", argv_strings[1]); } TEST(CommandLineFlagsTest, DuplicateArgsBadValueAppearSecondly) { int some_int = -23; int argc = 3; const char* argv_strings[] = {"program_name", "--some_int=1", "--some_int=value"}; bool parsed_ok = Flags::Parse(&argc, reinterpret_cast<const char**>(argv_strings), {Flag::CreateFlag("some_int", &some_int, "some int")}); EXPECT_TRUE(parsed_ok); EXPECT_EQ(1, some_int); EXPECT_EQ(argc, 2); EXPECT_EQ("--some_int=value", argv_strings[1]); } TEST(CommandLineFlagsTest, DuplicateFlags) { int some_int1 = -23; int some_int2 = -23; int argc = 2; const char* argv_strings[] = {"program_name", "--some_int=1"}; bool parsed_ok = Flags::Parse(&argc, reinterpret_cast<const char**>(argv_strings), {Flag::CreateFlag("some_int", &some_int1, "some int1"), Flag::CreateFlag("some_int", &some_int2, "some int2")}); EXPECT_TRUE(parsed_ok); EXPECT_EQ(1, some_int1); EXPECT_EQ(1, some_int2); EXPECT_EQ(argc, 1); } TEST(CommandLineFlagsTest, DuplicateFlagsNotFound) { int some_int1 = -23; int some_int2 = -23; int argc = 2; const char* argv_strings[] = {"program_name", "--some_float=1.0"}; bool parsed_ok = Flags::Parse( &argc, reinterpret_cast<const char**>(argv_strings), {Flag::CreateFlag("some_int", &some_int1, "some int1", Flag::kOptional), Flag::CreateFlag("some_int", &some_int2, "some int2", Flag::kRequired)}); EXPECT_FALSE(parsed_ok); EXPECT_EQ(-23, some_int1); EXPECT_EQ(-23, some_int2); EXPECT_EQ(argc, 2); } TEST(CommandLineFlagsTest, DuplicateFlagNamesButDifferentTypes) { int some_int = -23; bool some_bool = true; int argc = 2; const char* argv_strings[] = {"program_name", "--some_val=20"}; bool parsed_ok = Flags::Parse(&argc, reinterpret_cast<const char**>(argv_strings), {Flag::CreateFlag("some_val", &some_int, "some val-int"), Flag::CreateFlag("some_val", &some_bool, "some val-bool")}); EXPECT_FALSE(parsed_ok); EXPECT_EQ(20, some_int); EXPECT_TRUE(some_bool); EXPECT_EQ(argc, 1); } TEST(CommandLineFlagsTest, DuplicateFlagsAndArgs) { int some_int1 = -23; int some_int2 = -23; int argc = 3; const char* argv_strings[] = {"program_name", "--some_int=1", "--some_int=2"}; bool parsed_ok = Flags::Parse( &argc, reinterpret_cast<const char**>(argv_strings), {Flag::CreateFlag("some_int", &some_int1, "flag1: bind with some_int1"), Flag::CreateFlag("some_int", &some_int2, "flag2: bind with some_int2")}); EXPECT_TRUE(parsed_ok); EXPECT_EQ(1, some_int1); EXPECT_EQ(1, some_int2); EXPECT_EQ(argc, 2); } TEST(CommandLineFlagsTest, ArgsToString) { int argc = 3; const char* argv_strings[] = {"program_name", "--some_int=1", "--some_int=2"}; std::string args = Flags::ArgsToString(argc, reinterpret_cast<const char**>(argv_strings)); EXPECT_EQ("--some_int=1 --some_int=2", args); } TEST(CommandLineFlagsTest, ArgvPositions) { tools::ToolParams params; params.AddParam("some_int", tools::ToolParam::Create<int>(13)); params.AddParam("some_float", tools::ToolParam::Create<float>(17.0f)); params.AddParam("some_bool", tools::ToolParam::Create<bool>(true)); const char* argv_strings[] = {"program_name", "--some_float=42.0", "--some_bool=false", "--some_int=5"}; int argc = 4; tools::ToolParams* const params_ptr = &params; bool parsed_ok = Flags::Parse( &argc, reinterpret_cast<const char**>(argv_strings), { Flag( "some_int", [params_ptr](const int& val, int argv_position) { params_ptr->Set<int>("some_int", val, argv_position); }, 13, "some int", Flag::kOptional), Flag( "some_float", [params_ptr](const float& val, int argv_position) { params_ptr->Set<float>("some_float", val, argv_position); }, 17.0f, "some float", Flag::kOptional), Flag( "some_bool", [params_ptr](const bool& val, int argv_position) { params_ptr->Set<bool>("some_bool", val, argv_position); }, true, "some bool", Flag::kOptional), }); EXPECT_TRUE(parsed_ok); EXPECT_EQ(5, params.Get<int>("some_int")); EXPECT_NEAR(42.0f, params.Get<float>("some_float"), 1e-5f); EXPECT_FALSE(params.Get<bool>("some_bool")); EXPECT_EQ(3, params.GetPosition<int>("some_int")); EXPECT_EQ(1, params.GetPosition<float>("some_float")); EXPECT_EQ(2, params.GetPosition<bool>("some_bool")); EXPECT_EQ(argc, 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/lite/tools/command_line_flags.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/command_line_flags_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7706d990-1619-4cbd-8817-82820269533e
cpp
tensorflow/tensorflow
reporter
third_party/xla/xla/tsl/util/reporter.cc
tensorflow/core/util/reporter_test.cc
#include "xla/tsl/util/reporter.h" #include "tsl/platform/errors.h" #include "tsl/platform/mutex.h" #include "tsl/platform/str_util.h" namespace tsl { TestReportFile::TestReportFile(const string& fname, const string& test_name) : closed_(true), fname_(fname), test_name_(test_name) {} absl::Status TestReportFile::Append(const string& content) { if (closed_) return absl::OkStatus(); return log_file_->Append(content); } absl::Status TestReportFile::Close() { if (closed_) return absl::OkStatus(); closed_ = true; return log_file_->Close(); } absl::Status TestReportFile::Initialize() { if (fname_.empty()) { return absl::OkStatus(); } string mangled_fname = strings::StrCat( fname_, absl::StrJoin(str_util::Split(test_name_, '/'), "__")); Env* env = Env::Default(); if (env->FileExists(mangled_fname).ok()) { return errors::InvalidArgument( "Cannot create TestReportFile, file exists: ", mangled_fname); } TF_RETURN_IF_ERROR(env->NewWritableFile(mangled_fname, &log_file_)); TF_RETURN_IF_ERROR(log_file_->Flush()); closed_ = false; return absl::OkStatus(); } TestReporter::TestReporter(const string& fname, const string& test_name) : report_file_(fname, test_name) { benchmark_entry_.set_name(test_name); } absl::Status TestReporter::Close() { if (report_file_.IsClosed()) return absl::OkStatus(); tensorflow::BenchmarkEntries entries; *entries.add_entry() = benchmark_entry_; TF_RETURN_IF_ERROR(report_file_.Append(entries.SerializeAsString())); benchmark_entry_.Clear(); return report_file_.Close(); } absl::Status TestReporter::Benchmark(int64_t iters, double cpu_time, double wall_time, double throughput) { if (report_file_.IsClosed()) return absl::OkStatus(); benchmark_entry_.set_iters(iters); benchmark_entry_.set_cpu_time(cpu_time / iters); benchmark_entry_.set_wall_time(wall_time / iters); benchmark_entry_.set_throughput(throughput); return absl::OkStatus(); } absl::Status TestReporter::SetProperty(const string& name, const string& value) { if (report_file_.IsClosed()) return absl::OkStatus(); (*benchmark_entry_.mutable_extras())[name].set_string_value(value); return absl::OkStatus(); } absl::Status TestReporter::SetProperty(const string& name, double value) { if (report_file_.IsClosed()) return absl::OkStatus(); (*benchmark_entry_.mutable_extras())[name].set_double_value(value); return absl::OkStatus(); } absl::Status TestReporter::AddMetric(const string& name, double value) { if (report_file_.IsClosed()) return absl::OkStatus(); auto* metric = benchmark_entry_.add_metrics(); metric->set_name(name); metric->set_value(value); return absl::OkStatus(); } absl::Status TestReporter::Initialize() { return report_file_.Initialize(); } }
#define _XOPEN_SOURCE #include <cstdlib> #include "tensorflow/core/util/reporter.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { static void ExpectHasSubstr(StringPiece s, StringPiece expected) { EXPECT_TRUE(absl::StrContains(s, expected)) << s << " does not contain " << expected; } TEST(TestReporter, NoLogging) { TestReporter test_reporter("b1"); TF_EXPECT_OK(test_reporter.Initialize()); TF_EXPECT_OK(test_reporter.Close()); } TEST(TestReporter, UsesEnv) { const char* old_env = std::getenv(TestReporter::kTestReporterEnv); setenv(TestReporter::kTestReporterEnv, "/cant/find/me:!", 1); CHECK_EQ(string(std::getenv(TestReporter::kTestReporterEnv)), string("/cant/find/me:!")); TestReporter test_reporter("b1"); Status s = test_reporter.Initialize(); ExpectHasSubstr(s.ToString(), "/cant/find/me"); unsetenv(TestReporter::kTestReporterEnv); CHECK_EQ(std::getenv(TestReporter::kTestReporterEnv), nullptr); TestReporter test_reporter_empty("b1"); s = test_reporter_empty.Initialize(); TF_EXPECT_OK(s); s = test_reporter_empty.Close(); TF_EXPECT_OK(s); if (old_env == nullptr) { unsetenv(TestReporter::kTestReporterEnv); } else { setenv(TestReporter::kTestReporterEnv, old_env, 1); } } TEST(TestReporter, CreateTwiceFails) { { TestReporter test_reporter( strings::StrCat(testing::TmpDir(), "/test_reporter_dupe"), "t1"); TF_EXPECT_OK(test_reporter.Initialize()); } { TestReporter test_reporter( strings::StrCat(testing::TmpDir(), "/test_reporter_dupe"), "t1"); Status s = test_reporter.Initialize(); ExpectHasSubstr(s.ToString(), "file exists:"); } } TEST(TestReporter, CreateCloseCreateAgainSkipsSecond) { TestReporter test_reporter( strings::StrCat(testing::TmpDir(), "/test_reporter_create_close"), "t1"); TF_EXPECT_OK(test_reporter.Initialize()); TF_EXPECT_OK(test_reporter.Close()); TF_EXPECT_OK(test_reporter.Benchmark(1, 1.0, 2.0, 3.0)); TF_EXPECT_OK(test_reporter.Close()); Status s = test_reporter.Initialize(); ExpectHasSubstr(s.ToString(), "file exists:"); } TEST(TestReporter, Benchmark) { string fname = strings::StrCat(testing::TmpDir(), "/test_reporter_benchmarks_"); TestReporter test_reporter(fname, "b1/2/3"); TF_EXPECT_OK(test_reporter.Initialize()); TF_EXPECT_OK(test_reporter.Benchmark(1, 1.0, 2.0, 3.0)); TF_EXPECT_OK(test_reporter.Close()); string expected_fname = strings::StrCat(fname, "b1__2__3"); string read; TF_EXPECT_OK(ReadFileToString(Env::Default(), expected_fname, &read)); BenchmarkEntries benchmark_entries; ASSERT_TRUE(benchmark_entries.ParseFromString(read)); ASSERT_EQ(1, benchmark_entries.entry_size()); const BenchmarkEntry& benchmark_entry = benchmark_entries.entry(0); EXPECT_EQ(benchmark_entry.name(), "b1/2/3"); EXPECT_EQ(benchmark_entry.iters(), 1); EXPECT_EQ(benchmark_entry.cpu_time(), 1.0); EXPECT_EQ(benchmark_entry.wall_time(), 2.0); EXPECT_EQ(benchmark_entry.throughput(), 3.0); } TEST(TestReporter, SetProperties) { string fname = strings::StrCat(testing::TmpDir(), "/test_reporter_benchmarks_"); TestReporter test_reporter(fname, "b2/3/4"); TF_EXPECT_OK(test_reporter.Initialize()); TF_EXPECT_OK(test_reporter.SetProperty("string_prop", "abc")); TF_EXPECT_OK(test_reporter.SetProperty("double_prop", 4.0)); TF_EXPECT_OK(test_reporter.Close()); string expected_fname = strings::StrCat(fname, "b2__3__4"); string read; TF_EXPECT_OK(ReadFileToString(Env::Default(), expected_fname, &read)); BenchmarkEntries benchmark_entries; ASSERT_TRUE(benchmark_entries.ParseFromString(read)); ASSERT_EQ(1, benchmark_entries.entry_size()); const BenchmarkEntry& benchmark_entry = benchmark_entries.entry(0); const auto& extras = benchmark_entry.extras(); ASSERT_EQ(2, extras.size()); EXPECT_EQ("abc", extras.at("string_prop").string_value()); EXPECT_EQ(4.0, extras.at("double_prop").double_value()); } TEST(TestReporter, AddMetrics) { string fname = strings::StrCat(testing::TmpDir(), "/test_reporter_benchmarks_"); TestReporter test_reporter(fname, "b3/4/5"); TF_EXPECT_OK(test_reporter.Initialize()); TF_EXPECT_OK(test_reporter.AddMetric("metric1", 2.0)); TF_EXPECT_OK(test_reporter.AddMetric("metric2", 3.0)); TF_EXPECT_OK(test_reporter.Close()); string expected_fname = strings::StrCat(fname, "b3__4__5"); string read; TF_EXPECT_OK(ReadFileToString(Env::Default(), expected_fname, &read)); BenchmarkEntries benchmark_entries; ASSERT_TRUE(benchmark_entries.ParseFromString(read)); ASSERT_EQ(1, benchmark_entries.entry_size()); const BenchmarkEntry& benchmark_entry = benchmark_entries.entry(0); const auto& metrics = benchmark_entry.metrics(); ASSERT_EQ(2, metrics.size()); EXPECT_EQ("metric1", metrics.at(0).name()); EXPECT_EQ(2.0, metrics.at(0).value()); EXPECT_EQ("metric2", metrics.at(1).name()); EXPECT_EQ(3.0, metrics.at(1).value()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/util/reporter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/reporter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fa7caee5-32af-45de-b39f-cbd70c5eace5
cpp
tensorflow/tensorflow
determinism
tensorflow/python/util/determinism.cc
third_party/xla/xla/service/gpu/determinism_test.cc
#include "tensorflow/core/util/determinism.h" #include "pybind11/pybind11.h" PYBIND11_MODULE(_pywrap_determinism, m) { m.def("enable", &tensorflow::EnableOpDeterminism); m.def("is_enabled", &tensorflow::OpDeterminismRequired); }
#include <memory> #include <optional> #include <utility> #include <variant> #include <vector> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/literal.h" #include "xla/service/gpu/autotuning/autotuner_util.h" #include "xla/service/gpu/tests/gpu_codegen_test.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/gpu/gpu_timer.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_utils.h" #include "xla/xla.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { class DeterminismTest : public GpuCodegenTest { public: DeterminismTest() : debug_options_(HloTestBase::GetDebugOptionsForTest()) { debug_options_.set_xla_gpu_exclude_nondeterministic_ops(true); se::gpu::GpuTimer::ReturnRandomDurationsForTesting(); } void AssertDeterminism(absl::string_view hlo_string, int num_runs = 10) { std::vector<Literal> fake_arguments; std::vector<Literal*> fake_arguments_ptrs; std::optional<Literal> canonical_output; for (int i = 0; i < num_runs; ++i) { AutotunerUtil::ClearAutotuneResults(); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); if (i == 0) { fake_arguments = MakeFakeArguments(module.get()).value(); for (Literal& literal : fake_arguments) { fake_arguments_ptrs.push_back(&literal); } } TF_ASSERT_OK_AND_ASSIGN(Literal output, Execute(std::move(module), fake_arguments_ptrs)); if (!canonical_output.has_value()) { canonical_output = std::move(output); } else { ASSERT_TRUE(LiteralTestUtil::Equal(*canonical_output, output)); } } } DebugOptions GetDebugOptionsForTest() override { return debug_options_; } DebugOptions debug_options_; bool IsVoltaOrLater() const { return backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability() .IsAtLeastVolta(); } bool IsRocm() const { return std::holds_alternative<stream_executor::RocmComputeCapability>( backend() .default_stream_executor() ->GetDeviceDescription() .gpu_compute_capability()); } bool HasHipblasLt() const { return backend() .default_stream_executor() ->GetDeviceDescription() .rocm_compute_capability() .has_hipblaslt(); } }; TEST_F(DeterminismTest, CublasDot) { constexpr absl::string_view kHloText = R"( ENTRY e { p0 = f32[128,128] parameter(0) p1 = f32[128,128] parameter(1) ROOT d = f32[128,128] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; if (IsRocm()) { if (!HasHipblasLt()) { GTEST_SKIP() << "No hipblas-lt support on this architecture!"; } debug_options_.set_xla_gpu_enable_triton_gemm(false); } debug_options_.set_xla_gpu_triton_fusion_level(0); MatchOptimizedHlo(kHloText, R"(; CHECK: custom_call_target="__cublas$gemm")"); AssertDeterminism(kHloText); debug_options_.set_xla_gpu_enable_cublaslt(true); MatchOptimizedHlo(kHloText, R"(; CHECK: custom_call_target="__cublas$lt$matmul")"); AssertDeterminism(kHloText); } TEST_F(DeterminismTest, DeterministicTritonGemmUsesDefaultConfig) { if (!IsVoltaOrLater()) { GTEST_SKIP() << "Triton is not supported on non-NVIDIA and " "pre-Volta NVIDIA GPUs."; } constexpr absl::string_view kHloText = R"( ENTRY e { p0 = bf16[128,128] parameter(0) p0_convert = f32[128,128] convert(p0) p1 = f32[128,128] parameter(1) ROOT d = f32[128,128] dot(p0_convert, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; debug_options_.set_xla_gpu_deterministic_ops(true); AutotunerUtil::ClearAutotuneResults(); MatchOptimizedHlo(kHloText, R"( CHECK: __triton_gemm CHECK: {"block_m":"32","block_n":"32","block_k":"32","split_k":"1","num_stages":"1","num_warps":"4","num_ctas":"1"} )"); AssertDeterminism(kHloText, 3); } TEST_F(DeterminismTest, ExcludingNonDeterministicOpsDoesNotDisableAutotuning) { if (!IsVoltaOrLater()) { GTEST_SKIP() << "Triton is not supported on non-NVIDIA and " "pre-Volta NVIDIA GPUs."; } debug_options_.set_xla_gpu_cublas_fallback(false); ASSERT_TRUE(debug_options_.xla_gpu_exclude_nondeterministic_ops()); ASSERT_FALSE(debug_options_.xla_gpu_deterministic_ops()); AutotunerUtil::ClearAutotuneResults(); MatchOptimizedHlo(R"( ENTRY e { p0 = bf16[128,128] parameter(0) p0_convert = f32[128,128] convert(p0) p1 = f32[128,128] parameter(1) ROOT d = f32[128,128] dot(p0_convert, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })", R"( CHECK: __triton_gemm CHECK-NOT: {"block_m":"32","block_n":"32","block_k":"32","split_k":"1","num_stages":"1","num_warps":"4","num_ctas":"1"} )"); } TEST_F(DeterminismTest, Conv) { constexpr absl::string_view kHloText = R"( ENTRY e { input = f32[16,3,64,64] parameter(0) filter = f32[3,3,3,64] parameter(1) conv = f32[16,64,64,64] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_01io->bf01, feature_group_count=1 })"; AssertDeterminism(kHloText); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/python/util/determinism.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/determinism_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
44ee2e2d-d074-4a87-b125-2bf59679e221
cpp
tensorflow/tensorflow
tracking_allocator
third_party/xla/xla/tsl/framework/tracking_allocator.cc
tensorflow/core/framework/tracking_allocator_test.cc
#include "xla/tsl/framework/tracking_allocator.h" #include "tsl/platform/env.h" #include "tsl/platform/logging.h" namespace tsl { TrackingAllocator::TrackingAllocator(Allocator* allocator, bool track_sizes) : allocator_(allocator), ref_(1), allocated_(0), high_watermark_(0), total_bytes_(0), track_sizes_locally_(track_sizes && !allocator_->TracksAllocationSizes()), next_allocation_id_(0) {} void* TrackingAllocator::AllocateRaw( size_t alignment, size_t num_bytes, const AllocationAttributes& allocation_attr) { void* ptr = allocator_->AllocateRaw(alignment, num_bytes, allocation_attr); if (nullptr == ptr) { return ptr; } if (allocator_->TracksAllocationSizes()) { size_t allocated_bytes = allocator_->AllocatedSize(ptr); { mutex_lock lock(mu_); allocated_ += allocated_bytes; high_watermark_ = std::max(high_watermark_, allocated_); total_bytes_ += allocated_bytes; allocations_.emplace_back(allocated_bytes, Env::Default()->NowMicros()); ++ref_; } } else if (track_sizes_locally_) { size_t allocated_bytes = allocator_->AllocatedSizeSlow(ptr); allocated_bytes = std::max(num_bytes, allocated_bytes); mutex_lock lock(mu_); next_allocation_id_ += 1; Chunk chunk = {num_bytes, allocated_bytes, next_allocation_id_}; in_use_.emplace(std::make_pair(ptr, chunk)); allocated_ += allocated_bytes; high_watermark_ = std::max(high_watermark_, allocated_); total_bytes_ += allocated_bytes; allocations_.emplace_back(allocated_bytes, Env::Default()->NowMicros()); ++ref_; } else { mutex_lock lock(mu_); total_bytes_ += num_bytes; allocations_.emplace_back(num_bytes, Env::Default()->NowMicros()); ++ref_; } return ptr; } void TrackingAllocator::DeallocateRaw(void* ptr) { if (nullptr == ptr) { return; } bool should_delete; bool tracks_allocation_sizes = allocator_->TracksAllocationSizes(); size_t allocated_bytes = 0; if (tracks_allocation_sizes) { allocated_bytes = allocator_->AllocatedSize(ptr); } else if (track_sizes_locally_) { mutex_lock lock(mu_); auto itr = in_use_.find(ptr); if (itr != in_use_.end()) { tracks_allocation_sizes = true; allocated_bytes = (*itr).second.allocated_size; in_use_.erase(itr); } } Allocator* allocator = allocator_; { mutex_lock lock(mu_); if (tracks_allocation_sizes) { CHECK_GE(allocated_, allocated_bytes); allocated_ -= allocated_bytes; allocations_.emplace_back(-allocated_bytes, Env::Default()->NowMicros()); } should_delete = UnRef(); } allocator->DeallocateRaw(ptr); if (should_delete) { delete this; } } bool TrackingAllocator::TracksAllocationSizes() const { return track_sizes_locally_ || allocator_->TracksAllocationSizes(); } size_t TrackingAllocator::RequestedSize(const void* ptr) const { if (track_sizes_locally_) { mutex_lock lock(mu_); auto it = in_use_.find(ptr); if (it != in_use_.end()) { return (*it).second.requested_size; } return 0; } else { return allocator_->RequestedSize(ptr); } } size_t TrackingAllocator::AllocatedSize(const void* ptr) const { if (track_sizes_locally_) { mutex_lock lock(mu_); auto it = in_use_.find(ptr); if (it != in_use_.end()) { return (*it).second.allocated_size; } return 0; } else { return allocator_->AllocatedSize(ptr); } } int64_t TrackingAllocator::AllocationId(const void* ptr) const { if (track_sizes_locally_) { mutex_lock lock(mu_); auto it = in_use_.find(ptr); if (it != in_use_.end()) { return (*it).second.allocation_id; } return 0; } else { return allocator_->AllocationId(ptr); } } absl::optional<AllocatorStats> TrackingAllocator::GetStats() { return allocator_->GetStats(); } bool TrackingAllocator::ClearStats() { return allocator_->ClearStats(); } std::tuple<size_t, size_t, size_t> TrackingAllocator::GetSizes() { size_t high_watermark; size_t total_bytes; size_t still_live_bytes; { mutex_lock lock(mu_); high_watermark = high_watermark_; total_bytes = total_bytes_; still_live_bytes = allocated_; } return std::make_tuple(total_bytes, high_watermark, still_live_bytes); } absl::InlinedVector<AllocRecord, 4UL> TrackingAllocator::GetRecordsAndUnRef() { bool should_delete; absl::InlinedVector<AllocRecord, 4UL> allocations; { mutex_lock lock(mu_); allocations.swap(allocations_); should_delete = UnRef(); } if (should_delete) { delete this; } return allocations; } absl::InlinedVector<AllocRecord, 4UL> TrackingAllocator::GetCurrentRecords() { absl::InlinedVector<AllocRecord, 4UL> allocations; { mutex_lock lock(mu_); for (const AllocRecord& alloc : allocations_) { allocations.push_back(alloc); } } return allocations; } bool TrackingAllocator::UnRef() { CHECK_GE(ref_, 1); --ref_; return (ref_ == 0); } }
#include "tensorflow/core/framework/tracking_allocator.h" #include <unordered_map> #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mem.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { class TestableSizeTrackingAllocator : public Allocator { public: string Name() override { return "test"; } void* AllocateRaw(size_t , size_t num_bytes) override { void* ptr = port::Malloc(num_bytes); size_map_[ptr] = num_bytes; return ptr; } void DeallocateRaw(void* ptr) override { const auto& iter = size_map_.find(ptr); EXPECT_NE(size_map_.end(), iter); size_map_.erase(iter); port::Free(ptr); } bool TracksAllocationSizes() const override { return true; } size_t RequestedSize(const void* ptr) const override { const auto& iter = size_map_.find(ptr); EXPECT_NE(size_map_.end(), iter); return iter->second; } absl::optional<AllocatorStats> GetStats() override { return absl::nullopt; } private: std::unordered_map<const void*, size_t> size_map_; }; class NoMemoryAllocator : public Allocator { public: string Name() override { return "test"; } void* AllocateRaw(size_t , size_t num_bytes) override { return nullptr; } void DeallocateRaw(void* ptr) override {} bool TracksAllocationSizes() const override { return true; } absl::optional<AllocatorStats> GetStats() override { return absl::nullopt; } }; TEST(TrackingAllocatorTest, SimpleNoTracking) { Allocator* a = cpu_allocator(); EXPECT_FALSE(a->TracksAllocationSizes()); TrackingAllocator* ta = new TrackingAllocator(a, false); void* p1 = ta->AllocateRaw(4, 4); ta->DeallocateRaw(p1); void* p2 = ta->AllocateRaw(4, 12); std::tuple<size_t, size_t, size_t> sizes = ta->GetSizes(); EXPECT_EQ(16, std::get<0>(sizes)); EXPECT_EQ(0, std::get<1>(sizes)); EXPECT_EQ(0, std::get<2>(sizes)); ta->DeallocateRaw(p2); auto records = ta->GetRecordsAndUnRef(); EXPECT_EQ(4, records[0].alloc_bytes); EXPECT_EQ(12, records[1].alloc_bytes); ta = new TrackingAllocator(a, true); p1 = ta->AllocateRaw(4, 4); EXPECT_EQ(4, ta->RequestedSize(p1)); EXPECT_LE(4, ta->AllocatedSize(p1)); EXPECT_EQ(1, ta->AllocationId(p1)); ta->DeallocateRaw(p1); p2 = ta->AllocateRaw(4, 12); EXPECT_EQ(12, ta->RequestedSize(p2)); EXPECT_LE(12, ta->AllocatedSize(p2)); EXPECT_EQ(2, ta->AllocationId(p2)); sizes = ta->GetSizes(); EXPECT_LE(16, std::get<0>(sizes)); EXPECT_LE(12, std::get<1>(sizes)); EXPECT_LE(12, std::get<2>(sizes)); ta->DeallocateRaw(p2); records = ta->GetRecordsAndUnRef(); EXPECT_LE(4, records[0].alloc_bytes); EXPECT_GE(-4, records[1].alloc_bytes); EXPECT_LE(12, records[2].alloc_bytes); EXPECT_GE(-12, records[3].alloc_bytes); } TEST(TrackingAllocatorTest, SimpleTracking) { TestableSizeTrackingAllocator a = TestableSizeTrackingAllocator(); EXPECT_TRUE(a.TracksAllocationSizes()); TrackingAllocator* ta = new TrackingAllocator(&a, false); void* p1 = ta->AllocateRaw(4, 12); ta->DeallocateRaw(p1); void* p2 = ta->AllocateRaw(4, 4); std::tuple<size_t, size_t, size_t> sizes = ta->GetSizes(); EXPECT_EQ(16, std::get<0>(sizes)); EXPECT_EQ(12, std::get<1>(sizes)); EXPECT_EQ(4, std::get<2>(sizes)); ta->DeallocateRaw(p2); auto records = ta->GetRecordsAndUnRef(); EXPECT_EQ(12, records[0].alloc_bytes); EXPECT_EQ(-12, records[1].alloc_bytes); EXPECT_EQ(4, records[2].alloc_bytes); EXPECT_EQ(-4, records[3].alloc_bytes); } TEST(TrackingAllocatorTest, OutOfMemory) { NoMemoryAllocator a; EXPECT_TRUE(a.TracksAllocationSizes()); TrackingAllocator* ta = new TrackingAllocator(&a, false); void* p1 = ta->AllocateRaw(4, 12); EXPECT_EQ(nullptr, p1); std::tuple<size_t, size_t, size_t> sizes = ta->GetSizes(); EXPECT_EQ(0, std::get<0>(sizes)); EXPECT_EQ(0, std::get<1>(sizes)); EXPECT_EQ(0, std::get<2>(sizes)); EXPECT_EQ(0, ta->GetRecordsAndUnRef().size()); } TEST(TrackingAllocatorTest, FreeNullPtr) { NoMemoryAllocator a; EXPECT_TRUE(a.TracksAllocationSizes()); TrackingAllocator* ta = new TrackingAllocator(&a, false); ta->DeallocateRaw(nullptr); std::tuple<size_t, size_t, size_t> sizes = ta->GetSizes(); EXPECT_EQ(0, std::get<0>(sizes)); EXPECT_EQ(0, std::get<1>(sizes)); EXPECT_EQ(0, std::get<2>(sizes)); EXPECT_EQ(0, ta->GetRecordsAndUnRef().size()); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/framework/tracking_allocator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/framework/tracking_allocator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
99662d93-902f-4bd4-a780-65a01fee4b6b
cpp
tensorflow/tensorflow
allocator
third_party/xla/xla/tsl/framework/allocator.cc
tensorflow/core/framework/allocator_test.cc
#include "xla/tsl/framework/allocator.h" #include <atomic> #include "xla/tsl/framework/allocator_registry.h" #include "xla/tsl/framework/tracking_allocator.h" #include "tsl/platform/mem.h" #include "tsl/platform/mutex.h" #include "tsl/platform/strcat.h" #include "tsl/platform/stringprintf.h" #include "tsl/platform/types.h" namespace tsl { string AllocatorStats::DebugString() const { return strings::Printf( "Limit: %20lld\n" "InUse: %20lld\n" "MaxInUse: %20lld\n" "NumAllocs: %20lld\n" "MaxAllocSize: %20lld\n" "Reserved: %20lld\n" "PeakReserved: %20lld\n" "LargestFreeBlock: %20lld\n", static_cast<long long>(this->bytes_limit ? *this->bytes_limit : 0), static_cast<long long>(this->bytes_in_use), static_cast<long long>(this->peak_bytes_in_use), static_cast<long long>(this->num_allocs), static_cast<long long>(this->largest_alloc_size), static_cast<long long>(this->bytes_reserved), static_cast<long long>(this->peak_bytes_reserved), static_cast<long long>(this->largest_free_block_bytes)); } constexpr size_t Allocator::kAllocatorAlignment; Allocator::~Allocator() {} static bool cpu_allocator_collect_full_stats = false; void EnableCPUAllocatorFullStats() { cpu_allocator_collect_full_stats = true; } bool CPUAllocatorFullStatsEnabled() { return cpu_allocator_collect_full_stats; } string AllocatorAttributes::DebugString() const { return strings::StrCat("AllocatorAttributes(on_host=", on_host(), " nic_compatible=", nic_compatible(), " gpu_compatible=", gpu_compatible(), ")"); } Allocator* cpu_allocator_base() { static Allocator* cpu_alloc = AllocatorFactoryRegistry::singleton()->GetAllocator(); if (cpu_allocator_collect_full_stats && !cpu_alloc->TracksAllocationSizes()) { cpu_alloc = new TrackingAllocator(cpu_alloc, true); } return cpu_alloc; } Allocator* cpu_allocator(int numa_node) { static ProcessStateInterface* ps = AllocatorFactoryRegistry::singleton()->process_state(); if (ps) { return ps->GetCPUAllocator(numa_node); } else { return cpu_allocator_base(); } } SubAllocator::SubAllocator(const std::vector<Visitor>& alloc_visitors, const std::vector<Visitor>& free_visitors) : alloc_visitors_(alloc_visitors), free_visitors_(free_visitors) {} void SubAllocator::VisitAlloc(void* ptr, int index, size_t num_bytes) { for (const auto& v : alloc_visitors_) { v(ptr, index, num_bytes); } } void SubAllocator::VisitFree(void* ptr, int index, size_t num_bytes) { for (int i = free_visitors_.size() - 1; i >= 0; --i) { free_visitors_[i](ptr, index, num_bytes); } } }
#include "tensorflow/core/framework/allocator.h" #include <algorithm> #include <vector> #include "xla/tsl/profiler/utils/xplane_utils.h" #include "tensorflow/core/framework/typed_allocator.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mem.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/profiler/lib/profiler_session.h" #include "tensorflow/core/profiler/protobuf/memory_profile.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_visitor.h" namespace tensorflow { static void CheckStats(Allocator* a, int64_t num_allocs, int64_t bytes_in_use, int64_t peak_bytes_in_use, int64_t largest_alloc_size) { absl::optional<AllocatorStats> stats = a->GetStats(); EXPECT_TRUE(stats); if (!stats) { return; } LOG(INFO) << "Alloc stats: \n" << stats->DebugString(); #if defined(PLATFORM_GOOGLE) && defined(NDEBUG) static const int64 kSlop = 5 * 1024; EXPECT_GT(stats->bytes_in_use, bytes_in_use - kSlop); EXPECT_LT(stats->bytes_in_use, bytes_in_use + kSlop); EXPECT_GT(stats->peak_bytes_in_use, peak_bytes_in_use - kSlop); EXPECT_LT(stats->peak_bytes_in_use, peak_bytes_in_use + kSlop); EXPECT_EQ(stats->num_allocs, num_allocs); EXPECT_EQ(stats->largest_alloc_size, largest_alloc_size); #endif } TEST(AllocatorAttributesTest, AllCombos) { for (bool on_host : {false, true}) { for (bool nic_compatible : {false, true}) { for (bool gpu_compatible : {false, true}) { AllocatorAttributes aa; aa.set_on_host(on_host); aa.set_nic_compatible(nic_compatible); aa.set_gpu_compatible(gpu_compatible); EXPECT_EQ(on_host, aa.on_host()); EXPECT_EQ(nic_compatible, aa.nic_compatible()); EXPECT_EQ(gpu_compatible, aa.gpu_compatible()); } } } } TEST(AllocatorAttributesTest, IsEqualOrLessRestrictiveThan) { AllocatorAttributes a, b; EXPECT_TRUE(a.IsEqualOrLessRestrictiveThan(b)); EXPECT_TRUE(a.IsEqualOrLessRestrictiveThan(a)); EXPECT_TRUE(b.IsEqualOrLessRestrictiveThan(b)); b.set_gpu_compatible(true); EXPECT_TRUE(a.IsEqualOrLessRestrictiveThan(b)); EXPECT_FALSE(b.IsEqualOrLessRestrictiveThan(a)); EXPECT_TRUE(a.IsEqualOrLessRestrictiveThan(a)); EXPECT_TRUE(b.IsEqualOrLessRestrictiveThan(b)); a.set_nic_compatible(true); EXPECT_FALSE(a.IsEqualOrLessRestrictiveThan(b)); EXPECT_FALSE(b.IsEqualOrLessRestrictiveThan(a)); a.set_gpu_compatible(true); EXPECT_TRUE(b.IsEqualOrLessRestrictiveThan(a)); EXPECT_FALSE(a.IsEqualOrLessRestrictiveThan(b)); } TEST(AllocatorAttributesTest, Merge) { AllocatorAttributes a, b; EXPECT_EQ(a.value, 0); EXPECT_EQ(b.value, 0); EXPECT_FALSE(a.nic_compatible()); EXPECT_FALSE(b.nic_compatible()); b.set_nic_compatible(true); a.Merge(b); EXPECT_TRUE(a.nic_compatible()); EXPECT_TRUE(b.nic_compatible()); EXPECT_EQ(a.scope_id, 0); EXPECT_EQ(b.scope_id, 0); a.scope_id = 1; a.Merge(b); EXPECT_EQ(a.scope_id, 1); EXPECT_EQ(b.scope_id, 0); a.scope_id = 1; b.scope_id = 0; b.Merge(a); EXPECT_EQ(a.scope_id, 1); EXPECT_EQ(b.scope_id, 1); a.scope_id = 2; b.scope_id = 2; a.Merge(b); EXPECT_EQ(a.scope_id, 2); EXPECT_EQ(b.scope_id, 2); } TEST(AllocatorAttributesDeathTest, MergeDifferentScopeIds) { AllocatorAttributes a, b; a.scope_id = 3; b.scope_id = 4; EXPECT_DEATH({ a.Merge(b); }, ""); } TEST(CPUAllocatorTest, Simple) { EnableCPUAllocatorStats(); Allocator* a = cpu_allocator(); std::vector<void*> ptrs; for (int s = 1; s < 1024; s++) { void* raw = a->AllocateRaw(1, s); ptrs.push_back(raw); } std::sort(ptrs.begin(), ptrs.end()); CheckStats(a, 1023, 552640, 552640, 1024); for (size_t i = 0; i < ptrs.size(); i++) { if (i > 0) { CHECK_NE(ptrs[i], ptrs[i - 1]); } a->DeallocateRaw(ptrs[i]); } CheckStats(a, 1023, 0, 552640, 1024); float* t1 = TypedAllocator::Allocate<float>(a, 1024, {}); double* t2 = TypedAllocator::Allocate<double>(a, 1048576, {}); CheckStats(a, 1025, 1048576 * sizeof(double) + 1024 * sizeof(float), 1048576 * sizeof(double) + 1024 * sizeof(float), 1048576 * sizeof(double)); TypedAllocator::Deallocate(a, t1, 1024); TypedAllocator::Deallocate(a, t2, 1048576); CheckStats(a, 1025, 0, 1048576 * sizeof(double) + 1024 * sizeof(float), 1048576 * sizeof(double)); CHECK(a->ClearStats()); CheckStats(a, 0, 0, 0, 0); DisableCPUAllocatorStats(); } struct TestStruct { int x; }; TEST(CPUAllocatorTest, CheckStructSize) { CHECK_GT(sizeof(TestStruct), 1); } TEST(CPUAllocatorTest, AllocateOverflowMaxSizeT) { Allocator* a = cpu_allocator(); size_t count_to_allocate = std::numeric_limits<size_t>::max(); TestStruct* const test_pointer = TypedAllocator::Allocate<TestStruct>(a, count_to_allocate, {}); CHECK_EQ(test_pointer, reinterpret_cast<TestStruct*>(NULL)); } TEST(CPUAllocatorTest, AllocateOverflowSmallest) { Allocator* a = cpu_allocator(); const size_t count_to_allocate = (std::numeric_limits<size_t>::max() / sizeof(TestStruct)) + 1; TestStruct* const test_pointer = TypedAllocator::Allocate<TestStruct>(a, count_to_allocate, {}); CHECK_EQ(test_pointer, reinterpret_cast<TestStruct*>(NULL)); } TEST(CPUAllocatorTest, Sizes) { Allocator* a = cpu_allocator(); EXPECT_EQ(false, a->TracksAllocationSizes()); } TEST(CPUAllocatorTest, ProfilerReporting) { void* p = port::AlignedMalloc(8, 1); const std::size_t alloc_size = port::MallocExtension_GetAllocatedSize(p); port::AlignedFree(p); if (alloc_size == 0) { LOG(WARNING) << "Skipping Memory Debugging test. It requires " << "port::MallocExtension_GetAllocatedSize to work."; return; } EnableCPUAllocatorStats(); Allocator* a = cpu_allocator(); void* p1 = a->AllocateRaw(1, 16); std::unique_ptr<ProfilerSession> profiler = tensorflow::ProfilerSession::Create( tensorflow::ProfilerSession::DefaultOptions()); void* p2 = a->AllocateRaw(1, 32); a->DeallocateRaw(p1); tensorflow::profiler::XSpace xspace; EXPECT_EQ(absl::OkStatus(), profiler->CollectData(&xspace)); const auto plane = ::tsl::profiler::FindPlaneWithName( xspace, ::tensorflow::profiler::kHostThreadsPlaneName); ::tensorflow::profiler::XPlaneVisitor xplane(plane); ASSERT_EQ(plane->name(), ::tensorflow::profiler::kHostThreadsPlaneName) << "XSpace: " << xspace.DebugString(); ASSERT_EQ(plane->event_metadata_size(), 2) << "XSpace: " << xspace.DebugString(); const auto& line = plane->lines(0); ASSERT_EQ(line.events_size(), 2) << "XSpace: " << xspace.DebugString(); const auto& events = line.events(); ::tensorflow::profiler::XEventVisitor e0(&xplane, &line, &events[0]); EXPECT_EQ(e0.Name(), "MemoryAllocation") << "XSpace: " << xspace.DebugString(); { absl::optional<std::string> bytes_allocated, peak_bytes_in_use, requested_bytes, allocation_bytes; e0.ForEachStat([&](const ::tensorflow::profiler::XStatVisitor& stat) { LOG(ERROR) << "STAT " << stat.Name() << ": " << stat.ToString(); if (stat.Name() == "bytes_allocated") { bytes_allocated = stat.ToString(); } else if (stat.Name() == "peak_bytes_in_use") { peak_bytes_in_use = stat.ToString(); } else if (stat.Name() == "requested_bytes") { requested_bytes = stat.ToString(); } else if (stat.Name() == "allocation_bytes") { allocation_bytes = stat.ToString(); } }); ASSERT_TRUE(bytes_allocated && peak_bytes_in_use && requested_bytes && allocation_bytes) << "XSpace: " << xspace.DebugString(); EXPECT_EQ(*bytes_allocated, "48") << "XSpace: " << xspace.DebugString(); EXPECT_EQ(*peak_bytes_in_use, "48") << "XSpace: " << xspace.DebugString(); EXPECT_EQ(*requested_bytes, "32") << "XSpace: " << xspace.DebugString(); EXPECT_EQ(*allocation_bytes, "32") << "XSpace: " << xspace.DebugString(); } ::tensorflow::profiler::XEventVisitor e1(&xplane, &line, &events[1]); EXPECT_EQ(e1.Name(), "MemoryDeallocation") << "XSpace: " << xspace.DebugString(); { absl::optional<std::string> bytes_allocated, peak_bytes_in_use, allocation_bytes; e1.ForEachStat([&](const ::tensorflow::profiler::XStatVisitor& stat) { if (stat.Name() == "bytes_allocated") { bytes_allocated = stat.ToString(); } else if (stat.Name() == "peak_bytes_in_use") { peak_bytes_in_use = stat.ToString(); } else if (stat.Name() == "allocation_bytes") { allocation_bytes = stat.ToString(); } }); ASSERT_TRUE(bytes_allocated && peak_bytes_in_use && allocation_bytes) << "XSpace: " << xspace.DebugString(); EXPECT_EQ(*bytes_allocated, "32") << "XSpace: " << xspace.DebugString(); EXPECT_EQ(*peak_bytes_in_use, "48") << "XSpace: " << xspace.DebugString(); EXPECT_EQ(*allocation_bytes, "16") << "XSpace: " << xspace.DebugString(); } a->DeallocateRaw(p2); DisableCPUAllocatorStats(); } namespace { AllocatorAttributes DeviceAllocatorAttribute() { AllocatorAttributes attr; attr.value |= (0x1 << 24); return attr; } bool HasDeviceAllocatorAttribute(const AllocatorAttributes& attr) { return attr.value & (0x1 << 24); } } TEST(CustomAllocatorAttributes, TestSetterAndGetter) { AllocatorAttributes attr = DeviceAllocatorAttribute(); EXPECT_TRUE(HasDeviceAllocatorAttribute(attr)); EXPECT_FALSE(HasDeviceAllocatorAttribute(AllocatorAttributes())); } static void BM_Allocation(::testing::benchmark::State& state) { const int arg = state.range(0); Allocator* a = cpu_allocator(); std::vector<int> sizes = {256, 4096, 16384, 524288, 512, 1048576}; int size_index = 0; if (arg) EnableCPUAllocatorStats(); for (auto s : state) { int bytes = sizes[size_index++ % sizes.size()]; void* p = a->AllocateRaw(1, bytes); a->DeallocateRaw(p); } if (arg) DisableCPUAllocatorStats(); } BENCHMARK(BM_Allocation)->Arg(0)->Arg(1); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/framework/allocator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/framework/allocator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
241962ce-9e32-45be-80a8-91426c83ee4c
cpp
tensorflow/tensorflow
device_id_manager
third_party/xla/xla/tsl/framework/device_id_manager.cc
tensorflow/core/common_runtime/device/device_id_manager_test.cc
#include "xla/tsl/framework/device_id_manager.h" #include <unordered_map> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "xla/tsl/framework/device_id.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" #include "tsl/platform/mutex.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace tsl { namespace { class TfToPlatformDeviceIdMap { public: static TfToPlatformDeviceIdMap* singleton() { static auto* id_map = new TfToPlatformDeviceIdMap; return id_map; } absl::Status Insert(const DeviceType& type, TfDeviceId tf_device_id, PlatformDeviceId platform_device_id) TF_LOCKS_EXCLUDED(mu_) { std::pair<IdMapType::iterator, bool> result; { mutex_lock lock(mu_); TypeIdMapType::iterator device_id_map_iter = id_map_.insert({type.type_string(), IdMapType()}).first; result = device_id_map_iter->second.insert( {tf_device_id.value(), platform_device_id.value()}); } if (!result.second && platform_device_id.value() != result.first->second) { return errors::AlreadyExists( "TensorFlow device (", type, ":", tf_device_id.value(), ") is being mapped to multiple devices (", platform_device_id.value(), " now, and ", result.first->second, " previously), which is not supported. " "This may be the result of providing different ", type, " configurations (ConfigProto.gpu_options, for example ", "different visible_device_list) when creating multiple Sessions in ", "the same process. This is not currently supported, see ", "https: } return absl::OkStatus(); } bool Find(const DeviceType& type, TfDeviceId tf_device_id, PlatformDeviceId* platform_device_id) const TF_LOCKS_EXCLUDED(mu_) { tf_shared_lock lock(mu_); auto type_id_map_iter = id_map_.find(type.type_string()); if (type_id_map_iter == id_map_.end()) return false; auto id_map_iter = type_id_map_iter->second.find(tf_device_id.value()); if (id_map_iter == type_id_map_iter->second.end()) return false; *platform_device_id = id_map_iter->second; return true; } absl::StatusOr<std::vector<TfDeviceId>> GetTfDevicesOnPlatform( const DeviceType& type, PlatformDeviceId platform_device_id) const TF_LOCKS_EXCLUDED(mu_) { tf_shared_lock lock(mu_); auto type_id_map_iter = id_map_.find(type.type_string()); if (type_id_map_iter == id_map_.end()) { return absl::NotFoundError( absl::StrCat("TensorFlow device type: ", type.type_string(), " was not registered")); } std::vector<TfDeviceId> tf_device_ids; for (const auto& [tf_device, platform_device] : type_id_map_iter->second) { if (platform_device == platform_device_id.value()) { tf_device_ids.push_back(TfDeviceId(tf_device)); } } return tf_device_ids; } private: TfToPlatformDeviceIdMap() = default; void TestOnlyReset() TF_LOCKS_EXCLUDED(mu_) { mutex_lock lock(mu_); id_map_.clear(); } using IdMapType = std::unordered_map<int32, int32>; using TypeIdMapType = std::unordered_map<std::string, IdMapType>; mutable mutex mu_; TypeIdMapType id_map_ TF_GUARDED_BY(mu_); friend class ::tsl::DeviceIdManager; TfToPlatformDeviceIdMap(const TfToPlatformDeviceIdMap&) = delete; void operator=(const TfToPlatformDeviceIdMap&) = delete; }; } absl::Status DeviceIdManager::InsertTfPlatformDeviceIdPair( const DeviceType& type, TfDeviceId tf_device_id, PlatformDeviceId platform_device_id) { return TfToPlatformDeviceIdMap::singleton()->Insert(type, tf_device_id, platform_device_id); } absl::Status DeviceIdManager::TfToPlatformDeviceId( const DeviceType& type, TfDeviceId tf_device_id, PlatformDeviceId* platform_device_id) { if (TfToPlatformDeviceIdMap::singleton()->Find(type, tf_device_id, platform_device_id)) { return absl::OkStatus(); } return errors::NotFound("TensorFlow device ", type, ":", tf_device_id.value(), " was not registered"); } absl::StatusOr<std::vector<TfDeviceId>> DeviceIdManager::GetTfDevicesOnPlatform( const DeviceType& type, PlatformDeviceId platform_device_id) { return TfToPlatformDeviceIdMap::singleton()->GetTfDevicesOnPlatform( type, platform_device_id); } void DeviceIdManager::TestOnlyReset() { TfToPlatformDeviceIdMap::singleton()->TestOnlyReset(); } }
#include "tensorflow/core/common_runtime/device/device_id_manager.h" #include <vector> #include <gmock/gmock.h> #include "tensorflow/core/common_runtime/device/device_id.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace { using ::testing::IsEmpty; using ::testing::UnorderedElementsAre; PlatformDeviceId TfToPlatformDeviceId(const DeviceType& type, TfDeviceId tf) { PlatformDeviceId platform_device_id; TF_CHECK_OK( DeviceIdManager::TfToPlatformDeviceId(type, tf, &platform_device_id)); return platform_device_id; } TEST(DeviceIdManagerTest, Basics) { DeviceType device_type("GPU"); TfDeviceId key_0(0); PlatformDeviceId value_0(0); TF_ASSERT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair(device_type, key_0, value_0)); EXPECT_EQ(value_0, TfToPlatformDeviceId(device_type, key_0)); TF_ASSERT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair(device_type, key_0, value_0)); EXPECT_EQ(value_0, TfToPlatformDeviceId(device_type, key_0)); TfDeviceId key_1(3); PlatformDeviceId value_1(2); TF_ASSERT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair(device_type, key_1, value_1)); EXPECT_EQ(value_1, TfToPlatformDeviceId(device_type, key_1)); TfDeviceId key_2(10); TF_ASSERT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair(device_type, key_2, value_1)); EXPECT_EQ(value_1, TfToPlatformDeviceId(device_type, key_2)); ASSERT_FALSE( DeviceIdManager::InsertTfPlatformDeviceIdPair(device_type, key_2, value_0) .ok()); ASSERT_FALSE(DeviceIdManager::TfToPlatformDeviceId(device_type, TfDeviceId(100), &value_0) .ok()); } TEST(DeviceIdManagerTest, TwoDevices) { DeviceType device_type0("GPU"); TfDeviceId key_0(0); PlatformDeviceId value_0(0); TF_ASSERT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair(device_type0, key_0, value_0)); DeviceType device_type1("XPU"); TfDeviceId key_1(2); PlatformDeviceId value_1(3); TF_ASSERT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair(device_type1, key_1, value_1)); EXPECT_EQ(value_0, TfToPlatformDeviceId(device_type0, key_0)); EXPECT_EQ(value_1, TfToPlatformDeviceId(device_type1, key_1)); ASSERT_FALSE( DeviceIdManager::TfToPlatformDeviceId(device_type0, key_1, &value_0) .ok()); ASSERT_FALSE( DeviceIdManager::TfToPlatformDeviceId(device_type1, key_0, &value_1) .ok()); ASSERT_FALSE( DeviceIdManager::TfToPlatformDeviceId("FOO", key_0, &value_0).ok()); } TEST(DeviceIdManagerTest, GetTfDevicesOnSamePlatform) { DeviceType device_gpu("GPU"); TfDeviceId tf_device_0(0); PlatformDeviceId platform_0(0); TF_ASSERT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair( device_gpu, tf_device_0, platform_0)); TfDeviceId tf_device_1(1); TF_ASSERT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair( device_gpu, tf_device_1, platform_0)); DeviceType device_xpu("XPU"); TfDeviceId tf_device_2(2); PlatformDeviceId platform_1(3); TF_ASSERT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair( device_xpu, tf_device_2, platform_1)); TF_ASSERT_OK_AND_ASSIGN( std::vector<TfDeviceId> tf_device_ids_gpu, DeviceIdManager::GetTfDevicesOnPlatform(device_gpu, platform_0)); EXPECT_THAT(tf_device_ids_gpu, UnorderedElementsAre(tf_device_0, tf_device_1)); TF_ASSERT_OK_AND_ASSIGN( tf_device_ids_gpu, DeviceIdManager::GetTfDevicesOnPlatform(device_gpu, platform_1)); EXPECT_THAT(tf_device_ids_gpu, IsEmpty()); TF_ASSERT_OK_AND_ASSIGN( std::vector<TfDeviceId> tf_device_ids_xpu, DeviceIdManager::GetTfDevicesOnPlatform(device_xpu, platform_1)); EXPECT_THAT(tf_device_ids_xpu, UnorderedElementsAre(tf_device_2)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/framework/device_id_manager.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/device/device_id_manager_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1b92c6bd-6885-430a-9126-bdb0a1b79412
cpp
tensorflow/tensorflow
cancellation
third_party/xla/xla/tsl/framework/cancellation.cc
third_party/xla/xla/tsl/framework/cancellation_test.cc
#include "xla/tsl/framework/cancellation.h" #include <forward_list> #include "absl/memory/memory.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" namespace tsl { const CancellationToken CancellationManager::kInvalidToken = -1; CancellationManager::CancellationManager() : is_cancelling_(false), is_cancelled_(false), next_cancellation_token_(0) {} CancellationManager::CancellationManager(CancellationManager* parent) : is_cancelling_(false), next_cancellation_token_(0), parent_(parent) { is_cancelled_ = parent->RegisterChild(this); } void CancellationManager::StartCancel() { StartCancelWithStatus(absl::OkStatus()); } void CancellationManager::StartCancelWithStatus(const absl::Status& status) { gtl::FlatMap<CancellationToken, CallbackConfiguration> callbacks_to_run; std::forward_list<CancellationManager*> children_to_cancel; Notification* cancelled_notification = nullptr; { mutex_lock l(mu_); if (is_cancelled_.load(std::memory_order_relaxed) || is_cancelling_) { return; } is_cancelling_ = true; if (state_) { std::swap(state_->callbacks, callbacks_to_run); CancellationManager* child = state_->first_child; while (child != nullptr) { children_to_cancel.push_front(child); child->is_removed_from_parent_ = true; child = child->next_sibling_; } state_->first_child = nullptr; cancelled_notification = &state_->cancelled_notification; } } for (auto key_and_value : callbacks_to_run) { CallbackConfiguration& config = key_and_value.second; if (!status.ok() && config.log_error) { LOG(WARNING) << "Cancellation callback \"" << config.name << "\" is triggered due to a " << (StatusGroup::IsDerived(status) ? "derived" : "root") << " error: " << status.ToString(); } config.callback(); } for (CancellationManager* child : children_to_cancel) { child->StartCancelWithStatus(status); } { mutex_lock l(mu_); is_cancelling_ = false; is_cancelled_.store(true, std::memory_order_release); } if (cancelled_notification) { cancelled_notification->Notify(); } } bool CancellationManager::RegisterCallback(CancellationToken token, CancelCallback callback) { return RegisterCallbackConfig( token, CallbackConfiguration{callback, "", false}); } bool CancellationManager::RegisterCallbackWithErrorLogging( CancellationToken token, CancelCallback callback, absl::string_view callback_name) { return RegisterCallbackConfig( token, CallbackConfiguration{callback, std::string(callback_name), true}); } bool CancellationManager::RegisterCallbackConfig(CancellationToken token, CallbackConfiguration config) { DCHECK_LT(token, next_cancellation_token_) << "Invalid cancellation token"; mutex_lock l(mu_); bool should_register = !is_cancelled_ && !is_cancelling_; if (should_register) { if (!state_) { state_ = absl::make_unique<State>(); } std::swap(state_->callbacks[token], config); } return should_register; } bool CancellationManager::DeregisterCallback(CancellationToken token) { mu_.lock(); if (is_cancelled_) { mu_.unlock(); return false; } else if (is_cancelling_) { Notification* cancelled_notification = state_ ? &state_->cancelled_notification : nullptr; mu_.unlock(); if (cancelled_notification) { cancelled_notification->WaitForNotification(); } return false; } else { if (state_) { state_->callbacks.erase(token); } mu_.unlock(); return true; } } bool CancellationManager::RegisterChild(CancellationManager* child) { mutex_lock l(mu_); if (is_cancelled_.load(std::memory_order_relaxed) || is_cancelling_) { child->is_removed_from_parent_ = true; return true; } if (!state_) { state_ = absl::make_unique<State>(); } CancellationManager* current_head = state_->first_child; state_->first_child = child; child->prev_sibling_ = nullptr; child->next_sibling_ = current_head; if (current_head) { current_head->prev_sibling_ = child; } return false; } void CancellationManager::DeregisterChild(CancellationManager* child) { DCHECK_EQ(child->parent_, this); Notification* cancelled_notification = nullptr; { mutex_lock l(mu_); if (!child->is_removed_from_parent_) { DCHECK(state_); if (child->prev_sibling_ == nullptr) { DCHECK_EQ(state_->first_child, child); state_->first_child = child->next_sibling_; } else { child->prev_sibling_->next_sibling_ = child->next_sibling_; } if (child->next_sibling_ != nullptr) { child->next_sibling_->prev_sibling_ = child->prev_sibling_; } child->is_removed_from_parent_ = true; } if (is_cancelling_) { cancelled_notification = &state_->cancelled_notification; } } if (cancelled_notification) { cancelled_notification->WaitForNotification(); } } bool CancellationManager::TryDeregisterCallback(CancellationToken token) { mutex_lock lock(mu_); if (is_cancelled_ || is_cancelling_) { return false; } else { if (state_) { state_->callbacks.erase(token); } return true; } } CancellationManager::~CancellationManager() { if (parent_) { parent_->DeregisterChild(this); } if (state_) { StartCancel(); } } bool CancellationManager::IsCancelling() { mutex_lock lock(mu_); return is_cancelling_; } absl::Status RegisterCancellationCallback( CancellationManager* cancellation_manager, CancelCallback callback, std::function<void()>* deregister_fn) { if (cancellation_manager) { CancellationToken token = cancellation_manager->get_cancellation_token(); if (!cancellation_manager->RegisterCallback(token, std::move(callback))) { return errors::Cancelled("Operation was cancelled"); } *deregister_fn = [cancellation_manager, token]() { cancellation_manager->DeregisterCallback(token); }; } else { VLOG(1) << "Cancellation manager is not set. Cancellation callback will " "not be registered."; *deregister_fn = []() {}; } return absl::OkStatus(); } }
#include "xla/tsl/framework/cancellation.h" #include <algorithm> #include <memory> #include <numeric> #include <random> #include <vector> #include "tsl/platform/notification.h" #include "tsl/platform/status.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace tsl { TEST(Cancellation, SimpleNoCancel) { bool is_cancelled = false; CancellationManager* manager = new CancellationManager(); auto token = manager->get_cancellation_token(); bool registered = manager->RegisterCallback( token, [&is_cancelled]() { is_cancelled = true; }); EXPECT_TRUE(registered); bool deregistered = manager->DeregisterCallback(token); EXPECT_TRUE(deregistered); delete manager; EXPECT_FALSE(is_cancelled); } TEST(Cancellation, SimpleCancel) { bool is_cancelled = false; CancellationManager* manager = new CancellationManager(); auto token = manager->get_cancellation_token(); bool registered = manager->RegisterCallback( token, [&is_cancelled]() { is_cancelled = true; }); EXPECT_TRUE(registered); manager->StartCancel(); EXPECT_TRUE(is_cancelled); delete manager; } TEST(Cancellation, StartCancelTriggersAllCallbacks) { bool is_cancelled_1 = false; bool is_cancelled_2 = false; auto manager = std::make_unique<CancellationManager>(); auto token_1 = manager->get_cancellation_token(); EXPECT_TRUE(manager->RegisterCallbackWithErrorLogging( token_1, [&is_cancelled_1]() { is_cancelled_1 = true; }, "TestCallback")); auto token_2 = manager->get_cancellation_token(); EXPECT_TRUE(manager->RegisterCallback( token_2, [&is_cancelled_2]() { is_cancelled_2 = true; })); manager->StartCancel(); EXPECT_TRUE(is_cancelled_1); EXPECT_TRUE(is_cancelled_2); } TEST(Cancellation, StartCancelWithStatusTriggersAllCallbacks) { bool is_cancelled_1 = false; bool is_cancelled_2 = false; auto manager = std::make_unique<CancellationManager>(); auto token_1 = manager->get_cancellation_token(); EXPECT_TRUE(manager->RegisterCallbackWithErrorLogging( token_1, [&is_cancelled_1]() { is_cancelled_1 = true; }, "TestCallback")); auto token_2 = manager->get_cancellation_token(); EXPECT_TRUE(manager->RegisterCallback( token_2, [&is_cancelled_2]() { is_cancelled_2 = true; })); manager->StartCancelWithStatus(absl::OkStatus()); EXPECT_TRUE(is_cancelled_1); EXPECT_TRUE(is_cancelled_2); } TEST(Cancellation, CancelBeforeRegister) { auto manager = std::make_unique<CancellationManager>(); auto token = manager->get_cancellation_token(); manager->StartCancel(); bool registered = manager->RegisterCallback(token, nullptr); EXPECT_FALSE(registered); } TEST(Cancellation, DeregisterAfterCancel) { bool is_cancelled = false; auto manager = std::make_unique<CancellationManager>(); auto token = manager->get_cancellation_token(); bool registered = manager->RegisterCallback( token, [&is_cancelled]() { is_cancelled = true; }); EXPECT_TRUE(registered); manager->StartCancel(); EXPECT_TRUE(is_cancelled); bool deregistered = manager->DeregisterCallback(token); EXPECT_FALSE(deregistered); } TEST(Cancellation, CancelMultiple) { bool is_cancelled_1 = false, is_cancelled_2 = false, is_cancelled_3 = false; auto manager = std::make_unique<CancellationManager>(); auto token_1 = manager->get_cancellation_token(); bool registered_1 = manager->RegisterCallback( token_1, [&is_cancelled_1]() { is_cancelled_1 = true; }); EXPECT_TRUE(registered_1); auto token_2 = manager->get_cancellation_token(); bool registered_2 = manager->RegisterCallback( token_2, [&is_cancelled_2]() { is_cancelled_2 = true; }); EXPECT_TRUE(registered_2); EXPECT_FALSE(is_cancelled_1); EXPECT_FALSE(is_cancelled_2); manager->StartCancel(); EXPECT_TRUE(is_cancelled_1); EXPECT_TRUE(is_cancelled_2); EXPECT_FALSE(is_cancelled_3); auto token_3 = manager->get_cancellation_token(); bool registered_3 = manager->RegisterCallback( token_3, [&is_cancelled_3]() { is_cancelled_3 = true; }); EXPECT_FALSE(registered_3); EXPECT_FALSE(is_cancelled_3); } TEST(Cancellation, IsCancelled) { auto cm = std::make_unique<CancellationManager>(); thread::ThreadPool w(Env::Default(), "test", 4); std::vector<Notification> done(8); for (size_t i = 0; i < done.size(); ++i) { Notification* n = &done[i]; w.Schedule([n, &cm]() { while (!cm->IsCancelled()) { } ASSERT_FALSE(cm->IsCancelling()); n->Notify(); }); } Env::Default()->SleepForMicroseconds(1000000 ); cm->StartCancel(); for (size_t i = 0; i < done.size(); ++i) { done[i].WaitForNotification(); } } TEST(Cancellation, IsCancelling) { CancellationManager cm; Notification started_cancelling; Notification can_finish_cancel; Notification cancel_done; thread::ThreadPool w(Env::Default(), "test", 1); auto token = cm.get_cancellation_token(); ASSERT_TRUE( cm.RegisterCallback(token, [&started_cancelling, &can_finish_cancel]() { started_cancelling.Notify(); can_finish_cancel.WaitForNotification(); })); w.Schedule([&cm, &cancel_done]() { cm.StartCancel(); cancel_done.Notify(); }); started_cancelling.WaitForNotification(); ASSERT_TRUE(cm.IsCancelling()); can_finish_cancel.Notify(); cancel_done.WaitForNotification(); ASSERT_FALSE(cm.IsCancelling()); ASSERT_TRUE(cm.IsCancelled()); } TEST(Cancellation, TryDeregisterWithoutCancel) { bool is_cancelled = false; auto manager = std::make_unique<CancellationManager>(); auto token = manager->get_cancellation_token(); bool registered = manager->RegisterCallback( token, [&is_cancelled]() { is_cancelled = true; }); EXPECT_TRUE(registered); bool deregistered = manager->TryDeregisterCallback(token); EXPECT_TRUE(deregistered); EXPECT_FALSE(is_cancelled); } TEST(Cancellation, TryDeregisterAfterCancel) { bool is_cancelled = false; auto manager = std::make_unique<CancellationManager>(); auto token = manager->get_cancellation_token(); bool registered = manager->RegisterCallback( token, [&is_cancelled]() { is_cancelled = true; }); EXPECT_TRUE(registered); manager->StartCancel(); EXPECT_TRUE(is_cancelled); bool deregistered = manager->TryDeregisterCallback(token); EXPECT_FALSE(deregistered); } TEST(Cancellation, TryDeregisterDuringCancel) { Notification cancel_started, finish_callback, cancel_complete; auto manager = std::make_unique<CancellationManager>(); auto token = manager->get_cancellation_token(); bool registered = manager->RegisterCallback(token, [&]() { cancel_started.Notify(); finish_callback.WaitForNotification(); }); EXPECT_TRUE(registered); thread::ThreadPool w(Env::Default(), "test", 1); w.Schedule([&]() { manager->StartCancel(); cancel_complete.Notify(); }); cancel_started.WaitForNotification(); bool deregistered = manager->TryDeregisterCallback(token); EXPECT_FALSE(deregistered); finish_callback.Notify(); cancel_complete.WaitForNotification(); } TEST(Cancellation, Parent_CancelManyChildren) { CancellationManager parent; std::vector<std::unique_ptr<CancellationManager>> children; for (size_t i = 0; i < 5; ++i) { children.push_back(absl::make_unique<CancellationManager>(&parent)); EXPECT_FALSE(children.back()->IsCancelled()); } parent.StartCancel(); for (auto& child : children) { EXPECT_TRUE(child->IsCancelled()); } } TEST(Cancellation, Parent_NotCancelled) { CancellationManager parent; { CancellationManager child(&parent); child.StartCancel(); EXPECT_TRUE(child.IsCancelled()); } EXPECT_FALSE(parent.IsCancelled()); } TEST(Cancellation, Parent_AlreadyCancelled) { CancellationManager parent; parent.StartCancel(); EXPECT_TRUE(parent.IsCancelled()); CancellationManager child(&parent); EXPECT_TRUE(child.IsCancelled()); } TEST(Cancellation, Parent_RandomDestructionOrder) { CancellationManager parent; std::random_device rd; std::mt19937 g(rd()); for (int rounds = 0; rounds < 100; ++rounds) { std::vector<std::unique_ptr<CancellationManager>> children; std::uniform_int_distribution<int> dist(1, 9); const size_t round_size = dist(rd); for (size_t i = 0; i < round_size; ++i) { children.push_back(absl::make_unique<CancellationManager>(&parent)); EXPECT_FALSE(children.back()->IsCancelled()); } std::vector<size_t> destruction_order(round_size); std::iota(destruction_order.begin(), destruction_order.end(), 0); std::shuffle(destruction_order.begin(), destruction_order.end(), g); for (size_t index : destruction_order) { children[index].reset(); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/framework/cancellation.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/framework/cancellation_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
89a83e9a-b2e7-4752-bf5f-15838cc840ee
cpp
tensorflow/tensorflow
device_id_utils
third_party/xla/xla/tsl/framework/device_id_utils.cc
third_party/xla/xla/tsl/framework/device_id_utils_test.cc
#include "xla/tsl/framework/device_id_utils.h" #include <numeric> #include <set> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/strings/numbers.h" #include "xla/tsl/framework/device_id.h" #include "xla/tsl/framework/device_id_manager.h" #include "tsl/platform/errors.h" #include "tsl/platform/str_util.h" namespace tsl { void CheckValidTfDeviceId(const DeviceType& type, const int visible_device_count, const TfDeviceId tf_device_id) { PlatformDeviceId platform_device_id; TF_CHECK_OK(DeviceIdManager::TfToPlatformDeviceId(type, tf_device_id, &platform_device_id)); CHECK_LT(platform_device_id.value(), visible_device_count) << "platform_device_id is outside discovered device range." << " TF " << type << " id: " << tf_device_id << ", platform " << type << " id: " << platform_device_id << ", visible device count: " << visible_device_count; } absl::Status ParseVisibleDeviceList( const std::string& visible_device_list, const int visible_device_count, std::vector<PlatformDeviceId>* visible_device_order) { visible_device_order->clear(); if (visible_device_list.empty()) { visible_device_order->resize(visible_device_count); std::iota(visible_device_order->begin(), visible_device_order->end(), 0); } else { const std::vector<std::string> order_str = tsl::str_util::Split(visible_device_list, ','); for (const std::string& platform_device_id_str : order_str) { int32_t platform_device_id; if (!absl::SimpleAtoi(platform_device_id_str, &platform_device_id)) { return tsl::errors::InvalidArgument( "Could not parse entry in 'visible_device_list': '", platform_device_id_str, "'. visible_device_list = ", visible_device_list); } if (platform_device_id < 0 || platform_device_id >= visible_device_count) { return tsl::errors::InvalidArgument( "'visible_device_list' listed an invalid Device id '", platform_device_id, "' but visible device count is ", visible_device_count); } visible_device_order->push_back( tsl::PlatformDeviceId(platform_device_id)); } } std::set<PlatformDeviceId> visible_device_set(visible_device_order->begin(), visible_device_order->end()); if (visible_device_set.size() != visible_device_order->size()) { return tsl::errors::InvalidArgument( "visible_device_list contained a duplicate entry: ", visible_device_list); } return absl::OkStatus(); } absl::StatusOr<size_t> GetNumberTfDevicesAndConfigurePlatformDeviceId( const absl::flat_hash_map<std::string, int64_t>& session_option_device_counts, absl::string_view device_type, absl::string_view visible_device_list, const int visible_device_count) { size_t num_tf_devices = INT_MAX; const auto iter = session_option_device_counts.find(device_type); if (iter != session_option_device_counts.end()) { num_tf_devices = iter->second; } if (num_tf_devices == 0) { return 0; } std::vector<PlatformDeviceId> visible_device_order; TF_RETURN_IF_ERROR(ParseVisibleDeviceList(std::string(visible_device_list), visible_device_count, &visible_device_order)); if (num_tf_devices > visible_device_order.size()) { num_tf_devices = visible_device_order.size(); } for (int i = 0; i < num_tf_devices; ++i) { const PlatformDeviceId platform_device_id = visible_device_order[i]; const TfDeviceId tf_device_id(i); TF_RETURN_IF_ERROR(tsl::DeviceIdManager::InsertTfPlatformDeviceIdPair( DeviceType(device_type), tf_device_id, platform_device_id)); } return num_tf_devices; } absl::StatusOr<int> GetPlatformDeviceIdFromDeviceParsedName( const DeviceNameUtils::ParsedName& device_name, const DeviceType& device_type) { const TfDeviceId tf_device_id(GetDeviceIdFromDeviceParsedName(device_name)); PlatformDeviceId platform_device_id; absl::Status platform_id_status = DeviceIdManager::TfToPlatformDeviceId( device_type, tf_device_id, &platform_device_id); if (platform_id_status.ok()) { return platform_device_id.value(); } return platform_id_status; } int GetDeviceIdFromDeviceParsedName( const DeviceNameUtils::ParsedName& device_name) { return device_name.id; } }
#include "xla/tsl/framework/device_id_utils.h" #include <string_view> #include <vector> #include "xla/tsl/framework/device_id_manager.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/util/device_name_utils.h" #include "tsl/platform/status_matchers.h" namespace tsl { namespace { using ::testing::HasSubstr; using ::tsl::testing::StatusIs; constexpr std::string_view kTestDeviceType = "CPU"; PlatformDeviceId TfToPlatformDeviceId(TfDeviceId tf_device_id) { PlatformDeviceId platform_device_id; TF_CHECK_OK(DeviceIdManager::TfToPlatformDeviceId( DeviceType(kTestDeviceType), tf_device_id, &platform_device_id)); return platform_device_id; } TEST(DeviceIdUtilsTest, CheckValidTfDeviceIdPass) { TfDeviceId tf_device_id(0); PlatformDeviceId platform_device_id(1); TF_EXPECT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair( DeviceType(kTestDeviceType), tf_device_id, platform_device_id)); tsl::CheckValidTfDeviceId("CPU", 2, tf_device_id); DeviceIdManager::TestOnlyReset(); } TEST(DeviceIdUtilsTest, CheckValidTfDeviceIdNotFound) { TfDeviceId tf_device_id(0); EXPECT_DEATH( tsl::CheckValidTfDeviceId(DeviceType(kTestDeviceType), 2, tf_device_id), "NOT_FOUND: TensorFlow device CPU:0 was not registered"); } TEST(DeviceIdUtilsTest, CheckValidTfDeviceIdOutsideVisibleDeviceRange) { TfDeviceId tf_device_id(0); PlatformDeviceId platform_device_id(1); TF_EXPECT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair( DeviceType(kTestDeviceType), tf_device_id, platform_device_id)); EXPECT_DEATH(tsl::CheckValidTfDeviceId("CPU", 1, tf_device_id), "platform_device_id is outside discovered device range."); DeviceIdManager::TestOnlyReset(); } TEST(DeviceIdUtilsTest, ParseEmptyVisibleDeviceList) { std::vector<PlatformDeviceId> visible_device_order; TF_EXPECT_OK(ParseVisibleDeviceList("", 2, &visible_device_order)); PlatformDeviceId platform_device_id0(0), platform_device_id1(1); std::vector<PlatformDeviceId> expected = {platform_device_id0, platform_device_id1}; EXPECT_EQ(visible_device_order, expected); } TEST(DeviceIdUtilsTest, ParseVisibleDeviceList) { std::vector<PlatformDeviceId> visible_device_order; TF_EXPECT_OK(ParseVisibleDeviceList("2,1", 3, &visible_device_order)); PlatformDeviceId platform_device_id2(2), platform_device_id1(1); std::vector<PlatformDeviceId> expected = {platform_device_id2, platform_device_id1}; EXPECT_EQ(visible_device_order, expected); } TEST(DeviceIdUtilsTest, ParseInvalidVisibleDeviceList) { std::vector<PlatformDeviceId> visible_device_order; EXPECT_THAT( ParseVisibleDeviceList("3,1", 3, &visible_device_order), StatusIs(tensorflow::error::INVALID_ARGUMENT, HasSubstr("'visible_device_list' listed an invalid Device id " "'3' but visible device count is 3"))); } TEST(DeviceIdUtilsTest, ParseDuplicateVisibleDeviceList) { std::vector<PlatformDeviceId> visible_device_order; EXPECT_THAT( ParseVisibleDeviceList("1,1", 3, &visible_device_order), StatusIs( tensorflow::error::INVALID_ARGUMENT, HasSubstr("visible_device_list contained a duplicate entry: 1,1"))); } TEST(DeviceIdUtilsTest, GetNumberTfDevicesDefault) { TF_ASSERT_OK_AND_ASSIGN(size_t num_tf_device, GetNumberTfDevicesAndConfigurePlatformDeviceId( {}, kTestDeviceType, "", 2)); EXPECT_EQ(num_tf_device, 2); TfDeviceId tf_device_id_0(0); PlatformDeviceId expected_0(0); EXPECT_EQ(expected_0, TfToPlatformDeviceId(tf_device_id_0)); TfDeviceId tf_device_id_1(1); PlatformDeviceId expected_1(1); EXPECT_EQ(expected_1, TfToPlatformDeviceId(tf_device_id_1)); DeviceIdManager::TestOnlyReset(); } TEST(DeviceIdUtilsTest, GetNumberTfDevicesWithVisibleDeviceList) { TF_ASSERT_OK_AND_ASSIGN(size_t num_tf_device, GetNumberTfDevicesAndConfigurePlatformDeviceId( {}, kTestDeviceType, "2,0", 3)); EXPECT_EQ(num_tf_device, 2); TfDeviceId tf_device_id_0(0); PlatformDeviceId expected_2(2); EXPECT_EQ(expected_2, TfToPlatformDeviceId(tf_device_id_0)); TfDeviceId tf_device_id_1(1); PlatformDeviceId expected_0(0); EXPECT_EQ(expected_0, TfToPlatformDeviceId(tf_device_id_1)); DeviceIdManager::TestOnlyReset(); } TEST(DeviceIdUtilsTest, GetNumberTfDevicesWithSessionOptionDeviceCount) { TF_ASSERT_OK_AND_ASSIGN( size_t num_tf_device, GetNumberTfDevicesAndConfigurePlatformDeviceId( {{std::string(kTestDeviceType), 2}}, kTestDeviceType, "1,0,2", 3)); EXPECT_EQ(num_tf_device, 2); TfDeviceId tf_device_id_0(0); PlatformDeviceId expected_1(1); EXPECT_EQ(expected_1, TfToPlatformDeviceId(tf_device_id_0)); TfDeviceId tf_device_id_1(1); PlatformDeviceId expected_0(0); EXPECT_EQ(expected_0, TfToPlatformDeviceId(tf_device_id_1)); DeviceIdManager::TestOnlyReset(); } TEST(DeviceIdUtilsTest, GetPlatformDeviceId) { TfDeviceId tf_device_id(0); PlatformDeviceId platform_device_id(1); TF_EXPECT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair( DeviceType(kTestDeviceType), tf_device_id, platform_device_id)); DeviceNameUtils::ParsedName device_name; device_name.id = 0; TF_ASSERT_OK_AND_ASSIGN(int device_id, GetPlatformDeviceIdFromDeviceParsedName( device_name, DeviceType(kTestDeviceType))); EXPECT_EQ(device_id, 1); DeviceIdManager::TestOnlyReset(); } TEST(DeviceIdUtilsTest, GetPlatformDeviceIdNotFound) { DeviceNameUtils::ParsedName device_name; device_name.id = 0; EXPECT_THAT( GetPlatformDeviceIdFromDeviceParsedName(device_name, DeviceType(kTestDeviceType)), StatusIs(tensorflow::error::NOT_FOUND, HasSubstr("TensorFlow device CPU:0 was not registered"))); } TEST(DeviceIdUtilsTest, GetDeviceIdWithPlatformDeviceId) { TfDeviceId tf_device_id(0); PlatformDeviceId platform_device_id(1); TF_EXPECT_OK(DeviceIdManager::InsertTfPlatformDeviceIdPair( DeviceType(kTestDeviceType), tf_device_id, platform_device_id)); DeviceNameUtils::ParsedName device_name; device_name.id = 0; EXPECT_EQ(GetDeviceIdFromDeviceParsedName(device_name), 0); DeviceIdManager::TestOnlyReset(); } TEST(DeviceIdUtilsTest, GetDeviceIdWithoutPlatformDeviceId) { DeviceNameUtils::ParsedName device_name; device_name.id = 0; EXPECT_EQ(GetDeviceIdFromDeviceParsedName(device_name), 0); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/framework/device_id_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/framework/device_id_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
78838912-1249-42c4-bc35-dbab34023c54
cpp
tensorflow/tensorflow
async_value
third_party/xla/xla/tsl/concurrency/async_value.cc
third_party/xla/xla/tsl/concurrency/async_value_test.cc
#include "xla/tsl/concurrency/async_value.h" #include <atomic> #include <cstdint> #include <cstdlib> #include <limits> #include <utility> #include "absl/base/optimization.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/synchronization/blocking_counter.h" #include "absl/types/span.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "xla/tsl/concurrency/ref_count.h" #include "tsl/platform/logging.h" namespace tsl { class NotifierListNode { public: explicit NotifierListNode(absl::AnyInvocable<void()> notification) : next_(nullptr), notification_(std::move(notification)) {} private: friend class AsyncValue; NotifierListNode* next_; absl::AnyInvocable<void()> notification_; }; uint16_t AsyncValue::CreateTypeInfoAndReturnTypeIdImpl( const TypeInfo& type_info) { size_t type_id = GetTypeInfoTableSingleton()->emplace_back(type_info) + 1; DCHECK(type_id < std::numeric_limits<uint16_t>::max()) << "Too many different AsyncValue types."; return type_id; } AsyncValue::TypeInfoTable* AsyncValue::GetTypeInfoTableSingleton() { constexpr int kInitialCapacity = 64; static auto* type_info_table = new TypeInfoTable(kInitialCapacity); return type_info_table; } std::atomic<size_t> AsyncValue::total_allocated_async_values_; void AsyncValue::NotifyAvailable(State available_state) { DCHECK((kind() == Kind::kConcrete || kind() == Kind::kIndirect)) << "Should only be used by ConcreteAsyncValue or IndirectAsyncValue"; DCHECK(available_state == State::kConcrete || available_state == State::kError); auto old_value = waiters_and_state_.exchange( WaitersAndState(nullptr, available_state), std::memory_order_acq_rel); DCHECK(old_value.state() == State::kUnconstructed || old_value.state() == State::kConstructed); RunWaiters(old_value.waiter()); } void AsyncValue::RunWaiters(NotifierListNode* list) { while (list) { NotifierListNode* node = list; node->notification_(); list = node->next_; delete node; } } void AsyncValue::EnqueueWaiter(absl::AnyInvocable<void()> waiter, WaitersAndState old_value) { auto* node = new NotifierListNode(std::move(waiter)); auto old_state = old_value.state(); node->next_ = old_value.waiter(); auto new_value = WaitersAndState(node, old_state); while (!waiters_and_state_.compare_exchange_weak(old_value, new_value, std::memory_order_acq_rel, std::memory_order_acquire)) { if (old_value.state() == State::kConcrete || old_value.state() == State::kError) { DCHECK(old_value.waiter() == nullptr); node->notification_(); delete node; return; } node->next_ = old_value.waiter(); } DCHECK(old_value.state() == State::kUnconstructed || old_value.state() == State::kConstructed); } void AsyncValue::SetError(absl::Status status) { DCHECK(!status.ok()); if (kind() == Kind::kConcrete) { GetTypeInfo().set_error(this, std::move(status)); } else { DCHECK(kind() == Kind::kIndirect); auto error_av = MakeErrorAsyncValueRef(std::move(status)); static_cast<IndirectAsyncValue*>(this)->ForwardTo(std::move(error_av)); } } void IndirectAsyncValue::ForwardTo(RCReference<AsyncValue> value) { DCHECK(IsUnavailable()); auto s = value->state(); if (s == State::kConcrete || s == State::kError) { DCHECK(!value_) << "IndirectAsyncValue::ForwardTo is called more than once"; auto* concrete_value = value.release(); if (concrete_value->kind() == Kind::kIndirect) { auto* indirect_value = static_cast<IndirectAsyncValue*>(concrete_value); concrete_value = indirect_value->value_; DCHECK(concrete_value != nullptr); DCHECK(concrete_value->kind() == Kind::kConcrete); concrete_value->AddRef(); indirect_value->DropRef(); } DCHECK(type_id_ == kUnknownTypeId || type_id_ == concrete_value->type_id_ || concrete_value->IsType<DummyValueForErrorAsyncValue>()) << "IndirectAsyncValue::ForwardTo value has an unexpected type id"; value_ = concrete_value; type_id_ = concrete_value->type_id_; NotifyAvailable(s); } else { AsyncValue* av = value.get(); av->AndThen([self = FormRef(this), value = std::move(value)]() mutable { self->ForwardTo(std::move(value)); }); } } void BlockUntilReady(AsyncValue* async_value) { if (ABSL_PREDICT_TRUE(async_value->IsAvailable())) return; absl::BlockingCounter cnt(1); async_value->AndThen([&] { cnt.DecrementCount(); }); cnt.Wait(); } void RunWhenReady(absl::Span<AsyncValue* const> values, absl::AnyInvocable<void()> callee) { absl::InlinedVector<AsyncValue*, 4> unavailable_values; for (auto i : values) { if (!i->IsAvailable()) unavailable_values.push_back(i); } if (unavailable_values.empty()) return callee(); if (unavailable_values.size() == 1) { unavailable_values[0]->AndThen( [callee = std::move(callee)]() mutable { callee(); }); return; } struct CounterAndCallee { std::atomic<size_t> counter; absl::AnyInvocable<void()> callee; }; auto* data = new CounterAndCallee{{unavailable_values.size()}, std::move(callee)}; for (auto* val : unavailable_values) { val->AndThen([data]() { if (data->counter.fetch_sub(1) != 1) return; data->callee(); delete data; }); } } void RunWhenReady(absl::Span<RCReference<AsyncValue> const> values, absl::AnyInvocable<void()> callee) { absl::InlinedVector<AsyncValue*, 8> pointers; pointers.reserve(values.size()); for (const auto& ref : values) { pointers.push_back(ref.get()); } RunWhenReady(pointers, std::move(callee)); } }
#include "xla/tsl/concurrency/async_value.h" #include <cstdint> #include <memory> #include <utility> #include "absl/status/status.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/test.h" namespace tsl { TEST(AsyncValueTest, ConstructedToError) { AsyncValue* value = MakeConstructedAsyncValueRef<int32_t>(123).release(); bool callback_triggered = false; EXPECT_TRUE(value->IsConstructed()); EXPECT_FALSE(value->IsConcrete()); EXPECT_FALSE(value->IsAvailable()); value->AndThen([&] { callback_triggered = true; }); EXPECT_FALSE(callback_triggered); value->SetError(absl::InternalError("test error")); EXPECT_TRUE(callback_triggered); EXPECT_TRUE(value->IsAvailable()); EXPECT_FALSE(value->IsConcrete()); EXPECT_TRUE(value->IsError()); value->DropRef(); } TEST(AsyncValueTest, ConstructedToConcrete) { AsyncValue* value = MakeConstructedAsyncValueRef<int32_t>(123).release(); EXPECT_TRUE(value->IsConstructed()); EXPECT_FALSE(value->IsConcrete()); EXPECT_FALSE(value->IsAvailable()); value->AndThen([] {}); value->SetStateConcrete(); EXPECT_TRUE(value->IsAvailable()); EXPECT_TRUE(value->IsConcrete()); EXPECT_FALSE(value->IsError()); EXPECT_EQ(123, value->get<int32_t>()); value->DropRef(); } TEST(AsyncValueTest, UnconstructedEmplace) { AsyncValue* value = MakeUnconstructedAsyncValueRef<int32_t>().release(); EXPECT_FALSE(value->IsConstructed()); EXPECT_FALSE(value->IsConcrete()); EXPECT_FALSE(value->IsAvailable()); value->AndThen([] {}); value->emplace<int32_t>(123); EXPECT_FALSE(value->IsConstructed()); EXPECT_TRUE(value->IsAvailable()); EXPECT_TRUE(value->IsConcrete()); EXPECT_EQ(123, value->get<int32_t>()); value->DropRef(); } TEST(AsyncValueTest, AddAndDropRef) { AsyncValue* value = MakeConstructedAsyncValueRef<int32_t>(123).release(); value->AndThen([] {}); value->SetStateConcrete(); EXPECT_TRUE(value->IsConcrete()); EXPECT_TRUE(value->IsUnique()); value->AddRef(); EXPECT_FALSE(value->IsUnique()); EXPECT_EQ(123, value->get<int32_t>()); value->DropRef(); EXPECT_TRUE(value->IsUnique()); value->DropRef(); } TEST(AsyncValueTest, KeepPayloadOnError) { int payload_value = 0; struct Payload : AsyncPayload::KeepOnError { explicit Payload(int* value) : value{value} { *value = 1; } ~Payload() { *value = 2; } int* value; }; { AsyncValueRef<Payload> value = MakeConstructedAsyncValueRef<Payload>(&payload_value); EXPECT_EQ(1, *value->value); value.SetStateConcrete(); EXPECT_EQ(1, *value->value); EXPECT_TRUE(!value.IsError()); } EXPECT_EQ(2, payload_value); { AsyncValueRef<Payload> value = MakeConstructedAsyncValueRef<Payload>(&payload_value); EXPECT_TRUE(!value.IsError()); value.SetError(absl::InternalError("error")); EXPECT_EQ(1, *value->value); EXPECT_TRUE(value.IsError()); EXPECT_EQ("error", value.GetError().message()); } EXPECT_EQ(2, payload_value); } TEST(AsyncValueTest, StackAllocatedAsyncValue) { int32_t counter = 0; class Payload { public: explicit Payload(int32_t& counter) : counter_{counter} { counter_++; } ~Payload() { counter_++; } int32_t count() const { return counter_; } private: int32_t& counter_; }; internal::AsyncValueStorage<Payload> storage; AsyncValueOwningRef<Payload> owner = MakeConstructedAsyncValueRef<Payload>(storage, counter); AsyncValuePtr<Payload> ptr = owner.AsPtr(); AsyncValue* value = ptr.value(); EXPECT_TRUE(value->IsConstructed()); EXPECT_FALSE(value->IsAvailable()); EXPECT_EQ(1, counter); EXPECT_EQ(1, ptr->count()); ptr.SetStateConcrete(); EXPECT_TRUE(ptr.IsAvailable()); std::make_unique<AsyncValueOwningRef<Payload>>(std::move(owner)); EXPECT_EQ(2, counter); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/concurrency/async_value.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/concurrency/async_value_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
28137463-1133-408c-a2a4-1261817f14ef
cpp
tensorflow/tensorflow
async_value_ref
third_party/xla/xla/tsl/concurrency/async_value_ref.cc
third_party/xla/xla/tsl/concurrency/async_value_ref_test.cc
#include "xla/tsl/concurrency/async_value_ref.h" #include <string_view> #include <utility> #include "absl/status/status.h" #include "xla/tsl/concurrency/async_value.h" #include "xla/tsl/concurrency/ref_count.h" #include "tsl/platform/logging.h" namespace tsl { RCReference<IndirectAsyncValue> MakeIndirectAsyncValue() { return TakeRef(internal::AllocateAndConstruct<IndirectAsyncValue>()); } RCReference<ErrorAsyncValue> MakeErrorAsyncValueRef(absl::Status status) { CHECK(!status.ok()) << "status must be an error"; return TakeRef( internal::AllocateAndConstruct<ErrorAsyncValue>(std::move(status))); } RCReference<ErrorAsyncValue> MakeErrorAsyncValueRef(std::string_view message) { return MakeErrorAsyncValueRef(absl::InternalError(message)); } }
#include "xla/tsl/concurrency/async_value_ref.h" #include <any> #include <array> #include <atomic> #include <cstddef> #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/functional/any_invocable.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/tsl/concurrency/async_value.h" #include "xla/tsl/concurrency/ref_count.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace tsl { class WrappedInt32 { public: explicit WrappedInt32(int32_t value) : value_(value) {} int32_t value() const { return value_; } private: int32_t value_; }; constexpr int32_t kTestValue = 42; TEST(AsyncValueRefTest, MakeUnconstructedStatusOrOfAny) { auto value = MakeUnconstructedAsyncValueRef<absl::StatusOr<std::any>>(); EXPECT_TRUE(value.IsUnavailable()); } TEST(AsyncValueRefTest, MakeUnconstructedStatusOr) { auto value = MakeUnconstructedAsyncValueRef<absl::StatusOr<int32_t>>(); EXPECT_TRUE(value.IsUnavailable()); } TEST(AsyncValueRefTest, MakeConstructedStatusOr) { auto value = MakeConstructedAsyncValueRef<absl::StatusOr<int32_t>>(42); EXPECT_TRUE(value.IsUnavailable()); } TEST(AsyncValueRefTest, MakeAvailableStatusOr) { auto value = MakeAvailableAsyncValueRef<absl::StatusOr<int32_t>>(42); EXPECT_TRUE(value.IsAvailable()); EXPECT_EQ(**value, 42); } TEST(AsyncValueRefTest, ImplicitStatusConversion) { auto error = []() -> AsyncValueRef<WrappedInt32> { return absl::InternalError("Error"); }(); EXPECT_TRUE(error.IsAvailable()); EXPECT_TRUE(error.IsError()); EXPECT_EQ(error.GetError(), absl::InternalError("Error")); } TEST(AsyncValueRefTest, ImplicitStatusConversionWithStatusOrPayloadAndStatus) { auto status = []() -> absl::StatusOr<absl::StatusOr<int32_t>> { return absl::InternalError("Error"); }(); auto error = []() -> AsyncValueRef<absl::StatusOr<int32_t>> { return absl::InternalError("Error"); }(); ASSERT_FALSE(status.ok()); ASSERT_EQ(status.status(), absl::InternalError("Error")); EXPECT_TRUE(error.IsError()); EXPECT_EQ(error.GetError(), absl::InternalError("Error")); } TEST(AsyncValueRefTest, ValueCheck) { auto wrapped_int_value = MakeAvailableAsyncValueRef<WrappedInt32>(kTestValue); EXPECT_EQ(wrapped_int_value.get().value(), kTestValue); EXPECT_EQ(wrapped_int_value->value(), kTestValue); EXPECT_EQ((*wrapped_int_value).value(), kTestValue); } TEST(AsyncValueRefTest, ValueCheckFromRCReference) { auto wrapped_int_value = MakeAvailableAsyncValueRef<WrappedInt32>(kTestValue); RCReference<AsyncValue> generic_value = std::move(wrapped_int_value); EXPECT_EQ(generic_value->get<WrappedInt32>().value(), kTestValue); } TEST(AsyncValueRefTest, ValueCheckFromAliasedRCReference) { auto wrapped_int_value = MakeAvailableAsyncValueRef<WrappedInt32>(kTestValue); RCReference<AsyncValue> generic_value = std::move(wrapped_int_value); AsyncValueRef<WrappedInt32> aliased_int_value(std::move(generic_value)); EXPECT_EQ(aliased_int_value.get().value(), kTestValue); EXPECT_EQ(aliased_int_value->value(), kTestValue); EXPECT_EQ((*aliased_int_value).value(), kTestValue); } TEST(AsyncValueRefTest, ConstructedToError) { auto value = MakeConstructedAsyncValueRef<int32_t>(kTestValue); EXPECT_FALSE(value.IsConcrete()); EXPECT_FALSE(value.IsAvailable()); value.AndThen([] {}); value.SetError(absl::InternalError("test error")); EXPECT_TRUE(value.IsAvailable()); EXPECT_FALSE(value.IsConcrete()); EXPECT_TRUE(value.IsError()); } TEST(AsyncValueRefTest, ConstructedToConcrete) { auto value = MakeConstructedAsyncValueRef<int32_t>(kTestValue); EXPECT_FALSE(value.IsConcrete()); EXPECT_FALSE(value.IsAvailable()); value.AndThen([] {}); value.SetStateConcrete(); EXPECT_TRUE(value.IsAvailable()); EXPECT_TRUE(value.IsConcrete()); EXPECT_FALSE(value.IsError()); EXPECT_EQ(kTestValue, value.get()); } TEST(AsyncValueRefTest, UnconstructedEmplace) { auto value = MakeUnconstructedAsyncValueRef<int32_t>(); EXPECT_FALSE(value.IsConcrete()); EXPECT_FALSE(value.IsAvailable()); value.AndThen([] {}); value.emplace(kTestValue); EXPECT_TRUE(value.IsAvailable()); EXPECT_TRUE(value.IsConcrete()); EXPECT_EQ(kTestValue, value.get()); } TEST(AsyncValueRefTest, CopyRef) { auto value = MakeAvailableAsyncValueRef<int32_t>(kTestValue); EXPECT_TRUE(value.IsConcrete()); EXPECT_TRUE(value.IsUnique()); auto copied_value = value.CopyRef(); EXPECT_FALSE(value.IsUnique()); EXPECT_EQ(value.GetAsyncValue(), copied_value.GetAsyncValue()); } TEST(AsyncValueRefTest, AndThen) { AsyncValueRef<int32_t> ref = MakeUnconstructedAsyncValueRef<int32_t>(); EXPECT_FALSE(ref.IsConcrete()); EXPECT_FALSE(ref.IsAvailable()); bool executed = false; ref.AndThen([&]() { executed = true; }); ref.emplace(42); EXPECT_TRUE(executed); } TEST(AsyncValueRefTest, AndThenError) { AsyncValueRef<int32_t> ref = MakeConstructedAsyncValueRef<int32_t>(42); auto error = absl::InternalError("test error"); ref.SetError(error); ref.AndThen([&](absl::Status status) { EXPECT_EQ(status, error); }); } TEST(AsyncValueRefTest, AndThenNoError) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); ref.AndThen([](absl::Status status) { EXPECT_TRUE(status.ok()); }); } TEST(AsyncValueRefTest, AndThenStatusOrError) { AsyncValueRef<int32_t> ref = MakeConstructedAsyncValueRef<int32_t>(42); auto error = absl::InternalError("test error"); ref.SetError(error); ref.AndThen([&](absl::StatusOr<int32_t*> v) { EXPECT_FALSE(v.ok()); EXPECT_EQ(v.status(), error); }); } TEST(AsyncValueRefTest, AndThenStatusOrNoError) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); ref.AndThen([&](absl::StatusOr<int32_t*> v) { EXPECT_EQ(**v, 42); }); } TEST(AsyncValueRefTest, Nullptr) { AsyncValueRef<int> av_int = nullptr; EXPECT_FALSE(av_int); AsyncValueRef<int> av_int2 = MakeConstructedAsyncValueRef<int>(kTestValue); EXPECT_TRUE(av_int2); av_int2 = nullptr; EXPECT_FALSE(av_int2); } TEST(AsyncValueRefTest, MapAvailable) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); AsyncValueRef<float> mapped_to_float = ref.Map([](int32_t value) -> float { return value; }); EXPECT_TRUE(mapped_to_float.IsAvailable()); EXPECT_EQ(mapped_to_float.get(), 42.0f); } TEST(AsyncValueRefTest, MapUnvailable) { AsyncValueRef<int32_t> ref = MakeConstructedAsyncValueRef<int32_t>(42); AsyncValueRef<float> mapped_to_float = ref.Map([](int32_t value) -> float { return value; }); EXPECT_FALSE(mapped_to_float.IsAvailable()); ref.SetStateConcrete(); EXPECT_TRUE(mapped_to_float.IsAvailable()); EXPECT_EQ(mapped_to_float.get(), 42.0f); } TEST(AsyncValueRefTest, MapToNonMoveable) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); AsyncValueRef<std::atomic<int32_t>> mapped_to_atomic = ref.Map<std::atomic<int32_t>>([](int32_t value) { return value; }); EXPECT_TRUE(mapped_to_atomic.IsAvailable()); EXPECT_EQ(mapped_to_atomic->load(), 42); } TEST(AsyncValueRefTest, MapError) { AsyncValueRef<int32_t> ref = MakeErrorAsyncValueRef(absl::InternalError("error")); AsyncValueRef<float> mapped_to_float = ref.Map([](int32_t value) -> float { return value; }); EXPECT_TRUE(mapped_to_float.IsError()); EXPECT_EQ(mapped_to_float.GetError(), absl::InternalError("error")); } TEST(AsyncValueRefTest, MapUnvailableError) { AsyncValueRef<int32_t> ref = MakeConstructedAsyncValueRef<int32_t>(42); AsyncValueRef<float> mapped_to_float = ref.Map([](int32_t value) -> float { return value; }); EXPECT_FALSE(mapped_to_float.IsAvailable()); ref.SetError(absl::InternalError("error")); EXPECT_TRUE(mapped_to_float.IsError()); EXPECT_EQ(mapped_to_float.GetError(), absl::InternalError("error")); } TEST(AsyncValueRefTest, MapMultipleTimes) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); auto plus_one = [](int32_t value) { return value + 1; }; AsyncValueRef<int32_t> mapped = ref.Map(plus_one) .Map(plus_one) .Map(plus_one) .Map(plus_one) .Map(plus_one) .Map(plus_one); EXPECT_TRUE(mapped.IsAvailable()); EXPECT_EQ(mapped.get(), 42 + 6); } TEST(AsyncValuePtrTest, MapToStatus) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); AsyncValueRef<absl::Status> mapped_to_status = ref.Map([](int32_t value) -> absl::Status { return absl::OkStatus(); }); EXPECT_TRUE(mapped_to_status.IsAvailable()); EXPECT_EQ(mapped_to_status.get(), absl::OkStatus()); } TEST(AsyncValueRefTest, MapToStatusOr) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); AsyncValueRef<absl::StatusOr<float>> mapped_to_float = ref.Map([](int32_t value) -> absl::StatusOr<float> { return value; }); EXPECT_TRUE(mapped_to_float.IsAvailable()); EXPECT_EQ(*mapped_to_float.get(), 42.0f); } TEST(AsyncValueRefTest, TryMap) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); AsyncValueRef<float> mapped_to_float = ref.TryMap([](int32_t value) -> absl::StatusOr<float> { return value; }); EXPECT_TRUE(mapped_to_float.IsAvailable()); EXPECT_EQ(mapped_to_float.get(), 42.0f); } TEST(AsyncValueRefTest, TryMapError) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); AsyncValueRef<float> mapped_to_float = ref.TryMap([](int32_t value) -> absl::StatusOr<float> { return absl::InternalError("error"); }); EXPECT_TRUE(mapped_to_float.IsError()); EXPECT_EQ(mapped_to_float.GetError(), absl::InternalError("error")); } TEST(AsyncValueRefTest, TryMapConstructible) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); struct X { explicit X(float value) : value(value) {} float value; }; AsyncValueRef<X> mapped_to_x = ref.TryMap<X>( [](int32_t value) -> absl::StatusOr<float> { return value; }); EXPECT_TRUE(mapped_to_x.IsAvailable()); EXPECT_EQ(mapped_to_x->value, 42.0f); } TEST(AsyncValueRefTest, FlatMapAvailable) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); AsyncValueRef<float> fmapped_to_float = ref.FlatMap([](int32_t value) { return MakeAvailableAsyncValueRef<float>(static_cast<float>(value)); }); EXPECT_TRUE(fmapped_to_float.IsAvailable()); EXPECT_EQ(fmapped_to_float.get(), 42.0f); } TEST(AsyncValueRefTest, FlatMapUnavailable) { AsyncValueRef<int32_t> ref = MakeConstructedAsyncValueRef<int32_t>(42); AsyncValueRef<float> fmapped_to_float = ref.FlatMap([](int32_t value) { return MakeAvailableAsyncValueRef<float>(static_cast<float>(value)); }); EXPECT_FALSE(fmapped_to_float.IsAvailable()); ref.SetStateConcrete(); EXPECT_TRUE(fmapped_to_float.IsAvailable()); EXPECT_EQ(fmapped_to_float.get(), 42.0f); } TEST(AsyncValueRefTest, FlatMapAvailableError) { AsyncValueRef<int32_t> ref = MakeErrorAsyncValueRef(absl::InternalError("error")); AsyncValueRef<float> fmapped_to_float = ref.FlatMap([](int32_t value) { return MakeAvailableAsyncValueRef<float>(static_cast<float>(value)); }); EXPECT_TRUE(fmapped_to_float.IsError()); EXPECT_EQ(fmapped_to_float.GetError(), absl::InternalError("error")); } TEST(AsyncValueRefTest, FlatMapUnavailableError) { AsyncValueRef<int32_t> ref = MakeConstructedAsyncValueRef<int32_t>(42); AsyncValueRef<float> fmapped_to_float = ref.FlatMap([](int32_t value) { return MakeAvailableAsyncValueRef<float>(static_cast<float>(value)); }); EXPECT_FALSE(fmapped_to_float.IsAvailable()); ref.SetError(absl::InternalError("error")); EXPECT_TRUE(fmapped_to_float.IsError()); EXPECT_EQ(fmapped_to_float.GetError(), absl::InternalError("error")); } struct DeferredExecutor : public AsyncValue::Executor { void Execute(Task task) final { tasks.push_back(std::move(task)); } size_t Quiesce() { size_t n = 0; while (!tasks.empty()) { Task task = std::move(tasks.back()); tasks.pop_back(); task(); ++n; } return n; } std::vector<Task> tasks; }; TEST(AsyncValueRefTest, MakeAsyncValueRef) { DeferredExecutor executor; { AsyncValueRef<float> ref = MakeAsyncValueRef<float>(executor, []() -> float { return 42.0f; }); EXPECT_FALSE(ref.IsAvailable()); EXPECT_EQ(executor.Quiesce(), 1); EXPECT_TRUE(ref.IsAvailable()); EXPECT_EQ(ref.get(), 42.0f); } { AsyncValueRef<float> ref = MakeAsyncValueRef(executor, []() -> float { return 42.0f; }); EXPECT_FALSE(ref.IsAvailable()); EXPECT_EQ(executor.Quiesce(), 1); EXPECT_TRUE(ref.IsAvailable()); EXPECT_EQ(ref.get(), 42.0f); } { AsyncValueRef<float> ref = TryMakeAsyncValueRef<float>( executor, []() -> absl::StatusOr<float> { return 42.0f; }); EXPECT_FALSE(ref.IsAvailable()); EXPECT_EQ(executor.Quiesce(), 1); EXPECT_TRUE(ref.IsAvailable()); EXPECT_EQ(ref.get(), 42.0f); } { AsyncValueRef<float> ref = TryMakeAsyncValueRef( executor, []() -> absl::StatusOr<float> { return 42.0f; }); EXPECT_FALSE(ref.IsAvailable()); EXPECT_EQ(executor.Quiesce(), 1); EXPECT_TRUE(ref.IsAvailable()); EXPECT_EQ(ref.get(), 42.0f); } { AsyncValueRef<float> ref = TryMakeAsyncValueRef<float>( executor, []() -> absl::StatusOr<float> { return absl::InternalError("test"); }); EXPECT_FALSE(ref.IsAvailable()); EXPECT_EQ(executor.Quiesce(), 1); EXPECT_TRUE(ref.IsError()); EXPECT_EQ(ref.GetError(), absl::InternalError("test")); } { AsyncValueRef<float> ref = TryMakeAsyncValueRef( executor, []() -> absl::StatusOr<float> { return absl::InternalError("test"); }); EXPECT_FALSE(ref.IsAvailable()); EXPECT_EQ(executor.Quiesce(), 1); EXPECT_TRUE(ref.IsError()); EXPECT_EQ(ref.GetError(), absl::InternalError("test")); } } TEST(AsyncValueRefTest, MapAvailableOnExecutor) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); DeferredExecutor executor; AsyncValueRef<float> mapped_to_float = ref.Map(executor, [](int32_t value) -> float { return value; }); EXPECT_FALSE(mapped_to_float.IsAvailable()); EXPECT_EQ(executor.Quiesce(), 1); EXPECT_TRUE(mapped_to_float.IsAvailable()); EXPECT_EQ(mapped_to_float.get(), 42.0f); } TEST(AsyncValueRefTest, MapErrorOnExecutor) { AsyncValueRef<int32_t> ref = MakeErrorAsyncValueRef(absl::InternalError("error")); DeferredExecutor executor; AsyncValueRef<float> mapped_to_float = ref.Map(executor, [](int32_t value) -> float { return value; }); EXPECT_FALSE(mapped_to_float.IsAvailable()); EXPECT_EQ(executor.Quiesce(), 1); EXPECT_TRUE(mapped_to_float.IsError()); EXPECT_EQ(mapped_to_float.GetError(), absl::InternalError("error")); } TEST(AsyncValueRefTest, MapUnavailableOnExecutor) { AsyncValueRef<int32_t> ref = MakeConstructedAsyncValueRef<int32_t>(42); DeferredExecutor executor; AsyncValueRef<float> mapped_to_float = ref.Map(executor, [](int32_t value) -> float { return value; }); ref.SetStateConcrete(); ref.release()->DropRef(); EXPECT_FALSE(mapped_to_float.IsAvailable()); EXPECT_EQ(executor.Quiesce(), 1); EXPECT_TRUE(mapped_to_float.IsAvailable()); EXPECT_EQ(mapped_to_float.get(), 42.0f); } TEST(AsyncValueRefTest, TryMapOnExecutor) { AsyncValueRef<int32_t> ref = MakeConstructedAsyncValueRef<int32_t>(42); DeferredExecutor executor; AsyncValueRef<float> mapped_to_float = ref.TryMap( executor, [](int32_t value) -> absl::StatusOr<float> { return value; }); ref.SetStateConcrete(); ref.release()->DropRef(); EXPECT_FALSE(mapped_to_float.IsAvailable()); EXPECT_EQ(executor.Quiesce(), 1); EXPECT_TRUE(mapped_to_float.IsAvailable()); EXPECT_EQ(mapped_to_float.get(), 42.0f); } TEST(AsyncValueRefTest, TryMapErrorOnExecutor) { AsyncValueRef<int32_t> ref = MakeConstructedAsyncValueRef<int32_t>(42); DeferredExecutor executor; AsyncValueRef<float> mapped_to_float = ref.TryMap(executor, [](int32_t value) -> absl::StatusOr<float> { return absl::InternalError("error"); }); ref.SetStateConcrete(); ref.release()->DropRef(); EXPECT_FALSE(mapped_to_float.IsAvailable()); EXPECT_EQ(executor.Quiesce(), 1); EXPECT_TRUE(mapped_to_float.IsError()); EXPECT_EQ(mapped_to_float.GetError(), absl::InternalError("error")); } TEST(AsyncValueRefTest, FlatMapAvailableOnExecutor) { AsyncValueRef<int32_t> ref = MakeConstructedAsyncValueRef<int32_t>(42); DeferredExecutor executor; AsyncValueRef<float> fmapped_to_float = ref.FlatMap(executor, [](int32_t value) { return MakeAvailableAsyncValueRef<float>(static_cast<float>(value)); }); ref.SetStateConcrete(); ref.release()->DropRef(); EXPECT_FALSE(fmapped_to_float.IsAvailable()); EXPECT_EQ(executor.Quiesce(), 1); EXPECT_TRUE(fmapped_to_float.IsAvailable()); EXPECT_EQ(fmapped_to_float.get(), 42.0f); } TEST(AsyncValueRefTest, FlatMapDeferredAsyncValueOnExecutor) { DeferredExecutor executor0; DeferredExecutor executor1; { AsyncValueRef<float> fmapped_to_float = MakeAsyncValueRef<std::unique_ptr<int32_t>>(executor0, [] { return std::make_unique<int32_t>(42); }).FlatMap([&](AsyncValuePtr<std::unique_ptr<int32_t>> ptr) { return MakeAsyncValueRef<float>( executor1, [ref = ptr.CopyRef()] { return **ref; }); }); EXPECT_FALSE(fmapped_to_float.IsAvailable()); EXPECT_EQ(executor0.Quiesce(), 1); EXPECT_FALSE(fmapped_to_float.IsAvailable()); EXPECT_EQ(executor1.Quiesce(), 1); EXPECT_TRUE(fmapped_to_float.IsAvailable()); EXPECT_EQ(fmapped_to_float.get(), 42.0f); } { AsyncValueRef<float> fmapped_to_float = MakeAsyncValueRef<std::unique_ptr<int32_t>>(executor0, [] { return std::make_unique<int32_t>(42); }).FlatMap(executor1, [&](AsyncValuePtr<std::unique_ptr<int32_t>> ptr) { return MakeAsyncValueRef<float>( executor1, [ref = ptr.CopyRef()] { return **ref; }); }); EXPECT_FALSE(fmapped_to_float.IsAvailable()); EXPECT_EQ(executor0.Quiesce(), 1); EXPECT_FALSE(fmapped_to_float.IsAvailable()); EXPECT_EQ(executor1.Quiesce(), 2); EXPECT_TRUE(fmapped_to_float.IsAvailable()); EXPECT_EQ(fmapped_to_float.get(), 42.0f); } } TEST(AsyncValueRefTest, BlockUntilReady) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); BlockUntilReady(ref); } TEST(AsyncValueRefTest, RunWhenReady) { AsyncValueRef<int32_t> ref = MakeAvailableAsyncValueRef<int32_t>(42); bool executed = false; RunWhenReady(absl::MakeConstSpan({ref}), [&] { executed = true; }); EXPECT_TRUE(executed); } namespace { struct A { alignas(16) int32_t a; }; struct B : public A { alignas(32) int32_t b; }; struct C : public B { alignas(64) int32_t c; }; struct D : public B { alignas(64) int32_t d; }; } TEST(AsyncValueRefTest, AlignedPayload) { AsyncValueRef<D> d_ref = MakeAvailableAsyncValueRef<D>(); d_ref->a = 1; d_ref->b = 2; d_ref->d = 3; EXPECT_EQ(d_ref->a, 1); EXPECT_EQ(d_ref->b, 2); EXPECT_EQ(d_ref->d, 3); AsyncValueRef<B> b_ref = d_ref.CopyRef(); EXPECT_EQ(b_ref->a, 1); EXPECT_EQ(b_ref->b, 2); AsyncValueRef<A> a_ref = d_ref.CopyRef(); EXPECT_EQ(a_ref->a, 1); } TEST(AsyncValueRefTest, Isa) { AsyncValueRef<A> null_ref; EXPECT_FALSE(Isa<A>(null_ref)); AsyncValueRef<A> a_ref = MakeAvailableAsyncValueRef<A>(); AsyncValueRef<A> b_ref = MakeAvailableAsyncValueRef<B>(); AsyncValueRef<A> c_ref = MakeAvailableAsyncValueRef<C>(); AsyncValueRef<A> d_ref = MakeAvailableAsyncValueRef<D>(); EXPECT_TRUE(Isa<A>(a_ref)); EXPECT_TRUE(Isa<B>(b_ref)); EXPECT_TRUE(Isa<C>(c_ref)); EXPECT_TRUE(Isa<D>(d_ref)); AsyncValueRef<A> err = MakeErrorAsyncValueRef(absl::InternalError("error")); EXPECT_TRUE(Isa<A>(err)); EXPECT_TRUE(Isa<B>(err)); EXPECT_TRUE(Isa<C>(err)); EXPECT_TRUE(Isa<D>(err)); AsyncValueRef<A> a_err = MakeConstructedAsyncValueRef<A>(); AsyncValueRef<B> b_err = MakeConstructedAsyncValueRef<B>(); a_err.SetError(absl::InternalError("error")); b_err.SetError(absl::InternalError("error")); EXPECT_TRUE(Isa<A>(a_err)); EXPECT_TRUE(Isa<B>(b_err)); auto indirect = MakeIndirectAsyncValue(); AsyncValueRef<A> c_indirect(indirect); EXPECT_TRUE(Isa<A>(c_indirect)); EXPECT_FALSE(Isa<C>(c_indirect)); indirect->ForwardTo(c_ref.CopyRCRef()); EXPECT_TRUE(Isa<A>(c_indirect)); EXPECT_TRUE(Isa<C>(c_indirect)); auto typed_indirect = MakeIndirectAsyncValue<C>(); AsyncValueRef<A> c_typed_indirect(indirect); EXPECT_TRUE(Isa<A>(c_typed_indirect)); EXPECT_TRUE(Isa<C>(c_typed_indirect)); typed_indirect->ForwardTo(c_ref.CopyRCRef()); EXPECT_TRUE(Isa<A>(c_typed_indirect)); EXPECT_TRUE(Isa<C>(c_typed_indirect)); auto typed_indirect_err = MakeIndirectAsyncValue<C>(); AsyncValueRef<A> c_typed_indirect_err(typed_indirect_err); EXPECT_TRUE(Isa<A>(c_typed_indirect.AsPtr())); EXPECT_TRUE(Isa<C>(c_typed_indirect.AsPtr())); typed_indirect_err->SetError(absl::InternalError("error")); EXPECT_TRUE(Isa<A>(c_typed_indirect_err.AsPtr())); EXPECT_TRUE(Isa<C>(c_typed_indirect_err.AsPtr())); } TEST(AsyncValueRefTest, DynCast) { AsyncValueRef<A> a_ref = MakeAvailableAsyncValueRef<A>(); AsyncValueRef<A> b_ref = MakeAvailableAsyncValueRef<B>(); AsyncValueRef<A> c_ref = MakeAvailableAsyncValueRef<C>(); AsyncValueRef<A> d_ref = MakeAvailableAsyncValueRef<D>(); EXPECT_TRUE(DynCast<A>(a_ref)); EXPECT_TRUE(DynCast<B>(b_ref)); EXPECT_TRUE(DynCast<C>(c_ref)); EXPECT_TRUE(DynCast<D>(d_ref)); EXPECT_TRUE(DynCast<A>(c_ref)); EXPECT_FALSE(DynCast<B>(c_ref)); EXPECT_FALSE(DynCast<C>(d_ref)); AsyncValueRef<A> err = MakeErrorAsyncValueRef(absl::InternalError("error")); EXPECT_TRUE(DynCast<A>(err)); EXPECT_TRUE(DynCast<B>(err)); EXPECT_TRUE(DynCast<C>(err)); EXPECT_TRUE(DynCast<D>(err)); AsyncValueRef<A> a_err = MakeConstructedAsyncValueRef<A>(); AsyncValueRef<B> b_err = MakeConstructedAsyncValueRef<B>(); a_err.SetError(absl::InternalError("error")); b_err.SetError(absl::InternalError("error")); EXPECT_TRUE(DynCast<A>(a_err)); EXPECT_TRUE(DynCast<B>(b_err)); EXPECT_FALSE(DynCast<C>(a_err)); auto indirect = MakeIndirectAsyncValue(); AsyncValueRef<A> c_indirect(indirect); EXPECT_TRUE(DynCast<A>(c_indirect)); EXPECT_FALSE(DynCast<C>(c_indirect)); indirect->ForwardTo(c_ref.CopyRCRef()); EXPECT_TRUE(DynCast<A>(c_indirect)); EXPECT_TRUE(DynCast<C>(c_indirect)); auto typed_indirect = MakeIndirectAsyncValue<C>(); AsyncValueRef<A> c_typed_indirect(indirect); EXPECT_TRUE(DynCast<A>(c_typed_indirect)); EXPECT_TRUE(DynCast<C>(c_typed_indirect)); typed_indirect->ForwardTo(c_ref.CopyRCRef()); EXPECT_TRUE(DynCast<A>(c_typed_indirect)); EXPECT_TRUE(DynCast<C>(c_typed_indirect)); } TEST(AsyncValueRefTest, Cast) { AsyncValueRef<A> a_ref = MakeAvailableAsyncValueRef<A>(); AsyncValueRef<A> b_ref = MakeAvailableAsyncValueRef<B>(); AsyncValueRef<A> c_ref = MakeAvailableAsyncValueRef<C>(); AsyncValueRef<A> d_ref = MakeAvailableAsyncValueRef<D>(); EXPECT_TRUE(Cast<A>(a_ref)); EXPECT_TRUE(Cast<B>(b_ref)); EXPECT_TRUE(Cast<C>(c_ref)); EXPECT_TRUE(Cast<D>(d_ref)); EXPECT_TRUE(Cast<A>(c_ref)); AsyncValueRef<A> err = MakeErrorAsyncValueRef(absl::InternalError("error")); EXPECT_TRUE(Cast<A>(err)); EXPECT_TRUE(Cast<B>(err)); EXPECT_TRUE(Cast<C>(err)); EXPECT_TRUE(Cast<D>(err)); AsyncValueRef<A> a_err = MakeConstructedAsyncValueRef<A>(); AsyncValueRef<B> b_err = MakeConstructedAsyncValueRef<B>(); a_err.SetError(absl::InternalError("error")); b_err.SetError(absl::InternalError("error")); EXPECT_TRUE(Cast<A>(a_err)); EXPECT_TRUE(Cast<B>(b_err)); auto indirect = MakeIndirectAsyncValue(); AsyncValueRef<A> c_indirect(indirect); EXPECT_TRUE(Cast<A>(c_indirect)); indirect->ForwardTo(c_ref.CopyRCRef()); EXPECT_TRUE(Cast<A>(c_indirect)); EXPECT_TRUE(Cast<C>(c_indirect)); auto typed_indirect = MakeIndirectAsyncValue<C>(); AsyncValueRef<A> c_typed_indirect(indirect); EXPECT_TRUE(Cast<A>(c_typed_indirect)); EXPECT_TRUE(Cast<C>(c_typed_indirect)); typed_indirect->ForwardTo(c_ref.CopyRCRef()); EXPECT_TRUE(Cast<A>(c_typed_indirect)); EXPECT_TRUE(Cast<C>(c_typed_indirect)); } TEST(AsyncValueRefTest, RecursiveOwnership) { struct State { explicit State(AsyncValueRef<int32_t> value) : value(std::move(value)) {} AsyncValueRef<int32_t> value; }; AsyncValueRef<int32_t> value = MakeConstructedAsyncValueRef<int32_t>(42); auto state = std::make_unique<State>(std::move(value)); State* state_ptr = state.get(); int64_t counter = 0; state_ptr->value.AndThen([&, value = 1] { counter += value; }); state_ptr->value.AndThen([&, value = 2] { counter += value; }); state_ptr->value.AndThen([&, value = 3] { counter += value; }); state_ptr->value.AndThen([state = std::move(state)] {}); state_ptr->value.SetStateConcrete(); EXPECT_EQ(counter, 1 + 2 + 3); } template <size_t size> static void BM_MakeConstructed(benchmark::State& state) { for (auto _ : state) { auto ref = MakeConstructedAsyncValueRef<std::array<char, size>>(); benchmark::DoNotOptimize(ref); } } BENCHMARK(BM_MakeConstructed<1>); BENCHMARK(BM_MakeConstructed<4>); BENCHMARK(BM_MakeConstructed<8>); BENCHMARK(BM_MakeConstructed<16>); BENCHMARK(BM_MakeConstructed<32>); BENCHMARK(BM_MakeConstructed<64>); BENCHMARK(BM_MakeConstructed<128>); BENCHMARK(BM_MakeConstructed<256>); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/concurrency/async_value_ref.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/concurrency/async_value_ref_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
be356233-8fba-4b09-a422-fc77a6275b18
cpp
tensorflow/tensorflow
proto_serialization
third_party/xla/xla/tsl/lib/strings/proto_serialization.cc
tensorflow/core/lib/strings/proto_serialization_test.cc
#include "xla/tsl/lib/strings/proto_serialization.h" #include <cstring> #include <memory> #include "absl/memory/memory.h" #include "absl/strings/string_view.h" #include "xla/tsl/lib/gtl/inlined_vector.h" #include "tsl/platform/hash.h" #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" namespace tsl { namespace { class DeterministicSerializer { public: explicit DeterministicSerializer(const protobuf::MessageLite& msg) : DeterministicSerializer(msg, msg.ByteSizeLong()) {} DeterministicSerializer(const protobuf::MessageLite& msg, size_t size) : size_(size) { char* ptr = space_; if (size_ > sizeof(space_)) { ptr = new char[size_]; alloc_.reset(ptr); } bool ok = SerializeToBufferDeterministic(msg, ptr, size_); DCHECK(ok); } size_t size() const { return size_; } const char* data() const { return alloc_ == nullptr ? space_ : alloc_.get(); } private: static constexpr int kInlinedBufferSize = 256; const size_t size_; std::unique_ptr<char[]> alloc_; char space_[kInlinedBufferSize]; }; } bool SerializeToStringDeterministic(const protobuf::MessageLite& msg, string* result) { const size_t size = msg.ByteSizeLong(); DCHECK_LE(size, static_cast<size_t>(INT_MAX)); *result = string(size, '\0'); return SerializeToBufferDeterministic(msg, const_cast<char*>(result->data()), result->size()); } bool SerializeToBufferDeterministic(const protobuf::MessageLite& msg, char* buffer, size_t size) { DCHECK(msg.ByteSizeLong() == size && size <= static_cast<size_t>(INT_MAX)); protobuf::io::ArrayOutputStream array_stream(buffer, size); protobuf::io::CodedOutputStream output_stream(&array_stream); output_stream.SetSerializationDeterministic(true); msg.SerializeWithCachedSizes(&output_stream); return !output_stream.HadError() && size == static_cast<size_t>(output_stream.ByteCount()); } bool AreSerializedProtosEqual(const protobuf::MessageLite& x, const protobuf::MessageLite& y) { const size_t size = x.ByteSizeLong(); if (size != y.ByteSizeLong()) return false; if (size == 0) return true; DeterministicSerializer x_serialized(x, size); DeterministicSerializer y_serialized(y, size); return memcmp(x_serialized.data(), y_serialized.data(), size) == 0; } uint64 DeterministicProtoHash64(const protobuf::MessageLite& proto, uint64 seed) { DeterministicSerializer serialized(proto); return Hash64(serialized.data(), serialized.size(), seed); } uint64 DeterministicProtoHash64(const protobuf::MessageLite& proto) { DeterministicSerializer serialized(proto); return Hash64(serialized.data(), serialized.size()); } }
#include "tensorflow/core/lib/strings/proto_serialization.h" #include <string> #include "absl/memory/memory.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace { GraphDef MakeGraphDef(int num_nodes) { GraphDef graph_def; for (int i = 0; i < num_nodes; ++i) { NodeDef* node = graph_def.add_node(); node->set_name(strings::StrCat("node", i)); node->set_op(strings::StrCat("op", i % 10)); (*node->mutable_attr())["foo"].set_f(3.14f); (*node->mutable_attr())["bar"].set_s("baz"); } return graph_def; } } static void BM_ProtoSerializationToString(::testing::benchmark::State& state) { int num_nodes = state.range(0); GraphDef graph_def = MakeGraphDef(num_nodes); for (auto i : state) { string serialized; testing::DoNotOptimize( SerializeToStringDeterministic(graph_def, &serialized)); } } BENCHMARK(BM_ProtoSerializationToString)->Range(1, 10000); static void BM_ProtoSerializationToBuffer(::testing::benchmark::State& state) { int num_nodes = state.range(0); GraphDef graph_def = MakeGraphDef(num_nodes); const size_t size = graph_def.ByteSizeLong(); for (auto i : state) { gtl::InlinedVector<char, 1024> buf(size); testing::DoNotOptimize( SerializeToBufferDeterministic(graph_def, buf.data(), size)); } } BENCHMARK(BM_ProtoSerializationToBuffer)->Range(1, 10000); static void BM_DeterministicProtoHash64(::testing::benchmark::State& state) { int num_nodes = state.range(0); GraphDef graph_def = MakeGraphDef(num_nodes); for (auto i : state) { testing::DoNotOptimize(DeterministicProtoHash64(graph_def)); } } BENCHMARK(BM_DeterministicProtoHash64)->Range(1, 10000); static void BM_AreSerializedProtosEqual(::testing::benchmark::State& state) { int num_nodes = state.range(0); GraphDef graph_def_a = MakeGraphDef(num_nodes); GraphDef graph_def_b = MakeGraphDef(num_nodes); graph_def_b.mutable_node(0)->mutable_name()[0] = 'l'; for (auto i : state) { testing::DoNotOptimize(AreSerializedProtosEqual(graph_def_a, graph_def_a)); } } BENCHMARK(BM_AreSerializedProtosEqual)->Range(1, 10000); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/strings/proto_serialization.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/strings/proto_serialization_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
57928c37-5683-4eb1-9be1-ec95f566df77
cpp
tensorflow/tensorflow
bitmap
third_party/xla/xla/tsl/lib/core/bitmap.cc
third_party/xla/xla/tsl/lib/core/bitmap_test.cc
#include "xla/tsl/lib/core/bitmap.h" #include <cstddef> #include <cstdint> #include <cstring> #include <string> #include "absl/numeric/bits.h" namespace tsl { namespace core { void Bitmap::Reset(size_t n) { const size_t num_words = NumWords(n); if (num_words != NumWords(nbits_)) { Word* w = new Word[num_words]; delete[] word_; word_ = w; } memset(word_, 0, sizeof(word_[0]) * num_words); nbits_ = n; } static size_t FindFirstSet(uint32_t w) { return w == 0 ? 0 : absl::countr_zero(w) + 1; } size_t Bitmap::FirstUnset(size_t start) const { if (start >= nbits_) { return nbits_; } size_t mask = (1ull << (start % kBits)) - 1; const size_t nwords = NumWords(nbits_); for (size_t i = start / kBits; i < nwords; i++) { Word word = word_[i] | mask; mask = 0; size_t r = FindFirstSet(~word); if (r) { size_t result = i * kBits + (r - 1); if (result > nbits_) result = nbits_; return result; } } return nbits_; } std::string Bitmap::ToString() const { std::string result; result.resize(bits()); for (size_t i = 0; i < nbits_; i++) { result[i] = get(i) ? '1' : '0'; } return result; } } }
#include "xla/tsl/lib/core/bitmap.h" #include "xla/tsl/lib/random/simple_philox.h" #include "tsl/platform/macros.h" #include "tsl/platform/test.h" namespace tsl { namespace core { namespace { size_t NextSize(size_t n) { return n + ((n < 75) ? 1 : 25); } static void MakeRandomBitmap(random::SimplePhilox* rnd, Bitmap* bitmap) { size_t n = rnd->Uniform(200); bitmap->Reset(n); for (size_t i = 0; i < n; i++) { if (rnd->OneIn(2)) bitmap->set(i); } } TEST(BitmapTest, Basic) { for (size_t n = 0; n < 200; n = NextSize(n)) { Bitmap bits(n); for (size_t i = 0; i < n; i++) { EXPECT_FALSE(bits.get(i)) << n << " " << i << " " << bits.ToString(); bits.set(i); EXPECT_TRUE(bits.get(i)) << n << " " << i << " " << bits.ToString(); bits.clear(i); EXPECT_FALSE(bits.get(i)) << n << " " << i << " " << bits.ToString(); } } } TEST(BitmapTest, ToString) { Bitmap bits(10); bits.set(1); bits.set(3); EXPECT_EQ(bits.ToString(), "0101000000"); } TEST(BitmapTest, FirstUnset) { for (size_t n = 0; n < 200; n = NextSize(n)) { for (size_t p = 0; p <= 100; p++) { for (size_t q = 0; q <= 100; q++) { Bitmap bitmap(n); int one_count = 0; size_t i = 0; while (i < p && i < n) { one_count++; bitmap.set(i); i++; } while (i < n) { i++; for (size_t j = 0; j < q && i < n; j++, i++) { one_count++; bitmap.set(i); } } int seen = 0; size_t pos = 0; while (true) { pos = bitmap.FirstUnset(pos); if (pos == n) break; ASSERT_FALSE(bitmap.get(pos)) << pos << " " << bitmap.ToString(); seen++; pos++; } EXPECT_EQ(seen, n - one_count) << " " << bitmap.ToString(); } } } } TEST(BitmapTest, FirstUnsetRandom) { random::PhiloxRandom philox(301, 17); random::SimplePhilox rnd(&philox); for (int iter = 0; iter < 10000; iter++) { Bitmap bitmap; MakeRandomBitmap(&rnd, &bitmap); size_t zero_bits = 0; for (size_t i = 0; i < bitmap.bits(); i++) { if (!bitmap.get(i)) zero_bits++; } int seen = 0; size_t pos = 0; while (true) { pos = bitmap.FirstUnset(pos); if (pos == bitmap.bits()) break; ASSERT_FALSE(bitmap.get(pos)) << pos << " " << bitmap.ToString(); seen++; pos++; } EXPECT_EQ(seen, zero_bits) << " " << bitmap.ToString(); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/core/bitmap.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/core/bitmap_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4f642d61-6d96-4e9c-995b-78264081631f
cpp
tensorflow/tensorflow
crc32c
third_party/xla/xla/tsl/lib/hash/crc32c.cc
third_party/xla/xla/tsl/lib/hash/crc32c_test.cc
#include "xla/tsl/lib/hash/crc32c.h" #include <stdint.h> #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "tsl/platform/types.h" namespace tsl { namespace crc32c { #if defined(TF_CORD_SUPPORT) uint32 Extend(uint32 crc, const absl::Cord &cord) { for (absl::string_view fragment : cord.Chunks()) { crc = Extend(crc, fragment.data(), fragment.size()); } return crc; } #endif } }
#include "xla/tsl/lib/hash/crc32c.h" #include <string> #include "absl/strings/cord.h" #include "tsl/platform/logging.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" #include "tsl/platform/types.h" namespace tsl { namespace crc32c { TEST(CRC, StandardResults) { char buf[32]; memset(buf, 0, sizeof(buf)); ASSERT_EQ(0x8a9136aa, Value(buf, sizeof(buf))); memset(buf, 0xff, sizeof(buf)); ASSERT_EQ(0x62a8ab43, Value(buf, sizeof(buf))); for (int i = 0; i < 32; i++) { buf[i] = i; } ASSERT_EQ(0x46dd794e, Value(buf, sizeof(buf))); for (int i = 0; i < 32; i++) { buf[i] = 31 - i; } ASSERT_EQ(0x113fdb5c, Value(buf, sizeof(buf))); unsigned char data[48] = { 0x01, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x18, 0x28, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; ASSERT_EQ(0xd9963a56, Value(reinterpret_cast<char*>(data), sizeof(data))); ASSERT_EQ(0xdd1b19be, Value(reinterpret_cast<char*>(data), sizeof(data) - 7)); ASSERT_EQ(0x4930c4b1, Value(reinterpret_cast<char*>(data) + 1, sizeof(data) - 4)); } TEST(CRC, Values) { ASSERT_NE(Value("a", 1), Value("foo", 3)); } TEST(CRC, Extend) { ASSERT_EQ(Value("hello world", 11), Extend(Value("hello ", 6), "world", 5)); } TEST(CRC, Mask) { uint32 crc = Value("foo", 3); ASSERT_NE(crc, Mask(crc)); ASSERT_NE(crc, Mask(Mask(crc))); ASSERT_EQ(crc, Unmask(Mask(crc))); ASSERT_EQ(crc, Unmask(Unmask(Mask(Mask(crc))))); } #if defined(PLATFORM_GOOGLE) TEST(CRC, ValuesWithCord) { ASSERT_NE(Value(absl::Cord("a")), Value(absl::Cord("foo"))); } TEST(CRC, ExtendWithCord) { ASSERT_EQ(Value(absl::Cord("hello world")), Extend(Value(absl::Cord("hello ")), absl::Cord("world"))); } #endif static void BM_CRC(::testing::benchmark::State& state) { int len = state.range(0); std::string input(len, 'x'); uint32 h = 0; for (auto s : state) { h = Extend(h, input.data() + 1, len - 1); } state.SetBytesProcessed(state.iterations() * len); VLOG(1) << h; } BENCHMARK(BM_CRC)->Range(1, 256 * 1024); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/hash/crc32c.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/hash/crc32c_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2137774c-d1b0-416b-93a9-b2e5d467fb5e
cpp
tensorflow/tensorflow
table
tensorflow/lite/kernels/table.cc
tensorflow/lite/kernels/table_test.cc
#include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/reference/integer_ops/lut.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace custom { namespace table { constexpr int kInputTensor = 0; constexpr int kTable = 1; constexpr int kOutputTensor = 0; TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); const TfLiteTensor* table; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kTable, &table)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); TF_LITE_ENSURE(context, input->type == kTfLiteInt8 || input->type == kTfLiteInt16); TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); TF_LITE_ENSURE_TYPES_EQ(context, output->type, table->type); if (input->type == kTfLiteInt16) { TF_LITE_ENSURE_EQ(context, input->params.zero_point, 0); TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); } TF_LITE_ENSURE_EQ(context, NumDimensions(table), 1); if (input->type == kTfLiteInt8) { TF_LITE_ENSURE_EQ(context, NumElements(table), LUTSize<int8_t>()); } else { TF_LITE_ENSURE_EQ(context, input->type, kTfLiteInt16); TF_LITE_ENSURE_EQ(context, NumElements(table), LUTSize<int16_t>()); } return context->ResizeTensor(context, output, TfLiteIntArrayCopy(input->dims)); } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); const TfLiteTensor* table; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kTable, &table)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); switch (input->type) { case kTfLiteInt8: reference_integer_ops::LookupTable( GetTensorData<int8_t>(input), MatchingFlatSize(GetTensorShape(input), GetTensorShape(output)), GetTensorData<int8_t>(table), GetTensorData<int8_t>(output)); return kTfLiteOk; case kTfLiteInt16: reference_integer_ops::LookupTable( GetTensorData<int16_t>(input), MatchingFlatSize(GetTensorShape(input), GetTensorShape(output)), GetTensorData<int16_t>(table), GetTensorData<int16_t>(output)); return kTfLiteOk; default: TF_LITE_UNSUPPORTED_TYPE(context, input->type, "Table"); } return kTfLiteOk; } } TfLiteRegistration* Register_TABLE() { static TfLiteRegistration r = {nullptr, nullptr, table::Prepare, table::Eval}; return &r; } } } }
#include <cmath> #include <limits> #include <type_traits> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace ops { namespace custom { TfLiteRegistration* Register_TABLE(); namespace { using ::testing::ElementsAreArray; class TableOpModel : public SingleOpModel { public: TableOpModel(const TensorData& input, const TensorData& table, const TensorData& output) { input_ = AddInput(input); table_ = AddInput(table); output_ = AddOutput(output); SetCustomOp("Table", {}, Register_TABLE); BuildInterpreter({GetShape(input_), GetShape(table_)}); } template <typename T> std::vector<T> GetOutput() { return ExtractVector<T>(output_); } template <typename integer_dtype> std::vector<float> GetDequantizedOutput() { return Dequantize<integer_dtype>(ExtractVector<integer_dtype>(output_), GetScale(output_), GetZeroPoint(output_)); } int input() { return input_; } int table() { return table_; } int output() { return output_; } protected: int input_; int table_; int output_; }; template <typename T> inline float GetLUTTolerance(float input_min, float input_max, float output_min, float output_max) { static_assert( std::is_same<T, int8_t>::value || std::is_same<T, int16_t>::value, "T must be an int8_t or int16_t."); const float range_sum = (input_max - input_min) + (output_max - output_min); if (std::is_same<T, int8_t>::value) { return range_sum / 256.0f; } else { return range_sum / 512.0f; } } template <typename T> void TableWithExpLUTTest() { float input_min = -0.5f; float input_max = 0.8f; if (std::is_same<T, int16_t>::value) { input_min = -0.8f; input_max = 0.8f * std::numeric_limits<T>::max() / static_cast<float>(std::numeric_limits<T>::max() + 1); } float output_min = 0.0f; float output_max = 2.4f; if (std::is_same<T, int16_t>::value) { output_min = -2.4f; output_max = 2.4f * std::numeric_limits<T>::max() / static_cast<float>(std::numeric_limits<T>::max() + 1); } const float kQuantizedTolerance = GetLUTTolerance<T>(input_min, input_max, output_min, output_max); TableOpModel m({GetTensorType<T>(), {1, 2, 3, 1}, input_min, input_max}, {GetTensorType<T>(), {LUTSize<T>()}}, {GetTensorType<T>(), {}, output_min, output_max}); T table[LUTSize<T>()]; LUTPopulate<T>( m.GetScale(m.input()), m.GetZeroPoint(m.input()), m.GetScale(m.output()), m.GetZeroPoint(m.output()), [](float v) { return std::exp(v); }, table); m.QuantizeAndPopulate<T>(m.input(), {-0.5f, -0.2f, 0.0f, 0.1f, 0.3f, 0.8f}); m.PopulateTensor<T>(m.table(), 0, table, table + LUTSize<T>()); m.Invoke(); EXPECT_THAT(m.GetDequantizedOutput<T>(), ElementsAreArray(ArrayFloatNear( {std::exp(-0.5f), std::exp(-0.2f), std::exp(0.0f), std::exp(0.1f), std::exp(0.3f), std::exp(0.8f)}, kQuantizedTolerance))); } TEST(TableOpTest, Int8ExpLUT) { TableWithExpLUTTest<int8_t>(); } TEST(TableOpTest, Int16ExpLUT) { TableWithExpLUTTest<int16_t>(); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/table.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/table_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4a4e2c3c-500f-4632-a6de-198ec052515a
cpp
tensorflow/tensorflow
inputbuffer
third_party/xla/xla/tsl/lib/io/inputbuffer.cc
third_party/xla/xla/tsl/lib/io/inputbuffer_test.cc
#include "xla/tsl/lib/io/inputbuffer.h" #include <algorithm> #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace tsl { namespace io { InputBuffer::InputBuffer(RandomAccessFile* file, size_t buffer_bytes) : file_(file), file_pos_(0), size_(buffer_bytes), buf_(new char[size_]), pos_(buf_), limit_(buf_) {} InputBuffer::~InputBuffer() { delete[] buf_; } absl::Status InputBuffer::FillBuffer() { absl::string_view data; absl::Status s = file_->Read(file_pos_, size_, &data, buf_); if (data.data() != buf_) { memmove(buf_, data.data(), data.size()); } pos_ = buf_; limit_ = pos_ + data.size(); file_pos_ += data.size(); return s; } template <typename T> absl::Status InputBuffer::ReadLine(T* result) { result->clear(); absl::Status s; do { size_t buf_remain = limit_ - pos_; char* newline = static_cast<char*>(memchr(pos_, '\n', buf_remain)); if (newline != nullptr) { size_t result_len = newline - pos_; result->append(pos_, result_len); pos_ = newline + 1; if (!result->empty() && result->back() == '\r') { result->resize(result->size() - 1); } return absl::OkStatus(); } if (buf_remain > 0) result->append(pos_, buf_remain); s = FillBuffer(); DCHECK_EQ(pos_, buf_); } while (limit_ != buf_); if (!result->empty() && result->back() == '\r') { result->resize(result->size() - 1); } if (errors::IsOutOfRange(s) && !result->empty()) { return absl::OkStatus(); } return s; } template Status InputBuffer::ReadLine<std::string>(std::string* result); template Status InputBuffer::ReadLine<tstring>(tstring* result); absl::Status InputBuffer::ReadNBytes(int64_t bytes_to_read, std::string* result) { result->clear(); if (bytes_to_read < 0) { return errors::InvalidArgument("Can't read a negative number of bytes: ", bytes_to_read); } result->resize(bytes_to_read); size_t bytes_read = 0; absl::Status status = ReadNBytes(bytes_to_read, &(*result)[0], &bytes_read); if (bytes_read < bytes_to_read) result->resize(bytes_read); return status; } absl::Status InputBuffer::ReadNBytes(int64_t bytes_to_read, char* result, size_t* bytes_read) { if (bytes_to_read < 0) { return errors::InvalidArgument("Can't read a negative number of bytes: ", bytes_to_read); } absl::Status status; *bytes_read = 0; while (*bytes_read < static_cast<size_t>(bytes_to_read)) { if (pos_ == limit_) { status = FillBuffer(); if (limit_ == buf_) { break; } } const int64_t bytes_to_copy = std::min<int64_t>(limit_ - pos_, bytes_to_read - *bytes_read); memcpy(result + *bytes_read, pos_, bytes_to_copy); pos_ += bytes_to_copy; *bytes_read += bytes_to_copy; } if (errors::IsOutOfRange(status) && (*bytes_read == static_cast<size_t>(bytes_to_read))) { return absl::OkStatus(); } return status; } absl::Status InputBuffer::ReadVarint32Fallback(uint32* result) { absl::Status s = ReadVarintFallback(result, core::kMaxVarint32Bytes); if (errors::IsDataLoss(s)) { return errors::DataLoss("Stored data is too large to be a varint32."); } return s; } absl::Status InputBuffer::ReadVarint64Fallback(uint64* result) { absl::Status s = ReadVarintFallback(result, core::kMaxVarint64Bytes); if (errors::IsDataLoss(s)) { return errors::DataLoss("Stored data is too large to be a varint64."); } return s; } template <typename T> absl::Status InputBuffer::ReadVarintFallback(T* result, int max_bytes) { uint8 scratch = 0; auto* p = reinterpret_cast<char*>(&scratch); size_t unused_bytes_read = 0; *result = 0; for (int index = 0; index < max_bytes; index++) { int shift = 7 * index; TF_RETURN_IF_ERROR(ReadNBytes(1, p, &unused_bytes_read)); *result |= (static_cast<T>(scratch) & 127) << shift; if (!(scratch & 128)) return absl::OkStatus(); } return errors::DataLoss("Stored data longer than ", max_bytes, " bytes."); } absl::Status InputBuffer::SkipNBytes(int64_t bytes_to_skip) { if (bytes_to_skip < 0) { return errors::InvalidArgument("Can only skip forward, not ", bytes_to_skip); } int64_t bytes_skipped = 0; absl::Status s; while (bytes_skipped < bytes_to_skip) { if (pos_ == limit_) { s = FillBuffer(); if (limit_ == buf_) { break; } } const int64_t bytes_to_advance = std::min<int64_t>(limit_ - pos_, bytes_to_skip - bytes_skipped); bytes_skipped += bytes_to_advance; pos_ += bytes_to_advance; } if (errors::IsOutOfRange(s) && bytes_skipped == bytes_to_skip) { return absl::OkStatus(); } return s; } absl::Status InputBuffer::Seek(int64_t position) { if (position < 0) { return errors::InvalidArgument("Seeking to a negative position: ", position); } const int64_t bufpos = file_pos_ - static_cast<int64_t>(limit_ - buf_); if (position >= bufpos && position < file_pos_) { pos_ = buf_ + (position - bufpos); DCHECK(pos_ >= buf_ && pos_ < limit_); } else { pos_ = limit_ = buf_; file_pos_ = position; } return absl::OkStatus(); } absl::Status InputBuffer::Hint(int64_t bytes_to_read) { if (bytes_to_read < 0) { return errors::InvalidArgument("Can't read a negative number of bytes: ", bytes_to_read); } if (bytes_to_read > size_) { return absl::OkStatus(); } const int64_t bytes_remain_in_buf = static_cast<int64_t>(limit_ - pos_); if (bytes_to_read <= bytes_remain_in_buf) { return absl::OkStatus(); } memmove(buf_, pos_, bytes_remain_in_buf); pos_ = buf_; limit_ = buf_ + bytes_remain_in_buf; bytes_to_read -= bytes_remain_in_buf; absl::string_view data; absl::Status s = file_->Read(file_pos_, bytes_to_read, &data, limit_); if (data.data() != limit_) { memmove(limit_, data.data(), data.size()); } limit_ += data.size(); file_pos_ += data.size(); if (errors::IsOutOfRange(s) && data.size() == bytes_to_read) { return absl::OkStatus(); } else { return s; } } } }
#include "xla/tsl/lib/io/inputbuffer.h" #include <vector> #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/coding.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/str_util.h" #include "tsl/platform/strcat.h" #include "tsl/platform/test.h" namespace tsl { namespace { static std::vector<int> BufferSizes() { return {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 65536}; } TEST(InputBuffer, ReadLine_Empty) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "")); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); string line; io::InputBuffer in(file.get(), buf_size); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); } } TEST(InputBuffer, ReadLine1) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_CHECK_OK( WriteStringToFile(env, fname, "line one\nline two\nline three\n")); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); string line; io::InputBuffer in(file.get(), buf_size); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line one"); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line two"); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line three"); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); } } TEST(InputBuffer, ReadLine_NoTrailingNewLine) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "line one\nline two\nline three")); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); string line; io::InputBuffer in(file.get(), buf_size); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line one"); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line two"); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line three"); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); } } TEST(InputBuffer, ReadLine_EmptyLines) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_CHECK_OK( WriteStringToFile(env, fname, "line one\n\n\nline two\nline three")); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); string line; io::InputBuffer in(file.get(), buf_size); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line one"); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, ""); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, ""); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line two"); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line three"); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); } } TEST(InputBuffer, ReadLine_CRLF) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "line one\r\n\r\n\r\nline two\r\nline three")); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); string line; io::InputBuffer in(file.get(), buf_size); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line one"); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, ""); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, ""); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line two"); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line three"); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); } } TEST(InputBuffer, ReadNBytes) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); string read; io::InputBuffer in(file.get(), buf_size); EXPECT_EQ(0, in.Tell()); TF_CHECK_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "012"); EXPECT_EQ(3, in.Tell()); TF_CHECK_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, ""); EXPECT_EQ(3, in.Tell()); TF_CHECK_OK(in.ReadNBytes(4, &read)); EXPECT_EQ(read, "3456"); EXPECT_EQ(7, in.Tell()); TF_CHECK_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, ""); EXPECT_EQ(7, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(5, &read))); EXPECT_EQ(read, "789"); EXPECT_EQ(10, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(5, &read))); EXPECT_EQ(read, ""); EXPECT_EQ(10, in.Tell()); TF_CHECK_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, ""); EXPECT_EQ(10, in.Tell()); } size_t bytes_read; for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); char read[5]; io::InputBuffer in(file.get(), buf_size); EXPECT_EQ(0, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(3, read, &bytes_read)); EXPECT_EQ(absl::string_view(read, 3), "012"); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, read, &bytes_read)); EXPECT_EQ(absl::string_view(read, 3), "012"); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(4, read, &bytes_read)); EXPECT_EQ(absl::string_view(read, 4), "3456"); EXPECT_EQ(7, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, read, &bytes_read)); EXPECT_EQ(absl::string_view(read, 4), "3456"); EXPECT_EQ(7, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(5, read, &bytes_read))); EXPECT_EQ(absl::string_view(read, 3), "789"); EXPECT_EQ(10, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(5, read, &bytes_read))); EXPECT_EQ(absl::string_view(read, 3), "789"); EXPECT_EQ(10, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, read, &bytes_read)); EXPECT_EQ(absl::string_view(read, 3), "789"); EXPECT_EQ(10, in.Tell()); } } TEST(InputBuffer, SkipNBytes) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); string read; io::InputBuffer in(file.get(), buf_size); EXPECT_EQ(0, in.Tell()); TF_CHECK_OK(in.SkipNBytes(3)); EXPECT_EQ(3, in.Tell()); TF_CHECK_OK(in.SkipNBytes(0)); EXPECT_EQ(3, in.Tell()); TF_CHECK_OK(in.ReadNBytes(2, &read)); EXPECT_EQ(read, "34"); EXPECT_EQ(5, in.Tell()); TF_CHECK_OK(in.SkipNBytes(0)); EXPECT_EQ(5, in.Tell()); TF_CHECK_OK(in.SkipNBytes(2)); EXPECT_EQ(7, in.Tell()); TF_CHECK_OK(in.ReadNBytes(1, &read)); EXPECT_EQ(read, "7"); EXPECT_EQ(8, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.SkipNBytes(5))); EXPECT_EQ(10, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.SkipNBytes(5))); EXPECT_EQ(10, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(5, &read))); EXPECT_EQ(read, ""); EXPECT_EQ(10, in.Tell()); } } TEST(InputBuffer, Seek) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); string read; io::InputBuffer in(file.get(), buf_size); TF_CHECK_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "012"); TF_CHECK_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "345"); TF_CHECK_OK(in.Seek(0)); TF_CHECK_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "012"); TF_CHECK_OK(in.Seek(3)); TF_CHECK_OK(in.ReadNBytes(4, &read)); EXPECT_EQ(read, "3456"); TF_CHECK_OK(in.Seek(4)); TF_CHECK_OK(in.ReadNBytes(4, &read)); EXPECT_EQ(read, "4567"); TF_CHECK_OK(in.Seek(1 << 25)); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(1, &read))); EXPECT_TRUE(absl::StrContains(in.Seek(-1).ToString(), "negative position")); } } TEST(InputBuffer, ReadVarint32) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); std::vector<uint32> data; uint32 i = 0; for (; i < (1U << 10); i += 1) data.push_back(i); for (; i < (1U << 15); i += 5) data.push_back(i); for (; i < (1U << 31); i += 132817) data.push_back(i); data.push_back(std::numeric_limits<uint32>::max()); { std::unique_ptr<WritableFile> file; TF_CHECK_OK(env->NewWritableFile(fname, &file)); string varint; for (uint32 number : data) { varint.clear(); core::PutVarint32(&varint, number); TF_CHECK_OK(file->Append(absl::string_view(varint))); } } for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); io::InputBuffer in(file.get(), buf_size); uint32 result = 0; for (uint32 expected : data) { TF_ASSERT_OK(in.ReadVarint32(&result)); EXPECT_EQ(expected, result); } EXPECT_TRUE(errors::IsOutOfRange(in.ReadVarint32(&result))); } } TEST(InputBuffer, ReadVarint64) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); std::vector<uint64> data; uint64 i = 0; for (; i < (1U << 10); i += 1) data.push_back(i); for (; i < (1U << 15); i += 5) data.push_back(i); for (; i < (1U << 31); i += 164817) data.push_back(i); for (; i < (1ULL << 63); i += 16481797854795663UL) data.push_back(i); data.push_back(std::numeric_limits<uint64>::max()); { std::unique_ptr<WritableFile> file; TF_CHECK_OK(env->NewWritableFile(fname, &file)); string varint; for (uint64 number : data) { varint.clear(); core::PutVarint64(&varint, number); TF_CHECK_OK(file->Append(absl::string_view(varint))); } } for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); io::InputBuffer in(file.get(), buf_size); uint64 result = 0; for (uint64 expected : data) { TF_ASSERT_OK(in.ReadVarint64(&result)); EXPECT_EQ(expected, result); } EXPECT_TRUE(errors::IsOutOfRange(in.ReadVarint64(&result))); } } TEST(InputBuffer, Hint) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); string read; io::InputBuffer in(file.get(), buf_size); TF_CHECK_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "012"); TF_CHECK_OK(in.Hint(4)); TF_CHECK_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "345"); TF_CHECK_OK(in.Hint(1)); TF_CHECK_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "678"); TF_CHECK_OK(in.Seek(0)); TF_CHECK_OK(in.Hint(7)); TF_CHECK_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "012"); TF_CHECK_OK(in.ReadNBytes(4, &read)); EXPECT_EQ(read, "3456"); TF_CHECK_OK(in.Hint(2)); TF_CHECK_OK(in.Seek(4)); TF_CHECK_OK(in.ReadNBytes(4, &read)); EXPECT_EQ(read, "4567"); TF_CHECK_OK(in.Seek(0)); TF_CHECK_OK(in.Hint(1 << 25)); TF_CHECK_OK(in.Seek(1 << 25)); EXPECT_TRUE(errors::IsOutOfRange(in.Hint(1))); EXPECT_TRUE(errors::IsInvalidArgument(in.Hint(-1))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/io/inputbuffer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/io/inputbuffer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea