ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
48
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
13
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
78
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
93
203
Commit Hash
stringclasses
13 values
16498d21-1d10-4b45-ae7a-9b43a041a5b6
cpp
tensorflow/tensorflow
memory_space_propagation
third_party/xla/xla/service/memory_space_propagation.cc
third_party/xla/xla/service/memory_space_propagation_test.cc
#include "xla/service/memory_space_propagation.h" #include <cstdint> #include "xla/shape.h" #include "xla/shape_util.h" namespace xla { absl::StatusOr<bool> MemorySpacePropagation::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool modified = false; TF_ASSIGN_OR_RETURN(auto dataflow_analysis, HloDataflowAnalysis::Run(*module, false, true)); dataflow_analysis_ = std::move(dataflow_analysis); for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kFusion) { for (int operand_idx = 0; operand_idx < instruction->fused_parameters().size(); ++operand_idx) { ShapeUtil::ForEachLeafShape( instruction->operand(operand_idx)->shape(), [&](const Shape& sub_shape, const ShapeIndex& index) { int64_t memory_space = sub_shape.layout().memory_space(); modified |= Propagate(index, instruction->fused_parameter(operand_idx), memory_space); }); } ShapeUtil::ForEachLeafShape( instruction->shape(), [&](const Shape& sub_shape, const ShapeIndex& index) { int64_t memory_space = sub_shape.layout().memory_space(); modified |= Propagate(index, instruction->fused_expression_root(), memory_space); }); } } } return modified; } bool MemorySpacePropagation::Propagate(ShapeIndexView index, const HloInstruction* callee_instruction, int64_t memory_space) const { bool modified = false; const HloValue& value = dataflow_analysis_->GetUniqueValueAt( callee_instruction, ShapeIndex(index)); for (const HloPosition& position : value.positions()) { HloInstruction* instruction = position.instruction; Shape* shape = ShapeUtil::GetMutableSubshape(instruction->mutable_shape(), position.index); if (shape->layout().memory_space() == memory_space) { continue; } shape->mutable_layout()->set_memory_space(memory_space); modified = true; if (instruction->opcode() == HloOpcode::kFusion) { Propagate(position.index, instruction->fused_expression_root(), memory_space); } const HloInstruction* parent_fusion = instruction->parent()->FusionInstruction(); if (instruction == instruction->parent()->root_instruction() && parent_fusion->parent()->IsFusionComputation()) { Propagate(position.index, parent_fusion, memory_space); } if (instruction->opcode() == HloOpcode::kParameter && parent_fusion->parent()->IsFusionComputation()) { const HloInstruction* fusion_operand = parent_fusion->operand(instruction->parameter_number()); Propagate(position.index, fusion_operand, memory_space); } } for (const HloUse& use : value.GetUses()) { if (use.instruction->opcode() == HloOpcode::kFusion) { modified |= Propagate( use.operand_index, use.instruction->fused_parameter(use.operand_number), memory_space); } } return modified; } }
#include "xla/service/memory_space_propagation.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" namespace xla { namespace { class MemorySpacePropagationTest : public HloTestBase { public: MemorySpacePropagationTest() : HloTestBase(), verifier_(false, false) { } absl::Status Verify(HloModule* module) { return verifier_.Run(module).status(); } private: HloVerifier verifier_; }; TEST_F(MemorySpacePropagationTest, NoMemorySpace) { absl::string_view hlo_string = R"( HloModule NoMemorySpace %fused_computation { %param_1.3 = s32[1]{0:T(128)} parameter(1) %constant.2 = s32[]{:T(128)} constant(-2147483648) %pad.2 = s32[6]{0:T(128)} pad(s32[1]{0:T(128)} %param_1.3, s32[]{:T(128)} %constant.2), padding=0_5 %param_2.3 = s32[5]{0:T(128)} parameter(2) %pad.3 = s32[6]{0:T(128)} pad(s32[5]{0:T(128)} %param_2.3, s32[]{:T(128)} %constant.2), padding=1_0 %maximum.1 = s32[6]{0:T(128)} maximum(s32[6]{0:T(128)} %pad.2, s32[6]{0:T(128)} %pad.3) %param_0.1 = s32[6]{0:T(128)} parameter(0) ROOT %add.0 = s32[6]{0:T(128)} add(s32[6]{0:T(128)} %maximum.1, s32[6]{0:T(128)} %param_0.1) } ENTRY %entry { %param0 = s32[6]{0:T(128)} parameter(0) %param1 = s32[1]{0:T(128)} parameter(1) %param2 = s32[5]{0:T(128)} parameter(2) %arg0 = s32[6]{0:T(128)} copy(%param0) %arg1 = s32[1]{0:T(128)} copy(%param1) %arg2 = s32[5]{0:T(128)} copy(%param2) %fusion = s32[6]{0:T(128)} fusion(s32[6]{0:T(128)} %arg0, s32[1]{0:T(128)} %arg1, s32[5]{0:T(128)} %arg2), kind=kLoop, calls=%fused_computation ROOT %root = s32[6]{0:T(128)} copy(%fusion) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); MemorySpacePropagation memory_space_propagation; EXPECT_FALSE(memory_space_propagation.Run(module.get()).value()); TF_ASSERT_OK_AND_ASSIGN(auto ref, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_EQ(absl::HashOf(*module), absl::HashOf(*ref)); } TEST_F(MemorySpacePropagationTest, NonTupleOutput) { absl::string_view hlo_string = R"( HloModule NonTupleOutput %fused_computation { %param_1.3 = s32[1]{0:T(128)} parameter(1) %constant.2 = s32[]{:T(128)} constant(-2147483648) %pad.2 = s32[6]{0:T(128)} pad(s32[1]{0:T(128)} %param_1.3, s32[]{:T(128)} %constant.2), padding=0_5 %param_2.3 = s32[5]{0:T(128)} parameter(2) %pad.3 = s32[6]{0:T(128)} pad(s32[5]{0:T(128)} %param_2.3, s32[]{:T(128)} %constant.2), padding=1_0 %maximum.1 = s32[6]{0:T(128)} maximum(s32[6]{0:T(128)} %pad.2, s32[6]{0:T(128)} %pad.3) %param_0.1 = s32[6]{0:T(128)} parameter(0) ROOT %add.0 = s32[6]{0:T(128)} add(s32[6]{0:T(128)} %maximum.1, s32[6]{0:T(128)} %param_0.1) } ENTRY %entry { %param0 = s32[6]{0:T(128)} parameter(0) %param1 = s32[1]{0:T(128)} parameter(1) %param2 = s32[5]{0:T(128)} parameter(2) %arg0 = s32[6]{0:T(128)S(1)} copy(%param0) %arg1 = s32[1]{0:T(128)} copy(%param1) %arg2 = s32[5]{0:T(128)S(1)} copy(%param2) %fusion = s32[6]{0:T(128)S(1)} fusion(s32[6]{0:T(128)S(1)} %arg0, s32[1]{0:T(128)} %arg1, s32[5]{0:T(128)S(1)} %arg2), kind=kLoop, calls=%fused_computation ROOT %root = s32[6]{0:T(128)} copy(%fusion) } )"; absl::string_view expected_hlo_string = R"( HloModule NonTupleOutput %fused_computation { %param_1.3 = s32[1]{0:T(128)} parameter(1) %constant.2 = s32[]{:T(128)} constant(-2147483648) %pad.2 = s32[6]{0:T(128)} pad(s32[1]{0:T(128)} %param_1.3, s32[]{:T(128)} %constant.2), padding=0_5 %param_2.3 = s32[5]{0:T(128)S(1)} parameter(2) %pad.3 = s32[6]{0:T(128)} pad(s32[5]{0:T(128)} %param_2.3, s32[]{:T(128)} %constant.2), padding=1_0 %maximum.1 = s32[6]{0:T(128)} maximum(s32[6]{0:T(128)} %pad.2, s32[6]{0:T(128)} %pad.3) %param_0.1 = s32[6]{0:T(128)S(1)} parameter(0) ROOT %add.0 = s32[6]{0:T(128)S(1)} add(s32[6]{0:T(128)} %maximum.1, s32[6]{0:T(128)} %param_0.1) } ENTRY %entry { %param0 = s32[6]{0:T(128)} parameter(0) %param1 = s32[1]{0:T(128)} parameter(1) %param2 = s32[5]{0:T(128)} parameter(2) %arg0 = s32[6]{0:T(128)S(1)} copy(%param0) %arg1 = s32[1]{0:T(128)} copy(%param1) %arg2 = s32[5]{0:T(128)S(1)} copy(%param2) %fusion = s32[6]{0:T(128)S(1)} fusion(s32[6]{0:T(128)S(1)} %arg0, s32[1]{0:T(128)} %arg1, s32[5]{0:T(128)S(1)} %arg2), kind=kLoop, calls=%fused_computation ROOT %root = s32[6]{0:T(128)} copy(%fusion) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(hlo_string)); MemorySpacePropagation memory_space_propagation; EXPECT_TRUE(memory_space_propagation.Run(module.get()).value()); TF_EXPECT_OK(Verify(module.get())); TF_ASSERT_OK_AND_ASSIGN(auto ref, ParseAndReturnVerifiedModule(expected_hlo_string)); EXPECT_EQ(absl::HashOf(*module), absl::HashOf(*ref)); } TEST_F(MemorySpacePropagationTest, TupleOutput) { absl::string_view hlo_string = R"( HloModule TupleOutput %fused_computation { %param_1.3 = s32[1]{0:T(128)} parameter(1) %constant.2 = s32[]{:T(128)} constant(-2147483648) %pad.2 = s32[6]{0:T(128)} pad(s32[1]{0:T(128)} %param_1.3, s32[]{:T(128)} %constant.2), padding=0_5 %param_2.3 = s32[5]{0:T(128)} parameter(2) %pad.3 = s32[6]{0:T(128)} pad(s32[5]{0:T(128)} %param_2.3, s32[]{:T(128)} %constant.2), padding=1_0 %maximum.1 = s32[6]{0:T(128)} maximum(s32[6]{0:T(128)} %pad.2, s32[6]{0:T(128)} %pad.3) %param_0.1 = s32[6]{0:T(128)} parameter(0) %add.0 = s32[6]{0:T(128)} add(s32[6]{0:T(128)} %maximum.1, s32[6]{0:T(128)} %param_0.1) %multiply.0 = s32[6]{0:T(128)} multiply(s32[6]{0:T(128)} %maximum.1, s32[6]{0:T(128)} %param_0.1) ROOT %tuple = (s32[6]{0:T(128)}, s32[6]{0:T(128)}) tuple(%add.0, %multiply.0) } ENTRY %entry { %param0 = s32[6]{0:T(128)} parameter(0) %param1 = s32[1]{0:T(128)} parameter(1) %param2 = s32[5]{0:T(128)} parameter(2) %arg0 = s32[6]{0:T(128)S(1)} copy(%param0) %arg1 = s32[1]{0:T(128)} copy(%param1) %arg2 = s32[5]{0:T(128)S(1)} copy(%param2) %fusion = (s32[6]{0:T(128)S(1)}, s32[6]{0:T(128)}) fusion(s32[6]{0:T(128)S(1)} %arg0, s32[1]{0:T(128)} %arg1, s32[5]{0:T(128)S(1)} %arg2), kind=kLoop, calls=%fused_computation %gte0 = s32[6]{0:T(128)S(1)} get-tuple-element(%fusion), index=0 %gte1 = s32[6]{0:T(128)} get-tuple-element(%fusion), index=1 ROOT %root = s32[6]{0:T(128)} add(%gte0, %gte1) } )"; absl::string_view expected_hlo_string = R"( HloModule TupleOutput %fused_computation { %param_1.3 = s32[1]{0:T(128)} parameter(1) %constant.2 = s32[]{:T(128)} constant(-2147483648) %pad.2 = s32[6]{0:T(128)} pad(s32[1]{0:T(128)} %param_1.3, s32[]{:T(128)} %constant.2), padding=0_5 %param_2.3 = s32[5]{0:T(128)S(1)} parameter(2) %pad.3 = s32[6]{0:T(128)} pad(s32[5]{0:T(128)} %param_2.3, s32[]{:T(128)} %constant.2), padding=1_0 %maximum.1 = s32[6]{0:T(128)} maximum(s32[6]{0:T(128)} %pad.2, s32[6]{0:T(128)} %pad.3) %param_0.1 = s32[6]{0:T(128)S(1)} parameter(0) %add.0 = s32[6]{0:T(128)S(1)} add(s32[6]{0:T(128)} %maximum.1, s32[6]{0:T(128)} %param_0.1) %multiply.0 = s32[6]{0:T(128)} multiply(s32[6]{0:T(128)} %maximum.1, s32[6]{0:T(128)} %param_0.1) ROOT %tuple = (s32[6]{0:T(128)S(1)}, s32[6]{0:T(128)}) tuple(%add.0, %multiply.0) } ENTRY %entry { %param0 = s32[6]{0:T(128)} parameter(0) %param1 = s32[1]{0:T(128)} parameter(1) %param2 = s32[5]{0:T(128)} parameter(2) %arg0 = s32[6]{0:T(128)S(1)} copy(%param0) %arg1 = s32[1]{0:T(128)} copy(%param1) %arg2 = s32[5]{0:T(128)S(1)} copy(%param2) %fusion = (s32[6]{0:T(128)S(1)}, s32[6]{0:T(128)}) fusion(s32[6]{0:T(128)S(1)} %arg0, s32[1]{0:T(128)} %arg1, s32[5]{0:T(128)S(1)} %arg2), kind=kLoop, calls=%fused_computation %gte0 = s32[6]{0:T(128)S(1)} get-tuple-element(%fusion), index=0 %gte1 = s32[6]{0:T(128)} get-tuple-element(%fusion), index=1 ROOT %root = s32[6]{0:T(128)} add(%gte0, %gte1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(hlo_string)); MemorySpacePropagation memory_space_propagation; EXPECT_TRUE(memory_space_propagation.Run(module.get()).value()); TF_EXPECT_OK(Verify(module.get())); TF_ASSERT_OK_AND_ASSIGN(auto ref, ParseAndReturnVerifiedModule(expected_hlo_string)); EXPECT_EQ(absl::HashOf(*module), absl::HashOf(*ref)); } TEST_F(MemorySpacePropagationTest, NestedInputFusion) { absl::string_view hlo_string = R"( HloModule NestedFusion %bitcast_fusion { %bf_param = s32[3,2]{0,1:T(128)} parameter(0) ROOT %bitcast = s32[6]{0:T(128)} bitcast(%bf_param) } %fused_computation { %param_1.3 = s32[1]{0:T(128)} parameter(1) %constant.2 = s32[]{:T(128)} constant(-2147483648) %pad.2 = s32[6]{0:T(128)} pad(s32[1]{0:T(128)} %param_1.3, s32[]{:T(128)} %constant.2), padding=0_5 %param_2.3 = s32[5]{0:T(128)} parameter(2) %pad.3 = s32[6]{0:T(128)} pad(s32[5]{0:T(128)} %param_2.3, s32[]{:T(128)} %constant.2), padding=1_0 %maximum.1 = s32[6]{0:T(128)} maximum(s32[6]{0:T(128)} %pad.2, s32[6]{0:T(128)} %pad.3) %param_0.1 = s32[3,2]{0,1:T(128)} parameter(0) %fusion.1 = s32[6]{0:T(128)} fusion(%param_0.1), kind=kLoop, calls=bitcast_fusion ROOT %add.0 = s32[6]{0:T(128)} add(s32[6]{0:T(128)} %maximum.1, s32[6]{0:T(128)} %fusion.1) } ENTRY %entry { %param0 = s32[3,2]{0,1:T(128)} parameter(0) %param1 = s32[1]{0:T(128)} parameter(1) %param2 = s32[5]{0:T(128)} parameter(2) %arg0 = s32[3,2]{0,1:T(128)S(1)} copy(%param0) %arg1 = s32[1]{0:T(128)} copy(%param1) %arg2 = s32[5]{0:T(128)S(1)} copy(%param2) %fusion = s32[6]{0:T(128)S(1)} fusion(s32[3,2]{0,1:T(128)S(1)} %arg0, s32[1]{0:T(128)} %arg1, s32[5]{0:T(128)S(1)} %arg2), kind=kLoop, calls=%fused_computation ROOT %root = s32[6]{0:T(128)} copy(%fusion) } )"; absl::string_view expected_hlo_string = R"( HloModule NestedFusion %bitcast_fusion { %bf_param = s32[3,2]{0,1:T(128)S(1)} parameter(0) ROOT %bitcast = s32[6]{0:T(128)} bitcast(%bf_param) } %fused_computation { %param_1.3 = s32[1]{0:T(128)} parameter(1) %constant.2 = s32[]{:T(128)} constant(-2147483648) %pad.2 = s32[6]{0:T(128)} pad(s32[1]{0:T(128)} %param_1.3, s32[]{:T(128)} %constant.2), padding=0_5 %param_2.3 = s32[5]{0:T(128)S(1)} parameter(2) %pad.3 = s32[6]{0:T(128)} pad(s32[5]{0:T(128)} %param_2.3, s32[]{:T(128)} %constant.2), padding=1_0 %maximum.1 = s32[6]{0:T(128)} maximum(s32[6]{0:T(128)} %pad.2, s32[6]{0:T(128)} %pad.3) %param_0.1 = s32[3,2]{0,1:T(128)S(1)} parameter(0) %fusion.1 = s32[6]{0:T(128)} fusion(%param_0.1), kind=kLoop, calls=bitcast_fusion ROOT %add.0 = s32[6]{0:T(128)S(1)} add(s32[6]{0:T(128)} %maximum.1, s32[6]{0:T(128)} %fusion.1) } ENTRY %entry { %param0 = s32[3,2]{0,1:T(128)} parameter(0) %param1 = s32[1]{0:T(128)} parameter(1) %param2 = s32[5]{0:T(128)} parameter(2) %arg0 = s32[3,2]{0,1:T(128)S(1)} copy(%param0) %arg1 = s32[1]{0:T(128)} copy(%param1) %arg2 = s32[5]{0:T(128)S(1)} copy(%param2) %fusion = s32[6]{0:T(128)S(1)} fusion(s32[3,2]{0,1:T(128)S(1)} %arg0, s32[1]{0:T(128)} %arg1, s32[5]{0:T(128)S(1)} %arg2), kind=kLoop, calls=%fused_computation ROOT %root = s32[6]{0:T(128)} copy(%fusion) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(hlo_string)); MemorySpacePropagation memory_space_propagation; EXPECT_TRUE(memory_space_propagation.Run(module.get()).value()); TF_EXPECT_OK(Verify(module.get())); TF_ASSERT_OK_AND_ASSIGN(auto ref, ParseAndReturnVerifiedModule(expected_hlo_string)); EXPECT_EQ(absl::HashOf(*module), absl::HashOf(*ref)); } TEST_F(MemorySpacePropagationTest, NestedOutputFusion) { absl::string_view hlo_string = R"( HloModule NestedFusion %bitcast_fusion { %bf_param = s32[6]{0:T(128)} parameter(0) ROOT %bitcast = s32[3,2]{0,1:T(128)} bitcast(%bf_param) } %fused_computation { %param_1.3 = s32[1]{0:T(128)} parameter(1) %constant.2 = s32[]{:T(128)} constant(-2147483648) %pad.2 = s32[6]{0:T(128)} pad(s32[1]{0:T(128)} %param_1.3, s32[]{:T(128)} %constant.2), padding=0_5 %param_2.3 = s32[5]{0:T(128)} parameter(2) %pad.3 = s32[6]{0:T(128)} pad(s32[5]{0:T(128)} %param_2.3, s32[]{:T(128)} %constant.2), padding=1_0 %maximum.1 = s32[6]{0:T(128)} maximum(s32[6]{0:T(128)} %pad.2, s32[6]{0:T(128)} %pad.3) %param_0.1 = s32[6]{0:T(128)} parameter(0) %add.0 = s32[6]{0:T(128)} add(s32[6]{0:T(128)} %maximum.1, s32[6]{0:T(128)} %param_0.1) ROOT %fusion.1 = s32[3,2]{0,1:T(128)} fusion(%add.0), kind=kLoop, calls=bitcast_fusion } ENTRY %entry { %param0 = s32[6]{0:T(128)} parameter(0) %param1 = s32[1]{0:T(128)} parameter(1) %param2 = s32[5]{0:T(128)} parameter(2) %arg0 = s32[6]{0:T(128)S(1)} copy(%param0) %arg1 = s32[1]{0:T(128)} copy(%param1) %arg2 = s32[5]{0:T(128)S(1)} copy(%param2) %fusion = s32[3,2]{0,1:T(128)S(1)} fusion(s32[6]{0:T(128)S(1)} %arg0, s32[1]{0:T(128)} %arg1, s32[5]{0:T(128)S(1)} %arg2), kind=kLoop, calls=%fused_computation ROOT %root = s32[3,2]{0,1:T(128)} copy(%fusion) } )"; absl::string_view expected_hlo_string = R"( HloModule NestedFusion %bitcast_fusion { %bf_param = s32[6]{0:T(128)} parameter(0) ROOT %bitcast = s32[3,2]{0,1:T(128)S(1)} bitcast(%bf_param) } %fused_computation { %param_1.3 = s32[1]{0:T(128)} parameter(1) %constant.2 = s32[]{:T(128)} constant(-2147483648) %pad.2 = s32[6]{0:T(128)} pad(s32[1]{0:T(128)} %param_1.3, s32[]{:T(128)} %constant.2), padding=0_5 %param_2.3 = s32[5]{0:T(128)S(1)} parameter(2) %pad.3 = s32[6]{0:T(128)} pad(s32[5]{0:T(128)} %param_2.3, s32[]{:T(128)} %constant.2), padding=1_0 %maximum.1 = s32[6]{0:T(128)} maximum(s32[6]{0:T(128)} %pad.2, s32[6]{0:T(128)} %pad.3) %param_0.1 = s32[6]{0:T(128)S(1)} parameter(0) %add.0 = s32[6]{0:T(128)} add(s32[6]{0:T(128)} %maximum.1, s32[6]{0:T(128)S(1)} %param_0.1) ROOT %fusion.1 = s32[3,2]{0,1:T(128)S(1)} fusion(%add.0), kind=kLoop, calls=bitcast_fusion } ENTRY %entry { %param0 = s32[6]{0:T(128)} parameter(0) %param1 = s32[1]{0:T(128)} parameter(1) %param2 = s32[5]{0:T(128)} parameter(2) %arg0 = s32[6]{0:T(128)S(1)} copy(%param0) %arg1 = s32[1]{0:T(128)} copy(%param1) %arg2 = s32[5]{0:T(128)S(1)} copy(%param2) %fusion = s32[3,2]{0,1:T(128)S(1)} fusion(s32[6]{0:T(128)S(1)} %arg0, s32[1]{0:T(128)} %arg1, s32[5]{0:T(128)S(1)} %arg2), kind=kLoop, calls=%fused_computation ROOT %root = s32[3,2]{0,1:T(128)} copy(%fusion) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(hlo_string)); MemorySpacePropagation memory_space_propagation; EXPECT_TRUE(memory_space_propagation.Run(module.get()).value()); TF_EXPECT_OK(Verify(module.get())); TF_ASSERT_OK_AND_ASSIGN(auto ref, ParseAndReturnVerifiedModule(expected_hlo_string)); EXPECT_EQ(absl::HashOf(*module), absl::HashOf(*ref)); } TEST_F(MemorySpacePropagationTest, BitcastInFusion) { absl::string_view hlo_string = R"( HloModule TupleOutput %fused_computation { %param_1.3 = s32[1]{0:T(128)} parameter(1) %constant.2 = s32[]{:T(128)} constant(-2147483648) %pad.2 = s32[6]{0:T(128)} pad(s32[1]{0:T(128)} %param_1.3, s32[]{:T(128)} %constant.2), padding=0_5 %param_2.3 = s32[5]{0:T(128)} parameter(2) %pad.3 = s32[6]{0:T(128)} pad(s32[5]{0:T(128)} %param_2.3, s32[]{:T(128)} %constant.2), padding=1_0 %maximum.1 = s32[6]{0:T(128)} maximum(s32[6]{0:T(128)} %pad.2, s32[6]{0:T(128)} %pad.3) %param_0.1 = s32[6]{0:T(128)} parameter(0) %bitcast.0 = s32[6]{0:T(128)} bitcast(s32[6]{0:T(128)} %param_0.1) %multiply.0 = s32[6]{0:T(128)} multiply(s32[6]{0:T(128)} %maximum.1, s32[6]{0:T(128)} %param_0.1) ROOT %tuple = (s32[6]{0:T(128)}, s32[6]{0:T(128)}) tuple(%bitcast.0, %multiply.0) } ENTRY %entry { %param0 = s32[6]{0:T(128)} parameter(0) %param1 = s32[1]{0:T(128)} parameter(1) %param2 = s32[5]{0:T(128)} parameter(2) %arg0 = s32[6]{0:T(128)S(1)} copy(%param0) %arg1 = s32[1]{0:T(128)} copy(%param1) %arg2 = s32[5]{0:T(128)S(1)} copy(%param2) ROOT %fusion = (s32[6]{0:T(128)}, s32[6]{0:T(128)}) fusion(s32[6]{0:T(128)S(1)} %arg0, s32[1]{0:T(128)} %arg1, s32[5]{0:T(128)S(1)} %arg2), kind=kLoop, calls=%fused_computation } )"; absl::string_view expected_hlo_string = R"( HloModule TupleOutput %fused_computation { %param_1.3 = s32[1]{0:T(128)} parameter(1) %constant.2 = s32[]{:T(128)} constant(-2147483648) %pad.2 = s32[6]{0:T(128)} pad(s32[1]{0:T(128)} %param_1.3, s32[]{:T(128)} %constant.2), padding=0_5 %param_2.3 = s32[5]{0:T(128)S(1)} parameter(2) %pad.3 = s32[6]{0:T(128)} pad(s32[5]{0:T(128)S(1)} %param_2.3, s32[]{:T(128)} %constant.2), padding=1_0 %maximum.1 = s32[6]{0:T(128)} maximum(s32[6]{0:T(128)} %pad.2, s32[6]{0:T(128)} %pad.3) %param_0.1 = s32[6]{0:T(128)S(1)} parameter(0) %bitcast.0 = s32[6]{0:T(128)} bitcast(s32[6]{0:T(128)S(1)} %param_0.1) %multiply.0 = s32[6]{0:T(128)} multiply(s32[6]{0:T(128)} %maximum.1, s32[6]{0:T(128)S(1)} %param_0.1) ROOT %tuple = (s32[6]{0:T(128)}, s32[6]{0:T(128)}) tuple(%bitcast.0, %multiply.0) } ENTRY %entry { %param0 = s32[6]{0:T(128)} parameter(0) %param1 = s32[1]{0:T(128)} parameter(1) %param2 = s32[5]{0:T(128)} parameter(2) %arg0 = s32[6]{0:T(128)S(1)} copy(%param0) %arg1 = s32[1]{0:T(128)} copy(%param1) %arg2 = s32[5]{0:T(128)S(1)} copy(%param2) ROOT %fusion = (s32[6]{0:T(128)}, s32[6]{0:T(128)}) fusion(s32[6]{0:T(128)S(1)} %arg0, s32[1]{0:T(128)} %arg1, s32[5]{0:T(128)S(1)} %arg2), kind=kLoop, calls=%fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(hlo_string)); MemorySpacePropagation memory_space_propagation; EXPECT_TRUE(memory_space_propagation.Run(module.get()).value()); TF_EXPECT_OK(Verify(module.get())); TF_ASSERT_OK_AND_ASSIGN(auto ref, ParseAndReturnVerifiedModule(expected_hlo_string)); EXPECT_EQ(absl::HashOf(*module), absl::HashOf(*ref)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/memory_space_propagation.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/memory_space_propagation_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c7a66d7d-dadc-40c4-8d3c-c32222c567aa
cpp
tensorflow/tensorflow
xla_debug_info_manager
third_party/xla/xla/service/xla_debug_info_manager.cc
third_party/xla/xla/service/xla_debug_info_manager_test.cc
#include "xla/service/xla_debug_info_manager.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/synchronization/mutex.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_proto_util.h" namespace xla { void XlaDebugInfoManager::RegisterModule( std::shared_ptr<const HloModule> hlo_module, BufferAssignmentProto buffer_assignment) { CHECK(hlo_module != nullptr); absl::MutexLock lock(&mutex_); auto result = modules_.try_emplace(hlo_module->unique_id()); CHECK(result.second); XlaModuleEntry& m = result.first->second; m.hlo_module = std::move(hlo_module); m.buffer_assignment = std::move(buffer_assignment); m.active = true; } void XlaDebugInfoManager::UnregisterModule(ModuleIdentifier module_id) { absl::MutexLock lock(&mutex_); auto it = modules_.find(module_id); CHECK(it != modules_.end()); if (!tracing_active_) { modules_.erase(it); } else { XlaModuleEntry& m = it->second; m.active = false; } } void XlaDebugInfoManager::StartTracing() { absl::MutexLock lock(&mutex_); tracing_active_ = true; } void XlaDebugInfoManager::StopTracing( std::vector<std::unique_ptr<HloProto>>* module_debug_info) { std::vector<XlaModuleEntry> modules_to_serialize; { absl::MutexLock lock(&mutex_); if (!tracing_active_) return; tracing_active_ = false; modules_to_serialize.reserve(modules_.size()); for (auto it = modules_.begin(); it != modules_.end();) { auto& m = it->second; auto cur_it = it++; if (!m.active) { modules_to_serialize.emplace_back(std::move(m)); modules_.erase(cur_it); } else { modules_to_serialize.emplace_back(m); } } } if (module_debug_info) { module_debug_info->clear(); for (const auto& m : modules_to_serialize) { auto hlo_proto = std::make_unique<HloProto>(MakeHloProto(*m.hlo_module)); *hlo_proto->mutable_buffer_assignment() = m.buffer_assignment; module_debug_info->emplace_back(std::move(hlo_proto)); } } } bool XlaDebugInfoManager::TracksModule(ModuleIdentifier module_id) const { absl::MutexLock lock(&mutex_); return modules_.find(module_id) != modules_.end(); } }
#include "xla/service/xla_debug_info_manager.h" #include <memory> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_set.h" #include "absl/synchronization/mutex.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/tests/hlo_test_base.h" namespace xla { class XlaDebugInfoManagerTestPeer { public: void RegisterModule(std::shared_ptr<const HloModule> hlo_module, BufferAssignmentProto buffer_assignment) { return xla_debug_info_manager_.RegisterModule(hlo_module, std::move(buffer_assignment)); } void UnregisterModule(ModuleIdentifier module_id) { return xla_debug_info_manager_.UnregisterModule(module_id); } void StartTracing() { return xla_debug_info_manager_.StartTracing(); } absl::flat_hash_set<ModuleIdentifier> StopTracing() { std::vector<std::unique_ptr<HloProto>> module_debug_info; xla_debug_info_manager_.StopTracing(&module_debug_info); absl::flat_hash_set<ModuleIdentifier> module_ids; for (const auto& hlo_proto : module_debug_info) { module_ids.insert(hlo_proto->hlo_module().id()); } return module_ids; } absl::flat_hash_set<ModuleIdentifier> GetModuleIds() { absl::flat_hash_set<ModuleIdentifier> module_ids; absl::MutexLock lock(&xla_debug_info_manager_.mutex_); for (const auto& it : xla_debug_info_manager_.modules_) { module_ids.insert(it.first); } return module_ids; } private: XlaDebugInfoManager xla_debug_info_manager_; }; namespace { using ::testing::IsEmpty; using ::testing::UnorderedElementsAre; class XlaDebugInfoManagerTest : public HloTestBase { protected: struct DebugMetadata { ModuleIdentifier unique_id; std::shared_ptr<HloModule> module; }; ModuleIdentifier RegisterProgram(const std::string& module_name) { DebugMetadata debug_info; HloModuleConfig config; debug_info.module = std::make_shared<HloModule>(module_name, config); ModuleIdentifier unique_id = debug_info.module->unique_id(); debug_info.unique_id = unique_id; xla_debug_info_manager_.RegisterModule(debug_info.module, BufferAssignmentProto()); external_references_.push_back(std::move(debug_info)); return unique_id; } void UnregisterProgram(ModuleIdentifier unique_id) { for (int i = 0; i < external_references_.size(); i++) { if (external_references_[i].unique_id == unique_id) { xla_debug_info_manager_.UnregisterModule(unique_id); external_references_.erase(external_references_.begin() + i); break; } } } absl::flat_hash_set<ModuleIdentifier> GetModuleIds() { return xla_debug_info_manager_.GetModuleIds(); } void StartTrace() { xla_debug_info_manager_.StartTracing(); } absl::flat_hash_set<ModuleIdentifier> StopTrace() { return xla_debug_info_manager_.StopTracing(); } std::vector<DebugMetadata> external_references_; XlaDebugInfoManagerTestPeer xla_debug_info_manager_; }; TEST_F(XlaDebugInfoManagerTest, NoTraceBasic) { auto program0 = RegisterProgram("program0"); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0)); auto program1 = RegisterProgram("program1"); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0, program1)); UnregisterProgram(program0); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program1)); UnregisterProgram(program1); EXPECT_TRUE(GetModuleIds().empty()); } TEST_F(XlaDebugInfoManagerTest, NoTraceDuplicateIds) { auto program0A = RegisterProgram("program0"); auto program0B = RegisterProgram("program0"); auto program1 = RegisterProgram("program1"); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0A, program0B, program1)); UnregisterProgram(program1); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0A, program0B)); UnregisterProgram(program0A); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0B)); UnregisterProgram(program0B); EXPECT_THAT(GetModuleIds(), IsEmpty()); } TEST_F(XlaDebugInfoManagerTest, ActiveTrace) { auto program0A = RegisterProgram("program0"); auto program0B = RegisterProgram("program0"); auto program1 = RegisterProgram("program1"); StartTrace(); auto program2 = RegisterProgram("program2"); EXPECT_THAT(StopTrace(), UnorderedElementsAre(program0A, program0B, program1, program2)); StartTrace(); EXPECT_THAT(StopTrace(), UnorderedElementsAre(program0A, program0B, program1, program2)); UnregisterProgram(program2); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0A, program0B, program1)); UnregisterProgram(program0A); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0B, program1)); UnregisterProgram(program0B); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program1)); UnregisterProgram(program1); EXPECT_THAT(GetModuleIds(), IsEmpty()); } TEST_F(XlaDebugInfoManagerTest, UnregisterDuringTrace) { auto program0A = RegisterProgram("program0"); auto program0B = RegisterProgram("program0"); auto program1 = RegisterProgram("program1"); StartTrace(); UnregisterProgram(program1); UnregisterProgram(program0B); EXPECT_THAT(StopTrace(), UnorderedElementsAre(program0A, program0B, program1)); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0A)); UnregisterProgram(program0A); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/xla_debug_info_manager.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/xla_debug_info_manager_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
04ba64e2-bf21-4b89-ab30-0f9608f75f9e
cpp
tensorflow/tensorflow
convert_operand_folding
third_party/xla/xla/service/convert_operand_folding.cc
third_party/xla/xla/service/convert_operand_folding_test.cc
#include "xla/service/convert_operand_folding.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/primitive_util.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla { namespace { bool IsUpcastConvert(const HloInstruction* hlo) { if (!hlo->shape().IsArray()) { return false; } switch (hlo->opcode()) { case HloOpcode::kDynamicSlice: case HloOpcode::kGather: case HloOpcode::kReshape: case HloOpcode::kSlice: case HloOpcode::kTranspose: { return IsUpcastConvert(hlo->operand(0)); } case HloOpcode::kReduce: { if (ShapeUtil::ElementsIn(hlo->shape()) == ShapeUtil::ElementsIn(hlo->operand(0)->shape())) { return IsUpcastConvert(hlo->operand(0)); } return false; } case HloOpcode::kConvert: return primitive_util::CastPreservesValues( hlo->operand(0)->shape().element_type(), hlo->shape().element_type()); default: return false; } } HloInstruction* EffectiveOperand(HloInstruction* hlo) { switch (hlo->opcode()) { case HloOpcode::kBroadcast: case HloOpcode::kDynamicSlice: case HloOpcode::kGather: case HloOpcode::kReshape: case HloOpcode::kSlice: case HloOpcode::kTranspose: { HloInstruction* operand = EffectiveOperand(hlo->mutable_operand(0)); HloInstruction* clone = hlo->AddInstruction(hlo->Clone()); *(clone->mutable_shape()) = ShapeUtil::ChangeElementType( clone->shape(), operand->shape().element_type()); clone->ReplaceOperandWithDifferentShape(0, operand).IgnoreError(); return clone; } case HloOpcode::kReduce: { HloInstruction* operand = EffectiveOperand(hlo->mutable_operand(0)); return hlo->AddInstruction(HloInstruction::CreateReshape( ShapeUtil::ChangeElementType(hlo->shape(), operand->shape().element_type()), operand)); } case HloOpcode::kConvert: return hlo->mutable_operand(0); default: return nullptr; } } } bool ConvertOperandFolding::InstructionMatchesPattern( HloInstruction* instruction) { if (instruction->opcode() != HloOpcode::kDot && instruction->opcode() != HloOpcode::kConvolution) { return false; } for (auto* operand : instruction->operands()) { if (IsUpcastConvert(operand)) { return true; } } return false; } absl::StatusOr<HloInstruction*> ConvertOperandFolding::ExpandInstruction( HloInstruction* instruction) { for (int i = 0; i < instruction->operand_count(); ++i) { auto* operand = instruction->mutable_operand(i); if (IsUpcastConvert(operand)) { TF_RETURN_IF_ERROR(instruction->ReplaceOperandWithDifferentShape( i, EffectiveOperand(operand))); } } return nullptr; } }
#include "xla/service/convert_operand_folding.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = ::xla::testing::opcode_matchers; using ConvertOperandFoldingTest = HloTestBase; TEST_F(ConvertOperandFoldingTest, IntegralUpcastConvertFolded) { absl::string_view module_string = R"( HloModule module ENTRY main { p0 = s8[2,3]{1,0} parameter(0) p1 = s16[3,2]{0,1} parameter(1) c0 = s16[2,3]{1,0} convert(p0) c1 = s16[3,2]{0,1} convert(p1) ROOT dot = s16[2,2]{1,0} dot(c0, c1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool folded, ConvertOperandFolding().Run(module.get())); EXPECT_TRUE(folded); EXPECT_THAT(module->entry_computation()->root_instruction(), AllOf(op::Dot(op::Parameter(0), op::Parameter(1)), op::Shape("s16[2,2]{1,0}"))); } TEST_F(ConvertOperandFoldingTest, FloatingUpcastConvertFolded) { absl::string_view module_string = R"( HloModule module ENTRY main { p0 = f16[2,3]{1,0} parameter(0) p1 = bf16[3,2]{0,1} parameter(1) c0 = f32[2,3]{1,0} convert(p0) c1 = f32[3,2]{0,1} convert(p1) ROOT dot = f32[2,2]{1,0} dot(c0, c1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool folded, ConvertOperandFolding().Run(module.get())); EXPECT_TRUE(folded); EXPECT_THAT(module->entry_computation()->root_instruction(), AllOf(op::Dot(op::Parameter(0), op::Parameter(1)), op::Shape("f32[2,2]{1,0}"))); } TEST_F(ConvertOperandFoldingTest, IntegralToFloatingConvertFolded) { absl::string_view module_string = R"( HloModule module ENTRY main { p0 = s8[2,3]{1,0} parameter(0) p1 = s16[3,2]{0,1} parameter(1) c0 = f16[2,3]{1,0} convert(p0) c1 = f32[3,2]{0,1} convert(p1) ROOT dot = f32[2,2]{1,0} dot(c0, c1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool folded, ConvertOperandFolding().Run(module.get())); EXPECT_TRUE(folded); EXPECT_THAT(module->entry_computation()->root_instruction(), AllOf(op::Dot(op::Parameter(0), op::Parameter(1)), op::Shape("f32[2,2]{1,0}"))); } TEST_F(ConvertOperandFoldingTest, DowncastConvertNotFolded) { absl::string_view module_string = R"( HloModule module ENTRY main { p0 = s32[2,3]{1,0} parameter(0) p1 = s16[3,2]{0,1} parameter(1) c0 = s16[2,3]{1,0} convert(p0) c1 = s8[3,2]{0,1} convert(p1) ROOT dot = s16[2,2]{1,0} dot(c0, c1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool folded, ConvertOperandFolding().Run(module.get())); EXPECT_FALSE(folded); EXPECT_THAT( module->entry_computation()->root_instruction(), AllOf( op::Dot( AllOf(op::Convert(op::Parameter(0)), op::Shape("s16[2,3]{1,0}")), AllOf(op::Convert(op::Parameter(1)), op::Shape("s8[3,2]{0,1}"))), op::Shape("s16[2,2]{1,0}"))); } TEST_F(ConvertOperandFoldingTest, OneOperandFolded) { absl::string_view module_string = R"( HloModule module ENTRY main { p0 = s8[2,3]{1,0} parameter(0) p1 = s16[3,2]{0,1} parameter(1) c0 = s16[2,3]{1,0} convert(p0) c1 = s8[3,2]{0,1} convert(p1) ROOT dot = s16[2,2]{1,0} dot(c0, c1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool folded, ConvertOperandFolding().Run(module.get())); EXPECT_TRUE(folded); EXPECT_THAT( module->entry_computation()->root_instruction(), AllOf(op::Dot(op::Parameter(0), AllOf(op::Convert(op::Parameter(1)), op::Shape("s8[3,2]{0,1}"))), op::Shape("s16[2,2]{1,0}"))); } TEST_F(ConvertOperandFoldingTest, FoldedWithFormatting) { absl::string_view module_string = R"( HloModule module sum { a = s16[] parameter(0) b = s16[] parameter(1) ROOT r = add(a,b) } ENTRY main { p0 = s8[3,10] parameter(0) c0 = s16[3,10] convert(p0) r0 = s16[3,2,5] reshape(c0) t0 = s16[2,5,3] transpose(r0), dimensions={1,2,0} s0 = s16[2,1,3] slice(t0), slice={[0:2], [2:3], [0:3]} rs0 = s16[2,3] reshape(s0) p1 = s8[3,1,2] parameter(1) c1 = s16[3,1,2] convert(p1) r1 = s16[1,3,2] transpose(c1), dimensions={1,0,2} z = s16[] constant(0) rr1 = s16[3,2] reduce(r1,z), dimensions={0}, to_apply=sum ROOT dot = s16[2,2] dot(rs0, rr1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool folded, ConvertOperandFolding().Run(module.get())); EXPECT_TRUE(folded); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Dot( op::Reshape(op::Slice(op::Transpose(op::Reshape(op::Parameter(0))))), op::Reshape(op::Transpose(op::Parameter(1))))); } TEST_F(ConvertOperandFoldingTest, FoldedWithDSAndGather) { absl::string_view module_string = R"( HloModule module ENTRY main { p0 = s8[100,3] parameter(0) c0 = s16[100,3] convert(p0) ids = s32[20] parameter(2) g = s16[20,3] gather(c0, ids), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1,3} t = s16[3,20] transpose(g), dimensions={1,0} p1 = s8[25,3] parameter(1) c1 = s16[25,3] convert(p1) z = s32[] constant(0) s = s32[] parameter(3) ds = s16[20,3] dynamic-slice(c1, s, z), dynamic_slice_sizes={20,3} ROOT dot = s16[3,3] dot(t, ds), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool folded, ConvertOperandFolding().Run(module.get())); EXPECT_TRUE(folded); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Dot(op::Transpose(op::Gather(op::Parameter(0), op::Parameter(2))), op::DynamicSlice(op::Parameter(1), op::Parameter(3), op::Constant()))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/convert_operand_folding.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/convert_operand_folding_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
31d6bc83-735f-44e1-8e06-a62edd6d24b3
cpp
tensorflow/tensorflow
convert_memory_placement_to_internal_annotations
third_party/xla/xla/service/convert_memory_placement_to_internal_annotations.cc
third_party/xla/xla/service/convert_memory_placement_to_internal_annotations_test.cc
#include "xla/service/convert_memory_placement_to_internal_annotations.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/host_memory_offload_annotations.h" #include "xla/side_effect_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla { absl::StatusOr<bool> ConvertMemoryPlacementToInternalAnnotations::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* c : module->MakeNonfusionComputations()) { for (HloInstruction* instruction : c->MakeInstructionPostOrder()) { if (instruction->IsCustomCall( host_memory_offload_annotations::kDevicePlacement)) { const auto& frontend_attributes = instruction->frontend_attributes(); const auto it = frontend_attributes.map().find(kXlaBufferPlacementAttr); if (it == frontend_attributes.map().end()) { continue; } const bool is_to_host_case = (it->second == host_memory_offload_annotations::kMemoryTargetPinnedHost || it->second == host_memory_offload_annotations::kMemoryTargetUnpinnedHost); const bool is_to_device_case = (it->second == host_memory_offload_annotations::kMemoryTargetDevice); if (!is_to_host_case && !is_to_device_case) { continue; } if (is_to_host_case) { VLOG(1) << "Process forward case: " << instruction->ToString(); if (instruction->operand_count() != 1) { return Internal( "Custom calls with target %s must have exactly one operand. %s " "has %d.", host_memory_offload_annotations::kDevicePlacement, instruction->name(), instruction->operand_count()); } HloInstruction* input = instruction->mutable_operand(0); HloInstruction* move_to_host_custom_call = c->AddInstruction(HloInstruction::CreateCustomCall( input->shape(), {input}, host_memory_offload_annotations:: kMoveToHostCustomCallTarget)); if (instruction->has_sharding()) { move_to_host_custom_call->set_sharding(instruction->sharding()); } TF_RETURN_IF_ERROR( instruction->ReplaceAllUsesWith(move_to_host_custom_call)); TF_RETURN_IF_ERROR( c->RemoveInstructionAndUnusedOperands(instruction)); changed = true; } else if (is_to_device_case) { VLOG(1) << "Process backward case: " << instruction->ToString(); HloInstruction* custom_call_operand = instruction->mutable_operand(0); HloInstruction* new_result = c->AddInstruction(HloInstruction::CreateCustomCall( custom_call_operand->shape(), {custom_call_operand}, host_memory_offload_annotations:: kMoveToDeviceCustomCallTarget)); TF_RETURN_IF_ERROR(instruction->ReplaceAllUsesWith(new_result)); TF_RETURN_IF_ERROR( c->RemoveInstructionAndUnusedOperands(instruction)); changed = true; } } } } return changed; } }
#include "xla/service/convert_memory_placement_to_internal_annotations.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <string_view> #include <vector> #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "xla/service/host_memory_offload_annotations.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class ConvertMemoryPlacementToInternalAnnotationsTest : public HloTestBase { public: ConvertMemoryPlacementToInternalAnnotationsTest() = default; }; TEST_F(ConvertMemoryPlacementToInternalAnnotationsTest, ConvertPinnedHostTest) { const char* hlo_string = R"( HloModule jit_f, entry_computation_layout={(f32[16]{0})->f32[16]{0}} region_0.9 { arg_tuple.10 = (s32[], f32[16]{0}, f32[16,16]{1,0}, f32[16,16]{1,0}) parameter(0) get-tuple-element.11 = s32[] get-tuple-element(arg_tuple.10), index=0 constant.15 = s32[] constant(1) add.33 = s32[] add(get-tuple-element.11, constant.15) get-tuple-element.12 = f32[16]{0} get-tuple-element(arg_tuple.10), index=1 sine.18 = f32[16]{0} sine(get-tuple-element.12) sine.19 = f32[16]{0} sine(sine.18) sine.20 = f32[16]{0} sine(sine.19) get-tuple-element.13 = f32[16,16]{1,0} get-tuple-element(arg_tuple.10), index=2 custom-call.21 = f32[16]{0} custom-call(sine.19), custom_call_target="annotate_device_placement", frontend_attributes={_xla_buffer_placement="pinned_host"} reshape.23 = f32[1,16]{1,0} reshape(custom-call.21) constant.17 = s32[] constant(0) compare.24 = pred[] compare(get-tuple-element.11, constant.17), direction=LT constant.16 = s32[] constant(16) add.25 = s32[] add(get-tuple-element.11, constant.16) select.26 = s32[] select(compare.24, add.25, get-tuple-element.11) dynamic-update-slice.27 = f32[16,16]{1,0} dynamic-update-slice(get-tuple-element.13, reshape.23, select.26, constant.17) get-tuple-element.14 = f32[16,16]{1,0} get-tuple-element(arg_tuple.10), index=3 custom-call.22 = f32[16]{0} custom-call(sine.20), custom_call_target="annotate_device_placement", frontend_attributes={_xla_buffer_placement="pinned_host"} reshape.28 = f32[1,16]{1,0} reshape(custom-call.22) compare.29 = pred[] compare(get-tuple-element.11, constant.17), direction=LT add.30 = s32[] add(get-tuple-element.11, constant.16) select.31 = s32[] select(compare.29, add.30, get-tuple-element.11) dynamic-update-slice.32 = f32[16,16]{1,0} dynamic-update-slice(get-tuple-element.14, reshape.28, select.31, constant.17) ROOT tuple.34 = (s32[], f32[16]{0}, f32[16,16]{1,0}, f32[16,16]{1,0}) tuple(add.33, sine.20, dynamic-update-slice.27, dynamic-update-slice.32) } region_1.35 { arg_tuple.36 = (s32[], f32[16]{0}, f32[16,16]{1,0}, f32[16,16]{1,0}) parameter(0) get-tuple-element.38 = f32[16]{0} get-tuple-element(arg_tuple.36), index=1 get-tuple-element.39 = f32[16,16]{1,0} get-tuple-element(arg_tuple.36), index=2 get-tuple-element.40 = f32[16,16]{1,0} get-tuple-element(arg_tuple.36), index=3 get-tuple-element.37 = s32[] get-tuple-element(arg_tuple.36), index=0 constant.41 = s32[] constant(16) ROOT compare.42 = pred[] compare(get-tuple-element.37, constant.41), direction=LT } core_closed_call.43 { constant.47 = s32[] constant(0) Arg_0.44 = f32[16]{0} parameter(0) constant.45 = f32[] constant(0) broadcast.46 = f32[16,16]{1,0} broadcast(constant.45), dimensions={} tuple.48 = (s32[], f32[16]{0}, f32[16,16]{1,0}, f32[16,16]{1,0}) tuple(constant.47, Arg_0.44, broadcast.46, broadcast.46) while.49 = (s32[], f32[16]{0}, f32[16,16]{1,0}, f32[16,16]{1,0}) while(tuple.48), condition=region_1.35, body=region_0.9 get-tuple-element.50 = s32[] get-tuple-element(while.49), index=0 get-tuple-element.51 = f32[16]{0} get-tuple-element(while.49), index=1 get-tuple-element.52 = f32[16,16]{1,0} get-tuple-element(while.49), index=2 get-tuple-element.53 = f32[16,16]{1,0} get-tuple-element(while.49), index=3 ROOT tuple.54 = (f32[16,16]{1,0}, f32[16,16]{1,0}) tuple(get-tuple-element.52, get-tuple-element.53) } region_2.65 { arg_tuple.66 = (s32[], f32[16]{0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}) parameter(0) get-tuple-element.67 = s32[] get-tuple-element(arg_tuple.66), index=0 constant.74 = s32[] constant(1) add.108 = s32[] add(get-tuple-element.67, constant.74) get-tuple-element.73 = f32[16,16]{1,0} get-tuple-element(arg_tuple.66), index=6 constant.76 = s32[] constant(0) compare.82 = pred[] compare(get-tuple-element.67, constant.76), direction=LT constant.75 = s32[] constant(16) add.83 = s32[] add(get-tuple-element.67, constant.75) select.84 = s32[] select(compare.82, add.83, get-tuple-element.67) dynamic-slice.85 = f32[1,16]{1,0} dynamic-slice(get-tuple-element.73, select.84, constant.76), dynamic_slice_sizes={1,16} reshape.86 = f32[16]{0} reshape(dynamic-slice.85) custom-call.87 = f32[16]{0} custom-call(reshape.86), custom_call_target="annotate_device_placement", frontend_attributes={_xla_buffer_placement="device"} get-tuple-element.69 = f32[16,16]{1,0} get-tuple-element(arg_tuple.66), index=2 get-tuple-element.68 = f32[16]{0} get-tuple-element(arg_tuple.66), index=1 cosine.88 = f32[16]{0} cosine(get-tuple-element.68) reshape.93 = f32[1,16]{1,0} reshape(cosine.88) compare.94 = pred[] compare(get-tuple-element.67, constant.76), direction=LT add.95 = s32[] add(get-tuple-element.67, constant.75) select.96 = s32[] select(compare.94, add.95, get-tuple-element.67) dynamic-update-slice.97 = f32[16,16]{1,0} dynamic-update-slice(get-tuple-element.69, reshape.93, select.96, constant.76) get-tuple-element.70 = f32[16,16]{1,0} get-tuple-element(arg_tuple.66), index=3 sine.89 = f32[16]{0} sine(get-tuple-element.68) cosine.90 = f32[16]{0} cosine(sine.89) reshape.98 = f32[1,16]{1,0} reshape(cosine.90) compare.99 = pred[] compare(get-tuple-element.67, constant.76), direction=LT add.100 = s32[] add(get-tuple-element.67, constant.75) select.101 = s32[] select(compare.99, add.100, get-tuple-element.67) dynamic-update-slice.102 = f32[16,16]{1,0} dynamic-update-slice(get-tuple-element.70, reshape.98, select.101, constant.76) get-tuple-element.71 = f32[16,16]{1,0} get-tuple-element(arg_tuple.66), index=4 get-tuple-element.72 = f32[16,16]{1,0} get-tuple-element(arg_tuple.66), index=5 compare.77 = pred[] compare(get-tuple-element.67, constant.76), direction=LT add.78 = s32[] add(get-tuple-element.67, constant.75) select.79 = s32[] select(compare.77, add.78, get-tuple-element.67) dynamic-slice.80 = f32[1,16]{1,0} dynamic-slice(get-tuple-element.72, select.79, constant.76), dynamic_slice_sizes={1,16} reshape.81 = f32[16]{0} reshape(dynamic-slice.80) custom-call.91 = f32[16]{0} custom-call(reshape.81), custom_call_target="annotate_device_placement", frontend_attributes={_xla_buffer_placement="device"} cosine.92 = f32[16]{0} cosine(custom-call.91) reshape.103 = f32[1,16]{1,0} reshape(cosine.92) compare.104 = pred[] compare(get-tuple-element.67, constant.76), direction=LT add.105 = s32[] add(get-tuple-element.67, constant.75) select.106 = s32[] select(compare.104, add.105, get-tuple-element.67) dynamic-update-slice.107 = f32[16,16]{1,0} dynamic-update-slice(get-tuple-element.71, reshape.103, select.106, constant.76) ROOT tuple.109 = (s32[], f32[16]{0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}) tuple(add.108, custom-call.87, dynamic-update-slice.97, dynamic-update-slice.102, dynamic-update-slice.107, get-tuple-element.72, get-tuple-element.73) } region_3.110 { arg_tuple.111 = (s32[], f32[16]{0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}) parameter(0) get-tuple-element.113 = f32[16]{0} get-tuple-element(arg_tuple.111), index=1 get-tuple-element.114 = f32[16,16]{1,0} get-tuple-element(arg_tuple.111), index=2 get-tuple-element.115 = f32[16,16]{1,0} get-tuple-element(arg_tuple.111), index=3 get-tuple-element.116 = f32[16,16]{1,0} get-tuple-element(arg_tuple.111), index=4 get-tuple-element.117 = f32[16,16]{1,0} get-tuple-element(arg_tuple.111), index=5 get-tuple-element.118 = f32[16,16]{1,0} get-tuple-element(arg_tuple.111), index=6 get-tuple-element.112 = s32[] get-tuple-element(arg_tuple.111), index=0 constant.119 = s32[] constant(16) ROOT compare.120 = pred[] compare(get-tuple-element.112, constant.119), direction=LT } region_4.130 { arg_tuple.131 = (s32[], f32[16]{0}, f32[], f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}) parameter(0) get-tuple-element.132 = s32[] get-tuple-element(arg_tuple.131), index=0 constant.140 = s32[] constant(1) add.164 = s32[] add(get-tuple-element.132, constant.140) get-tuple-element.133 = f32[16]{0} get-tuple-element(arg_tuple.131), index=1 get-tuple-element.134 = f32[] get-tuple-element(arg_tuple.131), index=2 broadcast.159 = f32[16]{0} broadcast(get-tuple-element.134), dimensions={} add.160 = f32[16]{0} add(get-tuple-element.133, broadcast.159) get-tuple-element.137 = f32[16,16]{1,0} get-tuple-element(arg_tuple.131), index=5 constant.141 = s32[] constant(16) subtract.142 = s32[] subtract(constant.141, get-tuple-element.132) subtract.143 = s32[] subtract(subtract.142, constant.140) constant.139 = s32[] constant(0) compare.154 = pred[] compare(subtract.143, constant.139), direction=LT add.155 = s32[] add(subtract.143, constant.141) select.156 = s32[] select(compare.154, add.155, subtract.143) dynamic-slice.157 = f32[1,16]{1,0} dynamic-slice(get-tuple-element.137, select.156, constant.139), dynamic_slice_sizes={1,16} reshape.158 = f32[16]{0} reshape(dynamic-slice.157) multiply.161 = f32[16]{0} multiply(add.160, reshape.158) get-tuple-element.136 = f32[16,16]{1,0} get-tuple-element(arg_tuple.131), index=4 compare.149 = pred[] compare(subtract.143, constant.139), direction=LT add.150 = s32[] add(subtract.143, constant.141) select.151 = s32[] select(compare.149, add.150, subtract.143) dynamic-slice.152 = f32[1,16]{1,0} dynamic-slice(get-tuple-element.136, select.151, constant.139), dynamic_slice_sizes={1,16} reshape.153 = f32[16]{0} reshape(dynamic-slice.152) multiply.162 = f32[16]{0} multiply(multiply.161, reshape.153) get-tuple-element.135 = f32[16,16]{1,0} get-tuple-element(arg_tuple.131), index=3 compare.144 = pred[] compare(subtract.143, constant.139), direction=LT add.145 = s32[] add(subtract.143, constant.141) select.146 = s32[] select(compare.144, add.145, subtract.143) dynamic-slice.147 = f32[1,16]{1,0} dynamic-slice(get-tuple-element.135, select.146, constant.139), dynamic_slice_sizes={1,16} reshape.148 = f32[16]{0} reshape(dynamic-slice.147) multiply.163 = f32[16]{0} multiply(multiply.162, reshape.148) constant.138 = f32[] constant(0) ROOT tuple.165 = (s32[], f32[16]{0}, f32[], f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}) tuple(add.164, multiply.163, constant.138, get-tuple-element.135, get-tuple-element.136, get-tuple-element.137) } region_5.166 { arg_tuple.167 = (s32[], f32[16]{0}, f32[], f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}) parameter(0) get-tuple-element.169 = f32[16]{0} get-tuple-element(arg_tuple.167), index=1 get-tuple-element.170 = f32[] get-tuple-element(arg_tuple.167), index=2 get-tuple-element.171 = f32[16,16]{1,0} get-tuple-element(arg_tuple.167), index=3 get-tuple-element.172 = f32[16,16]{1,0} get-tuple-element(arg_tuple.167), index=4 get-tuple-element.173 = f32[16,16]{1,0} get-tuple-element(arg_tuple.167), index=5 get-tuple-element.168 = s32[] get-tuple-element(arg_tuple.167), index=0 constant.174 = s32[] constant(16) ROOT compare.175 = pred[] compare(get-tuple-element.168, constant.174), direction=LT } ENTRY main.183 { constant.6 = s32[] constant(0) Arg_0.1 = f32[16]{0} parameter(0), sharding={devices=[2]<=[2]} call.55 = (f32[16,16]{1,0}, f32[16,16]{1,0}) call(Arg_0.1), to_apply=core_closed_call.43 get-tuple-element.56 = f32[16,16]{1,0} get-tuple-element(call.55), index=0 get-tuple-element.57 = f32[16,16]{1,0} get-tuple-element(call.55), index=1 constant.7 = f32[] constant(1) tuple.58 = (f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16]{0}, f32[]) tuple(get-tuple-element.56, get-tuple-element.57, Arg_0.1, constant.7) opt-barrier.59 = (f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16]{0}, f32[]) opt-barrier(tuple.58) get-tuple-element.62 = f32[16]{0} get-tuple-element(opt-barrier.59), index=2 constant.4 = f32[] constant(0) broadcast.5 = f32[16,16]{1,0} broadcast(constant.4), dimensions={} get-tuple-element.60 = f32[16,16]{1,0} get-tuple-element(opt-barrier.59), index=0 get-tuple-element.61 = f32[16,16]{1,0} get-tuple-element(opt-barrier.59), index=1 tuple.64 = (s32[], f32[16]{0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}) tuple(constant.6, get-tuple-element.62, broadcast.5, broadcast.5, broadcast.5, get-tuple-element.60, get-tuple-element.61) while.121 = (s32[], f32[16]{0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}) while(tuple.64), condition=region_3.110, body=region_2.65 get-tuple-element.122 = s32[] get-tuple-element(while.121), index=0 get-tuple-element.123 = f32[16]{0} get-tuple-element(while.121), index=1 get-tuple-element.127 = f32[16,16]{1,0} get-tuple-element(while.121), index=5 get-tuple-element.128 = f32[16,16]{1,0} get-tuple-element(while.121), index=6 constant.2 = f32[] constant(0) broadcast.3 = f32[16]{0} broadcast(constant.2), dimensions={} get-tuple-element.63 = f32[] get-tuple-element(opt-barrier.59), index=3 get-tuple-element.124 = f32[16,16]{1,0} get-tuple-element(while.121), index=2 get-tuple-element.125 = f32[16,16]{1,0} get-tuple-element(while.121), index=3 get-tuple-element.126 = f32[16,16]{1,0} get-tuple-element(while.121), index=4 tuple.129 = (s32[], f32[16]{0}, f32[], f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}) tuple(constant.6, broadcast.3, get-tuple-element.63, get-tuple-element.124, get-tuple-element.125, get-tuple-element.126) while.176 = (s32[], f32[16]{0}, f32[], f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}) while(tuple.129), condition=region_5.166, body=region_4.130 get-tuple-element.177 = s32[] get-tuple-element(while.176), index=0 ROOT get-tuple-element.178 = f32[16]{0} get-tuple-element(while.176), index=1 get-tuple-element.179 = f32[] get-tuple-element(while.176), index=2 get-tuple-element.180 = f32[16,16]{1,0} get-tuple-element(while.176), index=3 get-tuple-element.181 = f32[16,16]{1,0} get-tuple-element(while.176), index=4 get-tuple-element.182 = f32[16,16]{1,0} get-tuple-element(while.176), index=5 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); bool changed = ConvertMemoryPlacementToInternalAnnotations().Run(module.get()).value(); EXPECT_TRUE(changed); XLA_VLOG_LINES(1, module->ToString()); int64_t custom_calls_count = 0; for (auto* c : module->computations()) { for (auto* instr : c->instructions()) { if (instr->IsCustomCall( host_memory_offload_annotations::kMoveToHostCustomCallTarget) || instr->IsCustomCall( host_memory_offload_annotations::kMoveToDeviceCustomCallTarget)) { ++custom_calls_count; } } } EXPECT_EQ(custom_calls_count, 4); } TEST_F(ConvertMemoryPlacementToInternalAnnotationsTest, ConvertUnpinnedHostTest) { const char* hlo_string = R"( HloModule jit_f, entry_computation_layout={(f32[16]{0})->f32[16]{0}} region_0.9 { arg_tuple.10 = (s32[], f32[16]{0}, f32[16,16]{1,0}, f32[16,16]{1,0}) parameter(0) get-tuple-element.11 = s32[] get-tuple-element(arg_tuple.10), index=0 constant.15 = s32[] constant(1) add.33 = s32[] add(get-tuple-element.11, constant.15) get-tuple-element.12 = f32[16]{0} get-tuple-element(arg_tuple.10), index=1 sine.18 = f32[16]{0} sine(get-tuple-element.12) sine.19 = f32[16]{0} sine(sine.18) sine.20 = f32[16]{0} sine(sine.19) get-tuple-element.13 = f32[16,16]{1,0} get-tuple-element(arg_tuple.10), index=2 custom-call.21 = f32[16]{0} custom-call(sine.19), custom_call_target="annotate_device_placement", frontend_attributes={_xla_buffer_placement="unpinned_host"} reshape.23 = f32[1,16]{1,0} reshape(custom-call.21) constant.17 = s32[] constant(0) compare.24 = pred[] compare(get-tuple-element.11, constant.17), direction=LT constant.16 = s32[] constant(16) add.25 = s32[] add(get-tuple-element.11, constant.16) select.26 = s32[] select(compare.24, add.25, get-tuple-element.11) dynamic-update-slice.27 = f32[16,16]{1,0} dynamic-update-slice(get-tuple-element.13, reshape.23, select.26, constant.17) get-tuple-element.14 = f32[16,16]{1,0} get-tuple-element(arg_tuple.10), index=3 custom-call.22 = f32[16]{0} custom-call(sine.20), custom_call_target="annotate_device_placement", frontend_attributes={_xla_buffer_placement="unpinned_host"} reshape.28 = f32[1,16]{1,0} reshape(custom-call.22) compare.29 = pred[] compare(get-tuple-element.11, constant.17), direction=LT add.30 = s32[] add(get-tuple-element.11, constant.16) select.31 = s32[] select(compare.29, add.30, get-tuple-element.11) dynamic-update-slice.32 = f32[16,16]{1,0} dynamic-update-slice(get-tuple-element.14, reshape.28, select.31, constant.17) ROOT tuple.34 = (s32[], f32[16]{0}, f32[16,16]{1,0}, f32[16,16]{1,0}) tuple(add.33, sine.20, dynamic-update-slice.27, dynamic-update-slice.32) } region_1.35 { arg_tuple.36 = (s32[], f32[16]{0}, f32[16,16]{1,0}, f32[16,16]{1,0}) parameter(0) get-tuple-element.38 = f32[16]{0} get-tuple-element(arg_tuple.36), index=1 get-tuple-element.39 = f32[16,16]{1,0} get-tuple-element(arg_tuple.36), index=2 get-tuple-element.40 = f32[16,16]{1,0} get-tuple-element(arg_tuple.36), index=3 get-tuple-element.37 = s32[] get-tuple-element(arg_tuple.36), index=0 constant.41 = s32[] constant(16) ROOT compare.42 = pred[] compare(get-tuple-element.37, constant.41), direction=LT } core_closed_call.43 { constant.47 = s32[] constant(0) Arg_0.44 = f32[16]{0} parameter(0) constant.45 = f32[] constant(0) broadcast.46 = f32[16,16]{1,0} broadcast(constant.45), dimensions={} tuple.48 = (s32[], f32[16]{0}, f32[16,16]{1,0}, f32[16,16]{1,0}) tuple(constant.47, Arg_0.44, broadcast.46, broadcast.46) while.49 = (s32[], f32[16]{0}, f32[16,16]{1,0}, f32[16,16]{1,0}) while(tuple.48), condition=region_1.35, body=region_0.9 get-tuple-element.50 = s32[] get-tuple-element(while.49), index=0 get-tuple-element.51 = f32[16]{0} get-tuple-element(while.49), index=1 get-tuple-element.52 = f32[16,16]{1,0} get-tuple-element(while.49), index=2 get-tuple-element.53 = f32[16,16]{1,0} get-tuple-element(while.49), index=3 ROOT tuple.54 = (f32[16,16]{1,0}, f32[16,16]{1,0}) tuple(get-tuple-element.52, get-tuple-element.53) } region_2.65 { arg_tuple.66 = (s32[], f32[16]{0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}) parameter(0) get-tuple-element.67 = s32[] get-tuple-element(arg_tuple.66), index=0 constant.74 = s32[] constant(1) add.108 = s32[] add(get-tuple-element.67, constant.74) get-tuple-element.73 = f32[16,16]{1,0} get-tuple-element(arg_tuple.66), index=6 constant.76 = s32[] constant(0) compare.82 = pred[] compare(get-tuple-element.67, constant.76), direction=LT constant.75 = s32[] constant(16) add.83 = s32[] add(get-tuple-element.67, constant.75) select.84 = s32[] select(compare.82, add.83, get-tuple-element.67) dynamic-slice.85 = f32[1,16]{1,0} dynamic-slice(get-tuple-element.73, select.84, constant.76), dynamic_slice_sizes={1,16} reshape.86 = f32[16]{0} reshape(dynamic-slice.85) custom-call.87 = f32[16]{0} custom-call(reshape.86), custom_call_target="annotate_device_placement", frontend_attributes={_xla_buffer_placement="device"} get-tuple-element.69 = f32[16,16]{1,0} get-tuple-element(arg_tuple.66), index=2 get-tuple-element.68 = f32[16]{0} get-tuple-element(arg_tuple.66), index=1 cosine.88 = f32[16]{0} cosine(get-tuple-element.68) reshape.93 = f32[1,16]{1,0} reshape(cosine.88) compare.94 = pred[] compare(get-tuple-element.67, constant.76), direction=LT add.95 = s32[] add(get-tuple-element.67, constant.75) select.96 = s32[] select(compare.94, add.95, get-tuple-element.67) dynamic-update-slice.97 = f32[16,16]{1,0} dynamic-update-slice(get-tuple-element.69, reshape.93, select.96, constant.76) get-tuple-element.70 = f32[16,16]{1,0} get-tuple-element(arg_tuple.66), index=3 sine.89 = f32[16]{0} sine(get-tuple-element.68) cosine.90 = f32[16]{0} cosine(sine.89) reshape.98 = f32[1,16]{1,0} reshape(cosine.90) compare.99 = pred[] compare(get-tuple-element.67, constant.76), direction=LT add.100 = s32[] add(get-tuple-element.67, constant.75) select.101 = s32[] select(compare.99, add.100, get-tuple-element.67) dynamic-update-slice.102 = f32[16,16]{1,0} dynamic-update-slice(get-tuple-element.70, reshape.98, select.101, constant.76) get-tuple-element.71 = f32[16,16]{1,0} get-tuple-element(arg_tuple.66), index=4 get-tuple-element.72 = f32[16,16]{1,0} get-tuple-element(arg_tuple.66), index=5 compare.77 = pred[] compare(get-tuple-element.67, constant.76), direction=LT add.78 = s32[] add(get-tuple-element.67, constant.75) select.79 = s32[] select(compare.77, add.78, get-tuple-element.67) dynamic-slice.80 = f32[1,16]{1,0} dynamic-slice(get-tuple-element.72, select.79, constant.76), dynamic_slice_sizes={1,16} reshape.81 = f32[16]{0} reshape(dynamic-slice.80) custom-call.91 = f32[16]{0} custom-call(reshape.81), custom_call_target="annotate_device_placement", frontend_attributes={_xla_buffer_placement="device"} cosine.92 = f32[16]{0} cosine(custom-call.91) reshape.103 = f32[1,16]{1,0} reshape(cosine.92) compare.104 = pred[] compare(get-tuple-element.67, constant.76), direction=LT add.105 = s32[] add(get-tuple-element.67, constant.75) select.106 = s32[] select(compare.104, add.105, get-tuple-element.67) dynamic-update-slice.107 = f32[16,16]{1,0} dynamic-update-slice(get-tuple-element.71, reshape.103, select.106, constant.76) ROOT tuple.109 = (s32[], f32[16]{0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}) tuple(add.108, custom-call.87, dynamic-update-slice.97, dynamic-update-slice.102, dynamic-update-slice.107, get-tuple-element.72, get-tuple-element.73) } region_3.110 { arg_tuple.111 = (s32[], f32[16]{0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}) parameter(0) get-tuple-element.113 = f32[16]{0} get-tuple-element(arg_tuple.111), index=1 get-tuple-element.114 = f32[16,16]{1,0} get-tuple-element(arg_tuple.111), index=2 get-tuple-element.115 = f32[16,16]{1,0} get-tuple-element(arg_tuple.111), index=3 get-tuple-element.116 = f32[16,16]{1,0} get-tuple-element(arg_tuple.111), index=4 get-tuple-element.117 = f32[16,16]{1,0} get-tuple-element(arg_tuple.111), index=5 get-tuple-element.118 = f32[16,16]{1,0} get-tuple-element(arg_tuple.111), index=6 get-tuple-element.112 = s32[] get-tuple-element(arg_tuple.111), index=0 constant.119 = s32[] constant(16) ROOT compare.120 = pred[] compare(get-tuple-element.112, constant.119), direction=LT } region_4.130 { arg_tuple.131 = (s32[], f32[16]{0}, f32[], f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}) parameter(0) get-tuple-element.132 = s32[] get-tuple-element(arg_tuple.131), index=0 constant.140 = s32[] constant(1) add.164 = s32[] add(get-tuple-element.132, constant.140) get-tuple-element.133 = f32[16]{0} get-tuple-element(arg_tuple.131), index=1 get-tuple-element.134 = f32[] get-tuple-element(arg_tuple.131), index=2 broadcast.159 = f32[16]{0} broadcast(get-tuple-element.134), dimensions={} add.160 = f32[16]{0} add(get-tuple-element.133, broadcast.159) get-tuple-element.137 = f32[16,16]{1,0} get-tuple-element(arg_tuple.131), index=5 constant.141 = s32[] constant(16) subtract.142 = s32[] subtract(constant.141, get-tuple-element.132) subtract.143 = s32[] subtract(subtract.142, constant.140) constant.139 = s32[] constant(0) compare.154 = pred[] compare(subtract.143, constant.139), direction=LT add.155 = s32[] add(subtract.143, constant.141) select.156 = s32[] select(compare.154, add.155, subtract.143) dynamic-slice.157 = f32[1,16]{1,0} dynamic-slice(get-tuple-element.137, select.156, constant.139), dynamic_slice_sizes={1,16} reshape.158 = f32[16]{0} reshape(dynamic-slice.157) multiply.161 = f32[16]{0} multiply(add.160, reshape.158) get-tuple-element.136 = f32[16,16]{1,0} get-tuple-element(arg_tuple.131), index=4 compare.149 = pred[] compare(subtract.143, constant.139), direction=LT add.150 = s32[] add(subtract.143, constant.141) select.151 = s32[] select(compare.149, add.150, subtract.143) dynamic-slice.152 = f32[1,16]{1,0} dynamic-slice(get-tuple-element.136, select.151, constant.139), dynamic_slice_sizes={1,16} reshape.153 = f32[16]{0} reshape(dynamic-slice.152) multiply.162 = f32[16]{0} multiply(multiply.161, reshape.153) get-tuple-element.135 = f32[16,16]{1,0} get-tuple-element(arg_tuple.131), index=3 compare.144 = pred[] compare(subtract.143, constant.139), direction=LT add.145 = s32[] add(subtract.143, constant.141) select.146 = s32[] select(compare.144, add.145, subtract.143) dynamic-slice.147 = f32[1,16]{1,0} dynamic-slice(get-tuple-element.135, select.146, constant.139), dynamic_slice_sizes={1,16} reshape.148 = f32[16]{0} reshape(dynamic-slice.147) multiply.163 = f32[16]{0} multiply(multiply.162, reshape.148) constant.138 = f32[] constant(0) ROOT tuple.165 = (s32[], f32[16]{0}, f32[], f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}) tuple(add.164, multiply.163, constant.138, get-tuple-element.135, get-tuple-element.136, get-tuple-element.137) } region_5.166 { arg_tuple.167 = (s32[], f32[16]{0}, f32[], f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}) parameter(0) get-tuple-element.169 = f32[16]{0} get-tuple-element(arg_tuple.167), index=1 get-tuple-element.170 = f32[] get-tuple-element(arg_tuple.167), index=2 get-tuple-element.171 = f32[16,16]{1,0} get-tuple-element(arg_tuple.167), index=3 get-tuple-element.172 = f32[16,16]{1,0} get-tuple-element(arg_tuple.167), index=4 get-tuple-element.173 = f32[16,16]{1,0} get-tuple-element(arg_tuple.167), index=5 get-tuple-element.168 = s32[] get-tuple-element(arg_tuple.167), index=0 constant.174 = s32[] constant(16) ROOT compare.175 = pred[] compare(get-tuple-element.168, constant.174), direction=LT } ENTRY main.183 { constant.6 = s32[] constant(0) Arg_0.1 = f32[16]{0} parameter(0), sharding={devices=[2]<=[2]} call.55 = (f32[16,16]{1,0}, f32[16,16]{1,0}) call(Arg_0.1), to_apply=core_closed_call.43 get-tuple-element.56 = f32[16,16]{1,0} get-tuple-element(call.55), index=0 get-tuple-element.57 = f32[16,16]{1,0} get-tuple-element(call.55), index=1 constant.7 = f32[] constant(1) tuple.58 = (f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16]{0}, f32[]) tuple(get-tuple-element.56, get-tuple-element.57, Arg_0.1, constant.7) opt-barrier.59 = (f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16]{0}, f32[]) opt-barrier(tuple.58) get-tuple-element.62 = f32[16]{0} get-tuple-element(opt-barrier.59), index=2 constant.4 = f32[] constant(0) broadcast.5 = f32[16,16]{1,0} broadcast(constant.4), dimensions={} get-tuple-element.60 = f32[16,16]{1,0} get-tuple-element(opt-barrier.59), index=0 get-tuple-element.61 = f32[16,16]{1,0} get-tuple-element(opt-barrier.59), index=1 tuple.64 = (s32[], f32[16]{0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}) tuple(constant.6, get-tuple-element.62, broadcast.5, broadcast.5, broadcast.5, get-tuple-element.60, get-tuple-element.61) while.121 = (s32[], f32[16]{0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}) while(tuple.64), condition=region_3.110, body=region_2.65 get-tuple-element.122 = s32[] get-tuple-element(while.121), index=0 get-tuple-element.123 = f32[16]{0} get-tuple-element(while.121), index=1 get-tuple-element.127 = f32[16,16]{1,0} get-tuple-element(while.121), index=5 get-tuple-element.128 = f32[16,16]{1,0} get-tuple-element(while.121), index=6 constant.2 = f32[] constant(0) broadcast.3 = f32[16]{0} broadcast(constant.2), dimensions={} get-tuple-element.63 = f32[] get-tuple-element(opt-barrier.59), index=3 get-tuple-element.124 = f32[16,16]{1,0} get-tuple-element(while.121), index=2 get-tuple-element.125 = f32[16,16]{1,0} get-tuple-element(while.121), index=3 get-tuple-element.126 = f32[16,16]{1,0} get-tuple-element(while.121), index=4 tuple.129 = (s32[], f32[16]{0}, f32[], f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}) tuple(constant.6, broadcast.3, get-tuple-element.63, get-tuple-element.124, get-tuple-element.125, get-tuple-element.126) while.176 = (s32[], f32[16]{0}, f32[], f32[16,16]{1,0}, f32[16,16]{1,0}, f32[16,16]{1,0}) while(tuple.129), condition=region_5.166, body=region_4.130 get-tuple-element.177 = s32[] get-tuple-element(while.176), index=0 ROOT get-tuple-element.178 = f32[16]{0} get-tuple-element(while.176), index=1 get-tuple-element.179 = f32[] get-tuple-element(while.176), index=2 get-tuple-element.180 = f32[16,16]{1,0} get-tuple-element(while.176), index=3 get-tuple-element.181 = f32[16,16]{1,0} get-tuple-element(while.176), index=4 get-tuple-element.182 = f32[16,16]{1,0} get-tuple-element(while.176), index=5 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); bool changed = ConvertMemoryPlacementToInternalAnnotations().Run(module.get()).value(); EXPECT_TRUE(changed); XLA_VLOG_LINES(1, module->ToString()); int64_t custom_calls_count = 0; for (auto* c : module->computations()) { for (auto* instr : c->instructions()) { if (instr->IsCustomCall( host_memory_offload_annotations::kMoveToHostCustomCallTarget) || instr->IsCustomCall( host_memory_offload_annotations::kMoveToDeviceCustomCallTarget)) { ++custom_calls_count; } } } EXPECT_EQ(custom_calls_count, 4); } TEST_F(ConvertMemoryPlacementToInternalAnnotationsTest, ConvertOutputPinnedHostTest) { constexpr std::string_view hlo_string = R"( HloModule m, entry_computation_layout={(f32[2,2]{1,0:T(2,128)},f32[2,2]{1,0:T(2,128)})->f32[2,2]{1,0:T(2,128)S(5)}} ENTRY m { x = f32[2,2] parameter(0) y = f32[2,2] parameter(1) crs = f32[2,2] add(x, y) ROOT transfer = f32[2,2] custom-call(crs), custom_call_target="annotate_device_placement", frontend_attributes={_xla_buffer_placement="pinned_host"} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_string)); bool changed = ConvertMemoryPlacementToInternalAnnotations().Run(module.get()).value(); EXPECT_TRUE(changed); XLA_VLOG_LINES(1, module->ToString()); int64_t move_to_host_count = 0; for (auto* c : module->computations()) { for (auto* instr : c->instructions()) { move_to_host_count += instr->IsCustomCall( host_memory_offload_annotations::kMoveToHostCustomCallTarget); } } EXPECT_EQ(move_to_host_count, 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/convert_memory_placement_to_internal_annotations.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/convert_memory_placement_to_internal_annotations_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ce41f9f8-1f4d-4324-9dbd-5d7e74c1ec3e
cpp
tensorflow/tensorflow
gpu_compilation_environment
third_party/xla/xla/service/gpu_compilation_environment.cc
third_party/xla/xla/service/gpu_compilation_environment_test.cc
#include "xla/service/gpu_compilation_environment.h" #include <cstdint> #include <memory> #include <string> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_join.h" #include "xla/parse_flags_from_env.h" #include "xla/service/compilation_environments.h" #include "xla/tsl/util/command_line_flags.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" namespace xla { void InitializeFlagsForGpuCompEnv(std::vector<tsl::Flag>* flag_list, GpuCompilationEnvironment* gpu_comp_env) { auto int64_setter_for = [gpu_comp_env]( void (GpuCompilationEnvironment::*member_setter)(int64_t)) { return [gpu_comp_env, member_setter](int64_t value) { (gpu_comp_env->*member_setter)(value); return true; }; }; flag_list->push_back(tsl::Flag( "dummy_flag", int64_setter_for(&GpuCompilationEnvironment::set_dummy_flag), gpu_comp_env->dummy_flag(), "Dummy flag to demonstrate the flow")); } absl::StatusOr<GpuCompilationEnvironment> CreateGpuCompEnvFromFlagStrings( std::vector<std::string>& flags, bool strict) { GpuCompilationEnvironment gpu_comp_env; std::vector<tsl::Flag> flag_objects; InitializeFlagsForGpuCompEnv(&flag_objects, &gpu_comp_env); bool result = tsl::Flags::Parse(flags, flag_objects); if (!result || (strict && !flags.empty())) { return InvalidArgument("Could not parse flags: %s", absl::StrJoin(flags, ", ")); } return gpu_comp_env; } absl::StatusOr<GpuCompilationEnvironment> CreateGpuCompEnvFromEnvVar() { GpuCompilationEnvironment env; std::vector<tsl::Flag> flag_objects; InitializeFlagsForGpuCompEnv(&flag_objects, &env); ParseFlagsFromEnvAndIgnoreUnknown("XLA_FLAGS", flag_objects); return env; } GpuCompilationEnvironment CreateGpuCompEnvWithDefaultValues() { GpuCompilationEnvironment env; env.set_dummy_flag(1); return env; } absl::Status InitializeMissingFieldsFromXLAFlags( GpuCompilationEnvironment& env) { TF_ASSIGN_OR_RETURN(GpuCompilationEnvironment from_env, CreateGpuCompEnvFromEnvVar()); auto default_env = CreateGpuCompEnvWithDefaultValues(); auto reflection = env.GetReflection(); auto reflection_from_env = from_env.GetReflection(); auto descriptor = GpuCompilationEnvironment::descriptor(); std::vector<const tsl::protobuf::FieldDescriptor*> missing_fields; for (int j = 0; j < descriptor->field_count(); ++j) { const tsl::protobuf::FieldDescriptor* field = descriptor->field(j); if (reflection->HasField(env, field) && reflection_from_env->HasField(from_env, field)) { return InvalidArgument( "Flag %s is set in both XLA_FLAGS env var and " "GpuCompilationEnvironment.", field->name()); } else if (!reflection->HasField(env, field) && !reflection_from_env->HasField(from_env, field)) { missing_fields.push_back(field); } } env.MergeFrom(from_env); if (!missing_fields.empty()) { reflection->SwapFields(&env, &default_env, missing_fields); } return absl::OkStatus(); } namespace { absl::StatusOr<std::unique_ptr<tsl::protobuf::Message>> ProcessNewGpuCompilationEnvironment( std::unique_ptr<tsl::protobuf::Message> env) { if (!env) { env = std::make_unique<GpuCompilationEnvironment>(); } return env; } } } static bool InitModule() { xla::CompilationEnvironments::RegisterProcessNewEnvFn( xla::GpuCompilationEnvironment::descriptor(), xla::ProcessNewGpuCompilationEnvironment); return true; } static bool module_initialized = InitModule();
#include "xla/service/gpu_compilation_environment.h" #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/parse_flags_from_env.h" #include "xla/service/compilation_environments.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using ::tsl::testing::StatusIs; void set_xla_flags_env_var(const std::string& xla_flags) { int* pargc; std::vector<char*>* pargv; ResetFlagsFromEnvForTesting("XLA_FLAGS", &pargc, &pargv); tsl::setenv("XLA_FLAGS", xla_flags.c_str(), true ); } TEST(CreateGpuCompEnvFromFlagStringsTest, ValidFlags) { std::vector<std::string> flags = {"--dummy_flag=2"}; TF_ASSERT_OK_AND_ASSIGN( GpuCompilationEnvironment gpu_comp_env, CreateGpuCompEnvFromFlagStrings(flags, true)); ASSERT_EQ(gpu_comp_env.dummy_flag(), 2); ASSERT_TRUE(flags.empty()); } TEST(CreateGpuCompEnvFromFlagStringsTest, EmptyFlags) { std::vector<std::string> flags; TF_ASSERT_OK_AND_ASSIGN( GpuCompilationEnvironment gpu_comp_env, CreateGpuCompEnvFromFlagStrings(flags, true)); } TEST(CreateGpuCompEnvFromFlagStringsTest, InvalidFlagName) { std::vector<std::string> flags = {"--xla_gpu_invalid_flag=2"}; EXPECT_THAT(CreateGpuCompEnvFromFlagStrings(flags, true), StatusIs(tsl::error::INVALID_ARGUMENT)); TF_ASSERT_OK_AND_ASSIGN( GpuCompilationEnvironment gpu_comp_env, CreateGpuCompEnvFromFlagStrings(flags, false)); ASSERT_EQ(flags.size(), 1); } TEST(CreateGpuCompEnvFromEnvVarTest, ValidFlags) { set_xla_flags_env_var("--dummy_flag=4"); TF_ASSERT_OK_AND_ASSIGN(GpuCompilationEnvironment gpu_comp_env, CreateGpuCompEnvFromEnvVar()); ASSERT_EQ(gpu_comp_env.dummy_flag(), 4); } TEST(InitializeMissingFieldsFromXLAFlagsTest, BothProtoAndEnvVarUnset) { set_xla_flags_env_var(""); GpuCompilationEnvironment env; TF_ASSERT_OK(InitializeMissingFieldsFromXLAFlags(env)); EXPECT_EQ(env.dummy_flag(), 1); } TEST(InitializeMissingFieldsFromXLAFlagsTest, ProtoSetButEnvVarUnset) { set_xla_flags_env_var(""); GpuCompilationEnvironment env; env.set_dummy_flag(2); TF_ASSERT_OK(InitializeMissingFieldsFromXLAFlags(env)); EXPECT_EQ(env.dummy_flag(), 2); } TEST(InitializeMissingFieldsFromXLAFlagsTest, ProtoUnsetButEnvVarSet) { set_xla_flags_env_var("--dummy_flag=4"); GpuCompilationEnvironment env; TF_ASSERT_OK(InitializeMissingFieldsFromXLAFlags(env)); EXPECT_EQ(env.dummy_flag(), 4); } TEST(InitializeMissingFieldsFromXLAFlagsTest, BothProtoAndEnvVarSetButNoConflict) { set_xla_flags_env_var("--dummy_flag=4"); CompilationEnvironments envs; GpuCompilationEnvironment env; TF_ASSERT_OK(InitializeMissingFieldsFromXLAFlags(env)); EXPECT_EQ(env.dummy_flag(), 4); } TEST(InitializeMissingFieldsFromXLAFlagsTest, BothProtoAndEnvVarSetWithConflict) { set_xla_flags_env_var("--dummy_flag=4"); CompilationEnvironments envs; GpuCompilationEnvironment env; env.set_dummy_flag(2); EXPECT_THAT(InitializeMissingFieldsFromXLAFlags(env), StatusIs(tsl::error::INVALID_ARGUMENT)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu_compilation_environment.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu_compilation_environment_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
371d52b9-46aa-4f5f-a647-47eba0f32fe7
cpp
tensorflow/tensorflow
instruction_fusion
third_party/xla/xla/service/gpu/transforms/instruction_fusion.cc
third_party/xla/xla/service/gpu/transforms/instruction_fusion_test.cc
#include "xla/service/gpu/transforms/instruction_fusion.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/meta/type_traits.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/fusion_node_indexing_evaluation.h" #include "xla/service/fusion_queue.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/instruction_fusion.h" #include "xla/shape.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { namespace { bool ElementIsF32OrF16(const Shape& shape) { PrimitiveType type = shape.element_type(); return type == F32 || type == F16; } class EmptyFusionQueue : public FusionQueue { public: std::pair<HloInstruction*, std::vector<int64_t>> DequeueNextInstructionAndOperandsToFuseInOrder() override { return {nullptr, {}}; } void RemoveInstruction(HloInstruction* instruction) override {}; const std::vector<bool>* FusionConfiguration() override { return nullptr; }; }; } absl::StatusOr<bool> GpuInstructionFusion::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { fusion_node_evaluations_.clear(); auto fusible_computations = GetFusibleComputations(*module, execution_threads); fusible_computations_ = {fusible_computations.begin(), fusible_computations.end()}; return InstructionFusion::Run(module, execution_threads); } bool GpuInstructionFusion::IsExpensive( const HloInstruction& instruction) { switch (instruction.opcode()) { case HloOpcode::kDivide: case HloOpcode::kSqrt: case HloOpcode::kRsqrt: case HloOpcode::kExp: if (ElementIsF32OrF16(instruction.shape())) { return false; } break; default: break; } return InstructionFusion::IsExpensive(instruction); } FusionDecision GpuInstructionFusion::ShouldFuseInexpensiveChecks( HloInstruction* consumer, int64_t operand_index) { HloInstruction* producer = consumer->mutable_operand(operand_index); if (producer->opcode() == HloOpcode::kFusion) { return FusionDecision::Forbid("the producer is a fusion"); } if (consumer->IsCustomFusion()) { return FusionDecision::Forbid("the consumer is a custom fusion"); } if (is_expensive(*producer) && ReusesOperandElements(consumer, operand_index)) { return FusionDecision::Forbid( "the producer is expensive, and the consumer reuses inputs"); } if (IsInputFusibleReduction(*consumer) && IsPhysicallyTransposing(*producer)) { return FusionDecision::Forbid( "fusing the producer would break read coalescing"); } RETURN_IF_NOT_FUSIBLE(IsProducerConsumerFusible(*producer, *consumer)); if (CreatesHeavyComputation(*producer, *consumer)) { return FusionDecision::Forbid( "the fusion would create a heavy computation"); } return InstructionFusion::ShouldFuse(consumer, operand_index); } FusionDecision GpuInstructionFusion::ShouldFuse(HloInstruction* consumer, int64_t operand_index) { RETURN_IF_NOT_FUSIBLE(ShouldFuseInexpensiveChecks(consumer, operand_index)); auto producer = consumer->operand(operand_index); RETURN_IF_NOT_FUSIBLE( FusionFitsInBudget(*consumer, *producer, device_info_, true)); if (consumer->opcode() != HloOpcode::kFusion) { return FusionDecision::Allow(); } if (fusion_node_evaluations_.find(consumer) == fusion_node_evaluations_.end()) { fusion_node_evaluations_.emplace(consumer, FusionNodeIndexingEvaluation(consumer)); } if (fusion_node_evaluations_.at(consumer).CodeDuplicationTooHigh(producer)) { return FusionDecision::Forbid( "the fusion would result in an overly large code duplication"); } return FusionDecision::Allow(); } HloInstruction::FusionKind GpuInstructionFusion::ChooseKind( const HloInstruction* producer, const HloInstruction* consumer) { return ChooseFusionKind(*producer, *consumer); } HloInstruction* GpuInstructionFusion::FuseInstruction( HloInstruction* fusion_instruction, HloInstruction* producer) { auto evaluation = fusion_node_evaluations_.find(fusion_instruction); if (evaluation == fusion_node_evaluations_.end()) { evaluation = fusion_node_evaluations_ .emplace(fusion_instruction, FusionNodeIndexingEvaluation(fusion_instruction)) .first; } auto indexing_users = evaluation->second.RemoveFusionOperand(producer); HloInstruction* new_producer = InstructionFusion::FuseInstruction(fusion_instruction, producer); evaluation->second.UpdateEvaluationCache(new_producer, indexing_users); return new_producer; } std::unique_ptr<FusionQueue> GpuInstructionFusion::GetFusionQueue( HloComputation* computation) { if (fusible_computations_.contains(computation)) { return InstructionFusion::GetFusionQueue(computation); } return std::make_unique<EmptyFusionQueue>(); } } }
#include "xla/service/gpu/transforms/instruction_fusion.h" #include <cstdint> #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_utils.h" #include "xla/tests/verified_hlo_module.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace m = ::xla::match; namespace xla { namespace gpu { class InstructionFusionTest : public HloTestBase { public: GpuInstructionFusion duplicating_instruction_fusion_{ true, TestGpuDeviceInfo::RTXA6000DeviceInfo()}; }; TEST_F(InstructionFusionTest, NoFusionIntoCustomFusionConsumer) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( HloModule m c { p0 = bf16[3000,53]{1,0} parameter(0) p1 = bf16[22,53]{1,0} parameter(1) d = bf16[3000,22]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={1} r = bf16[1,1,3000,22]{3,2,1,0} reshape(d) ROOT c = bf16[1,1,3000,22]{2,1,3,0} copy(r) } ENTRY e { p1 = bf16[3000,53]{1,0} parameter(1) p0 = bf16[22,53]{1,0} parameter(0) cp0 = bf16[22,53]{1,0} convert(p0) ROOT f = bf16[1,1,3000,22]{2,1,3,0} fusion(p1, cp0), kind=kCustom, calls=c })")); EXPECT_FALSE(duplicating_instruction_fusion_.Run(module.get()).value()); } TEST_F(InstructionFusionTest, CostlyProducerAndOperandElementReusingConsumerNotFused) { HloComputation::Builder builder(TestName()); HloInstruction* const0 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0(5.0f))); HloInstruction* log1 = builder.AddInstruction(HloInstruction::CreateUnary( ShapeUtil::MakeShape(F32, {}), HloOpcode::kLog, const0)); HloInstruction* broadcast2 = builder.AddInstruction(HloInstruction::CreateBroadcast( ShapeUtil::MakeShape(F32, {1}), log1, {})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(broadcast2, computation->root_instruction()); EXPECT_FALSE(duplicating_instruction_fusion_.Run(module.get()).value()); EXPECT_EQ(broadcast2, computation->root_instruction()); } TEST_F(InstructionFusionTest, NonCostlyProducerAndOperandElementReusingConsumerFused) { HloComputation::Builder builder(TestName()); HloInstruction* const0 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0(5))); HloInstruction* negate1 = builder.AddInstruction(HloInstruction::CreateUnary( ShapeUtil::MakeShape(S32, {}), HloOpcode::kNegate, const0)); HloInstruction* broadcast2 = builder.AddInstruction(HloInstruction::CreateBroadcast( ShapeUtil::MakeShape(S32, {1}), negate1, {})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(broadcast2, computation->root_instruction()); EXPECT_TRUE(duplicating_instruction_fusion_.Run(module.get()).value()); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Fusion())); } TEST_F(InstructionFusionTest, CostlyProducerAndNonOperandElementReusingConsumerFused_Reshape) { HloComputation::Builder builder(TestName()); HloInstruction* const0 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0(5.0f))); HloInstruction* exp1 = builder.AddInstruction(HloInstruction::CreateUnary( ShapeUtil::MakeShape(F32, {}), HloOpcode::kExp, const0)); HloInstruction* reshape2 = builder.AddInstruction( HloInstruction::CreateReshape(ShapeUtil::MakeShape(F32, {}), exp1)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(reshape2, computation->root_instruction()); EXPECT_TRUE(duplicating_instruction_fusion_.Run(module.get()).value()); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Fusion())); } TEST_F(InstructionFusionTest, CostlyProducerAndNonOperandElementReusingConsumerFused_Transpose) { HloComputation::Builder builder(TestName()); Shape operand_shape = ShapeUtil::MakeShape(F32, {64, 32}); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, operand_shape, "param0")); HloInstruction* exp1 = builder.AddInstruction( HloInstruction::CreateUnary(operand_shape, HloOpcode::kExp, param)); HloInstruction* transpose2 = builder.AddInstruction(HloInstruction::CreateTranspose( ShapeUtil::MakeShape(F32, {32, 64}), exp1, {1, 0})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(transpose2, computation->root_instruction()); EXPECT_TRUE(duplicating_instruction_fusion_.Run(module.get()).value()); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Fusion())); } TEST_F(InstructionFusionTest, PotentialBitcastReshapeOfDotFused) { HloComputation::Builder builder(TestName()); auto param0 = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {1, 1}), "0")); auto dot1 = builder.AddInstruction( CreateCanonicalDot(ShapeUtil::MakeShape(F32, {1, 1}), param0, param0)); auto reshape2 = builder.AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(F32, {1, 1, 1}), dot1)); auto log = builder.AddInstruction(HloInstruction::CreateUnary( reshape2->shape(), xla::HloOpcode::kLog, reshape2)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(log, computation->root_instruction()); EXPECT_TRUE(duplicating_instruction_fusion_.Run(module.get()).value()); } TEST_F(InstructionFusionTest, PotentialBitcastTransposeOfDotUnfused) { HloComputation::Builder builder(TestName()); auto param0 = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(S32, {1, 1}), "0")); auto dot1 = builder.AddInstruction( CreateCanonicalDot(ShapeUtil::MakeShape(S32, {1, 1}), param0, param0)); auto transpose2 = builder.AddInstruction(HloInstruction::CreateTranspose( ShapeUtil::MakeShape(S32, {1, 1}), dot1, {0, 1})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(transpose2, computation->root_instruction()); EXPECT_FALSE(duplicating_instruction_fusion_.Run(module.get()).value()); } TEST_F(InstructionFusionTest, BroadcastIntoReduce) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY BroadcastIntoReduce { constant = f32[] constant(1) broadcast = f32[16,16,16,16]{3,2,1,0} broadcast(constant), dimensions={} constant.1 = f32[] constant(0) ROOT reduce = f32[] reduce(broadcast, constant.1), dimensions={0,1,2,3}, to_apply=add })") .value(); EXPECT_TRUE(duplicating_instruction_fusion_.Run(module.get()).value()); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_THAT(root, GmockMatch(m::Fusion())); EXPECT_THAT( root->fused_expression_root(), GmockMatch(m::Reduce(m::Broadcast(m::Constant()), m::Constant()))); } TEST_F(InstructionFusionTest, DoNotFuseLayoutChangingOpWithReduce) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY entry { p0 = f32[16,16,16,16]{3,2,1,0} parameter(0) copy = f32[16,16,16,16]{0,1,2,3} copy(p0) constant.1 = f32[] constant(0) ROOT reduce = f32[16] reduce(copy, constant.1), dimensions={0,1,2}, to_apply=add })") .value(); EXPECT_FALSE(duplicating_instruction_fusion_.Run(module.get()).value()); } TEST_F(InstructionFusionTest, DoNotFuseLayoutChangingOpWithReduceFusion) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } fused_reduce { p0.1 = f32[16,16,16,16]{0,1,2,3} parameter(0) mul = f32[16,16,16,16]{0,1,2,3} multiply(p0.1, p0.1) c0.1 = f32[] constant(0) ROOT root = f32[] reduce(mul, c0.1), dimensions={0,1,2,3}, to_apply=add } ENTRY entry { p0 = f32[16,16,16,16]{3,2,1,0} parameter(0) copy = f32[16,16,16,16]{0,1,2,3} copy(p0) fusion = f32[] fusion(copy), kind=kInput, calls=fused_reduce ROOT root = (f32[]) tuple(fusion) })") .value(); EXPECT_FALSE(duplicating_instruction_fusion_.Run(module.get()).value()); } TEST_F(InstructionFusionTest, DoNotRepeatLargeReduceWindow) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY entry { p0 = s32[512,512,2] parameter(0) p1 = f32[1,1,512,512] parameter(1) constant_1 = f32[] constant(1) reduce-window.1 = reduce-window(p1, constant_1), window={size=1x1x9x9}, to_apply=add ROOT ret = gather(reduce-window.1, p0), offset_dims={0,1,2,3}, collapsed_slice_dims={}, start_index_map={1,2}, index_vector_dim=2, slice_sizes={1,1,1,1} })") .value(); EXPECT_FALSE(duplicating_instruction_fusion_.Run(module.get()).value()); } TEST_F(InstructionFusionTest, FuseLayoutChangingOpWithElementwise) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY entry { p0 = f32[16,16,16,16]{3,2,1,0} parameter(0) copy = f32[16,16,16,16]{0,1,2,3} copy(p0) ROOT add = f32[16,16,16,16]{0,1,2,3} add(copy, copy) })") .value(); EXPECT_TRUE(duplicating_instruction_fusion_.Run(module.get()).value()); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_THAT(root, GmockMatch(m::Fusion())); EXPECT_THAT(root->fused_expression_root(), GmockMatch(m::Add(m::Copy(), m::Copy()))); } TEST_F(InstructionFusionTest, BitcastIntoAdd) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY BroadcastIntoAdd { p0 = f32[4,1,1]{2,1,0} parameter(0) p1 = f32[4,1]{1,0} parameter(1) bitcast = f32[4,1]{1,0} bitcast(p0) ROOT add = f32[4,1] add(bitcast, p1) })") .value(); EXPECT_TRUE(duplicating_instruction_fusion_.Run(module.get()).value()); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_THAT(root, GmockMatch(m::Fusion())); EXPECT_THAT(root->fused_expression_root(), GmockMatch(m::Add(m::Bitcast(m::Parameter()), m::Parameter()))); } TEST_F(InstructionFusionTest, AddIntoBitcast) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY BroadcastIntoAdd { p0 = f32[4,1]{1,0} parameter(0) p1 = f32[4,1]{1,0} parameter(1) add = f32[4,1] add(p0, p1) ROOT bitcast = f32[4,1,1] bitcast(add) })") .value(); EXPECT_FALSE(duplicating_instruction_fusion_.Run(module.get()).value()); } TEST_F(InstructionFusionTest, ConvertIntoBitcastBothConsumedByTuple) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test ENTRY main { param_0 = f32[2048,16000]{1,0} parameter(0) convert = bf16[2048,16000]{1,0} convert(param_0) bitcast = bf16[16000,1,2048]{2,1,0} bitcast(convert) ROOT tuple.143 = (bf16[16000,1,2048]{2,1,0}, bf16[2048,16000]{1,0}) tuple(bitcast, convert) })") .value(); EXPECT_FALSE(duplicating_instruction_fusion_.Run(module.get()).value()); } TEST_F(InstructionFusionTest, DontFuseGTE) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY DontFuseGTE { p0 = (f32[10], f32[10]) parameter(0) gte0 = f32[10] get-tuple-element(p0), index=0 gte1 = f32[10] get-tuple-element(p0), index=1 ROOT add = f32[10] add(gte0, gte1) })") .value(); EXPECT_FALSE(duplicating_instruction_fusion_.Run(module.get()).value()); } TEST_F(InstructionFusionTest, FloatingPointDivIsCheap) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module Add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY TestComputation { zero = f32[] constant(0) p0 = f32[100] parameter(0) p1 = f32[100] parameter(1) recip = f32[100] divide(p1, p0) sum1 = f32[] reduce(recip, zero), dimensions={0}, to_apply=Add sum2 = f32[] reduce(recip, zero), dimensions={0}, to_apply=Add ROOT root = (f32[], f32[]) tuple(sum1, sum2) })") .value(); EXPECT_TRUE(duplicating_instruction_fusion_.Run(module.get()).value()); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Tuple(m::Fusion(), m::Fusion()))) << module->ToString(); } TEST_F(InstructionFusionTest, IntegerDivIsNotCheap) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module Add { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY TestComputation { zero = s32[] constant(0) p0 = s32[100] parameter(0) p1 = s32[100] parameter(1) recip = s32[100] divide(p1, p0) sum1 = s32[] reduce(recip, zero), dimensions={0}, to_apply=Add sum2 = s32[] reduce(recip, zero), dimensions={0}, to_apply=Add ROOT mul = (s32[], s32[]) tuple(sum1, sum2) })") .value(); EXPECT_FALSE(duplicating_instruction_fusion_.Run(module.get()).value()) << module->ToString(); } TEST_F(InstructionFusionTest, DotOutputFusionImpossible) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY NoOutputFusion { alpha = f32[] constant(3) broadcast = f32[4,4]{1,0} broadcast(alpha), dimensions={} p0 = f32[4,3]{1,0} parameter(0) p1 = f32[3,4]{1,0} parameter(1) dot = f32[4,4]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} d = f32[4,4]{1,0} multiply(dot, dot) ROOT mul = f32[4,4] multiply(d, broadcast) })") .value(); EXPECT_TRUE(duplicating_instruction_fusion_.Run(module.get()).value()); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_THAT(root, GmockMatch(m::Fusion())); EXPECT_EQ(root->fusion_kind(), HloInstruction::FusionKind::kLoop); EXPECT_THAT( root->fused_expression_root(), GmockMatch(m::Multiply(m::Multiply(m::Parameter(), m::Parameter()), m::Broadcast(m::Constant())))); } static int Count(const HloModule& module, HloOpcode op) { int count = 0; for (const auto* computation : module.computations()) { for (const auto* instruction : computation->instructions()) { if (instruction->opcode() == op) { ++count; } } } return count; } TEST_F(InstructionFusionTest, MultiOutputFusion) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY OutputFusion { p0 = f32[4,3]{1,0} parameter(0) p1 = f32[4,3]{1,0} parameter(1) p2 = f32[4,3]{1,0} parameter(2) sub = f32[4,3]{1,0} subtract(p0, p2) add = f32[4,3]{1,0} add(sub, p1) ROOT tuple = (f32[4,3]{1,0}, f32[4,3]{1,0}) tuple(sub, add) })") .value(); ASSERT_FALSE(duplicating_instruction_fusion_.Run(module.get()).value()); } TEST_F(InstructionFusionTest, FuseScalarConstant) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY FuseScalarConstant { p0 = f32[] parameter(0) c0 = f32[] constant(1) add1 = f32[] add(p0, c0) b0 = f32[2]{0} broadcast(add1), dimensions={} c1 = f32[2]{0} constant({1, 2}) ROOT add2 = f32[2]{0} add(b0, c1) })") .value(); EXPECT_TRUE(duplicating_instruction_fusion_.Run(module.get()).value()); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_THAT(root, GmockMatch(m::Fusion())); EXPECT_THAT( root->fused_expression_root(), GmockMatch(m::Add(m::Broadcast(m::Add(m::Parameter(), m::Constant())), m::Parameter()))); } TEST_F(InstructionFusionTest, AvoidsLargeFusion) { constexpr int64_t kNumParams = 200; ASSERT_GT(kNumParams, MaxOperandsAndOutputsPerFusion()); HloComputation::Builder b(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {10, 100}); auto param0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "p")); auto sum = param0; for (int64_t i = 1; i < kNumParams; ++i) { auto param = b.AddInstruction(HloInstruction::CreateParameter(i, shape, "p")); sum = b.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, sum, param)); } auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(b.Build()); EXPECT_TRUE(duplicating_instruction_fusion_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); for (const HloInstruction* instr : computation->instructions()) { EXPECT_LE(instr->operand_count(), MaxOperandsAndOutputsPerFusion()) << instr->ToString(); } } TEST_F(InstructionFusionTest, FuseIntoScatter) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module add { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY FuseIntoScatter { p0 = s32[3,3] parameter(0) p1 = s32[2] parameter(1) indices = s32[2] add(p1, p1) p2 = s32[2,3] parameter(2) updates = s32[2,3] add(p2, p2) scatter = s32[3,3] scatter(p0, indices, updates), to_apply=add, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 ROOT add = s32[3,3] add(scatter, scatter) })") .value(); EXPECT_TRUE(duplicating_instruction_fusion_.Run(module.get()).value()); HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(root, GmockMatch(m::Add(m::Fusion(&fusion), m::Fusion()))); EXPECT_EQ(fusion->fusion_kind(), HloInstruction::FusionKind::kInput); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Scatter(m::Parameter(), m::Add(), m::Add()))); } TEST_F(InstructionFusionTest, DontFuseIntoFirstOperandOfScatter) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module add { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY FuseIntoScatter { p0 = s32[3,3] parameter(0) operand = s32[3,3] add(p0, p0) p1 = s32[2] parameter(1) indices = s32[2] add(p1, p1) p2 = s32[2,3] parameter(2) updates = s32[2,3] add(p2, p2) scatter = s32[3,3] scatter(operand, indices, updates), to_apply=add, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 ROOT add = s32[3,3] add(scatter, scatter) })") .value(); EXPECT_TRUE(duplicating_instruction_fusion_.Run(module.get()).value()); HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(root, GmockMatch(m::Add(m::Fusion(&fusion), m::Fusion()))); EXPECT_EQ(fusion->fusion_kind(), HloInstruction::FusionKind::kInput); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Scatter(m::Parameter(), m::Add(), m::Add()))); } TEST_F(InstructionFusionTest, ScatterOpShouldNotFuseWithSharedOperand) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY Test { parameter.0 = f32[8,8] parameter(0) parameter.1 = s32[7] parameter(1) indices = s32[7] add(parameter.1, parameter.1) slice = f32[7,8] slice(parameter.0), slice={[0:7],[0:8]} ROOT scatter = f32[8,8] scatter(parameter.0, indices, slice), to_apply=add, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 })") .value(); EXPECT_TRUE(duplicating_instruction_fusion_.Run(module.get()).value()); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, GmockMatch(m::Fusion(m::Parameter(), m::Slice(), m::Parameter()))); } TEST_F(InstructionFusionTest, NonscalarConstantsNotFused) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY BroadcastIntoReduce { constant = f32[16] constant({0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}) broadcast = f32[16,16,16,16]{3,2,1,0} broadcast(constant), dimensions={0} constant.1 = f32[] constant(0) ROOT reduce = f32[] reduce(broadcast, constant.1), dimensions={0,1,2,3}, to_apply=add })") .value(); EXPECT_TRUE(duplicating_instruction_fusion_.Run(module.get()).value()); auto* root = module->entry_computation()->root_instruction(); ASSERT_THAT(root, GmockMatch(m::Fusion())); EXPECT_THAT( root->fused_instructions_computation()->root_instruction(), GmockMatch(m::Reduce(m::Broadcast(m::Parameter()), m::Constant()))); } TEST_F(InstructionFusionTest, FuseReverse) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY Reverse { p0 = f32[50,96,1024]{2,1,0} parameter(0) add = f32[50,96,1024]{2,1,0} add(p0, p0) ROOT reverse = f32[50,96,1024] reverse(add), dimensions={0} })") .value(); EXPECT_TRUE(duplicating_instruction_fusion_.Run(module.get()).value()); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_THAT(root, GmockMatch(m::Fusion())); EXPECT_THAT(root->fused_expression_root(), GmockMatch(m::Reverse(m::Add(m::Parameter(), m::Parameter())))); } TEST_F(InstructionFusionTest, GpuIsExpensiveF32) { auto m = CreateNewVerifiedModule(); Shape r0f32 = ShapeUtil::MakeShape(F32, {}); HloComputation::Builder builder(TestName()); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32, "param0")); HloInstruction* one = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0f))); HloInstruction* div = builder.AddInstruction( HloInstruction::CreateBinary(r0f32, HloOpcode::kDivide, param0, one)); HloInstruction* rem = builder.AddInstruction( HloInstruction::CreateBinary(r0f32, HloOpcode::kRemainder, param0, one)); HloInstruction* sqrt = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kSqrt, param0)); HloInstruction* rsqrt = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kRsqrt, param0)); HloInstruction* exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kExp, param0)); EXPECT_FALSE(GpuInstructionFusion::IsExpensive(*div)); EXPECT_TRUE(GpuInstructionFusion::IsExpensive(*rem)); EXPECT_FALSE(GpuInstructionFusion::IsExpensive(*sqrt)); EXPECT_FALSE(GpuInstructionFusion::IsExpensive(*rsqrt)); EXPECT_FALSE(GpuInstructionFusion::IsExpensive(*exp)); } TEST_F(InstructionFusionTest, GpuIsExpensiveF64) { auto m = CreateNewVerifiedModule(); Shape r0f64 = ShapeUtil::MakeShape(F64, {}); HloComputation::Builder builder(TestName()); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, r0f64, "param0")); HloInstruction* one = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0f))); HloInstruction* div = builder.AddInstruction( HloInstruction::CreateBinary(r0f64, HloOpcode::kDivide, param0, one)); HloInstruction* rem = builder.AddInstruction( HloInstruction::CreateBinary(r0f64, HloOpcode::kRemainder, param0, one)); HloInstruction* sqrt = builder.AddInstruction( HloInstruction::CreateUnary(r0f64, HloOpcode::kSqrt, param0)); HloInstruction* rsqrt = builder.AddInstruction( HloInstruction::CreateUnary(r0f64, HloOpcode::kRsqrt, param0)); HloInstruction* exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f64, HloOpcode::kExp, param0)); EXPECT_TRUE(GpuInstructionFusion::IsExpensive(*div)); EXPECT_TRUE(GpuInstructionFusion::IsExpensive(*rem)); EXPECT_TRUE(GpuInstructionFusion::IsExpensive(*sqrt)); EXPECT_TRUE(GpuInstructionFusion::IsExpensive(*rsqrt)); EXPECT_TRUE(GpuInstructionFusion::IsExpensive(*exp)); } TEST_F(InstructionFusionTest, GpuIsExpensiveS32) { auto m = CreateNewVerifiedModule(); Shape r0s32 = ShapeUtil::MakeShape(S32, {}); HloComputation::Builder builder(TestName()); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, r0s32, "param0")); HloInstruction* one = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0f))); HloInstruction* div = builder.AddInstruction( HloInstruction::CreateBinary(r0s32, HloOpcode::kDivide, param0, one)); HloInstruction* rem = builder.AddInstruction( HloInstruction::CreateBinary(r0s32, HloOpcode::kRemainder, param0, one)); EXPECT_FALSE(GpuInstructionFusion::IsExpensive(*div)); EXPECT_FALSE(GpuInstructionFusion::IsExpensive(*rem)); } TEST_F(InstructionFusionTest, GpuIsExpensiveBroadcastS32) { auto m = CreateNewVerifiedModule(); Shape r1s32 = ShapeUtil::MakeShape(S32, {10}); HloComputation::Builder builder(TestName()); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, r1s32, "param0")); HloInstruction* one = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0f))); HloInstruction* one_broad = builder.AddInstruction(HloInstruction::CreateBroadcast(r1s32, one, {})); HloInstruction* div = builder.AddInstruction(HloInstruction::CreateBinary( r1s32, HloOpcode::kDivide, param0, one_broad)); HloInstruction* rem = builder.AddInstruction(HloInstruction::CreateBinary( r1s32, HloOpcode::kRemainder, param0, one_broad)); EXPECT_FALSE(GpuInstructionFusion::IsExpensive(*div)); EXPECT_FALSE(GpuInstructionFusion::IsExpensive(*rem)); } TEST_F(InstructionFusionTest, FloatingPointExpIsCheap) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module Add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY TestComputation { zero = f32[] constant(0) p0 = f32[100] parameter(0) recip = f32[100] exponential(p0) sum1 = f32[] reduce(recip, zero), dimensions={0}, to_apply=Add sum2 = f32[] reduce(recip, zero), dimensions={0}, to_apply=Add ROOT root = (f32[], f32[]) tuple(sum1, sum2) })") .value(); EXPECT_TRUE(duplicating_instruction_fusion_.Run(module.get()).value()); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Tuple(m::Fusion(), m::Fusion()))) << module->ToString(); } TEST_F(InstructionFusionTest, SmallReducedDimensionIsNotLoweredToLoop) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module add { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY FuseSmallReduction { p0 = s32[1048576,4] parameter(0) p1 = s32[1048576,4] parameter(1) sum = s32[1048576,4] add(p0, p1) init = s32[] constant(0) ROOT reduce = s32[1048576] reduce(sum, init), dimensions={1}, to_apply=add })") .value(); EXPECT_TRUE(duplicating_instruction_fusion_.Run(module.get()).value()); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_THAT(root, GmockMatch(m::Fusion())); EXPECT_EQ(root->fusion_kind(), HloInstruction::FusionKind::kInput); } TEST_F(InstructionFusionTest, IotaIntoVariadicReduction) { auto module = ParseAndReturnVerifiedModule(R"( HloModule m f { tmp_0 = f32[] parameter(0) tmp_1 = f32[] parameter(1) tmp_2 = pred[] compare(tmp_0, tmp_1), direction=GE tmp_3 = f32[] select(tmp_2, tmp_0, tmp_1) tmp_4 = pred[] compare(tmp_0, tmp_1), direction=EQ tmp_5 = s32[] parameter(2) tmp_6 = s32[] parameter(3) tmp_7 = s32[] minimum(tmp_5, tmp_6) tmp_8 = s32[] select(tmp_2, tmp_5, tmp_6) tmp_9 = s32[] select(tmp_4, tmp_7, tmp_8) ROOT tmp_10 = (f32[], s32[]) tuple(tmp_3, tmp_9) } minmax { tmp_0 = f32[] parameter(0) tmp_1 = f32[] parameter(2) tmp_2 = s32[] parameter(1) tmp_3 = s32[] parameter(3) ROOT tmp_4 = (f32[], s32[]) fusion(tmp_0, tmp_1, tmp_2, tmp_3), kind=kLoop, calls=f } ENTRY e { tmp_0 = f32[554112,10]{1,0} parameter(0) tmp_1 = s32[554112,10]{1,0} iota(), iota_dimension=1 tmp_2 = f32[] constant(-inf) tmp_3 = s32[] constant(0) ROOT tmp_4 = (f32[554112]{0}, s32[554112]{0}) reduce(tmp_0, tmp_1, tmp_2, tmp_3), dimensions={1}, to_apply=minmax })") .value(); EXPECT_TRUE(GpuInstructionFusion(false, TestGpuDeviceInfo::RTXA6000DeviceInfo()) .Run(module.get()) .value()); ASSERT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Fusion(m::Parameter()))); EXPECT_THAT( module->entry_computation()->root_instruction()->fused_expression_root(), GmockMatch( m::Reduce(m::Parameter(), m::Iota(), m::Constant(), m::Constant()))); } TEST_F(InstructionFusionTest, InputReductionFusion) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module add.clone.13 { x.27 = f32[] parameter(0) y.27 = f32[] parameter(1) ROOT add.1036 = f32[] add(x.27, y.27) } add.clone.14 { x.28 = f32[] parameter(0) y.28 = f32[] parameter(1) ROOT add.1037 = f32[] add(x.28, y.28) } add { x = bf16[] parameter(0) convert.448 = f32[] convert(x) y = bf16[] parameter(1) convert.449 = f32[] convert(y) add.597 = f32[] add(convert.448, convert.449) ROOT convert.450 = bf16[] convert(add.597) } ENTRY FuseSmallReduction { param_2.7 = bf16[8,16,64,2048]{3,2,1,0} parameter(2) convert.1395 = f32[8,16,64,2048]{3,2,1,0} convert(param_2.7) param_0.85 = bf16[8,16,64,2048]{3,2,1,0} parameter(0) convert.1393 = f32[8,16,64,2048]{3,2,1,0} convert(param_0.85) multiply.1652 = f32[8,16,64,2048]{3,2,1,0} multiply(convert.1395, convert.1393) convert.1392 = bf16[8,16,64,2048]{3,2,1,0} convert(multiply.1652) bitcast.15934 = bf16[128,64,2048]{2,1,0} bitcast(convert.1392) convert.1391 = f32[128,64,2048]{2,1,0} convert(bitcast.15934) param_1.15 = bf16[] parameter(1) convert.1394 = f32[] convert(param_1.15) reduce.462 = f32[128,64]{1,0} reduce(convert.1391, convert.1394), dimensions={2}, to_apply=add.clone.13 reduce.121 = f32[64]{0} reduce(reduce.462, convert.1394), dimensions={0}, to_apply=add.clone.14 ROOT convert.890 = bf16[64]{0} convert(reduce.121) })") .value(); EXPECT_TRUE(duplicating_instruction_fusion_.Run(module.get()).value()); HloInstruction* fused_convert_fusion = module->entry_computation()->root_instruction(); ASSERT_THAT(fused_convert_fusion, GmockMatch(m::Fusion())); SCOPED_TRACE(module->ToString()); EXPECT_EQ(fused_convert_fusion->fusion_kind(), HloInstruction::FusionKind::kInput); } TEST_F(InstructionFusionTest, DotStrengthReductionFusion) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module scalar_add_computation { scalar_rhs = f32[] parameter(1) scalar_lhs = f32[] parameter(0) ROOT add.1 = f32[] add(scalar_lhs, scalar_rhs) } ENTRY main { param_1.3 = f16[16,64,96,6,2,16]{5,4,3,2,1,0} parameter(1) param_0.6 = f16[16,64,96,1,2,16]{5,4,3,2,1,0} parameter(0) bitcast.26 = f16[16,64,96,2,16]{4,3,2,1,0} bitcast(param_0.6) broadcast.4 = f16[16,64,96,6,2,16]{5,4,3,2,1,0} broadcast(bitcast.26), dimensions={0,1,2,4,5} multiply.4 = f16[16,64,96,6,2,16]{5,4,3,2,1,0} multiply(broadcast.4, param_1.3) convert.8 = f32[16,64,96,6,2,16]{5,4,3,2,1,0} convert(multiply.4) constant_2 = f32[] constant(0) reduce.3 = f32[16,64,96,6,2]{3,4,2,1,0} reduce(convert.8, constant_2), dimensions={5}, to_apply=scalar_add_computation bitcast.25 = f32[16,64,96,2,6]{4,3,2,1,0} bitcast(reduce.3) convert.7 = f16[16,64,96,2,6]{4,3,2,1,0} convert(bitcast.25) ROOT bitcast.24 = f16[16,64,96,2,1,6]{5,4,3,2,1,0} bitcast(convert.7) })") .value(); EXPECT_TRUE(duplicating_instruction_fusion_.Run(module.get()).value()); const HloInstruction* fused_convert_fusion = module->entry_computation()->root_instruction()->operand(0); ASSERT_THAT(fused_convert_fusion, GmockMatch(m::Fusion())); SCOPED_TRACE(module->ToString()); EXPECT_EQ(fused_convert_fusion->fusion_kind(), HloInstruction::FusionKind::kInput); EXPECT_EQ(Count(*module, HloOpcode::kFusion), 1); } TEST_F(InstructionFusionTest, ReductionFusionOtherUnaryElementwiseOpsAreFused) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module scalar_add_computation { scalar_rhs = f32[] parameter(1) scalar_lhs = f32[] parameter(0) ROOT add.1 = f32[] add(scalar_lhs, scalar_rhs) } ENTRY main { param_0 = f16[64,96,6,16]{3,2,1,0} parameter(0) constant_2 = f32[] constant(0) reduce.3 = f32[64,6,16]{2,1,0} reduce(param_0, constant_2), dimensions={1}, to_apply=scalar_add_computation negate = f32[64,6,16]{2,1,0} negate(reduce.3) ROOT sine = f16[64,6,16]{2,1,0} sine(negate) })") .value(); EXPECT_TRUE(duplicating_instruction_fusion_.Run(module.get()).value()); HloInstruction* fused_convert_fusion = module->entry_computation()->root_instruction(); ASSERT_THAT(fused_convert_fusion, GmockMatch(m::Fusion())); SCOPED_TRACE(module->ToString()); EXPECT_EQ(fused_convert_fusion->fusion_kind(), HloInstruction::FusionKind::kInput); EXPECT_EQ(Count(*module, HloOpcode::kFusion), 1); } TEST_F(InstructionFusionTest, DoNotFuseInsideReducer) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module scalar_add_computation { scalar_rhs = f32[] parameter(1) scalar_lhs = f32[] parameter(0) add.1 = f32[] add(scalar_lhs, scalar_rhs) ROOT add.2 = f32[] add(add.1, scalar_rhs) } ENTRY main { param_0 = f16[64,96] parameter(0) constant_2 = f32[] constant(0) ROOT reduce = f32[64] reduce(param_0, constant_2), dimensions={1}, to_apply=scalar_add_computation })") .value(); EXPECT_FALSE(duplicating_instruction_fusion_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/instruction_fusion.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/instruction_fusion_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
548583df-a9ce-42fe-a3f2-1f92da313ff7
cpp
tensorflow/tensorflow
conditional_simplifier
third_party/xla/xla/service/conditional_simplifier.cc
third_party/xla/xla/service/conditional_simplifier_test.cc
#include "xla/service/conditional_simplifier.h" #include <iterator> #include <set> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/service/call_graph.h" #include "xla/service/call_inliner.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/platform/errors.h" namespace xla { namespace { bool ComputationIsEmptyWithArrayRoot(const HloComputation* computation) { bool empty_operations = absl::c_all_of( computation->MakeInstructionPostOrder(), HloPredicateIsOp<HloOpcode::kTuple, HloOpcode::kGetTupleElement, HloOpcode::kParameter>); bool contains_array = false; ShapeUtil::ForEachSubshape(computation->root_instruction()->shape(), [&](const Shape& shape, const ShapeIndex& index) { if (shape.IsArray()) { contains_array = true; } }); return empty_operations && contains_array; } absl::StatusOr<bool> TryRemoveUnusedConditionalOperands( HloComputation* computation, const absl::flat_hash_set<HloInstruction*>& calling_conditionals) { HloInstruction* param = computation->parameter_instruction(0); if (param == computation->root_instruction()) { return false; } if (!param->shape().IsTuple()) { return false; } std::set<int64_t> tuple_indices_to_keep; for (HloInstruction* user : param->users()) { if (user->opcode() != HloOpcode::kGetTupleElement) { return false; } tuple_indices_to_keep.insert(user->tuple_index()); } int64_t old_tuple_element_count = ShapeUtil::TupleElementCount(param->shape()); if (tuple_indices_to_keep.size() == old_tuple_element_count) { return false; } std::vector<const Shape*> new_tuple_shapes; new_tuple_shapes.reserve(tuple_indices_to_keep.size()); std::vector<int64_t> map(old_tuple_element_count, -1); for (int64_t i : tuple_indices_to_keep) { map[i] = new_tuple_shapes.size(); new_tuple_shapes.push_back(&param->shape().tuple_shapes(i)); } Shape tuple_shape = ShapeUtil::MakeTupleShapeWithPtrs(new_tuple_shapes); HloComputation* new_computation = computation->parent()->AddEmbeddedComputation(computation->Clone()); param = new_computation->parameter_instruction(0); *param->mutable_shape() = tuple_shape; for (HloInstruction* user : param->users()) { user->set_tuple_index(map[user->tuple_index()]); } for (HloInstruction* conditional : calling_conditionals) { if (conditional->has_sharding()) { continue; } for (int64_t branch = 0; branch < conditional->branch_count(); ++branch) { if (conditional->branch_computation(branch) != computation) { continue; } conditional->set_branch_computation(branch, new_computation); const Shape& old_shape = conditional->operand(branch + 1)->shape(); std::vector<HloInstruction*> new_tuple_operands; new_tuple_operands.reserve(tuple_indices_to_keep.size()); for (int64_t i : tuple_indices_to_keep) { new_tuple_operands.push_back(conditional->parent()->AddInstruction( HloInstruction::CreateGetTupleElement( old_shape.tuple_shapes(i), conditional->mutable_operand(branch + 1), i))); } HloInstruction* new_tuple = conditional->parent()->AddInstruction( HloInstruction::CreateTuple(new_tuple_operands)); TF_RETURN_IF_ERROR( conditional->ReplaceOperandWithDifferentShape(branch + 1, new_tuple)); CHECK(ShapeUtil::Compatible(conditional->operand(branch + 1)->shape(), conditional->branch_computation(branch) ->parameter_instruction(0) ->shape())); CHECK(ShapeUtil::Compatible( conditional->shape(), conditional->branch_computation(branch)->root_instruction()->shape())) << conditional->branch_computation(branch)->ToString(); } } return true; } bool ReplaceRootWithEmptyTupleIfNoUsers(HloInstruction* conditional_op) { const Shape empty_tuple = ShapeUtil::MakeTupleShape({}); if (conditional_op->user_count() == 0 && conditional_op != conditional_op->parent()->root_instruction() && !ShapeUtil::Compatible(empty_tuple, conditional_op->shape())) { for (int64_t branch_id = 0; branch_id < conditional_op->branch_count(); ++branch_id) { auto branch_computation = conditional_op->GetModule()->AddEmbeddedComputation( conditional_op->branch_computation(branch_id)->Clone()); conditional_op->set_branch_computation(branch_id, branch_computation); auto new_empty_root = branch_computation->AddInstruction(HloInstruction::CreateTuple({})); branch_computation->set_root_instruction(new_empty_root, true); } *conditional_op->mutable_shape() = empty_tuple; return true; } return false; } bool RemoveUnusedTupleElements(HloInstruction* conditional_op) { if (conditional_op->user_count() == 0 || conditional_op == conditional_op->parent()->root_instruction() || !conditional_op->shape().IsTuple()) { VLOG(3) << "Skip RemoveUnusedTupleElements due to non-tuple result:\n" << conditional_op->ToShortString(); return false; } const int old_tuple_shapes_size = conditional_op->shape().tuple_shapes_size(); std::vector<bool> used_indices(old_tuple_shapes_size, false); for (const HloInstruction* user : conditional_op->users()) { if (user->opcode() != HloOpcode::kGetTupleElement) { VLOG(3) << "Skip RemoveUnusedTupleElements due to non-GTE user:\n" << user->ToShortString(); return false; } used_indices[user->tuple_index()] = true; } const int new_tuple_shapes_size = std::count(used_indices.begin(), used_indices.end(), true); if (new_tuple_shapes_size == old_tuple_shapes_size) { VLOG(3) << "Skip RemoveUnusedTupleElements due to every index is in use."; return false; } absl::flat_hash_map<int, int> new_to_old_mapping, old_to_new_mapping; auto old_iter = used_indices.begin(); for (int new_index = 0; new_index < new_tuple_shapes_size; ++new_index) { old_iter = std::find(old_iter, used_indices.end(), true); const int old_index = std::distance(used_indices.begin(), old_iter); new_to_old_mapping[new_index] = old_index; old_to_new_mapping[old_index] = new_index; ++old_iter; } const Shape old_shape = conditional_op->shape(); std::vector<const Shape*> new_tuple_shapes; new_tuple_shapes.reserve(new_tuple_shapes_size); for (int new_index = 0; new_index < new_tuple_shapes_size; ++new_index) { new_tuple_shapes.push_back( &old_shape.tuple_shapes(new_to_old_mapping[new_index])); } const Shape new_shape = ShapeUtil::MakeTupleShapeWithPtrs(new_tuple_shapes); for (HloComputation* branch : conditional_op->branch_computations()) { const HloInstruction* root = branch->root_instruction(); if (!root->shape().IsTuple() || !ShapeUtil::Compatible(branch->root_instruction()->shape(), old_shape)) { VLOG(3) << "Skip RemoveUnusedTupleElements due to some branch " << branch->name() << " has in-compatible root shape, expect " << old_shape.ToString() << ", but got " << root->shape().ToString() << "\n" << conditional_op->ToString(); return false; } } for (int branch_id = 0; branch_id < conditional_op->branch_count(); ++branch_id) { HloComputation* old_branch = conditional_op->branch_computation(branch_id); HloComputation* cloned_branch = conditional_op->GetModule()->AddEmbeddedComputation( old_branch->Clone()); conditional_op->set_branch_computation(branch_id, cloned_branch); HloInstruction* old_root = cloned_branch->root_instruction(); std::vector<HloInstruction*> new_tuple_root_operands; for (int old_index = 0; old_index < old_tuple_shapes_size; ++old_index) { if (used_indices[old_index]) { new_tuple_root_operands.push_back( cloned_branch->AddInstruction(HloInstruction::CreateGetTupleElement( old_shape.tuple_shapes(old_index), old_root, old_index))); } } HloInstruction* new_tuple_root = cloned_branch->AddInstruction( HloInstruction::CreateTuple(new_tuple_root_operands)); cloned_branch->set_root_instruction(new_tuple_root, true); } *conditional_op->mutable_shape() = new_shape; for (HloInstruction* user : conditional_op->users()) { const int old_index = user->tuple_index(); const int new_index = old_to_new_mapping[old_index]; user->set_tuple_index(new_index); } return true; } bool MergeDuplicateTupleElements(HloInstruction* conditional) { if (conditional->user_count() == 0 || conditional == conditional->parent()->root_instruction() || !conditional->shape().IsTuple()) { VLOG(3) << "Skip MergeDuplicateTupleElements due not tuple shape nor root " "instruction:\n" << conditional->ToShortString(); return false; } for (const HloInstruction* user : conditional->users()) { if (user->opcode() != HloOpcode::kGetTupleElement) { VLOG(3) << "Skip MergeDuplicateTupleElements due not all users are " "kGetTupleElement:\n" << conditional->ToShortString(); return false; } } for (const HloComputation* branch : conditional->branch_computations()) { if (branch->root_instruction()->opcode() != HloOpcode::kTuple) { VLOG(3) << "Skip MergeDuplicateTupleElements due not all branch roots " "are kTuple:\n" << conditional->ToShortString(); return false; } } auto vectorize_branches_root_tuple_ith_operand = [conditional](int64_t i) { std::vector<const HloInstruction*> operands; absl::c_transform(conditional->branch_computations(), std::back_inserter(operands), [i](const HloComputation* branch) { return branch->root_instruction()->operand(i); }); return operands; }; auto replace_root_user_gte_jth_with_gte_ith = [conditional](int64_t i, int64_t j) { bool changed = false; for (HloInstruction* user : conditional->users()) { if (user->tuple_index() == j) { user->set_tuple_index(i); changed |= true; } } return changed; }; bool changed = false; absl::flat_hash_map<std::vector<const HloInstruction*>, int64_t> index_collision_table; for (int i = 0; i < conditional->shape().tuple_shapes_size(); ++i) { const std::vector<const HloInstruction*> ith_operands_vector = vectorize_branches_root_tuple_ith_operand(i); const auto emplace_res = index_collision_table.emplace(ith_operands_vector, i); if (!emplace_res.second) { changed |= replace_root_user_gte_jth_with_gte_ith(emplace_res.first->second, i); } } return changed; } } absl::StatusOr<bool> ConditionalSimplifier::TryRemoveConditional( HloInstruction* conditional) { CHECK_EQ(conditional->opcode(), HloOpcode::kConditional); if (!conditional->parent()->IsSafelyRemovable(conditional) || conditional->HasSideEffect()) { VLOG(2) << "Not attempting to remove conditional as it is not removable or " "has side effect: " << conditional->ToShortString(); return false; } auto computation = conditional->parent(); auto create_call = [&](int64_t branch) { auto call = computation->AddInstruction(HloInstruction::CreateCall( conditional->shape(), {conditional->mutable_operand(1 + branch)}, conditional->branch_computation(branch))); conditional->SetupDerivedInstruction(call); return call; }; if (conditional->branch_count() == 1) { HloInstruction* call_op = create_call(0); TF_RETURN_IF_ERROR(computation->ReplaceInstruction(conditional, call_op)); TF_RETURN_IF_ERROR(CallInliner::Inline(call_op).status()); return true; } if (conditional->operand(0)->opcode() == HloOpcode::kConstant) { int branch_index = 0; if (conditional->operand(0)->shape().element_type() == PRED) { branch_index = conditional->operand(0)->literal().Get<bool>({}) ? 0 : 1; } else { branch_index = conditional->operand(0)->literal().Get<int32_t>({}); if (branch_index < 0 || branch_index >= conditional->branch_count()) { branch_index = conditional->branch_count() - 1; } } HloInstruction* call_op = create_call(branch_index); TF_RETURN_IF_ERROR(computation->ReplaceInstruction(conditional, call_op)); TF_RETURN_IF_ERROR(CallInliner::Inline(call_op).status()); return true; } auto instruction_is_expensive = [](const HloInstruction* hlo) { switch (hlo->opcode()) { case HloOpcode::kBroadcast: case HloOpcode::kConcatenate: case HloOpcode::kDynamicSlice: case HloOpcode::kGetTupleElement: case HloOpcode::kReduce: case HloOpcode::kReshape: case HloOpcode::kPad: case HloOpcode::kParameter: case HloOpcode::kSlice: case HloOpcode::kTuple: return false; default: return !hlo->IsElementwise(); } }; if (conditional->branch_count() != 2 || conditional->operand(0)->shape().element_type() != PRED || absl::c_any_of(conditional->branch_computation(0)->instructions(), instruction_is_expensive) || absl::c_any_of(conditional->branch_computation(1)->instructions(), instruction_is_expensive)) { VLOG(2) << "Not attempting to remove conditional as its branch_index is not a " "compile-time constant or contains expensive instructions: " << conditional->ToShortString(); return false; } bool branch_empty = ComputationIsEmptyWithArrayRoot(conditional->branch_computation(0)) || ComputationIsEmptyWithArrayRoot(conditional->branch_computation(1)); if (branch_empty) { return false; } HloInstruction* true_call_op = create_call(0); HloInstruction* false_call_op = create_call(1); auto condition_broadcast = [&](const Shape& shape) { if (ShapeUtil::IsScalar(shape)) { return conditional->mutable_operand(0); } Shape new_shape = ShapeUtil::ChangeElementType(shape, PRED); UpdateLayout(&new_shape); return computation->AddInstruction(HloInstruction::CreateBroadcast( new_shape, conditional->mutable_operand(0), {})); }; auto gte = [&](HloInstruction* hlo, int64_t i) { return computation->AddInstruction(HloInstruction::CreateGetTupleElement( hlo->shape().tuple_shapes(i), hlo, i)); }; std::function<HloInstruction*(HloInstruction*, HloInstruction*)> select = [&](HloInstruction* t, HloInstruction* f) { if (f->shape().IsToken()) { return computation->AddInstruction( HloInstruction::CreateAfterAll({t, f})); } if (f->shape().IsArray()) { return computation->AddInstruction(HloInstruction::CreateTernary( f->shape(), HloOpcode::kSelect, condition_broadcast(f->shape()), t, f)); } std::vector<HloInstruction*> selects; const int64_t tuple_element_count = ShapeUtil::TupleElementCount(f->shape()); selects.reserve(tuple_element_count); for (int64_t i = 0; i < tuple_element_count; ++i) { selects.push_back(select(gte(t, i), gte(f, i))); } return computation->AddInstruction( HloInstruction::CreateTuple(selects)); }; TF_RETURN_IF_ERROR(computation->ReplaceInstruction( conditional, select(true_call_op, false_call_op))); TF_RETURN_IF_ERROR(CallInliner::Inline(false_call_op).status()); TF_RETURN_IF_ERROR(CallInliner::Inline(true_call_op).status()); return true; } static bool ComputationCallsChannelInstructions( const HloComputation& computation) { std::vector<const HloComputation*> worklist = {&computation}; while (!worklist.empty()) { const HloComputation* work = worklist.back(); worklist.pop_back(); for (const HloInstruction* instruction : work->instructions()) { if (DynCast<HloChannelInstruction>(instruction) != nullptr) { return true; } worklist.insert(worklist.end(), instruction->called_computations().begin(), instruction->called_computations().end()); } } return false; } static bool InstructionCallsChannelInstructions( const HloInstruction& instruction) { for (const HloComputation* called_computation : instruction.called_computations()) { if (ComputationCallsChannelInstructions(*called_computation)) { return true; } } return false; } absl::StatusOr<bool> ConditionalSimplifier::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { XLA_VLOG_LINES( 3, "ConditionalSimplifier::Run(), before:\n" + module->ToString()); bool changed = false; std::vector<HloInstruction*> conditional_ops; for (auto* comp : module->computations(execution_threads)) { for (auto* instr : comp->MakeInstructionPostOrder()) { if (instr->opcode() == HloOpcode::kConditional) { if (InstructionCallsChannelInstructions(*instr)) { continue; } if (instr->has_sharding()) { continue; } conditional_ops.push_back(instr); } } } absl::flat_hash_set<HloInstruction*> removed_conditionals; for (HloInstruction* conditional_op : conditional_ops) { changed |= MergeDuplicateTupleElements(conditional_op); changed |= RemoveUnusedTupleElements(conditional_op); changed |= ReplaceRootWithEmptyTupleIfNoUsers(conditional_op); TF_ASSIGN_OR_RETURN(bool result, TryRemoveConditional(conditional_op)); if (result) { removed_conditionals.insert(conditional_op); changed = true; } } absl::flat_hash_map<HloComputation*, absl::flat_hash_set<HloInstruction*>> calling_conditionals; std::vector<HloComputation*> calling_computationals_vector; for (HloInstruction* conditional : conditional_ops) { if (removed_conditionals.contains(conditional)) { continue; } for (int64_t branch = 0; branch < conditional->branch_count(); ++branch) { auto* branch_comp = conditional->branch_computation(branch); if (!calling_conditionals.contains(branch_comp)) { calling_computationals_vector.push_back(branch_comp); } calling_conditionals[branch_comp].insert(conditional); } } for (auto* comp : calling_computationals_vector) { auto entry = calling_conditionals.find(comp); CHECK(entry != calling_conditionals.end()); TF_ASSIGN_OR_RETURN(bool result, TryRemoveUnusedConditionalOperands( entry->first, entry->second)); changed |= result; } XLA_VLOG_LINES(3, "ConditionalSimplifier::Run(), after:\n" + module->ToString()); return changed; } }
#include "xla/service/conditional_simplifier.h" #include <string> #include <utility> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal_util.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; class ConditionalSimplifierTest : public HloTestBase { public: HloComputation* MakeConditional(HloModule* module, bool is_constant = true); }; HloComputation* ConditionalSimplifierTest::MakeConditional(HloModule* module, bool is_constant) { HloComputation::Builder builder(TestName()); HloComputation* true_computation; { HloComputation::Builder true_computation_builder(TestName() + ".true_computation"); auto param = true_computation_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(S32, {}), "param")); auto one = true_computation_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(1))); true_computation_builder.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(S32, {}), HloOpcode::kAdd, param, one)); true_computation = module->AddEmbeddedComputation(true_computation_builder.Build()); } HloComputation* false_computation; { HloComputation::Builder false_computation_builder(TestName() + ".false_computation"); auto param = false_computation_builder.AddInstruction( HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(S32, {}), "param")); auto forty_two = false_computation_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(42))); false_computation_builder.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(S32, {}), HloOpcode::kAdd, param, forty_two)); false_computation = module->AddEmbeddedComputation(false_computation_builder.Build()); } auto false_instrn = builder.AddInstruction( is_constant ? HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false)) : HloInstruction::CreateParameter(1, ShapeUtil::MakeShape(PRED, {}), "cond")); auto false_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(S32, {}), "false_param")); auto one = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(1))); builder.AddInstruction(HloInstruction::CreateConditional( ShapeUtil::MakeShape(S32, {}), false_instrn, one, true_computation, false_param, false_computation)); return module->AddEntryComputation(builder.Build()); } TEST_F(ConditionalSimplifierTest, ConditionalGetsInlined) { auto m = CreateNewVerifiedModule(); HloComputation* computation = MakeConditional(m.get()); ASSERT_TRUE(ConditionalSimplifier().Run(m.get()).value()); EXPECT_THAT(computation->root_instruction(), op::Add(op::Parameter(), op::Constant())); } TEST_F(ConditionalSimplifierTest, BranchGetsInlined) { auto m = CreateNewVerifiedModule(); HloComputation* computation = MakeConditional(m.get(), false); ASSERT_TRUE(ConditionalSimplifier().Run(m.get()).value()); EXPECT_THAT( computation->root_instruction(), op::Select(op::Parameter(1), op::Add(op::Constant(), op::Constant()), op::Add(op::Parameter(0), op::Constant()))); } TEST_F(ConditionalSimplifierTest, ConditionalWithControlDependency) { auto m = CreateNewVerifiedModule(); HloComputation* computation = MakeConditional(m.get()); auto* true_op = computation->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(true))); TF_ASSERT_OK( true_op->AddControlDependencyTo(computation->root_instruction())); EXPECT_FALSE(ConditionalSimplifier().Run(m.get()).value()); } TEST_F(ConditionalSimplifierTest, NotRemovedIfContainsSend) { auto m = CreateNewVerifiedModule(); HloComputation* computation = MakeConditional(m.get()); auto* conditional = computation->root_instruction(); ASSERT_EQ(conditional->opcode(), HloOpcode::kConditional); auto* true_computation = conditional->true_computation(); auto* token = true_computation->AddInstruction(HloInstruction::CreateToken()); auto* send = true_computation->AddInstruction(HloInstruction::CreateSend( true_computation->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(true))), token, 0)); true_computation->AddInstruction(HloInstruction::CreateSendDone(send)); EXPECT_FALSE(ConditionalSimplifier().Run(m.get()).value()); } TEST_F(ConditionalSimplifierTest, NotRemovedIfContainsRecv) { auto m = CreateNewVerifiedModule(); HloComputation* computation = MakeConditional(m.get()); auto* conditional = computation->root_instruction(); ASSERT_EQ(conditional->opcode(), HloOpcode::kConditional); auto* true_computation = conditional->true_computation(); auto* token = true_computation->AddInstruction(HloInstruction::CreateToken()); auto* recv = true_computation->AddInstruction(HloInstruction::CreateRecv( ShapeUtil::MakeShape(F32, {1}), token, 0)); true_computation->AddInstruction(HloInstruction::CreateRecvDone(recv)); EXPECT_FALSE(ConditionalSimplifier().Run(m.get()).value()); } TEST_F(ConditionalSimplifierTest, NotRemovedIfContainsNonRemovableInstruction) { auto m = CreateNewVerifiedModule(); HloComputation* computation = MakeConditional(m.get()); auto* conditional = computation->root_instruction(); ASSERT_EQ(conditional->opcode(), HloOpcode::kConditional); auto* false_computation = conditional->false_computation(); auto token = false_computation->AddInstruction(HloInstruction::CreateToken()); false_computation->AddInstruction(HloInstruction::CreateInfeed( ShapeUtil::MakeShape(F32, {1}), token, "config")); EXPECT_FALSE(ConditionalSimplifier().Run(m.get()).value()); } TEST_F(ConditionalSimplifierTest, TrivalOperandsRemoved) { absl::string_view hlo_string = R"( HloModule UnusedTupleOperands on_false { t = (f32[20,40], f32[40,40], f32[20,40], f32[40,40]) parameter(0) lhs = f32[20,40] get-tuple-element(t), index=0 rhs = f32[40,40] get-tuple-element(t), index=1 dot = f32[20,40] dot(lhs, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT result = (f32[20,40]) tuple(dot) } on_true { t = (f32[20,40], f32[40,40], f32[20,40], f32[40,40]) parameter(0) lhs = f32[20,40] get-tuple-element(t), index=2 rhs = f32[40,40] get-tuple-element(t), index=3 dot = f32[20,40] dot(lhs, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT result = (f32[20,40]) tuple(dot) } ENTRY main { c0_0 = f32[20,40] parameter(0) c0_1 = f32[40,40] parameter(1) c1_0 = f32[20,40] parameter(2) c1_1 = f32[40,40] parameter(3) p = pred[] parameter(4) t = (f32[20,40], f32[40,40], f32[20,40], f32[40,40]) tuple(c0_0, c0_1, c1_0, c1_1) call = (f32[20,40]) call(t), to_apply=on_true ROOT result = (f32[20,40]) conditional(p,t,t), false_computation=on_false, true_computation=on_true } )"; auto status = ParseAndReturnVerifiedModule(hlo_string); TF_ASSERT_OK(status.status()); std::unique_ptr<HloModule> module = std::move(status).value(); HloVerifier v(false, false); TF_ASSERT_OK(v.Run(module.get()).status()); EXPECT_TRUE(ConditionalSimplifier().Run(module.get()).value()); TF_ASSERT_OK(v.Run(module.get()).status()); HloInstruction* conditional = module->entry_computation()->root_instruction(); EXPECT_TRUE(conditional != nullptr); EXPECT_EQ(conditional->operand(1)->shape().tuple_shapes().size(), 2); EXPECT_EQ(conditional->operand(2)->shape().tuple_shapes().size(), 2); HloInstruction* call = FindInstruction(module.get(), "call"); EXPECT_EQ( call->to_apply()->parameter_instruction(0)->shape().tuple_shapes().size(), 4); } TEST_F(ConditionalSimplifierTest, TwoConditionalsCreatedInReversedLexicalOrder) { absl::string_view hlo_string = R"( HloModule DeadConditional computation.1 { param.1 = s64[] parameter(0) constant.1 = s64[] constant(1) ROOT add.1 = s64[] add(param.1, constant.1) } computation.2 { param.2 = s64[] parameter(0) constant.2 = s64[] constant(2) ROOT add.2 = s64[] add(param.2, constant.2) } computation.3 { param.3 = s64[] parameter(0) constant.3 = s64[] constant(3) ROOT add.3 = s64[] add(param.3, constant.3) } computation.4 { param.4 = s64[] parameter(0) constant.4 = s64[] constant(4) ROOT add.4 = s64[] add(param.4, constant.4) } ENTRY KernelEntry { param.1 = s64[] parameter(0) param.2 = s64[] parameter(1) param.3 = s64[] parameter(2) param.4 = pred[] parameter(3) conditional_1 = s64[] conditional(param.4, param.3, param.2), true_computation=computation.3, false_computation=computation.4 constant.1 = pred[] constant(false) ROOT conditional_2 = s64[] conditional(constant.1, conditional_1, param.1), true_computation=computation.1, false_computation=computation.2 })"; auto status = ParseAndReturnVerifiedModule(hlo_string); TF_ASSERT_OK(status.status()); std::unique_ptr<HloModule> module = std::move(status).value(); HloVerifier v(false, false); TF_ASSERT_OK(v.Run(module.get()).status()); HloInstruction* conditional_1 = FindInstruction(module.get(), "conditional_1"); HloInstruction* conditional_1_clone = conditional_1->parent()->AddInstruction(conditional_1->Clone()); TF_ASSERT_OK(conditional_1->ReplaceAllUsesWith(conditional_1_clone)); TF_ASSERT_OK(conditional_1->parent()->RemoveInstruction(conditional_1)); EXPECT_TRUE(ConditionalSimplifier().Run(module.get()).value()); } TEST_F(ConditionalSimplifierTest, RemoveDeadRoots) { absl::string_view hlo_string = R"( HloModule RemoveDeadRoots on_false { t = (f32[20,40], f32[40,40]) parameter(0) lhs = f32[20,40] get-tuple-element(t), index=0 rhs = f32[40,40] get-tuple-element(t), index=1 dot = f32[20,40] dot(lhs, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} after-all = token[] after-all() outfeed = token[] outfeed(dot, after-all) ROOT result = (f32[20,40]) tuple(dot) } on_true { t = (f32[20,40], f32[40,40]) parameter(0) lhs = f32[20,40] get-tuple-element(t), index=0 add = f32[20,40] add(lhs, lhs) ROOT result = (f32[20,40]) tuple(add) } ENTRY main { c0_0 = f32[20,40] parameter(0) c0_1 = f32[40,40] parameter(1) p = pred[] parameter(2) t = (f32[20,40], f32[40,40]) tuple(c0_0, c0_1) conditional = (f32[20, 40]) conditional(p,t,t), false_computation=on_false, true_computation=on_true ROOT result = () tuple() } )"; auto status = ParseAndReturnVerifiedModule(hlo_string); TF_ASSERT_OK(status.status()); HloVerifier v(false, false); TF_ASSERT_OK(v.Run(status.value().get()).status()); EXPECT_TRUE(ConditionalSimplifier().Run(status.value().get()).value()); TF_ASSERT_OK(v.Run(status.value().get()).status()); HloInstruction* conditional = FindInstruction(status.value().get(), "conditional"); EXPECT_EQ(ShapeUtil::TupleElementCount(conditional->shape()), 0); } TEST_F(ConditionalSimplifierTest, SecondTupleElementUnusedAndRemoved) { absl::string_view hlo_string = R"( HloModule SecondTupleElementUnusedAndRemoved on_true { arg_tuple.7 = (f32[10,10]{1,0}) parameter(0) get-tuple-element.9 = f32[10,10]{1,0} get-tuple-element(arg_tuple.7), index=0 copy = f32[10,10]{1,0} copy(get-tuple-element.9) ROOT tuple.6 = (f32[10,10]{1,0}, f32[10,10]{1,0}) tuple(copy, get-tuple-element.9) } on_false { constant.17 = f32[] constant(0) constant.18 = f32[] constant(1) rng.19 = f32[10,10]{1,0} rng(constant.17, constant.18), distribution=rng_uniform arg_tuple.14 = (f32[10,10]{1,0}) parameter(0) get-tuple-element.16 = f32[10,10]{1,0} get-tuple-element(arg_tuple.14), index=0 ROOT tuple.7 = (f32[10,10]{1,0}, f32[10,10]{1,0}) tuple(rng.19, get-tuple-element.16) } ENTRY main { constant.38 = pred[] constant(true) arg_tuple.30 = (s32[], f32[10,10]{1,0}) parameter(0) get-tuple-element.21 = f32[10,10]{1,0} get-tuple-element(arg_tuple.30), index=1 tuple.1 = (f32[10,10]{1,0}) tuple(get-tuple-element.21) conditional = (f32[10,10]{1,0}, f32[10,10]{1,0}) conditional(constant.38, tuple.1, tuple.1), true_computation=on_true, false_computation=on_false get-first-index = f32[10,10]{1,0} get-tuple-element(conditional), index=0 ROOT result = (f32[10,10]{1,0}) tuple(get-first-index) } )"; auto status = ParseAndReturnVerifiedModule(hlo_string); TF_ASSERT_OK(status.status()); HloVerifier v(false, false); TF_ASSERT_OK(v.Run(status.value().get()).status()); EXPECT_TRUE(ConditionalSimplifier().Run(status.value().get()).value()); TF_ASSERT_OK(v.Run(status.value().get()).status()); const HloInstruction* conditional = FindInstruction(status.value().get(), "conditional"); EXPECT_EQ(ShapeUtil::TupleElementCount(conditional->shape()), 1); } TEST_F(ConditionalSimplifierTest, FirstTupleElementUnusedAndRemoved) { absl::string_view hlo_string = R"( HloModule FirstTupleElementUnusedAndRemoved on_true { arg_tuple.7 = (f32[10,10]{1,0}) parameter(0) get-tuple-element.9 = f32[10,10]{1,0} get-tuple-element(arg_tuple.7), index=0 copy = f32[10,10]{1,0} copy(get-tuple-element.9) ROOT tuple.6 = (f32[10,10]{1,0}, f32[10,10]{1,0}) tuple(copy, get-tuple-element.9) } on_false { constant.17 = f32[] constant(0) constant.18 = f32[] constant(1) rng.19 = f32[10,10]{1,0} rng(constant.17, constant.18), distribution=rng_uniform arg_tuple.14 = (f32[10,10]{1,0}) parameter(0) get-tuple-element.16 = f32[10,10]{1,0} get-tuple-element(arg_tuple.14), index=0 ROOT tuple.7 = (f32[10,10]{1,0}, f32[10,10]{1,0}) tuple(rng.19, get-tuple-element.16) } ENTRY main { constant.38 = pred[] constant(true) arg_tuple.30 = (s32[], f32[10,10]{1,0}) parameter(0) get-tuple-element.21 = f32[10,10]{1,0} get-tuple-element(arg_tuple.30), index=1 tuple.1 = (f32[10,10]{1,0}) tuple(get-tuple-element.21) conditional = (f32[10,10]{1,0}, f32[10,10]{1,0}) conditional(constant.38, tuple.1, tuple.1), true_computation=on_true, false_computation=on_false get-second-index = f32[10,10]{1,0} get-tuple-element(conditional), index=1 ROOT result = (f32[10,10]{1,0}) tuple(get-second-index) } )"; auto status = ParseAndReturnVerifiedModule(hlo_string); TF_ASSERT_OK(status.status()); HloVerifier v(false, false); TF_ASSERT_OK(v.Run(status.value().get()).status()); EXPECT_TRUE(ConditionalSimplifier().Run(status.value().get()).value()); TF_ASSERT_OK(v.Run(status.value().get()).status()); const HloInstruction* conditional = FindInstruction(status.value().get(), "conditional"); EXPECT_EQ(ShapeUtil::TupleElementCount(conditional->shape()), 1); } TEST_F(ConditionalSimplifierTest, MergeDuplicateTupleElements) { absl::string_view hlo_string = R"( HloModule MergeDuplicateTupleElements on_true { param-true = (f32[]) parameter(0) gte-true = f32[] get-tuple-element(param-true), index=0 ROOT tuple-true = (f32[], f32[]) tuple(gte-true, gte-true) } on_false { param-false = (f32[]) parameter(0) constant.0 = f32[] constant(0) constant.1 = f32[] constant(1) rng = f32[] rng(constant.0, constant.1), distribution=rng_uniform ROOT tuple-false = (f32[], f32[]) tuple(rng, rng) } ENTRY main { comp = pred[] parameter(0) arg = (f32[]) parameter(1) conditional = (f32[], f32[]) conditional(comp, arg, arg), true_computation=on_true, false_computation=on_false gte.0 = f32[] get-tuple-element(conditional), index=0 gte.1 = f32[] get-tuple-element(conditional), index=1 ROOT add = f32[] add(gte.0, gte.1) } )"; auto status = ParseAndReturnVerifiedModule(hlo_string); TF_ASSERT_OK(status.status()); HloVerifier v(false, false); TF_ASSERT_OK(v.Run(status.value().get()).status()); EXPECT_TRUE(ConditionalSimplifier().Run(status.value().get()).value()); TF_ASSERT_OK(v.Run(status.value().get()).status()); const HloInstruction* conditional = FindInstruction(status.value().get(), "conditional"); EXPECT_EQ(ShapeUtil::TupleElementCount(conditional->shape()), 1); const HloInstruction* gte_0 = FindInstruction(status.value().get(), "gte.0"); const HloInstruction* gte_1 = FindInstruction(status.value().get(), "gte.1"); EXPECT_EQ(gte_0->tuple_index(), 0); EXPECT_EQ(gte_1->tuple_index(), 0); } TEST_F(ConditionalSimplifierTest, SimplifyConditionalWithTokens) { absl::string_view hlo_string = R"( HloModule SimplifyConditionalWithTokens true_comp { ROOT parameter.13 = (token[]) parameter(0) } false_comp { ROOT parameter.21 = (token[]) parameter(0) } ENTRY entry { parameter.29 = pred[] parameter(0) token.1 = token[] after-all() token.2 = token[] after-all() tuple.3 = (token[]) tuple(token.1) tuple.4 = (token[]) tuple(token.2) ROOT conditional.5 = (token[]) conditional(parameter.29, tuple.3, tuple.4), true_computation=true_comp, false_computation=false_comp } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloVerifier v(false, false); TF_ASSERT_OK(v.Run(module.get()).status()); EXPECT_TRUE(ConditionalSimplifier().Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::AfterAll( op::GetTupleElement(op::Tuple(op::AfterAll()), 0), op::GetTupleElement(op::Tuple(op::AfterAll()), 0)))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/conditional_simplifier.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/conditional_simplifier_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0a481887-ac82-46c5-9d5c-6fcea92ba784
cpp
tensorflow/tensorflow
collectives_schedule_linearizer
third_party/xla/xla/service/collectives_schedule_linearizer.cc
third_party/xla/xla/service/collectives_schedule_linearizer_test.cc
#include "xla/service/collectives_schedule_linearizer.h" #include <algorithm> #include <list> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_reachability.h" #include "tsl/platform/errors.h" namespace xla { absl::StatusOr<bool> CollectivesScheduleLinearizer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { if (is_enabled_ && !is_enabled_(module)) { return false; } bool changed = false; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { std::unique_ptr<HloReachabilityMap> reachability; HloInstruction* prev_done = nullptr; for (HloInstruction* inst : computation->MakeInstructionPostOrder()) { auto* next = DynCast<HloCollectiveInstruction>(inst); if (!next) { continue; } if (!reachability) { reachability = HloReachabilityMap::Build(computation); } HloInstruction* start = next; HloInstruction* done = next; switch (next->opcode()) { case HloOpcode::kAllReduceStart: case HloOpcode::kAllGatherStart: case HloOpcode::kCollectivePermuteStart: case HloOpcode::kAsyncStart: CHECK_EQ(start->user_count(), 1); done = start->users()[0]; break; default: break; } if (prev_done && !reachability->IsConnected(start, prev_done)) { TF_RETURN_IF_ERROR(prev_done->AddControlDependencyTo(next)); VLOG(1) << "Adding control dependency from " << prev_done->ToString() << " to " << start->ToString(); changed = true; } prev_done = done; } } return changed; } }
#include "xla/service/collectives_schedule_linearizer.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/pattern_matcher.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" namespace xla { namespace { namespace m = match; int64_t CountControlEdges(const HloComputation& computation) { int64_t count = 0; for (const auto& instruction : computation.instructions()) { count += instruction->control_successors().size(); } return count; } class CollectivesScheduleLinearizerTest : public HloTestBase { protected: void InsertCollectivesSchedule(HloModule* module) { CollectivesScheduleLinearizer collectives_schedule_linearizer; ASSERT_IS_OK(collectives_schedule_linearizer.Run(module).status()); } }; TEST_F(CollectivesScheduleLinearizerTest, FixOrdering) { absl::string_view hlo_string = R"( HloModule module sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT out = f32[] add(a, b) } ENTRY entry { p0 = f32[100] parameter(0), parameter_replication={false} p1 = f32[100] parameter(1), parameter_replication={false} c1 = f32[100] all-reduce(p0), replica_groups={}, to_apply=sum c2 = f32[100] all-reduce(p1), replica_groups={}, to_apply=sum ROOT out = f32[100] add(c1, c2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCollectivesSchedule(module.get()); EXPECT_EQ(CountControlEdges(*module->entry_computation()), 1); HloInstruction *c1 = nullptr, *c2 = nullptr; for (HloInstruction* instr : module->entry_computation()->instructions()) { if (Match(instr, m::AllReduce(m::Parameter(0)))) { c1 = instr; } if (Match(instr, m::AllReduce(m::Parameter(1)))) { c2 = instr; } } EXPECT_TRUE(c1 != nullptr && c2 != nullptr); EXPECT_TRUE(absl::c_linear_search(c2->control_predecessors(), c1)); } TEST_F(CollectivesScheduleLinearizerTest, NoFixRequired) { absl::string_view hlo_string = R"( HloModule module sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT out = f32[] add(a, b) } ENTRY entry { p0 = f32[100] parameter(0), parameter_replication={false} p1 = f32[100] parameter(1), parameter_replication={false} c1 = f32[100] all-reduce(p0), replica_groups={}, to_apply=sum c2 = f32[100] all-reduce(p1), replica_groups={}, to_apply=sum, control-predecessors={c1} ROOT out = f32[100] add(c1, c2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCollectivesSchedule(module.get()); EXPECT_EQ(CountControlEdges(*module->entry_computation()), 1); } TEST_F(CollectivesScheduleLinearizerTest, DependentCollectives) { absl::string_view hlo_string = R"( HloModule module sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT out = f32[] add(a, b) } ENTRY entry { p0 = f32[100] parameter(0), parameter_replication={false} p1 = f32[100] parameter(1), parameter_replication={false} c1 = f32[100] all-reduce(p0), replica_groups={}, to_apply=sum c2 = f32[100] all-reduce(c1), replica_groups={}, to_apply=sum ROOT out = f32[100] add(c1, c2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCollectivesSchedule(module.get()); EXPECT_EQ(CountControlEdges(*module->entry_computation()), 0); } TEST_F(CollectivesScheduleLinearizerTest, NonPostorder) { absl::string_view hlo_string = R"( HloModule module sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT out = f32[] add(a, b) } ENTRY entry { p0 = f32[100] parameter(0), parameter_replication={false} p1 = f32[100] parameter(1), parameter_replication={false} c1 = f32[100] all-reduce(p0), replica_groups={}, to_apply=sum c2 = f32[100] all-reduce(p1), replica_groups={}, to_apply=sum c3 = f32[100] all-reduce(p1), replica_groups={}, to_apply=sum t = f32[100] add(c1, c2) ROOT out = f32[100] add(t, c3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); ASSERT_IS_OK( module->entry_computation() ->GetInstructionWithName("c3") ->AddControlDependencyTo( module->entry_computation()->GetInstructionWithName("c1"))); InsertCollectivesSchedule(module.get()); EXPECT_EQ(CountControlEdges(*module->entry_computation()), 2); } TEST_F(CollectivesScheduleLinearizerTest, AsyncOrdering) { absl::string_view hlo_string = R"( HloModule module sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT out = f32[] add(a, b) } ENTRY entry { p0 = f32[100] parameter(0), parameter_replication={false} p1 = f32[100] parameter(1), parameter_replication={false} ars0 = f32[100] all-reduce-start(p0), replica_groups={}, to_apply=sum ard0 = f32[100] all-reduce-done(ars0) ars1 = f32[100] all-reduce-start(p1), replica_groups={}, to_apply=sum ard1 = f32[100] all-reduce-done(ars1) ROOT out = f32[100] add(ard0, ard1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCollectivesSchedule(module.get()); EXPECT_EQ(CountControlEdges(*module->entry_computation()), 1); const HloInstruction *root = module->entry_computation()->root_instruction(); const HloInstruction *ard0 = root->operand(0); const HloInstruction *ard1 = root->operand(1); EXPECT_EQ(ard0->opcode(), HloOpcode::kAllReduceDone); EXPECT_EQ(ard1->opcode(), HloOpcode::kAllReduceDone); const HloInstruction *ars1 = ard1->operand(0); EXPECT_EQ(ars1->opcode(), HloOpcode::kAllReduceStart); EXPECT_TRUE(absl::c_linear_search(ars1->control_predecessors(), ard0)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/collectives_schedule_linearizer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/collectives_schedule_linearizer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7cf7d152-112a-442f-9cb2-370feb836587
cpp
tensorflow/tensorflow
gather_expander
third_party/xla/xla/service/gather_expander.cc
third_party/xla/xla/service/gather_expander_test.cc
#include "xla/service/gather_expander.h" #include <utility> #include "absl/algorithm/container.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/literal_util.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/while_util.h" #include "xla/util.h" namespace xla { namespace { absl::StatusOr<HloInstruction*> TransposeIndexVectorDimToLast( HloInstruction* start_indices, int64_t index_vector_dim) { const Shape& start_indices_shape = start_indices->shape(); if (start_indices_shape.dimensions_size() == index_vector_dim) { return start_indices; } if (index_vector_dim == (start_indices_shape.dimensions_size() - 1)) { return start_indices; } std::vector<int64_t> permutation; permutation.reserve(start_indices_shape.dimensions_size()); for (int64_t i = 0, e = start_indices_shape.dimensions_size(); i < e; i++) { if (i != index_vector_dim) { permutation.push_back(i); } } permutation.push_back(index_vector_dim); return MakeTransposeHlo(start_indices, permutation); } absl::StatusOr<HloInstruction*> CanonicalizeGatherIndices( HloInstruction* start_indices, int64_t index_vector_dim) { TF_ASSIGN_OR_RETURN( HloInstruction * transposed_start_indices, TransposeIndexVectorDimToLast(start_indices, index_vector_dim)); bool indices_are_scalar = index_vector_dim == start_indices->shape().dimensions_size(); const int64_t index_dims_in_start_indices = indices_are_scalar ? 0 : 1; const Shape& shape = transposed_start_indices->shape(); if (shape.dimensions_size() == index_dims_in_start_indices) { return PrependDegenerateDims(transposed_start_indices, 1); } else { return CollapseFirstNDims( transposed_start_indices, shape.dimensions_size() - index_dims_in_start_indices); } } absl::StatusOr<HloInstruction*> AdjustBatchDimsInAccumulator( const Shape& start_indices_shape, HloInstruction* accumulator, int64_t index_vector_dim) { std::vector<int64_t> batch_dim_bounds; batch_dim_bounds.reserve(start_indices_shape.dimensions_size()); for (int64_t i = 0, e = start_indices_shape.dimensions_size(); i < e; i++) { if (i != index_vector_dim) { batch_dim_bounds.push_back(start_indices_shape.dimensions(i)); } } if (batch_dim_bounds.empty()) { return ElideDegenerateDims(accumulator, {0}); } return ExpandFirstDimIntoNDims(accumulator, batch_dim_bounds); } absl::StatusOr<HloInstruction*> ExpandIndexVectorIntoOperandSpace( HloInstruction* index_vector, const GatherDimensionNumbers& dim_numbers, int64_t operand_rank) { HloComputation* computation = index_vector->parent(); const Shape& index_shape = index_vector->shape(); if (operand_rank == 0) { return computation->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateFromDimensions(index_shape.element_type(), {0}))); } HloInstruction* zero = computation->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateFromDimensions(index_shape.element_type(), {1}))); std::vector<HloInstruction*> expanded_index_components; for (int i = 0; i < operand_rank; i++) { int64_t index_vector_dim_index = FindIndex(dim_numbers.start_index_map(), i); if (index_vector_dim_index != dim_numbers.start_index_map_size()) { TF_ASSIGN_OR_RETURN( HloInstruction * component_to_concat, MakeSliceHlo(index_vector, {index_vector_dim_index}, {index_vector_dim_index + 1}, {1})); expanded_index_components.push_back(component_to_concat); } else { expanded_index_components.push_back(zero); } } return MakeConcatHlo(expanded_index_components, 0); } absl::StatusOr<std::vector<HloInstruction*>> GatherLoopBody( const HloInstruction& gather, HloInstruction* induction_var, const std::vector<HloInstruction*>& incoming_loop_state) { const GatherDimensionNumbers& dim_numbers = gather.gather_dimension_numbers(); CHECK_EQ(incoming_loop_state.size(), 3); HloInstruction* const operand = incoming_loop_state[0]; HloInstruction* const start_indices = incoming_loop_state[1]; HloInstruction* const output_accumulator = incoming_loop_state[2]; bool has_scalar_indices = start_indices->shape().dimensions_size() == 1; CHECK_EQ(has_scalar_indices, dim_numbers.index_vector_dim() == gather.operand(1)->shape().dimensions_size()); HloInstruction* induction_var_as_vector = MakeBroadcastHlo(induction_var, {}, {1}); HloInstruction* index_vector; if (has_scalar_indices) { TF_ASSIGN_OR_RETURN( index_vector, MakeDynamicSliceHlo(start_indices, induction_var_as_vector, {1})); } else { TF_ASSIGN_OR_RETURN( HloInstruction * index_into_start_indices, PadVectorWithZeros(induction_var_as_vector, 0, 1)); int64_t index_vector_size = start_indices->shape().dimensions(1); TF_ASSIGN_OR_RETURN( HloInstruction * index_vector_2d, MakeDynamicSliceHlo(start_indices, index_into_start_indices, {1, index_vector_size})); TF_ASSIGN_OR_RETURN(index_vector, ElideDegenerateDims(index_vector_2d, {0})); } TF_ASSIGN_OR_RETURN( HloInstruction * gathered_slice_start, ExpandIndexVectorIntoOperandSpace(index_vector, dim_numbers, operand->shape().dimensions_size())); TF_ASSIGN_OR_RETURN(HloInstruction * gathered_slice, MakeDynamicSliceHlo(operand, gathered_slice_start, gather.gather_slice_sizes())); TF_ASSIGN_OR_RETURN( HloInstruction* const gathered_slice_with_dims_collapsed, ElideDegenerateDims(gathered_slice, dim_numbers.collapsed_slice_dims())); TF_ASSIGN_OR_RETURN( HloInstruction* const gathered_slice_for_update, PrependDegenerateDims(gathered_slice_with_dims_collapsed, 1)); TF_ASSIGN_OR_RETURN( HloInstruction* const index_vector_into_accumulator, PadVectorWithZeros( induction_var_as_vector, 0, gathered_slice_with_dims_collapsed->shape().dimensions_size())); TF_ASSIGN_OR_RETURN( HloInstruction* const updated_accumulator, MakeDynamicUpdateSliceHlo(output_accumulator, gathered_slice_for_update, index_vector_into_accumulator)); return absl::StatusOr<std::vector<HloInstruction*>>{ {operand, start_indices, updated_accumulator}}; } HloInstruction* CreateGatherLoopAccumulatorInitValue( HloComputation* computation, PrimitiveType element_type, absl::Span<const int64_t> slice_sizes, int64_t gather_loop_trip_count, const GatherDimensionNumbers& dim_numbers) { std::vector<int64_t> accumulator_state_shape_dims; accumulator_state_shape_dims.reserve(1 + slice_sizes.size()); accumulator_state_shape_dims.push_back(gather_loop_trip_count); for (int64_t i = 0; i < slice_sizes.size(); i++) { if (!absl::c_binary_search(dim_numbers.collapsed_slice_dims(), i)) { accumulator_state_shape_dims.push_back(slice_sizes[i]); } } return BroadcastZeros(computation, element_type, accumulator_state_shape_dims); } absl::StatusOr<HloInstruction*> PermuteBatchAndOffsetDims( HloInstruction* accumulator, absl::Span<const int64_t> offset_dims, int64_t output_rank) { std::vector<int64_t> permutation; permutation.reserve(output_rank); int64_t batch_idx_counter = 0; int64_t offset_idx_counter = output_rank - offset_dims.size(); for (int64_t i = 0; i < output_rank; i++) { bool is_offset_dim = absl::c_binary_search(offset_dims, i); if (is_offset_dim) { permutation.push_back(offset_idx_counter++); } else { permutation.push_back(batch_idx_counter++); } } return MakeTransposeHlo(accumulator, permutation); } int64_t GatherLoopTripCount(HloInstruction* gather_instr) { HloInstruction* start_indices = gather_instr->mutable_operand(1); const Shape& start_indices_shape = start_indices->shape(); const GatherDimensionNumbers& dim_numbers = gather_instr->gather_dimension_numbers(); int64_t trip_count = 1; for (int64_t i = 0, e = start_indices_shape.dimensions_size(); i < e; i++) { if (i != dim_numbers.index_vector_dim()) { trip_count *= start_indices_shape.dimensions(i); } } return trip_count; } int64_t GatherIsBroadcast(HloInstruction* gather_instr) { return absl::c_equal(gather_instr->gather_slice_sizes(), gather_instr->operand(0)->shape().dimensions()); } } absl::StatusOr<HloInstruction*> GatherExpander::ExpandInstruction( HloInstruction* gather_instr) { CHECK(!ShapeUtil::IsZeroElementArray(gather_instr->shape())); if (GatherIsBroadcast(gather_instr)) { if (ShapeUtil::IsZeroElementArray(gather_instr->operand(0)->shape())) { return MakeScalarLike(gather_instr, 0); } Shape broadcast_operand_shape = ShapeUtil::DeleteDimensions( gather_instr->gather_dimension_numbers().collapsed_slice_dims(), gather_instr->operand(0)->shape()); TF_ASSIGN_OR_RETURN(HloInstruction * broadcast_operand, MakeReshapeHlo(broadcast_operand_shape, gather_instr->mutable_operand(0))); gather_instr->SetupDerivedInstruction(broadcast_operand); HloInstruction* broadcast = MakeBroadcastHlo(broadcast_operand, gather_instr->gather_dimension_numbers().offset_dims(), gather_instr->shape()); gather_instr->SetupDerivedInstruction(broadcast); return broadcast; } HloComputation* computation = gather_instr->parent(); HloInstruction* operand = gather_instr->mutable_operand(0); HloInstruction* start_indices = gather_instr->mutable_operand(1); const Shape& output_shape = gather_instr->shape(); int64_t output_rank = output_shape.dimensions_size(); const GatherDimensionNumbers& dim_numbers = gather_instr->gather_dimension_numbers(); int64_t gather_loop_trip_count = GatherLoopTripCount(gather_instr); if (!IsInt32(gather_loop_trip_count)) { return Unimplemented( "Gather operations with more than 2147483647 gather indices are not " "supported. This error occurred for %s.", gather_instr->ToString()); } TF_ASSIGN_OR_RETURN( HloInstruction * canonical_start_indices, CanonicalizeGatherIndices(start_indices, dim_numbers.index_vector_dim())); CHECK_EQ(gather_loop_trip_count, canonical_start_indices->shape().dimensions(0)); HloInstruction* accumulator_init = CreateGatherLoopAccumulatorInitValue( computation, output_shape.element_type(), gather_instr->gather_slice_sizes(), gather_loop_trip_count, gather_instr->gather_dimension_numbers()); absl::StatusOr<std::vector<HloInstruction*>> gather_loop_result_or_error = WhileUtil::MakeCountedLoop( computation, gather_loop_trip_count, {operand, canonical_start_indices, accumulator_init}, [&](HloInstruction* indvar, const std::vector<HloInstruction*>& loop_state) { return GatherLoopBody(*gather_instr, indvar, loop_state); }, gather_instr->metadata()); TF_ASSIGN_OR_RETURN(std::vector<HloInstruction*> gather_loop_result, gather_loop_result_or_error); HloInstruction* accumulator_result = gather_loop_result.back(); TF_ASSIGN_OR_RETURN( HloInstruction* const accumulator_with_batch_dims_decanonicalized, AdjustBatchDimsInAccumulator(start_indices->shape(), accumulator_result, dim_numbers.index_vector_dim())); return PermuteBatchAndOffsetDims(accumulator_with_batch_dims_decanonicalized, dim_numbers.offset_dims(), output_rank); } bool GatherExpander::InstructionMatchesPattern(HloInstruction* inst) { return inst->opcode() == HloOpcode::kGather && !ShapeUtil::IsZeroElementArray(inst->shape()) && (mode_ == kEliminateAllGathers || GatherLoopTripCount(inst) == 1 || absl::c_equal(inst->gather_slice_sizes(), inst->operand(0)->shape().dimensions())); } }
#include "xla/service/gather_expander.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_macros.h" namespace xla { namespace { using GatherExpanderTest = HloTestBase; TEST_F(GatherExpanderTest, ErrorStatusOnTooManyIndices) { const std::string hlo_text = R"( HloModule TensorFlowGatherMultipleBatchDims ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2147483647,5] parameter(1) ROOT gather = s32[2147483647,3,5] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=2, slice_sizes={3, 1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); absl::Status status = GatherExpander{GatherExpander::kEliminateAllGathers} .Run(module.get()) .status(); EXPECT_EQ(status.code(), tsl::error::UNIMPLEMENTED); ASSERT_THAT( status.message(), ::testing::HasSubstr("Gather operations with more than 2147483647 gather " "indices are not supported.")); } TEST_F(GatherExpanderTest, AvoidDegenerateDims) { const std::string hlo_text = R"( HloModule TensorFlowGatherV2 ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) ROOT gather = s32[3,2] gather(operand, indices), offset_dims={0}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=1, slice_sizes={3, 1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN( bool changed, GatherExpander{GatherExpander::kEliminateAllGathers}.Run(module.get())); ASSERT_TRUE(changed); HloInstruction* while_instr = nullptr; for (auto* instr : module->entry_computation()->instructions()) { if (instr->opcode() == HloOpcode::kWhile) { ASSERT_EQ(while_instr, nullptr) << "Expected exactly one while instruction in the entry computation " "after gather expansion"; while_instr = instr; } } ASSERT_NE(while_instr, nullptr) << "Expected exactly one while instruction in the entry computation " "after gather expansion"; const Shape& while_shape = while_instr->shape(); ASSERT_TRUE(while_shape.IsTuple()); ASSERT_EQ(ShapeUtil::TupleElementCount(while_shape), 4); EXPECT_TRUE(ShapeUtil::SameDimensions( ShapeUtil::MakeShape(S32, {3, 3}), ShapeUtil::GetTupleElementShape(while_shape, 1))); EXPECT_TRUE(ShapeUtil::SameDimensions( ShapeUtil::MakeShape(S32, {2}), ShapeUtil::GetTupleElementShape(while_shape, 2))); EXPECT_TRUE(ShapeUtil::SameDimensions( ShapeUtil::MakeShape(S32, {2, 3}), ShapeUtil::GetTupleElementShape(while_shape, 3))); } TEST_F(GatherExpanderTest, CheckOpMetadata) { const std::string hlo_text = R"( HloModule TensorFlowGatherV2 ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) ROOT gather = s32[3,2] gather(operand, indices), offset_dims={0}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=1, slice_sizes={3, 1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); OpMetadata metadata; metadata.set_op_name("Gather"); module->entry_computation()->root_instruction()->set_metadata(metadata); TF_ASSERT_OK_AND_ASSIGN( bool changed, GatherExpander{GatherExpander::kEliminateAllGathers}.Run(module.get())); ASSERT_TRUE(changed); HloInstruction* while_instr = nullptr; for (auto* instr : module->entry_computation()->instructions()) { if (instr->opcode() == HloOpcode::kWhile) { ASSERT_EQ(while_instr, nullptr) << "Expected exactly one while instruction in the entry computation " "after gather expansion"; while_instr = instr; } } ASSERT_NE(while_instr, nullptr) << "Expected exactly one while instruction in the entry computation " "after gather expansion"; EXPECT_EQ(while_instr->metadata().op_name(), "Gather"); } TEST_F(GatherExpanderTest, EliminateSimpleGathersSkipsNontrivialGather) { const std::string hlo_text = R"( HloModule TensorFlowGatherV1 ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) ROOT gather = s32[2,3] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1, 3} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GatherExpander pass(GatherExpander::kEliminateSimpleGathers); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); ASSERT_FALSE(changed); } TEST_F(GatherExpanderTest, EliminateSimpleGathersRewritesTrivialGather) { const std::string hlo_text = R"( HloModule test ENTRY main { operand = s32[100] parameter(0) indices = s32[1] parameter(1) ROOT gather = s32[10] gather(operand, indices), offset_dims={0}, collapsed_slice_dims={}, start_index_map={0}, index_vector_dim=0, slice_sizes={10} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GatherExpander pass(GatherExpander::kEliminateAllGathers); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); ASSERT_TRUE(changed); ASSERT_FALSE(hlo_query::ContainsInstrWithOpcode(module->entry_computation(), {HloOpcode::kGather})); } TEST_F(GatherExpanderTest, GatherIsBroadcast) { const std::string hlo_text = R"( HloModule test ENTRY main { operand = s32[1,3] parameter(0) indices = s32[7,5] parameter(1) ROOT gather = s32[7,3,5] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=2, slice_sizes={1,3} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_text)); GatherExpander pass(GatherExpander::kEliminateSimpleGathers); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); ASSERT_TRUE(changed); ASSERT_FALSE(hlo_query::ContainsInstrWithOpcode(module->entry_computation(), {HloOpcode::kGather})); ASSERT_TRUE(hlo_query::ContainsInstrWithOpcode(module->entry_computation(), {HloOpcode::kBroadcast})); module->VerifyOrAddFailure("after-gather-expander."); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gather_expander.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gather_expander_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3393ebe0-0d02-4328-8e95-0a40a35cb820
cpp
tensorflow/tensorflow
tree_reduction_rewriter
third_party/xla/xla/service/gpu/transforms/tree_reduction_rewriter.cc
third_party/xla/xla/service/cpu/tests/tree_reduction_rewriter_test.cc
#include "xla/service/gpu/transforms/tree_reduction_rewriter.h" #include <algorithm> #include <cmath> #include <cstdint> #include <iterator> #include <memory> #include <utility> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/numeric/bits.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/gpu/reduction_utils.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { absl::InlinedVector<int64_t, 2> GetSortedReducedDims( HloReduceInstruction *reduce) { absl::InlinedVector<int64_t, 2> reduced_dims{reduce->dimensions().begin(), reduce->dimensions().end()}; absl::c_sort(reduced_dims); return reduced_dims; } bool IsMinMaxReduction(HloReduceInstruction *reduce) { HloComputation *called = &reduce->to_apply()[0]; if (auto reduction_kind = MatchReductionComputation(called)) { return reduction_kind == ReductionKind::MAX || reduction_kind == ReductionKind::MIN; } return false; } } class ReductionRewriterVisitor : public DfsHloRewriteVisitor { public: explicit ReductionRewriterVisitor(se::GpuComputeCapability gpu_version) : gpu_version_(gpu_version) {} absl::Status HandleReduce(HloInstruction *hlo) override { auto *reduce = Cast<HloReduceInstruction>(hlo); VLOG(3) << "Reduction instruction: " << reduce->ToString(); const HloModuleConfig &config = reduce->GetModule()->config(); if (!MatchReductionForSplit(reduce, config)) { return absl::OkStatus(); } ReductionDimensions reduction_dims = GetReductionKindAndContiguousComponents(*hlo); if (ReductionIsRaceFree(config, reduction_dims)) { VLOG(3) << "Base case: dimensions fit"; return absl::OkStatus(); } auto sorted_dims_to_reduce = GetSortedReducedDims(reduce); CHECK_LE(sorted_dims_to_reduce.size(), 2); if (reduction_dims.is_row_reduction && reduction_dims .dimensions[ReductionDimensions::kRowMajorReducedDimension] > BatchedReductionRaceFreeBound()) { VLOG(2) << "Splitting batched dimension reduce into a separate reduction"; return RewriteBatchDimensionLargerThanTile(reduce, reduction_dims, sorted_dims_to_reduce); } SplitParams split_params = ComputeSplitParams(reduce, reduction_dims, sorted_dims_to_reduce); return SplitReductionDimension(reduce, split_params, sorted_dims_to_reduce); } private: bool MatchReductionForSplit(HloReduceInstruction *reduce, const HloModuleConfig &config) { bool reductions_via_mlir_disabled = config.debug_options().xla_gpu_mlir_emitter_level() < 4; if (reductions_via_mlir_disabled && IsMinMaxReduction(reduce)) { VLOG(1) << "Not performing tree expansion on min/max-reduction: " << reduce->ToString() << " since min/max operations are associative"; return false; } if (!IsReductionFromOrToContiguousDimensions(*reduce)) { VLOG(3) << "Is not a reduction from or to contiguous dimensions"; return false; } VLOG(3) << "Perform rewrite"; return true; } bool ShouldSwapInnerAndOuterReducedMinorDimension(uint64_t k1, uint64_t k2, uint64_t n, int64_t race_free_bound, bool is_row_reduction) { CHECK(k1 >= k2); if (k1 > race_free_bound) { return false; } if (is_row_reduction) { bool maybe_vectorized = k2 % 2 == 0 && n % 2 == 0; if (maybe_vectorized) { return k2 * 2 < k1 || k1 % 2 == 0; } return n % 2 == 0 || k1 % 2 != 0; } return true; } struct SplitParams { int64_t k1; int64_t k2; int64_t dim; }; SplitParams ComputeSplitParams( HloReduceInstruction *reduce, const ReductionDimensions &reduction_dims, absl::Span<const int64_t> sorted_dims_to_reduce) { absl::Span<int64_t const> input_shape_dims = reduce->inputs()[0]->shape().dimensions(); int64_t reduced_dim = sorted_dims_to_reduce.back(); int64_t reduced_dim_size = input_shape_dims[reduced_dim]; VLOG(3) << "reduced dim size = " << reduced_dim_size; uint64_t k2 = static_cast<uint64_t>(std::floor(std::sqrt(reduced_dim_size))); int64_t race_free_bound = ReductionDimensionRaceFreeBound( reduce->GetModule()->config(), reduction_dims); if (k2 > race_free_bound) { k2 = race_free_bound; } uint64_t minimum_padding = (k2 - reduced_dim_size % k2) % k2; uint64_t best_k1 = (reduced_dim_size + minimum_padding) / k2; for (uint64_t i = k2 - 1; i > k2 / 2; --i) { uint64_t padding = (i - reduced_dim_size % i) % i; if (padding < minimum_padding || (padding == minimum_padding && absl::has_single_bit(i))) { minimum_padding = padding; best_k1 = (reduced_dim_size + padding) / i; } } uint64_t padded_k = reduced_dim_size + minimum_padding; uint64_t best_k2 = padded_k / best_k1; if (ShouldSwapInnerAndOuterReducedMinorDimension( best_k1, best_k2, reduced_dim_size, race_free_bound, reduction_dims.is_row_reduction)) { std::swap(best_k1, best_k2); } return SplitParams{static_cast<int64_t>(best_k1), static_cast<int64_t>(best_k2), reduced_dim}; } absl::Status SplitReductionDimension( HloReduceInstruction *reduce, const SplitParams &split_params, absl::Span<const int64_t> sorted_dims_to_reduce) { absl::Span<int64_t const> reduce_input_dims = reduce->inputs()[0]->shape().dimensions(); int64_t split_dim_size = reduce_input_dims[split_params.dim]; VLOG(2) << "dimension to split = " << split_params.dim << " with " << split_dim_size << " elements into " << split_params.k1 << " by " << split_params.k2; HloInstruction::InstructionVector padded_inputs(reduce->inputs().begin(), reduce->inputs().end()); auto padded_size = split_params.k1 * split_params.k2; absl::InlinedVector<int64_t, 3> padded_dimensions(reduce_input_dims.begin(), reduce_input_dims.end()); if (split_dim_size != padded_size) { padded_dimensions[split_params.dim] = padded_size; PaddingConfig padding_config = MakeNoPaddingConfig(reduce_input_dims.size()); padding_config.mutable_dimensions(split_params.dim) ->set_edge_padding_high(padded_size - split_dim_size); for (int input_idx = 0; input_idx < padded_inputs.size(); ++input_idx) { auto &reduction_input = padded_inputs[input_idx]; Shape padded_shape = ShapeUtil::MakeShape( reduction_input->shape().element_type(), padded_dimensions); VLOG(2) << "Generated padded shape: " << padded_shape.ToString(); reduction_input = reduce->parent()->AddInstruction( HloInstruction::CreatePad(padded_shape, reduction_input, reduce->init_values()[input_idx], padding_config), &reduction_input->metadata()); } } absl::InlinedVector<int64_t, 3> reshaped_dimensions; int64_t input_rank = reduce_input_dims.size(); for (int64_t dim_idx = 0; dim_idx < input_rank; dim_idx++) { if (dim_idx == split_params.dim) { reshaped_dimensions.push_back(split_params.k1); reshaped_dimensions.push_back(split_params.k2); } else { reshaped_dimensions.push_back(padded_dimensions[dim_idx]); } } absl::InlinedVector<int64_t, 2> inner_reduce_dims( sorted_dims_to_reduce.begin(), sorted_dims_to_reduce.end()); auto split_dim_it = std::find(inner_reduce_dims.begin(), inner_reduce_dims.end(), split_params.dim); *split_dim_it += 1; absl::InlinedVector<int64_t, 1> outer_reduce_dims{ split_params.dim - std::distance(inner_reduce_dims.begin(), split_dim_it)}; absl::InlinedVector<int64_t, 3> inner_reduce_shape = RemoveElements(inner_reduce_dims, reshaped_dimensions); HloInstruction::InstructionVector reshaped_padded_inputs; absl::InlinedVector<Shape, 2> inner_reduce_shapes; for (HloInstruction *padded_input : padded_inputs) { Shape reshaped_shape = ShapeUtil::MakeShape( padded_input->shape().element_type(), reshaped_dimensions); HloInstruction *reshaped_padded_input = reduce->parent()->AddInstruction( HloInstruction::CreateBitcast(reshaped_shape, padded_input), &padded_input->metadata()); VLOG(2) << "Generated reshape: " << reshaped_padded_input->ToString(); reshaped_padded_inputs.push_back(reshaped_padded_input); inner_reduce_shapes.push_back(ShapeUtil::MakeShape( padded_input->shape().element_type(), inner_reduce_shape)); } HloInstruction *inner_reduce = reduce->parent()->AddInstruction( HloInstruction::CreateReduce( ShapeUtil::MakeMaybeTupleShape(inner_reduce_shapes), reshaped_padded_inputs, reduce->init_values(), inner_reduce_dims, reduce->to_apply()), &reduce->metadata()); VLOG(1) << "Generated inner reduction: " << inner_reduce->ToString(); std::unique_ptr<HloInstruction> outer_reduce = HloInstruction::CreateReduce( reduce->shape(), inner_reduce, reduce->init_values(), outer_reduce_dims, reduce->to_apply()); VLOG(1) << "Generated outer reduction: " << outer_reduce->ToString(); return ReplaceWithNewInstruction(reduce, std::move(outer_reduce)); } absl::Status RewriteBatchDimensionLargerThanTile( HloReduceInstruction *hlo, const ReductionDimensions &reduction_dimensions, absl::Span<const int64_t> sorted_dims_to_reduce) { CHECK(reduction_dimensions.is_row_reduction); absl::InlinedVector<Shape, 2> tuple_shapes; int64_t minor_reduction_dim = sorted_dims_to_reduce.back(); for (HloInstruction *input : hlo->inputs()) { tuple_shapes.push_back( ShapeUtil::DeleteDimension(minor_reduction_dim, input->shape())); } HloInstruction *inner_reduce = hlo->parent()->AddInstruction(HloInstruction::CreateReduce( ShapeUtil::MakeMaybeTupleShape(tuple_shapes), hlo->inputs(), hlo->init_values(), {minor_reduction_dim}, hlo->to_apply())); VLOG(1) << "Inner reduction: " << inner_reduce->ToString(); std::unique_ptr<HloInstruction> out = HloInstruction::CreateReduce( hlo->shape(), inner_reduce, hlo->init_values(), {0}, hlo->to_apply()); VLOG(1) << "Generated: " << out->ToString(); return ReplaceWithNewInstruction(hlo, std::move(out)); } se::GpuComputeCapability gpu_version_; }; absl::StatusOr<bool> TreeReductionRewriter::Run( HloModule *module, const absl::flat_hash_set<absl::string_view> &execution_threads) { VLOG(5) << "Rewriter input: " << module->ToString(); TF_ASSIGN_OR_RETURN(bool changed, ReductionRewriterVisitor(gpu_version_) .RunOnModule(module, execution_threads)); VLOG(5) << "Rewriter output: " << module->ToString(); return changed; } } }
#include "xla/service/cpu/tests/cpu_codegen_test.h" #include "tsl/platform/test.h" namespace xla { namespace cpu { namespace { class TreeReductionRewriterTest : public CpuCodegenTest {}; TEST_F(TreeReductionRewriterTest, SimpleRewrite) { const char* hlo_text = R"( HloModule SimpleReduction add { acc = f32[] parameter(1) op = f32[] parameter(0) ROOT out = f32[] add(acc, op) } ENTRY main { input = f32[1000] parameter(0) zero = f32[] constant(0) ROOT out = f32[] reduce(input, zero), dimensions={0}, to_apply=add } )"; MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %main (input: f32[1000]) -> f32[] { ; CHECK-NEXT: [[INSTR_0:%[^ ]+]] = f32[1000]{0} parameter(0) ; CHECK-NEXT: [[INSTR_1:%[^ ]+]] = f32[] constant(0) ; CHECK-NEXT: [[INSTR_2:%[^ ]+]] = f32[32]{0} reduce-window([[INSTR_0]], [[INSTR_1]]), window={size=32 stride=32 pad=12_12}, to_apply=[[INSTR_3:%[^ ]+]] ; CHECK-NEXT: ROOT [[INSTR_4:%[^ ]+]] = f32[] reduce([[INSTR_2]], [[INSTR_1]]), dimensions={0}, to_apply=[[INSTR_3]] )"); } TEST_F(TreeReductionRewriterTest, RewriteMultipleDimensions) { const char* hlo_text = R"( HloModule SimpleReduction add { acc = f32[] parameter(1) op = f32[] parameter(0) ROOT out = f32[] add(acc, op) } ENTRY main { input = f32[100,100] parameter(0) zero = f32[] constant(0) ROOT out = f32[] reduce(input, zero), dimensions={0,1}, to_apply=add } )"; MatchOptimizedHlo(hlo_text, R"( ; CHECK: [[INSTR_0:%[^ ]+]] = f32[4,4]{1,0} reduce-window([[INSTR_1:%[^ ]+]], [[INSTR_2:%[^ ]+]]), window={size=32x32 stride=32x32 pad=14_14x14_14}, to_apply=[[INSTR_3:%[^ ]+]] ; CHECK-NEXT: ROOT [[INSTR_4:%[^ ]+]] = f32[] reduce([[INSTR_0]], [[INSTR_2]]), dimensions={0,1}, to_apply=[[INSTR_3]] )"); } TEST_F(TreeReductionRewriterTest, RewriteMultipleDimensionsSingleSmaller) { const char* hlo_text = R"( HloModule SimpleReduction add { acc = f32[] parameter(1) op = f32[] parameter(0) ROOT out = f32[] add(acc, op) } ENTRY main { input = f32[1000,31] parameter(0) zero = f32[] constant(0) ROOT out = f32[] reduce(input, zero), dimensions={0,1}, to_apply=add } )"; MatchOptimizedHlo(hlo_text, R"( ; CHECK: [[INSTR_0:%[^ ]+]] = f32[32,1]{1,0} reduce-window([[INSTR_1:%[^ ]+]], [[INSTR_2:%[^ ]+]]), window={size=32x31 stride=32x31 pad=12_12x0_0}, to_apply=[[INSTR_3:%[^ ]+]] ; CHECK-NEXT: ROOT [[INSTR_4:%[^ ]+]] = f32[] reduce([[INSTR_0]], [[INSTR_2]]), dimensions={0,1}, to_apply=[[INSTR_3]] )"); } TEST_F(TreeReductionRewriterTest, NoRewriteRequired) { const char* hlo_text = R"( HloModule SimpleReduction add { acc = f32[] parameter(1) op = f32[] parameter(0) ROOT out = f32[] add(acc, op) } ENTRY main { input = f32[31,31] parameter(0) zero = f32[] constant(0) ROOT out = f32[] reduce(input, zero), dimensions={0,1}, to_apply=add } )"; MatchOptimizedHlo(hlo_text, R"( )"); } TEST_F(TreeReductionRewriterTest, NoRewriteRequiredZeroDim) { const char* hlo_text = R"( HloModule SimpleReduction add { acc = f32[] parameter(1) op = f32[] parameter(0) ROOT out = f32[] add(acc, op) } ENTRY main { input = f32[3000,0] parameter(0) zero = f32[] constant(0) ROOT out = f32[] reduce(input, zero), dimensions={0,1}, to_apply=add } )"; MatchOptimizedHlo(hlo_text, R"( )"); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/tree_reduction_rewriter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/cpu/tests/tree_reduction_rewriter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b94443b4-6fb3-4c90-8ccc-d0cf952d9da3
cpp
tensorflow/tensorflow
hlo_alias_analysis
third_party/xla/xla/service/hlo_alias_analysis.cc
third_party/xla/xla/service/hlo_alias_analysis_test.cc
#include "xla/service/hlo_alias_analysis.h" #include <algorithm> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/map_util.h" #include "xla/service/hlo_buffer.h" #include "xla/service/hlo_value.h" #include "xla/shape_util.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { using absl::StrAppend; namespace { using FlatValueSet = absl::flat_hash_set<const HloValue*>; void ComputeInputOutputAliasedValues(const HloValue& value, const HloDataflowAnalysis& dataflow, FlatValueSet& aliased_values) { const HloModule& module = dataflow.module(); const HloComputation& entry_computation = *module.entry_computation(); const HloInputOutputAliasConfig& io_alias_config = module.input_output_alias_config(); for (const HloPosition& pos : value.positions()) { if (pos.instruction == entry_computation.root_instruction()) { std::optional<HloInputOutputAliasConfig::Alias> aliased_input = io_alias_config.GetAliasedParameter(pos.index); if (aliased_input) { aliased_values.insert( &dataflow.GetUniqueValueAt(entry_computation.parameter_instruction( aliased_input->parameter_number), aliased_input->parameter_index)); } } } } void ComputeWhileAliasedValues(const HloValue& value, const HloDataflowAnalysis& dataflow, FlatValueSet& aliased_values) { VLOG(3) << "Compute kWhile aliases"; for (const HloUse& use : value.GetUses()) { if (use.instruction->opcode() == HloOpcode::kWhile) { const HloValue& while_value = dataflow.GetUniqueValueAt(use.instruction, use.operand_index); aliased_values.insert(&while_value); VLOG(3) << " value is init value to a while; must share buffer with " "while value " << while_value; } } if (value.defining_instruction()->opcode() == HloOpcode::kParameter) { const HloComputation* computation = value.defining_instruction()->parent(); const CallGraphNode& call_graph_node = dataflow.call_graph().GetNode(computation); for (const CallSite& callsite : call_graph_node.caller_callsites()) { if (callsite.instruction()->opcode() == HloOpcode::kWhile) { CHECK_EQ(call_graph_node.caller_callsites().size(), 1); const HloValue& while_value = dataflow.GetUniqueValueAt( callsite.instruction(), value.defining_index()); VLOG(3) << " value is parameter value of the body or condition of a " "while; must share buffer with while value " << while_value; aliased_values.insert(&while_value); } } } for (const HloPosition& position : value.positions()) { if (!position.instruction->IsRoot()) continue; const HloComputation* computation = position.instruction->parent(); const CallGraphNode& call_graph_node = dataflow.call_graph().GetNode(computation); for (const CallSite& callsite : call_graph_node.caller_callsites()) { if (callsite.instruction()->opcode() == HloOpcode::kWhile && callsite.instruction()->while_body() == computation) { CHECK_EQ(call_graph_node.caller_callsites().size(), 1) << "Call graph must have been flattened."; const HloValue& while_value = dataflow.GetUniqueValueAt(callsite.instruction(), position.index); VLOG(3) << " value @ " << position << " is root of " << callsite.instruction()->name() << "; body root and while value root must share buffer " "among them: " << while_value; aliased_values.insert(&while_value); } } } } void ComputeConditionalAliasedValues(const HloValue& value, const HloDataflowAnalysis& dataflow, FlatValueSet& aliased_values) { VLOG(3) << "Compute kConditional aliases"; for (const HloPosition& position : value.positions()) { if (!position.instruction->IsRoot()) continue; const HloComputation* computation = position.instruction->parent(); const CallGraphNode& call_graph_node = dataflow.call_graph().GetNode(computation); for (const CallSite& callsite : call_graph_node.caller_callsites()) { if (callsite.instruction()->opcode() == HloOpcode::kConditional) { CHECK_EQ(call_graph_node.caller_callsites().size(), 1); const HloValue& cond_value = dataflow.GetUniqueValueAt(callsite.instruction(), position.index); VLOG(3) << " value @ " << position << " is root of " << callsite.instruction()->name() << "; branch computation roots must share buffer among them : " << cond_value; aliased_values.insert(&cond_value); } } } } void ComputeInPlaceOperationAliasedValues(const HloValue& value, const HloDataflowAnalysis& dataflow, FlatValueSet& aliased_values) { VLOG(3) << "Compute aliases for in-place operations (e.g. " "kDynamicUpdateSlice and kScatter)"; for (const HloPosition& position : value.positions()) { HloInstruction* instruction = position.instruction; for (const auto& operand_and_output_index : HloDataflowAnalysis::GetInPlaceInputOutputPairs(instruction)) { if (position.index == operand_and_output_index.second) { const HloOperandIndex& operand_index = operand_and_output_index.first; const HloValue& operand_value = dataflow.GetUniqueValueAt( instruction->operand(operand_index.operand_number), operand_index.operand_index); VLOG(3) << " operand value " << operand_value << " aliases."; aliased_values.insert(&operand_value); } } } for (const HloUse& use : value.GetUses()) { for (const auto& operand_and_output_index : HloDataflowAnalysis::GetInPlaceInputOutputPairs(use.instruction)) { const HloOperandIndex& operand_index = operand_and_output_index.first; if (use.operand_number == operand_index.operand_number && use.operand_index == operand_index.operand_index) { const HloValue& use_value = dataflow.GetUniqueValueAt( use.instruction, operand_and_output_index.second); VLOG(3) << " use value " << use_value << " aliases."; aliased_values.insert(&use_value); } } } } FlatValueSet ComputeAliasedValues(const HloValue& value, const HloDataflowAnalysis& dataflow) { if (VLOG_IS_ON(2)) { for (const HloUse& use : value.GetUses()) { VLOG(2) << "Use of value " << value << ": " << use; } } FlatValueSet aliased_values{&value}; ComputeInputOutputAliasedValues(value, dataflow, aliased_values); ComputeWhileAliasedValues(value, dataflow, aliased_values); ComputeConditionalAliasedValues(value, dataflow, aliased_values); ComputeInPlaceOperationAliasedValues(value, dataflow, aliased_values); return aliased_values; } std::vector<HloBuffer> CreateBuffers(const HloDataflowAnalysis& dataflow) { const std::vector<HloValue*>& values = dataflow.values(); size_t num_buffers = values.size(); std::vector<FlatValueSet> buffer_values(values.size()); absl::flat_hash_map<const HloValue*, FlatValueSet*> value_to_set; value_to_set.reserve(values.size()); for (size_t i = 0; i < values.size(); ++i) { buffer_values[i].insert(values[i]); value_to_set[values[i]] = &buffer_values[i]; } for (const HloValue* value : values) { VLOG(3) << "Merging colocated values, value: " << *value; FlatValueSet aliased_values = ComputeAliasedValues(*value, dataflow); if (aliased_values.size() < 2) continue; std::vector<std::pair<FlatValueSet*, HloValue::Id>> aliased_sets; aliased_sets.reserve(aliased_values.size()); for (const HloValue* aliased : aliased_values) { aliased_sets.push_back({value_to_set[aliased], aliased->id()}); } auto key = [](const auto& set_and_id) { return std::make_pair(set_and_id.first->size(), -set_and_id.second); }; FlatValueSet* union_set = absl::c_max_element(aliased_sets, LessThanByKey(key))->first; for (auto& aliased_set_and_id : aliased_sets) { FlatValueSet* aliased_set = aliased_set_and_id.first; if ((aliased_set != union_set) && !aliased_set->empty()) { for (const HloValue* aliased_value : *aliased_set) { CHECK(union_set->insert(aliased_value).second); value_to_set[aliased_value] = union_set; } aliased_set->clear(); --num_buffers; } } } std::vector<HloBuffer> buffers; buffers.reserve(num_buffers); for (const FlatValueSet& value_set : buffer_values) { if (!value_set.empty()) { HloBuffer::Id id = buffers.size(); buffers.push_back({id, HloValueSet(value_set).TakeValues()}); } } CHECK_EQ(buffers.size(), num_buffers); return buffers; } } HloAliasAnalysis::HloAliasAnalysis(const HloModule* module) : module_(module) {} const HloBuffer& HloAliasAnalysis::GetUniqueBufferAt( const HloInstruction* instruction, const ShapeIndex& index) const { std::vector<const HloBuffer*> buffers = ComputeBuffersAt(instruction, index); CHECK_EQ(buffers.size(), 1); return *buffers[0]; } HloBuffer& HloAliasAnalysis::GetUniqueBufferAt( const HloInstruction* instruction, const ShapeIndex& index) { return GetBuffer(const_cast<const HloAliasAnalysis*>(this) ->GetUniqueBufferAt(instruction, index) .id()); } std::vector<const HloBuffer*> HloAliasAnalysis::ComputeBuffersAt( const HloInstruction* instruction, const ShapeIndex& index) const { const HloValueSet& value_set = dataflow_analysis_->GetValueSet(instruction, index); std::vector<const HloBuffer*> buffers; buffers.reserve(value_set.values().size()); for (const HloValue* value : value_set.values()) { buffers.push_back(&GetBufferContainingValue(*value)); } absl::c_sort(buffers, HloBuffer::IdLessThan); buffers.erase(std::unique(buffers.begin(), buffers.end()), buffers.end()); return buffers; } absl::Status HloAliasAnalysis::Verify() const { for (const auto& pair : value_to_buffer_) { const HloValue* value = pair.first; const HloBuffer& buffer = *pair.second; TF_RET_CHECK(absl::c_linear_search(buffer.values(), value)); } for (HloBuffer::Id id = 0; id < buffers_.size(); ++id) { const HloBuffer& buffer = buffers_[id]; TF_RET_CHECK(buffer.id() == id); HloValue::Id last_value_id = -1; for (const HloValue* value : buffer.values()) { TF_RET_CHECK(GetBufferContainingValue(*value) == buffer); TF_RET_CHECK(value->id() > last_value_id); last_value_id = value->id(); } } return absl::OkStatus(); } std::string HloAliasAnalysis::ToString() const { std::string out = absl::StrCat("HloAliasAnalysis, module ", module_->name(), "\n"); StrAppend(&out, " Buffers at each position:\n"); for (const HloComputation* computation : module_->computations()) { for (const HloInstruction* instruction : computation->instructions()) { StrAppend(&out, " ", instruction->name(), ":\n"); if (instruction->shape().IsTuple()) { ShapeUtil::ForEachSubshape( instruction->shape(), [&out, &instruction, this](const Shape&, const ShapeIndex& index) { StrAppend(&out, " tuple index ", index.ToString(), ":\n"); for (const HloBuffer* buffer : ComputeBuffersAt(instruction, index)) { StrAppend(&out, " ", buffer->ToString(), "\n"); } }); } else { for (const HloBuffer* buffer : ComputeBuffersAt(instruction, {})) { StrAppend(&out, " ", buffer->ToString(), "\n"); } } } } StrAppend(&out, " Buffers:\n"); for (const HloBuffer& buffer : buffers()) { StrAppend(&out, " ", buffer.ToString(), "\n"); StrAppend(&out, " positions:\n"); for (const HloPosition& position : buffer.ComputePositions()) { StrAppend(&out, " ", position.ToString(), "\n"); } } return out; } absl::StatusOr<std::unique_ptr<HloAliasAnalysis>> HloAliasAnalysis::Run( const HloModule* module, const HloDataflowAnalysis::CanShareBuffer& can_share_buffer) { VLOG(2) << "HloAliasAnalysis::Run on module " << module->name(); XLA_VLOG_LINES(2, module->ToString()); auto alias_analysis = absl::WrapUnique(new HloAliasAnalysis(module)); TF_ASSIGN_OR_RETURN(alias_analysis->dataflow_analysis_, HloDataflowAnalysis::Run(*module, true, false, can_share_buffer)); size_t num_values = alias_analysis->dataflow_analysis_->values().size(); alias_analysis->buffers_ = CreateBuffers(alias_analysis->dataflow_analysis()); alias_analysis->value_to_buffer_.reserve(num_values); for (HloBuffer& buffer : alias_analysis->buffers_) { for (const HloValue* value : buffer.values()) { alias_analysis->value_to_buffer_[value] = &buffer; } } CHECK_EQ(alias_analysis->value_to_buffer_.size(), num_values); TF_DCHECK_OK(alias_analysis->Verify()); HloInstruction* root = module->entry_computation()->root_instruction(); ShapeUtil::ForEachSubshape(root->shape(), [&](const Shape& , const ShapeIndex& index) { std::vector<const HloBuffer*> buffers = alias_analysis->ComputeBuffersAt(root, index); alias_analysis->live_out_buffers_.insert(buffers.begin(), buffers.end()); }); XLA_VLOG_LINES(2, alias_analysis->ToString()); return std::move(alias_analysis); } }
#include "xla/service/hlo_alias_analysis.h" #include <memory> #include <set> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/service/flatten_call_graph.h" #include "xla/service/hlo_buffer.h" #include "xla/service/hlo_ordering.h" #include "xla/service/hlo_value.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { using ::testing::UnorderedElementsAre; class HloAliasAnalysisTest : public HloTestBase { protected: HloAliasAnalysisTest() : HloTestBase() { module_ = CreateNewVerifiedModule(); } HloAliasAnalysis& RunAnalysis() { analysis_ = HloAliasAnalysis::Run(module_.get(), nullptr) .value(); return *analysis_; } std::vector<HloBuffer> GetBuffersAt(const HloInstruction* instruction, const ShapeIndex& index = {}) const { std::set<HloBuffer::Id> buffer_ids; for (const HloValue* value : analysis_->dataflow_analysis() .GetValueSet(instruction, index) .values()) { buffer_ids.insert(analysis_->GetBufferContainingValue(*value).id()); } std::vector<HloBuffer> buffers; buffers.reserve(buffer_ids.size()); for (HloBuffer::Id id : buffer_ids) { buffers.push_back(analysis_->GetBuffer(id)); } return buffers; } const HloValue& GetValueDefinedAt(const HloInstruction* instruction, const ShapeIndex& index = {}) const { return analysis_->dataflow_analysis().GetValueDefinedAt(instruction, index); } bool AnyValuesInSameBufferInterfere() { DependencyHloOrdering ordering(module_.get()); for (const HloBuffer& buffer : analysis_->buffers()) { for (const HloValue* value_a : buffer.values()) { for (const HloValue* value_b : buffer.values()) { if (*value_a != *value_b && ordering.MayInterfere(*value_a, *value_b, analysis_->dataflow_analysis())) { VLOG(1) << *value_a << " interferes with " << *value_b << " in buffer: " << buffer; return true; } } } } return false; } bool InstructionBuffersAreAmbiguous(const HloInstruction* instruction) const { for (const auto& pair : analysis_->dataflow_analysis().GetInstructionValueSet(instruction)) { const HloValueSet& value_set = pair.second; const HloBuffer* buffer = nullptr; for (const HloValue* value : value_set.values()) { if (buffer == nullptr) { buffer = &analysis_->GetBufferContainingValue(*value); } else if (buffer != &analysis_->GetBufferContainingValue(*value)) { return true; } } } return false; } bool InstructionBuffersAreDistinct(const HloInstruction* instruction) const { absl::flat_hash_set<const HloBuffer*> buffers_seen; for (const auto& pair : analysis_->dataflow_analysis().GetInstructionValueSet(instruction)) { const HloValueSet& value_set = pair.second; absl::flat_hash_set<const HloBuffer*> buffers_at_this_index; for (const HloValue* value : value_set.values()) { buffers_at_this_index.insert( &analysis_->GetBufferContainingValue(*value)); } buffers_seen.merge(buffers_at_this_index); if (!buffers_at_this_index.empty()) return false; } return true; } std::unique_ptr<HloModule> module_; std::unique_ptr<HloAliasAnalysis> analysis_; const Shape scalar_shape_ = ShapeUtil::MakeShape(F32, {}); }; TEST_F(HloAliasAnalysisTest, BinaryOperation) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape_, HloOpcode::kAdd, constant1, constant2)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_EQ(analysis.buffers().size(), 3); for (const HloInstruction* instruction : {constant1, constant2, add}) { EXPECT_EQ(analysis.GetUniqueBufferAt(instruction).GetUniqueValue(), GetValueDefinedAt(instruction)); } EXPECT_FALSE(InstructionBuffersAreAmbiguous(add)); EXPECT_TRUE(InstructionBuffersAreDistinct(add)); EXPECT_FALSE(AnyValuesInSameBufferInterfere()); } TEST_F(HloAliasAnalysisTest, TupleAndGtes) { auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param0")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "param1")); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({param0, param1})); auto gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, tuple, 0)); auto gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, tuple, 1)); builder.AddInstruction( HloInstruction::CreateBinary(scalar_shape_, HloOpcode::kAdd, gte0, gte1)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_EQ(analysis.buffers().size(), 4); EXPECT_EQ(analysis.GetUniqueBufferAt(tuple, {}).GetUniqueValue(), GetValueDefinedAt(tuple, {})); EXPECT_EQ(analysis.GetUniqueBufferAt(tuple, {0}).GetUniqueValue(), GetValueDefinedAt(param0)); EXPECT_EQ(analysis.GetUniqueBufferAt(tuple, {1}).GetUniqueValue(), GetValueDefinedAt(param1)); EXPECT_EQ(analysis.GetUniqueBufferAt(param0), analysis.GetUniqueBufferAt(tuple, {0})); EXPECT_EQ(analysis.GetUniqueBufferAt(param0), analysis.GetUniqueBufferAt(gte0)); EXPECT_THAT( analysis.GetUniqueBufferAt(param0).ComputePositions(), UnorderedElementsAre(HloPosition{param0, {}}, HloPosition{tuple, {0}}, HloPosition{gte0, {}})); EXPECT_FALSE(InstructionBuffersAreAmbiguous(tuple)); EXPECT_TRUE(InstructionBuffersAreDistinct(tuple)); EXPECT_FALSE(AnyValuesInSameBufferInterfere()); } TEST_F(HloAliasAnalysisTest, NondistinctTuple) { auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param0")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "param1")); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({param0, param1, param0})); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_THAT( analysis.GetUniqueBufferAt(param0).ComputePositions(), UnorderedElementsAre(HloPosition{param0, {}}, HloPosition{tuple, {0}}, HloPosition{tuple, {2}})); EXPECT_FALSE(InstructionBuffersAreAmbiguous(tuple)); EXPECT_FALSE(InstructionBuffersAreDistinct(tuple)); EXPECT_FALSE(AnyValuesInSameBufferInterfere()); } TEST_F(HloAliasAnalysisTest, ParametersWithAliasing) { const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p0")); auto gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, param, 0)); auto gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, param, 1)); auto negate0 = builder.AddInstruction( HloInstruction::CreateUnary(scalar_shape_, HloOpcode::kNegate, gte0)); auto negate1 = builder.AddInstruction( HloInstruction::CreateUnary(scalar_shape_, HloOpcode::kNegate, gte1)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({negate0, negate1})); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(module_->input_output_alias_config().SetUpAlias( {0}, 0, {0})); TF_ASSERT_OK(module_->input_output_alias_config().SetUpAlias( {1}, 0, {1})); ASSERT_IS_NOT_OK(module_->input_output_alias_config().SetUpAlias( {1}, 0, {0})); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_EQ(analysis.GetUniqueBufferAt(gte0), analysis.GetUniqueBufferAt(tuple, {0})); EXPECT_EQ(analysis.GetUniqueBufferAt(gte1), analysis.GetUniqueBufferAt(tuple, {1})); } TEST_F(HloAliasAnalysisTest, ParametersWithCrossAliasing) { const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p0")); auto gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, param, 0)); auto gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, param, 1)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({gte0, gte1})); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(module_->input_output_alias_config().SetUpAlias( {0}, 0, {1})); TF_ASSERT_OK(module_->input_output_alias_config().SetUpAlias( {1}, 0, {0})); ASSERT_IS_NOT_OK(module_->input_output_alias_config().SetUpAlias( {1}, 0, {1})); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_EQ(analysis.GetUniqueBufferAt(gte0), analysis.GetUniqueBufferAt(tuple, {0})); EXPECT_EQ(analysis.GetUniqueBufferAt(gte0), analysis.GetUniqueBufferAt(tuple, {1})); EXPECT_EQ(analysis.GetUniqueBufferAt(gte1), analysis.GetUniqueBufferAt(tuple, {0})); EXPECT_EQ(analysis.GetUniqueBufferAt(gte1), analysis.GetUniqueBufferAt(tuple, {1})); } TEST_F(HloAliasAnalysisTest, InputOutputAliasingWithWhile) { const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto body_builder = HloComputation::Builder("body"); auto body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); auto body_element_0 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 0)); auto body_element_1 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 1)); auto add = body_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape_, HloOpcode::kAdd, body_element_0, body_element_1)); auto body_tuple = body_builder.AddInstruction( HloInstruction::CreateTuple({body_element_0, add})); HloComputation* body = module_->AddEmbeddedComputation(body_builder.Build()); auto cond_builder = HloComputation::Builder("condition"); auto cond_param = cond_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); HloComputation* condition = module_->AddEmbeddedComputation(cond_builder.Build()); auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p0")); auto xla_while = builder.AddInstruction( HloInstruction::CreateWhile(tuple_shape, condition, body, param)); auto while_element_1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, xla_while, 0)); auto while_element_2 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, xla_while, 1)); auto negate_1 = builder.AddInstruction(HloInstruction::CreateUnary( scalar_shape_, HloOpcode::kNegate, while_element_1)); auto negate_2 = builder.AddInstruction(HloInstruction::CreateUnary( scalar_shape_, HloOpcode::kNegate, while_element_2)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({negate_1, negate_2})); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(module_->input_output_alias_config().SetUpAlias( {0}, 0, {0})); TF_ASSERT_OK(module_->input_output_alias_config().SetUpAlias( {1}, 0, {1})); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_THAT(analysis.GetUniqueBufferAt(xla_while, {1}).values(), UnorderedElementsAre(&GetValueDefinedAt(param, {1}), &GetValueDefinedAt(xla_while, {1}), &GetValueDefinedAt(body_param, {1}), &GetValueDefinedAt(cond_param, {1}), &GetValueDefinedAt(add), &GetValueDefinedAt(negate_2))); EXPECT_THAT( analysis.GetUniqueBufferAt(xla_while, {1}).ComputePositions(), UnorderedElementsAre( HloPosition{param, {1}}, HloPosition{xla_while, {1}}, HloPosition{while_element_2, {}}, HloPosition{body_param, {1}}, HloPosition{body_element_1, {}}, HloPosition{add, {}}, HloPosition{body_tuple, {1}}, HloPosition{tuple, {1}}, HloPosition{cond_param, {1}}, HloPosition{negate_2, {}})); EXPECT_FALSE(AnyValuesInSameBufferInterfere()); } TEST_F(HloAliasAnalysisTest, SingleCall) { auto subbuilder = HloComputation::Builder("Subcomputation"); auto subparam0 = subbuilder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param0")); auto subparam1 = subbuilder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "param1")); auto add = subbuilder.AddInstruction(HloInstruction::CreateBinary( scalar_shape_, HloOpcode::kAdd, subparam0, subparam1)); HloComputation* called_computation = module_->AddEmbeddedComputation(subbuilder.Build()); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto call = builder.AddInstruction(HloInstruction::CreateCall( scalar_shape_, {constant1, constant2}, called_computation)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_THAT(analysis.GetUniqueBufferAt(constant1).ComputePositions(), UnorderedElementsAre(HloPosition{constant1, {}}, HloPosition{subparam0, {}})); EXPECT_THAT(analysis.GetUniqueBufferAt(constant2).ComputePositions(), UnorderedElementsAre(HloPosition{constant2, {}}, HloPosition{subparam1, {}})); EXPECT_THAT( analysis.GetUniqueBufferAt(add).ComputePositions(), UnorderedElementsAre(HloPosition{add, {}}, HloPosition{call, {}})); EXPECT_FALSE(AnyValuesInSameBufferInterfere()); } TEST_F(HloAliasAnalysisTest, ComputationCalledTwice) { auto subbuilder = HloComputation::Builder("Subcomputation"); auto subparam0 = subbuilder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param0")); auto subparam1 = subbuilder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "param1")); auto add = subbuilder.AddInstruction(HloInstruction::CreateBinary( scalar_shape_, HloOpcode::kAdd, subparam0, subparam1)); HloComputation* called_computation = module_->AddEmbeddedComputation(subbuilder.Build()); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto call1 = builder.AddInstruction(HloInstruction::CreateCall( scalar_shape_, {constant1, constant2}, called_computation)); auto call2 = builder.AddInstruction(HloInstruction::CreateCall( scalar_shape_, {call1, constant2}, called_computation)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_THAT(analysis.GetUniqueBufferAt(constant1).ComputePositions(), UnorderedElementsAre(HloPosition{constant1, {}}, HloPosition{subparam0, {}})); EXPECT_THAT(analysis.GetUniqueBufferAt(constant2).ComputePositions(), UnorderedElementsAre(HloPosition{constant2, {}}, HloPosition{subparam1, {}})); EXPECT_THAT( analysis.GetUniqueBufferAt(add).ComputePositions(), UnorderedElementsAre(HloPosition{add, {}}, HloPosition{call1, {}}, HloPosition{subparam0, {}}, HloPosition{call2, {}})); EXPECT_THAT(GetBuffersAt(subparam0), UnorderedElementsAre(analysis.GetUniqueBufferAt(constant1), analysis.GetUniqueBufferAt(add))); EXPECT_THAT(GetBuffersAt(subparam1), UnorderedElementsAre(analysis.GetUniqueBufferAt(constant2))); EXPECT_TRUE(InstructionBuffersAreAmbiguous(subparam0)); EXPECT_FALSE(InstructionBuffersAreAmbiguous(subparam1)); EXPECT_TRUE(InstructionBuffersAreDistinct(subparam0)); EXPECT_TRUE(InstructionBuffersAreDistinct(subparam1)); EXPECT_FALSE(AnyValuesInSameBufferInterfere()); } TEST_F(HloAliasAnalysisTest, SingleWhile) { const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto body_builder = HloComputation::Builder("body"); auto body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); auto body_element_0 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 0)); auto body_element_1 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 1)); auto add = body_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape_, HloOpcode::kAdd, body_element_0, body_element_1)); auto body_tuple = body_builder.AddInstruction( HloInstruction::CreateTuple({body_element_0, add})); HloComputation* body = module_->AddEmbeddedComputation(body_builder.Build()); auto cond_builder = HloComputation::Builder("condition"); auto cond_param = cond_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); HloComputation* condition = module_->AddEmbeddedComputation(cond_builder.Build()); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto xla_while = builder.AddInstruction( HloInstruction::CreateWhile(tuple_shape, condition, body, tuple)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_THAT( analysis.GetUniqueBufferAt(xla_while, {}).ComputePositions(), UnorderedElementsAre(HloPosition{tuple, {}}, HloPosition{xla_while, {}}, HloPosition{body_param, {}}, HloPosition{body_tuple, {}}, HloPosition{cond_param, {}})); EXPECT_THAT( analysis.GetUniqueBufferAt(xla_while, {0}).ComputePositions(), UnorderedElementsAre( HloPosition{constant1, {}}, HloPosition{tuple, {0}}, HloPosition{xla_while, {0}}, HloPosition{body_param, {0}}, HloPosition{body_element_0, {}}, HloPosition{body_tuple, {0}}, HloPosition{cond_param, {0}})); EXPECT_THAT( analysis.GetUniqueBufferAt(xla_while, {1}).ComputePositions(), UnorderedElementsAre( HloPosition{constant2, {}}, HloPosition{tuple, {1}}, HloPosition{xla_while, {1}}, HloPosition{body_param, {1}}, HloPosition{body_element_1, {}}, HloPosition{add, {}}, HloPosition{body_tuple, {1}}, HloPosition{cond_param, {1}})); EXPECT_THAT(analysis.GetUniqueBufferAt(xla_while, {0}).values(), UnorderedElementsAre(&GetValueDefinedAt(constant1))); EXPECT_THAT(analysis.GetUniqueBufferAt(xla_while, {1}).values(), UnorderedElementsAre(&GetValueDefinedAt(constant2), &GetValueDefinedAt(xla_while, {1}), &GetValueDefinedAt(body_param, {1}), &GetValueDefinedAt(cond_param, {1}), &GetValueDefinedAt(add))); EXPECT_FALSE(AnyValuesInSameBufferInterfere()); } TEST_F(HloAliasAnalysisTest, SequentialWhiles) { const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto body_builder = HloComputation::Builder("body"); auto body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); auto body_element_0 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 0)); auto body_element_1 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 1)); auto add = body_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape_, HloOpcode::kAdd, body_element_0, body_element_1)); body_builder.AddInstruction( HloInstruction::CreateTuple({body_element_0, add})); HloComputation* body = module_->AddEmbeddedComputation(body_builder.Build()); auto cond_builder = HloComputation::Builder("condition"); cond_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); HloComputation* condition = module_->AddEmbeddedComputation(cond_builder.Build()); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto xla_while0 = builder.AddInstruction( HloInstruction::CreateWhile(tuple_shape, condition, body, tuple)); auto xla_while1 = builder.AddInstruction( HloInstruction::CreateWhile(tuple_shape, condition, body, xla_while0)); auto xla_while2 = builder.AddInstruction( HloInstruction::CreateWhile(tuple_shape, condition, body, xla_while1)); module_->AddEntryComputation(builder.Build()); FlattenCallGraph flattener; TF_ASSERT_OK(flattener.Run(module_.get()).status()); SCOPED_TRACE(module_->ToString()); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_EQ(analysis.GetUniqueBufferAt(tuple, {}), analysis.GetUniqueBufferAt(xla_while2, {})); EXPECT_EQ(analysis.GetUniqueBufferAt(constant1), analysis.GetUniqueBufferAt(xla_while2, {0})); EXPECT_EQ(analysis.GetUniqueBufferAt(constant2), analysis.GetUniqueBufferAt(xla_while2, {1})); } TEST_F(HloAliasAnalysisTest, NestedWhiles) { const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto build_cond_computation = [&tuple_shape]() { auto cond_builder = HloComputation::Builder("condition"); cond_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); return cond_builder.Build(); }; HloComputation* condition1 = module_->AddEmbeddedComputation(build_cond_computation()); HloComputation* condition2 = module_->AddEmbeddedComputation(build_cond_computation()); auto inner_builder = HloComputation::Builder("inner_body"); auto inner_param = inner_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); auto inner_element_0 = inner_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, inner_param, 0)); auto inner_element_1 = inner_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, inner_param, 1)); auto add = inner_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape_, HloOpcode::kAdd, inner_element_0, inner_element_1)); inner_builder.AddInstruction( HloInstruction::CreateTuple({inner_element_0, add})); HloComputation* inner_body = module_->AddEmbeddedComputation(inner_builder.Build()); auto outer_builder = HloComputation::Builder("outer_body"); auto outer_param = outer_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); auto outer_element_0 = outer_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, outer_param, 0)); auto negate = outer_builder.AddInstruction(HloInstruction::CreateUnary( scalar_shape_, HloOpcode::kNegate, outer_element_0)); auto outer_element_1 = outer_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, outer_param, 1)); auto outer_tuple = outer_builder.AddInstruction( HloInstruction::CreateTuple({negate, outer_element_1})); auto nested_while = outer_builder.AddInstruction(HloInstruction::CreateWhile( tuple_shape, condition1, inner_body, outer_tuple)); HloComputation* outer_body = module_->AddEmbeddedComputation(outer_builder.Build()); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto entry_while = builder.AddInstruction( HloInstruction::CreateWhile(tuple_shape, condition2, outer_body, tuple)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_EQ(analysis.GetUniqueBufferAt(constant1), analysis.GetUniqueBufferAt(entry_while, {0})); EXPECT_EQ(analysis.GetUniqueBufferAt(constant1), analysis.GetUniqueBufferAt(nested_while, {0})); EXPECT_EQ(analysis.GetUniqueBufferAt(constant1), analysis.GetUniqueBufferAt(inner_element_0)); EXPECT_EQ(analysis.GetUniqueBufferAt(constant2), analysis.GetUniqueBufferAt(entry_while, {1})); EXPECT_EQ(analysis.GetUniqueBufferAt(constant2), analysis.GetUniqueBufferAt(nested_while, {1})); EXPECT_EQ(analysis.GetUniqueBufferAt(constant2), analysis.GetUniqueBufferAt(inner_element_1)); EXPECT_FALSE(AnyValuesInSameBufferInterfere()); } TEST_F(HloAliasAnalysisTest, SwizzlingWhile) { const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_, scalar_shape_}); auto body_builder = HloComputation::Builder("body"); auto body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); auto body_element_0 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 0)); auto body_element_1 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 1)); auto body_element_2 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 2)); body_builder.AddInstruction(HloInstruction::CreateTuple( {body_element_1, body_element_2, body_element_0})); HloComputation* body = module_->AddEmbeddedComputation(body_builder.Build()); auto cond_builder = HloComputation::Builder("condition"); cond_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); auto cond_constant = cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); HloComputation* condition = module_->AddEmbeddedComputation(cond_builder.Build()); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto constant3 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(3.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2, constant3})); auto xla_while = builder.AddInstruction( HloInstruction::CreateWhile(tuple_shape, condition, body, tuple)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_THAT( analysis.buffers(), UnorderedElementsAre(analysis.GetUniqueBufferAt(constant1), analysis.GetUniqueBufferAt(tuple, {}), analysis.GetUniqueBufferAt(cond_constant))); EXPECT_EQ(analysis.GetUniqueBufferAt(xla_while, {0}), analysis.GetUniqueBufferAt(xla_while, {1})); EXPECT_EQ(analysis.GetUniqueBufferAt(xla_while, {0}), analysis.GetUniqueBufferAt(xla_while, {2})); EXPECT_EQ(analysis.GetUniqueBufferAt(xla_while, {0}), analysis.GetUniqueBufferAt(constant1)); EXPECT_EQ(analysis.GetUniqueBufferAt(constant1), analysis.GetUniqueBufferAt(constant2)); EXPECT_EQ(analysis.GetUniqueBufferAt(constant1), analysis.GetUniqueBufferAt(constant3)); EXPECT_TRUE(AnyValuesInSameBufferInterfere()); } TEST_F(HloAliasAnalysisTest, Bitcast) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto bitcast = builder.AddInstruction( HloInstruction::CreateBitcast(scalar_shape_, constant)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_EQ(analysis.buffers().size(), 1); EXPECT_EQ(analysis.GetUniqueBufferAt(constant), analysis.GetUniqueBufferAt(bitcast)); } TEST_F(HloAliasAnalysisTest, DynamicUpdateSlice) { Shape shape = ShapeUtil::MakeShape(F32, {8}); Shape update_shape = ShapeUtil::MakeShape(F32, {4}); Shape index_shape = ShapeUtil::MakeShape(S32, {}); auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "param0")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, update_shape, "param1")); auto param2 = builder.AddInstruction( HloInstruction::CreateParameter(2, index_shape, "param2")); auto copy0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kCopy, param0)); auto dynamic_update_slice = builder.AddInstruction( HloInstruction::CreateDynamicUpdateSlice(shape, copy0, param1, {param2})); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_EQ(analysis.GetUniqueBufferAt(copy0), analysis.GetUniqueBufferAt(dynamic_update_slice)); } TEST_F(HloAliasAnalysisTest, DynamicUpdateSliceMultiOutputFusion) { absl::string_view hlo_string = R"( HloModule Module fused_computation { param0 = f32[1280,1,128] parameter(0) param1 = f32[1280,1,128] parameter(1) param2 = f32[1280,1,128] parameter(2) constant.1 = f32[] constant(0) broadcast.6 = f32[128,1,128] broadcast(constant.1), dimensions={} constant.3 = s32[] constant(0) add.1 = f32[1280,1,128] add(param0, param0) dynamic-update-slice.5 = f32[1280,1,128] dynamic-update-slice(param1, broadcast.6, constant.3, constant.3, constant.3) dynamic-update-slice.6 = f32[1280,1,128] dynamic-update-slice(param2, broadcast.6, constant.3, constant.3, constant.3) ROOT tuple.1 = (f32[1280,1,128], f32[1280,1,128], f32[1280,1,128]) tuple(add.1, dynamic-update-slice.5, dynamic-update-slice.6) } ENTRY main { param = f32[1280,1,128] parameter(0) negate0 = f32[1280,1,128] negate(param) negate1 = f32[1280,1,128] negate(param) negate2 = f32[1280,1,128] negate(param) ROOT fusion = (f32[1280,1,128], f32[1280,1,128], f32[1280,1,128]) fusion(negate0, negate1, negate2), kind=kLoop, calls=fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(module_, ParseAndReturnVerifiedModule(hlo_string)); SCOPED_TRACE(module_->ToString()); HloAliasAnalysis& analysis = RunAnalysis(); LOG(INFO) << analysis.ToString(); const HloInstruction* fusion = module_->entry_computation()->GetInstructionWithName("fusion"); const HloInstruction* negate0 = module_->entry_computation()->GetInstructionWithName("negate0"); const HloInstruction* negate1 = module_->entry_computation()->GetInstructionWithName("negate1"); const HloInstruction* negate2 = module_->entry_computation()->GetInstructionWithName("negate2"); EXPECT_EQ(analysis.GetUniqueBufferAt(negate1), analysis.GetUniqueBufferAt(fusion, {1})); EXPECT_EQ(analysis.GetUniqueBufferAt(negate2), analysis.GetUniqueBufferAt(fusion, {2})); EXPECT_NE(analysis.GetUniqueBufferAt(negate0), analysis.GetUniqueBufferAt(fusion, {0})); } TEST_F(HloAliasAnalysisTest, ChainedDynamicUpdateSliceFusion) { absl::string_view hlo_string = R"( HloModule Module fused_computation { param0 = f32[1280,1,128] parameter(0) constant.1 = f32[] constant(0) broadcast.6 = f32[128,1,128] broadcast(constant.1), dimensions={} constant.3 = s32[] constant(0) dynamic-update-slice.5 = f32[1280,1,128] dynamic-update-slice(param0, broadcast.6, constant.3, constant.3, constant.3) ROOT dynamic-update-slice.6 = f32[1280,1,128] dynamic-update-slice(dynamic-update-slice.5, broadcast.6, constant.3, constant.3, constant.3) } ENTRY main { param = f32[1280,1,128] parameter(0) negate0 = f32[1280,1,128] negate(param) ROOT fusion = f32[1280,1,128] fusion(negate0), kind=kLoop, calls=fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(module_, ParseAndReturnVerifiedModule(hlo_string)); SCOPED_TRACE(module_->ToString()); HloAliasAnalysis& analysis = RunAnalysis(); LOG(INFO) << analysis.ToString(); const HloInstruction* fusion = module_->entry_computation()->GetInstructionWithName("fusion"); const HloInstruction* negate0 = module_->entry_computation()->GetInstructionWithName("negate0"); EXPECT_NE(analysis.GetUniqueBufferAt(negate0), analysis.GetUniqueBufferAt(fusion)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_alias_analysis.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_alias_analysis_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e59be81d-78e8-4178-b423-a8826f3c6fff
cpp
tensorflow/tensorflow
scatter_simplifier
third_party/xla/xla/service/scatter_simplifier.cc
third_party/xla/xla/service/scatter_simplifier_test.cc
#include "xla/service/scatter_simplifier.h" #include <algorithm> #include <cstdint> #include <iterator> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/inlined_vector.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/permutation_util.h" #include "xla/service/call_inliner.h" #include "xla/service/gather_scatter_utils.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { absl::StatusOr<HloInstruction*> FlattenAndTransposeUpdates( HloInstruction* updates, absl::Span<const int64_t> update_window_dims, absl::Span<const int64_t> inserted_window_dims, int64_t scatter_indices_size) { int64_t updates_rank = updates->shape().rank(); std::vector<int64_t> permutation; const int64_t num_scatter_dims = updates_rank - update_window_dims.size(); permutation.reserve(updates_rank); for (int i = 0; i < updates_rank; ++i) { if (!absl::c_linear_search(update_window_dims, i)) { permutation.push_back(i); } } absl::c_copy(update_window_dims, std::back_inserter(permutation)); TF_ASSIGN_OR_RETURN(updates, MaybeTranspose(updates, permutation)); if (num_scatter_dims > 1) { TF_ASSIGN_OR_RETURN(updates, CollapseFirstNDims(updates, num_scatter_dims)); } else if (num_scatter_dims == 0) { TF_ASSIGN_OR_RETURN(updates, InsertDegenerateDims(updates, {0})); } if (!inserted_window_dims.empty()) { std::vector<int64_t> new_dims; new_dims.reserve(inserted_window_dims.size()); for (int64_t i : inserted_window_dims) { new_dims.push_back(i + 1); } TF_ASSIGN_OR_RETURN(updates, InsertDegenerateDims(updates, new_dims)); } return updates; } std::vector<int64_t> MakeUpdatePermutation( const std::vector<int64_t>& operand_permutation) { std::vector<int64_t> update_permutation; update_permutation.reserve(operand_permutation.size() + 1); update_permutation.push_back(0); for (auto& dim : operand_permutation) { update_permutation.push_back(dim + 1); } return update_permutation; } absl::StatusOr<std::vector<HloInstruction*>> TransformScatterUpdates( HloScatterInstruction* scatter, const std::vector<int64_t>& update_permutation, int64_t scatter_indices_size) { std::vector<HloInstruction*> scatter_updates; const auto& attrs = scatter->scatter_dimension_numbers(); scatter_updates.reserve(scatter->scatter_updates().size()); for (auto* update : scatter->scatter_updates()) { TF_ASSIGN_OR_RETURN( scatter_updates.emplace_back(), FlattenAndTransposeUpdates(update, attrs.update_window_dims(), attrs.inserted_window_dims(), scatter_indices_size)); } return MaybeTranspose(scatter_updates, update_permutation); } ScatterDimensionNumbers MakeScatterDimensionNumbers( int64_t operand_rank, int64_t scatter_indices_vector_size) { ScatterDimensionNumbers dim_numbers; dim_numbers.mutable_update_window_dims()->Reserve( static_cast<int>(operand_rank)); for (int i = 0; i < operand_rank; ++i) { dim_numbers.add_update_window_dims(1 + i); } dim_numbers.mutable_scatter_dims_to_operand_dims()->Reserve( static_cast<int>(scatter_indices_vector_size)); for (int i = 0; i < scatter_indices_vector_size; ++i) { dim_numbers.add_scatter_dims_to_operand_dims(i); } dim_numbers.set_index_vector_dim(1); return dim_numbers; } } absl::StatusOr<HloInstruction*> ScatterSimplifier::ExpandInstruction( HloInstruction* inst) { auto* scatter = Cast<HloScatterInstruction>(inst); if (scatter->called_computations().size() != 1) { return InvalidArgumentStrCat( "Expected scatter->called_computations() to have exactly one element, " "got ", scatter->called_computations().size()); } HloComputation* called_computation = scatter->called_computations().front(); const auto& attrs = scatter->scatter_dimension_numbers(); const int operand_rank = attrs.update_window_dims().size() + attrs.inserted_window_dims().size(); if (operand_rank == 0) { absl::InlinedVector<HloInstruction*, 2> scatter_operands_and_updates; scatter_operands_and_updates.reserve(2 * scatter->operand_count()); absl::c_copy(scatter->scatter_operands(), std::back_inserter(scatter_operands_and_updates)); absl::c_copy(scatter->scatter_updates(), std::back_inserter(scatter_operands_and_updates)); auto* call_op = scatter->AddInstruction(HloInstruction::CreateCall( scatter->shape(), scatter_operands_and_updates, called_computation)); TF_RETURN_IF_ERROR(scatter->ReplaceAllUsesWith(call_op)); TF_ASSIGN_OR_RETURN(auto map, CallInliner::Inline(call_op)); return map[call_op]; } auto [operand_permutation, operand_permutation_inverse] = MakeOperandStartIndexPermutations(attrs.scatter_dims_to_operand_dims(), operand_rank); auto update_permutation = MakeUpdatePermutation(operand_permutation); TF_ASSIGN_OR_RETURN(auto* scatter_indices, TransformStartIndices(scatter->scatter_indices(), attrs.index_vector_dim())); TF_ASSIGN_OR_RETURN( auto scatter_updates, TransformScatterUpdates(scatter, update_permutation, scatter_indices->shape().dimensions(0))); TF_ASSIGN_OR_RETURN( auto scatter_operands, MaybeTranspose(scatter->scatter_operands(), operand_permutation)); auto dim_numbers = MakeScatterDimensionNumbers( operand_rank, attrs.scatter_dims_to_operand_dims().size()); Shape output_shape; if (scatter_operands.size() == 1) { output_shape = scatter_operands.front()->shape(); } else { std::vector<Shape> shapes; shapes.reserve(scatter_operands.size()); for (auto* operand : scatter_operands) { shapes.push_back(operand->shape()); } output_shape = ShapeUtil::MakeTupleShape(shapes); } auto* result = scatter->AddInstruction(HloInstruction::CreateScatter( output_shape, scatter_operands, scatter_indices, scatter_updates, called_computation, dim_numbers, scatter->indices_are_sorted(), scatter->unique_indices())); if (IsIdentityPermutation(operand_permutation)) { return result; } if (scatter->scatter_operands().size() == 1) { return MaybeTranspose(result, operand_permutation_inverse); } std::vector<HloInstruction*> result_items; result_items.reserve(scatter->scatter_operands().size()); for (int i = 0; i < scatter->scatter_operands().size(); ++i) { TF_ASSIGN_OR_RETURN(result_items.emplace_back(), MakeGetTupleElementHlo(result, i)); TF_ASSIGN_OR_RETURN( result_items.back(), MaybeTranspose(result_items.back(), operand_permutation_inverse)); } return MaybeMakeTuple(result_items); } bool ScatterSimplifier::IsSimplifiedScatter( const HloScatterInstruction* scatter) { const auto& dims = scatter->scatter_dimension_numbers(); auto operand_rank = scatter->scatter_operands().front()->shape().rank(); if (operand_rank == 0) return false; bool nonstandard_index_vector_dim = dims.index_vector_dim() != scatter->scatter_indices()->shape().rank() - 1; int64_t num_scatter_dims = scatter->scatter_updates().front()->shape().rank() - dims.update_window_dims().size(); bool scatter_indices_reordered = !IsIdentityPermutation(dims.scatter_dims_to_operand_dims()); bool scatter_dim_not_first = absl::c_linear_search(dims.update_window_dims(), 0); bool update_window_dims_sorted = absl::c_is_sorted(dims.update_window_dims()); return !(nonstandard_index_vector_dim || num_scatter_dims > 1 || scatter_indices_reordered || scatter_dim_not_first || !update_window_dims_sorted || !dims.inserted_window_dims().empty()); } bool ScatterSimplifier::InstructionMatchesPattern(HloInstruction* inst) { auto* scatter = DynCast<HloScatterInstruction>(inst); return scatter && !IsSimplifiedScatter(scatter); } }
#include "xla/service/scatter_simplifier.h" #include <optional> #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/pass/hlo_pass_fix.h" #include "xla/hlo/pass/hlo_pass_pipeline.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { class ScatterSimplifierTest : public HloTestBase {}; TEST_F(ScatterSimplifierTest, InsertsIndexVectorAndWindowDims) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { p0 = f32[] parameter(0) p1 = f32[] parameter(1) p2 = f32[] parameter(2) p3 = f32[] parameter(3) ROOT tuple = tuple(p2, p3) } ENTRY kernel_entry { operand0 = f32[3,3] parameter(0) operand1 = f32[3,3] parameter(1) indices = s32[2] parameter(2) update0 = f32[2,3] parameter(3) update1 = f32[2,3] parameter(4) ROOT scatter = (f32[3,3], f32[3,3]) scatter(operand0, operand1, indices, update0, update1), to_apply=scatter_computation, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: %[[SCATTER_DIMS_WITH_VECTOR:.*]] = s32[2,1]{1,0} reshape(%indices) CHECK: %[[RESHAPED_UPDATES0:.*]] = f32[2,1,3]{2,1,0} reshape(%update0) CHECK: %[[RESHAPED_UPDATES1:.*]] = f32[2,1,3]{2,1,0} reshape(%update1) CHECK: ROOT %scatter = (f32[3,3]{1,0}, f32[3,3]{1,0}) scatter( CHECK-SAME: %operand0, %operand1, %[[SCATTER_DIMS_WITH_VECTOR]], CHECK-SAME: %[[RESHAPED_UPDATES0]], %[[RESHAPED_UPDATES1]]), CHECK-SAME: update_window_dims={1,2}, CHECK-SAME: inserted_window_dims={}, CHECK-SAME: scatter_dims_to_operand_dims={0}, CHECK-SAME: index_vector_dim=1, CHECK-SAME: to_apply=%scatter_computation )"); } TEST_F(ScatterSimplifierTest, CollapsesScatterDims) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { %p0 = f32[] parameter(0) ROOT result = f32[] parameter(1) } ENTRY kernel_entry { operand = f32[3,3] parameter(0) indices = s32[2,1,2] parameter(1) update = f32[2,1,1,3] parameter(2) ROOT scatter = f32[3,3] scatter(operand, indices, update), to_apply=scatter_computation, update_window_dims={2, 3}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=2 })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: %[[RESHAPED_INDICES:.*]] = s32[2,2]{1,0} reshape(%indices) CHECK: %[[RESHAPED_UPDATES:.*]] = f32[2,1,3]{2,1,0} reshape(%update) CHECK: scatter( CHECK-SAME: %[[RESHAPED_INDICES]] CHECK-SAME: %[[RESHAPED_UPDATES]] )"); } TEST_F(ScatterSimplifierTest, NoOpForSimpleScatter) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { %p0 = f32[] parameter(0) ROOT result = f32[] parameter(1) } ENTRY kernel_entry { operand = f32[3,3] parameter(0) indices = s32[2,2] parameter(1) update = f32[2,1,3] parameter(2) ROOT scatter = f32[3,3] scatter(operand, indices, update), to_apply=scatter_computation, update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=1 })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), std::nullopt); } TEST_F(ScatterSimplifierTest, MovesIndexVectorDim) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { %p0 = f32[] parameter(0) ROOT result = f32[] parameter(1) } ENTRY kernel_entry { operand = f32[3,3] parameter(0) indices = s32[2,1] parameter(1) update = f32[1,3,3] parameter(2) ROOT scatter = f32[3,3] scatter(operand, indices, update), to_apply=scatter_computation, update_window_dims={1, 2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=0 })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: %[[TRANSPOSED_INDICES:.*]] = s32[1,2]{1,0} CHECK-SAME: transpose(%indices), dimensions={1,0} CHECK: scatter(%operand, %[[TRANSPOSED_INDICES]], %update), CHECK-SAME: index_vector_dim=1 )"); } TEST_F(ScatterSimplifierTest, TransformsUpdatesAndOperandUsingScatterDims) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { %p0 = f32[] parameter(0) ROOT result = f32[] parameter(1) } ENTRY kernel_entry { operand = f32[3,4,5] parameter(0) indices = s32[2,2] parameter(1) update = f32[2,1,1,3] parameter(2) ROOT scatter = f32[3,4,5] scatter(operand, indices, update), to_apply=scatter_computation, update_window_dims={1, 2, 3}, inserted_window_dims={}, scatter_dims_to_operand_dims={2,0}, index_vector_dim=1 })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: %[[T_OPERAND:.*]] = f32[5,3,4]{2,1,0} transpose(%operand), CHECK-SAME: dimensions={2,0,1} CHECK: %[[T_UPDATES:.*]] = f32[2,3,1,1]{3,2,1,0} transpose(%update), CHECK-SAME: dimensions={0,3,1,2} CHECK: %[[SCATTER:.*]] = {{.*}} scatter( CHECK-SAME: %[[T_OPERAND]], %indices, %[[T_UPDATES]]) CHECK-SAME: scatter_dims_to_operand_dims={0,1}, CHECK: ROOT %{{.*}} = f32[3,4,5] CHECK-SAME: transpose(%[[SCATTER]]), dimensions={1,2,0} )"); } TEST_F(ScatterSimplifierTest, MakesScatterDimensionsLeadingInUpdates) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { %p0 = f32[] parameter(0) ROOT result = f32[] parameter(1) } ENTRY kernel_entry { operand = f32[3] parameter(0) indices = s32[1,1] parameter(1) update = f32[2,1] parameter(2) ROOT scatter = f32[3] scatter(operand, indices, update), to_apply=scatter_computation, update_window_dims={0}, inserted_window_dims={}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: %[[TRANSPOSED_UPDATES:.*]] = f32[1,2]{1,0} CHECK-SAME: transpose(%update), dimensions={1,0} CHECK: scatter( CHECK-SAME: %[[TRANSPOSED_UPDATES]] CHECK-SAME: update_window_dims={1}, )"); } TEST_F(ScatterSimplifierTest, ZeroDimScatterIndices) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { %p0 = f32[] parameter(0) ROOT result = f32[] parameter(1) } ENTRY kernel_entry { operand = f32[4,4] parameter(0) indices = s32[2] parameter(1) update = f32[3,3] parameter(2) ROOT scatter = f32[4,4]{1,0} scatter(operand, indices, update), update_window_dims={0,1}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=0, to_apply=scatter_computation })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: scatter( )"); } TEST_F(ScatterSimplifierTest, IsSimplifiedScatterReturnsFalseForUnsortedWindowDims) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { %p0 = f32[] parameter(0) ROOT result = f32[] parameter(1) } ENTRY kernel_entry { operand = f32[3,2] parameter(0) indices = s32[1,1] parameter(1) update = f32[1,2,2] parameter(2) ROOT scatter = f32[3,2] scatter(operand, indices, update), to_apply=scatter_computation, update_window_dims={2,1}, inserted_window_dims={}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 })"; auto module = ParseAndReturnUnverifiedModule(kModuleStr).value(); auto scatter = module->entry_computation()->root_instruction(); EXPECT_FALSE(ScatterSimplifier::IsSimplifiedScatter( Cast<HloScatterInstruction>(scatter))); } TEST_F(ScatterSimplifierTest, ScatterIntoScalar) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY kernel_entry { operand = s32[] parameter(0) indices = s32[0]{0} parameter(1) updates = s32[] parameter(2) ROOT scatter = s32[] scatter(operand, indices, updates), update_window_dims={}, inserted_window_dims={}, scatter_dims_to_operand_dims={}, index_vector_dim=0, to_apply=scatter_computation } )"; auto module = ParseAndReturnUnverifiedModule(kModuleStr).value(); RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: ENTRY CHECK: %[[OPERAND:.*]] = s32[] parameter(0) CHECK: %[[UPDATES:.*]] = s32[] parameter(2) CHECK: ROOT %{{.*}} = s32[] add(%[[OPERAND]], %[[UPDATES]]) )"); } TEST_F(ScatterSimplifierTest, VariadicScatterIntoScalar) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { p0 = f32[] parameter(0) p1 = bf16[] parameter(1) p2 = f32[] parameter(2) p3 = bf16[] parameter(3) ROOT tuple = tuple(p2, p3) } ENTRY kernel_entry { operand0 = f32[] parameter(0) operand1 = bf16[] parameter(1) indices = s32[0]{0} parameter(2) updates0 = f32[] parameter(3) updates1 = bf16[] parameter(4) ROOT scatter = (f32[], bf16[]) scatter(operand0, operand1, indices, updates0, updates1), update_window_dims={}, inserted_window_dims={}, scatter_dims_to_operand_dims={}, index_vector_dim=0, to_apply=scatter_computation })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: ENTRY CHECK: %[[UPDATES0:.*]] = f32[] parameter(3) CHECK: %[[UPDATES1:.*]] = bf16[] parameter(4) CHECK: ROOT %{{.*}} = (f32[], bf16[]) tuple(%[[UPDATES0]], %[[UPDATES1]]) )"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/scatter_simplifier.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/scatter_simplifier_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
09730dec-80af-493b-9079-4dd8922a3bdf
cpp
tensorflow/tensorflow
slice_sinker
third_party/xla/xla/service/slice_sinker.cc
third_party/xla/xla/service/slice_sinker_test.cc
#include "xla/service/slice_sinker.h" #include <algorithm> #include <optional> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/types/span.h" #include "xla/shape_util.h" namespace xla { namespace { bool SameSliceConfiguration(const HloInstruction* slice_1, const HloInstruction* slice_2) { CHECK_EQ(slice_1->opcode(), HloOpcode::kSlice); CHECK_EQ(slice_2->opcode(), HloOpcode::kSlice); CHECK(slice_1->operand(0)->shape().dimensions() == slice_2->operand(0)->shape().dimensions()); return slice_1->slice_starts() == slice_2->slice_starts() && slice_1->slice_limits() == slice_2->slice_limits() && slice_1->slice_strides() == slice_2->slice_strides(); } bool IsElementwiseOperationOnSimilarSlices(const HloInstruction* inst) { CHECK(inst->IsElementwise()); if (absl::c_any_of(inst->operands(), [](const HloInstruction* operand) { return operand->opcode() != HloOpcode::kSlice; })) { return false; } const HloInstruction* slice0 = inst->operand(0); return absl::c_all_of(absl::MakeSpan(inst->operands()).subspan(1), [slice0](const HloInstruction* slice) { return ShapeUtil::CompatibleIgnoringElementType( slice0->operand(0)->shape(), slice->operand(0)->shape()) && SameSliceConfiguration(slice0, slice); }); } bool IsSimilarOperationOnSlices(const HloInstruction* operation_on_slices, const HloInstruction* candidate) { if (candidate->user_count() == 0) { return false; } if (!candidate->SameOp(*operation_on_slices) || operation_on_slices->shape().element_type() != candidate->shape().element_type()) { return false; } const HloInstruction* operand_slice0 = candidate->operand(0); for (int64_t i = 0; i < candidate->operand_count(); ++i) { const HloInstruction* operand_slice = candidate->operand(i); if (operand_slice->opcode() != HloOpcode::kSlice || operand_slice->operand(0) != operation_on_slices->operand(i)->operand(0) || !SameSliceConfiguration(operand_slice0, operand_slice)) { return false; } } return true; } bool ShouldTransform(const std::vector<HloInstruction*>& operations_on_slices) { int64_t sum = 0; for (HloInstruction* user : operations_on_slices) { sum += ShapeUtil::ElementsIn(user->shape()); } return sum >= xla::ShapeUtil::ElementsIn( operations_on_slices[0]->operand(0)->operand(0)->shape()); } std::optional<std::vector<HloInstruction*>> FindElementwiseOperationGroup( const HloInstruction* operation_on_slices) { std::vector<HloInstruction*> operations; const HloInstruction* slice_source0 = operation_on_slices->operand(0)->operand(0); for (const HloInstruction* operand_slice0 : slice_source0->users()) { if (operand_slice0->opcode() != HloOpcode::kSlice) { continue; } for (HloInstruction* user : operand_slice0->users()) { if (IsSimilarOperationOnSlices(operation_on_slices, user)) { operations.push_back(user); } } } return ShouldTransform(operations) ? std::make_optional(operations) : std::nullopt; } absl::Status SinkSlices( const std::vector<HloInstruction*>& slice_sources, const std::vector<HloInstruction*>& operation_on_slices) { const Shape shape = slice_sources[0]->shape(); PrimitiveType element_type = operation_on_slices[0]->shape().element_type(); Shape new_shape = ShapeUtil::ChangeElementType(shape, element_type); HloComputation* computation = operation_on_slices[0]->parent(); auto operation_on_slice_sources = computation->AddInstruction( operation_on_slices[0]->CloneWithNewOperands(new_shape, slice_sources)); VLOG(10) << "Adding operation_on_slice_sources: " << operation_on_slice_sources->ToString(); for (HloInstruction* user : operation_on_slices) { const HloInstruction* operand_slice = user->operand(0); auto user_slice = computation->AddInstruction(operand_slice->CloneWithNewOperands( user->shape(), {operation_on_slice_sources})); VLOG(10) << "Adding new slice: " << user_slice->ToString() << " to replace: " << user->ToString(); TF_RETURN_IF_ERROR(user->ReplaceAllUsesWith(user_slice)); } return absl::OkStatus(); } } absl::StatusOr<bool> SliceSinker::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* computation : module->computations(execution_threads)) { for (HloInstruction* instruction : computation->MakeInstructionPostOrder()) { if (!instruction->IsElementwise() || instruction->operand_count() == 0 || instruction->user_count() == 0) { continue; } VLOG(10) << "Processing instruction : " << instruction->ToString(); if (!IsElementwiseOperationOnSimilarSlices(instruction)) { continue; } std::optional<std::vector<HloInstruction*>> similar_operations = FindElementwiseOperationGroup(instruction); if (!similar_operations.has_value()) { continue; } std::vector<HloInstruction*> slice_sources; absl::c_transform( instruction->operands(), std::back_inserter(slice_sources), [](HloInstruction* slice) { return slice->mutable_operand(0); }); TF_RETURN_IF_ERROR(SinkSlices(slice_sources, similar_operations.value())); changed = true; } } return changed; } }
#include "xla/service/slice_sinker.h" #include <memory> #include <vector> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout_util.h" #include "xla/literal_util.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/types.h" namespace xla { namespace { namespace m = match; using ::testing::ElementsAre; class SliceSinkerTest : public HloTestBase {}; TEST_F(SliceSinkerTest, TernaryOperation) { const char* kModuleStr = R"( HloModule m test { p0 = pred[8,9] parameter(0) p1 = f32[8,9] parameter(1) p2 = f32[8,9] parameter(2) s00 = pred[2,9] slice(pred[8,9] p0), slice={[0:2], [0:9]} s01 = pred[6,9] slice(pred[8,9] p0), slice={[2:8], [0:9]} s10 = f32[2,9] slice(f32[8,9] p1), slice={[0:2], [0:9]} s11 = f32[6,9] slice(f32[8,9] p1), slice={[2:8], [0:9]} s20 = f32[2,9] slice(f32[8,9] p2), slice={[0:2], [0:9]} s21 = f32[6,9] slice(f32[8,9] p2), slice={[2:8], [0:9]} sel0 = f32[2,9] select(pred[2,9] s00, f32[2,9] s10, f32[2,9] s20) sel1 = f32[6,9] select(pred[6,9] s01, f32[6,9] s11, f32[6,9] s21) ROOT tuple = (f32[2,9], f32[6,9]) tuple(sel0, sel1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_TRUE(result); HloInstruction* inst = module->entry_computation()->root_instruction(); const HloInstruction* slice0; const HloInstruction* slice1; EXPECT_THAT(inst, GmockMatch(m::Tuple( m::Slice(&slice0, m::Select(m::Parameter(0), m::Parameter(1), m::Parameter(2))), m::Slice(&slice1, m::Select(m::Parameter(0), m::Parameter(1), m::Parameter(2)))))); EXPECT_THAT(slice0->slice_starts(), ElementsAre(0, 0)); EXPECT_THAT(slice0->slice_limits(), ElementsAre(2, 9)); EXPECT_THAT(slice0->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice1->slice_starts(), ElementsAre(2, 0)); EXPECT_THAT(slice1->slice_limits(), ElementsAre(8, 9)); EXPECT_THAT(slice1->slice_strides(), ElementsAre(1, 1)); } TEST_F(SliceSinkerTest, OverlappingPartialSlicesBeneficial) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[2,9] slice(f32[8,9] p0), slice={[0:2], [0:9]} s01 = f32[5,9] slice(f32[8,9] p0), slice={[3:8], [0:9]} s02 = f32[8,4] slice(f32[8,9] p0), slice={[0:8], [0:4]} s10 = f32[2,9] slice(f32[8,9] p1), slice={[0:2], [0:9]} s11 = f32[5,9] slice(f32[8,9] p1), slice={[3:8], [0:9]} s12 = f32[8,4] slice(f32[8,9] p1), slice={[0:8], [0:4]} add0 = f32[2,9] add(f32[2,9] s00, f32[2,9] s10) add1 = f32[5,9] add(f32[5,9] s01, f32[5,9] s11) add2 = f32[8,4] add(f32[8,4] s02, f32[8,4] s12) ROOT tuple = (f32[2,9], f32[5,9], f32[8,4]) tuple(add0, add1, add2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_TRUE(result); HloInstruction* inst = module->entry_computation()->root_instruction(); const HloInstruction* slice0; const HloInstruction* slice1; const HloInstruction* slice2; EXPECT_THAT( inst, GmockMatch(m::Tuple( m::Slice(&slice0, m::Add(m::Parameter(0), m::Parameter(1))), m::Slice(&slice1, m::Add(m::Parameter(0), m::Parameter(1))), m::Slice(&slice2, m::Add(m::Parameter(0), m::Parameter(1)))))); EXPECT_THAT(slice0->slice_starts(), ElementsAre(0, 0)); EXPECT_THAT(slice0->slice_limits(), ElementsAre(2, 9)); EXPECT_THAT(slice0->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice1->slice_starts(), ElementsAre(3, 0)); EXPECT_THAT(slice1->slice_limits(), ElementsAre(8, 9)); EXPECT_THAT(slice1->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice2->slice_starts(), ElementsAre(0, 0)); EXPECT_THAT(slice2->slice_limits(), ElementsAre(8, 4)); EXPECT_THAT(slice2->slice_strides(), ElementsAre(1, 1)); } TEST_F(SliceSinkerTest, SameSliceSourcesTwoPeerGroups) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[2,9] slice(f32[8,9] p0), slice={[0:2], [0:9]} s01 = f32[6,9] slice(f32[8,9] p0), slice={[2:8], [0:9]} s02 = f32[8,2] slice(f32[8,9] p0), slice={[0:8], [0:2]} s03 = f32[8,7] slice(f32[8,9] p0), slice={[0:8], [2:9]} s10 = f32[2,9] slice(f32[8,9] p1), slice={[0:2], [0:9]} s11 = f32[6,9] slice(f32[8,9] p1), slice={[2:8], [0:9]} s12 = f32[8,2] slice(f32[8,9] p1), slice={[0:8], [0:2]} s13 = f32[8,7] slice(f32[8,9] p1), slice={[0:8], [2:9]} add0 = f32[2,9] add(f32[2,9] s00, f32[2,9] s10) add1 = f32[6,9] add(f32[6,9] s01, f32[6,9] s11) mul0 = f32[8,2] multiply(f32[8,2] s02, f32[8,2] s12) mul1 = f32[8,7] multiply(f32[8,7] s03, f32[8,7] s13) ROOT tuple = (f32[2,9], f32[6,9], f32[8,2], f32[8,7]) tuple(add0, add1, mul0, mul1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_TRUE(result); HloInstruction* inst = module->entry_computation()->root_instruction(); const HloInstruction* slice0; const HloInstruction* slice1; const HloInstruction* slice2; const HloInstruction* slice3; EXPECT_THAT( inst, GmockMatch(m::Tuple( m::Slice(&slice0, m::Add(m::Parameter(0), m::Parameter(1))), m::Slice(&slice1, m::Add(m::Parameter(0), m::Parameter(1))), m::Slice(&slice2, m::Multiply(m::Parameter(0), m::Parameter(1))), m::Slice(&slice3, m::Multiply(m::Parameter(0), m::Parameter(1)))))); EXPECT_THAT(slice0->slice_starts(), ElementsAre(0, 0)); EXPECT_THAT(slice0->slice_limits(), ElementsAre(2, 9)); EXPECT_THAT(slice0->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice1->slice_starts(), ElementsAre(2, 0)); EXPECT_THAT(slice1->slice_limits(), ElementsAre(8, 9)); EXPECT_THAT(slice1->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice2->slice_starts(), ElementsAre(0, 0)); EXPECT_THAT(slice2->slice_limits(), ElementsAre(8, 2)); EXPECT_THAT(slice2->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice3->slice_starts(), ElementsAre(0, 2)); EXPECT_THAT(slice3->slice_limits(), ElementsAre(8, 9)); EXPECT_THAT(slice3->slice_strides(), ElementsAre(1, 1)); } TEST_F(SliceSinkerTest, OverlappingMultipleSlices) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[2,9] slice(f32[8,9] p0), slice={[0:2], [0:9]} s01 = f32[5,9] slice(f32[8,9] p0), slice={[3:8], [0:9]} s02 = f32[3,9] slice(f32[8,9] p0), slice={[2:5], [0:9]} s10 = f32[2,9] slice(f32[8,9] p1), slice={[0:2], [0:9]} s11 = f32[5,9] slice(f32[8,9] p1), slice={[3:8], [0:9]} s12 = f32[3,9] slice(f32[8,9] p1), slice={[2:5], [0:9]} add0 = f32[2,9] add(f32[2,9] s00, f32[2,9] s10) add1 = f32[5,9] add(f32[5,9] s01, f32[5,9] s11) add2 = f32[3,9] add(f32[3,9] s02, f32[3,9] s12) ROOT tuple = (f32[2,9], f32[5,9], f32[3,9]) tuple(add0, add1, add2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_TRUE(result); HloInstruction* inst = module->entry_computation()->root_instruction(); const HloInstruction* slice0; const HloInstruction* slice1; const HloInstruction* slice2; EXPECT_THAT( inst, GmockMatch(m::Tuple( m::Slice(&slice0, m::Add(m::Parameter(0), m::Parameter(1))), m::Slice(&slice1, m::Add(m::Parameter(0), m::Parameter(1))), m::Slice(&slice2, m::Add(m::Parameter(0), m::Parameter(1)))))); EXPECT_THAT(slice0->slice_starts(), ElementsAre(0, 0)); EXPECT_THAT(slice0->slice_limits(), ElementsAre(2, 9)); EXPECT_THAT(slice0->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice1->slice_starts(), ElementsAre(3, 0)); EXPECT_THAT(slice1->slice_limits(), ElementsAre(8, 9)); EXPECT_THAT(slice1->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice2->slice_starts(), ElementsAre(2, 0)); EXPECT_THAT(slice2->slice_limits(), ElementsAre(5, 9)); EXPECT_THAT(slice2->slice_strides(), ElementsAre(1, 1)); } TEST_F(SliceSinkerTest, DisjointedPartialSlices) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[2,9] slice(f32[8,9] p0), slice={[0:2], [0:9]} s01 = f32[5,9] slice(f32[8,9] p0), slice={[2:7], [0:9]} s10 = f32[2,9] slice(f32[8,9] p1), slice={[0:2], [0:9]} s11 = f32[5,9] slice(f32[8,9] p1), slice={[2:7], [0:9]} add0 = f32[2,9] add(f32[2,9] s00, f32[2,9] s10) add1 = f32[5,9] add(f32[5,9] s01, f32[5,9] s11) ROOT tuple = (f32[2,9], f32[5,9]) tuple(add0, add1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_FALSE(result); } TEST_F(SliceSinkerTest, OverlappingPartialSlicesNotBeneficial) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[2,7] slice(f32[8,9] p0), slice={[0:2], [0:7]} s01 = f32[6,7] slice(f32[8,9] p0), slice={[2:8], [0:7]} s10 = f32[2,7] slice(f32[8,9] p1), slice={[0:2], [0:7]} s11 = f32[6,7] slice(f32[8,9] p1), slice={[2:8], [0:7]} add0 = f32[2,7] add(f32[2,7] s00, f32[2,7] s10) add1 = f32[6,7] add(f32[6,7] s01, f32[6,7] s11) ROOT tuple = (f32[2,7], f32[6,7]) tuple(add0, add1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_FALSE(result); } TEST_F(SliceSinkerTest, DifferentOrderingOfSliceSources) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,7] parameter(0) p1 = f32[8,7] parameter(1) s00 = f32[2,7] slice(f32[8,7] p0), slice={[0:2], [0:7]} s01 = f32[6,7] slice(f32[8,7] p0), slice={[2:8], [0:7]} s10 = f32[2,7] slice(f32[8,7] p1), slice={[0:2], [0:7]} s11 = f32[6,7] slice(f32[8,7] p1), slice={[2:8], [0:7]} add0 = f32[2,7] add(f32[2,7] s00, f32[2,7] s10) add1 = f32[6,7] add(f32[6,7] s11, f32[6,7] s01) ROOT tuple = (f32[2,7], f32[6,7]) tuple(add0, add1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_FALSE(result); } TEST_F(SliceSinkerTest, SlicesFromDifferentIndices) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[4,9] slice(f32[8,9] p0), slice={[0:4], [0:9]} s01 = f32[4,9] slice(f32[8,9] p0), slice={[4:8], [0:9]} s10 = f32[4,9] slice(f32[8,9] p1), slice={[0:4], [0:9]} s11 = f32[4,9] slice(f32[8,9] p1), slice={[4:8], [0:9]} add0 = f32[4,9] add(f32[4,9] s01, f32[4,9] s10) add1 = f32[4,9] add(f32[4,9] s00, f32[4,9] s11) ROOT tuple = (f32[4,9], f32[4,9]) tuple(add0, add1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_FALSE(result); } TEST_F(SliceSinkerTest, DifferentOperator) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[2,9] slice(f32[8,9] p0), slice={[0:2], [0:9]} s01 = f32[6,9] slice(f32[8,9] p0), slice={[2:8], [0:9]} s10 = f32[2,9] slice(f32[8,9] p1), slice={[0:2], [0:9]} s11 = f32[6,9] slice(f32[8,9] p1), slice={[2:8], [0:9]} mul = f32[2,9] multiply(f32[2,9] s00, f32[2,9] s10) add = f32[6,9] add(f32[6,9] s01, f32[6,9] s11) ROOT tuple = (f32[2,9], f32[6,9]) tuple(mul, add) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_FALSE(result); } TEST_F(SliceSinkerTest, SameOperatorDifferentAttributes) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[2,9] slice(f32[8,9] p0), slice={[0:2], [0:9]} s01 = f32[6,9] slice(f32[8,9] p0), slice={[2:8], [0:9]} s10 = f32[2,9] slice(f32[8,9] p1), slice={[0:2], [0:9]} s11 = f32[6,9] slice(f32[8,9] p1), slice={[2:8], [0:9]} cmp1 = pred[2,9] compare(f32[2,9] s00, f32[2,9] s10), direction=GT cmp2 = pred[6,9] compare(f32[6,9] s01, f32[6,9] s11), direction=LT ROOT tuple = (pred[2,9], pred[6,9]) tuple(cmp1, cmp2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_FALSE(result); } TEST_F(SliceSinkerTest, SlicesWithMultiUsers) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[2,9] slice(f32[8,9] p0), slice={[0:2], [0:9]} s01 = f32[6,9] slice(f32[8,9] p0), slice={[2:8], [0:9]} s10 = f32[2,9] slice(f32[8,9] p1), slice={[0:2], [0:9]} s11 = f32[6,9] slice(f32[8,9] p1), slice={[2:8], [0:9]} add0 = f32[2,9] add(f32[2,9] s00, f32[2,9] s10) add1 = f32[6,9] add(f32[6,9] s01, f32[6,9] s11) mul0 = f32[2,9] multiply(f32[2,9] s00, f32[2,9] s10) mul1 = f32[6,9] multiply(f32[6,9] s01, f32[6,9] s11) ROOT tuple = (f32[2,9], f32[6,9], f32[2,9], f32[6,9]) tuple(add0, add1, mul0, mul1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_TRUE(result); HloInstruction* inst = module->entry_computation()->root_instruction(); const HloInstruction* slice0; const HloInstruction* slice1; const HloInstruction* slice2; const HloInstruction* slice3; EXPECT_THAT( inst, GmockMatch(m::Tuple( m::Slice(&slice0, m::Add(m::Parameter(0), m::Parameter(1))), m::Slice(&slice1, m::Add(m::Parameter(0), m::Parameter(1))), m::Slice(&slice2, m::Multiply(m::Parameter(0), m::Parameter(1))), m::Slice(&slice3, m::Multiply(m::Parameter(0), m::Parameter(1)))))); EXPECT_THAT(slice0->slice_starts(), ElementsAre(0, 0)); EXPECT_THAT(slice0->slice_limits(), ElementsAre(2, 9)); EXPECT_THAT(slice0->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice1->slice_starts(), ElementsAre(2, 0)); EXPECT_THAT(slice1->slice_limits(), ElementsAre(8, 9)); EXPECT_THAT(slice1->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice2->slice_starts(), ElementsAre(0, 0)); EXPECT_THAT(slice2->slice_limits(), ElementsAre(2, 9)); EXPECT_THAT(slice2->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice3->slice_starts(), ElementsAre(2, 0)); EXPECT_THAT(slice3->slice_limits(), ElementsAre(8, 9)); EXPECT_THAT(slice3->slice_strides(), ElementsAre(1, 1)); } TEST_F(SliceSinkerTest, NonElementWise) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8] parameter(0) s00 = f32[2] slice(f32[8] p0), slice={[0:2]} s01 = f32[6] slice(f32[8] p0), slice={[2:8]} bc0 = f32[2,9] broadcast(f32[2] s00), dimensions={0} bc1 = f32[6,9] broadcast(f32[6] s01), dimensions={0} ROOT tuple = (f32[2,9], f32[6,9]) tuple(bc0, bc1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_FALSE(result); } TEST_F(SliceSinkerTest, SlicesWithNontrivialStrides) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[4,9] slice(f32[8,9] p0), slice={[0:7:2], [0:9]} s01 = f32[4,9] slice(f32[8,9] p0), slice={[1:8:2], [0:9]} s10 = f32[4,9] slice(f32[8,9] p1), slice={[0:7:2], [0:9]} s11 = f32[4,9] slice(f32[8,9] p1), slice={[1:8:2], [0:9]} add0 = f32[4,9] add(f32[4,9] s00, f32[4,9] s10) add1 = f32[4,9] add(f32[4,9] s01, f32[4,9] s11) ROOT tuple = (f32[4,9], f32[4,9]) tuple(add0, add1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_TRUE(result); HloInstruction* inst = module->entry_computation()->root_instruction(); const HloInstruction* slice0; const HloInstruction* slice1; EXPECT_THAT( inst, GmockMatch(m::Tuple( m::Slice(&slice0, m::Add(m::Parameter(0), m::Parameter(1))), m::Slice(&slice1, m::Add(m::Parameter(0), m::Parameter(1)))))); EXPECT_THAT(slice0->slice_starts(), ElementsAre(0, 0)); EXPECT_THAT(slice0->slice_limits(), ElementsAre(7, 9)); EXPECT_THAT(slice0->slice_strides(), ElementsAre(2, 1)); EXPECT_THAT(slice1->slice_starts(), ElementsAre(1, 0)); EXPECT_THAT(slice1->slice_limits(), ElementsAre(8, 9)); EXPECT_THAT(slice1->slice_strides(), ElementsAre(2, 1)); } TEST_F(SliceSinkerTest, NotAllSliceOperand) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[2,9] parameter(1) p2 = f32[6,9] parameter(2) s00 = f32[2,9] slice(f32[8,9] p0), slice={[0:2], [0:9]} s01 = f32[6,9] slice(f32[8,9] p0), slice={[2:8], [0:9]} abs0 = f32[2,9] abs(f32[2,9] p1) abs1 = f32[6,9] abs(f32[6,9] p2) add0 = f32[2,9] add(f32[2,9] s00, f32[2,9] abs0) add1 = f32[6,9] add(f32[6,9] s01, f32[6,9] abs1) ROOT tuple = (f32[2,9], f32[6,9]) tuple(add0, add1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_FALSE(result); } TEST_F(SliceSinkerTest, Cascade) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[2,9] slice(f32[8,9] p0), slice={[0:2], [0:9]} s01 = f32[6,9] slice(f32[8,9] p0), slice={[2:8], [0:9]} s10 = f32[2,9] slice(f32[8,9] p1), slice={[0:2], [0:9]} s11 = f32[6,9] slice(f32[8,9] p1), slice={[2:8], [0:9]} abs0 = f32[2,9] abs(f32[2,9] s10) abs1 = f32[6,9] abs(f32[6,9] s11) add0 = f32[2,9] add(f32[2,9] s00, f32[2,9] abs0) add1 = f32[6,9] add(f32[6,9] s01, f32[6,9] abs1) ROOT tuple = (f32[2,9], f32[6,9]) tuple(add0, add1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_TRUE(result); HloInstruction* inst = module->entry_computation()->root_instruction(); const HloInstruction* slice0; const HloInstruction* slice1; EXPECT_THAT( inst, GmockMatch(m::Tuple( m::Slice(&slice0, m::Add(m::Parameter(0), m::Abs(m::Parameter(1)))), m::Slice(&slice1, m::Add(m::Parameter(0), m::Abs(m::Parameter(1))))))); EXPECT_THAT(slice0->slice_starts(), ElementsAre(0, 0)); EXPECT_THAT(slice0->slice_limits(), ElementsAre(2, 9)); EXPECT_THAT(slice0->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice1->slice_starts(), ElementsAre(2, 0)); EXPECT_THAT(slice1->slice_limits(), ElementsAre(8, 9)); EXPECT_THAT(slice1->slice_strides(), ElementsAre(1, 1)); } TEST_F(SliceSinkerTest, SameOpcodeDifferentResultElementTypes) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) s00 = f32[2,9] slice(f32[8,9] p0), slice={[0:2], [0:9]} s01 = f32[6,9] slice(f32[8,9] p0), slice={[2:8], [0:9]} convert0 = s32[2,9] convert(f32[2,9] s00) convert1 = s64[6,9] convert(f32[6,9] s01) ROOT tuple = (s32[2,9], s64[6,9]) tuple(convert0, convert1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_FALSE(result); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/slice_sinker.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/slice_sinker_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3d74cae6-8e08-4595-b6bf-2d5ca27cc59f
cpp
tensorflow/tensorflow
convert_mover
third_party/xla/xla/service/convert_mover.cc
third_party/xla/xla/service/convert_mover_test.cc
#include "xla/service/convert_mover.h" #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/primitive_util.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { static bool IsLosslesslyConvertibleTo(const Literal& literal, PrimitiveType dst_ty) { PrimitiveType orig_ty = literal.shape().element_type(); absl::StatusOr<Literal> converted1 = literal.Convert(dst_ty); if (!converted1.ok()) { return false; } absl::StatusOr<Literal> converted2 = converted1->Convert(orig_ty); if (!converted2.ok()) { return false; } return literal == *converted2; } bool OpCommutesWithConvert(HloOpcode opcode) { switch (opcode) { case HloOpcode::kConcatenate: case HloOpcode::kPad: case HloOpcode::kReshape: case HloOpcode::kSlice: case HloOpcode::kTranspose: return true; default: return false; } } absl::StatusOr<bool> MoveConvertPrecisionOps(HloComputation* comp) { bool changed = false; for (HloInstruction* instr : comp->MakeInstructionPostOrder()) { if (!OpCommutesWithConvert(instr->opcode()) || instr->operand_count() == 0 || !absl::c_all_of(instr->operands(), [](const HloInstruction* operand) { return (operand->opcode() == HloOpcode::kConvert && operand->user_count() == 1) || operand->opcode() == HloOpcode::kConstant; })) { continue; } auto convert_op_it = absl::c_find_if(instr->operands(), HloPredicateIsOp<HloOpcode::kConvert>); if (convert_op_it == instr->operands().end()) { continue; } const HloInstruction* convert_op = *convert_op_it; if (!absl::c_all_of(instr->operands(), [&](const HloInstruction* operand) { return operand->opcode() != HloOpcode::kConvert || operand->operand(0)->shape().element_type() == convert_op->operand(0)->shape().element_type(); })) { continue; } PrimitiveType src_ty = convert_op->operand(0)->shape().element_type(); PrimitiveType dst_ty = convert_op->shape().element_type(); if (primitive_util::BitWidth(src_ty) >= primitive_util::BitWidth(dst_ty)) { continue; } if (absl::c_any_of(instr->operands(), [&](const HloInstruction* operand) { return operand->opcode() == HloOpcode::kConstant && !IsLosslesslyConvertibleTo(operand->literal(), src_ty); })) { continue; } if (primitive_util::IsSubByteNonPredType(src_ty)) { continue; } VLOG(2) << "Moving increase-precision convert op " << convert_op->ToString() << " down the graph: " << instr->ToString(); absl::InlinedVector<HloInstruction*, 8> new_operands; new_operands.reserve(instr->operand_count()); for (HloInstruction* operand : instr->operands()) { switch (operand->opcode()) { case HloOpcode::kConvert: new_operands.push_back(operand->mutable_operand(0)); break; case HloOpcode::kConstant: new_operands.push_back(MakeConvertToHlo(operand, src_ty)); break; default: LOG(FATAL) << "Unexpected opcode in " << operand->ToString(); } } Shape new_shape = instr->shape(); new_shape.set_element_type(src_ty); HloInstruction* new_instr = comp->AddInstruction( instr->CloneWithNewOperands(new_shape, new_operands)); TF_RETURN_IF_ERROR(comp->ReplaceWithNewInstruction( instr, HloInstruction::CreateConvert(instr->shape(), new_instr))); changed = true; } std::deque<HloInstruction*> work_queue; std::vector<HloInstruction*> instrs = comp->MakeInstructionPostOrder(); work_queue.insert(work_queue.end(), instrs.rbegin(), instrs.rend()); while (!work_queue.empty()) { HloInstruction* instr = work_queue.front(); work_queue.pop_front(); if (instr->opcode() != HloOpcode::kConvert || instr->operand(0)->user_count() != 1 || !OpCommutesWithConvert(instr->operand(0)->opcode())) { continue; } PrimitiveType src_ty = instr->operand(0)->shape().element_type(); PrimitiveType dst_ty = instr->shape().element_type(); if (primitive_util::BitWidth(src_ty) <= primitive_util::BitWidth(dst_ty)) { continue; } if (primitive_util::IsSubByteNonPredType(dst_ty)) { continue; } VLOG(2) << "Moving decrease-precision convert up the graph: " << instr->ToString(); HloInstruction* to_convert = instr->mutable_operand(0); absl::InlinedVector<HloInstruction*, 8> new_operands; new_operands.reserve(to_convert->operand_count()); for (HloInstruction* operand : to_convert->operands()) { work_queue.push_front(MakeConvertToHlo(operand, dst_ty)); new_operands.push_back(work_queue.front()); } Shape new_shape = to_convert->shape(); new_shape.set_element_type(dst_ty); TF_RETURN_IF_ERROR(comp->ReplaceWithNewInstruction( instr, to_convert->CloneWithNewOperands(new_shape, new_operands))); changed = true; } return changed; } } absl::StatusOr<bool> ConvertMover::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* comp : module->MakeNonfusionComputations(execution_threads)) { TF_ASSIGN_OR_RETURN(bool changed_computation, MoveConvertPrecisionOps(comp)); changed |= changed_computation; } return changed; } }
#include "xla/service/convert_mover.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace m = ::xla::match; class ConvertMoverTest : public HloTestBase { public: ConvertMoverTest() : HloTestBase(false, false) {} }; template <typename T> auto MatchConvertToS8(T&& operand) { return m::Convert(operand).WithShape(m::Shape().WithElementType(S8)); } template <typename T> auto MatchConvertToF16(T&& operand) { return m::Convert(operand).WithShape(m::Shape().WithElementType(F16)); } template <typename T> auto MatchConvertToF32(T&& operand) { return m::Convert(operand).WithShape(m::Shape().WithElementType(F32)); } template <typename T> auto MatchConvertToC64(T&& operand) { return m::Convert(operand).WithShape(m::Shape().WithElementType(C64)); } TEST_F(ConvertMoverTest, MoveDownThroughConcat) { absl::string_view module_string = R"( HloModule module ENTRY main { ROOT root = concatenate(f32[10] convert(f16[10] parameter(0)), f32[10] convert(f16[10] parameter(1))), dimensions={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(MatchConvertToF32( m::Concatenate(m::Parameter(0), m::Parameter(1))))); } TEST_F(ConvertMoverTest, NoMoveDownThroughConcatWithDifferentSrcTypes) { absl::string_view module_string = R"( HloModule module ENTRY main { ROOT root = concatenate(f32[10] convert(bf16[10] parameter(0)), f32[10] convert(f16[10] parameter(1))), dimensions={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_FALSE(changed); } TEST_F(ConvertMoverTest, MoveUpReshape) { absl::string_view module_string = R"( HloModule module ENTRY main { ROOT root = f16[10,10] convert(f32[10,10] reshape(f32[100] parameter(0))) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Reshape(MatchConvertToF16(m::Parameter(0))))); } TEST_F(ConvertMoverTest, MoveUpTwoTransposes) { absl::string_view module_string = R"( HloModule module ENTRY main { t1 = transpose(f32[3,4] parameter(0)), dimensions={1,0} t2 = transpose(t1), dimensions={1,0} ROOT root = f16[3,4] convert(t2) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Transpose( m::Transpose(MatchConvertToF16(m::Parameter(0)))))); } TEST_F(ConvertMoverTest, MoveDownTwoSlices) { absl::string_view module_string = R"( HloModule module ENTRY main { slice1 = f32[9] slice(f32[10] convert(f16[10] parameter(0))), slice={[0:9]} ROOT slice2 = f32[8] slice(slice1), slice={[0:8]} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(MatchConvertToF32(m::Slice(m::Slice(m::Parameter(0)))))); } TEST_F(ConvertMoverTest, MoveDownC64) { absl::string_view module_string = R"( HloModule module ENTRY main { ROOT root = concatenate(c64[10] convert(f32[10] parameter(0)), c64[10] convert(f32[10] parameter(1))), dimensions={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(MatchConvertToC64(m::Concatenate( m::Parameter(0), m::Parameter(1) )))); } TEST_F(ConvertMoverTest, MoveDownC64Constant) { absl::string_view module_string = R"( HloModule module ENTRY main { ROOT root = concatenate(c64[2] convert(f32[2] parameter(0)), c64[2] convert(f32[2] parameter(1)), c64[2] constant({(1,1), (-1,-1)})), dimensions={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_FALSE(changed); } TEST_F(ConvertMoverTest, MoveUpPad) { absl::string_view module_string = R"( HloModule module ENTRY main { pad = f32[10] pad(f32[8] parameter(0), f32[] constant(0)), padding=1_1 ROOT root = f16[10] convert(pad) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Pad(MatchConvertToF16(m::Parameter(0)), MatchConvertToF16(m::ConstantEffectiveScalar(0))))); } TEST_F(ConvertMoverTest, MoveUpPadWithOutOfRangeConstant) { absl::string_view module_string = R"( HloModule module ENTRY main { pad = s32[10] pad(s32[8] parameter(0), s32[] constant(1000)), padding=1_1 ROOT root = s8[10] convert(pad) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Pad(MatchConvertToS8(m::Parameter(0)), MatchConvertToS8(m::ConstantEffectiveScalar(1000))))); } TEST_F(ConvertMoverTest, MoveDownPad) { absl::string_view module_string = R"( HloModule module ENTRY main { ROOT pad = f32[10] pad(f32[8] convert(f16[8] parameter(0)), f32[] constant(0)), padding=1_1 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(MatchConvertToF32(m::Pad( m::Parameter(0), MatchConvertToF16(m::ConstantEffectiveScalar(0)))))); } TEST_F(ConvertMoverTest, NoMoveDownPadBecauseConstantIsOutOfRange) { absl::string_view module_string = R"( HloModule module ENTRY main { ROOT pad = f32[10] pad(f32[8] convert(f16[8] parameter(0)), f32[] constant(1e9)), padding=1_1 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_FALSE(changed); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/convert_mover.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/convert_mover_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2b440a48-9e51-478c-ae66-5556f1655335
cpp
tensorflow/tensorflow
hlo_cost_analysis
third_party/xla/xla/service/hlo_cost_analysis.cc
third_party/xla/xla/service/hlo_cost_analysis_test.cc
#include "xla/service/hlo_cost_analysis.h" #include <algorithm> #include <cmath> #include <cstdint> #include <functional> #include <iterator> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/algorithm/container.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tsl/lib/gtl/map_util.h" #include "xla/util.h" #include "xla/window_util.h" #include "tsl/platform/errors.h" namespace xla { HloCostAnalysis::HloCostAnalysis(const Options& options) : options_(options) {} HloCostAnalysis::HloCostAnalysis(ShapeSizeFunction shape_size, const Properties& per_second_rates, const Properties& min_latencies_seconds) : HloCostAnalysis( Options{shape_size, per_second_rates, min_latencies_seconds}) {} absl::Status HloCostAnalysis::Preprocess(const HloInstruction* hlo) { current_properties_ = Properties(); current_should_compute_bottleneck_time_ = true; float bytes_accessed = GetShapeSize(hlo->shape()); current_properties_.set_output_bytes_accessed(GetShapeSize(hlo->shape())); for (int64_t i = 0; i < hlo->operand_count(); ++i) { const HloInstruction* operand = hlo->operand(i); bytes_accessed += GetShapeSize(operand->shape()); current_properties_.set_operand_bytes_accessed( i, GetShapeSize(operand->shape())); current_properties_.set_operand_utilization(i, 1.0); } current_properties_[kBytesAccessedKey] = bytes_accessed; return absl::OkStatus(); } absl::Status HloCostAnalysis::Postprocess(const HloInstruction* hlo) { if (current_should_compute_bottleneck_time_) { float optimal_seconds = 0.0f; current_properties_.ForEach([&](absl::string_view key, float val) { if (key == kOptimalSecondsKey) { return; } float per_second_rate = options_.per_second_rate(key); if (per_second_rate != 0) { float time_for_key = std::max(val / per_second_rate, options_.min_latency_seconds(key)); optimal_seconds = std::max(optimal_seconds, time_for_key); } }); current_properties_[kOptimalSecondsKey] = optimal_seconds; } current_properties_.ForEach( [&](absl::string_view key, float val) { properties_sum_[key] += val; }); auto [it_ignored, inserted] = hlo_properties_.emplace(hlo, std::move(current_properties_)); current_properties_ = Properties(); TF_RET_CHECK(inserted); return absl::OkStatus(); } absl::Status HloCostAnalysis::RemoveInstruction(HloInstruction* instruction) { auto it = hlo_properties_.find(instruction); if (it != hlo_properties_.end()) { current_properties_ = it->second; current_properties_.ForEach( [&](absl::string_view key, float val) { properties_sum_[key] -= val; }); hlo_properties_.erase(instruction); } return absl::OkStatus(); } absl::Status HloCostAnalysis::RevisitInstruction(HloInstruction* instruction) { TF_RETURN_IF_ERROR(RemoveInstruction(instruction)); TF_RETURN_IF_ERROR(Preprocess(instruction)); TF_RETURN_IF_ERROR(instruction->Visit(this)); TF_RETURN_IF_ERROR(Postprocess(instruction)); return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleElementwiseOp( const HloInstruction* hlo_instruction) { const auto& shape = hlo_instruction->shape(); auto computation_count = ShapeUtil::ElementsIn(shape); auto opcode = hlo_instruction->opcode(); if (opcode == HloOpcode::kErf || opcode == HloOpcode::kExp || opcode == HloOpcode::kLog || opcode == HloOpcode::kLogistic || opcode == HloOpcode::kPower || opcode == HloOpcode::kSqrt || opcode == HloOpcode::kCbrt || opcode == HloOpcode::kRsqrt || opcode == HloOpcode::kTanh || opcode == HloOpcode::kSin || opcode == HloOpcode::kCos || opcode == HloOpcode::kExpm1 || opcode == HloOpcode::kLog1p || opcode == HloOpcode::kAtan2 || opcode == HloOpcode::kTan) { current_properties_[kTranscendentalsKey] = computation_count; } else { current_properties_[kFlopsKey] = computation_count; } return absl::OkStatus(); } float HloCostAnalysis::GetPropertyForHlo( const HloInstruction& hlo, absl::string_view key, const HloToProperties& hlo_to_properties) { auto it = hlo_to_properties.find(&hlo); if (it == hlo_to_properties.end()) { return 0.0f; } return it->second[key]; } int64_t HloCostAnalysis::GetShapeSize(const Shape& shape) const { if (!LayoutUtil::HasLayout(shape)) { return 0; } if (LayoutUtil::IsSparseArray(shape)) { return 0; } return options_.shape_size(shape); } int64_t HloCostAnalysis::FusionParameterReadBytes( const HloInstruction* hlo) const { CHECK(hlo->IsFused() && (hlo->opcode() == HloOpcode::kParameter || hlo->opcode() == HloOpcode::kGetTupleElement)); auto handle_slice = [this](const HloInstruction* hlo, const HloInstruction* user) -> int64_t { return GetShapeSize(user->shape()); }; auto handle_dynamic_slice = [this](const HloInstruction* hlo, const HloInstruction* user, bool& seen_trivial_user) -> int64_t { if (hlo == user->operand(0)) { return GetShapeSize(user->shape()); } if (!seen_trivial_user) { seen_trivial_user = true; return GetShapeSize(hlo->shape()); } return 0; }; auto handle_dynamic_update_slice = [this](const HloInstruction* hlo, const HloInstruction* user, bool& seen_trivial_user) -> int64_t { if (hlo != user->operand(0) && !seen_trivial_user) { seen_trivial_user = true; return GetShapeSize(hlo->shape()); } return 0; }; int64_t size = 0; bool seen_trivial_user = false; for (const HloInstruction* user : hlo->users()) { switch (user->opcode()) { case HloOpcode::kFusion: { for (int64_t idx : user->OperandIndices(hlo)) { bool nested_seen_trivial_user = false; const auto& fusion_users = user->users(); const HloInstruction* root_instruction = user->fused_instructions_computation()->root_instruction(); const bool fusion_is_simple = user->fused_parameter(idx) == root_instruction->operand(0); for (const HloInstruction* fusion_user : fusion_users) { if (fusion_is_simple && fusion_user->opcode() == HloOpcode::kSlice) { size += handle_slice(user, fusion_user); } else if (fusion_is_simple && fusion_user->opcode() == HloOpcode::kDynamicSlice) { size += handle_dynamic_slice(user, fusion_user, nested_seen_trivial_user); } else if (fusion_is_simple && fusion_user->opcode() == HloOpcode::kDynamicUpdateSlice) { size += handle_dynamic_update_slice(user, fusion_user, nested_seen_trivial_user); } else if (!nested_seen_trivial_user) { nested_seen_trivial_user = true; size += FusionParameterReadBytes(user->fused_parameter(idx)); } } } break; } case HloOpcode::kSlice: size += handle_slice(hlo, user); break; case HloOpcode::kDynamicSlice: size += handle_dynamic_slice(hlo, user, seen_trivial_user); break; case HloOpcode::kDynamicUpdateSlice: size += handle_dynamic_update_slice(hlo, user, seen_trivial_user); break; case HloOpcode::kBroadcast: case HloOpcode::kReshape: size += GetShapeSize(hlo->shape()); break; default: if (!seen_trivial_user) { seen_trivial_user = true; size += GetShapeSize(hlo->shape()); } } } return size; } absl::Status HloCostAnalysis::FusionCalculateUtilizations( const HloInstruction* fusion) { for (const HloInstruction* instr : fusion->fused_instructions_computation()->instructions()) { if (ShouldFilterFusionInstruction(fusion, instr)) { hlo_properties_[instr][kUtilizationKey] = 0.f; } else { hlo_properties_[instr][kUtilizationKey] = 1.f; } } return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleElementwiseUnary( const HloInstruction* hlo) { return HandleElementwiseOp(hlo); } absl::Status HloCostAnalysis::HandleElementwiseBinary( const HloInstruction* hlo) { return HandleElementwiseOp(hlo); } absl::Status HloCostAnalysis::HandleCompare(const HloInstruction* compare) { return HandleElementwiseOp(compare); } absl::Status HloCostAnalysis::HandleClamp(const HloInstruction* clamp) { return HandleElementwiseOp(clamp); } absl::Status HloCostAnalysis::HandleReducePrecision(const HloInstruction* hlo) { return HandleElementwiseOp(hlo); } absl::Status HloCostAnalysis::HandleParameter(const HloInstruction*) { current_should_compute_bottleneck_time_ = false; current_properties_[kBytesAccessedKey] = 0; current_properties_.set_output_bytes_accessed(0); current_properties_[kOptimalSecondsKey] = 0; return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleConstant(const HloInstruction*) { current_should_compute_bottleneck_time_ = false; current_properties_[kBytesAccessedKey] = 0; current_properties_.set_output_bytes_accessed(0); current_properties_[kOptimalSecondsKey] = 0; return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleIota(const HloInstruction*) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleGetTupleElement( const HloInstruction* get_tuple_element) { current_should_compute_bottleneck_time_ = false; current_properties_[kBytesAccessedKey] = 0; current_properties_.set_output_bytes_accessed(0); current_properties_.set_operand_bytes_accessed(0, 0); current_properties_[kOptimalSecondsKey] = 0; return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleSelect(const HloInstruction* hlo) { return HandleElementwiseOp(hlo); } absl::Status HloCostAnalysis::HandleReverse(const HloInstruction*) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleSlice(const HloInstruction* slice) { const int64_t output_shape_size = GetShapeSize(slice->shape()); const int64_t num_input_elements = ShapeUtil::ElementsIn(slice->operand(0)->shape()); const int64_t num_output_elements = ShapeUtil::ElementsIn(slice->shape()); current_properties_[kBytesAccessedKey] = output_shape_size * 2; current_properties_.set_output_bytes_accessed(output_shape_size); current_properties_.set_operand_bytes_accessed(0, output_shape_size); current_properties_.set_operand_utilization( 0, 1.0 * num_output_elements / num_input_elements); return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleDynamicSlice( const HloInstruction* dynamic_slice) { const int64_t output_shape_size = GetShapeSize(dynamic_slice->shape()); const int64_t start_indices_shape_size = GetShapeSize(dynamic_slice->operand(1)->shape()); const int64_t num_input_elements = ShapeUtil::ElementsIn(dynamic_slice->operand(0)->shape()); const int64_t num_output_elements = ShapeUtil::ElementsIn(dynamic_slice->shape()); current_properties_[kBytesAccessedKey] = output_shape_size * 2 + start_indices_shape_size; current_properties_.set_output_bytes_accessed(output_shape_size); current_properties_.set_operand_bytes_accessed(0, output_shape_size); current_properties_.set_operand_bytes_accessed(1, start_indices_shape_size); current_properties_.set_operand_utilization( 0, 1.0 * num_output_elements / num_input_elements); return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleDynamicUpdateSlice( const HloInstruction* dynamic_update_slice) { const int64_t update_shape_size = GetShapeSize(dynamic_update_slice->operand(1)->shape()); const int64_t start_indices_shape_size = GetShapeSize(dynamic_update_slice->operand(2)->shape()); const int64_t num_update_elements = ShapeUtil::ElementsIn(dynamic_update_slice->operand(1)->shape()); const int64_t num_output_elements = ShapeUtil::ElementsIn(dynamic_update_slice->shape()); current_properties_[kBytesAccessedKey] = update_shape_size * 2 + start_indices_shape_size; current_properties_.set_output_bytes_accessed(update_shape_size); current_properties_.set_operand_bytes_accessed(0, 0); current_properties_.set_operand_bytes_accessed(1, update_shape_size); current_properties_.set_operand_bytes_accessed(2, start_indices_shape_size); current_properties_.set_operand_utilization( 0, 1.0 * (num_output_elements - num_update_elements) / num_output_elements); return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleTuple(const HloInstruction* tuple) { current_properties_[kBytesAccessedKey] = GetShapeSize(tuple->shape()); current_properties_.set_output_bytes_accessed(GetShapeSize(tuple->shape())); for (int i = 0; i < tuple->operand_count(); ++i) { current_properties_.set_operand_bytes_accessed(i, 0); } return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleConcatenate(const HloInstruction*) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleConvert(const HloInstruction* convert) { return HandleElementwiseOp(convert); } absl::Status HloCostAnalysis::HandleCopy(const HloInstruction*) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleDomain(const HloInstruction* domain) { current_should_compute_bottleneck_time_ = false; current_properties_[kBytesAccessedKey] = 0; current_properties_.set_output_bytes_accessed(0); for (int i = 0; i < domain->operand_count(); ++i) { current_properties_.set_operand_bytes_accessed(i, 0); } current_properties_[kOptimalSecondsKey] = 0; return absl::OkStatus(); } int64_t HloCostAnalysis::GetDotFlops(const Shape& lhs_shape, const Shape& result_shape, const DotDimensionNumbers& dnums) { int64_t reduction_width = 1; for (auto dim : dnums.lhs_contracting_dimensions()) { reduction_width *= lhs_shape.dimensions(dim); } return kFmaFlops * ShapeUtil::ElementsIn(result_shape) * reduction_width; } absl::Status HloCostAnalysis::HandleDot(const HloInstruction* dot) { current_properties_[kFlopsKey] = GetDotFlops( dot->operand(0)->shape(), dot->shape(), dot->dot_dimension_numbers()); return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleInfeed(const HloInstruction* infeed) { int64_t size = 0; ShapeUtil::ForEachLeafShape( infeed->shape(), [&](const Shape& sub_shape, const ShapeIndex& index) { size += GetShapeSize(sub_shape); current_properties_.set_output_bytes_accessed(index, GetShapeSize(sub_shape)); }); current_properties_.set_output_bytes_accessed(size); current_properties_[kBytesAccessedKey] = size; return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleOutfeed(const HloInstruction* outfeed) { current_properties_[kBytesAccessedKey] = 0; for (int64_t i = 0; i < outfeed->operand_count(); ++i) { const HloInstruction* operand = outfeed->operand(i); int64_t size = 0; ShapeUtil::ForEachLeafShape( operand->shape(), [&](const Shape& sub_shape, const ShapeIndex& index) { size += GetShapeSize(sub_shape); current_properties_.set_operand_bytes_accessed( i, index, GetShapeSize(sub_shape)); }); current_properties_.set_operand_bytes_accessed(i, size); current_properties_[kBytesAccessedKey] += size; } return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleMap(const HloInstruction* map) { TF_ASSIGN_OR_RETURN(const Properties sub_properties, ProcessSubcomputation(map->to_apply())); const int64_t element_count = ShapeUtil::ElementsIn(map->shape()); sub_properties.ForEach([&](absl::string_view key, float val) { if (KeyToCopyFromSubcomputation(key)) { current_properties_[key] = val * element_count; } }); return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleReduce(const HloInstruction* reduce) { HloComputation* function = reduce->to_apply(); TF_ASSIGN_OR_RETURN(const Properties sub_properties, ProcessSubcomputation(function)); auto arg = reduce->operand(0); auto output_shape = reduce->shape().IsArray() ? reduce->shape() : reduce->shape().tuple_shapes(0); int64_t reduction_count = ShapeUtil::ElementsIn(arg->shape()) - ShapeUtil::ElementsIn(output_shape); sub_properties.ForEach([&](absl::string_view key, float val) { if (KeyToCopyFromSubcomputation(key)) { current_properties_[key] = val * reduction_count; } }); return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleReduceWindow( const HloInstruction* reduce_window) { const Window& window = reduce_window->window(); auto function = reduce_window->to_apply(); TF_ASSIGN_OR_RETURN(Properties sub_properties, ProcessSubcomputation(function)); int64_t window_element_count = 1; for (const auto& dimension : window.dimensions()) { window_element_count *= dimension.size(); } const int64_t input_element_count = ShapeUtil::ElementsIn(reduce_window->operand(0)->shape()); const int64_t output_element_count = ShapeUtil::ElementsIn(reduce_window->shape().IsArray() ? reduce_window->shape() : reduce_window->shape().tuple_shapes(0)); int64_t reduction_count = (window_element_count - 1) * output_element_count; bool optimized_rw = false; int64_t logical_reduction_dim = -1; int64_t num_reduction_dimensions = absl::c_count_if( window.dimensions(), [](const WindowDimension& dim) { return (dim.size() != 1); }); int64_t num_padded_dimensions = absl::c_count_if(window.dimensions(), [](const WindowDimension& dim) { return (dim.padding_low() != 0 || dim.padding_high() != 0); }); if (num_reduction_dimensions == 1 && num_padded_dimensions == 1 && reduce_window->shape().IsArray()) { auto reduction_dim = absl::c_find_if(window.dimensions(), [](const WindowDimension& dim) { return (dim.size() != 1 && dim.padding_low() != 0 && dim.padding_high() != 0 && dim.padding_low() == dim.padding_high() && dim.size() == 2 * dim.padding_low() + 1); }); if (reduction_dim != window.dimensions().end()) { logical_reduction_dim = reduction_dim - window.dimensions().begin(); optimized_rw = reduction_dim->padding_low() == reduce_window->shape().dimensions(logical_reduction_dim) - 1; } } if (optimized_rw) { window_element_count = reduce_window->shape().dimensions(logical_reduction_dim); reduction_count = (output_element_count / window_element_count) + (window_element_count - 1); VLOG(3) << "Reduction count: " << reduction_count << " reported for reduce-window:\n" << reduce_window->ToString(); } if (options_.count_multiple_input_accesses) { current_properties_.set_operand_utilization(0, 1.0 * output_element_count * window_element_count / input_element_count); current_properties_.set_operand_bytes_accessed( 0, output_element_count * window_element_count * ShapeUtil::ByteSizeOfPrimitiveType( reduce_window->operand(0)->shape().element_type())); } sub_properties.ForEach([&](absl::string_view key, float val) { if (KeyToCopyFromSubcomputation(key)) { current_properties_[key] = val * reduction_count; } }); return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleSelectAndScatter( const HloInstruction* instruction) { TF_ASSIGN_OR_RETURN(Properties select_properties, ProcessSubcomputation(instruction->select())); TF_ASSIGN_OR_RETURN(Properties scatter_properties, ProcessSubcomputation(instruction->scatter())); const auto source = instruction->operand(1); const auto source_element_count = ShapeUtil::ElementsIn(source->shape()); int64_t window_element_count = 1; for (const auto& dimension : instruction->window().dimensions()) { window_element_count *= dimension.size(); } const int64_t select_count = source_element_count * (window_element_count - 1); select_properties.ForEach([&](absl::string_view key, float val) { if (KeyToCopyFromSubcomputation(key)) { current_properties_[key] += val * select_count; } }); scatter_properties.ForEach([&](absl::string_view key, float val) { if (KeyToCopyFromSubcomputation(key)) { current_properties_[key] += val * source_element_count; } }); return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleBitcast(const HloInstruction*) { current_properties_[kBytesAccessedKey] = 0; current_properties_.set_output_bytes_accessed(0); current_properties_.set_operand_bytes_accessed(0, 0); current_properties_[kOptimalSecondsKey] = 0; return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleBroadcast(const HloInstruction* broadcast) { if (options_.count_multiple_input_accesses) { current_properties_.set_operand_bytes_accessed( 0, GetShapeSize(broadcast->shape())); current_properties_.set_operand_utilization( 0, 1.0 * ShapeUtil::ElementsIn(broadcast->shape()) / ShapeUtil::ElementsIn(broadcast->operand(0)->shape())); } return absl::OkStatus(); } absl::Status HloCostAnalysis::HandlePad(const HloInstruction*) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleAsyncStart( const HloInstruction* async_start) { TF_ASSIGN_OR_RETURN( current_properties_, ProcessSubcomputation(async_start->called_computations()[0])); return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleAsyncUpdate(const HloInstruction*) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleAsyncDone(const HloInstruction*) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleCopyStart(const HloInstruction*) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleCopyDone(const HloInstruction*) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleSend(const HloInstruction*) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleSendDone(const HloInstruction*) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleRecv(const HloInstruction*) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleRecvDone(const HloInstruction*) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleReshape(const HloInstruction*) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleDynamicReshape(const HloInstruction*) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleBatchNormTraining(const HloInstruction*) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleBatchNormInference(const HloInstruction*) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleBatchNormGrad(const HloInstruction*) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleTranspose(const HloInstruction* transpose) { if (transpose->IsEffectiveBitcast()) { return HandleBitcast(transpose); } return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleAfterAll(const HloInstruction* token) { current_should_compute_bottleneck_time_ = false; current_properties_[kBytesAccessedKey] = 0; current_properties_.set_output_bytes_accessed(0); for (int i = 0; i < token->operand_count(); ++i) { current_properties_.set_operand_bytes_accessed(i, 0); } current_properties_[kOptimalSecondsKey] = 0; return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleAddDependency( const HloInstruction* add_dependency) { current_should_compute_bottleneck_time_ = false; current_properties_[kBytesAccessedKey] = 0; current_properties_.set_output_bytes_accessed(0); for (int i = 0; i < add_dependency->operand_count(); ++i) { current_properties_.set_operand_bytes_accessed(i, 0); } current_properties_[kOptimalSecondsKey] = 0; return absl::OkStatus(); } int64_t HloCostAnalysis::GetConvolutionFlops( const HloInstruction* convolution) { auto lhs = convolution->operand(0); auto rhs = convolution->operand(1); const Shape& lhs_shape = lhs->shape(); const Shape& rhs_shape = rhs->shape(); const Shape& result_shape = convolution->shape(); return GetConvolutionFlops(convolution, lhs_shape, rhs_shape, result_shape); } int64_t HloCostAnalysis::GetConvolutionFlops(const HloInstruction* convolution, const Shape& lhs_shape, const Shape& rhs_shape, const Shape& result_shape) { Window window = convolution->window(); const auto& dnums = convolution->convolution_dimension_numbers(); const int64_t input_batch_dim = dnums.input_batch_dimension(); const int64_t input_feature_dim = dnums.input_feature_dimension(); const int64_t output_feature_dim = dnums.output_feature_dimension(); const int64_t input_feature = ShapeUtil::GetDimension(lhs_shape, input_feature_dim); const int64_t output_feature = ShapeUtil::GetDimension(result_shape, output_feature_dim); const int64_t batch = ShapeUtil::GetDimension(lhs_shape, input_batch_dim); DimensionVector kernel_limits; DimensionVector output_limits; DimensionVector input_limits; if (window.dimensions().empty()) { window = window_util::MakeWindow({1}); kernel_limits.push_back(1); output_limits.push_back(1); input_limits.push_back(1); } else { for (int64_t spatial_dimension = 0; spatial_dimension < window.dimensions_size(); ++spatial_dimension) { const int64_t kernel_spatial_dim = dnums.kernel_spatial_dimensions(spatial_dimension); const int64_t kernel_limit = rhs_shape.dimensions(kernel_spatial_dim); kernel_limits.push_back(kernel_limit); const int64_t output_spatial_dim = dnums.output_spatial_dimensions(spatial_dimension); const int64_t output_limit = result_shape.dimensions(output_spatial_dim); output_limits.push_back(output_limit); const int64_t input_spatial_dim = dnums.input_spatial_dimensions(spatial_dimension); const int64_t input_limit = lhs_shape.dimensions(input_spatial_dim); input_limits.push_back(input_limit); } } DimensionVector valid_position_counts; for (int64_t spatial_dimension = 0; spatial_dimension < window.dimensions_size(); ++spatial_dimension) { const auto& window_dim = window.dimensions(spatial_dimension); if (input_limits[spatial_dimension] == output_limits[spatial_dimension] && kernel_limits[spatial_dimension] == output_limits[spatial_dimension] && input_limits[spatial_dimension] == window_dim.base_dilation() && window_dim.window_dilation() == 1 && std::max<int64_t>(1, input_limits[spatial_dimension] - 1) == window_dim.stride() && window_dim.padding_low() == 0 && window_dim.padding_high() == 0) { valid_position_counts.push_back(input_limits[spatial_dimension]); continue; } if (input_limits[spatial_dimension] == 1 && kernel_limits[spatial_dimension] == output_limits[spatial_dimension] && window_dim.window_dilation() == 1 && window_dim.base_dilation() == 1 && window_dim.stride() == 1 && window_dim.padding_high() == output_limits[spatial_dimension] - 1 && window_dim.padding_low() == output_limits[spatial_dimension] - 1) { valid_position_counts.push_back(output_limits[spatial_dimension]); continue; } int64_t valid_position_count = 0; for (int64_t kernel_idx = 0; kernel_idx < kernel_limits[spatial_dimension]; ++kernel_idx) { if (window_dim.stride() == 1 && window_dim.base_dilation() == 1) { const int64_t undilated_index_base = window_dim.padding_low() - kernel_idx * window_dim.window_dilation(); valid_position_count += std::max<int64_t>( std::min<int64_t>( input_limits[spatial_dimension] + undilated_index_base, output_limits[spatial_dimension]) - std::max<int64_t>(undilated_index_base, int64_t{0}), int64_t{0}); continue; } for (int64_t output_idx = 0; output_idx < output_limits[spatial_dimension]; ++output_idx) { const int64_t undilated_index = output_idx * window_dim.stride() - window_dim.padding_low() + kernel_idx * window_dim.window_dilation(); const int64_t lhs_spatial_index = window_dim.base_dilation() > 1 ? undilated_index / window_dim.base_dilation() : undilated_index; if (undilated_index != lhs_spatial_index * window_dim.base_dilation()) { continue; } if (lhs_spatial_index < 0 || lhs_spatial_index >= input_limits[spatial_dimension]) { continue; } valid_position_count += 1; } } valid_position_counts.push_back(valid_position_count); } const int64_t fma_count = (input_feature / convolution->feature_group_count()) * output_feature * (batch / convolution->batch_group_count()) * Product(valid_position_counts); return fma_count * kFmaFlops; } absl::Status HloCostAnalysis::HandleConvolution( const HloInstruction* convolution) { current_properties_[kFlopsKey] = GetConvolutionFlops(convolution); return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleFft(const HloInstruction* fft) { auto real_shape = fft->operand(0)->shape().IsTuple() ? ShapeUtil::GetTupleElementShape(fft->operand(0)->shape(), 0) : fft->operand(0)->shape(); constexpr int kFmaPerComplexMul = 4; int64_t log_factors = 1; for (int64_t dim : fft->fft_length()) { log_factors *= Log2Floor<uint64_t>(dim); } current_properties_[kFlopsKey] = kFmaFlops * kFmaPerComplexMul * log_factors * ShapeUtil::ElementsIn(real_shape); return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleTriangularSolve(const HloInstruction* hlo) { float bytes_accessed = GetShapeSize(hlo->shape()); current_properties_.set_output_bytes_accessed(GetShapeSize(hlo->shape())); bytes_accessed += GetShapeSize(hlo->operand(0)->shape()) / 2.0f; current_properties_.set_operand_bytes_accessed( 0, GetShapeSize(hlo->operand(0)->shape()) / 2.0f); bytes_accessed += GetShapeSize(hlo->operand(1)->shape()); current_properties_.set_operand_bytes_accessed( 0, GetShapeSize(hlo->operand(1)->shape())); current_properties_[kBytesAccessedKey] = bytes_accessed; const Shape& a_shape = hlo->operand(0)->shape(); const Shape& b_shape = hlo->operand(1)->shape(); int64_t elems = a_shape.dimensions(a_shape.dimensions_size() - 1); elems *= ShapeUtil::ElementsIn(b_shape); current_properties_[kFlopsKey] = kFmaFlops * elems; return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleCholesky(const HloInstruction* hlo) { float bytes_accessed = GetShapeSize(hlo->operand(0)->shape()) / 2.0f; current_properties_.set_output_bytes_accessed( GetShapeSize(hlo->operand(0)->shape()) / 2.0f); bytes_accessed += GetShapeSize(hlo->operand(0)->shape()) / 2.0f; current_properties_.set_operand_bytes_accessed( 0, GetShapeSize(hlo->operand(0)->shape()) / 2.0f); current_properties_[kBytesAccessedKey] = bytes_accessed; const Shape& a_shape = hlo->operand(0)->shape(); int64_t elems = a_shape.dimensions(a_shape.dimensions_size() - 1); elems *= ShapeUtil::ElementsIn(a_shape); current_properties_[kFlopsKey] = elems / 3; return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleOptimizationBarrier( const HloInstruction* ) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleAllGather(const HloInstruction* ) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleAllGatherStart(const HloInstruction* hlo) { return HandleAllGather(hlo); } absl::Status HloCostAnalysis::HandleAllGatherDone( const HloInstruction* ) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleAllReduce(const HloInstruction* crs) { double flops = 0.0; int64_t output_bytes_accessed = 0; ShapeUtil::ForEachSubshape( crs->shape(), [&](const Shape& subshape, const ShapeIndex&) { if (subshape.IsArray()) { flops += ShapeUtil::ElementsIn(subshape); output_bytes_accessed += GetShapeSize(subshape); } }); int64_t bytes_accessed = output_bytes_accessed; for (const HloInstruction* operand : crs->operands()) { bytes_accessed += GetShapeSize(operand->shape()); } current_properties_[kFlopsKey] = flops; current_properties_.set_output_bytes_accessed(output_bytes_accessed); current_properties_[kBytesAccessedKey] = bytes_accessed; return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleReduceScatter(const HloInstruction* hlo) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleAllReduceStart(const HloInstruction* hlo) { return HandleAllReduce(hlo); } absl::Status HloCostAnalysis::HandleAllReduceDone( const HloInstruction* ) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleAllToAll(const HloInstruction* hlo) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleCollectiveBroadcast( const HloInstruction* ) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleCollectivePermute( const HloInstruction* ) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleCollectivePermuteStart( const HloInstruction* ) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleCollectivePermuteDone( const HloInstruction* ) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandlePartitionId(const HloInstruction* ) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleReplicaId(const HloInstruction* ) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleRng(const HloInstruction* random) { current_properties_[kTranscendentalsKey] = ShapeUtil::ElementsIn(random->shape()); return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleRngBitGenerator( const HloInstruction* random) { current_properties_[kTranscendentalsKey] = ShapeUtil::ElementsInRecursive(random->shape()); return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleRngGetAndUpdateState( const HloInstruction* random) { return absl::OkStatus(); } absl::Status HloCostAnalysis::FusionProcessOutputBytesAccessed( const HloInstruction* fusion) { ShapeUtil::ForEachSubshape( fusion->shape(), [this, fusion](const Shape& subshape, const ShapeIndex& shape_index) { if (!subshape.IsArray()) { return; } const HloInstruction* root = fusion->fused_expression_root(); auto further_examine_index = shape_index.size() == 1 && root->opcode() == HloOpcode::kTuple; if (further_examine_index && ShouldFilterFusionOutputIndex(fusion, shape_index)) { current_properties_.set_output_bytes_accessed(shape_index, 0); hlo_properties_[root->operand(shape_index[0])] [GetOperandUtilizationKey(0)] = 0; return; } if (further_examine_index) { root = root->operand(shape_index[0]); } if (root->opcode() == HloOpcode::kDynamicUpdateSlice) { int64_t size = GetShapeSize(root->operand(1)->shape()); current_properties_[kBytesAccessedKey] += size; current_properties_.set_output_bytes_accessed(shape_index, size); hlo_properties_[root][GetOperandUtilizationKey(0)] = 0; return; } current_properties_[kBytesAccessedKey] += GetShapeSize(subshape); current_properties_.set_output_bytes_accessed(shape_index, GetShapeSize(subshape)); }); if (fusion->shape().IsTuple()) { std::function<float(const Shape&, const ShapeIndex&)> propagate_output_size_to_parent; propagate_output_size_to_parent = [&](const Shape& shape, const ShapeIndex& shape_index) { float& bytes_accessed = current_properties_[GetOutputBytesAccessedKey(shape_index)]; if (bytes_accessed != 0) { return bytes_accessed; } for (int i = 0; i < shape.tuple_shapes_size(); ++i) { const Shape& subshape = shape.tuple_shapes(i); if (!subshape.IsTuple() && ShouldFilterFusionOutputIndex(fusion, {i})) { continue; } ShapeIndex subshape_index(shape_index); subshape_index.push_back(i); bytes_accessed += propagate_output_size_to_parent(subshape, subshape_index); } return bytes_accessed; }; current_properties_[GetOutputBytesAccessedKey()] = 0; propagate_output_size_to_parent(fusion->shape(), {}); } return absl::OkStatus(); } absl::Status HloCostAnalysis::FusionProcessOperandBytesRead( const HloInstruction* fusion) { for (int64_t i = 0; i < fusion->fused_parameters().size(); ++i) { const HloInstruction* operand = fusion->fused_parameter(i); int64_t operand_size = 0; if (ShouldFilterFusionInput(fusion, i)) { current_properties_.set_operand_bytes_accessed(i, operand_size); current_properties_.set_operand_utilization( i, hlo_properties_[operand][kUtilizationKey]); continue; } if (!operand->shape().IsTuple()) { operand_size = FusionParameterReadBytes(operand); } else { ShapeUtil::ForEachLeafShape( operand->shape(), [&](const Shape& , const ShapeIndex& index) { const HloInstruction* gte = operand; for (int64_t sub_index : index) { for (const HloInstruction* user : gte->users()) { if (user->opcode() == HloOpcode::kGetTupleElement && user->tuple_index() == sub_index) { gte = user; break; } } } int64_t size = FusionParameterReadBytes(gte); operand_size += size; current_properties_.set_operand_bytes_accessed(i, index, size); }); } current_properties_[kBytesAccessedKey] += operand_size; current_properties_.set_operand_bytes_accessed(i, operand_size); current_properties_.set_operand_utilization( i, hlo_properties_[operand][kUtilizationKey]); } return absl::OkStatus(); } absl::Status HloCostAnalysis::FusionCountConstantsMemoryAccess( const HloInstruction* fusion) { for (const HloInstruction* instr : fusion->fused_instructions_computation()->instructions()) { if (instr->opcode() == HloOpcode::kConstant && ShapeUtil::ElementsIn(instr->shape()) > immediate_constant_max_elements()) { float utilization = hlo_properties_[instr][kUtilizationKey]; if (!options_.count_multiple_input_accesses) { utilization = fmin(utilization, 1.0); } current_properties_[kBytesAccessedKey] += GetShapeSize(instr->shape()) * utilization; } } return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleFusion(const HloInstruction* fusion) { VLOG(8) << "Processing fusion " << fusion->ToString(); if (fusion->IsCustomFusion()) { for (const HloInstruction* hlo : fusion->fused_instructions_computation()->instructions()) { if (hlo->opcode() == HloOpcode::kGather) { return HandleGather(hlo); } if (hlo->opcode() == HloOpcode::kScatter) { return HandleScatter(hlo); } } } TF_ASSIGN_OR_RETURN( current_properties_, ProcessSubcomputation(fusion->fused_instructions_computation())); current_properties_[kBytesAccessedKey] = 0; TF_RETURN_IF_ERROR(FusionProcessOutputBytesAccessed(fusion)); TF_RETURN_IF_ERROR(FusionCalculateUtilizations(fusion)); TF_RETURN_IF_ERROR(FusionCountConstantsMemoryAccess(fusion)); TF_RETURN_IF_ERROR(FusionProcessOperandBytesRead(fusion)); return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleCall(const HloInstruction* call) { TF_ASSIGN_OR_RETURN(current_properties_, ProcessSubcomputation(call->to_apply())); current_should_compute_bottleneck_time_ = false; return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleCustomCall( const HloInstruction* custom_call) { current_properties_[kOptimalSecondsKey] = -1; current_properties_[kBytesAccessedKey] = -1; current_properties_.set_output_bytes_accessed(-1); for (int i = 0; i < custom_call->operand_count(); ++i) { current_properties_.set_operand_bytes_accessed(i, -1); } current_properties_[kFlopsKey] = -1; current_should_compute_bottleneck_time_ = false; return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleSort(const HloInstruction* sort) { int64_t elements = ShapeUtil::ElementsIn(sort->operand(0)->shape()); current_properties_[kFlopsKey] = elements * Log2Ceiling<uint64_t>(elements); return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleTopK(const HloInstruction* topk) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleWhile(const HloInstruction* xla_while) { TF_ASSIGN_OR_RETURN(const Properties body_properties, ProcessSubcomputation(xla_while->while_body())); TF_ASSIGN_OR_RETURN(const Properties condition_properties, ProcessSubcomputation(xla_while->while_condition())); current_properties_ = Properties(); body_properties.ForEach([&](absl::string_view key, float val) { current_properties_[key] += val; }); condition_properties.ForEach([&](absl::string_view key, float val) { current_properties_[key] += val; }); current_should_compute_bottleneck_time_ = false; return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleConditional( const HloInstruction* conditional) { TF_ASSIGN_OR_RETURN( const Properties branch0_computation_properties, ProcessSubcomputation(conditional->branch_computation(0))); current_properties_ = branch0_computation_properties; for (int j = 1; j < conditional->branch_count(); ++j) { TF_ASSIGN_OR_RETURN( const Properties branch_computation_properties, ProcessSubcomputation(conditional->branch_computation(j))); branch_computation_properties.ForEach( [&](absl::string_view key, float val) { auto& current_property = current_properties_[key]; current_property = std::max(current_property, val); }); } current_should_compute_bottleneck_time_ = false; return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleGather(const HloInstruction* gather) { int64_t output_size = GetShapeSize(gather->shape()); current_properties_[kBytesAccessedKey] = output_size * 2 + GetShapeSize(gather->operand(1)->shape()); current_properties_.set_operand_bytes_accessed(0, output_size); current_properties_.set_operand_bytes_accessed( 1, GetShapeSize(gather->operand(1)->shape())); current_properties_.set_operand_utilization( 0, 1.0 * ShapeUtil::ElementsIn(gather->shape()) / ShapeUtil::ElementsIn(gather->operand(0)->shape())); current_properties_.set_output_bytes_accessed(output_size); return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleScatter(const HloInstruction* hlo) { auto* scatter = Cast<HloScatterInstruction>(hlo); int64_t total_update_size = 0; for (int i = 0, n = scatter->scatter_operand_count(); i < n; ++i) { int64_t update_size = GetShapeSize(scatter->scatter_updates()[i]->shape()); current_properties_.set_operand_bytes_accessed(i, update_size); current_properties_.set_operand_bytes_accessed(n + 1 + i, update_size); total_update_size += update_size; } int64_t scatter_indices_size = GetShapeSize(scatter->scatter_indices()->shape()); current_properties_.set_operand_bytes_accessed( scatter->scatter_operand_count(), scatter_indices_size); current_properties_[kBytesAccessedKey] = total_update_size * 3 + scatter_indices_size; current_properties_.set_output_bytes_accessed(total_update_size); const int64_t element_count = ShapeUtil::ElementsIn(scatter->scatter_updates()[0]->shape()); TF_ASSIGN_OR_RETURN(const Properties sub_properties, ProcessSubcomputation(scatter->to_apply())); sub_properties.ForEach([&](absl::string_view key, float val) { if (KeyToCopyFromSubcomputation(key)) { current_properties_[key] = val * element_count; } }); return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleGetDimensionSize( const HloInstruction* ) { return absl::OkStatus(); } absl::Status HloCostAnalysis::HandleSetDimensionSize( const HloInstruction* ) { return absl::OkStatus(); } absl::Status HloCostAnalysis::FinishVisit(const HloInstruction*) { return absl::OkStatus(); } float HloCostAnalysis::flop_count() const { return properties_sum_[kFlopsKey]; } float HloCostAnalysis::transcendental_count() const { return properties_sum_[kTranscendentalsKey]; } float HloCostAnalysis::bytes_accessed() const { return properties_sum_[kBytesAccessedKey]; } float HloCostAnalysis::optimal_seconds() const { return properties_sum_[kOptimalSecondsKey]; } HloCostAnalysis::Properties HloCostAnalysis::properties( const HloInstruction& hlo) const { auto it = hlo_properties_.find(&hlo); if (it == hlo_properties_.end()) { return Properties(); } return it->second; } int64_t HloCostAnalysis::flop_count(const HloInstruction& hlo) const { return GetPropertyForHlo(hlo, kFlopsKey, hlo_properties_); } int64_t HloCostAnalysis::transcendental_count(const HloInstruction& hlo) const { return GetPropertyForHlo(hlo, kTranscendentalsKey, hlo_properties_); } int64_t HloCostAnalysis::bytes_accessed(const HloInstruction& hlo) const { return GetPropertyForHlo(hlo, kBytesAccessedKey, hlo_properties_); } int64_t HloCostAnalysis::operand_bytes_accessed(const HloInstruction& hlo, int64_t operand_num, ShapeIndex index) const { return GetPropertyForHlo(hlo, GetOperandBytesAccessedKey(operand_num, index), hlo_properties_); } float HloCostAnalysis::operand_utilization(const HloInstruction& hlo, int64_t operand_num, ShapeIndex index) const { return GetPropertyForHlo(hlo, GetOperandUtilizationKey(operand_num, index), hlo_properties_); } int64_t HloCostAnalysis::output_bytes_accessed(const HloInstruction& hlo, ShapeIndex index) const { return GetPropertyForHlo(hlo, GetOutputBytesAccessedKey(index), hlo_properties_); } float HloCostAnalysis::optimal_seconds(const HloInstruction& hlo) const { return GetPropertyForHlo(hlo, kOptimalSecondsKey, hlo_properties_); } int64_t HloCostAnalysis::GetBytesRead( const HloInstruction& hlo, std::optional<int64_t> memory_space) const { int64_t bytes_read = 0; for (int operand_number = 0; operand_number < hlo.operand_count(); ++operand_number) { const Shape& shape = hlo.operand(operand_number)->shape(); ShapeUtil::ForEachSubshape( shape, [&](const Shape& sub_shape, const ShapeIndex& index) { if (ShapeUtil::IsLeafIndex(shape, index)) { std::optional<int64_t> index_memory_space; if (sub_shape.has_layout()) { index_memory_space = sub_shape.layout().memory_space(); } if (!memory_space || memory_space == index_memory_space) { bytes_read += operand_bytes_accessed(hlo, operand_number, index); } } }); } return bytes_read; } int64_t HloCostAnalysis::GetBytesWritten( const HloInstruction& hlo, std::optional<int64_t> memory_space) const { int64_t bytes_written = 0; ShapeUtil::ForEachLeafShape( hlo.shape(), [&](const Shape& sub_shape, const ShapeIndex& index) { std::optional<int64_t> index_memory_space; if (sub_shape.has_layout()) { index_memory_space = sub_shape.layout().memory_space(); } if (!memory_space || memory_space == index_memory_space) { bytes_written += output_bytes_accessed(hlo, index); } }); return bytes_written; } absl::StatusOr<HloCostAnalysis::Properties> HloCostAnalysis::ProcessSubcomputation(HloComputation* computation) { auto visitor = CreateNestedCostAnalysis(); visitor->ReserveVisitStates(computation->instruction_count()); TF_RETURN_IF_ERROR(computation->Accept(visitor.get())); for (auto& entry : visitor->hlo_properties_) { hlo_properties_[entry.first] = std::move(entry.second); } return visitor->properties(); } std::unique_ptr<HloCostAnalysis> HloCostAnalysis::CreateNestedCostAnalysis() { return std::make_unique<HloCostAnalysis>(options_); } std::string HloCostAnalysis::GetOperandBytesAccessedKey( int64_t operand_num, const ShapeIndex& index) { return absl::StrCat(kBytesAccessedKey, operand_num, index.ToString()); } std::string HloCostAnalysis::GetOperandUtilizationKey( int64_t operand_num, const ShapeIndex& index) { return absl::StrCat(kUtilizationKey, operand_num, index.ToString()); } std::string HloCostAnalysis::GetOutputBytesAccessedKey( const ShapeIndex& index) { return absl::StrCat(kBytesAccessedKey, "out", index.ToString()); } bool HloCostAnalysis::KeyToCopyFromSubcomputation(absl::string_view key) const { return !absl::StartsWith(key, kBytesAccessedKey) && !absl::StartsWith(key, kUtilizationKey); } }
#include "xla/service/hlo_cost_analysis.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "xla/client/client.h" #include "xla/client/client_library.h" #include "xla/client/local_client.h" #include "xla/hlo/builder/padding.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/hlo/builder/xla_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_parser.h" #include "xla/service/local_service.h" #include "xla/service/service.h" #include "xla/shape_util.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" namespace xla { namespace { constexpr int64_t kPointerSize = 8; int64_t ShapeSize(const Shape& shape) { return ShapeUtil::ByteSizeOf(shape, kPointerSize); } class HloCostAnalysisTest : public ::testing::Test { protected: HloCostAnalysisTest() : client_(ClientLibrary::LocalClientOrDie()), service_(static_cast<Service*>(ClientLibrary::GetXlaService( static_cast<LocalClient*>(client_)->platform()))) { { XlaBuilder builder("add_and_exp"); auto x = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {}), "x"); auto half = ConstantR0<float>(&builder, 0.5); Exp(Add(x, half)); auto computation_status = builder.Build(); TF_CHECK_OK(computation_status.status()); add_and_exp_ = std::move(computation_status).value(); } { XlaBuilder builder("add"); auto x = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {}), "x"); auto y = Parameter(&builder, 1, ShapeUtil::MakeShape(F32, {}), "y"); Add(x, y); auto computation_status = builder.Build(); TF_CHECK_OK(computation_status.status()); add_ = std::move(computation_status).value(); } { XlaBuilder builder("sigmoid"); auto x = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {}), "x"); auto one = ConstantR0<float>(&builder, 1.0); Div(one, Add(one, Exp(Neg(x)))); auto computation_status = builder.Build(); TF_CHECK_OK(computation_status.status()); sigmoid_ = std::move(computation_status).value(); } { XlaBuilder builder("max"); auto x = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {}), "x"); auto y = Parameter(&builder, 1, ShapeUtil::MakeShape(F32, {}), "y"); Max(x, y); auto computation_status = builder.Build(); TF_CHECK_OK(computation_status.status()); max_ = std::move(computation_status).value(); } { XlaBuilder builder("gt"); auto x = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {}), "x"); auto y = Parameter(&builder, 1, ShapeUtil::MakeShape(F32, {}), "y"); Gt(x, y); auto computation_status = builder.Build(); TF_CHECK_OK(computation_status.status()); gt_ = std::move(computation_status).value(); } } std::unique_ptr<HloModule> BuildHloGraph(XlaBuilder* builder) { auto computation_status = builder->Build(); TF_CHECK_OK(computation_status.status()); auto computation = std::move(computation_status).value(); auto config = HloModule::CreateModuleConfigFromProto(computation.proto(), DebugOptions()) .value(); return HloModule::CreateFromProto(computation.proto(), config).value(); } Client* client_; Service* service_; XlaComputation add_; XlaComputation add_and_exp_; XlaComputation sigmoid_; XlaComputation max_; XlaComputation gt_; }; TEST_F(HloCostAnalysisTest, MatrixMultiply) { XlaBuilder builder("matrix_multiply"); auto lhs = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {10, 5}), "lhs"); auto rhs = Parameter(&builder, 1, ShapeUtil::MakeShape(F32, {5, 30}), "rhs"); Dot(lhs, rhs); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(), 2 * 10 * 30 * 5); EXPECT_EQ(analysis.transcendental_count(), 0); EXPECT_EQ(analysis.bytes_accessed(), sizeof(float) * (10 * 5 + 5 * 30 + 10 * 30)); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), sizeof(float) * 10 * 5); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 1), sizeof(float) * 5 * 30); EXPECT_EQ(analysis.output_bytes_accessed(*root), sizeof(float) * 10 * 30); } TEST_F(HloCostAnalysisTest, DotGeneral) { XlaBuilder builder("matrix_multiply"); auto lhs = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {10, 5, 5}), "lhs"); auto rhs = Parameter(&builder, 1, ShapeUtil::MakeShape(F32, {5, 5, 30}), "rhs"); DotDimensionNumbers dnums; dnums.add_lhs_contracting_dimensions(1); dnums.add_lhs_contracting_dimensions(2); dnums.add_rhs_contracting_dimensions(0); dnums.add_rhs_contracting_dimensions(1); DotGeneral(lhs, rhs, dnums); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(), 2 * 10 * 30 * 5 * 5); EXPECT_EQ(analysis.transcendental_count(), 0); EXPECT_EQ(analysis.bytes_accessed(), sizeof(float) * (10 * 5 * 5 + 5 * 5 * 30 + 10 * 30)); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), sizeof(float) * 10 * 5 * 5); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 1), sizeof(float) * 5 * 5 * 30); EXPECT_EQ(analysis.output_bytes_accessed(*root), sizeof(float) * 10 * 30); } TEST_F(HloCostAnalysisTest, DotGeneral2) { XlaBuilder builder("matrix_multiply"); auto lhs = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {10, 5, 5}), "lhs"); auto rhs = Parameter(&builder, 1, ShapeUtil::MakeShape(F32, {5, 5, 30}), "rhs"); DotDimensionNumbers dnums; dnums.add_lhs_contracting_dimensions(1); dnums.add_lhs_batch_dimensions(2); dnums.add_rhs_contracting_dimensions(0); dnums.add_rhs_batch_dimensions(1); DotGeneral(lhs, rhs, dnums); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(), 2 * 10 * 30 * 5 * 5); EXPECT_EQ(analysis.transcendental_count(), 0); EXPECT_EQ(analysis.bytes_accessed(), sizeof(float) * (10 * 5 * 5 + 5 * 5 * 30 + 5 * 10 * 30)); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), sizeof(float) * 10 * 5 * 5); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 1), sizeof(float) * 5 * 5 * 30); EXPECT_EQ(analysis.output_bytes_accessed(*root), sizeof(float) * 5 * 10 * 30); } TEST_F(HloCostAnalysisTest, DotGeneral3) { XlaBuilder builder("matrix_multiply"); auto lhs = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {10, 5}), "lhs"); auto rhs = Parameter(&builder, 1, ShapeUtil::MakeShape(F32, {5, 30}), "rhs"); DotDimensionNumbers dnums; DotGeneral(lhs, rhs, dnums); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(), 2 * 10 * 30 * 5 * 5); EXPECT_EQ(analysis.transcendental_count(), 0); EXPECT_EQ(analysis.bytes_accessed(), sizeof(float) * (10 * 5 + 5 * 30 + 5 * 5 * 10 * 30)); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), sizeof(float) * 10 * 5); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 1), sizeof(float) * 5 * 30); EXPECT_EQ(analysis.output_bytes_accessed(*root), sizeof(float) * 5 * 5 * 10 * 30); } TEST_F(HloCostAnalysisTest, Map) { XlaBuilder builder("map"); auto input = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {10}), "in"); Map(&builder, {input}, add_and_exp_, {0}); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(), 10); EXPECT_EQ(analysis.transcendental_count(), 10); EXPECT_EQ(analysis.bytes_accessed(), 80); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), sizeof(float) * 10); EXPECT_EQ(analysis.output_bytes_accessed(*root), sizeof(float) * 10); } TEST_F(HloCostAnalysisTest, Convolution) { XlaBuilder builder("convolution"); auto input = Parameter( &builder, 0, ShapeUtil::MakeShape(F32, {1, 1, 10, 20}), "input"); auto kernel = Parameter( &builder, 1, ShapeUtil::MakeShape(F32, {1, 1, 3, 3}), "kernel"); Conv(input, kernel, {1, 1}, Padding::kValid); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(), 8 * 18 * 2 * 3 * 3); EXPECT_EQ(analysis.bytes_accessed(), sizeof(float) * (10 * 20 + 3 * 3 + 8 * 18)); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), sizeof(float) * 10 * 20); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 1), sizeof(float) * 3 * 3); EXPECT_EQ(analysis.output_bytes_accessed(*root), sizeof(float) * 8 * 18); } TEST_F(HloCostAnalysisTest, ConvolutionSame) { XlaBuilder builder("convolution_same"); const int iw = 3; const int ih = 3; const int kw = 3; const int kh = 3; const int ow = iw; const int oh = ih; const int sx = 1; const int sy = 1; auto input = Parameter( &builder, 0, ShapeUtil::MakeShape(F32, {1, 1, ih, iw}), "input"); auto kernel = Parameter( &builder, 1, ShapeUtil::MakeShape(F32, {1, 1, kh, kw}), "kernel"); Conv(input, kernel, {sx, sy}, Padding::kSame); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(), 2 * (4 + 6 + 4 + 6 + 9 + 6 + 4 + 6 + 4)); EXPECT_EQ(analysis.bytes_accessed(), sizeof(float) * (iw * ih + kw * kh + ow * oh)); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), sizeof(float) * iw * ih); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 1), sizeof(float) * kw * kh); EXPECT_EQ(analysis.output_bytes_accessed(*root), sizeof(float) * ow * oh); } TEST_F(HloCostAnalysisTest, ConvolutionExtreme) { XlaBuilder builder("convolution"); constexpr int64_t kLarge = 512 * 1024; auto input = Parameter( &builder, 0, ShapeUtil::MakeShape(F32, {1, 1, kLarge}), "input"); auto kernel = Parameter( &builder, 1, ShapeUtil::MakeShape(F32, {1, 1, kLarge}), "kernel"); ConvGeneralDilated(input, kernel, {kLarge - 1}, {{0, 0}}, {kLarge}, {1}, XlaBuilder::CreateDefaultConvDimensionNumbers(1)); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(), 2 * kLarge); } TEST_F(HloCostAnalysisTest, ConvolutionExtreme2) { XlaBuilder builder("convolution"); constexpr int64_t kLarge = 512 * 1024; auto input = Parameter( &builder, 0, ShapeUtil::MakeShape(F32, {1, 1, 1}), "input"); auto kernel = Parameter( &builder, 1, ShapeUtil::MakeShape(F32, {1, 1, kLarge}), "kernel"); ConvGeneralDilated(input, kernel, {1}, {{kLarge - 1, kLarge - 1}}, {1}, {1}, XlaBuilder::CreateDefaultConvDimensionNumbers(1)); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(), 2 * kLarge); } TEST_F(HloCostAnalysisTest, ConvolutionWithFeatureGroup) { XlaBuilder builder("convolution"); auto input = Parameter( &builder, 0, ShapeUtil::MakeShape(F32, {1, 120, 10, 20}), "input"); auto kernel = Parameter( &builder, 1, ShapeUtil::MakeShape(F32, {120, 1, 3, 3}), "kernel"); Conv(input, kernel, {1, 1}, Padding::kValid, 120); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(), 120 * 8 * 18 * 2 * 3 * 3); EXPECT_EQ(analysis.bytes_accessed(), sizeof(float) * (120 * 10 * 20 + 120 * 3 * 3 + 120 * 8 * 18)); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), sizeof(float) * 120 * 10 * 20); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 1), sizeof(float) * 120 * 3 * 3); EXPECT_EQ(analysis.output_bytes_accessed(*root), sizeof(float) * 120 * 8 * 18); } TEST_F(HloCostAnalysisTest, Reduce) { XlaBuilder builder("reduce"); auto input = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {10, 20}), "input"); Reduce(input, ConstantR0<float>(&builder, 0.0f), add_, {1}); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(), 10 * 20 - 10); EXPECT_EQ(analysis.bytes_accessed(), sizeof(float) * (10 * 20 + 1 + 10)); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), sizeof(float) * 10 * 20); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 1), sizeof(float) * 1); EXPECT_EQ(analysis.output_bytes_accessed(*root), sizeof(float) * 10); } TEST_F(HloCostAnalysisTest, ReduceWindow) { XlaBuilder builder("reduce_window"); auto input = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {10, 20}), "input"); ReduceWindow(input, ConstantR0<float>(&builder, 0), add_, {4, 5}, {4, 5}, Padding::kValid); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(), 2 * 4 * (4 * 5 - 1)); EXPECT_EQ(analysis.bytes_accessed(), sizeof(float) * (10 * 20 + 1 + 2 * 4)); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), sizeof(float) * 10 * 20); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 1), sizeof(float) * 1); EXPECT_EQ(analysis.output_bytes_accessed(*root), sizeof(float) * 2 * 4); } TEST_F(HloCostAnalysisTest, ReduceWindowWithOverlaps) { XlaBuilder builder("reduce_window"); auto input = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {8, 8}), "input"); ReduceWindow(input, ConstantR0<float>(&builder, 0), add_, {4, 5}, {2, 1}, Padding::kValid); auto hlo_module = BuildHloGraph(&builder); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); int n_output_elements = 3 * 4; HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK(root->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(), n_output_elements * (4 * 5 - 1)); EXPECT_EQ(analysis.bytes_accessed(), sizeof(float) * (8 * 8 + 1 + n_output_elements)); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), sizeof(float) * 8 * 8); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 1), sizeof(float) * 1); EXPECT_EQ(analysis.output_bytes_accessed(*root), sizeof(float) * n_output_elements); } TEST_F(HloCostAnalysisTest, ReduceWindowSingleDimReduceBroadcast) { absl::string_view hlo_text = R"( HloModule fusion.50 region_0.868 { Arg_1.870 = f32[] parameter(1) Arg_0.869 = f32[] parameter(0) ROOT maximum.871 = f32[] maximum(Arg_0.869, Arg_1.870) } ENTRY fusion.50 { constant.367 = f32[] constant(-inf) param0 = f32[2,3,1024,1024]{2,3,1,0} parameter(0) ROOT reduce-window.159 = f32[2,3,1024,1024]{2,3,1,0} reduce-window(param0, constant.367), window={size=1x1x1x2047 pad=0_0x0_0x0_0x1023_1023}, to_apply=region_0.868 } )"; auto hlo_module = ParseAndReturnUnverifiedModule(hlo_text).value(); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(), (2 * 3 * 1024) + (1024 - 1)); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), sizeof(float) * 2 * 3 * 1024 * 1024); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 1), sizeof(float) * 1); EXPECT_EQ(analysis.output_bytes_accessed(*root), sizeof(float) * 2 * 3 * 1024 * 1024); } TEST_F(HloCostAnalysisTest, ReduceWindowVariadic) { XlaBuilder builder("reduce_window_variadic"); auto elem_shape = ShapeUtil::MakeShape(F32, {}); auto p2 = Parameter(&builder, 0, elem_shape, "x0"); auto p3 = Parameter(&builder, 1, elem_shape, "x1"); auto p4 = Parameter(&builder, 2, elem_shape, "y0"); auto p5 = Parameter(&builder, 3, elem_shape, "y1"); absl::InlinedVector<XlaOp, 2> compute_vec = {Min(p2, p4), Min(p3, p5)}; Tuple(&builder, compute_vec); TF_ASSERT_OK_AND_ASSIGN(auto compute_tuple, builder.Build()); auto input1 = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {10, 20}), "input1"); auto input2 = Parameter(&builder, 1, ShapeUtil::MakeShape(F32, {10, 20}), "input2"); auto init = ConstantR0<float>(&builder, 0); ReduceWindow({input1, input2}, {init, init}, compute_tuple, {4, 5}, {4, 5}, Padding::kValid); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(), 2 * 4 * 2 * (4 * 5 - 1)); EXPECT_EQ(analysis.bytes_accessed(), sizeof(float) * (10 * 20 * 2 + 2 * 3)); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 1), sizeof(float) * 10 * 20); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), sizeof(float) * 10 * 20); EXPECT_EQ(analysis.output_bytes_accessed(*root), sizeof(float) * 4); } TEST_F(HloCostAnalysisTest, SelectAndScatter) { XlaBuilder builder("select_and_scatter"); auto operand = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {10, 20}), "input"); auto source = Parameter(&builder, 1, ShapeUtil::MakeShape(F32, {2, 4}), "source"); SelectAndScatter(operand, gt_, {4, 5}, {4, 5}, Padding::kValid, source, ConstantR0<float>(&builder, 0), add_); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(), 2 * 4 * (4 * 5 - 1 + 1)); EXPECT_EQ(analysis.bytes_accessed(), sizeof(float) * (10 * 20 + 2 * 4 + 1 + 10 * 20)); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), sizeof(float) * 10 * 20); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 1), sizeof(float) * 2 * 4); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 2), sizeof(float) * 1); EXPECT_EQ(analysis.output_bytes_accessed(*root), sizeof(float) * 10 * 20); } TEST_F(HloCostAnalysisTest, Broadcast) { XlaBuilder b("broadcast"); Broadcast(ConstantR0<float>(&b, 42), {10, 7}); auto hlo_module = BuildHloGraph(&b); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(), 0); EXPECT_EQ(analysis.bytes_accessed(), sizeof(float) * (1 + 10 * 7)); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), sizeof(float) * 1); EXPECT_EQ(analysis.output_bytes_accessed(*root), sizeof(float) * 10 * 7); } TEST_F(HloCostAnalysisTest, BroadcastCountMultipleInputAccesses) { XlaBuilder b("broadcast"); Broadcast(ConstantR0<float>(&b, 42), {10, 7}); auto hlo_module = BuildHloGraph(&b); HloCostAnalysis analysis(HloCostAnalysis::Options{ .shape_size = ShapeSize, .count_multiple_input_accesses = true}); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(), 0); EXPECT_EQ(analysis.bytes_accessed(), sizeof(float) * (1 + 10 * 7)); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), sizeof(float) * 10 * 7); EXPECT_EQ(analysis.output_bytes_accessed(*root), sizeof(float) * 10 * 7); } TEST_F(HloCostAnalysisTest, FullyConnectedForward) { XlaBuilder builder("fully_connected_forward"); auto input = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {10, 5}), "input"); auto weight = Parameter(&builder, 1, ShapeUtil::MakeShape(F32, {5, 20}), "weight"); auto bias = Parameter(&builder, 2, ShapeUtil::MakeShape(F32, {20}), "bias"); Map(&builder, {Add(Dot(input, weight), bias, {1})}, sigmoid_, {0, 1}); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(), 2 * 1000 + 200 + 3 * 200); EXPECT_EQ(analysis.transcendental_count(), 200); } TEST_F(HloCostAnalysisTest, MatmulAndConvolutionCanBeTheSameComputation) { HloCostAnalysis conv_analysis(ShapeSize); { XlaBuilder builder("conv_looking_matmul"); auto lhs = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {64, 64, 1, 1}), "input"); auto rhs = Parameter(&builder, 1, ShapeUtil::MakeShape(F32, {64, 64, 1, 1}), "weights"); Conv(lhs, rhs, {1, 1}, Padding::kSame); auto hlo_module = BuildHloGraph(&builder); ASSERT_IS_OK(hlo_module->entry_computation()->root_instruction()->Accept( &conv_analysis)); } HloCostAnalysis matmul_analysis(ShapeSize); { XlaBuilder builder("matmul"); auto lhs = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {64, 64}), "input"); auto rhs = Parameter(&builder, 1, ShapeUtil::MakeShape(F32, {64, 64}), "weights"); Dot(lhs, rhs); auto hlo_module = BuildHloGraph(&builder); ASSERT_IS_OK(hlo_module->entry_computation()->root_instruction()->Accept( &matmul_analysis)); } EXPECT_EQ(conv_analysis.flop_count(), matmul_analysis.flop_count()); } TEST_F(HloCostAnalysisTest, LatencyBoundedOptimalTime) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY Entry { param0 = f32[1,1] parameter(0) param1 = f32[1,1] parameter(1) ROOT add = f32[1,1] add(param0, param1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(hlo_string)); const HloInstruction* add = module->entry_computation()->root_instruction(); HloCostAnalysis::Options options{ShapeSize}; const float clock_cycle_seconds = 10.0f; options.set_flops_per_second(1024); options.set_bytes_per_second(1024); options.set_transcendentals_per_second(1024); options.set_flops_min_latency_second(clock_cycle_seconds); HloCostAnalysis cost_analysis(options); ASSERT_IS_OK(add->Accept(&cost_analysis)); EXPECT_EQ(cost_analysis.optimal_seconds(), clock_cycle_seconds); } using FusionCostAnalysis = HloTestBase; TEST_F(FusionCostAnalysis, LoopFusionDynUpdateSlice) { const char* hlo_fusion_module_str = R"( HloModule module _.1 { tmp_0 = bf16[50,32,256,1152]{3,2,1,0:T(8,128)(2,1)} parameter(0) tmp_1 = bf16[50,32,256,1152]{3,2,1,0:T(8,128)(2,1)} parameter(2) tmp_2 = s32[]{:T(128)} parameter(1) tmp_3 = s32[]{:T(128)} constant(0) tmp_4 = bf16[1,32,256,1152]{3,2,1,0:T(8,128)(2,1)S(3)} dynamic-slice(tmp_1, tmp_2, tmp_3, tmp_3, tmp_3), dynamic_slice_sizes={1,32,256,1152} tmp_11 = bf16[50,32,256,1152]{3,2,1,0:T(8,128)(2,1)} dynamic-update-slice(tmp_0, tmp_4, tmp_2, tmp_3, tmp_3, tmp_3) ROOT tmp_20 = (bf16[50,32,256,1152]{3,2,1,0:T(8,128)(2,1)}) tuple(tmp_11) } ENTRY _ { _0 = bf16[50,32,256,1152]{3,2,1,0:T(8,128)(2,1)} parameter(0) _1 = s32[]{:T(128)} parameter(1) _4 = bf16[50,32,256,1152]{3,2,1,0:T(8,128)(2,1)} parameter(2) ROOT _ = (bf16[50,32,256,1152]{3,2,1,0:T(8,128)(2,1)}) fusion(_0, _1, _4), kind=kLoop, calls=_.1 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_fusion_module_str)); HloCostAnalysis fusion_analysis(ShapeSize); HloInstruction* fusion = module->entry_computation()->root_instruction(); ASSERT_IS_OK(fusion->Accept(&fusion_analysis)); const char* hlo_dus_module_str = R"( HloModule module ENTRY _ { _0 = bf16[50,32,256,1152]{3,2,1,0:T(8,128)(2,1)} parameter(0) _1 = s32[]{:T(128)} parameter(1) _2 = bf16[1,32,256,1152]{3,2,1,0:T(8,128)(2,1)} parameter(2) ROOT _ = bf16[50,32,256,1152]{3,2,1,0:T(8,128)(2,1)} dynamic-update-slice(_0, _2, _1, _1, _1, _1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto dus_module, ParseAndReturnVerifiedModule(hlo_dus_module_str)); HloCostAnalysis dus_analysis(ShapeSize); auto dus = dus_module->entry_computation()->root_instruction(); ASSERT_IS_OK(dus->Accept(&dus_analysis)); EXPECT_EQ(fusion_analysis.operand_bytes_accessed(*fusion, 0), 0); EXPECT_EQ(fusion_analysis.bytes_accessed(), dus_analysis.bytes_accessed()); EXPECT_EQ(fusion_analysis.operand_bytes_accessed(*fusion, 0), dus_analysis.operand_bytes_accessed(*dus, 0)); EXPECT_EQ(fusion_analysis.operand_bytes_accessed(*fusion, 1), dus_analysis.operand_bytes_accessed(*dus, 2)); EXPECT_EQ(fusion_analysis.operand_bytes_accessed(*fusion, 2), dus_analysis.operand_bytes_accessed(*dus, 1)); EXPECT_EQ(fusion_analysis.output_bytes_accessed(*fusion), dus_analysis.output_bytes_accessed(*dus)); } TEST_F(FusionCostAnalysis, LoopFusion) { for (int i = 0; i < 4; ++i) { Shape r2f32 = ShapeUtil::MakeShape(F32, {2, 2}); HloComputation::Builder builder(TestName()); auto c1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2F32Linspace( 0.0f, 1.0f, 2, 2))); auto c2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2F32Linspace( 1.0f, 2.0f, 2, 2))); auto c3 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2F32Linspace( 2.0f, 3.0f, 2, 2))); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r2f32, HloOpcode::kAdd, c1, c2)); auto clamp = builder.AddInstruction( HloInstruction::CreateTernary(r2f32, HloOpcode::kClamp, c2, add, add)); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r2f32, HloOpcode::kExp, add)); auto mul = builder.AddInstruction( HloInstruction::CreateBinary(r2f32, HloOpcode::kMultiply, exp, c3)); auto sub = builder.AddInstruction( HloInstruction::CreateBinary(r2f32, HloOpcode::kSubtract, mul, clamp)); auto tuple = HloInstruction::CreateTuple({sub, sub, mul, c1}); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* fusion = computation->CreateFusionInstruction( {sub, mul, exp, clamp, add}, HloInstruction::FusionKind::kLoop); HloCostAnalysis::Options options{ShapeSize}; options.set_flops_per_second(16 * (i == 1 ? 1 / 2.0 : 1.0)); options.set_transcendentals_per_second(4 * (i == 2 ? 1 / 4.0 : 1.0)); options.set_bytes_per_second(64 * (i == 3 ? 1 / 8.0 : 1.0)); HloCostAnalysis fusion_analysis(options); ASSERT_IS_OK(fusion->Accept(&fusion_analysis)); EXPECT_EQ(fusion_analysis.flop_count(), 16); EXPECT_EQ(fusion_analysis.transcendental_count(), 4); constexpr int64_t bytes_accessed = sizeof(float) * 4 * 2 * 2; static_assert(bytes_accessed == 64, ""); EXPECT_EQ(fusion_analysis.bytes_accessed(), bytes_accessed); EXPECT_EQ(fusion_analysis.operand_bytes_accessed(*fusion, 0), sizeof(float) * 2 * 2); EXPECT_EQ(fusion_analysis.operand_bytes_accessed(*fusion, 1), sizeof(float) * 2 * 2); EXPECT_EQ(fusion_analysis.operand_bytes_accessed(*fusion, 2), sizeof(float) * 2 * 2); EXPECT_EQ(fusion_analysis.output_bytes_accessed(*fusion), sizeof(float) * 2 * 2); EXPECT_EQ(fusion_analysis.optimal_seconds(), 1 << i); } } TEST_F(FusionCostAnalysis, NestedCopyFusion) { absl::string_view nested_fusion_text = R"( HloModule temp, is_scheduled=true copy_fusion.1291.clone { input.1291 = s8[2,6144,2,256]{3,1,0,2:T(32,128)(4,1)S(1)} parameter(0) ROOT copy.74276 = s8[2,6144,2,256]{3,1,0,2:T(8,128)(4,1)} copy(input.1291) } fused_computation.4150.clone { param_0.185389 = s8[2,6144,2,256]{3,1,0,2:T(32,128)(4,1)} parameter(0) fusion.103344 = s8[2,6144,2,256]{3,1,0,2:T(8,128)(4,1)} fusion(param_0.185389), kind=kLoop, calls=copy_fusion.1291.clone constant.230138 = s32[]{:T(128)} constant(0) param_1.219146 = s32[]{:T(128)S(6)} parameter(1) ROOT dynamic-slice.40526 = s8[2,384,2,256]{3,1,0,2:T(8,128)(4,1)} dynamic-slice(fusion.103344, constant.230138, param_1.219146, constant.230138, constant.230138), dynamic_slice_sizes={2,384,2,256} } ENTRY temp { param_2.123719 = s8[2,6144,2,256]{3,1,0,2:T(32,128)(4,1)} parameter(0) param_3.66279 = s32[]{:T(128)S(6)} parameter(1) ROOT fusion.85943 = s8[2,384,2,256]{3,1,0,2:T(8,128)(4,1)} fusion(param_2.123719, param_3.66279), kind=kLoop, calls=fused_computation.4150.clone } )"; absl::string_view fusion_text = R"( HloModule temp, is_scheduled=true fused_computation.4150.clone { param_0.185389 = s8[2,6144,2,256]{3,1,0,2:T(8,128)(4,1)} parameter(0) constant.230138 = s32[]{:T(128)} constant(0) param_1.219146 = s32[]{:T(128)S(6)} parameter(1) ROOT dynamic-slice.40526 = s8[2,384,2,256]{3,1,0,2:T(8,128)(4,1)} dynamic-slice(param_0.185389, constant.230138, param_1.219146, constant.230138, constant.230138), dynamic_slice_sizes={2,384,2,256} } ENTRY temp { param_2.123719 = s8[2,6144,2,256]{3,1,0,2:T(8,128)(4,1)} parameter(0) param_3.66279 = s32[]{:T(128)S(6)} parameter(1) ROOT fusion.85943 = s8[2,384,2,256]{3,1,0,2:T(8,128)(4,1)} fusion(param_2.123719, param_3.66279), kind=kLoop, calls=fused_computation.4150.clone } )"; TF_ASSERT_OK_AND_ASSIGN(auto nested_fusion_module, ParseAndReturnVerifiedModule(nested_fusion_text)); HloCostAnalysis nested_analysis(ShapeSize); auto* nested_root = nested_fusion_module->entry_computation()->root_instruction(); ASSERT_IS_OK(nested_root->Accept(&nested_analysis)); TF_ASSERT_OK_AND_ASSIGN(auto fusion_module, ParseAndReturnVerifiedModule(fusion_text)); HloCostAnalysis fusion_analysis(ShapeSize); auto* fusion_root = fusion_module->entry_computation()->root_instruction(); ASSERT_IS_OK(fusion_root->Accept(&fusion_analysis)); EXPECT_EQ(nested_analysis.bytes_accessed(*nested_root), fusion_analysis.bytes_accessed(*fusion_root)); } TEST_F(FusionCostAnalysis, NestedCopyFusionDUS) { absl::string_view nested_fusion_text = R"( HloModule temp, is_scheduled=true copy_fusion.1291.clone { input.1291 = s8[2,6144,2,256]{3,1,0,2:T(32,128)(4,1)} parameter(0) ROOT copy.74276 = s8[2,6144,2,256]{3,1,0,2:T(8,128)(4,1)} copy(input.1291) } fused_computation.4150.clone { param_0.185389 = s8[2,6144,2,256]{3,1,0,2:T(32,128)(4,1)} parameter(0) fusion.103344 = s8[2,6144,2,256]{3,1,0,2:T(8,128)(4,1)} fusion(param_0.185389), kind=kLoop, calls=copy_fusion.1291.clone param_1.185389 = s8[2,6144,1,256]{3,1,0,2:T(8,128)(4,1)} parameter(2) constant.230138 = s32[]{:T(128)} constant(0) param_1.219146 = s32[]{:T(128)S(6)} parameter(1) param_3.229 = pred[]{:T(512)} constant(false) broadcast.11499 = pred[2,6144,1,256]{3,1,0,2:T(8,128)(4,1)} broadcast(param_3.229), dimensions={} dynamic-slice.11241 = s8[2,6144,1,256]{3,1,0,2:T(8,128)(4,1)} dynamic-slice(fusion.103344, constant.230138, constant.230138, param_1.219146, constant.230138), dynamic_slice_sizes={2,6144,1,256} select.9063 = s8[2,6144,1,256]{3,1,0,2:T(8,128)(4,1)} select(broadcast.11499, param_1.185389, dynamic-slice.11241) ROOT dynamic-update-slice.40526 = s8[2,6144,2,256]{3,1,0,2:T(8,128)(4,1)} dynamic-update-slice(fusion.103344, select.9063, constant.230138, constant.230138, param_1.219146, constant.230138) } ENTRY temp { param_2.123719 = s8[2,6144,2,256]{3,1,0,2:T(32,128)(4,1)} parameter(0) param_3.66279 = s32[]{:T(128)S(6)} parameter(1) param_1.123719 = s8[2,6144,1,256]{3,1,0,2:T(8,128)(4,1)} parameter(2) ROOT fusion.85943 = s8[2,6144,2,256]{3,1,0,2:T(8,128)(4,1)} fusion(param_2.123719, param_3.66279, param_1.123719), kind=kLoop, calls=fused_computation.4150.clone } )"; absl::string_view fusion_text = R"( HloModule temp, is_scheduled=true fused_computation.4150.clone { param_0.185389 = s8[2,6144,2,256]{3,1,0,2:T(8,128)(4,1)} parameter(0) param_1.185389 = s8[2,6144,1,256]{3,1,0,2:T(8,128)(4,1)} parameter(2) constant.230138 = s32[]{:T(128)} constant(0) param_1.219146 = s32[]{:T(128)S(6)} parameter(1) param_3.229 = pred[]{:T(512)} constant(false) broadcast.11499 = pred[2,6144,1,256]{3,1,0,2:T(8,128)(4,1)} broadcast(param_3.229), dimensions={} dynamic-slice.11241 = s8[2,6144,1,256]{3,1,0,2:T(8,128)(4,1)} dynamic-slice(param_0.185389, constant.230138, constant.230138, param_1.219146, constant.230138), dynamic_slice_sizes={2,6144,1,256} select.9063 = s8[2,6144,1,256]{3,1,0,2:T(8,128)(4,1)} select(broadcast.11499, param_1.185389, dynamic-slice.11241) ROOT dynamic-update-slice.40526 = s8[2,6144,2,256]{3,1,0,2:T(8,128)(4,1)} dynamic-update-slice(param_0.185389, select.9063, constant.230138, constant.230138, param_1.219146, constant.230138) } ENTRY temp { param_2.123719 = s8[2,6144,2,256]{3,1,0,2:T(8,128)(4,1)} parameter(0) param_3.66279 = s32[]{:T(128)S(6)} parameter(1) param_1.123719 = s8[2,6144,1,256]{3,1,0,2:T(8,128)(4,1)} parameter(2) ROOT fusion.85943 = s8[2,6144,2,256]{3,1,0,2:T(8,128)(4,1)} fusion(param_2.123719, param_3.66279, param_1.123719), kind=kLoop, calls=fused_computation.4150.clone } )"; TF_ASSERT_OK_AND_ASSIGN(auto nested_fusion_module, ParseAndReturnVerifiedModule(nested_fusion_text)); HloCostAnalysis nested_analysis(ShapeSize); auto* nested_root = nested_fusion_module->entry_computation()->root_instruction(); ASSERT_IS_OK(nested_root->Accept(&nested_analysis)); TF_ASSERT_OK_AND_ASSIGN(auto fusion_module, ParseAndReturnVerifiedModule(fusion_text)); HloCostAnalysis fusion_analysis(ShapeSize); auto* fusion_root = fusion_module->entry_computation()->root_instruction(); ASSERT_IS_OK(fusion_root->Accept(&fusion_analysis)); EXPECT_EQ(nested_analysis.bytes_accessed(*nested_root), fusion_analysis.bytes_accessed(*fusion_root)); } TEST_F(FusionCostAnalysis, NestedFusionFeedsMultipleUsers) { absl::string_view hlo_text = R"( HloModule temp, is_scheduled=true fused_computation.1 { tmp_0 = bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} parameter(0) tmp_1 = bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} fusion(bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} tmp_0), kind=kLoop, calls= { tmp_0 = bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} parameter(0) ROOT tmp_4 = bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} add(bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} tmp_0, bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} tmp_0) } tmp_2 = bf16[]{:T(256)} constant(0) tmp_3 = bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} reduce-window(bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} tmp_1, bf16[]{:T(256)} tmp_2), window={size=1x1x1x1023 pad=0_0x0_0x0_0x511_511}, to_apply= { tmp_0 = bf16[]{:T(256)} parameter(0) tmp_1 = bf16[]{:T(256)} parameter(1) ROOT tmp_2 = bf16[]{:T(256)} add(bf16[]{:T(256)} tmp_0, bf16[]{:T(256)} tmp_1) } ROOT tmp_4 = bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} divide(bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} tmp_1, bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} tmp_3) } ENTRY temp { tmp_0 = bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} parameter(0) ROOT result = bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} fusion(tmp_0), kind=kLoop, calls=fused_computation.1 } )"; TF_ASSERT_OK_AND_ASSIGN(auto fusion_module, ParseAndReturnVerifiedModule(hlo_text)); HloCostAnalysis fusion_analysis(ShapeSize); auto* fusion_root = fusion_module->entry_computation()->root_instruction(); ASSERT_IS_OK(fusion_root->Accept(&fusion_analysis)); EXPECT_EQ(1073741824, fusion_analysis.bytes_accessed(*fusion_root)); } TEST_F(FusionCostAnalysis, ParamFeedsNestedFusionAndTrivialUser) { absl::string_view hlo_text = R"( HloModule temp, is_scheduled=true fused_computation.1 { tmp_0 = bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} parameter(0) tmp_1 = bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} fusion(bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} tmp_0), kind=kLoop, calls= { tmp_0 = bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} parameter(0) ROOT tmp_4 = bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} add(bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} tmp_0, bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} tmp_0) } tmp_2 = bf16[]{:T(256)} constant(0) tmp_3 = bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} reduce-window(bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} tmp_1, bf16[]{:T(256)} tmp_2), window={size=1x1x1x1023 pad=0_0x0_0x0_0x511_511}, to_apply= { tmp_0 = bf16[]{:T(256)} parameter(0) tmp_1 = bf16[]{:T(256)} parameter(1) ROOT tmp_2 = bf16[]{:T(256)} add(bf16[]{:T(256)} tmp_0, bf16[]{:T(256)} tmp_1) } ROOT tmp_4 = bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} divide(bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} tmp_0, bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} tmp_3) } ENTRY temp { tmp_0 = bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} parameter(0) ROOT result = bf16[64,16,512,512]{2,3,1,0:T(8,128)(2,1)} fusion(tmp_0), kind=kLoop, calls=fused_computation.1 } )"; TF_ASSERT_OK_AND_ASSIGN(auto fusion_module, ParseAndReturnVerifiedModule(hlo_text)); HloCostAnalysis fusion_analysis(ShapeSize); auto* fusion_root = fusion_module->entry_computation()->root_instruction(); ASSERT_IS_OK(fusion_root->Accept(&fusion_analysis)); EXPECT_EQ(1610612736, fusion_analysis.bytes_accessed(*fusion_root)); } TEST_F(FusionCostAnalysis, LoopFusionTupleOutput) { Shape r2f32 = ShapeUtil::MakeShape(F32, {2, 2}); HloComputation::Builder builder(TestName()); auto c1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2F32Linspace( 0.0f, 1.0f, 2, 2))); auto c2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2F32Linspace( 1.0f, 2.0f, 2, 2))); auto c3 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2F32Linspace( 2.0f, 3.0f, 2, 2))); auto tuple1 = builder.AddInstruction(HloInstruction::CreateTuple({c1, c2})); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r2f32, HloOpcode::kAdd, c1, c2)); auto clamp = builder.AddInstruction( HloInstruction::CreateTernary(r2f32, HloOpcode::kClamp, c2, add, add)); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r2f32, HloOpcode::kExp, add)); auto mul = builder.AddInstruction( HloInstruction::CreateBinary(r2f32, HloOpcode::kMultiply, exp, c3)); auto sub = builder.AddInstruction( HloInstruction::CreateBinary(r2f32, HloOpcode::kSubtract, mul, clamp)); auto tuple2 = builder.AddInstruction( HloInstruction::CreateTuple({sub, sub, mul, tuple1})); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* fusion = computation->CreateFusionInstruction( {tuple2, sub, mul, exp, clamp, add}, HloInstruction::FusionKind::kLoop); HloCostAnalysis fusion_analysis(ShapeSize); ASSERT_IS_OK(fusion->Accept(&fusion_analysis)); EXPECT_EQ(fusion_analysis.flop_count(), 16); EXPECT_EQ(fusion_analysis.transcendental_count(), 4); EXPECT_EQ(fusion_analysis.bytes_accessed(*fusion), sizeof(float) * (5 + 5) * 2 * 2); EXPECT_EQ(fusion_analysis.operand_bytes_accessed(*fusion, 0), sizeof(float) * 2 * 2 * 2); EXPECT_EQ(fusion_analysis.operand_bytes_accessed(*fusion, 1), sizeof(float) * 2 * 2); EXPECT_EQ(fusion_analysis.operand_bytes_accessed(*fusion, 2), sizeof(float) * 2 * 2); EXPECT_EQ(fusion_analysis.operand_bytes_accessed(*fusion, 3), sizeof(float) * 2 * 2); EXPECT_EQ(fusion_analysis.output_bytes_accessed(*fusion), sizeof(float) * 5 * 2 * 2); EXPECT_EQ(fusion_analysis.output_bytes_accessed(*fusion, {0}), sizeof(float) * 2 * 2); EXPECT_EQ(fusion_analysis.output_bytes_accessed(*fusion, {1}), sizeof(float) * 2 * 2); EXPECT_EQ(fusion_analysis.output_bytes_accessed(*fusion, {2}), sizeof(float) * 2 * 2); EXPECT_EQ(fusion_analysis.output_bytes_accessed(*fusion, {3}), sizeof(float) * 2 * 2 * 2); EXPECT_EQ(fusion_analysis.output_bytes_accessed(*fusion, {3, 0}), sizeof(float) * 2 * 2); EXPECT_EQ(fusion_analysis.output_bytes_accessed(*fusion, {3, 1}), sizeof(float) * 2 * 2); } TEST_F(FusionCostAnalysis, NoLayout) { Shape shape_with_layout = ShapeUtil::MakeShape(F32, {2, 3, 4, 5}); Shape shape_without_layout = shape_with_layout; shape_without_layout.clear_layout(); HloComputation::Builder builder(TestName()); auto c1 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR4FromArray4D(Array4D<float>(2, 3, 4, 5)))); auto c2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<float>({1, 2, 3}))); auto broadcast = builder.AddInstruction( HloInstruction::CreateBroadcast(shape_without_layout, c2, {1})); auto add = builder.AddInstruction(HloInstruction::CreateBinary( shape_with_layout, HloOpcode::kAdd, c1, broadcast)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* fusion = computation->CreateFusionInstruction( {add, broadcast}, HloInstruction::FusionKind::kLoop); HloCostAnalysis fusion_analysis(ShapeSize); ASSERT_IS_OK(fusion->Accept(&fusion_analysis)); EXPECT_EQ(fusion_analysis.flop_count(), 120); EXPECT_EQ(fusion_analysis.transcendental_count(), 0); EXPECT_EQ(fusion_analysis.bytes_accessed(), sizeof(float) * (2 * 3 * 4 * 5 + 3 + 2 * 3 * 4 * 5)); EXPECT_EQ(fusion_analysis.operand_bytes_accessed(*fusion, 0), sizeof(float) * 2 * 3 * 4 * 5); EXPECT_EQ(fusion_analysis.operand_bytes_accessed(*fusion, 1), sizeof(float) * 3); EXPECT_EQ(fusion_analysis.output_bytes_accessed(*fusion), sizeof(float) * 2 * 3 * 4 * 5); } TEST_F(FusionCostAnalysis, NonTupleWithTupleParamBytesAccessed) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true fused_computation { param = (f32[3,2]{1,0}, f32[3,2]{1,0}) parameter(0) gte0 = f32[3,2]{1,0} get-tuple-element(param), index=0 gte1 = f32[3,2]{1,0} get-tuple-element(param), index=1 ROOT add = f32[3,2]{1,0} add(gte0, gte1) } ENTRY entry { param0 = f32[3,2]{1,0} parameter(0) param1 = f32[3,2]{1,0} parameter(1) tuple = (f32[3,2]{1,0}, f32[3,2]{1,0}) tuple(param0, param1) ROOT fusion = f32[3,2]{1,0} fusion(tuple), kind=kLoop, calls=fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* fusion = module->entry_computation()->root_instruction(); HloCostAnalysis fusion_analysis(ShapeSize); ASSERT_IS_OK(fusion->Accept(&fusion_analysis)); EXPECT_EQ(fusion_analysis.bytes_accessed(*fusion), sizeof(float) * 3 * 2 * 3); EXPECT_EQ(fusion_analysis.operand_bytes_accessed(*fusion, 0), sizeof(float) * 3 * 2 * 2); EXPECT_EQ(fusion_analysis.output_bytes_accessed(*fusion), sizeof(float) * 3 * 2); } TEST_F(FusionCostAnalysis, TupleBytesAccessed) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true fused_computation { param = (f32[2,2]{1,0}, f32[2,2]{1,0}) parameter(0) gte0 = f32[2,2]{1,0} get-tuple-element(param), index=0 gte1 = f32[2,2]{1,0} get-tuple-element(param), index=1 add = f32[2,2]{1,0} add(gte0, gte1) mul = f32[2,2]{1,0} multiply(gte0, gte1) ROOT root = (f32[2,2]{1,0}, f32[2,2]{1,0}) tuple(add, mul) } ENTRY entry { param0 = f32[2,2]{1,0} parameter(0) param1 = f32[2,2]{1,0} parameter(1) tuple = (f32[2,2]{1,0}, f32[2,2]{1,0}) tuple(param0, param1) ROOT fusion = (f32[2,2]{1,0}, f32[2,2]{1,0}) fusion(tuple), kind=kLoop, calls=fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* fusion = module->entry_computation()->root_instruction(); HloCostAnalysis fusion_analysis(ShapeSize); ASSERT_IS_OK(fusion->Accept(&fusion_analysis)); EXPECT_EQ(fusion_analysis.bytes_accessed(*fusion), sizeof(float) * 2 * 2 * 4); EXPECT_EQ(fusion_analysis.operand_bytes_accessed(*fusion, 0), sizeof(float) * 2 * 2 * 2); EXPECT_EQ(fusion_analysis.output_bytes_accessed(*fusion), sizeof(float) * 2 * 2 * 2); } TEST_F(FusionCostAnalysis, IgnoreUnusedParameterShape) { absl::string_view hlo_string = R"( HloModule m f { p0 = (s8[3], s8[100]) parameter(0) gte0 = s8[3] get-tuple-element(p0), index=0 c1 = s8[3] constant(0) a1 = s8[3] add(gte0, c1) ROOT r1 = s8[3] add(a1, c1) } ENTRY e { param0 = (s8[3], s8[100]) parameter(0) ROOT r0 = s8[3] fusion(param0), kind=kInput, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK(root->Accept(&analysis)); EXPECT_EQ(analysis.output_bytes_accessed(*root), 3); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), 2 * kPointerSize + 3); EXPECT_EQ(analysis.bytes_accessed(*root), 2 * kPointerSize + 3 + 3 + 3); EXPECT_EQ(analysis.bytes_accessed(), 2 * kPointerSize + 3 + 3 + 3); } TEST_F(FusionCostAnalysis, InfeedOutfeed) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { after-all = token[] after-all() infeed = ((f32[2,3]{1,0}), token[]) infeed(after-all) gte0 = (f32[2,3]{1,0}) get-tuple-element(infeed), index=0 gte1 = f32[2,3]{1,0} get-tuple-element(gte0), index=0 add = f32[2,3]{1,0} add(gte1, gte1) tuple = (f32[2,3]{1,0}) tuple(add) tok = token[] get-tuple-element(infeed), index=1 ROOT outfeed = token[] outfeed(tuple, tok) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* infeed = module->entry_computation()->GetInstructionWithName("infeed"); HloInstruction* outfeed = module->entry_computation()->GetInstructionWithName("outfeed"); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK(infeed->Accept(&analysis)); ASSERT_IS_OK(outfeed->Accept(&analysis)); EXPECT_EQ(analysis.bytes_accessed(*infeed), sizeof(float) * 2 * 3); EXPECT_EQ(analysis.operand_bytes_accessed(*infeed, 0), 0); EXPECT_EQ(analysis.output_bytes_accessed(*infeed), sizeof(float) * 2 * 3); EXPECT_EQ(analysis.bytes_accessed(*outfeed), sizeof(float) * 2 * 3); EXPECT_EQ(analysis.operand_bytes_accessed(*outfeed, 0), sizeof(float) * 2 * 3); EXPECT_EQ(analysis.output_bytes_accessed(*outfeed), 0); } TEST_F(FusionCostAnalysis, AllReduceTupleBytesAccessed) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true sum { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY entry { param0 = f32[2,2]{1,0} parameter(0) param1 = f32[2,2]{1,0} parameter(1) ROOT all-reduce = (f32[2,2]{1,0}, f32[2,2]{1,0}) all-reduce(param0, param1), replica_groups={{0,1}}, to_apply=sum } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* all_reduce = module->entry_computation()->root_instruction(); HloCostAnalysis all_reduce_analysis(ShapeSize); ASSERT_IS_OK(all_reduce->Accept(&all_reduce_analysis)); EXPECT_EQ(all_reduce_analysis.bytes_accessed(*all_reduce), sizeof(float) * 2 * 2 * 4); EXPECT_EQ(all_reduce_analysis.operand_bytes_accessed(*all_reduce, 0), sizeof(float) * 2 * 2); EXPECT_EQ(all_reduce_analysis.operand_bytes_accessed(*all_reduce, 1), sizeof(float) * 2 * 2); EXPECT_EQ(all_reduce_analysis.output_bytes_accessed(*all_reduce), sizeof(float) * 2 * 2 * 2); } TEST_F(HloCostAnalysisTest, TupleCost) { HloCostAnalysis analysis(ShapeSize); XlaBuilder builder("tuple"); auto x = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {123}), "x"); auto y = Parameter(&builder, 1, ShapeUtil::MakeShape(F32, {42}), "y"); Tuple(&builder, {x, y}); auto hlo_module = BuildHloGraph(&builder); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(), 0); EXPECT_EQ(analysis.transcendental_count(), 0); EXPECT_EQ(analysis.bytes_accessed(), kPointerSize * 2); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), 0); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 1), 0); EXPECT_EQ(analysis.output_bytes_accessed(*root), kPointerSize * 2); } using DomainCostAnalysis = HloTestBase; TEST_F(DomainCostAnalysis, DomainCost) { HloCostAnalysis analysis(ShapeSize); HloComputation::Builder builder("domain"); auto x = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {123}), "x")); auto y = builder.AddInstruction( HloInstruction::CreateParameter(1, ShapeUtil::MakeShape(F32, {42}), "y")); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({x, y})); auto domain = builder.AddInstruction( HloInstruction::CreateDomain(tuple->shape(), tuple, nullptr, nullptr)); auto hlo_module = CreateNewVerifiedModule(); hlo_module->AddEntryComputation(builder.Build()); EXPECT_EQ(hlo_module->entry_computation()->root_instruction(), domain); ASSERT_IS_OK(domain->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(*domain), 0); EXPECT_EQ(analysis.transcendental_count(*domain), 0); EXPECT_EQ(analysis.bytes_accessed(*domain), 0); } TEST_F(HloCostAnalysisTest, BaseDilatedConvolution) { XlaBuilder builder("BaseDilatedConvolution"); auto input = Parameter( &builder, 0, ShapeUtil::MakeShape(F32, {1, 1, 10, 20}), "input"); auto kernel = Parameter( &builder, 1, ShapeUtil::MakeShape(F32, {1, 1, 3, 3}), "kernel"); ConvGeneralDilated(input, kernel, {1, 1}, {{1, 1}, {1, 1}}, {3, 5}, {7, 11}, XlaBuilder::CreateDefaultConvDimensionNumbers(2)); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.flop_count(), 1472); } TEST_F(HloCostAnalysisTest, Slice) { XlaBuilder builder("slice"); auto x = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {2}), "x"); Slice(x, {0}, {1}, {1}); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.bytes_accessed(), 8); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), sizeof(float)); EXPECT_EQ(analysis.output_bytes_accessed(*root), sizeof(float)); } TEST_F(HloCostAnalysisTest, DynamicSlice) { XlaBuilder builder("dynamic-slice"); auto x = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {2}), "x"); DynamicSlice(x, absl::Span<const XlaOp>({ConstantR0<int32_t>(&builder, 1)}), {1}); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.bytes_accessed(), 8 + 4); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), sizeof(float)); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 1), sizeof(int32_t)); EXPECT_EQ(analysis.output_bytes_accessed(*root), sizeof(float)); } TEST_F(HloCostAnalysisTest, DynamicUpdateSlice) { XlaBuilder builder("dynamic-update-slice"); auto x = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {2}), "x"); DynamicUpdateSlice( x, ConstantR1<float>(&builder, {1.0}), absl::Span<const XlaOp>({ConstantR0<int32_t>(&builder, 1)})); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.bytes_accessed(), 8 + 4); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), 0); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 1), sizeof(float)); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 2), sizeof(int32_t)); EXPECT_EQ(analysis.output_bytes_accessed(*root), sizeof(float)); } TEST_F(HloCostAnalysisTest, Gather) { XlaBuilder builder("gather"); Shape operand_shape = ShapeUtil::MakeShape(S32, {3, 3}); Shape indices_shape = ShapeUtil::MakeShape(S32, {2}); auto operand = Parameter(&builder, 0, operand_shape, "operand"); auto indices = Parameter(&builder, 1, indices_shape, "indices"); GatherDimensionNumbers dim_numbers; dim_numbers.add_offset_dims(1); dim_numbers.add_collapsed_slice_dims(0); dim_numbers.add_start_index_map(0); dim_numbers.set_index_vector_dim(1); Gather(operand, indices, dim_numbers, {1, 3}); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.bytes_accessed(), 56); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), sizeof(float) * 2 * 3); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 1), sizeof(int32_t) * 2); EXPECT_EQ(analysis.output_bytes_accessed(*root), sizeof(float) * 2 * 3); } TEST_F(HloCostAnalysisTest, Scatter) { XlaBuilder builder("scatter"); Shape operand_shape = ShapeUtil::MakeShape(F32, {3, 3}); Shape indices_shape = ShapeUtil::MakeShape(S32, {2}); Shape values_shape = ShapeUtil::MakeShape(F32, {2, 3}); auto operand = Parameter(&builder, 0, operand_shape, "operand"); auto indices = Parameter(&builder, 1, indices_shape, "indices"); auto values = Parameter(&builder, 2, values_shape, "values"); ScatterDimensionNumbers dim_numbers; dim_numbers.set_index_vector_dim(1); dim_numbers.add_update_window_dims(1); dim_numbers.add_inserted_window_dims(0); dim_numbers.add_scatter_dims_to_operand_dims(0); Scatter(operand, indices, values, add_, dim_numbers); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.bytes_accessed(), 4 * (2 + 3 * (2 * 3))); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), sizeof(float) * 2 * 3); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 1), sizeof(int32_t) * 2); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 2), sizeof(float) * 2 * 3); EXPECT_EQ(analysis.output_bytes_accessed(*root), sizeof(float) * 2 * 3); } TEST_F(HloCostAnalysisTest, MultioutputScatter) { XlaBuilder builder("scatter"); Shape operand0_shape = ShapeUtil::MakeShape(F32, {3, 3}); Shape operand1_shape = ShapeUtil::MakeShape(S32, {3, 3}); Shape indices_shape = ShapeUtil::MakeShape(S32, {2}); Shape values0_shape = ShapeUtil::MakeShape(F32, {2, 3}); Shape values1_shape = ShapeUtil::MakeShape(S32, {2, 3}); auto operand0 = Parameter(&builder, 0, operand0_shape, "operand0"); auto operand1 = Parameter(&builder, 1, operand1_shape, "operand1"); auto indices = Parameter(&builder, 2, indices_shape, "indices"); auto values0 = Parameter(&builder, 3, values0_shape, "values0"); auto values1 = Parameter(&builder, 4, values1_shape, "values1"); ScatterDimensionNumbers dim_numbers; dim_numbers.set_index_vector_dim(1); dim_numbers.add_update_window_dims(1); dim_numbers.add_inserted_window_dims(0); dim_numbers.add_scatter_dims_to_operand_dims(0); auto add = [] { XlaBuilder builder("add"); auto x0 = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {}), "x0"); auto x1 = Parameter(&builder, 1, ShapeUtil::MakeShape(S32, {}), "x1"); auto y0 = Parameter(&builder, 2, ShapeUtil::MakeShape(F32, {}), "y0"); auto y1 = Parameter(&builder, 3, ShapeUtil::MakeShape(S32, {}), "y1"); Tuple(&builder, {Add(x0, y0), Add(x1, y1)}); auto computation_status = builder.Build(); TF_CHECK_OK(computation_status.status()); return std::move(computation_status).value(); }(); Scatter({operand0, operand1}, indices, {values0, values1}, add, dim_numbers); auto hlo_module = BuildHloGraph(&builder); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK( hlo_module->entry_computation()->root_instruction()->Accept(&analysis)); EXPECT_EQ(analysis.bytes_accessed(), 4 * (2 + 2 * 3 * (2 * 3))); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), sizeof(float) * 2 * 3); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 1), sizeof(int32_t) * 2 * 3); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 2), sizeof(int32_t) * 2); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 3), sizeof(float) * 2 * 3); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 4), sizeof(int32_t) * 2 * 3); EXPECT_EQ(analysis.output_bytes_accessed(*root), 2 * sizeof(float) * 2 * 3); } TEST_F(HloCostAnalysisTest, GetShapeSizeIgnoreUnsupportedShape) { Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); *shape.mutable_layout() = LayoutUtil::MakeLayout({1, 0}, {DIM_DENSE, DIM_COMPRESSED}); HloCostAnalysis analysis(ShapeSize); EXPECT_TRUE(LayoutUtil::IsSparseArray(shape)); EXPECT_EQ(0, analysis.GetShapeSize(shape)); } TEST_F(FusionCostAnalysis, Broadcast) { absl::string_view hlo_string = R"( HloModule m f { p0 = s8[] parameter(0) c1 = s8[] constant(0) a1 = s8[] add(p0, c1) b1 = s8[10000] broadcast(a1), dimensions={} b2 = s8[10000] broadcast(c1), dimensions={} ROOT r1 = s8[10000] add(b1, b2) } ENTRY e { param0 = s8[] parameter(0) ROOT r0 = s8[10000] fusion(param0), kind=kInput, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); HloCostAnalysis analysis(ShapeSize); ASSERT_IS_OK(root->Accept(&analysis)); EXPECT_EQ(analysis.output_bytes_accessed(*root), 10000); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), 1); EXPECT_EQ(analysis.bytes_accessed(*root), 10000 + 1); EXPECT_EQ(analysis.bytes_accessed(), 10000 + 1); } TEST_F(FusionCostAnalysis, RevisitModifiedFusion) { Shape r2f32 = ShapeUtil::MakeShape(F32, {2, 2}); HloComputation::Builder builder(TestName()); HloInstruction* c1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2F32Linspace( 0.0f, 1.0f, 2, 2))); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(r2f32, HloOpcode::kAdd, c1, c1)); HloInstruction* mul = builder.AddInstruction( HloInstruction::CreateBinary(r2f32, HloOpcode::kMultiply, add, add)); HloInstruction* neg = builder.AddInstruction( HloInstruction::CreateUnary(r2f32, HloOpcode::kNegate, mul)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloInstruction* fusion = computation->CreateFusionInstruction( {neg, mul, add}, HloInstruction::FusionKind::kLoop); HloCostAnalysis::Options options{ShapeSize}; HloCostAnalysis analysis(options); ASSERT_IS_OK(fusion->Accept(&analysis)); constexpr int64_t bytes_accessed = sizeof(float) * 2 * 2 * 2; static_assert(bytes_accessed == 32, ""); EXPECT_EQ(analysis.flop_count(), 4 * 3); EXPECT_EQ(analysis.transcendental_count(), 0); EXPECT_EQ(analysis.bytes_accessed(), bytes_accessed); EXPECT_EQ(analysis.operand_bytes_accessed(*fusion, 0), sizeof(float) * 2 * 2); EXPECT_EQ(analysis.output_bytes_accessed(*fusion), sizeof(float) * 2 * 2); ASSERT_IS_OK(analysis.RevisitInstruction(fusion)); EXPECT_EQ(analysis.flop_count(), 4 * 3); EXPECT_EQ(analysis.transcendental_count(), 0); EXPECT_EQ(analysis.bytes_accessed(), bytes_accessed); EXPECT_EQ(analysis.operand_bytes_accessed(*fusion, 0), sizeof(float) * 2 * 2); EXPECT_EQ(analysis.output_bytes_accessed(*fusion), sizeof(float) * 2 * 2); HloComputation* fused_computation = fusion->fused_instructions_computation(); HloInstruction* to_replace = fused_computation->root_instruction(); HloInstruction* exp = fused_computation->AddInstruction(HloInstruction::CreateUnary( r2f32, HloOpcode::kExp, to_replace->mutable_operand(0))); ASSERT_IS_OK(fused_computation->ReplaceInstruction(to_replace, exp)); ASSERT_IS_OK(module->Verify()); ASSERT_IS_OK(analysis.RevisitInstruction(fusion)); EXPECT_EQ(analysis.flop_count(), 4 * 2); EXPECT_EQ(analysis.transcendental_count(), 4); EXPECT_EQ(analysis.bytes_accessed(), bytes_accessed); EXPECT_EQ(analysis.operand_bytes_accessed(*fusion, 0), sizeof(float) * 2 * 2); EXPECT_EQ(analysis.output_bytes_accessed(*fusion), sizeof(float) * 2 * 2); } TEST_F(FusionCostAnalysis, RevisitAlteredFusion) { absl::string_view hlo_string = R"( HloModule m f { fp0 = s8[10] parameter(0) ROOT fr = s8[1] slice(fp0), slice={[0:1]} } ENTRY e { p0 = s8[10] parameter(0) ROOT r = s8[1] fusion(p0), kind=kLoop, calls=f })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); HloCostAnalysis modified_analysis(ShapeSize); ASSERT_IS_OK(root->Accept(&modified_analysis)); HloInstruction* fusion_root = root->called_computations()[0]->root_instruction(); EXPECT_FLOAT_EQ(modified_analysis.operand_utilization(*fusion_root, 0), 0.1); fusion_root->mutable_slice_limits()->at(0) = 2; fusion_root->mutable_shape()->mutable_dimensions()[0] = 2; root->mutable_shape()->mutable_dimensions()[0] = 2; module->mutable_config().SetDefaultComputationLayout( module->entry_computation()->ComputeProgramShape()); ASSERT_IS_OK(modified_analysis.RevisitInstruction(root)); HloCostAnalysis unmodified_analysis(ShapeSize); ASSERT_IS_OK(root->Accept(&unmodified_analysis)); EXPECT_FLOAT_EQ(modified_analysis.operand_utilization(*fusion_root, 0), 0.2); EXPECT_FLOAT_EQ(modified_analysis.operand_utilization(*fusion_root, 0), unmodified_analysis.operand_utilization(*fusion_root, 0)); } TEST_F(FusionCostAnalysis, RevisitWithSharedComputation) { absl::string_view hlo_string = R"( HloModule m add_computation { arg_0.1 = f32[] parameter(0) arg_1.1 = f32[] parameter(1) ROOT r = f32[] add(arg_0.1, arg_1.1) } ENTRY e { p0 = f32[127,125] parameter(0) p1 = f32[127,125] parameter(1) constant_zero = f32[] constant(0) r0 = f32[127] reduce(p0, constant_zero), dimensions={1}, to_apply=add_computation r1 = f32[127] reduce(p0, constant_zero), dimensions={1}, to_apply=add_computation ROOT _ = f32[127] add(r0, r1) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); HloCostAnalysis analysis(ShapeSize); HloInstruction* add_root = root->operand(1)->called_computations()[0]->root_instruction(); ASSERT_IS_OK(root->Accept(&analysis)); EXPECT_EQ(analysis.operand_utilization(*add_root, 0), 1); ASSERT_IS_OK(analysis.RemoveInstruction(root->mutable_operand(0))); EXPECT_EQ(analysis.operand_utilization(*add_root, 0), 1); ASSERT_IS_OK(analysis.RevisitInstruction(root->mutable_operand(0))); EXPECT_EQ(analysis.operand_utilization(*add_root, 0), 1); } using Properties = HloCostAnalysis::Properties; constexpr auto kFlopsKey = HloCostAnalysis::kFlopsKey; constexpr auto kTranscendentalsKey = HloCostAnalysis::kTranscendentalsKey; constexpr auto kBytesAccessedKey = HloCostAnalysis::kBytesAccessedKey; constexpr auto kOptimalSecondsKey = HloCostAnalysis::kOptimalSecondsKey; constexpr auto kUtilizationKey = HloCostAnalysis::kUtilizationKey; constexpr auto kReserved0Key = HloCostAnalysis::kReserved0Key; constexpr auto kReserved1Key = HloCostAnalysis::kReserved1Key; TEST(HloCostAnalysisProperties, ZeroWhenInitialized) { Properties p; EXPECT_EQ(0, p[kFlopsKey]); EXPECT_EQ(0, p[kTranscendentalsKey]); EXPECT_EQ(0, p[kBytesAccessedKey]); EXPECT_EQ(0, p[kOptimalSecondsKey]); EXPECT_EQ(0, p[kUtilizationKey]); EXPECT_EQ(0, p[kReserved0Key]); EXPECT_EQ(0, p[kReserved1Key]); EXPECT_EQ(0, p.operand_utilization(0, {})); EXPECT_EQ(0, p.operand_utilization(1, {})); EXPECT_EQ(0, p.operand_utilization(2, {})); EXPECT_EQ(0, p.operand_utilization(0, {0})); EXPECT_EQ(0, p.operand_utilization(2, {0})); EXPECT_EQ(0, p[HloCostAnalysis::GetOperandUtilizationKey(0, {})]); EXPECT_EQ(0, p[HloCostAnalysis::GetOperandUtilizationKey(1, {})]); EXPECT_EQ(0, p[HloCostAnalysis::GetOperandUtilizationKey(2, {})]); EXPECT_EQ(0, p[HloCostAnalysis::GetOperandUtilizationKey(0, {0})]); EXPECT_EQ(0, p[HloCostAnalysis::GetOperandUtilizationKey(2, {0})]); EXPECT_EQ(0, p.operand_bytes_accessed(0, {})); EXPECT_EQ(0, p.operand_bytes_accessed(1, {})); EXPECT_EQ(0, p.operand_bytes_accessed(2, {})); EXPECT_EQ(0, p.operand_bytes_accessed(0, {0})); EXPECT_EQ(0, p.operand_bytes_accessed(2, {0})); EXPECT_EQ(0, p[HloCostAnalysis::GetOperandBytesAccessedKey(0, {})]); EXPECT_EQ(0, p[HloCostAnalysis::GetOperandBytesAccessedKey(1, {})]); EXPECT_EQ(0, p[HloCostAnalysis::GetOperandBytesAccessedKey(2, {})]); EXPECT_EQ(0, p[HloCostAnalysis::GetOperandBytesAccessedKey(0, {0})]); EXPECT_EQ(0, p[HloCostAnalysis::GetOperandBytesAccessedKey(2, {0})]); EXPECT_EQ(0, p.output_bytes_accessed({})); EXPECT_EQ(0, p.output_bytes_accessed({0})); EXPECT_EQ(0, p[HloCostAnalysis::GetOutputBytesAccessedKey({})]); EXPECT_EQ(0, p[HloCostAnalysis::GetOutputBytesAccessedKey({0})]); EXPECT_EQ(0, p["foobar"]); std::vector<std::pair<std::string, float>> vals; Properties().ForEach([&](absl::string_view key, float val) { vals.push_back({std::string(key), val}); }); EXPECT_THAT(vals, ::testing::IsEmpty()); } TEST(HloCostAnalysisProperties, SetValues) { Properties p; p[kFlopsKey] = 1; p[kTranscendentalsKey] = 2; p[kBytesAccessedKey] = 3; p[kOptimalSecondsKey] = 4; p[kUtilizationKey] = 5; p[kReserved0Key] = 6; p[kReserved1Key] = 7; EXPECT_EQ(1, p[kFlopsKey]); EXPECT_EQ(2, p[kTranscendentalsKey]); EXPECT_EQ(3, p[kBytesAccessedKey]); EXPECT_EQ(4, p[kOptimalSecondsKey]); EXPECT_EQ(5, p[kUtilizationKey]); EXPECT_EQ(6, p[kReserved0Key]); EXPECT_EQ(7, p[kReserved1Key]); p.set_operand_utilization(0, {}, 10); p.set_operand_utilization(1, {}, 11); p.set_operand_utilization(2, {}, 12); p.set_operand_utilization(0, {0}, 13); p.set_operand_utilization(2, {0}, 14); EXPECT_EQ(10, p.operand_utilization(0, {})); EXPECT_EQ(11, p.operand_utilization(1, {})); EXPECT_EQ(12, p.operand_utilization(2, {})); EXPECT_EQ(13, p.operand_utilization(0, {0})); EXPECT_EQ(14, p.operand_utilization(2, {0})); EXPECT_EQ(10, p[HloCostAnalysis::GetOperandUtilizationKey(0, {})]); EXPECT_EQ(11, p[HloCostAnalysis::GetOperandUtilizationKey(1, {})]); EXPECT_EQ(12, p[HloCostAnalysis::GetOperandUtilizationKey(2, {})]); EXPECT_EQ(13, p[HloCostAnalysis::GetOperandUtilizationKey(0, {0})]); EXPECT_EQ(14, p[HloCostAnalysis::GetOperandUtilizationKey(2, {0})]); p.set_operand_bytes_accessed(0, {}, 20); p.set_operand_bytes_accessed(1, {}, 21); p.set_operand_bytes_accessed(2, {}, 22); p.set_operand_bytes_accessed(0, {0}, 23); p.set_operand_bytes_accessed(2, {0}, 24); EXPECT_EQ(20, p.operand_bytes_accessed(0, {})); EXPECT_EQ(21, p.operand_bytes_accessed(1, {})); EXPECT_EQ(22, p.operand_bytes_accessed(2, {})); EXPECT_EQ(23, p.operand_bytes_accessed(0, {0})); EXPECT_EQ(24, p.operand_bytes_accessed(2, {0})); EXPECT_EQ(20, p[HloCostAnalysis::GetOperandBytesAccessedKey(0, {})]); EXPECT_EQ(21, p[HloCostAnalysis::GetOperandBytesAccessedKey(1, {})]); EXPECT_EQ(22, p[HloCostAnalysis::GetOperandBytesAccessedKey(2, {})]); EXPECT_EQ(23, p[HloCostAnalysis::GetOperandBytesAccessedKey(0, {0})]); EXPECT_EQ(24, p[HloCostAnalysis::GetOperandBytesAccessedKey(2, {0})]); p.set_output_bytes_accessed({}, 30); p.set_output_bytes_accessed({0}, 31); EXPECT_EQ(30, p.output_bytes_accessed({})); EXPECT_EQ(31, p.output_bytes_accessed({0})); EXPECT_EQ(30, p[HloCostAnalysis::GetOutputBytesAccessedKey({})]); EXPECT_EQ(31, p[HloCostAnalysis::GetOutputBytesAccessedKey({0})]); p["foo"] = 100; EXPECT_EQ(100, p["foo"]); p["bar"] += 101; EXPECT_EQ(101, p["bar"]); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_cost_analysis.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_cost_analysis_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
794dc36a-5c72-49a9-bb2c-dbc91bcd6fe0
cpp
tensorflow/tensorflow
hlo_computation_deduplicator
third_party/xla/xla/service/hlo_computation_deduplicator.cc
third_party/xla/xla/service/hlo_computation_deduplicator_test.cc
#include "xla/service/hlo_computation_deduplicator.h" #include <string> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/shape_util.h" #include "tsl/platform/logging.h" namespace xla { bool HloComputationDeduplicator::ContainsLargeConstants(HloComputation* comp) { int total_size = 0; for (HloInstruction* instruction : comp->instructions()) { if (instruction->IsConstant()) { total_size += ShapeUtil::ArrayDataSize(instruction->literal().shape()); if (total_size > 1024) { return true; } } } return false; } absl::StatusOr<bool> HloComputationDeduplicator::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { absl::flat_hash_map<std::string, HloComputation*> unique_comps; absl::flat_hash_map<HloComputation*, HloComputation*> replacement; HloPrintOptions options = HloPrintOptions::Canonical(); options.set_print_subcomputation_mode( HloPrintOptions::PrintSubcomputationMode::kOff); options.set_print_infeed_outfeed_config(false); options.set_print_only_essential_constants(true); options.set_print_operand_shape(true); options.set_print_ids(false); options.set_canonicalize_computations(true); auto comp_eq = [&replacement](const HloComputation* a, const HloComputation* b) { if (a->unique_id() == b->unique_id()) return true; if (replacement.contains(a) && replacement.at(a)->unique_id() == b->unique_id()) { return true; } if (replacement.contains(b) && replacement.at(b)->unique_id() == a->unique_id()) { return true; } if (replacement.contains(a) && replacement.contains(b) && replacement.at(a)->unique_id() == replacement.at(b)->unique_id()) { return true; } return false; }; for (HloComputation* comp : module->MakeComputationPostOrder(execution_threads)) { if (comp->IsEntryComputation() || comp->instruction_count() > 128 || ContainsLargeConstants(comp) || comp->IsCollectiveCalledComputation()) { continue; } std::string comp_str = comp->ToString(options); auto poss_dup = unique_comps.find(comp_str); if (poss_dup != unique_comps.end() && poss_dup->second->Equal(*comp, true, comp_eq)) { VLOG(2) << "Replacing " << comp->name() << " with " << poss_dup->second->name(); replacement[comp] = poss_dup->second; } else { unique_comps[std::move(comp_str)] = comp; } } if (mark_fusion_duplications_) { module->MarkFusionDuplications(replacement); } else { module->ReplaceComputations(replacement); } return !replacement.empty(); } }
#include "xla/service/hlo_computation_deduplicator.h" #include <cstdint> #include <memory> #include <string> #include <string_view> #include <vector> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" namespace xla { namespace { class HloComputationDeduplicatorTest : public HloTestBase { protected: std::vector<std::string> RunDeduplicatePass(const std::string_view text, bool expect_true) { std::unique_ptr<HloModule> module = ParseAndReturnVerifiedModule(text).value(); HloComputationDeduplicator dedup; bool changed = dedup.Run(module.get()).value(); EXPECT_EQ(changed, expect_true); std::vector<std::string> computation_names; for (auto comp : module->computations()) { computation_names.emplace_back(comp->name()); } return computation_names; } }; TEST_F(HloComputationDeduplicatorTest, RemoveRegionBandC) { const std::string_view text = R"( HloModule DeDupTest, entry_computation_layout={(s32[10]{0},s32[15]{0}, s32[20]{0})->s32[]} region_A { Arg_0.6 = s32[] parameter(0) Arg_1.7 = s32[] parameter(1) ROOT add.8 = s32[] add(Arg_0.6, Arg_1.7) } region_B { Arg_0.11 = s32[] parameter(0) Arg_1.12 = s32[] parameter(1) ROOT add.13 = s32[] add(Arg_0.11, Arg_1.12) } region_C { Arg_0.17 = s32[] parameter(0) Arg_1.18 = s32[] parameter(1) ROOT add.19 = s32[] add(Arg_0.17, Arg_1.18) } ENTRY main.22 { Arg_0.1 = s32[10]{0} parameter(0) Arg_1.2 = s32[15]{0} parameter(1) Arg_2.3 = s32[20]{0} parameter(2) constant.4 = s32[] constant(0) reduce.9 = s32[] reduce(Arg_0.1, constant.4), dimensions={0}, to_apply=region_A reduce.14 = s32[] reduce(Arg_1.2, constant.4), dimensions={0}, to_apply=region_B reduce.20 = s32[] reduce(Arg_2.3, constant.4), dimensions={0}, to_apply=region_C multiply.15 = s32[] multiply(reduce.9, reduce.14) ROOT multiply.21 = s32[] multiply(multiply.15, reduce.20) } )"; auto computation_names = RunDeduplicatePass(text, true); for (auto name : computation_names) { EXPECT_NE(name, "region_B"); EXPECT_NE(name, "region_C"); } EXPECT_EQ(computation_names.size(), 2); } TEST_F(HloComputationDeduplicatorTest, RemoveRegionBExactCopy) { const std::string_view text = R"( HloModule DeDupTest, entry_computation_layout={(s32[10]{0},s32[15]{0})->s32[]} region_A { Arg_0.5 = s32[] parameter(0) Arg_1.6 = s32[] parameter(1) ROOT add.7 = s32[] add(Arg_0.5, Arg_1.6) } region_B { Arg_0.5 = s32[] parameter(0) Arg_1.6 = s32[] parameter(1) ROOT add.7 = s32[] add(Arg_0.5, Arg_1.6) } ENTRY main.15 { Arg_0.1 = s32[10]{0} parameter(0) constant.3 = s32[] constant(0) rd1 = s32[] reduce(Arg_0.1, constant.3), dimensions={0}, to_apply=region_A Arg_1.2 = s32[15]{0} parameter(1) rd2 = s32[] reduce(Arg_1.2, constant.3), dimensions={0}, to_apply=region_B ROOT multiply.14 = s32[] multiply(rd1, rd2) } )"; auto computation_names = RunDeduplicatePass(text, true); for (auto name : computation_names) { EXPECT_NE(name, "region_B"); } EXPECT_EQ(computation_names.size(), 2); } TEST_F(HloComputationDeduplicatorTest, RemoveRegionsWithSameSubcomp) { const std::string_view text = R"( HloModule DeDupTest, entry_computation_layout={(s32[10]{0},s32[15]{0})->s32[]} region_X { Ag_0 = s32[] parameter(0) Arg_1 = s32[] parameter(1) ROOT their_sum = s32[] add(Ag_0, Arg_1) } region_Y { Arg_0 = s32[] parameter(0) Arg_1 = s32[] parameter(1) ROOT the_sum = s32[] add(Arg_0, Arg_1) } region_A { Arg_0.5 = s32[] parameter(0) Arg_1.6 = s32[] parameter(1) ROOT add.7 = s32[] add(Arg_0.5, Arg_1.6) } region_B { Arg_0.5 = s32[] parameter(0) Ar_1.6 = s32[] parameter(1) ROOT add.7 = s32[] add(Arg_0.5, Ar_1.6) } main.15 { Arg_0.1 = s32[10]{0} parameter(0) constant.3 = s32[] constant(0) rd1 = s32[] reduce(Arg_0.1, constant.3), dimensions={0}, to_apply=region_X Arg_1.2 = s32[15]{0} parameter(1) rd2 = s32[] reduce(Arg_1.2, constant.3), dimensions={0}, to_apply=region_Y ROOT multiply.14 = s32[] multiply(rd1, rd2) } main.16 { Arg_0.1 = s32[10]{0} parameter(0) constant.3 = s32[] constant(0) rd1 = s32[] reduce(Arg_0.1, constant.3), dimensions={0}, to_apply=region_A Arg_1.2 = s32[15]{0} parameter(1) rd2 = s32[] reduce(Arg_1.2, constant.3), dimensions={0}, to_apply=region_B ROOT multiply.14 = s32[] multiply(rd1, rd2) } main.17 { Arg_0 = s32[10]{0} parameter(0) Arg_1 = s32[15]{0} parameter(1) rd1 = s32[] call(Arg_0, Arg_1), to_apply=main.15 rd2 = s32[] call(Arg_0, Arg_1), to_apply=main.16 ROOT ret = add(rd1, rd2) } )"; auto computation_names = RunDeduplicatePass(text, true); for (auto name : computation_names) { EXPECT_NE(name, "region_B"); EXPECT_NE(name, "region_A"); EXPECT_NE(name, "region_Y"); EXPECT_NE(name, "main.16"); } EXPECT_EQ(computation_names.size(), 3); } TEST_F(HloComputationDeduplicatorTest, DontRemoveRegionsWithDifferentSubcomp) { const std::string_view text = R"( HloModule DeDupTest, entry_computation_layout={(s32[10]{0},s32[15]{0})->s32[]} region_X { Ag_0 = s32[] parameter(0) Arg_1 = s32[] parameter(1) ROOT their_sum = s32[] multiply(Ag_0, Arg_1) } region_Y { Arg_0 = s32[] parameter(0) Arg_1 = s32[] parameter(1) ROOT the_sum = s32[] add(Arg_0, Arg_1) } region_A { Arg_0.5 = s32[] parameter(0) Arg_1.6 = s32[] parameter(1) ROOT add.7 = s32[] add(Arg_0.5, Arg_1.6) } region_B { Arg_0.5 = s32[] parameter(0) Ar_1.6 = s32[] parameter(1) ROOT add.7 = s32[] add(Arg_0.5, Ar_1.6) } main.15 { Arg_0.1 = s32[10]{0} parameter(0) constant.3 = s32[] constant(0) rd1 = s32[] reduce(Arg_0.1, constant.3), dimensions={0}, to_apply=region_X Arg_1.2 = s32[15]{0} parameter(1) rd2 = s32[] reduce(Arg_1.2, constant.3), dimensions={0}, to_apply=region_Y ROOT multiply.14 = s32[] multiply(rd1, rd2) } main.16 { Arg_0.1 = s32[10]{0} parameter(0) constant.3 = s32[] constant(0) rd1 = s32[] reduce(Arg_0.1, constant.3), dimensions={0}, to_apply=region_A Arg_1.2 = s32[15]{0} parameter(1) rd2 = s32[] reduce(Arg_1.2, constant.3), dimensions={0}, to_apply=region_B ROOT multiply.14 = s32[] multiply(rd1, rd2) } main.17 { Arg_0 = s32[10]{0} parameter(0) Arg_1 = s32[15]{0} parameter(1) rd1 = s32[] call(Arg_0, Arg_1), to_apply=main.15 rd2 = s32[] call(Arg_0, Arg_1), to_apply=main.16 ROOT ret = add(rd1, rd2) } )"; auto computation_names = RunDeduplicatePass(text, true); int region_x_count = 0; int region_y_count = 0; int main_16_count = 0; int main_15_count = 0; int region_a_count = 0; int region_b_count = 0; for (auto name : computation_names) { region_x_count += (name == "region_X"); region_y_count += (name == "region_Y"); main_15_count += (name == "main.15"); main_16_count += (name == "main.16"); region_a_count += (name == "region_A"); region_b_count += (name == "region_B"); } EXPECT_EQ(region_a_count, 0); EXPECT_EQ(region_b_count, 0); EXPECT_EQ(main_15_count, 1); EXPECT_EQ(main_16_count, 1); EXPECT_EQ(region_x_count, 1); EXPECT_EQ(region_y_count, 1); } TEST_F(HloComputationDeduplicatorTest, RemoveRegionBVarDifferences) { const std::string_view text = R"( HloModule DeDupTest, entry_computation_layout={(s32[10]{0},s32[15]{0})->s32[]} region_A { Arg_0.5 = s32[] parameter(0) Arg_1.6 = s32[] parameter(1) ROOT add.7 = s32[] add(Arg_0.5, Arg_1.6) } region_B { Arg_0.2 = s32[] parameter(0) Arg_1.3 = s32[] parameter(1) ROOT add.8 = s32[] add(Arg_0.2, Arg_1.3) } ENTRY main.15 { Arg_0.1 = s32[10]{0} parameter(0) constant.3 = s32[] constant(0) rd1 = s32[] reduce(Arg_0.1, constant.3), dimensions={0}, to_apply=region_A Arg_1.2 = s32[15]{0} parameter(1) rd2 = s32[] reduce(Arg_1.2, constant.3), dimensions={0}, to_apply=region_B ROOT multiply.14 = s32[] multiply(rd1, rd2) } )"; auto computation_names = RunDeduplicatePass(text, true); for (auto name : computation_names) { EXPECT_NE(name, "region_B"); } EXPECT_EQ(computation_names.size(), 2); } TEST_F(HloComputationDeduplicatorTest, DontRemoveRegionBCommutative) { const std::string_view text = R"( HloModule DeDupTest, entry_computation_layout={(s32[10]{0},s32[15]{0})->s32[]} region_A { Arg_0 = s32[] parameter(0) Arg_1 = s32[] parameter(1) ROOT add.7 = s32[] add(Arg_1, Arg_0) } region_B { Arg_0.2 = s32[] parameter(0) Arg_1.3 = s32[] parameter(1) ROOT add.8 = s32[] add(Arg_0.2, Arg_1.3) } ENTRY main.15 { Arg_0.1 = s32[10]{0} parameter(0) constant.3 = s32[] constant(0) rd1 = s32[] reduce(Arg_0.1, constant.3), dimensions={0}, to_apply=region_A Arg_1.2 = s32[15]{0} parameter(1) rd2 = s32[] reduce(Arg_1.2, constant.3), dimensions={0}, to_apply=region_B ROOT multiply.14 = s32[] multiply(rd1, rd2) } )"; auto computation_names = RunDeduplicatePass(text, false); int region_b_count = 0; for (auto name : computation_names) { region_b_count += (name == "region_B"); } EXPECT_EQ(region_b_count, 1); EXPECT_EQ(computation_names.size(), 3); } TEST_F(HloComputationDeduplicatorTest, DontRemoveRegionBDifferentExecutionThread) { const std::string_view text = R"( HloModule DeDupTest, entry_computation_layout={(s32[10]{0},s32[15]{0})->s32[]} region_A { Arg_0 = s32[] parameter(0) Arg_1 = s32[] parameter(1) ROOT add = s32[] add(Arg_0, Arg_1) } region_B { Arg_0 = s32[] parameter(0) Arg_1 = s32[] parameter(1) ROOT add = s32[] add(Arg_0, Arg_1) } called_computation { Arg_0 = s32[15]{0} parameter(0) Cst = s32[] constant(0) ROOT rd2 = s32[] reduce(Arg_0, Cst), dimensions={0}, to_apply=region_B }, execution_thread="parallel_thread" ENTRY main.15 { Arg_0 = s32[10]{0} parameter(0) constant.3 = s32[] constant(0) rd1 = s32[] reduce(Arg_0, constant.3), dimensions={0}, to_apply=region_A Arg_1 = s32[15]{0} parameter(1) call-start = ((s32[15]{0}), s32[], s32[]) call-start(Arg_1), async_execution_thread="parallel_thread", to_apply=%called_computation call-done = s32[] call-done(call-start) ROOT multiply.14 = s32[] multiply(rd1, call-done) } )"; auto computation_names = RunDeduplicatePass(text, false); int region_b_count = 0; for (auto name : computation_names) { region_b_count += (name == "region_B"); } EXPECT_EQ(region_b_count, 1); EXPECT_EQ(computation_names.size(), 5); } TEST_F(HloComputationDeduplicatorTest, DontRemoveRegionLargeConstant) { const std::string_view text = R"( HloModule DeDupTest, entry_computation_layout={(s32[10]{0},s32[15]{0})->s32[]} region_A { Arg_00 = s32[] parameter(0) Arg_1_1 = s32[] parameter(1) Arg_0 = s32[10, 10] constant({{1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}}) Arg_1 = s32[10, 10] constant({{1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}}) Arg_2 = s32[10, 10] constant({{1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}}) Arg_3 = s32[10, 10] constant({{1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}}) Arg_4 = s32[10, 10] constant({{1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}}) Arg_5 = s32[10, 10] constant({{1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}}) add1 = s32[10, 10] add(Arg_1, Arg_0) add2 = s32[10, 10] add(Arg_2, Arg_3) add3 = s32[10, 10] add(Arg_4, Arg_5) add8 = s32[10, 10] add(add1, add2) addv = s32[10, 10] add(add3, add8) ROOT ret = add(Arg_00, Arg_1_1) } region_B { Arg_00 = s32[] parameter(0) Arg_1_1 = s32[] parameter(1) Arg_0 = s32[10, 10] constant({{1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}}) Arg_1 = s32[10, 10] constant({{1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}}) Arg_2 = s32[10, 10] constant({{1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}}) Arg_3 = s32[10, 10] constant({{1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}}) Arg_4 = s32[10, 10] constant({{1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}}) Arg_5 = s32[10, 10] constant({{1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}, {1,2,3,4,5,6,7,8,9,10}}) add1 = s32[10, 10] add(Arg_1, Arg_0) add2 = s32[10, 10] add(Arg_2, Arg_3) add3 = s32[10, 10] add(Arg_4, Arg_5) add8 = s32[10, 10] add(add1, add2) addv = s32[10, 10] add(add3, add8) ROOT ret = add(Arg_00, Arg_1_1) } ENTRY main.15 { Arg_0.1 = s32[10]{0} parameter(0) constant.3 = s32[] constant(0) rd1 = s32[] reduce(Arg_0.1, constant.3), dimensions={0}, to_apply=region_A Arg_1.2 = s32[15]{0} parameter(1) rd2 = s32[] reduce(Arg_1.2, constant.3), dimensions={0}, to_apply=region_B ROOT multiply.14 = s32[] multiply(rd1, rd2) } )"; auto computation_names = RunDeduplicatePass(text, false); int region_b_count = 0; for (auto comp : computation_names) { region_b_count += (comp == "region_B"); } EXPECT_EQ(region_b_count, 1); EXPECT_EQ(computation_names.size(), 3); } TEST_F(HloComputationDeduplicatorTest, DontRemoveRegionBDifferentcomp) { const std::string_view text = R"( HloModule DeDupTest, entry_computation_layout={(s32[10]{0},s32[15]{0})->s32[]} region_A { Arg_0.5 = s32[] parameter(0) Arg_1.6 = s32[] parameter(1) ROOT add.7 = s32[] multiply(Arg_0.5, Arg_1.6) } region_B { Arg_0.2 = s32[] parameter(0) Arg_1.3 = s32[] parameter(1) ROOT add.8 = s32[] add(Arg_0.2, Arg_1.3) } ENTRY main.15 { Arg_0.1 = s32[10]{0} parameter(0) constant.3 = s32[] constant(0) rd1 = s32[] reduce(Arg_0.1, constant.3), dimensions={0}, to_apply=region_A Arg_1.2 = s32[15]{0} parameter(1) rd2 = s32[] reduce(Arg_1.2, constant.3), dimensions={0}, to_apply=region_B ROOT multiply.14 = s32[] multiply(rd1, rd2) } )"; auto computation_names = RunDeduplicatePass(text, false); int region_b_count = 0; for (auto name : computation_names) { region_b_count += (name == "region_B"); } EXPECT_EQ(region_b_count, 1); EXPECT_EQ(computation_names.size(), 3); } TEST_F(HloComputationDeduplicatorTest, DontRemoveRegionBDifferentType) { const std::string_view text = R"( HloModule DeDupTest, entry_computation_layout={(s32[10]{0},s16[15]{0})->s16[]} region_A { Arg_0.5 = s32[] parameter(0) Arg_1.6 = s32[] parameter(1) ROOT add.7 = s32[] multiply(Arg_0.5, Arg_1.6) } region_B { Arg_0.5 = s16[] parameter(0) Arg_1.6 = s16[] parameter(1) ROOT add.7 = s16[] multiply(Arg_0.5, Arg_1.6) } ENTRY main.15 { Arg_0.1 = s32[10]{0} parameter(0) constant.3 = s32[] constant(5) rd1 = s32[] reduce(Arg_0.1, constant.3), dimensions={0}, to_apply=region_A Arg_1.2 = s16[15]{0} parameter(1) constant.4 = s16[] constant(5) rd2 = s16[] reduce(Arg_1.2, constant.4), dimensions={0}, to_apply=region_B } )"; auto computation_names = RunDeduplicatePass(text, false); int region_b_count = 0; for (auto comp : computation_names) { region_b_count += (comp == "region_B"); } EXPECT_EQ(region_b_count, 1); EXPECT_EQ(computation_names.size(), 3); } TEST_F(HloComputationDeduplicatorTest, DontRemoveRegionBEntryComp) { const std::string_view text = R"( HloModule DeDupTest, entry_computation_layout={(s32[10]{0},s32[15]{0})->s32[]} region_A1 { Arg_0.5 = s32[] parameter(0) Arg_1.6 = s32[] parameter(1) ROOT add.7 = s32[] multiply(Arg_0.5, Arg_1.6) } region_B1 { Arg_0.2 = s32[] parameter(0) Arg_1.3 = s32[] parameter(1) ROOT add.8 = s32[] add(Arg_0.2, Arg_1.3) } ENTRY region_B { Arg_0.1 = s32[10]{0} parameter(0) constant.3 = s32[] constant(0) rd1 = s32[] reduce(Arg_0.1, constant.3), dimensions={0}, to_apply=region_A1 Arg_1.2 = s32[15]{0} parameter(1) rd2 = s32[] reduce(Arg_1.2, constant.3), dimensions={0}, to_apply=region_B1 ROOT multiply.14 = s32[] multiply(rd1, rd2) } region_A { Arg_0.1 = s32[10]{0} parameter(0) constant.3 = s32[] constant(0) rd1 = s32[] reduce(Arg_0.1, constant.3), dimensions={0}, to_apply=region_A1 Arg_1.2 = s32[15]{0} parameter(1) rd2 = s32[] reduce(Arg_1.2, constant.3), dimensions={0}, to_apply=region_B1 ROOT multiply.14 = s32[] multiply(rd1, rd2) } )"; auto computation_names = RunDeduplicatePass(text, false); EXPECT_EQ(computation_names.size(), 4); } TEST_F(HloComputationDeduplicatorTest, LargeSubComputationTest) { const Shape shape = ShapeUtil::MakeScalarShape(S32); const int total_regions = 2; const int max_insns = 128; std::vector<HloComputation> comps; auto module = CreateNewVerifiedModule(); for (int region = 0; region < total_regions; region++) { HloComputation::Builder builder("region_" + std::to_string(region)); auto curr = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "a0")); auto next = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "a1")); for (int i = 0; i < max_insns; i++) { next = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, curr, next)); } module->AddComputationAndUnifyNamesAndIds(builder.Build(), false); } HloComputation::Builder main("main_func"); std::vector<HloInstruction *> insns; std::vector<HloInstruction *> consts; for (int region = 0; region < total_regions; region++) { insns.push_back(main.AddInstruction( HloInstruction::CreateParameter(region, ShapeUtil::MakeShape(S32, {10}), "a" + std::to_string(region)))); consts.push_back(main.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(5 + region)))); } int region = 0; for (auto comp : module->computations()) { ASSERT_LT(region, total_regions); main.AddInstruction(HloInstruction::CreateReduce( ShapeUtil::MakeScalarShape(S32), insns[region], consts[region], {0}, comp)); } module->AddEntryComputation(main.Build()); HloComputationDeduplicator dedup; TF_ASSERT_OK_AND_ASSIGN(bool changed, dedup.Run(module.get())); EXPECT_FALSE(changed); std::vector<HloComputation *> computations = module->MakeComputationSorted(); EXPECT_EQ(computations.size(), (total_regions + 1)); } TEST_F(HloComputationDeduplicatorTest, DontDeduplicateReduceAllReduce) { const std::string_view text = R"( HloModule TestModule add.1 { Arg_0 = s32[] parameter(0) Arg_1 = s32[] parameter(1) ROOT add.2 = s32[] add(Arg_0, Arg_1) } add.2 { Arg_0 = s32[] parameter(0) Arg_1 = s32[] parameter(1) ROOT add.2 = s32[] add(Arg_0, Arg_1) } ENTRY main { Arg_0.1 = s32[10] parameter(0) constant.3 = s32[] constant(0) rd1 = s32[] reduce(Arg_0.1, constant.3), dimensions={0}, to_apply=add.1 Arg_1.1 = s32[] parameter(1) rd2 = s32[] all-reduce(Arg_1.1), to_apply=add.2 ROOT multiply.14 = s32[] multiply(rd1, rd2) } )"; auto computation_names = RunDeduplicatePass(text, false); EXPECT_EQ(computation_names.size(), 3); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_computation_deduplicator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_computation_deduplicator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bdb04ae8-b394-4376-8869-cbfb0c452ed3
cpp
tensorflow/tensorflow
gather_simplifier
third_party/xla/xla/service/gather_simplifier.cc
third_party/xla/xla/service/gather_simplifier_test.cc
#include "xla/service/gather_simplifier.h" #include <iterator> #include <vector> #include "absl/algorithm/container.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/literal_util.h" #include "xla/permutation_util.h" #include "xla/service/gather_scatter_utils.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape_util.h" #include "tsl/platform/statusor.h" namespace xla { absl::StatusOr<HloInstruction*> GatherSimplifier::ExpandInstruction( HloInstruction* inst) { auto* gather = DynCast<HloGatherInstruction>(inst); if (absl::c_linear_search(gather->gather_slice_sizes(), 0)) { auto* zero = gather->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(gather->shape().element_type()))); return gather->AddInstruction( HloInstruction::CreateBroadcast(gather->shape(), zero, {})); } const auto& dims = gather->gather_dimension_numbers(); int operand_rank = dims.collapsed_slice_dims().size() + dims.offset_dims().size(); auto [operand_permutation, operand_permutation_inverse] = MakeOperandStartIndexPermutations(dims.start_index_map(), operand_rank); auto* operand = gather->operands()[0]; auto* start_indices = gather->operands()[1]; TF_ASSIGN_OR_RETURN(operand, MaybeTranspose(operand, operand_permutation)); TF_ASSIGN_OR_RETURN( start_indices, TransformStartIndices(start_indices, dims.index_vector_dim())); auto slice_sizes = Permute(gather->gather_slice_sizes(), operand_permutation); std::vector<int64_t> output_dims = {start_indices->shape().dimensions(0)}; absl::c_copy(slice_sizes, std::back_inserter(output_dims)); Shape output_shape = ShapeUtil::MakeShape(operand->shape().element_type(), output_dims); std::vector<int64_t> offset_dims(operand_rank); absl::c_iota(offset_dims, 1); std::vector<int64_t> start_index_map(dims.start_index_map().size()); absl::c_iota(start_index_map, 0); auto* result = gather->AddInstruction(HloInstruction::CreateGather( output_shape, operand, start_indices, HloGatherInstruction::MakeGatherDimNumbers( offset_dims, {}, start_index_map, 1), slice_sizes, gather->indices_are_sorted())); std::vector<int64_t> output_permutation(1 + operand_rank); absl::c_transform(operand_permutation_inverse, output_permutation.begin() + 1, [](int64_t dim) { return dim + 1; }); TF_ASSIGN_OR_RETURN(result, MaybeTranspose(result, output_permutation)); if (!dims.collapsed_slice_dims().empty()) { std::vector<int64_t> collapsed_slice_dims( dims.collapsed_slice_dims().size()); absl::c_transform(dims.collapsed_slice_dims(), collapsed_slice_dims.begin(), [](int64_t dim) { return dim + 1; }); TF_ASSIGN_OR_RETURN(result, ElideDegenerateDims(result, collapsed_slice_dims)); } auto original_start_index_dims = gather->operands()[1]->shape().dimensions(); std::vector<int64_t> start_indices_dims; for (int i = 0; i < original_start_index_dims.size(); ++i) { if (i != dims.index_vector_dim()) { start_indices_dims.push_back(original_start_index_dims[i]); } } if (start_indices_dims.size() > 1) { TF_ASSIGN_OR_RETURN(result, ExpandFirstDimIntoNDims(result, start_indices_dims)); } else if (start_indices_dims.empty()) { TF_ASSIGN_OR_RETURN(result, ElideDegenerateDims(result, {0})); } std::vector<int64_t> output_perm; auto output_rank = static_cast<int64_t>(start_indices_dims.size() + dims.offset_dims().size()); output_perm.reserve(output_rank); auto offset_dim_index = static_cast<int64_t>(start_indices_dims.size()); int64_t start_index_dim_index = 0; for (int64_t i = 0; i < output_rank; ++i) { if (absl::c_linear_search(dims.offset_dims(), i)) { output_perm.push_back(offset_dim_index++); } else { output_perm.push_back(start_index_dim_index++); } } return MaybeTranspose(result, output_perm); } bool GatherSimplifier::IsSimplifiedGather(const HloGatherInstruction* gather) { auto* start_indices = gather->operands()[1]; const auto& dims = gather->gather_dimension_numbers(); return start_indices->shape().rank() == 2 && dims.index_vector_dim() == 1 && IsIdentityPermutation(dims.start_index_map()) && dims.collapsed_slice_dims().empty() && *dims.offset_dims().begin() == 1 && *dims.offset_dims().rbegin() == dims.offset_dims().size(); } bool GatherSimplifier::InstructionMatchesPattern(HloInstruction* inst) { auto* gather = DynCast<HloGatherInstruction>(inst); return gather && !IsSimplifiedGather(gather); } }
#include "xla/service/gather_simplifier.h" #include <optional> #include "xla/tests/hlo_test_base.h" namespace xla { namespace { class GatherSimplifierTest : public HloTestBase {}; TEST_F(GatherSimplifierTest, TransformsStartIndices) { constexpr absl::string_view kModuleStr = R"( HloModule gather_simplifier ENTRY kernel_entry { operand = f32[33,34] parameter(0) indices = s32[42,43] parameter(1) ROOT gather = f32[42,43,7,8] gather(operand, indices), offset_dims={2,3}, collapsed_slice_dims={}, start_index_map={0}, index_vector_dim=2, slice_sizes={7,8} })"; RunAndFilecheckHloRewrite(kModuleStr, GatherSimplifier(), R"( CHECK: %[[VECTOR_DIM:.*]] = s32[42,43,1]{2,1,0} reshape(%indices) CHECK: %[[INDICES_2D:.*]] = s32[1806,1]{1,0} reshape(%[[VECTOR_DIM]]) CHECK: %[[GATHER:.*]] = f32[1806,7,8]{{.*}} gather( CHECK-SAME: %operand, %[[INDICES_2D]]), CHECK-SAME: offset_dims={1,2}, CHECK-SAME: collapsed_slice_dims={}, CHECK-SAME: start_index_map={0}, CHECK-SAME: index_vector_dim=1, CHECK-SAME: slice_sizes={7,8} CHECK: ROOT %{{.*}} = f32[42,43,7,8]{3,2,1,0} reshape(%[[GATHER]]) )"); } TEST_F(GatherSimplifierTest, RemovesCollapsedSliceDims) { constexpr absl::string_view kModuleStr = R"( HloModule gather_simplifier ENTRY kernel_entry { operand = f32[33,34] parameter(0) indices = s32[42,1] parameter(1) ROOT gather = f32[42] gather(operand, indices), offset_dims={}, collapsed_slice_dims={0,1}, start_index_map={0}, index_vector_dim=1, slice_sizes={1,1} })"; RunAndFilecheckHloRewrite(kModuleStr, GatherSimplifier(), R"( CHECK: %[[GATHER:.*]] = f32[42,1,1]{2,1,0} gather(%operand, %indices) CHECK-SAME: offset_dims={1,2}, CHECK-SAME: collapsed_slice_dims={}, CHECK: ROOT %{{.*}} = f32[42]{0} reshape(%[[GATHER]]) )"); } TEST_F(GatherSimplifierTest, MakesStartIndexMapIdentity) { constexpr absl::string_view kModuleStr = R"( HloModule gather_simplifier ENTRY kernel_entry { operand = f32[33,34,35] parameter(0) indices = s32[42,3] parameter(1) ROOT gather = f32[42,1,2,3] gather(operand, indices), offset_dims={1,2,3}, collapsed_slice_dims={}, start_index_map={2,0,1}, index_vector_dim=1, slice_sizes={1,2,3} })"; RunAndFilecheckHloRewrite(kModuleStr, GatherSimplifier(), R"( %operand = f32[33,34,35]{2,1,0} parameter(0) CHECK: %[[OPERAND:.*]] = f32[35,33,34]{2,1,0} transpose(%operand) CHECK: %[[GATHER:.*]] = f32[42,3,1,2]{{.*}} gather(%[[OPERAND]], CHECK-SAME: start_index_map={0,1,2}, CHECK: ROOT {{.*}} = f32[42,1,2,3]{{.*}} transpose(%[[GATHER]]) )"); } TEST_F(GatherSimplifierTest, CollapsesSomeDims) { constexpr absl::string_view kModuleStr = R"( HloModule gather_simplifier ENTRY kernel_entry { operand = f32[33,34,35] parameter(0) indices = s32[42,1] parameter(1) ROOT gather = f32[7,42] gather(operand, indices), offset_dims={0}, collapsed_slice_dims={0,2}, start_index_map={0}, index_vector_dim=1, slice_sizes={1,7,1} })"; RunAndFilecheckHloRewrite(kModuleStr, GatherSimplifier(), R"( CHECK: %[[GATHER:.*]] = f32[42,1,7,1]{3,2,1,0} gather( CHECK: %[[COLLAPSED:.*]] = f32[42,7]{1,0} reshape(%[[GATHER]]) CHECK: ROOT {{.*}} = f32[7,42]{1,0} transpose(%[[COLLAPSED]]), CHECK-SAME: dimensions={1,0} )"); } TEST_F(GatherSimplifierTest, ZeroDimStartIndices) { constexpr absl::string_view kModuleStr = R"( HloModule gather_simplifier ENTRY kernel_entry { operand = f32[8,16] parameter(0) indices = s32[2] parameter(1) ROOT gather = f32[8,16] gather(f32[8,16] operand, s32[2] indices), offset_dims={0,1}, collapsed_slice_dims={}, start_index_map={0,1}, index_vector_dim=0, slice_sizes={8,16} })"; RunAndFilecheckHloRewrite(kModuleStr, GatherSimplifier(), R"( CHECK: gather( )"); } TEST_F(GatherSimplifierTest, ZeroSizeSlice) { constexpr absl::string_view kModuleStr = R"( HloModule gather_simplifier ENTRY kernel_entry { operand = f32[0,2] parameter(0) indices = s32[3] parameter(1) ROOT gather = f32[3,2] gather(f32[0,2] operand, s32[3]{0} indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={0,2} })"; RunAndFilecheckHloRewrite(kModuleStr, GatherSimplifier(), R"( CHECK: %[[ZERO:.*]] = f32[] constant(0) CHECK: ROOT {{.*}} = f32[3,2]{1,0} broadcast(%[[ZERO]]), dimensions={} )"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gather_simplifier.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gather_simplifier_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1d363942-2352-4331-8226-9a635b5b362f
cpp
tensorflow/tensorflow
collective_quantizer
third_party/xla/xla/service/collective_quantizer.cc
third_party/xla/xla/service/collective_quantizer_test.cc
#include "xla/service/collective_quantizer.h" #include "xla/service/hlo_replication_analysis.h" #include "xla/service/pattern_matcher.h" #include "xla/shape_util.h" namespace xla { namespace { namespace m = match; struct ConversionSubgraph { HloInstruction* convert = nullptr; HloInstruction* binary = nullptr; HloInstruction* clamp = nullptr; HloInstruction* scale_bcast = nullptr; std::vector<HloInstruction*> unaries; }; template <typename... Args> auto ScalarBroadcast(Args... args) { return m::Broadcast(args...).WithPredicate([](const HloInstruction* instr) { return ShapeUtil::IsScalar(instr->operand(0)->shape()); }); } auto BitcastPreservesElementType() { return m::Bitcast().WithPredicate([](const HloInstruction* instr) { return ShapeUtil::SameElementType(instr->shape(), instr->operand(0)->shape()); }); } auto ConvertToNarrowerType() { auto converts_to_narrower_type = [](const HloInstruction* instr) -> bool { return ShapeUtil::ByteSizeOfPrimitiveType(instr->shape().element_type()) < ShapeUtil::ByteSizeOfPrimitiveType( instr->operand(0)->shape().element_type()); }; return m::Convert().WithPredicate(converts_to_narrower_type); } auto ConvertToWiderType() { auto converts_to_wider_type = [](const HloInstruction* instr) -> bool { return ShapeUtil::ByteSizeOfPrimitiveType(instr->shape().element_type()) > ShapeUtil::ByteSizeOfPrimitiveType( instr->operand(0)->shape().element_type()); }; return m::Convert().WithPredicate(converts_to_wider_type); } bool IsSupportedCollective(HloInstruction* instr) { return instr->operand_count() == 1 && (instr->opcode() == HloOpcode::kAllGather || instr->opcode() == HloOpcode::kAllToAll || instr->opcode() == HloOpcode::kCollectiveBroadcast || instr->opcode() == HloOpcode::kCollectivePermute); } HloInstruction* ApplyUnaries(HloInstruction* instr, const std::vector<HloInstruction*>& unaries) { for (HloInstruction* unary : unaries) { instr = instr->AddInstruction(unary->CloneWithNewOperands( ShapeUtil::MakeShapeWithDenseLayout( instr->shape().element_type(), unary->shape().dimensions(), unary->shape().layout().minor_to_major()), {instr})); } return instr; } absl::StatusOr<bool> InstrIsReplicated(HloModule* module, HloInstruction* instr) { if (module->config().replica_count() > 1) { return false; } TF_ASSIGN_OR_RETURN( auto replication_analysis, HloReplicationAnalysis::Run(module, true)); return replication_analysis->HloInstructionIsReplicatedAt(instr, {}); } std::vector<HloInstruction*> FindDequantizationSubgraphRecursive( HloInstruction* instr, absl::flat_hash_set<int>& visited_instrs, std::vector<HloInstruction*> subgraph) { if (!visited_instrs.emplace(instr->unique_id()).second) { return {}; } subgraph.emplace_back(instr); if (Match(instr, ConvertToWiderType())) { return subgraph; } if (instr->operand_count() == 1 || instr->opcode() == HloOpcode::kDivide) { return FindDequantizationSubgraphRecursive(instr->mutable_operand(0), visited_instrs, subgraph); } else if (instr->opcode() == HloOpcode::kMultiply) { for (HloInstruction* operand : instr->unique_operands()) { auto binary_subgraph = FindDequantizationSubgraphRecursive( operand, visited_instrs, subgraph); if (!binary_subgraph.empty()) { return binary_subgraph; } } } return {}; } std::optional<ConversionSubgraph> IsSupportedDequantization( HloInstruction* instr) { ConversionSubgraph subgraph; absl::flat_hash_set<int> visited_instrs; std::vector<HloInstruction*> candidate_subgraph = FindDequantizationSubgraphRecursive(instr, visited_instrs, std::vector<HloInstruction*>{}); std::reverse(candidate_subgraph.begin(), candidate_subgraph.end()); if (candidate_subgraph.size() > 1 && (Match( candidate_subgraph[1], m::MultiplyAnyOrder(&subgraph.binary, m::Convert(&subgraph.convert), ScalarBroadcast(&subgraph.scale_bcast))) || Match(candidate_subgraph[1], m::Divide(&subgraph.binary, m::Convert(&subgraph.convert), ScalarBroadcast(&subgraph.scale_bcast))))) { subgraph.unaries = {candidate_subgraph.begin() + 2, candidate_subgraph.end()}; } else if (candidate_subgraph.size() > 0 && Match(candidate_subgraph[0], m::Convert(&subgraph.convert))) { subgraph.unaries = {candidate_subgraph.begin() + 1, candidate_subgraph.end()}; } else { VLOG(5) << "Did not find type conversion or dequantization pattern."; return std::nullopt; } for (HloInstruction* unary : subgraph.unaries) { if (!Match(unary, m::AnyOf<HloInstruction>(m::Bitcast(), m::Copy(), m::Reshape(), m::Slice()))) { VLOG(5) << "Unexpected instruction in unary ops."; return std::nullopt; } } return std::make_optional<ConversionSubgraph>(std::move(subgraph)); } std::optional<ConversionSubgraph> IsSupportedQuantization( HloInstruction* instr) { ConversionSubgraph subgraph; std::vector<HloInstruction*> ops; while (instr->user_count() <= 1) { if (Match(instr, m::AnyOf<HloInstruction>( BitcastPreservesElementType(), m::Copy(), m::Reshape(), m::Slice(), m::Multiply(), m::Divide(), m::Clamp()))) { if (instr->user_count() > 0) { ops.emplace_back(instr); instr = instr->users()[0]; continue; } break; } if (Match(instr, ConvertToNarrowerType())) { ops.emplace_back(instr); break; } VLOG(5) << "Unsupported instruction."; return std::nullopt; } if (ops.size() > 2 && (Match( ops.back(), m::Convert(&subgraph.convert, m::Clamp(&subgraph.clamp, ScalarBroadcast(m::Constant()), m::MultiplyAnyOrder( &subgraph.binary, m::Op(), ScalarBroadcast(&subgraph.scale_bcast)), ScalarBroadcast(m::Constant())))) || Match(ops.back(), m::Convert( &subgraph.convert, m::Clamp(&subgraph.clamp, ScalarBroadcast(m::Constant()), m::Divide(&subgraph.binary, m::Op(), ScalarBroadcast(&subgraph.scale_bcast)), ScalarBroadcast(m::Constant())))))) { subgraph.unaries = {ops.begin(), ops.end() - 3}; } else if (ops.size() > 0 && Match(ops.back(), m::Convert(&subgraph.convert))) { subgraph.unaries = {ops.begin(), ops.end() - 1}; } else { VLOG(5) << "Did not find type conversion or quantization pattern."; return std::nullopt; } for (HloInstruction* unary : subgraph.unaries) { if (!Match(unary, m::AnyOf<HloInstruction>(m::Bitcast(), m::Copy(), m::Reshape(), m::Slice()))) { VLOG(5) << "Unexpected instruction in unary ops."; return std::nullopt; } } return std::make_optional<ConversionSubgraph>(std::move(subgraph)); } absl::Status MatchDequantization(HloInstruction* instr, bool* changed) { std::optional<ConversionSubgraph> subgraph = IsSupportedDequantization(instr->mutable_operand(0)); if (!subgraph.has_value()) { return absl::OkStatus(); } if (subgraph->scale_bcast) { TF_ASSIGN_OR_RETURN( bool scale_is_replicated, InstrIsReplicated(instr->parent()->parent(), subgraph->scale_bcast)); if (!scale_is_replicated) { return absl::OkStatus(); } } HloInstruction* new_coll_operand = subgraph->convert->mutable_operand(0); new_coll_operand = ApplyUnaries(new_coll_operand, subgraph->unaries); Shape new_coll_shape = ShapeUtil::ChangeElementType( instr->shape(), new_coll_operand->shape().element_type()); HloInstruction* new_collective = instr->AddInstruction( instr->CloneWithNewOperands(new_coll_shape, {new_coll_operand})); Shape new_convert_shape = ShapeUtil::ChangeElementType( new_collective->shape(), subgraph->convert->shape().element_type()); HloInstruction* new_convert = instr->AddInstruction(subgraph->convert->CloneWithNewOperands( new_convert_shape, {new_collective})); HloInstruction* new_binary; if (subgraph->binary) { HloInstruction* new_scale_bcast = instr->AddInstruction( subgraph->scale_bcast->CloneWithNewShape(new_convert->shape())); new_binary = instr->AddInstruction(subgraph->binary->CloneWithNewOperands( new_convert->shape(), {new_convert, new_scale_bcast})); } TF_RETURN_IF_ERROR( instr->ReplaceAllUsesWith(subgraph->binary ? new_binary : new_convert)); *changed = true; VLOG(5) << "Quantized collective " << new_collective->ToShortString(); return absl::OkStatus(); } absl::Status MatchQuantization(HloInstruction* instr, bool* changed) { std::optional<ConversionSubgraph> subgraph; if (instr->user_count() == 1) { subgraph = IsSupportedQuantization(instr->users()[0]); } if (!subgraph.has_value()) { return absl::OkStatus(); } if (subgraph->scale_bcast) { TF_ASSIGN_OR_RETURN( bool scale_is_replicated, InstrIsReplicated(instr->parent()->parent(), subgraph->scale_bcast)); if (!scale_is_replicated) { return absl::OkStatus(); } } HloInstruction* coll_operand = instr->mutable_operand(0); HloInstruction *new_binary, *new_clamp; if (subgraph->binary) { HloInstruction* new_scale_bcast = instr->AddInstruction( subgraph->scale_bcast->CloneWithNewShape(coll_operand->shape())); new_binary = instr->AddInstruction(subgraph->binary->CloneWithNewOperands( coll_operand->shape(), {coll_operand, new_scale_bcast})); HloInstruction* new_clamp_lower = instr->AddInstruction( subgraph->clamp->operand(0)->CloneWithNewShape(coll_operand->shape())); HloInstruction* new_clamp_upper = instr->AddInstruction( subgraph->clamp->operand(2)->CloneWithNewShape(coll_operand->shape())); new_clamp = instr->AddInstruction(subgraph->clamp->CloneWithNewOperands( coll_operand->shape(), {new_clamp_lower, new_binary, new_clamp_upper})); } Shape new_convert_shape = ShapeUtil::ChangeElementType( coll_operand->shape(), subgraph->convert->shape().element_type()); HloInstruction* new_convert = instr->AddInstruction(subgraph->convert->CloneWithNewOperands( new_convert_shape, {subgraph->binary ? new_clamp : coll_operand})); Shape new_collective_shape = ShapeUtil::ChangeElementType( instr->shape(), subgraph->convert->shape().element_type()); HloInstruction* new_collective = instr->AddInstruction( instr->CloneWithNewOperands(new_collective_shape, {new_convert})); new_collective = ApplyUnaries(new_collective, subgraph->unaries); TF_RETURN_IF_ERROR(subgraph->convert->ReplaceAllUsesWith(new_collective)); *changed = true; VLOG(5) << "Quantized collective " << new_collective->ToShortString(); return absl::OkStatus(); } } absl::StatusOr<bool> CollectiveQuantizer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* comp : module->MakeComputationPostOrder()) { for (HloInstruction* instr : comp->MakeInstructionPostOrder()) { if (IsSupportedCollective(instr)) { TF_RETURN_IF_ERROR(MatchDequantization(instr, &changed)); TF_RETURN_IF_ERROR(MatchQuantization(instr, &changed)); } } } return changed; } }
#include "xla/service/collective_quantizer.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_verifier.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; class CollectiveQuantizerTest : public HloTestBase { public: absl::StatusOr<bool> RunCollectiveQuantizer(HloModule* module) { CollectiveQuantizer collective_quantizer; return collective_quantizer.Run(module, {}); } }; TEST_F(CollectiveQuantizerTest, AllGatherConvert) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = bf16[8,4,8,128] parameter(0) all-gather = bf16[8,32,8,128] all-gather(param), dimensions={1}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 ROOT convert = f8e4m3fn[8,32,8,128] convert(all-gather) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveQuantizer(module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::AllGather(op::Convert(op::Parameter()))); HloInstruction* all_gather = module->entry_computation()->root_instruction(); EXPECT_THAT(all_gather->shape().element_type(), F8E4M3FN); } TEST_F(CollectiveQuantizerTest, AllGatherConvertUnary) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = bf16[8,4,8,128] parameter(0) all-gather = bf16[8,32,8,128] all-gather(param), dimensions={1}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 reshape = bf16[8,32,1024] reshape(all-gather) slice = bf16[8,32,512] slice(reshape), slice={[0:8], [0:32], [256:768]} ROOT convert = f8e4m3fn[8,32,512] convert(slice) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveQuantizer(module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Slice(op::Reshape(op::AllGather(op::Convert(op::Parameter()))))); HloInstruction* all_gather = module->entry_computation()->root_instruction(); EXPECT_THAT(all_gather->shape().element_type(), F8E4M3FN); } TEST_F(CollectiveQuantizerTest, AllGatherQuantize) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = bf16[8,4,8,128] parameter(0) all-gather = bf16[8,32,8,128] all-gather(param), dimensions={1}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 scale = bf16[] parameter(1), sharding={replicated} scale_bcast = bf16[8,32,8,128] broadcast(scale), dimensions={} divide = bf16[8,32,8,128] divide(all-gather, scale_bcast) clamp_lower = bf16[] constant(-448.0) clamp_lower_bcast = bf16[8,32,8,128] broadcast(clamp_lower), dimensions={} clamp_upper = bf16[] constant(448.0) clamp_upper_bcast = bf16[8,32,8,128] broadcast(clamp_upper), dimensions={} clamp = bf16[8,32,8,128] clamp(clamp_lower_bcast, divide, clamp_upper_bcast) ROOT convert = f8e4m3fn[8,32,8,128] convert(clamp) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveQuantizer(module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::AllGather(op::Convert(op::Clamp( op::Broadcast(), op::Divide(op::Parameter(), op::Broadcast()), op::Broadcast())))); HloInstruction* all_gather = module->entry_computation()->root_instruction(); EXPECT_THAT(all_gather->shape().element_type(), F8E4M3FN); } TEST_F(CollectiveQuantizerTest, AllToAllQuantize) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = bf16[8,32,8,128] parameter(0) all-to-all = bf16[8,32,8,128] all-to-all(param), dimensions={1}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 scale = bf16[] parameter(1), sharding={replicated} scale_bcast = bf16[8,32,8,128] broadcast(scale), dimensions={} divide = bf16[8,32,8,128] divide(all-to-all, scale_bcast) clamp_lower = bf16[] constant(-448.0) clamp_lower_bcast = bf16[8,32,8,128] broadcast(clamp_lower), dimensions={} clamp_upper = bf16[] constant(448.0) clamp_upper_bcast = bf16[8,32,8,128] broadcast(clamp_upper), dimensions={} clamp = bf16[8,32,8,128] clamp(clamp_lower_bcast, divide, clamp_upper_bcast) ROOT convert = f8e4m3fn[8,32,8,128] convert(clamp) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveQuantizer(module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::AllToAll(op::Convert(op::Clamp( op::Broadcast(), op::Divide(op::Parameter(), op::Broadcast()), op::Broadcast())))); HloInstruction* all_to_all = module->entry_computation()->root_instruction(); EXPECT_THAT(all_to_all->shape().element_type(), F8E4M3FN); } TEST_F(CollectiveQuantizerTest, CollectiveBroadcastQuantize) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = bf16[8,32,8,128] parameter(0) collective-broadcast = bf16[8,32,8,128] collective-broadcast(param), replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 scale = bf16[] parameter(1), sharding={replicated} scale_bcast = bf16[8,32,8,128] broadcast(scale), dimensions={} divide = bf16[8,32,8,128] divide(collective-broadcast, scale_bcast) clamp_lower = bf16[] constant(-448.0) clamp_lower_bcast = bf16[8,32,8,128] broadcast(clamp_lower), dimensions={} clamp_upper = bf16[] constant(448.0) clamp_upper_bcast = bf16[8,32,8,128] broadcast(clamp_upper), dimensions={} clamp = bf16[8,32,8,128] clamp(clamp_lower_bcast, divide, clamp_upper_bcast) ROOT convert = f8e4m3fn[8,32,8,128] convert(clamp) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveQuantizer(module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CollectiveBroadcast(op::Convert(op::Clamp( op::Broadcast(), op::Divide(op::Parameter(), op::Broadcast()), op::Broadcast())))); HloInstruction* collective_broadcast = module->entry_computation()->root_instruction(); EXPECT_THAT(collective_broadcast->shape().element_type(), F8E4M3FN); } TEST_F(CollectiveQuantizerTest, CollectivePermuteQuantize) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = bf16[8,32,8,128] parameter(0) collective-permute = bf16[8,32,8,128] collective-permute(param), source_target_pairs={{0,1},{2,3},{4,5},{6,7}}, channel_id=1 scale = bf16[] parameter(1), sharding={replicated} scale_bcast = bf16[8,32,8,128] broadcast(scale), dimensions={} divide = bf16[8,32,8,128] divide(collective-permute, scale_bcast) clamp_lower = bf16[] constant(-448.0) clamp_lower_bcast = bf16[8,32,8,128] broadcast(clamp_lower), dimensions={} clamp_upper = bf16[] constant(448.0) clamp_upper_bcast = bf16[8,32,8,128] broadcast(clamp_upper), dimensions={} clamp = bf16[8,32,8,128] clamp(clamp_lower_bcast, divide, clamp_upper_bcast) ROOT convert = f8e4m3fn[8,32,8,128] convert(clamp) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveQuantizer(module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CollectivePermute(op::Convert(op::Clamp( op::Broadcast(), op::Divide(op::Parameter(), op::Broadcast()), op::Broadcast())))); HloInstruction* collective_permute = module->entry_computation()->root_instruction(); EXPECT_THAT(collective_permute->shape().element_type(), F8E4M3FN); } TEST_F(CollectiveQuantizerTest, AllGatherQuantizeUnary) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = bf16[8,4,8,128] parameter(0) all-gather = bf16[8,32,8,128] all-gather(param), dimensions={1}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 reshape = bf16[8,32,1024] reshape(all-gather) slice = bf16[8,32,512] slice(reshape), slice={[0:8], [0:32], [256:768]} scale = bf16[] parameter(1), sharding={replicated} scale_bcast = bf16[8,32,512] broadcast(scale), dimensions={} divide = bf16[8,32,512] divide(slice, scale_bcast) clamp_lower = bf16[] constant(-448.0) clamp_lower_bcast = bf16[8,32,512] broadcast(clamp_lower), dimensions={} clamp_upper = bf16[] constant(448.0) clamp_upper_bcast = bf16[8,32,512] broadcast(clamp_upper), dimensions={} clamp = bf16[8,32,512] clamp(clamp_lower_bcast, divide, clamp_upper_bcast) ROOT convert = f8e4m3fn[8,32,512] convert(clamp) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveQuantizer(module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Slice(op::Reshape(op::AllGather(op::Convert(op::Clamp( op::Broadcast(), op::Divide(op::Parameter(), op::Broadcast()), op::Broadcast())))))); HloInstruction* slice = module->entry_computation()->root_instruction(); EXPECT_THAT(slice->shape().element_type(), F8E4M3FN); } TEST_F(CollectiveQuantizerTest, AllGatherQuantizeMultiUser) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = bf16[8,4,8,128] parameter(0) all-gather = bf16[8,32,8,128] all-gather(param), dimensions={1}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 scale = bf16[] parameter(1), sharding={replicated} scale_bcast = bf16[8,32,8,128] broadcast(scale), dimensions={} divide = bf16[8,32,8,128] divide(all-gather, scale_bcast) clamp_lower = bf16[] constant(-448.0) clamp_lower_bcast = bf16[8,32,8,128] broadcast(clamp_lower), dimensions={} clamp_upper = bf16[] constant(448.0) clamp_upper_bcast = bf16[8,32,8,128] broadcast(clamp_upper), dimensions={} clamp = bf16[8,32,8,128] clamp(clamp_lower_bcast, divide, clamp_upper_bcast) add = bf16[8,32,8,128] add(divide, clamp) ROOT convert = f8e4m3fn[8,32,8,128] convert(add) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveQuantizer(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectiveQuantizerTest, AllGatherQuantizeNonReplicatedScale) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = bf16[8,4,8,128] parameter(0) all-gather = bf16[8,32,8,128] all-gather(param), dimensions={1}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 scale = bf16[] parameter(1) scale_bcast = bf16[8,32,8,128] broadcast(scale), dimensions={} divide = bf16[8,32,8,128] divide(all-gather, scale_bcast) clamp_lower = bf16[] constant(-448.0) clamp_lower_bcast = bf16[8,32,8,128] broadcast(clamp_lower), dimensions={} clamp_upper = bf16[] constant(448.0) clamp_upper_bcast = bf16[8,32,8,128] broadcast(clamp_upper), dimensions={} clamp = bf16[8,32,8,128] clamp(clamp_lower_bcast, divide, clamp_upper_bcast) ROOT convert = f8e4m3fn[8,32,8,128] convert(clamp) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveQuantizer(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectiveQuantizerTest, ConvertAllGather) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = f8e4m3fn[8,4,8,128] parameter(0) convert = bf16[8,4,8,128] convert(param) ROOT all-gather = bf16[8,32,8,128] all-gather(convert), dimensions={1}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveQuantizer(module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Convert(op::AllGather(op::Parameter()))); const HloInstruction* all_gather = module->entry_computation()->root_instruction()->operand(0); EXPECT_THAT(all_gather->shape().element_type(), F8E4M3FN); } TEST_F(CollectiveQuantizerTest, ConvertAllGatherUnary) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = f8e4m3fn[8,4,8,128] parameter(0) convert = bf16[8,4,8,128] convert(param) reshape = bf16[8,4,1024] reshape(convert) slice = bf16[8,4,512] slice(reshape), slice={[0:8], [0:4], [256:768]} ROOT all-gather = bf16[8,32,512] all-gather(slice), dimensions={1}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveQuantizer(module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Convert(op::AllGather(op::Slice(op::Reshape(op::Parameter()))))); const HloInstruction* all_gather = module->entry_computation()->root_instruction()->operand(0); EXPECT_THAT(all_gather->shape().element_type(), F8E4M3FN); } TEST_F(CollectiveQuantizerTest, DequantizeAllGather) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = f8e4m3fn[8,4,8,128] parameter(0) convert = bf16[8,4,8,128] convert(param) scale = bf16[] parameter(1), sharding={replicated} scale_bcast = bf16[8,4,8,128] broadcast(scale), dimensions={} multiply = bf16[8,4,8,128] multiply(convert, scale_bcast) ROOT all-gather = bf16[8,32,8,128] all-gather(multiply), dimensions={1}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveQuantizer(module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Multiply(op::Convert(op::AllGather(op::Parameter())), op::Broadcast())); const HloInstruction* all_gather = module->entry_computation()->root_instruction()->operand(0)->operand(0); EXPECT_THAT(all_gather->shape().element_type(), F8E4M3FN); } TEST_F(CollectiveQuantizerTest, DequantizeAllToAll) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = f8e4m3fn[8,32,8,128] parameter(0) convert = bf16[8,32,8,128] convert(param) scale = bf16[] parameter(1), sharding={replicated} scale_bcast = bf16[8,32,8,128] broadcast(scale), dimensions={} multiply = bf16[8,32,8,128] multiply(convert, scale_bcast) ROOT all-to-all = bf16[8,32,8,128] all-to-all(multiply), dimensions={1}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveQuantizer(module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Multiply(op::Convert(op::AllToAll(op::Parameter())), op::Broadcast())); const HloInstruction* all_to_all = module->entry_computation()->root_instruction()->operand(0)->operand(0); EXPECT_THAT(all_to_all->shape().element_type(), F8E4M3FN); } TEST_F(CollectiveQuantizerTest, DequantizeCollectiveBroadcast) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = f8e4m3fn[8,32,8,128] parameter(0) convert = bf16[8,32,8,128] convert(param) scale = bf16[] parameter(1), sharding={replicated} scale_bcast = bf16[8,32,8,128] broadcast(scale), dimensions={} multiply = bf16[8,32,8,128] multiply(convert, scale_bcast) ROOT collective-broadcast = bf16[8,32,8,128] collective-broadcast(multiply), replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveQuantizer(module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Multiply(op::Convert(op::CollectiveBroadcast(op::Parameter())), op::Broadcast())); const HloInstruction* collective_broadcast = module->entry_computation()->root_instruction()->operand(0)->operand(0); EXPECT_THAT(collective_broadcast->shape().element_type(), F8E4M3FN); } TEST_F(CollectiveQuantizerTest, DequantizeCollectivePermute) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = f8e4m3fn[8,32,8,128] parameter(0) convert = bf16[8,32,8,128] convert(param) scale = bf16[] parameter(1), sharding={replicated} scale_bcast = bf16[8,32,8,128] broadcast(scale), dimensions={} multiply = bf16[8,32,8,128] multiply(convert, scale_bcast) ROOT collective-permute = bf16[8,32,8,128] collective-permute(multiply), source_target_pairs={{0,1},{2,3},{4,5},{6,7}}, channel_id=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveQuantizer(module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Multiply(op::Convert(op::CollectivePermute(op::Parameter())), op::Broadcast())); const HloInstruction* collective_permute = module->entry_computation()->root_instruction()->operand(0)->operand(0); EXPECT_THAT(collective_permute->shape().element_type(), F8E4M3FN); } TEST_F(CollectiveQuantizerTest, DequantizeAllGatherUnary) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = f8e4m3fn[8,4,8,128] parameter(0) convert = bf16[8,4,8,128] convert(param) scale = bf16[] parameter(1), sharding={replicated} scale_bcast = bf16[8,4,8,128] broadcast(scale), dimensions={} multiply = bf16[8,4,8,128] multiply(convert, scale_bcast) reshape = bf16[8,4,1024] reshape(multiply) slice = bf16[8,4,512] slice(reshape), slice={[0:8], [0:4], [256:768]} ROOT all-gather = bf16[8,32,512] all-gather(slice), dimensions={1}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveQuantizer(module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Multiply( op::Convert(op::AllGather(op::Slice(op::Reshape(op::Parameter())))), op::Broadcast())); HloInstruction* all_gather = module->entry_computation() ->root_instruction() ->mutable_operand(0) ->mutable_operand(0); EXPECT_THAT(all_gather->shape().element_type(), F8E4M3FN); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/collective_quantizer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/collective_quantizer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9a20636e-d0bb-4a0d-8c31-35ca2b50c535
cpp
tensorflow/tensorflow
while_loop_simplifier
third_party/xla/xla/service/while_loop_simplifier.cc
third_party/xla/xla/service/while_loop_simplifier_test.cc
#include "xla/service/while_loop_simplifier.h" #include <cstdint> #include <optional> #include <utility> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/service/call_inliner.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/hlo_dce.h" #include "xla/service/pattern_matcher.h" #include "xla/service/while_loop_analysis.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/union_find.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace m = match; using hlo_query::ContainsInstrWithOpcode; using std::optional; static absl::StatusOr<bool> TryRemoveTrivialCompare(HloInstruction* while_op) { std::optional<int64_t> indvar_index = GetLoopInductionVarTupleIdx(while_op); if (indvar_index.has_value()) { if (while_op->operand(0)->operand(*indvar_index)->IsConstant()) { const HloConstantInstruction* init_value_hlo = Cast<HloConstantInstruction>( while_op->operand(0)->operand(*indvar_index)); std::optional<int64_t> trip_count = MatchTrivialLoopTripCount( while_op, indvar_index.value(), init_value_hlo->literal()); if (trip_count.has_value()) { std::optional<int64_t> init_value = LiteralUtil::LiteralAsScalarInt64(init_value_hlo->literal()); for (HloInstruction* body_instr : while_op->while_body()->instructions()) { HloInstruction* constant; if (Match(body_instr, m::Compare(m::GetTupleElement(m::Parameter(), indvar_index.value()), m::Constant(&constant).IsConstantScalar()))) { std::optional<int64_t> constant_value = LiteralUtil::LiteralAsScalarInt64(constant->literal()); if (constant_value.has_value()) { if (constant_value.value() <= init_value.value()) { if (body_instr->comparison_direction() == ComparisonDirection::kLt) { TF_RETURN_IF_ERROR(while_op->while_body()->ReplaceInstruction( body_instr, MakeScalarLike(body_instr, false))); return true; } else if (body_instr->comparison_direction() == ComparisonDirection::kGt) { TF_RETURN_IF_ERROR(while_op->while_body()->ReplaceInstruction( body_instr, MakeScalarLike(body_instr, true))); return true; } } if (constant_value.value() >= init_value.value() + trip_count.value()) { if (body_instr->comparison_direction() == ComparisonDirection::kLt) { TF_RETURN_IF_ERROR(while_op->while_body()->ReplaceInstruction( body_instr, MakeScalarLike(body_instr, true))); return true; } else if (body_instr->comparison_direction() == ComparisonDirection::kGt) { TF_RETURN_IF_ERROR(while_op->while_body()->ReplaceInstruction( body_instr, MakeScalarLike(body_instr, false))); return true; } } } } } } } } return false; } void CopyFrontendAttributes(HloInstruction* old_while_op, HloInstruction* new_while_op) { new_while_op->add_frontend_attributes(old_while_op->frontend_attributes()); } void CopyMetadata(HloInstruction* old_while_op, HloInstruction* new_while_op) { new_while_op->set_metadata(old_while_op->metadata()); } static absl::StatusOr<HloInstruction*> RemoveDeadTupleIndices( HloInstruction* while_op, absl::flat_hash_set<int64_t>& used_tuple_indices, int64_t index_for_replaced = -1) { std::vector<int64_t> new_to_old_tuple_idx(used_tuple_indices.begin(), used_tuple_indices.end()); absl::c_sort(new_to_old_tuple_idx); HloModule* module = while_op->GetModule(); HloComputation* computation = while_op->parent(); HloInstruction* while_init = while_op->mutable_operand(0); HloComputation* while_cond = while_op->while_condition(); HloComputation* while_body = while_op->while_body(); HloInstruction* while_body_root = while_body->root_instruction(); auto print_no_metadata = HloPrintOptions().set_print_metadata(false); absl::flat_hash_map<int64_t, int64_t> old_to_new_tuple_idx; for (int64_t new_idx = 0; new_idx < new_to_old_tuple_idx.size(); ++new_idx) { int64_t old_idx = new_to_old_tuple_idx[new_idx]; old_to_new_tuple_idx[old_idx] = new_idx; VLOG(2) << "Remapping tuple index " << old_idx << " to " << new_idx; } std::vector<const Shape*> new_while_tuple_elem_shapes; new_while_tuple_elem_shapes.reserve(new_to_old_tuple_idx.size()); for (int64_t old_idx : new_to_old_tuple_idx) { new_while_tuple_elem_shapes.push_back( &while_init->shape().tuple_shapes(old_idx)); } Shape new_while_shape = ShapeUtil::MakeTupleShapeWithPtrs(new_while_tuple_elem_shapes); auto make_while_computation_replacements = [&](const HloComputation* comp) { absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloInstruction>> replacements; auto* param = comp->parameter_instruction(0); replacements.emplace(param, HloInstruction::CreateParameter( 0, new_while_shape, param->name())); std::vector<HloInstruction*> materialized_users(param->users().begin(), param->users().end()); for (const auto* user : materialized_users) { if (user == while_body_root) { continue; } CHECK_EQ(user->opcode(), HloOpcode::kGetTupleElement) << user->ToString(print_no_metadata); int64_t old_idx = user->tuple_index(); auto new_idx_iter = old_to_new_tuple_idx.find(old_idx); if (new_idx_iter != old_to_new_tuple_idx.end()) { replacements.emplace( user, HloInstruction::CreateGetTupleElement(user->shape(), param, new_idx_iter->second)); } else { replacements.emplace(user, nullptr); } } for (const auto* hlo : comp->MakeInstructionPostOrder()) { if (hlo == comp->root_instruction() || replacements.contains(hlo)) { continue; } for (const auto* operand : hlo->operands()) { auto op_it = replacements.find(operand); if (op_it != replacements.end() && op_it->second == nullptr) { replacements[hlo] = nullptr; break; } } } return replacements; }; absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloInstruction>> while_cond_replacements = make_while_computation_replacements(while_cond); std::unique_ptr<HloComputation> new_while_cond = while_cond->CloneWithReplacements(&while_cond_replacements); absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloInstruction>> while_body_replacements = make_while_computation_replacements(while_body); std::vector<HloInstruction*> new_while_body_root_elems; new_while_body_root_elems.reserve(new_to_old_tuple_idx.size()); for (int64_t old_idx : new_to_old_tuple_idx) { new_while_body_root_elems.push_back( while_body_root->mutable_operand(old_idx)); } while_body_replacements.emplace( while_body_root, HloInstruction::CreateTuple(new_while_body_root_elems)); std::unique_ptr<HloComputation> new_while_body = while_body->CloneWithReplacements(&while_body_replacements); std::vector<HloInstruction*> new_while_init_elems; new_while_init_elems.reserve(new_to_old_tuple_idx.size()); for (int64_t old_idx : new_to_old_tuple_idx) { new_while_init_elems.push_back( computation->AddInstruction(HloInstruction::CreateGetTupleElement( while_init->shape().tuple_shapes(old_idx), while_init, old_idx))); } auto* new_while_init = computation->AddInstruction( HloInstruction::CreateTuple(new_while_init_elems)); auto* new_while_op = computation->AddInstruction(HloInstruction::CreateWhile( new_while_shape, module->AddEmbeddedComputation(std::move(new_while_cond)), module->AddEmbeddedComputation(std::move(new_while_body)), new_while_init)); new_while_op->CopyBackendConfigFrom(while_op); CopyFrontendAttributes(while_op, new_while_op); CopyMetadata(while_op, new_while_op); std::vector<HloInstruction*> new_tuple_elems; const int64_t tuple_size = ShapeUtil::TupleElementCount(while_init->shape()); for (int64_t old_idx = 0; old_idx < tuple_size; ++old_idx) { auto new_tuple_idx_it = old_to_new_tuple_idx.find(old_idx); if (new_tuple_idx_it != old_to_new_tuple_idx.end() || index_for_replaced != -1) { int64_t gte_idx = new_tuple_idx_it != old_to_new_tuple_idx.end() ? new_tuple_idx_it->second : index_for_replaced; new_tuple_elems.push_back( computation->AddInstruction(HloInstruction::CreateGetTupleElement( new_while_op->shape().tuple_shapes(gte_idx), new_while_op, gte_idx))); } else { new_tuple_elems.push_back( computation->AddInstruction(HloInstruction::CreateGetTupleElement( while_init->shape().tuple_shapes(old_idx), while_init, old_idx))); } } HloInstruction* new_tuple = computation->AddInstruction(HloInstruction::CreateTuple(new_tuple_elems)); TF_RETURN_IF_ERROR(computation->ReplaceInstruction(while_op, new_tuple)); return new_while_op; } absl::StatusOr<bool> TryRemoveDeadWhileParams(HloInstruction* while_op) { CHECK_EQ(while_op->opcode(), HloOpcode::kWhile); if (!while_op->parent()->IsSafelyRemovable(while_op)) { VLOG(2) << "Can't remove dead parameters from non-removable while op."; return false; } HloInstruction* while_init = while_op->mutable_operand(0); HloComputation* while_cond = while_op->while_condition(); HloComputation* while_body = while_op->while_body(); HloInstruction* while_body_root = while_body->root_instruction(); if (!while_init->shape().IsTuple()) { VLOG(2) << "While op's carried value isn't tuple shaped."; return false; } if (while_body_root->opcode() != HloOpcode::kTuple) { VLOG(2) << "While body's root is not a tuple(...) instruction."; return false; } const int64_t tuple_size = ShapeUtil::TupleElementCount(while_init->shape()); auto print_no_metadata = HloPrintOptions().set_print_metadata(false); absl::flat_hash_set<int64_t> used_tuple_indices; for (int64_t i = 0; i < tuple_size; ++i) { used_tuple_indices.insert(i); } for (const HloInstruction* instr : {while_body->parameter_instruction(0), while_cond->parameter_instruction(0)}) { for (const HloInstruction* user : instr->users()) { if (user->opcode() != HloOpcode::kGetTupleElement) { VLOG(2) << "Cowardly refusing to analyze while loop with " << instr->ToString(print_no_metadata) << " used by non-GTE instruction " << user->ToString(print_no_metadata) << " in computation " << instr->parent()->name(); return false; } } } if (tuple_size == 0) { VLOG(2) << "Can't remove elements from while loop's tuple -- it's already " "empty."; return false; } absl::flat_hash_set<int64_t> used_indices_after_loop; if (while_op == while_op->parent()->root_instruction()) { for (int64_t i = 0; i < while_body_root->operand_count(); ++i) { used_indices_after_loop.insert(i); } } for (auto user : while_op->users()) { if (user->opcode() != HloOpcode::kGetTupleElement) { for (int64_t i = 0; i < while_body_root->operand_count(); ++i) { used_indices_after_loop.insert(i); } break; } used_indices_after_loop.insert(user->tuple_index()); } struct InputIndicesSet { void Merge(const InputIndicesSet& other) { if (all.size() + other.all.size() <= all.capacity() && owned == nullptr) { absl::c_copy(other.all, std::back_inserter(all)); return; } if (owned == nullptr) { owned = std::make_unique<absl::flat_hash_set<int64_t>>(); owned->reserve(other.all.front()->size() * 2); } for (auto* deps : all) { if (deps == owned.get()) { continue; } owned->insert(deps->begin(), deps->end()); } for (auto* deps : other.all) { owned->insert(deps->begin(), deps->end()); } all.clear(); all.push_back(owned.get()); } void Add(int64_t index) { if (owned == nullptr) { CHECK(all.empty()); owned = std::make_unique<absl::flat_hash_set<int64_t>>(); all.push_back(owned.get()); } owned->insert(index); } std::unique_ptr<absl::flat_hash_set<int64_t>> owned; absl::InlinedVector<const absl::flat_hash_set<int64_t>*, 4> all; }; absl::flat_hash_map<HloInstruction*, InputIndicesSet> inst_input_deps; absl::flat_hash_map<HloInstruction*, UnionFind<HloInstruction*>> disjoint_sets; for (HloComputation* comp : {while_body, while_cond}) { HloInstruction* while_input = comp->parameter_instruction(0); for (HloInstruction* inst : comp->instructions()) { if (inst == while_input || inst == while_body_root) { continue; } disjoint_sets[inst].Get() = inst; } } absl::flat_hash_set<int64_t> side_effecting_indices; for (HloComputation* comp : {while_body, while_cond}) { HloInstruction* while_input = comp->parameter_instruction(0); for (HloInstruction* inst : comp->MakeInstructionPostOrder()) { if (inst == while_input || inst == while_body_root) { continue; } auto& deps = inst_input_deps[inst]; auto& my_set = disjoint_sets[inst]; if (inst->opcode() == HloOpcode::kGetTupleElement && inst->operand(0) == while_input) { deps.Add(inst->tuple_index()); HloInstruction* output = while_body_root->mutable_operand(inst->tuple_index()); if (output != inst) { disjoint_sets[output].Merge(&my_set); } } else { for (HloInstruction* operand : inst->operands()) { disjoint_sets[operand].Merge(&my_set); deps.Merge(inst_input_deps[operand]); } } if (inst->HasSideEffect() || inst == while_cond->root_instruction()) { for (auto* dep : deps.all) { side_effecting_indices.insert(dep->begin(), dep->end()); } } } } absl::flat_hash_set<int64_t> indices_affecting_others; for (int64_t i = 0; i < tuple_size; ++i) { HloInstruction* output = while_body_root->mutable_operand(i); for (auto* deps : inst_input_deps[output].all) { for (int64_t index : *deps) { if (index != i) { indices_affecting_others.insert(index); } } } } for (int64_t i = 0; i < tuple_size; ++i) { if (!indices_affecting_others.contains(i) && !used_indices_after_loop.contains(i) && !side_effecting_indices.contains(i)) { VLOG(2) << "Remove with dependencies " << i; used_tuple_indices.erase(i); } } absl::flat_hash_map<HloInstruction*, absl::flat_hash_set<int64_t>> groups; for (int64_t i = 0; i < tuple_size; ++i) { HloInstruction* output = while_body_root->mutable_operand(i); groups[disjoint_sets[output].Get()].insert(i); } for (HloComputation* comp : {while_body, while_cond}) { HloInstruction* while_input = comp->parameter_instruction(0); for (HloInstruction* gte : while_input->users()) { groups[disjoint_sets[gte].Get()].insert(gte->tuple_index()); } } for (const auto& group : groups) { if (absl::c_any_of(group.second, [&](int64_t index) { const HloInstruction* output = while_body_root->operand(index); return side_effecting_indices.contains(index) || (used_indices_after_loop.contains(index) && !(output->opcode() == HloOpcode::kGetTupleElement && output->operand(0) == while_body->parameter_instruction(0) && output->tuple_index() == index)); })) { continue; } VLOG(2) << "Remove with groups:"; for (int64_t index : group.second) { VLOG(2) << " index " << index; used_tuple_indices.erase(index); } } if (used_tuple_indices.size() == tuple_size) { VLOG(2) << "Loop " << while_op->ToString(print_no_metadata) << " uses all of its inputs; no simplification possible."; return false; } CHECK_LT(used_tuple_indices.size(), tuple_size); VLOG(1) << "Eliminating " << tuple_size - used_tuple_indices.size() << " elements from tuple of " << while_op->ToString(print_no_metadata); TF_ASSIGN_OR_RETURN(while_op, RemoveDeadTupleIndices(while_op, used_tuple_indices)); return true; } static absl::StatusOr<HloInstruction*> TryRemoveRepeatedWhileTupleIndicesHelper( HloInstruction* while_op, const int64_t tuple_index, bool replace_with_init, absl::flat_hash_set<int64_t>& duplicates) { HloComputation* while_cond = while_op->while_condition(); HloComputation* while_body = while_op->while_body(); HloInstruction* while_init = while_op->mutable_operand(0); VLOG(2) << "while_init " << while_init->ToString() << " operands " << while_init->operand_count(); VLOG(2) << "while_body_root " << while_body->root_instruction()->ToString() << " operands " << while_body->root_instruction()->operand_count(); for (HloComputation* comp : {while_body, while_cond}) { auto new_get = comp->AddInstruction(HloInstruction::CreateGetTupleElement( comp->parameter_instruction(0)->shape().tuple_shapes(tuple_index), comp->parameter_instruction(0), tuple_index)); std::vector<HloInstruction*> instrs_to_replace; for (auto* instr : comp->instructions()) { if (instr->opcode() == HloOpcode::kGetTupleElement && duplicates.contains(instr->tuple_index()) && instr->operand(0) == comp->parameter_instruction(0)) { instrs_to_replace.push_back(instr); } } for (auto instr : instrs_to_replace) { TF_RETURN_IF_ERROR(comp->ReplaceInstruction(instr, new_get)); } } absl::flat_hash_set<int64_t> used_tuple_indices; for (int index = 0; index < while_init->shape().tuple_shapes_size(); ++index) { if (!duplicates.count(index)) { used_tuple_indices.insert(index); } } TF_ASSIGN_OR_RETURN( while_op, RemoveDeadTupleIndices(while_op, used_tuple_indices, replace_with_init ? -1 : tuple_index)); return while_op; } static bool IsDynamicUpdateSliceWhileInsertion( const HloInstruction* instr, const HloComputation* while_body) { return instr->opcode() == HloOpcode::kDynamicUpdateSlice && instr->operand(0)->opcode() == HloOpcode::kGetTupleElement && instr->operand(0)->operand(0) == while_body->parameter_instruction(0); } static absl::StatusOr<bool> TryRemoveRepeatedWhileTupleIndices( HloInstruction* while_op) { CHECK_EQ(while_op->opcode(), HloOpcode::kWhile); int index_to_investigate = 0; if (!while_op->parent()->IsSafelyRemovable(while_op)) { VLOG(2) << "Can't remove dead parameters from non-removable while op."; return false; } HloInstruction* while_init = while_op->mutable_operand(0); HloComputation* while_cond = while_op->while_condition(); HloComputation* while_body = while_op->while_body(); HloInstruction* while_body_root = while_body->root_instruction(); if (!while_init->shape().IsTuple()) { VLOG(2) << "While op's carried value isn't tuple shaped."; return false; } bool changed = false; while (index_to_investigate < while_init->shape().tuple_shapes_size()) { if (!while_init->shape().IsTuple() || while_init->opcode() != HloOpcode::kTuple) { VLOG(2) << "While op's carried value isn't tuple shaped."; return false; } if (while_body_root->opcode() != HloOpcode::kTuple) { VLOG(2) << "While body's root is not a tuple(...) instruction."; return false; } auto& while_shape = while_init->shape(); VLOG(2) << "Iterating " << index_to_investigate; absl::flat_hash_set<int64_t> duplicates; auto* pivot_init_elem = while_init->operand(index_to_investigate); auto* pivot_body_elem = while_body_root->operand(index_to_investigate); bool replace_with_init = true; if (pivot_body_elem->opcode() == HloOpcode::kGetTupleElement && pivot_body_elem->operand(0) == while_body->parameter_instruction(0)) { if (pivot_body_elem->tuple_index() != index_to_investigate) { VLOG(2) << "Mismatch between pivot_body_elem->tuple_index() " << pivot_body_elem->tuple_index() << " index_to_investigate " << index_to_investigate; index_to_investigate++; continue; } } else if (IsDynamicUpdateSliceWhileInsertion(pivot_body_elem, while_body)) { if (pivot_body_elem->operand(0)->tuple_index() != index_to_investigate) { VLOG(2) << "Mismatch between pivot_body_elem->operand(0)->tuple_index() " << pivot_body_elem->operand(0)->tuple_index() << " index_to_investigate " << index_to_investigate; index_to_investigate++; continue; } } else { index_to_investigate++; continue; } for (int64_t i = index_to_investigate + 1; i < while_shape.tuple_shapes_size(); ++i) { auto* init_elem = while_init->operand(i); auto* body_elem = while_body_root->operand(i); if (pivot_body_elem->opcode() == HloOpcode::kGetTupleElement && body_elem->opcode() == HloOpcode::kGetTupleElement && body_elem->operand(0) == while_body->parameter_instruction(0)) { if (body_elem->tuple_index() != i) { VLOG(2) << "Mismatch between body_elem->tuple_index() " << body_elem->tuple_index() << " i " << i; continue; } } else if (IsDynamicUpdateSliceWhileInsertion(pivot_body_elem, while_body) && IsDynamicUpdateSliceWhileInsertion(body_elem, while_body)) { if (pivot_body_elem->operand_count() != body_elem->operand_count()) { VLOG(2) << "Mismatch in operand count of dynamic-update-slice " << pivot_body_elem->operand_count() << " vs " << body_elem->operand_count(); continue; } if (body_elem->operand(0)->tuple_index() != i) { VLOG(2) << "Mismatch between body_elem->operand(0)->tuple_index() " << body_elem->tuple_index() << " i " << i; continue; } if (pivot_body_elem->operand(0) == body_elem->operand(0)) { VLOG(2) << "Inserting in the same input index"; continue; } bool mismatch = false; for (int64_t i = 1; i < body_elem->operand_count(); ++i) { if (body_elem->operand(i) != pivot_body_elem->operand(i)) { VLOG(2) << "Mismatch in insertion indices or values"; mismatch = true; break; } } if (mismatch) { continue; } replace_with_init = false; } else { continue; } if (pivot_init_elem == init_elem) { VLOG(2) << "init_elem " << init_elem->ToString() << " pivot_init_elem " << pivot_init_elem->ToString(); VLOG(2) << "body_elem " << body_elem->ToString() << " pivot_body_elem " << pivot_body_elem->ToString(); duplicates.insert(i); } } if (!duplicates.empty()) { VLOG(2) << "Duplicate found " << duplicates.size() << " pivot_init " << pivot_init_elem->ToString(); TF_ASSIGN_OR_RETURN(while_op, TryRemoveRepeatedWhileTupleIndicesHelper( while_op, index_to_investigate, replace_with_init, duplicates)); changed = true; VLOG(2) << "Changed while_op " << while_op->ToString() << " while_op operand count " << while_op->operand_count(); while_init = while_op->mutable_operand(0); while_cond = while_op->while_condition(); while_body = while_op->while_body(); while_body_root = while_body->root_instruction(); } index_to_investigate++; } return changed; } static absl::StatusOr<bool> TryRemoveConstantParams(HloInstruction* while_op) { HloModule* module = while_op->GetModule(); HloComputation* computation = while_op->parent(); auto* while_init = while_op->mutable_operand(0); auto* while_body = while_op->while_body(); auto* while_cond = while_op->while_condition(); auto* while_body_root = while_body->root_instruction(); if (while_init->opcode() != HloOpcode::kTuple || while_body_root->opcode() != HloOpcode::kTuple) { return false; } TF_RET_CHECK(while_cond->num_parameters() == 1); TF_RET_CHECK(while_body->num_parameters() == 1); TF_RET_CHECK( ShapeUtil::Compatible(while_init->shape(), while_body_root->shape())); absl::flat_hash_set<int64_t> constant_tuple_indices; const auto& while_shape = while_init->shape(); for (int i = 0; i < while_shape.tuple_shapes_size(); ++i) { auto* init_elem = while_init->operand(i); auto* body_elem = while_body_root->operand(i); if (init_elem->opcode() == HloOpcode::kConstant && body_elem->opcode() == HloOpcode::kConstant && init_elem->literal() == body_elem->literal()) { constant_tuple_indices.insert(i); } } if (constant_tuple_indices.empty()) { return false; } std::vector<const Shape*> new_while_shape_elems; for (int i = 0; i < while_shape.tuple_shapes_size(); ++i) { if (!constant_tuple_indices.count(i)) { new_while_shape_elems.push_back(&while_shape.tuple_shapes(i)); } } Shape new_while_shape = ShapeUtil::MakeTupleShapeWithPtrs(new_while_shape_elems); std::vector<std::unique_ptr<HloInstruction>> new_instrs; auto add_new_instr = [&](std::unique_ptr<HloInstruction> instr) { new_instrs.push_back(std::move(instr)); return new_instrs.back().get(); }; auto remove_constant_elems = [&](HloInstruction* instr) { CHECK(ShapeUtil::Compatible(instr->shape(), while_shape)); std::vector<HloInstruction*> tuple_elems; for (int i = 0; i < while_shape.tuple_shapes_size(); ++i) { if (!constant_tuple_indices.count(i)) { tuple_elems.push_back( add_new_instr(HloInstruction::CreateGetTupleElement( while_shape.tuple_shapes(i), instr, i))); } } return HloInstruction::CreateTuple(tuple_elems); }; auto add_constant_elems = [&](HloInstruction* instr) { CHECK(ShapeUtil::Compatible(instr->shape(), new_while_shape)); std::vector<HloInstruction*> tuple_elems; int64_t j = 0; for (int i = 0; i < while_shape.tuple_shapes_size(); ++i) { if (constant_tuple_indices.count(i)) { tuple_elems.push_back(while_init->mutable_operand(i)); } else { tuple_elems.push_back( add_new_instr(HloInstruction::CreateGetTupleElement( while_shape.tuple_shapes(i), instr, j))); ++j; } } return HloInstruction::CreateTuple(tuple_elems); }; if (ShapeUtil::IsEmptyTuple(new_while_shape)) { TF_RETURN_IF_ERROR(computation->ReplaceInstruction(while_op, while_init)); return true; } std::unique_ptr<HloComputation> new_while_cond = while_cond->CloneWithReplacementPairs({ while_cond->parameter_instruction(0), add_constant_elems(add_new_instr(HloInstruction::CreateParameter( 0, new_while_shape, while_cond->parameter_instruction(0)->name()))), }); std::unique_ptr<HloComputation> new_while_body = while_body->CloneWithReplacementPairs( { while_body->parameter_instruction(0), add_constant_elems(add_new_instr(HloInstruction::CreateParameter( 0, new_while_shape, while_cond->parameter_instruction(0)->name()))), }, { while_body->root_instruction(), remove_constant_elems( add_new_instr(while_body->root_instruction()->Clone())), }); new_instrs.clear(); auto* new_while_op = computation->AddInstruction(HloInstruction::CreateWhile( new_while_shape, module->AddEmbeddedComputation(std::move(new_while_cond)), module->AddEmbeddedComputation(std::move(new_while_body)), add_new_instr(remove_constant_elems(while_init)))); new_while_op->CopyBackendConfigFrom(while_op); CopyFrontendAttributes(while_op, new_while_op); CopyMetadata(while_op, new_while_op); TF_RETURN_IF_ERROR(computation->ReplaceWithNewInstruction( while_op, add_constant_elems(new_while_op))); for (auto& instr : new_instrs) { computation->AddInstruction(std::move(instr)); } return true; } static absl::StatusOr<bool> TryRemoveWhileLoop(HloInstruction* while_op) { if (!while_op->parent()->IsSafelyRemovable(while_op)) { VLOG(2) << "Not attempting to remove while loop that is not removable: " << while_op->ToShortString(); return false; } if (while_op->while_condition()->HasSideEffect()) { VLOG(2) << "Not attempting to remove while loop whose condition contains " "side-effecting instructions: " << while_op->ToShortString(); return false; } optional<int64_t> trip_count = ComputeWhileLoopTripCount(while_op, 1); if (trip_count && *trip_count == 0) { auto computation = while_op->parent(); TF_RETURN_IF_ERROR(computation->ReplaceInstruction( while_op, while_op->mutable_operand(0))); return true; } const auto& attrs = while_op->frontend_attributes().map(); bool skip_trip_count_one_simplification = attrs.contains("skip-simplify-while-loops_trip-count-one") && (attrs.at("skip-simplify-while-loops_trip-count-one") == "true"); if (trip_count && *trip_count == 1 && !skip_trip_count_one_simplification) { bool has_side_effects = absl::c_any_of( while_op->called_computations(), [](const HloComputation* computation) { return computation->HasSideEffect(); }); if (!has_side_effects) { auto computation = while_op->parent(); auto call_op = computation->AddInstruction(HloInstruction::CreateCall( while_op->shape(), while_op->operands(), while_op->while_body())); TF_RETURN_IF_ERROR(computation->ReplaceInstruction(while_op, call_op)); TF_ASSIGN_OR_RETURN(auto inlined_instructions_map, CallInliner::Inline(call_op)); (void)inlined_instructions_map; return true; } else { VLOG(2) << "Not attempting to simplify while loop because it contains a " "side-effecting node: " << while_op->ToShortString(); } } return false; } static absl::StatusOr<bool> TryPropagateConstant(HloInstruction* while_op) { auto while_init = while_op->operand(0); if (while_init->opcode() != HloOpcode::kTuple) { return false; } auto while_body = while_op->while_body(); auto while_body_root = while_body->root_instruction(); if (while_body_root->opcode() != HloOpcode::kTuple) { return false; } auto while_body_param = while_body->parameter_instruction(0); const HloInstruction::InstructionVector& root_operands = while_body_root->operands(); absl::flat_hash_map<int, const HloInstruction*> index_to_constant; for (int i = 0; i < root_operands.size(); i++) { const HloInstruction* init_tuple_elem = nullptr; if (Match(root_operands[i], m::GetTupleElement(m::Op().Is(while_body_param), i) .WithShape(m::Shape().IsScalar())) && Match(while_init->operand(i), m::Constant(&init_tuple_elem))) { VLOG(3) << "Found loop invariant tuple element " << i << " " << init_tuple_elem->ToString(); index_to_constant[i] = init_tuple_elem; } } if (index_to_constant.empty()) { return false; } auto propagate_constant = [&](HloComputation* computation) -> absl::StatusOr<bool> { HloInstruction* param = computation->parameter_instruction(0); bool changed = false; for (auto instr : param->users()) { if (instr->opcode() == HloOpcode::kGetTupleElement) { VLOG(3) << "tuple index " << instr->tuple_index() << " " << instr->ToString(); auto iter = index_to_constant.find(instr->tuple_index()); if (iter != index_to_constant.end()) { const HloInstruction* hlo_constant = (*iter).second; VLOG(3) << "Replace use of " << instr->ToString() << " with " << hlo_constant->ToString(); TF_RETURN_IF_ERROR(instr->ReplaceAllUsesWith( computation->AddInstruction(hlo_constant->Clone()))); changed = true; } } } return changed; }; TF_ASSIGN_OR_RETURN(bool changed_cond, propagate_constant(while_op->while_condition())); TF_ASSIGN_OR_RETURN(bool changed_body, propagate_constant(while_body)); return changed_cond || changed_body; } static std::unique_ptr<HloInstruction> UnflattenTupleInstr( absl::Span<HloInstruction*> instrs, const Shape& desired_shape, std::vector<std::unique_ptr<HloInstruction>>* new_instrs) { CHECK(desired_shape.IsTuple()) << ShapeUtil::HumanString(desired_shape); std::vector<HloInstruction*> elems; for (int i = 0; i < desired_shape.tuple_shapes_size(); ++i) { const Shape& subshape = desired_shape.tuple_shapes(i); if (!subshape.IsTuple()) { elems.push_back(instrs[0]); instrs.remove_prefix(1); continue; } int64_t num_leaves = 0; ShapeUtil::ForEachSubshape( subshape, [&](const Shape& s, const ShapeIndex& ) { if (!s.IsTuple()) { ++num_leaves; } }); std::unique_ptr<HloInstruction> subinstr = UnflattenTupleInstr(instrs.subspan(0, num_leaves), desired_shape.tuple_shapes(i), new_instrs); elems.push_back(subinstr.get()); new_instrs->push_back(std::move(subinstr)); instrs.remove_prefix(num_leaves); } return HloInstruction::CreateTuple(elems); } static std::vector<HloInstruction*> GetFlatTupleElems( HloInstruction* instr, std::vector<std::unique_ptr<HloInstruction>>* new_instrs) { const auto& shape = instr->shape(); if (!shape.IsTuple()) { return {instr}; } std::vector<HloInstruction*> elems; for (int i = 0; i < shape.tuple_shapes_size(); ++i) { const Shape& subshape = shape.tuple_shapes(i); new_instrs->push_back( HloInstruction::CreateGetTupleElement(subshape, instr, i)); auto* gte = new_instrs->back().get(); auto flattened_subshape = GetFlatTupleElems(gte, new_instrs); elems.insert(elems.end(), flattened_subshape.begin(), flattened_subshape.end()); } return elems; } static absl::StatusOr<bool> TryFlattenNestedTuples(HloInstruction* while_op) { HloModule* module = while_op->GetModule(); HloComputation* computation = while_op->parent(); auto* while_init = while_op->mutable_operand(0); auto* while_body = while_op->while_body(); auto* while_cond = while_op->while_condition(); auto* while_body_root = while_body->root_instruction(); if (while_init->opcode() != HloOpcode::kTuple || while_body_root->opcode() != HloOpcode::kTuple) { return false; } TF_RET_CHECK(while_cond->num_parameters() == 1); TF_RET_CHECK(while_body->num_parameters() == 1); TF_RET_CHECK( ShapeUtil::Compatible(while_init->shape(), while_body_root->shape())); Shape while_shape = while_init->shape(); if (!ShapeUtil::IsNestedTuple(while_shape)) { return false; } std::vector<const Shape*> flattened_shape_elems; ShapeUtil::ForEachSubshape(while_shape, [&](const Shape& s, const ShapeIndex& ) { if (!s.IsTuple()) { flattened_shape_elems.push_back(&s); } }); Shape flattened_shape = ShapeUtil::MakeTupleShapeWithPtrs(flattened_shape_elems); std::vector<std::unique_ptr<HloInstruction>> new_instrs; auto add_new_instr = [&](std::unique_ptr<HloInstruction> instr) { new_instrs.push_back(std::move(instr)); return new_instrs.back().get(); }; auto nested = [&](HloInstruction* instr) { std::vector<HloInstruction*> gtes; const Shape& flat_shape = instr->shape(); gtes.reserve(flat_shape.tuple_shapes_size()); for (int i = 0; i < flat_shape.tuple_shapes_size(); ++i) { gtes.push_back(add_new_instr(HloInstruction::CreateGetTupleElement( flat_shape.tuple_shapes(i), instr, i))); } auto nested_instr = UnflattenTupleInstr(absl::MakeSpan(gtes), while_shape, &new_instrs); CHECK(ShapeUtil::Compatible(nested_instr->shape(), while_shape)) << ShapeUtil::HumanString(nested_instr->shape()) << " vs " << ShapeUtil::HumanString(while_shape); return nested_instr; }; auto flattened = [&](HloInstruction* instr) { return HloInstruction::CreateTuple(GetFlatTupleElems(instr, &new_instrs)); }; std::unique_ptr<HloComputation> new_while_cond = while_cond->CloneWithReplacementPairs({ while_cond->parameter_instruction(0), nested(add_new_instr(HloInstruction::CreateParameter( 0, flattened_shape, while_cond->parameter_instruction(0)->name()))), }); std::unique_ptr<HloComputation> new_while_body = while_body->CloneWithReplacementPairs( { while_body->parameter_instruction(0), nested(add_new_instr(HloInstruction::CreateParameter( 0, flattened_shape, while_body->parameter_instruction(0)->name()))), }, { while_body->root_instruction(), flattened(add_new_instr(while_body->root_instruction()->Clone())), }); new_instrs.clear(); auto* new_while_op = computation->AddInstruction(HloInstruction::CreateWhile( flattened_shape, module->AddEmbeddedComputation(std::move(new_while_cond)), module->AddEmbeddedComputation(std::move(new_while_body)), computation->AddInstruction(flattened(while_init)))); new_while_op->CopyBackendConfigFrom(while_op); CopyFrontendAttributes(while_op, new_while_op); CopyMetadata(while_op, new_while_op); TF_RETURN_IF_ERROR( computation->ReplaceWithNewInstruction(while_op, nested(new_while_op))); for (auto& instr : new_instrs) { computation->AddInstruction(std::move(instr)); } return true; } static absl::StatusOr<HloInstruction*> TryMergeInductionVariables( HloInstruction* while_op, PrimitiveType elem_ty) { CHECK(primitive_util::IsIntegralType(elem_ty)) << PrimitiveType_Name(elem_ty); HloModule* module = while_op->GetModule(); HloComputation* computation = while_op->parent(); auto* while_init = while_op->mutable_operand(0); auto* while_body = while_op->while_body(); auto* while_cond = while_op->while_condition(); auto* while_body_root = while_body->root_instruction(); if (while_init->opcode() != HloOpcode::kTuple || while_body_root->opcode() != HloOpcode::kTuple) { return nullptr; } TF_RET_CHECK(while_cond->num_parameters() == 1); TF_RET_CHECK(while_body->num_parameters() == 1); TF_RET_CHECK( ShapeUtil::Compatible(while_init->shape(), while_body_root->shape())); Shape while_shape = while_init->shape(); std::optional<int64_t> trip_counter; absl::flat_hash_map<int64_t, const HloConstantInstruction*> induction_vars; for (int64_t i = 0; i < while_body_root->operand_count(); ++i) { HloInstruction* constant; if (!Match(while_body_root->mutable_operand(i), m::AddAnyOrder(m::GetTupleElement(m::Parameter(), i), m::ConstantScalar(&constant)) .WithShape(m::Shape().WithElementType(elem_ty)))) { continue; } if (!trip_counter && constant->literal().IsAll(1) && while_init->operand(i)->IsConstant() && while_init->operand(i)->literal().IsAll(0)) { VLOG(10) << "Found existing trip counter at index " << i; trip_counter = i; } else { VLOG(10) << "Found induction variable at index " << i; induction_vars.emplace(i, Cast<HloConstantInstruction>(constant)); } } if (induction_vars.size() + (trip_counter.has_value() ? 1 : 0) < 2) { return nullptr; } std::vector<std::unique_ptr<HloInstruction>> new_instrs; auto add_new_instr = [&](std::unique_ptr<HloInstruction> instr) { new_instrs.push_back(std::move(instr)); return new_instrs.back().get(); }; auto add_binary_op = [&](const Shape& shape, HloOpcode opcode, HloInstruction* lhs, HloInstruction* rhs) { if (!ShapeUtil::Compatible(shape, lhs->shape())) { lhs = add_new_instr(HloInstruction::CreateReshape(shape, lhs)); } if (!ShapeUtil::Compatible(shape, rhs->shape())) { rhs = add_new_instr(HloInstruction::CreateReshape(shape, rhs)); } return add_new_instr(HloInstruction::CreateBinary(shape, opcode, lhs, rhs)); }; auto add_gte = [&](HloInstruction* src, int64_t idx) { return add_new_instr(HloInstruction::CreateGetTupleElement( src->shape().tuple_shapes(idx), src, idx)); }; Shape new_while_shape = while_shape; bool added_trip_counter = false; if (!trip_counter) { VLOG(10) << "Adding new trip counter to end of loop's tuple."; trip_counter = new_while_shape.tuple_shapes_size(); *new_while_shape.add_tuple_shapes() = ShapeUtil::MakeShape(elem_ty, {}); added_trip_counter = true; } auto convert_to_old_form = [&](HloInstruction* instr) { CHECK(ShapeUtil::Compatible(instr->shape(), new_while_shape)); std::vector<HloInstruction*> tuple_elems; for (int i = 0; i < while_shape.tuple_shapes_size(); ++i) { const auto& elem_shape = while_shape.tuple_shapes(i); if (!induction_vars.count(i)) { tuple_elems.push_back(add_gte(instr, i)); continue; } tuple_elems.push_back(add_binary_op( elem_shape, HloOpcode::kAdd, add_gte(instr, i), add_binary_op(elem_shape, HloOpcode::kMultiply, add_gte(instr, *trip_counter), add_new_instr(induction_vars.at(i)->Clone())))); } return HloInstruction::CreateTuple(tuple_elems); }; auto convert_to_new_form = [&](HloInstruction* old_root, HloParameterInstruction* loop_body_param) { CHECK(ShapeUtil::Compatible(old_root->shape(), while_shape)); std::vector<HloInstruction*> tuple_elems; tuple_elems.reserve(while_shape.tuple_shapes_size()); for (int i = 0; i < while_shape.tuple_shapes_size(); ++i) { tuple_elems.push_back( add_gte((induction_vars.count(i) ? loop_body_param : old_root), i)); } if (added_trip_counter) { tuple_elems.push_back(add_binary_op( new_while_shape.tuple_shapes(*trip_counter), HloOpcode::kAdd, add_gte(loop_body_param, *trip_counter), add_new_instr( HloInstruction::CreateConstant(LiteralUtil::One(elem_ty))))); } return HloInstruction::CreateTuple(tuple_elems); }; auto get_new_while_init = [&](HloInstruction* init) { CHECK(ShapeUtil::Compatible(init->shape(), while_shape)); if (!added_trip_counter) { return init; } std::vector<HloInstruction*> tuple_elems; tuple_elems.reserve(while_shape.tuple_shapes_size()); for (int i = 0; i < while_shape.tuple_shapes_size(); ++i) { tuple_elems.push_back(add_gte(init, i)); } tuple_elems.push_back(add_new_instr( HloInstruction::CreateConstant(LiteralUtil::Zero(elem_ty)))); return add_new_instr(HloInstruction::CreateTuple(tuple_elems)); }; std::unique_ptr<HloComputation> new_while_cond = while_cond->CloneWithReplacementPairs({ while_cond->parameter_instruction(0), convert_to_old_form(add_new_instr(HloInstruction::CreateParameter( 0, new_while_shape, while_cond->parameter_instruction(0)->name()))), }); HloComputation* temp_new_while_body = module->AddEmbeddedComputation(while_body->CloneWithReplacementPairs({ while_body->parameter_instruction(0), convert_to_old_form(add_new_instr(HloInstruction::CreateParameter( 0, new_while_shape, while_body->parameter_instruction(0)->name()))), })); std::unique_ptr<HloComputation> new_while_body = temp_new_while_body->CloneWithReplacementPairs({ temp_new_while_body->root_instruction(), convert_to_new_form( add_new_instr(temp_new_while_body->root_instruction()->Clone()), Cast<HloParameterInstruction>( temp_new_while_body->parameter_instruction(0))), }); TF_RETURN_IF_ERROR(module->RemoveEmbeddedComputation(temp_new_while_body)); new_instrs.clear(); auto* new_while = computation->AddInstruction(HloInstruction::CreateWhile( new_while_shape, module->AddEmbeddedComputation(std::move(new_while_cond)), module->AddEmbeddedComputation(std::move(new_while_body)), get_new_while_init(while_init))); new_while->CopyBackendConfigFrom(while_op); CopyFrontendAttributes(while_op, new_while); CopyMetadata(while_op, new_while); TF_RETURN_IF_ERROR(computation->ReplaceWithNewInstruction( while_op, convert_to_old_form(new_while))); for (auto& instr : new_instrs) { computation->AddInstruction(std::move(instr)); } return new_while; } absl::StatusOr<bool> WhileLoopSimplifier::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { XLA_VLOG_LINES(3, "WhileLoopSimplifier::Run(), before:\n" + module->ToString()); bool changed = false; std::vector<HloInstruction*> while_ops; for (auto* comp : module->computations(execution_threads)) { for (auto* instr : comp->instructions()) { if (instr->opcode() == HloOpcode::kWhile) { while_ops.push_back(instr); } } } for (HloInstruction* while_op : while_ops) { TF_ASSIGN_OR_RETURN(bool result, TryRemoveRepeatedWhileTupleIndices(while_op)); changed |= result; if (result) { continue; } TF_ASSIGN_OR_RETURN(result, TryFlattenNestedTuples(while_op)); changed |= result; if (result) { continue; } TF_ASSIGN_OR_RETURN(result, TryRemoveDeadWhileParams(while_op)); changed |= result; if (result) { continue; } TF_ASSIGN_OR_RETURN(result, TryRemoveConstantParams(while_op)); changed |= result; if (result) { continue; } if (simplify_compare_instrs_) { TF_ASSIGN_OR_RETURN(result, TryRemoveTrivialCompare(while_op)); changed |= result; if (result) { continue; } } if (ContainsInstrWithOpcode(while_op->while_body(), {HloOpcode::kSend, HloOpcode::kSendDone, HloOpcode::kRecv, HloOpcode::kRecvDone}) || ContainsInstrWithOpcode(while_op->while_condition(), {HloOpcode::kSend, HloOpcode::kSendDone, HloOpcode::kRecv, HloOpcode::kRecvDone})) { VLOG(2) << "Not attempting to simplify while loop because it contains a " "send/recv node: " << while_op->ToShortString(); continue; } TF_ASSIGN_OR_RETURN(result, TryPropagateConstant(while_op)); changed |= result; TF_ASSIGN_OR_RETURN(result, TryRemoveWhileLoop(while_op)); changed |= result; if (result) { continue; } if (ContainsInstrWithOpcode(while_op->while_body(), {HloOpcode::kDomain}) || ContainsInstrWithOpcode(while_op->while_condition(), {HloOpcode::kDomain})) { continue; } bool merged_induction_vars = false; for (auto elem_ty : {S8, U8, S32, U32, S64, U64}) { TF_ASSIGN_OR_RETURN(auto* new_while_op, TryMergeInductionVariables(while_op, elem_ty)); if (new_while_op) { while_op = new_while_op; changed = true; merged_induction_vars = true; } } if (merged_induction_vars) { continue; } } HloDCE dce; TF_ASSIGN_OR_RETURN(bool dce_changed, dce.Run(module)); changed |= dce_changed; XLA_VLOG_LINES(3, "WhileLoopSimplifier::Run(), after:\n" + module->ToString()); return changed; } }
#include "xla/service/while_loop_simplifier.h" #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_replace.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal_util.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_parser.h" #include "xla/service/tuple_simplifier.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla_data.pb.h" namespace xla { namespace { using ::testing::_; namespace op = xla::testing::opcode_matchers; HloInstruction* FindFirstWhile(HloModule* m) { const auto& instrs = m->entry_computation()->instructions(); return *absl::c_find_if(instrs, HloPredicateIsOp<HloOpcode::kWhile>); } class WhileLoopSimplifierTest : public HloTestBase { protected: [[nodiscard]] std::unique_ptr<VerifiedHloModule> MakeModuleWithSimpleLoop( int num_iters); [[nodiscard]] std::unique_ptr<VerifiedHloModule> MakeModuleWithSimpleLoopTupleElementLoopBound(int num_iters); }; std::unique_ptr<VerifiedHloModule> WhileLoopSimplifierTest::MakeModuleWithSimpleLoop(int num_iters) { std::string hlo_string_template = R"( HloModule SimpleLoop SimpleLoop.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } SimpleLoop.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant({{LOOP_BOUND}}) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition= SimpleLoop.condition, body=SimpleLoop.body } )"; std::string hlo_string = absl::StrReplaceAll( hlo_string_template, {{"{{LOOP_BOUND}}", absl::StrCat(42 + num_iters)}}); return ParseAndReturnVerifiedModule(hlo_string).value(); } std::unique_ptr<VerifiedHloModule> WhileLoopSimplifierTest::MakeModuleWithSimpleLoopTupleElementLoopBound( int num_iters) { std::string hlo_string_template = R"( HloModule SimpleLoopWithIndirectLoopBound SimpleLoopWithIndirectLoopBound.body { loop_var.1 = (s32[], s32[3]{0}, s32[]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) limit = s32[] get-tuple-element(loop_var.1), index=2 ROOT tuple = (s32[], s32[3]{0}, s32[]) tuple(add, multiply, limit) } SimpleLoopWithIndirectLoopBound.condition { loop_var.2 = (s32[], s32[3]{0}, s32[]) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 get-tuple-element.4 = s32[] get-tuple-element(loop_var.2), index=2 ROOT less-than = pred[] compare(get-tuple-element.3, get-tuple-element.4), direction=LT } ENTRY SimpleLoopWithIndirectLoopBound { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) constant.2 = s32[] constant({{LOOP_BOUND}}) tuple.1 = (s32[], s32[3]{0}, s32[]) tuple(constant.3, constant.4, constant.2) ROOT while = (s32[], s32[3]{0}, s32[]) while(tuple.1), condition=SimpleLoopWithIndirectLoopBound.condition, body=SimpleLoopWithIndirectLoopBound.body } )"; std::string hlo_string = absl::StrReplaceAll( hlo_string_template, {{"{{LOOP_BOUND}}", absl::StrCat(42 + num_iters)}}); return ParseAndReturnVerifiedModule(hlo_string).value(); } TEST_F(WhileLoopSimplifierTest, LoopWithZeroIterationSimplified) { auto m = MakeModuleWithSimpleLoop(0); ASSERT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); EXPECT_THAT(m->entry_computation()->root_instruction(), op::Tuple(op::Constant(), op::Constant())); } TEST_F(WhileLoopSimplifierTest, LoopWithZeroIterationTupleElementLoopBoundSimplified) { auto m = MakeModuleWithSimpleLoopTupleElementLoopBound(0); ASSERT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); EXPECT_THAT(m->entry_computation()->root_instruction(), op::Tuple(op::Constant(), op::Constant(), op::Constant())); } TEST_F(WhileLoopSimplifierTest, LoopWithOneIterationSimplified) { auto m = MakeModuleWithSimpleLoop(1); ASSERT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); EXPECT_THAT(m->entry_computation()->root_instruction(), op::Tuple(op::Add(), op::Multiply())); } TEST_F(WhileLoopSimplifierTest, LoopWithOneIterationTupleELementLoopBoundSimplified) { auto m = MakeModuleWithSimpleLoopTupleElementLoopBound(1); ASSERT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); EXPECT_THAT(m->entry_computation()->root_instruction(), op::Tuple(op::Add(), op::Multiply(), op::Constant())); } TEST_F(WhileLoopSimplifierTest, LoopWithTwoIterationsNotSimplified) { auto m = MakeModuleWithSimpleLoop(2); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, LoopWithControlDependencySimplifiedDependencyPreserved) { auto m = MakeModuleWithSimpleLoop(1); HloComputation* computation = m->entry_computation(); auto* while_op = computation->root_instruction(); ASSERT_EQ(while_op->opcode(), HloOpcode::kWhile); auto* true_op = while_op->while_body()->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(true))); TF_ASSERT_OK(true_op->AddControlDependencyTo( while_op->while_body()->root_instruction())); ASSERT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); EXPECT_THAT(computation->root_instruction()->control_predecessors(), ElementsAre(op::Constant())) << computation->ToString(); } TEST_F(WhileLoopSimplifierTest, LoopWithSendNotSimplified) { auto m = MakeModuleWithSimpleLoop(1); HloComputation* computation = m->entry_computation(); auto* while_op = computation->root_instruction(); ASSERT_EQ(while_op->opcode(), HloOpcode::kWhile); auto* while_body = while_op->while_body(); auto* token = while_body->AddInstruction(HloInstruction::CreateToken()); auto* send = while_body->AddInstruction(HloInstruction::CreateSend( while_body->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(true))), token, 0)); while_body->AddInstruction(HloInstruction::CreateSendDone(send)); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, LoopWithRecvNotSimplified) { auto m = MakeModuleWithSimpleLoop(1); HloComputation* computation = m->entry_computation(); auto* while_op = computation->root_instruction(); ASSERT_EQ(while_op->opcode(), HloOpcode::kWhile); auto* while_body = while_op->while_body(); auto* token = while_body->AddInstruction(HloInstruction::CreateToken()); auto* recv = while_body->AddInstruction( HloInstruction::CreateRecv(ShapeUtil::MakeShape(F32, {1}), token, 0)); while_body->AddInstruction(HloInstruction::CreateRecvDone(recv)); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, LoopWithInfeedSimplified) { auto m = MakeModuleWithSimpleLoop(1); HloComputation* computation = m->entry_computation(); auto* while_op = computation->root_instruction(); ASSERT_EQ(while_op->opcode(), HloOpcode::kWhile); auto* while_body = while_op->while_body(); auto token = while_body->AddInstruction(HloInstruction::CreateToken()); while_body->AddInstruction(HloInstruction::CreateInfeed( ShapeUtil::MakeShape(F32, {1}), token, "config")); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, LoopWithInfeedInCondNotSimplified) { auto m = MakeModuleWithSimpleLoop(1); HloComputation* computation = m->entry_computation(); auto* while_op = computation->root_instruction(); ASSERT_EQ(while_op->opcode(), HloOpcode::kWhile); auto* while_cond = while_op->while_condition(); auto token = while_cond->AddInstruction(HloInstruction::CreateToken()); while_cond->AddInstruction(HloInstruction::CreateInfeed( ShapeUtil::MakeShape(F32, {1}), token, "config")); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, NonTupleShapedLoopNotSimplified) { const std::string hlo_string = R"( HloModule NonTupleShapedLoop NonTupleShapedLoop.body { loop_var.1 = s32[] parameter(0) constant.1 = s32[] constant(-1) ROOT add = s32[] add(s32[] loop_var.1, s32[] constant.1) } NonTupleShapedLoop.condition { loop_var = s32[] parameter(0) constant = s32[] constant(100) ROOT less-than = pred[] compare(s32[] loop_var, s32[] constant), direction=LT } ENTRY INonTupleShapedLoop { constant.2 = s32[] constant(42) ROOT while = s32[] while(s32[] constant.2), condition=NonTupleShapedLoop.condition, body=NonTupleShapedLoop.body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, LoopSwappingTupleElementsNotSimplified) { const std::string hlo_string = R"( HloModule SwappingTupleElements SwappingTupleElements.body { loop_var = (s32[], s32[]) parameter(0) get-tuple-element = s32[] get-tuple-element((s32[], s32[]) loop_var),index=1 get-tuple-element.1 = s32[] get-tuple-element((s32[], s32[]) loop_var), index=0 ROOT tuple = (s32[], s32[]) tuple(s32[] get-tuple-element, s32[] get-tuple-element.1) } SwappingTupleElements.always_true { param = (s32[], s32[]) parameter(0) ROOT constant = pred[] constant(true) } ENTRY SwappingTupleElements { x = s32[] parameter(0) y = s32[] parameter(1) tuple.1 = (s32[], s32[]) tuple(s32[] x, s32[] y) ROOT while = (s32[], s32[]) while((s32[], s32[]) tuple.1), condition=SwappingTupleElements.always_true, body=SwappingTupleElements.body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, LoopWithUnusedButModifiedTupleElementNotSimplified) { const std::string hlo_string = R"( HloModule UnusedButModifiedTupleElement UnusedButModifiedTupleElement.body { loop_var = (s32[]) parameter(0) constant.1 = s32[] constant(1) ROOT tuple = (s32[]) tuple(s32[] constant.1) } UnusedButModifiedTupleElement.always_true { param = (s32[]) parameter(0) ROOT constant = pred[] constant(true) } ENTRY UnusedButModifiedTupleElement { constant.2 = s32[] constant(0) tuple.1 = (s32[]) tuple(s32[] constant.2) ROOT while = (s32[]) while((s32[]) tuple.1), condition=UnusedButModifiedTupleElement.always_true, body=UnusedButModifiedTupleElement.body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, LoopWithUnusedOutsideLoopButModifiedTupleElementSimplified) { const std::string hlo_string = R"( HloModule UnusedButModifiedTupleElement UnusedButModifiedTupleElement.body { loop_var = (s32[], s32[]) parameter(0) constant.1 = s32[] constant(1) ROOT tuple = (s32[], s32[]) tuple(s32[] constant.1, constant.1) } UnusedButModifiedTupleElement.cond { param = (s32[], s32[]) parameter(0) gte.cond = s32[] get-tuple-element(param), index=0 constant.3 = s32[] constant(1) ROOT lt = pred[] compare(gte.cond, constant.3), direction=LT } ENTRY UnusedButModifiedTupleElement { constant.2 = s32[] constant(0) tuple.1 = (s32[], s32[]) tuple(constant.2, constant.2) while = (s32[], s32[]) while(tuple.1), condition=UnusedButModifiedTupleElement.cond, body=UnusedButModifiedTupleElement.body ROOT gte = s32[] get-tuple-element(while), index=0 } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); ASSERT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); EXPECT_TRUE(TupleSimplifier().Run(m.get()).ok()); EXPECT_TRUE(HloDCE().Run(m.get()).ok()); auto m_while = AllOf(op::While(), op::Shape("(s32[])")); EXPECT_THAT(m->entry_computation()->root_instruction(), op::GetTupleElement(m_while)); } TEST_F(WhileLoopSimplifierTest, LoopWithEmptyTupleNotSimplified) { const std::string hlo_string = R"( HloModule EmptyTuple EmptyTuple.body { loop_var = () parameter(0) ROOT tuple = () tuple() } EmptyTuple.always_true { param = () parameter(0) ROOT constant = pred[] constant(true) } ENTRY EmptyTuple { tuple.1 = () tuple() ROOT while = () while(() tuple.1), condition=EmptyTuple.always_true, body=EmptyTuple.body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, LoopWithElemUsedTwiceNotSimplified) { const std::string hlo_string = R"( HloModule ElemUsedTwice ElemUsedTwice.body { param0 = (s32[], s32[]) parameter(0) get-tuple-element = s32[] get-tuple-element((s32[], s32[]) param0), index=0 ROOT tuple = (s32[], s32[]) tuple(s32[] get-tuple-element, s32[] get-tuple-element) } ElemUsedTwice.always_true { param = (s32[], s32[]) parameter(0) ROOT constant = pred[] constant(true) } ENTRY ElemUsedTwice { x = s32[] parameter(0) y = s32[] parameter(1) tuple.1 = (s32[], s32[]) tuple(s32[] x, s32[] y) ROOT while = (s32[], s32[]) while((s32[], s32[]) tuple.1), condition=ElemUsedTwice.always_true, body=ElemUsedTwice.body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, RemoveUnusedLoopOperands) { const std::string hlo_string = R"( HloModule RemoveUnusedOperands RemoveUnusedOperands.body { loop_var = (s32[], s32[], s32[]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element((s32[], s32[], s32[]) loop_var), index=0 get-tuple-element.2 = s32[] get-tuple-element((s32[], s32[], s32[]) loop_var), index=1 constant.1 = s32[] constant(1) add = s32[] add(s32[] get-tuple-element.2, s32[] constant.1) get-tuple-element.3 = s32[] get-tuple-element((s32[], s32[], s32[]) loop_var), index=2 ROOT tuple = (s32[], s32[], s32[]) tuple(s32[] get-tuple-element.1, s32[] add, s32[] get-tuple-element.3) } RemoveUnusedOperands.loop_condition { constant.2 = s32[] constant(0) param0 = (s32[], s32[], s32[]) parameter(0) get-tuple-element = s32[] get-tuple-element((s32[], s32[], s32[]) param0), index=2 ROOT equal-to = pred[] compare(s32[] constant.2, s32[] get-tuple-element), direction=EQ } ENTRY RemoveUnusedOperands { x = s32[] parameter(0) constant.3 = s32[] constant(0) y = s32[] parameter(1) tuple.1 = (s32[], s32[], s32[]) tuple(s32[] x, s32[] constant.3, s32[] y) ROOT while = (s32[], s32[], s32[]) while((s32[], s32[], s32[]) tuple.1), condition=RemoveUnusedOperands.loop_condition, body=RemoveUnusedOperands.body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); const auto& instrs = m->entry_computation()->instructions(); HloInstruction* new_while_op = *absl::c_find_if(instrs, [&](const HloInstruction* instr) { return (instr->opcode() == HloOpcode::kWhile && instr->name() != "while"); }); auto scalar_s32 = ShapeUtil::MakeShape(S32, {}); EXPECT_TRUE( ShapeUtil::Equal(new_while_op->shape(), ShapeUtil::MakeTupleShape({scalar_s32, scalar_s32}))) << ShapeUtil::HumanString(new_while_op->shape()); EXPECT_THAT( new_while_op->while_body()->root_instruction(), op::Tuple( op::Add(op::GetTupleElement(op::Parameter(0), 0), op::Constant()), op::GetTupleElement(op::Parameter(0), 1))); EXPECT_THAT(new_while_op->while_condition()->root_instruction(), op::Eq(op::Constant(), op::GetTupleElement(op::Parameter(0), 1))); } TEST_F(WhileLoopSimplifierTest, RemoveUnusedLoopOperandsCheckMetadata) { const std::string hlo_string = R"( HloModule RemoveUnusedOperands RemoveUnusedOperands.body { loop_var = (s32[], s32[], s32[]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element((s32[], s32[], s32[]) loop_var), index=0 get-tuple-element.2 = s32[] get-tuple-element((s32[], s32[], s32[]) loop_var), index=1 constant.1 = s32[] constant(1) add = s32[] add(s32[] get-tuple-element.2, s32[] constant.1) get-tuple-element.3 = s32[] get-tuple-element((s32[], s32[], s32[]) loop_var), index=2 ROOT tuple = (s32[], s32[], s32[]) tuple(s32[] get-tuple-element.1, s32[] add, s32[] get-tuple-element.3) } RemoveUnusedOperands.loop_condition { constant.2 = s32[] constant(0) param0 = (s32[], s32[], s32[]) parameter(0) get-tuple-element = s32[] get-tuple-element((s32[], s32[], s32[]) param0), index=2 ROOT equal-to = pred[] compare(s32[] constant.2, s32[] get-tuple-element), direction=EQ } ENTRY RemoveUnusedOperands { x = s32[] parameter(0) constant.3 = s32[] constant(0) y = s32[] parameter(1) tuple.1 = (s32[], s32[], s32[]) tuple(s32[] x, s32[] constant.3, s32[] y) ROOT while = (s32[], s32[], s32[]) while((s32[], s32[], s32[]) tuple.1), condition=RemoveUnusedOperands.loop_condition, body=RemoveUnusedOperands.body, metadata={op_name="while"} } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); OpMetadata while_metadata; while_metadata.set_op_name("while"); EXPECT_THAT(m->entry_computation()->root_instruction(), AllOf(op::Tuple(), op::Metadata(while_metadata))); EXPECT_THAT(m->entry_computation()->GetInstructionWithName("while.1"), AllOf(op::While(), op::Metadata(while_metadata))); } TEST_F(WhileLoopSimplifierTest, RemoveUnusedLoopOperandsDespiteSideEffectingOps) { const std::string hlo_string = R"( HloModule RemoveUnusedOperands body { loop_var = (s32[]) parameter(0) gte0 = s32[] get-tuple-element(loop_var), index=0 token0 = token[] after-all() unused = ((s32[], pred[]), token[]) infeed(token0) ROOT tuple = (s32[]) tuple(gte0) } cond { loop_var = (s32[]) parameter(0) ROOT constant = pred[] constant(true) } ENTRY RemoveUnusedOperands { x = s32[] parameter(0) tuple.1 = (s32[]) tuple(s32[] x) ROOT while = (s32[]) while((s32[]) tuple.1), condition=cond, body=body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); const auto& instrs = m->entry_computation()->instructions(); HloInstruction* new_while_op = *absl::c_find_if(instrs, [&](const HloInstruction* instr) { return (instr->opcode() == HloOpcode::kWhile && instr->name() != "while"); }); EXPECT_TRUE(ShapeUtil::IsEmptyTuple(new_while_op->shape())) << new_while_op->shape().ToString(); } TEST_F(WhileLoopSimplifierTest, LoopWithNonTupleBodyShapeNotSimplified) { const std::string hlo_string = R"( HloModule BodyHasNonTupleRoot BodyHasNonTupleRoot.passthrough { ROOT param = (s32[], s32[]) parameter(0) } BodyHasNonTupleRoot.always_true { param.1 = (s32[], s32[]) parameter(0) ROOT constant = pred[] constant(true) } ENTRY BodyHasNonTupleRoot { init_value = (s32[], s32[]) parameter(0) ROOT while = (s32[], s32[]) while((s32[], s32[]) init_value), condition=BodyHasNonTupleRoot.always_true, body=BodyHasNonTupleRoot.passthrough } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, LoopWithNonTupleBodyRootInstructionNotSimplified) { const std::string hlo_string = R"( HloModule SimpleLoop SimpleLoop.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT custom-call = (s32[], s32[3]{0}) custom-call(add, multiply), custom_call_target="x" } SimpleLoop.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(44) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition= SimpleLoop.condition, body=SimpleLoop.body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, LoopWithArrayConstantNotSimplified) { const std::string hlo_string = R"( HloModule SimpleLoop SimpleLoop.body { loop_var.1 = (s32[], s32[3]{0}, s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 get-tuple-element.3 = s32[3]{0} get-tuple-element(loop_var.1), index=2 add.2 = s32[3]{0} add(get-tuple-element.2, get-tuple-element.3) ROOT tuple = (s32[], s32[3]{0}, s32[3]{0}) tuple(add, add.2, get-tuple-element.3) } SimpleLoop.condition { loop_var.2 = (s32[], s32[3]{0}, s32[3]{0}) parameter(0) get-tuple-element.4 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(47) ROOT less-than = pred[] compare(get-tuple-element.4, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}, s32[3]{0}) tuple(constant.3, constant.4, constant.4) ROOT while = (s32[], s32[3]{0}, s32[3]{0}) while(tuple.1), condition= SimpleLoop.condition, body=SimpleLoop.body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, FlattenNestedTuple) { const std::string hlo_string = R"( HloModule Test Body { param = ((s32[1]), (s32[2], s32[3], (s32[4]))) parameter(0) ta = (s32[1]) get-tuple-element(param), index=0 a = s32[1] get-tuple-element(ta), index=0 a.1 = s32[1] add(a, a) tbcd = (s32[2], s32[3], (s32[4])) get-tuple-element(param), index=1 ROOT tuple = ((s32[1]), (s32[2], s32[3], (s32[4]))) tuple(ta, tbcd) } Cond { param = ((s32[1]), (s32[2], s32[3], (s32[4]))) parameter(0) ROOT cond = pred[] constant(true) } ENTRY Loop { a = s32[1] constant({0}) b = s32[2] constant({0,1}) c = s32[3] constant({0,1,2}) d = s32[4] constant({0,1,2,3}) ta = (s32[1]) tuple(a) td = (s32[4]) tuple(d) tbcd = (s32[2], s32[3], (s32[4])) tuple(b, c, td) init = ((s32[1]), (s32[2], s32[3], (s32[4]))) tuple(ta, tbcd) ROOT while = ((s32[1]), (s32[2], s32[3], (s32[4]))) while(init), condition=Cond, body=Body })"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); EXPECT_TRUE(HloDCE().Run(m.get()).ok()); HloInstruction* new_while = FindFirstWhile(m.get()); Shape flat_tuple = ParseShape("(s32[1], s32[2], s32[3], s32[4])").value(); SCOPED_TRACE(m->ToString()); EXPECT_TRUE(ShapeUtil::Equal(new_while->shape(), flat_tuple)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_body()->root_instruction()->shape(), flat_tuple)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_body()->parameter_instruction(0)->shape(), flat_tuple)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_condition()->parameter_instruction(0)->shape(), flat_tuple)); EXPECT_TRUE(ShapeUtil::Equal( m->entry_computation()->root_instruction()->shape(), ParseShape("((s32[1]), (s32[2], s32[3], (s32[4])))").value())); } TEST_F(WhileLoopSimplifierTest, OnlyConstantsInLoopCarry) { const std::string hlo_string = R"( HloModule Test Body { param = (s32[1]) parameter(0) a = s32[1] constant({0}) ROOT tuple = (s32[1]) tuple(a) } Cond { param = (s32[1]) parameter(0) ROOT cond = pred[] constant(true) } ENTRY Loop { a = s32[1] constant({0}) init = (s32[1]) tuple(a) ROOT while = (s32[1]) while(init), condition=Cond, body=Body })"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); EXPECT_TRUE(HloDCE().Run(m.get()).ok()); EXPECT_TRUE(TupleSimplifier().Run(m.get()).ok()); EXPECT_THAT(m->entry_computation()->root_instruction(), op::Tuple(op::Constant())); } TEST_F(WhileLoopSimplifierTest, RemoveConstantFromLoopCarry) { const std::string hlo_string = R"( HloModule Test Body { param = (s32[1], s32[2], s32[3]) parameter(0) a = s32[1] get-tuple-element(param), index=0 a.1 = s32[1] add(a, a) b = s32[2] constant({1,1}) c = s32[3] constant({10,10,10}) ROOT tuple = (s32[1], s32[2], s32[3]) tuple(a.1, b, c) } Cond { param = (s32[1], s32[2], s32[3]) parameter(0) a = s32[1] get-tuple-element(param), index=0 b = s32[2] get-tuple-element(param), index=1 c = s32[3] get-tuple-element(param), index=2 ROOT cond = pred[] constant(true) } ENTRY Loop { a = s32[1] constant({0}) b = s32[2] constant({1,1}) c = s32[3] constant({2,2,2}) init = (s32[1], s32[2], s32[3]) tuple(a,b,c) ROOT while = (s32[1], s32[2], s32[3]) while(init), condition=Cond, body=Body })"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); EXPECT_TRUE(HloDCE().Run(m.get()).ok()); EXPECT_TRUE(TupleSimplifier().Run(m.get()).ok()); HloInstruction* new_while = FindFirstWhile(m.get()); Shape new_while_shape = ParseShape("(s32[1], s32[3])").value(); EXPECT_TRUE(ShapeUtil::Equal(new_while->shape(), new_while_shape)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_body()->root_instruction()->shape(), new_while_shape)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_body()->parameter_instruction(0)->shape(), new_while_shape)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_condition()->parameter_instruction(0)->shape(), new_while_shape)); EXPECT_TRUE( ShapeUtil::Equal(m->entry_computation()->root_instruction()->shape(), ParseShape("(s32[1], s32[2], s32[3])").value())); EXPECT_THAT(m->entry_computation()->root_instruction(), op::Tuple(_, op::Constant(), _)); } const char* const kSimpleMergeInductionVariablesModule = R"( HloModule Test Body { param = (TYPE[], TYPE[], TYPE[]) parameter(0) a = TYPE[] get-tuple-element(param), index=0 one = TYPE[] constant(1) a1 = TYPE[] add(a, one) b = TYPE[] get-tuple-element(param), index=1 negone = TYPE[] constant(-1) b1 = TYPE[] add(b, negone) c = TYPE[] add(a, b) ROOT tuple = (TYPE[], TYPE[], TYPE[]) tuple(a1,b1,c) } Cond { param = (TYPE[], TYPE[], TYPE[]) parameter(0) a = TYPE[] get-tuple-element(param), index=0 b = TYPE[] get-tuple-element(param), index=1 sum = TYPE[] power(a, b) ten = TYPE[] constant(10) ROOT cond = pred[] compare(sum, ten), direction=LT } ENTRY Loop { a = TYPE[] constant(10) b = TYPE[] constant(100) c = TYPE[] constant(0) init = (TYPE[], TYPE[], TYPE[]) tuple(a,b,c) while = (TYPE[], TYPE[], TYPE[]) while(init), condition=Cond, body=Body a1 = TYPE[] get-tuple-element(while), index=0 b1 = TYPE[] get-tuple-element(while), index=1 c1 = TYPE[] get-tuple-element(while), index=2 sum = TYPE[] add(a1, b1) ROOT sum.1 = TYPE[] add(sum, c1) })"; TEST_F(WhileLoopSimplifierTest, MergeInductionVariables_Simple) { std::string hlo_string = absl::StrReplaceAll( kSimpleMergeInductionVariablesModule, {{"TYPE", "s32"}}); auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); EXPECT_TRUE(HloDCE().Run(m.get()).ok()); EXPECT_TRUE(TupleSimplifier().Run(m.get()).ok()); HloInstruction* new_while = FindFirstWhile(m.get()); SCOPED_TRACE(m->ToString()); Shape new_while_shape = ParseShape("(s32[], s32[], s32[], s32[])").value(); EXPECT_TRUE(ShapeUtil::Equal(new_while->shape(), new_while_shape)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_body()->root_instruction()->shape(), new_while_shape)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_body()->parameter_instruction(0)->shape(), new_while_shape)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_condition()->parameter_instruction(0)->shape(), new_while_shape)); EXPECT_THAT(new_while->while_body()->root_instruction(), op::Tuple(op::GetTupleElement(op::Parameter(), 0), op::GetTupleElement(op::Parameter(), 1), op::Add(), op::Add(op::GetTupleElement(op::Parameter(), 3), op::Constant()))); EXPECT_THAT(new_while->while_condition()->root_instruction(), op::Lt(op::Power(op::Add(), op::Add()), op::Constant())); } TEST_F(WhileLoopSimplifierTest, MergeInductionVariables_SkipS16) { std::string hlo_string = absl::StrReplaceAll( kSimpleMergeInductionVariablesModule, {{"TYPE", "s16"}}); EXPECT_FALSE(WhileLoopSimplifier() .Run(ParseAndReturnVerifiedModule(hlo_string).value().get()) .value()); } TEST_F(WhileLoopSimplifierTest, RemoveRepeatedParams) { const std::string hlo_string = R"( HloModule SwappingTupleElements SwappingTupleElements.body { loop_var = (s32[], s32[], s32[]) parameter(0) get-tuple-element = s32[] get-tuple-element(loop_var), index=0 get-tuple-element.1 = s32[] get-tuple-element(loop_var), index=1 get-tuple-element.2 = s32[] get-tuple-element(loop_var), index=2 y = s32[] add(get-tuple-element.1, get-tuple-element.2) ROOT tuple = (s32[], s32[], s32[]) tuple(s32[] get-tuple-element, y, s32[] get-tuple-element.2) } SwappingTupleElements.always_true { param = (s32[], s32[], s32[]) parameter(0) get-tuple-element = s32[] get-tuple-element(param), index=0 get-tuple-element.1 = s32[] get-tuple-element(param), index=1 ROOT less-than = pred[] compare(get-tuple-element, get-tuple-element.1), direction=LT } ENTRY SwappingTupleElements { x = s32[] parameter(0) y = s32[] parameter(1) tuple.1 = (s32[], s32[], s32[]) tuple(s32[] x, s32[] y, s32[] x) ROOT while = (s32[], s32[], s32[]) while(tuple.1), condition=SwappingTupleElements.always_true, body=SwappingTupleElements.body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); HloInstruction* new_while = FindFirstWhile(m.get()); Shape new_while_shape = ParseShape("(s32[], s32[])").value(); EXPECT_TRUE(ShapeUtil::Equal(new_while->shape(), new_while_shape)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_body()->root_instruction()->shape(), new_while_shape)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_body()->parameter_instruction(0)->shape(), new_while_shape)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_condition()->parameter_instruction(0)->shape(), new_while_shape)); } TEST_F(WhileLoopSimplifierTest, LoopWithUnusedGroupSimplified) { const std::string hlo_string = R"( HloModule LoopWithUnusedGroupSimplified LoopWithUnusedGroupSimplified.body { loop_var = (s32[], s32[], s32[]) parameter(0) constant.1 = s32[] constant(1) gte0 = s32[] get-tuple-element(loop_var), index=1 gte1 = s32[] get-tuple-element(loop_var), index=2 add = s32[] add(gte0, gte1) ROOT tuple = (s32[], s32[], s32[]) tuple(constant.1, add, add) } LoopWithUnusedGroupSimplified.cond { param = (s32[], s32[], s32[]) parameter(0) gte.cond = s32[] get-tuple-element(param), index=0 constant.3 = s32[] constant(1) ROOT lt = pred[] compare(gte.cond, constant.3), direction=LT } ENTRY LoopWithUnusedGroupSimplified { constant.2 = s32[] constant(0) tuple.1 = (s32[], s32[], s32[]) tuple(constant.2, constant.2, constant.2) while = (s32[], s32[], s32[]) while(tuple.1), condition=LoopWithUnusedGroupSimplified.cond, body=LoopWithUnusedGroupSimplified.body ROOT gte = s32[] get-tuple-element(while), index=0 } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); ASSERT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); EXPECT_TRUE(TupleSimplifier().Run(m.get()).ok()); EXPECT_TRUE(HloDCE().Run(m.get()).ok()); auto m_while = AllOf(op::While(), op::Shape("(s32[])")); EXPECT_THAT(m->entry_computation()->root_instruction(), op::GetTupleElement(m_while)); } TEST_F(WhileLoopSimplifierTest, LoopWithUnusedNonPassthroughElementSimplified) { const std::string hlo_string = R"( HloModule LoopWithUnusedNonPassthroughElementSimplified LoopWithUnusedNonPassthroughElementSimplified.body { loop_var = (s32[], s32[], s32[]) parameter(0) constant.1 = s32[] constant(1) gte0 = s32[] get-tuple-element(loop_var), index=1 gte1 = s32[] get-tuple-element(loop_var), index=2 add = s32[] add(gte0, gte1) add2 = s32[] add(gte0, gte0) ROOT tuple = (s32[], s32[], s32[]) tuple(constant.1, add2, add) } LoopWithUnusedNonPassthroughElementSimplified.cond { param = (s32[], s32[], s32[]) parameter(0) gte.cond = s32[] get-tuple-element(param), index=0 constant.3 = s32[] constant(1) ROOT lt = pred[] compare(gte.cond, constant.3), direction=LT } ENTRY LoopWithUnusedNonPassthroughElementSimplified { constant.2 = s32[] constant(0) tuple.1 = (s32[], s32[], s32[]) tuple(constant.2, constant.2, constant.2) while = (s32[], s32[], s32[]) while(tuple.1), condition=LoopWithUnusedNonPassthroughElementSimplified.cond, body=LoopWithUnusedNonPassthroughElementSimplified.body gte2 = s32[] get-tuple-element(while), index=0 gte3 = s32[] get-tuple-element(while), index=1 ROOT tuple.2 = (s32[], s32[]) tuple(gte2, gte3) } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); ASSERT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); EXPECT_TRUE(TupleSimplifier().Run(m.get()).ok()); EXPECT_TRUE(HloDCE().Run(m.get()).ok()); EXPECT_THAT(m->entry_computation()->root_instruction(), AllOf(op::While(), op::Shape("(s32[], s32[])"))); } TEST_F(WhileLoopSimplifierTest, RemoveUnusedParamsDespiteSendRecv) { const std::string hlo_string = R"( HloModule RemoveUnusedParamsDespiteSendRecv RemoveUnusedParamsDespiteSendRecv.body { loop_var = (s32[], s32[], s32[]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element((s32[], s32[], s32[]) loop_var), index=0 get-tuple-element.2 = s32[] get-tuple-element((s32[], s32[], s32[]) loop_var), index=1 constant.1 = s32[] constant(1) token.1 = token[] after-all() send.1 = (s32[], u32[], token[]) send(constant.1, token.1), channel_id=42, is_host_transfer=true send-done.1 = token[] send-done(send.1), channel_id=42, is_host_transfer=true recv.1 = (s32[], u32[], token[]) recv(send-done.1), channel_id=43, is_host_transfer=true add = s32[] add(s32[] get-tuple-element.2, s32[] constant.1) recv-done.1 = (s32[], token[]) recv-done(recv.1), channel_id=43, is_host_transfer=true get-tuple-element.3 = s32[] get-tuple-element((s32[], s32[], s32[]) loop_var), index=2 ROOT tuple = (s32[], s32[], s32[]) tuple(s32[] get-tuple-element.1, s32[] add, s32[] get-tuple-element.3) } RemoveUnusedParamsDespiteSendRecv.loop_condition { constant.2 = s32[] constant(0) param0 = (s32[], s32[], s32[]) parameter(0) get-tuple-element = s32[] get-tuple-element((s32[], s32[], s32[]) param0), index=2 ROOT equal-to = pred[] compare(s32[] constant.2, s32[] get-tuple-element), direction=EQ } ENTRY RemoveUnusedParamsDespiteSendRecv { x = s32[] parameter(0) constant.3 = s32[] constant(0) y = s32[] parameter(1) tuple.1 = (s32[], s32[], s32[]) tuple(s32[] x, s32[] constant.3, s32[] y) ROOT while = (s32[], s32[], s32[]) while((s32[], s32[], s32[]) tuple.1), condition=RemoveUnusedParamsDespiteSendRecv.loop_condition, body=RemoveUnusedParamsDespiteSendRecv.body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); ASSERT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); HloInstruction* new_while = FindFirstWhile(m.get()); Shape new_while_shape = ParseShape("(s32[], s32[])").value(); EXPECT_TRUE(ShapeUtil::Equal(new_while->shape(), new_while_shape)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_body()->root_instruction()->shape(), new_while_shape)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_body()->parameter_instruction(0)->shape(), new_while_shape)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_condition()->parameter_instruction(0)->shape(), new_while_shape)); } TEST_F(WhileLoopSimplifierTest, RemoveTrivialCompare) { const std::string hlo_template = R"( HloModule RemoveTrivialCompare RemoveTrivialCompare.body { loop_var = (pred[], s32[]) parameter(0) get-tuple-element.2 = s32[] get-tuple-element((pred[], s32[]) loop_var), index=1 cons = s32[] constant({{LOOP_CONSTANT}}) comp = pred[] compare(get-tuple-element.2, cons), direction={{DIRECTION}} constant.1 = s32[] constant(1) add = s32[] add(s32[] get-tuple-element.2, s32[] constant.1) ROOT tuple = (pred[], s32[]) tuple(comp, s32[] add) } RemoveTrivialCompare.loop_condition { constant.2 = s32[] constant(10) param0 = (pred[], s32[]) parameter(0) get-tuple-element = s32[] get-tuple-element((pred[], s32[]) param0), index=1 ROOT equal-to = pred[] compare(s32[] get-tuple-element, s32[] constant.2), direction=LT } ENTRY RemoveTrivialCompare { constant.3 = s32[] constant(1) t = pred[] constant(true) tuple.1 = (pred[], s32[]) tuple(t, s32[] constant.3) ROOT while = (pred[], s32[]) while((pred[], s32[]) tuple.1), condition=RemoveTrivialCompare.loop_condition, body=RemoveTrivialCompare.body } )"; for (std::string dir : {"LT", "GT"}) { for (int i = 1; i > -5; i--) { std::string hlo_string = absl::StrReplaceAll( hlo_template, {{"{{LOOP_CONSTANT}}", absl::StrCat(i)}, {"{{DIRECTION}}", dir}}); auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE(WhileLoopSimplifier(true) .Run(m.get()) .value()); HloInstruction* while_instr = FindFirstWhile(m.get()); EXPECT_THAT(while_instr->while_body()->root_instruction(), op::Tuple(op::Constant(), _)); EXPECT_TRUE(while_instr->while_body() ->root_instruction() ->operand(0) ->literal() .IsAll(dir == "GT")); } for (int i = 11; i < 15; i++) { std::string hlo_string = absl::StrReplaceAll( hlo_template, {{"{{LOOP_CONSTANT}}", absl::StrCat(i)}, {"{{DIRECTION}}", dir}}); auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE(WhileLoopSimplifier(true) .Run(m.get()) .value()); HloInstruction* while_instr = FindFirstWhile(m.get()); EXPECT_THAT(while_instr->while_body()->root_instruction(), op::Tuple(op::Constant(), _)); EXPECT_TRUE(while_instr->while_body() ->root_instruction() ->operand(0) ->literal() .IsAll(dir == "LT")); } } } TEST_F(WhileLoopSimplifierTest, NotRemoveCompare) { const std::string hlo_string = R"( HloModule RemoveTrivialCompare RemoveTrivialCompare.body { loop_var = (pred[], s32[]) parameter(0) get-tuple-element.2 = s32[] get-tuple-element((pred[], s32[]) loop_var), index=1 five = s32[] constant(5) comp = pred[] compare(get-tuple-element.2, five), direction=LT constant.1 = s32[] constant(1) add = s32[] add(s32[] get-tuple-element.2, s32[] constant.1) ROOT tuple = (pred[], s32[]) tuple(comp, s32[] add) } RemoveTrivialCompare.loop_condition { constant.2 = s32[] constant(10) param0 = (pred[], s32[]) parameter(0) get-tuple-element = s32[] get-tuple-element((pred[], s32[]) param0), index=1 ROOT equal-to = pred[] compare(s32[] get-tuple-element, s32[] constant.2), direction=LT } ENTRY RemoveTrivialCompare { constant.3 = s32[] constant(0) t = pred[] constant(true) tuple.1 = (pred[], s32[]) tuple(t, s32[] constant.3) ROOT while = (pred[], s32[]) while((pred[], s32[]) tuple.1), condition=RemoveTrivialCompare.loop_condition, body=RemoveTrivialCompare.body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE(WhileLoopSimplifier(true) .Run(m.get()) .value()); } TEST_F(WhileLoopSimplifierTest, RemoveDynUpdSlice) { const std::string hlo_string = R"( HloModule jit_scan %region_0.6 (arg_tuple.7: (s32[], f32[], f32[3], f32[3])) -> (s32[], f32[], f32[3], f32[3]) { %arg_tuple.7 = (s32[], f32[], f32[3]{0}, f32[3]{0}) parameter(0) %get-tuple-element.8 = s32[] get-tuple-element((s32[], f32[], f32[3]{0}, f32[3]{0}) %arg_tuple.7), index=0 %constant.12 = s32[] constant(1) %add.28 = s32[] add(s32[] %get-tuple-element.8, s32[] %constant.12) %get-tuple-element.9 = f32[] get-tuple-element((s32[], f32[], f32[3]{0}, f32[3]{0}) %arg_tuple.7), index=1 %sine.15 = f32[] sine(f32[] %get-tuple-element.9) %get-tuple-element.10 = f32[3]{0} get-tuple-element((s32[], f32[], f32[3]{0}, f32[3]{0}) %arg_tuple.7), index=2 %cosine.16 = f32[] cosine(f32[] %get-tuple-element.9) %reshape.18 = f32[1]{0} reshape(f32[] %cosine.16) %constant.14 = s32[] constant(0) %compare.19 = pred[] compare(s32[] %get-tuple-element.8, s32[] %constant.14), direction=LT %constant.13 = s32[] constant(3) %add.20 = s32[] add(s32[] %get-tuple-element.8, s32[] %constant.13) %select.21 = s32[] select(pred[] %compare.19, s32[] %add.20, s32[] %get-tuple-element.8) %dynamic-update-slice.22 = f32[3]{0} dynamic-update-slice(f32[3]{0} %get-tuple-element.10, f32[1]{0} %reshape.18, s32[] %select.21) %get-tuple-element.11 = f32[3]{0} get-tuple-element((s32[], f32[], f32[3]{0}, f32[3]{0}) %arg_tuple.7), index=3 %dynamic-update-slice.27 = f32[3]{0} dynamic-update-slice(f32[3]{0} %get-tuple-element.11, f32[1]{0} %reshape.18, s32[] %select.21) ROOT %tuple.29 = (s32[], f32[], f32[3]{0}, f32[3]{0}) tuple(s32[] %add.28, f32[] %sine.15, f32[3]{0} %dynamic-update-slice.22, f32[3]{0} %dynamic-update-slice.27) } %region_1.30 (arg_tuple.31: (s32[], f32[], f32[3], f32[3])) -> pred[] { %arg_tuple.31 = (s32[], f32[], f32[3]{0}, f32[3]{0}) parameter(0) %get-tuple-element.32 = s32[] get-tuple-element((s32[], f32[], f32[3]{0}, f32[3]{0}) %arg_tuple.31), index=0 %constant.36 = s32[] constant(3) ROOT %compare.37 = pred[] compare(s32[] %get-tuple-element.32, s32[] %constant.36), direction=LT } ENTRY %main.44 (Arg_0.1: f32[]) -> (f32[], f32[3], f32[3]) { %constant.4 = s32[] constant(0) %Arg_0.1 = f32[] parameter(0), sharding={replicated} %constant.2 = f32[] constant(0) %broadcast.3 = f32[3]{0} broadcast(f32[] %constant.2), dimensions={} %tuple.5 = (s32[], f32[], f32[3]{0}, f32[3]{0}) tuple(s32[] %constant.4, f32[] %Arg_0.1, f32[3]{0} %broadcast.3, f32[3]{0} %broadcast.3) %while.38 = (s32[], f32[], f32[3]{0}, f32[3]{0}) while((s32[], f32[], f32[3]{0}, f32[3]{0}) %tuple.5), condition=%region_1.30, body=%region_0.6 %get-tuple-element.40 = f32[] get-tuple-element((s32[], f32[], f32[3]{0}, f32[3]{0}) %while.38), index=1 %get-tuple-element.41 = f32[3]{0} get-tuple-element((s32[], f32[], f32[3]{0}, f32[3]{0}) %while.38), index=2 %get-tuple-element.42 = f32[3]{0} get-tuple-element((s32[], f32[], f32[3]{0}, f32[3]{0}) %while.38), index=3 ROOT %tuple.43 = (f32[], f32[3]{0}, f32[3]{0}) tuple(f32[] %get-tuple-element.40, f32[3]{0} %get-tuple-element.41, f32[3]{0} %get-tuple-element.42) })"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); ASSERT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); HloInstruction* new_while = FindFirstWhile(m.get()); Shape new_while_shape = ParseShape("(s32[], f32[], f32[3]{0})").value(); EXPECT_TRUE(ShapeUtil::Equal(new_while->shape(), new_while_shape)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_body()->root_instruction()->shape(), new_while_shape)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_body()->parameter_instruction(0)->shape(), new_while_shape)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_condition()->parameter_instruction(0)->shape(), new_while_shape)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/while_loop_simplifier.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/while_loop_simplifier_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
740c6a4b-47a4-47dd-979f-37886ea081a6
cpp
tensorflow/tensorflow
shaped_buffer
third_party/xla/xla/service/shaped_buffer.cc
third_party/xla/xla/service/shaped_buffer_test.cc
#include "xla/service/shaped_buffer.h" #include <memory> #include <string> #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "xla/layout_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/platform/logging.h" namespace xla { ShapedBuffer::ShapedBuffer(Shape on_device_shape, int device_ordinal, int physical_device_ordinal) : on_device_shape_(std::move(on_device_shape)), device_ordinal_(device_ordinal), buffers_(&on_device_shape_) { physical_device_ordinal_ = physical_device_ordinal == -1 ? device_ordinal_ : physical_device_ordinal; on_host_shape_ = ShapeUtil::DeviceShapeToHostShape(on_device_shape_); } ShapedBuffer::ShapedBuffer(Shape on_host_shape, Shape on_device_shape, int device_ordinal, int physical_device_ordinal) : ShapedBuffer(on_device_shape, device_ordinal, physical_device_ordinal) {} ShapedBuffer::ShapedBuffer(ShapedBuffer&& s) noexcept : on_host_shape_(std::move(s.on_host_shape_)), on_device_shape_(std::move(s.on_device_shape_)), device_ordinal_(s.device_ordinal_), physical_device_ordinal_(s.physical_device_ordinal_), buffers_(std::move(s.buffers_)) { buffers_.replace_shape_ptr(on_device_shape_); } ShapedBuffer& ShapedBuffer::operator=(ShapedBuffer&& s) noexcept { on_device_shape_ = std::move(s.on_device_shape_); on_host_shape_ = std::move(s.on_host_shape_); device_ordinal_ = s.device_ordinal_; physical_device_ordinal_ = s.physical_device_ordinal_; buffers_ = std::move(s.buffers_); buffers_.replace_shape_ptr(on_device_shape_); return *this; } ShapedBuffer::~ShapedBuffer() {} absl::StatusOr<ShapedBuffer> ShapedBuffer::SubShapedBuffer( const ShapeIndex& index) const { TF_ASSIGN_OR_RETURN(const Shape* device_sub_shape, ShapeUtil::TryGetSubshape(on_device_shape(), index)); ShapedBuffer sub_shaped_buffer(*device_sub_shape, device_ordinal_, physical_device_ordinal_); TF_ASSIGN_OR_RETURN(ShapeTree<se::DeviceMemoryBase> sub_buffers, buffers_.SubShapeTree(index)); sub_shaped_buffer.set_buffers(std::move(sub_buffers)); return std::move(sub_shaped_buffer); } void ShapedBuffer::clear() { for (auto& pair : buffers_) { pair.second = se::DeviceMemoryBase(); } } std::string ShapedBuffer::ToString() const { std::string s = absl::StrCat("ShapedBuffer(", device_ordinal(), "), on-device shape=" + ShapeUtil::HumanStringWithLayout(on_device_shape()), ":\n"); ShapeUtil::ForEachSubshape( on_device_shape(), [this, &s](const Shape& subshape, const ShapeIndex& index) { std::string shape_str; if (subshape.IsTuple()) { shape_str = "tuple"; } else { shape_str = ShapeUtil::HumanStringWithLayout(subshape); } const se::DeviceMemoryBase& memory = buffer(index); absl::StrAppendFormat(&s, " %s%p (%d bytes) : %s\n", std::string(index.size() * 2, ' '), memory.opaque(), memory.size(), shape_str); }); return s; } std::ostream& operator<<(std::ostream& out, const ShapedBuffer& buffer) { out << buffer.ToString(); return out; } ScopedShapedBuffer::ScopedShapedBuffer(Shape on_device_shape, se::DeviceMemoryAllocator* allocator, int device_ordinal, int physical_device_ordinal) : ShapedBuffer(std::move(on_device_shape), device_ordinal, physical_device_ordinal), allocator_(allocator) {} ScopedShapedBuffer::ScopedShapedBuffer(Shape on_host_shape, Shape on_device_shape, se::DeviceMemoryAllocator* allocator, int device_ordinal, int physical_device_ordinal) : ScopedShapedBuffer(std::move(on_device_shape), allocator, device_ordinal, physical_device_ordinal) {} ScopedShapedBuffer::ScopedShapedBuffer(ShapedBuffer shaped_buffer, se::DeviceMemoryAllocator* allocator) : ShapedBuffer(std::move(shaped_buffer)), allocator_(allocator) {} ScopedShapedBuffer::ScopedShapedBuffer(ScopedShapedBuffer&& s) noexcept : ShapedBuffer(static_cast<ShapedBuffer&&>(s)), allocator_(s.allocator_) { s.allocator_ = nullptr; } ScopedShapedBuffer& ScopedShapedBuffer::operator=( ScopedShapedBuffer&& s) noexcept { Deallocate(); *static_cast<ShapedBuffer*>(this) = std::move(static_cast<ShapedBuffer&>(s)); allocator_ = s.allocator_; s.allocator_ = nullptr; return *this; } ScopedShapedBuffer::~ScopedShapedBuffer() { Deallocate(); } ShapedBuffer ScopedShapedBuffer::release() { ShapedBuffer shaped_buffer(static_cast<ShapedBuffer&&>(*this)); buffers_ = ShapeTree<se::DeviceMemoryBase>(); return shaped_buffer; } void ScopedShapedBuffer::Deallocate() { if (allocator_ == nullptr) { return; } absl::flat_hash_set<void*> deallocated_ptrs; for (auto& pair : buffers_) { se::DeviceMemoryBase& memory_base = pair.second; if (!memory_base.is_null() && deallocated_ptrs.insert(memory_base.opaque()).second) { TF_CHECK_OK(allocator_->Deallocate(device_ordinal(), memory_base)); } } } ScopedShapedBuffer ScopedShapedBuffer::TakeSubTree(ShapeIndexView index) { const xla::Shape& sub_on_device_shape = xla::ShapeUtil::GetSubshape(on_device_shape(), {index}); ScopedShapedBuffer output(sub_on_device_shape, memory_allocator(), device_ordinal(), physical_device_ordinal()); auto src_it = buffers().find(index); auto dst_it = output.buffers().begin(); while (dst_it != output.buffers().end()) { dst_it->second = src_it->second; src_it->second = tensorflow::se::DeviceMemoryBase(nullptr, 0); ++src_it; ++dst_it; } return output; } }
#include "xla/service/shaped_buffer.h" #include <memory> #include <utility> #include <vector> #include "xla/service/platform_util.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/stream_executor_memory_allocator.h" #include "xla/test.h" #include "tsl/platform/test_benchmark.h" namespace xla { namespace { TEST(ShapedBufferTest, ScopedShapeBufferAsShapedBufferB71629047) { TF_ASSERT_OK_AND_ASSIGN(auto* platform, xla::PlatformUtil::GetDefaultPlatform()); TF_ASSERT_OK_AND_ASSIGN(auto executors, xla::PlatformUtil::GetStreamExecutors(platform)); xla::se::StreamExecutorMemoryAllocator allocator(platform, executors); const xla::Shape shape = xla::ShapeUtil::MakeShape(xla::F32, {}); const int kDeviceOrdinal = 0; auto scoped_buffer = std::make_unique<xla::ScopedShapedBuffer>( shape, shape, &allocator, kDeviceOrdinal); std::unique_ptr<xla::ShapedBuffer> buffer = std::move(scoped_buffer); buffer = nullptr; } class TestAllocator : public se::DeviceMemoryAllocator { public: TestAllocator() : se::DeviceMemoryAllocator(PlatformUtil::GetDefaultPlatform().value()) {} ~TestAllocator() override { if (!allocations_.empty()) { ADD_FAILURE() << "Some allocations not freed!"; } } using se::DeviceMemoryAllocator::Allocate; absl::StatusOr<se::OwningDeviceMemory> Allocate( int device_ordinal, uint64_t size, bool , int64_t ) override { if (size == 0) { return se::OwningDeviceMemory(); } void* buf = malloc(size); allocations_.insert({device_ordinal, buf}); return se::OwningDeviceMemory(se::DeviceMemoryBase(buf, size), device_ordinal, this); } absl::Status Deallocate(int device_ordinal, se::DeviceMemoryBase mem) override { if (mem.is_null()) { return absl::OkStatus(); } auto it = allocations_.find({device_ordinal, mem.opaque()}); if (it == allocations_.end()) { ADD_FAILURE() << "Allocation not found (double free?)"; } else { free(mem.opaque()); allocations_.erase(it); } return absl::OkStatus(); } bool AllowsAsynchronousDeallocation() const override { return false; } absl::StatusOr<se::Stream*> GetStream(int device_ordinal) override { LOG(FATAL) << "Not implemented"; } private: std::set<std::pair< int64_t, void*>> allocations_; }; TEST(ScopedShapedBufferTest, TestMoveAssignmentOperator) { Shape s = ShapeUtil::MakeShape(F32, {1}); TestAllocator allocator; ScopedShapedBuffer sb1(s, &allocator, 0); sb1.set_buffer(allocator.Allocate(0, 42).value(), {}); ScopedShapedBuffer sb2(s, &allocator, 1); sb2.set_buffer(allocator.Allocate(1, 10).value(), {}); sb1 = std::move(sb2); } TEST(ScopedShapedBufferTest, TestTakeSubTree) { TestAllocator allocator; Shape s = ShapeUtil::MakeShape(F32, {1}); s = xla::ShapeUtil::MakeTupleShape(std::vector<xla::Shape>(2, s)); s = xla::ShapeUtil::MakeTupleShape(std::vector<xla::Shape>(3, s)); ScopedShapedBuffer sb(s, &allocator, 0); sb.buffers().ForEachMutableElement( [&](const xla::ShapeIndex& index, se::DeviceMemoryBase* buffer) { TF_ASSERT_OK_AND_ASSIGN( se::OwningDeviceMemory m, allocator.Allocate(0, 77)); *buffer = m.Release(); }); ShapeTree<se::DeviceMemoryBase> buffers = sb.buffers(); xla::ShapeIndex subtree_index = {1}; ScopedShapedBuffer output = sb.TakeSubTree(subtree_index); output.buffers().ForEachElement([&](const xla::ShapeIndex& sub_index, const se::DeviceMemoryBase& buffer) { xla::ShapeIndex orig_index = subtree_index; for (int i : sub_index) { orig_index.push_back(i); } EXPECT_TRUE(buffers.find(orig_index)->second.IsSameAs(buffer)); }); sb.buffers().ForEachElement([&](const xla::ShapeIndex& index, const se::DeviceMemoryBase& buffer) { if ((index.size() >= subtree_index.size()) && ShapeIndexView(index).first(subtree_index.size()) == subtree_index) { EXPECT_TRUE(buffer.is_null()); } else { EXPECT_TRUE(buffers.find(index)->second.IsSameAs(buffer)); } }); } TEST(ScopedShapedBufferTest, TestSubShapeTree) { Shape array_shape = ShapeUtil::MakeShape(F32, {1}); Shape tuple_shape = xla::ShapeUtil::MakeTupleShape({array_shape, array_shape}); TestAllocator allocator; ScopedShapedBuffer sb(tuple_shape, &allocator, 0); sb.buffers().ForEachMutableElement( [&](const xla::ShapeIndex& index, se::DeviceMemoryBase* buffer) { TF_ASSERT_OK_AND_ASSIGN( se::OwningDeviceMemory m, allocator.Allocate(0, 32)); *buffer = m.Release(); }); auto ssb_statusor = sb.SubShapedBuffer({1}); ASSERT_TRUE(ssb_statusor.ok()); auto ssb = std::move(ssb_statusor).value(); EXPECT_EQ(ssb.on_host_shape(), array_shape); EXPECT_EQ(ssb.on_device_shape(), array_shape); } void BM_TakeSubTree(::testing::benchmark::State& state) { const int depth = state.range(0); const int fan_out = state.range(1); TestAllocator allocator; xla::Shape shape = xla::ShapeUtil::MakeShape(xla::F32, {32, 64, 128}); for (int i = 0; i < depth; ++i) { std::vector<xla::Shape> shapes(fan_out, shape); shape = xla::ShapeUtil::MakeTupleShape(shapes); } xla::ScopedShapedBuffer shaped_buffer(shape, &allocator, 0); for (auto s : state) { (void)shaped_buffer.TakeSubTree({fan_out / 2}).release(); } } BENCHMARK(BM_TakeSubTree) ->ArgPair(1, 4) ->ArgPair(1, 8) ->ArgPair(1, 32) ->ArgPair(1, 64) ->ArgPair(1, 128) ->ArgPair(1, 256) ->ArgPair(1, 512) ->ArgPair(2, 4) ->ArgPair(2, 8) ->ArgPair(2, 32) ->ArgPair(2, 64) ->ArgPair(2, 128); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/shaped_buffer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/shaped_buffer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b9c06777-8747-4fb4-8b7a-eda275f5c353
cpp
tensorflow/tensorflow
hlo_graph_dumper
third_party/xla/xla/service/hlo_graph_dumper.cc
third_party/xla/xla/service/hlo_graph_dumper_test.cc
#include "xla/service/hlo_graph_dumper.h" #include <cstdint> #include <unordered_map> #include "absl/base/const_init.h" #include "absl/base/thread_annotations.h" #include "absl/hash/hash.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/shape.h" #include "tsl/platform/errors.h" #include "tsl/platform/file_system.h" #include "tsl/platform/statusor.h" #include "tsl/platform/thread_annotations.h" #ifndef _WIN32 #include <unistd.h> #endif #include <algorithm> #include <atomic> #include <deque> #include <functional> #include <map> #include <memory> #include <optional> #include <queue> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/str_replace.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/primitive_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/pattern_matcher.h" #include "xla/shape_util.h" #include "xla/stream_executor/dnn.h" #include "xla/tsl/lib/gtl/map_util.h" #include "xla/tsl/lib/io/zlib_compression_options.h" #include "xla/tsl/lib/io/zlib_outputbuffer.h" #include "xla/types.h" #include "xla/util.h" #include "xla/window_util.h" #include "tsl/platform/base64.h" #include "tsl/platform/env.h" #include "tsl/platform/numbers.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/regexp.h" #include "tsl/platform/status.h" namespace xla { namespace { using absl::StrAppend; using absl::StrCat; using absl::StrFormat; using absl::StrJoin; using std::nullopt; using std::optional; enum NodeFilterResult { kNormalNode, kHideNode, kHighlightNode, kSomeOperandsOmitted, kOmitNodeOperands, kSomeUsersOmitted, }; class NodeFilter { public: NodeFilter() : filter_([](const HloInstruction*) { return kNormalNode; }) {} explicit NodeFilter( std::function<NodeFilterResult(const HloInstruction* instr)> filter, std::optional<int> num_rendered = std::nullopt) : filter_(std::move(filter)), num_rendered_(num_rendered) {} bool Show(const HloInstruction* instr) const { return filter_(instr) != kHideNode; } bool Highlight(const HloInstruction* instr) const { return filter_(instr) == kHighlightNode; } bool OmitOperands(const HloInstruction* instr) const { return filter_(instr) == kOmitNodeOperands; } bool SomeOrAllOperandsOmitted(const HloInstruction* instr) const { auto result = filter_(instr); return result == kOmitNodeOperands || result == kSomeOperandsOmitted; } bool Deemphasized(const HloInstruction* instr) const { auto result = filter_(instr); return result == kOmitNodeOperands || result == kSomeOperandsOmitted || result == kSomeUsersOmitted; } std::optional<int> GetNumRendered() const { return num_rendered_; } private: std::function<NodeFilterResult(const HloInstruction* instr)> filter_; std::optional<int> num_rendered_; }; bool IsSmall(const HloInstruction* instr) { if (ShapeUtil::HasPrimitiveType(instr->shape(), OPAQUE_TYPE) || ShapeUtil::HasPrimitiveType(instr->shape(), TOKEN)) { return true; } return ShapeUtil::ElementsInRecursive(instr->shape()) < 4096; } enum ColorScheme { kBlue, kBrown, kDarkBlue, kDarkGreen, kDarkOrange, kDarkRed, kGray, kGreen, kOrange, kPurple, kRed, kWhite, kYellow, kDashedBorder, }; struct NodeColors { std::string style; std::string fill_color; std::string stroke_color; std::string font_color; }; NodeColors NodeColorsForScheme(ColorScheme color) { switch (color) { case kBlue: return NodeColors{"filled", "#bbdefb", "#8aacc8", "black"}; case kBrown: return NodeColors{"filled", "#bcaaa4", "#8c7b75", "black"}; case kDarkBlue: return NodeColors{"filled", "#1565c0", "#003c8f", "white"}; case kDarkGreen: return NodeColors{"filled", "#2e7d32", "#005005", "white"}; case kDarkOrange: return NodeColors{"filled", "#ffb74d", "#c88719", "black"}; case kDarkRed: return NodeColors{"filled", "#b71c1c", "#7f0000", "white"}; case kGray: return NodeColors{"filled", "#cfd8dc", "#9ea7aa", "black"}; case kGreen: return NodeColors{"filled", "#c8e6c9", "#97b498", "black"}; case kOrange: return NodeColors{"filled", "#ffe0b2", "#cbae82", "black"}; case kPurple: return NodeColors{"filled", "#e1bee7", "#af8eb5", "black"}; case kRed: return NodeColors{"filled", "#ffcdd2", "#cb9ca1", "black"}; case kWhite: return NodeColors{"filled", "white", "#9e9e9e", "black"}; case kYellow: return NodeColors{"filled", "#fff9c4", "#cbc693", "black"}; case kDashedBorder: return NodeColors{"filled,dashed", "white", "#757575", "#757575"}; } } std::string NodeFillColorForStatistic(const Statistic& statistic) { auto stat_val = statistic.stat_val(); if (stat_val == 0) { return "#f5f5f5"; } else if (stat_val < 10) { return "#f7d4cc"; } else if (stat_val < 20) { return "#f8b2a3"; } else if (stat_val < 30) { return "#f9a28f"; } else if (stat_val < 40) { return "#fa917b"; } else if (stat_val < 50) { return "#fb8066"; } else if (stat_val < 60) { return "#fc7052"; } else if (stat_val < 70) { return "#fd5f3d"; } else if (stat_val < 80) { return "#fd4e29"; } else if (stat_val < 90) { return "#fe3e14"; } else { return "#ff2d00"; } } std::string NodeFontColorForStatistic(const Statistic& statistic) { if (statistic.stat_val() < 60) { return "black"; } else { return "white"; } } std::string NodeColorAttributes(ColorScheme color) { NodeColors node_colors = NodeColorsForScheme(color); return StrFormat(R"(style="%s", fontcolor="%s", color="%s", fillcolor="%s")", node_colors.style, node_colors.font_color, node_colors.stroke_color, node_colors.fill_color); } std::string HtmlLikeStringSanitize(absl::string_view s) { return absl::StrReplaceAll(s, {{"<", "&lt;"}, {">", "&gt;"}, {"\"", "&quot;"}}); } bool IsFusedBroadcastOfConstantEffectiveScalar(const HloInstruction* instr) { namespace m = match; return instr->parent()->IsFusionComputation() && Match(instr, m::Broadcast(m::ConstantEffectiveScalar())); } optional<std::string> MatchTrivialComputation( const HloComputation* computation) { namespace m = match; if (computation->instruction_count() != 3) { return nullopt; } HloInstruction* root = computation->root_instruction(); const HloInstruction *param0, *param1; if (!Match(root, m::Op() .WithNumOperands(2) .WithShape(m::Shape().IsEffectiveScalar()) .WithBinaryOperandsAnyOrder( m::Parameter(&param0, 0) .WithShape(m::Shape().IsEffectiveScalar()), m::Parameter(&param1, 1) .WithShape(m::Shape().IsEffectiveScalar())))) { return nullopt; } if (root->operand(0) == param1) { CHECK_EQ(root->operand(1), param0); if (root->opcode() == HloOpcode()) { switch (root->comparison_direction()) { case ComparisonDirection::kLe: case ComparisonDirection::kGe: case ComparisonDirection::kGt: case ComparisonDirection::kLt: return nullopt; default: break; } } } switch (root->opcode()) { case HloOpcode::kAdd: return "add"; case HloOpcode::kMultiply: return "multiply"; case HloOpcode::kMinimum: return "min"; case HloOpcode::kMaximum: return "max"; case HloOpcode::kXor: return "xor"; case HloOpcode::kAnd: return "and"; case HloOpcode::kOr: return "or"; case HloOpcode::kCompare: { switch (root->comparison_direction()) { case ComparisonDirection::kLe: return "less-or-equal"; case ComparisonDirection::kGe: return "greater-or-equal"; case ComparisonDirection::kGt: return "greater-than"; case ComparisonDirection::kLt: return "less-than"; case ComparisonDirection::kEq: return "equal-to"; case ComparisonDirection::kNe: return "not-equal-to"; } } default: return nullopt; } } class HloDotDumper { public: HloDotDumper( const HloComputation* computation, absl::string_view label, const DebugOptions& debug_options, HloRenderOptions hlo_render_options, NodeFilter filter, std::optional<absl::flat_hash_map<const HloInstruction*, ColorStats>> color_map = std::nullopt) : computation_(computation), label_(label), debug_options_(debug_options), hlo_render_options_(hlo_render_options), filter_(std::move(filter)), color_map_(color_map) {} std::string Dump(); std::optional<std::string> CssIdForInstruction(const HloInstruction& instr) { if (instr.opcode() == HloOpcode::kFusion) { auto it = cluster_ids_.find(instr.called_computations()[0]); if (it == cluster_ids_.end()) { return std::nullopt; } return StrCat("#a_clust", it->second, " path"); } auto it = node_ids_.find(&instr); if (it == node_ids_.end()) { return std::nullopt; } return StrCat("#node", it->second, " polygon"); } private: std::string InstructionId(const HloInstruction* instruction) { return StrCat(reinterpret_cast<uint64_t>(instruction)); } std::string SubcomputationId(const HloComputation* computation) { return StrCat("cluster_", reinterpret_cast<uint64_t>(computation)); } std::string Header(); std::string Footer(); bool ShouldShowSubcomputation(const HloComputation* subcomp); bool ShouldShowFusionSubcomputation(const HloInstruction* instr); bool ShouldMergeIntoUsers(const HloInstruction* instr) const; std::string DumpSubcomputation(const HloComputation* subcomp, const HloInstruction* parent_instr); std::string DumpComputation(const HloComputation* comp); std::string DumpRootTag(); std::string DumpInstruction(const HloInstruction* instr); ColorScheme GetInstructionColor(const HloInstruction* instr); std::string GetInstructionNodeShape(const HloInstruction* instr); std::string GetInstructionNodeLabel(const HloInstruction* instr); std::string GetInstructionNodeMetadata(const HloInstruction* instr); std::string GetInstructionNodeBackendConfig(const HloInstruction* instr); std::string GetInstructionNodeExtraInfo(const HloInstruction* instr); std::string GetInstructionNodeInlinedOperands(const HloInstruction* instr); void AddInstructionIncomingEdges(const HloInstruction* instr); const HloInstruction* GetNodeForEdge(const HloInstruction* instr); std::string GetInstructionTrivialComputationStr(const HloInstruction* instr); const HloComputation* computation_; const std::string label_; const DebugOptions& debug_options_; const HloRenderOptions hlo_render_options_; const NodeFilter filter_; const std::optional<absl::flat_hash_map<const HloInstruction*, ColorStats>> color_map_; int64_t next_node_id_ = 1; absl::flat_hash_map<const HloInstruction*, int64_t> node_ids_; int64_t root_node_id_; int64_t next_edge_id_ = 1; std::unordered_multimap< std::pair<const HloInstruction*, const HloInstruction*>, int64_t, absl::Hash<std::pair<const HloInstruction*, const HloInstruction*>>> edge_ids_; int64_t next_cluster_id_ = 1; absl::flat_hash_map<const HloComputation*, int64_t> cluster_ids_; std::vector<std::string> edges_; absl::flat_hash_map<HloSharding, ColorScheme> sharding_colors_; int64_t next_shard_color_ = 0; }; std::string HloDotDumper::Dump() { std::string body; StrAppend(&body, DumpComputation(computation_)); StrAppend(&body, DumpRootTag()); std::string g = Header(); StrAppend(&g, body); StrAppend(&g, Footer()); return g; } std::string HloDotDumper::Header() { constexpr char fmt[] = R"(digraph G { rankdir = TB; compound = true; label = <<b>%s</b>>; labelloc = t; tooltip = " "; stylesheet=< data:text/css, @import url(https: svg text { font-family: 'Roboto'; font-size: 12px; } %s > )"; VLOG(3) << "Generating Header"; std::string graph_label = StrCat(label_, "<br/>Computation ", computation_->name()); if (computation_->IsFusionComputation()) { StrAppend(&graph_label, " (in fusion instruction ", computation_->FusionInstruction()->name(), ")"); } std::vector<std::string> edge_css_rules; std::string kBlue = "#1976d2"; std::string kRed = "#d32f2f"; for (const auto& kv : edge_ids_) { const HloInstruction* from_node = kv.first.first; const HloInstruction* to_node = kv.first.second; int64_t edge_id = kv.second; auto add_hover_css_rule = [&](std::string elem_type, int64_t elem_id, std::string color) { edge_css_rules.push_back( StrFormat(" #%s%d:hover ~ #edge%d text { fill: %s; }\n" " #%s%d:hover ~ #edge%d path { " "stroke: %s; stroke-width: .2em; }\n" " #%s%d:hover ~ #edge%d polygon { " "fill: %s; stroke: %s; stroke-width: .2em; }\n", elem_type, elem_id, edge_id, color, elem_type, elem_id, edge_id, color, elem_type, elem_id, edge_id, color, color)); }; int64_t from_node_id = tsl::gtl::FindWithDefault(node_ids_, from_node, -1); if (from_node_id == -1) { LOG(FATAL) << from_node->name() << " was added to edges but not to nodes"; } int64_t to_node_id = to_node ? tsl::gtl::FindWithDefault(node_ids_, to_node, -1) : root_node_id_; if (to_node != nullptr && to_node_id == -1) { LOG(FATAL) << to_node->name() << " was added to edges but not to nodes"; } add_hover_css_rule("node", from_node_id, kBlue); add_hover_css_rule("node", to_node_id, kRed); if (to_node) { VLOG(3) << "Adding css for edge " << edge_id << " from node " << from_node->name() << " to node " << to_node->name(); } else { VLOG(3) << "Adding css for edge " << edge_id << " from node " << from_node->name() << " to root tag"; } if (to_node) { if (from_node->IsFused() && from_node->parent()->root_instruction() == from_node) { int64_t cluster_id = cluster_ids_.at(from_node->parent()); add_hover_css_rule("clust", cluster_id, kBlue); } if (to_node->IsFused() && to_node->opcode() == HloOpcode::kParameter) { int64_t cluster_id = cluster_ids_.at(to_node->parent()); add_hover_css_rule("clust", cluster_id, kRed); } } } return StrFormat( fmt, graph_label, absl::StrReplaceAll(StrJoin(edge_css_rules, "\n"), {{"#", "%23"}})); } std::string HloDotDumper::Footer() { return StrCat(StrJoin(edges_, "\n"), "\n}"); } bool HloDotDumper::ShouldShowFusionSubcomputation(const HloInstruction* instr) { CHECK_EQ(instr->opcode(), HloOpcode::kFusion); return ShouldShowSubcomputation(instr->fused_instructions_computation()); } bool HloDotDumper::ShouldShowSubcomputation(const HloComputation* subcomp) { if (subcomp->IsFusionComputation()) { const HloInstruction* fusion = subcomp->FusionInstruction(); if (!filter_.Show(fusion) || filter_.SomeOrAllOperandsOmitted(fusion) || !hlo_render_options_.show_fusion_subcomputations) { return false; } } if (!subcomp->IsFusionComputation() && MatchTrivialComputation(subcomp)) { return false; } if (subcomp->WhileCallInstruction() != nullptr && !hlo_render_options_.show_while_subcomputations) { return false; } return absl::c_any_of( subcomp->instructions(), [&](const HloInstruction* instr) { return filter_.Show(instr); }); } std::string HloDotDumper::DumpSubcomputation( const HloComputation* subcomp, const HloInstruction* parent_instr) { VLOG(2) << "Dumping subcomputation " << subcomp->name(); if (parent_instr->opcode() != HloOpcode::kFusion) { const HloInstruction* from = GetNodeForEdge(subcomp->root_instruction()); VLOG(2) << "Edge: from " << from->name() << " to " << parent_instr->name() << " as " << next_edge_id_; edge_ids_.insert({{from, parent_instr}, next_edge_id_++}); constexpr char edge_fmt[] = R"(%s -> %s [ltail="%s", style="dashed" tooltip="%s -> %s"];)"; edges_.push_back(StrFormat( edge_fmt, InstructionId(from), InstructionId(parent_instr), SubcomputationId(subcomp), subcomp->name(), parent_instr->name())); } if (cluster_ids_.find(subcomp) != cluster_ids_.end()) { return ""; } cluster_ids_[subcomp] = next_cluster_id_++; std::string id = SubcomputationId(subcomp); std::string subcomp_label, style; if (parent_instr->opcode() == HloOpcode::kFusion) { subcomp_label = StrFormat("Fused expression for <b>%s</b><br/>%s", HtmlLikeStringSanitize(parent_instr->name()), HtmlLikeStringSanitize(parent_instr->ToCategory())); std::string extra_info = GetInstructionNodeExtraInfo(parent_instr); if (!extra_info.empty()) { StrAppend(&subcomp_label, "<br/>", extra_info); } std::string node_backend_config = GetInstructionNodeBackendConfig(parent_instr); if (!node_backend_config.empty()) { StrAppend(&subcomp_label, "<br/>", node_backend_config); } bool highlight = filter_.Highlight(parent_instr); std::string fillcolor; std::string strokecolor; if (!highlight && (parent_instr->module_has_statistics() || parent_instr->has_statistics())) { fillcolor = parent_instr->has_statistics() ? NodeFillColorForStatistic( parent_instr->statistic_to_visualize()) : "#f5f5f5"; strokecolor = "#c2c2c2"; } else if (debug_options_.xla_hlo_graph_sharding_color() && !highlight) { NodeColors node_colors = NodeColorsForScheme(GetInstructionColor(parent_instr)); fillcolor = node_colors.fill_color; strokecolor = node_colors.stroke_color; } else { fillcolor = highlight ? "#ffcdd2" : "#f5f5f5"; strokecolor = highlight ? "#b71c1c" : "#c2c2c2"; } style = StrFormat(R"(style="rounded,filled,bold"; fillcolor="%s"; color="%s;")", fillcolor, strokecolor); } else { subcomp_label = StrFormat("Subcomputation for <b>%s</b><br/>%s", HtmlLikeStringSanitize(parent_instr->name()), HtmlLikeStringSanitize(subcomp->name())); style = "style=rounded; color=black;"; } std::string comp_body = DumpComputation(subcomp); constexpr char computation_fmt[] = R"(subgraph %s { %s label = <%s>; labelloc = t; tooltip = " "; %s } )"; return StrFormat(computation_fmt, id, style, subcomp_label, comp_body, id); } std::string HloDotDumper::DumpComputation(const HloComputation* comp) { std::string g; for (const auto* instr : comp->instructions()) { if (!filter_.Show(instr)) { continue; } for (const HloComputation* subcomp : instr->called_computations()) { if (ShouldShowSubcomputation(subcomp)) { StrAppend(&g, DumpSubcomputation(subcomp, instr)); } } StrAppend(&g, DumpInstruction(instr)); } return g; } std::string HloDotDumper::DumpRootTag() { const HloInstruction* from = GetNodeForEdge(computation_->root_instruction()); if (!filter_.Show(from) || from->opcode() == HloOpcode::kConstant || IsFusedBroadcastOfConstantEffectiveScalar(from)) { return ""; } auto from_id = InstructionId(from); HloInstruction* to = nullptr; auto to_id = SubcomputationId(computation_); std::string node_body = "ROOT"; std::string node_shape = "circle"; ColorScheme color = kBrown; VLOG(2) << "Adding root tag as node " << next_node_id_; root_node_id_ = next_node_id_++; VLOG(2) << "Adding edge from " << from->name() << " to root tag as " << next_edge_id_; edge_ids_.insert({{from, to}, next_edge_id_++}); edges_.push_back(StrFormat(R"(%s -> %s [tooltip=" "];)", from_id, to_id)); return StrFormat(R"(%s [label=<%s>, shape=%s, tooltip=" ", %s];)" "\n", to_id, node_body, node_shape, NodeColorAttributes(color)); } static const HloConstantInstruction* TryGetFusionParameterConstant( const HloInstruction* instr) { if (instr->opcode() != HloOpcode::kParameter || !instr->IsFused()) { return nullptr; } const HloInstruction* fusion = instr->parent()->FusionInstruction(); const HloInstruction* operand = fusion->operand(instr->parameter_number()); return DynCast<HloConstantInstruction>(operand); } bool HloDotDumper::ShouldMergeIntoUsers(const HloInstruction* instr) const { if ((instr->opcode() == HloOpcode::kGetTupleElement && instr != instr->parent()->root_instruction()) || TryGetFusionParameterConstant(instr) != nullptr) { return true; } const int kMinUsersToOmit = 3; return instr->opcode() == HloOpcode::kParameter && instr->shape().IsTuple() && !instr->IsFused() && absl::c_count_if(instr->users(), [&](const HloInstruction* user) { return filter_.Show(user); }) > kMinUsersToOmit && absl::c_all_of(instr->users(), [&](const HloInstruction* user) { return !filter_.Show(user) || user->opcode() == HloOpcode::kGetTupleElement; }); } std::string HloDotDumper::DumpInstruction(const HloInstruction* instr) { if ((instr->opcode() == HloOpcode::kConstant || IsFusedBroadcastOfConstantEffectiveScalar(instr)) && instr != instr->parent()->root_instruction()) { return ""; } if (ShouldMergeIntoUsers(instr)) { return ""; } if (instr->opcode() == HloOpcode::kFusion && ShouldShowFusionSubcomputation(instr)) { return ""; } VLOG(2) << "Adding node " << instr->name() << " as " << next_node_id_; node_ids_[instr] = next_node_id_++; std::string node_shape = GetInstructionNodeShape(instr); std::string node_label = GetInstructionNodeLabel(instr); std::string node_metadata = GetInstructionNodeMetadata(instr); std::string node_backend_config = GetInstructionNodeBackendConfig(instr); std::string extra_info = GetInstructionNodeExtraInfo(instr); std::string inlined_constants = GetInstructionNodeInlinedOperands(instr); std::string trivial_subcomputation = GetInstructionTrivialComputationStr(instr); AddInstructionIncomingEdges(instr); NodeColors node_colors; std::string node_style; std::string node_attributes; if (hlo_render_options_.override_node_colors && color_map_.has_value()) { if (color_map_->contains(instr)) { node_colors.fill_color = color_map_->at(instr).color; node_attributes = color_map_->at(instr).stats; } else { VLOG(2) << "color_map_ for instruction:" << instr->name() << "is empty" << "\n"; node_colors.fill_color = "#808080"; } node_colors.style = "filled"; node_colors.font_color = "black"; node_colors.stroke_color = "#c2c2c2"; node_style = StrFormat(R"(style="%s", fontcolor="%s", color="%s", fillcolor="%s")", node_colors.style, node_colors.font_color, node_colors.stroke_color, node_colors.fill_color); } else { ColorScheme color = GetInstructionColor(instr); if (!debug_options_.xla_hlo_graph_sharding_color()) { if (filter_.Deemphasized(instr)) { color = kDashedBorder; } if (filter_.Highlight(instr)) { node_shape = "diamond"; color = kDarkRed; } } node_colors = NodeColorsForScheme(color); if (instr->has_statistics()) { const auto& statistic_to_visualize = instr->statistic_to_visualize(); node_colors.fill_color = NodeFillColorForStatistic(statistic_to_visualize); node_colors.stroke_color = "#c2c2c2"; node_colors.font_color = NodeFontColorForStatistic(statistic_to_visualize); } else if (instr->module_has_statistics()) { node_colors.fill_color = "#f5f5f5"; node_colors.stroke_color = "#c2c2c2"; node_colors.font_color = "black"; } node_style = StrFormat(R"(style="%s", fontcolor="%s", color="%s", fillcolor="%s")", node_colors.style, node_colors.font_color, node_colors.stroke_color, node_colors.fill_color); } std::string node_body = node_label; for (const std::string& s : {trivial_subcomputation, extra_info, inlined_constants, node_backend_config, node_attributes}) { if (!s.empty()) { StrAppend(&node_body, "<br/>", s); } } return StrFormat(R"(%s [label=<%s>, shape=%s, tooltip="%s", %s];)" "\n", InstructionId(instr), node_body, node_shape, node_metadata, node_style); } std::string HloDotDumper::GetInstructionNodeInlinedOperands( const HloInstruction* instr) { auto stringify_constant = [](const HloConstantInstruction* constant, const Shape& shape) { if (ShapeUtil::IsZeroElementArray(shape)) { return StrFormat("{} (%s)", ShapeUtil::HumanString(constant->shape())); } optional<int64_t> elem_count; if (shape.IsArray()) { elem_count = ShapeUtil::ElementsIn(constant->shape()); } if (elem_count.has_value() && *elem_count <= 8 && constant->HasLiteral()) { std::string literal_str = constant->literal().ToStringWithoutShape(); if (literal_str.size() <= 64) { return StrFormat("%s %s", shape.ToString(), literal_str); } } std::string constant_name; if (absl::StartsWith(constant->name(), "constant")) { constant_name = std::string(constant->name()); } else { constant_name = StrCat("constant ", constant->name()); } return StrFormat("%s %s", constant_name, ShapeUtil::HumanString(shape)); }; std::vector<std::string> lines; constexpr int64_t kMaxOperandsShown = 32; for (int64_t i = 0; i < instr->operand_count(); ++i) { const HloInstruction* operand = instr->operand(i); optional<std::string> operand_str; if (const auto* constant_operand = DynCast<HloConstantInstruction>(operand)) { operand_str = stringify_constant(constant_operand, constant_operand->shape()); } else if (IsFusedBroadcastOfConstantEffectiveScalar(operand)) { operand_str = stringify_constant( Cast<HloConstantInstruction>(operand->operand(0)), operand->shape()); } else if (ShouldMergeIntoUsers(operand)) { if (operand->opcode() == HloOpcode::kParameter) { if (const HloConstantInstruction* constant = TryGetFusionParameterConstant(operand)) { operand_str = stringify_constant(constant, constant->shape()); } else { operand_str = StrFormat("Parameter %d", operand->parameter_number()); } } else if (operand->opcode() == HloOpcode::kGetTupleElement) { operand_str = StrFormat("tuple-element %d of %s %s", operand->tuple_index(), operand->operand(0)->name(), ShapeUtil::HumanStringWithLayout(operand->shape())); } else { operand_str = std::string(operand->name()); } } if (operand_str) { if (instr->operand_count() > 1) { lines.push_back(StrFormat("<b>operand %d</b> = %s", i, *operand_str)); } else { lines.push_back(StrFormat("<b>operand</b> = %s", *operand_str)); } } if (lines.size() == kMaxOperandsShown && i < instr->operand_count() - 1) { lines.push_back("..."); break; } } if (instr->opcode() == HloOpcode::kParameter && instr->IsFused()) { const HloInstruction* param_input = instr->parent()->FusionInstruction()->operand( instr->parameter_number()); if (param_input->opcode() == HloOpcode::kGetTupleElement) { lines.push_back( StrFormat("tuple-element %d of %s %s", param_input->tuple_index(), param_input->operand(0)->name(), ShapeUtil::HumanStringWithLayout(param_input->shape()))); } } return StrJoin(lines, "<br/>"); } ColorScheme HloDotDumper::GetInstructionColor(const HloInstruction* instr) { if (debug_options_.xla_hlo_graph_sharding_color()) { if (!instr->has_sharding()) { return kDashedBorder; } auto it = sharding_colors_.find(instr->sharding()); if (it != sharding_colors_.end()) { return it->second; } ColorScheme color = static_cast<ColorScheme>( kBlue + (next_shard_color_++ % (kDashedBorder - kBlue))); sharding_colors_.emplace(instr->sharding(), color); return color; } auto parameter_color = IsSmall(instr) ? kOrange : kDarkOrange; if (absl::c_any_of(instr->operands(), [&](const HloInstruction* operand) { return operand->opcode() == HloOpcode::kParameter && ShouldMergeIntoUsers(operand) && TryGetFusionParameterConstant(operand) == nullptr; })) { return parameter_color; } switch (instr->opcode()) { case HloOpcode::kAbs: case HloOpcode::kAdd: case HloOpcode::kAnd: case HloOpcode::kAtan2: case HloOpcode::kBitcastConvert: case HloOpcode::kCeil: case HloOpcode::kClamp: case HloOpcode::kClz: case HloOpcode::kCompare: case HloOpcode::kComplex: case HloOpcode::kConvert: case HloOpcode::kCos: case HloOpcode::kDivide: case HloOpcode::kErf: case HloOpcode::kExp: case HloOpcode::kExpm1: case HloOpcode::kFloor: case HloOpcode::kImag: case HloOpcode::kIota: case HloOpcode::kIsFinite: case HloOpcode::kLog: case HloOpcode::kLog1p: case HloOpcode::kMaximum: case HloOpcode::kMinimum: case HloOpcode::kMultiply: case HloOpcode::kNegate: case HloOpcode::kNot: case HloOpcode::kPopulationCount: case HloOpcode::kOr: case HloOpcode::kXor: case HloOpcode::kPower: case HloOpcode::kReal: case HloOpcode::kReducePrecision: case HloOpcode::kRemainder: case HloOpcode::kRng: case HloOpcode::kRngGetAndUpdateState: case HloOpcode::kRngBitGenerator: case HloOpcode::kRoundNearestAfz: case HloOpcode::kRoundNearestEven: case HloOpcode::kRsqrt: case HloOpcode::kSelect: case HloOpcode::kShiftLeft: case HloOpcode::kShiftRightArithmetic: case HloOpcode::kShiftRightLogical: case HloOpcode::kStochasticConvert: case HloOpcode::kLogistic: case HloOpcode::kSign: case HloOpcode::kSin: case HloOpcode::kSlice: case HloOpcode::kSort: case HloOpcode::kTopK: case HloOpcode::kSqrt: case HloOpcode::kCbrt: case HloOpcode::kSubtract: case HloOpcode::kTan: case HloOpcode::kTanh: return kWhite; case HloOpcode::kAddDependency: case HloOpcode::kAfterAll: case HloOpcode::kGetTupleElement: case HloOpcode::kOptimizationBarrier: case HloOpcode::kPad: case HloOpcode::kTuple: return kWhite; case HloOpcode::kConstant: return kWhite; case HloOpcode::kBroadcast: case HloOpcode::kDynamicUpdateSlice: return kYellow; case HloOpcode::kConcatenate: case HloOpcode::kDynamicSlice: case HloOpcode::kReshape: case HloOpcode::kDynamicReshape: case HloOpcode::kReverse: case HloOpcode::kTranspose: return kGreen; case HloOpcode::kCopy: case HloOpcode::kCopyStart: case HloOpcode::kCopyDone: return kGreen; case HloOpcode::kBitcast: if (!instr->IsFused()) { return kWhite; } return kGreen; case HloOpcode::kAsyncStart: case HloOpcode::kAsyncUpdate: case HloOpcode::kAsyncDone: return GetInstructionColor(instr->async_wrapped_instruction()); case HloOpcode::kConvolution: case HloOpcode::kDot: case HloOpcode::kFft: case HloOpcode::kTriangularSolve: case HloOpcode::kCholesky: return kDarkBlue; case HloOpcode::kParameter: return parameter_color; case HloOpcode::kBatchNormGrad: case HloOpcode::kBatchNormInference: case HloOpcode::kBatchNormTraining: case HloOpcode::kReduce: case HloOpcode::kReduceWindow: case HloOpcode::kScatter: case HloOpcode::kSelectAndScatter: case HloOpcode::kGather: return kPurple; case HloOpcode::kDomain: case HloOpcode::kFusion: case HloOpcode::kMap: case HloOpcode::kGetDimensionSize: case HloOpcode::kSetDimensionSize: return kGray; case HloOpcode::kAllGather: case HloOpcode::kAllGatherStart: case HloOpcode::kAllGatherDone: case HloOpcode::kAllReduce: case HloOpcode::kReduceScatter: case HloOpcode::kAllReduceStart: case HloOpcode::kAllReduceDone: case HloOpcode::kAllToAll: case HloOpcode::kCollectiveBroadcast: case HloOpcode::kCollectivePermute: case HloOpcode::kCollectivePermuteStart: case HloOpcode::kCollectivePermuteDone: case HloOpcode::kInfeed: case HloOpcode::kOutfeed: case HloOpcode::kPartitionId: case HloOpcode::kRecv: case HloOpcode::kRecvDone: case HloOpcode::kSend: case HloOpcode::kSendDone: case HloOpcode::kReplicaId: return kBrown; case HloOpcode::kCall: case HloOpcode::kConditional: case HloOpcode::kCustomCall: case HloOpcode::kWhile: return kDarkGreen; } } std::string HloDotDumper::GetInstructionNodeShape(const HloInstruction* instr) { switch (instr->opcode()) { case HloOpcode::kWhile: return "ellipse"; default: return "rect"; } } std::string HloDotDumper::GetInstructionNodeLabel(const HloInstruction* instr) { if (instr->opcode() == HloOpcode::kParameter) { return StrFormat("<b>Parameter %d</b>", instr->parameter_number()); } if (absl::StartsWith(instr->name(), HloOpcodeString(instr->opcode()))) { return StrFormat("<b>%s</b>", HtmlLikeStringSanitize(instr->name())); } std::string extended_opcode = StrCat(HloOpcodeString(instr->opcode()), instr->opcode() != HloOpcode::kFusion ? "" : StrCat(":", xla::ToString(instr->fusion_kind()))); return StrFormat("<b>%s</b><br/>%s", HtmlLikeStringSanitize(instr->name()), HtmlLikeStringSanitize(extended_opcode)); } std::string HloDotDumper::GetInstructionNodeMetadata( const HloInstruction* instr) { std::vector<std::string> lines; if (!instr->metadata().op_name().empty()) { lines.push_back(HtmlLikeStringSanitize(instr->metadata().op_name())); } if (!instr->metadata().op_type().empty()) { lines.push_back(StrFormat( "op_type: %s", HtmlLikeStringSanitize(instr->metadata().op_type()))); } if (!instr->metadata().source_file().empty() && instr->metadata().source_line() != 0) { lines.push_back(StrFormat("source: %s:%d", instr->metadata().source_file(), instr->metadata().source_line())); } if (instr->metadata().stack_frame_id() != 0) { auto hlo_module = instr->parent()->parent(); int frame_id = instr->metadata().stack_frame_id(); while (frame_id != 0) { HloModule::StackFrame frame = hlo_module->get_stack_frame(frame_id); if (frame.empty()) { break; } frame_id = frame.parent_frame_id; lines.push_back(StrFormat( "%s:%s:%d%s", frame.file_name, frame.function_name, frame.line, frame.column == 0 ? "" : StrFormat(":%d", frame.column))); } } return StrJoin(lines, "\n"); } static std::vector<std::pair<std::string, std::string>> ExtractCudnnConvBackendConfigProps(const gpu::CudnnConvBackendConfig& config) { std::vector<std::pair<std::string, std::string>> props; if (config.conv_result_scale() != 1) { props.emplace_back("conv_result_scale", StrCat(config.conv_result_scale())); } if (config.side_input_scale() != 0 && config.side_input_scale() != 1) { props.emplace_back("side_input_scale", StrCat(config.side_input_scale())); } if (config.activation_mode() == se::dnn::ActivationMode::kLeakyRelu) { props.emplace_back("leakyrelu_alpha", StrCat(config.leakyrelu_alpha())); } props.emplace_back( "activation_mode", se::dnn::ActivationModeString( static_cast<se::dnn::ActivationMode>(config.activation_mode()))); props.emplace_back("algo", se::dnn::AlgorithmDesc(config.algorithm()).ToString()); return props; } static std::vector<std::pair<std::string, std::string>> ExtractGemmBackendConfigProps(const gpu::GemmBackendConfig& config, const HloInstruction* instr) { std::vector<std::pair<std::string, std::string>> props; if (primitive_util::IsComplexType(instr->shape().element_type())) { if (config.alpha_real() != 1 || config.alpha_imag() != 1) { props.emplace_back("alpha_real", StrCat(config.alpha_real())); props.emplace_back("alpha_imag", StrCat(config.alpha_real())); } } else { if (config.alpha_real() != 1) { props.emplace_back("alpha", StrCat(config.alpha_real())); } } if (config.beta() != 0 && config.beta() != 1) { props.emplace_back("beta", StrCat(config.beta())); } props.emplace_back( "", absl::StrReplaceAll( DotDimensionNumbersToString(config.dot_dimension_numbers()), {{", ", "<br/>"}})); if (config.algorithm_case() == gpu::GemmBackendConfig::kSelectedAlgorithm) { props.emplace_back("algorithm", StrCat(config.selected_algorithm())); } if (config.epilogue() != gpu::GemmBackendConfig::DEFAULT) { props.emplace_back( "epilogue", gpu::GemmBackendConfig::Epilogue_Name(config.epilogue())); } return props; } std::string HloDotDumper::GetInstructionNodeBackendConfig( const HloInstruction* instr) { std::vector<std::pair<std::string, std::string>> props; if (gpu::IsCustomCallToDnnConvolution(*instr)) { absl::StatusOr<gpu::GpuBackendConfig> config = instr->backend_config<gpu::GpuBackendConfig>(); if (config.ok()) { props = ExtractCudnnConvBackendConfigProps( config->cudnn_conv_backend_config()); } } else if (gpu::IsCublasGemm(*instr)) { absl::StatusOr<gpu::GpuBackendConfig> config = instr->backend_config<gpu::GpuBackendConfig>(); if (config.ok()) { props = ExtractGemmBackendConfigProps(config->gemm_backend_config(), instr); } } if (!props.empty()) { return StrCat((props.size() > 1 ? "<br/>" : ""), StrJoin(props, "<br/>", [](std::string* out, const std::pair<std::string, std::string>& kv) { if (!kv.first.empty()) { return StrAppend(out, kv.first, "=", kv.second); } StrAppend(out, kv.second); })); } if (!hlo_render_options_.show_backend_config || instr->raw_backend_config_string().empty()) { return ""; } return StrCat("backend_config=\"", instr->raw_backend_config_string(), "\""); } std::string HloDotDumper::GetInstructionNodeExtraInfo( const HloInstruction* instr) { std::vector<std::string> lines; for (const auto& line : instr->ExtraAttributesToString( HloPrintOptions().set_print_subcomputation_mode( HloPrintOptions::PrintSubcomputationMode::kOff))) { constexpr int kMaxDeviceIdFieldLen = 128; if ((absl::StartsWith(line, "replica_groups=") || absl::StartsWith(line, "source_target_pairs=") || absl::StartsWith(line, "control-predecessors=")) && line.length() > kMaxDeviceIdFieldLen) { lines.push_back(HtmlLikeStringSanitize( StrCat(line.substr(0, kMaxDeviceIdFieldLen - 3), "..."))); } else if (absl::StartsWith(line, "feature_group_count=")) { lines.push_back(StrFormat("<b>%s</b>", HtmlLikeStringSanitize(line))); } else { lines.push_back(HtmlLikeStringSanitize(line)); } } if (instr->opcode() != HloOpcode::kFusion || !ShouldShowFusionSubcomputation(instr)) { bool shape_is_multidim = false; ShapeUtil::ForEachSubshape(instr->shape(), [&](const Shape& s, const ShapeIndex&) { shape_is_multidim |= s.dimensions_size() > 1; }); std::string instr_shape; if (instr->opcode() != HloOpcode::kTuple && shape_is_multidim) { instr_shape = ShapeUtil::HumanStringWithLayout(instr->shape()); } else { instr_shape = ShapeUtil::HumanString(instr->shape()); } constexpr int kMaxShapeLen = 64; if (instr_shape.length() > kMaxShapeLen) { instr_shape = StrCat( absl::string_view(instr_shape).substr(0, kMaxShapeLen - 3), "..."); } lines.push_back(HtmlLikeStringSanitize(instr_shape)); } if (debug_options_.xla_hlo_graph_addresses()) { lines.push_back(StrFormat("[%p]", instr)); } return StrJoin(lines, "<br/>"); } void HloDotDumper::AddInstructionIncomingEdges(const HloInstruction* instr) { constexpr int kMaxEdgesBetweenTwoNodes = 64; auto add_edge = [&](const HloInstruction* from, const HloInstruction* to, int64_t operand_num, bool control_edge = false) { if (edge_ids_.count({from, to}) > kMaxEdgesBetweenTwoNodes) { return; } from = GetNodeForEdge(from); if (!filter_.Show(from) || from->opcode() == HloOpcode::kConstant || IsFusedBroadcastOfConstantEffectiveScalar(from) || ShouldMergeIntoUsers(from)) { return; } VLOG(2) << "Adding edge from " << from->name() << " to " << to->name() << " as " << next_edge_id_; edge_ids_.insert({{from, to}, next_edge_id_++}); std::string edge_label; if (control_edge) { edge_label = "style=\"dotted\" color=\"gray\" label=\"ctrl\""; } else if (instr->operand_count() > 1) { edge_label = StrFormat(R"( headlabel="%d", labeldistance=2)", operand_num); } constexpr char kEdgeFmt[] = R"(%s -> %s [arrowhead=%s tooltip="%s -> %s" %s];)"; edges_.push_back(StrFormat(kEdgeFmt, InstructionId(from), InstructionId(to), (IsSmall(from) ? "empty" : "normal"), from->name(), to->name(), edge_label)); }; if (instr->opcode() == HloOpcode::kParameter && instr->IsFused()) { if (instr->parent() != computation_) { const HloInstruction* fusion = instr->parent()->FusionInstruction(); add_edge(fusion->operand(instr->parameter_number()), instr, 0); } } else { for (int64_t i = 0; i < instr->operand_count(); ++i) { add_edge(instr->operand(i), instr, i); } for (const HloInstruction* pred : instr->control_predecessors()) { add_edge(pred, instr, 0, true); } } } std::string HloDotDumper::GetInstructionTrivialComputationStr( const HloInstruction* instr) { if (instr->opcode() == HloOpcode::kFusion) { return ""; } std::vector<std::string> lines; for (int64_t i = 0; i < instr->called_computations().size(); ++i) { optional<std::string> computation_type = MatchTrivialComputation(instr->called_computations()[i]); if (!computation_type) { continue; } if (instr->called_computations().size() == 1) { lines.push_back(StrFormat("Subcomputation: <b>%s</b>", HtmlLikeStringSanitize(*computation_type))); } else { lines.push_back(StrFormat("Subcomputation %d: <b>%s</b>", i, HtmlLikeStringSanitize(*computation_type))); } } return StrJoin(lines, "<br/>"); } const HloInstruction* HloDotDumper::GetNodeForEdge( const HloInstruction* instr) { if (instr->opcode() == HloOpcode::kGetTupleElement) { instr = instr->operand(0); } while (instr->opcode() == HloOpcode::kFusion && ShouldShowFusionSubcomputation(instr)) { instr = instr->fused_expression_root(); } return instr; } NodeFilter MakeNodeRadiusAroundFilter( const HloInstruction* root, int64_t radius, const absl::flat_hash_set<const HloInstruction*>& boundary) { absl::flat_hash_map<const HloInstruction*, NodeFilterResult> nodes; std::deque<std::pair<const HloInstruction*, int64_t>> worklist; worklist.push_back({root, 0}); while (!worklist.empty()) { const HloInstruction* instr; int64_t depth; std::tie(instr, depth) = worklist.front(); worklist.pop_front(); nodes[instr] = kNormalNode; if (depth == radius) { continue; } if (boundary.contains(instr)) { continue; } if (instr == root || instr->opcode() != HloOpcode::kTuple) { for (const HloInstruction* operand : instr->operands()) { if (!nodes.contains(operand)) { int new_depth = (operand->opcode() == HloOpcode::kBitcast || instr->opcode() == HloOpcode::kBitcast) ? depth : depth + 1; worklist.push_back({operand, new_depth}); } } } for (const HloComputation* computation : instr->called_computations()) { worklist.push_back({computation->root_instruction(), depth + 1}); } if (instr->opcode() == HloOpcode::kConstant) { continue; } constexpr int kMaxUsersToRender = 16; if (instr->user_count() > kMaxUsersToRender) { nodes[instr] = kSomeUsersOmitted; continue; } for (const HloInstruction* user : instr->users()) { if (!nodes.contains(user)) { worklist.push_back({user, depth + 1}); } } } auto is_displayed = [&](const HloInstruction* instr) { return nodes.contains(instr) || instr->opcode() == HloOpcode::kConstant || instr->parent() != root->parent(); }; for (auto& kv : nodes) { const HloInstruction* instr = kv.first; NodeFilterResult& filter_result = kv.second; const auto& operands = instr->operands(); if (absl::c_any_of(operands, is_displayed) && !absl::c_all_of(operands, is_displayed)) { filter_result = kSomeOperandsOmitted; } else if (!operands.empty() && absl::c_none_of(operands, is_displayed)) { filter_result = kOmitNodeOperands; } if (filter_result == kSomeUsersOmitted && absl::c_all_of(instr->users(), is_displayed)) { filter_result = kNormalNode; } } nodes[root] = kHighlightNode; return NodeFilter( [=](const HloInstruction* instr) { auto it = nodes.find(instr); if (it != nodes.end()) { return it->second; } if (instr->parent() != root->parent()) { return kNormalNode; } return kHideNode; }, nodes.size()); } NodeFilter MakeNodeFromToFilter(const HloInstruction* from, const HloInstruction* to, int64_t max_nodes, bool* hit_limit) { *hit_limit = false; std::deque<std::vector<const HloInstruction*>> queue; queue.push_front({from}); absl::flat_hash_set<const HloInstruction*> visited; absl::flat_hash_set<const HloInstruction*> to_display = {from, to}; while (!queue.empty() && to_display.size() < max_nodes) { std::vector<const HloInstruction*> path = std::move(queue.front()); queue.pop_front(); if (!visited.insert(path.back()).second) { continue; } for (const auto* user : path.back()->users()) { if (user == to) { auto it = path.begin(); for (; it != path.end() && to_display.size() < max_nodes; ++it) { to_display.insert(*it); } if (it != path.end()) { *hit_limit = true; } } else if (!visited.count(user)) { auto new_path = path; new_path.push_back(user); queue.push_back(std::move(new_path)); } } } return NodeFilter([=](const HloInstruction* instr) { if (instr == from || instr == to) { return kHighlightNode; } return to_display.count(instr) ? kNormalNode : kHideNode; }); } absl::Mutex url_renderer_mu(absl::kConstInit); std::function<absl::StatusOr<std::string>(absl::string_view)>* url_renderer ABSL_GUARDED_BY(url_renderer_mu) = nullptr; absl::Mutex fusion_visualizer_state_mu(absl::kConstInit); namespace { struct FusionVisualizerProgress { void AddState(absl::string_view dot, absl::string_view explanation, std::optional<std::string> to_highlight) { if (dot_graphs.empty() || dot_graphs.back() != dot) { dot_graphs.push_back(std::string(dot)); } frames.push_back({static_cast<int>(dot_graphs.size() - 1), std::string(explanation), to_highlight.value_or("")}); } std::vector<std::string> dot_graphs; struct FusionFrame { int dot_graph; std::string label; std::string to_highlight; }; std::vector<FusionFrame> frames; }; } static auto& fusion_visualizer_states TF_GUARDED_BY(fusion_visualizer_state_mu) = *new absl::flat_hash_map< std::pair<int64_t, int64_t>, FusionVisualizerProgress>(); static std::pair<int, int> FusionVisualizerStateKey( const HloComputation& computation) { return std::make_pair(computation.parent()->unique_id(), computation.unique_id()); } } static absl::StatusOr<std::string> CompressAndEncode(absl::string_view input) { class WritableStringFile : public tsl::WritableFile { public: explicit WritableStringFile(std::string* data) : data_(data){}; ~WritableStringFile() override = default; absl::Status Append(absl::string_view data) override { absl::StrAppend(data_, data); return absl::OkStatus(); } absl::Status Close() override { return absl::OkStatus(); } absl::Status Flush() override { return absl::OkStatus(); } absl::Status Sync() override { return absl::OkStatus(); } private: std::string* data_; }; std::string compressed; WritableStringFile f(&compressed); auto gz_opts = tsl::io::ZlibCompressionOptions::GZIP(); tsl::io::ZlibOutputBuffer gz_file(&f, gz_opts.input_buffer_size, gz_opts.output_buffer_size, gz_opts); TF_RETURN_IF_ERROR(gz_file.Init()); TF_RETURN_IF_ERROR(gz_file.Append(input)); TF_RETURN_IF_ERROR(gz_file.Close()); std::string encoded; TF_RETURN_IF_ERROR(tsl::Base64Encode(compressed, &encoded)); return absl::StrReplaceAll(encoded, {{"_", "/"}, {"-", "+"}}); } static std::string EscapeJSONString(absl::string_view raw) { return absl::StrCat( "\"", absl::StrReplaceAll(raw, {{"\n", "\\n"}, {"\"", "\\\""}, {"\\", "\\\\"}}), "\""); } absl::StatusOr<std::string> WrapFusionExplorer( const FusionVisualizerProgress& visualizer_progress, absl::string_view graph_title) { if (visualizer_progress.frames.empty()) { return Internal("Empty"); } std::string dot_graphs = StrFormat("[%s]", StrJoin(visualizer_progress.dot_graphs, ", ", [&](std::string* out, const std::string& dot) { StrAppend(out, EscapeJSONString(dot)); })); std::string frames = StrJoin( visualizer_progress.frames, ", ", [&](std::string* out, const auto& p) { StrAppend(out, StrFormat("[%d, %s, %s]", p.dot_graph, EscapeJSONString(p.label), EscapeJSONString(p.to_highlight))); }); TF_ASSIGN_OR_RETURN(std::string dot_graphs_compressed, CompressAndEncode(dot_graphs)); return absl::StrReplaceAll( R"wrapper( <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <style> html, body {height: 100%; text-align: center;} #rendered {height: 70%; width: 80%; border:1px solid black; margin: auto; } #label {width: 80%; margin: auto;} #performance_note { font-size: small; color: gray; } #frames_list { list-style: none; text-align: left; height: 20%; overflow: scroll; } #frames_list li { padding: 0.2em; margin: 0.2em; } .selected { background-color: #e0e0e0; } .selected a { color: black; text-decoration: none; } #rendered svg { height: 100% !important; width: 100% !important; } </style> </head> <body> <script src="https: integrity="sha384-LigJPbR3TOfU/Xbb+PjiN1dGJYPweLk7kiGnaMgmxnUmKWaCFKbb5tH6iLlyVhPZ" crossorigin="anonymous"></script> <script src="https: </script> <title>Fusion Explorer: $TITLE</title> <div id='rendered'><center>Loading...</center></div> <ul id='frames_list'></ul> <p>Use j/k for keyboard navigation.</p> <p id='performance_note'>Loading data...</p> <script> <!-- const renderCache = {}; const cssregex = new RegExp('stylesheet=<([^]*)\n>\n', 'gm'); const hpccWasm = window["@hpcc-js/wasm"]; const getIdFromHash = () => { let hash = window.location.hash; if (hash.indexOf('frame') == -1) { return 0; } return parseInt(window.location.hash.substring('#frame'.length, window.location.hash.length)); } const renderCurrentFrame = () => { if (!window.loaded) { return; } const frames_list = document.getElementById('frames_list'); const currId = getIdFromHash(); for (let selected of frames_list.getElementsByClassName('selected')) { selected.classList.remove('selected'); } const selected = frames_list.children[currId]; selected.classList.add('selected'); selected.scrollIntoView(); const frame = frames[currId]; const dot_ptr = frame[0]; let dot_txt = window.dots[dot_ptr]; const label = frame[1]; document.getElementById('performance_note').innerText = "Rendering..."; const results = cssregex.exec(dot_txt) let css_data = '' if (results !== null) { css_data = results[1].replace(/\s*data:.*\s*,/,''); css_data = unescape(css_data); dot_txt = dot_txt.replace(cssregex, ''); } let render_start = performance.now(); const render_callback = svg => { renderCache[dot_ptr] = svg; var area = document.getElementById('rendered'); area.innerHTML = `${svg}<style>${css_data}</style>`; var panzoom = svgPanZoom(area.children[0], { zoomEnabled: true, controlIconsEnabled: true, maxZoom: 200, }); var to_highlight = frame[2].length ? document.querySelector(`${frame[2]}`) : null; if (to_highlight) { to_highlight.style.setProperty('fill', 'red'); } document.getElementById('performance_note').innerText = `Rendering took ${(performance.now() - render_start).toFixed(2)}ms`; let text_nodes = document.getElementsByTagName("text"); for (var el of text_nodes) { if (title_to_id.has(el.innerHTML)) { el.style.cursor = "pointer"; } } }; if (renderCache[dot_ptr]) { render_callback(renderCache[dot_ptr]); } else { hpccWasm.graphviz.layout(dot_txt, "svg", "dot").then(render_callback); } }; const update = (delta) => { let currId = getIdFromHash(); currId = (currId + delta + frames.length) % frames.length; window.location.hash = `#frame${currId}` }; const renderFrameList = () => { const currId = getIdFromHash(); const frames_list = document.getElementById('frames_list'); for (let i=0; i<frames.length; i++) { const f = frames[i]; let frame_descr = f[1]; const rendered = document.createElement("li"); if (frame_descr == "") { frame_descr = "Unnamed state"; } rendered.innerHTML = `<a href="#frame${i}">${frame_descr}</a>`; if (i == currId) { rendered.classList.add('selected'); } frames_list.appendChild(rendered); } }; const decompress = async function(compressed) { const ds = new DecompressionStream('gzip'); const in_fetch = await fetch(`data:application/octet-stream;base64,${compressed}`); const in_blob = await in_fetch.blob(); const out_stream = in_blob.stream().pipeThrough(ds); const out_blob = await new Response(out_stream).blob(); return await out_blob.text(); } const dots_compressed = "$DOTS"; const frames = [$FRAMES]; let loaded = false; window.addEventListener('hashchange', () => { renderCurrentFrame(); }); window.addEventListener("keydown", (event) => { if (event.defaultPrevented) { return; } if (event.key == "j") { update(1); } else if (event.key == "k") { update(-1); } else { return; } event.preventDefault(); }, true); document.addEventListener("DOMContentLoaded", () => { decompress(dots_compressed).then(text => { window.dots = JSON.parse(text); window.loaded = true; renderFrameList(); renderCurrentFrame(); }); window.title_to_id = new Map(); for (let i=0; i < frames.length; i++) { title_to_id.set(frames[i][1], i); } document.addEventListener("click", (event) => { let txt = event.target.innerHTML; if (title_to_id.has(txt)) { let id = title_to_id.get(txt); window.location.hash = `#frame${id}`; } }); }); </script> </body> </html> )wrapper", {{"$DOTS", dot_graphs_compressed}, {"$FRAMES", frames}, {"$TITLE", graph_title}}); } static std::string GraphTitle(const HloComputation& computation) { return absl::StrCat(computation.parent()->name(), "_", computation.name()); } absl::StatusOr<std::string> WrapFusionExplorer( const HloComputation& computation) { absl::MutexLock lock(&fusion_visualizer_state_mu); const FusionVisualizerProgress& visualizer_progress = fusion_visualizer_states[FusionVisualizerStateKey(computation)]; return WrapFusionExplorer(visualizer_progress, GraphTitle(computation)); } static absl::StatusOr<std::string> WrapDotInHtml(absl::string_view dot, absl::string_view title) { FusionVisualizerProgress progress; progress.AddState(dot, title, std::nullopt); return WrapFusionExplorer(progress, title); } static absl::StatusOr<std::string> WrapDotInFormat( const HloComputation& computation, absl::string_view dot, RenderedGraphFormat format) ABSL_EXCLUSIVE_LOCKS_REQUIRED(url_renderer_mu) { switch (format) { case RenderedGraphFormat::kUrl: CHECK(url_renderer != nullptr) << "Should have checked url_renderer != null before calling."; return (*url_renderer)(dot); case RenderedGraphFormat::kHtml: return WrapDotInHtml(dot, GraphTitle(computation)); case RenderedGraphFormat::kDot: return std::string(dot); } } void RegisterGraphToURLRenderer( std::function<absl::StatusOr<std::string>(absl::string_view)> renderer) { absl::MutexLock lock(&url_renderer_mu); if (url_renderer != nullptr) { LOG(WARNING) << "Multiple calls to RegisterGraphToURLRenderer. Last call " "wins, but because order of initialization in C++ is " "nondeterministic, this may not be what you want."; } delete url_renderer; url_renderer = new std::function<absl::StatusOr<std::string>(absl::string_view)>( std::move(renderer)); } void RegisterFusionState(const HloComputation& computation, absl::string_view label, const HloInstruction& consumer, const HloInstruction* producer) { absl::MutexLock lock(&fusion_visualizer_state_mu); FusionVisualizerProgress& fusion_progress = fusion_visualizer_states[FusionVisualizerStateKey(computation)]; static constexpr int kRenderRadius = 4; absl::flat_hash_set<const HloInstruction*> render_boundary; for (const HloInstruction* user : consumer.users()) { render_boundary.insert(user); } HloDotDumper dumper( consumer.parent(), StrCat("Rendering of ", kRenderRadius, " nodes around fusion consumer"), consumer.GetModule()->config().debug_options(), {}, MakeNodeRadiusAroundFilter(&consumer, kRenderRadius, render_boundary)); std::string dot_txt = dumper.Dump(); std::optional<std::string> producer_to_highlight; if (producer) { producer_to_highlight = dumper.CssIdForInstruction(*producer); } fusion_progress.AddState(dot_txt, label, producer_to_highlight); } absl::StatusOr<std::string> RenderGraph( const HloComputation& computation, absl::string_view label, const DebugOptions& debug_options, RenderedGraphFormat format, HloRenderOptions hlo_render_options, std::optional<absl::flat_hash_map<const HloInstruction*, ColorStats>> color_map) { absl::MutexLock lock(&url_renderer_mu); if (format == RenderedGraphFormat::kUrl && url_renderer == nullptr) { return Unavailable("Can't render as URL; no URL renderer was registered."); } std::string rendered_dot = HloDotDumper(&computation, label, debug_options, hlo_render_options, NodeFilter(), color_map) .Dump(); return WrapDotInFormat(computation, rendered_dot, format); } absl::StatusOr<std::string> RenderAllComputationsToHtml( const HloModule& module) { FusionVisualizerProgress progress; std::vector<HloInstruction*> instrs = module.entry_computation()->MakeInstructionPostOrder(); absl::c_reverse(instrs); for (const HloInstruction* instr : instrs) { if (absl::c_linear_search( std::vector<HloOpcode>{HloOpcode::kConstant, HloOpcode::kGetTupleElement}, instr->opcode())) { continue; } HloRenderOptions opts; opts.show_fusion_subcomputations = true; opts.show_backend_config = true; opts.show_while_subcomputations = instr->opcode() == HloOpcode::kWhile; static constexpr int64_t max_nodes_to_render = 100; absl::flat_hash_set<const HloInstruction*> render_boundary; NodeFilter filter = MakeNodeRadiusAroundFilter(instr, 2, render_boundary); if (filter.GetNumRendered().value_or(1) > max_nodes_to_render) { filter = MakeNodeRadiusAroundFilter(instr, 1, render_boundary); } std::string dot = HloDotDumper(module.entry_computation(), instr->name(), module.config().debug_options(), opts, filter) .Dump(); progress.AddState(dot, instr->name(), std::nullopt); } return WrapFusionExplorer(progress, module.name()); } absl::StatusOr<std::string> RenderNeighborhoodAround( const HloInstruction& node, int radius, RenderedGraphFormat format, HloRenderOptions hlo_render_options, const absl::flat_hash_set<const HloInstruction*>& boundary, std::optional<absl::flat_hash_map<const HloInstruction*, ColorStats>> color_map) { absl::MutexLock lock(&url_renderer_mu); if (format == RenderedGraphFormat::kUrl && url_renderer == nullptr) { return FailedPrecondition( "Can't render as URL; no URL renderer was registered."); } std::string label = StrCat("Neighborhood of ", radius, " nodes around ", node.name()); std::string rendered_dot = HloDotDumper( node.parent(), label, node.GetModule()->config().debug_options(), hlo_render_options, MakeNodeRadiusAroundFilter(&node, radius, boundary), color_map) .Dump(); return WrapDotInFormat(*node.parent(), rendered_dot, format); } absl::StatusOr<std::string> RenderAllPathsFromTo( const HloInstruction& from, const HloInstruction& to, int64_t max_nodes, RenderedGraphFormat format, HloRenderOptions hlo_render_options) { absl::MutexLock lock(&url_renderer_mu); if (format == RenderedGraphFormat::kUrl && url_renderer == nullptr) { return FailedPrecondition( "Can't render as URL; no URL renderer was registered."); } CHECK_EQ(from.parent(), to.parent()) << "Nodes must be in same computation!"; auto debug_options = from.GetModule()->config().debug_options(); bool hit_limit = false; NodeFilter filter = MakeNodeFromToFilter(&from, &to, max_nodes, &hit_limit); std::string label; if (!hit_limit) { label = StrCat("All paths from ", from.name(), " to ", to.name()); } else { label = StrCat(max_nodes, " nodes on the shortest paths from ", from.name(), " to ", to.name(), "<br/><br/>***SHOWING ONLY A SUBSET OF ALL PATHS BETWEEN " "NODES***<br/><br/>"); } std::string rendered_dot = HloDotDumper(from.parent(), label, debug_options, hlo_render_options, filter) .Dump(); return WrapDotInFormat(*from.parent(), rendered_dot, format); } }
#include "xla/service/hlo_graph_dumper.h" #include "absl/container/flat_hash_map.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_utils.h" #include "xla/xla.pb.h" namespace xla { namespace { using absl::StrCat; using ::testing::HasSubstr; using HloGraphDumperTest = HloTestBase; std::string TestName() { return ::testing::UnitTest::GetInstance()->current_test_info()->name(); } TEST_F(HloGraphDumperTest, NestedFusion) { HloComputation::Builder b("b"); auto shape = ShapeUtil::MakeShape(F32, {10, 100}); std::vector<HloInstruction*> params; for (int i = 0; i <= 4; ++i) { params.push_back(b.AddInstruction( HloInstruction::CreateParameter(i, shape, StrCat("param", i)))); } std::vector<HloInstruction*> sums; sums.push_back(b.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, params[0], params[1]))); for (int i = 0; i <= 2; ++i) { sums.push_back(b.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, sums[i], params[i + 2]))); } HloModuleConfig config; HloModule m(TestName(), config); m.AddEntryComputation(b.Build()); HloComputation* root_computation = m.entry_computation(); auto* outer_fusion = root_computation->CreateFusionInstruction( {sums[3], sums[2], sums[1], sums[0]}, HloInstruction::FusionKind::kLoop); std::vector<HloInstruction*> fused_sums; for (auto* instr : outer_fusion->fused_instructions_computation() ->MakeInstructionPostOrder()) { if (instr->opcode() == HloOpcode::kAdd) { fused_sums.push_back(instr); } } auto* inner_fusion = outer_fusion->fused_instructions_computation()->CreateFusionInstruction( {fused_sums[1], fused_sums[0]}, HloInstruction::FusionKind::kLoop); TF_ASSERT_OK_AND_ASSIGN( std::string graph, RenderGraph(*root_computation, "", DebugOptions(), RenderedGraphFormat::kDot)); for (const HloComputation* computation : {root_computation, inner_fusion->fused_instructions_computation(), outer_fusion->fused_instructions_computation()}) { for (const HloInstruction* instruction : computation->instructions()) { EXPECT_THAT(graph, HasSubstr(instruction->name())); } } const HloInstruction* inner_sum = nullptr; for (const HloInstruction* instruction : inner_fusion->fused_instructions_computation()->instructions()) { if (instruction->opcode() == HloOpcode::kAdd) { inner_sum = instruction; break; } } ASSERT_NE(inner_sum, nullptr); TF_ASSERT_OK_AND_ASSIGN(std::string neighborhood_graph, RenderNeighborhoodAround(*inner_sum, 1, RenderedGraphFormat::kDot)); EXPECT_THAT(neighborhood_graph, HasSubstr(inner_sum->name())); } TEST_F(HloGraphDumperTest, Constant) { HloComputation::Builder b("b"); auto instruction = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(-42))); instruction->SetAndSanitizeName("i_am_a_constant_root_instruction"); HloModuleConfig config; HloModule m(TestName(), config); HloComputation* root_computation = m.AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN( std::string graph, RenderGraph(*root_computation, "an_empty_graph", DebugOptions(), RenderedGraphFormat::kDot)); EXPECT_THAT(graph, HasSubstr("an_empty_graph")); } TEST_F(HloGraphDumperTest, TupleConstant) { Shape tuple_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {3, 2}), ShapeUtil::MakeShape(S32, {4, 5})}); HloComputation::Builder b("b"); auto constant = b.AddInstruction( HloInstruction::CreateConstant(Literal::CreateFromShape(tuple_shape))); auto gte = b.AddInstruction(HloInstruction::CreateGetTupleElement( ShapeUtil::MakeShape(F32, {3, 2}), constant, 0)); HloModuleConfig config; HloModule m(TestName(), config); HloComputation* root_computation = m.AddEntryComputation(b.Build(gte)); TF_ASSERT_OK_AND_ASSIGN( std::string graph, RenderGraph(*root_computation, "tuple_constant", DebugOptions(), RenderedGraphFormat::kDot)); EXPECT_THAT(graph, HasSubstr("tuple_constant")); EXPECT_THAT(graph, HasSubstr("constant (f32[3,2], s32[4,5])")); } TEST_F(HloGraphDumperTest, Compare) { const char* hlo_string = R"( HloModule comp ENTRY comp { param.0 = f32[10] parameter(0) param.1 = f32[10] parameter(1) ROOT lt = pred[10] compare(param.0, param.1), direction=LT })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN( std::string graph, RenderGraph(*module->entry_computation(), "tuple_constant", DebugOptions(), RenderedGraphFormat::kDot)); EXPECT_THAT(graph, HasSubstr("direction=LT")); } TEST_F(HloGraphDumperTest, HasStatisticsViz) { const char* hlo_string = R"( HloModule comp ENTRY comp { param.0 = f32[10] parameter(0), statistics={visualizing_index=0,stat-0=0.5} param.1 = f32[10] parameter(1), statistics={visualizing_index=1,stat-0=55.5,stat-1=44.4} ROOT lt = pred[10] compare(param.0, param.1), direction=LT })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN( std::string graph, RenderGraph(*module->entry_computation(), "tuple_constant", DebugOptions(), RenderedGraphFormat::kDot)); } TEST_F(HloGraphDumperTest, RootIsConstant) { const char* hlo_string = R"( HloModule indexed_conditional %then_branch (empty: ()) -> f32[] { %empty = () parameter(0) ROOT %then = f32[] constant(1) } %else_branch (empty.1: ()) -> f32[] { %empty.1 = () parameter(0) ROOT %else = f32[] constant(2) } ENTRY %conditional_select (constant: pred[]) -> (f32[]) { %constant = pred[] parameter(0) %emptytuple = () tuple() %conditional = f32[] conditional(pred[] %constant, () %emptytuple, () %emptytuple), true_computation=%then_branch, false_computation=%else_branch ROOT %t = (f32[]) tuple(f32[] %conditional) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN( std::string graph, RenderGraph(*module->entry_computation(), "tuple_constant", DebugOptions(), RenderedGraphFormat::kDot)); } TEST_F(HloGraphDumperTest, OverrideColors) { const char* hlo_string = R"( HloModule comp ENTRY comp { param.0 = f32[10] parameter(0) param.1 = f32[10] parameter(1) ROOT lt = pred[10] compare(param.0, param.1), direction=LT })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); absl::flat_hash_map<const HloInstruction*, ColorStats> color_map; ColorStats color_stats_1; color_stats_1.color = "#A9C343"; color_stats_1.stats = absl::StrFormat("%.3f", 1.11); ColorStats color_stats_2; color_stats_2.color = "#BC8A3F"; color_stats_2.stats = absl::StrFormat("%.3f", 2.22); color_map[module->entry_computation()->GetInstructionWithName("param.0")] = color_stats_1; color_map[module->entry_computation()->GetInstructionWithName("param.1")] = color_stats_2; HloRenderOptions hlo_render_options; hlo_render_options.override_node_colors = true; TF_ASSERT_OK_AND_ASSIGN( std::string graph, RenderGraph(*module->entry_computation(), "tuple_constant", DebugOptions(), RenderedGraphFormat::kDot, hlo_render_options, color_map)); EXPECT_THAT(graph, HasSubstr("#A9C343")); EXPECT_THAT(graph, HasSubstr("1.110")); EXPECT_THAT(graph, HasSubstr("#BC8A3F")); EXPECT_THAT(graph, HasSubstr("2.220")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_graph_dumper.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_graph_dumper_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
10bb58ac-bb24-4434-b6f2-4ba070e2f308
cpp
tensorflow/tensorflow
reduce_scatter_reassociate
third_party/xla/xla/service/reduce_scatter_reassociate.cc
third_party/xla/xla/service/reduce_scatter_reassociate_test.cc
#include "xla/service/reduce_scatter_reassociate.h" #include <optional> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/all_reduce_key.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/hlo_domain_map.h" #include "tsl/platform/errors.h" namespace xla { namespace { bool AreCompatible(const HloReduceScatterInstruction *rs0, const HloReduceScatterInstruction *rs1, ReductionKind op_kind) { std::optional<AllReduceKey> key0 = GetAllReduceKey(rs0); std::optional<AllReduceKey> key1 = GetAllReduceKey(rs1); auto kind0 = MatchReductionComputation(rs0->to_apply()); auto dims_match = rs0->scatter_dimension() == rs1->scatter_dimension(); return key0 && key1 && kind0 && *key0 == *key1 && kind0 == op_kind && dims_match; } } absl::StatusOr<bool> ReduceScatterReassociate::Run( HloModule *module, const absl::flat_hash_set<absl::string_view> &execution_threads) { if (hlo_query::ContainsLayoutConstrainedCollective( *module, HloOpcode::kReduceScatter)) { VLOG(1) << "Skip ReduceScatterReassociate because the module contains reduce-" "scatter with constrained layouts"; return false; } int64_t next_channel_id = hlo_query::NextChannelId(*module); bool changed = false; for (auto computation : module->computations(execution_threads)) { for (HloInstruction *inst : computation->MakeInstructionPostOrder()) { std::optional<ReductionKind> kind = MatchReductionInstruction(inst); if (!kind || inst->operand(0)->opcode() != HloOpcode::kReduceScatter || inst->operand(1)->opcode() != HloOpcode::kReduceScatter || !inst->shape().IsArray()) { continue; } auto *rs0 = Cast<HloReduceScatterInstruction>(inst->mutable_operand(0)); auto *rs1 = Cast<HloReduceScatterInstruction>(inst->mutable_operand(1)); if (!AreCompatible(rs0, rs1, *kind)) { VLOG(2) << "Reduce-Scatter operations are not compatible, skipping"; continue; } if (rs0->user_count() != 1 || rs1->user_count() != 1) { VLOG(2) << "Reduce-Scatter operations have > 1 users"; continue; } HloInstruction *new_op = computation->AddInstruction(inst->CloneWithNewOperands( rs0->mutable_operand(0)->shape(), {rs0->mutable_operand(0), rs1->mutable_operand(0)})); HloInstruction *new_rs = computation->AddInstruction( rs0->CloneWithNewOperands(inst->shape(), {new_op})); if (new_rs->channel_id()) { new_rs->set_channel_id(next_channel_id++); } TF_RETURN_IF_ERROR(inst->ReplaceAllUsesWith(new_rs)); TF_RETURN_IF_ERROR(computation->RemoveInstruction(inst)); TF_RETURN_IF_ERROR(computation->RemoveInstruction(rs0)); if (rs0 != rs1) { TF_RETURN_IF_ERROR(computation->RemoveInstruction(rs1)); } changed = true; } } return changed; } }
#include "xla/service/reduce_scatter_reassociate.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { namespace m = xla::testing::opcode_matchers; class ReduceScatterReassociateTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> RunPass( absl::string_view hlo_module, bool expect_change) { TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule(hlo_module)); auto changed = ReduceScatterReassociate().Run(module.get()); if (!changed.ok()) { return changed.status(); } EXPECT_EQ(changed.value(), expect_change); return absl::StatusOr<std::unique_ptr<HloModule>>(std::move(module)); } size_t ReduceScatterCount(std::unique_ptr<HloModule>& module) { return absl::c_count_if(module->entry_computation()->instructions(), HloPredicateIsOp<HloOpcode::kReduceScatter>); } }; TEST_F(ReduceScatterReassociateTest, Simple) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, to_apply=sum rs1 = f32[4] reduce-scatter(p1), dimensions={0}, to_apply=sum ROOT add = f32[4] add(rs0, rs1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), m::ReduceScatter(m::Add(m::Parameter(0), m::Parameter(1)))); EXPECT_EQ(ReduceScatterCount(module), 1); } TEST_F(ReduceScatterReassociateTest, SimpleWithConstrainLayout) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, constrain_layout=true, to_apply=sum rs1 = f32[4] reduce-scatter(p1), dimensions={0}, constrain_layout=true, to_apply=sum ROOT add = f32[4] add(rs0, rs1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(ReduceScatterReassociateTest, SimpleChain) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) p2 = f32[8] parameter(2) p3 = f32[8] parameter(3) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, to_apply=sum rs1 = f32[4] reduce-scatter(p1), dimensions={0}, to_apply=sum rs2 = f32[4] reduce-scatter(p2), dimensions={0}, to_apply=sum rs3 = f32[4] reduce-scatter(p3), dimensions={0}, to_apply=sum add0 = f32[4] add(rs0, rs1) add1 = f32[4] add(add0, rs2) ROOT add2 = f32[4] add(add1, rs3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT( module->entry_computation()->root_instruction(), m::ReduceScatter(m::Add( m::Add(m::Add(m::Parameter(0), m::Parameter(1)), m::Parameter(2)), m::Parameter(3)))); EXPECT_EQ(ReduceScatterCount(module), 1); } TEST_F(ReduceScatterReassociateTest, SimpleTree) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) p2 = f32[8] parameter(2) p3 = f32[8] parameter(3) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, to_apply=sum rs1 = f32[4] reduce-scatter(p1), dimensions={0}, to_apply=sum rs2 = f32[4] reduce-scatter(p2), dimensions={0}, to_apply=sum rs3 = f32[4] reduce-scatter(p3), dimensions={0}, to_apply=sum add0 = f32[4] add(rs0, rs1) add1 = f32[4] add(rs2, rs3) ROOT add2 = f32[4] add(add0, add1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT( module->entry_computation()->root_instruction(), m::ReduceScatter(m::Add(m::Add(m::Parameter(0), m::Parameter(1)), m::Add(m::Parameter(2), m::Parameter(3))))); EXPECT_EQ(ReduceScatterCount(module), 1); } TEST_F(ReduceScatterReassociateTest, MismatchOp0) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } max { a = f32[] parameter(0) b = f32[] parameter(1) ROOT r = f32[] maximum(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, to_apply=sum rs1 = f32[4] reduce-scatter(p1), dimensions={0}, to_apply=max ROOT add = f32[4] add(rs0, rs1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(ReduceScatterReassociateTest, MismatchOp1) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } max { a = f32[] parameter(0) b = f32[] parameter(1) ROOT r = f32[] maximum(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, to_apply=max rs1 = f32[4] reduce-scatter(p1), dimensions={0}, to_apply=max ROOT add = f32[4] add(rs0, rs1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(ReduceScatterReassociateTest, MismatchDimension) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8,8] parameter(0) p1 = f32[8,8] parameter(1) rs0 = f32[8,8] reduce-scatter(p0), dimensions={0}, to_apply=sum rs1 = f32[8,8] reduce-scatter(p1), dimensions={1}, to_apply=sum ROOT add = f32[8,8] add(rs0, rs1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(ReduceScatterReassociateTest, MismatchReplicaGroups) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, replica_groups={{0}}, to_apply=sum rs1 = f32[4] reduce-scatter(p1), dimensions={0}, replica_groups={}, to_apply=sum ROOT add = f32[4] add(rs0, rs1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(ReduceScatterReassociateTest, MismatchHasChannelId) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, channel_id=3, to_apply=sum rs1 = f32[4] reduce-scatter(p1), dimensions={0}, to_apply=sum ROOT add = f32[4] add(rs0, rs1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(ReduceScatterReassociateTest, MismatchUseGlobalDeviceId) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, replica_groups={{0,1}}, channel_id=3, use_global_device_ids=true, to_apply=sum rs1 = f32[4] reduce-scatter(p1), dimensions={0}, replica_groups={{0,1}}, channel_id=4, to_apply=sum ROOT add = f32[4] add(rs0, rs1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(ReduceScatterReassociateTest, NotSingleUser) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, to_apply=sum rs1 = f32[4] reduce-scatter(p1), dimensions={0}, to_apply=sum add = f32[4] add(rs0, rs1) ROOT t = (f32[4], f32[4]) tuple(rs0, add) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(ReduceScatterReassociateTest, DoubleUse) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, to_apply=sum add = f32[4] add(rs0, rs0) ROOT c = f32[4] copy(add) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/reduce_scatter_reassociate.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/reduce_scatter_reassociate_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3bc61d67-4a76-418b-a671-c9c315c7a6bd
cpp
tensorflow/tensorflow
change_op_data_type
third_party/xla/xla/service/change_op_data_type.cc
third_party/xla/xla/service/change_op_data_type_test.cc
#include "xla/service/change_op_data_type.h" #include <optional> #include "xla/service/hlo_creation_utils.h" #if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) #include "xla/service/cpu/onednn_contraction_rewriter.h" #endif namespace xla { namespace { std::optional<PrimitiveType> GetUniformOperandType( const HloInstruction* instr) { std::optional<PrimitiveType> type; for (const HloInstruction* operand : instr->operands()) { if (!type.has_value()) { type = operand->shape().element_type(); } else if (operand->shape().element_type() != type.value()) { return std::nullopt; } } return type; } } absl::StatusOr<bool> ChangeOpDataType::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; HloCloner default_cloner = [](const HloInstruction* inst, const Shape& shape, absl::Span<HloInstruction* const> operands) { return inst->CloneWithNewOperands(shape, operands); }; HloCloner cloner = cloner_ ? cloner_ : default_cloner; for (HloComputation* comp : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction* instr : comp->MakeInstructionPostOrder()) { std::optional<PrimitiveType> operand_type = GetUniformOperandType(instr); if (!op_matcher_(instr) || !operand_type.has_value() || !instr->shape().IsArray() || instr->opcode() == HloOpcode::kParameter) { continue; } const PrimitiveType from_type = *operand_type; auto it = to_type_map_.find(from_type); if (it == to_type_map_.end()) { continue; } #if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) if (cpu::OneDnnContractionRewriter::ShouldRewriteInstr(instr, true)) { continue; } #endif const PrimitiveType to_type = it->second; absl::InlinedVector<HloInstruction*, 8> new_operands; for (HloInstruction* operand : instr->mutable_operands()) { new_operands.push_back(MakeConvertToHlo(operand, to_type)); } Shape new_shape = instr->shape(); new_shape.set_element_type(to_type); HloInstruction* new_instr = comp->AddInstruction(cloner(instr, new_shape, new_operands)); TF_RETURN_IF_ERROR(comp->ReplaceInstruction( instr, MakeConvertToHlo(new_instr, from_type))); changed = true; } } return changed; } }
#include "xla/service/change_op_data_type.h" #include <string> #include <tuple> #include <vector> #include "absl/types/span.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { namespace m = ::xla::match; class ChangeOpDataTypeTest : public HloTestBase { public: ChangeOpDataTypeTest() : HloTestBase(false, false) {} }; TEST_F(ChangeOpDataTypeTest, Simple) { const char* const kModuleStr = R"( HloModule module ENTRY entry { ROOT op = add(f16[10] parameter(0), f16[10] parameter(1)) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr)); ChangeOpDataType pass(F16, F32, HloPredicateTrue); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Convert(m::Add(m::Convert(m::Parameter(0)).WithShape(F32, {10}), m::Convert(m::Parameter(1)).WithShape(F32, {10}))) .WithShape(F16, {10}))); } TEST_F(ChangeOpDataTypeTest, AllTypesMustBeSame) { const char* const kModuleStr = R"( HloModule module ENTRY entry { ROOT op = f16[1] dynamic-slice(f16[10] parameter(0), s32[1] parameter(1)), dynamic_slice_sizes={1} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr)); ChangeOpDataType pass(F16, F32, HloPredicateTrue); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_FALSE(changed); } TEST_F(ChangeOpDataTypeTest, DotAndConv) { const char* const kModuleStr = R"( HloModule module ENTRY entry { dot = f16[10,10] dot(f16[10,10] parameter(0), f16[10,10] parameter(1)), lhs_contracting_dims={1}, rhs_contracting_dims={0} conv = f16[1,2,1] convolution(f16[1,2,1] parameter(2), f16[1,1,1] parameter(3)), window={size=1}, dim_labels=b0f_0io->b0f root = tuple(dot, conv) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr)); ChangeOpDataType pass( F16, F32, HloPredicateIsOp<HloOpcode::kDot, HloOpcode::kConvolution>); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::Convert( m::Dot(m::Convert(m::Parameter(0)).WithShape(F32, {10, 10}), m::Convert(m::Parameter(1)).WithShape(F32, {10, 10}))) .WithShape(F16, {10, 10}), m::Convert(m::Convolution( m::Convert(m::Parameter(2)).WithShape(F32, {1, 2, 1}), m::Convert(m::Parameter(3)).WithShape(F32, {1, 1, 1}))) .WithShape(F16, {1, 2, 1})))); } TEST_F(ChangeOpDataTypeTest, SimpleWithCloner) { const char* const kModuleStr = R"( HloModule module ENTRY entry { ROOT op = add(f16[10] parameter(0), f16[10] parameter(1)) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr)); HloPredicate matcher = HloPredicateTrue; int count = 0; ChangeOpDataType::HloCloner cloner = [&count](const HloInstruction* instr, const Shape& shape, absl::Span<HloInstruction* const> operands) { count++; return instr->CloneWithNewOperands(shape, operands); }; ChangeOpDataType pass(F16, F32, matcher, cloner); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_EQ(count, 1); } TEST_F(ChangeOpDataTypeTest, SimpleWithMultipleTypes) { const char* const kModuleStr = R"( HloModule module ENTRY entry { op1 = add(f16[10] parameter(0), f16[10] parameter(1)) op2 = add(u16[10] parameter(2), u16[10] parameter(3)) ROOT tup = (f16[10], u16[10]) tuple(op1, op2) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr)); HloPredicate matcher = HloPredicateTrue; ChangeOpDataType pass({{F16, F32}, {U16, U32}}, matcher); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kTuple); EXPECT_EQ(root->operand_count(), 2); EXPECT_THAT( root->operand(0), GmockMatch( m::Convert(m::Add(m::Convert(m::Parameter(0)).WithShape(F32, {10}), m::Convert(m::Parameter(1)).WithShape(F32, {10}))) .WithShape(F16, {10}))); EXPECT_THAT( root->operand(1), GmockMatch( m::Convert(m::Add(m::Convert(m::Parameter(2)).WithShape(U32, {10}), m::Convert(m::Parameter(3)).WithShape(U32, {10}))) .WithShape(U16, {10}))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/change_op_data_type.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/change_op_data_type_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2292926a-6678-41a1-8dd4-0c5f8f61af9c
cpp
tensorflow/tensorflow
collective_permute_decomposer
third_party/xla/xla/service/collective_permute_decomposer.cc
third_party/xla/xla/service/collective_permute_decomposer_test.cc
#include "xla/service/collective_permute_decomposer.h" #include <cstdint> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_join.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/graphcycles/graphcycles.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla { namespace { using SourceTargetPair = std::pair<int64_t, int64_t>; using SourceTargetPairs = std::vector<SourceTargetPair>; bool HasCycles(const SourceTargetPairs& pairs) { GraphCycles graph; absl::flat_hash_map<int64_t, int32_t> replica_to_node_id; auto get_node_id = [&](int64_t replica) { auto it_and_inserted = replica_to_node_id.emplace(replica, -1); auto it = it_and_inserted.first; auto inserted = it_and_inserted.second; if (inserted) { it->second = graph.NewNode(); } return it->second; }; for (auto pair : pairs) { auto source = get_node_id(pair.first); auto target = get_node_id(pair.second); VLOG(3) << "See source " << source << " -> target " << target; if (!graph.InsertEdge(source, target)) { VLOG(3) << "Detected cycles"; return true; } } return false; } bool ShouldDecompose(const HloCollectivePermuteInstruction& collective_permute, int64_t threshold_in_bytes) { if (!collective_permute.channel_id().has_value()) { return false; } const Shape& result_shape = collective_permute.shape(); if (!result_shape.IsArray()) { return false; } if (ShapeUtil::ByteSizeOf(result_shape) < threshold_in_bytes) { return false; } return !HasCycles(collective_permute.source_target_pairs()); } bool MayPipeline(const HloCollectivePermuteInstruction& collective_permute) { const HloInstruction* data = collective_permute.operand(0); return (data->opcode() == HloOpcode::kGetTupleElement && data->operand(0)->opcode() == HloOpcode::kParameter); } absl::Status DecomposeCollectivePermute( HloCollectivePermuteInstruction* collective_permute, HloComputation* computation, const std::string& pipeline_decision) { int64_t channel_id = collective_permute->channel_id().value(); HloInstruction* data = collective_permute->mutable_operand(0); const Shape& data_shape = data->shape(); const OpMetadata& metadata = collective_permute->metadata(); const xla::FrontendAttributes& old_attributes = collective_permute->frontend_attributes(); xla::FrontendAttributes attributes; std::string source_target_pairs_string = "{" + absl::StrJoin(collective_permute->source_target_pairs(), ",", absl::PairFormatter( [](std::string* out, int64_t value) { absl::StrAppend(out, "{", value); }, ",", [](std::string* out, int64_t value) { absl::StrAppend(out, value, "}"); })) + "}"; attributes.mutable_map()->insert(old_attributes.map().begin(), old_attributes.map().end()); (*attributes.mutable_map())[kSendRecvSourceTargetPairsAttr] = source_target_pairs_string; HloInstruction* after_all = computation->AddInstruction(HloInstruction::CreateToken()); HloInstruction* recv = computation->AddInstruction( HloInstruction::CreateRecv(data_shape, after_all, channel_id)); recv->add_frontend_attributes(attributes); recv->set_metadata(metadata); HloInstruction* send = computation->AddInstruction( HloInstruction::CreateSend(data, after_all, channel_id)); send->add_frontend_attributes(attributes); send->set_metadata(metadata); HloInstruction* recv_done = computation->AddInstruction(HloInstruction::CreateRecvDone(recv)); HloInstruction* send_done = computation->AddInstruction(HloInstruction::CreateSendDone(send)); TF_RETURN_IF_ERROR(send->AddControlDependencyTo(recv_done)); HloInstruction* recv_data = computation->AddInstruction( HloInstruction::CreateGetTupleElement(recv_done, 0)); TF_RETURN_IF_ERROR(collective_permute->ReplaceAllUsesWith(recv_data)); TF_RETURN_IF_ERROR( computation->RemoveInstructionAndUnusedOperands(collective_permute)); if (!pipeline_decision.empty()) { xla::FrontendAttributes attributes; (*attributes.mutable_map())[kSendRecvPipelineAttr] = pipeline_decision; send->add_frontend_attributes(attributes); send_done->add_frontend_attributes(attributes); recv->add_frontend_attributes(attributes); recv_done->add_frontend_attributes(attributes); } return absl::OkStatus(); } bool IsForwardCycle(const SourceTargetPair& backedge, const SourceTargetPairs& others) { int64_t num_pairs = others.size() + 1; if (backedge.first != num_pairs - 1 || backedge.second != 0) { return false; } for (int64_t i = 0; i < num_pairs - 1; ++i) { const SourceTargetPair& pair = others[i]; if (pair.first != i || pair.second != i + 1) { return false; } } return true; } bool IsBackwardCycle(const SourceTargetPair& backedge, const SourceTargetPairs& others) { int64_t num_pairs = others.size() + 1; if (backedge.first != 0 || backedge.second != num_pairs - 1) { return false; } for (int64_t i = 0; i < num_pairs - 1; ++i) { const SourceTargetPair& pair = others[i]; if (pair.first != i + 1 || pair.second != i) { return false; } } return true; } std::optional<std::pair<HloCollectivePermuteInstruction*, HloCollectivePermuteInstruction*>> CheckCyclePatterns(HloCollectivePermuteInstruction* cp0, HloCollectivePermuteInstruction* cp1) { const SourceTargetPairs& cp0_pairs = cp0->source_target_pairs(); const SourceTargetPairs& cp1_pairs = cp1->source_target_pairs(); if (cp0_pairs.size() == 1) { if (IsForwardCycle(cp0_pairs.front(), cp1_pairs) || IsBackwardCycle(cp0_pairs.front(), cp1_pairs)) { return std::make_pair(cp0, cp1); } } if (cp1_pairs.size() == 1) { if (IsForwardCycle(cp1_pairs.front(), cp0_pairs) || IsBackwardCycle(cp1_pairs.front(), cp0_pairs)) { return std::make_pair(cp1, cp0); } } return std::nullopt; } } absl::StatusOr<bool> CollectivePermuteDecomposer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; std::vector<HloComputation*> all_computations = module->MakeComputationPostOrder(execution_threads); absl::flat_hash_set<HloComputation*> while_bodies; for (auto iter = all_computations.rbegin(); iter != all_computations.rend(); ++iter) { HloComputation* computation = *iter; bool may_pipeline = while_bodies.contains(computation); std::vector<HloCollectivePermuteInstruction*> cps_to_decompose; HloCollectivePermuteInstruction* cp0_to_pipeline = nullptr; HloCollectivePermuteInstruction* cp1_to_pipeline = nullptr; for (HloInstruction* hlo : computation->MakeInstructionPostOrder()) { if (hlo->opcode() == HloOpcode::kWhile) { while_bodies.insert(hlo->while_body()); continue; } if (hlo->opcode() != HloOpcode::kCollectivePermute) { continue; } HloCollectivePermuteInstruction* cp = Cast<HloCollectivePermuteInstruction>(hlo); if (!ShouldDecompose(*cp, threshold_in_bytes_)) { continue; } cps_to_decompose.push_back(cp); if (!while_bodies.contains(computation) || !may_pipeline) { continue; } if (cp0_to_pipeline != nullptr && cp1_to_pipeline != nullptr) { continue; } if (!MayPipeline(*cp)) { continue; } if (cp0_to_pipeline == nullptr) { cp0_to_pipeline = cp; continue; } auto optional_pair = CheckCyclePatterns(cp0_to_pipeline, cp); if (optional_pair.has_value()) { cp0_to_pipeline = optional_pair.value().first; cp1_to_pipeline = optional_pair.value().second; } } for (HloCollectivePermuteInstruction* cp : cps_to_decompose) { std::string pipeline_decision; if (cp0_to_pipeline == cp) { pipeline_decision = "0"; } else if (cp1_to_pipeline == cp) { pipeline_decision = "1"; } TF_RETURN_IF_ERROR( DecomposeCollectivePermute(cp, computation, pipeline_decision)); } if (!cps_to_decompose.empty()) { changed = true; } } return changed; } }
#include "xla/service/collective_permute_decomposer.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { using ::testing::HasSubstr; namespace op = xla::testing::opcode_matchers; using CollectivePermuteDecomposerTest = HloTestBase; TEST_F(CollectivePermuteDecomposerTest, WithCycleNotTransformed) { const absl::string_view kModuleStr = R"( HloModule test ENTRY test_computation { p = u32[] replica-id() ROOT cp = u32[] collective-permute(p), channel_id=1, source_target_pairs={{0,1}, {1,0}} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteDecomposer decomposer(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectivePermuteDecomposerTest, WithContextDataNotTransformed) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { p = u32[] replica-id() ROOT cp = (u32[], u32[], u32[], u32[]) collective-permute(p), channel_id=1, source_target_pairs={{0,1}, {1,2}, {2,3}, {3,4}} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteDecomposer decomposer(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectivePermuteDecomposerTest, TransformedExplicitChannelId) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { p = u32[] replica-id() ROOT cp = u32[] collective-permute(p), channel_id=1, source_target_pairs={{0,1}, {1,2}, {2,3}, {3,4}}, metadata={op_name="op1/op2/add" source_file="foo/bar/mysource.py" source_line=35} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteDecomposer decomposer(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); auto check_metadata = [](const HloInstruction* inst) { EXPECT_EQ(inst->metadata().op_name(), "op1/op2/add"); EXPECT_EQ(inst->metadata().source_file(), "foo/bar/mysource.py"); EXPECT_EQ(inst->metadata().source_line(), 35); }; auto check_not_pipelined = [](const HloInstruction* instr) { const FrontendAttributes& attributes = instr->frontend_attributes(); EXPECT_EQ(attributes.map().end(), attributes.map().find(kSendRecvPipelineAttr)); }; HloInstruction* after_all = FindInstruction(module.get(), "after-all"); HloInstruction* recv = FindInstruction(module.get(), "recv"); EXPECT_EQ(recv->operand(0), after_all); EXPECT_EQ(recv->channel_id().value(), 1); EXPECT_THAT( recv->ToString(), HasSubstr( "_xla_send_recv_source_target_pairs={{0,1},{1,2},{2,3},{3,4}}")); check_metadata(recv); check_not_pipelined(recv); HloInstruction* recv_done = FindInstruction(module.get(), "recv-done"); EXPECT_EQ(recv_done->operand(0), recv); HloInstruction* send = FindInstruction(module.get(), "send"); EXPECT_EQ(send->operand(1), after_all); EXPECT_EQ(send->channel_id().value(), 1); EXPECT_THAT( send->ToString(), HasSubstr( "_xla_send_recv_source_target_pairs={{0,1},{1,2},{2,3},{3,4}}")); check_metadata(send); check_not_pipelined(send); HloInstruction* send_done = FindInstruction(module.get(), "send-done"); EXPECT_EQ(send_done->operand(0), send); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::GetTupleElement(recv_done, 0)); } TEST_F(CollectivePermuteDecomposerTest, NotTransformedDefaultChannelId) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { p = u32[] replica-id() ROOT cp = u32[] collective-permute(p), source_target_pairs={{0,1}, {1,2}, {2,3}, {3,4}} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteDecomposer decomposer(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectivePermuteDecomposerTest, ThresholdNotTransformed) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { p = u32[] replica-id() ROOT cp = u32[] collective-permute(p), channel_id=1, source_target_pairs={{0,1}, {1,2}, {2,3}, {3,4}}, metadata={op_name="op1/op2/add" source_file="foo/bar/mysource.py" source_line=35} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteDecomposer decomposer(8); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectivePermuteDecomposerTest, Pipeline1) { const char* const kModuleStr = R"( HloModule module cond { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(param), index=0 ub = u32[] constant(2) ROOT result = pred[] compare(count, ub), direction=LT } body { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(param), index=0 send-data = get-tuple-element(param), index=1 recv-data = u32[2] collective-permute(send-data), channel_id=1, source_target_pairs={{0,1}, {1,2}, {2,3}, {3,4}}, frontend_attributes={_xla_other_attribute="xyz"} c1 = u32[] constant(1) new_count = u32[] add(count, c1) r = u32[2] broadcast(c1), dimensions={} s = u32[2] add(r, recv-data) ROOT result = (u32[], u32[2]) tuple(new_count, s) } ENTRY test_computation { c0 = u32[] constant(0) c1 = u32[] constant(1) r = u32[] replica-id() a = u32[] add(c1, r) init = u32[2] broadcast(a), dimensions={} while_init = (u32[], u32[2]) tuple(c0, init) while_result = (u32[], u32[2]) while(while_init), body=body, condition=cond ROOT result = u32[2] get-tuple-element(while_result), index=1 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteDecomposer decomposer(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* recv = FindInstruction(module.get(), "recv"); EXPECT_EQ(recv->channel_id().value(), 1); EXPECT_THAT( recv->ToString(), HasSubstr( "_xla_send_recv_source_target_pairs={{0,1},{1,2},{2,3},{3,4}}")); EXPECT_THAT(recv->ToString(), HasSubstr("_xla_send_recv_pipeline=\"0\"")); EXPECT_THAT(recv->ToString(), HasSubstr("_xla_other_attribute=\"xyz\"")); HloInstruction* recv_done = FindInstruction(module.get(), "recv-done"); EXPECT_THAT(recv_done->ToString(), HasSubstr("_xla_send_recv_pipeline=\"0\"")); HloInstruction* send = FindInstruction(module.get(), "send"); EXPECT_EQ(send->channel_id().value(), 1); EXPECT_THAT( send->ToString(), HasSubstr( "_xla_send_recv_source_target_pairs={{0,1},{1,2},{2,3},{3,4}}")); EXPECT_THAT(send->ToString(), HasSubstr("_xla_send_recv_pipeline=\"0\"")); EXPECT_THAT(send->ToString(), HasSubstr("_xla_other_attribute=\"xyz\"")); HloInstruction* send_done = FindInstruction(module.get(), "send-done"); EXPECT_THAT(send_done->ToString(), HasSubstr("_xla_send_recv_pipeline=\"0\"")); EXPECT_FALSE(recv_done->control_predecessors().empty()); EXPECT_EQ(recv_done->control_predecessors()[0], send); } TEST_F(CollectivePermuteDecomposerTest, ForwardPipeline2) { const char* const kModuleStr = R"( HloModule module cond { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(param), index=0 ub = u32[] constant(2) ROOT result = pred[] compare(count, ub), direction=LT } body { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(param), index=0 send-data = get-tuple-element(param), index=1 recv-data.0 = u32[2] collective-permute(send-data), channel_id=1, source_target_pairs={{3,0}} recv-data.1 = u32[2] collective-permute(send-data), channel_id=2, source_target_pairs={{0,1}, {1,2}, {2,3}} replica = u32[] replica-id() constant0 = u32[] constant(0) compare0 = pred[] compare(replica, constant0), direction=EQ compare = pred[2] broadcast(compare0), dimensions={} recv-data = u32[2] select(compare, recv-data.0, recv-data.1) c1 = u32[] constant(1) new_count = u32[] add(count, c1) r = u32[2] broadcast(c1), dimensions={} s = u32[2] add(r, recv-data) ROOT result = (u32[], u32[2]) tuple(new_count, s) } ENTRY test_computation { c0 = u32[] constant(0) c1 = u32[] constant(1) r = u32[] replica-id() a = u32[] add(c1, r) init = u32[2] broadcast(a), dimensions={} while_init = (u32[], u32[2]) tuple(c0, init) while_result = (u32[], u32[2]) while(while_init), body=body, condition=cond ROOT result = u32[2] get-tuple-element(while_result), index=1 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteDecomposer decomposer(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* recv = FindInstruction(module.get(), "recv"); EXPECT_EQ(recv->channel_id().value(), 1); EXPECT_THAT(recv->ToString(), HasSubstr("_xla_send_recv_source_target_pairs={{3,0}}")); EXPECT_THAT(recv->ToString(), HasSubstr("_xla_send_recv_pipeline=\"0\"")); HloInstruction* send = FindInstruction(module.get(), "send"); EXPECT_THAT(send->ToString(), HasSubstr("_xla_send_recv_source_target_pairs={{3,0}}")); EXPECT_THAT(send->ToString(), HasSubstr("_xla_send_recv_pipeline=\"0\"")); HloInstruction* recv1 = FindInstruction(module.get(), "recv.1"); EXPECT_EQ(recv1->channel_id().value(), 2); EXPECT_THAT( recv1->ToString(), HasSubstr("_xla_send_recv_source_target_pairs={{0,1},{1,2},{2,3}}")); EXPECT_THAT(recv1->ToString(), HasSubstr("_xla_send_recv_pipeline=\"1\"")); HloInstruction* recv_done1 = FindInstruction(module.get(), "recv-done.1"); EXPECT_THAT(recv_done1->ToString(), HasSubstr("_xla_send_recv_pipeline=\"1\"")); HloInstruction* send1 = FindInstruction(module.get(), "send.1"); EXPECT_THAT( send1->ToString(), HasSubstr("_xla_send_recv_source_target_pairs={{0,1},{1,2},{2,3}}")); EXPECT_THAT(send1->ToString(), HasSubstr("_xla_send_recv_pipeline=\"1\"")); HloInstruction* send_done1 = FindInstruction(module.get(), "send-done.1"); EXPECT_THAT(send_done1->ToString(), HasSubstr("_xla_send_recv_pipeline=\"1\"")); } TEST_F(CollectivePermuteDecomposerTest, ForwardPipelineWithMatmul) { const char* const kModuleStr = R"( HloModule test while_body { inputs = (u32[], f32[2,2], f32[2,2]) parameter(0) iter = u32[] get-tuple-element(inputs), index=0 iter_increment = u32[] constant(1) next_iter = u32[] add(iter, iter_increment) partition-id = u32[] partition-id() zero = u32[] constant(0) compare = pred[] compare(partition-id, zero), direction=EQ broadcast = pred[2,2] broadcast(compare), dimensions={} weights = f32[2,2] get-tuple-element(inputs), index=2 data = f32[2,2] get-tuple-element(inputs), index=1 cp_back = f32[2,2] collective-permute(data), channel_id=1, source_target_pairs={{3,0}}, frontend_attributes={_xla_send_recv_validation="{{3,10}}"} cp_forward = f32[2,2] collective-permute(data), channel_id=2, source_target_pairs={{0,1},{1,2},{2,3}}, frontend_attributes={_xla_send_recv_validation="{{0,7},{1,8},{2,9}}"} select = f32[2,2] select(broadcast, cp_back, cp_forward) matmul = f32[2,2] dot(weights, select), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT result = (u32[], f32[2,2], f32[2,2]) tuple(next_iter, matmul, weights) } while_cond { inputs = (u32[], f32[2,2], f32[2,2]) parameter(0) iter = u32[] get-tuple-element(inputs), index=0 max_iter = u32[] constant(3) ROOT compare = pred[] compare(iter, max_iter), direction=LT } ENTRY test_computation { start_iter = u32[] constant(0) input_data = f32[2,2] parameter(0) input_weights = f32[2,2] parameter(1) input = (u32[], f32[2,2], f32[2,2]) tuple(start_iter, input_data, input_weights) while_result = (u32[], f32[2,2], f32[2,2]) while(input), condition=while_cond, body=while_body ROOT data_out = f32[2,2] get-tuple-element(while_result), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteDecomposer decomposer(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); HloModule* transformed_module = module.get(); HloComputation* while_body = FindComputation(transformed_module, "while_body"); HloInstruction* recv_bwd = hlo_query::FindInstruction(while_body, "recv"); EXPECT_EQ(recv_bwd->channel_id().value(), 1); auto recv_bwd_frontend_attributes = recv_bwd->frontend_attributes().map(); EXPECT_EQ(recv_bwd_frontend_attributes.size(), 3); EXPECT_EQ(recv_bwd_frontend_attributes.at(kSendRecvValidationAttr), "{{3,10}}"); EXPECT_EQ(recv_bwd_frontend_attributes.at(kSendRecvPipelineAttr), "0"); EXPECT_EQ(recv_bwd_frontend_attributes.at(kSendRecvSourceTargetPairsAttr), "{{3,0}}"); HloInstruction* send_bwd = hlo_query::FindInstruction(while_body, "send"); auto send_bwd_frontend_attributes = send_bwd->frontend_attributes().map(); EXPECT_THAT(send_bwd_frontend_attributes.at(kSendRecvSourceTargetPairsAttr), "{{3,0}}"); HloInstruction* recv_fwd = hlo_query::FindInstruction(while_body, "recv.1"); EXPECT_EQ(recv_fwd->channel_id().value(), 2); auto recv_fwd_frontend_attributes = recv_fwd->frontend_attributes().map(); EXPECT_EQ(recv_fwd_frontend_attributes.size(), 3); EXPECT_EQ(recv_fwd_frontend_attributes.at(kSendRecvPipelineAttr), "1"); EXPECT_EQ(recv_fwd_frontend_attributes.at(kSendRecvSourceTargetPairsAttr), "{{0,1},{1,2},{2,3}}"); HloInstruction* send_fwd = hlo_query::FindInstruction(while_body, "send.1"); auto send_fwd_frontend_attributes = send_fwd->frontend_attributes().map(); EXPECT_EQ(send_fwd_frontend_attributes.size(), 3); EXPECT_EQ(send_fwd_frontend_attributes.at(kSendRecvPipelineAttr), "1"); EXPECT_EQ(send_fwd_frontend_attributes.at(kSendRecvSourceTargetPairsAttr), "{{0,1},{1,2},{2,3}}"); EXPECT_NE(while_body, nullptr); HloInstruction* recv_done_fwd = hlo_query::FindInstruction(while_body, "recv-done"); HloInstruction* recv_done_bwd = hlo_query::FindInstruction(while_body, "recv-done.1"); EXPECT_EQ(recv_done_fwd->control_predecessors()[0], send_bwd); EXPECT_EQ(recv_done_bwd->control_predecessors()[0], send_fwd); } TEST_F(CollectivePermuteDecomposerTest, BackwardPipeline2) { const char* const kModuleStr = R"( HloModule module cond { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(param), index=0 ub = u32[] constant(2) ROOT result = pred[] compare(count, ub), direction=LT } body { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(param), index=0 send-data = get-tuple-element(param), index=1 recv-data.0 = u32[2] collective-permute(send-data), channel_id=1, source_target_pairs={{1,0},{2,1},{3,2}} recv-data.1 = u32[2] collective-permute(send-data), channel_id=2, source_target_pairs={{0,3}} replica = u32[] replica-id() constant0 = u32[] constant(0) compare0 = pred[] compare(replica, constant0), direction=NE compare = pred[2] broadcast(compare0), dimensions={} recv-data = u32[2] select(compare, recv-data.0, recv-data.1) c1 = u32[] constant(1) new_count = u32[] add(count, c1) r = u32[2] broadcast(c1), dimensions={} s = u32[2] add(r, recv-data) ROOT result = (u32[], u32[2]) tuple(new_count, s) } ENTRY test_computation { c0 = u32[] constant(0) c1 = u32[] constant(1) r = u32[] replica-id() a = u32[] add(c1, r) init = u32[2] broadcast(a), dimensions={} while_init = (u32[], u32[2]) tuple(c0, init) while_result = (u32[], u32[2]) while(while_init), body=body, condition=cond ROOT result = u32[2] get-tuple-element(while_result), index=1 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteDecomposer decomposer(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* recv = FindInstruction(module.get(), "recv"); EXPECT_EQ(recv->channel_id().value(), 1); EXPECT_THAT( recv->ToString(), HasSubstr("_xla_send_recv_source_target_pairs={{1,0},{2,1},{3,2}}")); EXPECT_THAT(recv->ToString(), HasSubstr("_xla_send_recv_pipeline=\"1\"")); HloInstruction* send = FindInstruction(module.get(), "send"); EXPECT_THAT( send->ToString(), HasSubstr("_xla_send_recv_source_target_pairs={{1,0},{2,1},{3,2}}")); EXPECT_THAT(send->ToString(), HasSubstr("_xla_send_recv_pipeline=\"1\"")); HloInstruction* recv1 = FindInstruction(module.get(), "recv.1"); EXPECT_EQ(recv1->channel_id().value(), 2); EXPECT_THAT(recv1->ToString(), HasSubstr("_xla_send_recv_source_target_pairs={{0,3}}")); EXPECT_THAT(recv1->ToString(), HasSubstr("_xla_send_recv_pipeline=\"0\"")); HloInstruction* send1 = FindInstruction(module.get(), "send.1"); EXPECT_THAT(send1->ToString(), HasSubstr("_xla_send_recv_source_target_pairs={{0,3}}")); EXPECT_THAT(send1->ToString(), HasSubstr("_xla_send_recv_pipeline=\"0\"")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/collective_permute_decomposer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/collective_permute_decomposer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
50cd28dd-fb5f-48ac-8b47-b0f528cfc036
cpp
tensorflow/tensorflow
collective_transformation_reorderer
third_party/xla/xla/service/collective_transformation_reorderer.cc
third_party/xla/xla/service/collective_transformation_reorderer_test.cc
#include "xla/service/collective_transformation_reorderer.h" #include <cstdint> #include <optional> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_dce.h" #include "tsl/platform/statusor.h" namespace xla { namespace { struct CollectiveTransformation { HloInstruction* hlo; int64_t transformed_collective_dimension; }; std::optional<std::vector<CollectiveTransformation>> GetAllGatherTransformations(HloInstruction* all_gather) { std::vector<HloInstruction*> transformation_hlos; { HloInstruction* transformation_hlo = all_gather; bool found_unsupported_transformation = false; while (transformation_hlo->user_count() == 1 && !found_unsupported_transformation) { transformation_hlo = transformation_hlo->users()[0]; switch (transformation_hlo->opcode()) { case HloOpcode::kReshape: { transformation_hlos.push_back(transformation_hlo); break; } default: found_unsupported_transformation = true; } } } if (transformation_hlos.empty()) { return std::nullopt; } auto get_reshaped_all_gather_dimension = [](const Shape& all_gather_shape, int64_t all_gather_dimension, HloInstruction* transformation_hlo) -> std::optional<int64_t> { int64_t all_gather_num_strides = absl::c_accumulate( all_gather_shape.dimensions().subspan(0, all_gather_dimension), 1, [](int64_t product, int64_t dimension_size) { return product * dimension_size; }); int64_t reshaped_all_gather_dimension = 0; int64_t reshaped_num_strides = 1; while (reshaped_all_gather_dimension < transformation_hlo->shape().dimensions_size() && reshaped_num_strides < all_gather_num_strides) { reshaped_num_strides *= transformation_hlo->shape().dimensions(reshaped_all_gather_dimension); ++reshaped_all_gather_dimension; } if (reshaped_num_strides != all_gather_num_strides) { return std::nullopt; } if (transformation_hlo->shape().dimensions(reshaped_all_gather_dimension) != all_gather_shape.dimensions(all_gather_dimension)) { return std::nullopt; } return reshaped_all_gather_dimension; }; std::vector<CollectiveTransformation> transformations; HloAllGatherInstruction* all_gather_instruction = DynCast<HloAllGatherInstruction>(all_gather); Shape all_gather_shape = all_gather_instruction->shape(); int64_t all_gather_dimension = all_gather_instruction->all_gather_dimension(); CHECK(all_gather_instruction != nullptr); for (HloInstruction* transformation_hlo : transformation_hlos) { bool found_unsupported_transformation = false; switch (transformation_hlo->opcode()) { case HloOpcode::kReshape: { std::optional<int64_t> reshaped_all_gather_dimension = get_reshaped_all_gather_dimension( all_gather_shape, all_gather_dimension, transformation_hlo); if (reshaped_all_gather_dimension.has_value()) { transformations.push_back( {transformation_hlo, *reshaped_all_gather_dimension}); all_gather_shape = transformation_hlo->shape(); all_gather_dimension = *reshaped_all_gather_dimension; } else { found_unsupported_transformation = true; } break; } default: return std::nullopt; } if (found_unsupported_transformation) { break; } } if (transformations.empty()) { return std::nullopt; } return transformations; } std::vector<HloInstruction*> GetAllReduceTransformations( HloInstruction* all_reduce) { HloAllReduceInstruction* all_reduce_instruction = DynCast<HloAllReduceInstruction>(all_reduce); CHECK_NE(all_reduce_instruction, nullptr); if (all_reduce_instruction->constrain_layout()) { return {}; } std::vector<HloInstruction*> transformation_hlos; HloInstruction* transformation_hlo = all_reduce->mutable_operand(0); while (transformation_hlo->opcode() == HloOpcode::kReshape && transformation_hlo->user_count() == 1) { transformation_hlos.push_back(transformation_hlo); transformation_hlo = transformation_hlo->mutable_operand(0); } return transformation_hlos; } } absl::StatusOr<bool> CollectiveTransformationReorder::ReorderAllGatherTransformations( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { HloInstructionMap<std::vector<CollectiveTransformation>> all_gather_to_transformations; for (HloComputation* computation : module->MakeComputationPostOrder(execution_threads)) { for (HloInstruction* instruction : computation->MakeInstructionPostOrder()) { if (instruction->opcode() == HloOpcode::kAllGather) { if (instruction->operand_count() != 1) { continue; } std::optional<std::vector<CollectiveTransformation>> all_gather_transformations = GetAllGatherTransformations(instruction); if (all_gather_transformations.has_value()) { all_gather_to_transformations[instruction] = *std::move(all_gather_transformations); } } } } if (all_gather_to_transformations.empty()) { return false; } auto reshape_all_gather_operand = [](HloInstruction* all_gather_operand, int64_t original_all_gather_dimension, const CollectiveTransformation& transformation) { Shape reshaped_all_gather_operand_shape = transformation.hlo->shape(); int64_t operand_all_gather_dimension_size = all_gather_operand->shape().dimensions( original_all_gather_dimension); reshaped_all_gather_operand_shape.set_dimensions( transformation.transformed_collective_dimension, operand_all_gather_dimension_size); HloComputation* computation = all_gather_operand->parent(); return computation->AddInstruction(HloInstruction::CreateReshape( reshaped_all_gather_operand_shape, all_gather_operand)); }; for (auto& [instruction, transformations] : all_gather_to_transformations) { HloAllGatherInstruction* all_gather = DynCast<HloAllGatherInstruction>(instruction); int64_t all_gather_dimension = all_gather->all_gather_dimension(); int64_t original_all_gather_dimension_size = all_gather->shape().dimensions(all_gather_dimension); HloInstruction* all_gather_operand = instruction->mutable_operand(0); for (const CollectiveTransformation& transformation : transformations) { all_gather_operand = reshape_all_gather_operand( all_gather_operand, all_gather_dimension, transformation); all_gather_dimension = transformation.transformed_collective_dimension; } Shape new_all_gather_shape = all_gather_operand->shape(); new_all_gather_shape.set_dimensions(all_gather_dimension, original_all_gather_dimension_size); HloComputation* computation = all_gather_operand->parent(); HloInstruction* new_all_gather = computation->AddInstruction(HloInstruction::CreateAllGather( new_all_gather_shape, {all_gather_operand}, all_gather_dimension, all_gather->device_list(), all_gather->constrain_layout(), all_gather->channel_id(), all_gather->use_global_device_ids())); TF_RETURN_IF_ERROR( transformations.back().hlo->ReplaceAllUsesWith(new_all_gather)); if (computation->root_instruction() == transformations.back().hlo) { computation->set_root_instruction(new_all_gather); } } return true; } absl::StatusOr<bool> CollectiveTransformationReorder::ReorderAllReduceTransformations( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { HloInstructionMap<std::vector<HloInstruction*>> all_reduce_to_transformations; for (HloComputation* computation : module->MakeComputationPostOrder(execution_threads)) { for (HloInstruction* instruction : computation->MakeInstructionPostOrder()) { if (instruction->opcode() == HloOpcode::kAllReduce) { if (instruction->user_count() != 1 || computation->root_instruction() == instruction) { continue; } std::vector<HloInstruction*> reshapes = GetAllReduceTransformations(instruction); if (reshapes.empty()) { continue; } all_reduce_to_transformations[instruction] = std::move(reshapes); } } } if (all_reduce_to_transformations.empty()) { return false; } for (auto& [inst, reshapes] : all_reduce_to_transformations) { HloComputation* computation = inst->parent(); HloAllReduceInstruction* all_reduce = DynCast<HloAllReduceInstruction>(inst); CHECK(!reshapes.empty()); HloInstruction* cur_operand = reshapes.back()->mutable_operand(0); HloInstruction* new_all_reduce = computation->AddInstruction(HloInstruction::CreateAllReduce( cur_operand->shape(), {cur_operand}, all_reduce->to_apply(), all_reduce->device_list(), all_reduce->constrain_layout(), all_reduce->channel_id(), all_reduce->use_global_device_ids())); cur_operand = new_all_reduce; for (int64_t i = reshapes.size() - 1; i >= 0; --i) { cur_operand = computation->AddInstruction( HloInstruction::CreateReshape(reshapes[i]->shape(), cur_operand)); } TF_RETURN_IF_ERROR( computation->ReplaceInstruction(all_reduce, cur_operand)); } return true; } absl::StatusOr<bool> CollectiveTransformationReorder::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { TF_ASSIGN_OR_RETURN(bool ag_changed, ReorderAllGatherTransformations( module, execution_threads)); TF_ASSIGN_OR_RETURN(bool ar_changed, ReorderAllReduceTransformations( module, execution_threads)); if (ag_changed || ar_changed) { HloDCE dce; TF_RETURN_IF_ERROR(dce.Run(module, execution_threads).status()); } return ag_changed || ar_changed; } }
#include "xla/service/collective_transformation_reorderer.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_verifier.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; class CollectiveTransformationReordererTest : public HloTestBase { public: absl::StatusOr<bool> RunCollectiveTransformationReorderer(HloModule* module) { CollectiveTransformationReorder reorderer; return reorderer.Run(module, {}); } }; TEST_F(CollectiveTransformationReordererTest, ReshapeWithinShardAfterAllGatherDim) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = bf16[8,4,1024] parameter(0) all-gather = bf16[8,32,1024] all-gather(param), dimensions={1}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 ROOT reshape = bf16[8,32,8,128] reshape(all-gather) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::AllGather(op::Reshape(op::Parameter()))); HloInstruction* all_gather = module->entry_computation()->root_instruction(); EXPECT_THAT(all_gather->dimensions(), ::testing::ElementsAre(1)); } TEST_F(CollectiveTransformationReordererTest, ReshapeWithinShardBeforeAllGatherDim) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = bf16[8,32,8,4,1024] parameter(0) all-gather = bf16[8,32,8,32,1024] all-gather(param), dimensions={3}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 ROOT reshape = bf16[2048,32,1024] reshape(all-gather) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::AllGather(op::Reshape(op::Parameter()))); HloInstruction* all_gather = module->entry_computation()->root_instruction(); EXPECT_THAT(all_gather->dimensions(), ::testing::ElementsAre(1)); } TEST_F(CollectiveTransformationReordererTest, ReshapeWithinShardBeforeAndAfterAllGatherDim) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = bf16[8,32,8,4,1024] parameter(0) all-gather = bf16[8,32,8,32,1024] all-gather(param), dimensions={3}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 ROOT reshape = bf16[2048,32,8,128] reshape(all-gather) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::AllGather(op::Reshape(op::Parameter()))); HloInstruction* all_gather = module->entry_computation()->root_instruction(); EXPECT_THAT(all_gather->dimensions(), ::testing::ElementsAre(1)); } TEST_F(CollectiveTransformationReordererTest, ReshapeAcrossShards) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = bf16[8,1,8,128] parameter(0) all-gather = bf16[8,8,8,128] all-gather(param), dimensions={1}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 ROOT reshape = bf16[64,8,128] reshape(all-gather) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectiveTransformationReordererTest, MergeAllGatherDimensionWithNext) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = bf16[8,8,16,16] parameter(0) all-gather = bf16[64,8,16,16] all-gather(param), dimensions={0}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 ROOT reshape = bf16[512,16,16] reshape(all-gather) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectiveTransformationReordererTest, MergeAllGatherDimensionWithPrevious) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param = bf16[8,8,16,16] parameter(0) all-gather = bf16[8,64,16,16] all-gather(param), dimensions={1}, replica_groups={{0,1,2,3,4,5,6,7}}, channel_id=1 ROOT reshape = bf16[512,16,16] reshape(all-gather) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectiveTransformationReordererTest, AllReduceSingleReshape) { absl::string_view hlo_string = R"( HloModule module add { a = bf16[] parameter(0) b = bf16[] parameter(1) ROOT s = bf16[] add(a, b) } ENTRY entry { param = bf16[16384,6144] parameter(0) reshape = bf16[1,16384,6144] reshape(param) all-reduce = bf16[1,16384,6144] all-reduce(reshape), channel_id=1, replica_groups={{0,1,2,3,4,5,6,7}}, to_apply=add constant = s32[] constant(0) ROOT dynamic-slice = bf16[1,16384,384] dynamic-slice(all-reduce, constant, constant, constant), dynamic_slice_sizes={1,16384,384} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_TRUE(changed); TF_ASSERT_OK(HloVerifier(false, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::DynamicSlice(op::Reshape(op::AllReduce(op::Parameter())), op::Constant(), op::Constant(), op::Constant())); } TEST_F(CollectiveTransformationReordererTest, AllReduceTwoReshapes) { absl::string_view hlo_string = R"( HloModule module add { a = bf16[] parameter(0) b = bf16[] parameter(1) ROOT s = bf16[] add(a, b) } ENTRY entry { param = bf16[16384,3072,2] parameter(0) reshape.1 = bf16[16384,6144] reshape(param) reshape.2 = bf16[1,16384,6144] reshape(reshape.1) all-reduce = bf16[1,16384,6144] all-reduce(reshape.2), channel_id=1, replica_groups={{0,1,2,3,4,5,6,7}}, to_apply=add constant = s32[] constant(0) ROOT dynamic-slice = bf16[1,16384,384] dynamic-slice(all-reduce, constant, constant, constant), dynamic_slice_sizes={1,16384,384} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_TRUE(changed); TF_ASSERT_OK(HloVerifier(false, true) .Run(module.get()) .status()); EXPECT_THAT( module->entry_computation()->root_instruction(), op::DynamicSlice(op::Reshape(op::Reshape(op::AllReduce(op::Parameter()))), op::Constant(), op::Constant(), op::Constant())); } TEST_F(CollectiveTransformationReordererTest, AllReduceReshapeWithTwoUsers) { absl::string_view hlo_string = R"( HloModule module add { a = bf16[] parameter(0) b = bf16[] parameter(1) ROOT s = bf16[] add(a, b) } ENTRY entry { param = bf16[16384,6144] parameter(0) reshape = bf16[1,16384,6144] reshape(param) all-reduce = bf16[1,16384,6144] all-reduce(reshape), channel_id=1, replica_groups={{0,1,2,3,4,5,6,7}}, to_apply=add constant = s32[] constant(0) dynamic-slice = bf16[1,16384,384] dynamic-slice(all-reduce, constant, constant, constant), dynamic_slice_sizes={1,16384,384} copy = bf16[1,16384,6144] copy(reshape) ROOT tuple = (bf16[1,16384,6144], bf16[1,16384,384]) tuple(copy, dynamic-slice) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectiveTransformationReordererTest, AllReduceWithTwoUsersReshape) { absl::string_view hlo_string = R"( HloModule module add { a = bf16[] parameter(0) b = bf16[] parameter(1) ROOT s = bf16[] add(a, b) } ENTRY entry { param = bf16[16384,6144] parameter(0) reshape = bf16[1,16384,6144] reshape(param) all-reduce = bf16[1,16384,6144] all-reduce(reshape), channel_id=1, replica_groups={{0,1,2,3,4,5,6,7}}, to_apply=add constant = s32[] constant(0) dynamic-slice = bf16[1,16384,384] dynamic-slice(all-reduce, constant, constant, constant), dynamic_slice_sizes={1,16384,384} copy = bf16[1,16384,6144] copy(all-reduce) ROOT tuple = (bf16[1,16384,6144], bf16[1,16384,384]) tuple(copy, dynamic-slice) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectiveTransformationReordererTest, AllReduceConstrainLayout) { absl::string_view hlo_string = R"( HloModule module add { a = bf16[] parameter(0) b = bf16[] parameter(1) ROOT s = bf16[] add(a, b) } ENTRY entry { param = bf16[16384,6144] parameter(0) reshape = bf16[1,16384,6144] reshape(param) all-reduce = bf16[1,16384,6144] all-reduce(reshape), channel_id=1, replica_groups={{0,1,2,3,4,5,6,7}}, constrain_layout=true, to_apply=add constant = s32[] constant(0) ROOT dynamic-slice = bf16[1,16384,384] dynamic-slice(all-reduce, constant, constant, constant), dynamic_slice_sizes={1,16384,384} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunCollectiveTransformationReorderer(module.get())); EXPECT_FALSE(changed); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/collective_transformation_reorderer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/collective_transformation_reorderer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
df627059-2ef8-47c7-880a-5779a2e8d0a0
cpp
tensorflow/tensorflow
hlo_unstacker
third_party/xla/xla/service/hlo_unstacker.cc
third_party/xla/xla/service/hlo_unstacker_test.cc
#include "xla/service/hlo_unstacker.h" #include <algorithm> #include <cstdint> #include <deque> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/map_util.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/pattern_matcher.h" #include "xla/service/tuple_util.h" #include "xla/service/while_loop_unroller.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { enum class PatternType { DSFusionNoBitcastPattern, DSFusionPattern, NestedDSFusionPattern, Other, }; static std::string PatternTypeToString(PatternType pattern_type) { switch (pattern_type) { case PatternType::DSFusionNoBitcastPattern: return "DSFusionNoBitcastPattern"; case PatternType::DSFusionPattern: return "DSFusionPattern"; case PatternType::NestedDSFusionPattern: return "NestedDSFusionPattern"; case PatternType::Other: return "Other"; } } struct PatternInfo { PatternType type; std::vector<const HloInstruction*> unstacked_instrs; const HloInstruction* instr; Shape unstacked_shape; HloComputation* unstacking_computation; std::string ToString() const { if (unstacking_computation == nullptr) { return absl::StrCat("type: \n\t", PatternTypeToString(type), "\n", "instr: \n\t", instr->name(), "\n", "shape: \n\t", unstacked_shape.ToString(true)); } else { return absl::StrCat("type: \n\t", PatternTypeToString(type), "\n", "instr: \n\t", instr->name(), "\n", "shape: \n\t", unstacked_shape.ToString(true), "\n", "comp: \n", unstacking_computation->name()); } } }; struct UnstackerMetadata { static absl::StatusOr<UnstackerMetadata> Create( HloModule* module, std::function<bool(HloInstruction*)> unfuse_slice) { UnstackerMetadata metadata; TF_ASSIGN_OR_RETURN( bool prepared, WhileLoopUnroller::PrepareModuleForUnrolling(module, {})); if (prepared) { VLOG(3) << "Prepared module: " << module->name() << " for unstacking."; } std::vector<std::pair<HloInstruction*, WhileLoopConfig>> loops = WhileLoopUnroller::GetUnrollableLoops(module, {}, std::nullopt); for (const auto& [instr, while_loop_config] : loops) { metadata.unrollable_loop_bodies[instr->while_body()] = while_loop_config; metadata.bodies[instr->while_body()] = instr; } metadata.unfuse_slice = unfuse_slice; return metadata; } absl::flat_hash_map<HloComputation*, WhileLoopConfig> unrollable_loop_bodies; absl::flat_hash_map<const HloComputation*, HloInstruction*> bodies; std::vector< std::pair<std::function<std::optional<PatternInfo>( const UnstackerMetadata&, const HloInstruction*, int64_t)>, std::function<absl::Status(HloInstruction*, const Shape&)>>> custom_handlers; std::function<bool(HloInstruction*)> unfuse_slice; }; class UnstackerTransformer { public: explicit UnstackerTransformer(const UnstackerMetadata& metadata) : metadata_(metadata) {} std::vector<const HloInstruction*> HandleInstruction( const HloInstruction* instr, int64_t changed_idx) { if (instr->opcode() != HloOpcode::kFusion) { return {}; } VLOG(3) << "HandleInstruction(" << instr->shape().ToString() << instr->name() << ", " << changed_idx << ")"; for (const auto& [custom_pattern, custom_handler] : metadata_.custom_handlers) { std::optional<PatternInfo> stacked_user = custom_pattern(metadata_, instr, changed_idx); if (!stacked_user.has_value()) { continue; } PatternInfo& pattern_info = stacked_user.value(); pattern_type_ = pattern_info.type; VLOG(3) << "PatternInfo:" << "\n" << pattern_info.ToString(); if (pattern_info.unstacking_computation != nullptr && unstacking_computation_ != nullptr) { if (!absl::EqualsIgnoreCase( pattern_info.unstacking_computation->ToString( HloPrintOptions::Fingerprint()), unstacking_computation_->ToString( HloPrintOptions::Fingerprint()))) { VLOG(3) << "Seen multiple unstacking computations, cannot handle: " << "\n previous computations: \n" << unstacking_computation_->ToString( HloPrintOptions::Fingerprint()) << "\n current computations: \n" << pattern_info.unstacking_computation->ToString( HloPrintOptions::Fingerprint()); return {}; } } if (pattern_info.unstacking_computation != nullptr) { unstacking_computation_ = pattern_info.unstacking_computation; } unstacked_shape_ = std::make_unique<Shape>(pattern_info.unstacked_shape); unstacked_instrs_.push_back(instr); std::function<absl::Status()> unstack_wrapper = [&custom_handler = custom_handler, pattern_info]() mutable -> absl::Status { HloInstruction* mutable_dynamic_slicing_fusion = const_cast<HloInstruction*>(pattern_info.instr); return custom_handler(mutable_dynamic_slicing_fusion, pattern_info.unstacked_shape.tuple_shapes(0)); }; body_changes_.push_back(unstack_wrapper); return pattern_info.unstacked_instrs; } return {}; } const UnstackerMetadata& GetMetadata() const { return metadata_; } std::vector<const HloInstruction*>& GetUnstackedInstructions() { return unstacked_instrs_; } const Shape* GetUnstackedShape() const { return unstacked_shape_.get(); } HloComputation* GetUnstackingComputation() const { return unstacking_computation_; } std::vector<std::function<void(const UnstackerTransformer&)>>& GetLoopChanges() { return loop_changes_; } std::vector<std::function<absl::Status()>>& GetBodyChanges() { return body_changes_; } absl::flat_hash_map<HloInstruction*, std::vector<int64_t>>& GetOperandChanges() { return operand_changes_; } void AddOperandChange(HloInstruction* instr, int64_t index) { operand_changes_[instr].push_back(index); } void AddLoopChange( std::function<void(const UnstackerTransformer&)> loop_change) { loop_changes_.push_back(loop_change); } PatternType GetPatternType() const { return pattern_type_; } private: PatternType pattern_type_; const UnstackerMetadata& metadata_; std::unique_ptr<Shape> unstacked_shape_ = nullptr; HloComputation* unstacking_computation_ = nullptr; std::vector<std::function<void(const UnstackerTransformer&)>> loop_changes_; std::vector<std::function<absl::Status()>> body_changes_; absl::flat_hash_map<HloInstruction*, std::vector<int64_t>> operand_changes_; std::vector<const HloInstruction*> unstacked_instrs_; }; bool CanUnstackWhileOperand(const HloInstruction* while_instr, UnstackerTransformer& unstacker, int64_t index); bool UnstackWhileOperandAtIndex( const UnstackerMetadata& metadata, HloInstruction* while_instr, int64_t index, std::vector<const HloInstruction*>& unstacked_instructions); bool PropagateGteShapeChange(HloInstruction* gte, UnstackerTransformer& unstacker) { VLOG(5) << "PropagateGteShapeChange(" << gte->name() << ")"; std::vector<const HloInstruction*> handled_instrs; absl::flat_hash_map<HloInstruction*, int64_t> visited; std::deque<HloInstruction*> worklist; worklist.push_back(gte); visited.insert({gte, gte->tuple_index()}); while (!worklist.empty()) { HloInstruction* changed_instr_to_propagate = worklist.front(); int64_t changed_operand_index = FindOrDie(visited, changed_instr_to_propagate); worklist.pop_front(); for (HloInstruction* user : changed_instr_to_propagate->users()) { if (ContainsKey(visited, user)) { continue; } if (user->opcode() == HloOpcode::kGetTupleElement) { if (user->tuple_index() != changed_operand_index) { continue; } visited.insert({user, changed_operand_index}); worklist.push_back(user); } else if (user->opcode() == HloOpcode::kTuple) { int64_t use_index = user->operand_index(changed_instr_to_propagate); visited.insert({user, {use_index}}); worklist.push_back(user); } else if (user->opcode() == HloOpcode::kWhile) { bool changed_nested_while = CanUnstackWhileOperand(user, unstacker, changed_operand_index); if (!changed_nested_while) { return false; } visited.insert({user, changed_operand_index}); worklist.push_back(user); } else { if (absl::c_find(handled_instrs, user) != handled_instrs.end()) { continue; } if (user->IsCustomCall("DynamicGte") || user->IsCustomCall("DynamicTuple")) { continue; } int64_t use_index = user->operand_index(changed_instr_to_propagate); std::vector<const HloInstruction*> curr_handled_instrs = unstacker.HandleInstruction(user, use_index); if (curr_handled_instrs.empty()) { VLOG(3) << "Custom unstacker not found for " << user->name(); return false; } for (const HloInstruction* instr : curr_handled_instrs) { for (HloInstruction* handled_instr_user : instr->users()) { if (user->shape() == gte->shape()) { visited.insert({handled_instr_user, changed_operand_index}); worklist.push_back(handled_instr_user); } } handled_instrs.push_back(instr); } } } } for (const auto& [instr, index] : visited) { unstacker.AddOperandChange(instr, index); } return true; } bool CanPropagateGteShapeChangesInComputation( const HloComputation* comp, const HloInstruction* operand, UnstackerTransformer& shape_transformer, int64_t idx) { VLOG(3) << "Propagating shape change of index " << idx << " in : " << comp->name(); for (HloInstruction* instr : comp->MakeInstructionPostOrder()) { if (instr->opcode() == HloOpcode::kGetTupleElement && instr->tuple_index() == idx) { if (instr->operand(0) != operand) { continue; } bool can_propagate = PropagateGteShapeChange(instr, shape_transformer); if (!can_propagate) { VLOG(3) << "Failed to propagate shape change for " << instr->name(); return false; } } } VLOG(3) << "Finish propagating shape change of index " << idx << " in: " << comp->name(); return true; } void UnstackWhileInput(const UnstackerTransformer& unstacker, HloInstruction* while_instr, int64_t index) { VLOG(3) << "Unstacking while input: " << while_instr->name() << " at " << index; const Shape* new_shape = unstacker.GetUnstackedShape(); HloComputation* unstacking_computation = unstacker.GetUnstackingComputation(); const Shape& slice_shape = new_shape->tuple_shapes(0); HloInstruction* old_while_input = while_instr->while_init()->mutable_operand(index); if (old_while_input->shape().IsTuple()) { VLOG(3) << "Input is already unstacked: " << old_while_input->name(); return; } std::vector<HloInstruction*> slices; if (old_while_input->IsCustomCall("AllocateBuffer")) { for (int64_t i = 0; i < new_shape->tuple_shapes_size(); ++i) { slices.push_back(while_instr->AddInstruction( HloInstruction::CreateCustomCall(slice_shape, {}, "AllocateBuffer"))); } } else { for (int64_t i = 0; i < new_shape->tuple_shapes_size(); ++i) { HloInstruction* root_instr = unstacking_computation->root_instruction(); HloInstruction* slice = nullptr; if (unstacker.GetPatternType() == PatternType::DSFusionPattern || unstacker.GetPatternType() == PatternType::NestedDSFusionPattern || unstacker.GetPatternType() == PatternType::DSFusionNoBitcastPattern) { HloInstruction* dynamic_slice = nullptr; if (unstacker.GetPatternType() == PatternType::DSFusionPattern || unstacker.GetPatternType() == PatternType::NestedDSFusionPattern) { dynamic_slice = root_instr->mutable_operand(0); } else if (unstacker.GetPatternType() == PatternType::DSFusionNoBitcastPattern) { dynamic_slice = root_instr; } std::vector<int64_t> new_start_indices; new_start_indices.reserve(dynamic_slice->shape().rank()); std::vector<int64_t> new_limit_indices; new_limit_indices.reserve(dynamic_slice->shape().rank()); std::vector<int64_t> new_strides; new_strides.reserve(dynamic_slice->shape().rank()); new_start_indices.push_back(i); new_limit_indices.push_back(i + 1); new_strides.push_back(1); for (int64_t j = 1; j < dynamic_slice->shape().rank(); ++j) { new_start_indices.push_back(0); new_limit_indices.push_back( dynamic_slice->mutable_operand(0)->shape().dimensions(j)); new_strides.push_back(1); } slice = while_instr->AddInstruction(HloInstruction::CreateSlice( dynamic_slice->shape(), old_while_input, new_start_indices, new_limit_indices, new_strides)); } if (slice == nullptr || !unstacker.GetMetadata().unfuse_slice(slice)) { std::vector<HloInstruction*> operands = { old_while_input, while_instr->AddInstruction(MakeScalarConstantWithShape( unstacking_computation->parameter_instruction(1)->shape(), i))}; slice = while_instr->AddInstruction(HloInstruction::CreateFusion( slice_shape, HloInstruction::FusionKind::kLoop, operands, while_instr->GetModule()->AddEmbeddedComputation( unstacking_computation->Clone()), "hoisted")); } slices.push_back(slice); } } HloInstruction* new_operand_element = while_instr->AddInstruction(HloInstruction::CreateTuple(slices)); HloInstruction* new_while_init = TupleUtil::ReplaceTupleWith(new_operand_element, while_instr->while_init(), {index}, false) .value(); CHECK_OK(while_instr->ReplaceOperandWithDifferentShape(0, new_while_init)); } bool CanUnstackWhileOperand(const HloInstruction* while_instr, UnstackerTransformer& unstacker, int64_t index) { VLOG(5) << "ReplaceWhileOperandShape: " << while_instr->name() << " at " << index; bool body_changes_collected = CanPropagateGteShapeChangesInComputation( while_instr->while_body(), while_instr->while_body()->parameter_instruction(0), unstacker, index); if (!body_changes_collected) { return false; } bool condition_changes_collected = CanPropagateGteShapeChangesInComputation( while_instr->while_condition(), while_instr->while_condition()->parameter_instruction(0), unstacker, index); if (!condition_changes_collected) { return false; } bool parent_changes_collected = CanPropagateGteShapeChangesInComputation( while_instr->parent(), while_instr, unstacker, index); if (!parent_changes_collected) { VLOG(3) << "Failed: parent_changes_collected"; return false; } HloInstruction* root_operand = while_instr->while_body()->root_instruction()->mutable_operand(index); if (root_operand == nullptr) { return false; } HloInstruction* gte_operand = nullptr; if (Match(root_operand, match::GetTupleElement(match::Op(&gte_operand)))) { if (Match(gte_operand, match::While())) { VLOG(3) << "Faced a gte originating from loop: " << root_operand->ToString(); bool loop_feeding_root_changes_collected = CanUnstackWhileOperand( root_operand->operand(0), unstacker, root_operand->tuple_index()); if (!loop_feeding_root_changes_collected) { VLOG(3) << "Failed: loop " << root_operand->operand(0)->name() << " output at " << index << " is not unstackable"; return false; } } else if (!Match(gte_operand, match::Parameter().WithParameterNum(0))) { VLOG(3) << "Failed: root operand of while_body at " << index << " is not a parameter"; return false; } } auto loop_change = [=](const UnstackerTransformer& unstacker, HloInstruction* loop, int64_t idx) mutable { Shape old_shape = ShapeUtil::MakeStaticShape( loop->while_body()->parameter_instruction(0)->shape()); ShapeUtil::UpdateTupleShape(*unstacker.GetUnstackedShape(), idx, &old_shape); loop->while_body()->ReplaceParameter( 0, HloInstruction::CreateParameter(0, old_shape, "unstacked")); loop->while_condition()->ReplaceParameter( 0, HloInstruction::CreateParameter(0, old_shape, "unstacked")); CHECK_NE(unstacker.GetUnstackingComputation(), nullptr); UnstackWhileInput(unstacker, loop, idx); *loop->mutable_shape() = old_shape; }; auto loop_change_wrapper = [&loop_change, while_instr, index](const UnstackerTransformer& unstacker) { HloInstruction* mutable_loop = const_cast<HloInstruction*>(while_instr); loop_change(unstacker, mutable_loop, index); }; unstacker.AddLoopChange(loop_change_wrapper); return true; } bool UnstackWhileOperandAtIndex( const UnstackerMetadata& metadata, HloInstruction* while_instr, int64_t index, std::vector<const HloInstruction*>& unstacked_instructions) { UnstackerTransformer unstacker = UnstackerTransformer(metadata); bool can_unstack = CanUnstackWhileOperand(while_instr, unstacker, index); if (!can_unstack) { VLOG(3) << "Unstacking failed for " << while_instr->name() << " at " << index; return false; } if (unstacker.GetUnstackedShape() == nullptr) { VLOG(3) << "Failed: unstacked shape is null"; return false; } if (unstacker.GetUnstackingComputation() == nullptr) { VLOG(3) << "Failed: unstacking computation is null"; return false; } for (auto& [instr, indices] : unstacker.GetOperandChanges()) { switch (instr->opcode()) { case HloOpcode::kGetTupleElement: VLOG(3) << "Changing shape of: " << instr->name(); *instr->mutable_shape() = *unstacker.GetUnstackedShape(); break; case HloOpcode::kTuple: { for (int64_t index : indices) { VLOG(3) << "Changing shape of: " << instr->name() << " at " << index; *instr->mutable_shape()->mutable_tuple_shapes(index) = *unstacker.GetUnstackedShape(); } break; } case HloOpcode::kWhile: for (int64_t index : indices) { VLOG(3) << "Changing shape of: " << instr->name() << " at " << index; ShapeUtil::UpdateTupleShape(*unstacker.GetUnstackedShape(), index, instr->mutable_shape()); } break; default: LOG(FATAL) << "Unsupported opcode: " << instr->name(); } } for (const auto& body_change : unstacker.GetBodyChanges()) { CHECK_OK(body_change()); } for (auto& loop_change : unstacker.GetLoopChanges()) { loop_change(unstacker); } for (const HloInstruction* instr : unstacker.GetUnstackedInstructions()) { unstacked_instructions.push_back(instr); } return true; } Shape MakeUnstackedShapeFromSlice(const Shape& slice_shape, int64_t layers) { std::vector<Shape> shapes; shapes.reserve(layers); for (int64_t i = 0; i < layers; ++i) { shapes.push_back(slice_shape); } return ShapeUtil::MakeTupleShape(shapes); } std::optional<WhileLoopConfig> IsFusionInsideUnrollableLoopWithNumParameter( const UnstackerMetadata& metadata, const HloInstruction* instr, int64_t num_fusion_params) { if (instr->opcode() != HloOpcode::kFusion) { return std::nullopt; } if (instr->fused_parameters().size() != num_fusion_params) { VLOG(3) << "Fusion has different number of parameters"; return std::nullopt; } if (!metadata.unrollable_loop_bodies.contains(instr->parent())) { VLOG(5) << "Fusion not inside unrollable while body, " << instr->name() << " inside " << instr->parent()->name(); return std::nullopt; } return metadata.unrollable_loop_bodies.at(instr->parent()); } HloInstruction* GetMostMajorEffectivelyStaticDynamicSliceInFusion( const UnstackerMetadata& metadata, const HloInstruction* instr, int64_t num_fusion_params, int64_t stacked_operand_idx) { std::optional<WhileLoopConfig> while_instr_config = IsFusionInsideUnrollableLoopWithNumParameter(metadata, instr, num_fusion_params); if (!while_instr_config.has_value()) { return nullptr; } for (HloInstruction* fused_instr : instr->fused_instructions_computation()->MakeInstructionPostOrder()) { std::optional<int64_t> dynamic_index = MatchEffectivelyStaticDynamicSliceInsideLoop( fused_instr, instr->fused_instructions_computation()->parameter_instruction( stacked_operand_idx), while_instr_config.value()); if (dynamic_index.has_value() && dynamic_index.value() == 0) { return fused_instr; } } return nullptr; } HloInstruction* GetMostMajorShapeCoveringDynamicIndexInFusion( const UnstackerMetadata& metadata, const HloInstruction* instr, HloOpcode opcode, int64_t num_fusion_params, int64_t stacked_operand_idx) { std::optional<WhileLoopConfig> while_instr_config = IsFusionInsideUnrollableLoopWithNumParameter(metadata, instr, num_fusion_params); if (!while_instr_config.has_value()) { return nullptr; } for (HloInstruction* fused_instr : instr->fused_instructions_computation()->MakeInstructionPostOrder()) { if (fused_instr->opcode() != opcode) { continue; } std::optional<int64_t> dynamic_index = MatchShapeCoveringDynamicIndexInstruction( fused_instr, instr->fused_instructions_computation()->parameter_instruction( stacked_operand_idx), opcode, while_instr_config.value()); if (dynamic_index.has_value() && dynamic_index.value() == 0) { return fused_instr; } } return nullptr; } std::optional<PatternInfo> GetDSFusionPattern(const UnstackerMetadata& metadata, const HloInstruction* instr, int64_t stacked_operand_idx) { VLOG(3) << "Checking DSFusion"; HloInstruction* shape_covering_instr = GetMostMajorEffectivelyStaticDynamicSliceInFusion(metadata, instr, 2, stacked_operand_idx); if (shape_covering_instr == nullptr) { return std::nullopt; } HloInstruction* bitcast_operand = nullptr; if (Match(instr->fused_instructions_computation()->root_instruction(), match::Bitcast(match::Op(&bitcast_operand)))) { if (bitcast_operand == shape_covering_instr) { PatternInfo pattern_info; pattern_info.type = PatternType::DSFusionPattern; pattern_info.instr = instr; const Shape& slice_shape = shape_covering_instr->shape(); const int64_t num_layers = instr->operand(0)->shape().dimensions(0); pattern_info.unstacked_shape = MakeUnstackedShapeFromSlice(slice_shape, num_layers); pattern_info.unstacking_computation = instr->fused_instructions_computation(); pattern_info.unstacked_instrs.push_back(instr); return pattern_info; } } return std::nullopt; } absl::Status UnstackDSFusionPattern( HloInstruction* mutable_dynamic_slicing_fusion, const Shape& slice_shape) { HloComputation* parent_loop = mutable_dynamic_slicing_fusion->parent(); HloInstruction* stacked = mutable_dynamic_slicing_fusion->mutable_operand(0); HloInstruction* offset = mutable_dynamic_slicing_fusion->mutable_operand(1); HloInstruction* new_operand = parent_loop->AddInstruction(HloInstruction::CreateCustomCall( slice_shape, {stacked, offset}, "DynamicGte")); HloInstruction* bitcast = mutable_dynamic_slicing_fusion->AddInstruction( HloInstruction::CreateBitcast(mutable_dynamic_slicing_fusion->shape(), new_operand)); return mutable_dynamic_slicing_fusion->ReplaceAllUsesWithDifferentShape( bitcast); } std::optional<PatternInfo> GetDSFusionNoBitcastPattern( const UnstackerMetadata& metadata, const HloInstruction* instr, int64_t stacked_operand_idx) { VLOG(3) << "Checking DSFusionNoBitcast"; HloInstruction* shape_covering_instr = GetMostMajorEffectivelyStaticDynamicSliceInFusion(metadata, instr, 2, stacked_operand_idx); if (shape_covering_instr == nullptr) { return std::nullopt; } if (instr->fused_instructions_computation()->root_instruction() != shape_covering_instr) { return std::nullopt; } PatternInfo pattern_info; pattern_info.type = PatternType::DSFusionNoBitcastPattern; pattern_info.instr = instr; const Shape& slice_shape = shape_covering_instr->shape(); const int64_t num_layers = instr->operand(0)->shape().dimensions(0); pattern_info.unstacked_shape = MakeUnstackedShapeFromSlice(slice_shape, num_layers); pattern_info.unstacking_computation = instr->fused_instructions_computation(); pattern_info.unstacked_instrs.push_back(instr); return pattern_info; } absl::Status UnstackDSFusionNoBitcastPattern( HloInstruction* mutable_dynamic_slicing_fusion, const Shape& slice_shape) { HloComputation* parent_loop = mutable_dynamic_slicing_fusion->parent(); HloInstruction* stacked = mutable_dynamic_slicing_fusion->mutable_operand(0); HloInstruction* offset = mutable_dynamic_slicing_fusion->mutable_operand(1); HloInstruction* new_operand = parent_loop->AddInstruction(HloInstruction::CreateCustomCall( slice_shape, {stacked, offset}, "DynamicGte")); return mutable_dynamic_slicing_fusion->ReplaceAllUsesWithDifferentShape( new_operand); } std::optional<PatternInfo> GetDUSFusionPattern( const UnstackerMetadata& metadata, const HloInstruction* instr, int64_t stacked_operand_idx) { VLOG(3) << "Checking DUSFusion"; HloInstruction* shape_covering_instr = GetMostMajorShapeCoveringDynamicIndexInFusion( metadata, instr, HloOpcode::kDynamicUpdateSlice, 3, stacked_operand_idx); if (shape_covering_instr == nullptr) { return std::nullopt; } if (Match(shape_covering_instr->operand(1), match::Bitcast(match::Parameter()))) { if (shape_covering_instr->parent()->root_instruction() == shape_covering_instr) { PatternInfo pattern_info; pattern_info.type = PatternType::Other; pattern_info.instr = instr; pattern_info.unstacked_shape = MakeUnstackedShapeFromSlice( instr->operand(2)->shape(), instr->operand(0)->shape().dimensions(0)); pattern_info.unstacking_computation = nullptr; pattern_info.unstacked_instrs.push_back(instr); return pattern_info; } } return std::nullopt; } absl::Status UnstackDUSFusionPattern( HloInstruction* mutable_dynamic_update_slicing_fusion, const Shape& slice_shape) { HloComputation* parent_loop = mutable_dynamic_update_slicing_fusion->parent(); HloInstruction* stacked = mutable_dynamic_update_slicing_fusion->mutable_operand(0); HloInstruction* offset = mutable_dynamic_update_slicing_fusion->mutable_operand(1); HloInstruction* update = mutable_dynamic_update_slicing_fusion->mutable_operand(2); HloInstruction* new_operand = parent_loop->AddInstruction(HloInstruction::CreateCustomCall( stacked->shape(), {stacked, update, offset}, "DynamicTuple")); for (HloInstruction* user : mutable_dynamic_update_slicing_fusion->users()) { TF_RETURN_IF_ERROR( mutable_dynamic_update_slicing_fusion->ReplaceUseWithDifferentShape( user, new_operand)); } return absl::OkStatus(); } std::optional<PatternInfo> GetDUSFusionWithPadPattern( const UnstackerMetadata& metadata, const HloInstruction* instr, int64_t stacked_operand_idx) { VLOG(3) << "Checking DUSFusionWithPad"; HloInstruction* shape_covering_instr = GetMostMajorShapeCoveringDynamicIndexInFusion( metadata, instr, HloOpcode::kDynamicUpdateSlice, 3, stacked_operand_idx); if (shape_covering_instr == nullptr) { return std::nullopt; } if (Match( shape_covering_instr->operand(1), match::Bitcast(match::Pad(match::Parameter(), match::Constant())))) { if (shape_covering_instr->parent()->root_instruction() == shape_covering_instr) { const HloInstruction* pad_instr = shape_covering_instr->operand(1)->operand(0); PatternInfo pattern_info; pattern_info.type = PatternType::Other; pattern_info.instr = instr; pattern_info.unstacked_shape = MakeUnstackedShapeFromSlice( pad_instr->shape(), shape_covering_instr->operand(0)->shape().dimensions(0)); pattern_info.unstacking_computation = nullptr; pattern_info.unstacked_instrs.push_back(instr); return pattern_info; } } return std::nullopt; } absl::Status UnstackDUSFusionWithPadPattern( HloInstruction* mutable_dynamic_update_slicing_fusion, const Shape& slice_shape) { HloComputation* parent_loop = mutable_dynamic_update_slicing_fusion->parent(); HloComputation* fused_computation = mutable_dynamic_update_slicing_fusion->fused_instructions_computation(); HloInstruction* stacked = mutable_dynamic_update_slicing_fusion->mutable_operand( fused_computation->root_instruction() ->mutable_operand(0) ->parameter_number()); HloInstruction* offset = mutable_dynamic_update_slicing_fusion->mutable_operand( fused_computation->root_instruction() ->mutable_operand(2) ->parameter_number()); HloInstruction* pad_instr = fused_computation->root_instruction() ->mutable_operand(1) ->mutable_operand(0); fused_computation->set_root_instruction(pad_instr, true); *mutable_dynamic_update_slicing_fusion->mutable_shape() = pad_instr->shape(); HloInstruction* new_operand = parent_loop->AddInstruction(HloInstruction::CreateCustomCall( stacked->shape(), {stacked, mutable_dynamic_update_slicing_fusion, offset}, "DynamicTuple")); for (HloInstruction* user : mutable_dynamic_update_slicing_fusion->users()) { if (user != new_operand) { TF_RETURN_IF_ERROR( mutable_dynamic_update_slicing_fusion->ReplaceUseWithDifferentShape( user, new_operand)); } } return absl::OkStatus(); } std::optional<PatternInfo> GetDSFusionWithAddPattern( const UnstackerMetadata& metadata, const HloInstruction* instr, int64_t stacked_operand_idx) { VLOG(3) << "Checking DSFusionWithAdd"; HloInstruction* shape_covering_instr = GetMostMajorShapeCoveringDynamicIndexInFusion( metadata, instr, HloOpcode::kDynamicSlice, 2, stacked_operand_idx); if (shape_covering_instr == nullptr) { return std::nullopt; } HloComputation* fused_computation = instr->fused_instructions_computation(); HloInstruction* fusion_root = fused_computation->root_instruction(); HloInstruction* add_operand; if (Match(fusion_root, match::Reduce(match::Add(match::Op(&add_operand), match::Broadcast(match::Constant())), match::Constant()))) { if (add_operand == shape_covering_instr) { const int64_t num_layers = instr->operand(0)->shape().dimensions(0); PatternInfo pattern_info; pattern_info.type = PatternType::Other; pattern_info.instr = instr; pattern_info.unstacked_shape = MakeUnstackedShapeFromSlice(instr->shape(), num_layers); HloComputation::Builder builder("unstack_add"); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter( 0, fused_computation->parameter_instruction(0)->shape(), "p0")); HloInstruction* p1 = builder.AddInstruction(HloInstruction::CreateParameter( 1, fused_computation->parameter_instruction(1)->shape(), "p1")); HloInstruction* zero = builder.AddInstruction(MakeScalarConstantWithShape(p1->shape(), 0)); std::vector<HloInstruction*> slice_starts; slice_starts.reserve(shape_covering_instr->shape().rank()); slice_starts.push_back(p1); for (int64_t i = 0; i < shape_covering_instr->shape().rank() - 1; i++) { slice_starts.push_back(zero); } HloInstruction* slice = builder.AddInstruction(HloInstruction::CreateDynamicSlice( shape_covering_instr->shape(), p0, slice_starts, shape_covering_instr->dynamic_slice_sizes())); HloInstruction* zero_reduce = builder.AddInstruction(MakeScalarConstantWithShape( ShapeUtil::MakeScalarShape(slice->shape().element_type()), 0)); HloInstruction* reduce = builder.AddInstruction(HloInstruction::CreateReduce( instr->shape(), slice, zero_reduce, fusion_root->dimensions(), fused_computation->root_instruction()->to_apply())); HloComputation* unstack_add = instr->GetModule()->AddEmbeddedComputation(builder.Build()); unstack_add->set_root_instruction(reduce); pattern_info.unstacking_computation = unstack_add; pattern_info.unstacked_instrs.push_back(instr); return pattern_info; } } return std::nullopt; } absl::Status UnstackDSFusionWithAddPattern( HloInstruction* mutable_dynamic_slice_with_add_fusion, const Shape& slice_shape) { HloComputation* parent_loop = mutable_dynamic_slice_with_add_fusion->parent(); HloInstruction* stacked = mutable_dynamic_slice_with_add_fusion->mutable_operand(0); HloInstruction* offset = mutable_dynamic_slice_with_add_fusion->mutable_operand(1); HloInstruction* new_operand = parent_loop->AddInstruction(HloInstruction::CreateCustomCall( slice_shape, {stacked, offset}, "DynamicGte")); HloInstruction* one = parent_loop->AddInstruction(MakeScalarConstantWithShape( ShapeUtil::MakeScalarShape(slice_shape.element_type()), 1)); HloInstruction* broadcast = parent_loop->AddInstruction( HloInstruction::CreateBroadcast(slice_shape, one, {})); HloInstruction* add = mutable_dynamic_slice_with_add_fusion->AddInstruction( HloInstruction::CreateBinary(new_operand->shape(), HloOpcode::kAdd, new_operand, broadcast)); TF_RETURN_IF_ERROR( mutable_dynamic_slice_with_add_fusion->ReplaceAllUsesWith(add)); return absl::OkStatus(); } std::optional<PatternInfo> GetNestedDSFusionPattern( const UnstackerMetadata& metadata, const HloInstruction* instr, int64_t stacked_operand_idx) { if (instr->opcode() != HloOpcode::kFusion) { return std::nullopt; } if (!metadata.unrollable_loop_bodies.contains(instr->parent())) { VLOG(5) << "Instruction not inside unrollable while body, " << instr->name() << " inside " << instr->parent()->name(); return std::nullopt; } WhileLoopConfig while_instr_config = metadata.unrollable_loop_bodies.at(instr->parent()); VLOG(3) << "Checking NestedDSFusionPattern"; HloInstruction* inner_fusion_user = nullptr; for (HloInstruction* fused_instr : instr->fused_instructions_computation()->MakeInstructionPostOrder()) { if (Match(fused_instr, match::Parameter(stacked_operand_idx))) { if (fused_instr->user_count() != 1) { return std::nullopt; } if (Match(fused_instr->users()[0], match::Fusion(match::Op(), match::Op()))) { inner_fusion_user = fused_instr->users()[0]; break; } } } if (inner_fusion_user == nullptr) { return std::nullopt; } for (HloInstruction* inner_fusion_instr : inner_fusion_user->fused_instructions_computation() ->MakeInstructionPostOrder()) { if (!Match(inner_fusion_instr, match::DynamicSlice())) { continue; } std::optional<int64_t> dynamic_index = MatchEffectivelyStaticDynamicSliceInsideLoop( inner_fusion_instr, inner_fusion_user->fused_instructions_computation() ->parameter_instruction(0), while_instr_config); if (dynamic_index.has_value() && dynamic_index.value() == 0) { const int64_t num_layers = inner_fusion_user->operand(0)->shape().dimensions(0); PatternInfo pattern_info; pattern_info.type = PatternType::NestedDSFusionPattern; pattern_info.instr = inner_fusion_user; pattern_info.unstacked_shape = MakeUnstackedShapeFromSlice(inner_fusion_instr->shape(), num_layers); pattern_info.unstacking_computation = inner_fusion_user->fused_instructions_computation(); pattern_info.unstacked_instrs.push_back(inner_fusion_user); return pattern_info; } } return std::nullopt; } absl::Status UnstackNestedDSFusionPattern( HloInstruction* mutable_dynamic_slicing_fusion, const Shape& slice_shape) { HloInstruction* parent_fusion = mutable_dynamic_slicing_fusion->parent()->FusionInstruction(); HloInstruction* stacked_in_ds_fusion = mutable_dynamic_slicing_fusion->mutable_operand(0); CHECK_EQ(stacked_in_ds_fusion->opcode(), HloOpcode::kParameter); int64_t stacked_param_number = stacked_in_ds_fusion->parameter_number(); HloInstruction* stacked = parent_fusion->mutable_operand(stacked_param_number); HloInstruction* offset_in_ds_fusion = mutable_dynamic_slicing_fusion->mutable_operand(1); CHECK_EQ(offset_in_ds_fusion->opcode(), HloOpcode::kParameter); HloInstruction* offset = parent_fusion->mutable_operand(offset_in_ds_fusion->parameter_number()); HloInstruction* sliced_param = parent_fusion->fused_instructions_computation()->ReplaceParameter( stacked_param_number, HloInstruction::CreateParameter(stacked_param_number, slice_shape, "sliced")); HloInstruction* bitcast = mutable_dynamic_slicing_fusion->AddInstruction( HloInstruction::CreateBitcast(mutable_dynamic_slicing_fusion->shape(), sliced_param)); HloInstruction* bitcast_fusion = mutable_dynamic_slicing_fusion->AddInstruction( HloInstruction::CreateFusion(mutable_dynamic_slicing_fusion->shape(), HloInstruction::FusionKind::kLoop, bitcast)); TF_RETURN_IF_ERROR( mutable_dynamic_slicing_fusion->ReplaceAllUsesWith(bitcast_fusion)); HloInstruction* new_operand = parent_fusion->AddInstruction(HloInstruction::CreateCustomCall( slice_shape, {stacked, offset}, "DynamicGte")); return parent_fusion->ReplaceOperandWithDifferentShape( sliced_param->parameter_number(), new_operand); } std::optional<PatternInfo> GetDSAndDUSPattern(const UnstackerMetadata& metadata, const HloInstruction* instr, int64_t stacked_operand_idx) { VLOG(3) << "Checking DSAndDUSPattern"; if (instr->opcode() != HloOpcode::kFusion) { return std::nullopt; } const HloInstruction* stacked = instr->operand(stacked_operand_idx); if (stacked->user_count() != 2) { return std::nullopt; } HloInstruction* shape_covering_ds_instr = GetMostMajorShapeCoveringDynamicIndexInFusion( metadata, instr, HloOpcode::kDynamicSlice, 2, stacked_operand_idx); if (shape_covering_ds_instr == nullptr) { return std::nullopt; } HloInstruction* bitcast_operand = nullptr; if (!Match(instr->fused_instructions_computation()->root_instruction(), match::Bitcast(match::Op(&bitcast_operand)))) { return std::nullopt; } if (bitcast_operand != shape_covering_ds_instr) { return std::nullopt; } if (!GetDUSFusionPattern(metadata, stacked->users()[1], stacked->users()[1]->operand_index(stacked))) { return std::nullopt; } PatternInfo pattern_info; pattern_info.type = PatternType::Other; pattern_info.instr = instr; const Shape& slice_shape = instr->shape(); const int64_t num_layers = instr->operand(0)->shape().dimensions(0); pattern_info.unstacked_shape = MakeUnstackedShapeFromSlice(slice_shape, num_layers); pattern_info.unstacking_computation = instr->fused_instructions_computation(); pattern_info.unstacked_instrs.push_back(instr); pattern_info.unstacked_instrs.push_back(stacked->users()[1]); return pattern_info; } absl::Status UnstackDSAndDUSPattern(HloInstruction* mutable_dynamic_slice, const Shape& slice_shape) { HloInstruction* stacked_gte = mutable_dynamic_slice->mutable_operand(0); int64_t stacked_gte_index = stacked_gte->tuple_index(); HloComputation* parent = stacked_gte->parent(); ShapeUtil::UpdateTupleShape(stacked_gte->shape(), stacked_gte_index, parent->root_instruction()->mutable_shape()); HloComputation* parent_loop = mutable_dynamic_slice->parent(); HloInstruction* stacked = mutable_dynamic_slice->mutable_operand(0); HloInstruction* offset = mutable_dynamic_slice->mutable_operand(1); HloInstruction* new_operand = parent_loop->AddInstruction(HloInstruction::CreateCustomCall( slice_shape, {stacked, offset}, "DynamicGte")); TF_RETURN_IF_ERROR( mutable_dynamic_slice->ReplaceAllUsesWithDifferentShape(new_operand)); HloInstruction* mutable_dynamic_update_slice = stacked_gte->users()[1]; TF_RETURN_IF_ERROR( UnstackDUSFusionPattern(mutable_dynamic_update_slice, slice_shape)); return absl::OkStatus(); } std::optional<PatternInfo> GetReduceFusionPattern( const UnstackerMetadata& metadata, const HloInstruction* instr, int64_t stacked_operand_idx) { VLOG(3) << "Checking ReduceFusion"; HloInstruction* shape_covering_instr = GetMostMajorShapeCoveringDynamicIndexInFusion( metadata, instr, HloOpcode::kDynamicSlice, 2, stacked_operand_idx); if (shape_covering_instr == nullptr) { return std::nullopt; } HloInstruction* reduce_operand = nullptr; HloInstruction* fusion_root = instr->fused_instructions_computation()->root_instruction(); if (Match(fusion_root, match::Reduce(match::Op(&reduce_operand), match::ConstantScalar())) && Match(fusion_root->to_apply()->root_instruction(), match::Add(match::Parameter(), match::Parameter()))) { if (reduce_operand == shape_covering_instr) { PatternInfo pattern_info; pattern_info.type = PatternType::Other; pattern_info.instr = instr; const Shape& slice_shape = instr->shape(); const int64_t num_layers = instr->operand(0)->shape().dimensions(0); pattern_info.unstacked_shape = MakeUnstackedShapeFromSlice(slice_shape, num_layers); pattern_info.unstacking_computation = instr->fused_instructions_computation(); pattern_info.unstacked_instrs.push_back(instr); return pattern_info; } } return std::nullopt; } absl::Status UnstackReduceFusionPattern(HloInstruction* mutable_reduce_fusion, const Shape& slice_shape) { HloComputation* parent_loop = mutable_reduce_fusion->parent(); HloInstruction* stacked = mutable_reduce_fusion->mutable_operand(0); HloInstruction* offset = mutable_reduce_fusion->mutable_operand(1); HloInstruction* new_operand = parent_loop->AddInstruction(HloInstruction::CreateCustomCall( slice_shape, {stacked, offset}, "DynamicGte")); return mutable_reduce_fusion->ReplaceAllUsesWithDifferentShape(new_operand); } }; absl::StatusOr<bool> HloUnstacker::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { TF_ASSIGN_OR_RETURN(auto metadata, UnstackerMetadata::Create(module, unfuse_slice_)); metadata.custom_handlers.push_back( std::make_pair(GetDSAndDUSPattern, UnstackDSAndDUSPattern)); metadata.custom_handlers.push_back( std::make_pair(GetDSFusionPattern, UnstackDSFusionPattern)); metadata.custom_handlers.push_back( std::make_pair(GetDUSFusionPattern, UnstackDUSFusionPattern)); metadata.custom_handlers.push_back(std::make_pair( GetDUSFusionWithPadPattern, UnstackDUSFusionWithPadPattern)); metadata.custom_handlers.push_back( std::make_pair(GetDSFusionWithAddPattern, UnstackDSFusionWithAddPattern)); metadata.custom_handlers.push_back( std::make_pair(GetReduceFusionPattern, UnstackReduceFusionPattern)); metadata.custom_handlers.push_back( std::make_pair(GetNestedDSFusionPattern, UnstackNestedDSFusionPattern)); metadata.custom_handlers.push_back(std::make_pair( GetDSFusionNoBitcastPattern, UnstackDSFusionNoBitcastPattern)); std::vector<HloInstruction*> entry_loops; for (HloInstruction* instr : module->entry_computation()->MakeInstructionPostOrder()) { if (Match(instr, match::While(match::Tuple())) && Match(instr->while_body()->root_instruction(), match::Tuple())) { entry_loops.push_back(instr); } } bool unstacked = false; std::vector<const HloInstruction*> unstacked_instructions; for (HloInstruction* loop : entry_loops) { for (int64_t i = 0; i < loop->shape().tuple_shapes_size(); ++i) { if (loop->while_init()->operand(i)->shape().IsTuple()) { continue; } VLOG(3) << "Attempting to unstack " << loop->name() << " at " << i << " = " << loop->while_init()->operand(i)->shape().ToString(true) << loop->while_init()->operand(i)->ToShortString(); unstacked |= UnstackWhileOperandAtIndex(metadata, loop, i, unstacked_instructions); VLOG(3) << "###################"; } } if (!unstacked) { return false; } TF_RETURN_IF_ERROR(module->RemoveUnusedComputations()); std::vector<HloInstruction*> loops_to_unroll; for (const HloInstruction* instr : unstacked_instructions) { HloInstruction* loop = metadata.bodies[instr->parent()]; if (std::find(loops_to_unroll.begin(), loops_to_unroll.end(), loop) == loops_to_unroll.end()) { loops_to_unroll.push_back(loop); } } for (int64_t i = loops_to_unroll.size() - 1; i >= 0; --i) { HloInstruction* loop = loops_to_unroll[i]; TF_ASSIGN_OR_RETURN(UnrollResult unroll_result, WhileLoopUnroller::UnrollAndReturnReplacement( loop, -1, false, true, false)); bool unrolled = unroll_result.unrolled; CHECK(unrolled); } VLOG(3) << "after unstacking \n" << module->ToString(); return true; } }
#include "xla/service/hlo_unstacker.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using UnstackerTest = HloTestBase; int64_t GetInstrCountWithOpcodeInEntry(HloModule* module, HloOpcode opcode) { int64_t instr_with_opcode_count = 0; for (HloInstruction* instr : module->entry_computation()->MakeInstructionPostOrder()) { if (instr->opcode() == opcode) { instr_with_opcode_count++; } } return instr_with_opcode_count; } TEST_F(UnstackerTest, UnstackDSFusionPattern) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice (param_0.51117: s8[3,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[3,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[3,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %while.body (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> (s32[], bf16[8,128], s8[3,128,128]) { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[3,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) %fusion.67830 = s8[128,128] fusion(s8[3,128,128] p1, i), kind=kLoop, calls=%fused_computation.slice conv = bf16[8,128] convolution(bf16[8,128] p0, s8[128,128] %fusion.67830), dim_labels=bf_io->bf ROOT out = (s32[], bf16[8,128], s8[3,128,128]) tuple(inc, conv, p1) } %while.cond (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(3) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[3,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[3,128,128]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], s8[3,128,128]) while(while.input), condition=%while.cond , body=%while.body while_use = s8[3,128,128] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kSlice), 3); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kFusion), 0); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, NotUnstackDSFusionPattern) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice (param_0.51117: s8[3,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[3,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[3,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.tuple { %param_0.51117 = s8[3,128,128] parameter(0) mult = multiply(param_0.51117, param_0.51117) ROOT out = tuple(param_0.51117, mult) } %while.body (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> (s32[], bf16[8,128], s8[3,128,128]) { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[3,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) %fusion.67830 = s8[128,128] fusion(s8[3,128,128] p1, i), kind=kLoop, calls=%fused_computation.slice conv = bf16[8,128] convolution(bf16[8,128] p0, s8[128,128] %fusion.67830), dim_labels=bf_io->bf fusion_mult = (s8[3,128,128], s8[3,128,128]) fusion(s8[3,128,128] p1), kind=kLoop, calls=%fused_computation.tuple mult = s8[3,128,128] get-tuple-element(fusion_mult), index=1 ROOT out = (s32[], bf16[8,128], s8[3,128,128]) tuple(inc, conv, mult) } %while.cond (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(3) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[3,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[3,128,128]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], s8[3,128,128]) while(while.input), condition=%while.cond , body=%while.body while_use = s8[3,128,128] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_FALSE(unstacked); } TEST_F(UnstackerTest, UnstackReduceFusionPattern) { std::string hlo_string = R"( HloModule SimpleLoop dynamic-slice.609.reduce_sub_computation { lhs.53 = s8[] parameter(0) rhs.53 = s8[] parameter(1) ROOT add.3090 = s8[] add(lhs.53, rhs.53) } fused_computation.1096.clone { param_0.5572 = s8[3,128,128] parameter(0) param_1.6711 = s32[]{:T(128)} parameter(1) constant.12008 = s32[]{:T(128)} constant(0) dynamic-slice.1545 = s8[1,128,128] dynamic-slice(param_0.5572, param_1.6711, constant.12008, constant.12008), dynamic_slice_sizes={1,128, 128} constant.12009 = s8[] constant(-0) ROOT reduce.919 = s8[128,128] reduce(dynamic-slice.1545, constant.12009), dimensions={0}, to_apply=dynamic-slice.609.reduce_sub_computation } %while.body (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> (s32[], bf16[8,128], s8[3,128,128]) { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[3,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) %fusion.67830 = s8[128,128] fusion(s8[3,128,128] p1, i), kind=kLoop, calls=%fused_computation.1096.clone conv = bf16[8,128] convolution(bf16[8,128] p0, s8[128,128] %fusion.67830), dim_labels=bf_io->bf ROOT out = (s32[], bf16[8,128], s8[3,128,128]) tuple(inc, conv, p1) } %while.cond (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(3) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[3,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[3,128,128]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], s8[3,128,128]) while(while.input), condition=%while.cond , body=%while.body while_use = s8[3,128,128] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackDSFusionPatternNoBitcast) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice (param_0.51117: s8[3,128,128], p1: s32[]) -> s8[1,128,128] { %param_0.51117 = s8[3,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) ROOT %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[3,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} } %while.body (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> (s32[], bf16[8,128], s8[3,128,128]) { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[3,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) %fusion.67830 = s8[1,128,128] fusion(s8[3,128,128] p1, i), kind=kLoop, calls=%fused_computation.slice bitcast.102 = s8[128,128] bitcast(s8[1,128,128] %fusion.67830) conv = bf16[8,128] convolution(bf16[8,128] p0, s8[128,128] bitcast.102), dim_labels=bf_io->bf ROOT out = (s32[], bf16[8,128], s8[3,128,128]) tuple(inc, conv, p1) } %while.cond (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(3) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[3,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[3,128,128]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], s8[3,128,128]) while(while.input), condition=%while.cond , body=%while.body while_use = s8[3,128,128] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kSlice), 3); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kFusion), 0); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackDSFusionPatternNoBitcastKeepFused) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice (param_0.51117: s8[3,128,128], p1: s32[]) -> s8[1,128,128] { %param_0.51117 = s8[3,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) ROOT %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[3,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} } %while.body (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> (s32[], bf16[8,128], s8[3,128,128]) { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[3,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) %fusion.67830 = s8[1,128,128] fusion(s8[3,128,128] p1, i), kind=kLoop, calls=%fused_computation.slice bitcast.102 = s8[128,128] bitcast(s8[1,128,128] %fusion.67830) conv = bf16[8,128] convolution(bf16[8,128] p0, s8[128,128] bitcast.102), dim_labels=bf_io->bf ROOT out = (s32[], bf16[8,128], s8[3,128,128]) tuple(inc, conv, p1) } %while.cond (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(3) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[3,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[3,128,128]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], s8[3,128,128]) while(while.input), condition=%while.cond , body=%while.body while_use = s8[3,128,128] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); auto unfuse = [](HloInstruction* instruction) { return false; }; TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker(unfuse).Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kSlice), 0); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kFusion), 3); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackDSFusionPatternWithDifferentLayout) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.30.clone (param_0.153: bf16[32,4,64,64,3], param_1.123: s32[]) -> bf16[64,4,64,3] { %param_0.153 = bf16[32,4,64,64,3]{2,1,4,3,0} parameter(0) %param_1.123 = s32[]{:T(128)} parameter(1) %constant.227 = s32[]{:T(128)} constant(0) %dynamic-slice.5 = bf16[1,4,64,64,3]{2,1,4,3,0} dynamic-slice(bf16[32,4,64,64,3]{2,1,4,3,0} %param_0.153, s32[]{:T(128)} %param_1.123, s32[]{:T(128)} %constant.227, s32[]{:T(128)} %constant.227, s32[]{:T(128)} %constant.227, s32[]{:T(128)} %constant.227), dynamic_slice_sizes={1,4,64,64,3} ROOT %bitcast.102 = bf16[64,4,64,3]{0,1,3,2} bitcast(bf16[1,4,64,64,3]{2,1,4,3,0} %dynamic-slice.5) } %while.body (wide_param: (s32[], bf16[8,128], bf16[32,4,64,64,3])) -> (s32[], bf16[8,128], bf16[32,4,64,64,3]) { wide_p = (s32[], bf16[8,128], bf16[32,4,64,64,3]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = bf16[32,4,64,64,3]{2,1,4,3,0} get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) %fusion.67830 = bf16[64,4,64,3]{0,1,3,2} fusion(p1, i), kind=kLoop, calls=%fused_computation.30.clone ROOT out = (s32[], bf16[8,128], bf16[32,4,64,64,3]) tuple(inc, p0, p1) } %while.cond (wide_param: (s32[], bf16[8,128], bf16[32,4,64,64,3])) -> pred[] { wide_p = (s32[], bf16[8,128], bf16[32,4,64,64,3]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(32) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = bf16[32,4,64,64,3] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], bf16[32,4,64,64,3]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], bf16[32,4,64,64,3]) while(while.input), condition=%while.cond , body=%while.body while_use = bf16[32,4,64,64,3] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kSlice), 32); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kFusion), 0); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt)); } TEST_F(UnstackerTest, UnstackNestedDSFusionPattern) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice (param_0.51117: s8[3,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[3,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[3,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.inner (param_0.34523: bf16[8,128], param_1.30691: s8[3,128,128], p2: s32[]) -> bf16[8,128] { %param_0.34523 = bf16[8,128] parameter(0) %param_1.30691 = s8[3,128,128] parameter(1) p2 = s32[] parameter(2) %fusion.67830 = s8[128,128] fusion(s8[3,128,128] %param_1.30691, p2), kind=kLoop, calls=%fused_computation.slice ROOT %convolution.3447 = bf16[8,128] convolution(bf16[8,128] %param_0.34523, s8[128,128] %fusion.67830), dim_labels=bf_io->bf } %while.body (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> (s32[], bf16[8,128], s8[3,128,128]) { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[3,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) fusion.conv = bf16[8,128] fusion(p0, p1, i), kind=kOutput, calls=%fused_computation.inner ROOT out = (s32[], bf16[8,128], s8[3,128,128]) tuple(inc, fusion.conv, p1) } %while.cond (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(3) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[3,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[3,128,128]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], s8[3,128,128]) while(while.input), condition=%while.cond , body=%while.body while_use = s8[3,128,128] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kSlice), 3); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackNestedDSFusionPatternWithDynamicIndex) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice (param_0.51117: s8[6,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[6,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[6,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.inner (param_0.34523: bf16[8,128], param_1.30691: s8[6,128,128], p2: s32[]) -> bf16[8,128] { %param_0.34523 = bf16[8,128] parameter(0) %param_1.30691 = s8[6,128,128] parameter(1) p2 = s32[] parameter(2) %fusion.67830 = s8[128,128] fusion(s8[6,128,128] %param_1.30691, p2), kind=kLoop, calls=%fused_computation.slice ROOT %convolution.3447 = bf16[8,128] convolution(bf16[8,128] %param_0.34523, s8[128,128] %fusion.67830), dim_labels=bf_io->bf } %while.body (wide_param: (s32[], bf16[8,128], s8[6,128,128])) -> (s32[], bf16[8,128], s8[6,128,128]) { wide_p = (s32[], bf16[8,128], s8[6,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[6,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) two = s32[] constant(2) mult = s32[] multiply(i, two) fusion.conv = bf16[8,128] fusion(p0, p1, mult), kind=kOutput, calls=%fused_computation.inner ROOT out = (s32[], bf16[8,128], s8[6,128,128]) tuple(inc, fusion.conv, p1) } %while.cond (wide_param: (s32[], bf16[8,128], s8[6,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[6,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(3) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[6,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[6,128,128]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], s8[6,128,128]) while(while.input), condition=%while.cond , body=%while.body while_use = s8[6,128,128] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackNestedDSFusionPatternWithMultipleIndex) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice.1 (param_0.51117: s8[4,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[4,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[4,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.slice.2 (param_0.51117: s8[4,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[4,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[4,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.inner.1 (param_0.34523: bf16[8,128], param_1.30691: s8[4,128,128], p2: s32[]) -> bf16[8,128] { %param_0.34523 = bf16[8,128] parameter(0) %param_1.30691 = s8[4,128,128] parameter(1) p2 = s32[] parameter(2) %fusion.67830 = s8[128,128] fusion(s8[4,128,128] %param_1.30691, p2), kind=kLoop, calls=%fused_computation.slice.1 ROOT %convolution.3447 = bf16[8,128] convolution(bf16[8,128] %param_0.34523, s8[128,128] %fusion.67830), dim_labels=bf_io->bf } %fused_computation.inner.2 (param_0.34523: bf16[8,128], param_1.30691: s8[4,128,128], p2: s32[]) -> bf16[8,128] { %param_0.34523 = bf16[8,128] parameter(0) %param_1.30691 = s8[4,128,128] parameter(1) p2 = s32[] parameter(2) %fusion.67830 = s8[128,128] fusion(s8[4,128,128] %param_1.30691, p2), kind=kLoop, calls=%fused_computation.slice.2 ROOT %convolution.3447 = bf16[8,128] convolution(bf16[8,128] %param_0.34523, s8[128,128] %fusion.67830), dim_labels=bf_io->bf } %while.body (wide_param: (s32[], bf16[8,128], s8[4,128,128], s8[4,128,128])) -> (s32[], bf16[8,128], s8[4,128,128], s8[4,128,128]) { wide_p = (s32[], bf16[8,128], s8[4,128,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[4,128,128] get-tuple-element(wide_p), index=2 p2 = s8[4,128,128] get-tuple-element(wide_p), index=3 one = s32[] constant(1) inc = s32[] add(i, one) fusion.conv.1 = bf16[8,128] fusion(p0, p1, i), kind=kOutput, calls=%fused_computation.inner.1 fusion.conv.2 = bf16[8,128] fusion(p0, p2, i), kind=kOutput, calls=%fused_computation.inner.2 plus = bf16[8,128] add(fusion.conv.1, fusion.conv.2) ROOT out = (s32[], bf16[8,128], s8[4,128,128], s8[4,128,128]) tuple(inc, plus, p1, p2) } %while.cond (wide_param: (s32[], bf16[8,128], s8[4,128,128], s8[4,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[4,128,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(4) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[4,128,128] parameter(0) p1 = s8[4,128,128] parameter(1) p2 = bf16[8,128] parameter(2) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[4,128,128], s8[4,128,128]) tuple(init, p2, p0, p1) while.out = (s32[], bf16[8,128], s8[4,128,128], s8[4,128,128]) while(while.input), condition=%while.cond , body=%while.body ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kSlice), 8); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackNestedDSFusionPatternWithDiffereOperandsOrder) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice (param_0.51117: s8[3,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[3,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[3,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.inner (param_1.30691: s8[3,128,128], p2: s32[], param_0.34523: bf16[8,128]) -> bf16[8,128] { %param_0.34523 = bf16[8,128] parameter(2) %param_1.30691 = s8[3,128,128] parameter(0) p2 = s32[] parameter(1) %fusion.67830 = s8[128,128] fusion(s8[3,128,128] %param_1.30691, p2), kind=kLoop, calls=%fused_computation.slice ROOT %convolution.3447 = bf16[8,128] convolution(bf16[8,128] %param_0.34523, s8[128,128] %fusion.67830), dim_labels=bf_io->bf } %while.body (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> (s32[], bf16[8,128], s8[3,128,128]) { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[3,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) fusion.conv = bf16[8,128] fusion(p1, i, p0), kind=kOutput, calls=%fused_computation.inner ROOT out = (s32[], bf16[8,128], s8[3,128,128]) tuple(inc, fusion.conv, p1) } %while.cond (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(3) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[3,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[3,128,128]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], s8[3,128,128]) while(while.input), condition=%while.cond , body=%while.body while_use = s8[3,128,128] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kSlice), 3); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackNestedDSFusionPatternWithSameUnstackingComps) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice.1 (param_0.51117: s8[3,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[3,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[3,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.slice.2 (param_0.51117: s8[3,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[3,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[3,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.inner.1 (param_0.34523: bf16[8,128], param_1.30691: s8[3,128,128], p2: s32[]) -> bf16[8,128] { %param_0.34523 = bf16[8,128] parameter(0) %param_1.30691 = s8[3,128,128] parameter(1) p2 = s32[] parameter(2) %fusion.67830 = s8[128,128] fusion(s8[3,128,128] %param_1.30691, p2), kind=kLoop, calls=%fused_computation.slice.1 ROOT %convolution.3447 = bf16[8,128] convolution(bf16[8,128] %param_0.34523, s8[128,128] %fusion.67830), dim_labels=bf_io->bf } %fused_computation.inner.2 (param_0.34523: bf16[8,128], param_1.30691: s8[3,128,128], p2: s32[]) -> bf16[8,128] { %param_0.34523 = bf16[8,128] parameter(0) %param_1.30691 = s8[3,128,128] parameter(1) p2 = s32[] parameter(2) %fusion.67830 = s8[128,128] fusion(s8[3,128,128] %param_1.30691, p2), kind=kLoop, calls=%fused_computation.slice.2 ROOT %convolution.3447 = bf16[8,128] convolution(bf16[8,128] %param_0.34523, s8[128,128] %fusion.67830), dim_labels=bf_io->bf } %while.body (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> (s32[], bf16[8,128], s8[3,128,128]) { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[3,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) fusion.conv1 = bf16[8,128] fusion(p0, p1, i), kind=kOutput, calls=%fused_computation.inner.1 fusion.conv2 = bf16[8,128] fusion(p0, p1, i), kind=kOutput, calls=%fused_computation.inner.2 add = bf16[8,128] add(fusion.conv1, fusion.conv2) ROOT out = (s32[], bf16[8,128], s8[3,128,128]) tuple(inc, add, p1) } %while.cond (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(3) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[3,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[3,128,128]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], s8[3,128,128]) while(while.input), condition=%while.cond , body=%while.body while_use = s8[3,128,128] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kSlice), 3); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, NotUnstackNestedDSFusionPatternWithSameUnstackingComps) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice.1 (param_0.51117: s8[3,128,128], p1: s32[]) -> s8[1,128,128] { %param_0.51117 = s8[3,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) ROOT %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[3,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} } %fused_computation.slice.2 (param_0.51117: s8[3,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[3,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[3,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %while.body (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> (s32[], bf16[8,128], s8[3,128,128]) { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[3,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) %fusion.67831 = s8[128,128] fusion(p1, i), kind=kLoop, calls=%fused_computation.slice.2 %fusion.67830 = s8[1,128,128] fusion(p1, i), kind=kLoop, calls=%fused_computation.slice.1 %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %fusion.67830) ROOT out = (s32[], bf16[8,128], s8[3,128,128]) tuple(inc, p0, p1) } %while.cond (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(3) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[3,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[3,128,128]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], s8[3,128,128]) while(while.input), condition=%while.cond , body=%while.body while_use = s8[3,128,128] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_FALSE(unstacked); } TEST_F(UnstackerTest, UnstackNestedDSFusionPatternSingleNestedLoop) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice (param_0.51117: s8[4,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[4,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[4,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.inner (param_0.34523: bf16[8,128], param_1.30691: s8[4,128,128], p2: s32[]) -> bf16[8,128] { %param_0.34523 = bf16[8,128] parameter(0) %param_1.30691 = s8[4,128,128] parameter(1) p2 = s32[] parameter(2) %fusion.67830 = s8[128,128] fusion(s8[4,128,128] %param_1.30691, p2), kind=kLoop, calls=%fused_computation.slice ROOT %convolution.3447 = bf16[8,128] convolution(bf16[8,128] %param_0.34523, s8[128,128] %fusion.67830), dim_labels=bf_io->bf } %while.body.inner (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> (s32[], bf16[8,128], s8[4,128,128]) { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 inner_param_0 = bf16[8,128] get-tuple-element(wide_p), index=1 inner_param_1 = s8[4,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) fusion.conv = bf16[8,128] fusion(inner_param_0, inner_param_1, i), kind=kOutput, calls=%fused_computation.inner ROOT out = (s32[], bf16[8,128], s8[4,128,128]) tuple(inc, fusion.conv, inner_param_1) } %while.cond.inner (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(4) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } %while.body (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> (s32[], bf16[8,128], s8[4,128,128]) { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 param0 = bf16[8,128] get-tuple-element(wide_p), index=1 param1 = s8[4,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(2) zero = s32[] constant(0) mult = s32[] multiply(i, one) inner.in = (s32[], bf16[8,128], s8[4,128,128]) tuple(zero, param0, param1) inner.out = (s32[], bf16[8,128], s8[4,128,128]) while(inner.in), condition=%while.cond.inner, body=%while.body.inner fusion.conv.inner = bf16[8,128] get-tuple-element(inner.out), index=1 ROOT out = (s32[], bf16[8,128], s8[4,128,128]) tuple(mult, fusion.conv.inner, param1) } %while.cond (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(20) add = s32[] add(%constant.12857, %constant.12857) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, add), direction=LT } ENTRY main { weight = s8[4,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(1) while.input = (s32[], bf16[8,128], s8[4,128,128]) tuple(init, p1, weight) while.out = (s32[], bf16[8,128], s8[4,128,128]) while(while.input), condition=%while.cond , body=%while.body ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kSlice), 4); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackNestedDSFusionPatternTwoNestedLoops) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice1 (param_0.51117: s8[4,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[4,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[4,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.inner1 (param_0.34523: bf16[8,128], param_1.30691: s8[4,128,128], p2: s32[]) -> bf16[8,128] { %param_0.34523 = bf16[8,128] parameter(0) %param_1.30691 = s8[4,128,128] parameter(1) p2 = s32[] parameter(2) %fusion.67830 = s8[128,128] fusion(s8[4,128,128] %param_1.30691, p2), kind=kLoop, calls=%fused_computation.slice1 ROOT %convolution.3447 = bf16[8,128] convolution(bf16[8,128] %param_0.34523, s8[128,128] %fusion.67830), dim_labels=bf_io->bf } %while.body.inner1 (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> (s32[], bf16[8,128], s8[4,128,128]) { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 inner_param_0 = bf16[8,128] get-tuple-element(wide_p), index=1 inner_param_1 = s8[4,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) fusion.conv = bf16[8,128] fusion(inner_param_0, inner_param_1, i), kind=kOutput, calls=%fused_computation.inner1 ROOT out = (s32[], bf16[8,128], s8[4,128,128]) tuple(inc, fusion.conv, inner_param_1) } %while.cond.inner1 (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(4) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } %while.body1 (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> (s32[], bf16[8,128], s8[4,128,128]) { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 param0 = bf16[8,128] get-tuple-element(wide_p), index=1 param1 = s8[4,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(2) zero = s32[] constant(0) mult = s32[] multiply(i, one) inner.in.1 = (s32[], bf16[8,128], s8[4,128,128]) tuple(zero, param0, param1) inner.out.1 = (s32[], bf16[8,128], s8[4,128,128]) while(inner.in.1), condition=%while.cond.inner1, body=%while.body.inner1 fusion.conv.inner = bf16[8,128] get-tuple-element(inner.out.1), index=1 ROOT out = (s32[], bf16[8,128], s8[4,128,128]) tuple(mult, fusion.conv.inner, param1) } %while.cond1 (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(20) add = s32[] add(%constant.12857, %constant.12857) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, add), direction=LT } %fused_computation.slice2 (param_0.51117: s8[4,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[4,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[4,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.inner2 (param_0.34523: bf16[8,128], param_1.30691: s8[4,128,128], p2: s32[]) -> bf16[8,128] { %param_0.34523 = bf16[8,128] parameter(0) %param_1.30691 = s8[4,128,128] parameter(1) p2 = s32[] parameter(2) %fusion.67830 = s8[128,128] fusion(s8[4,128,128] %param_1.30691, p2), kind=kLoop, calls=%fused_computation.slice2 ROOT %convolution.3447 = bf16[8,128] convolution(bf16[8,128] %param_0.34523, s8[128,128] %fusion.67830), dim_labels=bf_io->bf } %while.body.inner2 (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> (s32[], bf16[8,128], s8[4,128,128]) { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 inner_param_0 = bf16[8,128] get-tuple-element(wide_p), index=1 inner_param_1 = s8[4,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) fusion.conv = bf16[8,128] fusion(inner_param_0, inner_param_1, i), kind=kOutput, calls=%fused_computation.inner2 ROOT out = (s32[], bf16[8,128], s8[4,128,128]) tuple(inc, fusion.conv, inner_param_1) } %while.cond.inner2 (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(4) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } %while.body2 (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> (s32[], bf16[8,128], s8[4,128,128]) { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 param0 = bf16[8,128] get-tuple-element(wide_p), index=1 param1 = s8[4,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(2) zero = s32[] constant(0) mult = s32[] multiply(i, one) inner.in.2 = (s32[], bf16[8,128], s8[4,128,128]) tuple(zero, param0, param1) inner.out.2 = (s32[], bf16[8,128], s8[4,128,128]) while(inner.in.2), condition=%while.cond.inner2, body=%while.body.inner2 fusion.conv.inner = bf16[8,128] get-tuple-element(inner.out.2), index=1 ROOT out = (s32[], bf16[8,128], s8[4,128,128]) tuple(mult, fusion.conv.inner, param1) } %while.cond2 (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(20) add = s32[] add(%constant.12857, %constant.12857) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, add), direction=LT } ENTRY main { weight = s8[4,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(1) while.input = (s32[], bf16[8,128], s8[4,128,128]) tuple(init, p1, weight) while.out = (s32[], bf16[8,128], s8[4,128,128]) while(while.input), condition=%while.cond1 , body=%while.body1 init2 = s32[] get-tuple-element(while.out), index=0 second.while.input = (s32[], bf16[8,128], s8[4,128,128]) tuple(init2, p1, weight) second.while.out = (s32[], bf16[8,128], s8[4,128,128]) while(second.while.input), condition=%while.cond2 , body=%while.body2 out = bf16[8,128] get-tuple-element(while.out), index=1 second.out = bf16[8,128] get-tuple-element(second.while.out), index=1 ROOT result = bf16[8,128] add(out, second.out) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kSlice), 8); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackDSAndDUSPattern) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice (param_0.51117: s32[4,3], offset: s32[]) -> s32[3] { %param_0.51117 = s32[4,3] parameter(0) offset = s32[] parameter(1) zero = s32[] constant(0) %dynamic-slice.22040 = s32[1,3] dynamic-slice(s32[4,3] %param_0.51117, offset, zero), dynamic_slice_sizes={1,3} ROOT %bitcast.31250 = s32[3] bitcast(s32[1,3] %dynamic-slice.22040) } %fused_computation.update.slice (param_0.51117: s32[4,3], p1: s32[], p2: s32[3]) -> s32[4,3] { %param_0.51117 = s32[4,3] parameter(0) %p1 = s32[] parameter(1) %p2 = s32[3] parameter(2) %zero = s32[] constant(0) %bitcast.31250 = s32[1,3] bitcast(%p2) ROOT output_dus = s32[4,3]{1,0} dynamic-update-slice(%param_0.51117, %bitcast.31250, %p1, zero) } SimpleLoop.body { loop_var.1 = (s32[], s32[4,3]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 get-tuple-element.2 = s32[4,3] get-tuple-element(loop_var.1), index=1 zero = s32[] constant(0) some_const = s32[3] constant({0,1,2}) constant.1 = s32[] constant(1) idx = s32[] add(get-tuple-element.1, constant.1) ds = s32[3]{0} fusion(get-tuple-element.2, get-tuple-element.1), kind=kLoop, calls=%fused_computation.slice update = s32[3] add(ds, ds) dus = s32[3] dynamic-update-slice(ds, update, zero) output = s32[4,3] fusion(get-tuple-element.2, get-tuple-element.1, dus), kind=kLoop, calls=%fused_computation.update.slice ROOT tuple = (s32[], s32[4,3]) tuple(idx, output) } SimpleLoop.condition { loop_var.1 = (s32[], s32[4,3]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.2 = s32[] constant(4) ROOT less-than = pred[] compare(get-tuple-element.1, constant.2), direction=LT } ENTRY SimpleLoop { reference = s32[4,3] parameter(0) zero = s32[] constant(0) zero1 = s32[] constant(0) one = s32[] constant(1) tuple.1 = (s32[], s32[4,3]) tuple(zero, reference) while = (s32[], s32[4,3]) while(tuple.1), condition=SimpleLoop.condition, body=SimpleLoop.body ROOT out = s32[] get-tuple-element(while), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackDSAndDUSPatternNestedLoop) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice (param_0.51117: bf16[4,1,8,257,128], offset: s32[]) -> bf16[1,8,257,128] { %param_0.51117 = bf16[4,1,8,257,128] parameter(0) offset = s32[] parameter(1) zero = s32[] constant(0) %dynamic-slice.22040 = bf16[1,1,8,257,128] dynamic-slice(bf16[4,1,8,257,128] %param_0.51117, offset, zero, zero, zero, zero), dynamic_slice_sizes={1,1,8,257,128} ROOT %bitcast.31250 = bf16[1,8,257,128] bitcast(%dynamic-slice.22040) } %fused_computation.slice.2 (param_0.51117: bf16[4,1,8,257,128], offset: s32[]) -> bf16[1,8,257,128] { %param_0.51117 = bf16[4,1,8,257,128] parameter(0) offset = s32[] parameter(1) zero = s32[] constant(0) %dynamic-slice.22040 = bf16[1,1,8,257,128] dynamic-slice(bf16[4,1,8,257,128] %param_0.51117, offset, zero, zero, zero, zero), dynamic_slice_sizes={1,1,8,257,128} ROOT %bitcast.31250 = bf16[1,8,257,128] bitcast(%dynamic-slice.22040) } inner.body { loop_var.1 = (s32[], bf16[4,1,8,257,128], bf16[4,1,8,257,128]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 get-tuple-element.2 = bf16[4,1,8,257,128] get-tuple-element(loop_var.1), index=1 get-tuple-element.3 = bf16[4,1,8,257,128] get-tuple-element(loop_var.1), index=2 sliced = bf16[1,8,257,128] fusion(get-tuple-element.2, get-tuple-element.1), kind=kLoop, calls=%fused_computation.slice sliced.2 = bf16[1,8,257,128] fusion(get-tuple-element.3, get-tuple-element.1), kind=kLoop,calls=%fused_computation.slice.2 temp = bf16[1,8,257,128] add(sliced, sliced.2) one = s32[] constant(1) idx = s32[] add(get-tuple-element.1, one) ROOT out = tuple(idx, get-tuple-element.2, get-tuple-element.3) } inner.condition { loop_var.1 = (s32[], bf16[4,1,8,257,128], bf16[4,1,8,257,128]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.2 = s32[] constant(4) ROOT less-than = pred[] compare(get-tuple-element.1, constant.2), direction=LT } outer.body { loop_var.1 = (s32[], bf16[4,1,8,257,128], bf16[4,1,8,257,128]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 get-tuple-element.2 = bf16[4,1,8,257,128] get-tuple-element(loop_var.1), index=1 get-tuple-element.3 = bf16[4,1,8,257,128] get-tuple-element(loop_var.1), index=2 zero = s32[] constant(0) buffer = bf16[4,1,8,257,128] custom-call(), custom_call_target="AllocateBuffer" inner.input = tuple(zero, buffer, get-tuple-element.2) inner = while(inner.input), condition=inner.condition, body=inner.body out1 = bf16[4,1,8,257,128] get-tuple-element(inner), index=1 one = s32[] constant(1) idx = s32[] add(get-tuple-element.1, one) ROOT tuple = (s32[], bf16[4,1,8,257,128], bf16[4,1,8,257,128]) tuple(idx, out1, get-tuple-element.3) } outer.condition { loop_var.1 = (s32[], bf16[4,1,8,257,128], bf16[4,1,8,257,128]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.2 = s32[] constant(4) mul = s32[] multiply(get-tuple-element.1, constant.2) ROOT less-than = pred[] compare(get-tuple-element.1, mul), direction=LT } ENTRY SimpleLoop { param1 = bf16[4,1,8,257,128] parameter(0) param2 = bf16[4,1,8,257,128] parameter(1) zero = s32[] constant(0) zero1 = s32[] constant(0) one = s32[] constant(1) tuple.1 = tuple(zero, param1, param2) while = while(tuple.1), condition=outer.condition, body=outer.body ROOT out = s32[] get-tuple-element(while), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackDSAndDUSPatternLoopFeedingLoop) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.update.slice (param_0.51117: bf16[4,1,8,257,128], p1: s32[], param_0.51118: bf16[1,8,257,128]) -> bf16[4,1,8,257,128] { %param_0.51117 = bf16[4,1,8,257,128] parameter(0) p1 = s32[] parameter(1) %param_0.51118 = bf16[1,8,257,128] parameter(2) bitcast = bf16[1,1,8,257,128] bitcast(param_0.51118) %constant.85694 = s32[] constant(0) ROOT %dynamic-update-slice.22040 = bf16[4,1,8,257,128] dynamic-update-slice(bf16[4,1,8,257,128] %param_0.51117, bitcast, p1, s32[] %constant.85694, s32[] %constant.85694, s32[] %constant.85694, s32[] %constant.85694) } %fused_computation.slice (param_0.51117: bf16[4,1,8,257,128], offset:s32[]) -> bf16[1,8,257,128] { %param_0.51117 = bf16[4,1,8,257,128] parameter(0) offset = s32[] parameter(1) zero = s32[] constant(0) %dynamic-slice.22040 = bf16[1,1,8,257,128] dynamic-slice(bf16[4,1,8,257,128] %param_0.51117, offset, zero, zero, zero, zero), dynamic_slice_sizes={1,1,8,257,128} ROOT %bitcast.31250 = bf16[1,8,257,128] bitcast(%dynamic-slice.22040) } first.body { loop_var.1 = (s32[], bf16[4,1,8,257,128]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1),index=0 get-tuple-element.2 = bf16[4,1,8,257,128] get-tuple-element(loop_var.1), index=1 constant = bf16[1,8,257,128] constant({...}) sliced = bf16[1,8,257,128] fusion(get-tuple-element.2, get-tuple-element.1), kind=kLoop, calls=%fused_computation.slice tmp = bf16[1,8,257,128] add(sliced, sliced) one = s32[] constant(1) idx = s32[] add(get-tuple-element.1, one) ROOT out = tuple(idx, get-tuple-element.2) } first.condition { loop_var.1 = (s32[], bf16[4,1,8,257,128]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.2 = s32[] constant(4) ROOT less-than = pred[] compare(get-tuple-element.1, constant.2), direction=LT } next.body { loop_var.1 = (s32[], bf16[4,1,8,257,128]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1),index=0 get-tuple-element.2 = bf16[4,1,8,257,128] get-tuple-element(loop_var.1), index=1 constant = bf16[1,8,257,128] constant({...}) update.sliced = bf16[4,1,8,257,128] fusion(get-tuple-element.2, get-tuple-element.1, constant), kind=kLoop, calls=%fused_computation.update.slice one = s32[] constant(1) idx = s32[] add(get-tuple-element.1, one) ROOT out = tuple(idx, update.sliced) } next.condition { loop_var.1 = (s32[], bf16[4,1,8,257,128]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.2 = s32[] constant(4) ROOT less-than = pred[] compare(get-tuple-element.1, constant.2), direction=LT } ENTRY SimpleLoop { param1 = bf16[4,1,8,257,128] parameter(0) param2 = bf16[4,1,8,257,128] parameter(1) zero = s32[] constant(0) zero1 = s32[] constant(0) one = s32[] constant(1) tuple.1 = tuple(zero, param1) while = while(tuple.1), condition=first.condition, body=first.body while.out = bf16[4,1,8,257,128] get-tuple-element(while), index=1 next.input = tuple(zero, while.out) next = while(next.input), condition=next.condition, body=next.body ROOT out = s32[] get-tuple-element(next), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); } TEST_F(UnstackerTest, UnstackDUSFusionWithPadPatternLoopFeedingLoop) { std::string hlo_string = R"( HloModule SimpleLoop fused_computation.75.clone { param_0.5713 = bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)} parameter(0) param_2.4396 = bf16[1,8,257,128]{3,2,1,0:T(8,128)(2,1)} parameter(2) constant.12166 = bf16[]{:T(256)} constant(0) pad.496 = bf16[1,8,513,128]{3,2,1,0:T(8,128)(2,1)} pad(param_2.4396, constant.12166), padding=0_0x0_0x0_256x0_0 bitcast.1262 = bf16[1,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)} bitcast(pad.496) param_1.6823 = s32[]{:T(128)} parameter(1) constant.12165 = s32[]{:T(128)} constant(0) ROOT dynamic-update-slice.193 = bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)} dynamic-update-slice(param_0.5713, bitcast.1262, param_1.6823, constant.12165, constant.12165, constant.12165, constant.12165) } fused_computation.1 { param_0.5712 = bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)}parameter(0) param_1.6822 = s32[]{:T(128)} parameter(1) constant.12164 = s32[]{:T(128)} constant(0) dynamic-slice.1597 = bf16[1,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)} dynamic-slice(param_0.5712, param_1.6822, constant.12164, constant.12164, constant.12164, constant.12164), dynamic_slice_sizes={1,1,8,513,128} ROOT bitcast.1261 = bf16[1,8,513,128]{3,2,1,0:T(8,128)(2,1)} bitcast(dynamic-slice.1597) } first.body { wide.param.29 = (s32[]{:T(128)}, bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)}) parameter(0) get-tuple-element.12177 = s32[]{:T(128)} get-tuple-element(wide.param.29), index=0 constant.12144..sunk.2 = s32[]{:T(128)} constant(1) add.4517 = s32[]{:T(128)} add(get-tuple-element.12177, constant.12144..sunk.2) get-tuple-element.12178 = bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)} get-tuple-element(wide.param.29), index=1 fusion.2381 = bf16[1,8,513,128]{3,2,1,0:T(8,128)(2,1)} fusion(get-tuple-element.12178, get-tuple-element.12177), kind=kLoop, calls=fused_computation.1 tmp = bf16[1,8,513,128]{3,2,1,0:T(8,128)(2,1)} add(fusion.2381, fusion.2381) ROOT tuple.949 = (s32[]{:T(128)}, bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)}) tuple(add.4517, get-tuple-element.12178) } first.cond { wide.param.28 = (s32[]{:T(128)}, bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)}) parameter(0) get-tuple-element.12167 = s32[]{:T(128)} get-tuple-element(wide.param.28), index=0 constant.12162 = s32[]{:T(128)} constant(2) ROOT compare.1815 = pred[]{:T(512)} compare(get-tuple-element.12167, constant.12162), direction=LT } wide.region_54.2652.clone_spmd { wide.param.29 = (s32[]{:T(128)}, bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)}) parameter(0) get-tuple-element.12177 = s32[]{:T(128)} get-tuple-element(wide.param.29), index=0 constant.12144..sunk.2 = s32[]{:T(128)} constant(1) add.4517 = s32[]{:T(128)} add(get-tuple-element.12177, constant.12144..sunk.2) get-tuple-element.12178 = bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)} get-tuple-element(wide.param.29), index=1 update = bf16[1,8,257,128]{3,2,1,0:T(8,128)(2,1)} constant({...}) fusion.2382 = bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)} fusion(get-tuple-element.12178, get-tuple-element.12177, update), kind=kLoop, calls=fused_computation.75.clone ROOT tuple.949 = (s32[]{:T(128)}, bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)}) tuple(add.4517, fusion.2382) } wide.region_55.2732.clone_spmd { wide.param.28 = (s32[]{:T(128)}, bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)}) parameter(0) get-tuple-element.12167 = s32[]{:T(128)} get-tuple-element(wide.param.28), index=0 constant.12162 = s32[]{:T(128)} constant(2) ROOT compare.1815 = pred[]{:T(512)} compare(get-tuple-element.12167, constant.12162), direction=LT } ENTRY main { p0 = bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)} parameter(0) init = s32[]{:T(128)} constant(0) first.input = tuple(init, p0) first.out = while(first.input), condition=first.cond , body=first.body o1 = bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)} get-tuple-element(first.out), index=1 input = tuple(init, o1) out = while(input), condition=wide.region_55.2732.clone_spmd , body=wide.region_54.2652.clone_spmd ROOT res = s32[]{:T(128)} get-tuple-element(out), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); } TEST_F(UnstackerTest, UnstackDUSFusionWithAddPattern) { std::string hlo_string = R"( HloModule SimpleLoop add.2771.reduce_sub_computation { lhs.44 = bf16[] parameter(0) rhs.44 = bf16[] parameter(1) ROOT add.3079 = bf16[] add(lhs.44, rhs.44) } fused_computation.75.clone { param_0.31658 = bf16[2,4096]{1,0:T(8,128)(2,1)} parameter(0) param_1.26202 = s32[]{:T(128)} parameter(1) constant.47557 = s32[]{:T(128)} constant(0) dynamic-slice.12289 = bf16[1,4096]{1,0:T(2,128)(2,1)} dynamic-slice(param_0.31658, param_1.26202, constant.47557), dynamic_slice_sizes={1,4096} constant.47559 = bf16[]{:T(256)} constant(1) broadcast.39214 = bf16[1,4096]{1,0:T(2,128)(2,1)} broadcast(constant.47559), dimensions={} add.13176 = bf16[1,4096]{1,0:T(2,128)(2,1)} add(dynamic-slice.12289, broadcast.39214) constant.47558 = bf16[] constant(-0) ROOT reduce.8210 = bf16[4096]{0:T(1024)(128)(2,1)} reduce(add.13176, constant.47558), dimensions={0}, to_apply=add.2771.reduce_sub_computation } first.body { wide.param.29 = (s32[]{:T(128)}, bf16[2,4096]{1,0:T(8,128)(2,1)}) parameter(0) get-tuple-element.12177 = s32[]{:T(128)} get-tuple-element(wide.param.29), index=0 constant.12144..sunk.2 = s32[]{:T(128)} constant(1) add.4517 = s32[]{:T(128)} add(get-tuple-element.12177, constant.12144..sunk.2) get-tuple-element.12178 = bf16[2,4096]{1,0:T(8,128)(2,1)} get-tuple-element(wide.param.29), index=1 fusion.2381 = bf16[4096]{0:T(1024)(128)(2,1)} fusion(get-tuple-element.12178, get-tuple-element.12177), kind=kLoop, calls=fused_computation.75.clone tmp = bf16[4096]{0:T(1024)(128)(2,1)} add(fusion.2381, fusion.2381) ROOT tuple.949 = (s32[]{:T(128)}, bf16[2,4096]{1,0:T(8,128)(2,1)}) tuple(add.4517, get-tuple-element.12178) } first.cond { wide.param.28 = (s32[]{:T(128)}, bf16[2,4096]{1,0:T(8,128)(2,1)}) parameter(0) get-tuple-element.12167 = s32[]{:T(128)} get-tuple-element(wide.param.28), index=0 constant.12162 = s32[]{:T(128)} constant(2) ROOT compare.1815 = pred[]{:T(512)} compare(get-tuple-element.12167, constant.12162), direction=LT } ENTRY main { p0 = bf16[2,4096]{1,0:T(8,128)(2,1)} parameter(0) init = s32[]{:T(128)} constant(0) first.input = tuple(init, p0) first.out = while(first.input), condition=first.cond , body=first.body ROOT o1 = s32[]{:T(128)} get-tuple-element(first.out), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_unstacker.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_unstacker_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9bda38a9-493d-4316-85e9-9599ccb99c9a
cpp
tensorflow/tensorflow
dynamic_padder
third_party/xla/xla/service/dynamic_padder.cc
third_party/xla/xla/service/dynamic_padder_test.cc
#include "xla/service/dynamic_padder.h" #include <cstdint> #include <functional> #include <iterator> #include <set> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/functional/function_ref.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/comparison_util.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/dynamic_parameter_binding.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/service/call_graph.h" #include "xla/service/dynamic_dimension_inference.h" #include "xla/service/dynamic_window_utils.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/hlo_dce.h" #include "xla/service/pattern_matcher.h" #include "xla/service/shape_inference.h" #include "xla/service/tuple_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tsl/lib/monitoring/gauge.h" #include "xla/util.h" #include "xla/window_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { auto* dynamic_padding_gauge = tsl::monitoring::Gauge<bool, 0>::New( "/tensorflow/core/use_dynamic_padding_gauge", "Tracks if dynamic padder is used."); absl::StatusOr<HloInstruction*> ChooseIdentityValue(HloInstruction* inst, int64_t operand_number) { if (inst->IsElementwise()) { return nullptr; } if (inst->opcode() == HloOpcode::kSelectAndScatter || inst->IsCustomCall("DynamicSelectAndScatterSamePadding")) { if (operand_number == 1) { return inst->mutable_operand(2); } TF_RET_CHECK(operand_number == 0); HloComputation* select = inst->called_computations()[0]; if (Match(select->root_instruction(), match::Compare(match::Parameter(), match::Parameter()) .WithComparisonDirection(ComparisonDirection::kGe))) { return inst->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::MinValue(inst->operand(0)->shape().element_type()))); } else { return Unimplemented( "Only select and scatter with `max` as select function is " "supported, got %s", select->ToString()); } } switch (inst->opcode()) { case HloOpcode::kReduce: { auto* reduce = Cast<HloReduceInstruction>(inst); TF_RET_CHECK(operand_number < reduce->input_count()) << "Only data operand with dynamic dimension is valid."; int64_t init_value_index = reduce->input_count() + operand_number; return inst->mutable_operand(init_value_index); } case HloOpcode::kReduceWindow: { auto* reduce_window = Cast<HloReduceWindowInstruction>(inst); TF_RET_CHECK(operand_number < reduce_window->input_count()) << "Only data operand with dynamic dimension is valid."; int64_t init_value_index = reduce_window->input_count() + operand_number; return inst->mutable_operand(init_value_index); } case HloOpcode::kConvolution: case HloOpcode::kDot: { PrimitiveType ptype = inst->operand(0)->shape().element_type(); return inst->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::Zero(ptype))); } case HloOpcode::kPad: return inst->mutable_operand(1); case HloOpcode::kScatter: { if (operand_number != 1) { return nullptr; } PrimitiveType indices_ptype = inst->operand(operand_number)->shape().element_type(); return inst->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::MaxValue(indices_ptype))); } case HloOpcode::kParameter: case HloOpcode::kGather: case HloOpcode::kDynamicSlice: case HloOpcode::kDynamicUpdateSlice: case HloOpcode::kGetDimensionSize: case HloOpcode::kSetDimensionSize: case HloOpcode::kConcatenate: case HloOpcode::kReshape: case HloOpcode::kReverse: case HloOpcode::kTuple: case HloOpcode::kAllReduce: case HloOpcode::kReduceScatter: case HloOpcode::kBroadcast: case HloOpcode::kTranspose: case HloOpcode::kSort: case HloOpcode::kSlice: case HloOpcode::kDomain: return nullptr; case HloOpcode::kCustomCall: return nullptr; default: return UnimplementedStrCat("Unimplemented padding for instruction: ", inst->ToString()); } } absl::StatusOr<bool> ReplaceGetSize( HloInstruction* instr, DynamicDimensionInference* dynamic_dimension_inference) { if (instr->opcode() != HloOpcode::kGetDimensionSize) { return false; } HloComputation* computation = instr->parent(); TF_ASSIGN_OR_RETURN(auto legal_shape, ShapeInference::InferGetDimensionSizeShape( instr->operand(0)->shape(), instr->dimension())); TF_RET_CHECK(ShapeUtil::Equal(instr->shape(), legal_shape)) << "instr->shape() " << instr->shape().ToString() << " , " << "legal_shape " << legal_shape.ToString(); TF_RET_CHECK(ShapeUtil::HasPrimitiveType(instr->shape(), S32)); HloInstruction* operand = instr->mutable_operand(0); int64_t dim = instr->dimension(); HloInstruction* dynamic_size = dynamic_dimension_inference->GetDynamicSize(operand, {}, dim); if (dynamic_size != nullptr) { TF_RETURN_IF_ERROR(instr->ReplaceAllUsesWith(dynamic_size)); dynamic_dimension_inference->ReplaceAllDynamicDimensionUsesWith( instr, dynamic_size); } else { int32_t size = instr->operand(0)->shape().dimensions(dim); HloInstruction* new_instr = computation->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(size))); TF_RETURN_IF_ERROR(instr->ReplaceAllUsesWith(new_instr)); dynamic_dimension_inference->ReplaceAllDynamicDimensionUsesWith(instr, new_instr); } return true; } absl::StatusOr<bool> ReplaceSetSize(HloInstruction* instr) { if (instr->opcode() != HloOpcode::kSetDimensionSize) { return false; } TF_RET_CHECK(Shape::Equal().IgnoreDynamicDimension()( instr->shape(), instr->operand(0)->shape())) << "instr->shape() " << instr->shape().ToString() << " , " << "instruction operand shape " << instr->operand(0)->shape(); HloInstruction* operand = instr->mutable_operand(0); TF_RETURN_IF_ERROR(instr->ReplaceAllUsesWith(operand)); return true; } absl::StatusOr<bool> ReplaceSetBound(HloInstruction* instr) { if (instr->opcode() != HloOpcode::kCustomCall || instr->custom_call_target() != "SetBound") { return false; } TF_RET_CHECK(Shape::Equal().IgnoreDynamicDimension()( instr->shape(), instr->operand(0)->shape())) << "instr->shape() " << instr->shape().ToString() << " , " << "instruction operand shape " << instr->operand(0)->shape(); HloInstruction* operand = instr->mutable_operand(0); TF_RETURN_IF_ERROR(instr->ReplaceAllUsesWith(operand)); return true; } bool ShouldSkipPadOnOperand( const HloInstruction* inst, int64_t operand_num, int64_t dimension, const absl::flat_hash_set<absl::string_view>& execution_threads) { switch (inst->opcode()) { case HloOpcode::kConvolution: { if (operand_num == 0) { if (dimension == inst->convolution_dimension_numbers().input_batch_dimension()) { return true; } const auto& spatial_dims = inst->convolution_dimension_numbers().input_spatial_dimensions(); for (int64_t spatial_dim = 0; spatial_dim < spatial_dims.size(); ++spatial_dim) { if (spatial_dims[spatial_dim] == dimension && inst->window().dimensions(spatial_dim).size() == 1) { return true; } } } return operand_num == 1 && (dimension == inst->convolution_dimension_numbers() .kernel_output_feature_dimension()); } case HloOpcode::kDot: { if (operand_num == 0) { return !absl::c_linear_search( inst->dot_dimension_numbers().lhs_contracting_dimensions(), dimension); } return !absl::c_linear_search( inst->dot_dimension_numbers().rhs_contracting_dimensions(), dimension); } case HloOpcode::kReduce: return !absl::c_linear_search(inst->dimensions(), dimension); case HloOpcode::kSelectAndScatter: case HloOpcode::kReduceWindow: return inst->window().dimensions(dimension).size() == 1; case HloOpcode::kAsyncStart: if (!HloInstruction::IsThreadIncluded(inst->async_execution_thread(), execution_threads)) { return true; } return false; default: return false; } } HloInstruction* PadWithScalar(HloInstruction* inst, int64_t dim, HloInstruction* dynamic_size, HloInstruction* padding_scalar) { CHECK(inst != nullptr && dynamic_size != nullptr && padding_scalar != nullptr); const Shape mask_shape = ShapeUtil::MakeShape(xla::S32, inst->shape().dimensions()); const Shape pred_shape = ShapeUtil::MakeShape(xla::PRED, inst->shape().dimensions()); HloInstruction* iota = inst->AddInstruction(HloInstruction::CreateIota(mask_shape, dim)); HloInstruction* broadcasted_effective_size = inst->AddInstruction( HloInstruction::CreateBroadcast(mask_shape, dynamic_size, {})); HloInstruction* pred = inst->AddInstruction(HloInstruction::CreateCompare( pred_shape, iota, broadcasted_effective_size, ComparisonDirection::kLt)); HloInstruction* broadcasted_identity_value = inst->AddInstruction(HloInstruction::CreateBroadcast( ShapeUtil::MakeStaticShape(inst->shape()), padding_scalar, {})); HloInstruction* padded = inst->AddInstruction(HloInstruction::CreateTernary( ShapeUtil::MakeStaticShape(inst->shape()), HloOpcode::kSelect, pred, inst, broadcasted_identity_value)); return padded; } HloInstruction* GenerateBinaryMask( HloInstruction* reshape, int64_t input_dim, absl::Span<const int64_t> output_dims, absl::Span<HloInstruction*> output_dynamic_dims, HloInstruction* one, HloInstruction* zero, bool split_input) { Shape input_shape = split_input ? reshape->operand(0)->shape() : reshape->shape(); Shape output_shape = split_input ? reshape->shape() : reshape->operand(0)->shape(); const Shape mask_input_shape = ShapeUtil::MakeShape(xla::S32, {input_shape.dimensions(input_dim)}); const Shape pred_input_shape = ShapeUtil::MakeShape(xla::PRED, {input_shape.dimensions(input_dim)}); HloInstruction* pred_true = reshape->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(true))); HloInstruction* input_shape_pred_mask = reshape->AddInstruction( HloInstruction::CreateBroadcast(pred_input_shape, pred_true, {})); bool need_rewrite = false; HloInstruction* iota = reshape->AddInstruction(HloInstruction::CreateIota(mask_input_shape, 0)); for (int64_t i = 1; i < output_dims.size(); ++i) { if (output_dynamic_dims[output_dims[i]] != nullptr) { need_rewrite = true; break; } } if (!need_rewrite) { return nullptr; } for (int64_t i = output_dims.size() - 1; i > 0; i--) { const int64_t output_dim = output_dims[i]; HloInstruction* dynamic_size = output_dynamic_dims[output_dim]; HloInstruction* static_output_dim_size = reshape->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>( output_shape.dimensions(output_dim)))); HloInstruction* broadcasted_static_output_dim_size = reshape->AddInstruction(HloInstruction::CreateBroadcast( mask_input_shape, static_output_dim_size, {})); if (dynamic_size != nullptr) { HloInstruction* dim_index = reshape->AddInstruction(HloInstruction::CreateBinary( mask_input_shape, HloOpcode::kRemainder, iota, broadcasted_static_output_dim_size)); HloInstruction* broadcasted_effective_size = reshape->AddInstruction( HloInstruction::CreateBroadcast(mask_input_shape, dynamic_size, {})); HloInstruction* selected = reshape->AddInstruction(HloInstruction::CreateCompare( pred_input_shape, dim_index, broadcasted_effective_size, ComparisonDirection::kLt)); input_shape_pred_mask = reshape->AddInstruction( HloInstruction::CreateBinary(pred_input_shape, HloOpcode::kAnd, input_shape_pred_mask, selected)); } iota = reshape->AddInstruction( HloInstruction::CreateBinary(mask_input_shape, HloOpcode::kDivide, iota, broadcasted_static_output_dim_size)); } HloInstruction* broadcasted_one = reshape->AddInstruction( HloInstruction::CreateBroadcast(mask_input_shape, one, {})); HloInstruction* broadcasted_zero = reshape->AddInstruction( HloInstruction::CreateBroadcast(mask_input_shape, zero, {})); return reshape->AddInstruction(HloInstruction::CreateTernary( mask_input_shape, HloOpcode::kSelect, input_shape_pred_mask, broadcasted_one, broadcasted_zero)); } absl::StatusOr<bool> RewriteDynamicReshapeSplitInput( HloInstruction* reshape, int64_t input_dim, absl::Span<const int64_t> output_dims, absl::Span<HloInstruction*> output_dynamic_dims, DynamicDimensionInference* dynamic_dimension_inference) { VLOG(2) << "Reshaping input dim " << input_dim << " to " << VectorString(output_dims); const Shape operand_shape = reshape->operand(0)->shape(); TF_RET_CHECK(output_dims.size() > 1); const Shape mask_input_shape = ShapeUtil::MakeShape(xla::S32, {operand_shape.dimensions(input_dim)}); const Shape pred_input_shape = ShapeUtil::MakeShape(xla::PRED, {operand_shape.dimensions(input_dim)}); HloInstruction* zero = reshape->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::Zero(S32))); HloInstruction* one = reshape->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::One(S32))); HloInstruction* input_shape_binary_mask = GenerateBinaryMask(reshape, input_dim, output_dims, output_dynamic_dims, one, zero, true); if (input_shape_binary_mask == nullptr) { VLOG(2) << "No need to rewrite"; return false; } auto embedded_builder = HloComputation::Builder("add"); { auto lhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(S32, {}), "lhs")); auto rhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(S32, {}), "rhs")); embedded_builder.AddInstruction( HloInstruction::CreateBinary(lhs->shape(), HloOpcode::kAdd, lhs, rhs)); } HloComputation* add = reshape->GetModule()->AddEmbeddedComputation(embedded_builder.Build()); Window cumsum_window; WindowDimension* dim = cumsum_window.add_dimensions(); dim->set_size(operand_shape.dimensions(input_dim)); dim->set_stride(1); dim->set_padding_low(operand_shape.dimensions(input_dim) - 1); dim->set_padding_high(0); dim->set_window_dilation(1); dim->set_base_dilation(1); HloInstruction* cumsum = reshape->AddInstruction(HloInstruction::CreateReduceWindow( mask_input_shape, input_shape_binary_mask, zero, cumsum_window, add)); HloInstruction* broadcast_ones = reshape->AddInstruction( HloInstruction::CreateBroadcast(mask_input_shape, one, {})); cumsum = reshape->AddInstruction(HloInstruction::CreateBinary( mask_input_shape, HloOpcode::kSubtract, cumsum, broadcast_ones)); GatherDimensionNumbers gather_dim_numbers; for (int64_t i = 0; i < operand_shape.dimensions_size(); ++i) { if (i != input_dim) { gather_dim_numbers.add_offset_dims(i); } } gather_dim_numbers.add_start_index_map(input_dim); gather_dim_numbers.set_index_vector_dim(1); gather_dim_numbers.add_collapsed_slice_dims(input_dim); HloInstruction* operand_static_dim_size = reshape->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(operand_shape.dimensions(input_dim)))); HloInstruction* operand_static = reshape->AddInstruction(HloInstruction::CreateSetDimensionSize( operand_shape, reshape->mutable_operand(0), operand_static_dim_size, input_dim)); std::vector<int64_t> slice_sizes(operand_shape.dimensions().begin(), operand_shape.dimensions().end()); slice_sizes[input_dim] = 1; HloInstruction* gather = reshape->AddInstruction(HloInstruction::CreateGather( ShapeUtil::MakeShape(operand_shape.element_type(), operand_shape.dimensions()), operand_static, cumsum, gather_dim_numbers, slice_sizes, true)); TF_RETURN_IF_ERROR(reshape->ReplaceOperandWith(0, gather)); HloInstruction* reshape_dynamic = reshape; auto users = reshape->users(); for (int64_t output_dim : output_dims) { HloInstruction* output_dynamic_size = dynamic_dimension_inference->GetDynamicSize(reshape, {}, output_dim); if (output_dynamic_size != nullptr) { reshape_dynamic = reshape->AddInstruction(HloInstruction::CreateSetDimensionSize( reshape->shape(), reshape_dynamic, output_dynamic_size, output_dim)); } } for (auto* user : users) { TF_RETURN_IF_ERROR(reshape->ReplaceUseWith(user, reshape_dynamic)); } TF_RETURN_IF_ERROR(dynamic_dimension_inference->ForwardDynamicSize( reshape, reshape_dynamic, {})); return true; } absl::StatusOr<bool> RewriteDynamicReshapeCombineInput( HloInstruction* reshape, absl::Span<const int64_t> input_dims, int64_t output_dim, absl::Span<HloInstruction*> input_dynamic_dims, DynamicDimensionInference* dynamic_dimension_inference) { HloInstruction* zero = reshape->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::Zero(S32))); HloInstruction* one = reshape->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::One(S32))); const Shape output_shape = reshape->shape(); const Shape input_shape = reshape->operand(0)->shape(); const Shape mask_output_shape = ShapeUtil::MakeShape(xla::S32, {output_shape.dimensions(output_dim)}); HloInstruction* output_shape_binary_mask = GenerateBinaryMask(reshape, output_dim, input_dims, input_dynamic_dims, one, zero, false); if (output_shape_binary_mask == nullptr) { VLOG(2) << "No need to rewrite"; return false; } HloInstruction* iota = reshape->AddInstruction(HloInstruction::CreateIota(mask_output_shape, 0)); HloComputation::Builder comp_builder("compare"); HloInstruction* lhs_key = comp_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeScalarShape(S32), "lhs_key")); HloInstruction* rhs_key = comp_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeScalarShape(S32), "rhs_key")); comp_builder.AddInstruction(HloInstruction::CreateParameter( 2, ShapeUtil::MakeScalarShape(S32), "lhs_value")); comp_builder.AddInstruction(HloInstruction::CreateParameter( 3, ShapeUtil::MakeScalarShape(S32), "rhs_value")); comp_builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), lhs_key, rhs_key, ComparisonDirection::kGt)); HloComputation* compare = reshape->GetModule()->AddEmbeddedComputation(comp_builder.Build()); HloInstruction* sort = reshape->AddInstruction(HloInstruction::CreateSort( ShapeUtil::MakeTupleShape({mask_output_shape, mask_output_shape}), 0, {output_shape_binary_mask, iota}, compare, true)); HloInstruction* gather_indices = reshape->AddInstruction( HloInstruction::CreateGetTupleElement(mask_output_shape, sort, 1)); GatherDimensionNumbers gather_dim_numbers; for (int64_t i = 0; i < output_shape.dimensions_size(); ++i) { if (i != output_dim) { gather_dim_numbers.add_offset_dims(i); } } gather_dim_numbers.add_start_index_map(output_dim); gather_dim_numbers.set_index_vector_dim(1); gather_dim_numbers.add_collapsed_slice_dims(output_dim); HloInstruction* static_dim_size = reshape->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>( reshape->shape().dimensions(output_dim)))); Shape reshape_static_shape = reshape->shape(); reshape_static_shape.set_dynamic_dimension(output_dim, false); HloInstruction* reshape_static = reshape->AddInstruction(HloInstruction::CreateSetDimensionSize( reshape_static_shape, reshape, static_dim_size, output_dim)); std::vector<int64_t> gather_slice_sizes(output_shape.dimensions().begin(), output_shape.dimensions().end()); gather_slice_sizes[output_dim] = 1; HloInstruction* gather = reshape->AddInstruction(HloInstruction::CreateGather( output_shape, reshape_static, gather_indices, gather_dim_numbers, gather_slice_sizes, true)); HloInstruction* output_dynamic_size = dynamic_dimension_inference->GetDynamicSize(reshape, {}, output_dim); TF_RET_CHECK(output_dynamic_size != nullptr); gather = reshape->AddInstruction(HloInstruction::CreateSetDimensionSize( gather->shape(), gather, output_dynamic_size, output_dim)); auto users = reshape->users(); for (auto* user : users) { if (user != reshape_static && user != output_dynamic_size) { TF_RETURN_IF_ERROR(reshape->ReplaceUseWith(user, gather)); } } if (reshape == reshape->parent()->root_instruction()) { reshape->parent()->set_root_instruction(gather); } TF_RETURN_IF_ERROR( dynamic_dimension_inference->ForwardDynamicSize(reshape, gather, {})); return true; } absl::StatusOr<bool> RewriteDynamicReshapeSingleGroup( HloInstruction* reshape, absl::Span<const int64_t> input_dims, absl::Span<const int64_t> output_dims, absl::Span<HloInstruction*> input_dynamic_dims, absl::Span<HloInstruction*> output_dynamic_dims, DynamicDimensionInference* dynamic_dimension_inference) { VLOG(2) << "Rewriting dynamic reshape " << reshape->ToString() << " input dims: " << VectorString(input_dims) << " output dims: " << VectorString(output_dims); const Shape operand_shape = reshape->operand(0)->shape(); const Shape output_shape = reshape->shape(); if (input_dims.size() == 1) { int64_t input_dim = input_dims[0]; if (operand_shape.dimensions()[input_dim] == 1) { return false; } return RewriteDynamicReshapeSplitInput(reshape, input_dim, output_dims, output_dynamic_dims, dynamic_dimension_inference); } if (output_dims.size() == 1) { int64_t output_dim = output_dims[0]; if (output_shape.dimensions()[output_dim] == 1) { return false; } return RewriteDynamicReshapeCombineInput(reshape, input_dims, output_dim, input_dynamic_dims, dynamic_dimension_inference); } TF_RET_CHECK(false); return false; } absl::StatusOr<bool> RewriteReverse( HloInstruction* reverse, DynamicDimensionInference* dynamic_dimension_inference) { auto reverse_dims = reverse->dimensions(); const Shape& reverse_shape = reverse->shape(); std::set<int64_t> dynamic_reverse_dims; for (int64_t reverse_dim : reverse_dims) { HloInstruction* dynamic_size = dynamic_dimension_inference->GetDynamicSize(reverse, {}, reverse_dim); if (dynamic_size == nullptr) { continue; } dynamic_reverse_dims.insert(reverse_dim); } if (dynamic_reverse_dims.empty()) { return false; } PaddingConfig padding; Shape pad_shape = reverse_shape; for (int i = 0; i < reverse_shape.rank(); ++i) { auto dimension = padding.add_dimensions(); if (dynamic_reverse_dims.count(i) > 0) { dimension->set_edge_padding_low(0); dimension->set_edge_padding_high(reverse_shape.dimensions(i)); dimension->set_interior_padding(0); pad_shape.set_dimensions(i, 2 * pad_shape.dimensions(i)); } } HloInstruction* cloned_reverse = reverse->AddInstruction(reverse->Clone()); HloInstruction* zero = reverse->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(pad_shape.element_type()))); HloInstruction* pad = reverse->AddInstruction( HloInstruction::CreatePad(pad_shape, cloned_reverse, zero, padding)); std::vector<HloInstruction*> start_indices; start_indices.reserve(reverse_shape.rank()); for (int i = 0; i < reverse_shape.rank(); ++i) { if (dynamic_reverse_dims.count(i) > 0) { HloInstruction* bound_size = reverse->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(reverse_shape.dimensions(i)))); HloInstruction* dynamic_size = dynamic_dimension_inference->GetDynamicSize(reverse, {}, i); HloInstruction* start_offset = reverse->AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeScalarShape(S32), HloOpcode::kSubtract, bound_size, dynamic_size)); start_indices.push_back(start_offset); } else { HloInstruction* zero = reverse->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::Zero(S32))); start_indices.push_back(zero); } } HloInstruction* dynamic_reverse = reverse->AddInstruction(HloInstruction::CreateDynamicSlice( reverse_shape, pad, start_indices, reverse_shape.dimensions())); TF_RETURN_IF_ERROR(dynamic_dimension_inference->ForwardDynamicSize( reverse, dynamic_reverse, {})); TF_RETURN_IF_ERROR(reverse->ReplaceAllUsesWith(dynamic_reverse)); return true; } HloInstruction* RewriteInputWithDynamicPadding( HloInstruction* conv, HloInstruction* input, HloInstruction* padding_value, absl::Span<HloInstruction*> padding_before, Window* input_window, absl::FunctionRef<int64_t(int64_t)> window_dim_to_shape_dim) { HloInstruction* zero_s32 = conv->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::Zero(S32))); Shape padded_shape = input->shape(); PaddingConfig padding_configs; for (int64_t i = 0; i < input->shape().rank(); ++i) { PaddingConfig::PaddingConfigDimension padding_dim; *padding_configs.add_dimensions() = padding_dim; } std::vector<HloInstruction*> start_indices(input->shape().rank(), zero_s32); for (int64_t dim_index = 0; dim_index < input_window->dimensions_size(); ++dim_index) { if (padding_before[dim_index] == nullptr) { continue; } int64_t shape_dim = window_dim_to_shape_dim(dim_index); WindowDimension* window_dim = input_window->mutable_dimensions(dim_index); auto* padding_dim = padding_configs.mutable_dimensions(shape_dim); const int64_t dilated_window_size = window_util::DilatedBound( window_dim->size(), window_dim->window_dilation()); padding_dim->set_edge_padding_low(dilated_window_size); padding_dim->set_edge_padding_high(window_dim->padding_high() + window_dim->padding_low()); padding_dim->set_interior_padding(window_dim->base_dilation() - 1); HloInstruction* slicing_start = conv->AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeScalarShape(S32), HloOpcode::kSubtract, conv->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>( padding_dim->edge_padding_low()))), padding_before[dim_index])); start_indices[shape_dim] = slicing_start; padded_shape.mutable_dimensions()[shape_dim] = window_dim->padding_low() + window_util::DilatedBound(padded_shape.dimensions(shape_dim), window_dim->base_dilation()) + window_dim->padding_high(); window_dim->clear_padding_high(); window_dim->clear_padding_low(); window_dim->set_base_dilation(1); input->mutable_shape()->set_dynamic_dimension(shape_dim, false); } HloInstruction* pad = MakePadHlo(input, padding_value, padding_configs).value(); input = conv->AddInstruction(HloInstruction::CreateDynamicSlice( padded_shape, pad, start_indices, padded_shape.dimensions())); return input; } absl::StatusOr<bool> RewriteDynamicConvolutionInputGrad( HloInstruction* custom_call_conv, DynamicDimensionInference* dynamic_dimension_inference) { HloInstruction* grad = custom_call_conv->mutable_operand(1); HloInstruction* kernel = custom_call_conv->mutable_operand(2); TF_RET_CHECK(kernel->shape().is_static()); auto dnums = custom_call_conv->convolution_dimension_numbers(); Window window = custom_call_conv->window(); HloInstruction* zero = custom_call_conv->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(custom_call_conv->shape().element_type()))); std::vector<HloInstruction*> padding_before( dnums.input_spatial_dimensions_size(), nullptr); for (int64_t spatial_dim_index = 0; spatial_dim_index < dnums.input_spatial_dimensions_size(); ++spatial_dim_index) { int64_t input_spatial_dim = dnums.input_spatial_dimensions(spatial_dim_index); HloInstruction* operand_dynamic_size = dynamic_dimension_inference->GetDynamicSize( custom_call_conv->mutable_operand(1), {}, input_spatial_dim); if (operand_dynamic_size == nullptr) { continue; } grad = PadWithScalar(grad, input_spatial_dim, operand_dynamic_size, zero); HloInstruction* slice = custom_call_conv->AddInstruction(HloInstruction::CreateSlice( ShapeUtil::MakeShape(S32, {1}), custom_call_conv->mutable_operand(0), {input_spatial_dim}, {input_spatial_dim + 1}, {1})); HloInstruction* dynamic_input_size = custom_call_conv->AddInstruction( HloInstruction::CreateReshape(ShapeUtil::MakeScalarShape(S32), slice)); const WindowDimension& window_dim = window.dimensions(spatial_dim_index); DynamicWindowDims dynamic_window_dims = GetWindowedInputGradSize( dynamic_input_size, window_dim.size(), window_dim.window_dilation(), window_dim.base_dilation(), custom_call_conv->padding_type()); padding_before[spatial_dim_index] = dynamic_window_dims.padding_before; } if (custom_call_conv->padding_type() == PaddingType::PADDING_SAME) { grad = RewriteInputWithDynamicPadding( custom_call_conv, grad, zero, absl::MakeSpan(padding_before), &window, [&](int64_t dim) { return dnums.input_spatial_dimensions(dim); }); } PrecisionConfig precision_config; if (custom_call_conv->precision_config().operand_precision_size() == 3) { *precision_config.mutable_operand_precision() = { custom_call_conv->precision_config().operand_precision().begin() + 1, custom_call_conv->precision_config().operand_precision().end()}; } HloInstruction* static_conv = custom_call_conv->AddInstruction(HloInstruction::CreateConvolve( custom_call_conv->shape(), grad, kernel, custom_call_conv->feature_group_count(), custom_call_conv->batch_group_count(), window, custom_call_conv->convolution_dimension_numbers(), custom_call_conv->precision_config())); TF_RETURN_IF_ERROR(custom_call_conv->ReplaceAllUsesWith(static_conv)); TF_RETURN_IF_ERROR(dynamic_dimension_inference->ForwardDynamicSize( custom_call_conv, static_conv, {})); return true; } absl::StatusOr<bool> RewriteDynamicConvolutionForward( HloInstruction* custom_call_conv, DynamicDimensionInference* dynamic_dimension_inference) { HloInstruction* input = custom_call_conv->mutable_operand(0); HloInstruction* kernel = custom_call_conv->mutable_operand(1); Window window = custom_call_conv->window(); auto dnums = custom_call_conv->convolution_dimension_numbers(); HloInstruction* zero = custom_call_conv->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(custom_call_conv->shape().element_type()))); std::vector<HloInstruction*> padding_before( dnums.input_spatial_dimensions_size(), nullptr); for (int64_t spatial_dim_index = 0; spatial_dim_index < dnums.input_spatial_dimensions_size(); ++spatial_dim_index) { int64_t input_spatial_dim = dnums.input_spatial_dimensions(spatial_dim_index); HloInstruction* operand_dynamic_size = dynamic_dimension_inference->GetDynamicSize( custom_call_conv->mutable_operand(0), {}, input_spatial_dim); if (operand_dynamic_size == nullptr) { continue; } input = PadWithScalar(input, input_spatial_dim, operand_dynamic_size, zero); const WindowDimension& window_dim = window.dimensions(spatial_dim_index); DynamicWindowDims dynamic_window_dims = GetWindowedOutputSize( operand_dynamic_size, window_dim.size(), window_dim.window_dilation(), window_dim.stride(), custom_call_conv->padding_type()); padding_before[spatial_dim_index] = dynamic_window_dims.padding_before; } const int64_t input_feature_dim = dnums.input_feature_dimension(); if (HloInstruction* input_feature_dynamic_size = dynamic_dimension_inference->GetDynamicSize( custom_call_conv->mutable_operand(0), {}, input_feature_dim)) { input = PadWithScalar(input, input_feature_dim, input_feature_dynamic_size, zero); } if (custom_call_conv->padding_type() == PaddingType::PADDING_SAME) { input = RewriteInputWithDynamicPadding( custom_call_conv, input, zero, absl::MakeSpan(padding_before), &window, [&](int64_t dim) { return dnums.input_spatial_dimensions(dim); }); } HloInstruction* static_conv = custom_call_conv->AddInstruction(HloInstruction::CreateConvolve( custom_call_conv->shape(), input, kernel, custom_call_conv->feature_group_count(), custom_call_conv->batch_group_count(), window, custom_call_conv->convolution_dimension_numbers(), custom_call_conv->precision_config())); TF_RETURN_IF_ERROR(custom_call_conv->ReplaceAllUsesWith(static_conv)); TF_RETURN_IF_ERROR(dynamic_dimension_inference->ForwardDynamicSize( custom_call_conv, static_conv, {})); return true; } absl::StatusOr<bool> RewriteDynamicConvolutionKernelGrad( HloInstruction* custom_call_conv, DynamicDimensionInference* dynamic_dimension_inference) { HloInstruction* activations = custom_call_conv->mutable_operand(0); HloInstruction* gradients = custom_call_conv->mutable_operand(1); TF_RET_CHECK(dynamic_dimension_inference->HasDynamicDimension(activations)); TF_RET_CHECK(dynamic_dimension_inference->HasDynamicDimension(gradients)); Window window = custom_call_conv->window(); auto dnums = custom_call_conv->convolution_dimension_numbers(); HloInstruction* zero = custom_call_conv->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(custom_call_conv->shape().element_type()))); std::vector<HloInstruction*> padding_before( dnums.input_spatial_dimensions_size(), nullptr); for (int64_t spatial_dim_index = 0; spatial_dim_index < dnums.input_spatial_dimensions_size(); ++spatial_dim_index) { int64_t input_spatial_dim = dnums.input_spatial_dimensions(spatial_dim_index); int64_t kernel_spatial_dim = dnums.kernel_spatial_dimensions(spatial_dim_index); HloInstruction* activations_dynamic_size = dynamic_dimension_inference->GetDynamicSize( custom_call_conv->mutable_operand(0), {}, input_spatial_dim); if (activations_dynamic_size != nullptr) { activations = PadWithScalar(activations, input_spatial_dim, activations_dynamic_size, zero); } HloInstruction* gradients_dynamic_size = dynamic_dimension_inference->GetDynamicSize( custom_call_conv->mutable_operand(1), {}, kernel_spatial_dim); if (gradients_dynamic_size != nullptr) { gradients = PadWithScalar(gradients, kernel_spatial_dim, gradients_dynamic_size, zero); } if (activations_dynamic_size == nullptr || gradients_dynamic_size == nullptr) { TF_RET_CHECK(activations_dynamic_size == nullptr && gradients_dynamic_size == nullptr); continue; } int64_t output_spatial_dim = dnums.output_spatial_dimensions(spatial_dim_index); const WindowDimension& window_dim = window.dimensions(spatial_dim_index); DynamicWindowDims dynamic_window_dims = GetWindowedOutputSize( activations_dynamic_size, custom_call_conv->shape().dimensions(output_spatial_dim), window_dim.stride(), window_dim.window_dilation(), custom_call_conv->padding_type()); padding_before[spatial_dim_index] = dynamic_window_dims.padding_before; } const int64_t input_feature_dim = dnums.input_feature_dimension(); if (HloInstruction* input_feature_dynamic_size = dynamic_dimension_inference->GetDynamicSize( custom_call_conv->mutable_operand(0), {}, input_feature_dim)) { activations = PadWithScalar(activations, input_feature_dim, input_feature_dynamic_size, zero); } if (custom_call_conv->padding_type() == PaddingType::PADDING_SAME) { activations = RewriteInputWithDynamicPadding( custom_call_conv, activations, zero, absl::MakeSpan(padding_before), &window, [&](int64_t dim) { return dnums.input_spatial_dimensions(dim); }); } HloInstruction* static_conv = custom_call_conv->AddInstruction(HloInstruction::CreateConvolve( custom_call_conv->shape(), activations, gradients, custom_call_conv->feature_group_count(), custom_call_conv->batch_group_count(), window, custom_call_conv->convolution_dimension_numbers(), custom_call_conv->precision_config())); TF_RETURN_IF_ERROR(custom_call_conv->ReplaceAllUsesWith(static_conv)); TF_RETURN_IF_ERROR(dynamic_dimension_inference->ForwardDynamicSize( custom_call_conv, static_conv, {})); return true; } absl::StatusOr<bool> RewriteDynamicReduceWindowSamePadding( HloInstruction* hlo, DynamicDimensionInference* dynamic_dimension_inference) { if (hlo->shape().IsTuple()) { return Unimplemented("DynamicReduceWindowSamePadding not yet supported."); } HloInstruction* input = hlo->mutable_operand(0); HloInstruction* init = hlo->mutable_operand(1); int64_t rank = hlo->shape().rank(); Window window = hlo->window(); std::vector<HloInstruction*> padding_before(hlo->shape().rank(), nullptr); for (int64_t dim_index = 0; dim_index < rank; ++dim_index) { HloInstruction* operand_dynamic_size = dynamic_dimension_inference->GetDynamicSize(hlo->mutable_operand(0), {}, dim_index); if (operand_dynamic_size == nullptr) { continue; } const WindowDimension& window_dim = window.dimensions(dim_index); if (window_util::IsTrivialWindowDimension(window_dim)) { continue; } input = PadWithScalar(input, dim_index, operand_dynamic_size, init); DynamicWindowDims dynamic_window_dims = GetWindowedOutputSize( operand_dynamic_size, window_dim.size(), window_dim.window_dilation(), window_dim.stride(), PaddingType::PADDING_SAME); padding_before[dim_index] = dynamic_window_dims.padding_before; } input = RewriteInputWithDynamicPadding( hlo, input, init, absl::MakeSpan(padding_before), &window, [](int64_t dim) { return dim; }); HloInstruction* rewritten = hlo->AddInstruction(HloInstruction::CreateReduceWindow( hlo->shape(), input, init, window, hlo->called_computations()[0])); TF_RETURN_IF_ERROR(hlo->ReplaceAllUsesWith(rewritten)); TF_RETURN_IF_ERROR( dynamic_dimension_inference->ForwardDynamicSize(hlo, rewritten, {})); return true; } absl::StatusOr<bool> RewriteDynamicSelectAndScatterSamePadding( HloInstruction* hlo, DynamicDimensionInference* dynamic_dimension_inference) { HloInstruction* input = hlo->mutable_operand(0); HloInstruction* source = hlo->mutable_operand(1); HloInstruction* init = hlo->mutable_operand(2); TF_ASSIGN_OR_RETURN(HloInstruction * input_padding_value, ChooseIdentityValue(hlo, 0)); int64_t rank = hlo->shape().rank(); Window window = hlo->window(); std::vector<HloInstruction*> padding_before(hlo->shape().rank(), nullptr); for (int64_t dim_index = 0; dim_index < rank; ++dim_index) { const WindowDimension& window_dim = window.dimensions(dim_index); if (window_util::IsTrivialWindowDimension(window_dim)) { continue; } HloInstruction* operand_dynamic_size = dynamic_dimension_inference->GetDynamicSize(hlo->mutable_operand(0), {}, dim_index); if (operand_dynamic_size == nullptr) { continue; } input = PadWithScalar(input, dim_index, operand_dynamic_size, input_padding_value); HloInstruction* source_dynamic_size = dynamic_dimension_inference->GetDynamicSize(hlo->mutable_operand(1), {}, dim_index); if (source_dynamic_size == nullptr) { continue; } source = PadWithScalar(source, dim_index, source_dynamic_size, init); DynamicWindowDims dynamic_window_dims = GetWindowedOutputSize( operand_dynamic_size, window_dim.size(), window_dim.window_dilation(), window_dim.stride(), PaddingType::PADDING_SAME); padding_before[dim_index] = dynamic_window_dims.padding_before; } input = RewriteInputWithDynamicPadding( hlo, input, input_padding_value, absl::MakeSpan(padding_before), &window, [](int64_t dim) { return dim; }); HloInstruction* rewritten = hlo->AddInstruction(HloInstruction::CreateSelectAndScatter( input->shape(), input, hlo->called_computations()[0], window, source, init, hlo->called_computations()[1])); std::vector<HloInstruction*> start_indices( input->shape().rank(), hlo->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(S32)))); PaddingConfig padding_configs; for (int64_t dim_index = 0; dim_index < rank; ++dim_index) { PaddingConfig::PaddingConfigDimension padding_dim; if (padding_before[dim_index] != nullptr) { const WindowDimension& window_dim = window.dimensions(dim_index); const int64_t dilated_window_size = window_util::DilatedBound( window_dim.size(), window_dim.window_dilation()); padding_dim.set_edge_padding_high(dilated_window_size); start_indices[dim_index] = padding_before[dim_index]; } *padding_configs.add_dimensions() = padding_dim; } HloInstruction* padded = MakePadHlo(rewritten, init, padding_configs).value(); rewritten = hlo->AddInstruction(HloInstruction::CreateDynamicSlice( hlo->shape(), padded, start_indices, hlo->shape().dimensions())); TF_RETURN_IF_ERROR(hlo->ReplaceAllUsesWith(rewritten)); TF_RETURN_IF_ERROR( dynamic_dimension_inference->ForwardDynamicSize(hlo, rewritten, {})); return true; } absl::StatusOr<bool> RewriteDynamicConcat( HloInstruction* concat, DynamicDimensionInference* dynamic_dimension_inference) { const int64_t concat_dim = concat->concatenate_dimension(); if (dynamic_dimension_inference->GetDynamicSize(concat, {}, concat_dim) == nullptr) { return false; } std::vector<HloInstruction*> offsets; offsets.reserve(concat->shape().dimensions_size()); for (int64_t i = 0; i < concat->shape().dimensions_size(); ++i) { offsets.push_back(concat->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(0)))); } HloInstruction* rewritten_concat = concat; auto prev_users = concat->users(); for (int64_t i = 0; i < concat->operand_count(); ++i) { HloInstruction* operand = concat->mutable_operand(i); rewritten_concat = concat->AddInstruction(HloInstruction::CreateDynamicUpdateSlice( rewritten_concat->shape(), rewritten_concat, operand, offsets)); HloInstruction* dynamic_size = dynamic_dimension_inference->GetDynamicSize(operand, {}, concat_dim); if (dynamic_size == nullptr) { HloInstruction* static_size = concat->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>( operand->shape().dimensions(concat_dim)))); offsets[concat_dim] = concat->AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeScalarShape(S32), HloOpcode::kAdd, offsets[concat_dim], static_size)); } else { offsets[concat_dim] = concat->AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeScalarShape(S32), HloOpcode::kAdd, offsets[concat_dim], dynamic_size)); } } TF_RETURN_IF_ERROR(concat->ReplaceUsesWith(prev_users, rewritten_concat)); TF_RETURN_IF_ERROR(dynamic_dimension_inference->ForwardDynamicSize( concat, rewritten_concat, {})); return true; } absl::StatusOr<bool> RewriteDynamicSort( HloInstruction* hlo, DynamicDimensionInference* dynamic_dimension_inference) { HloInstruction* dynamic_size = nullptr; HloSortInstruction* sort = Cast<HloSortInstruction>(hlo); int64_t sort_dim = sort->sort_dimension(); for (auto* operand : sort->operands()) { if (dynamic_size == nullptr) { dynamic_size = dynamic_dimension_inference->GetDynamicSize(operand, {}, sort_dim); } } if (dynamic_size == nullptr) { return false; } Shape operand_shape = ShapeUtil::ChangeElementType(sort->operand(0)->shape(), S32); Shape broadcast_shape = ShapeUtil::MakeStaticShape(operand_shape); HloInstruction* iota = hlo->AddInstruction( HloInstruction::CreateIota(broadcast_shape, sort_dim)); HloInstruction* dynamic_size_broadcasted = hlo->AddInstruction( HloInstruction::CreateBroadcast(broadcast_shape, dynamic_size, {})); HloInstruction* lt = hlo->AddInstruction(HloInstruction::CreateCompare( ShapeUtil::ChangeElementType(broadcast_shape, PRED), iota, dynamic_size_broadcasted, ComparisonDirection::kLt)); sort->AppendOperand(lt); const int64_t param_number_before_rewritten = sort->called_computations()[0]->num_parameters(); auto new_param_0 = HloInstruction::CreateParameter( param_number_before_rewritten, ShapeUtil::MakeScalarShape(PRED), "inbound_lhs"); auto new_param_1 = HloInstruction::CreateParameter( param_number_before_rewritten + 1, ShapeUtil::MakeScalarShape(PRED), "inbound_rhs"); std::vector<const HloInstruction*> extra_parameters{new_param_0.get(), new_param_1.get()}; HloComputation* sort_comp = sort->GetModule()->AddEmbeddedComputation( sort->called_computations()[0]->CloneWithReplacements( nullptr, extra_parameters)); auto inbound_lhs = sort_comp->parameter_instruction(param_number_before_rewritten); auto inbound_rhs = sort_comp->parameter_instruction(param_number_before_rewritten + 1); sort->ReplaceCalledComputations( [&](HloComputation* comp) { return sort_comp; }); auto out_of_bound_rhs = sort_comp->AddInstruction(HloInstruction::CreateUnary( ShapeUtil::MakeScalarShape(PRED), HloOpcode::kNot, inbound_rhs)); auto sort_comp_or_out_of_bound_rhs = sort_comp->AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeScalarShape(PRED), HloOpcode::kOr, sort_comp->root_instruction(), out_of_bound_rhs)); auto new_root = sort_comp->AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeScalarShape(PRED), HloOpcode::kAnd, inbound_lhs, sort_comp_or_out_of_bound_rhs)); sort_comp->set_root_instruction(new_root); if (sort->shape().IsTuple()) { *sort->mutable_shape()->add_tuple_shapes() = ShapeUtil::ChangeElementType(operand_shape, PRED); } else { auto sort_users = sort->users(); auto sort_clone = hlo->AddInstruction(sort->Clone()); *sort_clone->mutable_shape() = ShapeUtil::MakeTupleShape( {sort->shape(), ShapeUtil::ChangeElementType(operand_shape, PRED)}); auto rewritten_sort = hlo->AddInstruction( HloInstruction::CreateGetTupleElement(sort->shape(), sort_clone, 0)); for (HloInstruction* user : sort_users) { TF_RETURN_IF_ERROR(sort->ReplaceUseWith(user, rewritten_sort)); } TF_RETURN_IF_ERROR(dynamic_dimension_inference->ForwardDynamicSize( sort, rewritten_sort, {})); if (hlo->parent()->root_instruction() == sort) { hlo->parent()->set_root_instruction(rewritten_sort); } } return true; } absl::StatusOr<bool> RewriteDynamicBinaryOp( HloInstruction* binary, DynamicDimensionInference* dynamic_dimension_inference) { HloInstruction* operand_0 = binary->mutable_operand(0); HloInstruction* operand_1 = binary->mutable_operand(1); TF_RET_CHECK(operand_0->shape().rank() == operand_1->shape().rank()); auto dims_0 = dynamic_dimension_inference->GetDynamicSizes(operand_0, {}); auto dims_1 = dynamic_dimension_inference->GetDynamicSizes(operand_1, {}); bool changed = false; for (int64_t i = 0; i < dims_0.size(); ++i) { HloInstruction* dim_0 = dims_0[i]; HloInstruction* dim_1 = dims_1[i]; if (dims_0[i] != dims_1[i] && dims_0[i] != nullptr && dims_1[i] != nullptr) { changed = true; auto rewrite_operand = [&](HloInstruction* pred, HloInstruction* operand) -> HloInstruction* { Shape static_shape = ShapeUtil::MakeStaticShape(operand->shape()); pred = binary->AddInstruction(HloInstruction::CreateBroadcast( ShapeUtil::ChangeElementType(static_shape, PRED), pred, {})); Shape slice_shape = static_shape; slice_shape.set_dimensions(i, 1); std::vector<int64_t> start_indices(slice_shape.rank(), 0); std::vector<int64_t> strides(slice_shape.rank(), 1); HloInstruction* slice = binary->AddInstruction( HloInstruction::CreateSlice(slice_shape, operand, start_indices, slice_shape.dimensions(), strides)); Shape reshape_shape = ShapeUtil::DeleteDimension(i, slice_shape); HloInstruction* reshape = binary->AddInstruction( HloInstruction::CreateReshape(reshape_shape, slice)); std::vector<int64_t> broadcast_dims; broadcast_dims.reserve(static_shape.rank() - 1); for (int64_t j = 0; j < static_shape.rank(); ++j) { if (j != i) { broadcast_dims.push_back(j); } } HloInstruction* broadcast = binary->parent()->AddInstruction( HloInstruction::CreateBroadcast(static_shape, reshape, broadcast_dims), "implicit_broadcast"); HloInstruction* select = binary->AddInstruction(HloInstruction::CreateTernary( static_shape, HloOpcode::kSelect, pred, broadcast, operand)); return select; }; HloInstruction* one = binary->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::One(S32))); auto operand_0_needs_broadcast = binary->parent()->AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), dim_0, dim_1, ComparisonDirection::kLt), "lhs_less_than_rhs"); auto is_one = binary->parent()->AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), dim_0, one, ComparisonDirection::kEq), "lhs_is_one"); operand_0_needs_broadcast = binary->parent()->AddInstruction( HloInstruction::CreateBinary(ShapeUtil::MakeShape(PRED, {}), HloOpcode::kAnd, is_one, operand_0_needs_broadcast), "lhs_needs_implicit_broadcast"); operand_0 = rewrite_operand(operand_0_needs_broadcast, operand_0); auto operand_1_needs_broadcast = binary->parent()->AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), dim_1, dim_0, ComparisonDirection::kLt), "rhs_less_than_lhs"); is_one = binary->parent()->AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), dim_1, one, ComparisonDirection::kEq), "rhs_is_one"); operand_1_needs_broadcast = binary->parent()->AddInstruction( HloInstruction::CreateBinary(ShapeUtil::MakeShape(PRED, {}), HloOpcode::kAnd, is_one, operand_1_needs_broadcast), "lhs_needs_implicit_broadcast"); operand_1 = rewrite_operand(operand_1_needs_broadcast, operand_1); } } if (changed) { TF_RETURN_IF_ERROR(binary->ReplaceOperandWith(0, operand_0)); TF_RETURN_IF_ERROR(binary->ReplaceOperandWith(1, operand_1)); } return changed; } absl::StatusOr<bool> RewriteDynamicUpdateSlice( HloInstruction* hlo, DynamicDimensionInference* dynamic_dimension_inference) { HloDynamicUpdateSliceInstruction* dus = Cast<HloDynamicUpdateSliceInstruction>(hlo); HloInstruction* update = dus->mutable_operand(1); HloInstruction* base = dus->mutable_operand(0); std::vector<HloInstruction*> dynamic_dims_in_partial_update( update->shape().rank(), nullptr); bool needs_rewrite = false; for (int64_t i = 0; i < update->shape().rank(); ++i) { if (update->shape().dimensions(i) < base->shape().dimensions(i)) { HloInstruction* dynamic_dim = dynamic_dimension_inference->GetDynamicSize(update, {}, i); if (dynamic_dim != nullptr) { dynamic_dims_in_partial_update[i] = dynamic_dim; needs_rewrite = true; } } } if (!needs_rewrite) { return false; } std::vector<HloInstruction*> indices; indices.reserve(dus->operand_count() - 2); for (int64_t i = 2; i < dus->operand_count(); ++i) { indices.push_back(dus->mutable_operand(i)); } HloInstruction* base_slice = dus->AddInstruction(HloInstruction::CreateDynamicSlice( update->shape(), base, indices, update->shape().dimensions())); for (int64_t i = 0; i < dynamic_dims_in_partial_update.size(); ++i) { HloInstruction* dynamic_dim = dynamic_dims_in_partial_update[i]; if (dynamic_dim != nullptr) { Shape mask_shape_int = ShapeUtil::ChangeElementType(update->shape(), S32); Shape mask_shape_pred = ShapeUtil::ChangeElementType(update->shape(), PRED); HloInstruction* iota = dus->AddInstruction(HloInstruction::CreateIota(mask_shape_int, i)); HloInstruction* broadcast_dim = dus->AddInstruction( HloInstruction::CreateBroadcast(mask_shape_int, dynamic_dim, {})); HloInstruction* pred = dus->AddInstruction(HloInstruction::CreateCompare( mask_shape_pred, iota, broadcast_dim, ComparisonDirection::kLt)); update = dus->AddInstruction(HloInstruction::CreateTernary( update->shape(), HloOpcode::kSelect, pred, update, base_slice)); } } TF_RETURN_IF_ERROR(dus->ReplaceOperandWith(1, update)); return true; } absl::StatusOr<bool> RewriteDynamicReshape( HloInstruction* reshape, DynamicDimensionInference* dynamic_dimension_inference) { bool changed = false; HloInstruction* operand = reshape->mutable_operand(0); std::vector<HloInstruction*> input_dynamic_dims; input_dynamic_dims.reserve(operand->shape().dimensions_size()); for (int64_t dim = 0; dim < operand->shape().dimensions_size(); ++dim) { input_dynamic_dims.push_back( dynamic_dimension_inference->GetDynamicSize(operand, {}, dim)); } std::vector<HloInstruction*> output_dynamic_dims; output_dynamic_dims.reserve(reshape->shape().dimensions_size()); for (int64_t dim = 0; dim < reshape->shape().dimensions_size(); ++dim) { output_dynamic_dims.push_back( dynamic_dimension_inference->GetDynamicSize(reshape, {}, dim)); } auto common_factors = CommonFactors(operand->shape().dimensions(), reshape->shape().dimensions()); bool need_flatten_unflatten = false; auto is_dynamic_dimension = [&](int64_t dim) { HloInstruction* operand_dynamic_size = dynamic_dimension_inference->GetDynamicSize(reshape, {}, dim); return operand_dynamic_size != nullptr || reshape->shape().is_dynamic_dimension(dim); }; auto should_skip_common_factor_group = [&](DimensionVector input_dims, DimensionVector output_dims) { if (input_dims.empty() || output_dims.empty()) { return true; } if (absl::c_none_of(output_dims, is_dynamic_dimension)) { VLOG(2) << "All dimensions are static in this common factor group"; return true; } if (input_dims.size() == 1 && output_dims.size() == 1) { return true; } return false; }; for (int64_t i = 0; i < common_factors.size() - 1; ++i) { auto start = common_factors[i]; auto end = common_factors[i + 1]; DimensionVector input_dims; DimensionVector output_dims; for (int64_t dim = start.first; dim < end.first; ++dim) { input_dims.push_back(dim); } for (int64_t dim = start.second; dim < end.second; ++dim) { output_dims.push_back(dim); } if (should_skip_common_factor_group(input_dims, output_dims)) { continue; } if (input_dims.size() > 1 && output_dims.size() > 1) { need_flatten_unflatten = true; break; } } if (need_flatten_unflatten) { VLOG(2) << "Rewrite dynamic reshape to flatten-unflatten pair. " << reshape->ToString(); int64_t num_elements = ShapeUtil::ElementsIn(operand->shape()); Shape flattened_shape = ShapeUtil::MakeShape(operand->shape().element_type(), {num_elements}); HloInstruction* flatten = operand->parent()->AddInstruction( HloInstruction::CreateReshape(flattened_shape, operand), absl::StrCat(reshape->name(), ".flatten")); HloInstruction* dynamic_size = operand->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(num_elements))); for (int64_t i = 0; i < operand->shape().rank(); i++) { HloInstruction* dynamic_dim_size = dynamic_dimension_inference->GetDynamicSize(operand, {}, i); if (dynamic_dim_size != nullptr) { HloInstruction* static_dim_size = operand->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>( operand->shape().dimensions(i)))); dynamic_size = operand->AddInstruction(HloInstruction::CreateBinary( dynamic_size->shape(), HloOpcode::kDivide, dynamic_size, static_dim_size)); dynamic_size = operand->AddInstruction(HloInstruction::CreateBinary( dynamic_size->shape(), HloOpcode::kMultiply, dynamic_size, dynamic_dim_size)); } } dynamic_dimension_inference->SetDynamicSize(flatten, {}, 0, dynamic_size); Shape unflattened_shape = ShapeUtil::MakeStaticShape(reshape->shape()); HloInstruction* unflatten = reshape->parent()->AddInstruction( HloInstruction::CreateReshape(unflattened_shape, flatten), absl::StrCat(reshape->name(), ".unflatten")); TF_RETURN_IF_ERROR(dynamic_dimension_inference->ForwardDynamicSize( reshape, unflatten, {})); TF_ASSIGN_OR_RETURN( bool changed_unused, RewriteDynamicReshape(flatten, dynamic_dimension_inference)); TF_ASSIGN_OR_RETURN( changed_unused, RewriteDynamicReshape(unflatten, dynamic_dimension_inference)); TF_RETURN_IF_ERROR(dynamic_dimension_inference->ForwardDynamicSize( reshape, unflatten, {})); TF_RETURN_IF_ERROR(reshape->ReplaceAllUsesWith(unflatten)); return true; } for (int64_t i = 0; i < common_factors.size() - 1; ++i) { auto start = common_factors[i]; auto end = common_factors[i + 1]; DimensionVector input_dims; DimensionVector output_dims; for (int64_t dim = start.first; dim < end.first; ++dim) { input_dims.push_back(dim); } for (int64_t dim = start.second; dim < end.second; ++dim) { output_dims.push_back(dim); } VLOG(2) << "input_dims: " << VectorString(input_dims); VLOG(2) << "output_dims: " << VectorString(output_dims); if (should_skip_common_factor_group(input_dims, output_dims)) { continue; } if (input_dims.size() > 1 && output_dims.size() > 1) { return Internal( "Should be handled by decomposing reshape into " "flatten-unflatten pair. %s", reshape->ToString()); } TF_ASSIGN_OR_RETURN(bool c, RewriteDynamicReshapeSingleGroup( reshape, input_dims, output_dims, absl::MakeSpan(input_dynamic_dims), absl::MakeSpan(output_dynamic_dims), dynamic_dimension_inference)); changed |= c; } if (reshape->opcode() == HloOpcode::kDynamicReshape) { auto* static_reshape = reshape->AddInstruction(HloInstruction::CreateReshape( reshape->shape(), reshape->mutable_operand(0))); TF_RETURN_IF_ERROR(reshape->ReplaceAllUsesWith(static_reshape)); TF_RETURN_IF_ERROR(dynamic_dimension_inference->ForwardDynamicSize( reshape, static_reshape, {})); changed = true; } return changed; } class DynamicShapeRemovingVisitor : public DfsHloRewriteVisitor { public: explicit DynamicShapeRemovingVisitor( const OpSupportsDynamismHandler& op_supports_dynamism_handler, DynamicDimensionInference* dynamic_dimension_inference, const absl::flat_hash_set<absl::string_view>& execution_threads) : op_supports_dynamism_handler_(op_supports_dynamism_handler), dynamic_dimension_inference_(dynamic_dimension_inference), execution_threads_(execution_threads) {} absl::Status DefaultAction(HloInstruction* hlo) override; absl::Status HandleCustomCall(HloInstruction* hlo) override; absl::Status HandleTuple(HloInstruction* hlo) override; absl::Status HandleGetTupleElement(HloInstruction* hlo) override; absl::Status HandleParameter(HloInstruction* hlo) override; absl::Status HandleInfeed(HloInstruction* hlo) override; absl::Status HandleAsyncStart(HloInstruction* hlo) override; absl::Status HandleAsyncUpdate(HloInstruction* hlo) override; absl::Status HandleAsyncDone(HloInstruction* hlo) override; absl::Status HandleWhile(HloInstruction* hlo) override; absl::Status HandleConditional(HloInstruction* hlo) override; absl::Status HandleGetDimensionSize(HloInstruction* hlo) override; absl::Status HandleSetDimensionSize(HloInstruction* hlo) override; static absl::StatusOr<bool> Run( HloComputation* computation, const OpSupportsDynamismHandler& op_supports_dynamism_handler, DynamicDimensionInference* dynamic_shape_inference, const absl::flat_hash_set<absl::string_view>& execution_threads, bool require_dynamic_output) { DynamicShapeRemovingVisitor visitor(op_supports_dynamism_handler, dynamic_shape_inference, execution_threads); TF_RETURN_IF_ERROR(computation->Accept(&visitor)); if (require_dynamic_output) { HloInstruction* root = computation->root_instruction(); if (dynamic_shape_inference->HasDynamicDimension(root)) { TF_ASSIGN_OR_RETURN(HloInstruction * new_root, visitor.ConvertToDynamic(root)); computation->set_root_instruction(new_root); } } return visitor.changed(); } private: absl::StatusOr<HloInstruction*> ConvertToDynamic(HloInstruction* inst); absl::Status ConvertOperandsToDynamic(HloInstruction* inst); const OpSupportsDynamismHandler& op_supports_dynamism_handler_; DynamicDimensionInference* dynamic_dimension_inference_; absl::flat_hash_set<absl::string_view> execution_threads_; }; absl::StatusOr<HloInstruction*> DynamicShapeRemovingVisitor::ConvertToDynamic( HloInstruction* inst) { if (!dynamic_dimension_inference_->HasDynamicDimension(inst)) { return absl::OkStatus(); } MarkAsChanged(); Shape shape = dynamic_dimension_inference_->GetDynamicShape(inst); auto gtes = TupleUtil::DisassembleTupleInstruction(inst); gtes.ForEachMutableElement([&](const ShapeIndex& index, HloInstruction** element) { const Shape& subshape = ShapeUtil::GetSubshape(shape, index); if (!subshape.IsArray()) { return; } if (!dynamic_dimension_inference_->HasDynamicDimension(inst, index)) { return; } std::vector<HloInstruction*> slice_operand; slice_operand.push_back(*element); for (int64_t i = 0; i < subshape.dimensions_size(); ++i) { auto dimension_size = dynamic_dimension_inference_->GetDynamicSize(inst, index, i); if (dimension_size == nullptr) { dimension_size = inst->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(subshape.dimensions(i)))); } slice_operand.push_back(dimension_size); } *element = inst->AddInstruction(HloInstruction::CreateCustomCall( subshape, slice_operand, "SliceToDynamic")); }); return TupleUtil::AssembleTupleInstruction(inst->parent(), std::move(gtes)); } absl::Status DynamicShapeRemovingVisitor::ConvertOperandsToDynamic( HloInstruction* inst) { for (int64_t i = 0; i < inst->operand_count(); ++i) { auto operand = inst->mutable_operand(i); if (dynamic_dimension_inference_->HasDynamicDimension(operand)) { TF_ASSIGN_OR_RETURN(auto dynamic_operand, ConvertToDynamic(inst->mutable_operand(i))); TF_RETURN_IF_ERROR(inst->ReplaceOperandWith(i, dynamic_operand)); MarkAsChanged(); } } return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::DefaultAction(HloInstruction* hlo) { OpDynamismSupport op_support = OpDynamismSupport::kNoSupport; if (op_supports_dynamism_handler_) { op_support = op_supports_dynamism_handler_(hlo); } if (op_support == OpDynamismSupport::kRequired) { VLOG(1) << "op doesn't support static tensor: " << hlo->ToString(); return ConvertOperandsToDynamic(hlo); } const bool input_is_dynamic = absl::c_any_of( hlo->operands(), [](const HloInstruction* hlo) { return hlo->shape().is_dynamic(); }); if (!input_is_dynamic) { return absl::OkStatus(); } TF_RET_CHECK(op_support != OpDynamismSupport::kNoSupport) << "Dynamic input unexpectedly found for unsupported instruction: " << hlo->ToString(); return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::HandleGetTupleElement( HloInstruction* hlo) { return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::HandleTuple(HloInstruction* hlo) { return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::HandleInfeed(HloInstruction* hlo) { return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::HandleParameter(HloInstruction* hlo) { return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::HandleCustomCall( HloInstruction* hlo) { if (hlo->custom_call_target() == "SliceToDynamic" || hlo->custom_call_target() == "PadToStatic") { return absl::OkStatus(); } return DefaultAction(hlo); } absl::Status DynamicShapeRemovingVisitor::HandleAsyncStart( HloInstruction* hlo) { if (HloInstruction::IsThreadIncluded(hlo->async_execution_thread(), execution_threads_)) { return absl::OkStatus(); } return ConvertOperandsToDynamic(hlo); } absl::Status DynamicShapeRemovingVisitor::HandleAsyncUpdate( HloInstruction* hlo) { return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::HandleAsyncDone(HloInstruction* hlo) { return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::HandleWhile(HloInstruction* hlo) { return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::HandleConditional( HloInstruction* hlo) { return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::HandleGetDimensionSize( HloInstruction* hlo) { return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::HandleSetDimensionSize( HloInstruction* hlo) { *hlo->mutable_shape() = hlo->operand(0)->shape(); hlo->mutable_shape()->set_dynamic_dimension(hlo->dimension(), false); return absl::OkStatus(); } } absl::StatusOr<bool> DynamicPadder::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(2) << "Pre DynamicPadder HLO:"; XLA_VLOG_LINES(2, module->ToString()); HloDCE dce; TF_ASSIGN_OR_RETURN(bool changed, dce.Run(module, execution_threads)); TF_ASSIGN_OR_RETURN( DynamicDimensionInference dynamic_dimension_inference, DynamicDimensionInference::Run( module, options_.op_supports_dynamism_handler, options_.custom_call_handler, options_.shape_check_mode, options_.assertion_generator, execution_threads)); changed |= dynamic_dimension_inference.changed(); std::vector<HloComputation*> computations = module->MakeComputationPostOrder(execution_threads); for (HloComputation* computation : computations) { for (HloInstruction* inst : computation->MakeInstructionPostOrder()) { OpDynamismSupport has_dynamism_support = OpDynamismSupport::kNoSupport; if (options_.op_supports_dynamism_handler != nullptr) { has_dynamism_support = options_.op_supports_dynamism_handler(inst); } if (has_dynamism_support != OpDynamismSupport::kNoSupport) { continue; } if (inst->opcode() == HloOpcode::kConcatenate) { TF_ASSIGN_OR_RETURN( bool c, RewriteDynamicConcat(inst, &dynamic_dimension_inference)); changed |= c; continue; } if (inst->opcode() == HloOpcode::kReverse) { TF_ASSIGN_OR_RETURN(bool c, RewriteReverse(inst, &dynamic_dimension_inference)); changed |= c; continue; } if (inst->opcode() == HloOpcode::kSort) { TF_ASSIGN_OR_RETURN( bool c, RewriteDynamicSort(inst, &dynamic_dimension_inference)); changed |= c; continue; } if (inst->opcode() == HloOpcode::kReshape || inst->opcode() == HloOpcode::kDynamicReshape) { TF_ASSIGN_OR_RETURN( bool c, RewriteDynamicReshape(inst, &dynamic_dimension_inference)); changed |= c; continue; } if (inst->IsElementwiseBinary()) { TF_ASSIGN_OR_RETURN( bool c, RewriteDynamicBinaryOp(inst, &dynamic_dimension_inference)); changed |= c; continue; } if (inst->opcode() == HloOpcode::kDynamicUpdateSlice) { TF_ASSIGN_OR_RETURN(bool c, RewriteDynamicUpdateSlice( inst, &dynamic_dimension_inference)); changed |= c; continue; } if (inst->IsCustomCall("DynamicConvolutionInputGrad")) { TF_ASSIGN_OR_RETURN(bool c, RewriteDynamicConvolutionInputGrad( inst, &dynamic_dimension_inference)); changed |= c; continue; } if (inst->IsCustomCall("DynamicConvolutionForward")) { TF_ASSIGN_OR_RETURN(bool c, RewriteDynamicConvolutionForward( inst, &dynamic_dimension_inference)); changed |= c; continue; } if (inst->IsCustomCall("DynamicConvolutionKernelGrad")) { TF_ASSIGN_OR_RETURN(bool c, RewriteDynamicConvolutionKernelGrad( inst, &dynamic_dimension_inference)); changed |= c; continue; } if (inst->IsCustomCall("DynamicReduceWindowSamePadding")) { TF_ASSIGN_OR_RETURN(bool c, RewriteDynamicReduceWindowSamePadding( inst, &dynamic_dimension_inference)); changed |= c; continue; } if (inst->IsCustomCall("DynamicSelectAndScatterSamePadding")) { TF_ASSIGN_OR_RETURN(bool c, RewriteDynamicSelectAndScatterSamePadding( inst, &dynamic_dimension_inference)); changed |= c; continue; } for (int64_t operand_num = 0; operand_num < inst->operand_count(); ++operand_num) { HloInstruction* original_operand = inst->mutable_operand(operand_num); HloInstruction* operand = original_operand; if (!operand->shape().IsArray()) { continue; } for (int64_t input_dim = 0; input_dim < operand->shape().rank(); ++input_dim) { HloInstruction* operand_dynamic_size = dynamic_dimension_inference.GetDynamicSize(original_operand, {}, input_dim); if (operand_dynamic_size == nullptr) { continue; } VLOG(2) << "Has dynamic dimension of operand" << operand_num << " @" << input_dim; if (ShouldSkipPadOnOperand(inst, operand_num, input_dim, execution_threads)) { continue; } TF_ASSIGN_OR_RETURN(HloInstruction * identity_value, ChooseIdentityValue(inst, operand_num)); if (identity_value == nullptr) { continue; } HloInstruction* padded = PadWithScalar( operand, input_dim, operand_dynamic_size, identity_value); TF_RETURN_IF_ERROR(inst->ReplaceOperandWith(operand_num, padded)); operand = inst->mutable_operand(operand_num); changed = true; } } } } auto call_graph = CallGraph::Build(module, execution_threads); computations = module->MakeComputationPostOrder(execution_threads); for (auto it = computations.rbegin(); it != computations.rend(); ++it) { HloComputation* computation = *it; if (!call_graph->CanReach(module->entry_computation(), computation)) { continue; } bool require_dynamic_output = options_.slice_dynamic_output && computation == module->entry_computation(); changed |= require_dynamic_output; TF_ASSIGN_OR_RETURN(bool c, DynamicShapeRemovingVisitor::Run( computation, options_.op_supports_dynamism_handler, &dynamic_dimension_inference, execution_threads, require_dynamic_output)); changed |= c; } if (changed) { dynamic_padding_gauge->GetCell()->Set(changed); module->set_is_dynamic(true); } for (auto* computation : module->computations(execution_threads)) { if (!call_graph->CanReach(module->entry_computation(), computation)) { continue; } for (auto instruction : computation->MakeInstructionPostOrder()) { TF_ASSIGN_OR_RETURN( bool c, ReplaceGetSize(instruction, &dynamic_dimension_inference)); changed |= c; } } for (auto* computation : module->computations(execution_threads)) { if (!call_graph->CanReach(module->entry_computation(), computation)) { continue; } for (auto instruction : computation->MakeInstructionPostOrder()) { TF_ASSIGN_OR_RETURN(bool c, ReplaceSetSize(instruction)); changed |= c; TF_ASSIGN_OR_RETURN(c, ReplaceSetBound(instruction)); changed |= c; } } if (changed) { HloDCE dce; TF_ASSIGN_OR_RETURN(bool c, dce.Run(module, execution_threads)); changed |= c; } VLOG(2) << "Post DynamicPadder HLO:"; XLA_VLOG_LINES(2, module->ToString()); return changed; } }
#include "xla/service/dynamic_padder.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_replace.h" #include "absl/types/span.h" #include "xla/error_spec.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/dynamic_dimension_inference.h" #include "xla/service/dynamic_dimension_simplifier.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/service/tuple_simplifier.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/llvm_irgen_test_base.h" #include "xla/tests/test_macros.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test_benchmark.h" #include "tsl/protobuf/error_codes.pb.h" namespace xla { namespace { namespace m = ::xla::match; namespace op = xla::testing::opcode_matchers; OpDynamismSupport OpHasDynamismSupport(HloInstruction* hlo) { if (hlo->opcode() != HloOpcode::kCustomCall) { return OpDynamismSupport::kNoSupport; } if (hlo->custom_call_target() == "OpWithDynamicLowering") { return OpDynamismSupport::kRequired; } return OpDynamismSupport::kNoSupport; } absl::Status CustomCallDynamicDimensionInference( HloInstruction* hlo, DynamicDimensionInference* inferencer) { if (hlo->custom_call_target() == "OpWithDynamicLowering") { if (hlo->shape().IsTuple()) { HloInstruction* dynamic_size = inferencer->GetDynamicSize(hlo->mutable_operand(0), {1}, 0); inferencer->SetDynamicSize(hlo, {1}, 0, dynamic_size); } else { HloInstruction* dynamic_size = inferencer->GetDynamicSize(hlo->mutable_operand(0), {}, 0); inferencer->SetDynamicSize(hlo, {}, 0, dynamic_size); } } return absl::OkStatus(); } class DynamicPadderTest : public HloTestBase { protected: DynamicPadderTest() : HloTestBase() { module_ = CreateNewVerifiedModule(); } std::unique_ptr<HloModule> GetHloModule(const std::string& hlo_text) { std::unique_ptr<HloModule> module = ParseAndReturnVerifiedModule(hlo_text).value(); return module; } absl::StatusOr<bool> RunPadder( bool slice_dynamic_output = false, OpSupportsDynamismHandler op_supports_dynamism_handler = OpHasDynamismSupport, DynamicDimensionInference::CustomCallInferenceHandler custom_call_handler = CustomCallDynamicDimensionInference) { DynamicPadderOptions options; options.slice_dynamic_output = slice_dynamic_output; options.op_supports_dynamism_handler = std::move(op_supports_dynamism_handler); options.custom_call_handler = std::move(custom_call_handler); DynamicPadder padder(std::move(options)); TF_ASSIGN_OR_RETURN(bool changed, RunHloPass(&padder, module_.get())); if (!changed) return false; TupleSimplifier tuple_simplifier; TF_RETURN_IF_ERROR(RunHloPass(&tuple_simplifier, module_.get()).status()); AlgebraicSimplifier alg_simplifier(AlgebraicSimplifierOptions{}); TF_RETURN_IF_ERROR(RunHloPass(&alg_simplifier, module_.get()).status()); return true; } void ExpectPadded(const HloInstruction* inst) { EXPECT_THAT(inst, op::Select(op::Lt(op::Iota(), op::Broadcast(op::Parameter())), ::testing::_, op::Broadcast())); } HloComputation* GetScalarAddComputation() { auto embedded_builder = HloComputation::Builder("add"); auto lhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "lhs")); auto rhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {}), "rhs")); embedded_builder.AddInstruction( HloInstruction::CreateBinary(lhs->shape(), HloOpcode::kAdd, lhs, rhs)); return module_->AddEmbeddedComputation(embedded_builder.Build()); } std::unique_ptr<HloModule> module_; const Shape scalar_shape_ = ShapeUtil::MakeShape(S32, {}); }; class MemoryAlignmentTest : public HloTestBase {}; TEST_F(MemoryAlignmentTest, DISABLED_ON_CPU(TestDataTypeFP16)) { const std::string hlo_text = R"( HloModule TestDataTypeFP16 update_add (p0: f16[], p1: f16[]) -> f16[] { p0 = f16[] parameter(0) p1 = f16[] parameter(1) ROOT out = f16[] add(p0, p1) } ENTRY main () -> f16[<=1,1] { c1 = s32[1]{0} constant({1}) c2 = f16[1,1]{1,0} constant({ {0.099976} }) shape = s32[] reshape(s32[1]{0} c1) dim_size = f16[<=1,1]{1,0} set-dimension-size(f16[1,1]{1,0} c2, s32[] shape), dimensions={0} ROOT out = f16[<=1,1]{1,0} scatter(f16[<=1,1]{1,0} dim_size, s32[1]{0} c1, f16[1,1]{1,0} c2), update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, to_apply=update_add } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); } TEST_F(DynamicPadderTest, ReduceTest) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}); auto reduce_shape = ShapeUtil::MakeShape(F32, {2}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}, {false, false, true}); auto data_param = builder.AddInstruction( HloInstruction::CreateParameter(0, input_shape, "data_param")); auto* size_param = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "size_param")); data_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, data_param, size_param, 2)); auto negate = builder.AddInstruction(HloInstruction::CreateUnary( dynamic_shape, HloOpcode::kNegate, data_param)); auto init = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0))); auto reduce = builder.AddInstruction(HloInstruction::CreateReduce( reduce_shape, negate, init, {0, 2}, GetScalarAddComputation())); EXPECT_FALSE(module_->is_dynamic()); module_->AddEntryComputation(builder.Build()); TF_ASSERT_OK(RunPadder().status()); ExpectPadded(reduce->operand(0)); EXPECT_TRUE(module_->is_dynamic()); } TEST_F(DynamicPadderTest, DynamicLoweringTest) { const std::string hlo_text = R"( HloModule DynamicLowering ENTRY main { param = s32[5] parameter(0) const = s32[] constant(3) param_padded = s32[<=5] set-dimension-size(param, const), dimensions={0} custom-call.1 = s32[<=5] custom-call(param_padded), custom_call_target="OpWithDynamicLowering" custom-call.2 = s32[<=5] custom-call(custom-call.1), custom_call_target="OpWithDynamicLowering" ROOT negate = s32[<=5] negate(custom-call.2) } )"; module_ = GetHloModule(hlo_text); TF_ASSERT_OK(RunPadder(true).status()); auto custom_call_1 = module_->entry_computation()->GetInstructionWithName("custom-call.1"); auto custom_call_2 = module_->entry_computation()->GetInstructionWithName("custom-call.2"); HloInstruction* slice_to_dynamic = custom_call_1->mutable_operand(0); ASSERT_THAT(slice_to_dynamic->opcode(), HloOpcode::kCustomCall); ASSERT_THAT(slice_to_dynamic->custom_call_target(), "SliceToDynamic"); ASSERT_EQ(custom_call_2->user_count(), 1); HloInstruction* pad_to_static = custom_call_2->users()[0]; ASSERT_THAT(pad_to_static->opcode(), HloOpcode::kCustomCall); ASSERT_THAT(pad_to_static->custom_call_target(), "PadToStatic"); slice_to_dynamic = module_->entry_computation()->root_instruction(); ASSERT_THAT(slice_to_dynamic->opcode(), HloOpcode::kCustomCall); ASSERT_THAT(slice_to_dynamic->custom_call_target(), "SliceToDynamic"); } TEST_F(DynamicPadderTest, DynamicLoweringTestTupleInput) { const std::string hlo_text = R"( HloModule DynamicLowering ENTRY main { param = s32[5] parameter(0) const = s32[] constant(3) param_padded = s32[<=5] set-dimension-size(param, const), dimensions={0} tuple_arg = (s32[], s32[<=5]) tuple(const, param_padded) custom-call.1 = (s32[], s32[<=5]) custom-call(tuple_arg), custom_call_target="OpWithDynamicLowering" custom-call.2 = (s32[], s32[<=5]) custom-call(custom-call.1), custom_call_target="OpWithDynamicLowering" data = s32[<=5]{0} get-tuple-element(custom-call.2), index=1 ROOT negate = s32[<=5] negate(data) } )"; module_ = GetHloModule(hlo_text); TF_ASSERT_OK(RunPadder(true).status()); auto* root = module_->entry_computation()->root_instruction(); EXPECT_THAT(root, op::CustomCall( {"SliceToDynamic"}, op::Negate(), op::GetTupleElement(op::CustomCall({"PadToStatic"})))); HloInstruction* negate = root->mutable_operand(0); EXPECT_THAT( negate, op::Negate(op::GetTupleElement(op::CustomCall( {"PadToStatic"}, op::GetTupleElement(op::CustomCall( {"OpWithDynamicLowering"}, ::testing::_)))))); auto custom_call_1 = module_->entry_computation()->GetInstructionWithName("custom-call.1"); EXPECT_THAT(custom_call_1, op::CustomCall({"OpWithDynamicLowering"}, op::Tuple(op::Constant(), op::CustomCall({"SliceToDynamic"})))); } TEST_F(DynamicPadderTest, DynamicOutputNestedTuple) { const std::string hlo_text = R"( HloModule DynamicLowering ENTRY main { param = s32[5] parameter(0) const = s32[] constant(3) const2 = s32[] constant(4) param_padded = s32[<=5] set-dimension-size(param, const), dimensions={0} tuple0 = (s32[], s32[<=5]) tuple(const, param_padded) ROOT tuple1 = (s32[], (s32[], s32[<=5])) tuple(const2, tuple0) } )"; module_ = GetHloModule(hlo_text); TF_ASSERT_OK(RunPadder(true).status()); TF_ASSERT_OK(TupleSimplifier().Run(module_.get()).status()); XLA_LOG_LINES(INFO, module_->ToString()); auto* root = module_->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Tuple(op::Constant(), op::Tuple())); HloInstruction* nested_tuple = root->mutable_operand(1); EXPECT_THAT(nested_tuple, op::Tuple(op::Constant(), op::CustomCall({"SliceToDynamic"}))); } TEST_F(DynamicPadderTest, ConvolutionTest) { auto builder = HloComputation::Builder(TestName()); constexpr int xdim = 3; constexpr int ydim = 2; constexpr int zdim = 1; auto xy_shape = ShapeUtil::MakeShape(F32, {xdim, ydim}); auto yz_shape = ShapeUtil::MakeShape(F32, {ydim, zdim}); auto zx_shape = ShapeUtil::MakeShape(F32, {zdim, xdim}); auto xy_shape_dynamic = ShapeUtil::MakeShape(F32, {xdim, ydim}, {false, true}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, xy_shape, "A")); auto* b_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, yz_shape, "B")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 2, scalar_shape_, "size_param")); auto dnums = XlaBuilder::CreateDefaultConvDimensionNumbers(0); dnums.set_kernel_input_feature_dimension(0); dnums.set_kernel_output_feature_dimension(1); dnums.set_input_batch_dimension(0); dnums.set_output_batch_dimension(1); dnums.set_output_feature_dimension(0); Window window; a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( xy_shape_dynamic, a_param, size_param, 1)); auto* conv = builder.AddInstruction(HloInstruction::CreateConvolve( zx_shape, a_param, b_param, 1, 1, window, dnums, HloTestBase::DefaultPrecisionConfig(2))); module_->AddEntryComputation(builder.Build()); TF_ASSERT_OK(RunPadder().status()); ExpectPadded(conv->operand(0)); } TEST_F(DynamicPadderTest, ConvolutionNoPad) { auto builder = HloComputation::Builder(TestName()); constexpr int xdim = 3; constexpr int ydim = 2; constexpr int zdim = 1; auto xy_shape = ShapeUtil::MakeShape(F32, {xdim, ydim}); auto yz_shape = ShapeUtil::MakeShape(F32, {ydim, zdim}); auto zx_shape = ShapeUtil::MakeShape(F32, {zdim, xdim}, {false, true}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {xdim, ydim}, {true, false}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, xy_shape, "A")); auto* b_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, yz_shape, "B")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 2, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, a_param, size_param, 0)); auto dnums = XlaBuilder::CreateDefaultConvDimensionNumbers(0); dnums.set_kernel_input_feature_dimension(0); dnums.set_kernel_output_feature_dimension(1); dnums.set_input_batch_dimension(0); dnums.set_output_batch_dimension(1); dnums.set_output_feature_dimension(0); Window window; auto* conv = builder.AddInstruction(HloInstruction::CreateConvolve( zx_shape, a_param, b_param, 1, 1, window, dnums, HloTestBase::DefaultPrecisionConfig(2))); module_->AddEntryComputation(builder.Build()); TF_ASSERT_OK(RunPadder().status()); EXPECT_THAT(conv->operand(0), op::Parameter()); } TEST_F(DynamicPadderTest, ReduceWindowNoPadForTrivialWindow) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {4, 5}); auto reduce_shape = ShapeUtil::MakeShape(F32, {3, 5}, {false, true}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {4, 5}, {false, true}); auto input = builder.AddInstruction( HloInstruction::CreateParameter(0, input_shape, "input")); auto* size_param = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "size_param")); input = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, input, size_param, 1)); auto init = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0))); TF_ASSERT_OK_AND_ASSIGN(Window window, ParseWindow("size=2x1 pad=0_0x0_0")); auto output = builder.AddInstruction(HloInstruction::CreateReduceWindow( reduce_shape, input, init, window, GetScalarAddComputation())); module_->AddEntryComputation(builder.Build()); TF_ASSERT_OK(RunPadder().status()); EXPECT_THAT(output->operand(0), op::Parameter()); } TEST_F(DynamicPadderTest, VariadicReduceWindowNoPadForTrivialWindow) { const std::string hlo_text = R"( HloModule VariadicReduceWindowNoPadForTrivialWindow add_f32 (a: f32[], b: s32[], c: f32[], d: s32[]) -> (f32[], s32[]) { a = f32[] parameter(0) b = s32[] parameter(1) c = f32[] parameter(2) d = s32[] parameter(3) add.0 = f32[] add(a, c) add.1 = s32[] add(b, d) ROOT out = tuple(add.0, add.1) } ENTRY main { input.0 = f32[4, 5] parameter(0) input.1 = s32[4, 5] parameter(1) size_param.0 = s32[] parameter(2) size_param.1 = s32[] parameter(3) input_dynamic.0 = f32[4,<=5] set-dimension-size(input.0, size_param.0), dimensions={1} input_dynamic.1 = s32[4,<=5] set-dimension-size(input.1, size_param.0), dimensions={1} init.0 = f32[] constant(0.0) init.1 = s32[] constant(0) ROOT output = (f32[3, <=5], s32[3, <=5]) reduce-window(input_dynamic.0, input_dynamic.1, init.0, init.1), window={size=2x1 pad=0_0x0_0}, to_apply=add_f32 } )"; const int kNumParams = 2; module_ = ParseAndReturnVerifiedModule(hlo_text).value(); TF_ASSERT_OK(RunPadder().status()); for (int i = 0; i < kNumParams; ++i) { EXPECT_THAT(module_->entry_computation()->root_instruction()->operand(i), op::Parameter()); } } TEST_F(DynamicPadderTest, PadS8ToS32Dot) { const std::string hlo_text = R"( HloModule test ENTRY test { a = s8[<=16,32] parameter(0) b = s8[32,64] parameter(1) ROOT root = s32[<=16,64] dot(a, b), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; module_ = GetHloModule(hlo_text); TF_ASSERT_OK(RunPadder(true).status()); EXPECT_THAT(module_->entry_computation()->root_instruction(), GmockMatch(m::CustomCall({"SliceToDynamic"}, m::Dot(m::Op().WithShape(S8, {16, 32}), m::Op().WithShape(S8, {32, 64})) .WithShape(S32, {16, 64}), m::Op(), m::Op()))); } TEST_F(DynamicPadderTest, PadToStaticForCustomCall) { const std::string hlo_text = R"( HloModule test ENTRY test { a = f32[64] parameter(0) ROOT c = f32[<=128] custom-call(a), custom_call_target="UnknownOp" } )"; module_ = GetHloModule(hlo_text); TF_ASSERT_OK(RunPadder(true).status()); EXPECT_THAT(module_->entry_computation()->root_instruction(), GmockMatch(m::CustomCall({"UnknownOp"}))); } TEST_F(DynamicPadderTest, WhileLoopDynamicShapeChangeToStatic) { const std::string hlo_text = R"( HloModule WhileLoopDynamicShapeChangeToStatic %cond_wrapper.19447 { param = (s32[], s32[], f32[], f32[<=32,216]{1,0}) parameter(0) %get-tuple-element.184 = s32[] get-tuple-element(param), index=0 %get-tuple-element.185 = s32[] get-tuple-element(param), index=1 ROOT %compare.28 = pred[] compare(s32[] %get-tuple-element.184, s32[] %get-tuple-element.185), direction=LT } %while_body_78894_grad_83711__.18882 { param = (s32[], s32[], f32[], f32[<=32,216]{1,0}) parameter(0) %get-tuple-element.184 = s32[] get-tuple-element(param), index=0 %get-tuple-element.185 = s32[] get-tuple-element(param), index=1 %add.1 = s32[] add(get-tuple-element.184, get-tuple-element.184) %gte.2 = f32[] get-tuple-element(param), index=2 %broadcast.19389 = f32[32,216]{1,0} broadcast(f32[] %gte.2), dimensions={} %constant.32 = s32[] constant(32) %set-dimension-size = f32[<=32,216]{1,0} set-dimension-size(f32[32,216]{1,0} %broadcast.19389, s32[] %constant.32), dimensions={0} ROOT tuple = (s32[], s32[], f32[], f32[<=32,216]{1,0}) tuple(add.1, %get-tuple-element.185, %gte.2, %set-dimension-size) } ENTRY main { param = f32[] parameter(0) param.1 = f32[<=32,216]{1,0} parameter(1) const = s32[] constant(3) const2 = s32[] constant(4) %tuple.18877 = (s32[], s32[], f32[], f32[<=32,216]{1,0}) tuple(const, const2, param, param.1) %while.19451 = (s32[], s32[], f32[], f32[<=32,216]{1,0}) while((s32[], s32[], f32[], f32[<=32,216]{1,0}) %tuple.18877), condition=%cond_wrapper.19447, body=%while_body_78894_grad_83711__.18882 ROOT result = f32[<=32,216]{1,0} get-tuple-element(while.19451), index=3 } )"; module_ = GetHloModule(hlo_text); TF_ASSERT_OK(RunPadder(true).status()); XLA_LOG_LINES(INFO, module_->ToString()); auto* root = module_->entry_computation()->root_instruction(); EXPECT_EQ(root->shape(), ShapeUtil::MakeShape(F32, {32, 216}, {true, false})); HloInstruction* while_inst = nullptr; for (HloInstruction* inst : module_->entry_computation()->MakeInstructionPostOrder()) { if (inst->opcode() == HloOpcode::kWhile) { ASSERT_EQ(while_inst, nullptr) << "while_inst: " << while_inst->name() << ", inst: " << inst->name(); while_inst = inst; } } EXPECT_EQ(while_inst->shape(), ShapeUtil::MakeTupleShape({ShapeUtil::MakeScalarShape(S32), ShapeUtil::MakeScalarShape(S32), ShapeUtil::MakeScalarShape(F32), ShapeUtil::MakeShape(F32, {32, 216}), ShapeUtil::MakeScalarShape(S32)})); } TEST_F(DynamicPadderTest, WhileLoopCarriesRequiredDynamicShape) { const std::string hlo_text = R"( HloModule WhileLoopCarriesRequiredDynamicShape %cond { param = (f32[1024], f32[<=64], f32[32], f32[<=64], f32[32], s32[], s32[], token[]) parameter(0) current = s32[] get-tuple-element(param), index=5 last = s32[] get-tuple-element(param), index=6 ROOT result = pred[] compare(current, last), direction=LT } %body { param = (f32[1024], f32[<=64], f32[32], f32[<=64], f32[32], s32[], s32[], token[]) parameter(0) var = f32[1024] get-tuple-element(param), index=0 input0 = f32[<=64] get-tuple-element(param), index=1 grad0 = f32[32] get-tuple-element(param), index=2 input1 = f32[<=64] get-tuple-element(param), index=3 act1 = f32[32] get-tuple-element(param), index=4 grad1 = f32[32] custom-call(act1), custom_call_target="ComputeGradients" var1 = f32[1024] custom-call(var, input0, grad0), custom_call_target="ApplyGradients", output_to_operand_aliasing={{}: (0, {})} token2 = token[] get-tuple-element(param), index=7 infeed2 = (f32[<=64], token[]) infeed(token2) input2 = f32[<=64] get-tuple-element(infeed2), index=0 act2 = f32[32] custom-call(var1, input2), custom_call_target="ComputeActivations" current = s32[] get-tuple-element(param), index=5 constant1 = s32[] constant(1) add = s32[] add(current, constant1) last = s32[] get-tuple-element(param), index=6 token3 = token[] get-tuple-element(infeed2), index=1 ROOT result = (f32[1024], f32[<=64], f32[32], f32[<=64], f32[32], s32[], s32[], token[]) tuple(var1, input1, grad1, input2, act2, add, last, token3) } ENTRY main { last = s32[] parameter(0) var = f32[1024] parameter(1) token0 = token[] after-all() infeed0 = (f32[<=64], token[]) infeed(token0) input0 = f32[<=64] get-tuple-element(infeed0), index=0 act0 = f32[32] custom-call(var, input0), custom_call_target="ComputeActivations" grad0 = f32[32] custom-call(act0), custom_call_target="ComputeGradients" token1 = token[] get-tuple-element(infeed0), index=1 infeed1 = (f32[<=64], token[]) infeed(token1) input1 = f32[<=64] get-tuple-element(infeed1), index=0 act1 = f32[32] custom-call(var, input1), custom_call_target="ComputeActivations" token2 = token[] get-tuple-element(infeed1), index=1 zero = s32[] constant(0) tuple = (f32[1024], f32[<=64], f32[32]{0}, f32[<=64], f32[32]{0}, s32[], s32[], token[]) tuple(var, input0, grad0, input1, act1, zero, last, token2) while = (f32[1024], f32[<=64], f32[32]{0}, f32[<=64], f32[32]{0}, s32[], s32[], token[]) while(tuple), condition=%cond, body=%body ROOT result = f32[1024] get-tuple-element(while), index=0 } )"; module_ = GetHloModule(hlo_text); auto op_supports_dynamism = [](HloInstruction* hlo) { if (hlo->opcode() != HloOpcode::kCustomCall) { return OpDynamismSupport::kNoSupport; } if (hlo->custom_call_target() == "ComputeActivations" || hlo->custom_call_target() == "ApplyGradients") { return OpDynamismSupport::kRequired; } return OpDynamismSupport::kNoSupport; }; auto custom_call_handler = [](HloInstruction* hlo, DynamicDimensionInference* inference) { return absl::OkStatus(); }; TF_ASSERT_OK( RunPadder( true, std::move(op_supports_dynamism), std::move(custom_call_handler)) .status()); XLA_VLOG_LINES(1, module_->ToString()); for (HloComputation* computation : module_->computations()) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kCustomCall) { EXPECT_NE(instruction->custom_call_target(), "PadToStatic"); EXPECT_NE(instruction->custom_call_target(), "SliceToDynamic"); if (instruction->custom_call_target() == "ComputeActivations") { EXPECT_TRUE(instruction->operand(1)->shape().is_dynamic()); } else if (instruction->custom_call_target() == "ApplyGradients") { EXPECT_TRUE(instruction->operand(1)->shape().is_dynamic()); } } else if (instruction->opcode() == HloOpcode::kWhile) { const Shape& shape = instruction->shape(); EXPECT_TRUE(shape.tuple_shapes(1).is_dynamic()); EXPECT_TRUE(shape.tuple_shapes(3).is_dynamic()); } } } } TEST_F(DynamicPadderTest, HandleReshapeCheckPastReshape) { auto hlo_text = R"( HloModule ReshapeDynamicDimension ENTRY main { p0 = f32[4,511,432]{2,1,0} parameter(0) p1 = s32[] parameter(1) p2 = f32[432,337]{1,0:T(8,128)} parameter(2) p0_dynamic = f32[<=4,511,432] set-dimension-size(p0, p1), dimensions={0} reshape.4179 = f32[<=2044,432]{1,0} reshape(p0_dynamic) dot.4180 = f32[<=2044,337]{1,0} dot(reshape.4179, p2), lhs_contracting_dims={1}, rhs_contracting_dims={0} transpose.4181 = f32[<=2044,337]{1,0} transpose(dot.4180), dimensions={0,1} ROOT reshape.4183 = f32[<=4,511,337]{2,1,0} reshape(transpose.4181) })"; module_ = GetHloModule(hlo_text); TF_ASSERT_OK(RunPadder(true).status()); VLOG(3) << module_->ToString(); CHECK(module_->is_dynamic()); CHECK(module_->entry_computation() ->root_instruction() ->shape() .is_dynamic_dimension(0)); } class ExecutionTest : public HloTestBase { protected: std::unique_ptr<HloModule> GetHloModule(const std::string& hlo_text) { std::unique_ptr<HloModule> module = ParseAndReturnVerifiedModule(hlo_text).value(); return module; } absl::StatusOr<Literal> PadAndExecute(std::unique_ptr<HloModule> module, absl::Span<Literal* const> arguments, bool slice_dynamic_output = true) { if (!slice_dynamic_output) { auto new_config = module->config(); new_config.mutable_entry_computation_layout() ->mutable_result_layout() ->ClearDynamicShape(); module->set_config(new_config); } DynamicPadderOptions options; options.slice_dynamic_output = slice_dynamic_output; DynamicPadder padder(options); TF_CHECK_OK(padder.Run(module.get()).status()); HloDCE dce; TF_CHECK_OK(dce.Run(module.get()).status()); return Execute(std::move(module), {arguments}); } }; XLA_TEST_F(ExecutionTest, ScatterUpdate) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[3,3] parameter(0) indices = s32[INDICES_BOUND] parameter(1) updates = s32[INDICES_BOUND,3] parameter(2) dynamic_size = s32[] parameter(3) indices_dynamic = s32[<=INDICES_BOUND] set-dimension-size(indices, dynamic_size), dimensions={0} updates_dynamic = s32[<=INDICES_BOUND,3] set-dimension-size(updates, dynamic_size), dimensions={0} ROOT scatter = s32[3,3] scatter(operand, indices_dynamic, updates_dynamic), to_apply=update_s32, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 } )"; const std::string hlo_text_not_padded = absl::StrReplaceAll(hlo_text, {{"INDICES_BOUND", "2"}}); auto module_not_padded = GetHloModule(hlo_text_not_padded); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({0, 2}); Literal updates = LiteralUtil::CreateR2<int32_t>({{10, 20, 30}, {70, 80, 90}}); Literal dynamic_size = LiteralUtil::CreateR0<int32_t>(2); Literal not_padded = ExecuteAndTransfer(std::move(module_not_padded), {&operand, &scatter_indices, &updates, &dynamic_size}); const std::string hlo_text_padded = absl::StrReplaceAll(hlo_text, {{"INDICES_BOUND", "4"}}); auto module_padded = GetHloModule(hlo_text_padded); Literal scatter_indices_padded = LiteralUtil::CreateR1<int32_t>({0, 2, 0, 4}); Literal updates_padded = LiteralUtil::CreateR2<int32_t>( {{10, 20, 30}, {70, 80, 90}, {30, 22, 11}, {-1, 20, -1}}); DynamicPadder padder; TF_CHECK_OK(padder.Run(module_padded.get()).status()); TF_ASSERT_OK_AND_ASSIGN(Literal padded, PadAndExecute(std::move(module_padded), {&operand, &scatter_indices_padded, &updates_padded, &dynamic_size})); EXPECT_EQ(padded, not_padded); } XLA_TEST_F(ExecutionTest, ScatterUpdateWindowDim) { const std::string hlo_text = R"( HloModule ScatterUpdateWindowDim update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[1,2,3] parameter(0) indices = s32[1] parameter(1) updates = s32[2,3,1] parameter(2) dynamic_size = s32[] constant(1) operand_dynamic = s32[1, <=2, 3] set-dimension-size(operand, dynamic_size), dimensions={1} updates_dynamic = s32[<=2, 3, 1] set-dimension-size(updates, dynamic_size), dimensions={0} ROOT scatter = s32[1, <=2, 3] scatter(operand_dynamic, indices, updates_dynamic), to_apply=update_s32, update_window_dims={0, 1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 } )"; auto hlo_module = GetHloModule(hlo_text); Literal operand = LiteralUtil::CreateR3<int32_t>({{{0, 0, 0}, {0, 0, 0}}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({0}); Literal updates = LiteralUtil::CreateR3<int32_t>({{{10}, {20}, {30}}, {{70}, {80}, {90}}}); TF_ASSERT_OK_AND_ASSIGN( Literal padded, PadAndExecute(std::move(hlo_module), {&operand, &scatter_indices, &updates}, false)); Literal expected = LiteralUtil::CreateR3<int32_t>({{{10, 20, 30}, {70, 80, 90}}}); EXPECT_EQ(padded, expected); } XLA_TEST_F(ExecutionTest, ScatterUpdateF32) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_f32 (lhs: f32[], rhs: f32[]) -> f32[] { lhs = f32[] parameter(0) ROOT rhs = f32[] parameter(1) } ENTRY main { operand = f32[3,3] parameter(0) indices = s32[2] parameter(1) updates = f32[2,3] parameter(2) dynamic_size = s32[] parameter(3) indices_dynamic = s32[<=2] set-dimension-size(indices, dynamic_size), dimensions={0} updates_dynamic = f32[<=2,3] set-dimension-size(updates, dynamic_size), dimensions={0} ROOT scatter = f32[3,3] scatter(operand, indices_dynamic, updates_dynamic), to_apply=update_f32, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 } )"; auto module_not_padded = GetHloModule(hlo_text); Literal operand = LiteralUtil::CreateR2<float>( {{1.0, 2.0, 3.0}, {4.0, 5.0, 6.0}, {7.0, 8.0, 9.0}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({0, 2}); Literal updates = LiteralUtil::CreateR2<float>({{10.0, 20.0, 30.0}, {70.0, 80.0, 90.0}}); Literal dynamic_size = LiteralUtil::CreateR0<int32_t>(1); auto module_padded = GetHloModule(hlo_text); DynamicPadder padder; TF_CHECK_OK(padder.Run(module_padded.get()).status()); TF_ASSERT_OK_AND_ASSIGN( Literal not_padded, PadAndExecute(std::move(module_padded), {&operand, &scatter_indices, &updates, &dynamic_size})); EXPECT_EQ(LiteralUtil::CreateR2<float>( {{10.0, 20.0, 30.0}, {4.0, 5.0, 6.0}, {7.0, 8.0, 9.0}}), not_padded); } XLA_TEST_F(ExecutionTest, WholeDimensionGather) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[3, 2, 1] parameter(0) size = s32[] constant(1) param_padded = s32[3, <=2, 1] set-dimension-size(param, size), dimensions={1} index = s32[] constant(1) gather = s32[<=2,1]{1,0} gather(param_padded, index), offset_dims={0,1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=0, slice_sizes={1,2,1} init = s32[] constant(0) ROOT reduce = s32[] reduce(gather, init), dimensions={0, 1}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR3<int32_t>({{{1}, {2}}, {{3}, {4}}, {{5}, {6}}}); auto module = GetHloModule(hlo_text); DynamicPadder padder; TF_CHECK_OK(padder.Run(module.get()).status()); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR0<int32_t>(3); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, TwoDimensionReduce) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[INDICES_BOUND, INDICES_BOUND] parameter(0) dynamic_size = s32[] parameter(1) param_0 = s32[<=INDICES_BOUND,INDICES_BOUND] set-dimension-size(param, dynamic_size), dimensions={0} param_1 = s32[<=INDICES_BOUND,INDICES_BOUND] set-dimension-size(param_0, dynamic_size), dimensions={1} const = s32[] constant(0) ROOT reduce = s32[] reduce(param_1, const), dimensions={0, 1}, to_apply=update_s32 } )"; const std::string hlo_text_not_padded = absl::StrReplaceAll(hlo_text, {{"INDICES_BOUND", "2"}}); auto module_not_padded = GetHloModule(hlo_text_not_padded); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2}, {4, 5}}); Literal dynamic_size = LiteralUtil::CreateR0<int32_t>(2); Literal not_padded = ExecuteAndTransfer(std::move(module_not_padded), {&operand, &dynamic_size}); const std::string hlo_text_padded = absl::StrReplaceAll(hlo_text, {{"INDICES_BOUND", "4"}}); auto module_padded = GetHloModule(hlo_text_padded); Literal operand_padded = LiteralUtil::CreateR2<int32_t>( {{1, 2, 3, 4}, {4, 5, 6, 7}, {1, 2, 3, 4}, {4, 5, 6, 7}}); DynamicPadder padder; TF_CHECK_OK(padder.Run(module_padded.get()).status()); TF_ASSERT_OK_AND_ASSIGN(Literal padded, PadAndExecute(std::move(module_padded), {&operand_padded, &dynamic_size})); EXPECT_EQ(padded, not_padded); } XLA_TEST_F(ExecutionTest, DynamicDimensionClamp) { const std::string hlo_text = R"( HloModule TensorFlowTenaryV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[5] parameter(0) const = s32[] constant(3) param_padded = s32[<=5] set-dimension-size(param, const), dimensions={0} clamp = s32[<=5] clamp(param_padded, param_padded, param_padded) init = s32[] constant(0) ROOT reduce = s32[] reduce(clamp, init), dimensions={0}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR1<int32_t>({1, 2, 3, 4, 5}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR0<int32_t>(6); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicConcat) { const std::string hlo_text = R"( HloModule DynamicConcat ENTRY main { param_0 = s32[3] parameter(0) param_1 = s32[3] parameter(1) param_2 = s32[3] parameter(2) size = s32[] constant(2) param_padded_0 = s32[<=3] set-dimension-size(param_0, size), dimensions={0} param_padded_2 = s32[<=3] set-dimension-size(param_2, size), dimensions={0} ROOT %concatenate = s32[<=9] concatenate(s32[<=3] param_padded_0, s32[<=3] param_1, s32[<=3] param_padded_2), dimensions={0} } )"; Literal operand_0 = LiteralUtil::CreateR1<int32_t>({1, 2, -1}); Literal operand_1 = LiteralUtil::CreateR1<int32_t>({3, 4, 5}); Literal operand_2 = LiteralUtil::CreateR1<int32_t>({6, 7, -1}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN( Literal result, PadAndExecute(std::move(module), {&operand_0, &operand_1, &operand_2}, false)); result.SetDynamicSize(0, 7); Literal expected = LiteralUtil::CreateR1<int32_t>({1, 2, 3, 4, 5, 6, 7}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicReverseSingleDim) { const std::string hlo_text = R"( HloModule DynamicConcat ENTRY main { param_0 = s32[3] parameter(0) size = s32[] constant(2) param_padded_0 = s32[<=3] set-dimension-size(param_0, size), dimensions={0} ROOT %reverse = s32[<=3] reverse(s32[<=3] param_padded_0), dimensions={0} } )"; Literal operand_0 = LiteralUtil::CreateR1<int32_t>({1, 2, -1}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN( Literal result, PadAndExecute(std::move(module), {&operand_0}, false)); result.SetDynamicSize(0, 2); Literal expected = LiteralUtil::CreateR1<int32_t>({2, 1}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicReverseMultiDims) { const std::string hlo_text = R"( HloModule DynamicConcat ENTRY main { param_0 = s32[3, 3] parameter(0) size = s32[] constant(2) param_padded_0 = s32[<=3, 3] set-dimension-size(param_0, size), dimensions={0} param_padded_1 = s32[<=3, <=3] set-dimension-size(param_padded_0, size), dimensions={1} ROOT %reverse = s32[<=3, <=3] reverse(s32[<=3, <=3] param_padded_1), dimensions={0, 1} } )"; Literal operand_0 = LiteralUtil::CreateR2<int32_t>( {{1, 2, -1}, {3, 4, -1}, {-1, -1, -1}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN( Literal result, PadAndExecute(std::move(module), {&operand_0}, false)); result.SetDynamicSize(0, 2); result.SetDynamicSize(1, 2); Literal expected = LiteralUtil::CreateR2<int32_t>({{4, 3}, {2, 1}}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicDimensionReduce) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[5] parameter(0) const = s32[] constant(3) param_padded = s32[<=5] set-dimension-size(param, const), dimensions={0} init = s32[] constant(0) ROOT reduce = s32[] reduce(param_padded, init), dimensions={0}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR1<int32_t>({1, 2, 3, 4, 5}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR0<int32_t>(6); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, InputMinorDimensionReshape) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[1, 2, 5, 1] parameter(0) const = s32[] constant(3) param_padded = s32[1, 2, <=5, 1] set-dimension-size(param, const), dimensions={2} reshaped = s32[<=10] reshape(param_padded) init = s32[] constant(0) ROOT reduce = s32[] reduce(reshaped, init), dimensions={0}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR4<int32_t>( {{{{1}, {2}, {3}, {4}, {5}}, {{2}, {4}, {6}, {7}, {8}}}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR0<int32_t>(18); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, SliceSingleElement) { const std::string hlo_text = R"( HloModule Slicing ENTRY main { param = s32[5] parameter(0) const = s32[] constant(3) param_padded = s32[<=5] set-dimension-size(param, const), dimensions={0} ROOT slice = s32[1]{0} slice(param_padded), slice={[0:1]} } )"; Literal operand = LiteralUtil::CreateR1<int32_t>({0, 1, 2, 3, 4}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR1<int32_t>({0}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, OutputMinorDimensionReshape) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[12] parameter(0) const = s32[] constant(8) param_padded = s32[<=12] set-dimension-size(param, const), dimensions={0} reshaped = s32[2, <=3, 2] reshape(param_padded), inferred_dimension=1 init = s32[] constant(0) ROOT reduce = s32[2, 2] reduce(reshaped, init), dimensions={1}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR1<int32_t>({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR2<int32_t>({{2, 4}, {10, 12}}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, OutputMinorDimensionReshapeWithUnchangedDimMajor) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[2, 6] parameter(0) const = s32[] constant(4) param_padded = s32[2, <=6] set-dimension-size(param, const), dimensions={1} reshaped = s32[2, 2, <=3] reshape(param_padded), inferred_dimension=2 init = s32[] constant(0) ROOT reduce = s32[2, 2] reduce(reshaped, init), dimensions={2}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR2<int32_t>( {{0, 1, 2, 3, 4, 5}, {6, 7, 8, 9, 10, 11}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR2<int32_t>({{1, 5}, {13, 17}}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, OutputMinorDimensionReshapeWithUnchangedDimMinor) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[6, 2] parameter(0) const = s32[] constant(4) param_padded = s32[<=6, 2] set-dimension-size(param, const), dimensions={0} reshaped = s32[2, <=3, 2] reshape(param_padded), inferred_dimension=1 init = s32[] constant(0) ROOT reduce = s32[2, 2] reduce(reshaped, init), dimensions={1}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR2<int32_t>( {{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}, {10, 11}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR2<int32_t>({{2, 4}, {10, 12}}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicInputFeature) { const std::string hlo_text = R"( HloModule DynamicInputFeature ENTRY main { param = f32[1, 1, 5] parameter(0) const = s32[] constant(5) one = f32[] constant(1) kernel = f32[1,5,1]{2,1,0} broadcast(f32[] one), dimensions={} param_dynamic = f32[1,1,<=5] set-dimension-size(param, const), dimensions={2} ROOT conv = f32[1, 1, 1]{2,1,0} custom-call(f32[1, 1, <=5] param_dynamic, f32[1,<=5,1]{2,1,0} kernel), window={size=1 pad=0_0}, dim_labels=b0f_0io->b0f, padding_type=PADDING_VALID, custom_call_target="DynamicConvolutionForward" } )"; Literal operand = LiteralUtil::CreateR3<float>({{{1, 2, 3, 4, 5}}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR3<float>({{{15}}}); EXPECT_EQ(result, expected); } XLA_TEST_F(LlvmIrGenTestBase, LargeDynamicInput) { #ifndef XLA_TEST_BACKEND_GPU GTEST_SKIP(); #endif const std::string hlo_text = R"( HloModule LargeDynamicInput add (lhs: f32[], rhs: f32[]) -> f32[] { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY main { param = f32[<=20,<=20,<=20,<=20,<=20,<=20,<=20,<=20] parameter(0) zero = f32[] constant(0) ROOT out = reduce(param, zero), to_apply=add, dimensions={0,1,2,3,4,5,6,7} } )"; CompileAndVerifyIr(hlo_text, R"( CHECK: ret void )", true); } XLA_TEST_F(ExecutionTest, DynamicDimensionReshapeUnchanged) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[1, 2, 5, 1] parameter(0) const = s32[] constant(3) param_padded = s32[1, 2, <=5, 1] set-dimension-size(param, const), dimensions={2} reshaped = s32[2, <=5] reshape(param_padded) init = s32[] constant(0) ROOT reduce = s32[2] reduce(reshaped, init), dimensions={1}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR4<int32_t>( {{{{1}, {2}, {3}, {4}, {5}}, {{2}, {4}, {6}, {7}, {8}}}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR1<int32_t>({6, 12}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DegeneratedDimension) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[1, 2, 5, 1] parameter(0) size = s32[] constant(0) param_padded = s32[<=1, 2, 5, 1] set-dimension-size(param, size), dimensions={0} reshaped = s32[<=10] reshape(param_padded) init = s32[] constant(0) ROOT reduce = s32[] reduce(reshaped, init), dimensions={0}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR4<int32_t>( {{{{1}, {2}, {3}, {4}, {5}}, {{2}, {4}, {6}, {7}, {8}}}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR0<int32_t>(0); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, ReshapeSplitCombineSameTime) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[4, 2, 2] parameter(0) two = s32[] constant(2) one = s32[] constant(1) param_padded_partial = s32[<=4, 2, 2] set-dimension-size(param, two), dimensions={0} param_padded_dynamic = s32[<=4, 2, <=2] set-dimension-size(param_padded_partial, one), dimensions={2} reshaped = s32[2, <=2, <=4] reshape(param_padded_dynamic), inferred_dimension=1 init = s32[] constant(0) ROOT reduce = s32[] reduce(reshaped, init), dimensions={0, 1, 2}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR3<int32_t>({{{0, -1}, {1, -1}}, {{2, -1}, {3, -1}}, {{-1, -1}, {-1, -1}}, {{-1, -1}, {-1, -1}}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR0<int32_t>(6); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, ReshapeComplicated) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[2, 4, 4] parameter(0) two = s32[] constant(2) param_padded_dynamic = s32[2, <=4, 4] set-dimension-size(param, two), dimensions={1} reshaped = s32[<=16, 2] reshape(param_padded_dynamic), inferred_dimension=0 init = s32[] constant(0) ROOT reduce = s32[] reduce(reshaped, init), dimensions={0, 1}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR3<int32_t>( {{{1, 2, 3, 4}, {5, 6, 7, 8}, {-1, -1, -1, -1}, {-1, -1, -1, -1}}, {{9, 10, 11, 12}, {13, 14, 15, 16}, {-1, -1, -1, -1}, {-1, -1, -1, -1}}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR0<int32_t>(136); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, WhileLoopStack) { const std::string hlo_text = R"( HloModule module update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } body { stack = (s32[<=4,2]) parameter(0) stack_buffer = s32[<=4, 2] get-tuple-element(stack), index=0 stack_size = s32[] get-dimension-size(stack_buffer), dimensions={0} zero = s32[] constant(0) one = s32[] constant(1) new_data = s32[1, 2] broadcast(s32[] stack_size), dimensions={} new_stack_size = s32[] add(stack_size, one) new_stack_buffer = s32[<=4, 2] set-dimension-size(stack_buffer, new_stack_size), dimensions={0} new_stack = s32[<=4, 2] dynamic-update-slice(new_stack_buffer, new_data, stack_size, zero) ROOT new_stack_tuple = (s32[<=4,2]) tuple(new_stack) } condition { stack = (s32[<=4,2]) parameter(0) stack_buffer = s32[<=4, 2] get-tuple-element(stack), index=0 stack_size = s32[] get-dimension-size(stack_buffer), dimensions={0} three = s32[] constant(3) ROOT less-than = pred[] compare(s32[] stack_size, s32[] three), direction=LT } ENTRY entry { zero = s32[] constant(0) pad = s32[] constant(-1) stack_buffer_input = s32[4, 2] broadcast(s32[] pad), dimensions={} stack_buffer_input_dynamic = s32[<=4, 2] set-dimension-size(stack_buffer_input, zero), dimensions={0} input_tuple = (s32[<=4 ,2]) tuple(stack_buffer_input_dynamic) while = (s32[<=4, 2]) while(input_tuple), body=body, condition=condition stack_buffer = s32[<=4, 2] get-tuple-element(while), index=0 ROOT reduce = s32[2] reduce(stack_buffer, zero), dimensions={0}, to_apply=update_s32 } )"; auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {})); Literal expected = LiteralUtil::CreateR1<int32_t>({{3, 3}}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicAddWithImplicitBroadcast) { const std::string hlo_text = R"( HloModule module update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY entry { zero = s32[] constant(0) one = s32[] constant(1) two = s32[] constant(2) three = s32[] constant(3) input1 = s32[4, 2] iota(), iota_dimension=0 ones = s32[4, 2] broadcast(one), dimensions={} input1_added = s32[4, 2] add(input1, ones) input1_dynamic = s32[<=4, 2] set-dimension-size(input1_added, one), dimensions={0} input2 = s32[4, 2] broadcast(two), dimensions={} input2_dynamic = s32[<=4, 2] set-dimension-size(input2, three), dimensions={0} add = s32[<=4, 2] add(input1_dynamic, input2_dynamic) ROOT reduce = s32[2] reduce(add, zero), dimensions={0}, to_apply=update_s32 } )"; auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {})); Literal expected = LiteralUtil::CreateR1<int32_t>({{9, 9}}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicAddWithImplicitSlice) { const std::string hlo_text = R"( HloModule module update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY entry { zero = s32[] constant(0) one = s32[] constant(1) two = s32[] constant(2) three = s32[] constant(3) input1 = s32[4, 2] broadcast(one), dimensions={} input1_dynamic = s32[<=4, 2] set-dimension-size(input1, three), dimensions={0} input2 = s32[4, 2] broadcast(two), dimensions={} input2_dynamic = s32[<=4, 2] set-dimension-size(input2, two), dimensions={0} add = s32[<=4, 2] add(input1_dynamic, input2_dynamic) ROOT reduce = s32[2] reduce(add, zero), dimensions={0}, to_apply=update_s32 } )"; auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {})); Literal expected = LiteralUtil::CreateR1<int32_t>({{6, 6}}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicStackPop) { const std::string hlo_text = R"( HloModule module update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } body { param_tuple = (s32[<=4,2]) parameter(0) param = s32[<=4, 2] get-tuple-element(param_tuple), index=0 one = s32[] constant(1) size = s32[] get-dimension-size(param), dimensions={0} new_size = s32[] subtract(size, one) output = s32[<=4, 2] set-dimension-size(param, new_size), dimensions={0} ROOT root = (s32[<=4, 2]) tuple(output) } condition { stack = (s32[<=4,2]) parameter(0) stack_buffer = s32[<=4,2] get-tuple-element(stack), index=0 stack_size = s32[] get-dimension-size(stack_buffer), dimensions={0} two = s32[] constant(2) ROOT greater-than = pred[] compare(s32[] stack_size, s32[] two), direction=GT } ENTRY entry { one = s32[] constant(1) zero = s32[] constant(0) four = s32[] constant(4) stack_buffer_input = s32[4, 2] broadcast(s32[] one), dimensions={} stack_buffer_dynamic = s32[<=4, 2] set-dimension-size(stack_buffer_input, four), dimensions={0} input_tuple = (s32[<=4, 2]) tuple(stack_buffer_dynamic) while = (s32[<=4, 2]) while(input_tuple), body=body, condition=condition stack_buffer = s32[<=4, 2] get-tuple-element(while), index=0 ROOT reduce = s32[2] reduce(stack_buffer, zero), dimensions={0}, to_apply=update_s32 } )"; auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {})); Literal expected = LiteralUtil::CreateR1<int32_t>({{2, 2}}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DoubleDynamicDimension) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[2, 3, 3] parameter(0) size = s32[] constant(2) param_padded_partial = s32[2, <=3, 3] set-dimension-size(param, size), dimensions={1} param_padded = s32[2, 3, <=3] set-dimension-size(param_padded_partial, size), dimensions={2} reshaped = s32[<=18] reshape(param_padded) init = s32[] constant(0) ROOT reduce = s32[] reduce(reshaped, init), dimensions={0}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR3<int32_t>( {{{0, 1, 2}, {3, 4, 5}, {6, 7, 8}}, {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR0<int32_t>(16); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicReshapeDoubleDynamicDimensions) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 ENTRY main { param = s32[2, 3, 3] parameter(0) size = s32[] constant(2) param_padded_partial = s32[2, <=3, 3] set-dimension-size(param, size), dimensions={1} param_padded = s32[2, <=3, <=3] set-dimension-size(param_padded_partial, size), dimensions={2} result_size = s32[] constant(8) ROOT reshaped = s32[<=18] dynamic-reshape(param_padded, result_size) } )"; Literal operand = LiteralUtil::CreateR3<int32_t>( {{{0, 1, 2}, {3, 4, 5}, {6, 7, 8}}, {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand}, false)); result.SetDynamicSize(0, 8); Literal expected = LiteralUtil::CreateR1<int32_t>({0, 1, 3, 4, 0, 1, 3, 4}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicReshapeOutputDoubleDynamicDimensions) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 ENTRY main { param = s32[18] parameter(0) eight = s32[] constant(8) param_dynamic = s32[<=18] set-dimension-size(param, eight), dimensions={0} two = s32[] constant(2) ROOT reshaped = s32[2, <=3, <=3] dynamic-reshape(param_dynamic, two, two, two) } )"; Literal operand = LiteralUtil::CreateR1<int32_t>( {0, 1, 3, 4, 0, 1, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand}, false)); VLOG(1) << " result: " << result.ToString(); result.SetDynamicSize(1, 2); result.SetDynamicSize(2, 2); Literal expected = LiteralUtil::CreateR3<int32_t>({{{0, 1}, {3, 4}}, {{0, 1}, {3, 4}}}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicReshapeComplicated) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 ENTRY main { param = s32[3, 4, 4] parameter(0) two = s32[] constant(2) param_dynamic = s32[<=3, 4, 4] set-dimension-size(param, two), dimensions={0} three = s32[] constant(3) param_dynamic1 = s32[<=3, <=4, 4] set-dimension-size(param_dynamic, three), dimensions={1} param_dynamic2 = s32[<=3, <=4, <=4] set-dimension-size(param_dynamic1, three), dimensions={2} six = s32[] constant(6) ROOT reshaped = s32[<=6, <=8] dynamic-reshape(param_dynamic2, three, six) } )"; Literal operand = LiteralUtil::CreateR3<int32_t>( {{{0, 1, 2, -1}, {3, 4, 5, -1}, {6, 7, 8, -1}, {-1, -1, -1, -1}}, {{9, 8, 7, -1}, {6, 5, 4, -1}, {3, 2, 1, -1}, {-1, -1, -1, -1}}, {{-1, -1, -1, -1}, {-1, -1, -1, -1}, {-1, -1, -1, -1}, {-1, -1, -1, -1}}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand}, false)); result.SetDynamicSize(0, 3); result.SetDynamicSize(1, 6); Literal expected = LiteralUtil::CreateR2<int32_t>( {{0, 1, 2, 3, 4, 5}, {6, 7, 8, 9, 8, 7}, {6, 5, 4, 3, 2, 1}}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, SetGetDimensionSize) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 ENTRY main { param = s32[3] parameter(0) size = s32[] constant(2) param_dynamic_size = s32[3] set-dimension-size(param, size), dimensions={0} ROOT gds = s32[] get-dimension-size(param_dynamic_size), dimensions={0} } )"; Literal operand = LiteralUtil::CreateR1<int32_t>({1, 2, 3}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR0<int32_t>(2); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicSort) { const std::string hlo_text = R"( HloModule TEST update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } %compare-greater-than (lhs: s32[], rhs: s32[]) -> pred[] { %lhs = s32[] parameter(0) %rhs = s32[] parameter(1) ROOT %compare = pred[] compare(s32[] %lhs, s32[] %rhs), direction=GT } ENTRY main { param = s32[4] parameter(0) size = s32[] constant(3) param_dynamic_size = s32[<=4] set-dimension-size(param, size), dimensions={0} ROOT sort = s32[<=4]{0} sort(s32[4]{0} %param_dynamic_size), dimensions={0}, is_stable=false, to_apply=%compare-greater-than } )"; Literal operand = LiteralUtil::CreateR1<int32_t>({1, 4, 3, 2}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand}, false)); Literal expected = LiteralUtil::CreateR1<int32_t>({4, 3, 1, 2}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicPad) { const std::string hlo_text = R"( HloModule TEST update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[4] parameter(0) size = s32[] constant(3) padding = s32[] constant(2) param_dynamic = s32[<=4] set-dimension-size(param, size), dimensions={0} pad = s32[<=6] pad(param_dynamic, padding), padding=1_1 init = s32[] constant(0) ROOT reduce = s32[] reduce(pad, init), dimensions={0}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR1<int32_t>({1, 4, 3, 5}); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand}, false)); Literal expected = LiteralUtil::CreateR0<int32_t>(12); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicPadInteriorPadding) { const std::string hlo_text = R"( HloModule TEST update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[4] parameter(0) size = s32[] constant(3) padding = s32[] constant(2) param_dynamic = s32[<=4] set-dimension-size(param, size), dimensions={0} pad = s32[<=7] pad(param_dynamic, padding), padding=0_0_1 init = s32[] constant(0) ROOT reduce = s32[] reduce(pad, init), dimensions={0}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR1<int32_t>({1, 4, 3, 5}); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand}, false)); Literal expected = LiteralUtil::CreateR0<int32_t>(12); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicConditionalDimension) { const std::string hlo_text = R"( HloModule module update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } true_branch { true_param = (s32[<=3,2]) parameter(0) param = s32[<=3, 2] get-tuple-element(true_param), index=0 add = s32[<=3,2] add(param, param) ROOT true_tuple = (s32[<=3,2], s32[<=3,2]) tuple(add, add) } false_branch { false_param = (s32[<=3,2]) parameter(0) param = s32[<=3, 2] get-tuple-element(false_param), index=0 add = s32[<=3,2] add(param, param) ROOT false_tuple = (s32[<=3,2], s32[<=3,2]) tuple(add, add) } ENTRY entry { param0 = s32[3,2] parameter(0) size = s32[] constant(2) branch = pred[] constant(false) param_dynamic = s32[<=3, 2] set-dimension-size(param0, size), dimensions={0} param_tuple = (s32[<=3 ,2]) tuple(param_dynamic) conditional = (s32[<=3, 2], s32[<=3, 2]) conditional(branch, param_tuple, param_tuple), true_computation=true_branch, false_computation=false_branch gte0 = s32[<=3,2] get-tuple-element(conditional), index=1 init = s32[] constant(0) ROOT reduce = s32[2] reduce(gte0, init), dimensions={0}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR2<int32_t>({{0, 1}, {2, 3}, {4, 5}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand}, false)); Literal expected = LiteralUtil::CreateR1<int32_t>({4, 8}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicTupleSort) { const std::string hlo_text = R"( HloModule TEST %compare-greater-than (lhs: s32[], rhs: s32[], lhs_2: s32[], lhs_2: s32[]) -> pred[] { %lhs = s32[] parameter(0) %rhs = s32[] parameter(1) %lhs_2 = s32[] parameter(2) %rhs_2 = s32[] parameter(3) ROOT %compare = pred[] compare(s32[] %lhs, s32[] %rhs), direction=GT } update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[3] parameter(0) size = s32[] constant(2) param_dynamic_size = s32[<=3] set-dimension-size(param, size), dimensions={0} sort = (s32[<=3]{0}, s32[<=3]{0}) sort(s32[<=3]{0} %param_dynamic_size, s32[<=3]{0} %param_dynamic_size), dimensions={0}, is_stable=true, to_apply=%compare-greater-than ROOT get-tuple-element = s32[<=3]{0} get-tuple-element((s32[<=3]{0}, s32[<=3]{0}) %sort), index=0 } )"; Literal operand = LiteralUtil::CreateR1<int32_t>({0, 4, 2}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand}, false)); Literal expected = LiteralUtil::CreateR1<int32_t>({4, 0, 2}); EXPECT_EQ(result, expected); } namespace op = xla::testing::opcode_matchers; class HloDimensionSizeLegalizerTest : public HloTestBase { protected: HloDimensionSizeLegalizerTest() {} }; TEST_F(HloDimensionSizeLegalizerTest, Ok) { auto module = ParseAndReturnVerifiedModule(R"( HloModule _ ENTRY gds { p = s32[3,4] parameter(0) size0 = s32[] get-dimension-size(p), dimensions={0} size1 = s32[] get-dimension-size(p), dimensions={1} ROOT mul = s32[] multiply(size0, size1) })") .value(); DynamicPadder pass; EXPECT_TRUE(pass.Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Multiply(op::Constant(), op::Constant())); } TEST_F(HloDimensionSizeLegalizerTest, GetSetSetDimensionSizeRewriter) { auto module = ParseAndReturnVerifiedModule(R"( HloModule _ ENTRY gds { p = s32[3,4] parameter(0) size0 = s32[] get-dimension-size(p), dimensions={0} p_copy = s32[3,4] copy(p) p_copy_dynamic = s32[<=3, 4] set-dimension-size(p_copy, size0), dimensions={0} size1 = s32[] get-dimension-size(p_copy_dynamic), dimensions={0} ROOT mul = s32[] multiply(size0, size1) })") .value(); DynamicPadder pass; EXPECT_TRUE(pass.Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Multiply(op::Constant(), op::Constant())); } TEST_F(HloDimensionSizeLegalizerTest, IllegalType) { auto module = ParseAndReturnUnverifiedModule(R"( HloModule _ ENTRY gds { p = s32[3]{0} parameter(0) ROOT gds = s64[] get-dimension-size(p), dimensions={0} })") .value(); DynamicPadder pass; EXPECT_FALSE(pass.Run(module.get()).ok()); } TEST_F(HloDimensionSizeLegalizerTest, IllegalDimension) { auto module = ParseAndReturnUnverifiedModule(R"( HloModule _ ENTRY gds { p = f32[2,5] parameter(0) ROOT gds = s32[] get-dimension-size(p), dimensions={2} })") .value(); DynamicPadder pass; EXPECT_FALSE(pass.Run(module.get()).ok()); } class SizeCheckTest : public HloTestBase { protected: SizeCheckTest() {} }; TEST_F(SizeCheckTest, CompileTimeCheckBinaryOpFail) { auto module = ParseAndReturnUnverifiedModule(R"( HloModule _ ENTRY gds { size_0 = s32[] parameter(0) size_1 = s32[] parameter(1) arg = s32[4]{0} parameter(2) dynamic_arg_0 = s32[<=4] set-dimension-size(arg, size_0), dimensions={0} dynamic_arg_1 = s32[<=4] set-dimension-size(arg, size_1), dimensions={0} ROOT add = s32[<=4] add(dynamic_arg_0, dynamic_arg_1) })") .value(); auto options = DynamicPadderOptions(); options.shape_check_mode = DynamicDimensionInference::ShapeCheckMode::kCompileTime; DynamicPadder pass(options); auto status = pass.Run(module.get()).status(); EXPECT_THAT(status.code(), tsl::error::INVALID_ARGUMENT); } TEST_F(SizeCheckTest, CompileTimeCheckBinaryOpPass) { auto module = ParseAndReturnUnverifiedModule(R"( HloModule _ ENTRY gds { size_0 = s32[] parameter(0) size_0_reshape = s32[1] reshape(size_0) size_1 = s32[] reshape(size_0_reshape) arg = s32[4]{0} parameter(1) dynamic_arg_0 = s32[<=4] set-dimension-size(arg, size_0), dimensions={0} dynamic_arg_1 = s32[<=4] set-dimension-size(arg, size_1), dimensions={0} ROOT add = s32[<=4] add(dynamic_arg_0, dynamic_arg_1) })") .value(); auto options = DynamicPadderOptions(); options.shape_check_mode = DynamicDimensionInference::ShapeCheckMode::kCompileTime; DynamicDimensionSimplifier simplifier; EXPECT_TRUE(simplifier.Run(module.get()).ok()); DynamicPadder pass(options); auto status = pass.Run(module.get()).status(); EXPECT_TRUE(status.ok()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/dynamic_padder.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/dynamic_padder_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fb09fbe9-6296-4eab-b4c4-62ab42ce86f5
cpp
tensorflow/tensorflow
reduce_decomposer
third_party/xla/xla/service/reduce_decomposer.cc
third_party/xla/xla/service/reduce_decomposer_test.cc
#include "xla/service/reduce_decomposer.h" #include <functional> #include <utility> #include <vector> #include "absl/status/status.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/hlo_creation_utils.h" namespace xla { namespace { class VariadicReductionLayoutEqualizer : public DfsHloRewriteVisitor { public: absl::Status HandleReduce(HloInstruction* hlo) override { auto reduce = Cast<HloReduceInstruction>(hlo); std::vector<HloInstruction*> new_inputs; bool changed = false; for (HloInstruction* input : reduce->inputs()) { auto first_input = reduce->inputs()[0]; auto first_input_s = first_input->shape(); auto input_s = input->shape(); if (first_input_s.layout() != input_s.layout()) { Shape new_input_s = ShapeUtil::MakeShapeWithDenseLayout( input_s.element_type(), input_s.dimensions(), first_input_s.layout().minor_to_major()); auto copy = MakeCopyHlo(input, new_input_s); changed = true; new_inputs.push_back(copy); } else { new_inputs.push_back(input); } } if (changed) { TF_ASSIGN_OR_RETURN( auto new_reduce, MakeReduceHlo(new_inputs, reduce->init_values(), reduce->dimensions(), reduce->called_computations()[0])); TF_RETURN_IF_ERROR(ReplaceInstruction(reduce, new_reduce)); } return absl::OkStatus(); } }; class ReduceDecomposerVisitor : public DfsHloRewriteVisitor { public: explicit ReduceDecomposerVisitor(HloPredicate custom_layout_allowed) : custom_layout_allowed_(std::move(custom_layout_allowed)) {} absl::Status HandleReduce(HloInstruction* hlo) override { auto reduce = Cast<HloReduceInstruction>(hlo); auto shape = reduce->shape(); if (custom_layout_allowed_ && custom_layout_allowed_(reduce)) { return absl::OkStatus(); } std::vector<Shape> expected_shapes(reduce->input_count()); for (int i = 0; i < reduce->input_count(); i++) { expected_shapes[i] = ExpectedOutputShape(reduce, i); TF_RET_CHECK(reduce->inputs()[i]->shape().layout() == reduce->inputs()[0]->shape().layout()); } std::vector<Shape> output_shapes; if (shape.IsTuple()) { for (int i = 0; i < shape.tuple_shapes_size(); i++) { output_shapes.push_back(ShapeUtil::GetTupleElementShape(shape, i)); TF_RET_CHECK(output_shapes[i].layout() == output_shapes[0].layout()); } } else { output_shapes.push_back(shape); } TF_RET_CHECK(!output_shapes.empty()); if (ShapeUtil::MakeMaybeTupleShape(expected_shapes) != ShapeUtil::MakeMaybeTupleShape(output_shapes)) { TF_ASSIGN_OR_RETURN(auto r_prime, MakeReduceHlo(reduce->inputs(), reduce->init_values(), reduce->dimensions(), reduce->called_computations()[0])); TF_RET_CHECK(r_prime->shape() == ShapeUtil::MakeMaybeTupleShape(expected_shapes)); if (!shape.IsTuple()) { auto copy = MakeCopyHlo(r_prime, shape); TF_RETURN_IF_ERROR(ReplaceInstruction(reduce, copy)); return absl::OkStatus(); } std::vector<HloInstruction*> copies; for (int i = 0; i < reduce->input_count(); i++) { TF_ASSIGN_OR_RETURN(auto from, GetOutput(r_prime, i)); auto copy = MakeCopyHlo(from, output_shapes[i]); copies.push_back(copy); } auto out = MaybeMakeTuple(copies); TF_RETURN_IF_ERROR(ReplaceInstruction(reduce, out)); } return absl::OkStatus(); } private: absl::StatusOr<HloInstruction*> GetOutput(HloInstruction* instr, int idx) { if (instr->shape().IsTuple()) { return MakeGetTupleElementHlo(instr, idx); } else { TF_RET_CHECK(idx == 0); return instr; } } Shape ExpectedOutputShape(HloReduceInstruction* reduce, int input_idx) { Shape reduce_shape = reduce->shape(); auto output_shape = reduce_shape.IsTuple() ? reduce_shape.tuple_shapes(input_idx) : reduce_shape; auto* operand = reduce->inputs()[input_idx]; auto operand_shape = operand->shape(); return ShapeUtil::DeleteDimensions(reduce->dimensions(), operand_shape); } HloPredicate custom_layout_allowed_; }; } absl::StatusOr<bool> ReduceDecomposer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { TF_ASSIGN_OR_RETURN(bool changed1, VariadicReductionLayoutEqualizer{}.RunOnModule( module, execution_threads)); TF_ASSIGN_OR_RETURN( bool changed2, ReduceDecomposerVisitor{custom_layout_allowed_}.RunOnModule( module, execution_threads)); return changed1 || changed2; } }
#include "xla/service/reduce_decomposer.h" #include <functional> #include <memory> #include <optional> #include "xla/service/hlo_parser.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { class ReduceDecomposerTest : public HloTestBase {}; TEST_F(ReduceDecomposerTest, ReducePerformsTransposition) { const char* hlo = R"( HloModule module add { a = f32[] parameter(0) b = f32[] parameter(1) ROOT out = add(a, b) } ENTRY c { p = f32[5,3,4]{2,1,0} parameter(0) z = f32[] constant(0) ROOT r = f32[5,4]{0,1} reduce(p, z), dimensions={1}, to_apply=add } )"; RunAndFilecheckHloRewrite( hlo, ReduceDecomposer{[&](const HloInstruction*) { return true; }}, std::nullopt); RunAndFilecheckHloRewrite(hlo, ReduceDecomposer{}, R"( )"); } TEST_F(ReduceDecomposerTest, ReduceNaturalLayout) { const char* hlo = R"( HloModule module add { a = f32[] parameter(0) b = f32[] parameter(1) ROOT out = add(a, b) } ENTRY c { p = f32[5,3,4]{2,1,0} parameter(0) z = f32[] constant(0) ROOT r = reduce(p, z), dimensions={1}, to_apply=add } )"; RunAndFilecheckHloRewrite(hlo, ReduceDecomposer{}, std::nullopt); } TEST_F(ReduceDecomposerTest, VariadicReductionWithTranspose) { const char* hlo = R"( HloModule ReduceWithLayoutChangeVariadicDifferent argmax { running_max = f32[] parameter(0) running_max_idx = u32[] parameter(1) current_value = f32[] parameter(2) current_value_idx = u32[] parameter(3) current = (f32[], u32[]) tuple(running_max, running_max_idx) potential = (f32[], u32[]) tuple(current_value, current_value_idx) cmp_code = pred[] compare(current_value, running_max), direction=GT new_max = f32[] select(cmp_code, current_value, running_max) new_idx = u32[] select(cmp_code, current_value_idx, running_max_idx) ROOT out = (f32[], u32[]) tuple(new_max, new_idx) } ENTRY main { arg0 = f32[2,3,4,1024]{3,2,1,0} parameter(0) idxs = u32[2,3,4,1024]{3,2,1,0} parameter(1) constant0 = f32[] constant(0) constant1 = u32[] constant(0) ROOT reduce0 = ( f32[2,3,4]{0,1,2}, u32[2,3,4]{0,1,2} ) reduce(arg0, idxs, constant0,constant1), dimensions={3}, to_apply=argmax } )"; RunAndFilecheckHloRewrite(hlo, ReduceDecomposer{}, R"( )"); } TEST_F(ReduceDecomposerTest, VariadicReductionDescendingLayout) { const char* hlo = R"( HloModule ReduceWithLayoutChangeVariadicDifferent argmax { running_max = f32[] parameter(0) running_max_idx = u32[] parameter(1) current_value = f32[] parameter(2) current_value_idx = u32[] parameter(3) current = (f32[], u32[]) tuple(running_max, running_max_idx) potential = (f32[], u32[]) tuple(current_value, current_value_idx) cmp_code = pred[] compare(current_value, running_max), direction=GT new_max = f32[] select(cmp_code, current_value, running_max) new_idx = u32[] select(cmp_code, current_value_idx, running_max_idx) ROOT out = (f32[], u32[]) tuple(new_max, new_idx) } ENTRY main { arg0 = f32[2,3,4,1024]{3,2,1,0} parameter(0) idxs = u32[2,3,4,1024]{3,2,1,0} parameter(1) constant0 = f32[] constant(0) constant1 = u32[] constant(0) ROOT reduce0 = ( f32[2,3,4]{2,1,0}, u32[2,3,4]{2,1,0} ) reduce(arg0, idxs, constant0,constant1), dimensions={3}, to_apply=argmax } )"; RunAndFilecheckHloRewrite(hlo, ReduceDecomposer{}, std::nullopt); } TEST_F(ReduceDecomposerTest, VariadicReductionInputsDifferentLayout) { const char* hlo = R"( HloModule ReduceWithLayoutChangeVariadicDifferent argmax { running_max = f32[] parameter(0) running_max_idx = u32[] parameter(1) current_value = f32[] parameter(2) current_value_idx = u32[] parameter(3) current = (f32[], u32[]) tuple(running_max, running_max_idx) potential = (f32[], u32[]) tuple(current_value, current_value_idx) cmp_code = pred[] compare(current_value, running_max), direction=GT new_max = f32[] select(cmp_code, current_value, running_max) new_idx = u32[] select(cmp_code, current_value_idx, running_max_idx) ROOT out = (f32[], u32[]) tuple(new_max, new_idx) } ENTRY main { arg0 = f32[2,3,4,1024]{3,2,1,0} parameter(0) idxs = u32[2,3,4,1024]{2,1,3,0} parameter(1) constant0 = f32[] constant(0) constant1 = u32[] constant(0) ROOT reduce0 = ( f32[2,3,4]{2,1,0}, u32[2,3,4]{2,1,0} ) reduce(arg0, idxs, constant0,constant1), dimensions={3}, to_apply=argmax } )"; RunAndFilecheckHloRewrite(hlo, ReduceDecomposer{}, R"( )"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/reduce_decomposer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/reduce_decomposer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f470b0a5-df2e-44f5-a4bb-da606c6ec291
cpp
tensorflow/tensorflow
dynamic_index_splitter
third_party/xla/xla/service/dynamic_index_splitter.cc
third_party/xla/xla/service/dynamic_index_splitter_test.cc
#include "xla/service/dynamic_index_splitter.h" #include <map> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape_util.h" namespace xla { absl::StatusOr<bool> DynamicIndexSplitter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; std::vector<HloComputation*> computations = module->MakeNonfusionComputations(execution_threads); for (HloComputation* computation : computations) { for (HloInstruction* dynamic_op : computation->MakeInstructionPostOrder()) { switch (dynamic_op->opcode()) { case HloOpcode::kDynamicSlice: case HloOpcode::kDynamicUpdateSlice: break; default: continue; } auto parent = dynamic_op->parent(); bool is_update = dynamic_op->opcode() == HloOpcode::kDynamicUpdateSlice; int64_t num_indices = dynamic_op->operand(0)->shape().rank(); if (num_indices == 0) { if (is_update) { TF_CHECK_OK(parent->ReplaceInstruction( dynamic_op, dynamic_op->mutable_operand(1))); } else { TF_CHECK_OK(parent->ReplaceInstruction( dynamic_op, dynamic_op->mutable_operand(0))); } changed = true; continue; } int64_t index_operand_number = Cast<HloDynamicIndexInstruction>(dynamic_op) ->first_index_operand_number(); auto index_operand = dynamic_op->mutable_operand(index_operand_number); if (ShapeUtil::IsScalar(index_operand->shape())) { continue; } TF_RET_CHECK(index_operand->shape().rank() == 1); auto index_element_type = index_operand->shape().element_type(); std::vector<HloInstruction*> index_array; index_array.reserve(num_indices); for (int64_t dim = 0; dim < num_indices; ++dim) { auto slice = parent->AddInstruction(HloInstruction::CreateSlice( ShapeUtil::MakeShape(index_element_type, {1}), index_operand, {dim}, {dim + 1}, {1})); auto bitcast = parent->AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(index_element_type, {}), slice)); index_array.push_back(bitcast); } auto new_dynamic_op = is_update ? HloInstruction::CreateDynamicUpdateSlice( dynamic_op->shape(), dynamic_op->mutable_operand(0), dynamic_op->mutable_operand(1), absl::MakeSpan(index_array)) : HloInstruction::CreateDynamicSlice( dynamic_op->shape(), dynamic_op->mutable_operand(0), absl::MakeSpan(index_array), dynamic_op->dynamic_slice_sizes()); TF_CHECK_OK(parent->ReplaceWithNewInstruction(dynamic_op, std::move(new_dynamic_op))); changed = true; } } return changed; } }
#include "xla/service/dynamic_index_splitter.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; class DynamicIndexSplitterTest : public HloTestBase {}; TEST_F(DynamicIndexSplitterTest, DynamicSlice) { const char* const kDynamicSlice = R"( HloModule DynamicSlice_module ENTRY entry (operand: s32[4,5,6], indices: s32[3]) -> s32[1,1,1] { operand = s32[4,5,6] parameter(0) indices = s32[3] parameter(1) ROOT dynamic-slice = s32[1,1,1] dynamic-slice(operand, indices), dynamic_slice_sizes={1,1,1} } )"; HloModuleConfig config; DebugOptions debug_options = config.debug_options(); debug_options.set_xla_allow_scalar_index_dynamic_ops(true); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kDynamicSlice, config)); TF_ASSERT_OK_AND_ASSIGN(bool changed, DynamicIndexSplitter().Run(module.get())); EXPECT_TRUE(changed); ASSERT_THAT(module->entry_computation()->root_instruction(), op::DynamicSlice(op::Parameter(0), op::Reshape(op::Slice(op::Parameter(1))), op::Reshape(op::Slice(op::Parameter(1))), op::Reshape(op::Slice(op::Parameter(1))))); for (int i = 0; i < 3; ++i) { const HloInstruction* slice = module->entry_computation() ->root_instruction() ->operand(i + 1) ->operand(0); EXPECT_EQ(slice->slice_starts(0), i); EXPECT_EQ(slice->slice_limits(0), i + 1); } } TEST_F(DynamicIndexSplitterTest, DynamicUpdateSlice) { const char* const kDynamicUpdateSlice = R"( HloModule DynamicUpdatedSlice_module ENTRY entry (operand: s32[4,5,6], indices: s32[3], update: s32[1,1,1]) -> s32[4,5,6] { operand = s32[4,5,6] parameter(0) indices = s32[3] parameter(1) update = s32[1,1,1] parameter(2) ROOT dynamic-update-slice = s32[4,5,6] dynamic-update-slice(operand, update, indices) } )"; HloModuleConfig config; DebugOptions debug_options = config.debug_options(); debug_options.set_xla_allow_scalar_index_dynamic_ops(true); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(kDynamicUpdateSlice, config)); TF_ASSERT_OK_AND_ASSIGN(bool changed, DynamicIndexSplitter().Run(module.get())); EXPECT_TRUE(changed); ASSERT_THAT(module->entry_computation()->root_instruction(), op::DynamicUpdateSlice(op::Parameter(0), op::Parameter(2), op::Reshape(op::Slice(op::Parameter(1))), op::Reshape(op::Slice(op::Parameter(1))), op::Reshape(op::Slice(op::Parameter(1))))); for (int i = 0; i < 3; ++i) { const HloInstruction* slice = module->entry_computation() ->root_instruction() ->operand(i + 2) ->operand(0); EXPECT_EQ(slice->slice_starts(0), i); EXPECT_EQ(slice->slice_limits(0), i + 1); } } TEST_F(DynamicIndexSplitterTest, AlreadyScalar) { const char* const kDynamicSlice = R"( HloModule DynamicSlice_module ENTRY entry (operand: s32[4,5,6], index.0: s32[], index.1: s32[], index.2: s32[]) -> s32[1,1,1] { operand = s32[4,5,6] parameter(0) index.0 = s32[] parameter(1) index.1 = s32[] parameter(2) index.2 = s32[] parameter(3) ROOT dynamic-slice = s32[1,1,1] dynamic-slice(operand, index.0, index.1, index.2), dynamic_slice_sizes={1,1,1} } )"; HloModuleConfig config; DebugOptions debug_options = config.debug_options(); debug_options.set_xla_allow_scalar_index_dynamic_ops(true); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kDynamicSlice, config)); TF_ASSERT_OK_AND_ASSIGN(bool changed, DynamicIndexSplitter().Run(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::DynamicSlice(op::Parameter(0), op::Parameter(1), op::Parameter(2), op::Parameter(3))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/dynamic_index_splitter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/dynamic_index_splitter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d759e3dd-49f9-433a-a301-b7317ffa4f80
cpp
tensorflow/tensorflow
root_instruction_sinker
third_party/xla/xla/service/root_instruction_sinker.cc
third_party/xla/xla/service/root_instruction_sinker_test.cc
#include "xla/service/root_instruction_sinker.h" #include "xla/service/tuple_util.h" namespace xla { namespace { void SinkTupleRoot(HloComputation* computation) { HloInstruction* root = computation->root_instruction(); CHECK(root->shape().IsTuple()); HloInstruction* new_root = TupleUtil::Duplicate(root); HloInstructionSequence& sequence = computation->parent()->schedule().GetOrCreateSequence(computation); for (HloInstruction* operand : new_root->operands()) { sequence.push_back(operand); } sequence.push_back(new_root); computation->set_root_instruction(new_root); } void SinkNontupleRoot(HloComputation* computation) { HloInstruction* root = computation->root_instruction(); CHECK(!root->shape().IsTuple()); HloInstruction* new_root = computation->AddInstruction( HloInstruction::CreateBitcast(root->shape(), root)); HloInstructionSequence& sequence = computation->parent()->schedule().GetOrCreateSequence(computation); sequence.push_back(new_root); computation->set_root_instruction(new_root); } } absl::StatusOr<bool> RootInstructionSinker::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { TF_RET_CHECK(module->has_schedule()); bool modified = false; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { HloInstructionSequence& sequence = module->schedule().GetOrCreateSequence(computation); if (computation->root_instruction() == sequence.instructions().at(sequence.size() - 1)) { continue; } if (computation->root_instruction()->shape().IsTuple()) { SinkTupleRoot(computation); } else { SinkNontupleRoot(computation); } modified = true; } return modified; } }
#include "xla/service/root_instruction_sinker.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; using RootInstructionSinkerTest = HloTestBase; TEST_F(RootInstructionSinkerTest, TupleNoChange) { absl::string_view hlo_string = R"( HloModule While, is_scheduled=true While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(100) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition= While.condition, body=While.body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto while_body = module->entry_computation()->root_instruction()->while_body(); int num_body_instructions = while_body->instruction_count(); RootInstructionSinker sinker; EXPECT_FALSE(sinker.Run(module.get()).value()); EXPECT_EQ(module->entry_computation() ->root_instruction() ->while_body() ->instruction_count(), num_body_instructions); } TEST_F(RootInstructionSinkerTest, Tuple) { absl::string_view hlo_string = R"( HloModule While, is_scheduled=true While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) after-all = token[] after-all() send = (s32[3]{0}, u32[], token[]) send(multiply, after-all), channel_id=1 send-done = token[] send-done(send), channel_id=1 } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(100) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition= While.condition, body=While.body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); RootInstructionSinker sinker; EXPECT_TRUE(sinker.Run(module.get()).value()); auto while_body = module->entry_computation()->root_instruction()->while_body(); const auto& sequence = module->schedule().sequence(while_body); EXPECT_EQ(sequence.instructions().at(sequence.size() - 1), while_body->root_instruction()); EXPECT_THAT(while_body->root_instruction(), op::Tuple(op::GetTupleElement(op::Tuple()), op::GetTupleElement(op::Tuple()))); } TEST_F(RootInstructionSinkerTest, NontupleNoChange) { absl::string_view hlo_string = R"( HloModule Call, is_scheduled=true Call { param = s32[3]{0} parameter(0) ROOT multiply = s32[3]{0} multiply(param, param) } ENTRY While { constant.4 = s32[3]{0} constant({0, 1, 2}) ROOT call = s32[3]{0} call(constant.4), to_apply=Call } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto called_computation = module->entry_computation()->root_instruction()->called_computations()[0]; int num_instructions = called_computation->instruction_count(); RootInstructionSinker sinker; EXPECT_FALSE(sinker.Run(module.get()).value()); EXPECT_EQ(module->entry_computation() ->root_instruction() ->called_computations()[0] ->instruction_count(), num_instructions); } TEST_F(RootInstructionSinkerTest, Nontuple) { absl::string_view hlo_string = R"( HloModule Call, is_scheduled=true Call { param = s32[3]{0} parameter(0) ROOT multiply = s32[3]{0} multiply(param, param) after-all = token[] after-all() send = (s32[3]{0}, u32[], token[]) send(multiply, after-all), channel_id=1 send-done = token[] send-done(send), channel_id=1 } ENTRY While { constant.4 = s32[3]{0} constant({0, 1, 2}) ROOT call = s32[3]{0} call(constant.4), to_apply=Call } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); RootInstructionSinker sinker; EXPECT_TRUE(sinker.Run(module.get()).value()); auto called_computation = module->entry_computation()->root_instruction()->called_computations()[0]; const auto& sequence = module->schedule().sequence(called_computation); EXPECT_EQ(sequence.instructions().at(sequence.size() - 1), called_computation->root_instruction()); EXPECT_THAT(called_computation->root_instruction(), op::Bitcast(op::Multiply())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/root_instruction_sinker.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/root_instruction_sinker_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5c54fd05-5e24-4353-98e8-4a51907c7f2c
cpp
tensorflow/tensorflow
dot_decomposer
third_party/xla/xla/service/dot_decomposer.cc
third_party/xla/xla/service/dot_decomposer_test.cc
#include "xla/service/dot_decomposer.h" #include <algorithm> #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/shape_inference.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace { absl::Status CanonicalizeDot(HloDotInstruction* original_dot) { auto computation = original_dot->parent(); const auto& original_dnums = original_dot->dot_dimension_numbers(); const int64_t num_batch_dims = original_dnums.lhs_batch_dimensions_size(); const int64_t num_contracting_dims = original_dnums.lhs_contracting_dimensions_size(); int lhs_sparse_dim = -1, rhs_sparse_dim = -1; for (const SparsityDescriptor& descriptor : original_dot->sparsity()) { (descriptor.index() == 0 ? lhs_sparse_dim : rhs_sparse_dim) = descriptor.dimension(); } auto move_dim_to_end = [&](std::vector<int64_t>& dims, int sparse_dim) { if (sparse_dim < 0) return; auto it = std::remove(dims.begin(), dims.end(), sparse_dim); *it = sparse_dim; }; const auto& lhs_shape = original_dot->operand(0)->shape(); const int64_t lhs_rank = lhs_shape.rank(); const int64_t num_lhs_non_contracting_dims = lhs_rank - num_batch_dims - num_contracting_dims; std::vector<int64_t> lhs_non_contracting_dims; lhs_non_contracting_dims.reserve(num_lhs_non_contracting_dims); int64_t lhs_contracting_size = 1; bool lhs_contracting_dynamic = false; int64_t lhs_non_contracting_size = 1; bool lhs_non_contracting_dynamic = false; std::vector<int64_t> batch_dim_sizes; batch_dim_sizes.reserve(num_batch_dims); std::vector<bool> batch_dynamic_dims; batch_dynamic_dims.reserve(num_batch_dims); for (int64_t i = 0; i < lhs_rank; ++i) { if (absl::c_linear_search(original_dnums.lhs_contracting_dimensions(), i)) { lhs_contracting_size *= lhs_shape.dimensions(i); lhs_contracting_dynamic |= lhs_shape.is_dynamic_dimension(i); } else if (absl::c_linear_search(original_dnums.lhs_batch_dimensions(), i)) { batch_dim_sizes.push_back(lhs_shape.dimensions(i)); batch_dynamic_dims.push_back(lhs_shape.is_dynamic_dimension(i)); } else { lhs_non_contracting_dims.push_back(i); lhs_non_contracting_size *= lhs_shape.dimensions(i); lhs_non_contracting_dynamic |= lhs_shape.is_dynamic_dimension(i); } } std::vector<int64_t> lhs_transpose; lhs_transpose.reserve(lhs_rank); lhs_transpose.insert(lhs_transpose.end(), original_dnums.lhs_batch_dimensions().begin(), original_dnums.lhs_batch_dimensions().end()); lhs_transpose.insert(lhs_transpose.end(), lhs_non_contracting_dims.begin(), lhs_non_contracting_dims.end()); lhs_transpose.insert(lhs_transpose.end(), original_dnums.lhs_contracting_dimensions().begin(), original_dnums.lhs_contracting_dimensions().end()); move_dim_to_end(lhs_transpose, lhs_sparse_dim); HloInstruction* lhs_operand = original_dot->mutable_operand(0); HloInstruction* transposed_lhs = computation->AddInstruction( HloInstruction::CreateTranspose( ShapeUtil::PermuteDimensions(lhs_transpose, lhs_shape), lhs_operand, lhs_transpose), &lhs_operand->metadata()); std::vector<int64_t> lhs_reshape_dims = batch_dim_sizes; std::vector<bool> lhs_reshape_dynamic_dims = batch_dynamic_dims; if (lhs_non_contracting_size > 1) { lhs_reshape_dims.push_back(lhs_non_contracting_size); lhs_reshape_dynamic_dims.push_back(lhs_non_contracting_dynamic); } lhs_reshape_dims.push_back(lhs_contracting_size); lhs_reshape_dynamic_dims.push_back(lhs_contracting_dynamic); HloInstruction* reshaped_lhs = computation->AddInstruction( HloInstruction::CreateReshape( ShapeUtil::MakeShape(lhs_shape.element_type(), lhs_reshape_dims, lhs_reshape_dynamic_dims), transposed_lhs), &transposed_lhs->metadata()); const auto& rhs_shape = original_dot->operand(1)->shape(); const int64_t rhs_rank = rhs_shape.rank(); const int64_t num_rhs_non_contracting_dims = rhs_rank - num_batch_dims - num_contracting_dims; std::vector<int64_t> rhs_non_contracting_dims; rhs_non_contracting_dims.reserve(num_rhs_non_contracting_dims); int64_t rhs_non_contracting_size = 1; bool rhs_non_contracting_dynamic = false; int64_t rhs_contracting_size = 1; bool rhs_contracting_dynamic = false; for (int64_t i = 0; i < rhs_rank; ++i) { if (absl::c_linear_search(original_dnums.rhs_contracting_dimensions(), i)) { rhs_contracting_size *= rhs_shape.dimensions(i); rhs_contracting_dynamic |= rhs_shape.is_dynamic_dimension(i); } else if (!absl::c_linear_search(original_dnums.rhs_batch_dimensions(), i)) { rhs_non_contracting_dims.push_back(i); rhs_non_contracting_size *= rhs_shape.dimensions(i); rhs_non_contracting_dynamic |= rhs_shape.is_dynamic_dimension(i); } } std::vector<int64_t> rhs_transpose; rhs_transpose.reserve(rhs_rank); rhs_transpose.insert(rhs_transpose.end(), original_dnums.rhs_batch_dimensions().begin(), original_dnums.rhs_batch_dimensions().end()); rhs_transpose.insert(rhs_transpose.end(), original_dnums.rhs_contracting_dimensions().begin(), original_dnums.rhs_contracting_dimensions().end()); move_dim_to_end(rhs_transpose, rhs_sparse_dim); rhs_transpose.insert(rhs_transpose.end(), rhs_non_contracting_dims.begin(), rhs_non_contracting_dims.end()); HloInstruction* rhs_operand = original_dot->mutable_operand(1); HloInstruction* transposed_rhs = computation->AddInstruction( HloInstruction::CreateTranspose( ShapeUtil::PermuteDimensions(rhs_transpose, rhs_shape), rhs_operand, rhs_transpose), &rhs_operand->metadata()); std::vector<int64_t> rhs_reshape_dims = batch_dim_sizes; rhs_reshape_dims.push_back(rhs_contracting_size); std::vector<bool> rhs_reshape_dynamic_dims = batch_dynamic_dims; rhs_reshape_dynamic_dims.push_back(rhs_contracting_dynamic); if (rhs_non_contracting_size > 1) { rhs_reshape_dims.push_back(rhs_non_contracting_size); rhs_reshape_dynamic_dims.push_back(rhs_non_contracting_dynamic); } HloInstruction* reshaped_rhs = computation->AddInstruction( HloInstruction::CreateReshape( ShapeUtil::MakeShape(rhs_shape.element_type(), rhs_reshape_dims, rhs_reshape_dynamic_dims), transposed_rhs), &transposed_rhs->metadata()); std::vector<int64_t> dot_dims = batch_dim_sizes; std::vector<bool> dot_dynamic_dims = batch_dynamic_dims; if (lhs_non_contracting_size > 1) { dot_dims.push_back(lhs_non_contracting_size); dot_dynamic_dims.push_back(lhs_non_contracting_dynamic); } if (rhs_non_contracting_size > 1) { dot_dims.push_back(rhs_non_contracting_size); dot_dynamic_dims.push_back(rhs_non_contracting_dynamic); } DotDimensionNumbers dot_dnums; for (int64_t i = 0; i < num_batch_dims; ++i) { dot_dnums.add_lhs_batch_dimensions(i); dot_dnums.add_rhs_batch_dimensions(i); } dot_dnums.add_lhs_contracting_dimensions( num_batch_dims + (lhs_non_contracting_size > 1 ? 1 : 0)); dot_dnums.add_rhs_contracting_dimensions(num_batch_dims); std::vector<SparsityDescriptor> sparsity; std::vector<HloInstruction*> sparse_meta; sparsity.reserve(original_dot->sparse_operands()); sparse_meta.reserve(original_dot->sparse_operands()); auto transpose_meta = [&](HloInstruction* original_meta, absl::Span<const int64_t> transpose) { return computation->AddInstruction( HloInstruction::CreateTranspose( ShapeUtil::PermuteDimensions(transpose, original_meta->shape()), original_meta, transpose), &original_meta->metadata()); }; for (int i = 0; i < original_dot->sparse_operands(); ++i) { SparsityDescriptor descriptor = original_dot->sparsity()[i]; descriptor.set_dimension(num_batch_dims + (descriptor.index() == 0 && lhs_non_contracting_size > 1)); sparsity.push_back(descriptor); HloInstruction* meta = original_dot->mutable_operand(HloDotInstruction::kOperands + i); HloInstruction* meta_operand; if (descriptor.index() == 0) { meta = transpose_meta(meta, lhs_transpose); meta_operand = reshaped_lhs; } else { meta = transpose_meta(meta, rhs_transpose); meta_operand = reshaped_rhs; } TF_ASSIGN_OR_RETURN(Shape result_shape, ShapeInference::InferSparseDotMetadataShape( meta_operand->shape(), dot_dnums, descriptor)); meta = computation->AddInstruction( HloInstruction::CreateReshape(result_shape, meta), &meta->metadata()); sparse_meta.push_back(meta); } HloInstruction* dot = computation->AddInstruction(HloInstruction::CreateDot( ShapeUtil::MakeShape(original_dot->shape().element_type(), dot_dims, dot_dynamic_dims), reshaped_lhs, reshaped_rhs, dot_dnums, original_dot->precision_config(), sparsity, sparse_meta)); original_dot->SetupDerivedInstruction(dot); std::unique_ptr<HloInstruction> replacement = HloInstruction::CreateReshape(original_dot->shape(), dot); VLOG(3) << "Canonicalizing dot:\n" << "\t old: " << original_dot->ToString() << "\n" << "\t new: " << dot->ToString() << "\n" << "\t -> " << replacement->ToString(); return computation->ReplaceWithNewInstruction(original_dot, std::move(replacement)); } } absl::StatusOr<bool> DotDecomposer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { std::vector<HloInstruction*> non_canonical_dots; for (auto* computation : module->MakeNonfusionComputations(execution_threads)) { for (auto* instruction : computation->instructions()) { if (instruction->opcode() != HloOpcode::kDot) { continue; } const DotDimensionNumbers& dnums = instruction->dot_dimension_numbers(); if (dnums.lhs_contracting_dimensions_size() != 1) { non_canonical_dots.push_back(instruction); continue; } if (dnums.lhs_batch_dimensions_size() + 2 < instruction->operand(0)->shape().rank() || dnums.rhs_batch_dimensions_size() + 2 < instruction->operand(1)->shape().rank()) { non_canonical_dots.push_back(instruction); continue; } if (dnums.lhs_batch_dimensions().empty() && dnums.lhs_contracting_dimensions().empty()) { non_canonical_dots.push_back(instruction); continue; } std::vector<int64_t> canonical_batch_dims( dnums.lhs_batch_dimensions_size()); absl::c_iota(canonical_batch_dims, 0); if (!absl::c_equal(dnums.lhs_batch_dimensions(), canonical_batch_dims) || !absl::c_equal(dnums.rhs_batch_dimensions(), canonical_batch_dims)) { non_canonical_dots.push_back(instruction); } } } bool changed = false; for (auto* dot : non_canonical_dots) { TF_RETURN_IF_ERROR(CanonicalizeDot(Cast<HloDotInstruction>(dot))); changed = true; } return changed; } }
#include "xla/service/dot_decomposer.h" #include <memory> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { namespace m = ::xla::match; namespace op = ::xla::testing::opcode_matchers; using DotDecomposerTest = HloTestBase; TEST_F(DotDecomposerTest, CanonicalizeMultipleNonContractingDims) { absl::string_view module_string = R"( HloModule module ENTRY main { p0 = f32[64,63,512]{2,1,0} parameter(0) p1 = f32[512,512]{1,0} parameter(1) ROOT dot = f32[64,63,512]{2,1,0} dot(p0, p1), lhs_contracting_dims={2}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool canonicalized, DotDecomposer().Run(module.get())); EXPECT_TRUE(canonicalized); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Reshape(AllOf(op::Dot(op::Reshape(), op::Reshape(), 1, 0), op::Shape("f32[4032,512]")))); } TEST_F(DotDecomposerTest, DontCanonicalizeIfNoNoncontractingDims) { absl::string_view module_string = R"( HloModule module ENTRY main { p0 = f32[64,4]{1,0} parameter(0) p1 = f32[64,4]{1,0} parameter(1) ROOT dot = f32[64]{0} dot(p0, p1), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool canonicalized, DotDecomposer().Run(module.get())); EXPECT_FALSE(canonicalized); } TEST_F(DotDecomposerTest, DontAddLhsNonContractingDimIfOne) { absl::string_view module_string = R"( HloModule module ENTRY main { p0 = f32[64,4]{1,0} parameter(0) p1 = f32[64,4,2,1]{3,2,1,0} parameter(1) ROOT dot = f32[64,2,1]{2,1,0} dot(p0, p1), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool canonicalized, DotDecomposer().Run(module.get())); EXPECT_TRUE(canonicalized); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Reshape(AllOf(op::Dot(op::Reshape(), op::Reshape(), 1, 1), op::Shape("f32[64,2]")))); } TEST_F(DotDecomposerTest, DontAddRhsNonContractingDimIfOne) { absl::string_view module_string = R"( HloModule module ENTRY main { p0 = f32[64,4,2,1]{3,2,1,0} parameter(0) p1 = f32[64,4]{1,0} parameter(1) ROOT dot = f32[64,2,1]{2,1,0} dot(p0, p1), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool canonicalized, DotDecomposer().Run(module.get())); EXPECT_TRUE(canonicalized); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Reshape(AllOf(op::Dot(op::Reshape(), op::Reshape(), 2, 1), op::Shape("f32[64,2]")))); } template <typename Arg0, typename Arg1, typename Arg2> auto SparseDotMatcher(Arg0&& arg0, Arg1&& arg1, Arg2&& arg2) { return match::Op() .WithOpcode(HloOpcode::kDot) .WithOperand(0, std::forward<Arg0>(arg0)) .WithOperand(1, std::forward<Arg1>(arg1)) .WithOperand(2, std::forward<Arg2>(arg2)); } TEST_F(DotDecomposerTest, CanonicalizeSparseLhs) { absl::string_view kHlo = R"( HloModule module ENTRY main { lhs = f32[16,4,3,7] parameter(0) rhs = f32[32,4,5,7] parameter(1) meta = u16[2,4,3,7] parameter(2) ROOT dot = f32[7,3,5] dot(lhs, rhs, meta), sparsity=L.0@2:4, lhs_contracting_dims={0,1}, rhs_contracting_dims={0,1}, lhs_batch_dims={3}, rhs_batch_dims={3} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHlo)); TF_ASSERT_OK_AND_ASSIGN(bool canonicalized, DotDecomposer().Run(module.get())); EXPECT_TRUE(canonicalized); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Reshape(SparseDotMatcher( m::Reshape(m::Transpose(m::Parameter(0))), m::Reshape(m::Transpose(m::Parameter(1))), m::Reshape(m::Transpose(m::Parameter(2))))))); auto dot = Cast<HloDotInstruction>(root->operand(0)); auto descriptor = dot->sparsity().front(); EXPECT_EQ(descriptor.index(), 0); EXPECT_EQ(descriptor.dimension(), 2); } TEST_F(DotDecomposerTest, CanonicalizeSparseRhs) { absl::string_view kHlo = R"( HloModule module ENTRY main { lhs = f32[32,4,3,7] parameter(0) rhs = f32[16,4,5,7] parameter(1) meta = u16[2,4,5,7] parameter(2) ROOT dot = f32[7,3,5] dot(lhs, rhs, meta), sparsity=R.0@2:4, lhs_contracting_dims={0,1}, rhs_contracting_dims={0,1}, lhs_batch_dims={3}, rhs_batch_dims={3} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHlo)); TF_ASSERT_OK_AND_ASSIGN(bool canonicalized, DotDecomposer().Run(module.get())); EXPECT_TRUE(canonicalized); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Reshape(SparseDotMatcher( m::Reshape(m::Transpose(m::Parameter(0))), m::Reshape(m::Transpose(m::Parameter(1))), m::Reshape(m::Transpose(m::Parameter(2))))))); auto dot = Cast<HloDotInstruction>(root->operand(0)); auto descriptor = dot->sparsity().front(); EXPECT_EQ(descriptor.index(), 1); EXPECT_EQ(descriptor.dimension(), 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/dot_decomposer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/dot_decomposer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8a31a24b-fd06-41cc-bf29-c12ce667dce2
cpp
tensorflow/tensorflow
hlo_constant_folding
third_party/xla/xla/service/hlo_constant_folding.cc
third_party/xla/xla/service/hlo_constant_folding_test.cc
#include "xla/service/hlo_constant_folding.h" #include <algorithm> #include <atomic> #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "xla/hlo/evaluator/hlo_evaluator.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/service/slow_operation_alarm.h" #include "xla/shape_util.h" #include "tsl/platform/errors.h" namespace xla { static bool IsOrContainsIllegalInstr(const HloInstruction* instr) { if (instr->opcode() == HloOpcode::kAfterAll || instr->opcode() == HloOpcode::kRng) { return true; } for (const HloComputation* c : instr->called_computations()) { if (absl::c_any_of(c->instructions(), IsOrContainsIllegalInstr)) { return true; } } return false; } std::atomic<int64_t> HloConstantFolding::slow_op_counter_{0}; absl::StatusOr<bool> HloConstantFolding::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { auto evaluator = std::make_unique<HloEvaluator>(0); evaluator->set_use_fast_path(true); std::vector<HloInstruction*> dead_instructions; for (auto* computation : module->MakeNonfusionComputations(execution_threads)) { for (auto* instruction : computation->MakeInstructionPostOrder()) { if (instruction->IsDead()) { continue; } if (!absl::c_any_of(instruction->operands(), HloPredicateIsOp<HloOpcode::kConstant>) || !absl::c_all_of( instruction->operands(), [](const HloInstruction* operand) { return operand->opcode() == HloOpcode::kConstant || (operand->opcode() == HloOpcode::kBroadcast && operand->operand(0)->opcode() == HloOpcode::kConstant); })) { continue; } if (instruction->opcode() == HloOpcode::kParameter || instruction->opcode() == HloOpcode::kConstant || instruction->opcode() == HloOpcode::kTuple) { continue; } if (instruction->opcode() == HloOpcode::kBroadcast || instruction->opcode() == HloOpcode::kIota) { continue; } if (instruction->IsAsynchronous() && instruction->async_execution_thread() != instruction->parent()->execution_thread()) { continue; } if (instruction->opcode() == HloOpcode::kFft) { continue; } if (IsOrContainsIllegalInstr(instruction)) { continue; } if (instruction->HasSideEffect()) { continue; } if (instruction->opcode() == HloOpcode::kPad && instruction->operand(0)->opcode() == HloOpcode::kBroadcast && instruction->operand(1)->opcode() == HloOpcode::kConstant) { continue; } if (instruction->shape().IsArray()) { int64_t elements_in_operands = 0; for (HloInstruction* operand : instruction->operands()) { if (operand->shape().IsArray()) { elements_in_operands += ShapeUtil::ElementsIn(operand->shape()); } } int64_t elements_in_constant = ShapeUtil::ElementsIn(instruction->shape()); static const int64_t kMaximumConstantSizeElements = 45 * 1000 * 1000; if (std::max(elements_in_constant, elements_in_operands) > kMaximumConstantSizeElements) { VLOG(2) << "Ignore constant folding: result shape size is " << elements_in_constant << " total size of arguments is " << elements_in_operands; continue; } } VLOG(5) << "Constant folding: " << instruction->ToString(); absl::Duration slow_timeout = absl::Seconds(uint64_t{1} << slow_op_counter_.load()); SlowOperationAlarm slow_alarm(slow_timeout, [instruction, slow_timeout] { const bool ndebug = #if NDEBUG true; #else false; #endif absl::string_view explanation_msg = ndebug ? "This isn't necessarily a bug; constant-folding is " "inherently a trade-off between compilation time and speed " "at runtime. XLA has some guards that attempt to keep " "constant folding from taking too long, but fundamentally " "you'll always be able to come up with an input program that " "takes a long time.\n\n" "If you'd like to file a bug, run with envvar " "XLA_FLAGS=--xla_dump_to=/tmp/foo and attach the results." : "XLA was built without compiler optimizations, which can be " "slow. Try rebuilding with -c opt."; return absl::StrFormat( "Constant folding an instruction is taking > %s:\n\n" " %s\n\n" "%s", absl::FormatDuration(slow_timeout), instruction->ToString(), explanation_msg); }); Literal result; if (!evaluator->TryEvaluate( instruction, &result, true)) { VLOG(2) << "Constant folding failed for instruction: " << instruction->ToString(); continue; } slow_alarm.cancel(); if (slow_alarm.fired()) { slow_op_counter_++; } VLOG(4) << "Constant folded: " << instruction->ToString(); dead_instructions.push_back(instruction); HloInstruction* new_constant = instruction->AddInstruction( HloInstruction::CreateConstant(std::move(result))); if (new_constant->shape().has_layout()) { new_constant->mutable_shape() ->mutable_layout() ->set_element_size_in_bits( instruction->shape().layout().element_size_in_bits()); } TF_RETURN_IF_ERROR(instruction->ReplaceAllUsesWith(new_constant)); } } const bool changed = !dead_instructions.empty(); for (HloInstruction* dead_instruction : dead_instructions) { CHECK(dead_instruction->IsDead()); HloComputation* computation = dead_instruction->parent(); TF_RETURN_IF_ERROR(computation->RemoveInstruction(dead_instruction)); } return changed; } }
#include "xla/service/hlo_constant_folding.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/permutation_util.h" #include "xla/primitive_util.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; namespace m = xla::match; using HloConstantFoldingTest = HloTestBase; TEST_F(HloConstantFoldingTest, ConvertF32ToS64) { HloComputation::Builder builder(TestName()); HloInstruction* input = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); builder.AddInstruction( HloInstruction::CreateConvert(ShapeUtil::MakeShape(S64, {}), input)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Convert().WithOperand(0, m::Op().Is(input)))); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(module.get())); EXPECT_TRUE(result); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Constant())); EXPECT_EQ( computation->root_instruction()->literal().GetFirstElement<int64_t>(), 42); } TEST_F(HloConstantFoldingTest, ConvertS64ToF32) { HloComputation::Builder builder(TestName()); HloInstruction* input = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int64_t>(42))); builder.AddInstruction( HloInstruction::CreateConvert(ShapeUtil::MakeShape(F32, {}), input)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Convert().WithOperand(0, m::Op().Is(input)))); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(module.get())); EXPECT_TRUE(result); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Constant())); EXPECT_EQ(computation->root_instruction()->literal().GetFirstElement<float>(), 42.0f); } TEST_F(HloConstantFoldingTest, ConvertF32ArrayToS64Array) { HloComputation::Builder builder(TestName()); HloInstruction* input = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({42.0f, 19.0f}))); builder.AddInstruction( HloInstruction::CreateConvert(ShapeUtil::MakeShape(S64, {2}), input)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Convert().WithOperand(0, m::Op().Is(input)))); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(module.get())); EXPECT_TRUE(result); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Constant())); EXPECT_EQ(computation->root_instruction()->literal().Get<int64_t>({0}), 42); EXPECT_EQ(computation->root_instruction()->literal().Get<int64_t>({1}), 19); } TEST_F(HloConstantFoldingTest, Concatenate) { const struct TestConfig { int concat_dimension; std::vector<int64_t> dimensions; std::vector<int64_t> concat_sizes; } test_configs[] = { {1, {11, 0, 7, 5, 9}, {2, 5, 7, 11}}, {3, {1, 4, 17, 0, 8}, {1, 3, 9, 12}}, }; for (auto& test_config : test_configs) { HloComputation::Builder builder(TestName()); std::vector<int64_t> dimensions(test_config.dimensions.begin(), test_config.dimensions.end()); int64_t concat_size = 0; std::vector<HloInstruction*> operands; for (auto csize : test_config.concat_sizes) { dimensions[test_config.concat_dimension] = csize; concat_size += csize; auto literal = LiteralUtil::CreateFromDimensions(F32, dimensions); HloInstruction* insn = builder.AddInstruction( HloInstruction::CreateConstant(std::move(literal))); operands.push_back(insn); } dimensions[test_config.concat_dimension] = concat_size; Shape shape = ShapeUtil::MakeShape(F32, dimensions); builder.AddInstruction(HloInstruction::CreateConcatenate( shape, operands, test_config.concat_dimension)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(module.get())); EXPECT_TRUE(result); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Constant())); EXPECT_TRUE(ShapeUtil::Equal(root->shape(), shape)); } } TEST_F(HloConstantFoldingTest, Slice) { HloComputation::Builder builder(TestName()); const int64_t dimensions[] = {11, 8, 7, 5, 9}; const int64_t slice_start[] = {4, 2, 3, 1, 5}; const int64_t slice_limits[] = {10, 8, 6, 5, 9}; const int64_t slice_strides[] = {1, 1, 1, 1, 1}; TF_ASSERT_OK_AND_ASSIGN(auto literal, LiteralUtil::CreateRandomLiteral<F32>( ShapeUtil::MakeShape(F32, dimensions), 0.0, 1.0)); HloInstruction* literal_instruction = builder.AddInstruction( HloInstruction::CreateConstant(std::move(literal))); Shape shape = ShapeUtil::MakeShape(F32, {6, 6, 3, 4, 4}); builder.AddInstruction(HloInstruction::CreateSlice( shape, literal_instruction, slice_start, slice_limits, slice_strides)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(module.get())); EXPECT_TRUE(result); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Constant())); EXPECT_TRUE(ShapeUtil::Equal(root->shape(), shape)); } TEST_F(HloConstantFoldingTest, TransposeConstantFold) { HloComputation::Builder builder(TestName()); const int64_t dimensions[] = {11, 8, 7, 5, 9}; TF_ASSERT_OK_AND_ASSIGN(auto literal, LiteralUtil::CreateRandomLiteral<F32>( ShapeUtil::MakeShape(F32, dimensions), 0.0, 1.0)); auto literal_clone = literal.Clone(); HloInstruction* literal_instruction = builder.AddInstruction( HloInstruction::CreateConstant(std::move(literal))); Shape shape = ShapeUtil::MakeShape(F32, {8, 7, 11, 9, 5}); const int64_t permutation[] = {1, 2, 0, 4, 3}; builder.AddInstruction( HloInstruction::CreateTranspose(shape, literal_instruction, permutation)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(module.get())); EXPECT_TRUE(result); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Constant())); EXPECT_TRUE(ShapeUtil::Compatible(root->shape(), shape)); using NativeT = typename primitive_util::PrimitiveTypeToNative<F32>::type; bool matched = true; root->literal().EachCell<NativeT>( [&](absl::Span<const int64_t> indices, NativeT value) { std::vector<int64_t> rindexes = PermuteInverse(indices, permutation); matched = matched && (value == literal_clone.Get<NativeT>(rindexes)); }); EXPECT_TRUE(matched); } const char* const kConstantFoldReduce = R"( HloModule ConstantFoldReduce add { a = s32[] parameter(0) b = s32[] parameter(1) ROOT add = s32[] add(a, b) } ENTRY r { x = s32[3] constant({1, 2, 3}) init = s32[] constant(0) ROOT reduce = s32[] reduce(x, init), dimensions={0}, to_apply=add })"; TEST_F(HloConstantFoldingTest, ConstantFoldReduce) { TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kConstantFoldReduce)); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(m.get())); EXPECT_TRUE(result); EXPECT_EQ(6, m->entry_computation() ->root_instruction() ->literal() .GetFirstElement<int32_t>()); } constexpr absl::string_view kConstantFoldReduceWithMetadata = R"( HloModule ConstantFoldReduce add { a = s32[] parameter(0) b = s32[] parameter(1) ROOT add = s32[] add(a, b) } ENTRY r { x = s32[3] constant({1, 2, 3}), metadata={op_name="constant"} init = s32[] constant(0), metadata={op_name="zero_constant"} ROOT reduce = s32[] reduce(x, init), metadata={op_name="reduce"}, dimensions={0}, to_apply=add })"; TEST_F(HloConstantFoldingTest, ConstantFoldReduceCheckMetadata) { TF_ASSERT_OK_AND_ASSIGN( auto m, ParseAndReturnVerifiedModule(kConstantFoldReduceWithMetadata)); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(m.get())); EXPECT_TRUE(result); OpMetadata reduce_metadata; reduce_metadata.set_op_name("reduce"); EXPECT_THAT(m->entry_computation()->root_instruction(), AllOf(op::Constant(), op::Metadata(reduce_metadata))); } TEST_F(HloConstantFoldingTest, ConstantFoldReduceNoLayout) { TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kConstantFoldReduce)); HloInstruction* add = (*m->computations().begin())->root_instruction(); LayoutUtil::ClearLayout(add->mutable_shape()); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(m.get())); EXPECT_FALSE(result); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Reduce())); } const char* const kConstantFoldLargePad = R"( HloModule ConstantFoldLargePad ENTRY r { a = f32[1,1,1] constant({{{7}}}) b = f32[] constant(42) ROOT pad = f32[2048,2048,128] pad(a, b), padding=1024_1023x1024_1023x64_63 })"; TEST_F(HloConstantFoldingTest, DoesNotFoldLargePad) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kConstantFoldLargePad)); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(module.get())); EXPECT_FALSE(result); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Pad(m::Constant(), m::Constant()))); } TEST_F(HloConstantFoldingTest, DoesNotFoldPadBroadcast) { const char* const kConstantFoldPadBroadcast = R"( HloModule ConstantFoldLargePad ENTRY r { a = f32[] constant(239) broadcast_a = f32[4] broadcast(a), dimensions={} b = f32[] constant(42) ROOT pad = f32[8] pad(f32[4] broadcast_a, f32[] b), padding=4_0 })"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(kConstantFoldPadBroadcast)); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(module.get())); EXPECT_FALSE(result); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Pad(m::Broadcast(), m::Constant()))); } TEST_F(HloConstantFoldingTest, DoesNotFoldSlicesWithLargeOperand) { const char* const kModuleStr = R"( HloModule test ENTRY r { a = f32[] constant(42) broadcast = f32[1000000000]{0} broadcast(a), dimensions={} slice1 = f32[10000]{0} slice(broadcast), slice={[0:10000]} slice2 = f32[10000]{0} slice(broadcast), slice={[10000:20000]} ROOT add = f32[10000]{0} add(slice1, slice2) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(module.get())); EXPECT_FALSE(result); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Add(m::Slice(), m::Slice()))); } TEST_F(HloConstantFoldingTest, DontFoldSubcomputationContainingAfterAll) { const char* const kModuleStr = R"( HloModule test Fn { tok = token[] after-all() ROOT root = f32[10] iota(), iota_dimension=0 } ENTRY entry { ROOT call = f32[10] call(), to_apply=Fn })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); HloConstantFolding constant_folding; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&constant_folding, module.get())); EXPECT_FALSE(result); } TEST_F(HloConstantFoldingTest, DontFoldSubcomputationTransitivelyContainingRng) { const char* const kModuleStr = R"( HloModule test InnerFn { c0 = f32[] constant(0) c1 = f32[] constant(1) ROOT rng = f32[10] rng(c0, c1), distribution=rng_uniform } Fn { ROOT fusion = f32[10] fusion(), kind=kLoop, calls=InnerFn } ENTRY entry { ROOT call = f32[10] call(), to_apply=Fn })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); HloConstantFolding constant_folding; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&constant_folding, module.get())); EXPECT_FALSE(result); } TEST_F(HloConstantFoldingTest, FoldOpsWhereOneOperandIsBroadcast) { const char* const kModuleStr = R"( HloModule test ENTRY entry { not_folded1 = f32[4] broadcast(f32[] constant(1)) not_folded2 = add(f32[4] broadcast(f32[] constant(2)), f32[4] broadcast(f32[] constant(3))) folded1 = add(f32[4] broadcast(f32[] constant(5)), f32[4] constant({0,1,2,3})) folded2 = add(f32[4] constant({0,1,2,3}), f32[4] broadcast(f32[] constant(5))) ROOT root = tuple(not_folded1, not_folded2, folded1, folded2) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); HloConstantFolding constant_folding; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&constant_folding, module.get())); EXPECT_TRUE(result); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::Broadcast(m::Constant()), m::Add(m::Broadcast(m::Constant()), m::Broadcast(m::Constant())), m::Constant(), m::Constant() ))); } TEST_F(HloConstantFoldingTest, FoldInt4Ops) { const char* const kModuleStr = R"( HloModule test ENTRY entry { c0 = s4[2]{0:E(4)} constant({1, 2}) c1 = s4[2]{0:E(4)} constant({3, 4}) add1 = s4[2]{0:E(4)} add(c0, c1) c2 = s4[]{:E(4)} constant(5) add2 = s4[2]{0:E(4)} add(c0, s4[2]{0:E(4)} broadcast(c2)) ROOT root = tuple(add1, add2) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); HloConstantFolding constant_folding; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&constant_folding, module.get())); EXPECT_TRUE(result); auto is_4_bit = [](const HloInstruction* instr) { return instr->shape().layout().element_size_in_bits() == 4; }; EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::Constant().WithPredicate(is_4_bit), m::Constant().WithPredicate(is_4_bit)))); } TEST_F(HloConstantFoldingTest, BigReduceWindow) { constexpr absl::string_view kModuleStr = R"( HloModule test add_bf16 { lhs = bf16[] parameter(0) rhs = bf16[] parameter(1) ROOT add = bf16[] add(lhs, rhs) } ENTRY accumulated_all_reduce { x = bf16[160,10,10,512]{3,2,1,0} broadcast(bf16[] constant(1.0)) init = bf16[] constant(0) ROOT reduce-window = reduce-window(x, init), window={size=1x2x2x1 stride=1x2x2x1}, to_apply=add_bf16 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); HloConstantFolding constant_folding; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&constant_folding, module.get())); EXPECT_TRUE(result); } TEST_F(HloConstantFoldingTest, TimingConsumingTest) { constexpr absl::string_view mod_str = R"( HloModule jit_f, entry_computation_layout={()->f32[]} region_0.4 { Arg_0.5 = f32[] parameter(0) Arg_1.6 = f32[] parameter(1) ROOT add.7 = f32[] add(Arg_0.5, Arg_1.6) } ENTRY main.9 { constant.1 = f32[] constant(1) broadcast.2 = f32[32,999,40,512]{3,2,1,0} broadcast(constant.1), dimensions={} constant.3 = f32[] constant(0) ROOT reduce.8 = f32[] reduce(broadcast.2, constant.3), dimensions={0,1,2,3}, to_apply=region_0.4 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(mod_str)); HloConstantFolding const_fold; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&const_fold, module.get())); EXPECT_FALSE(result); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_constant_folding.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_constant_folding_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
39ece867-becf-40a5-be85-a8bfb9996b0b
cpp
tensorflow/tensorflow
all_reduce_reassociate
third_party/xla/xla/service/all_reduce_reassociate.cc
third_party/xla/xla/service/all_reduce_reassociate_test.cc
#include "xla/service/all_reduce_reassociate.h" #include <cstdint> #include <optional> #include <string> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/literal.h" #include "xla/primitive_util.h" #include "xla/service/all_reduce_key.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/pattern_matcher.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla { namespace { namespace m = match; bool AreAllreduceKeysEqual(AllReduceKey& key0, AllReduceKey& key1, bool ignore_element_type) { if (ignore_element_type) { return std::get<0>(key0) == std::get<0>(key1) && std::get<2>(key0) == std::get<2>(key1) && std::get<3>(key0) == std::get<3>(key1) && std::get<4>(key0) == std::get<4>(key1) && std::get<5>(key0) == std::get<5>(key1); } else { return key0 == key1; } } bool AreCompatible(const HloAllReduceInstruction* ar0, const HloAllReduceInstruction* ar1, ReductionKind op_kind, bool ignore_element_type) { std::optional<AllReduceKey> key0 = GetAllReduceKey(ar0); std::optional<AllReduceKey> key1 = GetAllReduceKey(ar1); auto kind0 = MatchReductionComputation(ar0->to_apply()); return key0 && key1 && kind0 && AreAllreduceKeysEqual(*key0, *key1, ignore_element_type) && kind0 == op_kind; } HloInstruction* LookThroughForAllReduce(HloInstruction* instr, const Literal& reduction_identity) { if (instr->opcode() == HloOpcode::kDynamicSlice) { if (instr->operand(0)->opcode() != HloOpcode::kAllReduce || instr->operand(0)->user_count() != 1 || instr->user_count() != 1) { return nullptr; } return instr; } while (instr->opcode() != HloOpcode::kAllReduce) { if (instr->user_count() != 1) { return nullptr; } if (instr->opcode() != HloOpcode::kReshape && instr->opcode() != HloOpcode::kPad && instr->opcode() != HloOpcode::kSlice && instr->opcode() != HloOpcode::kConvert) { return nullptr; } if (instr->opcode() == HloOpcode::kPad) { if (!instr->operand(1)->IsConstant()) { return nullptr; } if (instr->operand(1)->literal() != reduction_identity) { return nullptr; } } instr = instr->mutable_operand(0); } if (instr->user_count() != 1) { return nullptr; } return instr; } bool ReassociateAllReduceIsProfitable(HloInstruction* ar0, HloInstruction* ar1, HloInstruction* reassociated_inst) { int64_t pre_reassociated_size = ShapeUtil::ElementsIn(ar0->shape()); if (ar0 != ar1) { pre_reassociated_size += ShapeUtil::ElementsIn(ar1->shape()); } return pre_reassociated_size >= ShapeUtil::ElementsIn(reassociated_inst->shape()); } bool AreCompatibleConverts(const HloInstruction* convert0, const HloInstruction* convert1) { bool is_compatible = true; if (convert0) { is_compatible &= primitive_util::CastPreservesValues( convert0->operand(0)->shape().element_type(), convert0->shape().element_type()); } if (convert1) { is_compatible &= primitive_util::CastPreservesValues( convert1->operand(0)->shape().element_type(), convert1->shape().element_type()); } if (convert0 && convert1) { CHECK(convert0->shape().element_type() == convert1->shape().element_type()); is_compatible &= convert0->operand(0)->shape().element_type() == convert1->operand(0)->shape().element_type(); } return is_compatible; } template <typename Pattern> auto OptionalConvertWithOneUser(HloInstruction** optional_convert, Pattern pattern) { return m::AnyOf<HloInstruction>( m::Convert(optional_convert, pattern).WithOneUser(), std::move(pattern)); } bool MatchOperandsToAllReduceWithOptionalConvert(HloInstruction* inst, HloInstruction** convert0, HloInstruction** convert1) { auto ar_op_optional_convert_pattern = m::Op() .WithOperand(0, OptionalConvertWithOneUser(convert0, m::AllReduce())) .WithOperand(1, OptionalConvertWithOneUser(convert1, m::AllReduce())) .WithPredicate([](const HloInstruction* inst) { return inst->shape().IsArray(); }); return Match(inst, ar_op_optional_convert_pattern); } } absl::StatusOr<bool> AllReduceReassociate::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { if (hlo_query::ContainsLayoutConstrainedAllReduce(*module)) { VLOG(1) << "Skip AllReduceReassociate because the module contains all-reduce " "with constrained layouts"; return false; } int64_t next_channel_id = hlo_query::NextChannelId(*module); bool changed = false; for (auto computation : module->computations(execution_threads)) { for (HloInstruction* inst : computation->MakeInstructionPostOrder()) { std::optional<ReductionKind> kind = MatchReductionInstruction(inst); if (!kind) { continue; } std::optional<Literal> reduction_identity = GetReductionIdentity(*kind, inst->shape().element_type()); if (!reduction_identity) { continue; } HloInstruction* lhs = LookThroughForAllReduce(inst->mutable_operand(0), *reduction_identity); if (lhs == nullptr) { continue; } HloInstruction* rhs = LookThroughForAllReduce(inst->mutable_operand(1), *reduction_identity); if (rhs == nullptr) { continue; } if (!inst->shape().IsArray()) { continue; } if (lhs->opcode() != rhs->opcode() || (lhs->opcode() == HloOpcode::kDynamicSlice && !ShapeUtil::Compatible(lhs->operand(0)->shape(), rhs->operand(0)->shape()))) { continue; } HloAllReduceInstruction* ar0 = nullptr; HloAllReduceInstruction* ar1 = nullptr; bool reduce_scatter_pattern_match = false; if (lhs->opcode() == HloOpcode::kDynamicSlice) { HloInstruction* original_rhs_operand = rhs->mutable_operand(0); TF_RETURN_IF_ERROR(rhs->ReplaceOperandWith(0, lhs->mutable_operand(0))); if (!lhs->Identical(*rhs)) { TF_RETURN_IF_ERROR(rhs->ReplaceOperandWith(0, original_rhs_operand)); continue; } TF_RETURN_IF_ERROR(rhs->ReplaceOperandWith(0, original_rhs_operand)); ar0 = Cast<HloAllReduceInstruction>(lhs->mutable_operand(0)); ar1 = Cast<HloAllReduceInstruction>(rhs->mutable_operand(0)); reduce_scatter_pattern_match = true; } else { ar0 = Cast<HloAllReduceInstruction>(lhs); ar1 = Cast<HloAllReduceInstruction>(rhs); } if (!ReassociateAllReduceIsProfitable(lhs, rhs, inst)) { continue; } HloInstruction* convert0 = nullptr; HloInstruction* convert1 = nullptr; if (!MatchOperandsToAllReduceWithOptionalConvert(inst, &convert0, &convert1)) { VLOG(2) << "One or both inputs are type-converted."; } bool should_promote_ar = convert0 || convert1; if (should_promote_ar) { if (!reassociate_converted_ar_) { VLOG(2) << "Promotions of all_reduces for reassociation will be " "disabled."; continue; } if (!AreCompatibleConverts(convert0, convert1)) { VLOG(2) << "Inputs' Converts are not preserving " "value, skipping"; continue; } } HloInstruction* op_operand0 = inst->mutable_operand(0); HloInstruction* op_operand1 = inst->mutable_operand(1); if (convert0) { op_operand0 = convert0->mutable_operand(0); } if (convert1) { op_operand1 = convert1->mutable_operand(0); } if (!AreCompatible(ar0, ar1, *kind, should_promote_ar)) { VLOG(2) << "All-Reduce operations are not compatible, skipping"; continue; } VLOG(2) << "Reassociated:"; VLOG(2) << "\tAR0: " << ar0->ToString(); VLOG(2) << "\tAR1: " << ar1->ToString(); auto op_users = inst->users(); HloInstruction* new_op_operand0 = ar0->mutable_operand(0); HloInstruction* new_op_operand1 = ar1->mutable_operand(0); if (convert0) { HloInstruction* ar0_operand = ar0->mutable_operand(0); TF_RETURN_IF_ERROR(convert0->ReplaceOperandWith(0, ar0_operand)); new_op_operand0 = convert0; } if (convert1) { HloInstruction* ar1_operand = ar1->mutable_operand(0); TF_RETURN_IF_ERROR(convert1->ReplaceOperandWith(0, ar1_operand)); new_op_operand1 = convert1; } HloInstruction* new_op = inst; if (should_promote_ar) { new_op = computation->AddInstruction(inst->CloneWithNewOperands( inst->shape(), {new_op_operand0, new_op_operand1})); } else if (reduce_scatter_pattern_match) { new_op = computation->AddInstruction(inst->CloneWithNewOperands( ar0->shape(), {new_op_operand0, new_op_operand1})); } Shape new_ar_out_shape = inst->shape(); CHECK(!should_promote_ar || !reduce_scatter_pattern_match); if (should_promote_ar) { new_ar_out_shape.set_element_type( new_op_operand0->shape().element_type()); } else if (reduce_scatter_pattern_match) { new_ar_out_shape = ar0->shape(); } else { TF_RETURN_IF_ERROR(ar0->ReplaceAllUsesWith(ar0->mutable_operand(0))); TF_RETURN_IF_ERROR(ar1->ReplaceAllUsesWith(ar1->mutable_operand(0))); } HloInstruction* new_ar = computation->AddInstruction( ar0->CloneWithNewOperands(new_ar_out_shape, {new_op})); if (new_ar->channel_id()) { new_ar->set_channel_id(next_channel_id++); } if (should_promote_ar) { HloComputation* to_apply = new_ar->to_apply(); PrimitiveType type = new_ar->shape().element_type(); std::string name = absl::StrCat(to_apply->name(), "_reassoc_promoted"); HloComputation::Builder promoted(name); auto x = promoted.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(type, {}), "x")); auto y = promoted.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(type, {}), "y")); promoted.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(type, {}), to_apply->root_instruction()->opcode(), x, y)); HloComputation* to_apply_promoted = inst->GetModule()->AddEmbeddedComputation(promoted.Build()); new_ar->set_to_apply(to_apply_promoted); TF_RETURN_IF_ERROR(inst->ReplaceAllUsesWith(new_ar)); } else if (reduce_scatter_pattern_match) { auto dyn_slice_operands = lhs->mutable_operands(); dyn_slice_operands[0] = new_ar; HloInstruction* new_dyn_slice = inst->parent()->AddInstruction( lhs->CloneWithNewOperands(inst->shape(), dyn_slice_operands)); TF_RETURN_IF_ERROR(inst->ReplaceUsesWith(op_users, new_dyn_slice)); } else { TF_RETURN_IF_ERROR(inst->ReplaceUsesWith(op_users, new_ar)); } if (should_promote_ar || reduce_scatter_pattern_match) { TF_RETURN_IF_ERROR(computation->RemoveInstruction(inst)); } if (reduce_scatter_pattern_match) { TF_RETURN_IF_ERROR(computation->RemoveInstruction(lhs)); if (lhs != rhs) { TF_RETURN_IF_ERROR(computation->RemoveInstruction(rhs)); } } TF_RETURN_IF_ERROR(computation->RemoveInstruction(ar0)); if (ar0 != ar1) { TF_RETURN_IF_ERROR(computation->RemoveInstruction(ar1)); } changed = true; } } return changed; } }
#include "xla/service/all_reduce_reassociate.h" #include <cstddef> #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace m = xla::testing::opcode_matchers; using ::testing::_; class AllReduceSimplifierTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> RunPass( absl::string_view hlo_module, bool expect_change, bool reassociate_converted_ar = false) { TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule(hlo_module)); auto changed = AllReduceReassociate(reassociate_converted_ar).Run(module.get()); if (!changed.ok()) { return changed.status(); } EXPECT_EQ(changed.value(), expect_change); return absl::StatusOr<std::unique_ptr<HloModule>>(std::move(module)); } size_t AllReduceCount(std::unique_ptr<HloModule>& module) { return absl::c_count_if(module->entry_computation()->instructions(), HloPredicateIsOp<HloOpcode::kAllReduce>); } }; TEST_F(AllReduceSimplifierTest, Simple) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=sum ROOT add = f32[8] add(ar0, ar1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), m::AllReduce(m::Add(m::Parameter(0), m::Parameter(1)))); EXPECT_EQ(AllReduceCount(module), 1); } TEST_F(AllReduceSimplifierTest, SimpleWithChannelId) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), channel_id=1, replica_groups={}, to_apply=sum ar1 = f32[8] all-reduce(p1), channel_id=1, replica_groups={}, to_apply=sum ROOT add = f32[8] add(ar0, ar1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), m::AllReduce(m::Add(m::Parameter(0), m::Parameter(1)))); EXPECT_EQ(AllReduceCount(module), 1); } TEST_F(AllReduceSimplifierTest, SimpleChain) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) p2 = f32[8] parameter(2) p3 = f32[8] parameter(3) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=sum ar2 = f32[8] all-reduce(p2), replica_groups={}, to_apply=sum ar3 = f32[8] all-reduce(p3), replica_groups={}, to_apply=sum add0 = f32[8] add(ar0, ar1) add1 = f32[8] add(add0, ar2) ROOT add2 = f32[8] add(add1, ar3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT( module->entry_computation()->root_instruction(), m::AllReduce(m::Add( m::Add(m::Add(m::Parameter(0), m::Parameter(1)), m::Parameter(2)), m::Parameter(3)))); EXPECT_EQ(AllReduceCount(module), 1); } TEST_F(AllReduceSimplifierTest, SimpleTree) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) p2 = f32[8] parameter(2) p3 = f32[8] parameter(3) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=sum ar2 = f32[8] all-reduce(p2), replica_groups={}, to_apply=sum ar3 = f32[8] all-reduce(p3), replica_groups={}, to_apply=sum add0 = f32[8] add(ar0, ar1) add1 = f32[8] add(ar2, ar3) ROOT add2 = f32[8] add(add0, add1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), m::AllReduce(m::Add(m::Add(m::Parameter(0), m::Parameter(1)), m::Add(m::Parameter(2), m::Parameter(3))))); EXPECT_EQ(AllReduceCount(module), 1); } TEST_F(AllReduceSimplifierTest, MismatchOp0) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } max { a = f32[] parameter(0) b = f32[] parameter(1) ROOT r = f32[] maximum(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=max ROOT add = f32[8] add(ar0, ar1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(AllReduceSimplifierTest, MismatchOp1) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } max { a = f32[] parameter(0) b = f32[] parameter(1) ROOT r = f32[] maximum(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=max ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=max ROOT add = f32[8] add(ar0, ar1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(AllReduceSimplifierTest, MismatchReplicaGroups) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={{0}}, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=sum ROOT add = f32[8] add(ar0, ar1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(AllReduceSimplifierTest, MismatchHasChannelId) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, channel_id=3, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=sum ROOT add = f32[8] add(ar0, ar1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(AllReduceSimplifierTest, MismatchUseGlobalDeviceId) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={{0, 1}}, channel_id=3, use_global_device_ids=true, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={{0, 1}}, channel_id=4, to_apply=sum ROOT add = f32[8] add(ar0, ar1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(AllReduceSimplifierTest, NotSingleUser) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=sum add = f32[8] add(ar0, ar1) ROOT t = (f32[8], f32[8]) tuple(ar0, add) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(AllReduceSimplifierTest, DoubleUse) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum add = f32[8] add(ar0, ar0) ROOT c = f32[8] copy(add) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); } TEST_F(AllReduceSimplifierTest, PaddedUse) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=sum %constant.1 = f32[] constant(0) pad = f32[12]{0} pad(ar0, constant.1), padding=0_4 pad.1 = f32[12]{0} pad(ar1, constant.1), padding=0_4 ROOT add = f32[12] add(pad, pad.1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), m::AllReduce(m::Add(m::Pad(m::Parameter(0), _), m::Pad(m::Parameter(1), _)))); EXPECT_EQ(AllReduceCount(module), 1); } TEST_F(AllReduceSimplifierTest, PaddedUseInvalidReduceValue) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=sum %constant.1 = f32[] constant(-1.0) pad = f32[12]{0} pad(ar0, constant.1), padding=0_4 pad.1 = f32[12]{0} pad(ar1, constant.1), padding=0_4 ROOT add = f32[12] add(pad, pad.1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); EXPECT_EQ(AllReduceCount(module), 2); } TEST_F(AllReduceSimplifierTest, PaddedUseNotProfitable) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=sum %constant.1 = f32[] constant(0) pad = f32[17]{0} pad(ar0, constant.1), padding=0_9 pad.1 = f32[17]{0} pad(ar1, constant.1), padding=0_9 ROOT add = f32[17] add(pad, pad.1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); EXPECT_EQ(AllReduceCount(module), 2); } TEST_F(AllReduceSimplifierTest, PaddedUseDoubleUseNotProfitable) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum %constant.1 = f32[] constant(0) pad = f32[9]{0} pad(ar0, constant.1), padding=0_1 ROOT add = f32[9] add(pad, pad) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); EXPECT_EQ(AllReduceCount(module), 1); } TEST_F(AllReduceSimplifierTest, ReshapeUse) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[1,8] parameter(0) p1 = f32[1,8] parameter(1) ar0 = f32[1,8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[1,8] all-reduce(p1), replica_groups={}, to_apply=sum rshp0 = f32[8]{0} reshape(ar0) rshp1 = f32[8]{0} reshape(ar1) ROOT add = f32[8] add(rshp0, rshp1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), m::AllReduce(m::Add(m::Reshape(m::Parameter(0)), m::Reshape(m::Parameter(1))))); EXPECT_EQ(AllReduceCount(module), 1); } TEST_F(AllReduceSimplifierTest, SliceUse) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=sum rshp0 = f32[4]{0} slice(ar0), slice={[0:4]} rshp1 = f32[4]{0} slice(ar1), slice={[0:4]} ROOT add = f32[4] add(rshp0, rshp1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), m::AllReduce(m::Add(m::Slice(m::Parameter(0)), m::Slice(m::Parameter(1))))); EXPECT_EQ(AllReduceCount(module), 1); } TEST_F(AllReduceSimplifierTest, ChainWithConvert) { absl::string_view hlo_string = R"( HloModule m add.1 { x.47 = bf16[] parameter(0) y.47 = bf16[] parameter(1) ROOT add.2532 = bf16[] add(x.47, y.47) } ENTRY main { p0 = bf16[8] parameter(0) p1 = bf16[8] parameter(1) p2 = bf16[8] parameter(2) p3 = bf16[8] parameter(3) ar0 = bf16[8] all-reduce(p0), replica_groups={}, to_apply=add.1 ar1 = bf16[8] all-reduce(p1), replica_groups={}, to_apply=add.1 ar2 = bf16[8] all-reduce(p2), replica_groups={}, to_apply=add.1 ar3 = bf16[8] all-reduce(p3), replica_groups={}, to_apply=add.1 convert0 = f32[8] convert(ar0) convert1 = f32[8] convert(ar1) add0 = f32[8] add(convert0, convert1) convert2 = f32[8] convert(ar2) add1 = f32[8] add(add0, convert2) convert3 = f32[8] convert(ar3) add2 = f32[8] add(add1, convert3) ROOT convert4 = bf16[8] convert(add2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true, true)); SCOPED_TRACE(module->ToString()); EXPECT_THAT( module->entry_computation()->root_instruction(), m::Convert(m::AllReduce(m::Add(m::Add(m::Add(m::Convert(m::Parameter(0)), m::Convert(m::Parameter(1))), m::Convert(m::Parameter(2))), m::Convert(m::Parameter(3)))))); EXPECT_EQ(AllReduceCount(module), 1); EXPECT_THAT( module->entry_computation()->root_instruction()->operand(0)->shape(), GmockMatch(::xla::match::Shape().WithElementType(F32))); } TEST_F(AllReduceSimplifierTest, AllreduceWithConvertIncompatibleType) { absl::string_view hlo_string = R"( HloModule m add.1 { x.47 = bf16[] parameter(0) y.47 = bf16[] parameter(1) ROOT add.2532 = bf16[] add(x.47, y.47) } max.1 { x.48 = bf16[] parameter(0) y.48 = bf16[] parameter(1) ROOT max.2533 = bf16[] maximum(x.48, y.48) } min.1 { x.49 = bf16[] parameter(0) y.49 = bf16[] parameter(1) ROOT min.2534 = bf16[] minimum(x.49, y.49) } mul.1 { x.50 = bf16[] parameter(0) y.50 = bf16[] parameter(1) ROOT mul.2535 = bf16[] multiply(x.50, y.50) } ENTRY main { p0 = bf16[8] parameter(0) p1 = bf16[8] parameter(1) p2 = bf16[8] parameter(2) p3 = bf16[8] parameter(3) ar0 = bf16[8] all-reduce(p0), replica_groups={}, to_apply=add.1 ar1 = bf16[8] all-reduce(p1), replica_groups={}, to_apply=max.1 ar2 = bf16[8] all-reduce(p2), replica_groups={}, to_apply=min.1 ar3 = bf16[8] all-reduce(p3), replica_groups={}, to_apply=mul.1 convert0 = f32[8] convert(ar0) convert1 = f32[8] convert(ar1) add0 = f32[8] add(convert0, convert1) convert2 = f32[8] convert(ar2) add1 = f32[8] add(add0, convert2) convert3 = f32[8] convert(ar3) add2 = f32[8] add(add1, convert3) ROOT convert4 = bf16[8] convert(add2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); SCOPED_TRACE(module->ToString()); } TEST_F(AllReduceSimplifierTest, AllreduceWithLossyConvert) { absl::string_view hlo_string = R"( HloModule m add.1 { x.47 = bf16[] parameter(0) y.47 = bf16[] parameter(1) ROOT add.2532 = bf16[] add(x.47, y.47) } ENTRY main { p0 = bf16[8] parameter(0) p1 = bf16[8] parameter(1) p2 = bf16[8] parameter(2) p3 = bf16[8] parameter(3) ar0 = bf16[8] all-reduce(p0), replica_groups={}, to_apply=add.1 ar1 = bf16[8] all-reduce(p1), replica_groups={}, to_apply=add.1 ar2 = bf16[8] all-reduce(p2), replica_groups={}, to_apply=add.1 ar3 = bf16[8] all-reduce(p3), replica_groups={}, to_apply=add.1 convert0 = u32[8] convert(ar0) convert1 = u32[8] convert(ar1) add0 = u32[8] add(convert0, convert1) convert2 = u32[8] convert(ar2) add1 = u32[8] add(add0, convert2) convert3 = u32[8] convert(ar3) add2 = u32[8] add(add1, convert3) ROOT convert4 = bf16[8] convert(add2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); SCOPED_TRACE(module->ToString()); } TEST_F(AllReduceSimplifierTest, AllReduceDynamicSlicePattern) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[1,8] parameter(0) p1 = f32[1,8] parameter(1) p2 = f32[1,8] parameter(2) p3 = s32[] parameter(3) cst = s32[] constant(0) ar0 = f32[1,8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[1,8] all-reduce(p1), replica_groups={}, to_apply=sum ar2 = f32[1,8] all-reduce(p2), replica_groups={}, to_apply=sum dyn0 = f32[1,4] dynamic-slice(ar0, cst, p3), dynamic_slice_sizes={1,4} dyn1 = f32[1,4] dynamic-slice(ar1, cst, p3), dynamic_slice_sizes={1,4} dyn2 = f32[1,4] dynamic-slice(ar2, cst, p3), dynamic_slice_sizes={1,4} add = f32[1,4] add(dyn0, dyn1) ROOT add1 = f32[1,4] add(add, dyn2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), m::DynamicSlice( m::AllReduce(m::Add(m::Add(m::Parameter(0), m::Parameter(1)), m::Parameter(2))), m::Constant(), m::Parameter(3))); XLA_VLOG_LINES(1, module->ToString()); EXPECT_EQ(AllReduceCount(module), 1); } TEST_F(AllReduceSimplifierTest, AllReduceDynamicSlicePatternSameOperand) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[1,8] parameter(0) p1 = f32[1,8] parameter(1) p2 = s32[] parameter(2) cst = s32[] constant(0) ar0 = f32[1,8] all-reduce(p0), replica_groups={}, to_apply=sum ar2 = f32[1,8] all-reduce(p1), replica_groups={}, to_apply=sum dyn0 = f32[1,4] dynamic-slice(ar0, cst, p2), dynamic_slice_sizes={1,4} dyn2 = f32[1,4] dynamic-slice(ar2, cst, p2), dynamic_slice_sizes={1,4} add = f32[1,4] add(dyn0, dyn0) ROOT add1 = f32[1,4] add(add, dyn2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), m::DynamicSlice( m::AllReduce(m::Add(m::Add(m::Parameter(0), m::Parameter(0)), m::Parameter(1))), m::Constant(), m::Parameter(2))); XLA_VLOG_LINES(1, module->ToString()); EXPECT_EQ(AllReduceCount(module), 1); } TEST_F(AllReduceSimplifierTest, AllReduceDynamicSliceDifferentSlices) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[1,8] parameter(0) p1 = f32[1,8] parameter(1) p2 = f32[1,16] parameter(2) p3 = s32[] parameter(3) cst = s32[] constant(0) ar0 = f32[1,8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[1,8] all-reduce(p1), replica_groups={}, to_apply=sum ar2 = f32[1,16] all-reduce(p2), replica_groups={}, to_apply=sum dyn0 = f32[1,4] dynamic-slice(ar0, cst, p3), dynamic_slice_sizes={1,4} dyn1 = f32[1,4] dynamic-slice(ar1, cst, p3), dynamic_slice_sizes={1,4} dyn2 = f32[1,4] dynamic-slice(ar2, cst, p3), dynamic_slice_sizes={1,4} add = f32[1,4] add(dyn0, dyn1) ROOT add1 = f32[1,4] add(add, dyn2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT( module->entry_computation()->root_instruction(), m::Add(m::DynamicSlice(), m::DynamicSlice(m::AllReduce(), m::Constant(), m::Parameter(3)))); XLA_VLOG_LINES(1, module->ToString()); EXPECT_EQ(AllReduceCount(module), 2); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/all_reduce_reassociate.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/all_reduce_reassociate_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1b0d1084-8d5e-4768-bdf2-88e35ad4abd6
cpp
tensorflow/tensorflow
batch_dot_simplification
third_party/xla/xla/service/batch_dot_simplification.cc
third_party/xla/xla/service/batch_dot_simplification_test.cc
#include "xla/service/batch_dot_simplification.h" #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { absl::StatusOr<bool> BatchDotSimplification::ElideDegenerateBatchDimensionFromBatchDot( HloInstruction* batch_dot) { if (Cast<HloDotInstruction>(batch_dot)->sparse_operands()) { return false; } const auto& is_iota = [](absl::Span<const int64_t> dims) { for (int64_t i = 0; i < dims.size(); ++i) { if (dims[i] != i) { return false; } } return true; }; if (!absl::c_equal( batch_dot->dot_dimension_numbers().lhs_batch_dimensions(), batch_dot->dot_dimension_numbers().rhs_batch_dimensions()) || !is_iota(batch_dot->dot_dimension_numbers().lhs_batch_dimensions())) { return false; } const DotDimensionNumbers& dim_numbers = batch_dot->dot_dimension_numbers(); HloInstruction *lhs = batch_dot->mutable_operand(0), *rhs = batch_dot->mutable_operand(1); const Shape& lhs_shape = lhs->shape(); if (dim_numbers.lhs_contracting_dimensions_size() != 1) { return false; } std::vector<int64_t> degenerate_dims; for (int64_t batch_dim : dim_numbers.lhs_batch_dimensions()) { if (lhs_shape.dimensions(batch_dim) == 1) { degenerate_dims.push_back(batch_dim); } } if (degenerate_dims.empty()) { return false; } TF_ASSIGN_OR_RETURN(HloInstruction * new_lhs, ElideDegenerateDims(lhs, degenerate_dims)); TF_ASSIGN_OR_RETURN(HloInstruction * new_rhs, ElideDegenerateDims(rhs, degenerate_dims)); DotDimensionNumbers new_dim_numbers = dim_numbers; new_dim_numbers.clear_lhs_batch_dimensions(); new_dim_numbers.clear_rhs_batch_dimensions(); for (int64_t i = 0, e = dim_numbers.lhs_batch_dimensions_size() - degenerate_dims.size(); i < e; i++) { new_dim_numbers.add_lhs_batch_dimensions(i); new_dim_numbers.add_rhs_batch_dimensions(i); } new_dim_numbers.set_lhs_contracting_dimensions( 0, new_dim_numbers.lhs_contracting_dimensions(0) - degenerate_dims.size()); new_dim_numbers.set_rhs_contracting_dimensions( 0, new_dim_numbers.rhs_contracting_dimensions(0) - degenerate_dims.size()); TF_ASSIGN_OR_RETURN( HloInstruction * new_dot, MakeDotHlo(new_lhs, new_rhs, new_dim_numbers, batch_dot->precision_config(), batch_dot->shape().element_type())); TF_ASSIGN_OR_RETURN(HloInstruction * new_dot_reshaped, MakeReshapeHlo(batch_dot->shape(), new_dot)); VLOG(2) << "Replaced " << batch_dot->ToString() << " with " << new_dot->ToString(); TF_RETURN_IF_ERROR( batch_dot->parent()->ReplaceInstruction(batch_dot, new_dot_reshaped)); return true; } absl::StatusOr<bool> BatchDotSimplification::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; std::vector<HloInstruction*> dot_instrs; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { absl::c_copy_if(computation->instructions(), std::back_inserter(dot_instrs), [](HloInstruction* instr) { return instr->opcode() == HloOpcode::kDot; }); } for (HloInstruction* dot_instr : dot_instrs) { TF_ASSIGN_OR_RETURN(bool elided_batch_dim_from_one, ElideDegenerateBatchDimensionFromBatchDot(dot_instr)); changed |= elided_batch_dim_from_one; } return changed; } }
#include "xla/service/batch_dot_simplification.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; class BatchDotSimplificationTest : public HloTestBase {}; TEST_F(BatchDotSimplificationTest, ElideSingleDegenerateBatchDotDim_VectorVector) { const std::string hlo_text = R"( HloModule BatchDot main { a = f32[1,3] parameter(0) b = f32[1,3] parameter(1) ROOT dot = f32[1] dot(a, b), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_contracting_dims={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_text)); BatchDotSimplification pass; ASSERT_TRUE(pass.Run(m.get()).value()); HloInstruction* root = m->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Reshape(op::Dot( op::Reshape(op::Parameter(0)), op::Reshape(op::Parameter(1)), 0, 0))); } TEST_F(BatchDotSimplificationTest, ElideSingleDegenerateBatchDotDim_MatrixVector) { const std::string hlo_text = R"( HloModule BatchDot main { a = f32[1,9,3] parameter(0) b = f32[1,3] parameter(1) ROOT dot = f32[1,9] dot(a, b), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_text)); BatchDotSimplification pass; ASSERT_TRUE(pass.Run(m.get()).value()); HloInstruction* root = m->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Reshape(op::Dot( op::Reshape(op::Parameter(0)), op::Reshape(op::Parameter(1)), 1, 0))); } TEST_F(BatchDotSimplificationTest, ElideSingleDegenerateBatchDotDim_MatrixMatrix) { const std::string hlo_text = R"( HloModule BatchDot main { a = f32[1,9,3] parameter(0) b = f32[1,3,7] parameter(1) ROOT dot = f32[1,9,7] dot(a, b), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_text)); BatchDotSimplification pass; ASSERT_TRUE(pass.Run(m.get()).value()); HloInstruction* root = m->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Reshape(op::Dot( op::Reshape(op::Parameter(0)), op::Reshape(op::Parameter(1)), 1, 0))); } TEST_F(BatchDotSimplificationTest, ElideMultipleDegenerateBatchDotDims_VectorVector) { const std::string hlo_text = R"( HloModule BatchDot main { a = f32[9,1,7,1,3] parameter(0) b = f32[9,1,7,1,3] parameter(1) ROOT dot = f32[9,1,7,1] dot(a, b), lhs_batch_dims={0,1,2,3}, rhs_batch_dims={0,1,2,3}, lhs_contracting_dims={4}, rhs_contracting_dims={4} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_text)); BatchDotSimplification pass; ASSERT_TRUE(pass.Run(m.get()).value()); HloInstruction* root = m->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Reshape(op::Dot( op::Reshape(op::Parameter(0)), op::Reshape(op::Parameter(1)), 2, 2))); } TEST_F(BatchDotSimplificationTest, ElideMultipleDegenerateBatchDotDims_VectorMatrix) { const std::string hlo_text = R"( HloModule BatchDot main { a = f32[9,1,7,1,3] parameter(0) b = f32[9,1,7,1,20,3] parameter(1) ROOT dot = f32[9,1,7,1,20] dot(a, b), lhs_batch_dims={0,1,2,3}, rhs_batch_dims={0,1,2,3}, lhs_contracting_dims={4}, rhs_contracting_dims={5} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_text)); BatchDotSimplification pass; ASSERT_TRUE(pass.Run(m.get()).value()); HloInstruction* root = m->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Reshape(op::Dot( op::Reshape(op::Parameter(0)), op::Reshape(op::Parameter(1)), 2, 3))); } TEST_F(BatchDotSimplificationTest, ElideMultipleDegenerateBatchDotDims_MatrixMatrix) { const std::string hlo_text = R"( HloModule BatchDot main { a = f32[9,1,7,1,19,3] parameter(0) b = f32[9,1,7,1,3,20] parameter(1) ROOT dot = f32[9,1,7,1,19,20] dot(a, b), lhs_batch_dims={0,1,2,3}, rhs_batch_dims={0,1,2,3}, lhs_contracting_dims={5}, rhs_contracting_dims={4} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_text)); BatchDotSimplification pass; ASSERT_TRUE(pass.Run(m.get()).value()); HloInstruction* root = m->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Reshape(op::Dot( op::Reshape(op::Parameter(0)), op::Reshape(op::Parameter(1)), 3, 2))); } TEST_F(BatchDotSimplificationTest, ElideMultipleDegenerateBatchDotDimsNonContracting) { const char* hlo_text = R"( HloModule BatchDot main { a = f32[1,101] parameter(0) b = f32[1,101] parameter(1) ROOT dot = f32[1,101,101] dot(a,b), lhs_batch_dims={0}, lhs_contracting_dims={}, rhs_batch_dims={0}, rhs_contracting_dims={} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_text)); BatchDotSimplification pass; ASSERT_FALSE(pass.Run(m.get()).value()); } TEST_F(BatchDotSimplificationTest, ElideMultipleDegenerateBatchDotDimsMultipleContracting) { const char* hlo_text = R"( HloModule BatchDot main { lhs = f32[1,5,17,10,13] parameter(0) rhs = f32[1,9,10,13,6,5] parameter(1) ROOT dot = f32[10,1,17,9,6] dot(lhs,rhs), lhs_batch_dims={3,0}, rhs_batch_dims={2,0}, lhs_contracting_dims={1,4}, rhs_contracting_dims={5,3} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_text)); BatchDotSimplification pass; ASSERT_FALSE(pass.Run(m.get()).value()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/batch_dot_simplification.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/batch_dot_simplification_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
51a7fed9-c52a-4155-b34f-5a1bf3110f66
cpp
tensorflow/tensorflow
hlo_liveness_analysis
third_party/xla/xla/service/hlo_liveness_analysis.cc
third_party/xla/xla/service/hlo_liveness_analysis_test.cc
#include "xla/service/hlo_liveness_analysis.h" #include <cstddef> #include <cstdint> #include <deque> #include <functional> #include <memory> #include "absl/container/flat_hash_set.h" #include "absl/functional/function_ref.h" #include "absl/log/check.h" #include "absl/strings/str_cat.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/call_graph.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { namespace { using Worklist = std::deque<const HloInstruction*>; using Workset = absl::flat_hash_set<const HloInstruction*>; void AddToWorklist(const HloInstruction* instruction, Worklist* worklist, Workset* workset) { if (workset->insert(instruction).second) { worklist->push_back(instruction); VLOG(3) << "ADD instruction: " << instruction->name(); } } using VisitorFunction = absl::FunctionRef<void(const ShapeIndex& )>; void ForEachLiveIndex(const ShapeTree<bool>& index_tree, VisitorFunction func) { index_tree.ForEachElement([&](const ShapeIndex& shape_index, bool live) { if (live) { func(shape_index); } }); } void MarkLiveAtIndex(const HloInstruction* instruction, const ShapeIndex& shape_index, HloLivenessAnalysis::HloIndexMap* live_index_map, Worklist* worklist, Workset* workset) { std::unique_ptr<ShapeTree<bool>>& liveness = (*live_index_map)[instruction]; if (liveness == nullptr) { liveness = std::make_unique<ShapeTree<bool>>(instruction->shape(), false); } bool& alive = *liveness->mutable_element(shape_index); if (!alive) { AddToWorklist(instruction, worklist, workset); alive = true; VLOG(3) << "MARK instruction: " << instruction->name() << " shape_index: " << shape_index; } } void MarkLiveAtAllIndices(const HloInstruction* instruction, HloLivenessAnalysis::HloIndexMap* live_index_map, Worklist* worklist, Workset* workset) { bool add_to_worklist = false; std::unique_ptr<ShapeTree<bool>>& liveness = (*live_index_map)[instruction]; if (liveness == nullptr) { liveness = std::make_unique<ShapeTree<bool>>(instruction->shape(), true); add_to_worklist = true; } else { for (auto& entry : *liveness) { if (!entry.second) { add_to_worklist = true; entry.second = true; VLOG(3) << "MARK instruction: " << instruction->name() << " shape_index: " << entry.first; } } } if (add_to_worklist) { AddToWorklist(instruction, worklist, workset); } } void PropagateLivenessThroughTuple( const HloInstruction* instruction, HloLivenessAnalysis::HloIndexMap* live_index_map, Worklist* worklist, Workset* workset) { CHECK_EQ(instruction->opcode(), HloOpcode::kTuple); const ShapeTree<bool>& index_tree = *live_index_map->at(instruction); ForEachLiveIndex(index_tree, [&](const ShapeIndex& shape_index) { const size_t size = shape_index.size(); if (size == 0) { return; } const int64_t operand_index = shape_index[0]; if (operand_index >= instruction->operand_count()) { return; } MarkLiveAtIndex(instruction->operand(operand_index), {}, live_index_map, worklist, workset); ShapeIndex operand_shape_index(size - 1); for (int i = 1; i < size; ++i) { operand_shape_index[i - 1] = shape_index[i]; } MarkLiveAtIndex(instruction->operand(operand_index), operand_shape_index, live_index_map, worklist, workset); }); } void PropagateLivenessThroughGTE( const HloInstruction* instruction, HloLivenessAnalysis::HloIndexMap* live_index_map, Worklist* worklist, Workset* workset) { CHECK_EQ(instruction->opcode(), HloOpcode::kGetTupleElement); MarkLiveAtIndex(instruction->operand(0), {}, live_index_map, worklist, workset); const ShapeTree<bool>& index_tree = *live_index_map->at(instruction); ForEachLiveIndex(index_tree, [&](const ShapeIndex& shape_index) { ShapeIndex operand_shape_index(shape_index); operand_shape_index.push_front(instruction->tuple_index()); MarkLiveAtIndex(instruction->operand(0), operand_shape_index, live_index_map, worklist, workset); }); } void PropagateLivenessThroughWhile( const HloInstruction* instruction, HloLivenessAnalysis::HloIndexMap* live_index_map, Worklist* worklist, Workset* workset) { CHECK_EQ(instruction->opcode(), HloOpcode::kWhile); const ShapeTree<bool>& index_tree = *live_index_map->at(instruction); ForEachLiveIndex(index_tree, [&](const ShapeIndex& shape_index) { MarkLiveAtIndex(instruction->while_body()->root_instruction(), shape_index, live_index_map, worklist, workset); MarkLiveAtIndex(instruction->operand(0), shape_index, live_index_map, worklist, workset); }); MarkLiveAtIndex(instruction->while_condition()->root_instruction(), {}, live_index_map, worklist, workset); } void PropagateLivenessToParameterCallers( const HloInstruction* instruction, HloLivenessAnalysis::HloIndexMap* live_index_map, Worklist* worklist, Workset* workset, CallGraph* call_graph) { CHECK_EQ(instruction->opcode(), HloOpcode::kParameter); const CallGraphNode& call_graph_node = call_graph->GetNode(instruction->parent()); if (call_graph_node.context() == CallContext::kControlFlow) { for (const CallSite& callsite : call_graph_node.caller_callsites()) { if (callsite.instruction()->opcode() == HloOpcode::kWhile) { auto* xla_while = callsite.instruction(); const ShapeTree<bool>& index_tree = *live_index_map->at(instruction); ForEachLiveIndex(index_tree, [&](const ShapeIndex& shape_index) { MarkLiveAtIndex(xla_while, shape_index, live_index_map, worklist, workset); MarkLiveAtIndex(xla_while->while_body()->root_instruction(), shape_index, live_index_map, worklist, workset); MarkLiveAtIndex(xla_while->operand(0), shape_index, live_index_map, worklist, workset); }); } } } } void PropagateLivenessThroughControlFlow( const HloInstruction* instruction, HloLivenessAnalysis::HloIndexMap* live_index_map, Worklist* worklist, Workset* workset, CallGraph* call_graph) { const CallGraphNode& call_graph_node = call_graph->GetNode(instruction->parent()); if (call_graph_node.context() == CallContext::kControlFlow) { for (const CallSite& callsite : call_graph_node.caller_callsites()) { HloInstruction* caller = callsite.instruction(); if (caller->opcode() == HloOpcode::kWhile) { MarkLiveAtIndex(caller->while_condition()->root_instruction(), {}, live_index_map, worklist, workset); } else if (caller->opcode() == HloOpcode::kConditional) { MarkLiveAtIndex(caller->operand(0), {}, live_index_map, worklist, workset); MarkLiveAtIndex(caller, {}, live_index_map, worklist, workset); const HloComputation* callee_comp = instruction->parent(); int64_t operand_index = 1; for (auto* caller_comp : caller->called_computations()) { if (callee_comp == caller_comp) { MarkLiveAtIndex(caller->operand(operand_index), {}, live_index_map, worklist, workset); if (instruction->opcode() == HloOpcode::kParameter) { const ShapeTree<bool>& index_tree = *live_index_map->at(instruction); ForEachLiveIndex(index_tree, [&](const ShapeIndex& shape_index) { MarkLiveAtIndex(caller->operand(operand_index), shape_index, live_index_map, worklist, workset); }); } break; } ++operand_index; } } } } } } HloLivenessAnalysis::HloLivenessAnalysis(const HloModule& module) : module_(module), call_graph_(CallGraph::Build(&module)) {} void HloLivenessAnalysis::RunAnalysis() { Worklist worklist; Workset workset; MarkLiveAtAllIndices(module_.entry_computation()->root_instruction(), &live_index_map_, &worklist, &workset); for (auto* computation : module_.computations()) { for (auto* instruction : computation->instructions()) { if (instruction->HasSideEffectNoRecurse()) { MarkLiveAtAllIndices(instruction, &live_index_map_, &worklist, &workset); } } } while (!worklist.empty()) { const HloInstruction* instruction = worklist.front(); worklist.pop_front(); workset.erase(workset.find(instruction)); VLOG(1) << "VISIT instruction: " << instruction->name(); if (instruction->opcode() == HloOpcode::kTuple) { PropagateLivenessThroughTuple(instruction, &live_index_map_, &worklist, &workset); } else if (instruction->opcode() == HloOpcode::kGetTupleElement) { PropagateLivenessThroughGTE(instruction, &live_index_map_, &worklist, &workset); } else if (instruction->opcode() == HloOpcode::kWhile) { PropagateLivenessThroughWhile(instruction, &live_index_map_, &worklist, &workset); } else if (instruction->opcode() == HloOpcode::kParameter) { PropagateLivenessToParameterCallers(instruction, &live_index_map_, &worklist, &workset, call_graph_.get()); } else { for (auto* called_computation : instruction->called_computations()) { MarkLiveAtAllIndices(called_computation->root_instruction(), &live_index_map_, &worklist, &workset); } for (HloInstruction* operand : instruction->operands()) { MarkLiveAtAllIndices(operand, &live_index_map_, &worklist, &workset); } } PropagateLivenessThroughControlFlow(instruction, &live_index_map_, &worklist, &workset, call_graph_.get()); } } bool HloLivenessAnalysis::IsLive(const HloInstruction* instruction, const ShapeIndex& shape_index) const { auto it = live_index_map_.find(instruction); return (it != live_index_map_.end()) && it->second->element(shape_index); } absl::StatusOr<std::unique_ptr<HloLivenessAnalysis>> HloLivenessAnalysis::Run( const HloModule& module) { VLOG(1) << "HloLivenessAnalysis::Run on module " << module.name(); XLA_VLOG_LINES(2, module.ToString()); auto liveness_analysis = absl::WrapUnique(new HloLivenessAnalysis(module)); liveness_analysis->RunAnalysis(); return std::move(liveness_analysis); } }
#include "xla/service/hlo_liveness_analysis.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/logging.h" #include "tsl/platform/test.h" namespace xla { namespace { class HloLivenessAnalysisTest : public HloTestBase { protected: HloLivenessAnalysisTest() {} const HloLivenessAnalysis& RunLiveness(HloModule* module) { liveness_ = HloLivenessAnalysis::Run(*module).value(); return *liveness_; } HloInstruction* GetInstruction(HloModule* module, const std::string& name) { HloInstruction* to_return = nullptr; for (auto* comp : module->computations()) { for (auto* inst : comp->instructions()) { if (inst->name() == name) { to_return = inst; break; } } } return CHECK_NOTNULL(to_return); } std::unique_ptr<HloLivenessAnalysis> liveness_; }; TEST_F(HloLivenessAnalysisTest, AddAtEntryRoot) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleModule ENTRY SimpleComputation { constant.1 = s32[] constant(0) constant.2 = s32[] constant(1) ROOT add = s32[] add(constant.1, constant.2) })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "add"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.2"), {})); } TEST_F(HloLivenessAnalysisTest, DeadAdd) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleModule ENTRY SimpleComputation { constant.1 = s32[] constant(0) constant.2 = s32[] constant(1) add.1 = s32[] add(constant.1, constant.2) ROOT add.2 = s32[] add(constant.1, constant.2) })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "add.2"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.2"), {})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "add.1"), {})); } TEST_F(HloLivenessAnalysisTest, TupleAtEntryRoot) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleModule ENTRY SimpleComputation { constant.1 = s32[] constant(0) constant.2 = s32[] constant(1) ROOT tuple.1 = (s32[], s32[]) tuple(constant.1, constant.2) })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.2"), {})); } TEST_F(HloLivenessAnalysisTest, NestedTupleAtEntryRoot) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleModule ENTRY SimpleComputation { constant.1 = s32[] constant(1) constant.2 = s32[] constant(2) constant.3 = s32[] constant(3) tuple.1 = (s32[], s32[]) tuple(constant.2, constant.3) ROOT tuple.2 = (s32[], (s32[], s32[])) tuple(constant.1, tuple.1) })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {1, 0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {1, 1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.2"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.3"), {})); } TEST_F(HloLivenessAnalysisTest, GteOfTuple) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleModule ENTRY SimpleComputation { constant.1 = s32[] constant(0) constant.2 = s32[] constant(1) tuple.1 = (s32[], s32[]) tuple(constant.1, constant.2) ROOT get-tuple-element.1 = s32[] get-tuple-element(tuple.1), index=0 })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE( liveness.IsLive(GetInstruction(module.get(), "get-tuple-element.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {0})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.1"), {})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "constant.2"), {})); } TEST_F(HloLivenessAnalysisTest, GteOfNestedTuple) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleModule ENTRY SimpleComputation { constant.1 = s32[] constant(0) constant.2 = s32[] constant(1) constant.3 = s32[] constant(2) tuple.1 = (s32[], s32[]) tuple(constant.2, constant.3) tuple.2 = (s32[], (s32[], s32[])) tuple(constant.1, tuple.1) ROOT get-tuple-element.1 = (s32[], s32[]) get-tuple-element(tuple.2), index=1 })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE( liveness.IsLive(GetInstruction(module.get(), "get-tuple-element.1"), {})); EXPECT_TRUE(liveness.IsLive( GetInstruction(module.get(), "get-tuple-element.1"), {0})); EXPECT_TRUE(liveness.IsLive( GetInstruction(module.get(), "get-tuple-element.1"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {1, 0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {1, 1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {1})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "constant.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.2"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.3"), {})); } TEST_F(HloLivenessAnalysisTest, GteOfGteOfNestedTuple) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleModule ENTRY SimpleComputation { constant.1 = s32[] constant(0) constant.2 = s32[] constant(1) constant.3 = s32[] constant(2) tuple.1 = (s32[], s32[]) tuple(constant.2, constant.3) tuple.2 = (s32[], (s32[], s32[])) tuple(constant.1, tuple.1) get-tuple-element.1 = (s32[], s32[]) get-tuple-element(tuple.2), index=1 ROOT get-tuple-element.2 = s32[] get-tuple-element(get-tuple-element.1), index=0 })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE( liveness.IsLive(GetInstruction(module.get(), "get-tuple-element.2"), {})); EXPECT_TRUE( liveness.IsLive(GetInstruction(module.get(), "get-tuple-element.1"), {})); EXPECT_TRUE(liveness.IsLive( GetInstruction(module.get(), "get-tuple-element.1"), {0})); EXPECT_FALSE(liveness.IsLive( GetInstruction(module.get(), "get-tuple-element.1"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {1, 0})); EXPECT_FALSE( liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {1, 1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {0})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {1})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "constant.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.2"), {})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "constant.3"), {})); } TEST_F(HloLivenessAnalysisTest, WhileWithDeadTupleElement) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleLoop SimpleLoop.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add.0 = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply.0 = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple.0 = (s32[], s32[3]{0}) tuple(add.0, multiply.0) } SimpleLoop.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(5) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[] constant(0) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) while.0 = (s32[], s32[3]{0}) while(tuple.1), condition= SimpleLoop.condition, body=SimpleLoop.body ROOT get-tuple-element.4 = s32[] get-tuple-element(while.0), index=0 })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE( liveness.IsLive(GetInstruction(module.get(), "get-tuple-element.4"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "while.0"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "while.0"), {0})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "while.0"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {0})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.3"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.0"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.0"), {0})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "tuple.0"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "add.0"), {})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "multiply.0"), {})); } TEST_F(HloLivenessAnalysisTest, WhileCondPropagatesLiveness) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleLoop add_S32 { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } SimpleLoop.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add.0 = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply.0 = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple.0 = (s32[], s32[3]{0}) tuple(add.0, multiply.0) } SimpleLoop.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 get-tuple-element.4 = s32[3]{0} get-tuple-element(loop_var.2), index=1 zero = s32[] constant(0) reduce = s32[] reduce(get-tuple-element.4, zero), dimensions={0}, to_apply=add_S32 add.1 = s32[] add(get-tuple-element.3, reduce) constant.2 = s32[] constant(5) ROOT less-than = pred[] compare(add.1, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[] constant(0) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) while.0 = (s32[], s32[3]{0}) while(tuple.1), condition= SimpleLoop.condition, body=SimpleLoop.body ROOT get-tuple-element.5 = s32[] get-tuple-element(while.0), index=0 })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE( liveness.IsLive(GetInstruction(module.get(), "get-tuple-element.5"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "while.0"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "while.0"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "while.0"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.3"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.4"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.0"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.0"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.0"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "add.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "multiply.0"), {})); } TEST_F(HloLivenessAnalysisTest, WhileWithLiveTupleElements) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleLoop SimpleLoop.body { loop_var.1 = (s32[], s32[], s32[]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 get-tuple-element.2 = s32[] get-tuple-element(loop_var.1), index=1 add.1 = s32[] add(get-tuple-element.1, get-tuple-element.2) get-tuple-element.3 = s32[] get-tuple-element(loop_var.1), index=2 multiply.1 = s32[] multiply(get-tuple-element.3, get-tuple-element.3) ROOT tuple.1 = (s32[], s32[], s32[]) tuple(add.1, get-tuple-element.3, multiply.1) } SimpleLoop.condition { loop_var.2 = (s32[], s32[], s32[]) parameter(0) get-tuple-element.4 = s32[] get-tuple-element(loop_var.2), index=0 constant.1 = s32[] constant(5) ROOT less-than = pred[] compare(get-tuple-element.4, constant.1), direction=LT } ENTRY SimpleLoop { constant.2 = s32[] constant(0) constant.3 = s32[] constant(1) constant.4 = s32[] constant(2) tuple.2 = (s32[], s32[], s32[]) tuple(constant.2, constant.3, constant.4) while.1 = (s32[], s32[], s32[]) while(tuple.2), condition= SimpleLoop.condition, body=SimpleLoop.body ROOT get-tuple-element.5 = s32[] get-tuple-element(while.1), index=0 })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE( liveness.IsLive(GetInstruction(module.get(), "get-tuple-element.5"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "while.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "while.1"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "while.1"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "while.1"), {2})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {2})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {2})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "loop_var.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "loop_var.1"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "loop_var.1"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "loop_var.1"), {2})); } TEST_F(HloLivenessAnalysisTest, WhileWithOutfeed) { auto module = ParseAndReturnVerifiedModule(R"( HloModule OutfeedLoop WhileBody { body_param = (s32[]) parameter(0) token0 = token[] after-all() constant.2 = s32[] constant(2) outfeed_tuple = (s32[]) outfeed(constant.2, token0) get-tuple-element.1 = s32[] get-tuple-element(body_param), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) ROOT tuple = (s32[]) tuple(add) } WhileCondition { cond_param = (s32[]) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(cond_param), index=0 constant.2 = s32[] constant(10) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[] constant(0) tuple.1 = (s32[]) tuple(constant.3) while = (s32[]) while(tuple.1), condition=WhileCondition, body=WhileBody ROOT rtuple = () tuple() })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "add"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.3"), {})); } TEST_F(HloLivenessAnalysisTest, NestedWhileWithOutfeed) { auto module = ParseAndReturnVerifiedModule(R"( HloModule OutfeedLoop InnerWhileBody { body_param = (s32[]) parameter(0) token0 = token[] after-all() constant.2 = s32[] constant(2) outfeed_tuple = (s32[]) outfeed(constant.2, token0) get-tuple-element.1 = s32[] get-tuple-element(body_param), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) ROOT tuple = (s32[]) tuple(add) } InnerWhileCondition { cond_param = (s32[]) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(cond_param), index=0 constant.2 = s32[] constant(10) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } OuterWhileCondition { cond_param.2 = (s32[]) parameter(0) get-tuple-element.5 = s32[] get-tuple-element(cond_param.2), index=0 constant.5 = s32[] constant(5) ROOT less-than.2 = pred[] compare(get-tuple-element.5, constant.5), direction=LT } OuterWhileBody { body_param.2 = (s32[]) parameter(0) get-tuple-element.8 = s32[] get-tuple-element(body_param.2), index=0 constant.6 = s32[] constant(0) tuple.2 = (s32[]) tuple(constant.6) inner_while = (s32[]) while(tuple.2), condition=InnerWhileCondition, body=InnerWhileBody constant.7 = s32[] constant(1) add.2 = s32[] add(get-tuple-element.8, constant.7) ROOT rtuple = (s32[]) tuple(add.2) } ENTRY SimpleLoop { constant.3 = s32[] constant(0) tuple.1 = (s32[]) tuple(constant.3) while = (s32[]) while(tuple.1), condition=OuterWhileCondition, body=OuterWhileBody ROOT rtuple = () tuple() })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "add"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "add.2"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.3"), {})); } TEST_F(HloLivenessAnalysisTest, PropagateLivenessFromConditionalComputation) { auto module = ParseAndReturnVerifiedModule(R"( HloModule main.67 %region_0.10 (Arg_0.11: (s32[], s32[], f32[1024,3], s32[1])) -> (s32[], s32[], f32[1024,3], s32[1]) { %Arg_0.11 = (s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) parameter(0) %get-tuple-element.17 = s32[] get-tuple-element((s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) %Arg_0.11), index=0, metadata={op_name="while"} %constant.13 = s32[] constant(1) %add.25 = s32[] add(s32[] %get-tuple-element.17, s32[] %constant.13), metadata={op_name="while/add_1"} %get-tuple-element.18 = s32[] get-tuple-element((s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) %Arg_0.11), index=1, metadata={op_name="while"} %add.22 = s32[] add(s32[] %get-tuple-element.18, s32[] %constant.13), metadata={op_name="while/add"} %get-tuple-element.19 = f32[1024,3]{1,0} get-tuple-element((s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) %Arg_0.11), index=2, metadata={op_name="while"} %constant.16 = f32[] constant(0) %constant.15 = f32[] constant(1) %rng.21 = f32[3]{0} rng(f32[] %constant.16, f32[] %constant.15), distribution=rng_uniform, metadata={op_name="while/random_uniform/RandomUniform"} %reshape.23 = f32[1,3]{1,0} reshape(f32[3]{0} %rng.21), metadata={op_name="while/TensorArrayV2Write/TensorListSetItem"} %constant.12 = s32[] constant(0) %dynamic-update-slice.24 = f32[1024,3]{1,0} dynamic-update-slice(f32[1024,3]{1,0} %get-tuple-element.19, f32[1,3]{1,0} %reshape.23, s32[] %get-tuple-element.18, s32[] %constant.12), metadata={op_name="while/TensorArrayV2Write/TensorListSetItem"} %get-tuple-element.20 = s32[1]{0} get-tuple-element((s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) %Arg_0.11), index=3, metadata={op_name="while"} ROOT %tuple.26 = (s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) tuple(s32[] %add.25, s32[] %add.22, f32[1024,3]{1,0} %dynamic-update-slice.24, s32[1]{0} %get-tuple-element.20), metadata={op_name="while"} } %region_1.27 (Arg_0.28: (s32[], s32[], f32[1024,3], s32[1])) -> pred[] { %Arg_0.28 = (s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) parameter(0) %get-tuple-element.30 = s32[] get-tuple-element((s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) %Arg_0.28), index=1, metadata={op_name="while"} %constant.29 = s32[] constant(1024) ROOT %compare.31 = pred[] compare(s32[] %get-tuple-element.30, s32[] %constant.29), direction=LT, metadata={op_name="while/Less"} } %region_2.42 (Arg_0.43: (f32[3,32,32,3], token[])) -> (pred[], token[]) { %constant.44 = pred[] constant(true) %Arg_0.43 = (f32[3,32,32,3]{3,2,1,0}, token[]) parameter(0) %get-tuple-element.52 = f32[3,32,32,3]{3,2,1,0} get-tuple-element((f32[3,32,32,3]{3,2,1,0}, token[]) %Arg_0.43), index=0, metadata={op_name="image_sample/write_summary/summary_cond"} %constant.49 = f32[] constant(255.5) %broadcast.50 = f32[3,32,32,3]{3,2,1,0} broadcast(f32[] %constant.49), dimensions={}, metadata={op_name="image_sample/write_summary/summary_cond/convert_image/Mul"} %multiply.53 = f32[3,32,32,3]{3,2,1,0} multiply(f32[3,32,32,3]{3,2,1,0} %get-tuple-element.52, f32[3,32,32,3]{3,2,1,0} %broadcast.50), metadata={op_name="image_sample/write_summary/summary_cond/convert_image/Mul"} %constant.47 = f32[] constant(0) %broadcast.48 = f32[3,32,32,3]{3,2,1,0} broadcast(f32[] %constant.47), dimensions={}, metadata={op_name="image_sample/write_summary/summary_cond/convert_image/Maximum"} %maximum.54 = f32[3,32,32,3]{3,2,1,0} maximum(f32[3,32,32,3]{3,2,1,0} %multiply.53, f32[3,32,32,3]{3,2,1,0} %broadcast.48), metadata={op_name="image_sample/write_summary/summary_cond/convert_image/Maximum"} %constant.45 = f32[] constant(255) %broadcast.46 = f32[3,32,32,3]{3,2,1,0} broadcast(f32[] %constant.45), dimensions={}, metadata={op_name="image_sample/write_summary/summary_cond/convert_image/Minimum"} %minimum.55 = f32[3,32,32,3]{3,2,1,0} minimum(f32[3,32,32,3]{3,2,1,0} %maximum.54, f32[3,32,32,3]{3,2,1,0} %broadcast.46), metadata={op_name="image_sample/write_summary/summary_cond/convert_image/Minimum"} %convert.56 = u8[3,32,32,3]{3,2,1,0} convert(f32[3,32,32,3]{3,2,1,0} %minimum.55), metadata={op_name="image_sample/write_summary/summary_cond/convert_image"} %get-tuple-element.51 = token[] get-tuple-element((f32[3,32,32,3]{3,2,1,0}, token[]) %Arg_0.43), index=1, metadata={op_name="image_sample/write_summary/summary_cond"} %send.57 = (u8[3,32,32,3]{3,2,1,0}, u32[], token[]) send(u8[3,32,32,3]{3,2,1,0} %convert.56, token[] %get-tuple-element.51), channel_id=2, is_host_transfer=true, frontend_attributes={_xla_host_transfer_rendezvous="host_compute_channel_0_args_dtoh_0"}, metadata={op_name="image_sample/write_summary/summary_cond/encode_each_image/TensorArrayUnstack/TensorListFromTensor"} %send-done.58 = token[] send-done((u8[3,32,32,3]{3,2,1,0}, u32[], token[]) %send.57), channel_id=2, is_host_transfer=true, frontend_attributes={_xla_host_transfer_rendezvous="host_compute_channel_0_args_dtoh_0"}, metadata={op_name="image_sample/write_summary/summary_cond/encode_each_image/TensorArrayUnstack/TensorListFromTensor"} ROOT %tuple.59 = (pred[], token[]) tuple(pred[] %constant.44, token[] %send-done.58), metadata={op_name="image_sample/write_summary/summary_cond"} } %region_3.60 (Arg_0.61: (f32[3,32,32,3], token[])) -> (pred[], token[]) { %constant.62 = pred[] constant(false) %Arg_0.61 = (f32[3,32,32,3]{3,2,1,0}, token[]) parameter(0) %get-tuple-element.63 = token[] get-tuple-element((f32[3,32,32,3]{3,2,1,0}, token[]) %Arg_0.61), index=1, metadata={op_name="image_sample/write_summary/summary_cond"} ROOT %tuple.64 = (pred[], token[]) tuple(pred[] %constant.62, token[] %get-tuple-element.63), metadata={op_name="image_sample/write_summary/summary_cond"} } ENTRY %main.67 (arg_tuple.1: (s32[])) -> () { %arg_tuple.1 = (s32[]{:T(256)}) parameter(0) %get-tuple-element.2 = s32[]{:T(256)} get-tuple-element((s32[]{:T(256)}) %arg_tuple.1), index=0 %constant.3 = s32[] constant(0) %compare.8 = pred[]{:T(256)} compare(s32[]{:T(256)} %get-tuple-element.2, s32[] %constant.3), direction=EQ, metadata={op_name="image_sample/write_summary/Equal"} %constant.5 = f32[] constant(0) %broadcast.6 = f32[1024,3]{1,0} broadcast(f32[] %constant.5), dimensions={}, metadata={op_name="tokens_accumulator"} %constant.4 = s32[1]{0} constant({1024}) %tuple.9 = (s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) tuple(s32[] %constant.3, s32[] %constant.3, f32[1024,3]{1,0} %broadcast.6, s32[1]{0} %constant.4), metadata={op_name="while"} %while.32 = (s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) while((s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) %tuple.9), condition=%region_1.27, body=%region_0.10, metadata={op_name="while"} %get-tuple-element.33 = f32[1024,3]{1,0} get-tuple-element((s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) %while.32), index=2, metadata={op_name="while"} %transpose.34 = f32[3,1024]{0,1} transpose(f32[1024,3]{1,0} %get-tuple-element.33), dimensions={1,0}, metadata={op_name="transpose.transpose/perm"} %reshape.35 = f32[3,32,32,1]{3,2,1,0} reshape(f32[3,1024]{0,1} %transpose.34), metadata={op_name="Reshape"} %broadcast.36 = f32[3,32,32,1]{3,2,1,0} broadcast(f32[3,32,32,1]{3,2,1,0} %reshape.35), dimensions={0,1,2,3}, metadata={op_name="Tile"} %reshape.37 = f32[3,32,32]{2,1,0} reshape(f32[3,32,32,1]{3,2,1,0} %broadcast.36), metadata={op_name="Tile"} %broadcast.38 = f32[3,32,32,3]{3,2,1,0} broadcast(f32[3,32,32]{2,1,0} %reshape.37), dimensions={0,1,2}, metadata={op_name="Tile"} %after-all.7 = token[] after-all(), metadata={op_name="image_sample/write_summary/summary_cond"} %send.39 = (pred[]{:T(256)}, u32[], token[]) send(pred[]{:T(256)} %compare.8, token[] %after-all.7), channel_id=1, is_host_transfer=true, frontend_attributes={_xla_host_transfer_rendezvous="if_predicate_channel_1_dtoh_0"}, metadata={op_name="image_sample/write_summary/summary_cond"} %send-done.40 = token[] send-done((pred[]{:T(256)}, u32[], token[]) %send.39), channel_id=1, is_host_transfer=true, frontend_attributes={_xla_host_transfer_rendezvous="if_predicate_channel_1_dtoh_0"}, metadata={op_name="image_sample/write_summary/summary_cond"} %tuple.41 = (f32[3,32,32,3]{3,2,1,0}, token[]) tuple(f32[3,32,32,3]{3,2,1,0} %broadcast.38, token[] %send-done.40), metadata={op_name="image_sample/write_summary/summary_cond"} %conditional.65 = (pred[], token[]) conditional(pred[]{:T(256)} %compare.8, (f32[3,32,32,3]{3,2,1,0}, token[]) %tuple.41, (f32[3,32,32,3]{3,2,1,0}, token[]) %tuple.41), true_computation=%region_2.42, false_computation=%region_3.60, metadata={op_name="image_sample/write_summary/summary_cond"} ROOT %tuple.66 = () tuple() } )") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE( liveness.IsLive(GetInstruction(module.get(), "conditional.65"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.41"), {})); EXPECT_TRUE(liveness.IsLive( GetInstruction(module.get(), "get-tuple-element.33"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "while.32"), {})); EXPECT_TRUE(liveness.IsLive( GetInstruction(module.get(), "dynamic-update-slice.24"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "send.57"), {})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_liveness_analysis.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_liveness_analysis_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
02bc84dc-502e-49cb-bc34-f1006c412337
cpp
tensorflow/tensorflow
defuser
third_party/xla/xla/service/defuser.cc
third_party/xla/xla/service/defuser_test.cc
#include "xla/service/defuser.h" #include <algorithm> #include <memory> #include <numeric> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/call_graph.h" #include "xla/status_macros.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" namespace xla { absl::StatusOr<bool> Defuser::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(1) << "Defusing module " << module->name(); XLA_VLOG_LINES(2, "Before defusion:\n" + module->ToString()); bool changed = false; std::unique_ptr<CallGraph> call_graph = CallGraph::Build(module); TF_RETURN_IF_ERROR(call_graph->VisitNodes( [&](const CallGraphNode& call_graph_node) -> absl::Status { if (call_graph_node.computation()->IsFusionComputation()) { TF_RET_CHECK(call_graph_node.caller_callsites().size() == 1); HloInstruction* fusion_instruction = call_graph_node.caller_callsites()[0].instruction(); TF_RETURN_IF_ERROR(fusion_instruction->Defuse()); changed = true; } return absl::OkStatus(); }, true)); XLA_VLOG_LINES(2, "After defusion:\n" + module->ToString()); return changed; } }
#include "xla/service/defuser.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" namespace op = xla::testing::opcode_matchers; namespace xla { namespace { class DefuserTest : public HloTestBase { protected: int FusionCount(const HloModule* m) { int count = 0; for (HloComputation* computation : m->computations()) { if (computation->IsFusionComputation()) { count++; } } return count; } Defuser defuser_; const Shape shape_ = ShapeUtil::MakeShape(F32, {2, 2}); }; TEST_F(DefuserTest, NoFusionInstruction) { auto m = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape_, "p0")); auto param1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape_, "p1")); builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kAdd, param0, param1)); m->AddEntryComputation(builder.Build()); EXPECT_EQ(0, FusionCount(m.get())); EXPECT_FALSE(defuser_.Run(m.get()).value()); } TEST_F(DefuserTest, TrivialFusionInstructionAsRoot) { auto m = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape_, "p0")); auto param1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape_, "p1")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kAdd, param0, param1)); auto computation = m->AddEntryComputation(builder.Build()); computation->CreateFusionInstruction({add}, HloInstruction::FusionKind::kLoop); EXPECT_THAT(computation->root_instruction(), op::Fusion()); EXPECT_EQ(1, FusionCount(m.get())); EXPECT_TRUE(defuser_.Run(m.get()).value()); EXPECT_EQ(0, FusionCount(m.get())); EXPECT_THAT(computation->root_instruction(), op::Add(op::Parameter(), op::Parameter())); } TEST_F(DefuserTest, TrivialFusionInstructionNotAsRoot) { auto m = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape_, "p0")); auto param1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape_, "p1")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kAdd, param0, param1)); builder.AddInstruction( HloInstruction::CreateUnary(shape_, HloOpcode::kNegate, add)); auto computation = m->AddEntryComputation(builder.Build()); computation->CreateFusionInstruction({add}, HloInstruction::FusionKind::kLoop); EXPECT_THAT(computation->root_instruction(), op::Negate(op::Fusion())); EXPECT_EQ(1, FusionCount(m.get())); EXPECT_TRUE(defuser_.Run(m.get()).value()); EXPECT_EQ(0, FusionCount(m.get())); EXPECT_THAT(computation->root_instruction(), op::Negate(op::Add(op::Parameter(), op::Parameter()))); } TEST_F(DefuserTest, NonTrivialFusionInstruction) { auto m = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape_, "p0")); auto param1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape_, "p1")); auto param3 = builder.AddInstruction(HloInstruction::CreateParameter(2, shape_, "p2")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kAdd, param0, param1)); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(shape_, HloOpcode::kNegate, add)); auto sub = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kSubtract, add, negate)); auto mul = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kMultiply, sub, param3)); auto div = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kDivide, mul, param3)); auto constant = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}))); auto add2 = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kAdd, constant, div)); auto computation = m->AddEntryComputation(builder.Build()); computation->CreateFusionInstruction( {add2, constant, div, mul, sub, negate, add}, HloInstruction::FusionKind::kLoop); EXPECT_THAT(computation->root_instruction(), op::Fusion()); EXPECT_EQ(1, FusionCount(m.get())); EXPECT_TRUE(defuser_.Run(m.get()).value()); EXPECT_EQ(0, FusionCount(m.get())); EXPECT_THAT(computation->root_instruction(), op::Add(op::Constant(), op::Divide())); } TEST_F(DefuserTest, MultipleFusionInstructions) { auto m = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape_, "p0")); auto param1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape_, "p1")); auto param3 = builder.AddInstruction(HloInstruction::CreateParameter(2, shape_, "p2")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kAdd, param0, param1)); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(shape_, HloOpcode::kNegate, add)); auto sub = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kSubtract, add, negate)); auto mul = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kMultiply, sub, param3)); auto div = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kDivide, mul, param3)); auto constant = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}))); auto add2 = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kAdd, constant, div)); auto computation = m->AddEntryComputation(builder.Build()); computation->CreateFusionInstruction({add2, constant, div, mul}, HloInstruction::FusionKind::kLoop); computation->CreateFusionInstruction({sub, negate, add}, HloInstruction::FusionKind::kLoop); EXPECT_THAT(computation->root_instruction(), op::Fusion()); EXPECT_EQ(2, FusionCount(m.get())); EXPECT_TRUE(defuser_.Run(m.get()).value()); EXPECT_EQ(0, FusionCount(m.get())); EXPECT_THAT(computation->root_instruction(), op::Add(op::Constant(), op::Divide())); } TEST_F(DefuserTest, NestedFusionInstructions) { auto m = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape_, "p0")); auto param1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape_, "p1")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kAdd, param0, param1)); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(shape_, HloOpcode::kNegate, add)); auto computation = m->AddEntryComputation(builder.Build()); auto outer_fusion = computation->CreateFusionInstruction( {negate, add}, HloInstruction::FusionKind::kLoop); HloInstruction* fused_negate = outer_fusion->fused_expression_root(); ASSERT_EQ(fused_negate->opcode(), HloOpcode::kNegate); outer_fusion->fused_instructions_computation()->CreateFusionInstruction( {fused_negate}, HloInstruction::FusionKind::kLoop); EXPECT_THAT(computation->root_instruction(), op::Fusion()); EXPECT_EQ(2, FusionCount(m.get())); EXPECT_TRUE(defuser_.Run(m.get()).value()); EXPECT_EQ(0, FusionCount(m.get())); EXPECT_THAT(computation->root_instruction(), op::Negate(op::Add())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/defuser.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/defuser_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
46bc99e4-502f-4dcb-8ff3-7a075b7f1f98
cpp
tensorflow/tensorflow
elemental_ir_emitter
third_party/xla/xla/service/gpu/elemental_ir_emitter.cc
third_party/xla/xla/service/elemental_ir_emitter_test.cc
#include "xla/service/gpu/elemental_ir_emitter.h" #include <cstdint> #include <string> #include <vector> #include "absl/log/check.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/Support/ModRef.h" #include "llvm/TargetParser/Triple.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout.h" #include "xla/service/elemental_ir_emitter.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/ir_emitter_context.h" #include "xla/service/gpu/ir_emitter_nested.h" #include "xla/service/gpu/target_util.h" #include "xla/service/llvm_ir/ir_array.h" #include "xla/service/llvm_ir/llvm_util.h" #include "xla/service/llvm_ir/math_ops.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { GpuElementalIrEmitter::GpuElementalIrEmitter( IrEmitterContext& ir_emitter_context, llvm::IRBuilder<>* b) : ElementalIrEmitter(ir_emitter_context.llvm_module(), b), ir_emitter_context_(ir_emitter_context) {} absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitDeviceMathCall( TargetDeviceFunctionID funcid, absl::Span<llvm::Value* const> operands, absl::Span<const PrimitiveType> input_types, PrimitiveType output_type, absl::string_view name) { bool cast_result_to_fp16 = false; std::vector<llvm::Value*> converted_operands(operands.begin(), operands.end()); std::vector<PrimitiveType> converted_input_types(input_types.begin(), input_types.end()); switch (output_type) { case F16: cast_result_to_fp16 = true; for (int64_t i = 0; i < operands.size(); ++i) { if (input_types[i] == F16) { converted_operands[i] = FPCast(converted_operands[i], b()->getFloatTy()); converted_input_types[i] = F32; } } output_type = F32; [[fallthrough]]; case F32: break; case F64: break; default: return Unimplemented("Bad type for device math call: %s", PrimitiveType_Name(output_type)); } const std::string& munged_callee = ObtainDeviceFunctionName( funcid, output_type, llvm::Triple(b()->GetInsertBlock()->getModule()->getTargetTriple())); llvm::Value* result = EmitMathCall(munged_callee, converted_operands, converted_input_types, output_type, name) .value(); if (cast_result_to_fp16) { result = FPCast(result, b()->getHalfTy()); } return result; } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitMathCall( const std::string& callee_name, absl::Span<llvm::Value* const> operands, absl::Span<const PrimitiveType> input_types, PrimitiveType output_type, absl::string_view name) { for (PrimitiveType input_type : input_types) { if (output_type != input_type) { return Unimplemented("Input type != output type: %s != %s", PrimitiveType_Name(input_type), PrimitiveType_Name(output_type)); } } return EmitDeviceFunctionCall(callee_name, operands, input_types, output_type, llvm::AttrBuilder(b()->getContext()) .addMemoryAttr(llvm::MemoryEffects::none()) .addAttribute(llvm::Attribute::NoUnwind), b(), name); } llvm_ir::IrArray::Index GpuElementalIrEmitter::GetSourceIndexOfBitcast( const llvm_ir::IrArray::Index& index, const HloInstruction* hlo) { Shape shape = hlo->shape(); Shape operand_shape = hlo->operand(0)->shape(); auto gpu_config = hlo->backend_config<GpuBackendConfig>(); CHECK_OK(gpu_config); const BitcastBackendConfig& bitcast_config = gpu_config.value().bitcast_backend_config(); if (!bitcast_config.result_layout().minor_to_major().empty()) { *shape.mutable_layout() = xla::Layout::CreateFromProto(bitcast_config.result_layout()); } if (!bitcast_config.source_layout().minor_to_major().empty()) { *operand_shape.mutable_layout() = xla::Layout::CreateFromProto(bitcast_config.source_layout()); } return index.SourceIndexOfBitcast(shape, operand_shape, b()); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitFloatBinaryOp( const HloInstruction* op, llvm::Value* lhs_value, llvm::Value* rhs_value) { PrimitiveType lhs_input_type = op->operand(0)->shape().element_type(); PrimitiveType rhs_input_type = op->operand(1)->shape().element_type(); PrimitiveType output_type = op->shape().element_type(); HloOpcode opcode = op->opcode(); if (ir_emitter_context_.debug_options().xla_gpu_enable_fast_min_max() && (opcode == HloOpcode::kMaximum || opcode == HloOpcode::kMinimum)) { return llvm_ir::EmitCallToIntrinsic( opcode == HloOpcode::kMaximum ? llvm::Intrinsic::maxnum : llvm::Intrinsic::minnum, {lhs_value, rhs_value}, {lhs_value->getType()}, b()); } switch (op->opcode()) { case HloOpcode::kRemainder: { return EmitDeviceMathCall(TargetDeviceFunctionID::kFmod, {lhs_value, rhs_value}, {lhs_input_type, rhs_input_type}, output_type); } case HloOpcode::kPower: { return EmitPowerOp(op, lhs_value, rhs_value); } default: return ElementalIrEmitter::EmitFloatBinaryOp(op, lhs_value, rhs_value); } } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitPowerOp( const HloInstruction* op, llvm::Value* lhs_value, llvm::Value* rhs_value) { CHECK_EQ(op->opcode(), HloOpcode::kPower); PrimitiveType lhs_input_type = op->operand(0)->shape().element_type(); PrimitiveType rhs_input_type = op->operand(1)->shape().element_type(); PrimitiveType output_type = op->shape().element_type(); return EmitDeviceMathCall(TargetDeviceFunctionID::kPow, {lhs_value, rhs_value}, {lhs_input_type, rhs_input_type}, output_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitLog( PrimitiveType prim_type, llvm::Value* value) { return EmitDeviceMathCall(TargetDeviceFunctionID::kLog, {value}, {prim_type}, prim_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitLog1p( PrimitiveType prim_type, llvm::Value* value) { return EmitDeviceMathCall(TargetDeviceFunctionID::kLog1p, {value}, {prim_type}, prim_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitSin( PrimitiveType prim_type, llvm::Value* value) { return EmitDeviceMathCall(TargetDeviceFunctionID::kSin, {value}, {prim_type}, prim_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitCos( PrimitiveType prim_type, llvm::Value* value) { return EmitDeviceMathCall(TargetDeviceFunctionID::kCos, {value}, {prim_type}, prim_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitTan( PrimitiveType prim_type, llvm::Value* value) { return EmitDeviceMathCall(TargetDeviceFunctionID::kTan, {value}, {prim_type}, prim_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitExp( PrimitiveType prim_type, llvm::Value* value, absl::string_view ) { return EmitDeviceMathCall(TargetDeviceFunctionID::kExp, {value}, {prim_type}, prim_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitExpm1( PrimitiveType prim_type, llvm::Value* value) { return EmitDeviceMathCall(TargetDeviceFunctionID::kExpm1, {value}, {prim_type}, prim_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitPow( PrimitiveType prim_type, llvm::Value* lhs, llvm::Value* rhs, absl::string_view name) { return EmitDeviceMathCall(TargetDeviceFunctionID::kPow, {lhs, rhs}, {prim_type, prim_type}, prim_type, name); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitSqrt( PrimitiveType prim_type, llvm::Value* value) { return EmitDeviceMathCall(TargetDeviceFunctionID::kSqrt, {value}, {prim_type}, prim_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitRsqrt( PrimitiveType prim_type, llvm::Value* value) { return EmitDeviceMathCall(TargetDeviceFunctionID::kRsqrt, {value}, {prim_type}, prim_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitAtan2( PrimitiveType prim_type, llvm::Value* lhs, llvm::Value* rhs, absl::string_view name) { return EmitDeviceMathCall(TargetDeviceFunctionID::kAtan2, {lhs, rhs}, {prim_type, prim_type}, prim_type, name); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitTanh( PrimitiveType prim_type, llvm::Value* value) { if (prim_type == F64) { return EmitDeviceMathCall(TargetDeviceFunctionID::kTanh, {value}, {prim_type}, prim_type); } llvm::Type* type = prim_type == F16 ? b()->getFloatTy() : value->getType(); llvm::Value* input = FPCast(value, type); constexpr double kMaxValue = 20.0; auto max_value = llvm::ConstantFP::get(type, kMaxValue); llvm::Value* abs_value = llvm_ir::EmitCallToIntrinsic(llvm::Intrinsic::fabs, {input}, {type}, b()); llvm::Value* fast_tanh = llvm_ir::EmitFastTanh(b(), input); auto one = llvm::ConstantFP::get(type, 1.0); auto one_with_sign = llvm_ir::EmitCallToIntrinsic(llvm::Intrinsic::copysign, {one, input}, {type}, b()); return FPCast(Select(FCmpULT(abs_value, max_value), fast_tanh, one_with_sign), value->getType(), "tanh"); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitErf( PrimitiveType prim_type, llvm::Value* value) { if (prim_type == F64) { return EmitDeviceMathCall(TargetDeviceFunctionID::kErf, {value}, {prim_type}, prim_type); } llvm::Type* type = prim_type == F16 ? b()->getFloatTy() : value->getType(); if (type == b()->getFloatTy()) { llvm::Value* x = FPCast(value, type); auto* result = llvm_ir::EmitErfF32(b(), x); return FPCast(result, value->getType()); } return Unimplemented("erf"); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitComplexAbs( PrimitiveType prim_type, llvm::Value* value) { return EmitDeviceMathCall(TargetDeviceFunctionID::kHypot, {EmitExtractReal(value), EmitExtractImag(value)}, {prim_type, prim_type}, prim_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitCbrt( PrimitiveType prim_type, llvm::Value* value) { return EmitDeviceMathCall(TargetDeviceFunctionID::kCbrt, {value}, {prim_type}, prim_type); } absl::StatusOr<std::vector<llvm::Value*>> GpuElementalIrEmitter::EmitThreadLocalCall( const HloComputation& callee, absl::Span<llvm::Value* const> parameters, absl::string_view, bool ) { return CallNestedComputationWithScalars(b(), ir_emitter_context_, callee, parameters); } } }
#include "xla/service/elemental_ir_emitter.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <type_traits> #include <utility> #include <gtest/gtest.h> #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/hlo_module_config.h" #include "xla/service/llvm_ir/ir_array.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_macros.h" #include "xla/types.h" #include "tsl/platform/ml_dtypes.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using std::nullopt; class ElementalIrEmitterExecutionTest : public HloTestBase { protected: void RunTest(const std::string& hlo_text, absl::Span<Literal* const> args) { HloModuleConfig config; config.set_debug_options(GetDebugOptionsForTest()); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text, config)); EXPECT_TRUE(RunAndCompareNoHloPasses(std::move(module), args, nullopt)); } void RunTypeConversionTest(absl::string_view hlo_text) { HloModuleConfig config; auto debug_options = GetDebugOptionsForTest(); debug_options.set_xla_cpu_fast_math_honor_nans(true); debug_options.set_xla_cpu_fast_math_honor_infs(true); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text, config)); EXPECT_TRUE(RunAndCompare(std::move(module), ErrorSpec{(0.)})); } }; class ElementalIrEmitterExecutionTestWithoutFastMinMax : public ElementalIrEmitterExecutionTest { protected: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = ElementalIrEmitterExecutionTest::GetDebugOptionsForTest(); debug_options.set_xla_cpu_enable_fast_min_max(false); debug_options.set_xla_gpu_enable_fast_min_max(false); return debug_options; } }; template <typename T> class ElementalIrEmitterExecutionTypedTest : public ElementalIrEmitterExecutionTest { protected: const std::string& TypeName() { return primitive_util::LowercasePrimitiveTypeName( primitive_util::NativeToPrimitiveType<T>()); } }; using FloatTypes = ::testing::Types<bfloat16, tsl::float8_e5m2, tsl::float8_e5m2fnuz, tsl::float8_e4m3, tsl::float8_e4m3fn, tsl::float8_e4m3fnuz, tsl::float8_e4m3b11fnuz, tsl::float8_e3m4>; TYPED_TEST_SUITE(ElementalIrEmitterExecutionTypedTest, FloatTypes); XLA_TEST_F(ElementalIrEmitterExecutionTest, DotFusion) { const std::string hlo_text = R"( HloModule FusedDot fused_computation { arg0 = s32[1,2,1]{2,1,0} parameter(0) reshape.lhs = s32[2,1]{1,0} reshape(arg0) arg1 = s32[1,2,1]{2,1,0} parameter(1) reshape.rhs = s32[2,1]{1,0} reshape(arg1) ROOT dot = s32[1,1]{1,0} dot(reshape.lhs, reshape.rhs), lhs_contracting_dims={0}, rhs_contracting_dims={0} } ENTRY main { entry_arg0 = s32[1,2,1]{2,1,0} parameter(0) entry_arg1 = s32[1,2,1]{2,1,0} parameter(1) ROOT fusion = s32[1,1]{1,0} fusion(entry_arg0, entry_arg1), kind=kLoop, calls=fused_computation } )"; Literal lhs = LiteralUtil::CreateR3<int32_t>({{{1}, {2}}}); Literal rhs = LiteralUtil::CreateR3<int32_t>({{{3}, {4}}}); RunTest(hlo_text, {&lhs, &rhs}); } XLA_TEST_F(ElementalIrEmitterExecutionTest, ScalarDotFusion) { const char* hlo_text = R"( HloModule ScalarDotFusion fused_computation { arg0 = s32[2,2]{1,0} parameter(0) reshape.lhs = s32[4]{0} reshape(arg0) arg1 = s32[2,2]{1,0} parameter(1) reshape.rhs = s32[4]{0} reshape(arg1) ROOT dot = s32[] dot(reshape.lhs, reshape.rhs), lhs_contracting_dims={0}, rhs_contracting_dims={0} } ENTRY main { entry_arg0 = s32[2,2]{1,0} parameter(0) entry_arg1 = s32[2,2]{1,0} parameter(1) ROOT fusion = s32[] fusion(entry_arg0, entry_arg1), kind=kLoop, calls=fused_computation } )"; Literal lhs = LiteralUtil::CreateR2<int32_t>({{1, 2}, {3, 4}}); Literal rhs = LiteralUtil::CreateR2<int32_t>({{10, 20}, {30, 40}}); RunTest(hlo_text, {&lhs, &rhs}); } XLA_TEST_F(ElementalIrEmitterExecutionTest, BatchDot) { const char* hlo_text = R"( HloModule BatchDot fused_computation.1 { param_0 = f64[1,1,8]{2,1,0} parameter(0) r.1 = f64[2,4]{1,0} reshape(param_0) param_1 = f64[1,2,2,2,1]{4,3,2,1,0} parameter(1) r.2 = f64[2,4,1]{2,1,0} reshape(param_1) ROOT dot = f64[2,1]{1,0} dot(r.1, r.2), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} } ENTRY resampler_Resampler.49 { p0 = f64[1,1,8]{2,1,0} parameter(0) p1 = f64[1,2,2,2,1]{4,3,2,1,0} parameter(1) ROOT f = f64[2,1]{1,0} fusion(p0, p1), kind=kLoop, calls=fused_computation.1 } )"; HloModuleConfig config; auto debug_options = GetDebugOptionsForTest(); debug_options.add_xla_disable_hlo_passes("layout-assignment"); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text, config)); EXPECT_TRUE(RunAndCompare(std::move(module), ErrorSpec{4e-3, 4e-3})); } XLA_TEST_F(ElementalIrEmitterExecutionTest, DivideComplexNumbersWithInfiniteNormRhs) { constexpr char hlo_text[] = R"( HloModule DivideComplexNumbers ENTRY DivideComplexNumbers { constant.1 = c64[8]{0} constant({ (1, 1), (1, inf), (1, inf), (nan, 1), (inf, inf), (inf, nan), (nan, nan), (1, 2)}) real = f32[8]{0} constant({nan, nan, inf, inf, inf, 1, inf, 3}) imag = f32[8]{0} constant({inf, inf, inf, inf, 1, inf, inf, 4}) complex.2 = c64[8]{0} complex(real, imag) ROOT divide.1 = c64[8]{0} divide(constant.1, complex.2) } )"; HloModuleConfig config; auto debug_options = GetDebugOptionsForTest(); debug_options.set_xla_cpu_fast_math_honor_nans(true); debug_options.set_xla_cpu_fast_math_honor_infs(true); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text, config)); EXPECT_TRUE(RunAndCompare(std::move(module), ErrorSpec{(0.)})); } XLA_TEST_F(ElementalIrEmitterExecutionTest, DivideComplexNumbersWithFiniteNormRhs) { constexpr char hlo_text[] = R"( HloModule DivideComplexNumbers ENTRY DivideComplexNumbers { constant.1 = c64[5]{0} constant({ (1, inf), (inf, 1), (inf, nan), (inf, inf), (nan, inf)}) real = f32[5]{0} constant({1, 1, 1, 1, 1}) imag = f32[5]{0} constant({1, 1, 1, 1, 1}) complex.2 = c64[5]{0} complex(real, imag) ROOT divide.1 = c64[5]{0} divide(constant.1, complex.2) } )"; HloModuleConfig config; auto debug_options = GetDebugOptionsForTest(); debug_options.set_xla_cpu_fast_math_honor_nans(true); debug_options.set_xla_cpu_fast_math_honor_infs(true); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text, config)); EXPECT_TRUE(RunAndCompare(std::move(module), ErrorSpec{(0.)})); } XLA_TEST_F(ElementalIrEmitterExecutionTest, DivideComplexNumbersWithZeroNormRhs) { constexpr char hlo_text[] = R"( HloModule DivideComplexNumbers ENTRY DivideComplexNumbers { constant.1 = c64[9]{0} constant({ (1, 1), (1, nan), (1, inf), (inf, inf), (inf, 1), (inf, nan), (nan, 1), (nan, inf), (nan, nan)}) real = f32[9]{0} constant({0, 0, 0, 0, 0, 0, 0, 0, 0}) imag = f32[9]{0} constant({0, 0, 0, 0, 0, 0, 0, 0, 0}) complex.2 = c64[9]{0} complex(real, imag) ROOT divide.1 = c64[9]{0} divide(constant.1, complex.2) } )"; HloModuleConfig config; auto debug_options = GetDebugOptionsForTest(); debug_options.set_xla_cpu_fast_math_honor_nans(true); debug_options.set_xla_cpu_fast_math_honor_infs(true); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text, config)); EXPECT_TRUE(RunAndCompare(std::move(module), ErrorSpec{(0.)})); } TYPED_TEST(ElementalIrEmitterExecutionTypedTest, ConvertFloatsToFloat) { auto tname = this->TypeName(); if (std::is_same<TypeParam, tsl::float8_e4m3>() || std::is_same<TypeParam, tsl::float8_e4m3fn>() || std::is_same<TypeParam, tsl::float8_e4m3b11fnuz>() || std::is_same<TypeParam, tsl::float8_e3m4>()) { GTEST_SKIP() << "Skipping test for type " << tname; } const auto hlo_text = absl::StrReplaceAll(R"( HloModule m ENTRY main { f16_ = f16[] parameter(0) f32_ = f32[] parameter(1) f64_ = f64[] parameter(2) bf16_ = bf16[] parameter(3) converted_f16 = ${tname}[] convert(f16_) converted_f32 = ${tname}[] convert(f32_) converted_f64 = ${tname}[] convert(f64_) converted_bf16 = ${tname}[] convert(bf16_) ROOT tuple = (${tname}[], ${tname}[], ${tname}[], ${tname}[]) tuple( converted_f16, converted_f32, converted_f64, converted_bf16) } )", {{"${tname}", tname}}); ElementalIrEmitterExecutionTest::RunTypeConversionTest(hlo_text); } TYPED_TEST(ElementalIrEmitterExecutionTypedTest, ConvertSignedToFloat) { auto tname = this->TypeName(); const auto hlo_text = absl::StrReplaceAll(R"( HloModule m ENTRY main { s8_ = s8[] parameter(0) s16_ = s16[] parameter(1) s32_ = s32[] parameter(2) s64_ = s64[] parameter(3) converted_s8 = ${tname}[] convert(s8_) converted_s16 = ${tname}[] convert(s16_) converted_s32 = ${tname}[] convert(s32_) converted_s64 = ${tname}[] convert(s64_) ROOT tuple = (${tname}[], ${tname}[], ${tname}[], ${tname}[]) tuple( converted_s8, converted_s16, converted_s32, converted_s64) } )", {{"${tname}", tname}}); ElementalIrEmitterExecutionTest::RunTypeConversionTest(hlo_text); } TYPED_TEST(ElementalIrEmitterExecutionTypedTest, ConvertUnsignedToFloat) { auto tname = this->TypeName(); const auto hlo_text = absl::StrReplaceAll(R"( HloModule m ENTRY main { u8_ = u8[] parameter(0) u16_ = u16[] parameter(1) u32_ = u32[] parameter(2) u64_ = u64[] parameter(3) converted_u8 = ${tname}[] convert(u8_) converted_u16 = ${tname}[] convert(u16_) converted_u32 = ${tname}[] convert(u32_) converted_u64 = ${tname}[] convert(u64_) ROOT tuple = (${tname}[], ${tname}[], ${tname}[], ${tname}[]) tuple( converted_u8, converted_u16, converted_u32, converted_u64) } )", {{"${tname}", tname}}); ElementalIrEmitterExecutionTest::RunTypeConversionTest(hlo_text); } TYPED_TEST(ElementalIrEmitterExecutionTypedTest, ConvertFloatToFloats) { auto tname = this->TypeName(); const auto hlo_text = absl::StrReplaceAll(R"( HloModule m ENTRY main { to_f16 = ${tname}[] parameter(0) to_f32 = ${tname}[] parameter(1) to_f64 = ${tname}[] parameter(2) to_bf16 = ${tname}[] parameter(3) f16_ = f16[] convert(to_f16) f32_ = f32[] convert(to_f32) f64_ = f64[] convert(to_f64) bf16_ = bf16[] convert(to_f64) ROOT tuple = (f16[], f32[], f64[], bf16[]) tuple(f16_, f32_, f64_, bf16_) } )", {{"${tname}", tname}}); ElementalIrEmitterExecutionTest::RunTypeConversionTest(hlo_text); } TYPED_TEST(ElementalIrEmitterExecutionTypedTest, ConvertFloatToSigned) { auto tname = this->TypeName(); const auto hlo_text = absl::StrReplaceAll(R"( HloModule m ENTRY main { to_s8 = ${tname}[] parameter(0) to_s16 = ${tname}[] parameter(1) to_s32 = ${tname}[] parameter(2) to_s64 = ${tname}[] parameter(3) s8_ = s8[] convert(to_s8) s16_ = s16[] convert(to_s16) s32_ = s32[] convert(to_s32) s64_ = s64[] convert(to_s64) ROOT tuple = (s8[], s16[], s32[], s64[]) tuple(s8_, s16_, s32_, s64_) } )", {{"${tname}", tname}}); ElementalIrEmitterExecutionTest::RunTypeConversionTest(hlo_text); } TYPED_TEST(ElementalIrEmitterExecutionTypedTest, ConvertFloatToUnsigned) { auto tname = this->TypeName(); const auto hlo_text = absl::StrReplaceAll(R"( HloModule m ENTRY main { to_u8 = ${tname}[] parameter(0) to_u16 = ${tname}[] parameter(1) to_u32 = ${tname}[] parameter(2) to_u64 = ${tname}[] parameter(3) u8_ = u8[] convert(to_u8) u16_ = u16[] convert(to_u16) u32_ = u32[] convert(to_u32) u64_ = u64[] convert(to_u64) ROOT tuple = (u8[], u16[], u32[], u64[]) tuple(u8_, u16_, u32_, u64_) } )", {{"${tname}", tname}}); ElementalIrEmitterExecutionTest::RunTypeConversionTest(hlo_text); } TYPED_TEST(ElementalIrEmitterExecutionTypedTest, ConvertFloatToComplex) { auto tname = this->TypeName(); const auto hlo_text = absl::StrReplaceAll(R"( HloModule m ENTRY main { to_c64 = ${tname}[] parameter(0) to_c128 = ${tname}[] parameter(1) c64_ = c64[] convert(to_c64) c128_ = c128[] convert(to_c128) ROOT tuple = (c64[], c128[]) tuple(c64_, c128_) } )", {{"${tname}", tname}}); ElementalIrEmitterExecutionTest::RunTypeConversionTest(hlo_text); } TYPED_TEST(ElementalIrEmitterExecutionTypedTest, CompareFloat) { auto tname = this->TypeName(); if (std::is_same<TypeParam, tsl::float8_e4m3b11fnuz>()) { GTEST_SKIP() << "Skipping test for type " << tname; } const auto hlo_text = absl::StrReplaceAll(R"( HloModule m ENTRY main { p0 = ${tname}[4] parameter(0) p1 = ${tname}[4] parameter(1) ROOT cmp = pred[4] compare(p0, p1), direction=LT })", {{"${tname}", tname}}); Literal lhs = LiteralUtil::CreateR1<TypeParam>( {TypeParam(1.), TypeParam(2.), TypeParam(3.), TypeParam(4.)}); Literal rhs = LiteralUtil::CreateR1<TypeParam>( {TypeParam(4.), TypeParam(4.), TypeParam(2.), TypeParam(1.)}); ElementalIrEmitterExecutionTest::RunTest(hlo_text, {&lhs, &rhs}); } TYPED_TEST(ElementalIrEmitterExecutionTypedTest, IotaFloat) { auto tname = this->TypeName(); if (std::is_same<TypeParam, tsl::float8_e5m2>() || std::is_same<TypeParam, tsl::float8_e4m3>() || std::is_same<TypeParam, tsl::float8_e4m3fn>() || std::is_same<TypeParam, tsl::float8_e4m3b11fnuz>() || std::is_same<TypeParam, tsl::float8_e3m4>()) { GTEST_SKIP() << "Skipping test for type " << tname; } const auto hlo_text = absl::StrReplaceAll(R"( HloModule m ENTRY main { ROOT iota_ = ${tname}[4] iota(), iota_dimension=0 } )", {{"${tname}", tname}}); ElementalIrEmitterExecutionTest::RunTest(hlo_text, {}); } TYPED_TEST(ElementalIrEmitterExecutionTypedTest, BatchDotFloat) { auto tname = this->TypeName(); const auto hlo_text = absl::StrReplaceAll(R"( HloModule matmul ENTRY main { x = ${tname}[8,16] parameter(0) y = ${tname}[8,16,32] parameter(1) ROOT dot = ${tname}[8,32] dot(x, y), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_contracting_dims={1} } )", {{"${tname}", tname}}); HloModuleConfig config; DebugOptions debug_options = HloTestBase::GetDebugOptionsForTest(); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, HloTestBase::ParseAndReturnVerifiedModule(hlo_text, config)); EXPECT_TRUE( HloTestBase::RunAndCompare(std::move(module), ErrorSpec{1e-5, 1e-5})); } XLA_TEST_F(ElementalIrEmitterExecutionTestWithoutFastMinMax, MinimumHandlesNaNsOnTheLeft) { constexpr absl::string_view kHloText = R"( HloModule t ENTRY e { neg1 = f32[] constant(-1) neg1s = f32[5,5] broadcast(neg1), dimensions={} nans = f32[5,5] sqrt(neg1s) ROOT min = f32[5,5] minimum(nans, neg1s) })"; EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } XLA_TEST_F(ElementalIrEmitterExecutionTestWithoutFastMinMax, DISABLED_MinimumHandlesNaNsOnTheRight) { constexpr absl::string_view kHloText = R"( HloModule t ENTRY e { neg1 = f32[] constant(-1) neg1s = f32[5,5] broadcast(neg1), dimensions={} nans = f32[5,5] sqrt(neg1s) ROOT min = f32[5,5] minimum(neg1s, nans) })"; EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } XLA_TEST_F(ElementalIrEmitterExecutionTestWithoutFastMinMax, MaximumHandlesNaNsOnTheLeft) { constexpr absl::string_view kHloText = R"( HloModule t ENTRY e { neg1 = f32[] constant(-1) neg1s = f32[5,5] broadcast(neg1), dimensions={} nans = f32[5,5] sqrt(neg1s) ROOT max = f32[5,5] maximum(nans, neg1s) })"; EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } XLA_TEST_F(ElementalIrEmitterExecutionTestWithoutFastMinMax, MaximumHandlesNaNsOnTheRight) { constexpr absl::string_view kHloText = R"( HloModule t ENTRY e { neg1 = f32[] constant(-1) neg1s = f32[5,5] broadcast(neg1), dimensions={} nans = f32[5,5] sqrt(neg1s) ROOT max = f32[5,5] maximum(neg1s, nans) })"; EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } XLA_TEST_F(ElementalIrEmitterExecutionTestWithoutFastMinMax, MinimumReturnsLHS) { constexpr absl::string_view kHloText = R"( HloModule t ENTRY e { zero = f32[] constant(0) zeros = f32[5,5] broadcast(zero), dimensions={} one = f32[] constant(1) ones = f32[5,5] broadcast(one), dimensions={} ROOT min = f32[5,5] minimum(zeros, ones) })"; EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } XLA_TEST_F(ElementalIrEmitterExecutionTestWithoutFastMinMax, MinimumReturnsRHS) { constexpr absl::string_view kHloText = R"( HloModule t ENTRY e { zero = f32[] constant(0) zeros = f32[5,5] broadcast(zero), dimensions={} one = f32[] constant(1) ones = f32[5,5] broadcast(one), dimensions={} ROOT min = f32[5,5] minimum(ones, zeros) })"; EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } XLA_TEST_F(ElementalIrEmitterExecutionTestWithoutFastMinMax, MaximumReturnsLHS) { constexpr absl::string_view kHloText = R"( HloModule t ENTRY e { zero = f32[] constant(0) zeros = f32[5,5] broadcast(zero), dimensions={} one = f32[] constant(1) ones = f32[5,5] broadcast(one), dimensions={} ROOT max = f32[5,5] maximum(ones, zeros) })"; EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } XLA_TEST_F(ElementalIrEmitterExecutionTestWithoutFastMinMax, MaximumReturnsRHS) { constexpr absl::string_view kHloText = R"( HloModule t ENTRY e { zero = f32[] constant(0) zeros = f32[5,5] broadcast(zero), dimensions={} one = f32[] constant(1) ones = f32[5,5] broadcast(one), dimensions={} ROOT max = f32[5,5] maximum(zeros, ones) })"; EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } class ElementalIrEmitterInternalTest : public HloTestBase {}; XLA_TEST_F(ElementalIrEmitterInternalTest, SparseDotIsUnsupported) { constexpr absl::string_view kHloText = R"( HloModule test ENTRY main { lhs = f16[5,16] parameter(0) rhs = f16[32,10] parameter(1) meta = u16[5,2] parameter(2) ROOT dot = f32[5,10] dot(lhs, rhs, meta), lhs_contracting_dims={1}, rhs_contracting_dims={0}, sparsity=L.1@2:4 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloText)); HloInstruction* root = module->entry_computation()->root_instruction(); llvm::LLVMContext llvm_context; llvm::Module llvm_module("", llvm_context); llvm::IRBuilder<> builder(llvm_context); ElementalIrEmitterForTests emitter(&llvm_module, &builder); llvm_ir::IrArray::Index test_index{builder.getInt64Ty()}; auto result = emitter.TestElementalDot(root, test_index); EXPECT_FALSE(result.ok()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/elemental_ir_emitter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/elemental_ir_emitter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
570c48f7-236d-4c3e-8e7d-44cba5bf1ea5
cpp
tensorflow/tensorflow
buffer_assignment
third_party/xla/xla/service/buffer_assignment.cc
third_party/xla/xla/service/buffer_assignment_test.cc
#include "xla/service/buffer_assignment.h" #include <algorithm> #include <cstdint> #include <deque> #include <iterator> #include <memory> #include <optional> #include <ostream> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/btree_map.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_op_metadata.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_live_range.h" #include "xla/map_util.h" #include "xla/service/buffer_value.h" #include "xla/service/buffer_value_containers.h" #include "xla/service/heap_simulator/heap_simulator.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_buffer.h" #include "xla/service/hlo_value.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/numbers.h" namespace xla { namespace { using absl::flat_hash_map; using absl::flat_hash_set; using absl::StrAppend; using absl::StrAppendFormat; using memory_space_assignment::PresetAssignments; using ::tsl::strings::HumanReadableNumBytes; absl::flat_hash_map<int64_t, const HloInstruction*> BuildIdToHloInstructionMap( const HloModule* module) { absl::flat_hash_map<int64_t, const HloInstruction*> id_to_hlo_instruction; for (const HloComputation* computation : module->computations()) { for (const HloInstruction* instruction : computation->instructions()) { id_to_hlo_instruction[instruction->unique_id()] = instruction; } } return id_to_hlo_instruction; } absl::StatusOr<absl::flat_hash_map<int64_t, const HloValue*>> BuildIdToLogicalBufferMap( const BufferAssignmentProto& proto, const absl::flat_hash_map<int64_t, const HloInstruction*>& id_to_hlo_instruction, const std::unique_ptr<HloAliasAnalysis>& alias_analysis) { absl::flat_hash_map<int64_t, const HloValue*> id_to_logical_buffer; for (const LogicalBufferProto& logical_buffer_proto : proto.logical_buffers()) { TF_RET_CHECK(logical_buffer_proto.has_defined_at()) << "Expected logical buffer to have location information in the proto."; TF_RET_CHECK(id_to_hlo_instruction.contains( logical_buffer_proto.defined_at().instruction_id())) << "Expected hlo instruction " << "with the id '" << logical_buffer_proto.defined_at().instruction_id() << "' in the proto to also exist in the " "HLO module."; const HloInstruction* hlo_instruction = id_to_hlo_instruction.at( logical_buffer_proto.defined_at().instruction_id()); std::vector<int64_t> shape_idx_vals; absl::c_copy(logical_buffer_proto.defined_at().shape_index(), std::back_inserter(shape_idx_vals)); ShapeIndex proto_shape_index(shape_idx_vals); auto& logical_buffer = alias_analysis->dataflow_analysis().GetUniqueValueAt( hlo_instruction, proto_shape_index); logical_buffer.set_color(logical_buffer_proto.color()); id_to_logical_buffer[logical_buffer_proto.id()] = &logical_buffer; } return id_to_logical_buffer; } } absl::Status GatherComputationsByAllocationType( const HloModule* module, std::vector<const HloComputation*>* thread_local_computations, std::vector<const HloComputation*>* global_computations) { std::deque<std::pair<const HloComputation*, bool>> worklist; worklist.push_back(std::make_pair(module->entry_computation(), false)); flat_hash_set<const HloComputation*> thread_local_set; flat_hash_set<const HloComputation*> global_set; while (!worklist.empty()) { auto worklist_front = worklist.front(); worklist.pop_front(); const HloComputation* computation = worklist_front.first; bool is_thread_local = worklist_front.second; bool in_thread_local_set = thread_local_set.contains(computation); bool in_global_set = global_set.contains(computation); if ((is_thread_local && in_thread_local_set) || (!is_thread_local && in_global_set)) { continue; } if ((is_thread_local && in_global_set) || (!is_thread_local && in_thread_local_set)) { return InvalidArgument( "computation %s has conflicting allocation requirements (global " "and thread-local)", computation->name()); } if (is_thread_local) { thread_local_set.insert(computation); } else { global_set.insert(computation); } for (auto* instruction : computation->instructions()) { for (HloComputation* subcomputation : instruction->called_computations()) { switch (instruction->opcode()) { case HloOpcode::kCall: case HloOpcode::kConditional: case HloOpcode::kWhile: case HloOpcode::kAsyncStart: case HloOpcode::kAsyncUpdate: case HloOpcode::kAsyncDone: if (is_thread_local) { return InvalidArgument( "computation %s cannot contain call/while op because it " "requires thread-local buffer allocations", computation->name()); } worklist.push_back(std::make_pair(subcomputation, false)); break; case HloOpcode::kCustomCall: case HloOpcode::kAllReduce: case HloOpcode::kReduceScatter: case HloOpcode::kAllReduceStart: case HloOpcode::kMap: case HloOpcode::kReduce: case HloOpcode::kReduceWindow: case HloOpcode::kScatter: case HloOpcode::kSelectAndScatter: case HloOpcode::kSort: case HloOpcode::kFusion: worklist.push_back(std::make_pair(subcomputation, true)); break; default: return Internal("Unexpected calling opcode: %s", HloOpcodeString(instruction->opcode())); } } } } for (auto* computation : module->MakeComputationPostOrder()) { if (thread_local_set.contains(computation)) { thread_local_computations->push_back(computation); } else if (global_set.contains(computation)) { global_computations->push_back(computation); } } return absl::OkStatus(); } std::string BufferAllocation::Slice::ToString() const { return absl::StrCat("{index:", allocation_ == nullptr ? -1 : index(), ", offset:", offset_, ", size:", size_, "}"); } BufferAllocation::Slice BufferAllocation::GetSlice( const HloValue& buffer) const { const OffsetSize os = FindOrDie(assigned_buffers_, &buffer); return Slice(this, os.offset, os.size); } void BufferAllocation::AddAssignment(const HloValue& buffer, int64_t offset, int64_t size) { VLOG(4) << "Adding the following buffer to allocation #" << index() << absl::StrFormat(" (size=%d, offset=%d) %s", size, offset, buffer.ToShortString()); CHECK(!assigned_buffers_.contains(&buffer)) << "LogicalBuffer " << buffer << " already assigned to allocation " << index_; CHECK_LE(offset, size_) << "LogicalBuffer " << buffer << " offset out of range"; CHECK_LE(offset + size, size_) << "LogicalBuffer " << buffer << " size out of range at offset: " << offset << " with size: " << size; if (!(IsPreallocatedTempBuffer() && color() != 0)) { CHECK_EQ(buffer.color(), color()) << "Buffer color " << buffer.color() << " for buffer " << buffer << " does not match allocation color " << color() << "."; } OffsetSize offset_size; offset_size.offset = offset; offset_size.size = size; assigned_buffers_.emplace(&buffer, offset_size); for (HloPosition position : buffer.positions()) { Shape* shape = ShapeUtil::GetMutableSubshape( position.instruction->mutable_shape(), position.index); if (shape->has_layout()) { shape->mutable_layout()->set_memory_space(buffer.color()); } } } BufferAllocationProto BufferAllocation::ToProto() const { BufferAllocationProto proto; proto.set_index(index_); proto.set_size(size_); proto.set_is_thread_local(is_thread_local_); proto.set_is_tuple(is_tuple_); proto.set_color(color_); if (is_entry_computation_parameter_) { proto.set_is_entry_computation_parameter(true); for (int64_t idx : param_shape_index()) { proto.add_parameter_shape_index(idx); } proto.set_parameter_number(parameter_number_); } proto.set_is_constant(is_constant_); proto.set_maybe_live_out(maybe_live_out_); for (const auto& buffer_offset_size : assigned_buffers_) { BufferAllocationProto::Assigned* proto_assigned = proto.add_assigned(); proto_assigned->set_logical_buffer_id(buffer_offset_size.first->id()); proto_assigned->set_offset(buffer_offset_size.second.offset); proto_assigned->set_size(buffer_offset_size.second.size); } absl::c_sort(*proto.mutable_assigned(), [](const BufferAllocationProto::Assigned& assign1, const BufferAllocationProto::Assigned& assign2) { return assign1.logical_buffer_id() < assign2.logical_buffer_id(); }); return proto; } static bool CompareHloValuesById(const HloValue* a, const HloValue* b) { return a->id() < b->id(); } static const HloInstruction* GetEntryParameterInstruction( const BufferAllocation& alloc) { for (const auto& p : alloc.assigned_buffers()) { const HloValue* value = p.first; const HloInstruction* instr = value->instruction(); if (instr->opcode() == HloOpcode::kParameter && instr->parent() == instr->GetModule()->entry_computation()) { return instr; } } return nullptr; } static const HloInstruction* GetOutputInstruction( const BufferAllocation& alloc) { for (const auto& p : alloc.assigned_buffers()) { const HloValue* value = p.first; for (const HloPosition& position : value->positions()) { const HloInstruction* instr = position.instruction; if (position.index.empty() && instr->parent()->root_instruction() == instr && instr->parent()->IsEntryComputation()) { return instr; } } } return nullptr; } std::string BufferAllocation::ToShortString() const { std::string output; StrAppendFormat(&output, "allocation %d: size %d", index_, size()); if (color() != 0) { StrAppend(&output, ", color ", color()); } if (is_entry_computation_parameter()) { const HloInstruction* param = GetEntryParameterInstruction(*this); StrAppend(&output, ", parameter ", parameter_number(), ", shape |", param ? param->shape().ToString(false) : "<unknown shape>", "| at ShapeIndex ", param_shape_index().ToString()); } if (const HloInstruction* instr = GetOutputInstruction(*this)) { StrAppend(&output, ", output shape is |", instr->shape().ToString(false), "|"); } if (is_constant()) { StrAppend(&output, ", constant"); } if (is_thread_local()) { StrAppend(&output, ", thread-local"); } if (maybe_live_out()) { StrAppend(&output, ", maybe-live-out"); } if (IsPreallocatedTempBuffer()) { StrAppend(&output, ", preallocated-temp"); } StrAppend(&output, ":\n"); return output; } std::string BufferAllocation::ToString() const { std::string output = ToShortString(); std::vector<const HloValue*> sorted_buffers; for (const auto& buffer_offset_size : assigned_buffers_) { sorted_buffers.push_back(buffer_offset_size.first); } absl::c_sort(sorted_buffers, &CompareHloValuesById); for (const HloValue* buffer : sorted_buffers) { const OffsetSize& offset_size = FindOrDie(assigned_buffers_, buffer); StrAppend(&output, absl::StrFormat( " value: %s (size=%d,offset=%d): %s\n", buffer->ToShortString(), offset_size.size, offset_size.offset, ShapeUtil::HumanStringWithLayout(buffer->shape()))); } return output; } std::ostream& operator<<(std::ostream& out, const BufferAllocation& buffer) { out << buffer.ToString(); return out; } std::ostream& operator<<(std::ostream& out, const BufferAllocation::Slice& s) { out << s.ToString(); return out; } bool BufferAssignment::HasAllocation(const HloValue& value) const { return allocation_index_for_value_.contains(&value); } bool BufferAssignment::HasAllocation(HloValue::Id value_id) const { return HasAllocation(dataflow_analysis().GetValue(value_id)); } bool BufferAssignment::HasAllocation(const HloBuffer& buffer) const { return allocation_index_for_value_.contains(buffer.values()[0]); } const BufferAllocation& BufferAssignment::GetAssignedAllocation( const HloValue& value) const { CHECK(HasAllocation(value)); return GetAllocation(allocation_index_for_value_.at(&value)); } const BufferAllocation& BufferAssignment::GetAssignedAllocation( const HloBuffer& hlo_buffer) const { return GetAssignedAllocation(*hlo_buffer.values()[0]); } BufferAllocation* BufferAssignment::GetMutableAssignedAllocation( const HloBuffer& buffer) { return const_cast<BufferAllocation*>(&GetAssignedAllocation(buffer)); } std::set<BufferAllocation::Slice> BufferAssignment::GetAllSlices( const HloInstruction* instruction, const ShapeIndex& index) const { std::set<BufferAllocation::Slice> result; for (const HloValue* value : dataflow_analysis().GetValueSet(instruction, index).values()) { if (HasAllocation(*value)) { result.insert(GetAssignedAllocation(*value).GetSlice(*value)); } } return result; } const BufferAllocation& BufferAssignment::GetAllocation( BufferAllocation::Index index) const { CHECK_GE(index, 0); CHECK_LT(index, allocations_.size()); return allocations_[index]; } const BufferAllocation* BufferAssignment::GetInstructionAllocation( const HloInstruction* hlo, const ShapeIndex& shape_index) const { const HloValue* value = dataflow_analysis().GetValueSet(hlo, shape_index).values()[0]; if (!HasAllocation(*value)) { return nullptr; } const BufferAllocation& instruction_allocation = GetAssignedAllocation(*value); return &instruction_allocation; } BufferAllocation* BufferAssignment::GetMutableAllocation( BufferAllocation::Index index) { return const_cast<BufferAllocation*>(&GetAllocation(index)); } bool BufferAssignment::HasAllocationAt(const HloInstruction* instruction, const ShapeIndex& index) const { return absl::c_any_of( dataflow_analysis().GetValueSet(instruction, index).values(), IsKeyIn(allocation_index_for_value_)); } bool BufferAssignment::HasTopLevelAllocation( const HloInstruction* instruction) const { return HasAllocationAt(instruction, {}); } absl::StatusOr<BufferAllocation::Slice> BufferAssignment::GetUniqueSlice( const HloInstruction* instruction, const ShapeIndex& index) const { VLOG(3) << "Trying to find unique slice for " << instruction->name() << " [" << index << "]"; BufferAllocation::Slice result; for (const HloValue* value : dataflow_analysis().GetValueSet(instruction, index).values()) { VLOG(3) << "Examining value " << *value; if (HasAllocation(*value)) { VLOG(3) << "Has allocation"; const BufferAllocation::Slice slice = GetAssignedAllocation(*value).GetSlice(*value); if (result.allocation() == nullptr) { result = slice; } else if (result != slice) { return FailedPrecondition( "BufferAllocation::Slice for instruction %s at index %s cannot " "be determined at compile-time.", instruction->name(), index.ToString()); } } else { VLOG(3) << "No allocation"; } } if (result.allocation() == nullptr) { return FailedPrecondition( "BufferAllocation::Slice not assigned for instruction %s at index %s", instruction->name(), index.ToString()); } return result; } absl::StatusOr<BufferAllocation::Slice> BufferAssignment::GetUniqueTopLevelSlice( const HloInstruction* instruction) const { return GetUniqueSlice(instruction, {}); } bool BufferAssignment::SharesSliceAtIndex( const HloInstruction* hlo_a, const ShapeIndex& shape_index_a, const HloInstruction* hlo_b, const ShapeIndex& shape_index_b) const { return GetUniqueSlice(hlo_a, shape_index_a).value() == GetUniqueSlice(hlo_b, shape_index_b).value(); } bool BufferAssignment::HaveDisjointSlices(const HloInstruction* hlo_a, const HloInstruction* hlo_b) const { using SliceSet = flat_hash_set<BufferAllocation::Slice>; auto collect_slices = [&](const HloInstruction* instr) -> SliceSet { SliceSet slices; absl::Status status = ShapeUtil::ForEachSubshapeWithStatus( instr->shape(), [&](const Shape& , const ShapeIndex& index) -> absl::Status { auto shape_slices = GetAllSlices(instr, index); if (shape_slices.empty()) { return InvalidArgument("No slices assigned to part of instr."); } slices.insert(shape_slices.begin(), shape_slices.end()); return absl::OkStatus(); }); if (!status.ok()) { return {}; } return slices; }; SliceSet slices_a = collect_slices(hlo_a); SliceSet slices_b = collect_slices(hlo_b); return !slices_a.empty() && !slices_b.empty() && absl::c_none_of(slices_a, [&](const BufferAllocation::Slice& slice) { return slices_b.contains(slice); }); } absl::StatusOr<BufferAllocation::Slice> BufferAssignment::GetUniqueTopLevelOutputSlice() const { return GetUniqueTopLevelSlice( module_->entry_computation()->root_instruction()); } BufferAllocation* BufferAssignment::NewEmptyAllocation( int64_t size, LogicalBuffer::Color color) { BufferAllocation::Index index = allocations_.size(); allocations_.emplace_back(index, size, color); BufferAllocation* allocation = &allocations_.back(); return allocation; } BufferAllocation* BufferAssignment::NewAllocation(const HloBuffer& buffer, int64_t size) { BufferAllocation* allocation = NewEmptyAllocation(size, buffer.color()); AddAssignment(allocation, buffer, 0, size); allocation->peak_buffers_.push_back(buffer.values()[0]); return allocation; } void BufferAssignment::AddAssignment(BufferAllocation* allocation, const HloBuffer& buffer, int64_t offset, int64_t size) { CHECK(allocation->is_reusable() || allocation->assigned_buffers().empty()) << "Non-reusable allocation already assigned a buffer: " << allocation->ToString(); for (const HloValue* buffer_value : buffer.values()) { CHECK(!allocation_index_for_value_.contains(buffer_value)) << "BufferValue " << buffer_value << " already has an allocation."; allocation->AddAssignment(*buffer_value, offset, size); allocation_index_for_value_[buffer_value] = allocation->index(); } if (alias_analysis().BufferLivesOut(buffer)) { VLOG(3) << "HloBuffer lives out: " << buffer.ToString(); VLOG(3) << "Set maybe live out: " << allocation->ToString(); allocation->set_maybe_live_out(true); } } void BufferAssignment::AddAssignment(BufferAllocation* allocation, const HloValue& value, int64_t offset, int64_t size) { allocation->AddAssignment(value, offset, size); allocation_index_for_value_[&value] = allocation->index(); const HloValue& hlo_value = *CHECK_NOTNULL(dynamic_cast<const HloValue*>(&value)); if (alias_analysis().ValueLivesOut(hlo_value)) { VLOG(3) << "HloValue lives out: " << hlo_value.ToString(); VLOG(3) << "Set maybe live out: " << allocation->ToString(); allocation->set_maybe_live_out(true); } } void BufferAssignment::CombineTempAllocations( const absl::flat_hash_set<BufferValue::Color>& private_stack_colors, std::optional<BufferValue::Color> temp_buffer_color) { VLOG(1) << "CombineTempAllocations()"; std::deque<BufferAllocation> combined_allocations; flat_hash_map<BufferValue::Color, BufferAllocation*> combined_allocation_map; const auto first_temp_it = std::partition(allocations_.begin(), allocations_.end(), [](const BufferAllocation& allocation) { return !allocation.IsPreallocatedTempBuffer(); }); if (first_temp_it != allocations_.end()) { for (auto it = first_temp_it; it != allocations_.end(); ++it) { BufferAllocation& temp_allocation = *it; BufferValue::Color color = temp_allocation.color(); auto combined_it = combined_allocation_map.find(color); if (combined_it == combined_allocation_map.end()) { VLOG(1) << "Combined temp allocation for color " << color << " is: " << temp_allocation; combined_allocations.emplace_back(temp_allocation); combined_allocation_map.emplace(color, &combined_allocations.back()); continue; } if (combined_it->second->size() + it->size() >= multiheap_size_constraint_per_heap_) { VLOG(1) << "Due to size constraint, reset temp allocation for color " << color << " to: " << temp_allocation; combined_allocations.emplace_back(temp_allocation); combined_allocation_map.emplace(color, &combined_allocations.back()); continue; } BufferAllocation* combined_allocation = combined_it->second; VLOG(1) << "Combined allocation absorbing temp allocation: " << temp_allocation; int64_t alignment = color_alignment_(color); int64_t base; bool is_private_stack = private_stack_colors.contains(color); if (is_private_stack) { base = 0; combined_allocation->set_size(std::max(base, temp_allocation.size())); } else { base = RoundUpTo(combined_allocation->size(), alignment); combined_allocation->set_size(base + temp_allocation.size()); } for (const auto& buffer_offset_size : temp_allocation.assigned_buffers_) { const HloValue* value = buffer_offset_size.first; const int64_t offset = buffer_offset_size.second.offset; const int64_t size = buffer_offset_size.second.size; combined_allocation->AddAssignment(*value, base + offset, size); } if (!temp_allocation.HeapTraces().empty()) { CHECK_EQ(temp_allocation.HeapTraces().size(), 1); combined_allocation->AddHeapTrace(temp_allocation.HeapTraces().front()); } if (is_private_stack) { if (temp_allocation.size() == combined_allocation->size()) { combined_allocation->peak_buffers_ = temp_allocation.peak_buffers_; } } else { combined_allocation->peak_buffers_.insert( combined_allocation->peak_buffers_.end(), temp_allocation.peak_buffers_.begin(), temp_allocation.peak_buffers_.end()); } if (temp_buffer_color.has_value()) { if (combined_allocation->color() == 0) { combined_allocation->set_color(temp_buffer_color.value()); } } } allocations_.erase(first_temp_it, allocations_.end()); for (BufferAllocation& combined : combined_allocations) { temp_allocation_total_size_ += combined.size(); allocations_.push_back(std::move(combined)); } } allocation_index_for_value_.erase(allocation_index_for_value_.begin(), allocation_index_for_value_.end()); for (size_t index = 0; index < allocations_.size(); ++index) { BufferAllocation* allocation = &allocations_[index]; allocation->set_index(index); std::vector<const HloValue*> sorted_values; sorted_values.reserve(allocation->assigned_buffers_.size()); for (const auto& buffer_offset_size : allocation->assigned_buffers_) { const HloValue* value = buffer_offset_size.first; sorted_values.emplace(sorted_values.end(), value); } absl::c_sort(sorted_values, &CompareHloValuesById); for (const HloValue* value : sorted_values) { allocation_index_for_value_[value] = index; } } } absl::Status BufferAssignment::ComputeSummaryStats() { for (auto& allocation : Allocations()) { if (allocation.is_entry_computation_parameter()) { stats_.parameter_allocation_count++; stats_.parameter_allocation_bytes += allocation.size(); } if (allocation.is_constant()) { stats_.constant_allocation_count++; stats_.constant_allocation_bytes += allocation.size(); } if (allocation.maybe_live_out()) { stats_.maybe_live_out_allocation_count++; stats_.maybe_live_out_allocation_bytes += allocation.size(); } if (allocation.IsPreallocatedTempBuffer()) { stats_.preallocated_temp_allocation_count++; stats_.preallocated_temp_allocation_bytes += allocation.size(); } stats_.total_allocation_count++; stats_.total_allocation_bytes += allocation.size(); } HloSchedule schedule(module_); bool schedule_complete = true; for (const auto& computation : module_->computations()) { if (!computation->IsFusionComputation()) { const HloInstructionSequence* sequence = hlo_ordering().SequentialOrder(*computation); if (sequence == nullptr) { schedule_complete = false; } else { schedule.set_sequence(computation, *sequence); } } } if (schedule_complete) { TF_RETURN_IF_ERROR(schedule.Verify()); TF_ASSIGN_OR_RETURN( const int64_t min_size, HeapSimulator::MinimumMemoryForModule(schedule, buffer_size_)); stats_.total_fragmentation_bytes = stats_.total_allocation_bytes - min_size; } return absl::OkStatus(); } std::string BufferAssignment::Stats::ToString() const { std::string s; StrAppendFormat(&s, "BufferAssignment stats:\n"); StrAppendFormat(&s, " parameter allocation: %10s\n", HumanReadableNumBytes(parameter_allocation_bytes)); StrAppendFormat(&s, " constant allocation: %10s\n", HumanReadableNumBytes(constant_allocation_bytes)); StrAppendFormat(&s, " maybe_live_out allocation: %10s\n", HumanReadableNumBytes(maybe_live_out_allocation_bytes)); StrAppendFormat(&s, " preallocated temp allocation: %10s\n", HumanReadableNumBytes(preallocated_temp_allocation_bytes)); if (preallocated_temp_fragmentation_bytes >= 0) { const double percent = 100. * preallocated_temp_fragmentation_bytes / preallocated_temp_allocation_bytes; StrAppendFormat( &s, " preallocated temp fragmentation: %10s (%.2f%%)\n", HumanReadableNumBytes(preallocated_temp_fragmentation_bytes), percent); } StrAppendFormat(&s, " total allocation: %10s\n", HumanReadableNumBytes(total_allocation_bytes)); if (total_fragmentation_bytes >= 0) { const double percent = 100. * total_fragmentation_bytes / total_allocation_bytes; StrAppendFormat(&s, " total fragmentation: %10s (%.2f%%)\n", HumanReadableNumBytes(total_fragmentation_bytes), percent); } return s; } std::string BufferAssignment::ToString() const { std::string output; absl::StrAppend(&output, "BufferAssignment:\n"); std::vector<const HloValue*> used_values; int64_t total_size = 0; for (auto& allocation : allocations_) { total_size += allocation.size(); absl::StrAppend(&output, allocation.ToString()); for (const auto& p : allocation.assigned_buffers()) { used_values.push_back(p.first); } } absl::StrAppend(&output, "\nTotal bytes used: ", total_size, " (", HumanReadableNumBytes(total_size), ")\n"); absl::StrAppend(&output, "\nUsed values:\n"); absl::c_sort(used_values, &CompareHloValuesById); for (const HloValue* value : used_values) { absl::StrAppend(&output, value->ToString()); } return output; } std::vector<std::pair<int64_t, const HloValue*>> TopKPeakBuffers( uint64_t k, const std::vector<BufferAllocation> allocations) { absl::btree_multimap<int64_t, const HloValue*> topk; for (const BufferAllocation& allocation : allocations) { for (const HloValue* value : allocation.PeakMemoryLogicalBuffers()) { int64_t size = allocation.assigned_buffers().at(value).size; if (topk.size() < k) { topk.insert({size, value}); } else { auto it = topk.begin(); if (size > it->first) { topk.erase(it); topk.insert({size, value}); } } } } std::vector<std::pair<int64_t, const HloValue*>> topk_descending; topk_descending.reserve(topk.size()); absl::c_reverse_copy(topk, std::back_inserter(topk_descending)); return topk_descending; } std::string BufferAssignment::ToVerboseString( size_t max_buffers_to_show) const { std::string output = absl::StrCat("BufferAssignment OOM Debugging.\n", stats_.ToString()); std::vector<std::pair<int64_t, const HloValue*>> peak_buffers = TopKPeakBuffers(max_buffers_to_show, allocations_); std::vector<std::string> buf_strs; for (size_t i = 0; i < std::min(max_buffers_to_show, peak_buffers.size()); ++i) { const HloValue* value = peak_buffers[i].second; const HloInstruction* instr = value->instruction(); int64_t size = peak_buffers[i].first; buf_strs.push_back(absl::StrCat("\n\tBuffer ", i + 1, ":\n\t\tSize: ", xla::HumanReadableNumBytes(size))); if (!instr->metadata().op_name().empty()) { buf_strs.push_back(absl::StrCat( "\n\t\tOperator: ", xla::OpMetadataToString(instr->metadata()))); } if (instr->opcode() == HloOpcode::kParameter && (instr->parent() == instr->GetModule()->entry_computation())) { buf_strs.push_back(absl::StrCat( "\n\t\tEntry Parameter Subshape: ", ShapeUtil::GetSubshape(instr->shape(), value->index()).ToString())); } else { buf_strs.push_back( absl::StrCat("\n\t\tXLA Label: ", HloOpcodeString(instr->opcode()), "\n\t\tShape: ", value->shape().ToString())); } buf_strs.push_back("\n\t\t==========================\n"); } absl::StrAppend(&output, "Peak buffers:", absl::StrJoin(buf_strs, "")); return output; } std::string BufferAssignment::BufferInfoString() const { std::string binfo; absl::StrAppend(&binfo, "buffer_id,buffer_name,offset,size," "definition_time,end_time,num_uses,use_times,use_names\n"); const HloLiveRange& live_ranges = hlo_live_range(); const auto& instruction_schedule = live_ranges.instruction_schedule(); const auto& buffer_live_ranges = live_ranges.buffer_live_ranges(); std::vector<std::pair<const HloValue*, BufferAllocation::OffsetSize>> buffers; for (const BufferAllocation& allocation : allocations_) { absl::c_copy(allocation.assigned_buffers(), std::back_inserter(buffers)); } absl::c_sort( buffers, [](const std::pair<const HloValue*, BufferAllocation::OffsetSize>& b1, const std::pair<const HloValue*, BufferAllocation::OffsetSize>& b2) { return b1.first->id() < b2.first->id(); }); for (const auto& buffer_pair : buffers) { const HloValue& buffer = *buffer_pair.first; const BufferAllocation::OffsetSize& offset_size = buffer_pair.second; if (!buffer_live_ranges.contains(&buffer)) { continue; } std::vector<std::pair<int64_t, std::string>> uses; uses.reserve(buffer.GetUses().size()); for (const HloUse& use : buffer.GetUses()) { uses.emplace_back(instruction_schedule.at(use.instruction), use.ToString()); } absl::c_sort(uses); std::vector<int64_t> use_positions; std::vector<std::string> use_names; use_positions.reserve(uses.size()); use_names.reserve(uses.size()); for (const auto& use : uses) { use_positions.push_back(use.first); use_names.push_back(use.second); } const int64_t definition_time = instruction_schedule.at(buffer.defining_position().instruction); const int64_t end_t = buffer_live_ranges.at(&buffer).end; absl::StrAppend(&binfo, buffer.id(), ","); absl::StrAppend(&binfo, "\"", buffer.ToShortString(), "\","); absl::StrAppend(&binfo, offset_size.offset, ","); absl::StrAppend(&binfo, offset_size.size, ","); absl::StrAppend(&binfo, definition_time, ","); absl::StrAppend(&binfo, end_t, ","); absl::StrAppend(&binfo, use_positions.size(), ","); absl::StrAppend(&binfo, "\"", absl::StrJoin(use_positions, ";"), "\","); absl::StrAppend(&binfo, "\"", absl::StrJoin(use_names, ";"), "\""); absl::StrAppend(&binfo, "\n"); } return binfo; } BufferAssignmentProto BufferAssignment::ToProto() const { BufferAssignmentProto proto; const HloDataflowAnalysis& dataflow = this->dataflow_analysis(); for (BufferValue::Id id = 0; id < dataflow.values().size(); id++) { auto& value = dataflow.values().at(id); if (HasAllocation(*value)) { LogicalBufferProto proto_buffer = value->ToProto(buffer_size_); proto.add_logical_buffers()->Swap(&proto_buffer); for (const HloValue* alias : alias_analysis().GetBufferContainingValue(*value).values()) { if (alias->instruction() == value->instruction() && alias->index() == value->index()) { continue; } BufferAssignmentProto::BufferAlias* proto_alias = proto.add_buffer_aliases(); LogicalBufferProto::Location proto_alias_location = BufferValue::ToLocationProto(*alias->instruction(), alias->index()); proto_alias->set_source_buffer_id(value->id()); proto_alias->mutable_location()->Swap(&proto_alias_location); } } } for (const BufferAllocation& allocation : Allocations()) { BufferAllocationProto proto_allocation = allocation.ToProto(); proto.add_buffer_allocations()->Swap(&proto_allocation); for (const HeapSimulatorTrace& heap_trace : allocation.HeapTraces()) { *proto.add_heap_simulator_traces() = heap_trace; } } return proto; } absl::StatusOr<std::unique_ptr<BufferAssignment>> BufferAssignment::FromProto( const BufferAssignmentProto& proto, const HloModule* module, BufferValue::SizeFunction buffer_size, HloDataflowAnalysis::CanShareBuffer can_share_buffer) { TF_ASSIGN_OR_RETURN(std::unique_ptr<HloAliasAnalysis> alias_analysis, HloAliasAnalysis::Run(module, can_share_buffer)); auto id_to_hlo_instruction = BuildIdToHloInstructionMap(module); absl::flat_hash_map<int64_t, const HloValue*> id_to_logical_buffer; TF_ASSIGN_OR_RETURN( id_to_logical_buffer, BuildIdToLogicalBufferMap(proto, id_to_hlo_instruction, alias_analysis)); std::unique_ptr<BufferAssignment> buffer_assignment = absl::WrapUnique(new BufferAssignment( module, nullptr, std::move(buffer_size), nullptr, std::move(alias_analysis), nullptr)); for (const auto& alloc_proto : proto.buffer_allocations()) { BufferAllocation* allocation = buffer_assignment->NewEmptyAllocation( alloc_proto.size(), alloc_proto.color()); CHECK(allocation->index() == alloc_proto.index()) << "Expected allocations in BufferAssignment proto to be sorted by " "index."; allocation->set_is_thread_local(alloc_proto.is_thread_local()); allocation->set_is_tuple(alloc_proto.is_tuple()); allocation->set_constant(alloc_proto.is_constant()); if (alloc_proto.is_entry_computation_parameter()) { std::vector<int64_t> shape_idx_vals; absl::c_copy(alloc_proto.parameter_shape_index(), std::back_inserter(shape_idx_vals)); ShapeIndex shape_index(shape_idx_vals); allocation->set_entry_computation_parameter( alloc_proto.parameter_number(), shape_index, false); } for (const auto& assignee : alloc_proto.assigned()) { HloValue::Id logical_buffer_id = assignee.logical_buffer_id(); const auto& buffer_val = id_to_logical_buffer[logical_buffer_id]; buffer_assignment->AddAssignment(allocation, *buffer_val, assignee.offset(), assignee.size()); } CHECK_EQ(allocation->maybe_live_out(), alloc_proto.maybe_live_out()) << "Dataflow analysis differs from proto."; } TF_RET_CHECK(proto.logical_buffers_size() == buffer_assignment->allocation_index_for_value_.size()); for (auto& logical_buffer_proto : proto.logical_buffers()) { TF_RET_CHECK(buffer_assignment->HasAllocation( *id_to_logical_buffer[logical_buffer_proto.id()])); } return buffer_assignment; } absl::StatusOr<std::unique_ptr<BufferAssignment>> BufferAssigner::Run( const HloModule* module, std::unique_ptr<HloOrdering> hlo_ordering, BufferValue::SizeFunction buffer_size, LogicalBuffer::AlignmentFunction color_alignment, bool allocate_buffers_for_constants, BufferAssigner::Colorer colorer, std::optional<BufferAssigner::MustNotLiveOut> must_not_live_out, HloDataflowAnalysis::CanShareBuffer can_share_buffer, std::unique_ptr<PresetAssignments> preset_assignments, const PrivateStacks& private_stacks, GlobalDecreasingSizeBestFitHeap<HloValue>::BufferIntervalCompare heap_buffer_interval_compare, std::optional<BufferAssignment::BufferIsolationOptions> isolation_options, std::optional<BufferValue::Color> temp_buffer_color) { BufferAssigner assigner(allocate_buffers_for_constants, std::move(colorer), must_not_live_out, std::move(preset_assignments)); return assigner.CreateAssignment( module, std::move(hlo_ordering), std::move(buffer_size), std::move(color_alignment), std::move(can_share_buffer), private_stacks, heap_buffer_interval_compare, isolation_options, temp_buffer_color); } bool BufferAssigner::LiveRangeInterferes(const HloValue* buffer1, const HloValue* buffer2, BufferAssignment* assignment) { CHECK((assignment->hlo_live_range().total_order_scheduled())); const HloLiveRange& hlo_live_range = assignment->hlo_live_range(); const auto& buffer_live_ranges = hlo_live_range.buffer_live_ranges(); auto live_range_it1 = buffer_live_ranges.find(buffer1); CHECK(live_range_it1 != buffer_live_ranges.end()) << "Buffer doesn't have a proper live range:" << buffer1->ToString(); auto live_range_it2 = buffer_live_ranges.find(buffer2); CHECK(live_range_it2 != buffer_live_ranges.end()) << "Buffer doesn't have a proper live range:" << buffer2->ToString(); auto can_share_as_operand = [&assignment](const HloValue* user_value, const HloValue* operand_value, const HloLiveRange::TimeBound& operand_live_range) { HloPosition operand_end_position = operand_live_range.end_position; return user_value->instruction()->opcode() != HloOpcode::kCopy && user_value->instruction()->IsUserOf( operand_end_position.instruction) && assignment->dataflow_analysis().CanShareOperandBufferWithUser( operand_end_position.instruction, operand_end_position.index, user_value->instruction(), user_value->index()); }; const auto& live_range_1 = live_range_it1->second; const auto& live_range_2 = live_range_it2->second; if (!(live_range_1.start > live_range_2.end || live_range_2.start > live_range_1.end)) { if (live_range_1.end == live_range_2.start) { auto operand_value = buffer1; auto user_value = buffer2; if (!can_share_as_operand(user_value, operand_value, live_range_1)) { VLOG(4) << "End of live range of " << buffer1->ToShortString() << " is equal to the start of live range of " << buffer2->ToShortString() << ", buffer cannot be shared."; return true; } } else if (live_range_2.end == live_range_1.start) { auto operand_value = buffer2; auto user_value = buffer1; if (!can_share_as_operand(user_value, operand_value, live_range_2)) { VLOG(4) << "End of live range of " << buffer2->ToShortString() << " is equal to the start of live range of " << buffer1->ToShortString() << ", buffer cannot be shared."; return true; } } else { VLOG(4) << "Can't assign: assignee " << *buffer1 << " may interfere with " << *buffer2; VLOG(4) << "assigned_buffer.start: " << live_range_1.start; VLOG(4) << "assigned_buffer.end: " << live_range_1.end; VLOG(4) << "live_range_2.start" << live_range_2.start; VLOG(4) << "live_range_2.end" << live_range_2.end; return true; } } return false; } bool BufferAssigner::MaybeAssignBuffer(BufferAllocation* allocation, const HloBuffer& hlo_buffer, BufferAssignment* assignment) { CHECK(!assignment->HasAllocation(hlo_buffer)) << "buffer " << hlo_buffer << " already has an allocation assigned."; VLOG(4) << "Trying to assign " << hlo_buffer << " size " << assignment->HloBufferSize(hlo_buffer) << " to allocation: " << *allocation; if (hlo_buffer.color() != allocation->color()) { VLOG(4) << "Can't assign: buffer has color " << hlo_buffer.color() << " and allocation has color " << allocation->color() << "."; return false; } if (assignment->HloBufferSize(hlo_buffer) > allocation->size()) { VLOG(4) << "Can't assign: buffer is larger than allocation (" << assignment->HloBufferSize(hlo_buffer) << " > " << allocation->size() << ")"; return false; } if (allocation->is_readonly()) { VLOG(4) << "Can't assign: allocation is readonly"; return false; } if (must_not_live_out_.has_value()) { if (allocation->maybe_live_out()) { for (const HloValue* value : hlo_buffer.values()) { if ((*must_not_live_out_)(assignment->alias_analysis(), value->instruction(), value->index())) { VLOG(4) << "Can't assign: " << value->instruction()->ToString() << " cannot live out of the module"; return false; } } } if (assignment->alias_analysis().BufferLivesOut(hlo_buffer)) { for (const auto& buffer_offset_size : allocation->assigned_buffers()) { const HloValue* value = buffer_offset_size.first; if ((*must_not_live_out_)(assignment->alias_analysis(), value->instruction(), value->index())) { VLOG(4) << "Can't assign: " << value->instruction() << " cannot live out of the module"; return false; } } } } if (!allocation->is_reusable()) { VLOG(4) << "Can't assign: allocation is not reusable"; return false; } for (const auto& buffer_offset_size : allocation->assigned_buffers()) { const HloValue& assigned_buffer = *CHECK_NOTNULL(dynamic_cast<const HloValue*>(buffer_offset_size.first)); for (const HloValue* new_value : hlo_buffer.values()) { if (assignment->hlo_live_range().total_order_scheduled()) { if (LiveRangeInterferes(new_value, &assigned_buffer, assignment)) { VLOG(4) << "Can't assign: assignee " << assigned_buffer << " live range interferes with " << new_value->ToShortString(); return false; } } else if (assignment->hlo_ordering().MayInterfere( assigned_buffer, *new_value, assignment->dataflow_analysis())) { VLOG(4) << "Can't assign: assignee " << assigned_buffer << " may interfere with " << new_value->ToShortString(); return false; } if (new_value->instruction()->opcode() == HloOpcode::kCopy) { for (const HloPosition& assigned_buffer_position : assigned_buffer.positions()) { if (new_value->instruction()->IsUserOf( assigned_buffer_position.instruction)) { VLOG(4) << "Can't assign: assignee " << assigned_buffer << " is used at copy instruction " << new_value->ToShortString(); return false; } } } } } if (assignment->alias_analysis().BufferLivesOut(hlo_buffer) && allocation->size() != assignment->HloBufferSize(hlo_buffer)) { VLOG(4) << "Can't assign: buffer " << hlo_buffer << "is live out and size not the same as allocation"; return false; } assignment->AddAssignment(allocation, hlo_buffer, 0, assignment->HloBufferSize(hlo_buffer)); return true; } absl::Status BufferAssigner::AssignSingleHloBuffer( const HloBuffer* hlo_buffer, bool is_thread_local, absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloValue*>>* buffers_to_assign_sequentially, std::vector<BufferAllocation::Index>* allocation_indices, BufferAssignment* assignment) { const int64_t buffer_size = assignment->HloBufferSize(*hlo_buffer); for (const HloValue* value : hlo_buffer->values()) { if (value->instruction()->opcode() == HloOpcode::kConstant) { if (allocate_buffers_for_constants_) { BufferAllocation* allocation = assignment->NewAllocation(*hlo_buffer, buffer_size); allocation->set_constant(true); VLOG(3) << "New allocation #" << allocation->index() << " for constant " << *hlo_buffer << " value ptr: " << value; } VLOG(3) << "Not allocating buffer for constant"; return absl::OkStatus(); } const HloInstruction* instruction = value->instruction(); const bool is_entry_parameter = instruction->opcode() == HloOpcode::kParameter && instruction->parent() == instruction->GetModule()->entry_computation(); if (is_entry_parameter) { bool parameter_has_alias = assignment->module().input_output_alias_config().ParameterHasAlias( instruction->parameter_number(), value->index()); BufferAllocation* allocation = assignment->NewAllocation(*hlo_buffer, buffer_size); allocation->set_entry_computation_parameter( instruction->parameter_number(), value->index(), parameter_has_alias); if (parameter_has_alias) { allocation_indices->push_back(allocation->index()); } VLOG(3) << "New allocation #" << allocation->index() << " marked as entry computation parameter: " << *hlo_buffer; return absl::OkStatus(); } } if (is_thread_local) { BufferAllocation* allocation = assignment->NewAllocation(*hlo_buffer, buffer_size); allocation->set_is_thread_local(true); VLOG(3) << "New allocation #" << allocation->index() << " for thread-local: " << *hlo_buffer; return absl::OkStatus(); } for (const HloValue* value : hlo_buffer->values()) { if (value->shape().IsTuple()) { BufferAllocation* allocation = assignment->NewAllocation(*hlo_buffer, buffer_size); allocation->set_is_tuple(true); VLOG(3) << "New allocation #" << allocation->index() << " for tuple-shaped buffer: " << *hlo_buffer; return absl::OkStatus(); } if (value->IsTopLevel() && !value->IsTuple()) { const HloInstruction* instruction = value->instruction(); for (auto* operand : instruction->operands()) { for (const auto& operand_slice : assignment->GetAllSlices(operand, {})) { BufferAllocation* allocation = assignment->GetMutableAllocation(operand_slice.index()); if (MaybeAssignBuffer(allocation, *hlo_buffer, assignment)) { VLOG(3) << "Reusing (operand) allocation #" << allocation->index() << " for: " << *hlo_buffer; return absl::OkStatus(); } } } } } for (int allocation_index = allocation_indices->size() - 1; allocation_index >= 0; allocation_index--) { BufferAllocation* allocation = assignment->GetMutableAllocation( allocation_indices->at(allocation_index)); if (MaybeAssignBuffer(allocation, *hlo_buffer, assignment)) { VLOG(3) << "Reusing allocation #" << allocation->index() << " for: " << *hlo_buffer; return absl::OkStatus(); } } if (!assignment->HasAllocation(*hlo_buffer) && !assignment->alias_analysis().BufferLivesOut(*hlo_buffer)) { bool all_computations_have_sequential_order = true; for (const HloValue* hlo_value : hlo_buffer->values()) { HloComputation* computation = hlo_value->instruction()->parent(); const bool has_sequential_order = assignment->hlo_ordering().SequentialOrder(*computation) != nullptr; all_computations_have_sequential_order &= has_sequential_order; } if (all_computations_have_sequential_order) { for (const HloValue* hlo_value : hlo_buffer->values()) { HloComputation* computation = hlo_value->instruction()->parent(); (*buffers_to_assign_sequentially)[computation].insert(hlo_value); VLOG(3) << "Delaying assignment of temp buffer: " << *hlo_value; } return absl::OkStatus(); } } if (!assignment->HasAllocation(*hlo_buffer)) { BufferAllocation* allocation = assignment->NewAllocation(*hlo_buffer, buffer_size); allocation_indices->push_back(allocation->index()); VLOG(3) << "New allocation #" << allocation->index() << " for: " << *hlo_buffer; } TF_RET_CHECK(assignment->HasAllocation(*hlo_buffer)); return absl::OkStatus(); } absl::Status BufferAssigner::AssignBuffersForComputations( const std::vector<const HloComputation*>& computations, bool is_thread_local, absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloValue*>>* buffers_to_assign_sequentially, BufferAssignment* assignment) { if (computations.empty()) { return absl::OkStatus(); } std::vector<const HloBuffer*> sorted_buffers; absl::flat_hash_set<const HloBuffer*> preset_assigned_buffers; TF_RETURN_IF_ERROR(AssignPresetBuffers(&preset_assigned_buffers, assignment)); const HloAliasAnalysis& alias_analysis = assignment->alias_analysis(); for (const HloBuffer& buffer : alias_analysis.buffers()) { if (preset_assigned_buffers.find(&buffer) != preset_assigned_buffers.end()) { VLOG(3) << "Skip allocation for buffer: " << buffer; continue; } TF_RET_CHECK(!buffer.values().empty()); const HloComputation* comp = buffer.values()[0]->instruction()->parent(); if (absl::c_linear_search(computations, comp)) { sorted_buffers.push_back(&buffer); } } flat_hash_map<const HloInstruction*, int> post_order_position; int position = 0; std::vector<const HloComputation*> reverse_post_order_computations; std::unique_ptr<CallGraph> call_graph = CallGraph::Build(computations[0]->parent()); TF_RETURN_IF_ERROR(call_graph->VisitNodes([&](const CallGraphNode& node) { if (absl::c_linear_search(computations, node.computation())) { reverse_post_order_computations.push_back(node.computation()); } return absl::OkStatus(); })); absl::c_reverse(reverse_post_order_computations); for (auto* computation : reverse_post_order_computations) { for (auto* instruction : computation->MakeInstructionPostOrder()) { post_order_position.emplace(instruction, position); position++; } } HloSchedule schedule(&assignment->module()); for (const HloComputation* computation : computations) { const HloInstructionSequence* instruction_sequence = assignment->hlo_ordering().SequentialOrder(*computation); const bool has_sequential_order = instruction_sequence != nullptr; if (has_sequential_order && buffers_to_assign_sequentially != nullptr) { buffers_to_assign_sequentially->emplace(computation, flat_hash_set<const HloValue*>()); schedule.set_sequence(computation, *instruction_sequence); } } absl::c_sort( sorted_buffers, [&post_order_position, &alias_analysis, assignment]( const HloBuffer* a, const HloBuffer* b) { const int64_t a_size = assignment->HloBufferSize(*a); const int64_t b_size = assignment->HloBufferSize(*b); if (a_size != b_size) { return a_size > b_size; } const bool a_live_out = alias_analysis.BufferLivesOut(*a); const bool b_live_out = alias_analysis.BufferLivesOut(*b); if (a_live_out != b_live_out) { return a_live_out; } auto compare = [&post_order_position](const HloValue* value1, const HloValue* value2) { return post_order_position.at(value1->instruction()) < post_order_position.at(value2->instruction()); }; const HloValue* a_min = *absl::c_min_element(a->values(), compare); const HloValue* b_min = *absl::c_min_element(b->values(), compare); if (post_order_position.at(a_min->instruction()) < post_order_position.at(b_min->instruction())) { return true; } else if (post_order_position.at(a_min->instruction()) > post_order_position.at(b_min->instruction())) { return false; } return a->id() < b->id(); }); std::vector<BufferAllocation::Index> allocation_indices; for (const HloBuffer* buffer : sorted_buffers) { VLOG(3) << "================================================="; VLOG(3) << "Assigning buffer for " << *buffer; TF_RETURN_IF_ERROR(AssignSingleHloBuffer(buffer, is_thread_local, buffers_to_assign_sequentially, &allocation_indices, assignment)); } return absl::OkStatus(); } flat_hash_map<LogicalBuffer::Color, flat_hash_set<const HloValue*>> BufferAssigner::SplitBuffersByColor( const flat_hash_set<const HloValue*>& buffers) const { flat_hash_map<LogicalBuffer::Color, flat_hash_set<const HloValue*>> color_map; for (auto buffer : buffers) { color_map[buffer->color()].insert(buffer); } return color_map; } absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloValue*>> BufferAssigner::SplitBuffersByPrivateStackComputation( const absl::flat_hash_set<const HloValue*>& buffers, absl::Span<const HloComputation* const> private_stack_computations, const CallGraph& call_graph) const { absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloValue*>> computation_map; for (const HloValue* value : buffers) { bool found_computation = false; for (const HloComputation* computation : private_stack_computations) { if (call_graph.InstructionIsNestedIn(value->instruction(), computation)) { found_computation = true; computation_map[computation].insert(value); break; } } CHECK(found_computation); } return computation_map; } absl::Status BufferAssigner::AssignPresetBuffers( absl::flat_hash_set<const HloBuffer*>* assigned_buffers, BufferAssignment* assignment) { if (!preset_assignments_) { return absl::OkStatus(); } absl::flat_hash_map<LogicalBuffer::Color, BufferAllocation*> preset_allocations; for (auto& color_and_info : preset_assignments_->assignment_informations()) { LogicalBuffer::Color color(color_and_info.first); auto inserted = preset_allocations.emplace( color, assignment->NewEmptyAllocation(color_and_info.second.size, color)); BufferAllocation* inserted_allocation = inserted.first->second; inserted_allocation->AddHeapTrace( color_and_info.second.heap_simulator_trace); VLOG(3) << "Created preset buffer allocation " << inserted_allocation->index() << ", color: " << inserted_allocation->color() << ", size: " << inserted_allocation->size(); } const HloAliasAnalysis& alias_analysis = assignment->alias_analysis(); for (auto& position_and_chunk : preset_assignments_->chunks()) { const HloPosition& defining_position = position_and_chunk.first; const HloBuffer& buffer = alias_analysis.GetUniqueBufferAt( defining_position.instruction, defining_position.index); for (const HloValue* value : buffer.values()) { VLOG(3) << "Preset allocation for value: " << value->ToShortString(); const HeapSimulator::Chunk& chunk = position_and_chunk.second; auto preset_allocations_iter = preset_allocations.find(value->color()); CHECK(preset_allocations_iter != preset_allocations.end()) << "No preset value allocation for color " << value->color() << " for " << value->ToShortString() << " found."; preset_allocations_iter->second->AddAssignment(*value, chunk.offset, chunk.size); } assigned_buffers->insert(&buffer); } preset_assignments_ = {}; return absl::OkStatus(); } absl::Status BufferAssigner::AssignBuffersWithSequentialOrdering( const flat_hash_map<const HloComputation*, flat_hash_set<const HloValue*>>& buffers_to_assign_sequentially, bool run_whole_module_heap_simulation, BufferAssignment* assignment, const PrivateStacks& private_stacks, GlobalDecreasingSizeBestFitHeap<HloValue>::BufferIntervalCompare heap_buffer_interval_compare, std::optional<BufferAssignment::BufferIsolationOptions> isolation_options) { const HloOrdering& hlo_ordering = assignment->hlo_ordering(); auto get_heap_algorithm = [&](int64_t alignment) -> std::unique_ptr<HeapAlgorithm<HloValue>> { if (heap_buffer_interval_compare) { return std::make_unique<ConstrainedGlobalDecreasingSizeBestFitHeap>( assignment->multiheap_size_constraint_per_heap(), alignment, GlobalDecreasingSizeBestFitHeap<HloValue>::kCustom, heap_buffer_interval_compare); } auto algorithms = std::make_unique< std::vector<std::unique_ptr<HeapAlgorithm<HloValue>>>>(); algorithms->push_back( std::make_unique<ConstrainedGlobalDecreasingSizeBestFitHeap>( assignment->multiheap_size_constraint_per_heap(), alignment, GlobalDecreasingSizeBestFitHeap<HloValue>::kSpatial)); algorithms->push_back( std::make_unique<ConstrainedGlobalDecreasingSizeBestFitHeap>( assignment->multiheap_size_constraint_per_heap(), alignment, GlobalDecreasingSizeBestFitHeap<HloValue>::kTemporal)); return std::make_unique<ChooseBestHeapAlgorithm<HloValue>>( std::move(algorithms)); }; if (run_whole_module_heap_simulation) { VLOG(1) << "Running whole-module heap simulation"; HloSchedule schedule(&assignment->module()); flat_hash_set<const HloValue*> all_buffers_to_assign; for (const auto& pair : buffers_to_assign_sequentially) { const HloComputation* computation = pair.first; const flat_hash_set<const HloValue*>& buffers_to_assign = pair.second; const HloInstructionSequence* instruction_sequence = hlo_ordering.SequentialOrder(*computation); CHECK(instruction_sequence != nullptr) << computation->name(); schedule.set_sequence(computation, *instruction_sequence); all_buffers_to_assign.insert(buffers_to_assign.begin(), buffers_to_assign.end()); } auto color_map = SplitBuffersByColor(all_buffers_to_assign); std::vector<LogicalBuffer::Color> sorted_colors; sorted_colors.reserve(color_map.size()); for (auto& single_colored_set : color_map) { auto color = single_colored_set.first; sorted_colors.emplace(sorted_colors.end(), color); } absl::c_sort(sorted_colors); for (auto color : sorted_colors) { VLOG(2) << "Simulating heap for color " << color; int64_t alignment = assignment->color_alignment_(color); HeapSimulator::Options options; options.alloc_constants = allocate_buffers_for_constants_; auto private_stacks_it = private_stacks.find(color); if (private_stacks_it != private_stacks.end()) { auto computation_map = SplitBuffersByPrivateStackComputation( color_map[color], private_stacks_it->second, assignment->alias_analysis().dataflow_analysis().call_graph()); for (const HloComputation* private_stack_computation : private_stacks_it->second) { VLOG(2) << "private stack computation: " << private_stack_computation->name(); auto computation_map_it = computation_map.find(private_stack_computation); CHECK(computation_map_it != computation_map.end()); options.buffers_to_assign = &computation_map_it->second; const HloInstructionSequence* instruction_sequence = hlo_ordering.SequentialOrder(*private_stack_computation); TF_ASSIGN_OR_RETURN( HeapSimulator::Result<HloValue> result, HeapSimulator::Run( get_heap_algorithm(alignment), *private_stack_computation, *instruction_sequence, assignment->alias_analysis(), assignment->buffer_size_, &schedule, options)); AssignBuffersFromHeapSimulator(result, assignment, color, isolation_options); } } else { options.buffers_to_assign = &color_map[color]; TF_ASSIGN_OR_RETURN( HeapSimulator::Result<HloValue> result, HeapSimulator::Run(get_heap_algorithm(alignment), assignment->module(), schedule, assignment->alias_analysis(), assignment->buffer_size_, options)); AssignBuffersFromHeapSimulator(result, assignment, color, isolation_options); } } } else { VLOG(1) << "Running per-computation heap simulation"; for (const auto& pair : buffers_to_assign_sequentially) { const HloComputation* computation = pair.first; const flat_hash_set<const HloValue*>& buffers_to_assign = pair.second; const HloInstructionSequence* instruction_sequence = hlo_ordering.SequentialOrder(*computation); CHECK(instruction_sequence != nullptr) << computation->name(); auto color_map = SplitBuffersByColor(buffers_to_assign); std::vector<LogicalBuffer::Color> sorted_colors; sorted_colors.reserve(color_map.size()); for (auto& single_colored_set : color_map) { auto color = single_colored_set.first; sorted_colors.emplace(sorted_colors.end(), color); } absl::c_sort(sorted_colors); for (auto color : sorted_colors) { VLOG(2) << "Simulating heap for color " << color; int64_t alignment = assignment->color_alignment_(color); HeapSimulator::Options options; options.buffers_to_assign = &color_map[color]; TF_ASSIGN_OR_RETURN( HeapSimulator::Result<HloValue> result, HeapSimulator::Run(get_heap_algorithm(alignment), *computation, *instruction_sequence, assignment->alias_analysis(), assignment->buffer_size_, options)); AssignBuffersFromHeapSimulator(result, assignment, color, isolation_options); } } } return absl::OkStatus(); } namespace { std::vector<const HloValue*> ComputePeakMemoryLogicalBuffers( const BufferAllocation& allocation, const HeapSimulatorTrace& heap_trace) { absl::flat_hash_map<BufferValue::Id, const HloValue*> id_to_value; absl::flat_hash_map<const HloValue*, int64_t> buffer_sizes; for (const auto& pair : allocation.assigned_buffers()) { const HloValue* value = pair.first; const BufferAllocation::OffsetSize& offset_size = pair.second; id_to_value[value->id()] = value; buffer_sizes[value] = offset_size.size; } VLOG(1) << "Compute peak memory logical buffers"; absl::flat_hash_map<int64_t, int> num_outstanding_shared_buffers; absl::flat_hash_map<int64_t, int64_t> shared_canonical_ids; absl::flat_hash_map<int64_t, int64_t> allocated_sizes; auto memory_delta = [&](const HeapSimulatorTrace::Event& event) -> int64_t { const HloValue* buffer = id_to_value.at(event.buffer_id()); const int64_t buffer_size = buffer_sizes.at(buffer); if (event.kind() == HeapSimulatorTrace::Event::ALLOC) { num_outstanding_shared_buffers[event.buffer_id()] = 1; allocated_sizes[event.buffer_id()] = buffer_size; return buffer_size; } else if (event.kind() == HeapSimulatorTrace::Event::SHARE_WITH) { shared_canonical_ids[event.buffer_id()] = event.share_with_canonical_id(); if (++num_outstanding_shared_buffers[event.share_with_canonical_id()] == 1) { allocated_sizes[event.buffer_id()] = buffer_size; return buffer_size; } allocated_sizes[event.buffer_id()] = 0; return 0; } else if (event.kind() == HeapSimulatorTrace::Event::FREE) { auto shared_canonical_id_it = shared_canonical_ids.find(event.buffer_id()); int64_t buffer_id = (shared_canonical_id_it == shared_canonical_ids.end()) ? event.buffer_id() : shared_canonical_id_it->second; --num_outstanding_shared_buffers[buffer_id]; return -1 * allocated_sizes[event.buffer_id()]; } LOG(FATAL) << "Unknown event kind: " << event.kind(); }; int64_t max_live_size = 0; int64_t live_size = 0; for (const auto& event : heap_trace.events()) { if (!id_to_value.contains(event.buffer_id())) { continue; } live_size += memory_delta(event); if (max_live_size < live_size) { max_live_size = live_size; } } absl::flat_hash_set<const HloValue*> live_values; live_size = 0; num_outstanding_shared_buffers.clear(); for (const auto& event : heap_trace.events()) { if (!id_to_value.contains(event.buffer_id())) { continue; } const HloValue* value = id_to_value.at(event.buffer_id()); int64_t delta = memory_delta(event); if (delta > 0) { InsertOrDie(&live_values, value); } else if (delta < 0) { CHECK(ContainsKey(live_values, value)); live_values.erase(value); } live_size += delta; if (live_size == max_live_size) { break; } } CHECK_EQ(live_size, max_live_size); std::vector<const HloValue*> live_values_vector; live_values_vector.insert(live_values_vector.end(), live_values.begin(), live_values.end()); absl::c_sort(live_values_vector, [](const HloValue* a, const HloValue* b) { return a->id() < b->id(); }); VLOG(4) << "Peak memory buffer:"; for (auto value : live_values_vector) { VLOG(4) << " " << value->ToString(); } return live_values_vector; } } void BufferAssigner::IsolateHeapBuffers( std::optional<BufferAssignment::BufferIsolationOptions> isolation_options, const BufferAssignment* assignment, LogicalBuffer::Color color, HeapSimulator::Result<HloValue>& result) const { if (!isolation_options) { return; } result.heap_size = 0; for (HeapSimulator::HeapResult<HloValue>& heap_result : result.heap_results) { if (absl::c_find(isolation_options->config.isolation_colors(), color) != isolation_options->config.isolation_colors().end()) { VLOG(1) << "Isolating color: " << color; int64_t alignment = assignment->color_alignment_(color); std::vector<const HloValue*> sorted_values; sorted_values.reserve(heap_result.chunk_map.size()); for (const auto& [value, chunk] : heap_result.chunk_map) { sorted_values.push_back(value); } absl::c_sort(sorted_values, isolation_options->hlo_value_compare); int64_t isolation_offset = RoundUpTo(isolation_options->config.base_offset_bytes() + heap_result.heap_size + isolation_options->config.isolation_padding_bytes(), alignment); int64_t value_index; for (value_index = 0; value_index < std::min(static_cast<int64_t>(sorted_values.size()), isolation_options->config.isolation_fuel()); ++value_index) { const HloValue* value = sorted_values[value_index]; HeapSimulator::Chunk& chunk = heap_result.chunk_map.at(value); VLOG(1) << "Isolating " << value->ToShortString() << " from " << chunk.offset << " to " << isolation_offset; chunk.offset = isolation_offset; isolation_offset += RoundUpTo( chunk.size + isolation_options->config.isolation_padding_bytes(), alignment); } for (; value_index < sorted_values.size(); ++value_index) { const HloValue* value = sorted_values[value_index]; HeapSimulator::Chunk& chunk = heap_result.chunk_map.at(value); int64_t new_offset = RoundUpTo( chunk.offset + isolation_options->config.base_offset_bytes(), alignment); VLOG(1) << "Not isolating " << value->ToShortString() << ", from " << chunk.offset << " to " << new_offset; chunk.offset = new_offset; } heap_result.heap_size = isolation_offset; } result.heap_size += heap_result.heap_size; } } void BufferAssigner::AssignBuffersFromHeapSimulator( HeapSimulator::Result<HloValue>& result, BufferAssignment* assignment, BufferValue::Color color, std::optional<BufferAssignment::BufferIsolationOptions> isolation_options) { IsolateHeapBuffers(isolation_options, assignment, color, result); if (assignment->stats_.preallocated_temp_fragmentation_bytes == -1) { assignment->stats_.preallocated_temp_fragmentation_bytes = result.fragmentation_size; } else { assignment->stats_.preallocated_temp_fragmentation_bytes += result.fragmentation_size; } VLOG(1) << "Result size from heap simulator: " << result.heap_size; for (const HeapSimulator::HeapResult<HloValue>& heap_result : result.heap_results) { BufferAllocation* allocation = assignment->NewEmptyAllocation(heap_result.heap_size, color); for (const auto& [value, chunk] : heap_result.chunk_map) { assignment->AddAssignment(allocation, *value, chunk.offset, chunk.size); } allocation->peak_buffers_ = ComputePeakMemoryLogicalBuffers(*allocation, result.debug_trace); XLA_VLOG_LINES(2, allocation->ToString()); allocation->AddHeapTrace(result.debug_trace); } } absl::StatusOr<std::unique_ptr<BufferAssignment>> BufferAssigner::CreateAssignment( const HloModule* module, std::unique_ptr<HloOrdering> hlo_ordering, BufferValue::SizeFunction buffer_size, LogicalBuffer::AlignmentFunction color_alignment, HloDataflowAnalysis::CanShareBuffer can_share_buffer, const PrivateStacks& private_stacks, GlobalDecreasingSizeBestFitHeap<HloValue>::BufferIntervalCompare heap_buffer_interval_compare, std::optional<BufferAssignment::BufferIsolationOptions> isolation_options, std::optional<BufferValue::Color> temp_buffer_color) { TF_ASSIGN_OR_RETURN(std::unique_ptr<HloAliasAnalysis> alias_analysis, HloAliasAnalysis::Run(module, can_share_buffer)); HloSchedule schedule(module); for (const HloComputation* computation : module->computations()) { const HloInstructionSequence* instruction_sequence = hlo_ordering->SequentialOrder(*computation); const bool has_sequential_order = instruction_sequence != nullptr; if (has_sequential_order) { schedule.set_sequence(computation, *instruction_sequence); } } TF_ASSIGN_OR_RETURN(std::unique_ptr<HloLiveRange> hlo_live_range, HloLiveRange::Run(schedule, *alias_analysis, module->entry_computation(), true)); VLOG(1) << "Assigning buffers to module " << module->name(); XLA_VLOG_LINES(3, module->ToString()); XLA_VLOG_LINES(3, alias_analysis->ToString()); XLA_VLOG_LINES(3, alias_analysis->dataflow_analysis().ToString()); VLOG(1) << "Number of buffers to assign: " << alias_analysis->buffers().size(); std::unique_ptr<BufferAssignment> assignment(new BufferAssignment( module, std::move(hlo_ordering), std::move(buffer_size), std::move(color_alignment), std::move(alias_analysis), std::move(hlo_live_range))); TF_RETURN_IF_ERROR( colorer_(&assignment->alias_analysis(), assignment->hlo_ordering())); VLOG(3) << "After coloring:"; XLA_VLOG_LINES(3, assignment->alias_analysis().dataflow_analysis().ToString()); std::vector<const HloComputation*> thread_local_computations; std::vector<const HloComputation*> global_computations; TF_RETURN_IF_ERROR(GatherComputationsByAllocationType( module, &thread_local_computations, &global_computations)); flat_hash_map<const HloComputation*, flat_hash_set<const HloValue*>> buffers_to_assign_sequentially; TF_RETURN_IF_ERROR(AssignBuffersForComputations( global_computations, false, &buffers_to_assign_sequentially, assignment.get())); const bool run_whole_module_heap_simulation = buffers_to_assign_sequentially.size() == global_computations.size(); VLOG(2) << "Running whole module heap simulation: " << run_whole_module_heap_simulation; const int32_t multiheap_size_constraint_per_heap = module->config().debug_options().xla_multiheap_size_constraint_per_heap(); VLOG(2) << "Multiheap per heap size limit: " << multiheap_size_constraint_per_heap; TF_RETURN_IF_ERROR(AssignBuffersWithSequentialOrdering( buffers_to_assign_sequentially, run_whole_module_heap_simulation, assignment.get(), private_stacks, heap_buffer_interval_compare, isolation_options)); std::vector<const HloComputation*> thread_local_computations_no_fusion; for (auto* computation : thread_local_computations) { TF_RET_CHECK(computation != module->entry_computation()); if (computation->IsFusionComputation()) { continue; } thread_local_computations_no_fusion.push_back(computation); } TF_RETURN_IF_ERROR(AssignBuffersForComputations( thread_local_computations_no_fusion, true, nullptr, assignment.get())); for (const HloBuffer* buffer : assignment->alias_analysis().LiveOutBuffers()) { VLOG(3) << "maybe_live_out LogicalBuffer: " << *buffer; if (assignment->HasAllocation(*buffer)) { BufferAllocation* alloc = assignment->GetMutableAssignedAllocation(*buffer); alloc->set_maybe_live_out(true); VLOG(3) << "maybe_live_out BufferAllocation: " << *alloc; } } absl::flat_hash_set<BufferValue::Color> private_stack_colors; for (const auto& [color, computations] : private_stacks) { private_stack_colors.insert(color); } assignment->CombineTempAllocations(private_stack_colors, temp_buffer_color); XLA_VLOG_LINES(2, assignment->ToString()); TF_RETURN_IF_ERROR(assignment->ComputeSummaryStats()); XLA_VLOG_LINES(1, assignment->GetStats().ToString()); VLOG(1) << "Buffer assignment done."; return std::move(assignment); } }
#include "xla/service/buffer_assignment.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/buffer_value.h" #include "xla/service/call_graph.h" #include "xla/service/copy_insertion.h" #include "xla/service/flatten_call_graph.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_buffer.h" #include "xla/service/hlo_memory_scheduler.h" #include "xla/service/hlo_ordering.h" #include "xla/service/hlo_parser.h" #include "xla/service/hlo_value.h" #include "xla/service/logical_buffer.h" #include "xla/service/memory_space_assignment/memory_space_assignment.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using memory_space_assignment::PresetAssignments; using ::testing::UnorderedElementsAre; class InstructionListVisitor : public DfsHloVisitorWithDefault { public: explicit InstructionListVisitor(const HloInstruction* root) : root_(root) {} absl::Status DefaultAction(HloInstruction* hlo) override { instructions_.push_back(hlo); VLOG(0) << "List instruction " << hlo->ToString(); return absl::OkStatus(); } std::vector<const HloInstruction*> GetInstructions() { return instructions_; } private: const HloInstruction* root_; std::vector<const HloInstruction*> instructions_; InstructionListVisitor(const InstructionListVisitor&) = delete; InstructionListVisitor& operator=(const InstructionListVisitor&) = delete; }; const std::vector<const HloInstruction*> GetInstructions(HloInstruction* root) { InstructionListVisitor main_list(root); TF_CHECK_OK(root->Accept(&main_list)); return main_list.GetInstructions(); } class BufferAssignmentTest : public HloTestBase { protected: ~BufferAssignmentTest() override {} std::unique_ptr<BufferAssignment> RunBufferAssignment(HloModule* module, int64_t alignment = 1) { return BufferAssigner::Run( module, std::make_unique<DependencyHloOrdering>(module), backend().compiler()->BufferSizeBytesFunction(), [alignment](LogicalBuffer::Color) { return alignment; }, true) .value(); } absl::StatusOr<std::unique_ptr<BufferAssignment>> ConvertToProtoAndBack( const BufferAssignment* buffers, const HloModule* module) { auto proto = buffers->ToProto(); return BufferAssignment::FromProto( proto, module, backend().compiler()->BufferSizeBytesFunction(), nullptr); } std::unique_ptr<BufferAssignment> RunBufferAssignmentWithSequentialOrdering( HloModule* module, int64_t alignment = 1, BufferAssigner::Colorer colorer = BufferAssigner::DefaultColorer(), const BufferAssigner::PrivateStacks& private_stacks = {}, std::optional<BufferAssignment::BufferIsolationOptions> isolation_options = std::nullopt) { return BufferAssigner::Run( module, std::make_unique<SequentialHloOrdering>(module->schedule()), backend().compiler()->BufferSizeBytesFunction(), [alignment](LogicalBuffer::Color) { return alignment; }, true, colorer, std::nullopt, nullptr, {}, private_stacks, nullptr, isolation_options) .value(); } std::unique_ptr<BufferAssignment> RunBufferAssignmentNoBuffersForConstants( HloModule* module, int64_t alignment = 1) { return BufferAssigner::Run( module, std::make_unique<DependencyHloOrdering>(module), backend().compiler()->BufferSizeBytesFunction(), [alignment](LogicalBuffer::Color) { return alignment; }, false) .value(); } std::unique_ptr<BufferAssignment> RunBufferAssignmentNoBuffersReuseForAdd( HloModule* module, int64_t alignment = 1) { auto must_not_live_out = [](const HloAliasAnalysis& alias_analysis, const HloInstruction* instruction, const ShapeIndex&) { return instruction->opcode() == HloOpcode::kAdd; }; return BufferAssigner::Run( module, std::make_unique<DependencyHloOrdering>(module), backend().compiler()->BufferSizeBytesFunction(), [alignment](LogicalBuffer::Color) { return alignment; }, false, BufferAssigner::DefaultColorer(), must_not_live_out) .value(); } std::unique_ptr<BufferAssignment> RunColoredBufferAssignment( HloModule* module, BufferAssigner::Colorer colorer, int64_t alignment = 1) { return BufferAssigner::Run( module, std::make_unique<DependencyHloOrdering>(module), backend().compiler()->BufferSizeBytesFunction(), [alignment](LogicalBuffer::Color) { return alignment; }, true, std::move(colorer)) .value(); } std::unique_ptr<BufferAssignment> RunBufferAssignmentWithInstructionSequence( HloModule* module, absl::Span<HloInstruction* const> instruction_sequence, int64_t alignment = 1) { HloSchedule schedule(module); schedule.set_sequence(module->entry_computation(), instruction_sequence); return BufferAssigner::Run( module, std::make_unique<SequentialHloOrdering>(schedule), backend().compiler()->BufferSizeBytesFunction(), [alignment](LogicalBuffer::Color) { return alignment; }, true) .value(); } std::unique_ptr<BufferAssignment> RunBufferAssignmentWithPresetAssignments( HloModule* module, std::unique_ptr<PresetAssignments> preset_assignments, int64_t alignment = 1) { return BufferAssigner::Run( module, std::make_unique<DependencyHloOrdering>(module), backend().compiler()->BufferSizeBytesFunction(), [alignment](LogicalBuffer::Color) { return alignment; }, true, BufferAssigner::DefaultColorer(), std::nullopt, nullptr, std::move(preset_assignments)) .value(); } std::unique_ptr<BufferAssignment> RunBufferAssignmentWithIsolationOptions( HloModule* module, std::optional<BufferAssignment::BufferIsolationOptions> isolation_options = std::nullopt) { return BufferAssigner::Run( module, std::make_unique<SequentialHloOrdering>(module->schedule()), backend().compiler()->BufferSizeBytesFunction(), [](LogicalBuffer::Color) { return 1; }, true, BufferAssigner::DefaultColorer(), std::nullopt, nullptr, {}, {}, nullptr, isolation_options) .value(); } std::unique_ptr<HloComputation> BuildMapComputationPlus1( const std::string& name) { auto builder = HloComputation::Builder(name); auto param = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "x")); auto value = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, param, value)); return builder.Build(); } std::unique_ptr<HloComputation> BuildReduceComputation( const std::string& name) { auto builder = HloComputation::Builder(name); auto param = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "x")); auto param2 = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "y")); builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, param, param2)); return builder.Build(); } std::unique_ptr<HloComputation> BuildWhileConditionComputation( const std::string& name) { auto builder = HloComputation::Builder(name); auto const4 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(4))); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, t_s32_f32v4_, "x")); auto index = builder.AddInstruction( HloInstruction::CreateGetTupleElement(const4->shape(), param, 0)); builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), index, const4, ComparisonDirection::kLt)); return builder.Build(); } std::unique_ptr<HloComputation> BuildWhileBodyComputation( const std::string& name) { auto builder = HloComputation::Builder(name); auto const1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(1))); auto constv = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1.1f, 2.2f, 3.3f, 4.4f}))); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, t_s32_f32v4_, "x")); auto indexc = builder.AddInstruction( HloInstruction::CreateGetTupleElement(const1->shape(), param, 0)); auto addc = builder.AddInstruction(HloInstruction::CreateBinary( indexc->shape(), HloOpcode::kAdd, indexc, const1)); auto indexv = builder.AddInstruction( HloInstruction::CreateGetTupleElement(constv->shape(), param, 1)); auto addv = builder.AddInstruction(HloInstruction::CreateBinary( constv->shape(), HloOpcode::kAdd, indexv, constv)); builder.AddInstruction(HloInstruction::CreateTuple({addc, addv})); return builder.Build(); } std::unique_ptr<HloComputation> BuildR0F32UnaryOpComputation( HloOpcode opcode, const std::string& name) { auto builder = HloComputation::Builder(name); auto param = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "x")); builder.AddInstruction(HloInstruction::CreateUnary(r0f32_, opcode, param)); return builder.Build(); } const BufferAllocation& GetAssignedInputAllocation( const BufferAssignment& buffers, HloInstruction* hlo) { LOG(INFO) << "Checking input: " << hlo->ToString(); const BufferAllocation& buffer = *buffers.GetUniqueTopLevelSlice(hlo).value().allocation(); EXPECT_EQ(hlo->parameter_number(), buffer.parameter_number()); return buffer; } const BufferAllocation& GetAssignedOutputAllocation( const BufferAssignment& buffers, HloInstruction* hlo) { LOG(INFO) << "Checking output: " << hlo->ToString(); const BufferAllocation& buffer = GetTopLevelAllocation(buffers, hlo); return buffer; } const BufferAllocation& GetAllocation(const BufferAssignment& buffers, const HloInstruction* hlo, const ShapeIndex& index) { return *buffers.GetUniqueSlice(hlo, index).value().allocation(); } const BufferAllocation& GetTopLevelAllocation(const BufferAssignment& buffers, const HloInstruction* hlo) { return *buffers.GetUniqueTopLevelSlice(hlo).value().allocation(); } int64_t ValidateBuffers( const std::vector<const HloInstruction*>& instructions, const BufferAssignment& buffers) { for (const HloInstruction* hlo : instructions) { if (!buffers.HasTopLevelAllocation(hlo)) { EXPECT_TRUE(HloOpcode::kConstant == hlo->opcode() || HloOpcode::kParameter == hlo->opcode()); continue; } } int64_t total_size = 0; for (auto& allocation : buffers.Allocations()) { total_size += allocation.size(); } return total_size; } Shape s32_ = ShapeUtil::MakeShape(xla::S32, {}); Shape r0f32_ = ShapeUtil::MakeShape(xla::F32, {}); Shape f32vec4_ = ShapeUtil::MakeShape(F32, {4}); Shape f32vec10_ = ShapeUtil::MakeShape(F32, {10}); Shape f32vec100_ = ShapeUtil::MakeShape(F32, {100}); Shape f32a100x10_ = ShapeUtil::MakeShape(F32, {100, 10}); Shape t_s32_f32v4_ = ShapeUtil::MakeTupleShape({s32_, f32vec4_}); Shape t_s32_f32v10_ = ShapeUtil::MakeTupleShape({s32_, f32vec10_}); }; static bool BuffersDistinct(const std::vector<const HloInstruction*>& a, const std::vector<const HloInstruction*>& b, const BufferAssignment& assignment) { absl::flat_hash_set<BufferAllocation::Slice> a_slices; for (const HloInstruction* instruction : a) { if (assignment.HasTopLevelAllocation(instruction)) { a_slices.insert(assignment.GetUniqueTopLevelSlice(instruction).value()); } } for (const HloInstruction* instruction : b) { if (assignment.HasTopLevelAllocation(instruction)) { if (a_slices.contains( assignment.GetUniqueTopLevelSlice(instruction).value())) { return false; } } } return true; } TEST_F(BufferAssignmentTest, ScalarConstant) { auto builder = HloComputation::Builder(TestName()); auto const0 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); { auto buffers = RunBufferAssignment(module.get()); EXPECT_TRUE(buffers->HasTopLevelAllocation(const0)); } { auto buffers = RunBufferAssignmentNoBuffersForConstants(module.get()); EXPECT_FALSE(buffers->HasTopLevelAllocation(const0)); } } TEST_F(BufferAssignmentTest, BufferForConst) { auto builder = HloComputation::Builder(TestName()); auto const0 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1.1f, 2.2f, 3.3f, 4.4f}))); auto const1 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({4.1f, 4.2f, 4.3f, 4.4f}))); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec4_, HloOpcode::kAdd, const0, const1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); { auto buffers = RunBufferAssignment(module.get()); EXPECT_TRUE(buffers->HasTopLevelAllocation(const0)); EXPECT_TRUE(buffers->HasTopLevelAllocation(const1)); GetAssignedOutputAllocation(*buffers, add); } { auto buffers = RunBufferAssignmentNoBuffersForConstants(module.get()); EXPECT_FALSE(buffers->HasTopLevelAllocation(const0)); EXPECT_FALSE(buffers->HasTopLevelAllocation(const1)); GetAssignedOutputAllocation(*buffers, add); } } TEST_F(BufferAssignmentTest, HasAllocationAt) { auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec100_, "param0")); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(1))); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(f32vec100_, HloOpcode::kNegate, param0)); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({negate, param0, constant})); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto buffers = RunBufferAssignment(module.get()); EXPECT_EQ(buffers->HasTopLevelAllocation(tuple), buffers->HasAllocationAt(tuple, {})); EXPECT_EQ(buffers->HasTopLevelAllocation(negate), buffers->HasAllocationAt(tuple, {0})); EXPECT_EQ(buffers->HasTopLevelAllocation(param0), buffers->HasAllocationAt(tuple, {1})); EXPECT_EQ(buffers->HasTopLevelAllocation(constant), buffers->HasAllocationAt(tuple, {2})); } TEST_F(BufferAssignmentTest, BufferForOutputConst) { auto builder = HloComputation::Builder(TestName()); auto const0 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1.1f, 2.2f, 3.3f, 4.4f}))); auto copy = builder.AddInstruction( HloInstruction::CreateUnary(const0->shape(), HloOpcode::kCopy, const0)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto buffers = RunBufferAssignment(module.get()); GetAssignedOutputAllocation(*buffers, copy); } TEST_F(BufferAssignmentTest, Basic) { auto builder = HloComputation::Builder(TestName()); auto paramscalar = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "p")); auto broadcast = builder.AddInstruction( HloInstruction::CreateBroadcast(f32vec100_, paramscalar, {})); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec100_, "p1")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(2, f32vec100_, "p2")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kMultiply, broadcast, param0)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec100_, HloOpcode::kAdd, mul, param1)); auto sub = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kSubtract, add, param1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto buffers_orig = RunBufferAssignment(module.get()); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<BufferAssignment> buffers, ConvertToProtoAndBack(buffers_orig.get(), module.get())); BufferAllocation paramscalar_buffer = GetAssignedInputAllocation(*buffers, paramscalar); BufferAllocation param0_buffer = GetAssignedInputAllocation(*buffers, param0); BufferAllocation param1_buffer = GetAssignedInputAllocation(*buffers, param1); EXPECT_NE(paramscalar_buffer.index(), param0_buffer.index()); EXPECT_NE(paramscalar_buffer.index(), param1_buffer.index()); EXPECT_NE(param0_buffer.index(), param1_buffer.index()); const BufferAllocation& mul_buffer = GetTopLevelAllocation(*buffers, mul); EXPECT_NE(mul_buffer.index(), param0_buffer.index()); const BufferAllocation& add_buffer = GetTopLevelAllocation(*buffers, add); EXPECT_EQ(add_buffer.index(), mul_buffer.index()); GetAssignedOutputAllocation(*buffers, sub); } TEST_F(BufferAssignmentTest, BasicToFromProto) { auto builder = HloComputation::Builder(TestName()); auto paramscalar = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "p")); auto broadcast = builder.AddInstruction( HloInstruction::CreateBroadcast(f32vec100_, paramscalar, {})); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec100_, "p1")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(2, f32vec100_, "p2")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kMultiply, broadcast, param0)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec100_, HloOpcode::kAdd, mul, param1)); builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kSubtract, add, param1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto buffers_orig = RunBufferAssignment(module.get()); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<BufferAssignment> buffers_from_proto, ConvertToProtoAndBack(buffers_orig.get(), module.get())); const HloDataflowAnalysis& dataflow_orig = buffers_orig->dataflow_analysis(); const HloDataflowAnalysis& dataflow_proto = buffers_from_proto->dataflow_analysis(); EXPECT_EQ(buffers_orig->Allocations().size(), buffers_from_proto->Allocations().size()); for (BufferValue::Id id = 0; id < dataflow_orig.values().size(); id++) { auto& orig_value = dataflow_orig.values().at(id); if (buffers_orig->HasAllocation(*orig_value)) { auto& value_proto = dataflow_proto.GetUniqueValueAt( orig_value->instruction(), orig_value->index()); EXPECT_TRUE(buffers_from_proto->HasAllocation(value_proto)); EXPECT_EQ(orig_value->color(), value_proto.color()); EXPECT_EQ(buffers_orig->GetAssignedAllocation(*orig_value).index(), buffers_from_proto->GetAssignedAllocation(value_proto).index()); } } } TEST_F(BufferAssignmentTest, AliasedParamCanBeReused) { auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec100_, "p0")); auto neg_1 = builder.AddInstruction( HloInstruction::CreateUnary(f32vec100_, HloOpcode::kNegate, param)); auto neg_2 = builder.AddInstruction( HloInstruction::CreateUnary(f32vec100_, HloOpcode::kNegate, neg_1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); TF_ASSERT_OK(module->input_output_alias_config().SetUpAlias({}, 0, {})); auto buffers_orig = RunBufferAssignment(module.get()); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<BufferAssignment> buffers, ConvertToProtoAndBack(buffers_orig.get(), module.get())); BufferAllocation param_buffer = GetAssignedInputAllocation(*buffers, param); BufferAllocation neg_1_buffer = GetAllocation(*buffers, neg_1, {}); BufferAllocation neg_2_buffer = GetAllocation(*buffers, neg_2, {}); EXPECT_EQ(param_buffer.index(), neg_1_buffer.index()); EXPECT_EQ(neg_2_buffer.index(), neg_1_buffer.index()); } TEST_F(BufferAssignmentTest, AddCannotReuse) { auto builder = HloComputation::Builder(TestName()); auto paramscalar = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "p")); auto broadcast = builder.AddInstruction( HloInstruction::CreateBroadcast(f32vec100_, paramscalar, {})); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec100_, "p1")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(2, f32vec100_, "p2")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kMultiply, broadcast, param0)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec100_, HloOpcode::kAdd, mul, param1)); auto sub = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kSubtract, add, param1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto buffers_orig = RunBufferAssignmentNoBuffersReuseForAdd(module.get()); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<BufferAssignment> buffers, ConvertToProtoAndBack(buffers_orig.get(), module.get())); BufferAllocation paramscalar_buffer = GetAssignedInputAllocation(*buffers, paramscalar); BufferAllocation param0_buffer = GetAssignedInputAllocation(*buffers, param0); BufferAllocation param1_buffer = GetAssignedInputAllocation(*buffers, param1); EXPECT_NE(paramscalar_buffer.index(), param0_buffer.index()); EXPECT_NE(paramscalar_buffer.index(), param1_buffer.index()); EXPECT_NE(param0_buffer.index(), param1_buffer.index()); const BufferAllocation& sub_buffer = GetTopLevelAllocation(*buffers, sub); EXPECT_NE(sub_buffer.index(), param0_buffer.index()); const BufferAllocation& add_buffer = GetTopLevelAllocation(*buffers, add); EXPECT_NE(add_buffer.index(), sub_buffer.index()); GetAssignedOutputAllocation(*buffers, sub); } TEST_F(BufferAssignmentTest, BasicUniquelyColored) { auto builder = HloComputation::Builder(TestName()); auto paramscalar = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "p")); auto broadcast = builder.AddInstruction( HloInstruction::CreateBroadcast(f32vec100_, paramscalar, {})); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec100_, "p1")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(2, f32vec100_, "p2")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kMultiply, broadcast, param0)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec100_, HloOpcode::kAdd, mul, param1)); auto sub = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kSubtract, add, param1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); absl::flat_hash_map<const HloInstruction*, int> color_map; auto colorer = [&](HloAliasAnalysis* alias_analysis, const HloOrdering&) { int color = 0; for (HloValue::Id id = 0; id < alias_analysis->dataflow_analysis().values().size(); id++) { auto& value = alias_analysis->dataflow_analysis().GetValue(id); color_map[value.defining_instruction()] = color; value.set_color(BufferValue::Color(color++)); } return absl::OkStatus(); }; auto buffers = RunColoredBufferAssignment(module.get(), colorer); BufferAllocation paramscalar_buffer = GetAssignedInputAllocation(*buffers, paramscalar); BufferAllocation param0_buffer = GetAssignedInputAllocation(*buffers, param0); BufferAllocation param1_buffer = GetAssignedInputAllocation(*buffers, param1); EXPECT_NE(paramscalar_buffer.index(), param0_buffer.index()); EXPECT_NE(paramscalar_buffer.index(), param1_buffer.index()); EXPECT_NE(param0_buffer.index(), param1_buffer.index()); const BufferAllocation& mul_buffer = GetTopLevelAllocation(*buffers, mul); EXPECT_NE(mul_buffer.index(), param0_buffer.index()); const BufferAllocation& add_buffer = GetTopLevelAllocation(*buffers, add); EXPECT_NE(add_buffer.index(), mul_buffer.index()); GetAssignedOutputAllocation(*buffers, sub); EXPECT_EQ(param0->shape().layout().memory_space(), color_map[param0]); EXPECT_EQ(param1->shape().layout().memory_space(), color_map[param1]); EXPECT_EQ(mul->shape().layout().memory_space(), color_map[mul]); EXPECT_EQ(add->shape().layout().memory_space(), color_map[add]); EXPECT_EQ(sub->shape().layout().memory_space(), color_map[sub]); } TEST_F(BufferAssignmentTest, BasicPartiallyColored) { auto builder = HloComputation::Builder(TestName()); auto paramscalar = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "p")); auto broadcast = builder.AddInstruction( HloInstruction::CreateBroadcast(f32vec100_, paramscalar, {})); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec100_, "p1")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(2, f32vec100_, "p2")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kMultiply, broadcast, param0)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec100_, HloOpcode::kAdd, mul, param1)); auto sub = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kSubtract, add, param1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto colorer = [](HloAliasAnalysis* alias_analysis, const HloOrdering&) { for (HloValue::Id id = 0; id < alias_analysis->dataflow_analysis().values().size(); id++) { auto& value = alias_analysis->dataflow_analysis().GetValue(id); auto& buffer = alias_analysis->GetBufferContainingValue(value); for (const auto& alias : buffer.values()) { if (alias->instruction()->opcode() == HloOpcode::kAdd || alias->instruction()->opcode() == HloOpcode::kMultiply) { value.set_color(LogicalBuffer::Color(1)); } } if (!value.has_color()) { value.set_color(LogicalBuffer::Color(0)); } } return absl::OkStatus(); }; auto buffers = RunColoredBufferAssignment(module.get(), colorer); BufferAllocation paramscalar_buffer = GetAssignedInputAllocation(*buffers, paramscalar); BufferAllocation param0_buffer = GetAssignedInputAllocation(*buffers, param0); BufferAllocation param1_buffer = GetAssignedInputAllocation(*buffers, param1); EXPECT_NE(paramscalar_buffer.index(), param0_buffer.index()); EXPECT_NE(paramscalar_buffer.index(), param1_buffer.index()); EXPECT_NE(param0_buffer.index(), param1_buffer.index()); const BufferAllocation& mul_buffer = GetTopLevelAllocation(*buffers, mul); EXPECT_NE(mul_buffer.index(), param0_buffer.index()); const BufferAllocation& add_buffer = GetTopLevelAllocation(*buffers, add); EXPECT_EQ(add_buffer.index(), mul_buffer.index()); GetAssignedOutputAllocation(*buffers, sub); EXPECT_EQ(mul->shape().layout().memory_space(), 1); EXPECT_EQ(add->shape().layout().memory_space(), 1); EXPECT_EQ(sub->shape().layout().memory_space(), 0); EXPECT_EQ(param0->shape().layout().memory_space(), 0); EXPECT_EQ(param1->shape().layout().memory_space(), 0); } TEST_F(BufferAssignmentTest, PresetAssignments) { auto builder = HloComputation::Builder(TestName()); auto paramscalar = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "p")); auto broadcast = builder.AddInstruction( HloInstruction::CreateBroadcast(f32vec100_, paramscalar, {})); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec100_, "p1")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(2, f32vec100_, "p2")); Shape f32vec100_color1 = ShapeUtil::MakeShapeWithDenseLayout( F32, {100}, {0}, {}, 1, 0, 1); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_color1, HloOpcode::kMultiply, broadcast, param0)); auto add = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_color1, HloOpcode::kAdd, mul, param1)); auto sub = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kSubtract, add, param1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto preset_assignments = std::make_unique<PresetAssignments>(); preset_assignments->add_chunk({mul, {}}, HeapSimulator::Chunk::FromOffsetSize(100, 400)); preset_assignments->add_chunk({add, {}}, HeapSimulator::Chunk::FromOffsetSize(550, 400)); preset_assignments->assignment_information_for_space(1) ->size = 950; auto buffers = RunBufferAssignmentWithPresetAssignments( module.get(), std::move(preset_assignments)); BufferAllocation paramscalar_buffer = GetAssignedInputAllocation(*buffers, paramscalar); BufferAllocation param0_buffer = GetAssignedInputAllocation(*buffers, param0); BufferAllocation param1_buffer = GetAssignedInputAllocation(*buffers, param1); EXPECT_NE(paramscalar_buffer.index(), param0_buffer.index()); EXPECT_NE(paramscalar_buffer.index(), param1_buffer.index()); EXPECT_EQ(paramscalar_buffer.color(), LogicalBuffer::Color(0)); EXPECT_NE(param0_buffer.index(), param1_buffer.index()); EXPECT_EQ(param0_buffer.color(), LogicalBuffer::Color(0)); const BufferAllocation& mul_buffer = GetTopLevelAllocation(*buffers, mul); const BufferAllocation& add_buffer = GetTopLevelAllocation(*buffers, add); EXPECT_EQ(mul_buffer, add_buffer); EXPECT_NE(mul_buffer.index(), param0_buffer.index()); EXPECT_EQ(mul_buffer.color(), LogicalBuffer::Color(1)); EXPECT_EQ(mul_buffer.assigned_buffers().size(), 2); for (const auto& value_and_offsetsize : mul_buffer.assigned_buffers()) { if (value_and_offsetsize.first->instruction() == mul) { EXPECT_EQ(value_and_offsetsize.second.offset, 100); EXPECT_EQ(value_and_offsetsize.second.size, 400); } else { EXPECT_EQ(value_and_offsetsize.first->instruction(), add); EXPECT_EQ(value_and_offsetsize.second.offset, 550); EXPECT_EQ(value_and_offsetsize.second.size, 400); } } GetAssignedOutputAllocation(*buffers, sub); } TEST_F(BufferAssignmentTest, PresetAssignmentsWhile) { auto module = CreateNewVerifiedModule(); Shape f32vec10_color1 = ShapeUtil::MakeShapeWithDenseLayout( F32, {10}, {0}, {}, 1, 0, 1); Shape t_s32_f32v10_color1 = ShapeUtil::MakeTupleShape({s32_, f32vec10_color1}); auto cond_builder = HloComputation::Builder("WhileCond"); HloInstruction* cond_param = cond_builder.AddInstruction( HloInstruction::CreateParameter(0, t_s32_f32v10_color1, "cond_param")); HloInstruction* cond_iter = cond_builder.AddInstruction( HloInstruction::CreateGetTupleElement(s32_, cond_param, 0)); HloInstruction* cond_limit = cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(50))); cond_builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), cond_iter, cond_limit, ComparisonDirection::kLt)); HloComputation* cond_computation = module->AddEmbeddedComputation(cond_builder.Build()); auto body_builder = HloComputation::Builder("WhileBody"); HloInstruction* body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, t_s32_f32v10_color1, "body_param")); HloInstruction* body_iter = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(s32_, body_param, 0)); HloInstruction* body_data = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(f32vec10_color1, body_param, 1)); HloInstruction* body_data_increment = body_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<float>( {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f}))); HloInstruction* body_data_next = body_builder.AddInstruction(HloInstruction::CreateBinary( f32vec10_color1, HloOpcode::kAdd, body_data, body_data_increment)); HloInstruction* body_iter_increment = body_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(1))); HloInstruction* body_iter_next = body_builder.AddInstruction(HloInstruction::CreateBinary( s32_, HloOpcode::kAdd, body_iter, body_iter_increment)); body_builder.AddInstruction( HloInstruction::CreateTuple({body_iter_next, body_data_next})); HloComputation* body_computation = module->AddEmbeddedComputation(body_builder.Build()); auto builder = HloComputation::Builder(TestName()); HloInstruction* iter = builder.AddInstruction( HloInstruction::CreateParameter(0, s32_, "param_iter")); HloInstruction* data = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec10_, "param_data")); HloInstruction* negate = builder.AddInstruction( HloInstruction::CreateUnary(f32vec10_color1, HloOpcode::kNegate, data)); HloInstruction* tuple = builder.AddInstruction(HloInstruction::CreateTuple({iter, negate})); HloInstruction* while_op = builder.AddInstruction(HloInstruction::CreateWhile( t_s32_f32v10_color1, cond_computation, body_computation, tuple)); HloInstruction* while_data = builder.AddInstruction( HloInstruction::CreateGetTupleElement(f32vec10_color1, while_op, 1)); builder.AddInstruction(HloInstruction::CreateBinary( f32vec10_, HloOpcode::kAdd, while_data, data)); module->AddEntryComputation(builder.Build()); auto preset_assignments = std::make_unique<PresetAssignments>(); preset_assignments->add_chunk({negate, {}}, HeapSimulator::Chunk::FromOffsetSize(100, 40)); preset_assignments->assignment_information_for_space(1) ->size = 140; auto buffers_orig = RunBufferAssignmentWithPresetAssignments( module.get(), std::move(preset_assignments)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<BufferAssignment> buffers, ConvertToProtoAndBack(buffers_orig.get(), module.get())); const BufferAllocation& data_buffer = GetTopLevelAllocation(*buffers, negate); EXPECT_EQ(data_buffer.assigned_buffers().size(), 5); for (const auto& value_and_offsetsize : data_buffer.assigned_buffers()) { EXPECT_EQ(value_and_offsetsize.second.offset, 100); EXPECT_EQ(value_and_offsetsize.second.size, 40); EXPECT_EQ(value_and_offsetsize.first->color(), LogicalBuffer::Color(1)); } } TEST_F(BufferAssignmentTest, MultipleUsersForNode) { auto builder = HloComputation::Builder(TestName()); auto paramscalar = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "p")); auto broadcast = builder.AddInstruction( HloInstruction::CreateBroadcast(f32vec100_, paramscalar, {})); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec100_, "p1")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(2, f32vec100_, "p2")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kMultiply, broadcast, param0)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec100_, HloOpcode::kAdd, mul, param1)); auto sub = builder.AddInstruction( HloInstruction::CreateBinary(f32vec100_, HloOpcode::kSubtract, add, mul)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto buffers_orig = RunBufferAssignment(module.get()); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<BufferAssignment> buffers, ConvertToProtoAndBack(buffers_orig.get(), module.get())); BufferAllocation paramscalar_buffer = GetAssignedInputAllocation(*buffers, paramscalar); BufferAllocation param0_buffer = GetAssignedInputAllocation(*buffers, param0); BufferAllocation param1_index = GetAssignedInputAllocation(*buffers, param1); EXPECT_NE(paramscalar_buffer.index(), param0_buffer.index()); EXPECT_NE(paramscalar_buffer.index(), param1_index.index()); EXPECT_NE(param0_buffer.index(), param1_index.index()); const BufferAllocation& mul_buffer = GetTopLevelAllocation(*buffers, mul); const BufferAllocation& add_buffer = GetTopLevelAllocation(*buffers, add); EXPECT_NE(add_buffer.index(), mul_buffer.index()); const std::vector<const HloInstruction*> level0 = GetInstructions(sub); int64_t size0 = ValidateBuffers(level0, *buffers); LOG(INFO) << "LogicalBuffer count " << buffers->Allocations().size() << " for " << level0.size() << " instructions; " << "total buffer size " << size0; } TEST_F(BufferAssignmentTest, TrivialMap) { auto module = CreateNewVerifiedModule(); auto map_computation = module->AddEmbeddedComputation(BuildMapComputationPlus1("f32+1")); auto inner_last = map_computation->root_instruction(); auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, f32a100x10_, "p")); auto map = builder.AddInstruction( HloInstruction::CreateMap(f32a100x10_, {param0}, map_computation)); module->AddEntryComputation(builder.Build()); const std::vector<const HloInstruction*> level0 = GetInstructions(map); EXPECT_EQ(2, level0.size()) << "Invalid main kernel size"; const std::vector<const HloInstruction*> level1 = GetInstructions(inner_last); EXPECT_EQ(3, level1.size()) << "Invalid nested add+1 size"; auto buffers = RunBufferAssignment(module.get()); int64_t size0 = ValidateBuffers(level0, *buffers); int64_t size1 = ValidateBuffers(level1, *buffers); EXPECT_TRUE(BuffersDistinct(level0, level1, *buffers)) << "Reuse between main kernel and embedded mapping."; BufferAllocation param0_buffer = GetAssignedInputAllocation(*buffers, param0); BufferAllocation map_buffer = GetAssignedOutputAllocation(*buffers, map); EXPECT_NE(param0_buffer.index(), map_buffer.index()); EXPECT_EQ(HloOpcode::kAdd, inner_last->opcode()); const BufferAllocation& inner_add_buffer = GetTopLevelAllocation(*buffers, inner_last); EXPECT_NE(inner_add_buffer.index(), map_buffer.index()); LOG(INFO) << "LogicalBuffer count " << buffers->Allocations().size() << " for " << level0.size() + level1.size() << " instructions; " << "total buffer size " << size0 + size1; } TEST_F(BufferAssignmentTest, CannotReuseInputBufferOfReduce) { auto module = CreateNewVerifiedModule(); auto reduce_computation = module->AddEmbeddedComputation(BuildReduceComputation("f32+f32")); auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, f32a100x10_, "p")); auto exp1 = builder.AddInstruction( HloInstruction::CreateUnary(f32a100x10_, HloOpcode::kExp, param0)); auto exp2 = builder.AddInstruction( HloInstruction::CreateUnary(f32a100x10_, HloOpcode::kExp, exp1)); auto const0 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0f))); auto reduce = builder.AddInstruction(HloInstruction::CreateReduce( f32vec10_, exp2, const0, {0}, reduce_computation)); auto exp3 = builder.AddInstruction( HloInstruction::CreateUnary(f32vec10_, HloOpcode::kExp, reduce)); module->AddEntryComputation(builder.Build()); auto buffers = RunBufferAssignment(module.get()); const std::vector<const HloInstruction*> instrs = GetInstructions(exp3); ValidateBuffers(instrs, *buffers); const BufferAllocation& exp1_buffer = GetTopLevelAllocation(*buffers, exp1); const BufferAllocation& exp2_buffer = GetTopLevelAllocation(*buffers, exp2); const BufferAllocation& reduce_buffer = GetTopLevelAllocation(*buffers, reduce); EXPECT_EQ(exp1_buffer.index(), exp2_buffer.index()); EXPECT_NE(exp2_buffer.index(), reduce_buffer.index()); } TEST_F(BufferAssignmentTest, ExampleWhile) { auto module = CreateNewVerifiedModule(); auto condition_computation = module->AddEmbeddedComputation(BuildWhileConditionComputation("if<4")); auto body_computation = module->AddEmbeddedComputation(BuildWhileBodyComputation("add-update")); auto builder = HloComputation::Builder(TestName()); auto const3 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(0))); auto const4 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1.1f, 2.2f, 3.3f, 4.4f}))); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({const3, const4})); auto while_op = builder.AddInstruction(HloInstruction::CreateWhile( t_s32_f32v4_, condition_computation, body_computation, tuple)); module->AddEntryComputation(builder.Build()); const std::vector<const HloInstruction*> level0 = GetInstructions(while_op); EXPECT_EQ(4, level0.size()) << "Invalid while kernel size"; const std::vector<const HloInstruction*> levelc = GetInstructions(condition_computation->root_instruction()); EXPECT_EQ(4, levelc.size()) << "Invalid nested condition size"; const std::vector<const HloInstruction*> levelb = GetInstructions(body_computation->root_instruction()); EXPECT_EQ(8, levelb.size()) << "Invalid nested body size"; auto buffers = RunBufferAssignment(module.get()); int64_t size0 = ValidateBuffers(level0, *buffers); int64_t sizec = ValidateBuffers(levelc, *buffers); int64_t sizeb = ValidateBuffers(levelb, *buffers); EXPECT_FALSE(BuffersDistinct(level0, levelc, *buffers)) << "Should be reuse between main kernel and embedded condition."; EXPECT_FALSE(BuffersDistinct(levelb, levelc, *buffers)) << "Should be reuse between embedded condition and body."; EXPECT_FALSE(BuffersDistinct(level0, levelb, *buffers)) << "Should be reuse between main kernel and embedded body."; HloInstruction* body_root = body_computation->root_instruction(); EXPECT_EQ(HloOpcode::kTuple, body_root->opcode()); ShapeUtil::ForEachSubshape( while_op->shape(), [this, &buffers, while_op, body_root](const Shape& , const ShapeIndex& index) { auto while_op_allocation = GetAllocation(*buffers, while_op, index); auto body_root_allocation = GetAllocation(*buffers, body_root, index); EXPECT_EQ(while_op_allocation.index(), body_root_allocation.index()); }); LOG(INFO) << "LogicalBuffer count " << buffers->Allocations().size() << " for " << level0.size() + levelc.size() + levelb.size() << " instructions; total buffer size " << size0 + sizec + sizeb; } TEST_F(BufferAssignmentTest, ExampleConditional) { auto module = CreateNewVerifiedModule(); auto true_computation = module->AddEmbeddedComputation( BuildR0F32UnaryOpComputation(HloOpcode::kCeil, "Ceil")); auto false_computation = module->AddEmbeddedComputation( BuildR0F32UnaryOpComputation(HloOpcode::kFloor, "Floor")); auto builder = HloComputation::Builder(TestName()); auto pred = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); auto const1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(56.4f))); auto const2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(12.4f))); auto conditional = builder.AddInstruction(HloInstruction::CreateConditional( r0f32_, pred, const1, true_computation, const2, false_computation)); module->AddEntryComputation(builder.Build()); const std::vector<const HloInstruction*> conditional_instrs = GetInstructions(conditional); const std::vector<const HloInstruction*> true_instrs = GetInstructions(true_computation->root_instruction()); const std::vector<const HloInstruction*> false_instrs = GetInstructions(false_computation->root_instruction()); EXPECT_EQ(4, conditional_instrs.size()); EXPECT_EQ(2, true_instrs.size()); EXPECT_EQ(2, false_instrs.size()); auto buffers = RunBufferAssignment(module.get()); ValidateBuffers(conditional_instrs, *buffers); ValidateBuffers(true_instrs, *buffers); ValidateBuffers(false_instrs, *buffers); EXPECT_FALSE(BuffersDistinct(conditional_instrs, true_instrs, *buffers)) << "Should be reuse between conditional and true computation."; EXPECT_FALSE(BuffersDistinct(conditional_instrs, false_instrs, *buffers)) << "Should be reuse between conditional and false computation."; EXPECT_FALSE(BuffersDistinct(true_instrs, false_instrs, *buffers)) << "Should be reuse between true and false computations."; const BufferAllocation& conditional_buffer = GetTopLevelAllocation(*buffers, conditional); const BufferAllocation& true_buffer = GetTopLevelAllocation(*buffers, true_computation->root_instruction()); const BufferAllocation& false_buffer = GetTopLevelAllocation(*buffers, false_computation->root_instruction()); EXPECT_EQ(conditional_buffer.size(), true_buffer.size()); EXPECT_EQ(conditional_buffer.size(), false_buffer.size()); } TEST_F(BufferAssignmentTest, UnaryOpReuseChain) { auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec100_, "p")); auto exp1 = builder.AddInstruction( HloInstruction::CreateUnary(f32vec100_, HloOpcode::kExp, param0)); auto tanh = builder.AddInstruction( HloInstruction::CreateUnary(f32vec100_, HloOpcode::kTanh, exp1)); auto exp2 = builder.AddInstruction( HloInstruction::CreateUnary(f32vec100_, HloOpcode::kExp, tanh)); auto neg = builder.AddInstruction( HloInstruction::CreateUnary(f32vec100_, HloOpcode::kNegate, exp2)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto assignment = RunBufferAssignment(module.get()); EXPECT_TRUE(assignment->HasTopLevelAllocation(exp1)); auto& buffer_for_exp1 = GetTopLevelAllocation(*assignment, exp1); EXPECT_EQ(buffer_for_exp1, GetTopLevelAllocation(*assignment, tanh)); EXPECT_EQ(buffer_for_exp1, GetTopLevelAllocation(*assignment, exp2)); EXPECT_EQ(buffer_for_exp1, GetTopLevelAllocation(*assignment, neg)); } TEST_F(BufferAssignmentTest, ReuseNonOperandBuffer) { auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec100_, "param0")); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(f32vec100_, HloOpcode::kNegate, param0)); auto slice = builder.AddInstruction( HloInstruction::CreateSlice(f32vec10_, negate, {0}, {10}, {1})); auto broadcast = builder.AddInstruction( HloInstruction::CreateBroadcast(f32a100x10_, slice, {1})); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto assignment = RunBufferAssignment(module.get()); EXPECT_TRUE(assignment->HasTopLevelAllocation(broadcast)); auto& buffer_for_bcast = GetTopLevelAllocation(*assignment, broadcast); EXPECT_EQ(buffer_for_bcast, GetTopLevelAllocation(*assignment, negate)); EXPECT_NE(buffer_for_bcast, GetTopLevelAllocation(*assignment, slice)); } TEST_F(BufferAssignmentTest, NoReuseLiveBuffer) { auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec100_, "param0")); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(f32vec100_, HloOpcode::kNegate, param0)); auto slice = builder.AddInstruction( HloInstruction::CreateSlice(f32vec10_, negate, {0}, {10}, {1})); auto broadcast = builder.AddInstruction( HloInstruction::CreateBroadcast(f32a100x10_, slice, {1})); builder.AddInstruction(HloInstruction::CreateTuple({negate, broadcast})); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto assignment_orig = RunBufferAssignment(module.get()); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<BufferAssignment> assignment, ConvertToProtoAndBack(assignment_orig.get(), module.get())); EXPECT_NE(GetTopLevelAllocation(*assignment, broadcast), GetTopLevelAllocation(*assignment, negate)); EXPECT_NE(GetTopLevelAllocation(*assignment, broadcast), GetTopLevelAllocation(*assignment, slice)); EXPECT_NE(GetTopLevelAllocation(*assignment, negate), GetTopLevelAllocation(*assignment, slice)); } TEST_F(BufferAssignmentTest, NoReuseAliasedBuffer) { auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec100_, "param0")); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(f32vec100_, HloOpcode::kNegate, param0)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({negate})); auto tuple_element = builder.AddInstruction( HloInstruction::CreateGetTupleElement(f32vec100_, tuple, 0)); auto slice = builder.AddInstruction( HloInstruction::CreateSlice(f32vec10_, tuple_element, {0}, {10}, {1})); auto broadcast = builder.AddInstruction( HloInstruction::CreateBroadcast(f32a100x10_, slice, {1})); builder.AddInstruction(HloInstruction::CreateTuple({tuple, broadcast})); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto assignment_orig = RunBufferAssignment(module.get()); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<BufferAssignment> assignment, ConvertToProtoAndBack(assignment_orig.get(), module.get())); EXPECT_NE(GetTopLevelAllocation(*assignment, broadcast), GetTopLevelAllocation(*assignment, negate)); EXPECT_NE(GetTopLevelAllocation(*assignment, broadcast), GetTopLevelAllocation(*assignment, slice)); EXPECT_NE(GetTopLevelAllocation(*assignment, negate), GetTopLevelAllocation(*assignment, slice)); } TEST_F(BufferAssignmentTest, DoNotReuseOversizedOutputBuffer) { auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec100_, "param0")); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(f32vec100_, HloOpcode::kNegate, param0)); auto slice = builder.AddInstruction( HloInstruction::CreateSlice(f32vec10_, negate, {0}, {10}, {1})); auto broadcast = builder.AddInstruction(HloInstruction::CreateBroadcast( ShapeUtil::MakeShape(F32, {10, 4}), slice, {0})); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto assignment = RunBufferAssignment(module.get()); EXPECT_NE(GetTopLevelAllocation(*assignment, broadcast), GetTopLevelAllocation(*assignment, negate)); EXPECT_NE(GetTopLevelAllocation(*assignment, broadcast), GetTopLevelAllocation(*assignment, slice)); } TEST_F(BufferAssignmentTest, ReuseOutputBufferIfExactlySized) { auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec100_, "param0")); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(f32vec100_, HloOpcode::kNegate, param0)); auto slice = builder.AddInstruction( HloInstruction::CreateSlice(f32vec10_, negate, {0}, {10}, {1})); auto broadcast = builder.AddInstruction(HloInstruction::CreateBroadcast( ShapeUtil::MakeShape(F32, {10, 10}), slice, {0})); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto assignment = RunBufferAssignment(module.get()); EXPECT_TRUE(assignment->HasTopLevelAllocation(broadcast)); auto& buffer_for_bcast = GetTopLevelAllocation(*assignment, broadcast); EXPECT_EQ(buffer_for_bcast, GetTopLevelAllocation(*assignment, negate)); EXPECT_NE(buffer_for_bcast, GetTopLevelAllocation(*assignment, slice)); } TEST_F(BufferAssignmentTest, DoNotReuseOversizedOutputBufferInTuple) { auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec100_, "param0")); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(f32vec100_, HloOpcode::kNegate, param0)); auto slice = builder.AddInstruction( HloInstruction::CreateSlice(f32vec10_, negate, {0}, {10}, {1})); auto broadcast = builder.AddInstruction(HloInstruction::CreateBroadcast( ShapeUtil::MakeShape(F32, {10, 4}), slice, {0})); builder.AddInstruction(HloInstruction::CreateTuple({broadcast})); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto assignment = RunBufferAssignment(module.get()); EXPECT_NE(GetTopLevelAllocation(*assignment, broadcast), GetTopLevelAllocation(*assignment, negate)); EXPECT_NE(GetTopLevelAllocation(*assignment, broadcast), GetTopLevelAllocation(*assignment, slice)); } TEST_F(BufferAssignmentTest, EmbeddedComputationBuffers) { auto module = CreateNewVerifiedModule(); auto vec_shape = ShapeUtil::MakeShape(F32, {42}); auto scalar_shape = ShapeUtil::MakeShape(F32, {}); auto map_builder = HloComputation::Builder(TestName() + "_map"); auto map_param = map_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "map_param")); auto map_root = map_builder.AddInstruction( HloInstruction::CreateUnary(scalar_shape, HloOpcode::kNegate, map_param)); auto map_computation = module->AddEmbeddedComputation(map_builder.Build()); auto call_builder = HloComputation::Builder(TestName() + "_call"); auto call_param = call_builder.AddInstruction( HloInstruction::CreateParameter(0, vec_shape, "vec_param")); auto call_root = call_builder.AddInstruction( HloInstruction::CreateUnary(vec_shape, HloOpcode::kExp, call_param)); auto call_computation = module->AddEmbeddedComputation(call_builder.Build()); auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, vec_shape, "param")); auto call = builder.AddInstruction( HloInstruction::CreateCall(vec_shape, {param}, call_computation)); auto map = builder.AddInstruction( HloInstruction::CreateMap(vec_shape, {call}, map_computation)); module->AddEntryComputation(builder.Build()); auto assignment = RunBufferAssignment(module.get()); auto& map_param_alloc = GetTopLevelAllocation(*assignment, map_param); EXPECT_FALSE(map_param_alloc.is_entry_computation_parameter()); EXPECT_FALSE(map_param_alloc.maybe_live_out()); EXPECT_TRUE(map_param_alloc.is_thread_local()); auto& map_root_alloc = GetTopLevelAllocation(*assignment, map_root); EXPECT_FALSE(map_root_alloc.is_entry_computation_parameter()); EXPECT_FALSE(map_root_alloc.maybe_live_out()); EXPECT_TRUE(map_root_alloc.is_thread_local()); auto& call_param_alloc = GetTopLevelAllocation(*assignment, call_param); EXPECT_TRUE(call_param_alloc.is_entry_computation_parameter()); EXPECT_FALSE(call_param_alloc.maybe_live_out()); EXPECT_FALSE(call_param_alloc.is_thread_local()); auto& call_root_alloc = GetTopLevelAllocation(*assignment, call_root); EXPECT_FALSE(call_root_alloc.is_entry_computation_parameter()); EXPECT_FALSE(call_root_alloc.is_thread_local()); auto& param_alloc = GetTopLevelAllocation(*assignment, param); EXPECT_TRUE(param_alloc.is_entry_computation_parameter()); EXPECT_FALSE(param_alloc.maybe_live_out()); EXPECT_FALSE(param_alloc.is_thread_local()); auto& map_alloc = GetTopLevelAllocation(*assignment, map); EXPECT_FALSE(map_alloc.is_entry_computation_parameter()); EXPECT_TRUE(map_alloc.maybe_live_out()); EXPECT_FALSE(map_alloc.is_thread_local()); } TEST_F(BufferAssignmentTest, CustomCallEmbeddedComputationBuffers) { auto module = CreateNewVerifiedModule(); auto scalar_shape = ShapeUtil::MakeShape(F32, {}); auto map_builder = HloComputation::Builder(TestName() + "_map"); auto map_param = map_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "map_param")); auto map_root = map_builder.AddInstruction( HloInstruction::CreateUnary(scalar_shape, HloOpcode::kNegate, map_param)); auto map_computation = module->AddEmbeddedComputation(map_builder.Build()); auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "param")); builder.AddInstruction(HloInstruction::CreateCustomCall( scalar_shape, {param}, map_computation, "call_name")); module->AddEntryComputation(builder.Build()); auto assignment = RunBufferAssignment(module.get()); auto& map_param_alloc = GetTopLevelAllocation(*assignment, map_param); EXPECT_FALSE(map_param_alloc.is_entry_computation_parameter()); EXPECT_FALSE(map_param_alloc.maybe_live_out()); EXPECT_TRUE(map_param_alloc.is_thread_local()); auto& map_root_alloc = GetTopLevelAllocation(*assignment, map_root); EXPECT_FALSE(map_root_alloc.is_entry_computation_parameter()); EXPECT_FALSE(map_root_alloc.maybe_live_out()); EXPECT_TRUE(map_root_alloc.is_thread_local()); } TEST_F(BufferAssignmentTest, TupleParameterAsOutput) { auto builder = HloComputation::Builder(TestName()); auto tuple_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(PRED, {1, 2, 3, 4}), ShapeUtil::MakeShape(F32, {}), ShapeUtil::MakeShape(S32, {42})}), "param0")); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto assignment = RunBufferAssignment(module.get()); EXPECT_EQ(4, assignment->Allocations().size()); ShapeUtil::ForEachSubshape( tuple_param->shape(), [this, &assignment, tuple_param](const Shape& , const ShapeIndex& index) { auto allocation = GetAllocation(*assignment, tuple_param, index); EXPECT_TRUE(allocation.is_entry_computation_parameter()); EXPECT_EQ(0, allocation.parameter_number()); EXPECT_TRUE(allocation.maybe_live_out()); }); } TEST_F(BufferAssignmentTest, ElementOfNestedTupleParameterAsOutput) { auto builder = HloComputation::Builder(TestName()); auto tuple_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(PRED, {1, 2, 3, 4}), ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(S32, {42}), ShapeUtil::MakeShape(S32, {101})})}), "param0")); auto tuple_element = builder.AddInstruction(HloInstruction::CreateGetTupleElement( ShapeUtil::GetSubshape(tuple_param->shape(), {1}), tuple_param, 1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto assignment = RunBufferAssignment(module.get()); EXPECT_FALSE( GetAllocation(*assignment, tuple_param, {}).maybe_live_out()); EXPECT_TRUE( GetAllocation(*assignment, tuple_param, {1}).maybe_live_out()); EXPECT_TRUE(GetAllocation(*assignment, tuple_param, {1, 0}) .maybe_live_out()); EXPECT_TRUE(GetAllocation(*assignment, tuple_param, {1, 1}) .maybe_live_out()); EXPECT_TRUE( GetTopLevelAllocation(*assignment, tuple_element).maybe_live_out()); EXPECT_EQ(GetAllocation(*assignment, tuple_param, {1, 0}), GetAllocation(*assignment, tuple_element, {0})); EXPECT_EQ(GetAllocation(*assignment, tuple_param, {1, 1}), GetAllocation(*assignment, tuple_element, {1})); EXPECT_EQ(GetAllocation(*assignment, tuple_param, {1}), GetTopLevelAllocation(*assignment, tuple_element)); } TEST_F(BufferAssignmentTest, TupleConstantAsOutput) { auto builder = HloComputation::Builder(TestName()); Literal elements[] = {LiteralUtil::CreateR0<int64_t>(0), LiteralUtil::CreateR0<int64_t>(1)}; builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::MakeTuple({&elements[0], &elements[1]}))); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto assignment = RunBufferAssignment(module.get()); EXPECT_EQ(3, assignment->Allocations().size()); } TEST_F(BufferAssignmentTest, TupleCustomCallAsOutput) { auto builder = HloComputation::Builder(TestName()); auto custom_call = builder.AddInstruction(HloInstruction::CreateCustomCall( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(PRED, {1, 2, 3, 4}), ShapeUtil::MakeShape(S32, {101})}), {}, "foo_function")); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto assignment = RunBufferAssignment(module.get()); EXPECT_EQ(3, assignment->Allocations().size()); EXPECT_TRUE( GetAllocation(*assignment, custom_call, {}).maybe_live_out()); EXPECT_TRUE( GetAllocation(*assignment, custom_call, {0}).maybe_live_out()); EXPECT_TRUE( GetAllocation(*assignment, custom_call, {1}).maybe_live_out()); } TEST_F(BufferAssignmentTest, CustomCallAliasedBuffer) { const char* const kModuleString = R"( HloModule xla_computation_f ENTRY xla_computation_f { parameter.1 = f32[2,3,4,5] parameter(0) parameter.2 = f32[2,3,4,5] parameter(1) add = f32[2,3,4,5] add(parameter.1, parameter.2) ROOT custom-call = f32[2,3,4,5] custom-call(add, parameter.2), custom_call_target="dm_softmax", operand_layout_constraints={f32[2,3,4,5], f32[2,3,4,5]}, output_to_operand_aliasing={{}: (0, {})} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnUnverifiedModule(kModuleString)); std::unique_ptr<BufferAssignment> assignment = RunBufferAssignment(module.get()); HloInstruction* custom_call = module->entry_computation()->root_instruction(); EXPECT_TRUE( assignment->SharesTopLevelSlice(custom_call, custom_call->operand(0))); } TEST_F(BufferAssignmentTest, TupleCallAsOutput) { auto module = CreateNewVerifiedModule(); auto elem_shape = f32vec4_; auto tuple_shape = ShapeUtil::MakeTupleShape({elem_shape}); auto sub_builder = HloComputation::Builder(TestName() + "_sub"); auto sub_param = sub_builder.AddInstruction( HloInstruction::CreateParameter(0, elem_shape, "sub_param")); auto sub_tuple = sub_builder.AddInstruction(HloInstruction::CreateTuple({sub_param})); auto sub_computation = module->AddEmbeddedComputation(sub_builder.Build()); auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, elem_shape, "param")); auto call = builder.AddInstruction( HloInstruction::CreateCall(tuple_shape, {param}, sub_computation)); module->AddEntryComputation(builder.Build()); auto assignment = RunBufferAssignment(module.get()); EXPECT_EQ(2, assignment->Allocations().size()); EXPECT_EQ(GetAllocation(*assignment, call, {}), GetAllocation(*assignment, sub_tuple, {})); EXPECT_EQ(GetAllocation(*assignment, call, {0}), GetAllocation(*assignment, sub_param, {})); EXPECT_NE(GetTopLevelAllocation(*assignment, param), GetTopLevelAllocation(*assignment, sub_tuple)); EXPECT_EQ(GetTopLevelAllocation(*assignment, param), GetTopLevelAllocation(*assignment, sub_param)); } TEST_F(BufferAssignmentTest, TupleChainedCallAsOutput) { auto module = CreateNewVerifiedModule(); auto elem_shape = f32vec4_; auto tuple_shape = ShapeUtil::MakeTupleShape({elem_shape}); auto d_builder = HloComputation::Builder(TestName() + "_d"); auto d_param = d_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "d_param")); auto d_computation = d_builder.Build(); auto c_builder = HloComputation::Builder(TestName() + "_c"); auto c_param = c_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "c_param")); auto c_call = c_builder.AddInstruction( HloInstruction::CreateCall(tuple_shape, {c_param}, d_computation.get())); auto c_computation = c_builder.Build(); auto b_builder = HloComputation::Builder(TestName() + "_b"); auto b_param = b_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "b_param")); auto b_call = b_builder.AddInstruction( HloInstruction::CreateCall(tuple_shape, {b_param}, c_computation.get())); auto b_computation = b_builder.Build(); auto a_builder = HloComputation::Builder(TestName()); auto a_param = a_builder.AddInstruction( HloInstruction::CreateParameter(0, elem_shape, "param")); auto a_tuple = a_builder.AddInstruction(HloInstruction::CreateTuple({a_param})); auto a_call = a_builder.AddInstruction( HloInstruction::CreateCall(tuple_shape, {a_tuple}, b_computation.get())); auto a_computation = a_builder.Build(); module->AddEmbeddedComputation(std::move(d_computation)); module->AddEmbeddedComputation(std::move(c_computation)); module->AddEntryComputation(std::move(a_computation)); module->AddEmbeddedComputation(std::move(b_computation)); auto assignment = RunBufferAssignment(module.get()); EXPECT_EQ(GetAllocation(*assignment, a_call, {}), GetAllocation(*assignment, b_call, {})); EXPECT_EQ(GetAllocation(*assignment, b_call, {}), GetAllocation(*assignment, c_call, {})); EXPECT_EQ(GetAllocation(*assignment, c_call, {}), GetAllocation(*assignment, d_param, {})); EXPECT_EQ(GetAllocation(*assignment, a_call, {0}), GetAllocation(*assignment, b_call, {0})); EXPECT_EQ(GetAllocation(*assignment, b_call, {0}), GetAllocation(*assignment, c_call, {0})); EXPECT_EQ(GetAllocation(*assignment, c_call, {0}), GetAllocation(*assignment, d_param, {0})); EXPECT_TRUE(BuffersDistinct({a_param}, {b_param}, *assignment)); EXPECT_TRUE(BuffersDistinct({a_param}, {c_param}, *assignment)); EXPECT_TRUE(BuffersDistinct({a_param}, {d_param}, *assignment)); EXPECT_EQ(GetAllocation(*assignment, b_param, {0}), GetAllocation(*assignment, c_param, {0})); EXPECT_EQ(GetAllocation(*assignment, c_param, {0}), GetAllocation(*assignment, d_param, {0})); } TEST_F(BufferAssignmentTest, BitcastAsOutput) { auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {42}), "param")); auto bitcast = builder.AddInstruction( HloInstruction::CreateBitcast(param->shape(), param)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto assignment = RunBufferAssignment(module.get()); EXPECT_EQ(1, assignment->Allocations().size()); EXPECT_EQ(GetTopLevelAllocation(*assignment, param), GetTopLevelAllocation(*assignment, bitcast)); } TEST_F(BufferAssignmentTest, TupleBufferNotReused) { auto builder = HloComputation::Builder(TestName()); auto scalar_shape = ShapeUtil::MakeShape(F32, {}); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "param0")); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({param})); auto tuple_element = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape, tuple, 0)); auto copy = builder.AddInstruction(HloInstruction::CreateUnary( scalar_shape, HloOpcode::kCopy, tuple_element)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto assignment_orig = RunBufferAssignment(module.get()); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<BufferAssignment> assignment, ConvertToProtoAndBack(assignment_orig.get(), module.get())); EXPECT_EQ(3, assignment->Allocations().size()); EXPECT_NE(GetTopLevelAllocation(*assignment, tuple), GetTopLevelAllocation(*assignment, copy)); } TEST_F(BufferAssignmentTest, OneTempAllocation) { auto builder = HloComputation::Builder(TestName()); Shape shape_2x3 = ShapeUtil::MakeShape(F32, {2, 3}); Shape shape_2x4 = ShapeUtil::MakeShape(F32, {2, 4}); Shape shape_3x4 = ShapeUtil::MakeShape(F32, {3, 4}); Shape shape_4x4 = ShapeUtil::MakeShape(F32, {4, 4}); Shape shape_5x4 = ShapeUtil::MakeShape(F32, {5, 4}); auto param_a = builder.AddInstruction( HloInstruction::CreateParameter(0, shape_2x3, "param_a")); auto param_b = builder.AddInstruction( HloInstruction::CreateParameter(1, shape_3x4, "param_b")); auto param_c = builder.AddInstruction( HloInstruction::CreateParameter(2, shape_4x4, "param_c")); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); PrecisionConfig precision_config; precision_config.mutable_operand_precision()->Resize( 2, PrecisionConfig::DEFAULT); auto dot_ab = builder.AddInstruction(HloInstruction::CreateDot( shape_2x4, param_a, param_b, dot_dnums, precision_config)); auto dot_bc = builder.AddInstruction(HloInstruction::CreateDot( shape_3x4, param_b, param_c, dot_dnums, precision_config)); builder.AddInstruction( HloInstruction::CreateConcatenate(shape_5x4, {dot_ab, dot_bc}, 0)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto assignment = RunBufferAssignment(module.get(), 1); EXPECT_EQ(5, assignment->Allocations().size()); BufferAllocation::Slice slice_ab = assignment->GetUniqueTopLevelSlice(dot_ab).value(); BufferAllocation::Slice slice_bc = assignment->GetUniqueTopLevelSlice(dot_bc).value(); EXPECT_EQ(slice_ab.allocation(), slice_bc.allocation()); EXPECT_NE(slice_ab, slice_bc); EXPECT_EQ(32, slice_ab.size()); EXPECT_EQ(48, slice_bc.size()); EXPECT_EQ(80, slice_ab.allocation()->size()); EXPECT_EQ(80, slice_bc.allocation()->size()); assignment = RunBufferAssignment(module.get(), 64); EXPECT_EQ(5, assignment->Allocations().size()); slice_ab = assignment->GetUniqueTopLevelSlice(dot_ab).value(); slice_bc = assignment->GetUniqueTopLevelSlice(dot_bc).value(); EXPECT_EQ(slice_ab.allocation(), slice_bc.allocation()); EXPECT_NE(slice_ab, slice_bc); EXPECT_EQ(32, slice_ab.size()); EXPECT_EQ(48, slice_bc.size()); if (slice_ab.offset() == 0) { EXPECT_EQ(64, slice_bc.offset()); EXPECT_EQ(64 + 48, slice_ab.allocation()->size()); EXPECT_EQ(64 + 48, slice_bc.allocation()->size()); } else { EXPECT_EQ(64, slice_ab.offset()); EXPECT_EQ(0, slice_bc.offset()); EXPECT_EQ(64 + 32, slice_ab.allocation()->size()); EXPECT_EQ(64 + 32, slice_bc.allocation()->size()); } } TEST_F(BufferAssignmentTest, TrivialPeakBuffers) { auto builder = HloComputation::Builder(TestName()); auto paramscalar = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "p")); auto broadcast = builder.AddInstruction( HloInstruction::CreateBroadcast(f32vec100_, paramscalar, {})); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec100_, "p1")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(2, f32vec100_, "p2")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kMultiply, broadcast, param0)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec100_, HloOpcode::kAdd, mul, param1)); auto sub = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kSubtract, add, param1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto buffers = RunBufferAssignment(module.get()); const BufferAllocation& mul_buffer = GetTopLevelAllocation(*buffers, mul); const std::vector<const HloValue*>& peak_buffers = mul_buffer.PeakMemoryLogicalBuffers(); ASSERT_EQ(peak_buffers.size(), 1); EXPECT_EQ(peak_buffers[0]->instruction(), sub); } TEST_F(BufferAssignmentTest, PeakBuffers) { auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec100_, "p")); auto log = builder.AddInstruction( HloInstruction::CreateUnary(f32vec100_, HloOpcode::kLog, param)); auto rev = builder.AddInstruction( HloInstruction::CreateReverse(f32vec100_, log, {0})); auto neg = builder.AddInstruction( HloInstruction::CreateUnary(f32vec100_, HloOpcode::kNegate, param)); const Shape concat_shape = ShapeUtil::MakeShape(F32, {200}); auto concat = builder.AddInstruction( HloInstruction::CreateConcatenate(concat_shape, {rev, neg}, 0)); auto root = builder.AddInstruction(HloInstruction::CreateSlice( ShapeUtil::MakeShape(F32, {1}), concat, {0}, {1}, {1})); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto buffers = RunBufferAssignmentWithInstructionSequence( module.get(), {param, log, rev, neg, concat, root}); const BufferAllocation& buffer = GetTopLevelAllocation(*buffers, concat); EXPECT_FALSE(buffer.IsInputOrOutput()); EXPECT_TRUE(buffer.IsPreallocatedTempBuffer()); ASSERT_EQ(buffer.assigned_buffers().size(), 4); const std::vector<const HloValue*>& peak_buffers = buffer.PeakMemoryLogicalBuffers(); ASSERT_EQ(peak_buffers.size(), 3); std::vector<const HloInstruction*> peak_instructions; for (const HloValue* logical_buffer : peak_buffers) { peak_instructions.push_back(logical_buffer->instruction()); } EXPECT_THAT(peak_instructions, UnorderedElementsAre(rev, neg, concat)); } TEST_F(BufferAssignmentTest, AliasedBuffersShouldntCoexistInPeakBuffers) { std::string hlo_text = R"( HloModule test_module, is_scheduled=true cond { param = (s32[], s32[]) parameter(0) ROOT constant = pred[] constant(true) } body { param.0 = (s32[], s32[]) parameter(0) gte = s32[] get-tuple-element(param.0), index=0 add = s32[] add(gte, gte) ROOT tuple = (s32[], s32[]) tuple(add, add) } ENTRY test_module { param.3 = s32[] parameter(0) copy = s32[] copy(param.3) tuple = (s32[], s32[]) tuple(copy, copy) while = (s32[], s32[]) while(tuple), condition=cond, body=body gte = s32[] get-tuple-element(while), index=0 ROOT negate = s32[] negate(gte) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_text)); auto assignment = RunBufferAssignmentWithSequentialOrdering(module.get()); const BufferAllocation& buffer = GetTopLevelAllocation(*assignment, FindInstruction(module.get(), "copy")); const std::vector<const HloValue*>& peak_buffers = buffer.PeakMemoryLogicalBuffers(); int num_peak_buffers = 0; for (const HloValue* peak_buffer : peak_buffers) { if (peak_buffer->shape().IsArray()) { ++num_peak_buffers; } } EXPECT_EQ(num_peak_buffers, 1); } TEST_F(BufferAssignmentTest, InPlaceBuffer) { const char* hlo_text = R"( HloModule Module ENTRY main { state = (s32[], f32[1280,1,128]{2,1,0}) parameter(0) constant.1 = f32[] constant(0) broadcast.6 = f32[128,1,128]{2,1,0} broadcast(constant.1), dimensions={} get-tuple-element.4 = f32[1280,1,128]{2,1,0} get-tuple-element(state), index=1 get-tuple-element.3 = s32[] get-tuple-element(state), index=0 constant.2 = s32[] constant(128) add.5 = s32[] add(get-tuple-element.3, constant.2) constant.3 = s32[] constant(0) dynamic-update-slice.5 = f32[1280,1,128]{2,1,0} dynamic-update-slice(get-tuple-element.4, broadcast.6, constant.3, constant.3, constant.3) dynamic-update-slice.9 = f32[1280,1,128]{2,1,0} dynamic-update-slice(dynamic-update-slice.5, broadcast.6, constant.3, constant.3, constant.3) ROOT tuple.85 = (s32[], f32[1280,1,128]{2,1,0}) tuple(add.5, dynamic-update-slice.9) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_text)); HloInstruction* parameter = m->entry_computation()->GetInstructionWithName("get-tuple-element.4"); HloInstruction* dus1 = m->entry_computation()->GetInstructionWithName("dynamic-update-slice.5"); HloInstruction* dus2 = m->entry_computation()->GetInstructionWithName("dynamic-update-slice.9"); auto buffers = RunBufferAssignment(m.get()); { const BufferAllocation& parameter_alloc = GetTopLevelAllocation(*buffers, parameter); const BufferAllocation& dus1_alloc = GetTopLevelAllocation(*buffers, dus1); EXPECT_EQ(parameter_alloc, dus1_alloc); const BufferAllocation& dus2_alloc = GetTopLevelAllocation(*buffers, dus2); EXPECT_EQ(parameter_alloc, dus2_alloc); } } TEST_F(BufferAssignmentTest, ConstantBuffersAreNotReused) { const char* hlo_text = R"( HloModule Module True { ROOT x.0.1 = f32[] parameter(0) } False { x.0.0 = f32[] parameter(0) ROOT copy.1 = f32[] copy(x.0.0) } ENTRY main { pred.1.0 = pred[] parameter(0) constant.1.1 = f32[] constant(56) copy.2 = f32[] copy(constant.1.1) constant.1.2 = f32[] constant(12) ROOT conditional.1.3 = f32[] conditional(pred.1.0, copy.2, constant.1.2), true_computation=True, false_computation=False } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_text)); HloInstruction* constant_1 = m->entry_computation()->GetInstructionWithName("constant.1.1"); HloInstruction* constant_2 = m->entry_computation()->GetInstructionWithName("constant.1.2"); auto buffers = RunBufferAssignment(m.get()); { const BufferAllocation& allocation_for_const_1 = GetTopLevelAllocation(*buffers, constant_1); EXPECT_TRUE(allocation_for_const_1.is_constant()); for (const auto& buffer_offset_pair : allocation_for_const_1.assigned_buffers()) { EXPECT_NE(buffer_offset_pair.first->instruction()->opcode(), HloOpcode::kCopy); EXPECT_NE(buffer_offset_pair.first->instruction()->opcode(), HloOpcode::kConditional); } } { const BufferAllocation& allocation_for_const_2 = GetTopLevelAllocation(*buffers, constant_2); EXPECT_TRUE(allocation_for_const_2.is_constant()); for (const auto& buffer_offset_pair : allocation_for_const_2.assigned_buffers()) { EXPECT_NE(buffer_offset_pair.first->instruction()->opcode(), HloOpcode::kCopy); EXPECT_NE(buffer_offset_pair.first->instruction()->opcode(), HloOpcode::kConditional); } } } class WhileBufferAssignmentTest : public HloTestBase { protected: std::unique_ptr<HloComputation> BuildWhileConditionComputation( const std::string& name) { auto builder = HloComputation::Builder(name); builder.AddInstruction( HloInstruction::CreateParameter(0, loop_state_shape_, "loop_state")); auto zero = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(0))); auto ten = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(10))); builder.AddInstruction(HloInstruction::CreateCompare( ShapeUtil::MakeShape(PRED, {}), zero, ten, ComparisonDirection::kLt)); return builder.Build(); } std::unique_ptr<HloComputation> BuildWhileBodyComputation( const std::string& name) { auto builder = HloComputation::Builder(name); auto loop_state = builder.AddInstruction( HloInstruction::CreateParameter(0, loop_state_shape_, "loop_state")); auto input = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape_, loop_state, 0)); auto weights = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape_, loop_state, 1)); auto output = builder.AddInstruction(HloInstruction::CreateBinary( data_shape_, HloOpcode::kMultiply, input, weights)); builder.AddInstruction( HloInstruction::CreateTuple({input, weights, output})); return builder.Build(); } std::unique_ptr<BufferAssignment> RunBufferAssignment(HloModule* module, int64_t alignment = 1) { HloSchedule schedule = ScheduleModule(module, ByteSizeOf).value(); return BufferAssigner::Run( module, std::make_unique<SequentialHloOrdering>(schedule), ByteSizeOf, [alignment](LogicalBuffer::Color) { return alignment; }, true) .value(); } static int64_t ByteSizeOf(const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape(), sizeof(void*)); } Shape data_shape_ = ShapeUtil::MakeShape(F32, {4}); Shape loop_state_shape_ = ShapeUtil::MakeTupleShape({data_shape_, data_shape_, data_shape_}); }; static void RunCopyInsertion(HloModule* module) { CopyInsertion copy_insertion; EXPECT_IS_OK(copy_insertion.Run(module).status()); } TEST_F(WhileBufferAssignmentTest, TwoForwardWhileLoops) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder("entry"); auto input0 = builder.AddInstruction( HloInstruction::CreateParameter(0, data_shape_, "input0")); auto weights0 = builder.AddInstruction( HloInstruction::CreateParameter(1, data_shape_, "weights0")); auto weights1 = builder.AddInstruction( HloInstruction::CreateParameter(2, data_shape_, "weights1")); auto zero = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0))); auto output0 = builder.AddInstruction( HloInstruction::CreateBroadcast(data_shape_, zero, {})); auto output1 = builder.AddInstruction( HloInstruction::CreateBroadcast(data_shape_, zero, {})); auto cond0 = module->AddEmbeddedComputation(BuildWhileConditionComputation("cond")); auto body0 = module->AddEmbeddedComputation(BuildWhileBodyComputation("body")); auto tuple0 = builder.AddInstruction( HloInstruction::CreateTuple({input0, weights0, output0})); auto while0 = builder.AddInstruction( HloInstruction::CreateWhile(loop_state_shape_, cond0, body0, tuple0)); auto cond1 = module->AddEmbeddedComputation(BuildWhileConditionComputation("cond")); auto body1 = module->AddEmbeddedComputation(BuildWhileBodyComputation("body")); auto input1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape_, while0, 2)); auto tuple1 = builder.AddInstruction( HloInstruction::CreateTuple({input1, weights1, output1})); auto while1 = builder.AddInstruction( HloInstruction::CreateWhile(loop_state_shape_, cond1, body1, tuple1)); module->AddEntryComputation(builder.Build()); RunCopyInsertion(module.get()); auto assignment = RunBufferAssignment(module.get()); EXPECT_EQ(assignment->GetUniqueSlice(input0, {}).value(), assignment->GetUniqueSlice(while0, {0}).value()); EXPECT_EQ(assignment->GetUniqueSlice(weights0, {}).value(), assignment->GetUniqueSlice(while0, {1}).value()); EXPECT_EQ(assignment->GetUniqueSlice(while0, {2}).value(), assignment->GetUniqueSlice(while1, {0}).value()); EXPECT_EQ(assignment->GetUniqueSlice(weights1, {}).value(), assignment->GetUniqueSlice(while1, {1}).value()); } TEST_F(WhileBufferAssignmentTest, ColocatedBufferWithEntryParameter) { const Shape r0s32 = ShapeUtil::MakeShape(S32, {}); const char* module_str = R"( HloModule test_module %cond.v0 { %param = s32[] parameter(0) ROOT %constant = pred[] constant(true) } %cond.v1 { %param.0 = s32[] parameter(0) ROOT %constant.0 = pred[] constant(true) } %body.v0 { ROOT %param.1 = s32[] parameter(0) } %body.v1 { %param.2 = s32[] parameter(0) ROOT add = s32[] add(%param.2, %param.2) } ENTRY %test_module { %param.3 = s32[] parameter(0) %while.0 = s32[] while(%param.3), condition=%cond.v0, body=%body.v0 %mul = s32[] multiply(%while.0, %while.0) %while.1 = s32[] while(%mul), condition=%cond.v1, body=%body.v1 ROOT %bcast = s32[1024,1024]{1,0} broadcast(s32[] %while.1), dimensions={} })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(module_str)); int64_t instruction_count = m->instruction_count(); CopyInsertion copy_insertion; ASSERT_IS_OK(copy_insertion.Run(m.get()).status()); ASSERT_EQ(instruction_count, m->instruction_count()); const HloInstruction* bcast = m->entry_computation()->root_instruction(); const HloInstruction* param = m->entry_computation()->parameter_instruction(0); ASSERT_EQ(bcast->opcode(), HloOpcode::kBroadcast); const HloInstruction* while1 = bcast->operand(0); ASSERT_EQ(while1->opcode(), HloOpcode::kWhile); const HloInstruction* while0 = while1->operand(0)->operand(0); ASSERT_EQ(while0->opcode(), HloOpcode::kWhile); auto assignment = RunBufferAssignment(m.get()); TF_ASSERT_OK_AND_ASSIGN(auto slice_param, assignment->GetUniqueSlice(param, {})); TF_ASSERT_OK_AND_ASSIGN(auto slice_while0, assignment->GetUniqueSlice(while0, {})); TF_ASSERT_OK_AND_ASSIGN(auto slice_while1, assignment->GetUniqueSlice(while1, {})); EXPECT_EQ(slice_param, slice_while0); EXPECT_NE(slice_param, slice_while1); } TEST_F(WhileBufferAssignmentTest, ColocatedBufferWithConstant) { const Shape r0s32 = ShapeUtil::MakeShape(S32, {}); const char* module_str = R"( HloModule test_module %cond.v0 { %param = s32[] parameter(0) ROOT %constant = pred[] constant(true) } %cond.v1 { %param.0 = s32[] parameter(0) ROOT %constant.0 = pred[] constant(true) } %body.v0 { ROOT %param.1 = s32[] parameter(0) } %body.v1 { %param.2 = s32[] parameter(0) ROOT add = s32[] add(%param.2, %param.2) } ENTRY %test_module { %constant.42 = s32[] constant(42) %while.0 = s32[] while(%constant.42), condition=%cond.v0, body=%body.v0 %mul = s32[] multiply(%while.0, %while.0) %while.1 = s32[] while(%mul), condition=%cond.v1, body=%body.v1 ROOT %bcast = s32[1024,1024]{1,0} broadcast(s32[] %while.1), dimensions={} })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(module_str)); int64_t instruction_count = m->instruction_count(); CopyInsertion copy_insertion; ASSERT_IS_OK(copy_insertion.Run(m.get()).status()); ASSERT_EQ(instruction_count, m->instruction_count()); const HloInstruction* bcast = m->entry_computation()->root_instruction(); const HloInstruction* constant = m->entry_computation()->GetInstructionWithName("constant.42"); ASSERT_EQ(bcast->opcode(), HloOpcode::kBroadcast); const HloInstruction* while1 = bcast->operand(0); ASSERT_EQ(while1->opcode(), HloOpcode::kWhile); const HloInstruction* while0 = while1->operand(0)->operand(0); ASSERT_EQ(while0->opcode(), HloOpcode::kWhile); auto assignment = RunBufferAssignment(m.get()); TF_ASSERT_OK_AND_ASSIGN(auto slice_constant, assignment->GetUniqueSlice(constant, {})); TF_ASSERT_OK_AND_ASSIGN(auto slice_while0, assignment->GetUniqueSlice(while0, {})); TF_ASSERT_OK_AND_ASSIGN(auto slice_while1, assignment->GetUniqueSlice(while1, {})); EXPECT_EQ(slice_constant, slice_while0); EXPECT_NE(slice_constant, slice_while1); } TEST_F(WhileBufferAssignmentTest, ColocatedBuffers) { const Shape r0s32 = ShapeUtil::MakeShape(S32, {}); auto build_cond = [&]() { auto builder = HloComputation::Builder("cond"); auto const4 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(4))); auto param = builder.AddInstruction(HloInstruction::CreateParameter(0, r0s32, "x")); builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), param, const4, ComparisonDirection::kLt)); return builder.Build(); }; auto build_body = [&]() { auto builder = HloComputation::Builder("body"); auto const9 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(9))); auto param = builder.AddInstruction(HloInstruction::CreateParameter(0, r0s32, "x")); builder.AddInstruction( HloInstruction::CreateBinary(r0s32, HloOpcode::kAdd, param, const9)); return builder.Build(); }; auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder("entry"); auto token = builder.AddInstruction(HloInstruction::CreateToken()); auto infeed = builder.AddInstruction(HloInstruction::CreateInfeed(r0s32, token, "")); auto infeed_data = builder.AddInstruction( HloInstruction::CreateGetTupleElement(r0s32, infeed, 0)); auto cond0 = module->AddEmbeddedComputation(build_cond()); auto body0 = module->AddEmbeddedComputation(build_body()); auto while0 = builder.AddInstruction( HloInstruction::CreateWhile(r0s32, cond0, body0, infeed_data)); auto cond1 = module->AddEmbeddedComputation(build_cond()); auto body1 = module->AddEmbeddedComputation(build_body()); auto while1 = builder.AddInstruction( HloInstruction::CreateWhile(r0s32, cond1, body1, while0)); auto zero = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(0))); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r0s32, HloOpcode::kAdd, zero, zero)); auto cond2 = module->AddEmbeddedComputation(build_cond()); auto body2 = module->AddEmbeddedComputation(build_body()); auto while2 = builder.AddInstruction( HloInstruction::CreateWhile(r0s32, cond2, body2, add)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({while2, while1})); module->AddEntryComputation(builder.Build()); int64_t instruction_count = module->instruction_count(); CopyInsertion copy_insertion; ASSERT_IS_OK(copy_insertion.Run(module.get()).status()); ASSERT_EQ(instruction_count, module->instruction_count()); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape(), sizeof(void*)); })); schedule.set_sequence( module->entry_computation(), {token, infeed, infeed_data, while0, while1, zero, add, while2, tuple}); TF_ASSERT_OK(schedule.Verify()); TF_ASSERT_OK_AND_ASSIGN( auto assignment, BufferAssigner::Run( module.get(), std::make_unique<SequentialHloOrdering>(schedule), backend().compiler()->BufferSizeBytesFunction(), [](LogicalBuffer::Color) { return 1; }, true)); TF_ASSERT_OK_AND_ASSIGN(auto slice0, assignment->GetUniqueSlice(tuple, {0})); TF_ASSERT_OK_AND_ASSIGN(auto slice1, assignment->GetUniqueSlice(tuple, {1})); EXPECT_NE(slice0, slice1); TF_ASSERT_OK_AND_ASSIGN(auto slice_while0, assignment->GetUniqueSlice(while0, {})); TF_ASSERT_OK_AND_ASSIGN(auto slice_while1, assignment->GetUniqueSlice(while1, {})); EXPECT_EQ(slice1, slice_while0); EXPECT_EQ(slice1, slice_while1); TF_ASSERT_OK_AND_ASSIGN(auto slice_while2, assignment->GetUniqueSlice(while2, {})); EXPECT_EQ(slice0, slice_while2); } TEST_F(WhileBufferAssignmentTest, OneForwardBackwardWhileLoopSet) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder("entry"); auto input0 = builder.AddInstruction( HloInstruction::CreateParameter(0, data_shape_, "input0")); auto weights0 = builder.AddInstruction( HloInstruction::CreateParameter(1, data_shape_, "weights0")); auto zero = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0))); auto output0 = builder.AddInstruction( HloInstruction::CreateBroadcast(data_shape_, zero, {})); auto cond0 = module->AddEmbeddedComputation(BuildWhileConditionComputation("cond")); auto body0 = module->AddEmbeddedComputation(BuildWhileBodyComputation("body")); auto tuple0 = builder.AddInstruction( HloInstruction::CreateTuple({input0, weights0, output0})); auto while0 = builder.AddInstruction( HloInstruction::CreateWhile(loop_state_shape_, cond0, body0, tuple0)); auto cond1 = module->AddEmbeddedComputation(BuildWhileConditionComputation("cond")); auto body1 = module->AddEmbeddedComputation(BuildWhileBodyComputation("body")); auto while1 = builder.AddInstruction( HloInstruction::CreateWhile(loop_state_shape_, cond1, body1, while0)); module->AddEntryComputation(builder.Build()); RunCopyInsertion(module.get()); auto assignment = RunBufferAssignment(module.get()); EXPECT_EQ(assignment->GetUniqueSlice(while0, {0}).value(), assignment->GetUniqueSlice(while1, {0}).value()); EXPECT_EQ(assignment->GetUniqueSlice(while0, {1}).value(), assignment->GetUniqueSlice(while1, {1}).value()); EXPECT_EQ(assignment->GetUniqueSlice(while0, {2}).value(), assignment->GetUniqueSlice(while1, {2}).value()); } TEST_F(BufferAssignmentTest, TwoCalls) { auto module = CreateNewVerifiedModule(); Shape r0f32 = ShapeUtil::MakeShape(xla::F32, {}); HloComputation* sub_computation; { auto builder = HloComputation::Builder(TestName() + "_sub_comp"); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32, "param")); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r0f32, HloOpcode::kAdd, param, constant1)); sub_computation = module->AddEmbeddedComputation(builder.Build(add)); } auto builder = HloComputation::Builder(TestName()); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto constant3 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(3.0))); auto call1 = builder.AddInstruction( HloInstruction::CreateCall(r0f32, {constant2}, sub_computation)); auto call2 = builder.AddInstruction( HloInstruction::CreateCall(r0f32, {constant3}, sub_computation)); auto add1 = builder.AddInstruction( HloInstruction::CreateBinary(r0f32, HloOpcode::kAdd, call1, constant2)); auto add2 = builder.AddInstruction( HloInstruction::CreateBinary(r0f32, HloOpcode::kAdd, call2, add1)); module->AddEntryComputation(builder.Build(add2)); { FlattenCallGraph flatten; TF_ASSERT_OK_AND_ASSIGN(bool result, flatten.Run(module.get())); EXPECT_TRUE(result); std::unique_ptr<CallGraph> call_graph = CallGraph::Build(module.get()); } RunCopyInsertion(module.get()); auto assignment = RunBufferAssignment(module.get()); EXPECT_TRUE(BuffersDistinct({call1}, {call2}, *assignment)); } TEST_F(BufferAssignmentTest, CallParamCoAllocation) { const char* hlo_text = R"( HloModule CallParamCoAllocation Callee { param0 = (f32[100],(f32[200],f32[300])) parameter(0) param1 = s32[20] parameter(1) ROOT constant = f32[] constant(1) } ENTRY Main { entry_param0 = f32[100] parameter(0) entry_param1 = s32[20] parameter(1) custom_call = (f32[200],f32[300]) custom-call(), custom_call_target="call-target" call_op0 = (f32[100],(f32[200],f32[300])) tuple(entry_param0, custom_call) ROOT call_result = f32[] call(call_op0, entry_param1), to_apply=Callee } )"; HloModuleConfig config; config.set_debug_options(GetDebugOptionsFromFlags()); TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_text, config)); auto buffers = RunBufferAssignment(m.get()); HloComputation* main = m->entry_computation(); HloComputation* callee = m->GetComputationWithName("Callee"); EXPECT_NE(callee, nullptr); HloInstruction* param0 = callee->parameter_instruction(0); HloInstruction* param1 = callee->parameter_instruction(1); HloInstruction* entry_param0 = main->parameter_instruction(0); HloInstruction* entry_param1 = main->parameter_instruction(1); HloInstruction* custom_call = main->GetInstructionWithName("custom_call"); EXPECT_EQ(GetAllocation(*buffers, entry_param0, {}), GetAllocation(*buffers, param0, {0})); EXPECT_EQ(GetAllocation(*buffers, entry_param1, {}), GetAllocation(*buffers, param1, {})); EXPECT_EQ(GetAllocation(*buffers, custom_call, {}), GetAllocation(*buffers, param0, {1})); EXPECT_EQ(GetAllocation(*buffers, custom_call, {0}), GetAllocation(*buffers, param0, {1, 0})); EXPECT_EQ(GetAllocation(*buffers, custom_call, {1}), GetAllocation(*buffers, param0, {1, 1})); } TEST_F(BufferAssignmentTest, AsyncCall) { const char* hlo_text = R"( HloModule AsyncCall, is_scheduled=true %called_computation (param_0: f32[4096], param_1: f32[4096]) -> f32[4096] { %param_0 = f32[4096]{0} parameter(0) %param_1 = f32[4096]{0} parameter(1) %negate_0 = f32[4096]{0} negate(f32[4096]{0} %param_0) %negate_1 = f32[4096]{0} negate(f32[4096]{0} %param_1) %negate_2 = f32[4096]{0} negate(f32[4096]{0} %negate_1) %negate_3 = f32[4096]{0} negate(f32[4096]{0} %negate_2) ROOT %result.1 = f32[4096]{0} add(f32[4096]{0} %negate_0, f32[4096]{0} %negate_3) } ENTRY %main (a: f32[4096], b: f32[4096]) -> f32[4096] { %a = f32[4096]{0} parameter(0) %b = f32[4096]{0} parameter(1) %async-start = ((f32[4096]{0}, f32[4096]{0}), f32[4096]{0}, u32[]) call-start(f32[4096]{0} %a, f32[4096]{0} %b), to_apply=%called_computation %negate_4 = f32[4096]{0} negate(f32[4096]{0} %a) %negate_5 = f32[4096]{0} negate(f32[4096]{0} %b) %negate_6 = f32[4096]{0} negate(f32[4096]{0} %negate_5) %negate_7 = f32[4096]{0} negate(f32[4096]{0} %negate_6) %add_0 = f32[4096]{0} add(f32[4096]{0} %negate_4, f32[4096]{0} %negate_7) %async-done = f32[4096]{0} call-done(((f32[4096]{0}, f32[4096]{0}), f32[4096]{0}, u32[]) %async-start) ROOT %add_1 = f32[4096]{0} add(f32[4096]{0} %add_0, f32[4096]{0} %async-done) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_text)); auto buffers = RunBufferAssignmentWithSequentialOrdering(m.get()); LOG(INFO) << buffers->ToString(); auto get_slice = [&](std::string_view hlo_name, const ShapeIndex& index) { return buffers->GetUniqueSlice(FindInstruction(m.get(), hlo_name), index) .value(); }; EXPECT_EQ(get_slice("param_0", {}), get_slice("a", {})); EXPECT_EQ(get_slice("param_1", {}), get_slice("b", {})); EXPECT_EQ(get_slice("result.1", {}), get_slice("async-done", {})); for (const auto& hlo_name : {"negate_0", "negate_1", "negate_2", "negate_3"}) { EXPECT_NE(get_slice(hlo_name, {}), get_slice("negate_4", {})); EXPECT_NE(get_slice(hlo_name, {}), get_slice("negate_5", {})); EXPECT_NE(get_slice(hlo_name, {}), get_slice("negate_6", {})); EXPECT_NE(get_slice(hlo_name, {}), get_slice("negate_7", {})); EXPECT_NE(get_slice(hlo_name, {}), get_slice("add_0", {})); } } TEST_F(BufferAssignmentTest, AsyncCallPrivateStack) { const char* hlo_text = R"( HloModule AsyncCall, is_scheduled=true %called_computation (param_0: f32[4096], param_1: f32[4096]) -> f32[4096] { %param_0 = f32[4096]{0} parameter(0) %param_1 = f32[4096]{0} parameter(1) %negate_0 = f32[4096]{0} negate(f32[4096]{0} %param_0) %negate_1 = f32[4096]{0} negate(f32[4096]{0} %param_1) %negate_2 = f32[4096]{0} negate(f32[4096]{0} %negate_1) %negate_3 = f32[4096]{0} negate(f32[4096]{0} %negate_2) ROOT %result.1 = f32[4096]{0} add(f32[4096]{0} %negate_0, f32[4096]{0} %negate_3) }, execution_thread="foobar" ENTRY %main (a: f32[4096], b: f32[4096]) -> f32[4096] { %a = f32[4096]{0} parameter(0) %b = f32[4096]{0} parameter(1) %async-start = ((f32[4096]{0}, f32[4096]{0}), f32[4096]{0}, u32[]) call-start(f32[4096]{0} %a, f32[4096]{0} %b), async_execution_thread="foobar", to_apply=%called_computation %negate_4 = f32[4096]{0} negate(f32[4096]{0} %a) %negate_5 = f32[4096]{0} negate(f32[4096]{0} %b) %negate_6 = f32[4096]{0} negate(f32[4096]{0} %negate_5) %negate_7 = f32[4096]{0} negate(f32[4096]{0} %negate_6) %add_0 = f32[4096]{0} add(f32[4096]{0} %negate_4, f32[4096]{0} %negate_7) %async-done = f32[4096]{0} call-done(((f32[4096]{0}, f32[4096]{0}), f32[4096]{0}, u32[]) %async-start) ROOT %add_1 = f32[4096]{0} add(f32[4096]{0} %add_0, f32[4096]{0} %async-done) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_text)); auto colorer = [](HloAliasAnalysis* alias_analysis, const HloOrdering&) { for (const HloBuffer& buffer : alias_analysis->buffers()) { int color = 1; for (const HloValue* value : buffer.values()) { if (absl::c_any_of( value->positions(), [](const HloPosition& position) { return position.instruction->parent()->execution_thread() != "foobar"; }) || absl::c_any_of(value->GetUses(), [](const HloUse& use) { return use.instruction->parent()->execution_thread() != "foobar"; })) { color = 0; } } for (const HloValue* value : buffer.values()) { const HloPosition& defining_position = value->defining_position(); if (defining_position.shape().has_layout()) { const int memory_space = defining_position.shape().layout().memory_space(); if (memory_space != 0) { color = memory_space; } } alias_analysis->dataflow_analysis() .GetValue(value->id()) .set_color(BufferValue::Color(color)); } } return absl::OkStatus(); }; BufferAssigner::PrivateStacks private_stacks; private_stacks[1] = {FindComputation(m.get(), "called_computation")}; auto buffers = RunBufferAssignmentWithSequentialOrdering( m.get(), 1, colorer, private_stacks); LOG(INFO) << buffers->ToString(); auto get_slice = [&](std::string_view hlo_name, const ShapeIndex& index) { return buffers->GetUniqueSlice(FindInstruction(m.get(), hlo_name), index) .value(); }; EXPECT_EQ(get_slice("param_0", {}), get_slice("a", {})); EXPECT_EQ(get_slice("param_1", {}), get_slice("b", {})); EXPECT_EQ(get_slice("result.1", {}), get_slice("async-done", {})); for (const auto& hlo_name : {"negate_0", "negate_1", "negate_2", "negate_3"}) { EXPECT_NE(get_slice(hlo_name, {}), get_slice("negate_4", {})); EXPECT_NE(get_slice(hlo_name, {}), get_slice("negate_5", {})); EXPECT_NE(get_slice(hlo_name, {}), get_slice("negate_6", {})); EXPECT_NE(get_slice(hlo_name, {}), get_slice("negate_7", {})); EXPECT_NE(get_slice(hlo_name, {}), get_slice("add_0", {})); } EXPECT_NE(get_slice("negate_0", {}), get_slice("negate_1", {})); EXPECT_EQ(get_slice("negate_1", {}), get_slice("negate_2", {})); EXPECT_EQ(get_slice("negate_1", {}), get_slice("negate_3", {})); } TEST_F(BufferAssignmentTest, MultipleAsyncCallPrivateStack) { const char* hlo_text = R"( HloModule AsyncCall, is_scheduled=true %called_computation1 { %param_0 = f32[4096]{0} parameter(0) %param_1 = f32[4096]{0} parameter(1) %negate_0 = f32[4096]{0} negate(f32[4096]{0} %param_0) %negate_1 = f32[4096]{0} negate(f32[4096]{0} %param_1) %negate_2 = f32[4096]{0} negate(f32[4096]{0} %negate_1) %negate_3 = f32[4096]{0} negate(f32[4096]{0} %negate_2) ROOT %result.1 = f32[4096]{0} add(f32[4096]{0} %negate_0, f32[4096]{0} %negate_3) }, execution_thread="foobar" %called_computation2 { %param_2 = f32[4096]{0} parameter(0) %param_3 = f32[4096]{0} parameter(1) %negate_4 = f32[4096]{0} negate(f32[4096]{0} %param_2) %negate_5 = f32[4096]{0} negate(f32[4096]{0} %param_3) ROOT %result.2 = f32[4096]{0} add(f32[4096]{0} %negate_4, f32[4096]{0} %negate_5) }, execution_thread="foobar" ENTRY %main (a: f32[4096], b: f32[4096]) -> f32[4096] { %a = f32[4096]{0} parameter(0) %b = f32[4096]{0} parameter(1) %async-start.1 = ((f32[4096]{0}, f32[4096]{0}), f32[4096]{0}, u32[]) call-start(f32[4096]{0} %a, f32[4096]{0} %b), async_execution_thread="foobar", to_apply=%called_computation1 %async-start.2 = ((f32[4096]{0}, f32[4096]{0}), f32[4096]{0}, u32[]) call-start(f32[4096]{0} %b, f32[4096]{0} %a), async_execution_thread="foobar", to_apply=%called_computation2 %negate_6 = f32[4096]{0} negate(f32[4096]{0} %a) %negate_7 = f32[4096]{0} negate(f32[4096]{0} %b) %negate_8 = f32[4096]{0} negate(f32[4096]{0} %negate_7) %negate_9 = f32[4096]{0} negate(f32[4096]{0} %negate_8) %add_0 = f32[4096]{0} add(f32[4096]{0} %negate_6, f32[4096]{0} %negate_9) %async-done.1 = f32[4096]{0} call-done(((f32[4096]{0}, f32[4096]{0}), f32[4096]{0}, u32[]) %async-start.1) %async-done.2 = f32[4096]{0} call-done(((f32[4096]{0}, f32[4096]{0}), f32[4096]{0}, u32[]) %async-start.2) %add_1 = f32[4096]{0} add(f32[4096]{0} %add_0, f32[4096]{0} %async-done.1) ROOT %add_2 = f32[4096]{0} add(f32[4096]{0} %add_1, f32[4096]{0} %async-done.2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_text)); auto colorer = [](HloAliasAnalysis* alias_analysis, const HloOrdering&) { for (const HloBuffer& buffer : alias_analysis->buffers()) { int color = 1; for (const HloValue* value : buffer.values()) { if (absl::c_any_of( value->positions(), [](const HloPosition& position) { return position.instruction->parent()->execution_thread() != "foobar"; }) || absl::c_any_of(value->GetUses(), [](const HloUse& use) { return use.instruction->parent()->execution_thread() != "foobar"; })) { color = 0; } } for (const HloValue* value : buffer.values()) { const HloPosition& defining_position = value->defining_position(); if (defining_position.shape().has_layout()) { const int memory_space = defining_position.shape().layout().memory_space(); if (memory_space != 0) { color = memory_space; } } alias_analysis->dataflow_analysis() .GetValue(value->id()) .set_color(BufferValue::Color(color)); } } return absl::OkStatus(); }; BufferAssigner::PrivateStacks private_stacks; private_stacks[1] = {FindComputation(m.get(), "called_computation1"), FindComputation(m.get(), "called_computation2")}; auto buffers = RunBufferAssignmentWithSequentialOrdering( m.get(), 1, colorer, private_stacks); LOG(INFO) << buffers->ToString(); auto get_slice = [&](std::string_view hlo_name, const ShapeIndex& index) { return buffers->GetUniqueSlice(FindInstruction(m.get(), hlo_name), index) .value(); }; EXPECT_EQ(get_slice("param_0", {}), get_slice("a", {})); EXPECT_EQ(get_slice("param_3", {}), get_slice("a", {})); EXPECT_EQ(get_slice("param_1", {}), get_slice("b", {})); EXPECT_EQ(get_slice("param_2", {}), get_slice("b", {})); EXPECT_EQ(get_slice("result.1", {}), get_slice("async-done.1", {})); EXPECT_EQ(get_slice("result.2", {}), get_slice("async-done.2", {})); for (const auto& hlo_name : {"negate_0", "negate_1", "negate_2", "negate_3", "negate_4", "negate_5"}) { EXPECT_NE(get_slice(hlo_name, {}), get_slice("negate_6", {})); EXPECT_NE(get_slice(hlo_name, {}), get_slice("negate_7", {})); EXPECT_NE(get_slice(hlo_name, {}), get_slice("negate_8", {})); EXPECT_NE(get_slice(hlo_name, {}), get_slice("negate_9", {})); EXPECT_NE(get_slice(hlo_name, {}), get_slice("add_0", {})); } EXPECT_NE(get_slice("negate_0", {}), get_slice("negate_1", {})); EXPECT_EQ(get_slice("negate_1", {}), get_slice("negate_2", {})); EXPECT_EQ(get_slice("negate_1", {}), get_slice("negate_3", {})); EXPECT_TRUE(get_slice("negate_4", {}) == get_slice("negate_0", {}) || get_slice("negate_4", {}) == get_slice("negate_1", {})); EXPECT_TRUE(get_slice("negate_5", {}) == get_slice("negate_0", {}) || get_slice("negate_5", {}) == get_slice("negate_1", {})); } TEST_F(BufferAssignmentTest, AsyncCallImplicitSharding) { std::string hlo_string = R"( HloModule module, is_scheduled=true called_computation { param0 = f32[4] parameter(0) constant = f32[1] constant(1) dynamic-update-slice = f32[4] dynamic-update-slice(param0, constant, constant) ROOT negate = f32[4] negate(dynamic-update-slice) } ENTRY entry { p0 = f32[8] parameter(0) call-start = ((f32[8]), f32[8], s32[]) call-start(p0), async_execution_thread="foo", to_apply=called_computation ROOT call-done = f32[8] call-done(call-start) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(hlo_string)); auto buffers = RunBufferAssignmentWithSequentialOrdering(module.get()); LOG(INFO) << buffers->ToString(); auto get_slice = [&](std::string_view hlo_name, const ShapeIndex& index) { return buffers ->GetUniqueSlice(FindInstruction(module.get(), hlo_name), index) .value(); }; EXPECT_EQ(get_slice("p0", {}).size(), 32); EXPECT_EQ(get_slice("dynamic-update-slice", {}).size(), 32); } TEST_F(BufferAssignmentTest, AsyncCustomCall) { const char* hlo_text = R"( HloModule AsyncCustomCall, is_scheduled=true ENTRY %main (a: f32[4096]) -> f32[4096] { %a = f32[4096]{0} parameter(0) %neg_0 = f32[4096]{0} negate(f32[4096]{0} %a) %async-start = ((f32[4096]{0}), f32[4096]{0}, u32[]) custom-call-start(f32[4096]{0} %neg_0), custom_call_target="Foo" %async-done = f32[4096]{0} custom-call-done(((f32[4096]{0}), f32[4096]{0}, u32[]) %async-start) ROOT %neg_1 = f32[4096]{0} negate(f32[4096]{0} %async-done) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_text)); auto buffers = RunBufferAssignmentWithSequentialOrdering(m.get()); HloInstruction* neg_0 = FindInstruction(m.get(), "neg_0"); HloInstruction* async_done = FindInstruction(m.get(), "async-done"); EXPECT_FALSE(buffers->SharesTopLevelSlice(neg_0, async_done)); } TEST_F(BufferAssignmentTest, AsyncCustomCallWithAliasing) { const char* hlo_text = R"( HloModule AsyncCustomCall, is_scheduled=true ENTRY %main (a: f32[4096]) -> f32[4096] { %a = f32[4096]{0} parameter(0) %neg_0 = f32[4096]{0} negate(f32[4096]{0} %a) %async-start = ((f32[4096]{0}), f32[4096]{0}, u32[]) custom-call-start(f32[4096]{0} %neg_0), custom_call_target="Foo", output_to_operand_aliasing={{}: (0, {})} %async-done = f32[4096]{0} custom-call-done(((f32[4096]{0}), f32[4096]{0}, u32[]) %async-start) ROOT %neg_1 = f32[4096]{0} negate(f32[4096]{0} %async-done) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_text)); auto buffers = RunBufferAssignmentWithSequentialOrdering(m.get()); HloInstruction* neg_0 = FindInstruction(m.get(), "neg_0"); HloInstruction* async_done = FindInstruction(m.get(), "async-done"); EXPECT_TRUE(buffers->SharesTopLevelSlice(neg_0, async_done)); } TEST_F(BufferAssignmentTest, BufferIsolation) { absl::string_view module_str = R"( HloModule test_module, is_scheduled=true ENTRY %test_module { param.0 = s32[1024]{0} parameter(0) param.1 = s32[1024]{0} parameter(1) mul1 = s32[1024]{0} multiply(param.0, param.1) bcast1 = s32[4,1024]{1,0} broadcast(mul1), dimensions={1} bcast2 = s32[4,1024]{1,0} broadcast(param.0), dimensions={1} mul2 = s32[1024]{0} multiply(mul1, param.0) add1 = s32[1024]{0} add(mul1, mul2) sub2 = s32[1024]{0} subtract(mul1, mul2) mul3 = s32[1024]{0} multiply(mul2, add1) mul4 = s32[1024]{0} multiply(mul3, sub2) bcast3 = s32[4,1024]{1,0} broadcast(mul4), dimensions={1} add2 = s32[4,1024]{1,0} add(bcast3, bcast2) ROOT add3 = s32[4,1024]{1,0} add(add2, bcast1) })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(module_str)); std::unique_ptr<BufferAssignment> nonisolation_assignment = RunBufferAssignmentWithIsolationOptions(m.get()); auto nonisolation_allocation = absl::c_find_if(nonisolation_assignment->Allocations(), [](const BufferAllocation& allocation) { return allocation.IsPreallocatedTempBuffer(); }); ASSERT_NE(nonisolation_allocation, nonisolation_assignment->Allocations().end()); LOG(INFO) << "Non-isolation buffers"; for (const auto& [value, offset_size] : nonisolation_allocation->assigned_buffers()) { LOG(INFO) << value->ToShortString() << ": off: " << offset_size.offset << ", size: " << offset_size.size; } BufferAssignment::BufferIsolationOptions isolation_options; isolation_options.hlo_value_compare = [](const HloValue* a, const HloValue* b) { return a->id() < b->id(); }; isolation_options.config.add_isolation_colors(0); isolation_options.config.set_isolation_order_salt(10); isolation_options.config.set_isolation_fuel(5); isolation_options.config.set_isolation_padding_bytes(1024); isolation_options.config.set_base_offset_bytes(12288); std::unique_ptr<BufferAssignment> isolation_assignment = RunBufferAssignmentWithIsolationOptions(m.get(), isolation_options); auto isolation_allocation = absl::c_find_if(isolation_assignment->Allocations(), [](const BufferAllocation& allocation) { return allocation.IsPreallocatedTempBuffer(); }); ASSERT_NE(isolation_allocation, isolation_assignment->Allocations().end()); std::vector<const HloValue*> ordered_values; for (const auto& [value, _] : isolation_allocation->assigned_buffers()) { ordered_values.push_back(value); } absl::c_sort(ordered_values, isolation_options.hlo_value_compare); int i; int64_t expected_offset = nonisolation_allocation->size() + isolation_options.config.base_offset_bytes() + isolation_options.config.isolation_padding_bytes(); ASSERT_GT(ordered_values.size(), isolation_options.config.isolation_fuel()); LOG(INFO) << "Isolation buffers"; for (i = 0; i < isolation_options.config.isolation_fuel(); ++i) { const HloValue* value = ordered_values[i]; auto offset_size = isolation_allocation->assigned_buffers().at(value); LOG(INFO) << value->ToShortString() << ": off: " << offset_size.offset << ", size: " << offset_size.size; EXPECT_EQ(offset_size.offset, expected_offset); expected_offset += offset_size.size + isolation_options.config.isolation_padding_bytes(); } for (; i < ordered_values.size(); ++i) { const HloValue* value = ordered_values[i]; auto offset_size = isolation_allocation->assigned_buffers().at(value); auto nonisolation_offset_size = absl::c_find_if( nonisolation_allocation->assigned_buffers(), [&](const auto& pair) { return pair.first->defining_position() == value->defining_position(); }); ASSERT_NE(nonisolation_offset_size, nonisolation_allocation->assigned_buffers().end()); LOG(INFO) << value->ToShortString() << ": off: " << offset_size.offset << ", size: " << offset_size.size; EXPECT_EQ(offset_size.offset, nonisolation_offset_size->second.offset + isolation_options.config.base_offset_bytes()); } } TEST_F(BufferAssignmentTest, BufferInfoStringTest) { absl::string_view module_str = R"( HloModule test_module ENTRY %test_module { %param.0 = s32[1024]{0} parameter(0) %param.1 = s32[1024]{0} parameter(1) %mul = s32[1024]{0} multiply(%param.0, %param.1) %add = s32[1024]{0} add(%mul, %param.0) ROOT %bcast = s32[1024,1024]{1,0} broadcast(s32[1024] %add), dimensions={0} })"; absl::string_view reference_str = R"(buffer_id,buffer_name,offset,size,definition_time,end_time,num_uses,use_times,use_names 0,"<0 param.0 @0>",0,4096,0,5,2,"2;3","mul, operand 0;add, operand 1" 1,"<1 param.1 @0>",0,4096,1,5,1,"2","mul, operand 1" 2,"<2 mul @0>",0,4096,2,3,1,"3","add, operand 0" 3,"<3 add @0>",0,4096,3,4,1,"4","bcast, operand 0" 4,"<4 bcast @0>",0,4194304,4,5,0,"","" )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(module_str)); HloInstruction* const param0 = FindInstruction(m.get(), "param.0"); HloInstruction* const param1 = FindInstruction(m.get(), "param.1"); HloInstruction* const mul = FindInstruction(m.get(), "mul"); HloInstruction* const add = FindInstruction(m.get(), "add"); HloInstruction* const bcast = FindInstruction(m.get(), "bcast"); auto assignment = RunBufferAssignmentWithInstructionSequence( m.get(), {param0, param1, mul, add, bcast}); const std::string buffer_info_str = assignment->BufferInfoString(); EXPECT_EQ(buffer_info_str, reference_str); } TEST_F(WhileBufferAssignmentTest, WhileLoopsInterferingResultRange) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); auto zero = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0))); auto one = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto input0 = builder.AddInstruction( HloInstruction::CreateParameter(0, data_shape_, "input0")); auto weights0 = builder.AddInstruction( HloInstruction::CreateParameter(1, data_shape_, "weights0")); auto output0 = builder.AddInstruction( HloInstruction::CreateBroadcast(data_shape_, zero, {})); auto input1 = builder.AddInstruction( HloInstruction::CreateParameter(2, data_shape_, "input1")); auto weights1 = builder.AddInstruction( HloInstruction::CreateParameter(3, data_shape_, "weights1")); auto output1 = builder.AddInstruction( HloInstruction::CreateBroadcast(data_shape_, one, {})); auto cond = module->AddEmbeddedComputation(BuildWhileConditionComputation("cond")); auto body = module->AddEmbeddedComputation(BuildWhileBodyComputation("body")); auto tuple0 = builder.AddInstruction( HloInstruction::CreateTuple({input0, weights0, output0})); auto tuple1 = builder.AddInstruction( HloInstruction::CreateTuple({input1, weights1, output1})); auto while0 = builder.AddInstruction( HloInstruction::CreateWhile(loop_state_shape_, cond, body, tuple0)); auto while1 = builder.AddInstruction( HloInstruction::CreateWhile(loop_state_shape_, cond, body, tuple1)); auto gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape_, while0, 0)); auto gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape_, while1, 1)); auto root_add = builder.AddInstruction( HloInstruction::CreateBinary(data_shape_, HloOpcode::kAdd, gte0, gte1)); module->AddEntryComputation(builder.Build()); { FlattenCallGraph flatten; TF_ASSERT_OK_AND_ASSIGN(bool result, flatten.Run(module.get())); EXPECT_TRUE(result); } RunCopyInsertion(module.get()); HloSchedule schedule = ScheduleModule(module.get(), ByteSizeOf).value(); schedule.set_sequence( module->entry_computation(), {input1, weights1, one, output1, while1->mutable_operand(0), while1, input0, weights0, zero, output0, while0->mutable_operand(0), while0, gte0, gte1, root_add}); TF_ASSERT_OK(schedule.Verify()); auto assignment = BufferAssigner::Run( module.get(), std::make_unique<SequentialHloOrdering>(schedule), ByteSizeOf, [](LogicalBuffer::Color) { return 1; }, true) .value(); EXPECT_TRUE(BuffersDistinct({while0}, {while1}, *assignment)); } TEST_F(WhileBufferAssignmentTest, WhilesDontShareEntryParamIfLiveOut) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder("entry"); auto input0 = builder.AddInstruction( HloInstruction::CreateParameter(0, data_shape_, "input0")); auto weights0 = builder.AddInstruction( HloInstruction::CreateParameter(1, data_shape_, "weights0")); auto zero = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0))); auto output0 = builder.AddInstruction( HloInstruction::CreateBroadcast(data_shape_, zero, {})); auto output1 = builder.AddInstruction( HloInstruction::CreateBroadcast(data_shape_, zero, {})); auto cond0 = module->AddEmbeddedComputation(BuildWhileConditionComputation("cond")); auto body0 = module->AddEmbeddedComputation(BuildWhileBodyComputation("body")); auto tuple0 = builder.AddInstruction( HloInstruction::CreateTuple({input0, weights0, output0})); auto while0 = builder.AddInstruction( HloInstruction::CreateWhile(loop_state_shape_, cond0, body0, tuple0)); auto while0_out = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape_, while0, 2)); auto cond1 = module->AddEmbeddedComputation(BuildWhileConditionComputation("cond")); auto body1 = module->AddEmbeddedComputation(BuildWhileBodyComputation("body")); auto tuple1 = builder.AddInstruction( HloInstruction::CreateTuple({while0_out, weights0, output1})); auto while1 = builder.AddInstruction( HloInstruction::CreateWhile(loop_state_shape_, cond1, body1, tuple1)); auto while1_out = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape_, while1, 2)); module->AddEntryComputation(builder.Build()); RunCopyInsertion(module.get()); auto assignment = RunBufferAssignment(module.get()); auto* root_alloc = assignment->GetUniqueTopLevelSlice(while1_out).value().allocation(); EXPECT_TRUE(root_alloc->maybe_live_out()); EXPECT_FALSE(root_alloc->is_entry_computation_parameter()); } TEST_F(WhileBufferAssignmentTest, WhileWithDynamicUpdateSliceShare) { const char* const hlo_string = R"( HloModule test while_body { state = (s32[], f32[1280,1,128]{2,1,0}) parameter(0) constant.1 = f32[] constant(0) broadcast.6 = f32[128,1,128]{2,1,0} broadcast(constant.1), dimensions={} get-tuple-element.4 = f32[1280,1,128]{2,1,0} get-tuple-element(state), index=1 get-tuple-element.3 = s32[] get-tuple-element(state), index=0 constant.2 = s32[] constant(128) add.5 = s32[] add(get-tuple-element.3, constant.2) constant.3 = s32[] constant(0) dynamic-update-slice.5 = f32[1280,1,128]{2,1,0} dynamic-update-slice(get-tuple-element.4, broadcast.6, constant.3, constant.3, constant.3) dynamic-update-slice.9 = f32[1280,1,128]{2,1,0} dynamic-update-slice(dynamic-update-slice.5, broadcast.6, constant.3, constant.3, constant.3) ROOT tuple.85 = (s32[], f32[1280,1,128]{2,1,0}) tuple(add.5, dynamic-update-slice.9) } while_condition { state = (s32[], f32[1280,1,128]{2,1,0}) parameter(0) get-tuple-element = s32[] get-tuple-element(state), index=0 get-tuple-element.1 = s32[] constant(3) ROOT less-than.339.338 = pred[] compare(get-tuple-element, get-tuple-element.1), direction=LT } ENTRY entry_computation { constant.7 = s32[] constant(0) copy.1 = s32[] copy(constant.7) constant.6 = f32[] constant(0) broadcast.6 = f32[1280,1,128]{2,1,0} broadcast(constant.6), dimensions={} tuple.1 = (s32[], f32[1280,1,128]{2,1,0}) tuple(copy.1, broadcast.6) while.0 = (s32[], f32[1280,1,128]{2,1,0}) while(tuple.1), condition=while_condition, body=while_body ROOT get-tuple-element.2 = s32[] get-tuple-element(while.0), index=0 } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); RunCopyInsertion(module.get()); auto assignment = RunBufferAssignment(module.get()); auto dus9 = FindInstruction(module.get(), "dynamic-update-slice.9"); auto dus9_alloc_slice = assignment->GetUniqueTopLevelSlice(dus9).value(); auto dus5 = FindInstruction(module.get(), "dynamic-update-slice.5"); auto dus5_alloc_slice = assignment->GetUniqueTopLevelSlice(dus5).value(); EXPECT_EQ(dus9_alloc_slice.allocation(), dus5_alloc_slice.allocation()); EXPECT_EQ(dus9_alloc_slice, dus5_alloc_slice); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/buffer_assignment.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/buffer_assignment_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
464b7a60-847b-4ac6-bf92-ce88e1c0c36b
cpp
tensorflow/tensorflow
conditional_canonicalizer
third_party/xla/xla/service/conditional_canonicalizer.cc
third_party/xla/xla/service/conditional_canonicalizer_test.cc
#include "xla/service/conditional_canonicalizer.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/status_macros.h" namespace xla { namespace { absl::Status CanonicalizeNonTupleConditional(HloInstruction* conditional) { TF_RET_CHECK(conditional->opcode() == HloOpcode::kConditional); for (auto* branch : conditional->called_computations()) { HloInstruction* root = branch->root_instruction(); TF_RET_CHECK(!root->shape().IsTuple()); HloInstruction* tuple = branch->AddInstruction(HloInstruction::CreateTuple({root})); branch->set_root_instruction(tuple, true); } auto parent = conditional->parent(); const Shape& root_shape = conditional->shape(); auto new_shape = ShapeUtil::MakeTupleShape(absl::MakeSpan(&root_shape, 1)); auto new_conditional = parent->AddInstruction(conditional->CloneWithNewShape(new_shape)); auto gte = parent->AddInstruction( HloInstruction::CreateGetTupleElement(root_shape, new_conditional, 0)); TF_RETURN_IF_ERROR(parent->ReplaceInstruction(conditional, gte)); return absl::OkStatus(); } } absl::StatusOr<bool> ConditionalCanonicalizer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { XLA_VLOG_LINES( 2, "ConditionalCanonicalizer::Run(), before:\n" + module->ToString()); bool changed = false; for (auto* comp : module->MakeNonfusionComputations(execution_threads)) { for (auto* inst : comp->MakeInstructionPostOrder()) { if (inst->opcode() == HloOpcode::kConditional && !inst->shape().IsTuple()) { TF_RETURN_IF_ERROR(CanonicalizeNonTupleConditional(inst)); changed = true; } } } XLA_VLOG_LINES( 2, "ConditionalCanonicalizer::Run(), after:\n" + module->ToString()); return changed; } }
#include "xla/service/conditional_canonicalizer.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_parser.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_utils.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/types.h" #include "xla/util.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; class ConditionalCanonicalizerTest : public HloTestBase { protected: ConditionalCanonicalizerTest() {} }; TEST_F(ConditionalCanonicalizerTest, DenseArrayConditionalRewrite) { auto module = ParseAndReturnVerifiedModule(R"( HloModule _ true_branch { true_param = (s32[3,2]) parameter(0) ROOT root = s32[] constant(0) } false_branch { false_param = (s32[3,2]) parameter(0) ROOT root = s32[] constant(1) } ENTRY entry { param0 = s32[3,2] parameter(0) branch = pred[] constant(false) param_tuple = (s32[3 ,2]) tuple(param0) ROOT conditional = s32[] conditional(branch, param_tuple, param_tuple), true_computation=true_branch, false_computation=false_branch } )") .value(); ConditionalCanonicalizer pass; EXPECT_TRUE(pass.Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::GetTupleElement(op::Conditional())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/conditional_canonicalizer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/conditional_canonicalizer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
62bf0644-5132-4e87-bff3-4b0982acdd07
cpp
tensorflow/tensorflow
infeed_token_propagation
third_party/xla/xla/service/infeed_token_propagation.cc
third_party/xla/xla/service/infeed_token_propagation_test.cc
#include "xla/service/infeed_token_propagation.h" #include <cstdint> #include <string_view> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/call_graph.h" #include "xla/service/hlo_dce.h" #include "xla/service/tuple_simplifier.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { bool IsDanglingInfeed(HloInstruction* infeed) { CHECK(infeed->opcode() == HloOpcode::kInfeed); if (infeed->has_sharding()) { return false; } if (const HloInstruction* after_all = infeed->operand(0); after_all->opcode() != HloOpcode::kAfterAll || after_all->operand_count() != 0) { return false; } for (const HloInstruction* user : infeed->users()) { if (user->opcode() == HloOpcode::kGetTupleElement && user->tuple_index() == 1) { return false; } } return true; } bool IsDanglingOutfeed(HloInstruction* outfeed) { CHECK(outfeed->opcode() == HloOpcode::kOutfeed); if (outfeed->has_sharding()) { return false; } if (const HloInstruction* after_all = outfeed->operand(1); after_all->opcode() != HloOpcode::kAfterAll || after_all->operand_count() != 0) { return false; } if (outfeed->user_count() != 0) { return false; } return true; } HloInstruction* ReconstructTuple(HloInstruction* tuple) { CHECK(tuple->shape().IsTuple()); HloComputation* computation = tuple->parent(); std::vector<HloInstruction*> gtes; gtes.resize(tuple->shape().tuple_shapes_size()); for (int64_t idx = 0; idx < gtes.size(); ++idx) { gtes[idx] = computation->AddInstruction( HloInstruction::CreateGetTupleElement(tuple, idx)); } return computation->AddInstruction(HloInstruction::CreateTuple(gtes)); } absl::StatusOr<HloInstruction*> InsertTokenIntoTuple(HloInstruction* tuple, bool add_token_operand) { CHECK(tuple->shape().IsTuple()); HloComputation* computation = tuple->parent(); std::vector<HloInstruction*> original_users = tuple->users(); HloInstruction* original_tuple = ReconstructTuple(tuple); for (HloInstruction* original_user : original_users) { for (int64_t idx : original_user->operand_indices(tuple)) { TF_RETURN_IF_ERROR( original_user->ReplaceOperandWith(idx, original_tuple)); } } *tuple->mutable_shape()->add_tuple_shapes() = ShapeUtil::MakeTokenShape(); if (add_token_operand) { tuple->AppendOperand( computation->AddInstruction(HloInstruction::CreateToken())); } HloInstruction* input_token_gte = computation->AddInstruction(HloInstruction::CreateGetTupleElement( tuple, tuple->shape().tuple_shapes_size() - 1)); return input_token_gte; } } absl::Status CanonicalizeConditionalInstruction(HloInstruction* conditional) { CHECK_EQ(conditional->opcode(), HloOpcode::kConditional); for (HloComputation* branch : conditional->branch_computations()) { HloInstruction* parameter = branch->parameter_instruction(0); if (!parameter->shape().IsTuple()) { *parameter->mutable_shape() = ShapeUtil::MakeTupleShape({parameter->shape()}); HloInstruction* original = branch->AddInstruction( HloInstruction::CreateGetTupleElement(parameter, 0)); TF_RETURN_IF_ERROR(parameter->ReplaceAllUsesWithDifferentShape(original)); } int64_t branch_operand_idx = conditional->branch_index(branch) + 1; HloInstruction* branch_tuple = conditional->mutable_operand(branch_operand_idx); if (!branch_tuple->shape().IsTuple()) { branch_tuple = conditional->parent()->AddInstruction( HloInstruction::CreateTuple({branch_tuple})); TF_RETURN_IF_ERROR(conditional->ReplaceOperandWithDifferentShape( branch_operand_idx, branch_tuple)); } if (branch_tuple->opcode() == HloOpcode::kParameter) { branch_tuple = ReconstructTuple(branch_tuple); TF_RETURN_IF_ERROR( conditional->ReplaceOperandWith(branch_operand_idx, branch_tuple)); } HloInstruction* root = branch->root_instruction(); if (root->opcode() != HloOpcode::kTuple) { root = ReconstructTuple(root); branch->set_root_instruction(root); } } CHECK(conditional->shape().IsTuple()); if (conditional->IsRoot()) { HloInstruction* new_root = ReconstructTuple(conditional); conditional->parent()->set_root_instruction(new_root); } return absl::OkStatus(); } absl::Status CanonicalizeWhileInstruction(HloInstruction* loop) { CHECK_EQ(loop->opcode(), HloOpcode::kWhile); HloComputation* body = loop->while_body(); HloComputation* cond = loop->while_condition(); HloInstruction* body_parameter = body->parameter_instruction(0); if (!body_parameter->shape().IsTuple()) { *body_parameter->mutable_shape() = ShapeUtil::MakeTupleShape({body_parameter->shape()}); HloInstruction* original = body->AddInstruction( HloInstruction::CreateGetTupleElement(body_parameter, 0)); TF_RETURN_IF_ERROR( body_parameter->ReplaceAllUsesWithDifferentShape(original)); } HloInstruction* root = body->root_instruction(); if (!root->shape().IsTuple()) { root = body->AddInstruction(HloInstruction::CreateTuple({root})); body->set_root_instruction(root, true); } HloInstruction* cond_parameter = cond->parameter_instruction(0); if (!cond_parameter->shape().IsTuple()) { *cond_parameter->mutable_shape() = ShapeUtil::MakeTupleShape({cond_parameter->shape()}); HloInstruction* original = cond->AddInstruction( HloInstruction::CreateGetTupleElement(cond_parameter, 0)); TF_RETURN_IF_ERROR( cond_parameter->ReplaceAllUsesWithDifferentShape(original)); } if (!loop->shape().IsTuple()) { *loop->mutable_shape() = ShapeUtil::MakeTupleShape({loop->shape()}); HloInstruction* original = loop->parent()->AddInstruction( HloInstruction::CreateGetTupleElement(loop, 0)); TF_RETURN_IF_ERROR(loop->ReplaceAllUsesWithDifferentShape(original)); } HloInstruction* loop_tuple = loop->mutable_operand(0); if (!loop_tuple->shape().IsTuple()) { loop_tuple = loop->parent()->AddInstruction( HloInstruction::CreateTuple({loop_tuple})); TF_RETURN_IF_ERROR(loop->ReplaceOperandWithDifferentShape(0, loop_tuple)); } if (loop_tuple->opcode() == HloOpcode::kParameter) { loop_tuple = ReconstructTuple(loop_tuple); TF_RETURN_IF_ERROR(loop->ReplaceOperandWith(0, loop_tuple)); } if (root->opcode() != HloOpcode::kTuple) { root = ReconstructTuple(root); body->set_root_instruction(root); } if (loop->IsRoot()) { HloInstruction* new_root = ReconstructTuple(loop); loop->parent()->set_root_instruction(new_root); } return absl::OkStatus(); } absl::Status InfeedTokenPropagation::PropagateTokenThroughConditionalBranch() { HloComputation* comp = dangling_instruction_->parent(); dangling_instruction_ = call_graph_->GetComputationCallers(comp)[0]; CHECK_EQ(dangling_instruction_->opcode(), HloOpcode::kConditional); for (HloComputation* branch : dangling_instruction_->branch_computations()) { HloInstruction* root = branch->root_instruction(); if (branch == comp) { TF_RETURN_IF_ERROR( InsertTokenIntoTuple(root, false).status()); root->AppendOperand(output_token_); } else { TF_RETURN_IF_ERROR( InsertTokenIntoTuple(root, true).status()); } } HloInstruction* parameter = comp->parameter_instruction(0); TF_ASSIGN_OR_RETURN( HloInstruction * input_token_gte, InsertTokenIntoTuple(parameter, false)); TF_RETURN_IF_ERROR(input_token_->ReplaceAllUsesWith(input_token_gte)); int64_t branch_operand_idx = dangling_instruction_->branch_index(comp) + 1; HloInstruction* branch_tuple = dangling_instruction_->mutable_operand(branch_operand_idx); TF_ASSIGN_OR_RETURN( HloInstruction * next_input_token_gte, InsertTokenIntoTuple(branch_tuple, true)); TF_RETURN_IF_ERROR(dangling_instruction_->ReplaceOperandWithDifferentShape( branch_operand_idx, branch_tuple)); input_token_ = branch_tuple->mutable_operand(next_input_token_gte->tuple_index()); TF_ASSIGN_OR_RETURN( output_token_, InsertTokenIntoTuple(dangling_instruction_, false)); return absl::OkStatus(); } absl::Status InfeedTokenPropagation::PropagateTokenThroughWhileBody() { HloComputation* comp = dangling_instruction_->parent(); dangling_instruction_ = call_graph_->GetComputationCallers(comp)[0]; CHECK_EQ(dangling_instruction_->opcode(), HloOpcode::kWhile); HloInstruction* root = comp->root_instruction(); TF_RETURN_IF_ERROR( InsertTokenIntoTuple(root, false).status()); root->AppendOperand(output_token_); HloInstruction* body_parameter = comp->parameter_instruction(0); TF_ASSIGN_OR_RETURN( HloInstruction * input_token_gte, InsertTokenIntoTuple(body_parameter, false)); TF_RETURN_IF_ERROR(input_token_->ReplaceAllUsesWith(input_token_gte)); HloComputation* cond = dangling_instruction_->while_condition(); HloInstruction* cond_parameter = cond->parameter_instruction(0); TF_RETURN_IF_ERROR( InsertTokenIntoTuple(cond_parameter, false) .status()); HloInstruction* while_tuple = dangling_instruction_->mutable_operand(0); TF_ASSIGN_OR_RETURN( input_token_, InsertTokenIntoTuple(while_tuple, true)); TF_RETURN_IF_ERROR( dangling_instruction_->ReplaceOperandWithDifferentShape(0, while_tuple)); TF_ASSIGN_OR_RETURN( output_token_, InsertTokenIntoTuple(dangling_instruction_, false)); return absl::OkStatus(); } absl::Status InfeedTokenPropagation::PropagateToken() { HloComputation* comp = dangling_instruction_->parent(); if (comp->IsEntryComputation()) { return absl::OkStatus(); } VLOG(2) << "Propagating tokens for: " << dangling_instruction_->name(); HloInstruction* caller = call_graph_->GetComputationCallers(comp)[0]; if (caller->has_sharding()) { return absl::OkStatus(); } if (caller->opcode() == HloOpcode::kConditional) { TF_RETURN_IF_ERROR(CanonicalizeConditionalInstruction(caller)); TF_RETURN_IF_ERROR(PropagateTokenThroughConditionalBranch()); } else if (caller->opcode() == HloOpcode::kWhile && comp == caller->while_body()) { TF_RETURN_IF_ERROR(CanonicalizeWhileInstruction(caller)); TF_RETURN_IF_ERROR(PropagateTokenThroughWhileBody()); } else { VLOG(2) << "Unhandled computation: " << comp->name(); return absl::OkStatus(); } return PropagateToken(); } absl::StatusOr<bool> InfeedTokenPropagation::Run( HloModule* module, const absl::flat_hash_set<std::string_view>& execution_threads) { VLOG(5) << "Before InfeedTokenPropagation:"; XLA_VLOG_LINES(5, module->ToString()); std::vector<HloInstruction*> dangling_infeeds; std::vector<HloInstruction*> dangling_outfeeds; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { if (!computation->IsEntryComputation()) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kInfeed && IsDanglingInfeed(instruction)) { VLOG(1) << "Found dangling infeed: " << instruction->ToString(); dangling_infeeds.push_back(instruction); } else if (instruction->opcode() == HloOpcode::kOutfeed && IsDanglingOutfeed(instruction)) { VLOG(1) << "Found dangling outfeed: " << instruction->ToString(); dangling_outfeeds.push_back(instruction); } } } } bool changed = !dangling_infeeds.empty() || !dangling_outfeeds.empty(); if (changed) { call_graph_ = CallGraph::Build(module); if (!call_graph_->IsFlattened()) { return FailedPrecondition( "Call graph must be flattened before infeed token propagation."); } } for (HloInstruction* dangling_infeed : dangling_infeeds) { dangling_instruction_ = dangling_infeed; input_token_ = dangling_infeed->mutable_operand(0); output_token_ = dangling_infeed->AddInstruction( HloInstruction::CreateGetTupleElement(dangling_infeed, 1)); TF_RETURN_IF_ERROR(PropagateToken()); } for (HloInstruction* dangling_outfeed : dangling_outfeeds) { dangling_instruction_ = dangling_outfeed; input_token_ = dangling_outfeed->mutable_operand(1); output_token_ = dangling_outfeed; TF_RETURN_IF_ERROR(PropagateToken()); } if (changed) { TF_RETURN_IF_ERROR( TupleSimplifier().Run(module, execution_threads).status()); TF_RETURN_IF_ERROR(HloDCE().Run(module, execution_threads).status()); } VLOG(5) << "After InfeedTokenPropagation:"; XLA_VLOG_LINES(5, module->ToString()); return changed; } }
#include "xla/service/infeed_token_propagation.h" #include <string_view> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace op = xla::testing::opcode_matchers; namespace xla { namespace { class InfeedTokenPropagationTest : public HloTestBase { protected: InfeedTokenPropagationTest() = default; }; TEST_F(InfeedTokenPropagationTest, EntryComputationInfeed) { constexpr std::string_view hlo = R"( HloModule main ENTRY main { token.0 = after-all() infeed.0 = (s32[], token[]) infeed(token.0) ROOT gte.0 = get-tuple-element(infeed.0), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo)); InfeedTokenPropagation itp; TF_ASSERT_OK_AND_ASSIGN(bool changed, itp.Run(module.get())); EXPECT_FALSE(changed); } TEST_F(InfeedTokenPropagationTest, EntryComputationOutfeed) { constexpr std::string_view hlo = R"( HloModule main ENTRY main { arg.0 = s32[] parameter(0) tuple.0 = tuple(arg.0) token.0 = after-all() outfeed.0 = token[] outfeed(tuple.0, token.0), outfeed_shape=(s32[]) ROOT tuple.1 = tuple() } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo)); InfeedTokenPropagation itp; TF_ASSERT_OK_AND_ASSIGN(bool changed, itp.Run(module.get())); EXPECT_FALSE(changed); } TEST_F(InfeedTokenPropagationTest, ConditionalInfeed) { constexpr std::string_view hlo = R"( HloModule main true_comp { arg.0 = () parameter(0) token.0 = after-all() infeed.0 = (s32[], token[]) infeed(token.0) ROOT tuple.0 = tuple() } false_comp { arg.0 = () parameter(0) ROOT tuple.0 = tuple() } ENTRY main { pred.0 = pred[] constant(true) true_tuple.0 = tuple() false_tuple.0 = tuple() ROOT cond.0 = () conditional(pred.0, true_tuple.0, false_tuple.0), true_computation=true_comp, false_computation=false_comp } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo)); InfeedTokenPropagation itp; TF_ASSERT_OK_AND_ASSIGN(bool changed, itp.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* cond = FindInstruction(module.get(), "cond.0"); EXPECT_EQ(cond->shape().tuple_shapes_size(), 1); EXPECT_TRUE(cond->shape().tuple_shapes()[0].IsToken()); HloInstruction* true_tuple = FindInstruction(module.get(), "true_tuple.0"); EXPECT_EQ(true_tuple->shape().tuple_shapes_size(), 1); EXPECT_TRUE(true_tuple->shape().tuple_shapes()[0].IsToken()); HloInstruction* false_tuple = FindInstruction(module.get(), "false_tuple.0"); EXPECT_EQ(false_tuple->shape().tuple_shapes_size(), 0); HloComputation* true_comp = FindComputation(module.get(), "true_comp"); EXPECT_THAT(true_comp->root_instruction(), op::Tuple(op::GetTupleElement(op::Infeed(), 1))); HloComputation* false_comp = FindComputation(module.get(), "false_comp"); EXPECT_THAT(false_comp->root_instruction(), op::Tuple(op::AfterAll())); } TEST_F(InfeedTokenPropagationTest, ConditionalOutfeed) { constexpr std::string_view hlo = R"( HloModule main true_comp { arg.0 = (s32[]) parameter(0) token.0 = after-all() outfeed.0 = token[] outfeed(arg.0, token.0), outfeed_shape=(s32[]) ROOT tuple.0 = tuple() } false_comp { arg.0 = () parameter(0) ROOT tuple.0 = tuple() } ENTRY main { arg.0 = s32[] parameter(0) pred.0 = pred[] constant(true) true_tuple.0 = tuple(arg.0) false_tuple.0 = tuple() ROOT cond.0 = () conditional(pred.0, true_tuple.0, false_tuple.0), true_computation=true_comp, false_computation=false_comp } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo)); InfeedTokenPropagation itp; TF_ASSERT_OK_AND_ASSIGN(bool changed, itp.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* cond = FindInstruction(module.get(), "cond.0"); EXPECT_EQ(cond->shape().tuple_shapes_size(), 1); EXPECT_TRUE(cond->shape().tuple_shapes()[0].IsToken()); HloInstruction* true_tuple = FindInstruction(module.get(), "true_tuple.0"); EXPECT_EQ(true_tuple->shape().tuple_shapes_size(), 2); EXPECT_TRUE(true_tuple->shape().tuple_shapes()[1].IsToken()); HloInstruction* false_tuple = FindInstruction(module.get(), "false_tuple.0"); EXPECT_EQ(false_tuple->shape().tuple_shapes_size(), 0); HloComputation* true_comp = FindComputation(module.get(), "true_comp"); EXPECT_THAT(true_comp->root_instruction(), op::Tuple(op::Outfeed())); HloComputation* false_comp = FindComputation(module.get(), "false_comp"); EXPECT_THAT(false_comp->root_instruction(), op::Tuple(op::AfterAll())); } TEST_F(InfeedTokenPropagationTest, ConditionalDuplicateOperand) { constexpr std::string_view hlo = R"( HloModule main true_comp { arg.0 = () parameter(0) token.0 = after-all() infeed.0 = (s32[], token[]) infeed(token.0) ROOT tuple.0 = tuple() } false_comp { arg.0 = () parameter(0) ROOT tuple.0 = tuple() } ENTRY main { pred.0 = pred[] constant(true) tuple.0 = tuple() ROOT cond.0 = () conditional(pred.0, tuple.0, tuple.0), true_computation=true_comp, false_computation=false_comp } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo)); InfeedTokenPropagation itp; TF_ASSERT_OK_AND_ASSIGN(bool changed, itp.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* cond = FindInstruction(module.get(), "cond.0"); EXPECT_EQ(cond->shape().tuple_shapes_size(), 1); EXPECT_TRUE(cond->shape().tuple_shapes()[0].IsToken()); const HloInstruction* true_tuple = cond->operand(1); EXPECT_EQ(true_tuple->shape().tuple_shapes_size(), 1); EXPECT_TRUE(true_tuple->shape().tuple_shapes()[0].IsToken()); const HloInstruction* false_tuple = cond->operand(2); EXPECT_EQ(false_tuple->shape().tuple_shapes_size(), 0); HloComputation* true_comp = FindComputation(module.get(), "true_comp"); EXPECT_THAT(true_comp->root_instruction(), op::Tuple(op::GetTupleElement(op::Infeed(), 1))); HloComputation* false_comp = FindComputation(module.get(), "false_comp"); EXPECT_THAT(false_comp->root_instruction(), op::Tuple(op::AfterAll())); } TEST_F(InfeedTokenPropagationTest, NonTupleConditional) { constexpr std::string_view hlo = R"( HloModule main true_comp { arg.0 = s32[] parameter(0) outfeed_tuple.0 = tuple(arg.0) token.0 = after-all() outfeed.0 = token[] outfeed(outfeed_tuple.0, token.0), outfeed_shape=(s32[]) ROOT tuple.0 = tuple() } false_comp { arg.0 = () parameter(0) ROOT tuple.0 = tuple() } ENTRY main { arg.0 = s32[] parameter(0) pred.0 = pred[] constant(true) false_tuple.0 = tuple() ROOT cond.0 = () conditional(pred.0, arg.0, false_tuple.0), true_computation=true_comp, false_computation=false_comp } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo)); InfeedTokenPropagation itp; TF_ASSERT_OK_AND_ASSIGN(bool changed, itp.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* cond = FindInstruction(module.get(), "cond.0"); EXPECT_EQ(cond->shape().tuple_shapes_size(), 1); EXPECT_TRUE(cond->shape().tuple_shapes()[0].IsToken()); HloInstruction* true_tuple = cond->mutable_operand(1); EXPECT_TRUE(true_tuple->shape().IsTuple()); EXPECT_EQ(true_tuple->shape().tuple_shapes_size(), 2); EXPECT_TRUE(true_tuple->shape().tuple_shapes()[1].IsToken()); HloInstruction* false_tuple = FindInstruction(module.get(), "false_tuple.0"); EXPECT_EQ(false_tuple->shape().tuple_shapes_size(), 0); HloComputation* true_comp = FindComputation(module.get(), "true_comp"); EXPECT_THAT(true_comp->root_instruction(), op::Tuple(op::Outfeed())); HloComputation* false_comp = FindComputation(module.get(), "false_comp"); EXPECT_THAT(false_comp->root_instruction(), op::Tuple(op::AfterAll())); } TEST_F(InfeedTokenPropagationTest, DisjointConditionalOutfeed) { constexpr std::string_view hlo = R"( HloModule main true_comp { ROOT arg.0 = () parameter(0) one.0 = s32[] constant(1) outfeed_tuple.0 = tuple(one.0) token.0 = after-all() outfeed.0 = token[] outfeed(outfeed_tuple.0, token.0), outfeed_shape=(s32[]) } false_comp { arg.0 = () parameter(0) ROOT tuple.0 = tuple() } ENTRY main { pred.0 = pred[] constant(true) true_tuple.0 = tuple() false_tuple.0 = tuple() ROOT cond.0 = () conditional(pred.0, true_tuple.0, false_tuple.0), true_computation=true_comp, false_computation=false_comp } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo)); InfeedTokenPropagation itp; TF_ASSERT_OK_AND_ASSIGN(bool changed, itp.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* cond = FindInstruction(module.get(), "cond.0"); EXPECT_EQ(cond->shape().tuple_shapes_size(), 1); EXPECT_TRUE(cond->shape().tuple_shapes()[0].IsToken()); HloInstruction* true_tuple = FindInstruction(module.get(), "true_tuple.0"); EXPECT_EQ(true_tuple->shape().tuple_shapes_size(), 1); EXPECT_TRUE(true_tuple->shape().tuple_shapes()[0].IsToken()); HloInstruction* false_tuple = FindInstruction(module.get(), "false_tuple.0"); EXPECT_EQ(false_tuple->shape().tuple_shapes_size(), 0); HloComputation* true_comp = FindComputation(module.get(), "true_comp"); EXPECT_THAT(true_comp->root_instruction(), op::Tuple(op::Outfeed())); HloComputation* false_comp = FindComputation(module.get(), "false_comp"); EXPECT_THAT(false_comp->root_instruction(), op::Tuple(op::AfterAll())); } TEST_F(InfeedTokenPropagationTest, WhileInfeed) { constexpr std::string_view hlo = R"( HloModule main comp { arg.0 = () parameter(0) token.0 = after-all() infeed.0 = (s32[], token[]) infeed(token.0) ROOT tuple.0 = tuple() } cond { arg.0 = () parameter(0) ROOT true.0 = pred[] constant(true) } ENTRY main { while_tuple.0 = tuple() ROOT while.0 = () while(while_tuple.0), condition=cond, body=comp } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo)); InfeedTokenPropagation itp; TF_ASSERT_OK_AND_ASSIGN(bool changed, itp.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* loop = FindInstruction(module.get(), "while.0"); EXPECT_EQ(loop->shape().tuple_shapes_size(), 1); EXPECT_TRUE(loop->shape().tuple_shapes()[0].IsToken()); HloInstruction* loop_tuple = FindInstruction(module.get(), "while_tuple.0"); EXPECT_EQ(loop_tuple->shape().tuple_shapes_size(), 1); EXPECT_TRUE(loop_tuple->shape().tuple_shapes()[0].IsToken()); HloComputation* body_comp = FindComputation(module.get(), "comp"); EXPECT_THAT(body_comp->root_instruction(), op::Tuple(op::GetTupleElement(op::Infeed(), 1))); HloInstruction* body_param = body_comp->parameter_instruction(0); EXPECT_EQ(body_param->shape().tuple_shapes_size(), 1); EXPECT_TRUE(body_param->shape().tuple_shapes()[0].IsToken()); HloComputation* cond_comp = FindComputation(module.get(), "cond"); HloInstruction* cond_param = cond_comp->parameter_instruction(0); EXPECT_EQ(cond_param->shape().tuple_shapes_size(), 1); EXPECT_TRUE(cond_param->shape().tuple_shapes()[0].IsToken()); } TEST_F(InfeedTokenPropagationTest, WhileOutfeed) { constexpr std::string_view hlo = R"( HloModule main comp { arg.0 = (s32[]) parameter(0) token.0 = after-all() outfeed.0 = token[] outfeed(arg.0, token.0), outfeed_shape=(s32[]) gte.0 = get-tuple-element(arg.0), index=0 ROOT tuple.0 = tuple(gte.0) } cond { arg.0 = (s32[]) parameter(0) ROOT true.0 = pred[] constant(true) } ENTRY main { arg.0 = s32[] parameter(0) while_tuple.0 = tuple(arg.0) ROOT while.0 = (s32[]) while(while_tuple.0), condition=cond, body=comp } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo)); InfeedTokenPropagation itp; TF_ASSERT_OK_AND_ASSIGN(bool changed, itp.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* loop = FindInstruction(module.get(), "while.0"); EXPECT_EQ(loop->shape().tuple_shapes_size(), 2); EXPECT_TRUE(loop->shape().tuple_shapes()[1].IsToken()); HloInstruction* loop_tuple = FindInstruction(module.get(), "while_tuple.0"); EXPECT_EQ(loop_tuple->shape().tuple_shapes_size(), 2); EXPECT_TRUE(loop_tuple->shape().tuple_shapes()[1].IsToken()); HloComputation* body_comp = FindComputation(module.get(), "comp"); EXPECT_THAT(body_comp->root_instruction(), op::Tuple(op::GetTupleElement(), op::Outfeed())); HloInstruction* body_param = body_comp->parameter_instruction(0); EXPECT_EQ(body_param->shape().tuple_shapes_size(), 2); EXPECT_TRUE(body_param->shape().tuple_shapes()[1].IsToken()); HloComputation* cond_comp = FindComputation(module.get(), "cond"); HloInstruction* cond_param = cond_comp->parameter_instruction(0); EXPECT_EQ(cond_param->shape().tuple_shapes_size(), 2); EXPECT_TRUE(cond_param->shape().tuple_shapes()[1].IsToken()); } TEST_F(InfeedTokenPropagationTest, DisjointWhileOutfeed) { constexpr std::string_view hlo = R"( HloModule main comp { ROOT arg.0 = () parameter(0) one.0 = s32[] constant(1) outfeed_tuple.0 = tuple(one.0) token.0 = after-all() outfeed.0 = token[] outfeed(outfeed_tuple.0, token.0), outfeed_shape=(s32[]) } cond { arg.0 = () parameter(0) ROOT true.0 = pred[] constant(true) } ENTRY main { while_tuple.0 = tuple() ROOT while.0 = () while(while_tuple.0), condition=cond, body=comp } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo)); InfeedTokenPropagation itp; TF_ASSERT_OK_AND_ASSIGN(bool changed, itp.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* loop = FindInstruction(module.get(), "while.0"); EXPECT_EQ(loop->shape().tuple_shapes_size(), 1); EXPECT_TRUE(loop->shape().tuple_shapes()[0].IsToken()); HloInstruction* loop_tuple = FindInstruction(module.get(), "while_tuple.0"); EXPECT_EQ(loop_tuple->shape().tuple_shapes_size(), 1); EXPECT_TRUE(loop_tuple->shape().tuple_shapes()[0].IsToken()); HloComputation* body_comp = FindComputation(module.get(), "comp"); EXPECT_THAT(body_comp->root_instruction(), op::Tuple(op::Outfeed())); HloInstruction* body_param = body_comp->parameter_instruction(0); EXPECT_EQ(body_param->shape().tuple_shapes_size(), 1); EXPECT_TRUE(body_param->shape().tuple_shapes()[0].IsToken()); HloComputation* cond_comp = FindComputation(module.get(), "cond"); HloInstruction* cond_param = cond_comp->parameter_instruction(0); EXPECT_EQ(cond_param->shape().tuple_shapes_size(), 1); EXPECT_TRUE(cond_param->shape().tuple_shapes()[0].IsToken()); } TEST_F(InfeedTokenPropagationTest, NonTupleWhile) { constexpr std::string_view hlo = R"( HloModule main comp { ROOT arg.0 = s32[] parameter(0) tuple.0 = tuple(arg.0) token.0 = after-all() outfeed.0 = token[] outfeed(tuple.0, token.0), outfeed_shape=(s32[]) } cond { arg.0 = s32[] parameter(0) ROOT true.0 = pred[] constant(true) } ENTRY main { arg.0 = s32[] parameter(0) ROOT while.0 = s32[] while(arg.0), condition=cond, body=comp } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo)); InfeedTokenPropagation itp; TF_ASSERT_OK_AND_ASSIGN(bool changed, itp.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* loop = FindInstruction(module.get(), "while.0"); EXPECT_TRUE(loop->shape().IsTuple()); EXPECT_EQ(loop->shape().tuple_shapes_size(), 2); EXPECT_TRUE(loop->shape().tuple_shapes()[1].IsToken()); EXPECT_THAT(loop->operand(0), op::Tuple(op::Parameter(), op::AfterAll())); HloComputation* body_comp = FindComputation(module.get(), "comp"); EXPECT_THAT(body_comp->root_instruction(), op::Tuple(op::GetTupleElement(), op::Outfeed())); HloInstruction* body_param = body_comp->parameter_instruction(0); EXPECT_EQ(body_param->shape().tuple_shapes_size(), 2); EXPECT_TRUE(body_param->shape().tuple_shapes()[1].IsToken()); HloComputation* cond_comp = FindComputation(module.get(), "cond"); HloInstruction* cond_param = cond_comp->parameter_instruction(0); EXPECT_EQ(cond_param->shape().tuple_shapes_size(), 2); EXPECT_TRUE(cond_param->shape().tuple_shapes()[1].IsToken()); } TEST_F(InfeedTokenPropagationTest, NestedInfeedOutfeed) { constexpr std::string_view hlo = R"( HloModule main true_comp { arg.0 = (s32[]) parameter(0) token.0 = after-all() outfeed.0 = token[] outfeed(arg.0, token.0), outfeed_shape=(s32[]) ROOT tuple.0 = tuple() } false_comp { arg.0 = () parameter(0) ROOT tuple.0 = tuple() } comp { arg.0 = () parameter(0) token.0 = after-all() infeed.0 = (s32[], token[]) infeed(token.0) gte.0 = get-tuple-element(infeed.0), index=0 pred.0 = pred[] constant(true) true_tuple.0 = tuple(gte.0) false_tuple.0 = tuple() ROOT cond.0 = () conditional(pred.0, true_tuple.0, false_tuple.0), true_computation=true_comp, false_computation=false_comp } cond { arg.0 = () parameter(0) ROOT true.0 = pred[] constant(true) } ENTRY main { while_tuple.0 = tuple() ROOT while.0 = () while(while_tuple.0), condition=cond, body=comp } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo)); InfeedTokenPropagation itp; TF_ASSERT_OK_AND_ASSIGN(bool changed, itp.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* loop = FindInstruction(module.get(), "while.0"); EXPECT_EQ(loop->shape().tuple_shapes_size(), 2); EXPECT_TRUE(loop->shape().tuple_shapes()[0].IsToken()); EXPECT_TRUE(loop->shape().tuple_shapes()[1].IsToken()); HloInstruction* loop_tuple = FindInstruction(module.get(), "while_tuple.0"); EXPECT_EQ(loop_tuple->shape().tuple_shapes_size(), 2); EXPECT_TRUE(loop_tuple->shape().tuple_shapes()[0].IsToken()); EXPECT_TRUE(loop_tuple->shape().tuple_shapes()[1].IsToken()); HloComputation* body_comp = FindComputation(module.get(), "comp"); EXPECT_THAT(body_comp->root_instruction(), op::Tuple(op::GetTupleElement(op::Infeed(), 1), op::GetTupleElement(op::Conditional(), 0))); HloInstruction* cond = FindInstruction(module.get(), "cond.0"); EXPECT_EQ(cond->shape().tuple_shapes_size(), 1); EXPECT_TRUE(cond->shape().tuple_shapes()[0].IsToken()); HloInstruction* true_tuple = FindInstruction(module.get(), "true_tuple.0"); EXPECT_EQ(true_tuple->shape().tuple_shapes_size(), 2); EXPECT_TRUE(true_tuple->shape().tuple_shapes()[1].IsToken()); HloInstruction* false_tuple = FindInstruction(module.get(), "false_tuple.0"); EXPECT_EQ(false_tuple->shape().tuple_shapes_size(), 0); HloComputation* true_comp = FindComputation(module.get(), "true_comp"); EXPECT_THAT(true_comp->root_instruction(), op::Tuple(op::Outfeed())); HloComputation* false_comp = FindComputation(module.get(), "false_comp"); EXPECT_THAT(false_comp->root_instruction(), op::Tuple(op::AfterAll())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/infeed_token_propagation.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/infeed_token_propagation_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a9a26e45-6caf-4a8e-84d6-4f99d3d89f0a
cpp
tensorflow/tensorflow
while_loop_constant_sinking
third_party/xla/xla/service/while_loop_constant_sinking.cc
third_party/xla/xla/service/while_loop_constant_sinking_test.cc
#include "xla/service/while_loop_constant_sinking.h" #include "absl/algorithm/container.h" #include "absl/container/inlined_vector.h" #include "xla/service/while_util.h" #include "xla/shape_util.h" #include "xla/util.h" namespace xla { namespace { absl::Status ReplaceUsesWhileKeepingLoopInvariance( HloInstruction* old_instr, HloInstruction* new_instr, HloInstruction* while_body_root, int64_t tuple_index) { CHECK_EQ(while_body_root->opcode(), HloOpcode::kTuple); std::vector<HloInstruction*> users; users.reserve(old_instr->user_count()); absl::c_copy(old_instr->users(), std::back_inserter(users)); for (auto* user : users) { for (int64_t i = 0, e = user->operand_count(); i < e; i++) { if (user->operand(i) == old_instr && !(user == while_body_root && i == tuple_index)) { TF_RETURN_IF_ERROR(user->ReplaceOperandWith(i, new_instr)); } } } return absl::OkStatus(); } HloInstruction* CloneHelper(const HloInstruction* instruction, HloComputation* computation) { if (instruction->opcode() == HloOpcode::kConstant) { return computation->AddInstruction(instruction->Clone(".sunk")); } if (instruction->opcode() == HloOpcode::kBroadcast) { return computation->AddInstruction(instruction->CloneWithNewOperands( instruction->shape(), {CloneHelper(instruction->operand(0), computation)})); } LOG(FATAL) << "Unexpected instruction."; } } absl::StatusOr<bool> WhileLoopConstantSinking::TrySinkingConstantsIntoWhileLoop( HloInstruction* while_instr) { HloComputation* while_cond = while_instr->while_condition(); HloComputation* while_body = while_instr->while_body(); const HloInstruction& init_value = *while_instr->operand(0); if (init_value.opcode() != HloOpcode::kTuple) { return false; } bool changed = false; absl::flat_hash_map<int64_t, absl::InlinedVector<HloInstruction*, 1>> conditional_gte_index_to_insts = WhileUtil::GetGTEsMapForWhileConditional(*while_cond); std::vector<HloInstruction*> invariant_body_gtes = WhileUtil::GetInvariantGTEsForWhileBody(*while_body); for (HloInstruction* invariant_body_gte : invariant_body_gtes) { int64_t index = invariant_body_gte->tuple_index(); const HloInstruction& invariant_value = *init_value.operand(index); if (invariant_value.opcode() != HloOpcode::kConstant && (!sink_broadcast_of_constants_ || invariant_value.opcode() != HloOpcode::kBroadcast || invariant_value.operand(0)->opcode() != HloOpcode::kConstant)) { continue; } if (sink_only_scalar_constants_) { if (!ShapeUtil::IsScalar(init_value.operand(index)->shape())) { continue; } } if (invariant_body_gte->user_count() > 1) { HloInstruction* constant_instr = CloneHelper(&invariant_value, while_body); TF_RETURN_IF_ERROR(ReplaceUsesWhileKeepingLoopInvariance( invariant_body_gte, constant_instr, while_body->root_instruction(), index)); changed = true; } auto it = conditional_gte_index_to_insts.find(index); if (it == conditional_gte_index_to_insts.end()) { continue; } for (HloInstruction* invariant_cond_gte : it->second) { if (invariant_cond_gte->user_count() > 0) { HloInstruction* constant_instr = CloneHelper(&invariant_value, while_cond); TF_RETURN_IF_ERROR( invariant_cond_gte->ReplaceAllUsesWith(constant_instr)); changed = true; } } } return changed; } absl::StatusOr<bool> WhileLoopConstantSinking::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(2) << "HLO module before WhileLoopConstantSinking:"; XLA_VLOG_LINES(2, module->ToString()); bool changed = false; std::vector<HloInstruction*> while_instrs; for (auto* comp : module->MakeNonfusionComputations(execution_threads)) { absl::c_copy_if(comp->instructions(), std::back_inserter(while_instrs), HloPredicateIsOp<HloOpcode::kWhile>); } for (HloInstruction* while_instr : while_instrs) { TF_ASSIGN_OR_RETURN(bool result, TrySinkingConstantsIntoWhileLoop(while_instr)); changed |= result; } if (changed) { VLOG(2) << "HLO module after WhileLoopConstantSinking:"; XLA_VLOG_LINES(2, module->ToString()); } else { VLOG(2) << "HLO module unchanged after WhileLoopConstantSinking"; } return changed; } }
#include "xla/service/while_loop_constant_sinking.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; using ::testing::_; using WhileLoopConstantSinkingTest = HloTestBase; TEST_F(WhileLoopConstantSinkingTest, SinkOneConstant) { const char* const hlo_string = R"( HloModule ModuleWithWhile body { p_body = (f32[2],f32[2]) parameter(0) p_body.0 = f32[2] get-tuple-element((f32[2],f32[2]) p_body), index=0 p_body.1 = f32[2] get-tuple-element((f32[2],f32[2]) p_body), index=1 add.0 = f32[2] add(p_body.0, p_body.1) ROOT root = (f32[2],f32[2]) tuple(add.0, p_body.1) } condition { p_cond = (f32[2],f32[2]) parameter(0) ROOT result = pred[] constant(true) } ENTRY entry { const_0 = f32[2] constant({1, 2}) const_1 = f32[2] constant({2, 1}) while_init = (f32[2],f32[2]) tuple(const_0, const_1) ROOT while = (f32[2],f32[2]) while(while_init), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN( bool changed, WhileLoopConstantSinking(false, true) .Run(module.get())); ASSERT_FALSE(changed); TF_ASSERT_OK_AND_ASSIGN( changed, WhileLoopConstantSinking(false, false) .Run(module.get())); ASSERT_TRUE(changed); auto* while_body = module->GetComputationWithName("body"); EXPECT_THAT(while_body->root_instruction(), op::Tuple(op::Add(_, op::Constant()), _)); } TEST_F(WhileLoopConstantSinkingTest, SinkBroadcastOfConstant) { const char* const hlo_string = R"( HloModule ModuleWithWhile body { p_body = (f32[16],f32[16]) parameter(0) p_body.0 = get-tuple-element(p_body), index=0 p_body.1 = get-tuple-element(p_body), index=1 add.0 = add(p_body.0, p_body.1) ROOT root = tuple(add.0, p_body.1) } condition { p_cond = (f32[16],f32[16]) parameter(0) ROOT result = pred[] constant(true) } ENTRY entry { const_0 = f32[] constant(1) const_1 = f32[] constant(2) broadcast_0 = f32[16] broadcast(const_0), dimensions={} broadcast_1 = f32[16] broadcast(const_1), dimensions={} while_init = tuple(broadcast_0, broadcast_1) ROOT while = while(while_init), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN( bool changed, WhileLoopConstantSinking(false) .Run(module.get())); ASSERT_FALSE(changed); TF_ASSERT_OK_AND_ASSIGN( changed, WhileLoopConstantSinking(true) .Run(module.get())); ASSERT_TRUE(changed); auto* while_body = module->GetComputationWithName("body"); EXPECT_THAT(while_body->root_instruction(), op::Tuple(op::Add(_, op::Broadcast(op::Constant())), _)); } TEST_F(WhileLoopConstantSinkingTest, KeepConstantsLoopInvariant) { const char* const hlo_string = R"( HloModule ModuleWithWhile body { p_body = (f32[2],f32[2],f32[2]) parameter(0) p_body.0 = f32[2] get-tuple-element((f32[2],f32[2],f32[2]) p_body), index=0 p_body.1 = f32[2] get-tuple-element((f32[2],f32[2],f32[2]) p_body), index=1 p_body.2 = f32[2] get-tuple-element((f32[2],f32[2],f32[2]) p_body), index=2 add.0 = f32[2] add(p_body.1, p_body.2) ROOT root = (f32[2],f32[2],f32[2]) tuple(add.0, p_body.1, p_body.2) } condition { p_cond = (f32[2],f32[2],f32[2]) parameter(0) ROOT result = pred[] constant(true) } ENTRY entry { const_0 = f32[2] constant({1, 2}) const_1 = f32[2] constant({2, 1}) const_2 = f32[2] constant({3, 1}) while_init = (f32[2],f32[2],f32[2]) tuple(const_0, const_1, const_2) ROOT while = (f32[2],f32[2],f32[2]) while(while_init), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, WhileLoopConstantSinking{}.Run(module.get())); ASSERT_TRUE(changed); auto* while_body = module->GetComputationWithName("body"); EXPECT_THAT(while_body->root_instruction(), op::Tuple(op::Add(op::Constant(), op::Constant()), op::GetTupleElement(op::Parameter(0)), op::GetTupleElement(op::Parameter(0)))); } TEST_F(WhileLoopConstantSinkingTest, TupleShapedConstants) { const char* const hlo_string = R"( HloModule ModuleWithWhile body { p_b = (f32[2],(f32[2],f32[2])) parameter(0) p_b.0 = f32[2] get-tuple-element((f32[2],(f32[2],f32[2])) p_b), index=0 p_b.1 = (f32[2],f32[2]) get-tuple-element((f32[2],(f32[2],f32[2])) p_b), index=1 p_b.1.1 = f32[2] get-tuple-element(p_b.1), index=0 ROOT root = (f32[2],(f32[2],f32[2])) tuple(p_b.1.1, p_b.1) } condition { p_cond = (f32[2],(f32[2],f32[2])) parameter(0) ROOT result = pred[] constant(true) } ENTRY entry { const_0 = f32[2] constant({1, 2}) const_1 = (f32[2], f32[2]) constant(({2, 1},{3,1})) while_init = (f32[2],(f32[2],f32[2])) tuple(const_0, const_1) ROOT while = (f32[2],(f32[2],f32[2])) while(while_init), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, WhileLoopConstantSinking{}.Run(module.get())); ASSERT_TRUE(changed); auto* while_body = module->GetComputationWithName("body"); EXPECT_THAT(while_body->root_instruction(), op::Tuple(op::GetTupleElement(op::Constant(), 0), op::GetTupleElement(op::Parameter(0)))); } TEST_F(WhileLoopConstantSinkingTest, DuplicateGTEs) { const char* const hlo_string = R"( HloModule ModuleWithWhile body { p_b = (f32[2],f32[2],f32[2]) parameter(0) p_b.1 = f32[2] get-tuple-element((f32[2],f32[2],f32[2]) p_b), index=1 p_b.2 = f32[2] get-tuple-element((f32[2],f32[2],f32[2]) p_b), index=2 p_b.2.dup = f32[2] get-tuple-element((f32[2],f32[2],f32[2]) p_b), index=2 add.0 = f32[2] add(p_b.1, p_b.2.dup) ROOT root = (f32[2],f32[2],f32[2]) tuple(add.0, p_b.1, p_b.2) } condition { p_cond = (f32[2],f32[2],f32[2]) parameter(0) ROOT result = pred[] constant(true) } ENTRY entry { const_0 = f32[2] constant({1, 2}) const_1 = f32[2] constant({2, 1}) const_2 = f32[2] constant({3, 1}) while_init = (f32[2],f32[2],f32[2]) tuple(const_0, const_1, const_2) ROOT while = (f32[2],f32[2],f32[2]) while(while_init), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, WhileLoopConstantSinking{}.Run(module.get())); ASSERT_TRUE(changed); auto* while_body = module->GetComputationWithName("body"); EXPECT_THAT(while_body->root_instruction(), op::Tuple(op::Add(op::Constant(), ::testing::Not(op::Constant())), op::GetTupleElement(op::Parameter(0)), op::GetTupleElement(op::Parameter(0)))); } TEST_F(WhileLoopConstantSinkingTest, DontCreateDeadConstant) { const char* const hlo_string = R"( HloModule ModuleWithWhile body { p_body = (f32[2],f32[2]) parameter(0) p_body.0 = f32[2] get-tuple-element((f32[2],f32[2]) p_body), index=0 p_body.1 = f32[2] get-tuple-element((f32[2],f32[2]) p_body), index=1 token0 = token[] after-all() outfeed = token[] outfeed(p_body.0, token0) ROOT root = (f32[2],f32[2],f32[2]) tuple(p_body.0, p_body.1, p_body.1) } condition { p_cond = (f32[2],f32[2]) parameter(0) ROOT result = pred[] constant(true) } ENTRY entry { const_0 = f32[2] constant({1, 2}) const_1 = f32[2] constant({2, 1}) while_init = (f32[2],f32[2]) tuple(const_0, const_1) ROOT while = (f32[2],f32[2],f32[2]) while(while_init), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, WhileLoopConstantSinking{}.Run(module.get())); ASSERT_TRUE(changed); auto* while_body = module->GetComputationWithName("body"); EXPECT_THAT(while_body->root_instruction(), op::Tuple(op::GetTupleElement(), op::GetTupleElement(), op::GetTupleElement())); for (const HloInstruction* inst : while_body->instructions()) { if (inst->opcode() == HloOpcode::kConstant) { EXPECT_GT(inst->user_count(), 0); } } } TEST_F(WhileLoopConstantSinkingTest, ConditionalSinkConstant) { const char* const hlo_string = R"( HloModule ModuleWithWhile body { p_body = (f32[],f32[]) parameter(0) p_body.0 = f32[] get-tuple-element((f32[],f32[]) p_body), index=0 const = f32[] constant(1) add = f32[] add(p_body.0, const) p_body.1 = f32[] get-tuple-element((f32[],f32[]) p_body), index=1 ROOT root = (f32[],f32[]) tuple(add, p_body.1) } condition { p_cond = (f32[],f32[]) parameter(0) p_cond.0 = f32[] get-tuple-element((f32[],f32[]) p_cond), index=0 p_cond.1 = f32[] get-tuple-element((f32[],f32[]) p_cond), index=1 ROOT result = pred[] compare(p_cond.0, p_cond.1), direction=LT } ENTRY entry { const_0 = f32[] constant(0) const_1 = f32[] constant(10) while_init = (f32[],f32[]) tuple(const_0, const_1) ROOT while = (f32[],f32[]) while(while_init), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, WhileLoopConstantSinking{}.Run(module.get())); ASSERT_TRUE(changed); auto* while_condition = module->GetComputationWithName("condition"); EXPECT_THAT(while_condition->root_instruction(), op::Lt(_, op::Constant())); } TEST_F(WhileLoopConstantSinkingTest, ConditionalTupleShapedConstants) { const char* const hlo_string = R"( HloModule ModuleWithWhile body { p_b = (f32[],(f32[],f32[])) parameter(0) p_b.0 = f32[] get-tuple-element((f32[],(f32[],f32[])) p_b), index=0 p_b.1 = (f32[],f32[]) get-tuple-element((f32[],(f32[],f32[])) p_b), index=1 p_b.1.0 = f32[] get-tuple-element((f32[],f32[]) p_b.1), index=0 add = f32[] add(p_b.0, p_b.1.0) ROOT root = (f32[],(f32[],f32[])) tuple(add, p_b.1) } condition { p_c = (f32[],(f32[],f32[])) parameter(0) p_c.0 = f32[] get-tuple-element((f32[],(f32[],f32[])) p_c), index=0 p_c.1 = (f32[],f32[]) get-tuple-element((f32[],(f32[],f32[])) p_c), index=1 p_c.1.1 = f32[] get-tuple-element((f32[],f32[]) p_c.1), index=1 ROOT result = pred[] compare(p_c.0, p_c.1.1), direction=LT } ENTRY entry { const_0 = f32[] constant(0) const_1 = (f32[], f32[]) constant((1, 10)) while_init = (f32[],(f32[],f32[])) tuple(const_0, const_1) ROOT while = (f32[],(f32[],f32[])) while(while_init), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, WhileLoopConstantSinking{}.Run(module.get())); ASSERT_TRUE(changed); auto* while_condition = module->GetComputationWithName("condition"); EXPECT_THAT(while_condition->root_instruction(), op::Lt(_, op::GetTupleElement(op::Constant()))); } TEST_F(WhileLoopConstantSinkingTest, ConditionalDontCreateDeadConstant) { const char* const hlo_string = R"( HloModule ModuleWithWhile body { p_body = (f32[],f32[],f32[]) parameter(0) p_body.0 = f32[] get-tuple-element((f32[],f32[],f32[]) p_body), index=0 const = f32[] constant(1) add = f32[] add(p_body.0, const) p_body.1 = f32[] get-tuple-element((f32[],f32[],f32[]) p_body), index=1 p_body.2 = f32[] get-tuple-element((f32[],f32[],f32[]) p_body), index=2 ROOT root = (f32[],f32[],f32[]) tuple(add, p_body.1, p_body.2) } condition { p_cond = (f32[],f32[],f32[]) parameter(0) p_cond.0 = f32[] get-tuple-element((f32[],f32[],f32[]) p_cond), index=0 p_cond.1 = f32[] get-tuple-element((f32[],f32[],f32[]) p_cond), index=1 p_cond.2 = f32[] get-tuple-element((f32[],f32[],f32[]) p_cond), index=2 ROOT result = pred[] compare(p_cond.0, p_cond.1), direction=LT } ENTRY entry { const_0 = f32[] constant(0) const_1 = f32[] constant(10) const_2 = f32[] constant(12) while_init = (f32[],f32[],f32[]) tuple(const_0, const_1, const_2) ROOT while = (f32[],f32[],f32[]) while(while_init), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, WhileLoopConstantSinking{}.Run(module.get())); ASSERT_TRUE(changed); auto* while_condition = module->GetComputationWithName("condition"); EXPECT_THAT(while_condition->root_instruction(), op::Lt(_, op::Constant())); for (const HloInstruction* inst : while_condition->instructions()) { if (inst->opcode() == HloOpcode::kConstant) { EXPECT_GT(inst->user_count(), 0); } } } TEST_F(WhileLoopConstantSinkingTest, ConditionalMultipleSameIndexGTEs) { const char* const hlo_string = R"( HloModule ModuleWithWhile body { p_body = (f32[],f32[],f32[]) parameter(0) p_body.0 = f32[] get-tuple-element((f32[],f32[],f32[]) p_body), index=0 const = f32[] constant(1) add.0 = f32[] add(p_body.0, const) p_body.1 = f32[] get-tuple-element((f32[],f32[],f32[]) p_body), index=1 add.1 = f32[] add(p_body.1, const) p_body.2 = f32[] get-tuple-element((f32[],f32[],f32[]) p_body), index=2 ROOT root = (f32[],f32[],f32[]) tuple(add.0, add.1, p_body.2) } condition { p_cond = (f32[],f32[],f32[]) parameter(0) p_cond.0 = f32[] get-tuple-element((f32[],f32[],f32[]) p_cond), index=0 p_cond.2 = f32[] get-tuple-element((f32[],f32[],f32[]) p_cond), index=2 lt.0 = pred[] compare(p_cond.0, p_cond.2), direction=LT p_cond.1 = f32[] get-tuple-element((f32[],f32[],f32[]) p_cond), index=1 p_cond.2.c = f32[] get-tuple-element((f32[],f32[],f32[]) p_cond), index=2 lt.1 = pred[] compare(p_cond.1, p_cond.2.c), direction=LT ROOT result = pred[] and(lt.0, lt.1) } ENTRY entry { const_0 = f32[] constant(0) const_1 = f32[] constant(0) const_2 = f32[] constant(12) while_init = (f32[],f32[],f32[]) tuple(const_0, const_1, const_2) ROOT while = (f32[],f32[],f32[]) while(while_init), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, WhileLoopConstantSinking{}.Run(module.get())); ASSERT_TRUE(changed); auto* while_condition = module->GetComputationWithName("condition"); EXPECT_THAT(while_condition->root_instruction(), op::And(op::Lt(_, op::Constant()), op::Lt(_, op::Constant()))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/while_loop_constant_sinking.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/while_loop_constant_sinking_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9131b767-6a50-48e5-8e87-4d8d59db6611
cpp
tensorflow/tensorflow
rendezvous
tensorflow/core/framework/rendezvous.cc
tensorflow/core/framework/rendezvous_test.cc
#include "tensorflow/core/framework/rendezvous.h" #include <deque> #include <functional> #include <utility> #include <vector> #include "tensorflow/core/framework/local_rendezvous.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/gtl/flatmap.h" #include "tensorflow/core/lib/gtl/manual_constructor.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { Rendezvous::ParsedKey& Rendezvous::ParsedKey::operator=(const ParsedKey& b) { const char* b_base = b.buf_.data(); buf_ = b.buf_; src_device = StringPiece(buf_.data() + (b.src_device.data() - b_base), b.src_device.size()); src = b.src; src_incarnation = b.src_incarnation; dst_device = StringPiece(buf_.data() + (b.dst_device.data() - b_base), b.dst_device.size()); dst = b.dst; edge_name = StringPiece(buf_.data() + (b.edge_name.data() - b_base), b.edge_name.size()); return *this; } string Rendezvous::CreateKey(const string& src_device, uint64 src_incarnation, const string& dst_device, const string& name, const FrameAndIter& frame_iter) { char buf[strings::kFastToBufferSize]; return strings::StrCat( src_device, ";", strings::Uint64ToHexString(src_incarnation, buf), ";", dst_device, ";", name, ";", frame_iter.frame_id, ":", frame_iter.iter_id); } static StringPiece ConsumeNextPart(StringPiece* s, char delim) { for (size_t offset = 0; offset < s->size(); offset++) { if ((*s)[offset] == delim) { StringPiece result(s->data(), offset); s->remove_prefix(offset + 1); return result; } } StringPiece result(s->data(), s->size()); s->remove_prefix(s->size()); return result; } Status Rendezvous::ParseKey(StringPiece key, ParsedKey* out) { if (key.data() == out->buf_.data()) { DCHECK_EQ(key.size(), out->buf_.size()); } else { out->buf_.assign(key.data(), key.size()); } StringPiece s(out->buf_); StringPiece parts[5]; for (int i = 0; i < 5; i++) { parts[i] = ConsumeNextPart(&s, ';'); } if (s.empty() && !parts[4].empty() && DeviceNameUtils::ParseFullName(parts[0], &out->src) && strings::HexStringToUint64(parts[1], &out->src_incarnation) && DeviceNameUtils::ParseFullName(parts[2], &out->dst) && !parts[3].empty()) { out->src_device = StringPiece(parts[0].data(), parts[0].size()); out->dst_device = StringPiece(parts[2].data(), parts[2].size()); out->edge_name = StringPiece(parts[3].data(), parts[3].size()); return absl::OkStatus(); } return errors::InvalidArgument("Invalid rendezvous key: ", key); } RendezvousInterface::~RendezvousInterface() {} Status RendezvousInterface::Recv(const ParsedKey& key, const Args& recv_args, Tensor* val, bool* is_dead, int64_t timeout_ms) { Status ret; Notification n; RecvAsync(key, recv_args, [&ret, &n, val, is_dead](const Status& s, const Args& send_args, const Args& recv_args, const Tensor& v, const bool dead) { ret = s; *val = v; *is_dead = dead; n.Notify(); }); if (timeout_ms > 0) { int64_t timeout_us = timeout_ms * 1000; bool notified = WaitForNotificationWithTimeout(&n, timeout_us); if (!notified) { return Status(absl::StatusCode::kDeadlineExceeded, "Timed out waiting for notification"); } } else { n.WaitForNotification(); } return ret; } Status RendezvousInterface::Recv(const ParsedKey& key, const Args& args, Tensor* val, bool* is_dead) { const int64_t no_timeout = 0; return Recv(key, args, val, is_dead, no_timeout); } namespace { class LocalRendezvousWrapper : public Rendezvous { public: LocalRendezvousWrapper(int num_shards) : impl_(this, num_shards) {} Status Send(const ParsedKey& key, const Args& send_args, const Tensor& val, const bool is_dead) override { return impl_.Send(key, send_args, val, is_dead); } void RecvAsync(const ParsedKey& key, const Args& recv_args, DoneCallback done) override { impl_.RecvAsync(key, recv_args, std::move(done)); } void StartAbort(const Status& status) override { impl_.StartAbort(status); } private: LocalRendezvous impl_; LocalRendezvousWrapper(const LocalRendezvousWrapper&) = delete; void operator=(const LocalRendezvousWrapper&) = delete; }; } Rendezvous* NewLocalRendezvous(int num_shards) { return new LocalRendezvousWrapper(num_shards); } }
#include "tensorflow/core/framework/rendezvous.h" #include "absl/status/status.h" #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/random/simple_philox.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/notification.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace { TEST(RendezvousTest, Key) { const string key = Rendezvous::CreateKey( "/job:mnist/replica:1/task:2/CPU:0", 7890, "/job:mnist/replica:1/task:2/device:GPU:0", "var0", FrameAndIter(0, 0)); EXPECT_EQ(key, "/job:mnist/replica:1/task:2/CPU:0;" "0000000000001ed2;" "/job:mnist/replica:1/task:2/device:GPU:0;" "var0;" "0:0"); Rendezvous::ParsedKey parsed; TF_EXPECT_OK(Rendezvous::ParseKey(key, &parsed)); EXPECT_EQ(parsed.src_device, "/job:mnist/replica:1/task:2/CPU:0"); EXPECT_EQ(parsed.src_incarnation, 7890); EXPECT_EQ(parsed.src.type, "CPU"); EXPECT_EQ(parsed.dst_device, "/job:mnist/replica:1/task:2/device:GPU:0"); EXPECT_EQ(parsed.dst.type, "GPU"); EXPECT_FALSE(Rendezvous::ParseKey("foo;bar;baz", &parsed).ok()); EXPECT_FALSE(Rendezvous::ParseKey("/job:mnist/replica:1/task:2/CPU:0;" "/job:mnist/replica:1/task:2/device:GPU:0;", &parsed) .ok()); EXPECT_FALSE( Rendezvous::ParseKey(strings::StrCat(key, ";", key), &parsed).ok()); } class LocalRendezvousTest : public ::testing::Test { public: LocalRendezvousTest() : threads_(Env::Default(), "test", 16) { rendez_ = NewLocalRendezvous(); } ~LocalRendezvousTest() override { rendez_->Unref(); } void SchedClosure(std::function<void()> fn) { threads_.Schedule(std::move(fn)); } Rendezvous* rendez_; private: thread::ThreadPool threads_; }; Tensor V(const string& content) { Tensor tensor(DT_STRING, TensorShape({})); tensor.scalar<tstring>()() = content; return tensor; } string V(const Tensor& tensor) { CHECK_EQ(tensor.dtype(), DT_STRING); CHECK(TensorShapeUtils::IsScalar(tensor.shape())); return tensor.scalar<tstring>()(); } Rendezvous::ParsedKey MakeKey(const string& name) { string s = Rendezvous::CreateKey("/job:mnist/replica:1/task:2/CPU:0", 7890, "/job:mnist/replica:1/task:2/device:GPU:0", name, FrameAndIter(0, 0)); Rendezvous::ParsedKey k; TF_EXPECT_OK(Rendezvous::ParseKey(s, &k)); return k; } const Rendezvous::ParsedKey& KeyFoo() { static auto* key = new Rendezvous::ParsedKey(MakeKey("foo")); return *key; } const Rendezvous::ParsedKey& KeyBar() { static auto* key = new Rendezvous::ParsedKey(MakeKey("bar")); return *key; } TEST_F(LocalRendezvousTest, SendRecv) { Rendezvous::Args args; TF_ASSERT_OK(rendez_->Send(KeyFoo(), args, V("hello"), false)); Tensor val(DT_STRING); bool is_dead = false; TF_ASSERT_OK(rendez_->Recv(KeyFoo(), args, &val, &is_dead)); EXPECT_EQ("hello", V(val)); } TEST_F(LocalRendezvousTest, RecvSend) { SchedClosure([this]() { Env::Default()->SleepForMicroseconds(10000); Rendezvous::Args args; TF_ASSERT_OK(rendez_->Send(KeyFoo(), args, V("hello"), false)); }); Tensor val(DT_STRING); bool is_dead = false; Rendezvous::Args args; TF_ASSERT_OK(rendez_->Recv(KeyFoo(), args, &val, &is_dead)); EXPECT_EQ("hello", V(val)); } TEST_F(LocalRendezvousTest, PingPong) { SchedClosure([this]() { Tensor t(DT_STRING); bool is_dead = false; Rendezvous::Args args; TF_ASSERT_OK(rendez_->Recv(KeyFoo(), args, &t, &is_dead)); TF_ASSERT_OK(rendez_->Send(KeyBar(), args, t, is_dead)); }); Env::Default()->SleepForMicroseconds(1000000); Tensor val(DT_STRING); bool val_dead = false; Rendezvous::Args args; TF_ASSERT_OK(rendez_->Send(KeyFoo(), args, V("secret msg"), val_dead)); TF_ASSERT_OK(rendez_->Recv(KeyBar(), args, &val, &val_dead)); EXPECT_EQ("secret msg", V(val)); } TEST_F(LocalRendezvousTest, CancelBeforeRecv) { auto* cm = new CancellationManager(); Tensor val(DT_STRING); bool is_dead = false; Rendezvous::Args args; args.cancellation_manager = cm; cm->StartCancel(); auto s = rendez_->Recv(KeyFoo(), args, &val, &is_dead); EXPECT_FALSE(s.ok()); EXPECT_TRUE(absl::IsCancelled(s)); EXPECT_EQ("RecvAsync is cancelled.", s.message()); delete cm; } TEST_F(LocalRendezvousTest, CancelAfterRecv) { auto* cm = new CancellationManager(); Notification n; SchedClosure([cm, &n]() { Env::Default()->SleepForMicroseconds(10000); cm->StartCancel(); n.Notify(); }); Tensor val(DT_STRING); bool is_dead = false; Rendezvous::Args args; args.cancellation_manager = cm; auto s = rendez_->Recv(KeyFoo(), args, &val, &is_dead); EXPECT_FALSE(s.ok()); EXPECT_TRUE(absl::IsCancelled(s)); EXPECT_EQ("RecvAsync is cancelled.", s.message()); n.WaitForNotification(); delete cm; } TEST_F(LocalRendezvousTest, CancelEmptyQueue) { auto* cm = new CancellationManager(); Notification n; SchedClosure([this, cm, &n]() { Env::Default()->SleepForMicroseconds(10000); Rendezvous::Args args; TF_ASSERT_OK(rendez_->Send(KeyFoo(), args, V("hello"), false)); cm->StartCancel(); n.Notify(); }); Tensor val(DT_STRING); bool is_dead = false; Rendezvous::Args args; args.cancellation_manager = cm; TF_ASSERT_OK(rendez_->Recv(KeyFoo(), args, &val, &is_dead)); EXPECT_EQ("hello", V(val)); n.WaitForNotification(); delete cm; } TEST_F(LocalRendezvousTest, CancelMultiple) { auto* cm = new CancellationManager(); SchedClosure([this, cm]() { Env::Default()->SleepForMicroseconds(10000); Rendezvous::Args args; cm->StartCancel(); TF_ASSERT_OK(rendez_->Send(KeyFoo(), args, V("hello"), false)); TF_ASSERT_OK(rendez_->Send(KeyFoo(), args, V("hello"), false)); }); Tensor val(DT_STRING); Rendezvous::Args args; Rendezvous::Args args_with_cancellation; args_with_cancellation.cancellation_manager = cm; Notification n0; Notification n1; Notification n2; Notification n3; Status s0; Status s1; Status s2; Status s3; rendez_->RecvAsync( KeyFoo(), args, [&n0, &s0](const Status& s, const Rendezvous::Args& send_args, const Rendezvous::Args& recv_args, const Tensor& v, const bool dead) { s0.Update(s); n0.Notify(); }); rendez_->RecvAsync( KeyFoo(), args_with_cancellation, [&n1, &s1](const Status& s, const Rendezvous::Args& send_args, const Rendezvous::Args& recv_args, const Tensor& v, const bool dead) { s1.Update(s); n1.Notify(); }); rendez_->RecvAsync( KeyFoo(), args, [&n2, &s2](const Status& s, const Rendezvous::Args& send_args, const Rendezvous::Args& recv_args, const Tensor& v, const bool dead) { s2.Update(s); n2.Notify(); }); rendez_->RecvAsync( KeyFoo(), args_with_cancellation, [&n3, &s3](const Status& s, const Rendezvous::Args& send_args, const Rendezvous::Args& recv_args, const Tensor& v, const bool dead) { s3.Update(s); n3.Notify(); }); n0.WaitForNotification(); n1.WaitForNotification(); n2.WaitForNotification(); n3.WaitForNotification(); TF_ASSERT_OK(s0); TF_ASSERT_OK(s2); EXPECT_FALSE(s1.ok()); EXPECT_FALSE(s3.ok()); delete cm; } struct BlockingState { mutex lock; int counter = 0; Notification done; }; TEST_F(LocalRendezvousTest, RandomSendRecv) { static const int N = 100; random::PhiloxRandom philox(testing::RandomSeed(), 17); random::SimplePhilox rnd(&philox); BlockingState state; state.counter = N; for (int i = 0; i < N; ++i) { int micros = 100 + rnd.Uniform(1000); SchedClosure([this, i, micros]() { Env::Default()->SleepForMicroseconds(micros); Rendezvous::Args args; TF_ASSERT_OK(rendez_->Send(MakeKey(strings::StrCat(i)), args, V(strings::StrCat(i)), false)); }); auto recv_done = [this, &state, i](const Status& status, const Rendezvous::Args& sender_args, const Rendezvous::Args& recver_args, const Tensor& val, const bool val_dead) { EXPECT_EQ(strings::StrCat(i), V(val)); bool done = false; { mutex_lock l(state.lock); state.counter--; if (state.counter == 0) { done = true; } } if (done) { state.done.Notify(); } }; micros = 100 + rnd.Uniform(1000); SchedClosure([this, i, micros, recv_done]() { Env::Default()->SleepForMicroseconds(micros); rendez_->RecvAsync(MakeKey(strings::StrCat(i)), Rendezvous::Args(), recv_done); }); } state.done.WaitForNotification(); } void RandomSleep() { if (std::rand() % 10 == 0) { Env::Default()->SleepForMicroseconds(1000); } } TEST_F(LocalRendezvousTest, MultiSends) { static const int N = 100; const auto& key_foo = KeyFoo(); Rendezvous::Args args; SchedClosure([=]() { for (int i = 0; i < N; ++i) { TF_ASSERT_OK(rendez_->Send(key_foo, args, V(strings::StrCat(i)), false)); RandomSleep(); } }); Tensor val; bool val_dead; for (int i = 0; i < N; ++i) { TF_ASSERT_OK(rendez_->Recv(key_foo, args, &val, &val_dead)); RandomSleep(); } } TEST_F(LocalRendezvousTest, RecvAbort) { rendez_->Ref(); SchedClosure([this]() { rendez_->StartAbort(errors::Aborted("")); rendez_->Unref(); }); Tensor val(DT_STRING); bool val_dead = false; Rendezvous::Args args; Status status = rendez_->Recv(KeyFoo(), args, &val, &val_dead); EXPECT_TRUE(absl::IsAborted(status)); } TEST_F(LocalRendezvousTest, RecvSleepAbort) { rendez_->Ref(); SchedClosure([this]() { Env::Default()->SleepForMicroseconds(1000000); rendez_->StartAbort(errors::Aborted("")); rendez_->Unref(); }); Tensor val(DT_STRING); bool val_dead = false; Rendezvous::Args args; Status status = rendez_->Recv(KeyFoo(), args, &val, &val_dead); EXPECT_TRUE(absl::IsAborted(status)); } TEST_F(LocalRendezvousTest, AbortThenRecvOrSend) { rendez_->StartAbort(errors::Aborted("")); Tensor val(DT_STRING); bool val_dead = false; Rendezvous::Args args; EXPECT_TRUE(absl::IsAborted(rendez_->Send(KeyFoo(), args, val, val_dead))); EXPECT_TRUE(absl::IsAborted(rendez_->Recv(KeyFoo(), args, &val, &val_dead))); } class DummyDeviceContext : public DeviceContext { public: explicit DummyDeviceContext(int stream_id) : stream_id_(stream_id) {} ~DummyDeviceContext() override {} int stream_id() const { return stream_id_; } void CopyTensorInSameDevice(const Tensor* input_tensor, Device* device, Tensor* output_tensor, StatusCallback done) const override { done(absl::OkStatus()); } private: const int stream_id_; }; TEST_F(LocalRendezvousTest, TransferDummyDeviceContext) { Rendezvous::Args args; args.device_context = new DummyDeviceContext(123); TF_ASSERT_OK(rendez_->Send(KeyFoo(), args, V("hello"), false)); Notification n; Rendezvous::Args args1; args1.device_context = new DummyDeviceContext(1); rendez_->RecvAsync( KeyFoo(), args1, [&n](const Status& s, const Rendezvous::Args& send_args, const Rendezvous::Args& recv_args, const Tensor& val, bool is_dead) { CHECK_EQ(123, dynamic_cast<const DummyDeviceContext*>( send_args.device_context) ->stream_id()); n.Notify(); }); n.WaitForNotification(); args.device_context->Unref(); args1.device_context->Unref(); } void BM_SendRecv(::testing::benchmark::State& state) { Rendezvous* rendez = NewLocalRendezvous(); Tensor orig = V("val"); Tensor val(DT_STRING, TensorShape({})); bool is_dead = false; Rendezvous::Args args; for (auto s : state) { TF_CHECK_OK(rendez->Send(KeyFoo(), args, orig, is_dead)); TF_CHECK_OK(rendez->Recv(KeyFoo(), args, &val, &is_dead)); } CHECK_EQ(V(val), V(orig)); rendez->Unref(); } BENCHMARK(BM_SendRecv); void BM_RecvSend(::testing::benchmark::State& state) { Rendezvous* rendez = NewLocalRendezvous(); Tensor orig = V("val"); Tensor val(DT_STRING, TensorShape({})); bool is_dead = false; Rendezvous::Args args; for (auto s : state) { bool received = false; rendez->RecvAsync( KeyFoo(), args, [&val, &received](const Status& , const Rendezvous::Args& , const Rendezvous::Args& , const Tensor& tensor, bool ) { val = tensor; received = true; }); TF_CHECK_OK(rendez->Send(KeyFoo(), args, orig, is_dead)); CHECK(received); } CHECK_EQ(V(val), V(orig)); rendez->Unref(); } BENCHMARK(BM_RecvSend); void BM_PingPong(::testing::benchmark::State& state) { const int messages_count = state.range(0); auto* cm = new CancellationManager(); thread::ThreadPool* pool = new thread::ThreadPool(Env::Default(), "test", 1); for (auto s : state) { Rendezvous* rendez = NewLocalRendezvous(); pool->Schedule([rendez, messages_count]() { Tensor bar = V("bar"); Tensor foo(DT_STRING, TensorShape({})); bool is_dead = false; Rendezvous::Args args; for (int i = 0; i < messages_count; ++i) { TF_CHECK_OK(rendez->Recv(KeyFoo(), args, &foo, &is_dead)); TF_CHECK_OK(rendez->Send(KeyBar(), args, bar, is_dead)); } CHECK_EQ("foo", V(foo)); }); Tensor foo = V("foo"); Tensor bar(DT_STRING, TensorShape({})); bool is_dead = false; Rendezvous::Args args; args.cancellation_manager = cm; for (int i = 0; i < messages_count; ++i) { TF_CHECK_OK(rendez->Send(KeyFoo(), args, foo, is_dead)); TF_CHECK_OK(rendez->Recv(KeyBar(), args, &bar, &is_dead)); } CHECK_EQ("bar", V(bar)); rendez->Unref(); } state.SetItemsProcessed(messages_count * state.iterations()); delete pool; delete cm; } BENCHMARK(BM_PingPong)->Arg(100)->Arg(200)->Arg(300); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/framework/rendezvous.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/framework/rendezvous_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ecfc7b9e-9c2a-42a9-b642-6e26f02538cb
cpp
tensorflow/tensorflow
operand_upcaster
third_party/xla/xla/service/operand_upcaster.cc
third_party/xla/xla/service/operand_upcaster_test.cc
#include "xla/service/operand_upcaster.h" #include <optional> #include "absl/algorithm/container.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/shape_inference.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { absl::StatusOr<std::optional<Shape>> MaybeInferShape( const HloInstruction* instruction) { switch (instruction->opcode()) { case HloOpcode::kDot: return ShapeInference::InferDotOpShape( instruction->operand(0)->shape(), instruction->operand(1)->shape(), instruction->dot_dimension_numbers(), std::nullopt, Cast<HloDotInstruction>(instruction)->sparsity()); case HloOpcode::kConvolution: return ShapeInference::InferConvolveShape( instruction->operand(0)->shape(), instruction->operand(1)->shape(), instruction->feature_group_count(), instruction->batch_group_count(), instruction->window(), instruction->convolution_dimension_numbers(), std::nullopt); default: return std::optional<Shape>(std::nullopt); } } } bool OperandUpcaster::InstructionMatchesPattern(HloInstruction* instruction) { auto status_or_inferred_shape = MaybeInferShape(instruction); if (!status_or_inferred_shape.ok() || !status_or_inferred_shape->has_value()) { return false; } if (absl::c_count(instruction->precision_config().operand_precision(), PrecisionConfig::PACKED_NIBBLE) == 2) { return true; } PrimitiveType inferred_type = (*status_or_inferred_shape)->element_type(); if (instruction->shape().element_type() == inferred_type && instruction->operand(0)->shape().element_type() == inferred_type && instruction->operand(1)->shape().element_type() == inferred_type) { return false; } return ShapeUtil::ElementCanUpcast(**status_or_inferred_shape, instruction->shape()); } absl::StatusOr<HloInstruction*> OperandUpcaster::ExpandInstruction( HloInstruction* instruction) { const bool packed_nibble = absl::c_count(instruction->precision_config().operand_precision(), PrecisionConfig::PACKED_NIBBLE) == 2; auto type = instruction->shape().element_type(); if (packed_nibble) { HloInstruction *lhs_n0 = instruction->mutable_operand(0), *lhs_n1 = lhs_n0, *rhs_n0 = instruction->mutable_operand(1), *rhs_n1 = rhs_n0; TF_ASSIGN_OR_RETURN(lhs_n0, MakeBinaryHlo(HloOpcode::kShiftLeft, lhs_n0, MakeScalarLike(lhs_n0, 4))); HloOpcode lhs_shift = ShapeUtil::ElementIsSigned(lhs_n0->shape()) ? HloOpcode::kShiftRightArithmetic : HloOpcode::kShiftRightLogical; TF_ASSIGN_OR_RETURN( lhs_n0, MakeBinaryHlo(lhs_shift, lhs_n0, MakeScalarLike(lhs_n0, 4))); lhs_n0 = MakeConvertToHlo(lhs_n0, type); TF_ASSIGN_OR_RETURN( lhs_n1, MakeBinaryHlo(lhs_shift, lhs_n1, MakeScalarLike(lhs_n1, 4))); lhs_n1 = MakeConvertToHlo(lhs_n1, type); TF_ASSIGN_OR_RETURN(rhs_n0, MakeBinaryHlo(HloOpcode::kShiftLeft, rhs_n0, MakeScalarLike(rhs_n0, 4))); HloOpcode rhs_shift = ShapeUtil::ElementIsSigned(rhs_n0->shape()) ? HloOpcode::kShiftRightArithmetic : HloOpcode::kShiftRightLogical; TF_ASSIGN_OR_RETURN( rhs_n0, MakeBinaryHlo(rhs_shift, rhs_n0, MakeScalarLike(rhs_n0, 4))); rhs_n0 = MakeConvertToHlo(rhs_n0, type); TF_ASSIGN_OR_RETURN( rhs_n1, MakeBinaryHlo(rhs_shift, rhs_n1, MakeScalarLike(rhs_n1, 4))); rhs_n1 = MakeConvertToHlo(rhs_n1, type); HloInstruction* linear_n0 = instruction->parent()->AddInstruction(instruction->CloneWithNewOperands( instruction->shape(), {lhs_n0, rhs_n0})); linear_n0->mutable_precision_config()->mutable_operand_precision()->Set( 0, PrecisionConfig::DEFAULT); linear_n0->mutable_precision_config()->mutable_operand_precision()->Set( 1, PrecisionConfig::DEFAULT); HloInstruction* linear_n1 = instruction->parent()->AddInstruction(linear_n0->CloneWithNewOperands( instruction->shape(), {lhs_n1, rhs_n1})); return MakeBinaryHlo(HloOpcode::kAdd, linear_n0, linear_n1); } for (int i = 0; i < HloDotInstruction::kOperands; ++i) { auto* operand = instruction->mutable_operand(i); if (operand->shape().element_type() == type) { continue; } auto upcast_shape = operand->shape(); upcast_shape.set_element_type(type); auto* convert_inst = instruction->AddInstruction( HloInstruction::CreateConvert(upcast_shape, operand)); TF_RETURN_IF_ERROR( instruction->ReplaceOperandWithDifferentShape(i, convert_inst)); } return nullptr; } }
#include "xla/service/operand_upcaster.h" #include <memory> #include <tuple> #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/primitive_util.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = ::xla::testing::opcode_matchers; class OperandUpcasterTest : public HloTestBase, public ::testing::WithParamInterface< std::tuple<PrimitiveType, PrimitiveType, PrimitiveType>> {}; bool ShouldUpcast(PrimitiveType operand_type, PrimitiveType result_type) { return operand_type != result_type && primitive_util::HigherPrecisionType(operand_type, result_type) == result_type; } TEST_P(OperandUpcasterTest, ConvertInserted) { PrimitiveType lhs_type, rhs_type, result_type; std::tie(lhs_type, rhs_type, result_type) = GetParam(); absl::string_view module_tmpl = R"( HloModule module ENTRY main { p0 = $0[2,3]{1,0} parameter(0) p1 = $1[3,2]{1,0} parameter(1) ROOT dot = $2[2,2]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; auto module_string = absl::Substitute( module_tmpl, primitive_util::LowercasePrimitiveTypeName(lhs_type), primitive_util::LowercasePrimitiveTypeName(rhs_type), primitive_util::LowercasePrimitiveTypeName(result_type)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool upcasted, OperandUpcaster().Run(module.get())); EXPECT_EQ(upcasted, ShouldUpcast(lhs_type, result_type) || ShouldUpcast(rhs_type, result_type)); auto original_lhs = op::Parameter(0); auto original_rhs = op::Parameter(1); auto upcasted_lhs = ShouldUpcast(lhs_type, result_type) ? AllOf(op::Convert(original_lhs), op::Shape(absl::Substitute( "$0[2,3]{1,0}", primitive_util::LowercasePrimitiveTypeName(result_type)))) : original_lhs; auto upcasted_rhs = ShouldUpcast(rhs_type, result_type) ? AllOf(op::Convert(original_rhs), op::Shape(absl::Substitute( "$0[3,2]{1,0}", primitive_util::LowercasePrimitiveTypeName(result_type)))) : original_rhs; EXPECT_THAT( module->entry_computation()->root_instruction(), AllOf(op::Dot(upcasted_lhs, upcasted_rhs), op::Shape(absl::Substitute( "$0[2,2]{1,0}", primitive_util::LowercasePrimitiveTypeName(result_type))))); } INSTANTIATE_TEST_SUITE_P(S16U16, OperandUpcasterTest, ::testing::Values(std::make_tuple(S8, S8, S16), std::make_tuple(U8, U8, U16))); INSTANTIATE_TEST_SUITE_P(S32, OperandUpcasterTest, ::testing::Combine(::testing::Values(S8, U8, S16), ::testing::Values(S8, U8, S16), ::testing::Values(S32))); INSTANTIATE_TEST_SUITE_P(U32, OperandUpcasterTest, ::testing::Combine(::testing::Values(U8, U16), ::testing::Values(U8, U16), ::testing::Values(U32))); INSTANTIATE_TEST_SUITE_P(BF16, OperandUpcasterTest, ::testing::Combine(::testing::Values(BF16, S8, U8), ::testing::Values(BF16, S8, U8), ::testing::Values(BF16))); INSTANTIATE_TEST_SUITE_P(F32, OperandUpcasterTest, ::testing::Combine(::testing::Values(BF16, F16), ::testing::Values(BF16, F16), ::testing::Values(F32))); INSTANTIATE_TEST_SUITE_P(NoUpcast, OperandUpcasterTest, ::testing::Values(std::make_tuple(F32, F32, BF16), std::make_tuple(S32, S32, U32))); TEST_F(OperandUpcasterTest, SparseDot) { absl::string_view kHlo = R"( HloModule module ENTRY main { p0 = bf16[2,16]{1,0} parameter(0) p1 = bf16[32,2]{1,0} parameter(1) meta = u16[2,2]{1,0} parameter(2) ROOT dot = f32[2,2]{1,0} dot(p0, p1, meta), lhs_contracting_dims={1}, rhs_contracting_dims={0}, sparsity=L.1@2:4 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHlo)); TF_ASSERT_OK_AND_ASSIGN(bool upcasted, OperandUpcaster().Run(module.get())); EXPECT_TRUE(upcasted); auto upcasted_lhs = AllOf(op::Convert(op::Parameter(0)), op::Shape("f32[2,16]{1,0}")); auto upcasted_rhs = AllOf(op::Convert(op::Parameter(1)), op::Shape("f32[32,2]{1,0}")); EXPECT_THAT(module->entry_computation()->root_instruction(), AllOf(::testing::MakeMatcher(new ::xla::testing::HloMatcher( HloOpcode::kDot, {upcasted_lhs, upcasted_rhs, op::Parameter(2)})), op::Shape("f32[2,2]{1,0}"))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/operand_upcaster.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/operand_upcaster_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b969274a-0550-41b7-9010-91181907524b
cpp
tensorflow/tensorflow
dot_merger
third_party/xla/xla/service/dot_merger.cc
third_party/xla/xla/service/dot_merger_test.cc
#include "xla/service/dot_merger.h" #include <cstdint> #include <set> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/protobuf_util.h" #include "xla/service/graphcycles/graphcycles.h" #include "xla/service/shape_inference.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { absl::StatusOr<HloInstruction*> TryMergeSameOperand(HloInstruction* a, HloInstruction* b) { if (a->shape().layout() != b->shape().layout()) { VLOG(3) << "Can't merge dots because they have a different layout:\n" << "\t" << a->ToString() << "\n" << "\t" << b->ToString(); return nullptr; } if (a->operand(0) != b->operand(0) && a->operand(1) != b->operand(1)) { VLOG(4) << "Can't merge dots because they don't share an operand.\n" << "\t" << a->ToString() << "\n" << "\t" << b->ToString(); return nullptr; } if (a->operand(0)->shape().element_type() != b->operand(0)->shape().element_type() || a->operand(1)->shape().element_type() != b->operand(1)->shape().element_type() || a->shape().element_type() != b->shape().element_type()) { VLOG(3) << "Can't merge dots because their lhs/rhs/return-types don't match.\n" << "\t" << a->ToString() << "\n" << "\t" << b->ToString(); return nullptr; } const DotDimensionNumbers& dnums_a = a->dot_dimension_numbers(); const DotDimensionNumbers& dnums_b = b->dot_dimension_numbers(); if (!absl::c_equal(dnums_a.lhs_batch_dimensions(), dnums_b.lhs_batch_dimensions()) || !absl::c_equal(dnums_a.rhs_batch_dimensions(), dnums_b.rhs_batch_dimensions()) || !absl::c_equal(dnums_a.lhs_contracting_dimensions(), dnums_b.lhs_contracting_dimensions()) || !absl::c_equal(dnums_a.rhs_contracting_dimensions(), dnums_b.rhs_contracting_dimensions())) { VLOG(3) << "Can't merge dots because they have mismatching dnums.\n" << "\t" << a->ToString() << "\n" << "\t" << b->ToString() << "\n" << absl::c_equal(dnums_a.lhs_batch_dimensions(), dnums_b.lhs_batch_dimensions()) << ", " << absl::c_equal(dnums_a.rhs_batch_dimensions(), dnums_b.rhs_batch_dimensions()) << ", " << absl::c_equal(dnums_a.lhs_contracting_dimensions(), dnums_b.lhs_contracting_dimensions()) << ", " << absl::c_equal(dnums_a.rhs_contracting_dimensions(), dnums_b.rhs_contracting_dimensions()); return nullptr; } if (!absl::c_equal(a->precision_config().operand_precision(), b->precision_config().operand_precision())) { VLOG(3) << "Can't merge dots because they have mismatching operand " "precisions:\n" << "\t" << a->ToString() << "\n" << "\t" << b->ToString(); return nullptr; } HloDotInstruction* dot_a = Cast<HloDotInstruction>(a); HloDotInstruction* dot_b = Cast<HloDotInstruction>(b); if (!absl::c_equal(dot_a->sparsity(), dot_b->sparsity(), protobuf_util::ProtobufEquals)) { VLOG(3) << "Can't merge dots because they have mismatching sparsity " "descriptors:\n" << "\t" << a->ToString() << "\n" << "\t" << b->ToString(); return nullptr; } VLOG(2) << "Merging dots sharing an operand:\n" << "\t" << a->ToString() << "\n" << "\t" << b->ToString(); const DotDimensionNumbers& dnums = a->dot_dimension_numbers(); bool lhs_same = a->operand(0) == b->operand(0); HloInstruction* shared_op = a->mutable_operand(lhs_same ? 0 : 1); HloInstruction* diff_op_a = a->mutable_operand(lhs_same ? 1 : 0); HloInstruction* diff_op_b = b->mutable_operand(lhs_same ? 1 : 0); if (diff_op_a->shape().layout() != diff_op_b->shape().layout()) { VLOG(3) << "Can't merge dots because the different operands have a " "different layout:\n" << "\t" << diff_op_a->ToString() << "\n" << "\t" << diff_op_b->ToString(); return nullptr; } CHECK_EQ(dnums.lhs_batch_dimensions_size(), dnums.rhs_batch_dimensions_size()); std::set<int64_t> used_dims; int64_t shared_op_num_non_contracting_dims = shared_op->shape().rank() - dnums.lhs_batch_dimensions_size(); if (lhs_same) { shared_op_num_non_contracting_dims -= dnums.lhs_contracting_dimensions_size(); used_dims.insert(dnums.rhs_contracting_dimensions().begin(), dnums.rhs_contracting_dimensions().end()); used_dims.insert(dnums.rhs_batch_dimensions().begin(), dnums.rhs_batch_dimensions().end()); } else { shared_op_num_non_contracting_dims -= dnums.rhs_contracting_dimensions_size(); used_dims.insert(dnums.lhs_contracting_dimensions().begin(), dnums.lhs_contracting_dimensions().end()); used_dims.insert(dnums.lhs_batch_dimensions().begin(), dnums.lhs_batch_dimensions().end()); } if (used_dims.size() + 1 != diff_op_a->shape().rank()) { VLOG(3) << "Can't merge dots because the different operands don't have exactly " "one non-contracting dimension:\n" << "\t" << a->ToString() << "\n" << "\t" << b->ToString(); return nullptr; } int64_t outer_dim = 0; for (auto used_dim : used_dims) { if (used_dim != outer_dim) { break; } ++outer_dim; } std::vector<SparsityDescriptor> sparsity(dot_a->sparsity().begin(), dot_a->sparsity().end()); std::vector<HloInstruction*> sparse_meta(sparsity.size()); for (int i = 0; i < sparsity.size(); ++i) { HloInstruction* meta = a->mutable_operand(HloDotInstruction::kOperands + i); HloInstruction* other_meta = b->mutable_operand(HloDotInstruction::kOperands + i); if (sparsity[i].index() == (lhs_same ? 1 : 0)) { TF_ASSIGN_OR_RETURN( Shape meta_concat_shape, ShapeInference::InferConcatOpShape( {&meta->shape(), &other_meta->shape()}, outer_dim)); meta = meta->AddInstruction(HloInstruction::CreateConcatenate( meta_concat_shape, {meta, other_meta}, outer_dim)); } else { if (other_meta != meta) { VLOG(3) << "Can't merge dots because the sparsity metadata is different:\n" << "\t" << a->ToString() << "\n" << "\t" << b->ToString(); return nullptr; } } sparse_meta[i] = meta; } TF_ASSIGN_OR_RETURN( Shape concat_shape, ShapeInference::InferConcatOpShape( {&diff_op_a->shape(), &diff_op_b->shape()}, outer_dim)); *concat_shape.mutable_layout() = diff_op_a->shape().layout(); HloInstruction* concat_op = diff_op_a->AddInstruction(HloInstruction::CreateConcatenate( concat_shape, {diff_op_a, diff_op_b}, outer_dim)); HloInstruction* dot_lhs = lhs_same ? shared_op : concat_op; HloInstruction* dot_rhs = lhs_same ? concat_op : shared_op; TF_ASSIGN_OR_RETURN( Shape new_dot_shape, ShapeInference::InferDotOpShape( dot_lhs->shape(), dot_rhs->shape(), dnums, a->shape().element_type(), sparsity)); *new_dot_shape.mutable_layout() = a->shape().layout(); HloInstruction* new_dot = a->AddInstruction( HloInstruction::CreateDot(new_dot_shape, dot_lhs, dot_rhs, dnums, a->precision_config(), sparsity, sparse_meta)); if (!a->metadata().op_name().empty()) { new_dot->set_metadata(a->metadata()); } else if (!b->metadata().op_name().empty()) { new_dot->set_metadata(b->metadata()); } DimensionVector start_indices(new_dot_shape.dimensions_size(), 0); DimensionVector limit_indices(new_dot_shape.dimensions().begin(), new_dot_shape.dimensions().end()); DimensionVector strides(new_dot_shape.dimensions_size(), 1); int64_t slice_dim = new_dot_shape.dimensions_size() - (lhs_same ? 1 : 1 + shared_op_num_non_contracting_dims); limit_indices[slice_dim] = a->shape().dimensions(slice_dim); HloInstruction* new_a = a->AddInstruction(HloInstruction::CreateSlice( a->shape(), new_dot, start_indices, limit_indices, strides)); TF_RETURN_IF_ERROR(a->ReplaceAllUsesWith(new_a)); start_indices[slice_dim] = limit_indices[slice_dim]; limit_indices[slice_dim] = new_dot_shape.dimensions(slice_dim); HloInstruction* new_b = b->AddInstruction(HloInstruction::CreateSlice( b->shape(), new_dot, start_indices, limit_indices, strides)); TF_RETURN_IF_ERROR(b->ReplaceAllUsesWith(new_b)); return new_dot; } absl::StatusOr<bool> MergeDots(HloComputation* comp, int64_t max_size_to_merge) { auto is_merge_candidate = [&](HloInstruction* instr) { int64_t bytes = ShapeUtil::ByteSizeOfElements(instr->shape()); for (const HloInstruction* operand : instr->operands()) { bytes += ShapeUtil::ByteSizeOfElements(operand->shape()); } return bytes <= max_size_to_merge; }; absl::flat_hash_map<HloInstruction*, absl::flat_hash_set<HloInstruction*>> equivalence_classes; for (HloInstruction* instr : comp->instructions()) { if (instr->opcode() != HloOpcode::kDot || !instr->control_predecessors().empty() || !instr->control_successors().empty()) { continue; } for (HloInstruction* operand : instr->operands()) { equivalence_classes[operand].insert(instr); } } absl::erase_if( equivalence_classes, [&](const std::pair<const HloInstruction*, absl::flat_hash_set<HloInstruction*>>& kv) { const auto& v = kv.second; return v.size() < 2 || absl::c_none_of(v, is_merge_candidate); }); if (equivalence_classes.empty()) { return false; } GraphCycles graph; absl::flat_hash_map<HloInstruction*, int32_t> graph_ids_map; auto graph_id = [&](HloInstruction* instr) { auto it_and_inserted = graph_ids_map.emplace(instr, -1); auto it = it_and_inserted.first; auto inserted = it_and_inserted.second; if (inserted) { it->second = graph.NewNode(); } return it->second; }; for (HloInstruction* instr : comp->MakeInstructionPostOrder()) { int32_t id = graph_id(instr); for (HloInstruction* operand : instr->operands()) { CHECK(graph.InsertEdge(graph_id(operand), id)); } for (HloInstruction* control_pred : instr->control_predecessors()) { CHECK(graph.InsertEdge(graph_id(control_pred), id)); } } absl::flat_hash_set<HloInstruction*> dead_instrs; std::vector<HloInstruction*> keys; keys.reserve(equivalence_classes.size()); for (auto& kv : equivalence_classes) { keys.push_back(kv.first); } absl::c_sort(keys, [](const HloInstruction* a, const HloInstruction* b) { return a->unique_id() < b->unique_id(); }); for (auto key : keys) { const auto& values = equivalence_classes[key]; absl::InlinedVector<HloInstruction*, 16> dots(values.begin(), values.end()); absl::c_sort(dots, [](const HloInstruction* a, const HloInstruction* b) { return a->unique_id() < b->unique_id(); }); for (int64_t i = 0; i < dots.size(); i++) { HloInstruction*& a = dots[i]; if (a == nullptr) { continue; } for (int64_t j = i + 1; j < dots.size(); j++) { HloInstruction* b = dots[j]; if (b == nullptr) { continue; } int32_t a_id = graph_id(a); int32_t b_id = graph_id(b); if (dead_instrs.contains(a) || dead_instrs.contains(b) || (!is_merge_candidate(a) && !is_merge_candidate(b)) || graph.IsReachableNonConst(a_id, b_id) || graph.IsReachableNonConst(b_id, a_id)) { continue; } TF_ASSIGN_OR_RETURN(HloInstruction * merged, TryMergeSameOperand(a, b)); if (merged != nullptr) { int32_t merged_id = graph_id(merged); graph.InsertEdge(a_id, merged_id); graph.InsertEdge(b_id, merged_id); for (int32_t succ : graph.SuccessorsCopy(a_id)) { graph.InsertEdge(merged_id, succ); } for (int32_t succ : graph.SuccessorsCopy(b_id)) { graph.InsertEdge(merged_id, succ); } dead_instrs.insert(a); dead_instrs.insert(b); dots[i] = merged; dots[j] = nullptr; } } } } for (HloInstruction* instr : dead_instrs) { TF_RETURN_IF_ERROR(comp->RemoveInstruction(instr)); } return !dead_instrs.empty(); } } absl::StatusOr<bool> DotMerger::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* comp : module->MakeNonfusionComputations(execution_threads)) { TF_ASSIGN_OR_RETURN(bool changed_computation, MergeDots(comp, max_size_to_merge_)); changed |= changed_computation; } return changed; } }
#include "xla/service/dot_merger.h" #include <cstdint> #include <limits> #include <memory> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace m = ::xla::match; class DotMergerTest : public HloTestBase { public: DotMergerTest() : HloTestBase(false, false) {} }; TEST_F(DotMergerTest, MergeRHS) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs = f32[200,100] parameter(0) rhs0 = f32[100, 10] parameter(1) rhs1 = f32[100, 50] parameter(2) dot0 = f32[200, 10] dot(lhs, rhs0), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot1 = f32[200, 50] dot(lhs, rhs1), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT tuple = (f32[200,10], f32[200,50]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); const HloInstruction* dot0 = nullptr; const HloInstruction* dot1 = nullptr; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::Slice(m::Op(&dot0)), m::Slice(m::Op(&dot1))))); EXPECT_EQ(dot0, dot1); EXPECT_THAT(dot0, GmockMatch(m::Dot(m::Parameter(0), m::Concatenate().WithBinaryOperandsAnyOrder( m::Parameter(1), m::Parameter(2))))); } TEST_F(DotMergerTest, MergeRHSWithLayouts) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs = f32[200,100] parameter(0) rhs0 = f32[100, 10]{0,1} parameter(1) rhs1 = f32[100, 50]{0,1} parameter(2) dot0 = f32[200, 10] dot(lhs, rhs0), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot1 = f32[200, 50] dot(lhs, rhs1), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT tuple = (f32[200,10], f32[200,50]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); const HloInstruction* dot0 = nullptr; const HloInstruction* dot1 = nullptr; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::Slice(m::Op(&dot0)), m::Slice(m::Op(&dot1))))); EXPECT_EQ(dot0, dot1); Shape expected_concat_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {100, 60}, {0, 1}); EXPECT_THAT( dot0, GmockMatch(m::Dot(m::Parameter(0), m::Concatenate() .WithBinaryOperandsAnyOrder(m::Parameter(1), m::Parameter(2)) .WithShapeEqualTo(&expected_concat_shape)))); } TEST_F(DotMergerTest, NoMergeDifferentLayoutRHS) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs = f32[200,100] parameter(0) rhs0 = f32[100, 10]{0,1} parameter(1) rhs1 = f32[100, 50]{1,0} parameter(2) dot0 = f32[200, 10] dot(lhs, rhs0), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot1 = f32[200, 50] dot(lhs, rhs1), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT tuple = (f32[200,10], f32[200,50]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_FALSE(changed); } TEST_F(DotMergerTest, MergeLHS) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f32[100,200] parameter(0) lhs1 = f32[300,200] parameter(1) rhs = f32[200, 50] parameter(2) dot0 = f32[100, 50] dot(lhs0, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot1 = f32[300, 50] dot(lhs1, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT tuple = (f32[100,50], f32[300,50]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::Slice(), m::Slice()))); } TEST_F(DotMergerTest, MergeLHSDotsWithNonDefaultLayout) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f32[100,200] parameter(0) lhs1 = f32[300,200] parameter(1) rhs = f32[200, 50] parameter(2) dot0 = f32[100, 50]{0,1} dot(lhs0, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot1 = f32[300, 50]{0,1} dot(lhs1, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT tuple = (f32[100,50]{0,1}, f32[300,50]{0,1}) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); Shape expected_dot_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {400, 50}, {0, 1}); const HloInstruction* dot0 = nullptr; const HloInstruction* dot1 = nullptr; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::Slice(m::Dot(&dot0, m::Op(), m::Op()) .WithShapeEqualTo(&expected_dot_shape)), m::Slice(m::Dot(&dot1, m::Op(), m::Op()))))); EXPECT_EQ(dot0, dot1); } TEST_F(DotMergerTest, NoMergeDifferentLayoutLHS) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f32[100,200]{1,0} parameter(0) lhs1 = f32[300,200]{0,1} parameter(1) rhs = f32[200, 50] parameter(2) dot0 = f32[100, 50] dot(lhs0, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot1 = f32[300, 50] dot(lhs1, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT tuple = (f32[100,50], f32[300,50]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_FALSE(changed); } TEST_F(DotMergerTest, NoMergeDifferentDotLayout) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f32[100,200] parameter(0) lhs1 = f32[300,200] parameter(1) rhs = f32[200, 50] parameter(2) dot0 = f32[100, 50]{0,1} dot(lhs0, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot1 = f32[300, 50]{1,0} dot(lhs1, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT tuple = (f32[100,50]{0,1}, f32[300,50]{1,0}) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_FALSE(changed); } TEST_F(DotMergerTest, MergeThree) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f32[100,200] parameter(0) lhs1 = f32[300,200] parameter(1) lhs2 = f32[500,200] parameter(2) rhs = f32[200, 50] parameter(3) dot0 = f32[100, 50] dot(lhs0, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot1 = f32[300, 50] dot(lhs1, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot2 = f32[500, 50] dot(lhs2, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT tuple = (f32[100,50], f32[300,50], f32[500,50]) tuple(dot0, dot1, dot2) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); AlgebraicSimplifier algsimp{AlgebraicSimplifierOptions{}}; TF_ASSERT_OK(this->RunHloPass(&algsimp, module.get()).status()); const HloInstruction* s0 = nullptr; const HloInstruction* s1 = nullptr; const HloInstruction* s2 = nullptr; SCOPED_TRACE(module->ToString()); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::Slice(m::Dot( &s0, m::Concatenate(m::Parameter(0), m::Parameter(1), m::Parameter(2)), m::Parameter(3))), m::Slice(m::Op(&s1)), m::Slice(m::Op(&s2))))); EXPECT_EQ(s0, s1); EXPECT_EQ(s1, s2); } TEST_F(DotMergerTest, NoMergeThreeDueToCycle) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f32[100,200] parameter(0) lhs1 = f32[300,200] parameter(1) rhs = f32[200, 50] parameter(2) dot0 = f32[100, 50] dot(lhs0, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot1 = f32[300, 50] dot(lhs1, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} zero = f32[] constant(0) lhs2 = f32[500,200] pad(dot0, zero), padding=400_0x150_0 dot2 = f32[500, 50] dot(lhs2, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT tuple = (f32[100,50], f32[300,50], f32[500,50]) tuple(dot0, dot1, dot2) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); AlgebraicSimplifier algsimp{AlgebraicSimplifierOptions{}}; TF_ASSERT_OK(this->RunHloPass(&algsimp, module.get()).status()); const HloInstruction* s0 = nullptr; const HloInstruction* s1 = nullptr; const HloInstruction* s2 = nullptr; SCOPED_TRACE(module->ToString()); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::Slice(m::Dot(&s0, m::Concatenate(m::Parameter(0), m::Parameter(1)), m::Parameter(2))), m::Slice(m::Op(&s1)), m::Dot(&s2, m::Op(), m::Parameter(2))))); EXPECT_EQ(s0, s1); EXPECT_NE(s0, s2); } TEST_F(DotMergerTest, NoMergeDataDependency) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f32[100,200] parameter(0) rhs = f32[200, 50] parameter(1) dot0 = f32[100, 50] dot(lhs0, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} zero = f32[] constant(0) lhs1 = f32[300,200] pad(dot0, zero), padding=200_0x150_0 dot1 = f32[300, 50] dot(lhs1, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT tuple = (f32[100,50], f32[300,50]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_FALSE(changed); } TEST_F(DotMergerTest, MergeSameContractingDimsOnBothSides) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f32[100,200] parameter(0) lhs1 = f32[300,200] parameter(1) rhs = f32[50, 200] parameter(2) dot0 = f32[100, 50] dot(lhs0, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={1} dot1 = f32[300, 50] dot(lhs1, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={1} ROOT tuple = (f32[100,50], f32[300,50]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::Slice(), m::Slice()))); } TEST_F(DotMergerTest, MergeWithBatchDims) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f32[2,4,100,200] parameter(0) lhs1 = f32[2,4,300,200] parameter(1) rhs = f32[2,4,200, 50] parameter(2) dot0 = f32[2,4,100, 50] dot(lhs0, rhs), lhs_batch_dims={0,1}, rhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_contracting_dims={2} dot1 = f32[2,4,300, 50] dot(lhs1, rhs), lhs_batch_dims={0,1}, rhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_contracting_dims={2} ROOT tuple = (f32[2,4,100,50], f32[2,4,300,50]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::Slice(), m::Slice()))); } TEST_F(DotMergerTest, MergeWithBatchDimsAndMultipleContractingDims) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs = f32[2,3,4,5] parameter(0) rhs0 = f32[2,6,3,4,5] parameter(1) rhs1 = f32[2,7,3,4,5] parameter(2) dot0 = f32[2,4,6] dot(lhs, rhs0), lhs_batch_dims={0,2}, rhs_batch_dims={0,3}, lhs_contracting_dims={1,3}, rhs_contracting_dims={2,4} dot1 = f32[2,4,7] dot(lhs, rhs1), lhs_batch_dims={0,2}, rhs_batch_dims={0,3}, lhs_contracting_dims={1,3}, rhs_contracting_dims={2,4} ROOT tuple = (f32[2,4,6], f32[2,4,7]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); TF_ASSERT_OK(verifier().Run(module.get()).status()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::Slice(), m::Slice()))); } TEST_F(DotMergerTest, MergeWithUnsortedBatchDims) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f32[2,4,100,200] parameter(0) lhs1 = f32[2,4,300,200] parameter(1) rhs = f32[2,4,200, 50] parameter(2) dot0 = f32[4,2,100, 50] dot(lhs0, rhs), lhs_batch_dims={1,0}, rhs_batch_dims={1,0}, lhs_contracting_dims={3}, rhs_contracting_dims={2} dot1 = f32[4,2,300, 50] dot(lhs1, rhs), lhs_batch_dims={1,0}, rhs_batch_dims={1,0}, lhs_contracting_dims={3}, rhs_contracting_dims={2} ROOT tuple = (f32[4,2,100,50], f32[4,2,300,50]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::Slice(), m::Slice()))); } TEST_F(DotMergerTest, NoMergeDueToIsMergeCandidate) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f32[100,200] parameter(0) lhs1 = f32[300,200] parameter(1) lhs2 = f32[500,200] parameter(2) rhs = f32[200, 50] parameter(3) dot0 = f32[100, 50] dot(lhs0, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot1 = f32[300, 50] dot(lhs1, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot2 = f32[500, 50] dot(lhs2, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT tuple = (f32[100,50], f32[300,50], f32[500,50]) tuple(dot0, dot1, dot2) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass((100 * 50 + 100 * 200 + 200 * 50) * sizeof(float)); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); const HloInstruction* s0 = nullptr; const HloInstruction* s1 = nullptr; const HloInstruction* s2 = nullptr; SCOPED_TRACE(module->ToString()); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::Slice(m::Dot(&s0, m::Concatenate(m::Parameter(0), m::Parameter(1)), m::Parameter(3))), m::Slice(m::Op(&s1)), m::Dot(&s2, m::Parameter(2), m::Parameter(3))))); EXPECT_EQ(s0, s1); EXPECT_NE(s0, s2); } TEST_F(DotMergerTest, NoMergeDifferentLhsBatchDims) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f32[10,10,10,10] parameter(0) lhs1 = f32[10,10,10,10] parameter(1) rhs = f32[10,10,10,10] parameter(2) dot0 = f32[10,10,10,10] dot(lhs0, rhs), lhs_batch_dims={0,1}, rhs_batch_dims={0,1}, lhs_contracting_dims={2}, rhs_contracting_dims={2} dot1 = f32[10,10,10,10] dot(lhs1, rhs), lhs_batch_dims={0,2}, rhs_batch_dims={0,1}, lhs_contracting_dims={1}, rhs_contracting_dims={2} ROOT tuple = (f32[10,10,10,10], f32[10,10,10,10]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_FALSE(changed); } TEST_F(DotMergerTest, NoMergeDifferentRhsBatchDims) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f32[10,10,10,10] parameter(0) lhs1 = f32[10,10,10,10] parameter(1) rhs = f32[10,10,10,10] parameter(2) dot0 = f32[10,10,10,10] dot(lhs0, rhs), lhs_batch_dims={0,1}, rhs_batch_dims={0,1}, lhs_contracting_dims={2}, rhs_contracting_dims={2} dot1 = f32[10,10,10,10] dot(lhs1, rhs), lhs_batch_dims={0,1}, rhs_batch_dims={0,2}, lhs_contracting_dims={2}, rhs_contracting_dims={1} ROOT tuple = (f32[10,10,10,10], f32[10,10,10,10]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_FALSE(changed); } TEST_F(DotMergerTest, MergeMultipleContractingDims) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f32[10,10,10] parameter(0) lhs1 = f32[10,10,10] parameter(1) rhs = f32[10,10,10] parameter(2) dot0 = f32[10,10] dot(lhs0, rhs), lhs_contracting_dims={0,1}, rhs_contracting_dims={0,1} dot1 = f32[10,10] dot(lhs1, rhs), lhs_contracting_dims={0,1}, rhs_contracting_dims={0,1} ROOT tuple = (f32[10,10], f32[10,10]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); const HloInstruction* s0 = nullptr; const HloInstruction* s1 = nullptr; SCOPED_TRACE(module->ToString()); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::Slice(m::Dot(&s0, m::Concatenate(m::Parameter(0), m::Parameter(1)), m::Parameter(2))), m::Slice(m::Op(&s1))))); EXPECT_EQ(s0, s1); } TEST_F(DotMergerTest, MergeMultipleNonContractingDimsInRhsSharedOperand) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f32[8,9,10] parameter(0) lhs1 = f32[8,9,11] parameter(1) rhs = f32[8,9,12,13] parameter(2) dot0 = f32[10,12,13] dot(lhs0, rhs), lhs_contracting_dims={0,1}, rhs_contracting_dims={0,1} dot1 = f32[11,12,13] dot(lhs1, rhs), lhs_contracting_dims={0,1}, rhs_contracting_dims={0,1} ROOT tuple = (f32[10,12,13], f32[11,12,13]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); TF_ASSERT_OK(verifier().Run(module.get()).status()); const HloInstruction* s0 = nullptr; const HloInstruction* s1 = nullptr; SCOPED_TRACE(module->ToString()); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::Slice(m::Dot(&s0, m::Concatenate(m::Parameter(0), m::Parameter(1)), m::Parameter(2))), m::Slice(m::Op(&s1))))); EXPECT_EQ(s0, s1); } TEST_F(DotMergerTest, NoMergeMultipleOuterDims) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f32[10,10,10] parameter(0) lhs1 = f32[10,10,10] parameter(1) rhs = f32[10,10,10] parameter(2) dot0 = f32[10,10,10,10] dot(lhs0, rhs), lhs_contracting_dims={0}, rhs_contracting_dims={0} dot1 = f32[10,10,10,10] dot(lhs1, rhs), lhs_contracting_dims={0}, rhs_contracting_dims={0} ROOT tuple = (f32[10,10,10,10], f32[10,10,10,10]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_FALSE(changed); } TEST_F(DotMergerTest, NoMergeDifferentLhsContractingDims) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f32[10,10] parameter(0) lhs1 = f32[10,10] parameter(1) rhs = f32[10,10] parameter(2) dot0 = f32[10,10] dot(lhs0, rhs), lhs_contracting_dims={0}, rhs_contracting_dims={0} dot1 = f32[10,10] dot(lhs1, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT tuple = (f32[10,10], f32[10,10]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_FALSE(changed); } TEST_F(DotMergerTest, NoMergeDifferentRhsContractingDims) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f32[10,10] parameter(0) lhs1 = f32[10,10] parameter(1) rhs = f32[10,10] parameter(2) dot0 = f32[10,10] dot(lhs0, rhs), lhs_contracting_dims={0}, rhs_contracting_dims={0} dot1 = f32[10,10] dot(lhs1, rhs), lhs_contracting_dims={0}, rhs_contracting_dims={1} ROOT tuple = (f32[10,10], f32[10,10]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_FALSE(changed); } TEST_F(DotMergerTest, NoMergeControlPredecessor) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f32[10,10] parameter(0) lhs1 = f32[10,10] parameter(1) rhs = f32[10,10] parameter(2) dot0 = f32[10,10] dot(lhs0, rhs), lhs_contracting_dims={0}, rhs_contracting_dims={0} dot1 = f32[10,10] dot(lhs1, rhs), lhs_contracting_dims={0}, rhs_contracting_dims={0} dot2 = f32[10,10] dot(lhs1, rhs), lhs_contracting_dims={0}, rhs_contracting_dims={0}, control-predecessors={dot1} ROOT tuple = (f32[10,10], f32[10,10], f32[10,10]) tuple(dot0, dot1, dot2) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_FALSE(changed); } TEST_F(DotMergerTest, NoMergeDifferentLhsTypes) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f32[10,10] parameter(0) lhs1 = f16[10,10] parameter(1) rhs = f32[10,10] parameter(2) dot0 = f32[10,10] dot(lhs0, rhs), lhs_contracting_dims={0}, rhs_contracting_dims={0} dot1 = f32[10,10] dot(lhs1, rhs), lhs_contracting_dims={0}, rhs_contracting_dims={0} ROOT tuple = (f32[10,10], f32[10,10]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_FALSE(changed); } TEST_F(DotMergerTest, NoMergeDifferentRhsTypes) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs = f32[10,10] parameter(0) rhs0 = f32[10,10] parameter(1) rhs1 = f16[10,10] parameter(2) dot0 = f32[10,10] dot(lhs, rhs0), lhs_contracting_dims={0}, rhs_contracting_dims={0} dot1 = f32[10,10] dot(lhs, rhs1), lhs_contracting_dims={0}, rhs_contracting_dims={0} ROOT tuple = (f32[10,10], f32[10,10]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_FALSE(changed); } TEST_F(DotMergerTest, NoMergeDifferentReturnTypes) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f16[10,10] parameter(0) lhs1 = f16[10,10] parameter(1) rhs = f16[10,10] parameter(2) dot0 = f16[10,10] dot(lhs0, rhs), lhs_contracting_dims={0}, rhs_contracting_dims={0} dot1 = f32[10,10] dot(lhs1, rhs), lhs_contracting_dims={0}, rhs_contracting_dims={0} ROOT tuple = (f16[10,10], f32[10,10]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_FALSE(changed); } TEST_F(DotMergerTest, MergeWithTypeUpgrade) { absl::string_view module_string = R"( HloModule module ENTRY main { lhs0 = f16[10,10] parameter(0) lhs1 = f16[10,10] parameter(1) rhs = f16[10,10] parameter(2) dot0 = f32[10,10] dot(lhs0, rhs), lhs_contracting_dims={0}, rhs_contracting_dims={0} dot1 = f32[10,10] dot(lhs1, rhs), lhs_contracting_dims={0}, rhs_contracting_dims={0} ROOT tuple = (f32[10,10], f32[10,10]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); const HloInstruction* d0 = nullptr; const HloInstruction* d1 = nullptr; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::Slice(m::Dot(&d0, m::Concatenate(m::Parameter(0), m::Parameter(1)), m::Parameter(2)) .WithShape(F32, {20, 10})), m::Slice(m::Op(&d1))))); EXPECT_EQ(d0, d1); } TEST_F(DotMergerTest, MergeSparseDotsSameMetadata) { absl::string_view kHlo = R"( HloModule test ENTRY main { lhs0 = f16[5,10,32] parameter(0) lhs1 = f16[5,10,32] parameter(1) rhs = f16[5,10,16] parameter(2) meta = u16[5,10,2] parameter(3) dot0 = f32[5,10,10] dot(lhs0, rhs, meta), sparsity=R.2@2:4, lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={2} dot1 = f32[5,10,10] dot(lhs1, rhs, meta), sparsity=R.2@2:4, lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={2} ROOT tuple = (f32[5,10,10], f32[5,10,10]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHlo)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); const HloInstruction *d0, *d1; EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::Slice(m::Op(&d0) .WithOpcode(HloOpcode::kDot) .WithOperand(0, m::Concatenate(m::Parameter(0), m::Parameter(1))) .WithOperand(1, m::Parameter(2)) .WithOperand(2, m::Parameter(3)) .WithShape(F32, {5, 20, 10})), m::Slice(m::Op(&d1))))); EXPECT_EQ(d0, d1); EXPECT_EQ(d0->operand(2)->shape(), ShapeUtil::MakeShape(U16, {5, 10, 2})); } TEST_F(DotMergerTest, MergeSparseDotsConcatMetadata) { absl::string_view kHlo = R"( HloModule test ENTRY main { lhs0 = f16[5,10,16] parameter(0) lhs1 = f16[5,10,16] parameter(1) rhs = f16[5,10,32] parameter(2) meta0 = u16[5,10,2] parameter(3) meta1 = u16[5,10,2] parameter(4) dot0 = f32[5,10,10] dot(lhs0, rhs, meta0), sparsity=L.2@2:4, lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={2} dot1 = f32[5,10,10] dot(lhs1, rhs, meta1), sparsity=L.2@2:4, lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={2} ROOT tuple = (f32[5,10,10], f32[5,10,10]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHlo)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); const HloInstruction *d0, *d1; EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::Slice(m::Op(&d0) .WithOpcode(HloOpcode::kDot) .WithOperand(0, m::Concatenate(m::Parameter(0), m::Parameter(1))) .WithOperand(1, m::Parameter(2)) .WithOperand(2, m::Concatenate(m::Parameter(3), m::Parameter(4))) .WithShape(F32, {5, 20, 10})), m::Slice(m::Op(&d1))))); EXPECT_EQ(d0, d1); EXPECT_EQ(d0->operand(2)->shape(), ShapeUtil::MakeShape(U16, {5, 20, 2})); } TEST_F(DotMergerTest, MergeSparseDotsDifferentMetadata) { absl::string_view kHlo = R"( HloModule test ENTRY main { lhs0 = f16[5,10,32] parameter(0) lhs1 = f16[5,10,32] parameter(1) rhs = f16[5,10,16] parameter(2) meta1 = u16[5,10,2] parameter(3) meta2 = u16[5,10,2] parameter(4) dot0 = f32[5,10,10] dot(lhs0, rhs, meta1), sparsity=R.2@2:4, lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={2} dot1 = f32[5,10,10] dot(lhs1, rhs, meta2), sparsity=R.2@2:4, lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={2} ROOT tuple = (f32[5,10,10], f32[5,10,10]) tuple(dot0, dot1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHlo)); DotMerger pass(std::numeric_limits<int64_t>::max()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_FALSE(changed); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/dot_merger.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/dot_merger_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bcbda2a7-93ed-47d7-b14f-5c2b1c80a977
cpp
tensorflow/tensorflow
host_offloading_prepare
third_party/xla/xla/service/host_offloading_prepare.cc
third_party/xla/xla/service/host_offloading_prepare_test.cc
#include "xla/service/host_offloading_prepare.h" #include <memory> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/call_graph.h" #include "xla/service/host_memory_offload_annotations.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using xla::host_memory_offload_annotations::kMoveToHostCustomCallTarget; bool IsHostAsyncStart(const HloInstruction* instruction) { return instruction->opcode() == HloOpcode::kAsyncStart && instruction->async_execution_thread() == HloInstruction::kHostThread && instruction->async_wrapped_instruction()->opcode() == HloOpcode::kCall; } absl::StatusOr<bool> RemoveSurroundingMoveCustomCalls( HloInstruction* async_start) { bool removed = false; for (HloInstruction* operand : async_start->operands()) { if (operand->IsCustomCall(kMoveToHostCustomCallTarget)) { CHECK_EQ(operand->operands().size(), 1); VLOG(1) << "Replacing " << operand->ToString() << " with " << operand->operands().at(0)->ToString(); TF_RETURN_IF_ERROR( operand->ReplaceAllUsesWith(operand->mutable_operand(0))); TF_RETURN_IF_ERROR(async_start->parent()->RemoveInstruction(operand)); removed = true; } } return removed; } absl::StatusOr<bool> ElideMoveCustomCalls(HloModule* module) { bool changed = false; std::unique_ptr<CallGraph> call_graph = CallGraph::Build(module); for (HloComputation* computation : module->computations()) { if (computation->execution_thread() != HloInstruction::kHostThread) { continue; } std::vector<HloInstruction*> callers = call_graph->GetComputationCallers(computation); for (HloInstruction* caller : callers) { VLOG(2) << "Hlo computation " << computation->name() << " is offloaded to host and has caller " << caller->ToString(); if (caller->parent()->execution_thread() == HloInstruction::kHostThread) { VLOG(3) << "Nested host computation, must be a async-wrapper"; continue; } VLOG(2) << "Going to adjust before and after " << caller->name(); } } for (HloComputation* computation : module->computations()) { for (HloInstruction* instruction : computation->instructions()) { if (IsHostAsyncStart(instruction)) { VLOG(2) << "Found async start of host computation: " << instruction->ToString() << " done must be " << instruction->users().at(0)->ToString(); TF_ASSIGN_OR_RETURN(bool removed, RemoveSurroundingMoveCustomCalls(instruction)); changed = changed || removed; } } } return changed; } absl::StatusOr<bool> ConvertToCustomCall(HloModule* module) { bool changed = false; for (HloComputation* computation : module->computations()) { for (HloInstruction* instruction : computation->instructions()) { if (IsHostAsyncStart(instruction)) { auto* call_start = Cast<HloAsyncInstruction>(instruction); auto* call = call_start->async_wrapped_instruction(); auto custom_call = HloInstruction::CreateCustomCall( call->shape(), call->operands(), call->called_computations().at(0), "HostExecute"); custom_call->set_output_to_operand_aliasing( call->output_operand_aliasing()); HloComputation* async_computation = call_start->async_wrapped_computation(); async_computation->set_root_instruction( async_computation->AddInstruction(std::move(custom_call))); TF_RETURN_IF_ERROR(async_computation->RemoveInstruction(call)); changed = true; } } } return changed; } } absl::StatusOr<bool> HostOffloadingPrepare::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { switch (rewrite_) { case Rewrite::kElideMoveToHost: return ElideMoveCustomCalls(module); case Rewrite::kConvertToCustomCall: return ConvertToCustomCall(module); } } }
#include "xla/service/host_offloading_prepare.h" #include <string> #include <vector> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/host_memory_offload_annotations.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using Rewrite = HostOffloadingPrepare::Rewrite; class HostOffloadingPrepareTest : public HloTestBase { protected: absl::StatusOr<bool> RunRewrite(HloModule* module, Rewrite rewrite) { TF_EXPECT_OK(verifier().Run(module).status()); if (module->has_schedule()) { return absl::InternalError("Expected a non-scheduled module"); } HostOffloadingPrepare pass(rewrite); TF_ASSIGN_OR_RETURN(bool changed, pass.Run(module)); return changed; } std::vector<const HloInstruction*> GetHostOffloadAsyncStartInstructions( const HloModule* module) { std::vector<const HloInstruction*> result; for (const HloComputation* computation : module->computations()) { for (const HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kAsyncStart && instruction->async_execution_thread() == HloInstruction::kHostThread) { result.push_back(instruction); } } } return result; } }; TEST_F(HostOffloadingPrepareTest, SingleInputHasMoveToHost) { const std::string& hlo_string = R"( HloModule my_module, entry_computation_layout={(s32[32]{0:T(128)})->s32[32]{0:T(128)}} host_computation { Arg_0.0 = s32[32]{0} parameter(0) ROOT multiply.0 = s32[32]{0} multiply(Arg_0.0, Arg_0.0) }, execution_thread="host" async_computation { param_0 = s32[32]{0} parameter(0) ROOT call = s32[32]{0} call(param_0), to_apply=host_computation, frontend_attributes={_xla_compute_type="host"} }, execution_thread="host" ENTRY main { Arg_0.1 = s32[32]{0:T(128)} parameter(0) constant.2 = s32[]{:T(128)} constant(2) broadcast.3 = s32[32]{0:T(128)} broadcast(constant.2), dimensions={} multiply.4 = s32[32]{0:T(128)} multiply(Arg_0.1, broadcast.3) move_to_host = s32[32]{0:T(128)} custom-call(multiply.4), custom_call_target="MoveToHost" start = ((s32[32]{0:T(128)}), s32[32]{0:T(128)}, u32[]{:T(128)}) async-start(move_to_host), async_execution_thread="host", calls=async_computation ROOT done = s32[32]{0:T(128)} async-done(start), frontend_attributes={_xla_compute_type="host"} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunRewrite(module.get(), Rewrite::kElideMoveToHost)); EXPECT_TRUE(changed); for (const HloInstruction* instruction : GetHostOffloadAsyncStartInstructions(module.get())) { for (const HloInstruction* operand : instruction->operands()) { EXPECT_FALSE(operand->IsCustomCall( {host_memory_offload_annotations::kMoveToHostCustomCallTarget})); } for (const HloInstruction* user : instruction->users()) { EXPECT_FALSE(user->IsCustomCall( {host_memory_offload_annotations::kMoveToDeviceCustomCallTarget})); } } } TEST_F(HostOffloadingPrepareTest, MultipleInputHasOneMoveToHost) { const std::string& hlo_string = R"( HloModule my_module, entry_computation_layout={(s32[32]{0:T(128)})->s32[32]{0:T(128)}} host_computation { Arg_0.0 = s32[32]{0} parameter(0) Arg_0.1 = s32[32]{0} parameter(1) ROOT multiply.0 = s32[32]{0} multiply(Arg_0.0, Arg_0.1) }, execution_thread="host" async_computation { param_0 = s32[32]{0} parameter(0) param_1 = s32[32]{0} parameter(1) ROOT call = s32[32]{0} call(param_0, param_1), to_apply=host_computation, frontend_attributes={_xla_compute_type="host"} }, execution_thread="host" ENTRY main { Arg_0.1 = s32[32]{0:T(128)} parameter(0) constant.2 = s32[]{:T(128)} constant(2) broadcast.3 = s32[32]{0:T(128)} broadcast(constant.2), dimensions={} multiply.4 = s32[32]{0:T(128)} multiply(Arg_0.1, broadcast.3) move_to_host = s32[32]{0:T(128)} custom-call(multiply.4), custom_call_target="MoveToHost" start = ((s32[32]{0:T(128)}, s32[32]{0:T(128)}), s32[32]{0:T(128)}, u32[]{:T(128)}) async-start(move_to_host, move_to_host), async_execution_thread="host", calls=async_computation ROOT done = s32[32]{0:T(128)} async-done(start), frontend_attributes={_xla_compute_type="host"} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunRewrite(module.get(), Rewrite::kElideMoveToHost)); EXPECT_TRUE(changed); for (const HloInstruction* instruction : GetHostOffloadAsyncStartInstructions(module.get())) { for (const HloInstruction* operand : instruction->operands()) { EXPECT_FALSE(operand->IsCustomCall( {host_memory_offload_annotations::kMoveToHostCustomCallTarget})); } for (const HloInstruction* user : instruction->users()) { EXPECT_FALSE(user->IsCustomCall( {host_memory_offload_annotations::kMoveToDeviceCustomCallTarget})); } } } TEST_F(HostOffloadingPrepareTest, MultipleInputHasMultipleMoveToHost) { const std::string& hlo_string = R"( HloModule my_module, entry_computation_layout={(s32[32]{0:T(128)})->s32[32]{0:T(128)}} host_computation { Arg_0.0 = s32[32]{0} parameter(0) Arg_0.1 = s32[32]{0} parameter(1) ROOT multiply.0 = s32[32]{0} multiply(Arg_0.0, Arg_0.1) }, execution_thread="host" async_computation { param_0 = s32[32]{0} parameter(0) param_1 = s32[32]{0} parameter(1) ROOT call = s32[32]{0} call(param_0, param_1), to_apply=host_computation, frontend_attributes={_xla_compute_type="host"} }, execution_thread="host" ENTRY main { Arg_0.1 = s32[32]{0:T(128)} parameter(0) constant.2 = s32[]{:T(128)} constant(2) broadcast.3 = s32[32]{0:T(128)} broadcast(constant.2), dimensions={} multiply.4 = s32[32]{0:T(128)} multiply(Arg_0.1, broadcast.3) move_to_host.1 = s32[32]{0:T(128)} custom-call(multiply.4), custom_call_target="MoveToHost" move_to_host.2 = s32[32]{0:T(128)} custom-call(multiply.4), custom_call_target="MoveToHost" start = ((s32[32]{0:T(128)}, s32[32]{0:T(128)}), s32[32]{0:T(128)}, u32[]{:T(128)}) async-start(move_to_host.1, move_to_host.2), async_execution_thread="host", calls=async_computation ROOT done = s32[32]{0:T(128)} async-done(start), frontend_attributes={_xla_compute_type="host"} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunRewrite(module.get(), Rewrite::kElideMoveToHost)); EXPECT_TRUE(changed); for (const HloInstruction* instruction : GetHostOffloadAsyncStartInstructions(module.get())) { for (const HloInstruction* operand : instruction->operands()) { EXPECT_FALSE(operand->IsCustomCall( {host_memory_offload_annotations::kMoveToHostCustomCallTarget})); } for (const HloInstruction* user : instruction->users()) { EXPECT_FALSE(user->IsCustomCall( {host_memory_offload_annotations::kMoveToDeviceCustomCallTarget})); } } } TEST_F(HostOffloadingPrepareTest, SingleInputHasMoveToDevice) { const std::string& hlo_string = R"( HloModule my_module, entry_computation_layout={(s32[32]{0:T(128)})->s32[32]{0:T(128)}} host_computation { Arg_0.0 = s32[32]{0} parameter(0) ROOT multiply.0 = s32[32]{0} multiply(Arg_0.0, Arg_0.0) }, execution_thread="host" async_computation { param_0 = s32[32]{0} parameter(0) ROOT call = s32[32]{0} call(param_0), to_apply=host_computation, frontend_attributes={_xla_compute_type="host"} }, execution_thread="host" ENTRY main { Arg_0.1 = s32[32]{0:T(128)} parameter(0) constant.2 = s32[]{:T(128)} constant(2) broadcast.3 = s32[32]{0:T(128)} broadcast(constant.2), dimensions={} multiply.4 = s32[32]{0:T(128)} multiply(Arg_0.1, broadcast.3) move_to_device = s32[32]{0:T(128)} custom-call(multiply.4), custom_call_target="MoveToDevice" start = ((s32[32]{0:T(128)}), s32[32]{0:T(128)}, u32[]{:T(128)}) async-start(move_to_device), async_execution_thread="host", calls=async_computation ROOT done = s32[32]{0:T(128)} async-done(start), frontend_attributes={_xla_compute_type="host"} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunRewrite(module.get(), Rewrite::kElideMoveToHost)); EXPECT_FALSE(changed); } TEST_F(HostOffloadingPrepareTest, MultipleInputHasOneMoveToDevice) { const std::string& hlo_string = R"( HloModule my_module, entry_computation_layout={(s32[32]{0:T(128)})->s32[32]{0:T(128)}} host_computation { Arg_0.0 = s32[32]{0} parameter(0) Arg_0.1 = s32[32]{0} parameter(1) ROOT multiply.0 = s32[32]{0} multiply(Arg_0.0, Arg_0.1) }, execution_thread="host" async_computation { param_0 = s32[32]{0} parameter(0) param_1 = s32[32]{0} parameter(1) ROOT call = s32[32]{0} call(param_0, param_1), to_apply=host_computation, frontend_attributes={_xla_compute_type="host"} }, execution_thread="host" ENTRY main { Arg_0.1 = s32[32]{0:T(128)} parameter(0) constant.2 = s32[]{:T(128)} constant(2) broadcast.3 = s32[32]{0:T(128)} broadcast(constant.2), dimensions={} multiply.4 = s32[32]{0:T(128)} multiply(Arg_0.1, broadcast.3) move_to_device = s32[32]{0:T(128)} custom-call(multiply.4), custom_call_target="MoveToDevice" custom-call.cloned.call-start = ((s32[32]{0:T(128)}, s32[32]{0:T(128)}), s32[32]{0:T(128)}, u32[]{:T(128)}) async-start(move_to_device, move_to_device), async_execution_thread="host", calls=async_computation ROOT custom-call.cloned.call-done = s32[32]{0:T(128)} async-done(custom-call.cloned.call-start), frontend_attributes={_xla_compute_type="host"} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunRewrite(module.get(), Rewrite::kElideMoveToHost)); EXPECT_FALSE(changed); } TEST_F(HostOffloadingPrepareTest, MultipleInputHasMultipleMoveToDevice) { const std::string& hlo_string = R"( HloModule my_module, entry_computation_layout={(s32[32]{0:T(128)})->s32[32]{0:T(128)}} host_computation { Arg_0.0 = s32[32]{0} parameter(0) Arg_0.1 = s32[32]{0} parameter(1) ROOT multiply.0 = s32[32]{0} multiply(Arg_0.0, Arg_0.1) }, execution_thread="host" async_computation { param_0 = s32[32]{0} parameter(0) param_1 = s32[32]{0} parameter(1) ROOT call = s32[32]{0} call(param_0, param_1), to_apply=host_computation, frontend_attributes={_xla_compute_type="host"} }, execution_thread="host" ENTRY main { Arg_0.1 = s32[32]{0:T(128)} parameter(0) constant.2 = s32[]{:T(128)} constant(2) broadcast.3 = s32[32]{0:T(128)} broadcast(constant.2), dimensions={} multiply.4 = s32[32]{0:T(128)} multiply(Arg_0.1, broadcast.3) move_to_device.1 = s32[32]{0:T(128)} custom-call(multiply.4), custom_call_target="MoveToDevice" move_to_device.2 = s32[32]{0:T(128)} custom-call(multiply.4), custom_call_target="MoveToDevice" start = ((s32[32]{0:T(128)}, s32[32]{0:T(128)}), s32[32]{0:T(128)}, u32[]{:T(128)}) async-start(move_to_device.1, move_to_device.2), async_execution_thread="host", calls=async_computation ROOT done = s32[32]{0:T(128)} async-done(start), frontend_attributes={_xla_compute_type="host"} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunRewrite(module.get(), Rewrite::kElideMoveToHost)); EXPECT_FALSE(changed); } TEST_F(HostOffloadingPrepareTest, ConvertToCustomCall) { const char* hlo = R"( HloModule my_module host_computation { Arg_0.0 = s32[32] parameter(0) ROOT multiply.0 = s32[32] multiply(Arg_0.0, Arg_0.0) }, execution_thread="host" async_computation { param_0 = s32[32] parameter(0) ROOT call = s32[32] call(param_0), to_apply=host_computation }, execution_thread="host" ENTRY main { Arg_0.1 = s32[32] parameter(0) start = ((s32[32]), s32[32], u32[]) async-start(Arg_0.1), async_execution_thread="host", calls=async_computation ROOT done = s32[32] async-done(start) } )"; const char* expected = R"( )"; RunAndFilecheckHloRewrite( hlo, HostOffloadingPrepare(Rewrite::kConvertToCustomCall), expected); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/host_offloading_prepare.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/host_offloading_prepare_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b9f15842-1826-48a4-bfa0-e2fbdeeca04f
cpp
tensorflow/tensorflow
convert_async_collectives_to_sync
third_party/xla/xla/service/gpu/transforms/convert_async_collectives_to_sync.cc
third_party/xla/xla/service/gpu/transforms/convert_async_collectives_to_sync_test.cc
#include "xla/service/gpu/transforms/convert_async_collectives_to_sync.h" #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/gpu/backend_configs.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { absl::Status GpuConvertAsyncCollectivesToSync::ConvertAsyncInstructionsToSync( HloComputation* computation, absl::Span<const std::pair<HloInstruction*, HloInstruction*>> async_pairs) const { absl::flat_hash_map<HloInstruction*, HloInstruction*> replaced_ops; CollectiveBackendConfig sync_config; sync_config.set_is_sync(true); for (auto& [async_start, async_done] : async_pairs) { TF_ASSIGN_OR_RETURN(GpuBackendConfig gpu_config, async_start->backend_config<GpuBackendConfig>()); *gpu_config.mutable_collective_backend_config() = sync_config; TF_RETURN_IF_ERROR(async_start->set_backend_config(gpu_config)); replaced_ops[async_start] = nullptr; replaced_ops[async_done] = async_start; } HloModule* module = computation->parent(); const HloInstructionSequence& sequence = module->schedule().sequence(computation); std::vector<HloInstruction*> new_sequence; new_sequence.reserve(sequence.size()); for (HloInstruction* instr : sequence.instructions()) { auto it = replaced_ops.find(instr); if (it == replaced_ops.end()) { new_sequence.push_back(instr); continue; } if (it->second == nullptr) { continue; } new_sequence.push_back(it->second); new_sequence.push_back(instr); } module->schedule().set_sequence(computation, new_sequence); return absl::OkStatus(); } } }
#include "xla/service/gpu/transforms/convert_async_collectives_to_sync.h" #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::testing::IsFalse; using ::testing::IsTrue; class GpuConvertAsyncCollectivesToSyncTest : public HloTestBase { public: absl::Status RunPass(HloModule *module, bool expect_change, HloPredicate is_nop = {}) { TF_ASSIGN_OR_RETURN(bool changed, GpuConvertAsyncCollectivesToSync{is_nop}.Run(module)); EXPECT_EQ(changed, expect_change); return absl::OkStatus(); } bool IsSync(HloModule *module, std::string_view name) { const HloInstruction *inst = FindInstruction(module, name); if (inst == nullptr) { return false; } auto backend_config = inst->backend_config<GpuBackendConfig>() .value() .collective_backend_config(); return backend_config.is_sync(); } HloPredicate is_nop_simple_ = HloPredicateIsOp<HloOpcode::kBitcast, HloOpcode::kGetTupleElement, HloOpcode::kParameter>; }; TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleAllReduce) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 ROOT done = u32[] all-reduce-done(start) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "start"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleAllReduceWithNop) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3, replica_groups={{0,1}, {2,3}} id2 = f32[] bitcast(id) ROOT done = u32[] all-reduce-done(start) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true, is_nop_simple_)); EXPECT_THAT(IsSync(module.get(), "start"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleCollectiveBroadcast) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true collective_broadcast { p0 = u32[8] parameter(0) ROOT result = u32[8] collective-broadcast(p0), replica_groups={{0,1}, {2,3}} } ENTRY main { data = u32[8] parameter(0) cb-start = ((u32[8]{0}), u32[8]{0}) async-start(u32[8]{0} %data), calls=collective_broadcast ROOT %ars = u32[8]{0} async-done(((u32[8]{0}), u32[8]{0}) %cb-start), calls=collective_broadcast } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "cb-start"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleAllReduceWithNonNop) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 id2 = u32[] add(id, id) ROOT done = u32[] all-reduce-done(start) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), false)); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleAllGather) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true ENTRY test_computation { a1 = u32[1, 2] parameter(0) ags = (u32[1, 2], u32[2, 2]) all-gather-start(a1), dimensions={0}, channel_id=3 ROOT allgather = u32[2,2] all-gather-done(ags) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "ags"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleCollectivePermute) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true ENTRY test_computation { p = u32[2] parameter(0) start = (u32[2], u32[2], u32[], u32[]) collective-permute-start(p), source_target_pairs={{0,1}, {1,0}} ROOT done = u32[2] collective-permute-done(start) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "start"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleReduceScatter) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true add { lhs = u32[] parameter(0) rhs = u32[] parameter(1) ROOT add = u32[] add(lhs, rhs) } reduce_scatter { p0 = u32[8] parameter(0) ROOT result = u32[4] reduce-scatter(p0), replica_groups={{0,3}, {1,2}}, dimensions={0}, to_apply=add } ENTRY main { data = u32[8] parameter(0) rs-start = ((u32[8]{0}), u32[4]{0}) async-start(u32[8]{0} %data), calls=reduce_scatter ROOT %ars = u32[4]{0} async-done(((u32[8]{0}), u32[4]{0}) %rs-start), calls=reduce_scatter } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "rs-start"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleAllToAll) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true all_to_all { p0 = u32[2] parameter(0) ROOT result = u32[2] all-to-all(p0), dimensions={0}, replica_groups={{0,1},{2,3}} } ENTRY test_computation { a1 = u32[2] parameter(0) a2a-start = ((u32[2]), u32[2]) async-start(u32[2] a1), calls=all_to_all ROOT a2s = u32[2] async-done(a2a-start), calls=all_to_all } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "a2a-start"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, ControlDeps) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start1 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 done1 = u32[] all-reduce-done(start1) start2 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=4, control-predecessors={done1} done2 = u32[] all-reduce-done(start2) ROOT x = u32[] add(done1, done2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "start1"), IsTrue()); EXPECT_THAT(IsSync(module.get(), "start2"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, MultipleInFlightStreaming) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start1 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 start2 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=4 done1 = u32[] all-reduce-done(start1) done2 = u32[] all-reduce-done(start2) ROOT x = u32[] add(done1, done2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "start1"), IsTrue()); EXPECT_THAT(IsSync(module.get(), "start2"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, MultipleInFlightNested) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start1 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 start2 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=4 done2 = u32[] all-reduce-done(start2) done1 = u32[] all-reduce-done(start1) ROOT x = u32[] add(done1, done2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "start1"), IsTrue()); EXPECT_THAT(IsSync(module.get(), "start2"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, MultipleInFlightNestedPartial) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start1 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 start2 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=4 done2 = u32[] all-reduce-done(start2) id2 = u32[] add(done2, done2) done1 = u32[] all-reduce-done(start1) ROOT x = u32[] add(done1, done2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "start1"), IsFalse()); EXPECT_THAT(IsSync(module.get(), "start2"), IsTrue()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/convert_async_collectives_to_sync.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/convert_async_collectives_to_sync_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
13af8cfa-a80f-4abd-b903-d4e5aa058635
cpp
tensorflow/tensorflow
while_loop_trip_count_annotator
third_party/xla/xla/service/while_loop_trip_count_annotator.cc
third_party/xla/xla/service/while_loop_trip_count_annotator_test.cc
#include "xla/service/while_loop_trip_count_annotator.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/while_loop_analysis.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla { absl::StatusOr<bool> WhileLoopTripCountAnnotator::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (const HloComputation* comp : module->computations(execution_threads)) { for (HloInstruction* instr : comp->instructions()) { if (instr->opcode() != HloOpcode::kWhile) { continue; } if (auto trip_count = ComputeWhileLoopTripCount(instr)) { WhileLoopBackendConfig config; config.mutable_known_trip_count()->set_n(*trip_count); TF_RETURN_IF_ERROR(instr->set_backend_config(config)); changed = true; } } } return changed; } }
#include "xla/service/while_loop_trip_count_annotator.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class TripCountAnnotatorTest : public HloTestBase {}; TEST_F(TripCountAnnotatorTest, KnownSmallTripCount) { const char* kModuleStr = R"( HloModule test Body { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 one = s32[] constant(1) i_plus_one = s32[] add(i, one) ROOT tuple = (s32[]) tuple(i_plus_one) } Cond { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 trip_count = s32[] constant(10) ROOT done = pred[] compare(i, trip_count), direction=LT } ENTRY test { i_start = s32[] constant(0) initial_tuple = (s32[]) tuple(i_start) ROOT while = (s32[]) while(initial_tuple), condition=Cond, body=Body })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); WhileLoopTripCountAnnotator pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, m.get())); ASSERT_TRUE(changed); TF_ASSERT_OK_AND_ASSIGN(auto config, m->entry_computation() ->root_instruction() ->backend_config<WhileLoopBackendConfig>()); EXPECT_EQ(10, config.known_trip_count().n()); } TEST_F(TripCountAnnotatorTest, KnownLargeTripCount) { const char* kModuleStr = R"( HloModule test Body { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 one = s32[] constant(1) i_plus_one = s32[] add(i, one) ROOT tuple = (s32[]) tuple(i_plus_one) } Cond { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 trip_count = s32[] constant(1000000) ROOT done = pred[] compare(i, trip_count), direction=LT } ENTRY test { i_start = s32[] constant(0) initial_tuple = (s32[]) tuple(i_start) ROOT while = (s32[]) while(initial_tuple), condition=Cond, body=Body })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); WhileLoopTripCountAnnotator pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, m.get())); ASSERT_TRUE(changed); TF_ASSERT_OK_AND_ASSIGN(auto config, m->entry_computation() ->root_instruction() ->backend_config<WhileLoopBackendConfig>()); EXPECT_EQ(1000000, config.known_trip_count().n()); } TEST_F(TripCountAnnotatorTest, NonzeroStart) { const char* kModuleStr = R"( HloModule test Body { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 one = s32[] constant(1) i_plus_one = s32[] add(i, one) ROOT tuple = (s32[]) tuple(i_plus_one) } Cond { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 trip_count = s32[] constant(1000000) ROOT done = pred[] compare(i, trip_count), direction=LT } ENTRY test { i_start = s32[] constant(10) initial_tuple = (s32[]) tuple(i_start) ROOT while = (s32[]) while(initial_tuple), condition=Cond, body=Body })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); WhileLoopTripCountAnnotator pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, m.get())); ASSERT_TRUE(changed); TF_ASSERT_OK_AND_ASSIGN(auto config, m->entry_computation() ->root_instruction() ->backend_config<WhileLoopBackendConfig>()); EXPECT_EQ(999990, config.known_trip_count().n()); } TEST_F(TripCountAnnotatorTest, LessThanOrEqualTo) { const char* kModuleStr = R"( HloModule test Body { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 one = s32[] constant(1) i_plus_one = s32[] add(i, one) ROOT tuple = (s32[]) tuple(i_plus_one) } Cond { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 trip_count = s32[] constant(1000000) ROOT done = pred[] compare(i, trip_count), direction=LE } ENTRY test { i_start = s32[] constant(10) initial_tuple = (s32[]) tuple(i_start) ROOT while = (s32[]) while(initial_tuple), condition=Cond, body=Body })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); WhileLoopTripCountAnnotator pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, m.get())); ASSERT_TRUE(changed); TF_ASSERT_OK_AND_ASSIGN(auto config, m->entry_computation() ->root_instruction() ->backend_config<WhileLoopBackendConfig>()); EXPECT_EQ(999991, config.known_trip_count().n()); } TEST_F(TripCountAnnotatorTest, Int64Overflow) { const char* kModuleStr = R"( HloModule test Body { param = (s64[]) parameter(0) i = s64[] get-tuple-element(param), index=0 one = s64[] constant(1) i_plus_one = s64[] add(i, one) ROOT tuple = (s64[]) tuple(i_plus_one) } Cond { param = (s64[]) parameter(0) i = s64[] get-tuple-element(param), index=0 trip_count = s64[] constant(9223372036854775807) ROOT done = pred[] compare(i, trip_count), direction=LE } ENTRY test { i_start = s64[] constant(-9223372036854775808) initial_tuple = (s64[]) tuple(i_start) ROOT while = (s64[]) while(initial_tuple), condition=Cond, body=Body })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); WhileLoopTripCountAnnotator pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, m.get())); EXPECT_FALSE(changed); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/while_loop_trip_count_annotator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/while_loop_trip_count_annotator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
53602328-c7cf-4c6d-8ee9-b9779b3bed8b
cpp
tensorflow/tensorflow
ar_crs_combiner
third_party/xla/xla/service/ar_crs_combiner.cc
third_party/xla/xla/service/ar_crs_combiner_test.cc
#include "xla/service/ar_crs_combiner.h" #include <algorithm> #include <cstdint> #include <optional> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/call_graph.h" #include "xla/service/hlo_replication_analysis.h" #include "xla/service/pattern_matcher.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace { absl::StatusOr<bool> ReplaceReplicatedAllReduce(HloModule* module, int64_t partition_count) { TF_ASSIGN_OR_RETURN( auto replication_analysis, HloReplicationAnalysis::Run(module, true)); bool changed = false; int64_t next_channel = hlo_query::NextChannelId(*module); for (auto computation : module->computations()) { for (auto instruction : computation->instructions()) { if (auto ar = DynCast<HloAllReduceInstruction>(instruction)) { const Shape& shape = ar->shape(); if (ar->channel_id()) { continue; } if (ar->replica_groups().size() > 1) { continue; } if (shape.IsTuple() || shape.element_type() != F32) { continue; } if (module->config().replica_count() < 8 * partition_count) { continue; } if (replication_analysis->HloInstructionIsReplicatedAt(ar, {})) { VLOG(2) << "Replaced replicated all-reduce:" << ar->ToString(); ar->set_channel_id(next_channel++); auto divisor = computation->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<float>(partition_count))); auto bcast = computation->AddInstruction( HloInstruction::CreateBroadcast(shape, divisor, {})); auto div = computation->AddInstruction(HloInstruction::CreateBinary( ar->shape(), HloOpcode::kDivide, ar, bcast)); TF_RETURN_IF_ERROR(ar->ReplaceAllUsesWith(div)); changed = true; } } } } return changed; } bool HasCombinableReplicaGroup(HloInstruction* hlo, int64_t num_partitions) { auto all_reduce = Cast<HloAllReduceInstruction>(hlo); auto replica_groups = all_reduce->replica_groups(); const int64_t replica_count = hlo->GetModule()->config().replica_count(); CHECK(all_reduce->IsCrossModuleAllReduce()); if (all_reduce->use_global_device_ids()) { if (replica_groups.size() != replica_count) { return false; } for (const auto& group : replica_groups) { if (group.replica_ids_size() != num_partitions) { return false; } absl::flat_hash_set<int64_t> partition_ids; int64_t replica_id = group.replica_ids(0) / num_partitions; for (int64_t i = 0; i < num_partitions; ++i) { if (group.replica_ids(i) / num_partitions != replica_id) { return false; } partition_ids.insert(group.replica_ids(i) % num_partitions); } if (partition_ids.size() != num_partitions) { return false; } } return true; } return replica_groups.size() == replica_count; } } namespace m = match; std::optional<ArCrsCombiner::ArCrsPair> ArCrsCombiner::MatchesArCrsPattern( HloInstruction* instruction) { auto can_ar_move_past_instruction = [](HloInstruction* instruction) -> bool { if (instruction->user_count() != 1) { return false; } switch (instruction->opcode()) { case HloOpcode::kBitcast: case HloOpcode::kTranspose: case HloOpcode::kReshape: return true; case HloOpcode::kConvert: return ShapeUtil::ElementIsFloating(instruction->shape()) == ShapeUtil::ElementIsFloating(instruction->operand(0)->shape()); case HloOpcode::kAdd: case HloOpcode::kSubtract: case HloOpcode::kMultiply: return ShapeUtil::ElementIsFloating(instruction->shape()); default: return false; } }; auto computation_is_addition = [](HloComputation* c) { return c->instruction_count() == 3 && Match(c->root_instruction(), m::Add(m::Parameter(), m::Parameter())); }; if (instruction->IsCrossModuleAllReduce() && HasCombinableReplicaGroup(instruction, num_spatial_partitions_) && computation_is_addition(instruction->called_computations()[0]) && instruction->user_count() == 1) { auto next = instruction->users()[0]; int64_t distance = 1; while (!next->IsCrossReplicaAllReduce()) { if (can_ar_move_past_instruction(next)) { next = next->users()[0]; } else { return std::nullopt; } ++distance; } if (!Cast<HloAllReduceInstruction>(next)->IsNoop() && computation_is_addition(next->called_computations()[0])) { ArCrsPair pair(instruction, next, distance); VLOG(2) << "ArCrsPair matching pattern: " << pair.ToString(); return pair; } } return std::nullopt; } std::optional<HloInstruction*> ArCrsCombiner::WhileFromBodyParameter( HloInstruction* instruction) { CHECK_EQ(HloOpcode::kParameter, instruction->opcode()); HloComputation* computation = instruction->parent(); auto caller_instructions = call_graph_->GetComputationCallers(computation); if (caller_instructions.size() == 1) { auto caller_instruction = caller_instructions[0]; if (caller_instruction->opcode() == HloOpcode::kWhile) { return caller_instruction; } } return std::nullopt; } std::optional<HloInstruction*> ArCrsCombiner::ConditionalFromBodyParameter( HloInstruction* instruction) { CHECK_EQ(HloOpcode::kParameter, instruction->opcode()); HloComputation* computation = instruction->parent(); auto caller_instructions = call_graph_->GetComputationCallers(computation); if (caller_instructions.size() == 1) { auto caller_instruction = caller_instructions[0]; if (caller_instruction->opcode() == HloOpcode::kConditional) { return caller_instruction; } } return std::nullopt; } std::optional<std::vector<HloInstruction*>> ArCrsCombiner::GetAllTuples( HloInstruction* instruction, absl::flat_hash_set<HloInstruction*>* visited) { if (visited->find(instruction) != visited->end()) { return std::vector<HloInstruction*>(); } visited->insert(instruction); switch (instruction->opcode()) { case HloOpcode::kTuple: { return std::vector<HloInstruction*>({instruction}); } case HloOpcode::kDomain: { return GetAllTuples(instruction->operands()[0], visited); } case HloOpcode::kParameter: { auto maybe_while = WhileFromBodyParameter(instruction); if (maybe_while) { auto while_instr = *maybe_while; auto init_tuples = GetAllTuples(while_instr->while_init(), visited); auto body_tuples = GetAllTuples( while_instr->while_body()->root_instruction(), visited); if (!init_tuples || !body_tuples) { return std::nullopt; } auto result = *init_tuples; result.insert(result.end(), body_tuples->begin(), body_tuples->end()); return result; } auto maybe_conditional = ConditionalFromBodyParameter(instruction); if (maybe_conditional) { auto cond_instr = *maybe_conditional; std::vector<HloInstruction*> tuples; for (int64_t i = 0; i < cond_instr->branch_computations().size(); ++i) { if (cond_instr->branch_computation(i)->parameter_instruction(0) == instruction) { auto branch_tuples = GetAllTuples(cond_instr->mutable_operand(i + 1), visited); if (!branch_tuples) { return std::nullopt; } tuples.insert(tuples.end(), branch_tuples->begin(), branch_tuples->end()); } } return tuples; } return std::nullopt; } case HloOpcode::kGetTupleElement: { std::vector<HloInstruction*> result_tuples; auto tuples = GetAllTuples(instruction->operands()[0], visited); if (!tuples) { return std::nullopt; } for (auto tuple : *tuples) { auto tmp_tuples = GetAllTuples( tuple->mutable_operand(instruction->tuple_index()), visited); if (!tmp_tuples) { return std::nullopt; } result_tuples.insert(result_tuples.end(), tmp_tuples->begin(), tmp_tuples->end()); } return result_tuples; } case HloOpcode::kConditional: { std::vector<HloInstruction*> result_tuples; const auto& branch_computations = instruction->branch_computations(); result_tuples.reserve(branch_computations.size()); for (HloComputation* body : branch_computations) { if (body->root_instruction()->opcode() != HloOpcode::kTuple) { return std::nullopt; } result_tuples.push_back(body->root_instruction()); } return result_tuples; } case HloOpcode::kWhile: { auto init_tuples = GetAllTuples(instruction->while_init(), visited); auto body_tuples = GetAllTuples(instruction->while_body()->root_instruction(), visited); if (!init_tuples || !body_tuples) { return std::nullopt; } auto result = *init_tuples; result.insert(result.end(), body_tuples->begin(), body_tuples->end()); return result; } default: return std::nullopt; } } bool ArCrsCombiner::TupleElementsComputeSameValue( HloInstruction* tuple_shaped_instruction, int64_t i1, int64_t i2, absl::flat_hash_map<int64_t, int64_t>* visited_pairs) { absl::flat_hash_set<HloInstruction*> visited; auto tuples = GetAllTuples(tuple_shaped_instruction, &visited); if (!tuples) { return false; } for (auto tuple : *tuples) { CHECK_EQ(tuple->opcode(), HloOpcode::kTuple); if (!InstructionsComputeSameValue(tuple->mutable_operand(i1), tuple->mutable_operand(i2), visited_pairs)) { return false; } } return true; } bool ArCrsCombiner::TestInstructionsComputeSameValue(HloInstruction* i1, HloInstruction* i2) { ArCrsCombiner combiner(2, false); auto module = i1->GetModule(); CHECK_EQ(module, i2->GetModule()); combiner.call_graph_ = CallGraph::Build(module); absl::flat_hash_map<int64_t, int64_t> visited_pairs; return combiner.InstructionsComputeSameValue(i1, i2, &visited_pairs); } bool ArCrsCombiner::InstructionsComputeSameValue( HloInstruction* i1, HloInstruction* i2, absl::flat_hash_map<int64_t, int64_t>* visited_pairs) { if (i1 == i2) { return true; } auto uid1 = i1->unique_id(); auto uid2 = i2->unique_id(); auto min_uid = std::min(uid1, uid2); auto max_uid = std::max(uid1, uid2); auto it = visited_pairs->find(min_uid); if (it != visited_pairs->end() && max_uid == it->second) { return true; } auto opcode1 = i1->opcode(); auto operands1 = i1->operands(); if (opcode1 != i2->opcode() || operands1.size() != i2->operands().size()) { return false; } auto eq_computations = [](const HloComputation* a, const HloComputation* b) { return *a == *b; }; auto eq_operands = [](const HloInstruction*, const HloInstruction*) { return true; }; if (i1->IsCrossModuleAllReduce()) { return i1->Identical(*i2, eq_operands, eq_computations, false); } visited_pairs->emplace(min_uid, max_uid); for (int i = 0; i < operands1.size(); ++i) { auto operand1 = operands1[i]; auto operand2 = i2->operands()[i]; if (!InstructionsComputeSameValue(operand1, operand2, visited_pairs)) { return false; } } if (opcode1 == HloOpcode::kParameter) { return false; } if (opcode1 == HloOpcode::kGetTupleElement) { return i1->tuple_index() == i2->tuple_index() || TupleElementsComputeSameValue(operands1[0], i1->tuple_index(), i2->tuple_index(), visited_pairs); } auto eq_instructions = [](const HloInstruction* i1, const HloInstruction* i2) -> bool { return true; }; return i1->Identical(*i2, eq_instructions, eq_computations, false); } void ArCrsCombiner::GroupAllReducesById(HloModule* module) { absl::flat_hash_set<int64_t> discarded_ar_ids; for (HloComputation* computation : module->MakeNonfusionComputations()) { for (HloInstruction* instruction : computation->instructions()) { auto maybe_pair = MatchesArCrsPattern(instruction); if (maybe_pair) { auto pair = *maybe_pair; int64_t ar_id = *(instruction->channel_id()); if (discarded_ar_ids.find(ar_id) != discarded_ar_ids.end()) { continue; } auto it = crs_reserved_map_.find(pair.crs); if (it != crs_reserved_map_.end()) { auto prev_ar_id = it->second; CHECK(all_reduce_map_.find(ar_id) == all_reduce_map_.end()); CHECK_NE(prev_ar_id, ar_id); auto prev_pair = all_reduce_map_[prev_ar_id].back(); int64_t prev_distance = prev_pair.distance; if (prev_distance < pair.distance) { VLOG(2) << "Replacing ArCrsPair: " << prev_pair.ToString() << " with ArCrsPair: " << pair.ToString(); all_reduce_map_.erase(prev_ar_id); discarded_ar_ids.insert(prev_ar_id); all_reduce_map_[ar_id].push_back(pair); crs_reserved_map_[pair.crs] = ar_id; } else { discarded_ar_ids.insert(ar_id); } } else { if (all_reduce_map_.find(ar_id) != all_reduce_map_.end()) { int64_t prev_distance = all_reduce_map_[ar_id].back().distance; CHECK_EQ(prev_distance, pair.distance) << "All ARs with the same AR ID must have the same distance " "from the corresponding CRSs. Found: " << prev_distance << " and " << pair.distance; } all_reduce_map_[ar_id].push_back(pair); crs_reserved_map_[pair.crs] = ar_id; } } } } } absl::Status ArCrsCombiner::KeepProvablyEqualInstructionGroupsMPMD() { for (auto it = all_reduce_map_.begin(); it != all_reduce_map_.end();) { auto copy_it = it++; auto channel_id = copy_it->first; VLOG(2) << "KeepProvablyEqualInstructionGroups. Checking AllReduce channel id: " << channel_id << "\n"; auto pairs_vec = copy_it->second; TF_RET_CHECK(pairs_vec.size() == num_spatial_partitions_); auto instr_0 = pairs_vec[0].ar; for (int i = 1; i < pairs_vec.size(); ++i) { auto instr_i = pairs_vec[i].ar; auto next_0 = instr_0->users()[0]; auto next_i = instr_i->users()[0]; absl::flat_hash_map<int64_t, int64_t> visited_pairs; while (true) { if (!InstructionsComputeSameValue(next_0, next_i, &visited_pairs)) { all_reduce_map_.erase(copy_it); VLOG(2) << "KeepProvablyEqualInstructionGroups. Erased AllReduce " "channel id: " << channel_id << "\n"; break; } if (next_0->IsCrossReplicaAllReduce()) { break; } next_0 = next_0->users()[0]; next_i = next_i->users()[0]; } } } return absl::OkStatus(); } absl::Status ArCrsCombiner::KeepProvablyEqualInstructionGroupsSPMD( HloModule* module) { TF_ASSIGN_OR_RETURN( auto replication_analysis, HloReplicationAnalysis::Run(module, true)); for (auto it = all_reduce_map_.begin(); it != all_reduce_map_.end();) { auto copy_it = it++; auto channel_id = copy_it->first; VLOG(2) << "KeepProvablyEqualInstructionGroups. Checking AllReduce channel id: " << channel_id << "\n"; auto pairs_vec = copy_it->second; TF_RET_CHECK(pairs_vec.size() == 1); auto instr = pairs_vec[0].ar; auto next = instr->users()[0]; while (true) { TF_RET_CHECK(next->shape().IsArray()); if (!replication_analysis->HloInstructionIsReplicatedAt(next, {})) { all_reduce_map_.erase(copy_it); VLOG(2) << "KeepProvablyEqualInstructionGroups. Erased AllReduce " "channel id: " << channel_id << "\n"; break; } if (next->IsCrossReplicaAllReduce()) { break; } next = next->users()[0]; } } return absl::OkStatus(); } absl::StatusOr<bool> ArCrsCombiner::RewriteGraph() { if (all_reduce_map_.empty()) { return false; } for (const auto& it : all_reduce_map_) { auto pairs_vec = it.second; for (auto pair : pairs_vec) { auto all_reduce = pair.ar; auto parent_computation = all_reduce->parent(); auto channel_id = all_reduce->channel_id(); auto prev = all_reduce->mutable_operand(0); auto next = all_reduce->users()[0]; TF_CHECK_OK(all_reduce->ReplaceUseWith(next, prev)); TF_CHECK_OK(parent_computation->RemoveInstruction(all_reduce)); while (!next->IsCrossReplicaAllReduce()) { switch (next->opcode()) { case HloOpcode::kBitcast: case HloOpcode::kTranspose: case HloOpcode::kReshape: case HloOpcode::kConvert: case HloOpcode::kMultiply: break; case HloOpcode::kAdd: case HloOpcode::kSubtract: { auto other_operand = (next->operands()[0] == prev) ? next->operands()[1] : next->operands()[0]; if (other_operand->IsCrossModuleAllReduce() && other_operand->user_count() == 1) { TF_CHECK_OK(other_operand->ReplaceAllUsesWith( other_operand->mutable_operand(0))); } else { auto shape = other_operand->shape(); Literal lit(shape); lit.PopulateWithValue<float>(num_spatial_partitions_); auto divisor = parent_computation->AddInstruction( HloInstruction::CreateConstant(lit.Clone())); auto division = parent_computation->AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kDivide, other_operand, divisor)); TF_CHECK_OK(other_operand->ReplaceUseWith(next, division)); } break; } default: LOG(FATAL) << "Unexpected instruction: " << next->ToShortString(); } prev = next; next = next->users()[0]; } next->set_channel_id(channel_id); } } return true; } absl::StatusOr<bool> ArCrsCombiner::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { call_graph_ = CallGraph::Build(module); GroupAllReducesById(module); if (spmd_partition_) { TF_RETURN_IF_ERROR(KeepProvablyEqualInstructionGroupsSPMD(module)); } else { TF_RETURN_IF_ERROR(KeepProvablyEqualInstructionGroupsMPMD()); } TF_ASSIGN_OR_RETURN(auto changed, RewriteGraph()); if (module->config().replica_count() > 1 && spmd_partition_) { TF_ASSIGN_OR_RETURN(auto replaced, ReplaceReplicatedAllReduce( module, num_spatial_partitions_)); changed |= replaced; } return changed; } }
#include "xla/service/ar_crs_combiner.h" #include <cstdint> #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; class ArCrsCombinerTest : public HloTestBase {}; TEST_F(ArCrsCombinerTest, SameValueTestBasecase) { const char* module_str = R"( HloModule foobar ENTRY %entrycomp (p: f32[2,2]) -> (f32[2,2], f32[2,2]) { %p = f32[2,2] parameter(0) %constant.f32.1 = f32[2,2] constant({{1, 2}, {3, 4}}) %constant.f32.2 = f32[2,2] constant({{1, 2}, {3, 4}}) ROOT %tuple = (f32[2,2], f32[2,2]) tuple(%constant.f32.1, %constant.f32.2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); auto root_tuple = module->entry_computation()->root_instruction(); auto i1 = root_tuple->operands()[0]; auto i2 = root_tuple->operands()[1]; EXPECT_FALSE(ArCrsCombiner::TestInstructionsComputeSameValue( i1, module->entry_computation()->parameter_instruction(0))); EXPECT_TRUE(ArCrsCombiner::TestInstructionsComputeSameValue(i1, i2)); } TEST_F(ArCrsCombinerTest, SameValueTestBasecase2) { const char* module_str = R"( HloModule foobar ENTRY %entrycomp (x: f32[]) -> (f32[], f32[]) { %x = f32[] parameter(0) ROOT %tuple = (f32[], f32[]) tuple(%x, %x) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); auto root_tuple = module->entry_computation()->root_instruction(); auto i1 = root_tuple->operands()[0]; auto i2 = root_tuple->operands()[1]; EXPECT_TRUE(ArCrsCombiner::TestInstructionsComputeSameValue(i1, i2)); } TEST_F(ArCrsCombinerTest, SameValueTestBasecase3) { const char* module_str = R"( HloModule foobar ENTRY %entrycomp (x: f32[], y: f32[]) -> (f32[], f32[]) { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %tuple = (f32[], f32[]) tuple(%x, %y) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); auto root_tuple = module->entry_computation()->root_instruction(); auto i1 = root_tuple->operands()[0]; auto i2 = root_tuple->operands()[1]; EXPECT_FALSE(ArCrsCombiner::TestInstructionsComputeSameValue(i1, i2)); } TEST_F(ArCrsCombinerTest, SameValueTestNumOperands) { const char* module_str = R"( HloModule foobar ENTRY %entrycomp (p: f32[2,2]) -> ((f32[2,2]), (f32[2,2], f32[2,2])) { %p = f32[2,2] parameter(0) %constant.f32 = f32[2,2] constant({{1, 2}, {3, 4}}) %tuple1 = (f32[2,2]) tuple(%constant.f32) %tuple2 = (f32[2,2], f32[2,2]) tuple(%constant.f32, %constant.f32) ROOT %tuple = ((f32[2,2]), (f32[2,2], f32[2,2])) tuple(%tuple1, %tuple2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); auto root_tuple = module->entry_computation()->root_instruction(); auto i1 = root_tuple->operands()[0]; auto i2 = root_tuple->operands()[1]; EXPECT_FALSE(ArCrsCombiner::TestInstructionsComputeSameValue(i1, i2)); } TEST_F(ArCrsCombinerTest, SameValueTestSliceIndicesMatch) { const char* module_str = R"( HloModule foobar ENTRY %entrycomp (p: f32[2]) -> (f32[1], f32[1]) { %p = f32[2] parameter(0) %slice.1 = f32[1] slice(f32[2] %p), slice={[0:1]} %slice.2 = f32[1] slice(f32[2] %p), slice={[0:1]} ROOT %tuple = (f32[1], f32[1]) tuple(%slice.1, %slice.2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); auto root_tuple = module->entry_computation()->root_instruction(); auto i1 = root_tuple->operands()[0]; auto i2 = root_tuple->operands()[1]; EXPECT_TRUE(ArCrsCombiner::TestInstructionsComputeSameValue(i1, i2)); } TEST_F(ArCrsCombinerTest, SameValueTestSliceIndicesDontMatch) { const char* module_str = R"( HloModule foobar ENTRY %entrycomp (p: f32[2]) -> (f32[1], f32[1]) { %p = f32[2] parameter(0) %slice.1 = f32[1] slice(f32[2] %p), slice={[0:1]} %slice.2 = f32[1] slice(f32[2] %p), slice={[1:2]} ROOT %tuple = (f32[1], f32[1]) tuple(%slice.1, %slice.2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); auto root_tuple = module->entry_computation()->root_instruction(); auto i1 = root_tuple->operands()[0]; auto i2 = root_tuple->operands()[1]; EXPECT_FALSE(ArCrsCombiner::TestInstructionsComputeSameValue(i1, i2)); } TEST_F(ArCrsCombinerTest, SameValueTestTupleElementSameIndex) { const char* module_str = R"( HloModule foobar ENTRY %entrycomp (p: f32[2,2]) -> (f32[2,2], f32[2,2]) { %p = f32[2,2] parameter(0) %constant.f32 = f32[2,2] constant({{1, 2}, {3, 4}}) %tuple.1 = (f32[2,2], f32[2,2]) tuple(%constant.f32, %constant.f32) %get-tuple-element.1 = f32[2,2] get-tuple-element(%tuple.1), index=0 %get-tuple-element.2 = f32[2,2] get-tuple-element(%tuple.1), index=0 ROOT %tuple = (f32[2,2], f32[2,2]) tuple(%get-tuple-element.1, %get-tuple-element.2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); auto root_tuple = module->entry_computation()->root_instruction(); auto i1 = root_tuple->operands()[0]; auto i2 = root_tuple->operands()[1]; EXPECT_TRUE(ArCrsCombiner::TestInstructionsComputeSameValue(i1, i2)); } TEST_F(ArCrsCombinerTest, SameValueTestTupleElementDifferentIndex1) { const char* module_str = R"( HloModule foobar ENTRY %entrycomp (p: f32[2,2]) -> (f32[2,2], f32[2,2]) { %p = f32[2,2] parameter(0) %constant.f32 = f32[2,2] constant({{1, 2}, {3, 4}}) %tuple.1 = (f32[2,2], f32[2,2]) tuple(%constant.f32, %constant.f32) %get-tuple-element.1 = f32[2,2] get-tuple-element(%tuple.1), index=0 %get-tuple-element.2 = f32[2,2] get-tuple-element(%tuple.1), index=1 ROOT %tuple = (f32[2,2], f32[2,2]) tuple(%get-tuple-element.1, %get-tuple-element.2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); auto root_tuple = module->entry_computation()->root_instruction(); auto i1 = root_tuple->operands()[0]; auto i2 = root_tuple->operands()[1]; EXPECT_TRUE(ArCrsCombiner::TestInstructionsComputeSameValue(i1, i2)); } TEST_F(ArCrsCombinerTest, SameValueTestTupleElementDifferentIndex2) { const char* module_str = R"( HloModule foobar ENTRY %entrycomp (p: f32[2,2]) -> (f32[2,2], f32[2,2]) { %p = f32[2,2] parameter(0) %constant.f32.1 = f32[2,2] constant({{1, 2}, {3, 4}}) %constant.f32.2 = f32[2,2] constant({{2, 3}, {4, 5}}) %tuple.1 = (f32[2,2], f32[2,2]) tuple(%constant.f32.1, %constant.f32.2) %get-tuple-element.1 = f32[2,2] get-tuple-element(%tuple.1), index=0 %get-tuple-element.2 = f32[2,2] get-tuple-element(%tuple.1), index=1 ROOT %tuple = (f32[2,2], f32[2,2]) tuple(%get-tuple-element.1, %get-tuple-element.2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); auto root_tuple = module->entry_computation()->root_instruction(); auto i1 = root_tuple->operands()[0]; auto i2 = root_tuple->operands()[1]; EXPECT_FALSE(ArCrsCombiner::TestInstructionsComputeSameValue(i1, i2)); } TEST_F(ArCrsCombinerTest, SameValueTestWhile1) { const char* module_str = R"( HloModule foobar %condition (x: (f32[2,2], f32[2,2])) -> pred[] { %x = (f32[2,2], f32[2,2]) parameter(0) %constant.0 = s32[] constant(0) %constant.1 = s32[] constant(1) ROOT %greater-than = pred[] compare(s32[] %constant.1, s32[] %constant.0), direction=GT } %body (x: (f32[2,2], f32[2,2])) -> (f32[2,2], f32[2,2]) { %x = (f32[2,2], f32[2,2]) parameter(0) %constant.f32 = f32[2,2] constant({{1, 2}, {3, 4}}) %get-tuple-element.1 = f32[2,2] get-tuple-element(%x), index=0 %get-tuple-element.2 = f32[2,2] get-tuple-element(%x), index=1 %add.1 = f32[2,2] add(%get-tuple-element.1, %constant.f32) %add.2 = f32[2,2] add(%get-tuple-element.2, %constant.f32) ROOT %tuple = (f32[2,2], f32[2,2]) tuple(%add.1, %add.2) } ENTRY %WhileLoop () -> (f32[2,2], f32[2,2]) { %constant.f32 = f32[2,2] constant({{3, 4}, {5, 6}}) %init.tuple = (f32[2,2], f32[2,2]) tuple(%constant.f32, %constant.f32) ROOT %while = (f32[2,2], f32[2,2]) while(%init.tuple), condition=%condition, body=%body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); auto root_while = module->entry_computation()->root_instruction(); auto body_tuple = root_while->while_body()->root_instruction(); auto i1 = body_tuple->operands()[0]; auto i2 = body_tuple->operands()[1]; EXPECT_TRUE(ArCrsCombiner::TestInstructionsComputeSameValue(i1, i2)); } TEST_F(ArCrsCombinerTest, SameValueTestWhile2) { const char* module_str = R"( HloModule foobar %condition (x: (f32[2,2], f32[2,2])) -> pred[] { %x = (f32[2,2], f32[2,2]) parameter(0) %constant.0 = s32[] constant(0) %constant.1 = s32[] constant(1) ROOT %greater-than = pred[] compare(s32[] %constant.1, s32[] %constant.0), direction=GT } %body (x: (f32[2,2], f32[2,2])) -> (f32[2,2], f32[2,2]) { %x = (f32[2,2], f32[2,2]) parameter(0) %constant.f32 = f32[2,2] constant({{1, 2}, {3, 4}}) %get-tuple-element.1 = f32[2,2] get-tuple-element(%x), index=0 %get-tuple-element.2 = f32[2,2] get-tuple-element(%x), index=1 %add.1 = f32[2,2] add(%get-tuple-element.1, %constant.f32) %add.2 = f32[2,2] add(%get-tuple-element.2, %constant.f32) ROOT %tuple = (f32[2,2], f32[2,2]) tuple(%add.1, %add.2) } ENTRY %WhileLoop () -> (f32[2,2], f32[2,2]) { %constant.f32.1 = f32[2,2] constant({{3, 4}, {5, 6}}) %constant.f32.2 = f32[2,2] constant({{3, 4}, {7, 8}}) %init.tuple = (f32[2,2], f32[2,2]) tuple(%constant.f32.1, %constant.f32.2) ROOT %while = (f32[2,2], f32[2,2]) while(%init.tuple), condition=%condition, body=%body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); auto root_while = module->entry_computation()->root_instruction(); auto body_tuple = root_while->while_body()->root_instruction(); auto i1 = body_tuple->operands()[0]; auto i2 = body_tuple->operands()[1]; EXPECT_FALSE(ArCrsCombiner::TestInstructionsComputeSameValue(i1, i2)); } TEST_F(ArCrsCombinerTest, SameValueTestWhile3) { const char* module_str = R"( HloModule foobar %condition (x: (f32[2,2], f32[2,2])) -> pred[] { %x = (f32[2,2], f32[2,2]) parameter(0) %constant.0 = s32[] constant(0) %constant.1 = s32[] constant(1) ROOT %greater-than = pred[] compare(s32[] %constant.1, s32[] %constant.0), direction=GT } %body (x: (f32[2,2], f32[2,2])) -> (f32[2,2], f32[2,2]) { %x = (f32[2,2], f32[2,2]) parameter(0) %constant.f32.1 = f32[2,2] constant({{1, 2}, {3, 4}}) %constant.f32.2 = f32[2,2] constant({{3, 4}, {1, 2}}) %get-tuple-element.1 = f32[2,2] get-tuple-element(%x), index=0 %get-tuple-element.2 = f32[2,2] get-tuple-element(%x), index=1 %add.1 = f32[2,2] add(%get-tuple-element.1, %constant.f32.1) %add.2 = f32[2,2] add(%get-tuple-element.2, %constant.f32.2) ROOT %tuple = (f32[2,2], f32[2,2]) tuple(%add.1, %add.2) } ENTRY %WhileLoop () -> (f32[2,2], f32[2,2]) { %constant.f32 = f32[2,2] constant({{3, 4}, {5, 6}}) %init.tuple = (f32[2,2], f32[2,2]) tuple(%constant.f32, %constant.f32) ROOT %while = (f32[2,2], f32[2,2]) while(%init.tuple), condition=%condition, body=%body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); auto root_while = module->entry_computation()->root_instruction(); auto body_tuple = root_while->while_body()->root_instruction(); auto i1 = body_tuple->operands()[0]->operands()[0]; auto i2 = body_tuple->operands()[1]->operands()[0]; EXPECT_FALSE(ArCrsCombiner::TestInstructionsComputeSameValue(i1, i2)); } TEST_F(ArCrsCombinerTest, SameValueTestNestedWhile) { const char* module_str = R"( HloModule foobar %condition (x: (f32[2,2], f32[2,2])) -> pred[] { %x = (f32[2,2], f32[2,2]) parameter(0) ROOT %t = pred[] constant(true) } %body_inner (x: (f32[2,2], f32[2,2])) -> (f32[2,2], f32[2,2]) { %x = (f32[2,2], f32[2,2]) parameter(0) %constant.f32 = f32[2,2] constant({{1, 2}, {3, 4}}) %gte.1 = f32[2,2] get-tuple-element(%x), index=0 %gte.2 = f32[2,2] get-tuple-element(%x), index=1 %add.1 = f32[2,2] add(%gte.1, %constant.f32) %add.2 = f32[2,2] add(%gte.2, %constant.f32) ROOT %tuple = (f32[2,2], f32[2,2]) tuple(%add.1, %add.2) } %body_outer (x: (f32[2,2], f32[2,2])) -> (f32[2,2], f32[2,2]) { %x = (f32[2,2], f32[2,2]) parameter(0) %gte.1 = f32[2,2] get-tuple-element(%x), index=0 %gte.2 = f32[2,2] get-tuple-element(%x), index=1 %init = (f32[2,2], f32[2,2]) tuple(%gte.1, %gte.2) ROOT %while.1 = (f32[2,2], f32[2,2]) while(%init), condition=%condition, body=%body_inner } ENTRY %WhileLoop () -> (f32[2,2], f32[2,2]) { %constant.f32 = f32[2,2] constant({{3, 4}, {5, 6}}) %init.tuple = (f32[2,2], f32[2,2]) tuple(%constant.f32, %constant.f32) ROOT %while = (f32[2,2], f32[2,2]) while(%init.tuple), condition=%condition, body=%body_outer } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); auto root_while = module->entry_computation()->root_instruction(); auto inner_while = root_while->while_body()->root_instruction(); auto i1 = inner_while->while_body()->root_instruction()->operands()[0]; auto i2 = inner_while->while_body()->root_instruction()->operands()[1]; EXPECT_TRUE(ArCrsCombiner::TestInstructionsComputeSameValue(i1, i2)); } void CompareReplicaGroups(absl::Span<const ReplicaGroup> groups_before, absl::Span<const ReplicaGroup> groups_after) { ASSERT_EQ(groups_before.size(), groups_after.size()); for (int i = 0; i < groups_before.size(); ++i) { auto group_before = groups_before[i]; std::vector<int64_t> ids_before(group_before.replica_ids().begin(), group_before.replica_ids().end()); auto group_after = groups_after[i]; std::vector<int64_t> ids_after(group_after.replica_ids().begin(), group_after.replica_ids().end()); EXPECT_EQ(ids_before, ids_after); } } TEST_F(ArCrsCombinerTest, RewriteArConvertCrs) { const char* module_str = R"( HloModule foobar %sum.bf16 (a: bf16[], b: bf16[]) -> bf16[] { %a = bf16[] parameter(0) %b = bf16[] parameter(1) ROOT %add = bf16[] add(%a, %b) } %sum.f32 (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: bf16[]) -> (f32[], f32[]) { %p = bf16[] parameter(0) %constant.bf16 = bf16[] constant(1) %all-reduce.ar.1 = bf16[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum.bf16, sharding={maximal device=0} %convert.1 = f32[] convert(%all-reduce.ar.1), sharding={maximal device=0} %all-reduce.1 = f32[] all-reduce(%convert.1), replica_groups={{0,1}}, to_apply=%sum.f32, sharding={maximal device=0} %all-reduce.ar.2 = bf16[] all-reduce(%constant.bf16), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum.bf16, sharding={maximal device=1} %convert.2 = f32[] convert(%all-reduce.ar.2), sharding={maximal device=1} %all-reduce.2 = f32[] all-reduce(%convert.2), replica_groups={{0,1}}, to_apply=%sum.f32, sharding={maximal device=1} ROOT %tuple = (f32[], f32[]) tuple(%all-reduce.1, %all-reduce.2), sharding={{maximal device=0}, {maximal device=1}} } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 2)); auto crs_before = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_before = crs_before->replica_groups(); ArCrsCombiner combiner(2, false); auto changed = combiner.Run(module.get()).value(); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::AllReduce(op::Convert(op::Parameter())), op::AllReduce(op::Convert(op::Constant())))); auto crs_after = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_after = crs_after->replica_groups(); CompareReplicaGroups(replica_groups_before, replica_groups_after); } TEST_F(ArCrsCombinerTest, RewriteArConvertCrsSPMD) { const char* module_str = R"( HloModule foobar %sum.bf16 (a: bf16[], b: bf16[]) -> bf16[] { %a = bf16[] parameter(0) %b = bf16[] parameter(1) ROOT %add = bf16[] add(%a, %b) } %sum.f32 (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: bf16[]) -> (f32[]) { %p = bf16[] parameter(0) %all-reduce.ar.1 = bf16[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum.bf16 %convert.1 = f32[] convert(%all-reduce.ar.1) %all-reduce.1 = f32[] all-reduce(%convert.1), replica_groups={{0,1}}, to_apply=%sum.f32 ROOT %tuple = (f32[]) tuple(%all-reduce.1) } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 2)); auto crs_before = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_before = crs_before->replica_groups(); ArCrsCombiner combiner(2, true); auto changed = combiner.Run(module.get()).value(); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::AllReduce(op::Convert(op::Parameter())))); auto crs_after = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_after = crs_after->replica_groups(); CompareReplicaGroups(replica_groups_before, replica_groups_after); } TEST_F(ArCrsCombinerTest, RewriteArBitcastCrs) { const char* module_str = R"( HloModule foobar %sum.1 (a: f32[2,1], b: f32[2,1]) -> f32[2,1] { %a = f32[2,1] parameter(0) %b = f32[2,1] parameter(1) ROOT %add = f32[2,1] add(%a, %b) } %sum.2 (x: f32[2], y: f32[2]) -> f32[2] { %x = f32[2] parameter(0) %y = f32[2] parameter(1) ROOT %add = f32[2] add(%x, %y) } ENTRY %entrycomp (p: f32[2,1]) -> (f32[2], f32[2]) { %p = f32[2,1] parameter(0) %all-reduce.ar.1 = f32[2,1] all-reduce(%p), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum.1, sharding={maximal device=0} %bitcast.1 = f32[2]{0} bitcast(f32[2,1]{1,0} %all-reduce.ar.1) %all-reduce.1 = f32[2] all-reduce(%bitcast.1), replica_groups={{0,1}}, to_apply=%sum.2, sharding={maximal device=0} %all-reduce.ar.2 = f32[2,1] all-reduce(%p), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum.1, sharding={maximal device=1} %bitcast.2 = f32[2]{0} bitcast(f32[2,1]{1,0} %all-reduce.ar.2) %all-reduce.2 = f32[2] all-reduce(%bitcast.2), replica_groups={{0,1}}, to_apply=%sum.2, sharding={maximal device=1} ROOT %tuple = (f32[2], f32[2]) tuple(%all-reduce.1, %all-reduce.2), sharding={{maximal device=0}, {maximal device=1}} } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 2)); auto crs_before = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_before = crs_before->replica_groups(); ArCrsCombiner combiner(2, false); auto changed = combiner.Run(module.get()).value(); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::AllReduce(op::Bitcast(op::Parameter())), op::AllReduce(op::Bitcast(op::Parameter())))); auto crs_after = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_after = crs_after->replica_groups(); CompareReplicaGroups(replica_groups_before, replica_groups_after); } TEST_F(ArCrsCombinerTest, RewriteArMultiplyCrs) { const char* module_str = R"( HloModule foobar %sum.f32 (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: f32[]) -> (f32[], f32[]) { %p = f32[] parameter(0) %constant.f32 = f32[] constant(123) %all-reduce.ar.1 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum.f32, sharding={maximal device=0} %multiply.1 = f32[] multiply(%all-reduce.ar.1, %constant.f32), sharding={maximal device=0} %all-reduce.1 = f32[] all-reduce(%multiply.1), replica_groups={{0,1}}, to_apply=%sum.f32, sharding={maximal device=0} %all-reduce.ar.2 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum.f32, sharding={maximal device=1} %multiply.2 = f32[] multiply(%all-reduce.ar.2, %constant.f32), sharding={maximal device=1} %all-reduce.2 = f32[] all-reduce(%multiply.2), replica_groups={{0,1}}, to_apply=%sum.f32, sharding={maximal device=1} ROOT %tuple = (f32[], f32[]) tuple(%all-reduce.1, %all-reduce.2), sharding={{maximal device=0}, {maximal device=1}} } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 2)); auto crs_before = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_before = crs_before->replica_groups(); ArCrsCombiner combiner(2, false); auto changed = combiner.Run(module.get()).value(); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple(op::AllReduce(op::Multiply(op::Parameter(), op::Constant())), op::AllReduce(op::Multiply(op::Parameter(), op::Constant())))); auto crs_after = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_after = crs_after->replica_groups(); CompareReplicaGroups(replica_groups_before, replica_groups_after); } TEST_F(ArCrsCombinerTest, RewriteArMultiplyCrsSPMD) { const char* module_str = R"( HloModule foobar %sum.f32 (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: f32[]) -> (f32[]) { %p = f32[] parameter(0) %constant.f32 = f32[] constant(123) %all-reduce.ar.1 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum.f32 %multiply.1 = f32[] multiply(%all-reduce.ar.1, %constant.f32) %all-reduce.1 = f32[] all-reduce(%multiply.1), replica_groups={{0,1}}, to_apply=%sum.f32, sharding={maximal device=0} ROOT %tuple = (f32[]) tuple(%all-reduce.1) } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 2)); auto crs_before = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_before = crs_before->replica_groups(); ArCrsCombiner combiner(2, true); auto changed = combiner.Run(module.get()).value(); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple(op::AllReduce(op::Multiply(op::Parameter(), op::Constant())))); auto crs_after = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_after = crs_after->replica_groups(); CompareReplicaGroups(replica_groups_before, replica_groups_after); } TEST_F(ArCrsCombinerTest, RewriteArConvertAddCrs) { const char* module_str = R"( HloModule foobar %sum.bf16 (a: bf16[], b: bf16[]) -> bf16[] { %a = bf16[] parameter(0) %b = bf16[] parameter(1) ROOT %add = bf16[] add(%a, %b) } %sum.f32 (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: f32[]) -> (f32[], f32[]) { %p = f32[] parameter(0) %constant.bf16 = bf16[] constant(1) %constant.f32 = f32[] constant(2) %all-reduce.ar.1 = bf16[] all-reduce(%constant.bf16), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum.bf16, sharding={maximal device=0} %convert.1 = f32[] convert(%all-reduce.ar.1), sharding={maximal device=0} %add.1 = f32[] add(%constant.f32, %convert.1), sharding={maximal device=0} %all-reduce.1 = f32[] all-reduce(%add.1), replica_groups={{0,1}}, to_apply=%sum.f32, sharding={maximal device=0} %all-reduce.ar.2 = bf16[] all-reduce(%constant.bf16), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum.bf16, sharding={maximal device=1} %convert.2 = f32[] convert(%all-reduce.ar.2), sharding={maximal device=1} %add.2 = f32[] add(%constant.f32, %convert.2), sharding={maximal device=1} %all-reduce.2 = f32[] all-reduce(%add.2), replica_groups={{0,1}}, to_apply=%sum.f32, sharding={maximal device=1} ROOT %tuple = (f32[], f32[]) tuple(%all-reduce.1, %all-reduce.2), sharding={{maximal device=0}, {maximal device=1}} } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 2)); auto crs_before = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_before = crs_before->replica_groups(); ArCrsCombiner combiner(2, false); auto changed = combiner.Run(module.get()).value(); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple( op::AllReduce(op::Add(op::Divide(op::Constant(), op::Constant()), op::Convert())), op::AllReduce(op::Add(op::Divide(op::Constant(), op::Constant()), op::Convert())))); auto crs_after = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_after = crs_after->replica_groups(); CompareReplicaGroups(replica_groups_before, replica_groups_after); } TEST_F(ArCrsCombinerTest, RewriteArConvertAddCrsSPMD) { const char* module_str = R"( HloModule foobar %sum.bf16 (a: bf16[], b: bf16[]) -> bf16[] { %a = bf16[] parameter(0) %b = bf16[] parameter(1) ROOT %add = bf16[] add(%a, %b) } %sum.f32 (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: f32[]) -> (f32[]) { %p = f32[] parameter(0) %constant.bf16 = bf16[] constant(1) %constant.f32 = f32[] constant(2) %all-reduce.ar.1 = bf16[] all-reduce(%constant.bf16), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum.bf16 %convert.1 = f32[] convert(%all-reduce.ar.1), sharding={maximal device=0} %add.1 = f32[] add(%constant.f32, %convert.1) %all-reduce.1 = f32[] all-reduce(%add.1), replica_groups={{0,1}}, to_apply=%sum.f32 ROOT %tuple = (f32[]) tuple(%all-reduce.1) } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 2)); auto crs_before = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_before = crs_before->replica_groups(); ArCrsCombiner combiner(2, true); auto changed = combiner.Run(module.get()).value(); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::AllReduce(op::Add( op::Divide(op::Constant(), op::Constant()), op::Convert())))); auto crs_after = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_after = crs_after->replica_groups(); CompareReplicaGroups(replica_groups_before, replica_groups_after); } TEST_F(ArCrsCombinerTest, OtherSummandNotTheSameDontRewrite) { const char* module_str = R"( HloModule foobar %sum.bf16 (a: bf16[], b: bf16[]) -> bf16[] { %a = bf16[] parameter(0) %b = bf16[] parameter(1) ROOT %add = bf16[] add(%a, %b) } %sum.f32 (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: f32[]) -> (f32[], f32[]) { %p = f32[] parameter(0) %constant.bf16 = bf16[] constant(1) %constant.f32.1 = f32[] constant(2) %constant.f32.2 = f32[] constant(3) %all-reduce.ar.1 = bf16[] all-reduce(%constant.bf16), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum.bf16, sharding={maximal device=0} %convert.1 = f32[] convert(%all-reduce.ar.1), sharding={maximal device=0} %add.1 = f32[] add(%constant.f32.1, %convert.1), sharding={maximal device=0} %all-reduce.1 = f32[] all-reduce(%add.1), replica_groups={{0,1}}, to_apply=%sum.f32, sharding={maximal device=0} %all-reduce.ar.2 = bf16[] all-reduce(%constant.bf16), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum.bf16, sharding={maximal device=1} %convert.2 = f32[] convert(%all-reduce.ar.2), sharding={maximal device=1} %add.2 = f32[] add(%constant.f32.2, %convert.2), sharding={maximal device=1} %all-reduce.2 = f32[] all-reduce(%add.2), replica_groups={{0,1}}, to_apply=%sum.f32, sharding={maximal device=1} ROOT %tuple = (f32[], f32[]) tuple(%all-reduce.1, %all-reduce.2), sharding={{maximal device=0}, {maximal device=1}} } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 2)); ArCrsCombiner combiner(2, false); auto changed = combiner.Run(module.get()).value(); EXPECT_FALSE(changed); } TEST_F(ArCrsCombinerTest, OtherSummandNotTheSameDontRewriteSPMD) { const char* module_str = R"( HloModule foobar %sum.bf16 (a: bf16[], b: bf16[]) -> bf16[] { %a = bf16[] parameter(0) %b = bf16[] parameter(1) ROOT %add = bf16[] add(%a, %b) } %sum.f32 (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: f32[]) -> (f32[]) { %p = f32[] parameter(0) %constant.bf16 = bf16[] constant(1) %constant.f32.1 = f32[] constant(2) %all-reduce.ar.1 = bf16[] all-reduce(%constant.bf16), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum.bf16 %convert.1 = f32[] convert(%all-reduce.ar.1) %add.1 = f32[] add(%p, %convert.1) %all-reduce.1 = f32[] all-reduce(%add.1), replica_groups={{0,1}}, to_apply=%sum.f32 ROOT %tuple = (f32[]) tuple(%all-reduce.1) } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 2)); ArCrsCombiner combiner(2, true); auto changed = combiner.Run(module.get()).value(); EXPECT_FALSE(changed); } TEST_F(ArCrsCombinerTest, ArThenCrsDontCrash) { const char* module_str = R"( HloModule foobar %sum.1 (a: f32[], b: f32[]) -> f32[] { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(%a, %b) } ENTRY %entrycomp (p: f32[]) -> (f32[], f32[]) { %p = f32[] parameter(0) %constant.f32 = f32[] constant(123) %all-reduce.ar.1 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum.1, sharding={maximal device=0} %all-reduce.1 = f32[] all-reduce(%all-reduce.ar.1), replica_groups={{0,1}}, to_apply=%sum.1, sharding={maximal device=0} %multiply.1 = f32[] multiply(%all-reduce.1, %constant.f32), sharding={maximal device=0} %all-reduce.ar.2 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum.1, sharding={maximal device=1} %all-reduce.2 = f32[] all-reduce(%all-reduce.ar.2), replica_groups={{0,1}}, to_apply=%sum.1, sharding={maximal device=1} %multiply.2 = f32[] multiply(%all-reduce.2, %constant.f32), sharding={maximal device=1} ROOT %tuple = (f32[], f32[]) tuple(%all-reduce.1, %all-reduce.2), sharding={{maximal device=0}, {maximal device=1}} } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 2)); auto crs_before = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_before = crs_before->replica_groups(); ArCrsCombiner combiner(2, false); auto changed = combiner.Run(module.get()).value(); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::AllReduce(op::Parameter()), op::AllReduce(op::Parameter()))); auto crs_after = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_after = crs_after->replica_groups(); CompareReplicaGroups(replica_groups_before, replica_groups_after); } TEST_F(ArCrsCombinerTest, RewriteMultipleAdds) { const char* module_str = R"( HloModule foobar %sum (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: f32[]) -> (f32[], f32[]) { %p = f32[] parameter(0) %constant.1 = f32[] constant(1) %constant.2 = f32[] constant(2) %all-reduce.ar.1 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum, sharding={maximal device=0} %add.11 = f32[] add(%constant.1, %all-reduce.ar.1), sharding={maximal device=0} %add.12 = f32[] add(%constant.2, %add.11), sharding={maximal device=0} %all-reduce.1 = f32[] all-reduce(%add.12), replica_groups={{0,1}}, to_apply=%sum, sharding={maximal device=0} %all-reduce.ar.2 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum, sharding={maximal device=0} %add.21 = f32[] add(%constant.1, %all-reduce.ar.2), sharding={maximal device=0} %add.22 = f32[] add(%constant.2, %add.21), sharding={maximal device=0} %all-reduce.2 = f32[] all-reduce(%add.22), replica_groups={{0,1}}, to_apply=%sum, sharding={maximal device=0} ROOT %tuple = (f32[], f32[]) tuple(%all-reduce.1, %all-reduce.2), sharding={{maximal device=0}, {maximal device=1}} } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 2)); auto crs_before = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_before = crs_before->replica_groups(); ArCrsCombiner combiner(2, false); auto changed = combiner.Run(module.get()).value(); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::AllReduce(op::Add( op::Divide(op::Constant(), op::Constant()), op::Add(op::Divide(op::Constant(), op::Constant()), op::Parameter()))), op::AllReduce(op::Add( op::Divide(op::Constant(), op::Constant()), op::Add(op::Divide(op::Constant(), op::Constant()), op::Parameter()))))); auto crs_after = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_after = crs_after->replica_groups(); CompareReplicaGroups(replica_groups_before, replica_groups_after); } TEST_F(ArCrsCombinerTest, RewriteMultipleAddsSPMD) { const char* module_str = R"( HloModule foobar %sum (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: f32[]) -> (f32[]) { %p = f32[] parameter(0) %constant.1 = f32[] constant(1) %constant.2 = f32[] constant(2) %all-reduce.ar.1 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum %add.11 = f32[] add(%constant.1, %all-reduce.ar.1) %add.12 = f32[] add(%constant.2, %add.11) %all-reduce.1 = f32[] all-reduce(%add.12), replica_groups={{0,1}}, to_apply=%sum ROOT %tuple = (f32[]) tuple(%all-reduce.1) } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 2)); auto crs_before = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_before = crs_before->replica_groups(); ArCrsCombiner combiner(2, true); auto changed = combiner.Run(module.get()).value(); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::AllReduce( op::Add(op::Divide(op::Constant(), op::Constant()), op::Add(op::Divide(op::Constant(), op::Constant()), op::Parameter()))))); auto crs_after = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_after = crs_after->replica_groups(); CompareReplicaGroups(replica_groups_before, replica_groups_after); } TEST_F(ArCrsCombinerTest, RewriteArSubtractCrs) { const char* module_str = R"( HloModule foobar %sum.f32 (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: f32[]) -> (f32[], f32[]) { %p = f32[] parameter(0) %constant.f32 = f32[] constant(123) %all-reduce.ar.1 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum.f32, sharding={maximal device=0} %sub.1 = f32[] subtract(%constant.f32, %all-reduce.ar.1), sharding={maximal device=0} %all-reduce.1 = f32[] all-reduce(%sub.1), replica_groups={{0,1}}, to_apply=%sum.f32, sharding={maximal device=0} %all-reduce.ar.2 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum.f32, sharding={maximal device=1} %sub.2 = f32[] subtract(%constant.f32, %all-reduce.ar.2), sharding={maximal device=1} %all-reduce.2 = f32[] all-reduce(%sub.2), replica_groups={{0,1}}, to_apply=%sum.f32, sharding={maximal device=1} ROOT %tuple = (f32[], f32[]) tuple(%all-reduce.1, %all-reduce.2), sharding={{maximal device=0}, {maximal device=1}} } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 2)); auto crs_before = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_before = crs_before->replica_groups(); ArCrsCombiner combiner(2, false); auto changed = combiner.Run(module.get()).value(); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple( op::AllReduce(op::Subtract(op::Divide(op::Constant(), op::Constant()), op::Parameter())), op::AllReduce(op::Subtract(op::Divide(op::Constant(), op::Constant()), op::Parameter())))); auto crs_after = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_after = crs_after->replica_groups(); CompareReplicaGroups(replica_groups_before, replica_groups_after); } TEST_F(ArCrsCombinerTest, RewriteArSubtractCrsSPMD) { const char* module_str = R"( HloModule foobar %sum.f32 (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: f32[]) -> (f32[]) { %p = f32[] parameter(0) %constant.f32 = f32[] constant(123) %all-reduce.ar.1 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum.f32 %sub.1 = f32[] subtract(%constant.f32, %all-reduce.ar.1) %all-reduce.1 = f32[] all-reduce(%sub.1), replica_groups={{0,1}}, to_apply=%sum.f32 ROOT %tuple = (f32[]) tuple(%all-reduce.1) } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 2)); auto crs_before = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_before = crs_before->replica_groups(); ArCrsCombiner combiner(2, true); auto changed = combiner.Run(module.get()).value(); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple(op::AllReduce(op::Subtract( op::Divide(op::Constant(), op::Constant()), op::Parameter())))); auto crs_after = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_after = crs_after->replica_groups(); CompareReplicaGroups(replica_groups_before, replica_groups_after); } TEST_F(ArCrsCombinerTest, RewriteMultipleARsLeft) { const char* module_str = R"( HloModule foobar %sum (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: f32[]) -> (f32[], f32[]) { %p = f32[] parameter(0) %const1 = f32[] constant(1) %const2 = f32[] constant(2) %ar11 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum, sharding={maximal device=0} %add11 = f32[] add(%ar11, %const1), sharding={maximal device=0} %ar12 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=2, to_apply=%sum, sharding={maximal device=0} %add12 = f32[] add(%add11, %ar12), sharding={maximal device=0} %crs1 = f32[] all-reduce(%add12), replica_groups={{0,1}}, to_apply=%sum, sharding={maximal device=0} %ar21 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum, sharding={maximal device=1} %add21 = f32[] add(%ar21, %const1), sharding={maximal device=1} %ar22 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=2, to_apply=%sum, sharding={maximal device=1} %add22 = f32[] add(%add21, %ar22), sharding={maximal device=1} %crs2 = f32[] all-reduce(%add22), replica_groups={{0,1}}, to_apply=%sum, sharding={maximal device=1} ROOT %tuple = (f32[], f32[]) tuple(%crs1, %crs2), sharding={{maximal device=0}, {maximal device=1}} } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 2)); auto crs_before = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_before = crs_before->replica_groups(); ArCrsCombiner combiner(2, false); auto changed = combiner.Run(module.get()).value(); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::AllReduce(op::Add( op::Add(op::Parameter(), op::Divide(op::Constant(), op::Constant())), op::Parameter())), op::AllReduce(op::Add( op::Add(op::Parameter(), op::Divide(op::Constant(), op::Constant())), op::Parameter())))); auto crs_after = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_after = crs_after->replica_groups(); CompareReplicaGroups(replica_groups_before, replica_groups_after); } TEST_F(ArCrsCombinerTest, RewriteMultipleARsLeftSPMD) { const char* module_str = R"( HloModule foobar %sum (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: f32[]) -> (f32[]) { %p = f32[] parameter(0) %const1 = f32[] constant(1) %const2 = f32[] constant(2) %ar11 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum %add11 = f32[] add(%ar11, %const1) %ar12 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=2, to_apply=%sum %add12 = f32[] add(%add11, %ar12) %crs1 = f32[] all-reduce(%add12), replica_groups={{0,1}}, to_apply=%sum ROOT %tuple = (f32[]) tuple(%crs1) } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 2)); auto crs_before = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_before = crs_before->replica_groups(); ArCrsCombiner combiner(2, true); auto changed = combiner.Run(module.get()).value(); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple(op::AllReduce(op::Add( op::Add(op::Parameter(), op::Divide(op::Constant(), op::Constant())), op::Parameter())))); auto crs_after = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_after = crs_after->replica_groups(); CompareReplicaGroups(replica_groups_before, replica_groups_after); } TEST_F(ArCrsCombinerTest, RewriteMultipleARsRight) { const char* module_str = R"( HloModule foobar %sum (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: f32[]) -> (f32[], f32[]) { %p = f32[] parameter(0) %const1 = f32[] constant(1) %const2 = f32[] constant(2) %ar11 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum, sharding={maximal device=0} %ar12 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=2, to_apply=%sum, sharding={maximal device=0} %add11 = f32[] add(%ar12, %const1), sharding={maximal device=0} %add12 = f32[] add(%ar11, %add11), sharding={maximal device=0} %crs1 = f32[] all-reduce(%add12), replica_groups={{0,1}}, to_apply=%sum, sharding={maximal device=0} %ar21 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum, sharding={maximal device=1} %ar22 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=2, to_apply=%sum, sharding={maximal device=1} %add21 = f32[] add(%ar22, %const1), sharding={maximal device=1} %add22 = f32[] add(%ar21, %add21), sharding={maximal device=1} %crs2 = f32[] all-reduce(%add22), replica_groups={{0,1}}, to_apply=%sum, sharding={maximal device=1} ROOT %tuple = (f32[], f32[]) tuple(%crs1, %crs2), sharding={{maximal device=0}, {maximal device=1}} } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 2)); auto crs_before = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_before = crs_before->replica_groups(); ArCrsCombiner combiner(2, false); auto changed = combiner.Run(module.get()).value(); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple(op::AllReduce(op::Add( op::Parameter(), op::Add(op::Parameter(), op::Divide(op::Constant(), op::Constant())))), op::AllReduce(op::Add( op::Parameter(), op::Add(op::Parameter(), op::Divide(op::Constant(), op::Constant())))))); auto crs_after = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_after = crs_after->replica_groups(); CompareReplicaGroups(replica_groups_before, replica_groups_after); } TEST_F(ArCrsCombinerTest, RewriteMultipleARsRightSPMD) { const char* module_str = R"( HloModule foobar %sum (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: f32[]) -> (f32[]) { %p = f32[] parameter(0) %const1 = f32[] constant(1) %const2 = f32[] constant(2) %ar11 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=1, to_apply=%sum %ar12 = f32[] all-reduce(%p), replica_groups={{0},{1}}, channel_id=2, to_apply=%sum %add11 = f32[] add(%ar12, %const1) %add12 = f32[] add(%ar11, %add11) %crs1 = f32[] all-reduce(%add12), replica_groups={{0,1}}, to_apply=%sum ROOT %tuple = (f32[]) tuple(%crs1) } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 2)); auto crs_before = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_before = crs_before->replica_groups(); ArCrsCombiner combiner(2, true); auto changed = combiner.Run(module.get()).value(); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::AllReduce(op::Add( op::Parameter(), op::Add(op::Parameter(), op::Divide(op::Constant(), op::Constant())))))); auto crs_after = module->entry_computation()->root_instruction()->operands()[0]; auto replica_groups_after = crs_after->replica_groups(); CompareReplicaGroups(replica_groups_before, replica_groups_after); } TEST_F(ArCrsCombinerTest, OneReplicaDontRewrite) { const char* module_str = R"( HloModule foobar %sum.bf16 (a: bf16[], b: bf16[]) -> bf16[] { %a = bf16[] parameter(0) %b = bf16[] parameter(1) ROOT %add = bf16[] add(%a, %b) } %sum.f32 (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: bf16[]) -> (f32[], f32[]) { %p = bf16[] parameter(0) %constant.bf16 = bf16[] constant(1) %all-reduce.ar.1 = bf16[] all-reduce(%p), replica_groups={{0}}, channel_id=1, to_apply=%sum.bf16, sharding={maximal device=0} %convert.1 = f32[] convert(%all-reduce.ar.1), sharding={maximal device=0} %all-reduce.1 = f32[] all-reduce(%convert.1), replica_groups={{0}}, to_apply=%sum.f32, sharding={maximal device=0} %all-reduce.ar.2 = bf16[] all-reduce(%constant.bf16), replica_groups={{0}}, channel_id=1, to_apply=%sum.bf16, sharding={maximal device=1} %convert.2 = f32[] convert(%all-reduce.ar.2), sharding={maximal device=1} %all-reduce.2 = f32[] all-reduce(%convert.2), replica_groups={{0}}, to_apply=%sum.f32, sharding={maximal device=1} ROOT %tuple = (f32[], f32[]) tuple(%all-reduce.1, %all-reduce.2), sharding={{maximal device=0}, {maximal device=1}} } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 1)); ArCrsCombiner combiner(2, false); auto changed = combiner.Run(module.get()).value(); EXPECT_FALSE(changed); } TEST_F(ArCrsCombinerTest, OneReplicaDontRewriteSPMD) { const char* module_str = R"( HloModule foobar %sum.bf16 (a: bf16[], b: bf16[]) -> bf16[] { %a = bf16[] parameter(0) %b = bf16[] parameter(1) ROOT %add = bf16[] add(%a, %b) } %sum.f32 (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: bf16[]) -> (f32[]) { %p = bf16[] parameter(0) %constant.bf16 = bf16[] constant(1) %all-reduce.ar.1 = bf16[] all-reduce(%p), replica_groups={{0}}, channel_id=1, to_apply=%sum.bf16 %convert.1 = f32[] convert(%all-reduce.ar.1) %all-reduce.1 = f32[] all-reduce(%convert.1), replica_groups={{0}}, to_apply=%sum.f32 ROOT %tuple = (f32[]) tuple(%all-reduce.1) } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 1)); ArCrsCombiner combiner(2, true); auto changed = combiner.Run(module.get()).value(); EXPECT_FALSE(changed); } TEST_F(ArCrsCombinerTest, SameValueTestConditional) { const char* module_str = R"( HloModule foobar branch_true { pt = (f32[2,4], f32[2,4]) parameter(0) gte.0 = f32[2,4] get-tuple-element(pt), index=0 gte.1 = f32[2,4] get-tuple-element(pt), index=1 ROOT tuple.t = (f32[2,4], f32[2,4]) tuple(gte.1, gte.0) } branch_false { pf = (f32[2,4], f32[2,4]) parameter(0) gte.0 = f32[2,4] get-tuple-element(pf), index=0 gte.1 = f32[2,4] get-tuple-element(pf), index=1 add = f32[2,4] add(gte.1, gte.1) ROOT tuple.f = (f32[2,4], f32[2,4]) tuple(gte.0, add) } ENTRY Parameters1.v4 { constant = pred[] constant(true) p = f32[2,4] parameter(0) tuple = (f32[2,4], f32[2,4]) tuple(p, p) ROOT conditional = (f32[2,4], f32[2,4]) conditional(constant, tuple, tuple), true_computation=branch_true, false_computation=branch_false } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); auto cond = module->entry_computation()->root_instruction(); auto branch_true = cond->branch_computation(0)->root_instruction(); auto t0 = branch_true->mutable_operand(0); auto t1 = branch_true->mutable_operand(1); EXPECT_TRUE(ArCrsCombiner::TestInstructionsComputeSameValue(t0, t1)); auto branch_false = cond->branch_computation(1)->root_instruction(); auto f0 = branch_false->mutable_operand(0); auto f1 = branch_false->mutable_operand(1); EXPECT_FALSE(ArCrsCombiner::TestInstructionsComputeSameValue(f0, f1)); } TEST_F(ArCrsCombinerTest, AllReduceWithReplicas) { const char* module_str = R"( HloModule foobar %sum.f32 (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: bf16[]) -> (f32[], f32[]) { %p = bf16[] parameter(0) %all-reduce.0 = f32[] all-reduce(%p), channel_id=1, replica_groups={{0,1}}, to_apply=%sum.f32, sharding={maximal device=0} %all-reduce.1 = f32[] all-reduce(%p), channel_id=1, replica_groups={{0,1}}, to_apply=%sum.f32, sharding={maximal device=1} %all-reduce.2 = f32[] all-reduce(%all-reduce.0), replica_groups={{0,1}}, to_apply=%sum.f32, sharding={maximal device=0} %all-reduce.3 = f32[] all-reduce(%all-reduce.1), replica_groups={{0,1}}, to_apply=%sum.f32, sharding={maximal device=1} ROOT %tuple = (f32[], f32[]) tuple(%all-reduce.2, %all-reduce.3), sharding={{maximal device=0}, {maximal device=1}} } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 2)); ArCrsCombiner combiner(2, false); auto changed = combiner.Run(module.get()).value(); EXPECT_FALSE(changed); } TEST_F(ArCrsCombinerTest, AllReduceWithReplicasSPMD) { const char* module_str = R"( HloModule foobar %sum.f32 (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: bf16[]) -> (f32[]) { %p = bf16[] parameter(0) %all-reduce.0 = f32[] all-reduce(%p), channel_id=1, replica_groups={{0},{1}}, to_apply=%sum.f32 %all-reduce.2 = f32[] all-reduce(%all-reduce.0), replica_groups={{0},{1}}, to_apply=%sum.f32 ROOT %tuple = (f32[]) tuple(%all-reduce.2) } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 2)); ArCrsCombiner combiner(2, true); auto changed = combiner.Run(module.get()).value(); EXPECT_FALSE(changed); } TEST_F(ArCrsCombinerTest, ReplaceReplicatedAllReduceSPMD) { const char* module_str = R"( HloModule foobar %sum.f32 (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: f32[2,4]) -> f32[2,4] { %p = f32[2,4] parameter(0), sharding={replicated} ROOT %all-reduce = f32[2,4] all-reduce(%p), to_apply=%sum.f32, replica_groups={{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31}} } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 32)); ArCrsCombiner combiner(2, true); auto changed = combiner.Run(module.get()).value(); EXPECT_TRUE(changed); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Divide(op::AllReduce(op::Parameter()), op::Broadcast(op::Constant()))); auto ar = root->operand(0); auto divisor = root->operand(1)->operand(0); EXPECT_TRUE(ar->channel_id()); EXPECT_TRUE(divisor->literal().IsAllFloat(2)); } TEST_F(ArCrsCombinerTest, AllReduceWithGlobalIdReplicaGroups) { const char* module_str = R"( HloModule foobar %sum.f32 (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } ENTRY %entrycomp (p: bf16[]) -> (f32[]) { %p = bf16[] parameter(0) %all-reduce.0 = f32[] all-reduce(%p), channel_id=1, replica_groups={{0,1,2,3},{4,5,6,7}}, use_global_device_ids=true, to_apply=%sum.f32 %all-reduce.2 = f32[] all-reduce(%all-reduce.0), replica_groups={{0,1}}, to_apply=%sum.f32 ROOT %tuple = (f32[]) tuple(%all-reduce.2) } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, 2, 4)); ArCrsCombiner combiner(4, true); auto changed = combiner.Run(module.get()).value(); EXPECT_TRUE(changed); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/ar_crs_combiner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/ar_crs_combiner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f1c72f99-0fb9-453a-a24b-21b943ceb2cf
cpp
tensorflow/tensorflow
dynamic_dimension_simplifier
third_party/xla/xla/service/dynamic_dimension_simplifier.cc
third_party/xla/xla/service/dynamic_dimension_simplifier_test.cc
#include "xla/service/dynamic_dimension_simplifier.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/status_macros.h" namespace xla { namespace { absl::StatusOr<bool> ConcatForwarding(HloInstruction* concat) { if (concat->opcode() != HloOpcode::kConcatenate) { return false; } bool changed = false; auto parent = concat->parent(); std::vector<HloInstruction*> new_operands; for (HloInstruction* operand : concat->operands()) { if (operand->opcode() != HloOpcode::kConcatenate || operand->concatenate_dimension() != concat->concatenate_dimension()) { new_operands.push_back(operand); } else { changed = true; for (HloInstruction* operand_operand : operand->operands()) { new_operands.push_back(operand_operand); } } } if (changed) { auto new_concat = parent->AddInstruction(HloInstruction::CreateConcatenate( concat->shape(), new_operands, concat->concatenate_dimension())); TF_RETURN_IF_ERROR(parent->ReplaceInstruction(concat, new_concat)); } return changed; } absl::StatusOr<bool> SliceConcatForwarding(HloInstruction* slice) { if (slice->opcode() != HloOpcode::kSlice) { return false; } auto concat = slice->mutable_operand(0); if (concat->opcode() != HloOpcode::kConcatenate) { return false; } if (slice->shape().rank() != 1) { return false; } int64_t concat_dim = concat->concatenate_dimension(); std::vector<HloInstruction*> new_operands; int64_t size_so_far = 0; int64_t slice_size = slice->shape().dimensions(concat_dim); if (slice_size != slice->slice_limits(0) - slice->slice_starts(0)) { return false; } if (slice->slice_strides(0) != 1) { return false; } for (HloInstruction* operand : concat->operands()) { if (size_so_far == slice->slice_starts(0) && operand->shape().dimensions(0) == slice_size) { TF_RETURN_IF_ERROR(slice->ReplaceAllUsesWith(operand)); return true; } size_so_far += operand->shape().dimensions(concat_dim); } return false; } absl::StatusOr<bool> ReshapeBroadcastForwarding(HloInstruction* reshape) { if (reshape->opcode() != HloOpcode::kReshape) { return false; } auto broadcast = reshape->mutable_operand(0); if (broadcast->opcode() != HloOpcode::kBroadcast) { return false; } if (reshape->shape().rank() != 0) { return false; } if (broadcast->shape().rank() != 1) { return false; } if (broadcast->mutable_operand(0)->shape().rank() != 0) { return false; } TF_RETURN_IF_ERROR( reshape->ReplaceAllUsesWith(broadcast->mutable_operand(0))); return true; } absl::StatusOr<bool> ReshapeReshapeForwarding(HloInstruction* reshape) { if (reshape->opcode() != HloOpcode::kReshape) { return false; } auto reshape_2 = reshape->mutable_operand(0); if (reshape_2->opcode() != HloOpcode::kReshape) { return false; } if (!Shape::Equal()(reshape->shape(), reshape_2->operand(0)->shape())) { return false; } TF_RETURN_IF_ERROR( reshape->ReplaceAllUsesWith(reshape_2->mutable_operand(0))); return true; } absl::StatusOr<bool> IdentityConvertRemoving(HloInstruction* convert) { if (convert->opcode() != HloOpcode::kConvert) { return false; } auto operand = convert->mutable_operand(0); if (Shape::Equal()(convert->shape(), operand->shape())) { TF_RETURN_IF_ERROR(convert->ReplaceAllUsesWith(operand)); return true; } return false; } absl::StatusOr<bool> IdentityReshapeRemoving(HloInstruction* reshape) { if (reshape->opcode() != HloOpcode::kReshape) { return false; } auto operand = reshape->mutable_operand(0); if (Shape::Equal()(reshape->shape(), operand->shape())) { TF_RETURN_IF_ERROR(reshape->ReplaceAllUsesWith(operand)); return true; } return false; } } absl::StatusOr<bool> DynamicDimensionSimplifier::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { XLA_VLOG_LINES( 2, "DynamicDimensionSimplifier::Run(), before:\n" + module->ToString()); bool changed = false; for (auto* comp : module->MakeNonfusionComputations(execution_threads)) { for (auto* inst : comp->MakeInstructionPostOrder()) { TF_ASSIGN_OR_RETURN(bool local_changed, ConcatForwarding(inst)); changed |= local_changed; } } for (auto* comp : module->MakeNonfusionComputations(execution_threads)) { for (auto* inst : comp->MakeInstructionPostOrder()) { TF_ASSIGN_OR_RETURN(bool local_changed, SliceConcatForwarding(inst)); changed |= local_changed; } } for (auto* comp : module->MakeNonfusionComputations(execution_threads)) { for (auto* inst : comp->MakeInstructionPostOrder()) { TF_ASSIGN_OR_RETURN(bool local_changed, ReshapeBroadcastForwarding(inst)); changed |= local_changed; } } for (auto* comp : module->MakeNonfusionComputations(execution_threads)) { for (auto* inst : comp->MakeInstructionPostOrder()) { TF_ASSIGN_OR_RETURN(bool local_changed, ReshapeReshapeForwarding(inst)); changed |= local_changed; } } for (auto* comp : module->MakeNonfusionComputations(execution_threads)) { for (auto* inst : comp->MakeInstructionPostOrder()) { TF_ASSIGN_OR_RETURN(bool local_changed, IdentityConvertRemoving(inst)); changed |= local_changed; } } for (auto* comp : module->MakeNonfusionComputations(execution_threads)) { for (auto* inst : comp->MakeInstructionPostOrder()) { TF_ASSIGN_OR_RETURN(bool local_changed, IdentityReshapeRemoving(inst)); changed |= local_changed; } } XLA_VLOG_LINES( 2, "DynamicDimensionSimplifier::Run(), after:\n" + module->ToString()); return changed; } }
#include "xla/service/dynamic_dimension_simplifier.h" #include <memory> #include <utility> #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/pass/hlo_pass_pipeline.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/service/shape_inference.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/types.h" #include "xla/window_util.h" #include "xla/xla_data.pb.h" namespace xla { namespace { namespace m = match; class DynamicDimensionSimplifierTest : public HloTestBase {}; TEST_F(DynamicDimensionSimplifierTest, ForwardConcat) { const char* kModuleStr = R"( HloModule m test { p0 = s32[1] parameter(0) p1 = s32[1] parameter(1) p2 = s32[1] parameter(2) concat1 = s32[2] concatenate(p0, p1), dimensions={0} ROOT concat2 = s32[3] concatenate(concat1, p2), dimensions={0} } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); DynamicDimensionSimplifier simplifier; ASSERT_TRUE(simplifier.Run(m.get()).value()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Concatenate(m::Parameter(0), m::Parameter(1), m::Parameter(2)))); } TEST_F(DynamicDimensionSimplifierTest, DoNotForwardConcatMultipleDims) { const char* kModuleStr = R"( HloModule m test { p0 = s32[1, 1] parameter(0) p1 = s32[1, 1] parameter(1) p2 = s32[2, 1] parameter(2) concat1 = s32[2, 1] concatenate(p0, p1), dimensions={0} ROOT concat2 = s32[2, 2] concatenate(concat1, p2), dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); DynamicDimensionSimplifier simplifier; ASSERT_FALSE(simplifier.Run(m.get()).value()); } TEST_F(DynamicDimensionSimplifierTest, ForwardConcatSlice) { const char* kModuleStr = R"( HloModule m test { p0 = s32[1] parameter(0) p1 = s32[1] parameter(1) p2 = s32[1] parameter(2) concat = s32[3] concatenate(p0, p1, p2), dimensions={0} ROOT slice = s32[1] slice(concat), slice={[1:2]} } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); DynamicDimensionSimplifier simplifier; ASSERT_TRUE(simplifier.Run(m.get()).value()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Parameter(1))); } TEST_F(DynamicDimensionSimplifierTest, DoNotForwardConcatSliceSizeMismatch) { const char* kModuleStr = R"( HloModule m test { p0 = s32[1] parameter(0) p1 = s32[1] parameter(1) p2 = s32[1] parameter(2) concat = s32[3] concatenate(p0, p1, p2), dimensions={0} ROOT slice = s32[2] slice(concat), slice={[1:3]} } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); DynamicDimensionSimplifier simplifier; ASSERT_FALSE(simplifier.Run(m.get()).value()); } TEST_F(DynamicDimensionSimplifierTest, DoNotForwardConcatSliceStrided) { const char* kModuleStr = R"( HloModule m test { p0 = s32[1] parameter(0) p1 = s32[1] parameter(1) p2 = s32[1] parameter(2) concat = s32[3] concatenate(p0, p1, p2), dimensions={0} ROOT slice = s32[1] slice(concat), slice={[1:2:2]} } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); DynamicDimensionSimplifier simplifier; ASSERT_FALSE(simplifier.Run(m.get()).value()); } TEST_F(DynamicDimensionSimplifierTest, BroadcastReshapeForwarding) { const char* kModuleStr = R"( HloModule m test { p0 = s32[] parameter(0) broadcast = s32[1] broadcast(p0), dimensions={} ROOT reshape = s32[] reshape(broadcast) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); DynamicDimensionSimplifier simplifier; ASSERT_TRUE(simplifier.Run(m.get()).value()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Parameter(0))); } TEST_F(DynamicDimensionSimplifierTest, ReshapeReshapeForwarding) { const char* kModuleStr = R"( HloModule m test { p0 = s32[] parameter(0) reshape = s32[1] reshape(p0) ROOT reshape2 = s32[] reshape(reshape) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); DynamicDimensionSimplifier simplifier; ASSERT_TRUE(simplifier.Run(m.get()).value()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Parameter(0))); } TEST_F(DynamicDimensionSimplifierTest, DoNotReshapeReshapeForwardingShapeMismatch) { const char* kModuleStr = R"( HloModule m test { p0 = s32[1, 1] parameter(0) reshape = s32[1] reshape(p0) ROOT reshape2 = s32[] reshape(reshape) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); DynamicDimensionSimplifier simplifier; ASSERT_FALSE(simplifier.Run(m.get()).value()); } TEST_F(DynamicDimensionSimplifierTest, IdConvertRemoving) { const char* kModuleStr = R"( HloModule m test { p0 = s32[1] parameter(0) ROOT reshape2 = s32[1] convert(p0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); DynamicDimensionSimplifier simplifier; ASSERT_TRUE(simplifier.Run(m.get()).value()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Parameter(0))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/dynamic_dimension_simplifier.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/dynamic_dimension_simplifier_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b2d66996-ec37-441c-9dba-74eedda21742
cpp
tensorflow/tensorflow
all_reduce_simplifier
third_party/xla/xla/service/all_reduce_simplifier.cc
third_party/xla/xla/service/all_reduce_simplifier_test.cc
#include "xla/service/all_reduce_simplifier.h" #include <cstdint> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_replication_analysis.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { absl::StatusOr<bool> AllReduceSimplifier::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { TF_ASSIGN_OR_RETURN( auto replication, HloReplicationAnalysis::Run(module, false)); std::vector<std::pair<HloInstruction*, int64_t>> all_reduces_to_replace; auto get_participant_counts_for_replica_group = [](const HloInstruction* all_reduce) -> absl::StatusOr<int64_t> { const HloModuleConfig& config = all_reduce->GetModule()->config(); TF_ASSIGN_OR_RETURN( CollectiveOpGroupMode group_mode, GetCollectiveOpGroupMode(all_reduce->channel_id().has_value(), Cast<HloAllReduceInstruction>(all_reduce) ->use_global_device_ids())); int64_t num_devices = config.num_partitions(); int64_t num_replicas = config.replica_count(); TF_ASSIGN_OR_RETURN(std::vector<int64_t> participant_counts, GetPariticipantCountsForReplicaGroups( num_replicas, num_devices, all_reduce->replica_groups(), group_mode)); if (participant_counts.empty()) { return -1; } if (!absl::c_all_of(participant_counts, [&](int64_t participant_count) { return participant_count == participant_counts[0]; })) { return -1; } return participant_counts[0]; }; bool changed = false; for (auto computation : module->computations(execution_threads)) { for (HloInstruction* inst : computation->MakeInstructionPostOrder()) { if ((inst->opcode() == HloOpcode::kAllGather || inst->opcode() == HloOpcode::kReduceScatter) && ShapeUtil::Compatible(inst->shape(), inst->operand(0)->shape())) { changed = true; TF_RETURN_IF_ERROR( computation->ReplaceInstruction(inst, inst->mutable_operand(0))); } } } for (auto computation : module->computations(execution_threads)) { for (HloInstruction* inst : computation->MakeInstructionPostOrder()) { if (!inst->shape().IsArray()) { continue; } if (!inst->IsCrossReplicaAllReduce() && !inst->IsCrossModuleAllReduce()) { continue; } TF_ASSIGN_OR_RETURN(int64_t group_size, get_participant_counts_for_replica_group(inst)); if (group_size == -1 || (!inst->IsCrossReplicaAllReduce() && group_size != 1) || (!inst->IsCrossReplicaAllReduce() && !module->config().use_spmd_partitioning())) { continue; } if (replication->HloInstructionIsReplicatedAt(inst->operand(0), {}) || group_size == 1) { all_reduces_to_replace.push_back({inst, group_size}); } } } for (auto all_reduce_and_group_size : all_reduces_to_replace) { auto all_reduce = all_reduce_and_group_size.first; const int64_t replica_group_size = all_reduce_and_group_size.second; if (replica_group_size == 1) { TF_RETURN_IF_ERROR(all_reduce->parent()->ReplaceInstruction( all_reduce, all_reduce->mutable_operand(0))); changed = true; continue; } if (all_reduce->to_apply()->instruction_count() != 3 || all_reduce->to_apply()->num_parameters() != 2) { continue; } HloInstruction* replacement; switch (all_reduce->to_apply()->root_instruction()->opcode()) { case HloOpcode::kAdd: { auto multiplier = all_reduce->parent()->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(replica_group_size))); if (all_reduce->shape().element_type() != S32) { multiplier = all_reduce->parent()->AddInstruction( HloInstruction::CreateConvert( ShapeUtil::ChangeElementType( multiplier->shape(), all_reduce->shape().element_type()), multiplier)); } if (all_reduce->shape().rank() > 0) { multiplier = all_reduce->parent()->AddInstruction( HloInstruction::CreateBroadcast(all_reduce->shape(), multiplier, {})); } replacement = all_reduce->parent()->AddInstruction(HloInstruction::CreateBinary( all_reduce->shape(), HloOpcode::kMultiply, all_reduce->mutable_operand(0), multiplier)); break; } case HloOpcode::kMinimum: case HloOpcode::kMaximum: case HloOpcode::kOr: case HloOpcode::kAnd: replacement = all_reduce->mutable_operand(0); break; default: continue; } VLOG(2) << "Replacing " << all_reduce->ToString() << " with " << replacement->ToString(); TF_RETURN_IF_ERROR(all_reduce->ReplaceAllUsesWith(replacement)); changed = true; } return changed; } }
#include "xla/service/all_reduce_simplifier.h" #include <memory> #include <utility> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace m = match; using AllReduceSimplifierTest = HloTestBase; TEST_F(AllReduceSimplifierTest, ReplicatedParameters) { const char* kModuleStr = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } max { a.1 = f32[] parameter(0) b.1 = f32[] parameter(1) ROOT max = f32[] maximum(a.1, b.1) } min { a.2 = f32[] parameter(0) b.2 = f32[] parameter(1) ROOT min = f32[] minimum(a.2, b.2) } sum.1 { a.3 = f32[] parameter(0) b.3 = f32[] parameter(1) ROOT add.1 = f32[] add(a.3, b.3) } test { p0 = f32[8,16] parameter(0), parameter_replication={true} p1 = f32[8,16] parameter(1), parameter_replication={false} p2 = f32[] parameter(2), parameter_replication={true} all-reduce = f32[8,16] all-reduce(p0), replica_groups={}, to_apply=sum all-reduce.1 = f32[8,16] all-reduce(p0), replica_groups={}, to_apply=max all-reduce.2 = f32[8,16] all-reduce(p1), replica_groups={}, to_apply=min all-reduce.3 = f32[] all-reduce(p2), replica_groups={}, to_apply=sum.1 ROOT tuple = (f32[8,16], f32[8,16], f32[8,16], f32[]) tuple(all-reduce, all-reduce.1, all-reduce.2, all-reduce.3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( kModuleStr, 8)); AllReduceSimplifier simplifier(8); ASSERT_TRUE(simplifier.Run(module.get()).value()); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::MultiplyAnyOrder(m::Parameter(0), m::Broadcast(m::Convert(m::ConstantScalar(8)))), m::Parameter(0), m::AllReduce(m::Parameter(1)), m::MultiplyAnyOrder(m::Parameter(2), m::Convert(m::ConstantScalar(8)))))); } TEST_F(AllReduceSimplifierTest, AllReduceAfterAllReduce) { const char* kModuleStr = R"( HloModule m max { a.1 = f32[] parameter(0) b.1 = f32[] parameter(1) ROOT max = f32[] maximum(a.1, b.1) } sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } test { p0 = f32[8,16] parameter(0), parameter_replication={false} all-reduce = f32[8,16] all-reduce(p0), replica_groups={}, to_apply=max ROOT all-reduce.1 = f32[8,16] all-reduce(all-reduce), replica_groups={}, to_apply=sum } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( kModuleStr, 8)); AllReduceSimplifier simplifier(8); ASSERT_TRUE(simplifier.Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::MultiplyAnyOrder( m::AllReduce(m::Parameter(0)), m::Broadcast(m::Convert(m::ConstantScalar(8)))))); } TEST_F(AllReduceSimplifierTest, SubgroupAllReduce) { const char* kModuleStr = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } max { a.1 = f32[] parameter(0) b.1 = f32[] parameter(1) ROOT max = f32[] maximum(a.1, b.1) } min { a.2 = f32[] parameter(0) b.2 = f32[] parameter(1) ROOT min = f32[] minimum(a.2, b.2) } test { p0 = f32[8,16] parameter(0), parameter_replication={true} p1 = f32[8,16] parameter(1), parameter_replication={false} all-reduce = f32[8,16] all-reduce(p0), replica_groups={{0,1,2,3},{4,5,6,7}}, to_apply=sum all-reduce.1 = f32[8,16] all-reduce(p0), replica_groups={{0,1,2,3},{4,5,6,7}}, to_apply=max all-reduce.2 = f32[8,16] all-reduce(p1), replica_groups={{0,1,2,3},{4,5,6,7}}, to_apply=min ROOT tuple = (f32[8,16], f32[8,16], f32[8,16]) tuple(all-reduce, all-reduce.1, all-reduce.2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( kModuleStr, 8)); AllReduceSimplifier simplifier(8); ASSERT_TRUE(simplifier.Run(module.get()).value()); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::MultiplyAnyOrder(m::Parameter(0), m::Broadcast(m::Convert(m::ConstantScalar(4)))), m::Parameter(0), m::AllReduce(m::Parameter(1))))); } TEST_F(AllReduceSimplifierTest, TrivialSubgroupAllReduce) { const char* kModuleStr = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } test { p0 = f32[8,16] parameter(0), parameter_replication={false} ROOT all-reduce = f32[8,16] all-reduce(p0), replica_groups={{0},{1},{2},{3},{4},{5},{6},{7}}, to_apply=sum } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( kModuleStr, 8)); AllReduceSimplifier simplifier(8); EXPECT_TRUE(simplifier.Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Parameter(0))); } TEST_F(AllReduceSimplifierTest, TrivialSubgroupNonCrossReplicaAllReduce) { const char* kModuleStr = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } test { p0 = f32[8,16] parameter(0), parameter_replication={false} ROOT all-reduce = f32[8,16] all-reduce(p0), channel_id=1, use_global_device_ids=true, replica_groups={{0},{1},{2},{3},{4},{5},{6},{7}}, to_apply=sum } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(kModuleStr, 1, 8)); module->mutable_config().set_use_spmd_partitioning(true); AllReduceSimplifier simplifier(1); EXPECT_TRUE(simplifier.Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Parameter(0))); } TEST_F(AllReduceSimplifierTest, NonCrossReplicaAllReduceAfterAllReduce) { const char* kModuleStr = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } test { p0 = f32[8,16] parameter(0), parameter_replication={false} all-reduce = f32[8,16] all-reduce(p0), channel_id=1, use_global_device_ids=true, replica_groups={{0,2},{1,3},{4,6},{5,7}}, to_apply=sum ROOT all-reduce.1 = f32[8,16] all-reduce(all-reduce), channel_id=2, use_global_device_ids=true, replica_groups={{0,4},{1,5},{2,6},{3,7}}, to_apply=sum } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(kModuleStr, 1, 8)); module->mutable_config().set_use_spmd_partitioning(true); AllReduceSimplifier simplifier(1); EXPECT_FALSE(simplifier.Run(module.get()).value()); } TEST_F(AllReduceSimplifierTest, MPMDNonCrossReplicaAllReduce) { const char* kModuleStr = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } test { p0 = f32[8,16] parameter(0), parameter_replication={false} ROOT all-reduce = f32[8,16] all-reduce(p0), channel_id=1, replica_groups={{0},{1}}, to_apply=sum } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(kModuleStr, 2, 1)); module->mutable_config().set_use_spmd_partitioning(false); AllReduceSimplifier simplifier(2); EXPECT_FALSE(simplifier.Run(module.get()).value()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/all_reduce_simplifier.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/all_reduce_simplifier_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
08422a02-e75f-4e3b-88eb-cda17385701d
cpp
tensorflow/tensorflow
while_loop_fusible_sinking
third_party/xla/xla/service/while_loop_fusible_sinking.cc
third_party/xla/xla/service/while_loop_fusible_sinking_test.cc
#include "xla/service/while_loop_fusible_sinking.h" #include <cstdint> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/while_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { bool IsPurelyExpanding(const HloInstruction* instr) { return instr->opcode() == HloOpcode::kBroadcast || (instr->opcode() == HloOpcode::kConstant && instr->shape().rank() == 0) || instr->opcode() == HloOpcode::kIota; } bool IsFusionCandidate(const HloInstruction* instr) { return instr->opcode() != HloOpcode::kRng && (instr->IsElementwise() || instr->opcode() == HloOpcode::kReshape || instr->opcode() == HloOpcode::kTranspose); } } bool WhileLoopFusibleSinking::IsSinkableFusion(HloInstruction* while_operand) { absl::InlinedVector<HloInstruction*, 8> worklist; absl::flat_hash_set<int> visited; worklist.push_back(while_operand); while (!worklist.empty()) { HloInstruction* to_process = worklist.back(); worklist.pop_back(); if (!to_process->IsFusible()) { return false; } if (!visited.insert(to_process->unique_id()).second) { if (visited.size() > 100) { return false; } continue; } if (IsPurelyExpanding(to_process)) { continue; } if (IsFusionCandidate(to_process)) { for (auto* op : to_process->operands()) { worklist.push_back(op); } continue; } return false; } return true; } HloInstruction* WhileLoopFusibleSinking::CreateSinkableFusion( HloInstruction* while_operand) { HloInstruction* fusion = while_operand->AddInstruction(while_operand->CreateFusion( while_operand->shape(), HloInstruction::FusionKind::kLoop, while_operand)); bool did_fuse = IsFusionCandidate(while_operand); while (did_fuse) { did_fuse = false; for (int64_t i = fusion->operand_count() - 1; i >= 0; --i) { HloInstruction* op = fusion->mutable_operand(i); if (IsPurelyExpanding(op)) { continue; } fusion->FuseInstruction(op); did_fuse = true; break; } } did_fuse = true; while (did_fuse) { did_fuse = false; for (int64_t i = fusion->operand_count() - 1; i >= 0; --i) { HloInstruction* op = fusion->mutable_operand(i); if (IsPurelyExpanding(op)) { fusion->FuseInstruction(op); did_fuse = true; break; } } } return fusion; } absl::StatusOr<bool> WhileLoopFusibleSinking::TrySinkingFusiblesIntoWhileLoop( HloInstruction* while_instr) { HloComputation* while_cond = while_instr->while_condition(); HloComputation* while_body = while_instr->while_body(); if (call_counts_[while_body] > 1 || call_counts_[while_cond] > 1) { return false; } HloInstruction* init_value = while_instr->mutable_operand(0); if (init_value->opcode() != HloOpcode::kTuple) { return false; } bool changed = false; std::vector<HloInstruction*> invariant_body_gtes = WhileUtil::GetInvariantGTEsForWhileBody(*while_body); std::vector<int64_t> tuple_indices; std::vector<HloInstruction*> new_operands; for (HloInstruction* invariant_body_gte : invariant_body_gtes) { int64_t index = invariant_body_gte->tuple_index(); if (while_instr->operand_count() == 0 || init_value->operand_count() == 0) { CHECK_EQ(while_instr->user_count(), 0); VLOG(3) << "Each element in the operand tuple of the while instruction '" << while_instr->name() << "' was an invariant value, whose usage has been replaced " " directly by the value."; break; } HloInstruction* invariant_value = init_value->mutable_operand(index); if (absl::c_any_of(invariant_body_gte->users(), [](const HloInstruction* use) { switch (use->opcode()) { case HloOpcode::kDynamicSlice: case HloOpcode::kGather: case HloOpcode::kSlice: return true; default: return false; } })) { continue; } if (init_value->IsRoot() || init_value->user_count() > 1) { init_value = init_value->AddInstruction(init_value->Clone()); TF_RETURN_IF_ERROR(while_instr->ReplaceOperandWith(0, init_value)); } if (!IsSinkableFusion(invariant_value)) { continue; } HloInstruction* fusion = CreateSinkableFusion(invariant_value); changed = true; if (fusion->operand_count() > 0 && (while_instr->IsRoot() || absl::c_any_of(while_instr->users(), [&](HloInstruction* use) { return use->opcode() != HloOpcode::kGetTupleElement; }))) { auto uses = while_instr->users(); std::vector<HloInstruction*> gtes(init_value->operand_count()); for (int64_t i = 0; i < gtes.size(); ++i) { gtes[i] = while_instr->AddInstruction( HloInstruction::CreateGetTupleElement(while_instr, i)); } HloInstruction* tuple = while_instr->AddInstruction(HloInstruction::CreateTuple(gtes)); if (while_instr->IsRoot()) { while_instr->parent()->set_root_instruction(tuple); } if (!uses.empty()) { TF_RETURN_IF_ERROR(while_instr->ReplaceUsesWith(uses, tuple)); } } absl::InlinedVector<HloInstruction*, 2> invariant_output_uses; for (auto use : while_instr->users()) { if (use->opcode() == HloOpcode::kGetTupleElement && use->tuple_index() == index) { invariant_output_uses.push_back(use); } } for (auto use : invariant_output_uses) { TF_RETURN_IF_ERROR( while_instr->parent()->ReplaceInstruction(use, invariant_value)); } HloInstruction* root = while_body->root_instruction(); HloInstruction* parameter = while_body->parameter_instruction(0); tuple_indices.resize(fusion->operand_count()); int64_t next_index = init_value->operand_count(); new_operands.resize(fusion->operand_count()); for (int64_t i = 0; i < fusion->operand_count(); ++i) { init_value->AppendOperand(fusion->mutable_operand(i)); parameter->mutable_shape()->mutable_tuple_shapes()->push_back( fusion->mutable_operand(i)->shape()); new_operands[i] = root->AddInstruction( HloInstruction::CreateGetTupleElement(parameter, next_index++)); root->AppendOperand(new_operands[i]); } *(init_value->mutable_shape()) = parameter->shape(); *(while_instr->mutable_shape()) = parameter->shape(); *(while_cond->parameter_instruction(0)->mutable_shape()) = parameter->shape(); *(root->mutable_shape()) = parameter->shape(); auto cloned_fusion = while_body->AddInstruction( fusion->CloneWithNewOperands(fusion->shape(), new_operands)); TF_RETURN_IF_ERROR(fusion->parent()->RemoveInstruction(fusion)); TF_RETURN_IF_ERROR( while_body->ReplaceInstruction(invariant_body_gte, cloned_fusion)); TF_RETURN_IF_ERROR(cloned_fusion->Defuse()); } return changed; } absl::StatusOr<bool> WhileLoopFusibleSinking::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { call_counts_.clear(); bool changed = false; std::vector<HloInstruction*> while_instrs; for (auto* comp : module->MakeNonfusionComputations(execution_threads)) { absl::c_copy_if(comp->instructions(), std::back_inserter(while_instrs), HloPredicateIsOp<HloOpcode::kWhile>); } for (HloInstruction* while_instr : while_instrs) { call_counts_[while_instr->while_body()]++; call_counts_[while_instr->while_condition()]++; } for (HloInstruction* while_instr : while_instrs) { TF_ASSIGN_OR_RETURN(bool result, TrySinkingFusiblesIntoWhileLoop(while_instr)); changed |= result; } return changed; } }
#include "xla/service/while_loop_fusible_sinking.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; using ::testing::_; using WhileLoopFusibleSinkingTest = HloTestBase; TEST_F(WhileLoopFusibleSinkingTest, SinkOneFusible) { const char* const hlo_string = R"( HloModule ModuleWithWhile body { p_body = (f32[2],f32[2]) parameter(0) p_body.0 = f32[2] get-tuple-element((f32[2],f32[2]) p_body), index=0 p_body.1 = f32[2] get-tuple-element((f32[2],f32[2]) p_body), index=1 add.0 = f32[2] add(p_body.0, p_body.1) ROOT root = (f32[2],f32[2]) tuple(add.0, p_body.1) } condition { p_cond = (f32[2],f32[2]) parameter(0) ROOT result = pred[] constant(true) } ENTRY entry { const_0 = f32[2] parameter(0) const_1 = f32[2] iota(), iota_dimension=0 while_init = (f32[2],f32[2]) tuple(const_0, const_1) ROOT while = (f32[2],f32[2]) while(while_init), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, WhileLoopFusibleSinking{}.Run(module.get())); ASSERT_TRUE(changed); auto* while_body = module->GetComputationWithName("body"); EXPECT_THAT(while_body->root_instruction(), op::Tuple(op::Add(_, op::Iota()), _)); } TEST_F(WhileLoopFusibleSinkingTest, SinkMask) { const char* const hlo_string = R"( HloModule ModuleWithWhile body { p_body = (f32[5,7],f32[5,7]) parameter(0) p_body.0 = get-tuple-element(p_body), index=0 p_body.1 = get-tuple-element(p_body), index=1 add.0 = add(p_body.0, p_body.1) ROOT root = tuple(add.0, p_body.1) } condition { p_cond = (f32[5,7],f32[5,7]) parameter(0) ROOT result = pred[] constant(true) } ENTRY entry { const_0 = f32[5,7] parameter(0) p = f32[5] parameter(1) a = f32[5,7] iota(), iota_dimension=0 b = f32[5,7] iota(), iota_dimension=1 c = add(a, b) d = f32[5,7] broadcast(p), dimensions={0} mask = multiply(c,d) while_init = tuple(const_0, mask) ROOT while = while(while_init), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, WhileLoopFusibleSinking{}.Run(module.get())); ASSERT_TRUE(changed); auto* while_body = module->GetComputationWithName("body"); EXPECT_THAT(while_body->root_instruction(), op::Tuple(op::Add(_, op::Multiply(op::Add(op::Iota(), op::Iota()), op::Broadcast())), _, _)); } TEST_F(WhileLoopFusibleSinkingTest, NoSinkSlicedMask) { const char* const hlo_string = R"( HloModule ModuleWithWhile body { p_body = (f32[5,7],f32[5,7]) parameter(0) p_body.0 = get-tuple-element(p_body), index=0 p_body.1 = get-tuple-element(p_body), index=1 z = s32[] constant(0) j = s32[] constant(3) ds = f32[1,7] dynamic-slice(p_body.1, j, z), dynamic_slice_sizes={1,7} r = f32[7] reshape(ds) b = f32[5,7] broadcast(r), dimensions={1} a = add(b, p_body.0) add.0 = add(a, p_body.1) ROOT root = tuple(add.0, p_body.1) } condition { p_cond = (f32[5,7],f32[5,7]) parameter(0) ROOT result = pred[] constant(true) } ENTRY entry { const_0 = f32[5,7] parameter(0) p = f32[5] parameter(1) a = f32[5,7] iota(), iota_dimension=0 b = f32[5,7] iota(), iota_dimension=1 c = add(a, b) d = f32[5,7] broadcast(p), dimensions={0} mask = multiply(c,d) while_init = tuple(const_0, mask) ROOT while = while(while_init), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, WhileLoopFusibleSinking{}.Run(module.get())); EXPECT_FALSE(changed); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/while_loop_fusible_sinking.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/while_loop_fusible_sinking_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
555aed98-8f55-421e-badb-302e32069668
cpp
tensorflow/tensorflow
reduce_scatter_decomposer
third_party/xla/xla/service/reduce_scatter_decomposer.cc
third_party/xla/xla/service/reduce_scatter_decomposer_test.cc
#include "xla/service/reduce_scatter_decomposer.h" #include <sys/types.h> #include <limits> #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/literal_util.h" #include "xla/service/collective_decomposer_utils.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/hlo_module_config.h" #include "xla/shape_util.h" namespace xla { absl::StatusOr<bool> ReduceScatterDecomposer::Run( HloModule *module, const absl::flat_hash_set<absl::string_view> &execution_threads) { bool changed = false; int64_t next_channel_id = hlo_query::NextChannelId(*module); for (HloComputation *computation : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction *instruction : computation->MakeInstructionPostOrder()) { auto *rs = DynCast<HloReduceScatterInstruction>(instruction); if (!rs || !rs->shape().IsArray()) { continue; } std::optional<int64_t> channel_id; if (rs->channel_id()) { channel_id = next_channel_id++; } if (should_decompose_ && !should_decompose_(rs)) { continue; } VLOG(2) << "Decompose: " << rs->ToString(); HloComputation *apply_clone = module->AddComputationAndUnifyNamesAndIds( rs->to_apply()->Clone(), false); HloInstruction *ar = computation->AddInstruction(HloInstruction::CreateAllReduce( rs->operand(0)->shape(), rs->operands(), apply_clone, rs->device_list(), rs->constrain_layout(), channel_id, rs->use_global_device_ids())); apply_clone->SetCollectiveCallInstruction(ar); TF_ASSIGN_OR_RETURN( CollectiveOpGroupMode group_mode, GetCollectiveOpGroupMode(rs->channel_id().has_value(), rs->use_global_device_ids())); TF_ASSIGN_OR_RETURN( std::vector<HloInstruction *> start_indices, CreateStartIndicesForCollectiveDecomposition( group_mode, rs->replica_groups(), rs->shape(), rs->scatter_dimension(), computation, update_layout_)); HloInstruction *ds = computation->AddInstruction(HloInstruction::CreateDynamicSlice( rs->shape(), ar, start_indices, rs->shape().dimensions())); TF_RETURN_IF_ERROR(rs->ReplaceAllUsesWith(ds)); TF_RETURN_IF_ERROR(computation->RemoveInstruction(rs)); changed = true; } } return changed; } }
#include "xla/service/reduce_scatter_decomposer.h" #include <utility> #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal_util.h" #include "xla/service/collective_ops_utils.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; class ReduceScatterDecomposerTest : public HloTestBase { public: enum class PassAction { kNoChange, kTrivialGroups, kTableLookup, }; void RunPass( absl::string_view hlo_module, PassAction action, CollectiveOpGroupMode mode = CollectiveOpGroupMode::kCrossReplica, int64_t shard_size = 0, int64_t shard_dimension = 0, int64_t replica_count = 2, std::function<bool(const HloInstruction *)> should_decompose = [](const HloInstruction *) { return true; }) { const int64_t partition_count = 2; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(hlo_module, replica_count, partition_count)); TF_ASSERT_OK_AND_ASSIGN( bool changed, ReduceScatterDecomposer(nullptr, should_decompose) .Run(module.get())); if (action == PassAction::kNoChange) { ASSERT_FALSE(changed); return; } ASSERT_TRUE(changed); Literal multiplier = LiteralUtil::CreateR0<uint32_t>(shard_size); ::testing::Matcher<const ::xla::HloInstruction *> id_matcher = [&]() { switch (mode) { case CollectiveOpGroupMode::kCrossPartition: return op::PartitionId(); case CollectiveOpGroupMode::kCrossReplica: return op::ReplicaId(); case CollectiveOpGroupMode::kCrossReplicaAndPartition: return op::ReplicaId(); case CollectiveOpGroupMode::kFlattenedID: { return op::Add( op::Multiply(op::ReplicaId(), op::Constant(LiteralUtil::CreateR0<uint32_t>( partition_count))), op::PartitionId()); } } }(); auto root = module->entry_computation()->root_instruction(); const Shape &shape = root->shape(); ::testing::Matcher<const ::xla::HloInstruction *> slice_index = id_matcher; if (action == PassAction::kTableLookup) { slice_index = op::Reshape(op::DynamicSlice(op::Constant(), id_matcher)); } if (mode == CollectiveOpGroupMode::kCrossReplicaAndPartition) { slice_index = op::Add( op::Multiply( slice_index, op::Constant(LiteralUtil::CreateR0<uint32_t>(partition_count))), op::PartitionId()); } auto zero_matcher = op::Constant(LiteralUtil::Zero(U32)); std::vector<::testing::Matcher<const ::xla::HloInstruction *>> ds_operands( shape.rank() + 1, zero_matcher); ds_operands[0] = op::AllReduce(op::Parameter(0)); ds_operands[shard_dimension + 1] = op::Multiply(slice_index, op::Constant(std::move(multiplier))); EXPECT_THAT(root, op::DynamicSlice(ds_operands)); } }; TEST_F(ReduceScatterDecomposerTest, TrivialReplicaID) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) ROOT rs = f32[4] reduce-scatter(p0), replica_groups={{0,1}}, dimensions={0}, to_apply=sum } )"; RunPass(hlo_string, PassAction::kTrivialGroups, CollectiveOpGroupMode::kCrossReplica, 4); } TEST_F(ReduceScatterDecomposerTest, TableLookupReplicaId) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) ROOT rs = f32[4] reduce-scatter(p0), replica_groups={{1, 0}}, dimensions={0}, to_apply=sum } )"; RunPass(hlo_string, PassAction::kTableLookup, CollectiveOpGroupMode::kCrossReplica, 4); } TEST_F(ReduceScatterDecomposerTest, TrivialCrossReplicaAndPartition) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[4, 8] parameter(0) ROOT rs = f32[4, 2] reduce-scatter(p0), replica_groups={{0, 1}}, channel_id=1, dimensions={1}, to_apply=sum } )"; RunPass(hlo_string, PassAction::kTrivialGroups, CollectiveOpGroupMode::kCrossReplicaAndPartition, 2, 1); } TEST_F(ReduceScatterDecomposerTest, TrivialCrossReplicaAndPartition_SingleReplica) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[4, 8] parameter(0) ROOT rs = f32[4, 4] reduce-scatter(p0), replica_groups={{0}}, channel_id=1, dimensions={1}, to_apply=sum } )"; RunPass(hlo_string, PassAction::kTrivialGroups, CollectiveOpGroupMode::kCrossPartition, 4, 1, 1); } TEST_F(ReduceScatterDecomposerTest, TableLookupFlattenedId) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[4, 8] parameter(0) ROOT rs = f32[4, 2] reduce-scatter(p0), replica_groups={{1,0, 3, 2}}, channel_id=1, dimensions={1}, to_apply=sum, use_global_device_ids=true } )"; RunPass(hlo_string, PassAction::kTableLookup, CollectiveOpGroupMode::kFlattenedID, 2, 1); } TEST_F(ReduceScatterDecomposerTest, NoChange) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[4, 8] parameter(0) ROOT rs = (f32[4, 2], f32[4,2]) reduce-scatter(p0, p0), replica_groups={{1,0, 3, 2}}, channel_id=1, dimensions={1}, to_apply=sum, use_global_device_ids=true } )"; RunPass(hlo_string, PassAction::kNoChange); } TEST_F(ReduceScatterDecomposerTest, NoChangeWithShouldDecompose) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[4, 8] parameter(0) ROOT rs = f32[4, 4] reduce-scatter(p0), replica_groups={{0,1}, {2,3}}, channel_id=1, dimensions={1}, to_apply=sum, use_global_device_ids=true } )"; RunPass(hlo_string, PassAction::kNoChange, CollectiveOpGroupMode::kCrossReplica, 0, 0, 2, [](const HloInstruction *) { return false; }); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/reduce_scatter_decomposer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/reduce_scatter_decomposer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7d1d8932-f15f-4fd7-a669-a3307f9aec2f
cpp
tensorflow/tensorflow
while_loop_concat_code_motion
third_party/xla/xla/service/while_loop_concat_code_motion.cc
third_party/xla/xla/service/while_loop_concat_code_motion_test.cc
#include "xla/service/while_loop_concat_code_motion.h" #include <map> #include <optional> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/pass/hlo_pass_pipeline.h" #include "xla/service/hlo_dce.h" #include "xla/service/tuple_simplifier.h" #include "xla/service/while_loop_simplifier.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" namespace xla { namespace { struct ConcatGroup { ConcatGroup(std::vector<HloInstruction*> elements, int64_t concat_dim, bool inserted_concat_dim) : elements(std::move(elements)), element_sizes(this->elements.size(), 1), element_offsets(this->elements.size(), 0), concat_dim(concat_dim), inserted_concat_dim(inserted_concat_dim) { if (inserted_concat_dim) { absl::c_iota(element_offsets, 0); } else { for (int64_t i = 0; i < element_sizes.size(); ++i) { element_sizes[i] = this->elements[i]->shape().dimensions(concat_dim); if (i > 0) { element_offsets[i] = element_offsets[i - 1] + element_sizes[i - 1]; } } } } Shape GetConcatShape() const { if (inserted_concat_dim) { std::vector<int64_t> dims; const Shape& element_shape = elements.back()->shape(); dims.reserve(element_shape.rank() + 1); for (int64_t i = 0; i < element_shape.rank(); ++i) { if (i == concat_dim) { dims.push_back(elements.size()); } dims.push_back(element_shape.dimensions(i)); } if (dims.size() == concat_dim) { dims.push_back(elements.size()); } return ShapeUtil::MakeShape(element_shape.element_type(), dims); } else { int64_t dim_size = 0; for (int64_t size : element_sizes) { dim_size += size; } Shape shape = elements.back()->shape(); shape.set_dimensions(concat_dim, dim_size); return shape; } } HloInstruction* CreateSlice(HloInstruction* full_data, int64_t element_index, HloComputation* comp) const { Shape shape = full_data->shape(); shape.set_dimensions(concat_dim, element_sizes[element_index]); std::vector<int64_t> starts(shape.rank(), 0); std::vector<int64_t> limits(shape.dimensions().begin(), shape.dimensions().end()); starts[concat_dim] = element_offsets[element_index]; limits[concat_dim] += starts[concat_dim]; auto slice = comp->AddInstruction( HloInstruction::CreateSlice(shape, full_data, starts, limits, std::vector<int64_t>(shape.rank(), 1))); if (!inserted_concat_dim) { return slice; } std::vector<int64_t> element_shape; element_shape.reserve(shape.rank() - 1); for (int64_t i = 0; i < shape.rank(); ++i) { if (i != concat_dim) { element_shape.push_back(shape.dimensions(i)); } } return comp->AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(shape.element_type(), element_shape), slice)); } HloInstruction* CreateConcat(std::vector<HloInstruction*> input_elements, HloComputation* comp) const { if (inserted_concat_dim) { for (int64_t i = 0; i < input_elements.size(); ++i) { std::vector<int64_t> element_shape; element_shape.reserve(input_elements[i]->shape().rank() + 1); for (int64_t j = 0; j < input_elements[i]->shape().rank(); ++j) { if (j == concat_dim) { element_shape.push_back(1); } element_shape.push_back(input_elements[i]->shape().dimensions(j)); } if (element_shape.size() == concat_dim) { element_shape.push_back(1); } input_elements[i] = comp->AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(input_elements[i]->shape().element_type(), element_shape), input_elements[i])); } } return comp->AddInstruction(HloInstruction::CreateConcatenate( GetConcatShape(), input_elements, concat_dim)); } std::vector<HloInstruction*> elements; std::vector<int64_t> element_sizes; std::vector<int64_t> element_offsets; int64_t concat_dim; bool inserted_concat_dim; }; class ConcatGroups { public: std::optional<std::pair<int64_t, int64_t>> GetGroupIndex( const HloInstruction* hlo) const { auto it = element_to_group_.find(hlo); if (it == element_to_group_.end()) { return std::nullopt; } return it->second; } const ConcatGroup& GetGroup(int64_t index) const { return groups_[index]; } std::pair<bool, int64_t> MaybeCreateNewGroup(ConcatGroup group) { int64_t group_id = -1; absl::flat_hash_set<HloInstruction*> elements_dedup; for (int64_t i = 0; i < group.elements.size(); ++i) { if (!elements_dedup.insert(group.elements[i]).second) { VLOG(2) << "Duplicates in group. Element: " << group.elements[i]->ToString(); } if (concat_disallowed_.contains(group.elements[i])) { VLOG(2) << "Failed creating group. Grouping disallowed on " << group.elements[i]->ToString(); return std::pair<bool, int64_t>(false, -1); } auto existing = GetGroupIndex(group.elements[i]); if (existing.has_value() && (i != existing->second || groups_[existing->first].concat_dim != group.concat_dim)) { VLOG(2) << "Failed creating group. Different than existing group. Element: " << group.elements[i]->ToString(); return std::pair<bool, int64_t>(false, -1); } if (i == 0 && existing.has_value()) { group_id = existing->first; } if (i > 0) { if (existing.has_value() && existing->first != group_id) { VLOG(2) << "Failed creating group. Different than existing group. " "Element: " << group.elements[i]->ToString(); return std::pair<bool, int64_t>(false, -1); } if (!existing.has_value() && group_id >= 0) { VLOG(2) << "Failed creating group. Different than existing group. " "Element: " << group.elements[i]->ToString(); return std::pair<bool, int64_t>(false, -1); } } } if (group_id >= 0) { VLOG(2) << "Group already exists at " << group_id << " for " << group.elements[0]->ToString(); return std::pair<bool, int64_t>(false, group_id); } int64_t index = groups_.size(); for (int64_t i = 0; i < group.elements.size(); ++i) { element_to_group_[group.elements[i]] = std::pair<int64_t, int64_t>(index, i); } VLOG(2) << "Created new group at " << index << " for " << group.elements[0]->ToString() << ", concat_dim: " << group.concat_dim << ", inserted: " << group.inserted_concat_dim; groups_.push_back(std::move(group)); return std::pair<bool, int64_t>(true, index); } const std::vector<ConcatGroup>& Groups() const { return groups_; } int64_t NextGroupIndex() const { return groups_.size(); } void RemoveTailingGroups(int64_t start_index) { while (groups_.size() > start_index) { for (auto element : groups_.back().elements) { element_to_group_.erase(element); } groups_.pop_back(); } } void DisallowGroupingOn(const HloInstruction* hlo) { VLOG(2) << "Disallow grouping on " << hlo->ToString(); concat_disallowed_.insert(hlo); } private: absl::flat_hash_map<const HloInstruction*, std::pair<int64_t, int64_t>> element_to_group_; std::vector<ConcatGroup> groups_; absl::flat_hash_set<const HloInstruction*> concat_disallowed_; }; std::optional<std::pair<int64_t, bool>> GetOperandConcatDim( const HloInstruction* hlo, int64_t operand_index, int64_t hlo_concat_dim, bool hlo_inserted_concat_dim, const ConcatGroup* combined_operand_group = nullptr) { if (hlo->IsElementwise() || hlo->opcode() == HloOpcode::kAllReduce) { return std::pair<int64_t, bool>(hlo_concat_dim, hlo_inserted_concat_dim); } int64_t operand_concat_dim = -1; bool operand_inserted_concat_dim = false; const Shape& operand_shape = combined_operand_group == nullptr ? hlo->operand(operand_index)->shape() : combined_operand_group->elements.back()->shape(); if (hlo->opcode() == HloOpcode::kBroadcast) { operand_concat_dim = 0; operand_inserted_concat_dim = true; int64_t min_dist_to_concat_dim = hlo->shape().rank(); for (int64_t i = 0; i < operand_shape.rank(); ++i) { if (hlo->dimensions(i) == hlo_concat_dim) { operand_concat_dim = i; operand_inserted_concat_dim = hlo_inserted_concat_dim; break; } if (hlo->dimensions(i) < hlo_concat_dim && min_dist_to_concat_dim > hlo_concat_dim - hlo->dimensions(i)) { operand_concat_dim = i + 1; min_dist_to_concat_dim = hlo_concat_dim - hlo->dimensions(i); } if (hlo->dimensions(i) > hlo_concat_dim && min_dist_to_concat_dim > hlo->dimensions(i) - hlo_concat_dim) { operand_concat_dim = i; min_dist_to_concat_dim = hlo->dimensions(i) - hlo_concat_dim; } } } else if (hlo->opcode() == HloOpcode::kReduce) { if (operand_index != 0) { return std::nullopt; } operand_concat_dim = hlo_concat_dim; operand_inserted_concat_dim = hlo_inserted_concat_dim; std::set<int64_t> sorted_reduce_dims; for (int64_t dim : hlo->dimensions()) { sorted_reduce_dims.insert(dim); } for (int64_t dim : sorted_reduce_dims) { if ((hlo_inserted_concat_dim && dim < operand_concat_dim) || (!hlo_inserted_concat_dim && dim <= operand_concat_dim)) { operand_concat_dim++; } } } else if (hlo->opcode() == HloOpcode::kReshape) { int64_t i = 0; int64_t j = 0; operand_inserted_concat_dim = false; while (i < operand_shape.rank() || j <= hlo_concat_dim) { if (i < operand_shape.rank() && j < hlo->shape().rank() && operand_shape.dimensions(i) == hlo->shape().dimensions(j)) { if (j == hlo_concat_dim) { operand_inserted_concat_dim = hlo_inserted_concat_dim && operand_shape.dimensions(i) != 1; operand_concat_dim = i; break; } i++; j++; continue; } if (i < operand_shape.rank() && operand_shape.dimensions(i) == 1) { if (j == hlo_concat_dim && hlo_inserted_concat_dim) { operand_concat_dim = i; break; } i++; continue; } if (j == hlo_concat_dim) { operand_concat_dim = i; operand_inserted_concat_dim = true; break; } if (j < hlo->shape().rank() && hlo->shape().dimensions(j) == 1) { j++; continue; } return std::nullopt; } } else { return std::nullopt; } CHECK_GE(operand_concat_dim, 0); return std::pair<int64_t, bool>(operand_concat_dim, operand_inserted_concat_dim); } void ModifyHloPropertiesForConcatShape(const ConcatGroup& group, HloInstruction* hlo) { *hlo->mutable_shape() = group.GetConcatShape(); if (hlo->opcode() == HloOpcode::kBroadcast) { auto operand_dim = GetOperandConcatDim( group.elements.back(), 0, group.concat_dim, group.inserted_concat_dim); CHECK(operand_dim.has_value()); int64_t operand_concat_dim = operand_dim->first; bool operand_inserted_concat_dim = operand_dim->second; if (operand_inserted_concat_dim) { CHECK_EQ(hlo->operand(0)->shape().rank(), hlo->dimensions().size() + 1) << hlo->ToString(); } else { CHECK_EQ(hlo->operand(0)->shape().rank(), hlo->dimensions().size()); } std::vector<int64_t> dims; const int64_t rank = hlo->operand(0)->shape().rank(); dims.reserve(rank); for (int64_t i = 0; i < rank; ++i) { if (i == operand_concat_dim && operand_inserted_concat_dim) { dims.push_back(group.concat_dim); } else { if (i > operand_concat_dim && operand_inserted_concat_dim) { dims.push_back(hlo->dimensions(i - 1)); } else { dims.push_back(hlo->dimensions(i)); } if (group.inserted_concat_dim && dims.back() >= group.concat_dim) { dims.back()++; } } } *hlo->mutable_dimensions() = std::move(dims); } else if (hlo->opcode() == HloOpcode::kReduce) { auto operand_dim = GetOperandConcatDim( group.elements.back(), 0, group.concat_dim, group.inserted_concat_dim); int64_t operand_concat_dim = operand_dim->first; bool operand_inserted_concat_dim = operand_dim->second; CHECK(operand_dim.has_value()); if (operand_inserted_concat_dim) { auto dims = hlo->mutable_dimensions(); for (int64_t i = 0; i < dims->size(); ++i) { if ((*dims)[i] >= operand_concat_dim) { (*dims)[i]++; } } } } } bool GroupHlosForConcat( HloComputation* body, HloInstruction* concat, absl::flat_hash_map<const HloInstruction*, int64_t> topological_order, ConcatGroups* groups) { const int64_t group_size = concat->operand_count(); absl::flat_hash_set<int64_t> used_groups; auto root_tuple = body->root_instruction(); CHECK_EQ(root_tuple->opcode(), HloOpcode::kTuple); absl::flat_hash_map<HloInstruction*, int64_t> root_tuple_element_use_count; for (auto operand : root_tuple->operands()) { root_tuple_element_use_count.emplace(operand, 0).first->second++; } std::multimap<int64_t, ConcatGroup> pq; const int64_t first_group_id_to_create = groups->NextGroupIndex(); auto fail_and_cleanup = [&] { VLOG(1) << "Failed to get the subcomputation to optimize for " << concat->ToString() << ", clear groups starting at " << first_group_id_to_create; groups->RemoveTailingGroups(first_group_id_to_create); return false; }; struct GroupUse { int64_t group_id; bool newly_created; bool already_used_by_subcomp; }; auto maybe_create_group = [&](ConcatGroup group) { auto res = groups->MaybeCreateNewGroup(std::move(group)); GroupUse use{res.second, false, false}; if (res.second < 0) { return use; } use.newly_created = res.first; use.already_used_by_subcomp = !used_groups.insert(res.second).second; return use; }; std::vector<HloInstruction*> concat_operands(concat->operands().begin(), concat->operands().end()); int64_t concat_operand_order = -topological_order[concat_operands[0]]; pq.emplace(concat_operand_order, ConcatGroup(std::move(concat_operands), concat->concatenate_dimension(), false)); while (!pq.empty()) { auto group = std::move(pq.begin()->second); pq.erase(pq.begin()); const auto& hlos = group.elements; VLOG(2) << "GroupHlosForConcat dequeued " << hlos[0]->ToString(); bool group_is_param_gtes = false; if (absl::c_all_of(hlos, [&](const HloInstruction* element) { return element == hlos[0]; })) { if (groups->GetGroupIndex(hlos[0]).has_value()) { VLOG(1) << "We do not support the case if a shared operand also part " "of a group: " << hlos[0]->ToString(); return fail_and_cleanup(); } groups->DisallowGroupingOn(hlos[0]); continue; } if (absl::c_all_of(hlos, [&](const HloInstruction* element) { return element->opcode() == HloOpcode::kGetTupleElement && element->operand(0) == body->parameter_instruction(0); })) { group_is_param_gtes = true; } else if (((hlos[0]->IsElementwise() || hlos[0]->opcode() == HloOpcode::kAllReduce) && !hlos[0]->HasSideEffect()) || hlos[0]->opcode() == HloOpcode::kBroadcast || hlos[0]->opcode() == HloOpcode::kReduce || hlos[0]->opcode() == HloOpcode::kReshape || hlos[0]->IsCustomCall("Sharding")) { if (hlos[0]->opcode() == HloOpcode::kAllReduce && (!hlos[0]->shape().IsArray() || hlos[0]->IsCrossModuleAllReduce())) { VLOG(2) << "Unsupported allreduce: " << hlos[0]->ToString(); return fail_and_cleanup(); } if (absl::c_any_of(hlos, [&](const HloInstruction* element) { auto eq_operand = [](const HloInstruction* a, const HloInstruction* b) { return ShapeUtil::Compatible(a->shape(), b->shape()); }; auto eq_computations = [](const HloComputation* lhs, const HloComputation* rhs) { return lhs->Equal(*rhs, false); }; if (!hlos[0]->Identical(*element, eq_operand, eq_computations, false)) { return true; } if (element->opcode() == HloOpcode::kReduce && (element->operand_count() != 2 || element->operand(1) != hlos[0]->operand(1))) { return true; } return false; })) { VLOG(2) << "Different types of elements. First element: " << hlos[0]->ToString(); return fail_and_cleanup(); } int64_t input_count = hlos[0]->operand_count(); if (hlos[0]->opcode() == HloOpcode::kReduce) { CHECK_EQ(input_count, 2); input_count = 1; } for (int64_t i = 0; i < input_count; ++i) { std::vector<HloInstruction*> elements(group_size); for (int64_t j = 0; j < group_size; ++j) { elements[j] = hlos[j]->mutable_operand(i); } auto maybe_new_concat_dim = GetOperandConcatDim( hlos[0], i, group.concat_dim, group.inserted_concat_dim); if (!maybe_new_concat_dim.has_value()) { VLOG(2) << "Cannot find operand concat dimension for operand " << i << " of " << hlos[0]->ToString(); return fail_and_cleanup(); } int64_t new_group_concat_dim = maybe_new_concat_dim->first; bool inserted_concat_dim = maybe_new_concat_dim->second; int64_t element_order = -topological_order[elements[0]]; pq.emplace(element_order, ConcatGroup(std::move(elements), new_group_concat_dim, inserted_concat_dim)); } } else if (hlos[0]->opcode() == HloOpcode::kSlice) { int64_t offset = 0; auto operand = hlos[0]->operand(0); if (group.inserted_concat_dim) { VLOG(2) << "Slices cannot be grouped on new dimension."; return fail_and_cleanup(); } if (groups->GetGroupIndex(operand).has_value()) { return fail_and_cleanup(); } groups->DisallowGroupingOn(operand); for (int64_t i = 0; i < group_size; ++i) { if (hlos[i]->operand(0) != operand) { VLOG(2) << "Slices of different operands."; return fail_and_cleanup(); } for (int64_t j = 0; j < hlos[i]->shape().rank(); ++j) { if (hlos[i]->slice_strides(j) != 1) { VLOG(2) << "Slices with strides."; return fail_and_cleanup(); } if (j == group.concat_dim) { if (hlos[i]->slice_starts(j) != offset) { VLOG(2) << "Slices with unsupported offsets."; return fail_and_cleanup(); } offset += hlos[i]->shape().dimensions(j); } else { if (hlos[i]->slice_starts(j) != 0 || hlos[i]->slice_limits(j) != operand->shape().dimensions(j)) { VLOG(2) << "Slice with unsupported offsets at dimension " << j << ", " << hlos[i]->ToString(); return fail_and_cleanup(); } } } } if (offset != operand->shape().dimensions(group.concat_dim)) { VLOG(2) << "Slices with unsupported sizes."; return fail_and_cleanup(); } } else { VLOG(2) << "Unsupported opcode: " << hlos[0]->ToString(); return fail_and_cleanup(); } auto guse = maybe_create_group(std::move(group)); if (guse.group_id < 0) { VLOG(2) << "Failed to create group."; return fail_and_cleanup(); } const auto& registered_group = groups->GetGroup(guse.group_id); if (!guse.already_used_by_subcomp && group_is_param_gtes) { std::vector<HloInstruction*> new_outputs(group_size); for (int64_t i = 0; i < group_size; ++i) { new_outputs[i] = root_tuple->mutable_operand( registered_group.elements[i]->tuple_index()); } int64_t new_output_order = -topological_order[new_outputs[0]]; pq.emplace( new_output_order, ConcatGroup(std::move(new_outputs), registered_group.concat_dim, registered_group.inserted_concat_dim)); } } return groups->Groups().size() > first_group_id_to_create; } std::vector<bool> TupleElementsUsedInCond(HloInstruction* loop) { std::vector<bool> result(loop->shape().tuple_shapes_size(), false); for (auto user : loop->while_condition()->parameter_instruction(0)->users()) { if (user->opcode() != HloOpcode::kGetTupleElement) { absl::c_fill(result, true); return result; } result[user->tuple_index()] = true; } return result; } absl::Status AddCopiesToRoot(HloComputation* body, absl::Span<HloInstruction* const> param_gtes, ConcatGroups* groups) { auto root = body->root_instruction(); CHECK_EQ(root->opcode(), HloOpcode::kTuple); std::vector<HloInstruction*> copies(root->operand_count(), nullptr); for (int64_t i = 0; i < copies.size(); ++i) { auto element = root->mutable_operand(i); if (!element->shape().IsArray()) { continue; } copies[i] = body->AddInstruction(HloInstruction::CreateUnary( element->shape(), HloOpcode::kCopy, element)); TF_RETURN_IF_ERROR(root->ReplaceOperandWith(i, copies[i])); } for (int64_t i = 0; i < copies.size(); ++i) { auto copy = copies[i]; if (groups->GetGroupIndex(copy).has_value()) { continue; } auto param_group_index = groups->GetGroupIndex(param_gtes[i]); if (!param_group_index.has_value()) { continue; } const auto& param_group = groups->GetGroup(param_group_index->first); std::vector<HloInstruction*> copy_group(param_group.elements.size()); for (int64_t j = 0; j < copy_group.size(); ++j) { copy_group[j] = copies[param_group.elements[j]->tuple_index()]; } CHECK(groups ->MaybeCreateNewGroup( ConcatGroup(std::move(copy_group), param_group.concat_dim, param_group.inserted_concat_dim)) .first); } return absl::OkStatus(); } absl::Status RemoveCopiesFromRoot(HloComputation* body) { auto root = body->root_instruction(); CHECK_EQ(root->opcode(), HloOpcode::kTuple); for (int64_t i = 0; i < root->operand_count(); ++i) { auto copy = root->mutable_operand(i); if (copy->opcode() == HloOpcode::kCopy) { TF_RETURN_IF_ERROR(root->ReplaceOperandWith(i, copy->mutable_operand(0))); } } return absl::OkStatus(); } absl::Status RewriteLoopWithConcatGroups( HloInstruction* loop, absl::Span<HloInstruction* const> param_gtes, ConcatGroups& groups) { VLOG(1) << "RewriteLoopWithConcatGroups with " << groups.Groups().size() << " groups."; absl::flat_hash_set<int64_t> processed_groups; auto body = loop->while_body(); auto param = body->parameter_instruction(0); auto cond_param = loop->while_condition()->parameter_instruction(0); std::vector<HloInstruction*> init_elements(loop->shape().tuple_shapes_size()); for (int64_t i = 0; i < param_gtes.size(); ++i) { init_elements[i] = loop->parent()->AddInstruction(HloInstruction::CreateGetTupleElement( loop->shape().tuple_shapes(i), loop->mutable_operand(0), i)); } for (int64_t i = 0; i < param_gtes.size(); ++i) { const auto& group_and_index = groups.GetGroupIndex(param_gtes[i]); if (!group_and_index.has_value() || group_and_index->second != 0) { continue; } const auto& group = groups.GetGroup(group_and_index->first); *param_gtes[i]->mutable_shape() = group.GetConcatShape(); *param->mutable_shape()->mutable_tuple_shapes(i) = param_gtes[i]->shape(); *body->root_instruction()->mutable_shape()->mutable_tuple_shapes(i) = param_gtes[i]->shape(); *cond_param->mutable_shape()->mutable_tuple_shapes(i) = param_gtes[i]->shape(); *loop->mutable_shape()->mutable_tuple_shapes(i) = param_gtes[i]->shape(); processed_groups.insert(group_and_index->first); std::vector<HloInstruction*> input_concat_elements; input_concat_elements.reserve(group.elements.size()); for (auto param_gte : group.elements) { input_concat_elements.push_back(init_elements[param_gte->tuple_index()]); } init_elements[i] = group.CreateConcat(std::move(input_concat_elements), loop->parent()); } TF_RETURN_IF_ERROR(loop->ReplaceOperandWithDifferentShape( 0, loop->parent()->AddInstruction( HloInstruction::CreateTuple(init_elements)))); auto original_loop_users = loop->users(); const bool loop_is_root = loop == loop->parent()->root_instruction(); std::vector<HloInstruction*> output_elements( loop->shape().tuple_shapes_size()); for (int64_t i = 0; i < param_gtes.size(); ++i) { output_elements[i] = loop->parent()->AddInstruction(HloInstruction::CreateGetTupleElement( init_elements[i]->shape(), loop, i)); } for (int64_t i = 0; i < param_gtes.size(); ++i) { const auto& group_and_index = groups.GetGroupIndex(param_gtes[i]); if (!group_and_index.has_value() || group_and_index->second != 0) { continue; } const auto& group = groups.GetGroup(group_and_index->first); auto concat_output = output_elements[group.elements[0]->tuple_index()]; for (int64_t j = 0; j < group.elements.size(); ++j) { const auto param_gte = group.elements[j]; output_elements[param_gte->tuple_index()] = group.CreateSlice(concat_output, j, loop->parent()); } } auto new_output_tuple = loop->parent()->AddInstruction( HloInstruction::CreateTuple(output_elements)); for (auto user : original_loop_users) { TF_RETURN_IF_ERROR( loop->ReplaceUseWithDifferentShape(user, new_output_tuple)); } if (loop_is_root) { loop->parent()->set_root_instruction(new_output_tuple, true); } std::vector<HloInstruction*> slices_to_remove; absl::flat_hash_set<HloInstruction*> new_reshapes; for (auto hlo : body->MakeInstructionPostOrder()) { const auto& group_and_index = groups.GetGroupIndex(hlo); if (!group_and_index.has_value() || group_and_index->second != 0) { continue; } if (!processed_groups.insert(group_and_index->first).second) { continue; } const auto& group = groups.GetGroup(group_and_index->first); if (hlo->opcode() == HloOpcode::kSlice) { slices_to_remove.push_back(hlo); } else { int64_t operand_count_to_adjust = hlo->operand_count(); if (hlo->opcode() == HloOpcode::kReduce) { CHECK_EQ(operand_count_to_adjust, 2); operand_count_to_adjust = 1; } for (int64_t i = 0; i < operand_count_to_adjust; ++i) { auto operand_group_index = groups.GetGroupIndex(hlo->operand(i)); const ConcatGroup* operand_group = operand_group_index.has_value() ? &groups.GetGroup(operand_group_index->first) : nullptr; auto maybe_operand_concat_dim = GetOperandConcatDim( hlo, i, group.concat_dim, group.inserted_concat_dim, operand_group); CHECK(maybe_operand_concat_dim.has_value()) << "Operand " << i << " of " << hlo->ToString(); int64_t operand_concat_dim = maybe_operand_concat_dim->first; bool operand_inserted_concat_dim = maybe_operand_concat_dim->second; if (operand_group != nullptr) { CHECK_EQ(operand_concat_dim, operand_group->concat_dim); if (operand_inserted_concat_dim != operand_group->inserted_concat_dim) { std::vector<int64_t> new_dims; int64_t d = 0; for (; d < operand_concat_dim; ++d) { new_dims.push_back(hlo->operand(i)->shape().dimensions(d)); } if (operand_inserted_concat_dim) { new_dims.push_back(group.elements.size()); new_dims.push_back( hlo->operand(i)->shape().dimensions(operand_concat_dim) / group.elements.size()); d = operand_concat_dim + 1; } else { new_dims.push_back( group.elements.size() * hlo->operand(i)->shape().dimensions(operand_concat_dim + 1)); d = operand_concat_dim + 2; } for (; d < hlo->operand(i)->shape().rank(); ++d) { new_dims.push_back(hlo->operand(i)->shape().dimensions(d)); } auto reshape = body->AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(hlo->operand(i)->shape().element_type(), new_dims), hlo->mutable_operand(i))); new_reshapes.insert(reshape); TF_RETURN_IF_ERROR( hlo->ReplaceOperandWithDifferentShape(i, reshape)); } continue; } CHECK( absl::c_all_of(group.elements, [&](const HloInstruction* element) { return element->operand(i) == hlo->operand(i); })); VLOG(2) << "Broadcasting shared operand " << hlo->operand(i)->ToString(); Shape data_shape = hlo->operand(i)->shape(); std::vector<int64_t> broadcast_dims; std::vector<int64_t> broadcast_shape; const int64_t data_shape_rank = data_shape.rank(); broadcast_dims.reserve(data_shape_rank); broadcast_shape.reserve(data_shape_rank + 1); for (int64_t j = 0; j < data_shape_rank; ++j) { if (j < operand_concat_dim) { broadcast_dims.push_back(j); } else { broadcast_dims.push_back(j + 1); } if (j == operand_concat_dim) { broadcast_shape.push_back(group.elements.size()); } broadcast_shape.push_back(data_shape.dimensions(j)); } if (broadcast_shape.size() == data_shape.rank()) { broadcast_shape.push_back(group.elements.size()); } auto broadcast = body->AddInstruction(HloInstruction::CreateBroadcast( ShapeUtil::MakeShape(data_shape.element_type(), broadcast_shape), hlo->mutable_operand(i), broadcast_dims)); if (!operand_inserted_concat_dim) { data_shape.set_dimensions( operand_concat_dim, data_shape.dimensions(operand_inserted_concat_dim) * group.elements.size()); broadcast = body->AddInstruction( HloInstruction::CreateReshape(data_shape, broadcast)); } TF_RETURN_IF_ERROR(hlo->ReplaceOperandWithDifferentShape(i, broadcast)); } } VLOG(2) << "Modifying HLO to full shape " << hlo->ToString(); ModifyHloPropertiesForConcatShape(group, hlo); VLOG(2) << "Modified HLO to full shape " << hlo->ToString(); } for (auto hlo : body->MakeInstructionPostOrder()) { if (new_reshapes.contains(hlo)) { continue; } const auto& group_and_index = groups.GetGroupIndex(hlo); if ((!group_and_index.has_value() || hlo->opcode() == HloOpcode::kReduce) && hlo != body->root_instruction()) { auto operands = hlo->operands(); if (group_and_index.has_value()) { CHECK_EQ(operands.size(), 2); CHECK_EQ(hlo->opcode(), HloOpcode::kReduce); operands.erase(operands.begin()); } for (int64_t i = 0; i < operands.size(); ++i) { auto operand = operands[i]; auto operand_group_index = groups.GetGroupIndex(operand); if (!operand_group_index.has_value()) { continue; } const auto& operand_group = groups.GetGroup(operand_group_index->first); auto slice = operand_group.CreateSlice( operand_group.elements[0], operand_group_index->second, body); TF_RETURN_IF_ERROR(hlo->ReplaceOperandWithDifferentShape(i, slice)); } } } for (auto slice : slices_to_remove) { TF_RETURN_IF_ERROR(slice->ReplaceAllUsesWith(slice->mutable_operand(0))); TF_RETURN_IF_ERROR(body->RemoveInstruction(slice)); } return absl::OkStatus(); } absl::StatusOr<bool> RunOnLoop(HloInstruction* loop, int64_t min_operand_count_to_optimize) { auto body = loop->while_body(); auto param = body->parameter_instruction(0); auto root = body->root_instruction(); if (!param->shape().IsTuple() || root->opcode() != HloOpcode::kTuple) { return false; } std::vector<HloInstruction*> gtes(param->shape().tuple_shapes_size(), nullptr); ConcatGroups groups; auto indices_used_in_cond = TupleElementsUsedInCond(loop); for (auto user : param->users()) { if (user->opcode() != HloOpcode::kGetTupleElement) { return false; } int64_t idx = user->tuple_index(); if (gtes[idx] != nullptr) { return false; } gtes[idx] = user; if (indices_used_in_cond[idx]) { groups.DisallowGroupingOn(user); } } std::vector<HloInstruction*> concats; auto body_instructions = body->MakeInstructionPostOrder(); absl::flat_hash_map<const HloInstruction*, int64_t> topological_order; for (int64_t i = 0; i < body_instructions.size(); ++i) { auto hlo = body_instructions[i]; topological_order[hlo] = i; if (hlo->opcode() == HloOpcode::kConcatenate && hlo->operand_count() >= min_operand_count_to_optimize) { concats.push_back(hlo); } } for (auto& concat : concats) { if (!GroupHlosForConcat(body, concat, topological_order, &groups)) { concat = nullptr; } } if (groups.Groups().empty()) { return false; } TF_RETURN_IF_ERROR(AddCopiesToRoot(body, gtes, &groups)); TF_RETURN_IF_ERROR(RewriteLoopWithConcatGroups(loop, gtes, groups)); for (auto concat : concats) { if (concat == nullptr) { continue; } auto new_slice = concat->mutable_operand(0); CHECK_EQ(new_slice->opcode(), HloOpcode::kSlice); TF_RETURN_IF_ERROR( concat->ReplaceAllUsesWith(new_slice->mutable_operand(0))); TF_RETURN_IF_ERROR(body->RemoveInstruction(concat)); } TF_RETURN_IF_ERROR(RemoveCopiesFromRoot(body)); for (auto gte : gtes) { auto group_index = groups.GetGroupIndex(gte); if (group_index.has_value() && group_index->second > 0) { TF_RETURN_IF_ERROR(root->ReplaceOperandWith(gte->tuple_index(), gte)); } } return true; } } absl::StatusOr<bool> WhileLoopConcatCodeMotion::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* comp : module->MakeComputationPostOrder(execution_threads)) { for (HloInstruction* hlo : comp->MakeInstructionPostOrder()) { if (hlo->opcode() == HloOpcode::kWhile) { TF_ASSIGN_OR_RETURN(bool loop_changed, RunOnLoop(hlo, min_operand_count_to_optimize_)); changed |= loop_changed; } } } if (changed) { HloPassPipeline pipeline("loop-concat-motion-cleanup"); pipeline.AddPass<TupleSimplifier>(); pipeline.AddPass<HloDCE>(); pipeline.AddPass<WhileLoopSimplifier>(); pipeline.AddPass<TupleSimplifier>(); pipeline.AddPass<HloDCE>(); TF_RETURN_IF_ERROR(pipeline.Run(module, execution_threads).status()); } return changed; } }
#include "xla/service/while_loop_concat_code_motion.h" #include <algorithm> #include <iterator> #include "absl/algorithm/container.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_verifier.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla_data.pb.h" namespace xla { namespace { namespace op = ::xla::testing::opcode_matchers; class WhileLoopConcatCodeMotionTest : public HloTestBase {}; TEST_F(WhileLoopConcatCodeMotionTest, SimpleMotion) { constexpr absl::string_view kHloModule = R"( HloModule test %cond { %param = (s32[], f32[1024,1024], f32[1024,1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %constant = s32[] constant(5) ROOT result = pred[] compare(%gte.0, %constant), direction=LT } %body { %param = (s32[], f32[1024,1024], f32[1024,1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = f32[1024,1024] get-tuple-element(%param), index=1 %gte.2 = f32[1024,1024] get-tuple-element(%param), index=2 %concat = f32[2048,1024] concatenate(%gte.1, %gte.2), dimensions={0} %ccall = f32[2048,1024] custom-call(%concat), custom_call_target="test" %slice.0 = f32[1024,1024] slice(%ccall), slice={[0:1024], [0:1024]} %slice.1 = f32[1024,1024] slice(%ccall), slice={[1024:2048], [0:1024]} %ccall2 = f32[1024,1024] custom-call(), custom_call_target="test2" %add.0 = f32[1024,1024] add(%slice.0, %ccall2) %add.1 = f32[1024,1024] add(%slice.1, %ccall2) %t0 = token[] after-all() %outfeed = token[] outfeed(%slice.1, %t0) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], f32[1024,1024], f32[1024,1024]) tuple(%increment_iteration, %add.0, %add.1) } ENTRY test_main { %param.0 = f32[1024,1024] parameter(0) %param.1 = f32[1024,1024] parameter(1) %constant.0 = s32[] constant(0) %while_init = (s32[], f32[1024,1024], f32[1024,1024]) tuple(%constant.0, %param.0, %param.1) ROOT %while = (s32[], f32[1024,1024], f32[1024,1024]) while(%while_init), condition=%cond, body=%body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); TF_ASSERT_OK_AND_ASSIGN(bool changed, WhileLoopConcatCodeMotion(2).Run(module.get())); ASSERT_TRUE(changed); VLOG(1) << module->ToString(); auto loop = op::While( op::Tuple(op::Constant(), AllOf(op::Shape("f32[2048,1024]"), op::Concatenate(op::Parameter(0), op::Parameter(1))))); ASSERT_THAT( module->entry_computation()->root_instruction(), op::Tuple(op::GetTupleElement(loop), op::Slice(op::GetTupleElement(loop)), op::Slice(op::GetTupleElement(loop)))); auto while_op = module->entry_computation()->root_instruction()->operand(0)->operand(0); EXPECT_THAT(while_op->while_body()->root_instruction(), op::Tuple(op::Add(), op::Add(op::CustomCall(), op::Reshape(op::Broadcast(op::CustomCall()))))); } TEST_F(WhileLoopConcatCodeMotionTest, NoMotionWithChangedElementOrder) { constexpr absl::string_view kHloModule = R"( HloModule test %cond { %param = (s32[], f32[1024,1024], f32[1024,1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %constant = s32[] constant(5) ROOT result = pred[] compare(%gte.0, %constant), direction=LT } %body { %param = (s32[], f32[1024,1024], f32[1024,1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = f32[1024,1024] get-tuple-element(%param), index=1 %gte.2 = f32[1024,1024] get-tuple-element(%param), index=2 %concat = f32[2048,1024] concatenate(%gte.1, %gte.2), dimensions={0} %ccall = f32[2048,1024] custom-call(%concat), custom_call_target="test" %slice.0 = f32[1024,1024] slice(%ccall), slice={[0:1024], [0:1024]} %slice.1 = f32[1024,1024] slice(%ccall), slice={[1024:2048], [0:1024]} %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], f32[1024,1024], f32[1024,1024]) tuple(%increment_iteration, %slice.1, %slice.0) } ENTRY test_main { %param.0 = f32[1024,1024] parameter(0) %param.1 = f32[1024,1024] parameter(1) %constant.0 = s32[] constant(0) %while_init = (s32[], f32[1024,1024], f32[1024,1024]) tuple(%constant.0, %param.0, %param.1) ROOT %while = (s32[], f32[1024,1024], f32[1024,1024]) while(%while_init), condition=%cond, body=%body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); TF_ASSERT_OK_AND_ASSIGN(bool changed, WhileLoopConcatCodeMotion(2).Run(module.get())); ASSERT_FALSE(changed); } TEST_F(WhileLoopConcatCodeMotionTest, CascadedConcats) { constexpr absl::string_view kHloModule = R"( HloModule test %cond { %param = (s32[], f32[1024,1024], f32[1024,1024], f32[1024,1024], f32[1024,1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %constant = s32[] constant(5) ROOT result = pred[] compare(%gte.0, %constant), direction=LT } %body { %param = (s32[], f32[1024,1024], f32[1024,1024], f32[1024,1024], f32[1024,1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = f32[1024,1024] get-tuple-element(%param), index=1 %gte.2 = f32[1024,1024] get-tuple-element(%param), index=2 %concat = f32[2048,1024] concatenate(%gte.1, %gte.2), dimensions={0} %gte.3 = f32[1024,1024] get-tuple-element(%param), index=3 %gte.4 = f32[1024,1024] get-tuple-element(%param), index=4 %ccall = f32[2048,1024] custom-call(%concat), custom_call_target="test" %slice.0 = f32[1024,1024] slice(%ccall), slice={[0:1024], [0:1024]} %slice.1 = f32[1024,1024] slice(%ccall), slice={[1024:2048], [0:1024]} %add.0 = f32[1024,1024] add(%slice.0, %gte.3) %add.1 = f32[1024,1024] add(%slice.1, %gte.4) %add.2 = f32[1024,1024] add(%gte.3, %gte.3) %add.3 = f32[1024,1024] add(%gte.4, %gte.4) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], f32[1024,1024], f32[1024,1024], f32[1024,1024], f32[1024,1024]) tuple(%increment_iteration, %add.0, %add.1, %add.2, %add.3) } ENTRY test_main { %param.0 = f32[1024,1024] parameter(0) %param.1 = f32[1024,1024] parameter(1) %param.2 = f32[1024,1024] parameter(2) %param.3 = f32[1024,1024] parameter(3) %constant.0 = s32[] constant(0) %while_init = (s32[], f32[1024,1024], f32[1024,1024], f32[1024,1024], f32[1024,1024]) tuple(%constant.0, %param.0, %param.1, %param.2, %param.3) ROOT %while = (s32[], f32[1024,1024], f32[1024,1024], f32[1024,1024], f32[1024,1024]) while(%while_init), condition=%cond, body=%body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); TF_ASSERT_OK_AND_ASSIGN(bool changed, WhileLoopConcatCodeMotion(2).Run(module.get())); ASSERT_TRUE(changed); VLOG(1) << module->ToString(); auto loop = op::While( op::Tuple(op::Constant(), AllOf(op::Shape("f32[2048,1024]"), op::Concatenate(op::Parameter(0), op::Parameter(1))), AllOf(op::Shape("f32[2048,1024]"), op::Concatenate(op::Parameter(2), op::Parameter(3))))); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple(op::GetTupleElement(loop), op::Slice(op::GetTupleElement(loop)), op::Slice(op::GetTupleElement(loop)), op::Slice(op::GetTupleElement(loop)), op::Slice(op::GetTupleElement(loop)))); } TEST_F(WhileLoopConcatCodeMotionTest, TwoConcatsSharedGroups) { constexpr absl::string_view kHloModule = R"( HloModule test %cond { %param = (s32[], f32[1024,1024], f32[1024,1024], f32[1024,1024], f32[1024,1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %constant = s32[] constant(5) ROOT result = pred[] compare(%gte.0, %constant), direction=LT } %body { %param = (s32[], f32[1024,1024], f32[1024,1024], f32[1024,1024], f32[1024,1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = f32[1024,1024] get-tuple-element(%param), index=1 %gte.2 = f32[1024,1024] get-tuple-element(%param), index=2 %concat = f32[2048,1024] concatenate(%gte.1, %gte.2), dimensions={0} %ccall = f32[2048,1024] custom-call(%concat), custom_call_target="test" %slice.0 = f32[1024,1024] slice(%ccall), slice={[0:1024], [0:1024]} %slice.1 = f32[1024,1024] slice(%ccall), slice={[1024:2048], [0:1024]} %gte.3 = f32[1024,1024] get-tuple-element(%param), index=3 %gte.4 = f32[1024,1024] get-tuple-element(%param), index=4 %concat.1 = f32[2048,1024] concatenate(%gte.3, %gte.4), dimensions={0} %ccall.1 = f32[2048,1024] custom-call(%concat.1), custom_call_target="test" %slice.2 = f32[1024,1024] slice(%ccall.1), slice={[0:1024], [0:1024]} %slice.3 = f32[1024,1024] slice(%ccall.1), slice={[1024:2048], [0:1024]} %add.0 = f32[1024,1024] add(%slice.0, %slice.2) %add.1 = f32[1024,1024] add(%slice.1, %slice.3) %sub.0 = f32[1024,1024] subtract(%slice.0, %slice.2) %sub.1 = f32[1024,1024] subtract(%slice.1, %slice.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], f32[1024,1024], f32[1024,1024], f32[1024,1024], f32[1024,1024]) tuple(%increment_iteration, %add.0, %add.1, %sub.0, %sub.1) } ENTRY test_main { %param.0 = f32[1024,1024] parameter(0) %param.1 = f32[1024,1024] parameter(1) %param.2 = f32[1024,1024] parameter(2) %param.3 = f32[1024,1024] parameter(3) %constant.0 = s32[] constant(0) %while_init = (s32[], f32[1024,1024], f32[1024,1024], f32[1024,1024], f32[1024,1024]) tuple(%constant.0, %param.0, %param.1, %param.2, %param.3) ROOT %while = (s32[], f32[1024,1024], f32[1024,1024], f32[1024,1024], f32[1024,1024]) while(%while_init), condition=%cond, body=%body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); TF_ASSERT_OK_AND_ASSIGN(bool changed, WhileLoopConcatCodeMotion(2).Run(module.get())); ASSERT_TRUE(changed); VLOG(1) << module->ToString(); auto loop = op::While( op::Tuple(op::Constant(), AllOf(op::Shape("f32[2048,1024]"), op::Concatenate(op::Parameter(0), op::Parameter(1))), AllOf(op::Shape("f32[2048,1024]"), op::Concatenate(op::Parameter(2), op::Parameter(3))))); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple(op::GetTupleElement(loop), op::Slice(op::GetTupleElement(loop)), op::Slice(op::GetTupleElement(loop)), op::Slice(op::GetTupleElement(loop)), op::Slice(op::GetTupleElement(loop)))); } TEST_F(WhileLoopConcatCodeMotionTest, TwoConcatsDifferentOrders) { constexpr absl::string_view kHloModule = R"( HloModule test %cond { %param = (s32[], f32[1024,1024], f32[1024,1024], f32[1024,1024], f32[1024,1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %constant = s32[] constant(5) ROOT result = pred[] compare(%gte.0, %constant), direction=LT } %body { %param = (s32[], f32[1024,1024], f32[1024,1024], f32[1024,1024], f32[1024,1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = f32[1024,1024] get-tuple-element(%param), index=1 %gte.2 = f32[1024,1024] get-tuple-element(%param), index=2 %concat = f32[2048,1024] concatenate(%gte.1, %gte.2), dimensions={0} %ccall = f32[2048,1024] custom-call(%concat), custom_call_target="test" %slice.0 = f32[1024,1024] slice(%ccall), slice={[0:1024], [0:1024]} %slice.1 = f32[1024,1024] slice(%ccall), slice={[1024:2048], [0:1024]} %gte.3 = f32[1024,1024] get-tuple-element(%param), index=3 %gte.4 = f32[1024,1024] get-tuple-element(%param), index=4 %concat.1 = f32[2048,1024] concatenate(%gte.3, %gte.4), dimensions={0} %ccall.1 = f32[2048,1024] custom-call(%concat.1), custom_call_target="test" %slice.2 = f32[1024,1024] slice(%ccall.1), slice={[0:1024], [0:1024]} %slice.3 = f32[1024,1024] slice(%ccall.1), slice={[1024:2048], [0:1024]} %add.0 = f32[1024,1024] add(%slice.0, %slice.3) %add.1 = f32[1024,1024] add(%slice.1, %slice.2) %sub.0 = f32[1024,1024] subtract(%slice.0, %slice.2) %sub.1 = f32[1024,1024] subtract(%slice.1, %slice.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], f32[1024,1024], f32[1024,1024], f32[1024,1024], f32[1024,1024]) tuple(%increment_iteration, %add.0, %add.1, %sub.0, %sub.1) } ENTRY test_main { %param.0 = f32[1024,1024] parameter(0) %param.1 = f32[1024,1024] parameter(1) %param.2 = f32[1024,1024] parameter(2) %param.3 = f32[1024,1024] parameter(3) %constant.0 = s32[] constant(0) %while_init = (s32[], f32[1024,1024], f32[1024,1024], f32[1024,1024], f32[1024,1024]) tuple(%constant.0, %param.0, %param.1, %param.2, %param.3) ROOT %while = (s32[], f32[1024,1024], f32[1024,1024], f32[1024,1024], f32[1024,1024]) while(%while_init), condition=%cond, body=%body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); TF_ASSERT_OK_AND_ASSIGN(bool changed, WhileLoopConcatCodeMotion(2).Run(module.get())); EXPECT_TRUE(changed); VLOG(1) << module->ToString(); auto loop = op::While( op::Tuple(op::Constant(), op::Parameter(0), op::Parameter(1), AllOf(op::Shape("f32[2048,1024]"), op::Concatenate(op::Parameter(2), op::Parameter(3))))); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple(op::GetTupleElement(loop), op::GetTupleElement(loop), op::GetTupleElement(loop), op::Slice(op::GetTupleElement(loop)), op::Slice(op::GetTupleElement(loop)))); } TEST_F(WhileLoopConcatCodeMotionTest, NonElementwiseOps) { constexpr absl::string_view kHloModule = R"( HloModule test %cond { %param = (s32[], f32[1024,1024], f32[1024,1024], f32[1024], f32[1024], f32[1], f32[1]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %constant = s32[] constant(5) ROOT result = pred[] compare(%gte.0, %constant), direction=LT } %sum { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(%a, %b) } %body { %param = (s32[], f32[1024,1024], f32[1024,1024], f32[1024], f32[1024], f32[1], f32[1]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = f32[1024,1024] get-tuple-element(%param), index=1 %gte.2 = f32[1024,1024] get-tuple-element(%param), index=2 %reshape.0 = f32[1,1024,1024] reshape(%gte.1) %reshape.1 = f32[1,1024,1024] reshape(%gte.2) %concat = f32[2,1024,1024] concatenate(%reshape.0, %reshape.1), dimensions={0} %ccall = f32[2,1024,1024] custom-call(%concat), custom_call_target="test" %slice.0 = f32[1,1024,1024] slice(%ccall), slice={[0:1], [0:1024], [0:1024]} %slice.1 = f32[1,1024,1024] slice(%ccall), slice={[1:2], [0:1024], [0:1024]} %reshape.2 = f32[1024,1024] reshape(%slice.0 ) %reshape.3 = f32[1024,1024] reshape(%slice.1) %gte.3 = f32[1024] get-tuple-element(%param), index=3 %gte.4 = f32[1024] get-tuple-element(%param), index=4 %constant.0 = f32[] constant(0) %reduce.0 = f32[1024] reduce(%reshape.0, %constant.0), to_apply=%sum, dimensions={0,1} %reduce.1 = f32[1024] reduce(%reshape.1, %constant.0), to_apply=%sum, dimensions={0,1} %add.0 = f32[1024] add(%reduce.0, %gte.3) %add.1 = f32[1024] add(%reduce.1, %gte.4) %br0 = f32[1024,1024] broadcast(%add.0), dimensions={1} %br1 = f32[1024,1024] broadcast(%add.1), dimensions={1} %sub.0 = f32[1024,1024] subtract(%reshape.2, %br0) %sub.1 = f32[1024,1024] subtract(%reshape.3, %br1) %gte.5 = f32[1] get-tuple-element(%param), index=5 %gte.6 = f32[1] get-tuple-element(%param), index=6 %reshape.4 = f32[] reshape(%gte.5) %reshape.5 = f32[] reshape(%gte.6) %br2 = f32[1024] broadcast(%reshape.4), dimensions={} %br3 = f32[1024] broadcast(%reshape.5), dimensions={} %add.2 = f32[1024] add(%add.0, %br2) %add.3 = f32[1024] add(%add.1, %br3) %inc0 = f32[] add(%constant.0, %reshape.4) %inc1 = f32[] add(%constant.0, %reshape.5) %reshape.6 = f32[1] reshape(%inc0) %reshape.7 = f32[1] reshape(%inc1) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], f32[1024,1024], f32[1024,1024], f32[1024], f32[1024], f32[1], f32[1]) tuple(%increment_iteration, %sub.0, %sub.1, %add.2, %add.3, %reshape.6, %reshape.7) } ENTRY test_main { %param.0 = f32[1024,1024] parameter(0) %param.1 = f32[1024,1024] parameter(1) %param.2 = f32[1024] parameter(2) %param.3 = f32[1024] parameter(3) %param.4 = f32[1] parameter(4) %param.5 = f32[1] parameter(5) %constant.0 = s32[] constant(0) %while_init = (s32[], f32[1024,1024], f32[1024,1024], f32[1024], f32[1024], f32[1], f32[1]) tuple(%constant.0, %param.0, %param.1, %param.2, %param.3, %param.4, %param.5) ROOT %while = (s32[], f32[1024,1024], f32[1024,1024], f32[1024], f32[1024], f32[1], f32[1]) while(%while_init), condition=%cond, body=%body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); TF_ASSERT_OK_AND_ASSIGN(bool changed, WhileLoopConcatCodeMotion(2).Run(module.get())); ASSERT_TRUE(changed); VLOG(1) << module->ToString(); auto loop = op::While( op::Tuple(op::Constant(), AllOf(op::Shape("f32[2,1024,1024]"), op::Concatenate(op::Reshape(op::Parameter(0)), op::Reshape(op::Parameter(1)))), AllOf(op::Shape("f32[2,1024]"), op::Concatenate(op::Reshape(op::Parameter(2)), op::Reshape(op::Parameter(3)))), AllOf(op::Shape("f32[2]"), op::Concatenate(op::Parameter(4), op::Parameter(5))))); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::GetTupleElement(loop), op::Reshape(op::Slice(op::GetTupleElement(loop))), op::Reshape(op::Slice(op::GetTupleElement(loop))), op::Reshape(op::Slice(op::GetTupleElement(loop))), op::Reshape(op::Slice(op::GetTupleElement(loop))), op::Slice(op::GetTupleElement(loop)), op::Slice(op::GetTupleElement(loop)))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/while_loop_concat_code_motion.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/while_loop_concat_code_motion_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a90867e2-ebc0-4bfe-a0e5-bb10947c0d3f
cpp
tensorflow/tensorflow
sort_simplifier
third_party/xla/xla/service/sort_simplifier.cc
third_party/xla/xla/service/sort_simplifier_test.cc
#include "xla/service/sort_simplifier.h" #include <memory> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" namespace xla { namespace { absl::StatusOr<bool> RemoveUnusedOperandFromSort(HloInstruction* sort) { if (!sort->shape().IsTuple()) { return false; } HloComputation* computation = sort->parent(); if (computation->root_instruction() == sort) { return false; } absl::flat_hash_set<int64_t> used_indices; for (const HloInstruction* user : sort->users()) { if (user->opcode() != HloOpcode::kGetTupleElement) { return false; } used_indices.insert(user->tuple_index()); } auto comparator = sort->to_apply(); for (int64_t i = 0; i < sort->operand_count() * 2; ++i) { if (comparator->parameter_instruction(i)->user_count() > 0) { used_indices.insert(i / 2); } } if (used_indices.size() == sort->operand_count()) { return false; } std::vector<HloInstruction*> operands; std::vector<const Shape*> new_shapes; for (int64_t i = 0; i < sort->operand_count(); ++i) { if (used_indices.contains(i)) { operands.push_back(sort->mutable_operand(i)); new_shapes.push_back(&sort->operand(i)->shape()); } } Shape new_sort_shape = new_shapes.size() == 1 ? *new_shapes[0] : ShapeUtil::MakeTupleShapeWithPtrs(new_shapes); HloInstruction* new_sort = computation->AddInstruction( sort->CloneWithNewOperands(new_sort_shape, operands)); absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloInstruction>> replacements; int64_t parameter_number = 0; for (int64_t i = 0; i < sort->operand_count(); ++i) { auto* old_lhs_parameter = comparator->parameter_instruction(i * 2); auto* old_rhs_parameter = comparator->parameter_instruction(i * 2 + 1); if (used_indices.contains(i)) { Shape scalar_shape = ShapeUtil::MakeShape(sort->operand(i)->shape().element_type(), {}); replacements[old_lhs_parameter] = HloInstruction::CreateParameter( parameter_number, scalar_shape, absl::StrCat("p.", parameter_number / 2, ".lhs")); ++parameter_number; replacements[old_rhs_parameter] = HloInstruction::CreateParameter( parameter_number, scalar_shape, absl::StrCat("p.", parameter_number / 2, ".rhs")); ++parameter_number; } else { replacements[old_lhs_parameter] = nullptr; replacements[old_rhs_parameter] = nullptr; } } HloModule* module = sort->GetModule(); HloComputation* new_compare = module->AddEmbeddedComputation( comparator->CloneWithReplacements(&replacements)); new_sort->set_to_apply(new_compare); absl::flat_hash_map<int64_t, HloInstruction*> result_map; if (new_sort->shape().IsTuple()) { int64_t new_index = 0; for (int64_t i = 0; i < sort->operand_count(); ++i) { if (used_indices.count(i)) { result_map[i] = computation->AddInstruction(HloInstruction::CreateGetTupleElement( *new_shapes[new_index], new_sort, new_index)); ++new_index; } } } else { CHECK_EQ(used_indices.size(), 1); result_map[*used_indices.begin()] = new_sort; } std::vector<HloInstruction*> users(sort->users().begin(), sort->users().end()); for (HloInstruction* user : users) { TF_RETURN_IF_ERROR( user->ReplaceAllUsesWith(result_map.at(user->tuple_index()))); TF_RETURN_IF_ERROR(computation->RemoveInstructionAndUnusedOperands(user)); } return true; } } absl::StatusOr<bool> SortSimplifier::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(2) << "HLO module before SortSimplifier:"; XLA_VLOG_LINES(2, module->ToString()); bool changed = false; std::vector<HloInstruction*> sort_instrs; for (auto* comp : module->MakeNonfusionComputations(execution_threads)) { absl::c_copy_if(comp->instructions(), std::back_inserter(sort_instrs), HloPredicateIsOp<HloOpcode::kSort>); } for (HloInstruction* sort_instr : sort_instrs) { TF_ASSIGN_OR_RETURN(bool result, RemoveUnusedOperandFromSort(sort_instr)); changed |= result; } if (changed) { VLOG(2) << "HLO module after SortSimplifier:"; XLA_VLOG_LINES(2, module->ToString()); } else { VLOG(2) << "HLO module unchanged after SortSimplifier"; } return changed; } }
#include "xla/service/sort_simplifier.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" namespace xla { namespace { namespace m = match; using SortSimplifierTest = HloTestBase; TEST_F(SortSimplifierTest, RemoveUnusedSortOperandArrayResult) { const char* hlo_string = R"( HloModule permutation_sort compare { p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) p.1.lhs = s32[] parameter(2) p.1.rhs = s32[] parameter(3) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY sort_computation { keys = f32[64,8732]{1,0} parameter(0) values = s32[64,8732]{1,0} parameter(1) sort = (f32[64,8732]{1,0}, s32[64,8732]{1,0}) sort(keys, values), dimensions={1}, to_apply=compare ROOT gte = f32[64,8732]{1,0} get-tuple-element(sort), index=0 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); SortSimplifier simplifier; uint64_t num_executions = 0; do { num_executions++; } while (simplifier.Run(module.get()).value()); EXPECT_EQ(num_executions, 2); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Sort(m::Parameter(0)))); } TEST_F(SortSimplifierTest, RemoveUnusedSortOperandTuple) { const char* hlo_string = R"( HloModule permutation_sort compare { p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) p.1.lhs = s32[] parameter(2) p.1.rhs = s32[] parameter(3) p.2.lhs = u32[] parameter(4) p.2.rhs = u32[] parameter(5) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY sort_computation { keys = f32[64,87] parameter(0) values.0 = s32[64,87] parameter(1) values.1 = u32[64,87] parameter(2) sort = (f32[64,87], s32[64,87], u32[64,87]) sort( keys, values.0, values.1), dimensions={1}, to_apply=compare gte.0 = f32[64,87] get-tuple-element(sort), index=0 gte.1 = u32[64,87] get-tuple-element(sort), index=2 ROOT tuple = (f32[64,87], u32[64,87]) tuple(gte.0, gte.1) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); SortSimplifier simplifier; EXPECT_TRUE(simplifier.Run(module.get()).value()); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, GmockMatch(m::Tuple( m::GetTupleElement(m::Sort(m::Parameter(0), m::Parameter(2)), 0), m::GetTupleElement(m::Sort(m::Parameter(0), m::Parameter(2)), 1)))); } TEST_F(SortSimplifierTest, DontRemoveUnusedSortKey) { const char* hlo_string = R"( HloModule permutation_sort compare { p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) p.1.lhs = s32[] parameter(2) p.1.rhs = s32[] parameter(3) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY sort_computation { keys = f32[64,8732]{1,0} parameter(0) values = s32[64,8732]{1,0} parameter(1) sort = (f32[64,8732]{1,0}, s32[64,8732]{1,0}) sort(keys, values), dimensions={1}, to_apply=compare ROOT gte = s32[64,8732]{1,0} get-tuple-element(sort), index=1 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); SortSimplifier simplifier; EXPECT_FALSE(simplifier.Run(module.get()).value()); } TEST_F(SortSimplifierTest, RemoveUnusedFirstOperand) { const char* hlo_string = R"( HloModule permutation_sort compare { p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) p.1.lhs = s32[] parameter(2) p.1.rhs = s32[] parameter(3) ROOT lt = pred[] compare(p.1.lhs, p.1.rhs), direction=LT } ENTRY sort_computation { keys = f32[64,8732]{1,0} parameter(0) values = s32[64,8732]{1,0} parameter(1) sort = (f32[64,8732]{1,0}, s32[64,8732]{1,0}) sort(keys, values), dimensions={1}, to_apply=compare ROOT gte = s32[64,8732]{1,0} get-tuple-element(sort), index=1 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); SortSimplifier simplifier; uint64_t num_executions = 0; do { num_executions++; } while (simplifier.Run(module.get()).value()); EXPECT_EQ(num_executions, 2); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Sort(m::Parameter(1)))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/sort_simplifier.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/sort_simplifier_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8585c3c1-3110-4d7f-9df7-16798a77f5b7
cpp
tensorflow/tensorflow
stochastic_convert_decomposer
third_party/xla/xla/service/stochastic_convert_decomposer.cc
third_party/xla/xla/service/stochastic_convert_decomposer_test.cc
#include "xla/service/stochastic_convert_decomposer.h" #include <cstdint> #include <limits> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/primitive_util.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/shape_inference.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { absl::Status DecomposeStochasticConvert(HloComputation* comp, HloInstruction* instruction) { CHECK(instruction->opcode() == HloOpcode::kStochasticConvert) << "requires a stochastic_convert instruction to decompose, but got: " << instruction->opcode(); CHECK(instruction->operand_count() == 2) << "requires 2 operands for stochastic convert, but got: " << instruction->operand_count(); HloInstruction* operand = instruction->mutable_operand(0); HloInstruction* random = instruction->mutable_operand(1); PrimitiveType from_type = operand->shape().element_type(); PrimitiveType random_type = random->shape().element_type(); PrimitiveType to_type = instruction->shape().element_type(); TF_RETURN_IF_ERROR(ShapeInference::InferStochasticConvertShape( operand->shape(), random->shape(), to_type) .status()); VLOG(1) << "Decomposing instruction: " << instruction->ToString(); if (primitive_util::IsSignedIntegralType(to_type)) { TF_ASSIGN_OR_RETURN(HloInstruction * operand_sign, MakeUnaryHlo(HloOpcode::kSign, operand)); TF_ASSIGN_OR_RETURN(HloInstruction * should_neg, MakeCompareHlo(Comparison::Direction::kLt, operand_sign, MakeScalarLike(operand_sign, 0))); TF_ASSIGN_OR_RETURN(HloInstruction * operand_abs, MakeUnaryHlo(HloOpcode::kAbs, operand)); TF_ASSIGN_OR_RETURN(HloInstruction * truncated_fp, MakeUnaryHlo(HloOpcode::kFloor, operand_abs)); TF_ASSIGN_OR_RETURN( HloInstruction * fractional, MakeBinaryHlo(HloOpcode::kSubtract, operand_abs, truncated_fp)); if (from_type == F16) { fractional = MakeConvertToHlo(fractional, F32); } TF_ASSIGN_OR_RETURN( HloInstruction * fixed_fractional, MakeBinaryHlo( HloOpcode::kMultiply, fractional, MakeScalarLike(fractional, IPow<double>(2, primitive_util::BitWidth( random_type))))); TF_ASSIGN_OR_RETURN( HloInstruction * should_round_up, MakeCompareHlo(Comparison::Direction::kLt, random, MakeConvertToHlo(fixed_fractional, random_type))); HloInstruction* truncated_int = MakeConvertToHlo(truncated_fp, to_type); TF_ASSIGN_OR_RETURN( truncated_int, MakeSelectHlo(should_round_up, MakeBinaryHlo(HloOpcode::kAdd, truncated_int, MakeScalarLike(truncated_int, 1)) .value(), truncated_int)); TF_ASSIGN_OR_RETURN( HloInstruction * result, MakeSelectHlo(should_neg, MakeUnaryHlo(HloOpcode::kNegate, truncated_int).value(), truncated_int)); auto to_bits = primitive_util::BitWidth(to_type); auto min = static_cast<int64_t>( (static_cast<uint64_t>(1) + ~static_cast<uint64_t>(1)) << (to_bits - 1)); TF_ASSIGN_OR_RETURN(HloInstruction * is_min, MakeCompareHlo(Comparison::Direction::kLe, operand, MakeScalarLike(operand, min))); TF_ASSIGN_OR_RETURN( result, MakeSelectHlo(is_min, MakeScalarLike(result, min), result)); auto max = static_cast<int64_t>((static_cast<uint64_t>(1) << (to_bits - 1)) - 1); TF_ASSIGN_OR_RETURN(HloInstruction * is_max, MakeCompareHlo(Comparison::Direction::kGe, operand, MakeScalarLike(operand, max))); TF_ASSIGN_OR_RETURN( result, MakeSelectHlo(is_max, MakeScalarLike(result, max), result)); TF_RETURN_IF_ERROR(instruction->ReplaceAllUsesWith(result)); TF_RETURN_IF_ERROR(comp->RemoveInstruction(instruction)); return absl::OkStatus(); } return Internal("Unsupported stochastic convert: from %s to %s", PrimitiveType_Name(from_type), PrimitiveType_Name(to_type)); } absl::StatusOr<bool> StochasticConvertDecomposer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction* instruction : computation->MakeInstructionPostOrder()) { if (instruction->opcode() != HloOpcode::kStochasticConvert) { continue; } TF_RETURN_IF_ERROR(DecomposeStochasticConvert(computation, instruction)); changed = true; } } return changed; } }
#include "xla/service/stochastic_convert_decomposer.h" #include <string> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; using StochasticConvertDecomposerTest = HloTestBase; using ::testing::HasSubstr; TEST_F(StochasticConvertDecomposerTest, DecomposeStochasticConvertF32ToS32) { const std::string module_str = R"( HloModule module ENTRY entry { %arg_param.1 = f32[65536]{0} parameter(0) %random_param.2 = u32[65536]{0} parameter(1) ROOT %stochastic-convert.3 = s32[65536]{0} stochastic-convert(f32[65536]{0} %arg_param.1, u32[65536]{0} %random_param.2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); StochasticConvertDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Select(op::Compare(), op::Broadcast(), op::Select(op::Compare(), op::Broadcast(), op::Select(op::Compare(), op::Negate(), op::Select())))); } TEST_F(StochasticConvertDecomposerTest, DecomposeStochasticConvertBF16ToS8) { const std::string module_str = R"( HloModule module ENTRY entry { %arg_param.1 = bf16[65536]{0} parameter(0) %random_param.2 = u16[65536]{0} parameter(1) ROOT %stochastic-convert.3 = s8[65536]{0} stochastic-convert(bf16[65536]{0} %arg_param.1, u16[65536]{0} %random_param.2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); StochasticConvertDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Select(op::Compare(), op::Broadcast(), op::Select(op::Compare(), op::Broadcast(), op::Select(op::Compare(), op::Negate(), op::Select())))); } TEST_F(StochasticConvertDecomposerTest, WrongRandomBitWidth) { const std::string module_str = R"( HloModule module ENTRY entry { %arg_param.1 = bf16[65536]{0} parameter(0) %random_param.2 = u32[65536]{0} parameter(1) ROOT %stochastic-convert.3 = s32[65536]{0} stochastic-convert(bf16[65536]{0} %arg_param.1, u32[65536]{0} %random_param.2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); StochasticConvertDecomposer decomposer; auto result = decomposer.Run(module.get()); EXPECT_NE(absl::OkStatus(), result.status()); EXPECT_THAT(result.status().message(), HasSubstr("have same bits")); } TEST_F(StochasticConvertDecomposerTest, WrongRandomType) { const std::string module_str = R"( HloModule module ENTRY entry { %arg_param.1 = f32[65536]{0} parameter(0) %random_param.2 = s32[65536]{0} parameter(1) ROOT %stochastic-convert.3 = s32[65536]{0} stochastic-convert(f32[65536]{0} %arg_param.1, s32[65536]{0} %random_param.2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); StochasticConvertDecomposer decomposer; auto result = decomposer.Run(module.get()); EXPECT_NE(absl::OkStatus(), result.status()); EXPECT_THAT(result.status().message(), HasSubstr("must be unsigned integers")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/stochastic_convert_decomposer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/stochastic_convert_decomposer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ebd2d89a-eae6-4d8a-8ae4-35118a5a7120
cpp
tensorflow/tensorflow
map_inliner
third_party/xla/xla/service/map_inliner.cc
third_party/xla/xla/service/map_inliner_test.cc
#include "xla/service/map_inliner.h" #include <memory> #include <string> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { class MapInlinerVisitor : public DfsHloVisitorWithDefault { public: explicit MapInlinerVisitor(HloComputation* computation) : computation_(computation) {} absl::Status DefaultAction(HloInstruction* ) override { return absl::OkStatus(); } absl::Status HandleMap(HloInstruction* map) override; absl::StatusOr<bool> Run(HloComputation* computation); private: HloComputation* computation_; bool changed_ = false; }; absl::StatusOr<bool> MapInlinerVisitor::Run(HloComputation* computation) { changed_ = false; computation_ = computation; TF_RETURN_IF_ERROR(computation->root_instruction()->Accept(this)); return changed_; } absl::Status MapInlinerVisitor::HandleMap(HloInstruction* map) { HloComputation* function = map->to_apply(); HloInstruction& root = *function->root_instruction(); if (hlo_query::AllOperandsAreParameters(root)) { if (root.opcode() == HloOpcode::kFusion) { return absl::OkStatus(); } VLOG(10) << "inlining map({X ... Y}, op) => : op(X ... Y) with function " << root.ToShortString(); if (root.opcode() == HloOpcode::kParameter) { TF_RETURN_IF_ERROR( map->ReplaceAllUsesWith(map->operands()[root.parameter_number()])); TF_RETURN_IF_ERROR(computation_->RemoveInstruction(map)); } else if (root.opcode() == HloOpcode::kConstant) { HloInstruction* constant = computation_->AddInstruction(root.Clone()); HloInstruction* placed_instruction = computation_->AddInstruction( HloInstruction::CreateBroadcast(map->shape(), constant, {})); TF_RETURN_IF_ERROR( computation_->ReplaceInstruction(map, placed_instruction)); } else { std::vector<HloInstruction*> params; for (int64_t o = 0; o < root.operands().size(); o++) { params.push_back(map->operands()[root.operand(o)->parameter_number()]); } HloInstruction* placed_instruction = computation_->AddInstruction( root.CloneWithNewOperands(map->shape(), params)); TF_RETURN_IF_ERROR( computation_->ReplaceInstruction(map, placed_instruction)); } changed_ = true; return absl::OkStatus(); } return absl::OkStatus(); } absl::StatusOr<bool> MapInliner::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { MapInlinerVisitor visitor(nullptr); bool changed = false; for (HloComputation* computation : module->computations(execution_threads)) { TF_ASSIGN_OR_RETURN(bool computation_changed, visitor.Run(computation)); changed |= computation_changed; } return changed; } }
#include "xla/service/map_inliner.h" #include <memory> #include <utility> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/xla_data.pb.h" namespace op = xla::testing::opcode_matchers; namespace xla { namespace { using MapInlinerTest = HloTestBase; TEST_F(MapInlinerTest, MapMax) { Shape r0f32 = ShapeUtil::MakeShape(F32, {}); auto max_builder = HloComputation::Builder(TestName()); auto param1 = max_builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32, "x")); auto param2 = max_builder.AddInstruction( HloInstruction::CreateParameter(1, r0f32, "y")); max_builder.AddInstruction(HloInstruction::CreateBinary( param1->shape(), HloOpcode::kMaximum, param1, param2)); auto max_f32 = max_builder.Build(); auto builder = HloComputation::Builder("MapMaxFunction"); auto lhs = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1, 2, 3, 4}))); auto rhs = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({4, 3, 2, 1}))); builder.AddInstruction( HloInstruction::CreateMap(lhs->shape(), {lhs, rhs}, max_f32.get())); auto computation = builder.Build(); auto hlo_module = CreateNewVerifiedModule(); hlo_module->AddEmbeddedComputation(std::move(max_f32)); hlo_module->AddEntryComputation(std::move(computation)); MapInliner inliner; EXPECT_TRUE(inliner.Run(hlo_module.get()).value()); EXPECT_THAT(hlo_module->entry_computation()->root_instruction(), op::Maximum(lhs, rhs)); auto result = ExecuteAndTransfer(hlo_module->Clone(), {}); auto expected = LiteralUtil::CreateR1<float>({4, 3, 3, 4}); EXPECT_TRUE(LiteralTestUtil::Equal(result, expected)); } TEST_F(MapInlinerTest, MapConstant) { Shape r0f32 = ShapeUtil::MakeShape(F32, {}); auto const2_builder = HloComputation::Builder(TestName()); auto param1 = const2_builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32, "x")); (void)param1; const2_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0f))); auto const2_f32 = const2_builder.Build(); auto builder = HloComputation::Builder("MapConstFunction"); auto lhs = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{1, 2, 3, 4}, {5, 6, 7, 8}}))); builder.AddInstruction( HloInstruction::CreateMap(lhs->shape(), {lhs}, const2_f32.get())); auto computation = builder.Build(); auto hlo_module = CreateNewVerifiedModule(); hlo_module->AddEmbeddedComputation(std::move(const2_f32)); hlo_module->AddEntryComputation(std::move(computation)); HloInstruction* root = hlo_module->entry_computation()->root_instruction(); MapInliner inliner; EXPECT_TRUE(inliner.Run(hlo_module.get()).value()); root = hlo_module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Broadcast(op::Constant())); auto result = ExecuteAndTransfer(hlo_module->Clone(), {}); auto expected = LiteralUtil::CreateR2<float>({{2, 2, 2, 2}, {2, 2, 2, 2}}); EXPECT_TRUE(LiteralTestUtil::Equal(result, expected)); } TEST_F(MapInlinerTest, MapSubtractOppositeOrder) { Shape r0f32 = ShapeUtil::MakeShape(F32, {}); auto max_builder = HloComputation::Builder(TestName()); auto param1 = max_builder.AddInstruction( HloInstruction::CreateParameter(1, r0f32, "x")); auto param2 = max_builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32, "y")); max_builder.AddInstruction(HloInstruction::CreateBinary( param1->shape(), HloOpcode::kSubtract, param1, param2)); auto max_f32 = max_builder.Build(); auto builder = HloComputation::Builder("MapSubFunction"); auto lhs = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1, 2, 3, 4}))); auto rhs = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({4, 3, 2, 1}))); builder.AddInstruction( HloInstruction::CreateMap(lhs->shape(), {lhs, rhs}, max_f32.get())); auto computation = builder.Build(); auto hlo_module = CreateNewVerifiedModule(); hlo_module->AddEmbeddedComputation(std::move(max_f32)); hlo_module->AddEntryComputation(std::move(computation)); MapInliner inliner; EXPECT_TRUE(inliner.Run(hlo_module.get()).value()); EXPECT_THAT(hlo_module->entry_computation()->root_instruction(), op::Subtract(rhs, lhs)); auto result = ExecuteAndTransfer(hlo_module->Clone(), {}); auto expected = LiteralUtil::CreateR1<float>({3, 1, -1, -3}); EXPECT_TRUE(LiteralTestUtil::Equal(result, expected)); } TEST_F(MapInlinerTest, MapParameter) { Shape r0f32 = ShapeUtil::MakeShape(F32, {}); auto param_builder = HloComputation::Builder(TestName()); param_builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32, "p0")); param_builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32, "p1")); auto param_f32 = param_builder.Build(); auto builder = HloComputation::Builder("MapParamFunction"); auto lhs = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1))); auto rhs = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(4))); builder.AddInstruction( HloInstruction::CreateMap(lhs->shape(), {lhs, rhs}, param_f32.get())); auto computation = builder.Build(); auto hlo_module = CreateNewVerifiedModule(); hlo_module->AddEmbeddedComputation(std::move(param_f32)); hlo_module->AddEntryComputation(std::move(computation)); MapInliner inliner; EXPECT_TRUE(inliner.Run(hlo_module.get()).value()); EXPECT_THAT(hlo_module->entry_computation()->root_instruction(), rhs); auto result = ExecuteAndTransfer(hlo_module->Clone(), {}); auto expected = LiteralUtil::CreateR0<float>(4); EXPECT_TRUE(LiteralTestUtil::Equal(result, expected)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/map_inliner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/map_inliner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f522495c-3a6f-4a50-bfd7-e7546441fa98
cpp
tensorflow/tensorflow
triangular_solve_expander
third_party/xla/xla/service/triangular_solve_expander.cc
third_party/xla/xla/service/triangular_solve_expander_test.cc
#include "xla/service/triangular_solve_expander.h" #include <algorithm> #include <cstdint> #include <memory> #include <numeric> #include <string> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/lib/math.h" #include "xla/hlo/builder/lib/matrix.h" #include "xla/hlo/builder/lib/slicing.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/hlo/builder/xla_computation.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace { XlaOp DiagonalBlocks(XlaOp a, int64_t block_size) { XlaBuilder* builder = a.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(a)); int ndims = shape.rank(); int64_t n = ShapeUtil::GetDimension(shape, -1); int64_t num_blocks = n / block_size; absl::Span<int64_t const> batch_dims = absl::MakeConstSpan( shape.dimensions().begin(), shape.dimensions().begin() + (ndims - 2)); XlaOp diag_blocks; if (n == block_size) { std::vector<int64_t> permutation(ndims); std::iota(permutation.begin(), permutation.end(), 1); permutation.insert(permutation.end() - 2, 0); return Transpose(Broadcast(a, {1}), permutation); } if (n > block_size) { auto start_indices = Transpose(Broadcast(Mul(Iota(builder, S32, num_blocks), ConstantR0<int32_t>(builder, block_size)), {2}), {1, 0}); std::vector<int64_t> slice_sizes(ndims); GatherDimensionNumbers dim_numbers; for (int i = 0; i < ndims - 2; ++i) { dim_numbers.add_offset_dims(i); slice_sizes[i] = ShapeUtil::GetDimension(shape, i); } slice_sizes[ndims - 2] = slice_sizes[ndims - 1] = block_size; dim_numbers.add_offset_dims(ndims - 1); dim_numbers.add_offset_dims(ndims); dim_numbers.add_start_index_map(ndims - 2); dim_numbers.add_start_index_map(ndims - 1); dim_numbers.set_index_vector_dim(1); diag_blocks = Gather(a, start_indices, dim_numbers, slice_sizes); } if (n % block_size != 0) { auto last_blocks = SliceInMinorDims(a, {n - n % block_size, n - n % block_size}, {n, n}); PaddingConfig config = MakeNoPaddingConfig(ndims); int64_t padding = block_size - n % block_size; config.mutable_dimensions(ndims - 2)->set_edge_padding_high(padding); last_blocks = Pad(last_blocks, Zero(builder, shape.element_type()), config); auto eye = IdentityMatrix(builder, shape.element_type(), padding, padding); config = MakeNoPaddingConfig(2); config.mutable_dimensions(0)->set_edge_padding_low(n % block_size); eye = Pad(eye, Zero(builder, shape.element_type()), config); eye = Broadcast(eye, batch_dims); last_blocks = ConcatInDim(builder, {last_blocks, eye}, ndims - 1); TF_ASSIGN_OR_RETURN(Shape blocks_shape, builder->GetShape(last_blocks)); auto shape_dims = blocks_shape.dimensions(); auto last_blocks_dims = std::vector<int64_t>(ndims); std::copy(shape_dims.begin(), shape_dims.end(), last_blocks_dims.begin()); last_blocks_dims.insert(last_blocks_dims.end() - 2, 1); last_blocks = Reshape(last_blocks, last_blocks_dims); if (n > block_size) { diag_blocks = ConcatInDim(builder, {diag_blocks, last_blocks}, ndims - 2); } else { diag_blocks = last_blocks; } } return diag_blocks; }); } XlaOp SolveWithInvertedDiagonalBlocks(XlaOp a, XlaOp b, XlaOp inv_diag_blocks, bool left_side, bool lower, bool transpose_a, bool conjugate_a, PrecisionConfig::Precision precision) { XlaBuilder* builder = a.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape blocks_shape, builder->GetShape(inv_diag_blocks)); TF_ASSIGN_OR_RETURN(Shape b_shape, builder->GetShape(b)); int64_t block_size = ShapeUtil::GetDimension(blocks_shape, -1); TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a)); int64_t ndims = a_shape.rank(); int64_t n = ShapeUtil::GetDimension(a_shape, -1); int64_t num_blocks = n / block_size + (n % block_size != 0); int64_t m_dim = (left_side) ? -1 : -2; int64_t m = ShapeUtil::GetDimension(b_shape, m_dim); std::vector<XlaOp> update_ops; int bdims = b_shape.rank(); int64_t block_dim = (left_side) ? bdims - 2 : bdims - 1; XlaOp x; for (int i = 0; i < num_blocks; i++) { bool backward = left_side ^ lower ^ transpose_a; auto j = backward ? num_blocks - 1 - i : i; int64_t block = (n % block_size != 0 && j + 1 == num_blocks) ? n % block_size : block_size; auto inv_block = MaybeConjugate(Collapse(SliceInMinorDims(inv_diag_blocks, {j, 0, 0}, {j + 1, block, block}), {ndims - 2, ndims - 1}), conjugate_a); int64_t k = std::min((j + 1) * block_size, n); std::vector<int64_t> start = {j * block_size, 0}; std::vector<int64_t> end = {k, m}; if (!left_side) { std::swap(start[0], start[1]); std::swap(end[0], end[1]); } auto b_row = SliceInMinorDims(b, start, end); XlaOp remainder; if (i == 0) { remainder = b_row; } else { if (backward) { start = {j * block_size, std::max(int64_t{0}, (num_blocks - i) * block_size)}; end = {k, n}; } else { start = {j * block_size, 0}; end = {k, std::min(i * block_size, n)}; } if (!left_side ^ transpose_a) { std::swap(start[0], start[1]); std::swap(end[0], end[1]); } auto a_row = MaybeConjugate(SliceInMinorDims(a, start, end), conjugate_a); if (left_side) { remainder = b_row - BatchDot(a_row, transpose_a, x, false, precision); } else { remainder = b_row - BatchDot(x, false, a_row, transpose_a, precision); } } XlaOp x_update; if (left_side) { x_update = BatchDot(inv_block, transpose_a, remainder, false, precision); } else { x_update = BatchDot(remainder, false, inv_block, transpose_a, precision); } if (i == 0) { x = x_update; } else { if (backward) { x = ConcatInDim(builder, {x_update, x}, block_dim); } else { x = ConcatInDim(builder, {x, x_update}, block_dim); } } } return x; }); } } XlaOp TriangularSolveExpander::InvertDiagonalBlocks( XlaOp diag_blocks, bool lower_triangular, PrecisionConfig::Precision precision) { XlaBuilder* builder = diag_blocks.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(diag_blocks)); int64_t block_size = ShapeUtil::GetDimension(shape, -1); int64_t num_blocks = ShapeUtil::ElementsIn(shape) / IPow(block_size, 2); diag_blocks = Reshape(diag_blocks, {num_blocks, block_size, block_size}); diag_blocks = Triangle(diag_blocks, lower_triangular); auto diags = GetMatrixDiagonal(diag_blocks); auto scaled_diag_blocks = Div(diag_blocks, diags, {0, 2}); auto identity = IdentityMatrix(builder, shape.element_type(), block_size, block_size); auto neg_identity = -identity; auto pos_one = Reshape(One(builder, shape.element_type()), {1, 1}); auto start_index = ConstantR0<int>(builder, lower_triangular ? 0 : block_size - 1); auto output_block = DynamicUpdateSlice(neg_identity, pos_one, {start_index, start_index}); XlaOp output = Broadcast(output_block, {num_blocks}); std::vector<Shape> tuple_shapes = { ShapeUtil::MakeShape(S32, {}), ShapeUtil::MakeShape(shape.element_type(), {num_blocks, block_size, block_size}), ShapeUtil::MakeShape(shape.element_type(), {num_blocks, block_size, block_size})}; Shape tuple_shape = ShapeUtil::MakeTupleShape(tuple_shapes); auto init_i = One(builder, S32); auto init = Tuple(builder, {init_i, output, scaled_diag_blocks}); std::unique_ptr<XlaBuilder> condb = builder->CreateSubBuilder("InvertDiagCond"); { auto i = GetTupleElement( Parameter(condb.get(), 0, tuple_shape, "InvertDiagCondTuple"), 0); Lt(i, ConstantR0<int32_t>(condb.get(), block_size)); } TF_ASSIGN_OR_RETURN(auto cond, condb->Build()); std::unique_ptr<XlaBuilder> bodyb = builder->CreateSubBuilder("InvertDiagBody"); { auto input_tuple = Parameter(bodyb.get(), 0, tuple_shape, "InvertDiagBodyTuple"); auto i = GetTupleElement(input_tuple, 0); auto body_out = GetTupleElement(input_tuple, 1); auto body_input = GetTupleElement(input_tuple, 2); auto zero = ConstantR0<int32_t>(bodyb.get(), 0); auto j = lower_triangular ? i : ScalarLike(i, block_size - 1) - i; auto input_row = DynamicSlice(body_input, {zero, j, zero}, {num_blocks, 1, block_size}); DotDimensionNumbers dnums; dnums.add_lhs_batch_dimensions(0); dnums.add_rhs_batch_dimensions(0); dnums.add_lhs_contracting_dimensions(2); dnums.add_rhs_contracting_dimensions(1); PrecisionConfig precision_proto; precision_proto.add_operand_precision(precision); precision_proto.add_operand_precision(precision); auto update = -DotGeneral(input_row, body_out, dnums, &precision_proto); body_out = DynamicUpdateSlice(body_out, update, {zero, j, zero}); auto next_i = i + ScalarLike(i, 1); Tuple(bodyb.get(), {next_i, body_out, body_input}); } TF_ASSIGN_OR_RETURN(auto body, bodyb->Build()); auto invert_while = While(cond, body, init); auto inv_diag_blocks = GetTupleElement(invert_while, 1); inv_diag_blocks = Div(inv_diag_blocks, diags, {0, 1}); return Reshape(inv_diag_blocks, shape.dimensions()); }); } XlaOp TriangularSolveExpander::SolveByInvertingDiagonalBlocks( XlaOp a, XlaOp b, bool left_side, bool lower, bool transpose_a, bool conjugate_a, bool unit_diagonal, PrecisionConfig::Precision precision) { XlaBuilder* builder = a.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a)); const int64_t ndims = a_shape.rank(); int64_t k = ShapeUtil::GetDimension(a_shape, -1); if (unit_diagonal) { a = lower ? Select(TriangleMask(a, -1), a, ZerosLike(a)) : Select(TriangleMask(a, 0), ZerosLike(a), a); a = xla::Add(a, IdentityMatrix(builder, a_shape.element_type(), k, k), {ndims - 2, ndims - 1}); } else { a = Triangle(a, lower); } int64_t block_size = std::min(block_size_, k); auto diag_blocks = DiagonalBlocks(a, block_size); auto inv_diag_blocks = InvertDiagonalBlocks(diag_blocks, lower, precision); return SolveWithInvertedDiagonalBlocks(a, b, inv_diag_blocks, left_side, lower, transpose_a, conjugate_a, precision); }); } XlaOp TriangularSolveExpander::SolveDirectly( XlaOp a, XlaOp b, bool left_side, bool lower, bool transpose_a, bool conjugate_a, bool unit_diagonal, PrecisionConfig::Precision precision) { XlaBuilder* builder = a.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a)); TF_ASSIGN_OR_RETURN(Shape b_shape, builder->GetShape(b)); int64_t m = ShapeUtil::GetDimension(b_shape, -2); int64_t n = ShapeUtil::GetDimension(b_shape, -1); const int64_t a_size = ShapeUtil::GetDimension(a_shape, -1); a = MaybeConjugate(a, conjugate_a); bool backwards = transpose_a ^ lower ^ !left_side; for (int64_t i = 0; i < a_size; ++i) { int64_t j = backwards ? i : (a_size - i - 1); std::vector<int64_t> b_row_start, b_row_end; if (left_side) { b_row_start = {j, 0}; b_row_end = {j + 1, n}; } else { b_row_start = {0, j}; b_row_end = {m, j + 1}; } auto b_row = SliceInMinorDims(b, b_row_start, b_row_end); std::vector<int64_t> a_start = {j, backwards ? 0 : (j + 1)}; std::vector<int64_t> a_end = {j + 1, backwards ? j : a_size}; if (transpose_a ^ !left_side) { std::swap(a_start[0], a_start[1]); std::swap(a_end[0], a_end[1]); } auto a_chunk = SliceInMinorDims(a, a_start, a_end); if (left_side) { bool which = transpose_a ^ lower; auto b_chunk = SliceInMinorDims(b, {which ? 0 : (j + 1), 0}, {which ? j : m, n}); b_row = b_row - BatchDot(a_chunk, transpose_a, b_chunk, false, precision); } else { bool which = transpose_a ^ !lower; auto b_chunk = SliceInMinorDims(b, {0, which ? 0 : (j + 1)}, {m, which ? j : n}); b_row = b_row - BatchDot(b_chunk, false, a_chunk, transpose_a, precision); } if (!unit_diagonal) { auto a_diag = SliceInMinorDims(a, {j, j}, {j + 1, j + 1}); b_row = b_row / a_diag; } b = UpdateSliceInMinorDims(b, b_row, b_row_start); } return b; }); } XlaOp TriangularSolveExpander::BuildTriangularSolve( XlaOp a, XlaOp b, bool left_side, bool lower, bool transpose_a, bool conjugate_a, bool unit_diagonal, int64_t block_size, PrecisionConfig::Precision precision) { XlaBuilder* builder = a.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a)); TF_ASSIGN_OR_RETURN(Shape b_shape, builder->GetShape(b)); if (a_shape.rank() != b_shape.rank()) { return InvalidArgument( "Arguments to TriangularSolve have shapes with different ranks: " "%s vs. %s", ShapeUtil::HumanString(a_shape), ShapeUtil::HumanString(b_shape)); } const int64_t ndims = a_shape.rank(); if (ndims < 2) { return InvalidArgument( "Arguments to TriangularSolve was rank %d but must have rank >= 2.", ndims); } std::vector<int64_t> batch_dimensions; int64_t batch = 1; for (int i = 0; i < ndims - 2; ++i) { int64_t a_size = a_shape.dimensions(i); int64_t b_size = b_shape.dimensions(i); if (a_size != b_size) { return InvalidArgument( "Batch dimensions of arguments to TriangularSolve must be equal; " "shapes were %s and %s.", ShapeUtil::HumanString(a_shape), ShapeUtil::HumanString(b_shape)); } batch_dimensions.push_back(a_size); batch *= a_size; } if (ShapeUtil::GetDimension(a_shape, -1) != ShapeUtil::GetDimension(a_shape, -2)) { return InvalidArgument( "The 'a' argument to TriangularSolve must be a batched square matrix;" " shape was: %s", ShapeUtil::HumanString(a_shape)); } const int64_t m = ShapeUtil::GetDimension(b_shape, -2); const int64_t n = ShapeUtil::GetDimension(b_shape, -1); if ((left_side ? m : n) != ShapeUtil::GetDimension(a_shape, -1)) { return InvalidArgument( "Arguments to TriangularSolve have incompatible matrix shapes %s and " "%s", ShapeUtil::HumanString(a_shape), ShapeUtil::HumanString(b_shape)); } int64_t a_size = ShapeUtil::GetDimension(a_shape, -1); if (ShapeUtil::IsZeroElementArray(b_shape)) { return b; } if (a_size == 1) { return unit_diagonal ? b : Div(b, MaybeConjugate(a, conjugate_a)); } if (UseDirectSolves() && batch > block_size_ / 16 && a_size < block_size_ / 4) { return SolveDirectly(a, b, left_side, lower, transpose_a, conjugate_a, unit_diagonal, precision); } else { return SolveByInvertingDiagonalBlocks(a, b, left_side, lower, transpose_a, conjugate_a, unit_diagonal, precision); } }); } TriangularSolveExpander::TriangularSolveExpander(int64_t block_size) : block_size_(block_size) { CHECK_GE(block_size_, 1); } bool TriangularSolveExpander::InstructionMatchesPattern( HloInstruction* instruction) { return instruction->opcode() == HloOpcode::kTriangularSolve; } absl::StatusOr<HloInstruction*> TriangularSolveExpander::ExpandInstruction( HloInstruction* instruction) { const TriangularSolveOptions& options = instruction->triangular_solve_options(); const std::string name = absl::StrFormat( "xla.triangular_solve_%s_%s_%s_%s_%s_%s", instruction->operand(0)->shape().ToString(), instruction->operand(1)->shape().ToString(), options.left_side() ? "left" : "right", options.lower() ? "lower" : "upper", TriangularSolveOptions_Transpose_Name(options.transpose_a()), options.unit_diagonal() ? "unit" : "nonunit"); HloModule* module = instruction->GetModule(); HloComputation*& computation = computation_cache_.emplace(name, nullptr).first->second; if (!computation) { XlaBuilder builder(name); XlaOp a = Parameter(&builder, 0, instruction->operand(0)->shape(), "a"); XlaOp b = Parameter(&builder, 1, instruction->operand(1)->shape(), "b"); bool transpose_a = options.transpose_a() != TriangularSolveOptions::NO_TRANSPOSE; bool conjugate_a = options.transpose_a() == TriangularSolveOptions::ADJOINT; BuildTriangularSolve(a, b, options.left_side(), options.lower(), transpose_a, conjugate_a, options.unit_diagonal(), block_size_, PrecisionConfig::HIGHEST); TF_ASSIGN_OR_RETURN(XlaComputation xla_computation, builder.Build()); TF_ASSIGN_OR_RETURN(ProgramShape program_shape, xla_computation.GetProgramShape()); HloModuleConfig config(program_shape); TF_ASSIGN_OR_RETURN(auto new_module, HloModule::CreateFromProto( xla_computation.proto(), config)); HloCloneContext context(module); computation = module->DeepCloneComputation(new_module->entry_computation(), &context); } return instruction->parent()->AddInstruction(HloInstruction::CreateCall( instruction->shape(), instruction->operands(), computation)); } }
#include "xla/service/triangular_solve_expander.h" #include <memory> #include <utility> #include "xla/literal.h" #include "xla/reference_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/types.h" namespace xla { namespace { class TriangularExpanderTest : public HloTestBase, public ::testing::WithParamInterface<int32_t> {}; TEST_P(TriangularExpanderTest, TestBlockSize) { auto block_size = GetParam(); std::string hlo_string = R"( HloModule TensorFlowTriangularSolve ENTRY main { a = f32[256,256]{1,0} parameter(0) b = f32[256,192]{1,0} parameter(1) ROOT triangular-solve = f32[256,192]{1,0} triangular-solve(a, b), left_side=true, unit_diagonal=true, lower=true, transpose_a=NO_TRANSPOSE } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); { TriangularSolveExpander triangular_solve_expander(block_size); TF_ASSERT_OK_AND_ASSIGN( bool result, RunHloPass(&triangular_solve_expander, module.get())); EXPECT_TRUE(result); } Array2D<float> a(256, 256); for (int64_t row = 0; row < a.dim(0); ++row) { a(row, row) = 1; if (row > 0) { a(row, row - 1) = 0.01; } } Array2D<float> b(256, 192); const float kMax = static_cast<float>(b.dim(0) * b.dim(1) + 1); for (int64_t row = 0; row < b.dim(0); ++row) { for (int64_t col = 0; col < b.dim(1); ++col) { b(row, col) = static_cast<float>(row + col + 1) / kMax; } } auto la = LiteralUtil::CreateR2FromArray2D(a); auto lb = LiteralUtil::CreateR2FromArray2D(b); TF_ASSERT_OK_AND_ASSIGN(Literal lx, Execute(std::move(module), {&la, &lb})); auto x_shape = lx.shape(); EXPECT_EQ(x_shape.dimensions_size(), 2); EXPECT_EQ(x_shape.dimensions(0), b.dim(0)); EXPECT_EQ(x_shape.dimensions(1), b.dim(1)); Array2D<float> x(x_shape.dimensions(0), x_shape.dimensions(1)); x.SetValues(lx.data<float>()); auto ref_b = ReferenceUtil::MatmulArray2D(a, x); auto ref_lb = LiteralUtil::CreateR2FromArray2D(*ref_b); EXPECT_TRUE( LiteralTestUtil::NearOrEqual(ref_lb, lb, ErrorSpec{0.001, 0.001})); } INSTANTIATE_TEST_CASE_P(TriangularExpanderTestInstances, TriangularExpanderTest, ::testing::Range(2, 256, 7)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/triangular_solve_expander.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/triangular_solve_expander_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
849cb0cf-5da9-4a0b-9798-8ff341a34518
cpp
tensorflow/tensorflow
transpose_folding
third_party/xla/xla/service/transpose_folding.cc
third_party/xla/xla/service/transpose_folding_test.cc
#include "xla/service/transpose_folding.h" #include <algorithm> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/types/span.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" namespace xla { namespace { TransposeFolding::OperandIndices CanFoldOperandsIntoConvolution( const HloInstruction& convolution, const TransposeFolding::TransposableConvOperandsFn& transposable_conv_operands) { if (HloOpcode::kConvolution != convolution.opcode()) { return {}; } TransposeFolding::OperandIndices operand_set; for (int64_t i = 0; i < convolution.operand_count(); ++i) { auto& operand = *convolution.operand(i); if (operand.opcode() == HloOpcode::kTranspose) { operand_set.push_back(i); } } return transposable_conv_operands(convolution, operand_set); } bool IsNonIdentityTranspose(const HloInstruction* instruction) { if (instruction->opcode() == HloOpcode::kTranspose) { for (int dim = 0; dim < instruction->dimensions().size(); ++dim) { if (dim != instruction->dimensions(dim)) { return true; } } } return false; } void TransposeDims(tsl::protobuf::RepeatedField<int64_t>& dims, absl::Span<const int64_t> transpose_dims) { for (auto& dim : dims) { dim = transpose_dims[dim]; } } using InstructionOperandsPair = std::pair<HloInstruction*, TransposeFolding::OperandIndices>; absl::Status FoldTransposeIntoDot(InstructionOperandsPair& pair) { HloInstruction* dot = pair.first; DotDimensionNumbers new_dot_dims = dot->dot_dimension_numbers(); HloInstruction* lhs = dot->mutable_operand(0); HloInstruction* rhs = dot->mutable_operand(1); for (int64_t operand_index : pair.second) { if (operand_index == 0) { TransposeDims(*new_dot_dims.mutable_lhs_contracting_dimensions(), lhs->dimensions()); TransposeDims(*new_dot_dims.mutable_lhs_batch_dimensions(), lhs->dimensions()); lhs = lhs->mutable_operand(0); } else { CHECK_EQ(operand_index, 1); TransposeDims(*new_dot_dims.mutable_rhs_contracting_dimensions(), rhs->dimensions()); TransposeDims(*new_dot_dims.mutable_rhs_batch_dimensions(), rhs->dimensions()); rhs = rhs->mutable_operand(0); } } return dot->parent()->ReplaceWithNewInstruction( dot, HloInstruction::CreateDot(dot->shape(), lhs, rhs, new_dot_dims, dot->precision_config())); } bool FoldTransposeIntoConvolution(InstructionOperandsPair& pair) { auto& convolution = *pair.first; auto& operand_indices = pair.second; if (operand_indices.empty()) { return false; } const ConvolutionDimensionNumbers& dnums = convolution.convolution_dimension_numbers(); ConvolutionDimensionNumbers new_dnums = dnums; HloInstruction* new_lhs; const int64_t kLhsIdx = 0; if (absl::c_linear_search(operand_indices, kLhsIdx)) { HloInstruction& transpose = *convolution.mutable_operand(kLhsIdx); const auto& transpose_dimensions = transpose.dimensions(); HloInstruction& transpose_operand = *transpose.mutable_operand(0); new_dnums.set_input_batch_dimension( transpose_dimensions[dnums.input_batch_dimension()]); new_dnums.set_input_feature_dimension( transpose_dimensions[dnums.input_feature_dimension()]); for (auto& input_spatial_dimension : *new_dnums.mutable_input_spatial_dimensions()) { input_spatial_dimension = transpose_dimensions[input_spatial_dimension]; } new_lhs = &transpose_operand; } else { new_lhs = convolution.mutable_operand(kLhsIdx); } HloInstruction* new_rhs; const int64_t kRhsIdx = 1; if (absl::c_linear_search(operand_indices, kRhsIdx)) { HloInstruction& transpose = *convolution.mutable_operand(kRhsIdx); const auto& transpose_dimensions = transpose.dimensions(); HloInstruction& transpose_operand = *transpose.mutable_operand(0); new_dnums.set_kernel_input_feature_dimension( transpose_dimensions[dnums.kernel_input_feature_dimension()]); new_dnums.set_kernel_output_feature_dimension( transpose_dimensions[dnums.kernel_output_feature_dimension()]); for (auto& kernel_spatial_dimension : *new_dnums.mutable_kernel_spatial_dimensions()) { kernel_spatial_dimension = transpose_dimensions[kernel_spatial_dimension]; } new_rhs = &transpose_operand; } else { new_rhs = convolution.mutable_operand(kRhsIdx); } auto new_conv = HloInstruction::CreateConvolve( convolution.shape(), new_lhs, new_rhs, convolution.feature_group_count(), convolution.batch_group_count(), convolution.window(), new_dnums, convolution.precision_config()); TF_CHECK_OK(convolution.parent()->ReplaceWithNewInstruction( &convolution, std::move(new_conv))); return true; } } TransposeFolding::TransposeFolding( CanFoldTransposeOperand dot_can_fold_transpose_operand, TransposableConvOperandsFn transposable_conv_operands) : dot_can_fold_transpose_operand_( std::move(dot_can_fold_transpose_operand)), transposable_conv_operands_(std::move(transposable_conv_operands)) {} absl::StatusOr<bool> TransposeFolding::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { std::vector<InstructionOperandsPair> foldable_dots; std::vector<InstructionOperandsPair> foldable_convolutions; FunctionVisitor visit_fn([this, &foldable_dots, &foldable_convolutions]( HloInstruction* instruction) { if (instruction->opcode() == HloOpcode::kDot) { if ((instruction->operand(0)->shape().rank() < 2) || (instruction->operand(1)->shape().rank() < 2)) { return absl::OkStatus(); } OperandIndices operand_indices; for (int64_t i = 0; i < 2; ++i) { if (!IsNonIdentityTranspose(instruction->operand(i))) { continue; } TF_ASSIGN_OR_RETURN(bool can_fold_operand, dot_can_fold_transpose_operand_(*instruction, i)); if (can_fold_operand) { operand_indices.push_back(i); } } if (!operand_indices.empty()) { foldable_dots.emplace_back(instruction, operand_indices); } } { OperandIndices operand_indices = CanFoldOperandsIntoConvolution( *instruction, transposable_conv_operands_); if (!operand_indices.empty()) { foldable_convolutions.emplace_back(instruction, operand_indices); } } return absl::OkStatus(); }); for (auto* comp : module->MakeNonfusionComputations(execution_threads)) { TF_RETURN_IF_ERROR(comp->Accept(&visit_fn)); } bool changed = false; for (InstructionOperandsPair& pair : foldable_dots) { TF_RETURN_IF_ERROR(FoldTransposeIntoDot(pair)); changed = true; } for (InstructionOperandsPair& pair : foldable_convolutions) { changed |= FoldTransposeIntoConvolution(pair); } return changed; } absl::StatusOr<bool> TransposeFolding::IsRowColumnTransposeDotOperand(const HloInstruction& dot, int64_t operand_idx) { TF_RET_CHECK(dot.opcode() == HloOpcode::kDot); TF_RET_CHECK(dot.operand_count() > operand_idx); const HloInstruction& transpose = *dot.operand(operand_idx); TF_RET_CHECK(transpose.opcode() == HloOpcode::kTranspose); const DotDimensionNumbers& dot_dims = dot.dot_dimension_numbers(); auto batch_dims = (operand_idx == 0) ? dot_dims.lhs_batch_dimensions() : dot_dims.rhs_batch_dimensions(); auto contracting_dims = (operand_idx == 0) ? dot_dims.lhs_contracting_dimensions() : dot_dims.rhs_contracting_dimensions(); return (batch_dims.size() == transpose.shape().rank() - 2) && (contracting_dims.size() == 1) && absl::c_all_of(batch_dims, [&](int64_t dim) { return transpose.dimensions(dim) == dim; }); } }
#include "xla/service/transpose_folding.h" #include <memory> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/strings/string_view.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/shape_inference.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" #include "tsl/platform/status_matchers.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; using ::tsl::testing::IsOkAndHolds; using TransposeFoldingTest = HloTestBase; TEST_F(TransposeFoldingTest, FoldDotTranspose) { constexpr absl::string_view kHloString = R"( HloModule FoldDotTranspose ENTRY entry_computation { x = f32[2,3]{1,0} parameter(0) y = f32[2,3]{1,0} parameter(1) transpose = f32[3,2]{1,0} transpose(y), dimensions={1,0} ROOT dot = f32[2,2]{1,0} dot(x, transpose), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); EXPECT_THAT(TransposeFolding().Run(module.get()), IsOkAndHolds(true)); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Dot(op::Parameter(0), op::Parameter(1), 1, 1)); } TEST_F(TransposeFoldingTest, DontFoldTransposeOfBatchDimByDefault) { constexpr absl::string_view kHloString = R"( HloModule FoldDotTranspose ENTRY entry_computation { x = f32[2,3] parameter(0) y = f32[3,2] parameter(1) transpose = f32[2,3] transpose(y), dimensions={1,0} ROOT dot = f32[2] dot(x, transpose), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_contracting_dims={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); EXPECT_THAT(TransposeFolding().Run(module.get()), IsOkAndHolds(false)); } TEST_F(TransposeFoldingTest, FoldTransposeOfBatchWhenPermitted) { constexpr absl::string_view kHloString = R"( HloModule FoldDotTranspose ENTRY entry_computation { x = f32[5,2,3] parameter(0) y = f32[3,5,4] parameter(1) transpose = f32[5,3,4] transpose(y), dimensions={1,0,2} ROOT dot = f32[5,2,4] dot(x, transpose), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); TransposeFolding transpose_folding( [](const HloInstruction&, int64_t) { return true; }); EXPECT_THAT(transpose_folding.Run(module.get()), IsOkAndHolds(true)); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Dot(op::Parameter(0), op::Parameter(1), 2, 0)); } TEST_F(TransposeFoldingTest, DontFoldTransposeOfRank1Dot) { constexpr absl::string_view kHloString = R"( HloModule FoldDotTranspose ENTRY entry_computation { x = f32[3] parameter(0) y = f32[3,2] parameter(1) transpose = f32[2,3] transpose(y), dimensions={1,0} ROOT dot = f32[2] dot(x, transpose), lhs_batch_dims={}, rhs_batch_dims={}, lhs_contracting_dims={0}, rhs_contracting_dims={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); EXPECT_THAT(TransposeFolding().Run(module.get()), IsOkAndHolds(false)); } TEST_F(TransposeFoldingTest, DontFoldTransposeOfDotWithoutContractingDims) { constexpr absl::string_view kHloString = R"( HloModule FoldDotTranspose ENTRY entry_computation { x = f32[3,4] parameter(0) y = f32[3,4,6,7] parameter(1) transpose = f32[3,4,7,6] transpose(y), dimensions={0,1,3,2} ROOT dot = f32[3,4,7,6] dot(x, transpose), lhs_batch_dims={0,1}, rhs_batch_dims={0,1}, lhs_contracting_dims={}, rhs_contracting_dims={} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); EXPECT_THAT(TransposeFolding().Run(module.get()), IsOkAndHolds(false)); } TEST_F(TransposeFoldingTest, FoldDotTransposeConstant) { constexpr absl::string_view kHloString = R"( HloModule FoldDotTransposeConstant ENTRY entry_computation { constant = f32[2,1]{1,0} constant({ { 1 }, { 2 } }) transpose = f32[1,2]{1,0} transpose(constant), dimensions={1,0} constant.1 = f32[3,2]{1,0} constant({ { 1, 2 }, { 3, 4 }, { 5, 6 } }) transpose.1 = f32[2,3]{1,0} transpose(constant.1), dimensions={1,0} ROOT dot = f32[1,3]{1,0} dot(transpose, transpose.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); EXPECT_THAT(TransposeFolding().Run(module.get()), IsOkAndHolds(true)); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Dot(op::Constant(), op::Constant(), 0, 1)); } TEST_F(TransposeFoldingTest, FuseDotWithConstantOperands) { auto builder = HloComputation::Builder("entry"); HloInstruction* const1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); HloInstruction* const2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); HloInstruction* const3 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(3.0))); HloInstruction* add = builder.AddInstruction(HloInstruction::CreateBinary( const1->shape(), HloOpcode::kAdd, const1, const2)); HloInstruction* sub = builder.AddInstruction(HloInstruction::CreateBinary( const2->shape(), HloOpcode::kSubtract, const2, const3)); HloInstruction* mul = builder.AddInstruction(HloInstruction::CreateBinary( add->shape(), HloOpcode::kMultiply, add, sub)); auto module = CreateNewVerifiedModule("fuse_with_constant_operands"); HloComputation* entry_computation = module->AddEntryComputation(builder.Build(mul)); HloInstruction* call = module->OutlineExpressionFromComputation( {add, sub, mul}, "entry", entry_computation); EXPECT_EQ(call, entry_computation->root_instruction()); HloComputation* callee_computation = call->to_apply(); EXPECT_THAT(call->operands(), ::testing::UnorderedElementsAre(const1, const2, const3)); EXPECT_EQ(6, callee_computation->instruction_count()); } TEST_F(TransposeFoldingTest, FoldDotTransposeInCall) { constexpr absl::string_view kHloString = R"( HloModule FoldDotTransposeInCall callee { name.0 = f32[2,3]{1,0} parameter(0) name.1 = f32[2,3]{1,0} parameter(1) transpose.clone = f32[3,2]{1,0} transpose(name.0), dimensions={1,0} ROOT dot.clone = f32[2,2]{1,0} dot(name.1, transpose.clone), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY entry_computation { y = f32[2,3]{1,0} parameter(1) x = f32[2,3]{1,0} parameter(0) ROOT call = f32[2,2]{1,0} call(y, x), to_apply=callee } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); EXPECT_THAT(TransposeFolding().Run(module.get()), IsOkAndHolds(true)); const HloComputation* callee = module->GetComputationWithName("callee"); ASSERT_NE(callee, nullptr); EXPECT_THAT(callee->root_instruction(), op::Dot(op::Parameter(1), op::Parameter(0), 1, 1)); } TEST_F(TransposeFoldingTest, FoldConvDimSwapTransposeRhs) { auto builder = HloComputation::Builder("entry_computation"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {2, 3, 1, 1}), "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {3, 2, 1, 1}), "y")); HloInstruction* transpose_y = builder.AddInstruction(HloInstruction::CreateTranspose( ShapeUtil::MakeShape(F32, {2, 3, 1, 1}), y, {1, 0, 2, 3})); auto dnums = XlaBuilder::CreateDefaultConvDimensionNumbers(); Window window; for (int i = 0; i < 2; ++i) { WindowDimension* dim = window.add_dimensions(); dim->set_padding_low(0); dim->set_padding_high(0); dim->set_base_dilation(1); dim->set_window_dilation(1); dim->set_stride(1); dim->set_size( transpose_y->shape().dimensions(dnums.kernel_spatial_dimensions(i))); } absl::StatusOr<Shape> conv_shape = ShapeInference::InferConvolveShape( x->shape(), transpose_y->shape(), 1, 1, window, dnums, std::nullopt); EXPECT_IS_OK(conv_shape); HloInstruction* conv = builder.AddInstruction(HloInstruction::CreateConvolve( conv_shape.value(), x, transpose_y, 1, 1, window, dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule("test_module"); HloComputation* entry_computation = module->AddEntryComputation(builder.Build(conv)); EXPECT_THAT(TransposeFolding().Run(module.get()), IsOkAndHolds(true)); absl::flat_hash_set<HloInstruction*> instruction_set( entry_computation->instructions().begin(), entry_computation->instructions().end()); CHECK_EQ(1, instruction_set.erase(x)) << "x is not in entry_computation."; CHECK_EQ(1, instruction_set.erase(y)) << "y is not in entry_computation."; CHECK_EQ(1, instruction_set.size()) << "entry_computation should contain exactly 3 instructions."; HloInstruction* new_conv = *instruction_set.begin(); EXPECT_EQ(HloOpcode::kConvolution, new_conv->opcode()); EXPECT_EQ(dnums.kernel_input_feature_dimension(), new_conv->convolution_dimension_numbers() .kernel_output_feature_dimension()); EXPECT_EQ(dnums.kernel_output_feature_dimension(), new_conv->convolution_dimension_numbers() .kernel_input_feature_dimension()); } TEST_F(TransposeFoldingTest, FoldConvComplexTransposeRhs) { auto builder = HloComputation::Builder("entry_computation"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {2, 3, 1, 1}), "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {1, 2, 1, 3}), "y")); HloInstruction* transpose_y = builder.AddInstruction(HloInstruction::CreateTranspose( ShapeUtil::MakeShape(F32, {2, 3, 1, 1}), y, {1, 3, 0, 2})); auto dnums = XlaBuilder::CreateDefaultConvDimensionNumbers(); Window window; for (int i = 0; i < 2; ++i) { WindowDimension* dim = window.add_dimensions(); dim->set_padding_low(0); dim->set_padding_high(0); dim->set_base_dilation(1); dim->set_window_dilation(1); dim->set_stride(1); dim->set_size( transpose_y->shape().dimensions(dnums.kernel_spatial_dimensions(i))); } absl::StatusOr<Shape> conv_shape = ShapeInference::InferConvolveShape( x->shape(), transpose_y->shape(), 1, 1, window, dnums, std::nullopt); EXPECT_IS_OK(conv_shape); HloInstruction* conv = builder.AddInstruction(HloInstruction::CreateConvolve( conv_shape.value(), x, transpose_y, 1, 1, window, dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule("test_module"); HloComputation* entry_computation = module->AddEntryComputation(builder.Build(conv)); EXPECT_THAT(TransposeFolding().Run(module.get()), IsOkAndHolds(true)); absl::flat_hash_set<HloInstruction*> instruction_set( entry_computation->instructions().begin(), entry_computation->instructions().end()); CHECK_EQ(1, instruction_set.erase(x)) << "x is not in entry_computation."; CHECK_EQ(1, instruction_set.erase(y)) << "y is not in entry_computation."; CHECK_EQ(1, instruction_set.size()) << "entry_computation should contain exactly 3 instructions."; HloInstruction* new_conv = *instruction_set.begin(); EXPECT_EQ(HloOpcode::kConvolution, new_conv->opcode()); EXPECT_EQ(dnums.kernel_input_feature_dimension(), new_conv->convolution_dimension_numbers() .kernel_output_feature_dimension()); EXPECT_EQ(dnums.kernel_spatial_dimensions(1), new_conv->convolution_dimension_numbers() .kernel_input_feature_dimension()); EXPECT_EQ( dnums.kernel_output_feature_dimension(), new_conv->convolution_dimension_numbers().kernel_spatial_dimensions(0)); EXPECT_EQ( dnums.kernel_spatial_dimensions(0), new_conv->convolution_dimension_numbers().kernel_spatial_dimensions(1)); } TEST_F(TransposeFoldingTest, FoldConvTransposeLhs) { auto builder = HloComputation::Builder("entry_computation"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {3, 2, 1, 1}), "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {2, 3, 1, 1}), "y")); HloInstruction* transpose_x = builder.AddInstruction(HloInstruction::CreateTranspose( ShapeUtil::MakeShape(F32, {2, 3, 1, 1}), x, {1, 0, 2, 3})); auto dnums = XlaBuilder::CreateDefaultConvDimensionNumbers(); Window window; for (int i = 0; i < 2; ++i) { WindowDimension* dim = window.add_dimensions(); dim->set_padding_low(0); dim->set_padding_high(0); dim->set_base_dilation(1); dim->set_window_dilation(1); dim->set_stride(1); dim->set_size(y->shape().dimensions(dnums.kernel_spatial_dimensions(i))); } absl::StatusOr<Shape> conv_shape = ShapeInference::InferConvolveShape( transpose_x->shape(), y->shape(), 1, 1, window, dnums, std::nullopt); EXPECT_IS_OK(conv_shape); HloInstruction* conv = builder.AddInstruction(HloInstruction::CreateConvolve( conv_shape.value(), transpose_x, y, 1, 1, window, dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule("test_module"); HloComputation* entry_computation = module->AddEntryComputation(builder.Build(conv)); EXPECT_THAT(TransposeFolding().Run(module.get()), IsOkAndHolds(true)); absl::flat_hash_set<HloInstruction*> instruction_set( entry_computation->instructions().begin(), entry_computation->instructions().end()); EXPECT_EQ(1, instruction_set.erase(x)) << "x is not in entry_computation."; EXPECT_EQ(1, instruction_set.erase(y)) << "y is not in entry_computation."; EXPECT_EQ(1, instruction_set.size()) << "entry_computation should contain exactly 3 instructions."; HloInstruction* new_conv = *instruction_set.begin(); EXPECT_EQ(HloOpcode::kConvolution, new_conv->opcode()); EXPECT_EQ(dnums.input_feature_dimension(), new_conv->convolution_dimension_numbers().input_batch_dimension()); EXPECT_EQ( dnums.input_batch_dimension(), new_conv->convolution_dimension_numbers().input_feature_dimension()); EXPECT_EQ( dnums.input_spatial_dimensions(0), new_conv->convolution_dimension_numbers().input_spatial_dimensions(0)); EXPECT_EQ( dnums.input_spatial_dimensions(1), new_conv->convolution_dimension_numbers().input_spatial_dimensions(1)); EXPECT_EQ( dnums.output_spatial_dimensions(0), new_conv->convolution_dimension_numbers().output_spatial_dimensions(0)); EXPECT_EQ( dnums.output_spatial_dimensions(1), new_conv->convolution_dimension_numbers().output_spatial_dimensions(1)); } TEST_F(TransposeFoldingTest, FoldConvComplexTransposeLhs) { auto builder = HloComputation::Builder("entry_computation"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {3, 2, 1, 1}), "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {2, 3, 1, 1}), "y")); HloInstruction* transpose_x = builder.AddInstruction(HloInstruction::CreateTranspose( ShapeUtil::MakeShape(F32, {2, 3, 1, 1}), x, {1, 0, 3, 2})); auto dnums = XlaBuilder::CreateDefaultConvDimensionNumbers(); Window window; for (int i = 0; i < 2; ++i) { WindowDimension* dim = window.add_dimensions(); dim->set_padding_low(0); dim->set_padding_high(0); dim->set_base_dilation(1); dim->set_window_dilation(1); dim->set_stride(1); dim->set_size(y->shape().dimensions(dnums.kernel_spatial_dimensions(i))); } absl::StatusOr<Shape> conv_shape = ShapeInference::InferConvolveShape( transpose_x->shape(), y->shape(), 1, 1, window, dnums, std::nullopt); EXPECT_IS_OK(conv_shape); HloInstruction* conv = builder.AddInstruction(HloInstruction::CreateConvolve( conv_shape.value(), transpose_x, y, 1, 1, window, dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule("test_module"); HloComputation* entry_computation = module->AddEntryComputation(builder.Build(conv)); EXPECT_THAT(TransposeFolding().Run(module.get()), IsOkAndHolds(true)); absl::flat_hash_set<HloInstruction*> instruction_set( entry_computation->instructions().begin(), entry_computation->instructions().end()); EXPECT_EQ(1, instruction_set.erase(x)) << "x is not in entry_computation."; EXPECT_EQ(1, instruction_set.erase(y)) << "y is not in entry_computation."; EXPECT_EQ(1, instruction_set.size()) << "entry_computation should contain exactly 3 instructions."; HloInstruction* new_conv = *instruction_set.begin(); EXPECT_EQ(HloOpcode::kConvolution, new_conv->opcode()); EXPECT_EQ(dnums.input_feature_dimension(), new_conv->convolution_dimension_numbers().input_batch_dimension()); EXPECT_EQ( dnums.input_batch_dimension(), new_conv->convolution_dimension_numbers().input_feature_dimension()); EXPECT_EQ( dnums.input_spatial_dimensions(0), new_conv->convolution_dimension_numbers().input_spatial_dimensions(1)); EXPECT_EQ( dnums.input_spatial_dimensions(1), new_conv->convolution_dimension_numbers().input_spatial_dimensions(0)); EXPECT_EQ( dnums.output_spatial_dimensions(0), new_conv->convolution_dimension_numbers().output_spatial_dimensions(0)); EXPECT_EQ( dnums.output_spatial_dimensions(1), new_conv->convolution_dimension_numbers().output_spatial_dimensions(1)); } TEST_F(TransposeFoldingTest, FoldBatchDotTranspose) { constexpr absl::string_view kHloString = R"( HloModule FoldBatchDotTranspose ENTRY entry_computation { x = f32[7,7,2,3]{3,2,1,0} parameter(0) y = f32[7,7,2,3]{3,2,1,0} parameter(1) transpose = f32[7,7,3,2]{3,2,1,0} transpose(y), dimensions={0,1,3,2} ROOT dot = f32[7,7,2,2]{3,2,1,0} dot(x, transpose), lhs_contracting_dims={3}, rhs_contracting_dims={2}, lhs_batch_dims={0,1}, rhs_batch_dims={0,1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); EXPECT_THAT(TransposeFolding().Run(module.get()), IsOkAndHolds(true)); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Dot(op::Parameter(0), op::Parameter(1), 3, 3)); } TEST_F(TransposeFoldingTest, NoFoldBatchDotTransposeBatch) { constexpr absl::string_view kHloString = R"( HloModule NoFoldBatchDotTransposeBatch ENTRY entry_computation { x = f32[7,7,2,3]{3,2,1,0} parameter(0) y = f32[7,7,2,3]{3,2,1,0} parameter(1) transpose = f32[7,7,3,2]{3,2,1,0} transpose(y), dimensions={1,0,3,2} ROOT dot = f32[7,7,2,2]{3,2,1,0} dot(x, transpose), lhs_contracting_dims={3}, rhs_contracting_dims={2}, lhs_batch_dims={0,1}, rhs_batch_dims={0,1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); EXPECT_THAT(TransposeFolding().Run(module.get()), IsOkAndHolds(false)); } TEST_F(TransposeFoldingTest, FoldBatchDotTransposeNonContiguousBatch) { constexpr absl::string_view kHloString = R"( HloModule FoldBatchDotTransposeNonContiguousBatch ENTRY entry_computation { x = f32[7,2,7,3]{3,2,1,0} parameter(0) y = f32[7,2,7,3]{3,2,1,0} parameter(1) transpose = f32[7,3,7,2]{3,2,1,0} transpose(y), dimensions={0,3,2,1} ROOT dot = f32[7,7,2,2]{3,2,1,0} dot(x, transpose), lhs_contracting_dims={3}, rhs_contracting_dims={1}, lhs_batch_dims={0,2}, rhs_batch_dims={0,2} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); EXPECT_THAT(TransposeFolding().Run(module.get()), IsOkAndHolds(true)); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Dot(op::Parameter(0), op::Parameter(1), 3, 3)); } TEST_F(TransposeFoldingTest, NoFoldBatchDotTransposeIdentity) { constexpr absl::string_view kHloString = R"( HloModule NoFoldBatchDotTransposeIdentity ENTRY entry_computation { x = f32[7,7,2,3]{3,2,1,0} parameter(0) y = f32[7,7,3,2]{3,2,1,0} parameter(1) transpose = f32[7,7,3,2]{3,2,1,0} transpose(y), dimensions={0,1,2,3} ROOT dot = f32[7,7,2,2]{3,2,1,0} dot(x, transpose), lhs_contracting_dims={3}, rhs_contracting_dims={2}, lhs_batch_dims={0,1}, rhs_batch_dims={0,1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); EXPECT_THAT(TransposeFolding().Run(module.get()), IsOkAndHolds(false)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/transpose_folding.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/transpose_folding_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
cfec981d-552c-4da4-9a2f-8bcbd2723fba
cpp
tensorflow/tensorflow
reshape_mover
third_party/xla/xla/service/reshape_mover.cc
third_party/xla/xla/service/reshape_mover_test.cc
#include "xla/service/reshape_mover.h" #include <algorithm> #include <memory> #include <vector> #include "absl/algorithm/container.h" #include "xla/permutation_util.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "tsl/platform/errors.h" namespace xla { namespace { bool IsRearrange(const HloInstruction* instruction) { return instruction->opcode() == HloOpcode::kReshape || instruction->opcode() == HloOpcode::kTranspose; } bool AreEquivalentRearranges(const HloInstruction* a, const HloInstruction* b) { if (a->opcode() != b->opcode() || !ShapeUtil::SameDimensions(a->shape(), b->shape())) { return false; } switch (a->opcode()) { case HloOpcode::kTranspose: return a->dimensions() == b->dimensions(); case HloOpcode::kReshape: return ShapeUtil::SameDimensions(a->operand(0)->shape(), b->operand(0)->shape()); default: return false; } } absl::InlinedVector<int64_t, 4> TransposedBcastDims( absl::Span<const int64_t> bcast_dims, absl::Span<const int64_t> transpose_dims) { auto inv_perm = InversePermutation(transpose_dims); absl::InlinedVector<int64_t, 4> new_bcast_dims; for (int64_t dim : bcast_dims) { new_bcast_dims.push_back(inv_perm[dim]); } return new_bcast_dims; } } bool ReshapeMover::CanTriviallyRearrange(const HloInstruction* instr, const HloInstruction* rearrange) { CHECK(IsRearrange(rearrange)) << rearrange->ToString(); if (rearrange->opcode() == HloOpcode::kReshape && ShapeUtil::Equal(rearrange->shape(), rearrange->operand(0)->shape())) { return true; } if (rearrange->opcode() == HloOpcode::kTranspose && IsIdentityPermutation(rearrange->dimensions())) { return true; } if (instr->opcode() == HloOpcode::kConstant) { return true; } if (instr->opcode() == HloOpcode::kRng && instr->user_count() == 1) { return true; } if (instr->opcode() == HloOpcode::kBroadcast) { if (!absl::c_is_sorted(instr->dimensions())) { return false; } if (rearrange->opcode() == HloOpcode::kReshape) { return ShapeUtil::IsScalar(instr->operand(0)->shape()) || (options_.reshape_of_1d_broadcast_is_cheap && ShapeUtil::TrueRank(instr->operand(0)->shape()) <= 1) || (options_.reshape_of_1d_broadcast_is_cheap && ShapeUtil::ReshapeLeavesDimensionsUnmodified( rearrange->shape(), rearrange->operand(0)->shape(), instr->dimensions()) .has_value()); } if (rearrange->opcode() == HloOpcode::kTranspose) { return absl::c_is_sorted(TransposedBcastDims( instr->dimensions(), InversePermutation(rearrange->dimensions()))); } } return false; } const HloInstruction* ReshapeMover::FirstNontrivialRearrange( absl::Span<const HloInstruction* const> instrs) { auto rearrange_it = absl::c_find_if(instrs, [&](const HloInstruction* instr) { return IsRearrange(instr) && !CanTriviallyRearrange(instr->operand(0), instr); }); if (rearrange_it == instrs.end()) { return nullptr; } return *rearrange_it; } bool ReshapeMover::IsReshapeMoveCandidate(HloInstruction* instruction) { auto print_no_metadata = HloPrintOptions().set_print_metadata(false); VLOG(5) << "** Checking instruction: " << instruction->ToString(print_no_metadata); if (!instruction->IsElementwise()) { return false; } const HloInstruction* rearrange = FirstNontrivialRearrange(instruction->operands()); if (rearrange == nullptr) { return false; } return absl::c_all_of( instruction->operands(), [&](const HloInstruction* operand) { return (IsRearrange(operand) && AreEquivalentRearranges(operand, rearrange)) || (!IsRearrange(operand) && CanTriviallyRearrange(operand, rearrange)); }); } absl::StatusOr<HloInstruction*> ReshapeMover::ApplyInverseRearrange( const HloInstruction* rearrange, HloInstruction* operand) { switch (rearrange->opcode()) { case HloOpcode::kReshape: { Shape new_shape = ShapeUtil::ChangeElementType( rearrange->operand(0)->shape(), operand->shape().element_type()); if (operand->shape() != new_shape) { return MakeReshapeHlo(new_shape, operand); } else { return operand; } } case HloOpcode::kTranspose: { if (!IsIdentityPermutation(rearrange->dimensions())) { return MakeTransposeHlo(operand, InversePermutation(rearrange->dimensions())); } else { return operand; } } default: LOG(FATAL) << "Invalid rearrange op: " << rearrange->ToString(); } } absl::StatusOr<bool> ReshapeMover::SinkRearrangeOperands( HloInstruction* instruction) { auto print_no_metadata = HloPrintOptions().set_print_metadata(false); HloComputation* computation = instruction->parent(); const HloInstruction* rearrange = FirstNontrivialRearrange(instruction->operands()); CHECK(rearrange != nullptr); const Shape& new_operand_shape = rearrange->operand(0)->shape(); VLOG(3) << "** Sinking reshape or transpose: " << instruction->ToString(print_no_metadata) << "\n\tfirst rearrange operand: " << rearrange->ToString(print_no_metadata) << "\n\tnew operand shape: " << ShapeUtil::HumanString(new_operand_shape); auto operands = instruction->operands(); for (size_t i = 0; i < operands.size(); ++i) { VLOG(3) << "Updating operand #" << i << ": " << operands[i]->ToString(print_no_metadata); TF_ASSIGN_OR_RETURN(operands[i], ApplyInverseRearrange(rearrange, operands[i])); VLOG(3) << "Updated operand #" << i << " to: " << operands[i]->ToString(print_no_metadata); } HloInstruction* new_elementwise = computation->AddInstruction(instruction->CloneWithNewOperands( ShapeUtil::ChangeElementType(new_operand_shape, instruction->shape().element_type()), operands)); std::unique_ptr<HloInstruction> new_rearrange; switch (rearrange->opcode()) { case HloOpcode::kReshape: VLOG(3) << "Creating new reshape for new elementwise op: " << new_elementwise->ToString(print_no_metadata); new_rearrange = HloInstruction::CreateReshape(instruction->shape(), new_elementwise); break; case HloOpcode::kTranspose: new_rearrange = HloInstruction::CreateTranspose( instruction->shape(), new_elementwise, rearrange->dimensions()); break; default: LOG(FATAL) << "Bad opcode"; } if (instruction->has_sharding()) { new_elementwise->clear_sharding(); } TF_RETURN_IF_ERROR(computation->ReplaceWithNewInstruction( instruction, std::move(new_rearrange))); return true; } absl::StatusOr<bool> ReshapeMover::TryReshapeMoveOnCandidates( HloInstructionSet* candidates) { bool removed = true; while (!candidates->empty() && removed) { if (VLOG_IS_ON(5)) { for (const HloInstruction* instruction : *candidates) { VLOG(5) << "candidate " << instruction->ToString(); } } ConstHloInstructionSet rearrange_operands; for (const HloInstruction* instruction : *candidates) { for (const auto* operand : instruction->operands()) { if (IsRearrange(operand)) { rearrange_operands.insert(operand); } } } removed = false; for (auto operand : rearrange_operands) { if (absl::c_any_of(operand->users(), [&](HloInstruction* user) { return !candidates->count(user); })) { for (auto* user : operand->users()) { removed |= candidates->erase(user) > 0; } } } } if (candidates->empty()) { return false; } for (HloInstruction* instruction : *candidates) { if (!ConsumeFuel("reshape-mover", [&] { return absl::StrCat("instruction: ", instruction->ToString(), "\nFull module:\n", instruction->GetModule()->ToString()); })) { break; } TF_ASSIGN_OR_RETURN(bool did_change, SinkRearrangeOperands(instruction)); CHECK(did_change); } return true; } absl::StatusOr<bool> ReshapeMover::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (auto* comp : module->MakeNonfusionComputations(execution_threads)) { HloInstructionSet candidates; for (HloInstruction* instruction : comp->instructions()) { if (IsReshapeMoveCandidate(instruction)) { candidates.insert(instruction); } } TF_ASSIGN_OR_RETURN(bool did_change, TryReshapeMoveOnCandidates(&candidates)); changed |= did_change; } return changed; } }
#include "xla/service/reshape_mover.h" #include <memory> #include <string> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/pass/hlo_pass_fix.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/hlo_verifier.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" namespace xla { namespace { namespace m = xla::match; class ReshapeMoverTest : public HloTestBase { protected: absl::Status RunPass(HloModule* module, bool change_expected, ReshapeMoverOptions options = ReshapeMoverOptions{}) { TF_ASSIGN_OR_RETURN(bool changed, RunHloPass(ReshapeMover(options), module)); SCOPED_TRACE(module->ToString()); EXPECT_EQ(changed, change_expected); TF_EXPECT_OK(RunHloPass(HloVerifier(HloVerifierOpts()), module).status()); TF_EXPECT_OK(RunHloPass(HloPassFix<AlgebraicSimplifier>( AlgebraicSimplifierOptions()), module) .status()); return absl::OkStatus(); } }; TEST_F(ReshapeMoverTest, ReshapesWithDifferentInputShapesNotMoved) { const std::string hlo_string = R"( HloModule test ENTRY test { reshape0 = f32[8,7] reshape(f32[1,8,1,7] parameter(0)) reshape1 = f32[8,7] reshape(f32[1,8,7,1] parameter(1)) ROOT add = add(reshape0, reshape1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), false)); } TEST_F(ReshapeMoverTest, OneConstantAndOneReshapesOnRngNotMoved) { const std::string hlo_string = R"( HloModule test ENTRY test { rng = f32[1,8,1,7,1] rng(f32[] constant(0), f32[] constant(1)), distribution=rng_uniform ROOT add = add(f32[8,7] reshape(rng), f32[8,7] constant({...})) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), false)); } TEST_F(ReshapeMoverTest, EquivalentReshapesMoved) { const std::string hlo_string = R"( HloModule test ENTRY test { reshape0 = f32[8,7] reshape(f32[1,8,1,7] parameter(0)) reshape1 = f32[8,7] reshape(f32[1,8,1,7] parameter(1)) ROOT add = f32[8,7] add(reshape0, reshape1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), true)); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Reshape(m::Add(m::Parameter(0), m::Parameter(1))))); } TEST_F(ReshapeMoverTest, SinkReshapeBelowSelect) { const std::string hlo_string = R"( HloModule test ENTRY test { ROOT select = f32[2,3] select( pred[2,3] reshape(pred[6] parameter(0)), f32[2,3] reshape(f32[6] parameter(1)), f32[2,3] reshape(f32[6] parameter(2))) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), true)); SCOPED_TRACE(m->ToString()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Reshape(m::Select(m::Parameter(0), m::Parameter(1), m::Parameter(2))))); } TEST_F(ReshapeMoverTest, SinkReshapeBelowSelectWithConstant) { const std::string hlo_string = R"( HloModule test ENTRY test { ROOT select = f32[2,3] select( pred[2,3] reshape(pred[6] parameter(0)), f32[2,3] reshape(f32[6] parameter(1)), f32[2,3] constant({...})) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), true)); SCOPED_TRACE(m->ToString()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Reshape(m::Select(m::Parameter(0), m::Parameter(1), m::Reshape(m::Constant()))))); } TEST_F(ReshapeMoverTest, OneParameterAndOneReshapeNotMoved) { const std::string hlo_string = R"( HloModule test ENTRY test { reshape0 = f32[8,7] reshape(f32[1,8,1,7] parameter(0)) ROOT add = add(reshape0, f32[8,7] parameter(1)) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), false)); } TEST_F(ReshapeMoverTest, DontSinkReshapesOfConstants) { const std::string hlo_string = R"( HloModule test ENTRY test { ROOT select = select( pred[3,2] parameter(0), f32[3,2] reshape(f32[2,3] constant({...})), f32[3,2] reshape(f32[2,3] constant({...}))) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), false)); } TEST_F(ReshapeMoverTest, OneNontrivialReshapeMoved) { const std::string hlo_string = R"( HloModule test ENTRY test { ROOT add = add( f32[3,2] reshape(f32[2,3] parameter(0)), f32[3,2] constant({...})) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), true)); SCOPED_TRACE(m->ToString()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Reshape( m::Add(m::Parameter(0), m::Reshape(m::Constant()))))); } TEST_F(ReshapeMoverTest, MultipleReshapes) { const std::string hlo_string = R"( HloModule test ENTRY test { add0 = f32[8,7,1] add( f32[8,7,1] reshape(f32[1,8,1,7] parameter(0)), f32[8,7,1] reshape(f32[1,8,1,7] parameter(1))) ROOT add1 = f32[8,7] add( f32[8,7] reshape(add0), f32[8,7] reshape(f32[8,7,1] parameter(2))) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), true)); SCOPED_TRACE(m->ToString()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Reshape( m::Add(m::Reshape(m::Add(m::Parameter(0), m::Parameter(1))), m::Parameter(2))))); } TEST_F(ReshapeMoverTest, SinkTransposeAcrossBroadcastScalar) { const std::string hlo_string = R"( HloModule TransposeMulInversedTransposeModule ENTRY TransposeMulInversedTranspose { src0 = f32[20,8]{1,0} parameter(0) transpose0 = f32[8,20]{1,0} transpose(src0), dimensions={1,0} src1 = f32[] parameter(1) broadcast0 = f32[8,20]{1,0} broadcast(src1), dimensions={} ROOT multiply0 = f32[8,20]{1,0} multiply(transpose0, broadcast0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), true)); SCOPED_TRACE(m->ToString()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Transpose(m::Multiply( m::Parameter(0), m::Broadcast(m::Parameter(1)))))); } TEST_F(ReshapeMoverTest, ReshapeWithUsersOutsideCandidatesNotSink) { const std::string hlo_string = R"( HloModule ReshapeWithUsersOutsideCandidates ENTRY ReshapeWithMultipleUsers { param0 = f32[20,8]{1,0} parameter(0) reshape0 = f32[8,20]{1,0} reshape(param0) param1 = f32[] parameter(1) broadcast0 = f32[8,20]{1,0} broadcast(param1), dimensions={} param2 = f32[20,8]{1,0} parameter(2) reshape1 = f32[8,20]{1,0} reshape(param2) param3 = f32[20,8]{1,0} parameter(3) reshape2 = f32[8,20]{1,0} reshape(param3) param4 = f32[8,20]{1,0} parameter(4) add0 = f32[8,20]{1,0} add(reshape0, broadcast0) add1 = f32[8,20]{1,0} add(reshape0, reshape1) add2 = f32[8,20]{1,0} add(reshape1, param4) ROOT tuple = (f32[8,20]{1,0},f32[8,20]{1,0}, f32[8,20]{1,0}) tuple(add0, add1, add2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), false)); } TEST_F(ReshapeMoverTest, ReshapeNoUsersOutsideCandidatesSink1) { const std::string hlo_string = R"( HloModule ReshapeNoUsersOutsideCandidates1 ENTRY ReshapeWithMultipleUsers1 { param0 = f32[20,8]{1,0} parameter(0) reshape0 = f32[8,20]{1,0} reshape(param0) param1 = f32[] parameter(1) broadcast0 = f32[8,20]{1,0} broadcast(param1), dimensions={} param2 = f32[20,8]{1,0} parameter(2) reshape1 = f32[8,20]{1,0} reshape(param2) param3 = f32[20,8]{1,0} parameter(3) reshape2 = f32[8,20]{1,0} reshape(param3) add0 = f32[8,20]{1,0} add(reshape0, broadcast0) add1 = f32[8,20]{1,0} add(reshape0, reshape1) add2 = f32[8,20]{1,0} add(reshape1, reshape2) ROOT tuple = (f32[8,20]{1,0},f32[8,20]{1,0}, f32[8,20]{1,0}) tuple(add0, add1, add2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), true)); SCOPED_TRACE(m->ToString()); EXPECT_THAT( m->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::Reshape(m::Add(m::Parameter(0), m::Broadcast(m::Parameter(1)))), m::Reshape(m::Add(m::Parameter(0), m::Parameter(2))), m::Reshape(m::Add(m::Parameter(2), m::Parameter(3)))))); } TEST_F(ReshapeMoverTest, ReshapeNoUsersOutsideCandidatesSink2) { const std::string hlo_string = R"( HloModule ReshapeNoUsersOutsideCandidates2 ENTRY ReshapeWithMultipleUsers2 { param0 = f32[20,8]{1,0} parameter(0) reshape0 = f32[8,20]{1,0} reshape(param0) ROOT add0 = f32[8,20]{1,0} add(reshape0, reshape0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), true)); SCOPED_TRACE(m->ToString()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Reshape(m::Add()))); } TEST_F(ReshapeMoverTest, ReshapeOfRank1BroadcastIsNotTrivial) { const std::string hlo_string = R"( HloModule test ENTRY test { a = f32[2,3] broadcast(f32[2] parameter(0)), dimensions={0} b = f32[2,3] reshape(f32[6] parameter(1)) ROOT add0 = add(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), false)); } TEST_F(ReshapeMoverTest, ReshapeOfRank1BroadcastIsTrivial) { const std::string hlo_string = R"( HloModule test ENTRY test { a = f32[2,3] broadcast(f32[2] parameter(0)), dimensions={0} b = f32[2,3] reshape(f32[6] parameter(1)) ROOT add0 = add(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); ReshapeMoverOptions options; options.reshape_of_1d_broadcast_is_cheap = true; TF_ASSERT_OK(RunPass(m.get(), true, options)); SCOPED_TRACE(m->ToString()); EXPECT_THAT( m->entry_computation()->root_instruction(), GmockMatch(m::Reshape( m::Add(m::Reshape(m::Broadcast(m::Parameter(0))), m::Parameter(1))))); } TEST_F(ReshapeMoverTest, ReshapeOfRank2BroadcastIsAllowed) { const std::string hlo_string = R"( HloModule test ENTRY test { a = f32[2,3,35] broadcast(f32[2,3] parameter(0)), dimensions={0,1} b = f32[2,3,35] reshape(f32[2,3,5,7] parameter(1)) ROOT add0 = add(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); ReshapeMoverOptions options; options.reshape_of_1d_broadcast_is_cheap = true; TF_ASSERT_OK(RunPass(m.get(), true, options)); SCOPED_TRACE(m->ToString()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Reshape( m::Add(m::Broadcast(m::Parameter(0)), m::Parameter(1))))); } TEST_F(ReshapeMoverTest, SinkDisallowedIfReshapeChangesBroadcastDims) { const std::string hlo_string = R"( HloModule test ENTRY test { a = f32[2,3,35] broadcast(f32[2,3] parameter(0)), dimensions={0,1} b = f32[2,3,35] reshape(f32[6,5,7] parameter(1)) ROOT add0 = add(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), false)); } TEST_F(ReshapeMoverTest, TransposeOfBroadcastIsAllowed) { const std::string hlo_string = R"( HloModule test ENTRY test { a = f32[2,3] broadcast(f32[2] parameter(0)), dimensions={0} b = f32[2,3] transpose(f32[3,2] parameter(1)), dimensions={1,0} ROOT add0 = add(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), true)); SCOPED_TRACE(m->ToString()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Transpose( m::Add(m::Broadcast(m::Parameter(0)), m::Parameter(1))))); } TEST_F(ReshapeMoverTest, TransposeReordersBroadcastDims) { const std::string hlo_string = R"( HloModule test ENTRY test { a = f32[2,3,5] broadcast(f32[2,3] parameter(0)), dimensions={0,1} b = f32[2,3,5] transpose(f32[3,2,5] parameter(1)), dimensions={1,0,2} ROOT add0 = add(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), false)); } TEST_F(ReshapeMoverTest, ShardingConsistencyPreservation) { const std::string hlo_string = R"( HloModule module ENTRY entry { copy.2424 = bf16[3,16,128]{2,1,0} parameter(0), sharding={replicated} dot.987 = bf16[3,16,128,4096]{3,2,1,0} parameter(1), sharding={devices=[1,8,1,1]0,1,2,3,4,5,6,7} reshape.5843 = bf16[3,16,128,1,4096]{4,3,2,1,0} reshape(dot.987), sharding={devices=[1,8,1,1,1]0,1,2,3,4,5,6,7} transpose.21172 = bf16[3,1,4096,16,128]{2,1,4,3,0} transpose(reshape.5843), dimensions={0,3,4,1,2}, sharding={devices=[1,1,1,8,1]0,1,2,3,4,5,6,7} reshape.291 = bf16[3,16,128]{2,1,0} reshape(copy.2424), sharding={devices=[1,8,1]0,1,2,3,4,5,6,7} broadcast.21176 = bf16[3,1,4096,16,128]{4,3,2,1,0} broadcast(reshape.291), dimensions={0,3,4}, sharding={devices=[1,1,1,8,1]0,1,2,3,4,5,6,7} multiply.21177 = bf16[3,1,4096,16,128]{2,1,4,3,0} multiply(transpose.21172, broadcast.21176), sharding={devices=[1,1,1,8,1]0,1,2,3,4,5,6,7} ROOT slice.21180 = bf16[1,1,4096,16,128]{4,3,2,1,0} slice(multiply.21177), slice={[1:2], [0:1], [0:4096], [0:16], [0:128]}, sharding={devices=[1,1,1,8,1]0,1,2,3,4,5,6,7} } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), true)); auto elementwise_op = FindInstruction(m.get(), HloOpcode::kMultiply); EXPECT_FALSE(elementwise_op->has_sharding()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/reshape_mover.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/reshape_mover_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
cabe3974-40bd-4f00-8029-9f686f21bb85
cpp
tensorflow/tensorflow
hlo_phi_graph
third_party/xla/xla/service/hlo_phi_graph.cc
third_party/xla/xla/service/hlo_phi_graph_test.cc
#include "xla/service/hlo_phi_graph.h" #include <queue> namespace xla { HloValue::Id PhiGraph::GetOptimizedId(const HloValue& value) { Node* node = value_id_to_node_[value.id()]; CHECK(!node->mark_as_dead); return node->value_id; } bool PhiGraph::InputsEqualTo(const HloValue& value, absl::Span<const HloValue* const> inputs) { auto iter = value_id_to_node_.find(value.id()); CHECK(iter != value_id_to_node_.end()); absl::flat_hash_set<HloValue::Id> existing_set; for (Node* operand : iter->second->operands) { existing_set.insert(operand->value_id); } absl::flat_hash_set<HloValue::Id> new_set; for (const HloValue* input : inputs) { new_set.insert(input->id()); } return existing_set == new_set; } HloValue::Id PhiGraph::FindOptimizedValue(const HloValue::Id id) { auto iter = value_id_to_node_.find(id); CHECK(iter != value_id_to_node_.end()); CHECK(!iter->second->mark_as_dead); return iter->second->value_id; } PhiGraph::Node* PhiGraph::CreateOrReuseNode(const HloValue& value) { auto iter = value_id_to_node_.find(value.id()); if (iter == value_id_to_node_.end()) { node_storage_.emplace_back(std::make_unique<Node>()); Node* node = node_storage_.back().get(); node->value_id = value.id(); value_id_to_node_[value.id()] = node; node_to_value_id_[node].push_back(value.id()); return node; } else { CHECK_NE(iter->second, nullptr); CHECK_EQ(iter->second->value_id, value.id()); return iter->second; } } void PhiGraph::ReplaceNodeWith(PhiGraph::Node* node, PhiGraph::Node* replace) { CHECK(node->is_phi); if (node->mark_as_dead) { return; } if (replace->mark_as_dead) { auto iter = value_id_to_node_.find(replace->value_id); CHECK(iter != value_id_to_node_.end()); return ReplaceNodeWith(node, iter->second); } CHECK(!replace->mark_as_dead); for (Node* user : node->users) { absl::c_replace(user->operands, node, replace); } for (Node* operand : node->operands) { absl::c_replace(operand->users, node, replace); } for (HloValue::Id value_id : node_to_value_id_[node]) { CHECK(value_id_to_node_.contains(value_id)); value_id_to_node_[value_id] = replace; } absl::c_copy(node_to_value_id_[node], std::back_inserter(node_to_value_id_[replace])); node_to_value_id_[node].clear(); node->mark_as_dead = true; } void PhiGraph::RegisterPhi(const HloValue& value, absl::Span<const HloValue* const> inputs) { Node* node = CreateOrReuseNode(value); CHECK(value.is_phi()); node->is_phi = true; node->operands.clear(); for (auto input : inputs) { CHECK(input != nullptr); Node* input_node = CreateOrReuseNode(*input); node->operands.push_back(input_node); } } std::string PhiGraph::ToString() { std::string out = "PhiGraph: \n"; for (auto& node : node_storage_) { absl::StrAppend(&out, node->value_id); if (node->is_phi) { absl::StrAppend(&out, ", phi"); } if (node->mark_as_dead) { absl::StrAppend(&out, ", dead", ":\n"); } for (Node* input : node->operands) { absl::StrAppend(&out, " ", input->value_id, "\n"); } } return out; } void PhiGraph::Optimize() { VLOG(2) << "Optimizing phi graph:"; XLA_VLOG_LINES(2, ToString()); for (auto& node : node_storage_) { for (Node* input : node->operands) { input->users.push_back(node.get()); } } bool changed = true; while (changed) { changed = false; absl::flat_hash_set<Node*> checked_for_closure; for (auto& node : node_storage_) { if (!node->is_phi) { continue; } if (node->mark_as_dead) { continue; } Node* node_ptr = node.get(); VLOG(2) << "Optimizing: " << node_ptr->value_id; CHECK_GE(node_ptr->operands.size(), 1); auto it = absl::c_find(node_ptr->operands, node_ptr); while (it != node_ptr->operands.end()) { node_ptr->operands.erase(it); it = absl::c_find(node_ptr->operands, node_ptr); } it = absl::c_find(node_ptr->users, node_ptr); while (it != node_ptr->users.end()) { node_ptr->users.erase(it); it = absl::c_find(node_ptr->users, node_ptr); } CHECK_GE(node_ptr->operands.size(), 1); bool all_inputs_are_same = absl::c_all_of( node_ptr->operands, [&](Node* elem) { return elem == node_ptr->operands[0]; }); if (all_inputs_are_same) { VLOG(1) << "All inputs to node " << node_ptr->value_id << " are the same, replacing it with " << node_ptr->operands[0]->value_id; ReplaceNodeWith(node_ptr, node_ptr->operands[0]); changed = true; continue; } if (checked_for_closure.contains(node_ptr)) { continue; } absl::flat_hash_set<Node*> workset; std::queue<Node*> worklist; Node* non_phi = nullptr; worklist.push(node_ptr); while (!worklist.empty()) { Node* todo = worklist.front(); worklist.pop(); if (workset.contains(todo)) { continue; } checked_for_closure.insert(todo); workset.insert(todo); for (Node* operand : todo->operands) { worklist.push(operand); } if (!todo->is_phi) { if (non_phi != nullptr && non_phi != todo) { non_phi = nullptr; break; } else { non_phi = todo; } } } if (non_phi != nullptr) { for (Node* node : workset) { if (!node->is_phi) { CHECK_EQ(node, non_phi); continue; } VLOG(1) << "Replace node " << node->value_id << " in the closure with node " << non_phi->value_id; ReplaceNodeWith(node, non_phi); changed = true; } } } } } }
#include "xla/service/hlo_phi_graph.h" #include "xla/literal_util.h" #include "tsl/platform/test.h" namespace xla { namespace { class PhiGraphTest : public ::testing::Test { protected: HloValue NewHloValue(bool is_phi) { static int64_t id = 0; return HloValue(id++, dummy_inst_.get(), {}, is_phi); } void SetUp() override { dummy_inst_ = HloInstruction::CreateConstant(LiteralUtil::CreateR0(0.0f)); } std::unique_ptr<HloInstruction> dummy_inst_; }; TEST_F(PhiGraphTest, SelfReferencingPhi) { PhiGraph phi_graph; HloValue A = NewHloValue(false); HloValue B = NewHloValue(true); phi_graph.RegisterPhi(B, {&A, &B}); phi_graph.Optimize(); EXPECT_EQ(A.id(), phi_graph.FindOptimizedValue(B.id())); } TEST_F(PhiGraphTest, PhiWithSameInputs) { PhiGraph phi_graph; HloValue A = NewHloValue(false); HloValue B = NewHloValue(true); phi_graph.RegisterPhi(B, {&A, &A}); phi_graph.Optimize(); EXPECT_EQ(A.id(), phi_graph.FindOptimizedValue(B.id())); } TEST_F(PhiGraphTest, CircularPhi) { PhiGraph phi_graph; HloValue A = NewHloValue(true); HloValue B = NewHloValue(true); HloValue C = NewHloValue(true); HloValue D = NewHloValue(false); phi_graph.RegisterPhi(A, {&B, &C}); phi_graph.RegisterPhi(B, {&D, &C}); phi_graph.RegisterPhi(C, {&A, &B}); phi_graph.Optimize(); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(A.id())); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(B.id())); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(C.id())); } TEST_F(PhiGraphTest, NestedPhiReduction) { PhiGraph phi_graph; HloValue A = NewHloValue(true); HloValue B = NewHloValue(true); HloValue C = NewHloValue(true); HloValue D = NewHloValue(false); HloValue E = NewHloValue(true); phi_graph.RegisterPhi(A, {&B, &C}); phi_graph.RegisterPhi(B, {&E, &C}); phi_graph.RegisterPhi(C, {&A, &B}); phi_graph.RegisterPhi(E, {&D, &D}); phi_graph.Optimize(); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(A.id())); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(B.id())); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(C.id())); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(E.id())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_phi_graph.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_phi_graph_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
eb0c36ad-0dad-4007-b2bb-20fde4559604
cpp
tensorflow/tensorflow
tuple_util
third_party/xla/xla/service/tuple_util.cc
third_party/xla/xla/service/tuple_util_test.cc
#include "xla/service/tuple_util.h" #include <cstdint> #include <string> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_value.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "tsl/platform/statusor.h" namespace xla { HloInstruction* TupleUtil::ExtractPrefix(HloInstruction* input_tuple, int64_t elements, absl::string_view name) { CHECK(input_tuple->shape().IsTuple()); HloComputation* computation = input_tuple->parent(); const Shape& input_shape = input_tuple->shape(); std::vector<HloInstruction*> tuple_elements; tuple_elements.reserve(elements); for (int i = 0; i < elements; i++) { std::string element_name; if (!name.empty()) { element_name = absl::StrCat(name, ".element.", i); } tuple_elements.push_back(computation->AddInstruction( HloInstruction::CreateGetTupleElement(input_shape.tuple_shapes(i), input_tuple, i), element_name)); } return computation->AddInstruction( HloInstruction::CreateTuple(tuple_elements), name); } HloInstruction* TupleUtil::AppendSuffix( HloInstruction* input_tuple, absl::Span<HloInstruction* const> trailing_values) { CHECK(input_tuple->shape().IsTuple()); HloComputation* computation = input_tuple->parent(); const Shape& input_shape = input_tuple->shape(); std::vector<HloInstruction*> tuple_elements; tuple_elements.reserve(input_shape.tuple_shapes_size()); for (int i = 0; i < input_shape.tuple_shapes_size(); i++) { tuple_elements.push_back( computation->AddInstruction(HloInstruction::CreateGetTupleElement( input_shape.tuple_shapes(i), input_tuple, i))); } tuple_elements.insert(tuple_elements.end(), trailing_values.begin(), trailing_values.end()); return computation->AddInstruction( HloInstruction::CreateTuple(tuple_elements)); } absl::StatusOr<HloInstruction*> TupleUtil::ReplaceTupleWith( HloInstruction* new_instruction, HloInstruction* tuple, ShapeIndex shape_index, bool insert_bitcast_if_different_shape) { const Shape& tuple_shape = tuple->shape(); CHECK(tuple->shape().IsTuple()) << "ReplaceTupleWith was called for a non-tuple. Tuple = " << tuple->ToString() << ", new_instruction = " << new_instruction->ToString() << ", shape_index = " << shape_index.ToString(); const HloInstruction* instruction = new_instruction; bool equivalent = true; for (int i = shape_index.size() - 1; i >= 0; --i) { int index = shape_index[i]; if (instruction->opcode() != HloOpcode::kGetTupleElement || instruction->tuple_index() != index) { equivalent = false; break; } instruction = instruction->operand(0); } if (equivalent && instruction == tuple) { VLOG(4) << "Instruction " << new_instruction->ToShortString() << " already exists at index " << shape_index.ToString() << " of " << tuple->ToShortString(); return tuple; } HloComputation* computation = new_instruction->parent(); std::vector<HloInstruction*> tuple_args(tuple_shape.tuple_shapes_size()); CHECK_GE(tuple_shape.tuple_shapes_size(), shape_index[0]); for (int i = 0; i < tuple_shape.tuple_shapes_size(); ++i) { const Shape& subshape = tuple_shape.tuple_shapes(i); auto get_operand = [&]() { if (tuple->opcode() == HloOpcode::kTuple) { return tuple->mutable_operand(i); } else { return computation->AddInstruction( HloInstruction::CreateGetTupleElement(subshape, tuple, i)); } }; if (i == shape_index[0]) { if (subshape.IsTuple()) { TF_ASSIGN_OR_RETURN(tuple_args[i], ReplaceTupleWith(new_instruction, get_operand(), ShapeIndex(shape_index.begin() + 1, shape_index.end()))); } else { if (subshape != new_instruction->shape() && insert_bitcast_if_different_shape) { VLOG(4) << "Old shape = " << subshape.ToString() << ", new shape = " << new_instruction->shape().ToString() << "; inserting a bitcast."; new_instruction = computation->AddInstruction( HloInstruction::CreateBitcast(subshape, new_instruction)); } else if (tuple->opcode() == HloOpcode::kTuple && tuple->operand(i) == new_instruction) { VLOG(4) << "Tuple already contains the new instruction = " << new_instruction->ToShortString() << " tuple = " << tuple->ToShortString(); return tuple; } tuple_args[i] = new_instruction; } } else { tuple_args[i] = get_operand(); } } if (shape_index[0] == tuple_shape.tuple_shapes_size()) { tuple_args.push_back(new_instruction); } return computation->AddInstruction(HloInstruction::CreateTuple(tuple_args)); } HloInstruction* TupleUtil::AddGetTupleElements( const HloPosition& position) { HloInstruction* instruction = position.instruction; HloComputation* computation = instruction->parent(); for (int64_t index : position.index) { auto gte_it = absl::c_find_if( instruction->users(), [index](const HloInstruction* use) { return use != use->parent()->root_instruction() && use->opcode() == HloOpcode::kGetTupleElement && use->tuple_index() == index; }); if (gte_it != instruction->users().end()) { instruction = *gte_it; } else { instruction = computation->AddInstruction(HloInstruction::CreateGetTupleElement( instruction->shape().tuple_shapes(index), instruction, index)); } } return instruction; } ShapeTree<HloInstruction*> TupleUtil::DisassembleTupleInstruction( HloInstruction* tuple) { const Shape& shape = tuple->shape(); ShapeTree<HloInstruction*> result(shape); result.ForEachMutableElement([&](ShapeIndexView index, HloInstruction** element) { if (index.empty()) { *element = tuple; } else { ShapeIndexView parent_index = index.subspan(0, index.size() - 1); HloInstruction* parent = result.element(parent_index); std::string name = absl::StrCat(tuple->name(), ".disassembled.", absl::StrJoin(index, ".")); *element = tuple->parent()->AddInstruction( HloInstruction::CreateGetTupleElement(parent, index.back()), name); } }); return result; } HloInstruction* TupleUtil::AssembleTupleInstruction( HloComputation* computation, ShapeTree<HloInstruction*> elements, absl::string_view name) { elements.ForEachMutableElementPostOrder( [&](const ShapeIndex& index, HloInstruction** element) { const Shape& subshape = ShapeUtil::GetSubshape(elements.shape(), index); if (subshape.IsTuple()) { absl::InlinedVector<HloInstruction*, 2> children; ShapeIndex child_index = index; for (int i = 0; i < subshape.tuple_shapes_size(); ++i) { child_index.push_back(i); children.push_back(elements.element(child_index)); child_index.pop_back(); } std::string new_name; if (!name.empty()) { if (index.empty()) { new_name = std::string(name); } else { new_name = absl::StrCat(name, ".assembled.", absl::StrJoin(index, ".")); } } *element = computation->AddInstruction( HloInstruction::CreateTuple(children), new_name); } }); return elements.element({}); } }
#include "xla/service/tuple_util.h" #include <memory> #include <string> #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" namespace xla { namespace { namespace op = ::xla::testing::opcode_matchers; using TupleUtilTest = HloTestBase; TEST_F(TupleUtilTest, ExtractPrefix) { const std::string hlo_string = R"( HloModule Module ENTRY entry { p0 = (f32[32,32]{1,0},f32[32,32]{1,0},f32[32,32]{1,0}) parameter(0) ROOT p1 = f32[32,32]{1,0} parameter(1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* param0 = module->entry_computation()->parameter_instruction(0); HloInstruction* prefix = TupleUtil::ExtractPrefix(param0, 2); EXPECT_THAT(prefix, op::Tuple(op::GetTupleElement(op::Parameter(0), 0), op::GetTupleElement(op::Parameter(0), 1))); } TEST_F(TupleUtilTest, AppendSuffix) { const std::string hlo_string = R"( HloModule Module ENTRY entry { p0 = (f32[32,32]{1,0},f32[32,32]{1,0},f32[32,32]{1,0}) parameter(0) ROOT p1 = f32[32,32]{1,0} parameter(1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* param0 = module->entry_computation()->parameter_instruction(0); HloInstruction* param1 = module->entry_computation()->parameter_instruction(1); HloInstruction* with_suffix = TupleUtil::AppendSuffix(param0, {param1, param1}); EXPECT_THAT(with_suffix, op::Tuple(op::GetTupleElement(op::Parameter(0), 0), op::GetTupleElement(op::Parameter(0), 1), op::GetTupleElement(op::Parameter(0), 2), op::Parameter(1), op::Parameter(1))); } TEST_F(TupleUtilTest, ReplaceTupleWithTupleInst) { const std::string hlo_string = R"( HloModule Module ENTRY entry { p0 = f32[32,32]{1,0} parameter(0) p1 = f32[32,32]{1,0} parameter(1) ROOT tuple = (f32[32,32]{1,0}, f32[32,32]{1,0}) tuple(p0, p1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* p0 = FindInstruction(module.get(), "p0"); HloInstruction* tuple = FindInstruction(module.get(), "tuple"); TF_ASSERT_OK_AND_ASSIGN(HloInstruction * new_tuple, TupleUtil::ReplaceTupleWith(p0, tuple, {1})); EXPECT_THAT(new_tuple, op::Tuple(op::Parameter(0), op::Parameter(0))); } TEST_F(TupleUtilTest, ReplaceTupleWithNonTupleInst) { const std::string hlo_string = R"( HloModule Module ENTRY entry { ROOT p0 = (f32[32,32]{1,0}, f32[32,32]{1,0}) parameter(0) p1 = f32[32,32]{1,0} parameter(1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* p0 = FindInstruction(module.get(), "p0"); HloInstruction* p1 = FindInstruction(module.get(), "p1"); TF_ASSERT_OK_AND_ASSIGN(HloInstruction * new_tuple, TupleUtil::ReplaceTupleWith(p1, p0, {0})); EXPECT_THAT(new_tuple, op::Tuple(op::Parameter(1), op::GetTupleElement(op::Parameter(0), 1))); } TEST_F(TupleUtilTest, ReplaceTupleWithNonTupleInstNested) { const std::string hlo_string = R"( HloModule Module ENTRY entry { ROOT p0 = (f32[32,32]{1,0}, (f32[32,32]{1,0}, f32[32,32]{1,0})) parameter(0) p1 = f32[32,32]{1,0} parameter(1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* p0 = FindInstruction(module.get(), "p0"); HloInstruction* p1 = FindInstruction(module.get(), "p1"); TF_ASSERT_OK_AND_ASSIGN(HloInstruction * new_tuple, TupleUtil::ReplaceTupleWith(p1, p0, {1, 0})); EXPECT_THAT( new_tuple, op::Tuple(op::GetTupleElement(op::Parameter(0), 0), op::Tuple(op::Parameter(1), op::GetTupleElement( op::GetTupleElement(op::Parameter(0), 1), 1)))); } TEST_F(TupleUtilTest, AddGetTupleElements) { const std::string hlo_string = R"( HloModule Module ENTRY entry { p0 = (f32[32,32]{1,0}, (f32[32,32]{1,0}, f32[32,32]{1,0})) parameter(0) gte = (f32[32,32]{1,0}, f32[32,32]{1,0}) get-tuple-element(p0), index=1 ROOT root = f32[32,32]{1,0} get-tuple-element(gte), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* p0 = FindInstruction(module.get(), "p0"); HloInstruction* existing_gte = FindInstruction(module.get(), "gte"); HloInstruction* new_gte = TupleUtil::AddGetTupleElements({p0, {1, 0}}); EXPECT_THAT(new_gte, op::GetTupleElement(existing_gte, 0)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/tuple_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/tuple_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0c1e0df2-8f32-4754-b90e-7b6a758a3abc
cpp
tensorflow/tensorflow
all_gather_decomposer
third_party/xla/xla/service/all_gather_decomposer.cc
third_party/xla/xla/service/all_gather_decomposer_test.cc
#include "xla/service/all_gather_decomposer.h" #include <cstdint> #include <optional> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/service/collective_decomposer_utils.h" #include "xla/service/collective_ops_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace { HloComputation* MakeBinaryAdd(PrimitiveType type, HloModule* module) { HloComputation::Builder sum_b("add"); auto x = sum_b.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(type, {}), "x")); auto y = sum_b.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(type, {}), "y")); if (type == PRED) { sum_b.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(type, {}), HloOpcode::kOr, x, y)); } else { sum_b.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(type, {}), HloOpcode::kAdd, x, y)); } HloComputation* reduction = module->AddEmbeddedComputation(sum_b.Build()); return reduction; } } HloInstruction* AllGatherDecomposer::TranslateAllGatherToAllReducePerOperand( CollectiveOpGroupMode group_mode, const HloAllGatherInstruction& ag, const Shape& output_shape, HloInstruction* operand, HloComputation* comp, int64_t ag_dim) { std::vector<HloInstruction*> start_indices = CreateStartIndicesForCollectiveDecomposition( group_mode, ag.replica_groups(), operand->shape(), ag_dim, comp) .value(); auto zero = comp->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(output_shape.element_type()))); zero = comp->AddInstruction( HloInstruction::CreateBroadcast(output_shape, zero, {})); auto dus = comp->AddInstruction(HloInstruction::CreateDynamicUpdateSlice( zero->shape(), zero, operand, start_indices)); auto ar = comp->AddInstruction(HloInstruction::CreateAllReduce( dus->shape(), {dus}, MakeBinaryAdd(dus->shape().element_type(), comp->parent()), ag.device_list(), ag.constrain_layout(), ag.channel_id(), ag.use_global_device_ids())); return ar; } absl::Status AllGatherDecomposer::DecomposeAllGather( HloAllGatherInstruction* ag, HloComputation* comp) { TF_ASSIGN_OR_RETURN(CollectiveOpGroupMode group_mode, GetCollectiveOpGroupMode(ag->channel_id().has_value(), ag->use_global_device_ids())); if (ag->operand_count() > 1) { std::vector<HloInstruction*> tuple_inputs; for (int i = 0; i < ag->operand_count(); ++i) { auto* input_operand = ag->mutable_operand(i); const auto& output_shape = ag->shape().tuple_shapes(i); auto* ar = TranslateAllGatherToAllReducePerOperand( group_mode, *ag, output_shape, input_operand, comp, ag->all_gather_dimension()); tuple_inputs.push_back(ar); } auto tup = comp->AddInstruction(HloInstruction::CreateTuple(tuple_inputs)); TF_RETURN_IF_ERROR(ag->ReplaceAllUsesWith(tup)); } else { auto* ar = TranslateAllGatherToAllReducePerOperand( group_mode, *ag, ag->shape(), ag->mutable_operand(0), comp, ag->all_gather_dimension()); TF_RETURN_IF_ERROR(ag->ReplaceAllUsesWith(ar)); } TF_RETURN_IF_ERROR(comp->RemoveInstructionAndUnusedOperands(ag)); return absl::OkStatus(); } absl::StatusOr<bool> AllGatherDecomposer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (auto comp : module->MakeNonfusionComputations(execution_threads)) { for (auto hlo : comp->MakeInstructionPostOrder()) { if (hlo->opcode() != HloOpcode::kAllGather) { continue; } auto ag = Cast<HloAllGatherInstruction>(hlo); if (ShouldDecompose(*ag)) { TF_RETURN_IF_ERROR(DecomposeAllGather(ag, comp)); changed = true; } } } return changed; } }
#include "xla/service/all_gather_decomposer.h" #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using ::testing::AllOf; namespace op = xla::testing::opcode_matchers; using AllGatherDecomposerTest = HloTestBase; TEST_F(AllGatherDecomposerTest, CrossReplicaAllGather) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) ROOT ag = f32[10,80] all-gather(param0), replica_groups={}, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(op::ReplicaId(), op::Constant())))); } TEST_F(AllGatherDecomposerTest, CrossReplicaAndPartitionAllGather) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) ROOT ag = f32[10,80] all-gather(param0), replica_groups={{0}}, channel_id=1, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(op::PartitionId(), op::Constant())))); } TEST_F(AllGatherDecomposerTest, CrossReplicaAllGatherWithTrivialGroup) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) ROOT ag = f32[10,80] all-gather(param0), replica_groups={{0,1,2,3}}, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(op::ReplicaId(), op::Constant())))); } TEST_F(AllGatherDecomposerTest, CrossReplicaAllGatherWithSubgroups) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) ROOT ag = f32[10,80] all-gather(param0), replica_groups={{2,1,0,3}, {4,6,7,5}}, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); auto id = AllOf(op::Shape("u32[]"), op::Reshape(op::DynamicSlice(op::Constant(), op::ReplicaId()))); EXPECT_THAT(module->entry_computation()->root_instruction(), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(id, op::Constant())))); } TEST_F(AllGatherDecomposerTest, CrossReplicaAllGatherWithSubgroupsGlobalIds) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) ROOT ag = f32[10,80] all-gather(param0), replica_groups={{2,1,0,3}, {4,6,7,5}}, dimensions={1}, channel_id=1, use_global_device_ids=true } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); auto global_id = op::Add(op::Multiply(op::ReplicaId(), op::Constant()), op::PartitionId()); auto id = AllOf(op::Shape("u32[]"), op::Reshape(op::DynamicSlice(op::Constant(), global_id))); EXPECT_THAT(module->entry_computation()->root_instruction(), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(id, op::Constant())))); } TEST_F(AllGatherDecomposerTest, CrossReplicaAllGatherWithTuple) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) param1 = f32[10,16] parameter(1) ROOT ag = (f32[10,80], f32[10,64]) all-gather(param0, param1), replica_groups={}, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple( op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(op::ReplicaId(), op::Constant()))), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(1), op::Constant(), op::Multiply(op::ReplicaId(), op::Constant()))))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/all_gather_decomposer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/all_gather_decomposer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
88b9adff-15bb-48a6-920b-e030f186c9d9
cpp
tensorflow/tensorflow
all_reduce_folder
third_party/xla/xla/service/all_reduce_folder.cc
third_party/xla/xla/service/all_reduce_folder_test.cc
#include "xla/service/all_reduce_folder.h" #include <algorithm> #include <cstdint> #include <optional> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/all_reduce_key.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla { namespace { std::optional<std::vector<ReplicaGroup>> FoldReplicaGroups( absl::Span<const ReplicaGroup> replica_groups0, absl::Span<const ReplicaGroup> replica_groups1) { int64_t num_replicas = 0; for (const ReplicaGroup &rg : replica_groups0) { for (int64_t id : rg.replica_ids()) { num_replicas = std::max(num_replicas, id); } } num_replicas++; std::vector<int> replica_group_no(num_replicas, -1); for (int group_no = 0; group_no < replica_groups0.size(); ++group_no) { for (int64_t id : replica_groups0[group_no].replica_ids()) { replica_group_no[id] = group_no; } } absl::flat_hash_map<std::vector<bool>, int64_t> contributor_set_id; std::vector<int64_t> contributing_replicas_set_id(num_replicas, 0); int64_t next_id = 1; for (const ReplicaGroup &rg : replica_groups1) { std::vector<bool> contributors(num_replicas, false); for (int64_t id : rg.replica_ids()) { int64_t group_no = replica_group_no[id]; for (int64_t contrib : replica_groups0[group_no].replica_ids()) { if (contributors[contrib]) { return std::nullopt; } contributors[contrib] = true; } } int64_t set_id; auto it = contributor_set_id.find(contributors); if (it != contributor_set_id.end()) { set_id = it->second; } else { set_id = next_id++; contributor_set_id[contributors] = set_id; } for (int64_t id : rg.replica_ids()) { contributing_replicas_set_id[id] = set_id; } } std::vector<ReplicaGroup> new_replica_groups; new_replica_groups.reserve(contributor_set_id.size()); for (const auto &it : contributor_set_id) { const std::vector<bool> &contributors = it.first; const int64_t set_id = it.second; new_replica_groups.emplace_back(); ReplicaGroup &group = new_replica_groups.back(); for (int64_t replica = 0; replica < num_replicas; ++replica) { if (contributors[replica]) { if (contributing_replicas_set_id[replica] != set_id) { return std::nullopt; } group.add_replica_ids(replica); } } } absl::c_sort(new_replica_groups, [](const ReplicaGroup &a, const ReplicaGroup &b) { return a.replica_ids(0) < b.replica_ids(0); }); return new_replica_groups; } } absl::StatusOr<bool> AllReduceFolder::Run( HloModule *module, const absl::flat_hash_set<absl::string_view> &execution_threads) { if (hlo_query::ContainsLayoutConstrainedAllReduce(*module)) { VLOG(1) << "Skip AllReduceFolder because the module contains all-reduce " "with constrained layouts"; return false; } int64_t next_channel_id = hlo_query::NextChannelId(*module); bool changed = false; for (auto computation : module->computations(execution_threads)) { for (HloInstruction *inst : computation->MakeInstructionPostOrder()) { if (inst->opcode() != HloOpcode::kAllReduce || inst->operand(0)->opcode() != HloOpcode::kAllReduce) { continue; } auto *ar0 = Cast<HloAllReduceInstruction>(inst->mutable_operand(0)); auto *ar1 = Cast<HloAllReduceInstruction>(inst); if (ar0->user_count() != 1) { continue; } std::optional<AllReduceKey> key0 = GetAllReduceKey( ar0, nullptr, true); std::optional<AllReduceKey> key1 = GetAllReduceKey( ar1, nullptr, true); if (!key0 || !key1 || *key0 != *key1 || ar0->replica_groups().empty() || ar1->replica_groups().empty()) { continue; } std::optional<std::vector<ReplicaGroup>> new_replica_groups = FoldReplicaGroups(ar0->replica_groups(), ar1->replica_groups()); if (!new_replica_groups) { continue; } std::optional<int64_t> channel_id; if (ar0->channel_id()) { channel_id = next_channel_id++; } HloInstruction *new_ar = computation->AddInstruction(HloInstruction::CreateAllReduce( ar0->shape(), ar0->operands(), ar0->to_apply(), CollectiveDeviceList(*new_replica_groups), false, channel_id, ar0->use_global_device_ids())); TF_RETURN_IF_ERROR(ar1->ReplaceAllUsesWith(new_ar)); TF_RETURN_IF_ERROR(computation->RemoveInstruction(ar1)); TF_RETURN_IF_ERROR(computation->RemoveInstruction(ar0)); changed = true; } } return changed; } }
#include "xla/service/all_reduce_folder.h" #include <cstddef> #include <initializer_list> #include <memory> #include "absl/algorithm/container.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace matcher = xla::testing::opcode_matchers; using ::testing::HasSubstr; class AllReduceFolderTest : public HloTestBase {}; const char *k2AllReduce = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) ar0 = f32[8] all-reduce(p0), replica_groups=$group_0, to_apply=sum ROOT ar1 = f32[8] all-reduce(ar0), replica_groups=$group_1, to_apply=sum } )"; size_t AllReduceCount(HloModule *module) { return absl::c_count_if(module->entry_computation()->instructions(), HloPredicateIsOp<HloOpcode::kAllReduce>); } void ExpectOneAllReduce(HloModule *module, absl::string_view target_replica_groups) { EXPECT_EQ(AllReduceCount(module), 1); HloInstruction *root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, matcher::AllReduce(matcher::Parameter(0))); EXPECT_THAT(root->ToString(), HasSubstr(target_replica_groups)); } TEST_F(AllReduceFolderTest, Simple) { TF_ASSERT_OK_AND_ASSIGN( auto module, RunAndCheckHloRewrite(k2AllReduce, AllReduceFolder(), true, {{"$group_0", "{{0,1},{2,3}}"}, {"$group_1", "{{0,2},{1,3}}"}})); ExpectOneAllReduce(module.get(), "replica_groups={{0,1,2,3}}"); } TEST_F(AllReduceFolderTest, SimpleSwap) { TF_ASSERT_OK_AND_ASSIGN( auto module, RunAndCheckHloRewrite(k2AllReduce, AllReduceFolder(), true, {{"$group_1", "{{0,1},{2,3}}"}, {"$group_0", "{{0,2},{1,3}}"}})); ExpectOneAllReduce(module.get(), "replica_groups={{0,1,2,3}}"); } TEST_F(AllReduceFolderTest, BothEmptyReplicaGroups_NotTransformed) { TF_ASSERT_OK(RunAndCheckHloRewrite(k2AllReduce, AllReduceFolder(), false, {{"$group_0", "{}"}, {"$group_1", "{}"}})); } TEST_F(AllReduceFolderTest, EmptyReplicaGroups_NotTransformed) { TF_ASSERT_OK(RunAndCheckHloRewrite( k2AllReduce, AllReduceFolder(), false, {{"$group_0", "{}"}, {"$group_1", "{{0,2},{1,3}}"}})); } TEST_F(AllReduceFolderTest, MismatchOtherProperties0_NotTransformed) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) ar0 = f32[8] all-reduce(p0), replica_groups={{0,1},{2,3}}, channel_id=1, to_apply=sum ROOT ar1 = f32[8] all-reduce(ar0), replica_groups={{0,2},{1,3}}, to_apply=sum } )"; TF_ASSERT_OK(RunAndCheckHloRewrite(hlo_string, AllReduceFolder(), false)); } TEST_F(AllReduceFolderTest, MismatchOtherProperties1_NotTransformed) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } mul { a = f32[] parameter(0) b = f32[] parameter(1) ROOT mul = f32[] multiply(a, b) } ENTRY main { p0 = f32[8] parameter(0) ar0 = f32[8] all-reduce(p0), replica_groups={{0,1},{2,3}}, to_apply=sum ROOT ar1 = f32[8] all-reduce(ar0), replica_groups={{0,2},{1,3}}, to_apply=mul } )"; TF_ASSERT_OK(RunAndCheckHloRewrite(hlo_string, AllReduceFolder(), false)); } TEST_F(AllReduceFolderTest, NotFoldable_NotTransformed) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) ar0 = f32[8] all-reduce(p0), replica_groups={{0,1},{2,3}}, to_apply=sum ROOT ar1 = f32[8] all-reduce(ar0), replica_groups={{0,1},{2,3}}, to_apply=sum } )"; TF_ASSERT_OK(RunAndCheckHloRewrite(hlo_string, AllReduceFolder(), false)); } TEST_F(AllReduceFolderTest, Foldable0) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) ar0 = f32[8] all-reduce(p0), replica_groups={{0,4},{1,5},{2,3},{6,7}}, to_apply=sum ROOT ar1 = f32[8] all-reduce(ar0), replica_groups={{0,5},{4,1},{2,7},{3,6}}, to_apply=sum } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunAndCheckHloRewrite(hlo_string, AllReduceFolder())); ExpectOneAllReduce(module.get(), "replica_groups={{0,1,4,5},{2,3,6,7}}"); } TEST_F(AllReduceFolderTest, FoldableChain) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) ar0 = f32[8] all-reduce(p0), replica_groups={{0,1},{2,3},{4,5},{6,7}}, to_apply=sum ar1 = f32[8] all-reduce(ar0), replica_groups={{0,2},{1,3},{4,6},{5,7}}, to_apply=sum ROOT ar2 = f32[8] all-reduce(ar1), replica_groups={{0,4},{1,5},{2,6},{3,7}}, to_apply=sum } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunAndCheckHloRewrite(hlo_string, AllReduceFolder())); ExpectOneAllReduce(module.get(), "replica_groups={{0,1,2,3,4,5,6,7}}"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/all_reduce_folder.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/all_reduce_folder_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1adb9aee-06f6-4921-bc77-f195f56319b6
cpp
tensorflow/tensorflow
sharding_remover
third_party/xla/xla/service/sharding_remover.cc
third_party/xla/xla/service/sharding_remover_test.cc
#include "xla/service/sharding_remover.h" #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/spmd/shardy/constants.h" #include "tsl/platform/errors.h" namespace xla { absl::StatusOr<bool> ShardingRemover::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; const absl::flat_hash_set<absl::string_view> to_remove_sharding_ops = { "Sharding", "SPMDShardToFullShape", "SPMDFullToShardShape", sdy::kFuncResultShardingTargetName}; for (HloComputation* computation : module->computations(execution_threads)) { auto instructions = computation->MakeInstructionPostOrder(); std::reverse(instructions.begin(), instructions.end()); for (HloInstruction* instruction : instructions) { if (instruction->opcode() != HloOpcode::kCustomCall) { continue; } if (!to_remove_sharding_ops.contains(instruction->custom_call_target())) { continue; } CHECK(instruction->operand_count() == 1) << "Sharding instruction must have exactly one operand"; TF_RETURN_IF_ERROR(instruction->ReplaceAllUsesWith( instruction->mutable_operand(0), name())); changed = true; if (instruction->custom_call_target() == "Sharding" || instruction->custom_call_target() == sdy::kFuncResultShardingTargetName) { auto copy = computation->AddInstruction( HloInstruction::CreateUnary(instruction->shape(), HloOpcode::kCopy, instruction->mutable_operand(0))); TF_RETURN_IF_ERROR(computation->ReplaceInstruction(instruction, copy)); instruction = copy; } } } return changed; } }
#include "xla/service/sharding_remover.h" #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_parser.h" #include "xla/status_macros.h" #include "xla/tests/hlo_test_base.h" namespace op = xla::testing::opcode_matchers; namespace xla { namespace { using ShardingRemoverTest = HloTestBase; TEST_F(ShardingRemoverTest, RemoveSharding) { const char* const hlo_string = R"( HloModule module ENTRY entry { %parameter.3379 = f32[1,1]{1,0} parameter(0) %custom-call.3380 = f32[1,1]{1,0} custom-call(f32[1,1]{1,0} %parameter.3379), custom_call_target="Sharding", sharding={replicated} ROOT %reshape.6032 = f32[] reshape(f32[1,1]{1,0} %custom-call.3380) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, ShardingRemover().Run(module.get())); EXPECT_TRUE(changed); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Reshape(op::Parameter())); auto parameter = root->operand(0); EXPECT_EQ(parameter->user_count(), 2); bool replaced = false; for (HloInstruction* user : parameter->users()) { if (user->opcode() == HloOpcode::kCopy) { replaced = true; EXPECT_THAT(user, op::Copy(op::Parameter())); break; } } EXPECT_TRUE(replaced); } TEST_F(ShardingRemoverTest, RemoveSPMDShardingToFullShape) { const char* const hlo_string = R"( HloModule module ENTRY entry { %parameter.3379 = f32[1,1]{1,0} parameter(0) %custom-call.3380 = f32[1,1]{1,0} custom-call(f32[1,1]{1,0} %parameter.3379), custom_call_target="SPMDShardToFullShape", sharding={replicated} ROOT %reshape.6032 = f32[] reshape(f32[1,1]{1,0} %custom-call.3380) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, ShardingRemover().Run(module.get())); EXPECT_TRUE(changed); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Reshape(op::Parameter())); } TEST_F(ShardingRemoverTest, RemoveSPMDFullToShardShape) { const char* const hlo_string = R"( HloModule module ENTRY entry { %parameter.3379 = f32[1,1]{1,0} parameter(0) %custom-call.3380 = f32[1,1]{1,0} custom-call(f32[1,1]{1,0} %parameter.3379), custom_call_target="SPMDFullToShardShape", sharding={replicated} ROOT %reshape.6032 = f32[] reshape(f32[1,1]{1,0} %custom-call.3380) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, ShardingRemover().Run(module.get())); EXPECT_TRUE(changed); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Reshape(op::Parameter())); } TEST_F(ShardingRemoverTest, NoChangeForOtherCustomCall) { const char* const hlo_string = R"( HloModule cluster_2013453984438090939__.47 ENTRY %cluster_2013453984438090939__.47 (arg_tuple.1: ()) -> (bf16[2,2000], s32[2,2000]) { %arg_tuple.1 = bf16[2,209664] parameter(0) %custom-call = (bf16[2,2000]{1,0}, s32[2,2000]{1,0}) custom-call(bf16[2,209664]{1,0} %arg_tuple.1), custom_call_target="TopK" %get-tuple-element = bf16[2,2000]{1,0} get-tuple-element((bf16[2,2000]{1,0}, s32[2,2000]{1,0}) %custom-call), index=0 %get-tuple-element.1 = s32[2,2000]{1,0} get-tuple-element((bf16[2,2000]{1,0}, s32[2,2000]{1,0}) %custom-call), index=1, sharding={replicated} ROOT %tuple.46 = (bf16[2,2000]{1,0}, s32[2,2000]{1,0}) tuple(bf16[2,2000]{1,0} %get-tuple-element, s32[2,2000]{1,0} %get-tuple-element.1), metadata={op_name="XLA_Retvals"} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, ShardingRemover().Run(module.get())); EXPECT_FALSE(changed); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/sharding_remover.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/sharding_remover_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
de45acd3-74d9-4eaa-9c40-ea4acfaf2a07
cpp
tensorflow/tensorflow
tuple_points_to_analysis
third_party/xla/xla/service/tuple_points_to_analysis.cc
third_party/xla/xla/service/tuple_points_to_analysis_test.cc
#include "xla/service/tuple_points_to_analysis.h" #include <memory> #include <ostream> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/map_util.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/shape_util.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { std::string BufferAlias::ToString() const { return absl::StrCat("BufferAlias(", instruction_->name(), "[", absl::StrJoin(index_, ","), "])"); } std::ostream& operator<<(std::ostream& out, const BufferAlias& buffer_alias) { out << buffer_alias.ToString(); return out; } bool PointsToSet::IsAmbiguous() const { bool ambiguous = false; ForEachElement( [&ambiguous](const ShapeIndex& , const BufferList& points_to) { ambiguous |= points_to.size() > 1; }); return ambiguous; } bool PointsToSet::IsDistinct() const { bool distinct = true; absl::flat_hash_set<const LogicalBuffer*> all_points_to; ForEachElement([&](const ShapeIndex& , const BufferList& points_to) { for (auto& buffer : points_to) { if (all_points_to.contains(buffer)) { distinct = false; } all_points_to.insert(buffer); } }); return distinct; } size_t PointsToSet::size() const { return CreateFlattenedSet().size(); } PointsToSet::BufferSet PointsToSet::CreateFlattenedSet() const { BufferSet flat_set; ForEachElement( [&flat_set](const ShapeIndex& , const BufferList& buffers) { flat_set.insert(buffers.begin(), buffers.end()); }); return flat_set; } bool PointsToSet::ContainsBuffer(const LogicalBuffer& buffer) const { bool found = false; ForEachElement([&found, &buffer](const ShapeIndex& , const BufferList& pointed_to_buffers) { if (!found && absl::c_linear_search(pointed_to_buffers, &buffer)) { found = true; } }); return found; } bool PointsToSet::ContainsBufferAtIndex(const LogicalBuffer& buffer, const ShapeIndex& index) const { const auto& pointed_to_buffers = element(index); return absl::c_linear_search(pointed_to_buffers, &buffer); } void PointsToSet::AddPointedToBuffer(const LogicalBuffer& buffer, const ShapeIndex& index) { if (ContainsBufferAtIndex(buffer, index)) { return; } mutable_element(index)->push_back(&buffer); } const PointsToSet::SourceSet& PointsToSet::tuple_sources( const ShapeIndex& index) const { return tree_.element(index).tuple_sources; } void PointsToSet::add_tuple_source(const ShapeIndex& index, HloInstruction* tuple) { tree_.mutable_element(index)->tuple_sources.insert(tuple); } namespace { void GatherFusionInstructions( HloInstruction* instruction, std::vector<HloInstruction*>* fusion_instructions) { CHECK_EQ(HloOpcode::kFusion, instruction->opcode()); for (auto* fused : instruction->fused_instructions()) { if (fused->opcode() == HloOpcode::kFusion) { GatherFusionInstructions(fused, fusion_instructions); } } fusion_instructions->push_back(instruction); } } absl::StatusOr<std::unique_ptr<TuplePointsToAnalysis>> TuplePointsToAnalysis::Run(const HloModule* module) { auto logical_buffer_analysis = LogicalBufferAnalysis::Run(module); std::unique_ptr<TuplePointsToAnalysis> analysis(new TuplePointsToAnalysis( module, std::move(logical_buffer_analysis).value())); TF_RETURN_IF_ERROR(analysis->Analyze()); return std::move(analysis); } absl::Status TuplePointsToAnalysis::Analyze() { per_instruction_.clear(); per_instruction_.reserve(module_->instruction_count()); logical_buffer_aliases_.clear(); logical_buffer_aliases_.resize( logical_buffer_analysis_->num_logical_buffers()); std::vector<HloInstruction*> fusion_instructions; for (auto* computation : module_->MakeNonfusionComputations()) { TF_RETURN_IF_ERROR(computation->Accept(this)); TF_RETURN_IF_ERROR( PopulateDefinedBuffersAndAliases(computation->instructions())); for (auto* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kFusion) { GatherFusionInstructions(instruction, &fusion_instructions); } } } for (auto* instruction : fusion_instructions) { TF_RETURN_IF_ERROR(instruction->fused_expression_root()->Accept(this)); TF_RETURN_IF_ERROR( PopulateDefinedBuffersAndAliases(instruction->fused_instructions())); } XLA_VLOG_LINES(3, ToString()); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::PopulateDefinedBuffersAndAliases( const decltype(std::declval<HloComputation>() .instructions())& instructions) { for (auto* instruction : instructions) { PerInstruction* pi = PerInst(instruction); TF_RETURN_IF_ERROR(GatherBuffersDefinedByInstruction( instruction, &pi->instruction_defined_buffers)); const PointsToSet& points_to_set = GetPointsToSet(instruction); points_to_set.ForEachElement( [this, &instruction]( const ShapeIndex& index, const PointsToSet::BufferList& pointed_to_buffers) { for (const LogicalBuffer* buffer : pointed_to_buffers) { logical_buffer_aliases_[buffer->id()].emplace_back(instruction, index); } }); } return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::DefaultAction( HloInstruction* hlo_instruction) { PointsToSet& points_to_set = CreateEmptyPointsToSet(hlo_instruction); points_to_set.ForEachMutableElement( [this, hlo_instruction](const ShapeIndex& index, PointsToSet::BufferList* buffers) { buffers->push_back( &logical_buffer_analysis_->GetBuffer(hlo_instruction, index)); }); if (hlo_instruction->shape().IsTuple()) { points_to_set.add_tuple_source({}, hlo_instruction); } return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleGetTupleElement( HloInstruction* get_tuple_element) { int64_t element_index = get_tuple_element->tuple_index(); PointsToSet& points_to_set = CreateEmptyPointsToSet(get_tuple_element); const PointsToSet& operand_points_to_set = *PerInst(get_tuple_element->operand(0))->points_to_set; points_to_set.ForEachMutableElement( [&](const ShapeIndex& target_index, PointsToSet::BufferList* points_to) { ShapeIndex src_index; src_index.push_back(element_index); for (auto element : target_index) { src_index.push_back(element); } *points_to = operand_points_to_set.element(src_index); for (HloInstruction* tuple : operand_points_to_set.tuple_sources(src_index)) { points_to_set.add_tuple_source(target_index, tuple); } }); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleCopy(HloInstruction* copy) { PointsToSet& points_to_set = CreateCopiedPointsToSet(copy, copy->operand(0)); points_to_set.mutable_element({})->clear(); points_to_set.AddPointedToBuffer( logical_buffer_analysis_->GetBuffer(copy, {}), {}); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleBitcast(HloInstruction* bitcast) { CreateCopiedPointsToSet(bitcast, bitcast->operand(0)); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleDomain(HloInstruction* domain) { CreateCopiedPointsToSet(domain, domain->operand(0)); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleAddDependency( HloInstruction* add_dependency) { CreateCopiedPointsToSet(add_dependency, add_dependency->operand(0)); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleRecvDone(HloInstruction* recv_done) { PointsToSet& points_to_set = CreateEmptyPointsToSet(recv_done); points_to_set.AddPointedToBuffer( logical_buffer_analysis_->GetBuffer(recv_done, {}), {}); points_to_set.AddPointedToBuffer( logical_buffer_analysis_->GetBuffer(recv_done, {1}), {1}); const PointsToSet& operand_points_to_set = GetPointsToSet(recv_done->operand(0)); points_to_set.ForEachMutableElement( [&points_to_set, &operand_points_to_set]( const ShapeIndex& index, PointsToSet::BufferList* buffers) { if (index.empty() || index[0] != 0) { return; } *buffers = operand_points_to_set.element(index); for (auto& tuple_source : operand_points_to_set.tuple_sources(index)) { points_to_set.add_tuple_source(index, tuple_source); } }); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleAsyncStart( HloInstruction* async_start) { PointsToSet& points_to_set = CreateEmptyPointsToSet(async_start); points_to_set.ForEachMutableElement( [&](const ShapeIndex& target_index, PointsToSet::BufferList* buffers) { if (target_index.size() >= 2 && target_index.front() == 0) { const PointsToSet& operand_points_to_set = GetPointsToSet(async_start->operand(target_index[1])); ShapeIndex source_index(target_index.begin() + 2, target_index.end()); *buffers = operand_points_to_set.element(source_index); for (HloInstruction* tuple : operand_points_to_set.tuple_sources(source_index)) { points_to_set.add_tuple_source(target_index, tuple); } } else { buffers->push_back( &logical_buffer_analysis_->GetBuffer(async_start, target_index)); } }); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleAsyncUpdate( HloInstruction* async_update) { PointsToSet& points_to_set = CreateEmptyPointsToSet(async_update); const PointsToSet& operand_points_to_set = GetPointsToSet(async_update->operand(0)); CHECK_EQ(async_update->shape(), async_update->operand(0)->shape()); points_to_set.ForEachMutableElement([&](const ShapeIndex& index, PointsToSet::BufferList* buffers) { *buffers = operand_points_to_set.element(index); for (HloInstruction* tuple : operand_points_to_set.tuple_sources(index)) { points_to_set.add_tuple_source(index, tuple); } }); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleAsyncDone( HloInstruction* async_done) { PointsToSet& points_to_set = CreateEmptyPointsToSet(async_done); const PointsToSet& operand_points_to_set = GetPointsToSet(async_done->operand(0)); operand_points_to_set.ForEachElement( [&points_to_set, &operand_points_to_set]( const ShapeIndex& src_index, const PointsToSet::BufferList& points_to) { if (!src_index.empty() && src_index.front() == 1) { const ShapeIndex target_index(src_index.begin() + 1, src_index.end()); *points_to_set.mutable_element(target_index) = points_to; for (HloInstruction* tuple : operand_points_to_set.tuple_sources(src_index)) { points_to_set.add_tuple_source(target_index, tuple); } } }); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleCopyStart( HloInstruction* copy_start) { PointsToSet& points_to_set = CreateEmptyPointsToSet(copy_start); const PointsToSet& operand_points_to_set = GetPointsToSet(copy_start->operand(0)); points_to_set.ForEachMutableElement( [&](const ShapeIndex& target_index, PointsToSet::BufferList* buffers) { if (target_index == ShapeIndex({1})) { *buffers = operand_points_to_set.element({}); } else { buffers->push_back( &logical_buffer_analysis_->GetBuffer(copy_start, target_index)); } }); for (HloInstruction* tuple : operand_points_to_set.tuple_sources({})) { points_to_set.add_tuple_source({1}, tuple); } return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleCopyDone(HloInstruction* copy_done) { PointsToSet& points_to_set = CreateEmptyPointsToSet(copy_done); const PointsToSet& operand_points_to_set = GetPointsToSet(copy_done->operand(0)); operand_points_to_set.ForEachElement( [&points_to_set, &operand_points_to_set]( const ShapeIndex& src_index, const PointsToSet::BufferList& points_to) { if (src_index == ShapeIndex({0})) { const ShapeIndex target_index = {}; *points_to_set.mutable_element(target_index) = points_to; for (HloInstruction* tuple : operand_points_to_set.tuple_sources(src_index)) { points_to_set.add_tuple_source(target_index, tuple); } } }); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleSend(HloInstruction* send) { PointsToSet& points_to_set = CreateEmptyPointsToSet(send); auto top_buffer = points_to_set.mutable_element(ShapeIndex({})); top_buffer->push_back( &logical_buffer_analysis_->GetBuffer(send, ShapeIndex({}))); points_to_set.add_tuple_source({}, send); auto context_buffer = points_to_set.mutable_element(ShapeIndex({1})); context_buffer->push_back( &logical_buffer_analysis_->GetBuffer(send, ShapeIndex({1}))); auto token_buffer = points_to_set.mutable_element(ShapeIndex({2})); token_buffer->push_back( &logical_buffer_analysis_->GetBuffer(send, ShapeIndex({2}))); const PointsToSet& operand_points_to_set = GetPointsToSet(send->operand(0)); operand_points_to_set.ForEachElement( [&points_to_set, &operand_points_to_set]( const ShapeIndex& src_index, const PointsToSet::BufferList& points_to) { ShapeIndex target_index({0}); for (auto element : src_index) { target_index.push_back(element); } *points_to_set.mutable_element(target_index) = points_to; for (HloInstruction* tuple : operand_points_to_set.tuple_sources(src_index)) { points_to_set.add_tuple_source(target_index, tuple); } }); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleTuple(HloInstruction* tuple) { absl::Span<HloInstruction* const> operands(tuple->operands()); PointsToSet& points_to_set = CreateEmptyPointsToSet(tuple); points_to_set.AddPointedToBuffer( logical_buffer_analysis_->GetBuffer(tuple, {}), {}); for (int64_t i = 0; i < operands.size(); ++i) { const PointsToSet& operand_points_to_set = *PerInst(operands[i])->points_to_set; operand_points_to_set.ForEachElement( [&points_to_set, &operand_points_to_set, i]( const ShapeIndex& src_index, const PointsToSet::BufferList& points_to) { ShapeIndex target_index; target_index.push_back(i); for (auto element : src_index) { target_index.push_back(element); } *points_to_set.mutable_element(target_index) = points_to; for (HloInstruction* tuple : operand_points_to_set.tuple_sources(src_index)) { points_to_set.add_tuple_source(target_index, tuple); } }); } points_to_set.add_tuple_source({}, tuple); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleCustomCall( HloInstruction* custom_call) { auto ccall = Cast<HloCustomCallInstruction>(custom_call); PointsToSet& points_to_set = CreateEmptyPointsToSet(custom_call); absl::flat_hash_map<ShapeIndex, std::pair<int64_t, ShapeIndex>> aliased_outputs; for (const auto& pair : ccall->output_to_operand_aliasing()) { aliased_outputs.emplace(pair.first, pair.second); } points_to_set.ForEachMutableElement([&](const ShapeIndex& index, PointsToSet::BufferList* buffers) { auto it = aliased_outputs.find(index); if (it == aliased_outputs.end() || !alias_buffer_across_dataflow_) { points_to_set.AddPointedToBuffer( logical_buffer_analysis_->GetBuffer(custom_call, index), index); } else { const PointsToSet& input_set = *PerInst(ccall->operand(it->second.first))->points_to_set; for (const LogicalBuffer* input_buffer : input_set.element(it->second.second)) { points_to_set.AddPointedToBuffer(*input_buffer, index); } for (HloInstruction* tuple : input_set.tuple_sources(it->second.second)) { points_to_set.add_tuple_source(index, tuple); } } }); points_to_set.add_tuple_source({}, custom_call); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleFusion(HloInstruction* fusion) { auto cfusion = Cast<HloFusionInstruction>(fusion); PointsToSet& points_to_set = CreateEmptyPointsToSet(fusion); absl::flat_hash_map<ShapeIndex, std::pair<int64_t, ShapeIndex>> aliased_outputs; for (const auto& pair : cfusion->output_to_operand_aliasing()) { aliased_outputs.emplace(pair.first, pair.second); } points_to_set.ForEachMutableElement([&](const ShapeIndex& index, PointsToSet::BufferList* buffers) { auto it = aliased_outputs.find(index); if (it == aliased_outputs.end()) { points_to_set.AddPointedToBuffer( logical_buffer_analysis_->GetBuffer(fusion, index), index); } else { const PointsToSet& input_set = *PerInst(cfusion->operand(it->second.first))->points_to_set; for (const LogicalBuffer* input_buffer : input_set.element(it->second.second)) { points_to_set.AddPointedToBuffer(*input_buffer, index); } for (HloInstruction* tuple : input_set.tuple_sources(it->second.second)) { points_to_set.add_tuple_source(index, tuple); } } }); points_to_set.add_tuple_source({}, fusion); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleOptimizationBarrier( HloInstruction* barrier) { CreateCopiedPointsToSet(barrier, barrier->operand(0)); return absl::OkStatus(); } const PointsToSet& TuplePointsToAnalysis::GetPointsToSet( const HloInstruction* hlo_instruction) const { return *PerInst(hlo_instruction)->points_to_set; } PointsToSet& TuplePointsToAnalysis::CreateEmptyPointsToSet( const HloInstruction* instruction) { PerInstruction* pi = PerInst(instruction); CHECK(pi->points_to_set == nullptr) << "instruction should not have been present in the map."; auto set = std::make_unique<PointsToSet>(&instruction->shape()); pi->points_to_set = std::move(set); return *pi->points_to_set; } bool TuplePointsToAnalysis::InstructionDefinesBufferAtIndex( const HloInstruction* instruction, const ShapeIndex& index) const { const auto& buffers = GetPointsToSet(instruction).element(index); return (buffers.size() == 1 && buffers[0]->instruction() == instruction); } absl::Status TuplePointsToAnalysis::VerifyBuffer( const LogicalBuffer& buffer) const { if (!InstructionDefinesBufferAtIndex(buffer.instruction(), buffer.index())) { return FailedPrecondition( "LogicalBuffer %s is ill-defined: instruction %s does not define a " "buffer at that index", buffer.ToString(), buffer.instruction()->name()); } if (buffer.id() < 0 || buffer.id() >= logical_buffer_analysis_->num_logical_buffers()) { return FailedPrecondition("LogicalBuffer %s is ill-defined: invalid id %d", buffer.ToString(), buffer.id()); } if (GetBuffer(buffer.id()).instruction() != buffer.instruction() || GetBuffer(buffer.id()).index() != buffer.index()) { return FailedPrecondition( "LogicalBuffer %s is ill-defined: buffer with same id differs: %s", buffer.ToString(), GetBuffer(buffer.id()).ToString()); } return absl::OkStatus(); } const LogicalBuffer& TuplePointsToAnalysis::GetBuffer( LogicalBuffer::Id id) const { CHECK_GE(id, 0); CHECK_LT(id, logical_buffer_analysis_->num_logical_buffers()); return logical_buffer_analysis_->GetBuffer(id); } absl::StatusOr<const LogicalBuffer*> TuplePointsToAnalysis::GetBufferDefinedAt( const HloInstruction* instruction, const ShapeIndex& index) const { const auto& buffers = GetPointsToSet(instruction).element(index); if (buffers.size() != 1 || buffers[0]->instruction() != instruction) { return FailedPrecondition( "instruction %s does not define buffer at index {%s}", instruction->name(), absl::StrJoin(index, ",")); } return buffers[0]; } const TuplePointsToAnalysis::BufferAliasVector& TuplePointsToAnalysis::GetBufferAliases(const LogicalBuffer& buffer) const { return logical_buffer_aliases_[buffer.id()]; } const TuplePointsToAnalysis::BufferDefinitionVector& TuplePointsToAnalysis::GetBuffersDefinedByInstruction( const HloInstruction* instruction) const { return PerInst(instruction)->instruction_defined_buffers; } absl::Status TuplePointsToAnalysis::GatherBuffersDefinedByInstruction( const HloInstruction* instruction, TuplePointsToAnalysis::BufferDefinitionVector* buffers) { GetPointsToSet(instruction) .ForEachElement([buffers, instruction]( const ShapeIndex& index, const PointsToSet::BufferList& source_buffers) { CHECK(!source_buffers.empty()); if (source_buffers.size() == 1 && source_buffers[0]->instruction() == instruction) { DCHECK(source_buffers[0]->index() == index); buffers->push_back(source_buffers[0]); } else { for (const LogicalBuffer* source_buffer : source_buffers) { DCHECK(source_buffer->instruction() != instruction); } } }); return absl::OkStatus(); } PointsToSet& TuplePointsToAnalysis::CreateCopiedPointsToSet( const HloInstruction* instruction, const HloInstruction* src) { PointsToSet& dst_points_to_set = CreateEmptyPointsToSet(instruction); const PointsToSet& src_points_to_set = GetPointsToSet(src); dst_points_to_set.ForEachMutableElement( [&dst_points_to_set, &src_points_to_set]( const ShapeIndex& index, PointsToSet::BufferList* buffers) { *buffers = src_points_to_set.element(index); for (auto& tuple_source : src_points_to_set.tuple_sources(index)) { dst_points_to_set.add_tuple_source(index, tuple_source); } }); return *PerInst(instruction)->points_to_set; } std::string TuplePointsToAnalysis::ToString() const { std::string output = absl::StrFormat("TuplePointsToSet for module %s:\n", module_->name()); for (const auto* computation : module_->MakeNonfusionComputations()) { const char* entry = computation == module_->entry_computation() ? "entry " : ""; absl::StrAppend(&output, entry, "computation ", computation->name(), ":\n"); for (const HloInstruction* instruction : computation->MakeInstructionPostOrder()) { InstructionToString(instruction, &output); if (instruction->opcode() == HloOpcode::kFusion) { for (auto* fused : instruction->fused_instructions()) { InstructionToString(fused, &output); } } } } absl::StrAppend(&output, "LogicalBuffers:\n"); for (const auto& b : logical_buffer_analysis_->logical_buffers()) { absl::StrAppend(&output, " buffer ", b->ToString(), ":\n"); for (const BufferAlias& alias : logical_buffer_aliases_[b->id()]) { absl::StrAppend(&output, " alias ", alias.ToString(), "\n"); } } return output; } void TuplePointsToAnalysis::InstructionToString( const HloInstruction* instruction, std::string* output) const { const std::string prefix = instruction->IsFused() ? " " : ""; absl::StrAppend(output, prefix, " instruction ", instruction->ToShortString(), ":\n"); const PointsToSet& points_to_set = GetPointsToSet(instruction); points_to_set.ForEachElement( [&prefix, &output](const ShapeIndex& index, const PointsToSet::BufferList& points_to) { absl::StrAppend( output, prefix, " {", absl::StrJoin(index, ","), "}: ", absl::StrJoin(points_to, ", ", [](std::string* out, const LogicalBuffer* source) { out->append(source->ToString()); }), "\n"); }); } bool TuplePointsToAnalysis::DoesNotUseOperandBuffer( const HloInstruction* operand, const ShapeIndex& index, const HloInstruction* user) const { CHECK(user->IsUserOf(operand)) << "user: " << user->ToString() << " operand: " << operand->ToString(); if (user->opcode() == HloOpcode::kGetTupleElement && !index.empty()) { return true; } else if (user->IsLoopFusion()) { auto it = absl::c_find_if( user->fused_parameters(), [&](HloInstruction* fused_param) { return user->operand(fused_param->parameter_number()) == operand; }); CHECK(it != user->fused_parameters().end()); const LogicalBuffer* buffer = GetBufferDefinedAt(*it, index).value(); for (const BufferAlias& alias : GetBufferAliases(*buffer)) { for (HloInstruction* alias_user : alias.instruction()->users()) { if (DoesNotUseOperandBuffer(alias.instruction(), alias.index(), alias_user)) { continue; } return false; } } return true; } return false; } std::vector<std::pair<HloInstruction*, int64_t>> TuplePointsToAnalysis::GetAllUsesOfInstructionAtIndex( HloInstruction* instruction, const ShapeIndex& index) const { std::vector<std::pair<HloInstruction*, int64_t>> uses; const PointsToSet::BufferList& points_to = GetPointsToSet(instruction).element(index); for (const LogicalBuffer* buffer : points_to) { for (const BufferAlias& alias : GetBufferAliases(*buffer)) { for (HloInstruction* alias_user : alias.instruction()->users()) { if (DoesNotUseOperandBuffer(alias.instruction(), alias.index(), alias_user)) { continue; } for (int64_t op_idx : alias_user->OperandIndices(alias.instruction())) { uses.emplace_back(alias_user, op_idx); } } } } return uses; } bool TuplePointsToAnalysis::HasUniqueFusedUseOfOperandAt( HloInstruction* operand, const ShapeIndex& operand_index, HloInstruction* fusion, const int64_t use_operand_index) const { CHECK_EQ(HloOpcode::kFusion, fusion->opcode()); if (fusion->OperandIndices(operand).size() > 1) { return false; } const auto& fused_params = fusion->fused_parameters(); auto fused_param_it = absl::c_find_if(fused_params, [&](HloInstruction* fused_param) { return fusion->operand(fused_param->parameter_number()) == operand; }); if (fused_param_it == fused_params.end()) { return false; } auto* fused_param = *fused_param_it; auto fused_param_uses = GetAllUsesOfInstructionAtIndex(fused_param, operand_index); return fused_param_uses.size() == 1 && fused_param_uses[0].first == fusion->fused_expression_root() && fused_param_uses[0].second == use_operand_index; } }
#include "xla/service/tuple_points_to_analysis.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/service/logical_buffer.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { using ::testing::UnorderedElementsAre; using ::testing::UnorderedElementsAreArray; class TuplePointsToAnalysisTest : public HloTestBase { protected: void BuildModuleAndRunAnalysis(std::unique_ptr<HloComputation> computation) { BuildModule(std::move(computation)); RunAnalysis(); } void BuildModule(std::unique_ptr<HloComputation> computation) { module_ = CreateNewVerifiedModule(); module_->AddEntryComputation(std::move(computation)); } void RunAnalysis() { CHECK_NOTNULL(module_.get()); points_to_analysis_ = TuplePointsToAnalysis::Run(module_.get()).value(); } const LogicalBuffer* GetBuffer(const HloInstruction* instruction, const ShapeIndex& index) { const auto& pointed_to = points_to_analysis_->GetPointsToSet(instruction).element(index); CHECK_EQ(1, pointed_to.size()); CHECK_EQ(instruction, pointed_to[0]->instruction()); CHECK(index == pointed_to[0]->index()); return pointed_to[0]; } void ExpectHasBuffers(const PointsToSet::BufferList& points_to_set, absl::Span<const LogicalBuffer* const> buffers) { std::vector<const LogicalBuffer*> vec(buffers.begin(), buffers.end()); EXPECT_THAT(points_to_set, UnorderedElementsAreArray(vec)); } void ExpectHasTopLevelBuffers( const PointsToSet::BufferList& points_to_set, absl::Span<HloInstruction* const> instructions) { PointsToSet::BufferList buffers; for (auto instruction : instructions) { buffers.push_back(GetBuffer(instruction, {})); } ExpectHasBuffers(points_to_set, buffers); } void ExpectHasTopLevelBuffers( const PointsToSet::BufferSet& points_to_set, absl::Span<HloInstruction* const> instructions) { ExpectHasTopLevelBuffers( PointsToSet::BufferList(points_to_set.begin(), points_to_set.end()), instructions); } void ExpectHasBufferAliases( const HloInstruction* instruction, const ShapeIndex& index, absl::Span<const std::pair<HloInstruction*, ShapeIndex>> expected) { const LogicalBuffer* buffer = points_to_analysis_->GetBufferDefinedAt(instruction, index).value(); std::vector<BufferAlias> expected_aliases; expected_aliases.reserve(expected.size()); for (auto& pair : expected) { expected_aliases.push_back(BufferAlias(pair.first, pair.second)); } EXPECT_THAT(points_to_analysis_->GetBufferAliases(*buffer), UnorderedElementsAreArray(expected_aliases)); } std::unique_ptr<HloModule> module_; std::unique_ptr<TuplePointsToAnalysis> points_to_analysis_; }; TEST_F(TuplePointsToAnalysisTest, SimpleTuple) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); BuildModuleAndRunAnalysis(builder.Build()); EXPECT_EQ(1, points_to_analysis_->GetPointsToSet(constant1).size()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(constant1).element({}), {constant1}); EXPECT_TRUE( points_to_analysis_->GetPointsToSet(constant1).tuple_sources({}).empty()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(tuple).IsDistinct()); EXPECT_EQ(1, points_to_analysis_->GetPointsToSet(constant2).size()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(constant2).element({}), {constant2}); EXPECT_TRUE( points_to_analysis_->GetPointsToSet(constant2).tuple_sources({}).empty()); EXPECT_EQ(3, points_to_analysis_->GetPointsToSet(tuple).size()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(tuple).IsAmbiguous()); EXPECT_THAT(points_to_analysis_->GetPointsToSet(tuple).tuple_sources({}), UnorderedElementsAre(tuple)); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).CreateFlattenedSet(), {constant1, constant2, tuple}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({}), {tuple}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({0}), {constant1}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({1}), {constant2}); const PointsToSet& tuple_points_to_set = points_to_analysis_->GetPointsToSet(tuple); EXPECT_TRUE(tuple_points_to_set.ContainsBufferAtIndex( *GetBuffer(constant1, {}), {0})); EXPECT_TRUE(tuple_points_to_set.ContainsBufferAtIndex( *GetBuffer(constant2, {}), {1})); EXPECT_FALSE(tuple_points_to_set.ContainsBufferAtIndex( *GetBuffer(constant2, {}), {0})); EXPECT_TRUE(tuple_points_to_set.ContainsBuffer(*GetBuffer(constant1, {}))); EXPECT_TRUE(tuple_points_to_set.ContainsBuffer(*GetBuffer(constant2, {}))); } TEST_F(TuplePointsToAnalysisTest, NestedTuple) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto inner_tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto constant3 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(3.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({inner_tuple, constant3})); BuildModuleAndRunAnalysis(builder.Build()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(constant1).element({}), {constant1}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(constant2).element({}), {constant2}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(constant3).element({}), {constant3}); EXPECT_EQ(3, points_to_analysis_->GetPointsToSet(inner_tuple).size()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(inner_tuple).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(inner_tuple).IsDistinct()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(inner_tuple).CreateFlattenedSet(), {constant1, constant2, inner_tuple}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(inner_tuple).element({}), {inner_tuple}); EXPECT_THAT( points_to_analysis_->GetPointsToSet(inner_tuple).tuple_sources({}), UnorderedElementsAre(inner_tuple)); EXPECT_EQ(5, points_to_analysis_->GetPointsToSet(tuple).size()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(tuple).IsAmbiguous()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).CreateFlattenedSet(), {constant1, constant2, constant3, inner_tuple, tuple}); EXPECT_THAT(points_to_analysis_->GetPointsToSet(tuple).tuple_sources({}), UnorderedElementsAre(tuple)); EXPECT_THAT(points_to_analysis_->GetPointsToSet(tuple).tuple_sources({0}), UnorderedElementsAre(inner_tuple)); EXPECT_TRUE( points_to_analysis_->GetPointsToSet(tuple).tuple_sources({1}).empty()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({0}), {inner_tuple}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({0, 0}), {constant1}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({0, 1}), {constant2}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({1}), {constant3}); } TEST_F(TuplePointsToAnalysisTest, GetTupleElement) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto inner_tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto constant3 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(3.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({inner_tuple, constant3})); auto get_tuple_element = builder.AddInstruction( HloInstruction::CreateGetTupleElement(inner_tuple->shape(), tuple, 0)); BuildModuleAndRunAnalysis(builder.Build()); auto& points_to_set = points_to_analysis_->GetPointsToSet(get_tuple_element); EXPECT_EQ(3, points_to_set.size()); EXPECT_FALSE(points_to_set.IsAmbiguous()); EXPECT_TRUE(points_to_set.IsDistinct()); ExpectHasTopLevelBuffers(points_to_set.CreateFlattenedSet(), {constant1, constant2, inner_tuple}); ExpectHasTopLevelBuffers(points_to_set.element({}), {inner_tuple}); EXPECT_THAT(points_to_set.tuple_sources({}), UnorderedElementsAre(inner_tuple)); } TEST_F(TuplePointsToAnalysisTest, AddDependency) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto token = builder.AddInstruction(HloInstruction::CreateToken()); auto add_dependency = builder.AddInstruction( HloInstruction::CreateAddDependency(constant, token)); BuildModuleAndRunAnalysis(builder.Build()); auto& points_to_set = points_to_analysis_->GetPointsToSet(add_dependency); EXPECT_EQ(1, points_to_set.size()); EXPECT_FALSE(points_to_set.IsAmbiguous()); EXPECT_TRUE(points_to_set.IsDistinct()); ExpectHasTopLevelBuffers(points_to_set.CreateFlattenedSet(), {constant}); } TEST_F(TuplePointsToAnalysisTest, DuplicatedElement) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant, constant, constant})); BuildModuleAndRunAnalysis(builder.Build()); EXPECT_EQ(2, points_to_analysis_->GetPointsToSet(tuple).size()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(tuple).IsAmbiguous()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(tuple).IsDistinct()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({}), {tuple}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).CreateFlattenedSet(), {constant, tuple}); } TEST_F(TuplePointsToAnalysisTest, TupleCopy) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto copy = builder.AddInstruction( HloInstruction::CreateUnary(tuple->shape(), HloOpcode::kCopy, tuple)); BuildModuleAndRunAnalysis(builder.Build()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(copy).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(copy).IsDistinct()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).CreateFlattenedSet(), {constant1, constant2, tuple}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(copy).element({}), {copy}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(copy).CreateFlattenedSet(), {constant1, constant2, copy}); } TEST_F(TuplePointsToAnalysisTest, CopyStartAndCopyDone) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto copy_start = builder.AddInstruction(HloInstruction::CreateCopyStart( ShapeUtil::MakeTupleShape({constant->shape(), constant->shape(), ShapeUtil::MakeShape(U32, {})}), constant)); auto copy_done = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kCopyDone, copy_start)); BuildModuleAndRunAnalysis(builder.Build()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(copy_start).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(copy_start).IsDistinct()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(copy_done).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(copy_done).IsDistinct()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(copy_start).element({}), {copy_start}); ExpectHasBufferAliases(copy_start, {0}, {{copy_start, {0}}, {copy_done, {}}}); ExpectHasBufferAliases(constant, {}, {{constant, {}}, {copy_start, {1}}}); } TEST_F(TuplePointsToAnalysisTest, AsyncOps) { std::string hlo_str = R"( HloModule module ENTRY entry { p0 = f32[2,3] parameter(0) async-start = ((f32[2,3]), f32[2,3], u32[]) custom-call-start(p0), custom_call_target="foo" async-update = ((f32[2,3]), f32[2,3], u32[]) custom-call-update(async-start) ROOT async-done = f32[2,3] custom-call-done(async-update) } )"; TF_ASSERT_OK_AND_ASSIGN( module_, ParseAndReturnVerifiedModule(hlo_str, GetModuleConfigForTest())); HloInstruction* param = module_->entry_computation()->parameter_instruction(0); HloInstruction* async_start = FindInstruction(module_.get(), "async-start"); HloInstruction* async_update = FindInstruction(module_.get(), "async-update"); HloInstruction* async_done = FindInstruction(module_.get(), "async-done"); RunAnalysis(); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(async_start).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(async_start).IsDistinct()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(async_update).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(async_update).IsDistinct()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(async_done).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(async_done).IsDistinct()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(async_start).element({}), {async_start}); ExpectHasBufferAliases( param, {}, {{param, {}}, {async_start, {0, 0}}, {async_update, {0, 0}}}); ExpectHasBufferAliases( async_start, {1}, {{async_start, {1}}, {async_update, {1}}, {async_done, {}}}); ExpectHasBufferAliases(async_start, {2}, {{async_start, {2}}, {async_update, {2}}}); } TEST_F(TuplePointsToAnalysisTest, SendAndSendDone) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto token = builder.AddInstruction(HloInstruction::CreateToken()); auto send = builder.AddInstruction( HloInstruction::CreateSend(constant, token, 0)); auto send_done = builder.AddInstruction(HloInstruction::CreateSendDone(send)); BuildModuleAndRunAnalysis(builder.Build()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(send).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(send).IsDistinct()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(send_done).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(send_done).IsDistinct()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(send).element({}), {send}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(send).element({0}), {constant}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(send_done).CreateFlattenedSet(), {send_done}); ExpectHasBufferAliases(constant, {}, {{constant, {}}, {send, {0}}}); } TEST_F(TuplePointsToAnalysisTest, RecvAndRecvDone) { auto builder = HloComputation::Builder(TestName()); auto token = builder.AddInstruction(HloInstruction::CreateToken()); auto recv = builder.AddInstruction(HloInstruction::CreateRecv( ShapeUtil::MakeShape(F32, {1, 2, 3}), token, 0)); auto recv_done = builder.AddInstruction(HloInstruction::CreateRecvDone(recv)); BuildModuleAndRunAnalysis(builder.Build()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(recv).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(recv).IsDistinct()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(recv_done).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(recv_done).IsDistinct()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(recv).element({}), {recv}); ExpectHasBufferAliases(recv, {0}, {{recv, {0}}, {recv_done, {0}}}); } TEST_F(TuplePointsToAnalysisTest, TupleWithBitcast) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto bitcast = builder.AddInstruction( HloInstruction::CreateBitcast(constant2->shape(), constant2)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({constant1, bitcast})); BuildModuleAndRunAnalysis(builder.Build()); EXPECT_EQ(1, points_to_analysis_->GetPointsToSet(bitcast).size()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(bitcast).element({}), {constant2}); EXPECT_TRUE( points_to_analysis_->GetPointsToSet(bitcast).tuple_sources({}).empty()); EXPECT_EQ(3, points_to_analysis_->GetPointsToSet(tuple).size()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(tuple).IsAmbiguous()); EXPECT_THAT(points_to_analysis_->GetPointsToSet(tuple).tuple_sources({}), UnorderedElementsAre(tuple)); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).CreateFlattenedSet(), {constant1, constant2, tuple}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({}), {tuple}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({0}), {constant1}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({1}), {constant2}); } TEST_F(TuplePointsToAnalysisTest, PointsToTupleConstantElements) { auto builder = HloComputation::Builder(TestName()); Literal elements[] = {LiteralUtil::CreateR2<float>({{1.0}, {2.0}}), LiteralUtil::CreateR1<float>({2.0, 42})}; auto tuple_constant = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::MakeTuple({&elements[0], &elements[1]}))); auto copy = builder.AddInstruction(HloInstruction::CreateUnary( tuple_constant->shape(), HloOpcode::kCopy, tuple_constant)); BuildModuleAndRunAnalysis(builder.Build()); auto& points_to_set = points_to_analysis_->GetPointsToSet(copy); ExpectHasBuffers(points_to_set.element({}), {GetBuffer(copy, {})}); ExpectHasBuffers(points_to_set.element({0}), {GetBuffer(tuple_constant, {0})}); ExpectHasBuffers(points_to_set.element({1}), {GetBuffer(tuple_constant, {1})}); } TEST_F(TuplePointsToAnalysisTest, BufferAliases) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto inner_tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({inner_tuple, constant2})); BuildModuleAndRunAnalysis(builder.Build()); ExpectHasBufferAliases( constant1, {}, {{constant1, {}}, {inner_tuple, {0}}, {tuple, {0, 0}}}); ExpectHasBufferAliases( constant2, {}, {{constant2, {}}, {inner_tuple, {1}}, {tuple, {0, 1}}, {tuple, {1}}}); ExpectHasBufferAliases(inner_tuple, {}, {{inner_tuple, {}}, {tuple, {0}}}); ExpectHasBufferAliases(tuple, {}, {{tuple, {}}}); } TEST_F(TuplePointsToAnalysisTest, DISABLED_CustomCall) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); Shape data_shape = ShapeUtil::MakeShape(F32, {}); auto ccall = builder.AddInstruction(HloInstruction::CreateCustomCall( ShapeUtil::MakeTupleShape({data_shape, data_shape}), {constant}, "TestOp")); Cast<HloCustomCallInstruction>(ccall)->set_output_to_operand_aliasing( {std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>{ ShapeIndex{1}, std::pair<int64_t, ShapeIndex>(0, {})}}); auto gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape, ccall, 0)); auto gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape, ccall, 1)); BuildModuleAndRunAnalysis(builder.Build()); ExpectHasBufferAliases(ccall, {0}, {{gte0, {}}, {ccall, {0}}}); ExpectHasBufferAliases(constant, {}, {{constant, {}}, {gte1, {}}, {ccall, {1}}}); } class FusionPointsToAnalysisTest : public TuplePointsToAnalysisTest { protected: void Run(const std::string& hlo_str, int64_t expected_num_users) { TF_ASSERT_OK_AND_ASSIGN(module_, ParseAndReturnVerifiedModule(hlo_str)); auto* fusion = module_->entry_computation()->root_instruction(); auto* tuple_param0 = fusion->operand(0); RunAnalysis(); auto* fusion_param = GetFusionParameterForOperand(fusion, tuple_param0); ExpectHasBuffers( points_to_analysis_->GetPointsToSet(fusion_param).element({}), {GetBuffer(fusion_param, {})}); ExpectHasBuffers( points_to_analysis_->GetPointsToSet(fusion_param).element({0}), {GetBuffer(fusion_param, {0})}); ExpectHasBuffers( points_to_analysis_->GetPointsToSet(fusion_param).element({1}), {GetBuffer(fusion_param, {1})}); auto fused_gte0 = GetUniqueFusionParameterUserAt(fusion_param, 0); ExpectHasBuffers( points_to_analysis_->GetPointsToSet(fused_gte0).element({}), {GetBuffer(fusion_param, {0})}); auto fused_gte1 = GetUniqueFusionParameterUserAt(fusion_param, 1); ExpectHasBuffers( points_to_analysis_->GetPointsToSet(fused_gte1).element({}), {GetBuffer(fusion_param, {1})}); ExpectHasBufferAliases(fusion_param, {0}, {{fusion_param, {0}}, {fused_gte0, {}}}); ExpectHasBufferAliases(fusion_param, {1}, {{fusion_param, {1}}, {fused_gte1, {}}}); ExpectNumUsersOfAliases(fusion_param, {0}, expected_num_users); } HloInstruction* GetFusionParameterForOperand(HloInstruction* fusion, const HloInstruction* operand) { const auto& fused_instructions = fusion->fused_instructions(); auto it = absl::c_find_if(fused_instructions, [&](const HloInstruction* fused) { return fused->opcode() == HloOpcode::kParameter && fusion->operand(fused->parameter_number()) == operand; }); CHECK(it != fusion->fused_instructions().end()); return *it; } std::vector<HloInstruction*> GetFusionParameterUsersAt( HloInstruction* fusion_param, int64_t tuple_index) { CHECK(fusion_param->shape().IsTuple()); std::vector<HloInstruction*> users_at_tuple_index; for (auto user : fusion_param->users()) { CHECK_EQ(HloOpcode::kGetTupleElement, user->opcode()); if (user->tuple_index() == tuple_index) { users_at_tuple_index.push_back(user); } } return users_at_tuple_index; } HloInstruction* GetUniqueFusionParameterUserAt(HloInstruction* fusion_param, int64_t tuple_index) { std::vector<HloInstruction*> users = GetFusionParameterUsersAt(fusion_param, tuple_index); CHECK_EQ(1, users.size()); return users[0]; } void ExpectNumUsersOfAliases(const HloInstruction* instruction, const ShapeIndex& index, const int64_t expected_num_users) { const auto* buffer = GetBuffer(instruction, index); int64_t num_users = 0; for (const auto& alias : points_to_analysis_->GetBufferAliases(*buffer)) { for (auto user : alias.instruction()->users()) { if (user->opcode() == HloOpcode::kGetTupleElement && !index.empty()) { continue; } ++num_users; } } EXPECT_EQ(expected_num_users, num_users); } }; TEST_F(FusionPointsToAnalysisTest, FusionParam0OneUser) { std::string hlo_str = R"( HloModule FusionParam0OneUser %fused_computation (param_1.2: (f32[8], f32[3])) -> f32[8] { %param_1.2 = (f32[8]{0}, f32[3]{0}) parameter(0) %get-tuple-element.1 = f32[8]{0} get-tuple-element((f32[8]{0}, f32[3]{0}) %param_1.2), index=0 %get-tuple-element.2 = f32[3]{0} get-tuple-element((f32[8]{0}, f32[3]{0}) %param_1.2), index=1 %constant.3 = f32[3]{0} constant({1, 1, 1}) %add.1 = f32[3]{0} add(f32[3]{0} %get-tuple-element.2, f32[3]{0} %constant.3) %constant.2 = s32[] constant(0) ROOT %dynamic-update-slice.1 = f32[8]{0} dynamic-update-slice(f32[8]{0} %get-tuple-element.1, f32[3]{0} %add.1, s32[] %constant.2) } ENTRY %FusionParam0OneUser (param0: (f32[8], f32[3])) -> f32[8] { %param0 = (f32[8]{0}, f32[3]{0}) parameter(0) ROOT %fusion = f32[8]{0} fusion((f32[8]{0}, f32[3]{0}) %param0), kind=kLoop, calls=%fused_computation } )"; Run(hlo_str, 1); } TEST_F(FusionPointsToAnalysisTest, FusionParam0TwoUsers) { std::string hlo_str = R"( HloModule FusionParam0TwoUsers %fused_computation (param_1.2: (f32[8], f32[3])) -> f32[8] { %param_1.2 = (f32[8]{0}, f32[3]{0}) parameter(0) %get-tuple-element.1 = f32[8]{0} get-tuple-element((f32[8]{0}, f32[3]{0}) %param_1.2), index=0 %get-tuple-element.2 = f32[3]{0} get-tuple-element((f32[8]{0}, f32[3]{0}) %param_1.2), index=1 %constant.3 = f32[3]{0} constant({1, 1, 1}) %add.1 = f32[3]{0} add(f32[3]{0} %get-tuple-element.2, f32[3]{0} %constant.3) %slice = f32[3]{0} slice(f32[8]{0} %get-tuple-element.1), slice={[0:3]} %add.2 = f32[3]{0} add(f32[3]{0} %add.1, f32[3]{0} %slice) %constant.2 = s32[] constant(0) ROOT %dynamic-update-slice.1 = f32[8]{0} dynamic-update-slice(f32[8]{0} %get-tuple-element.1, f32[3]{0} %add.2, s32[] %constant.2) } ENTRY %FusionParam0TwoUsers (param0: (f32[8], f32[3])) -> f32[8] { %param0 = (f32[8]{0}, f32[3]{0}) parameter(0) ROOT %fusion = f32[8]{0} fusion((f32[8]{0}, f32[3]{0}) %param0), kind=kLoop, calls=%fused_computation } )"; Run(hlo_str, 2); } class PointsToAnalysisTestBase : public HloTestBase { protected: void BuildModule(std::unique_ptr<HloComputation> computation) { module_ = CreateNewVerifiedModule(); computation_ = module_->AddEntryComputation(std::move(computation)); } void RunAnalysis() { CHECK_NOTNULL(module_.get()); points_to_analysis_ = TuplePointsToAnalysis::Run(module_.get()).value(); } void BuildModuleAndRunAnalysis(std::unique_ptr<HloComputation> computation) { BuildModule(std::move(computation)); RunAnalysis(); } std::unique_ptr<HloModule> module_; HloComputation* computation_ = nullptr; std::unique_ptr<TuplePointsToAnalysis> points_to_analysis_; }; class DoesNotUseOperandBufferTest : public PointsToAnalysisTestBase {}; TEST_F(DoesNotUseOperandBufferTest, GetTupleElement) { auto builder = HloComputation::Builder(TestName()); Shape elem_shape = ShapeUtil::MakeShape(F32, {8}); auto tuple = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeTupleShape({elem_shape, elem_shape}), "tuple")); auto gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(elem_shape, tuple, 0)); auto gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(elem_shape, tuple, 1)); builder.AddInstruction( HloInstruction::CreateBinary(elem_shape, HloOpcode::kAdd, gte0, gte1)); BuildModuleAndRunAnalysis(builder.Build()); EXPECT_TRUE(points_to_analysis_->DoesNotUseOperandBuffer(tuple, {0}, gte0)); EXPECT_TRUE(points_to_analysis_->DoesNotUseOperandBuffer(tuple, {1}, gte1)); EXPECT_FALSE(points_to_analysis_->DoesNotUseOperandBuffer(tuple, {}, gte0)); EXPECT_FALSE(points_to_analysis_->DoesNotUseOperandBuffer(tuple, {}, gte1)); } TEST_F(DoesNotUseOperandBufferTest, FusedDynamicUpdateSlice) { auto builder = HloComputation::Builder(TestName()); Shape data_shape = ShapeUtil::MakeShape(F32, {8}); auto tuple = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeTupleShape({data_shape, data_shape}), "tuple")); auto gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape, tuple, 0)); auto gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape, tuple, 1)); auto starts = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(2))); auto update = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({2.f, 2.f, 2.f}))); auto dynamic_update_slice = builder.AddInstruction(HloInstruction::CreateDynamicUpdateSlice( data_shape, gte1, update, {starts})); builder.AddInstruction( HloInstruction::CreateTuple({gte0, dynamic_update_slice})); BuildModule(builder.Build()); auto fusion = computation_->CreateFusionInstruction( {dynamic_update_slice, starts, update, gte1}, HloInstruction::FusionKind::kLoop); RunAnalysis(); EXPECT_TRUE(points_to_analysis_->DoesNotUseOperandBuffer(tuple, {0}, fusion)); EXPECT_FALSE( points_to_analysis_->DoesNotUseOperandBuffer(tuple, {1}, fusion)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/tuple_points_to_analysis.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/tuple_points_to_analysis_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c7d36866-411c-46ed-801c-d8994c2f600b
cpp
tensorflow/tensorflow
scatter_expander
third_party/xla/xla/service/gpu/transforms/scatter_expander.cc
third_party/xla/xla/service/scatter_expander_test.cc
#include "xla/service/gpu/transforms/scatter_expander.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/primitive_util.h" namespace xla { bool GpuScatterExpander::InstructionMatchesPattern(HloInstruction* inst) { return inst->opcode() == HloOpcode::kScatter && (inst->shape().IsTuple() || primitive_util::BitWidth(inst->shape().element_type()) > 64); } }
#include "xla/service/scatter_expander.h" #include <memory> #include <utility> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/types.h" namespace xla { namespace { class ScatterExpanderTest : public HloTestBase { protected: void ClearInstructionLayout(HloModule* module, absl::string_view inst_name) { HloInstruction* inst = FindInstruction(module, inst_name); inst->mutable_shape()->clear_layout(); } }; TEST_F(ScatterExpanderTest, ScatterOperandWithoutLayout) { const char* kModuleStr = R"( HloModule scatter_expander scatter_computation { parameter0 = s32[] parameter(0) ROOT parameter1 = s32[] parameter(1) } ENTRY kernel_entry { operand = s32[5] iota(), iota_dimension=0 indices = s32[1] parameter(0) update = s32[] constant(0) ROOT scatter = s32[5]{0} scatter(operand, indices, update), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=0, to_apply=scatter_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ClearInstructionLayout(module.get(), "operand"); ScatterExpander scatter_expander(ScatterExpander::kEliminateAllScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_TRUE(result); } TEST_F(ScatterExpanderTest, ScatterMultipleOperandsWithoutLayout) { const char* kModuleStr = R"( HloModule scatter_expander scatter_computation { p0 = s32[] parameter(0) p1 = f32[] parameter(1) p2 = s32[] parameter(2) p3 = f32[] parameter(3) ROOT tuple = tuple(p2, p3) } ENTRY kernel_entry { operand0 = s32[5] iota(), iota_dimension=0 operand1 = f32[5] constant({2,4,6,8,10}) indices = s32[1] parameter(0) update0 = s32[] constant(0) update1 = f32[] constant(1) ROOT scatter = (s32[5]{0}, f32[5]{0}) scatter(operand0, operand1, indices, update0, update1), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=0, to_apply=scatter_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ClearInstructionLayout(module.get(), "operand0"); ClearInstructionLayout(module.get(), "operand1"); ScatterExpander scatter_expander(ScatterExpander::kEliminateAllScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_TRUE(result); } TEST_F(ScatterExpanderTest, EliminateSimpleScattersSkipsNontrivialScatter) { const char* kModuleStr = R"( HloModule scatter_expander scatter_computation { parameter0 = s32[] parameter(0) ROOT parameter1 = s32[] parameter(1) } ENTRY kernel_entry { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) updates = s32[2,3] parameter(2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=scatter_computation, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ClearInstructionLayout(module.get(), "operand"); ScatterExpander scatter_expander(ScatterExpander::kEliminateSimpleScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_FALSE(result); } TEST_F(ScatterExpanderTest, EliminateSimpleMultioutpuScattersSkipsNontrivialScatter) { const char* kModuleStr = R"( HloModule scatter_expander scatter_computation { p0 = s32[] parameter(0) p1 = f32[] parameter(1) p2 = s32[] parameter(2) p3 = f32[] parameter(3) ROOT tuple = tuple(p2, p3) } ENTRY kernel_entry { operand0 = s32[3,3] parameter(0) operand1 = bf16[3,3] parameter(1) indices = s32[2] parameter(2) update0 = s32[2,3] parameter(3) update1 = bf16[2,3] parameter(4) ROOT scatter = (s32[3,3], bf16[3,3]) scatter(operand0, operand1, indices, update0, update1), to_apply=scatter_computation, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ClearInstructionLayout(module.get(), "operand0"); ClearInstructionLayout(module.get(), "operand1"); ScatterExpander scatter_expander(ScatterExpander::kEliminateSimpleScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_FALSE(result); } TEST_F(ScatterExpanderTest, EliminateSimpleScattersRewritesTrivialScatter) { const char* kModuleStr = R"( HloModule scatter_expander scatter_computation { parameter0 = s32[] parameter(0) ROOT parameter1 = s32[] parameter(1) } ENTRY kernel_entry { operand = s32[5] iota(), iota_dimension=0 indices = s32[1] parameter(0) update = s32[] constant(0) ROOT scatter = s32[5]{0} scatter(operand, indices, update), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=0, to_apply=scatter_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ClearInstructionLayout(module.get(), "operand"); ScatterExpander scatter_expander(ScatterExpander::kEliminateSimpleScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_TRUE(result); } TEST_F(ScatterExpanderTest, EliminateSimpleMultioutputScattersRewritesTrivialScatter) { const char* kModuleStr = R"( HloModule scatter_expander scatter_computation { p0 = s32[] parameter(0) p1 = f32[] parameter(1) p2 = s32[] parameter(2) p3 = f32[] parameter(3) ROOT tuple = tuple(p2, p3) } ENTRY kernel_entry { operand0 = s32[5] iota(), iota_dimension=0 operand1 = f32[5] iota(), iota_dimension=0 indices = s32[1] parameter(0) update0 = s32[] constant(0) update1 = f32[] constant(0) ROOT scatter = (s32[5]{0}, f32[5]{0}) scatter(operand0, operand1, indices, update0, update1), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=0, to_apply=scatter_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ClearInstructionLayout(module.get(), "operand0"); ClearInstructionLayout(module.get(), "operand1"); ScatterExpander scatter_expander(ScatterExpander::kEliminateSimpleScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_TRUE(result); } TEST_F(ScatterExpanderTest, DoNotEliminateScatterWithAssociativeCombiner) { const char* const kModuleStr = R"( HloModule scatter_expander scatter_computation { arg1.173 = s32[] parameter(1) arg0.172 = s32[] parameter(0) ROOT add.48 = s32[] add(arg0.172, arg1.173) } ENTRY fused_computation { bitcast.2335 = s32[1,4096] parameter(0) pad.96 = s32[4096,2] parameter(1) bitcast.2748 = s32[4096,1,1] parameter(2) ROOT scatter.48 = s32[1,4096] scatter(bitcast.2335, pad.96, bitcast.2748), update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=1, to_apply=scatter_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ScatterExpander scatter_expander( ScatterExpander::kEliminateIndeterministicScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_FALSE(result); } TEST_F(ScatterExpanderTest, EliminateScatterWithNonAssociativeCombiner) { const char* const kModuleStr = R"( HloModule scatter_expander scatter_computation { arg1.173 = f32[] parameter(1) arg0.172 = f32[] parameter(0) ROOT add.48 = f32[] add(arg0.172, arg1.173) } ENTRY fused_computation { bitcast.2335 = f32[1,4096] parameter(0) pad.96 = s32[4096,2] parameter(1) bitcast.2748 = f32[4096,1,1] parameter(2) ROOT scatter.48 = f32[1,4096] scatter(bitcast.2335, pad.96, bitcast.2748), update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=1, to_apply=scatter_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ScatterExpander scatter_expander( ScatterExpander::kEliminateIndeterministicScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_TRUE(result); } TEST_F(ScatterExpanderTest, DoNotEliminateScatterWithAssociativeFp32Combiner) { const char* const kModuleStr = R"( HloModule scatter_expander scatter_computation { arg1.173 = f32[] parameter(1) arg0.172 = f32[] parameter(0) ROOT max.48 = f32[] maximum(arg0.172, arg1.173) } ENTRY fused_computation { bitcast.2335 = f32[1,4096] parameter(0) pad.96 = s32[4096,2] parameter(1) bitcast.2748 = f32[4096,1,1] parameter(2) ROOT scatter.48 = f32[1,4096] scatter(bitcast.2335, pad.96, bitcast.2748), update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=1, to_apply=scatter_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ScatterExpander scatter_expander( ScatterExpander::kEliminateIndeterministicScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_FALSE(result); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/scatter_expander.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/scatter_expander_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
931a8bc3-ba94-4243-bc39-9a972cf91eb2
cpp
tensorflow/tensorflow
dynamic_dimension_inference
third_party/xla/xla/service/dynamic_dimension_inference.cc
third_party/xla/xla/service/dynamic_dimension_inference_test.cc
#include "xla/service/dynamic_dimension_inference.h" #include <cstdint> #include <functional> #include <memory> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/dynamic_parameter_binding.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/call_inliner.h" #include "xla/service/dynamic_window_utils.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/hlo_value.h" #include "xla/service/tuple_util.h" #include "xla/service/while_util.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "xla/window_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace { absl::StatusOr<std::pair<HloComputation*, CallInliner::InlinedInstructionMap>> WidenComputation(HloComputation* narrow_comp, const Shape& wide_shape) { TF_RET_CHECK(wide_shape.IsTuple()); const Shape& narrow_shape = narrow_comp->parameter_instruction(0)->shape(); if (Shape::Equal()(wide_shape, narrow_shape)) { return std::make_pair(narrow_comp, CallInliner::InlinedInstructionMap()); } HloComputation* wide_comp = [&]() { HloComputation::Builder builder(absl::StrCat("wide.", narrow_comp->name())); builder.AddInstruction(HloInstruction::CreateParameter( 0, wide_shape, absl::StrCat("wide.", narrow_comp->parameter_instruction(0)->name()))); return narrow_comp->parent()->AddEmbeddedComputation(builder.Build()); }(); HloInstruction* wide_parameter = wide_comp->parameter_instruction(0); HloInstruction* truncated_parameter = TupleUtil::ExtractPrefix( wide_parameter, narrow_shape.tuple_shapes_size(), absl::StrCat("renarrowed.", narrow_comp->parameter_instruction(0)->name())); HloInstruction* call_narrow_comp = wide_comp->AddInstruction( HloInstruction::CreateCall(narrow_comp->root_instruction()->shape(), {truncated_parameter}, narrow_comp)); wide_comp->set_root_instruction(call_narrow_comp, true); TF_ASSIGN_OR_RETURN(auto inline_map, CallInliner::Inline(call_narrow_comp)); return std::make_pair(wide_comp, std::move(inline_map)); } } class DynamicDimensionInferenceVisitor : public DfsHloRewriteVisitor { public: explicit DynamicDimensionInferenceVisitor( const DynamicParameterBinding& param_bindings, HloDataflowAnalysis& dataflow_analysis, DynamicDimensionInference* parent, DynamicDimensionInference::CustomCallInferenceHandler custom_call_handler, DynamicDimensionInference::ShapeCheckMode shape_check_mode, DynamicDimensionInference::AssertionGenerator assertion_generator) : param_bindings_(param_bindings), dataflow_analysis_(dataflow_analysis), parent_(parent), custom_call_handler_(std::move(custom_call_handler)), shape_check_mode_(shape_check_mode), assertion_generator_(assertion_generator) {} absl::Status DefaultAction(HloInstruction* hlo) override; static absl::StatusOr<bool> Run( HloComputation* computation, HloDataflowAnalysis& dataflow_analysis, const DynamicParameterBinding& param_bindings, DynamicDimensionInference* parent, DynamicDimensionInference::CustomCallInferenceHandler custom_call_handler = nullptr, DynamicDimensionInference::ShapeCheckMode shape_check_mode = DynamicDimensionInference::ShapeCheckMode::kIgnore, const DynamicDimensionInference::AssertionGenerator& assertion_generator = nullptr) { if (!HloInstruction::IsThreadIncluded(computation->execution_thread(), parent->execution_threads_)) { return false; } DynamicDimensionInferenceVisitor visitor( param_bindings, dataflow_analysis, parent, std::move(custom_call_handler), shape_check_mode, assertion_generator); TF_RETURN_IF_ERROR(computation->Accept(&visitor)); if (visitor.shape_assertion_ != nullptr) { CHECK(assertion_generator); assertion_generator(visitor.shape_assertion_); } return visitor.changed(); } absl::Status HandleParameter(HloInstruction* hlo) override; absl::Status HandleInfeed(HloInstruction* hlo) override; absl::Status HandleConstant(HloInstruction* hlo) override; absl::Status HandleReduce(HloInstruction* hlo) override; absl::Status HandleDot(HloInstruction* hlo) override; absl::Status HandleTuple(HloInstruction* hlo) override; absl::Status HandleTranspose(HloInstruction* hlo) override; absl::Status HandleDynamicReshape(HloInstruction* hlo) override; absl::Status HandleReshape(HloInstruction* hlo) override; absl::Status HandleSort(HloInstruction* hlo) override; absl::Status HandlePad(HloInstruction* hlo) override; absl::Status HandleCustomCall(HloInstruction* hlo) override; absl::Status HandleBroadcast(HloInstruction* hlo) override; absl::Status HandleGetDimensionSize(HloInstruction* hlo) override; absl::Status HandleSetDimensionSize(HloInstruction* hlo) override; absl::Status HandleSelect(HloInstruction* hlo) override; absl::Status HandleConvolution(HloInstruction* hlo) override; absl::Status HandleConcatenate(HloInstruction* hlo) override; absl::Status HandleReduceWindow(HloInstruction* hlo) override; absl::Status HandleReverse(HloInstruction* hlo) override; absl::Status HandleSelectAndScatter(HloInstruction* hlo) override; absl::Status HandleGetTupleElement(HloInstruction* hlo) override; absl::Status HandleElementwiseUnary(HloInstruction* hlo) override; absl::Status HandleElementwiseNary(HloInstruction* hlo); absl::Status HandleElementwiseBinary(HloInstruction* hlo) override; absl::Status HandleClamp(HloInstruction* hlo) override; absl::Status HandleConditional(HloInstruction* hlo) override; absl::Status HandleWhile(HloInstruction* hlo) override; absl::Status HandleSlice(HloInstruction* hlo) override; absl::Status HandleDynamicSlice(HloInstruction* hlo) override; absl::Status HandleDynamicUpdateSlice(HloInstruction* hlo) override; absl::Status HandleGather(HloInstruction* hlo) override; absl::Status HandleScatter(HloInstruction* hlo) override; absl::Status HandleMap(HloInstruction* hlo) override; absl::Status HandleDomain(HloInstruction* hlo) override; absl::Status HandleAsyncStart(HloInstruction* hlo) override; absl::Status HandleAsyncDone(HloInstruction* hlo) override; private: using OperandDynamicDimensionFn = absl::FunctionRef<absl::Status( HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size)>; using DynamicDimensionFn = std::function<absl::Status( ShapeIndex index, int64_t dimension, HloInstruction* dynamic_size)>; void SetDynamicSize(HloInstruction* inst, const ShapeIndex& index, int64_t dim, HloInstruction* size, bool clear_dynamic_dimension = true); void SetDynamicSizes(HloInstruction* inst, const ShapeIndex& index, absl::Span<HloInstruction* const> sizes); absl::Status HandleDynamicConvolutionForward(HloInstruction* hlo, int64_t operand_index, int64_t dimension, HloInstruction* dynamic_size); absl::Status HandleDynamicConvolutionKernelGrad(HloInstruction* hlo, int64_t operand_index, int64_t dimension); absl::Status HandleDynamicConvolutionInputGrad(HloInstruction* hlo, int64_t operand_index, int64_t dimension); absl::Status HandleDynamicWindowSamePadding(HloInstruction* hlo, HloInstruction* dynamic_size, int64_t operand_index, int64_t dimension); absl::Status ForEachOperandDynamicDimension(HloInstruction* inst, OperandDynamicDimensionFn); absl::Status ForEachDynamicDimensionInOperand(HloInstruction* inst, int64_t operand_index, OperandDynamicDimensionFn); absl::Status ForEachDynamicDimension(HloInstruction* inst, const DynamicDimensionFn& fn); bool CanInfer(HloInstruction* hlo) { return parent_->CanInfer(hlo); } absl::StatusOr<bool> RequiresPadToStatic(HloInstruction* instr, ShapeIndex shape_index); absl::Status InsertPadToStaticOnInstruction(HloInstruction* inst); absl::Status InsertShapeCheck(HloInstruction* dim1, HloInstruction* dim2, bool support_implicit_broadcast); absl::Status PassThroughDynamicDimension(HloInstruction*); const DynamicParameterBinding& param_bindings_; HloDataflowAnalysis& dataflow_analysis_; DynamicDimensionInference* parent_; DynamicDimensionInference::CustomCallInferenceHandler custom_call_handler_; DynamicDimensionInference::ShapeCheckMode shape_check_mode_; HloInstruction* shape_assertion_ = nullptr; DynamicDimensionInference::AssertionGenerator assertion_generator_; }; void DynamicDimensionInferenceVisitor::SetDynamicSize( HloInstruction* inst, const ShapeIndex& index, int64_t dim, HloInstruction* size, bool clear_dynamic_dimension) { parent_->SetDynamicSize(inst, index, dim, size); if (clear_dynamic_dimension) { ShapeUtil::GetMutableSubshape(inst->mutable_shape(), index) ->set_dynamic_dimension(dim, false); } MarkAsChanged(); } void DynamicDimensionInferenceVisitor::SetDynamicSizes( HloInstruction* inst, const ShapeIndex& index, absl::Span<HloInstruction* const> sizes) { const Shape& subshape = ShapeUtil::GetSubshape(inst->shape(), index); CHECK(subshape.IsArray() && subshape.rank() == sizes.size()); for (int64_t dimension = 0; dimension < subshape.rank(); ++dimension) { if (sizes[dimension] != nullptr) { SetDynamicSize(inst, index, dimension, sizes[dimension]); } } } absl::Status DynamicDimensionInferenceVisitor::DefaultAction( HloInstruction* hlo) { return ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) { return UnimplementedStrCat( "Asked to propagate a dynamic dimension from hlo ", operand->name(), "@", index.ToString(), "@", dimension, " to hlo ", hlo->ToString(), ", which is not implemented."); }); } absl::Status DynamicDimensionInferenceVisitor::HandleGetTupleElement( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } return ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) -> absl::Status { if (hlo->tuple_index() != index[0]) { return absl::OkStatus(); } ShapeIndex new_index(ShapeIndexView(index).subspan(1)); SetDynamicSize(hlo, new_index, dimension, dynamic_size); return absl::OkStatus(); }); } absl::Status DynamicDimensionInferenceVisitor::HandleTuple( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(ForEachOperandDynamicDimension( hlo, [&](HloInstruction*, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) { index.push_front(operand_index); SetDynamicSize(hlo, index, dimension, dynamic_size); return absl::OkStatus(); })); return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::HandleBroadcast( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } return ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) { int64_t broadcast_dim = hlo->dimensions(dimension); SetDynamicSize(hlo, {}, broadcast_dim, dynamic_size); return absl::OkStatus(); }); } absl::Status DynamicDimensionInferenceVisitor::HandleConstant( HloInstruction* hlo) { if (!hlo->shape().is_dynamic()) { return absl::OkStatus(); } auto* constant = Cast<HloConstantInstruction>(hlo); ShapeTree<bool> do_pad(constant->shape(), false); Shape padded_shape = constant->shape(); bool pad_any = false; TF_RETURN_IF_ERROR(ShapeUtil::ForEachMutableSubshapeWithStatus( &padded_shape, [&](Shape* subshape, const ShapeIndex& index) -> absl::Status { if (!subshape->IsArray()) { return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(bool requires_pad, RequiresPadToStatic(hlo, index)); if (requires_pad) { pad_any = *do_pad.mutable_element(index) = true; *subshape = ShapeUtil::MakeStaticShape(*subshape); } return absl::OkStatus(); })); if (!pad_any) { return absl::OkStatus(); } Literal padded_literal(padded_shape); do_pad.ForEachElement([&](const ShapeIndex& index, bool requires_pad) { const Shape& subshape = ShapeUtil::GetSubshape(padded_shape, index); if (!subshape.IsArray()) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(padded_literal.CopyFrom(constant->literal(), index, index, true)); if (!requires_pad) { for (int64_t dimension = 0; dimension < subshape.rank(); ++dimension) { if (subshape.is_dynamic_dimension(dimension)) { padded_literal.SetDynamicSize( dimension, index, constant->literal().GetDynamicSize(dimension, index)); } } } return absl::OkStatus(); }); auto* padded_constant = hlo->AddInstruction( HloInstruction::CreateConstant(std::move(padded_literal))); TF_RETURN_IF_ERROR(constant->ReplaceAllUsesWith(padded_constant)); SetVisited(*padded_constant); TF_RETURN_IF_ERROR(do_pad.ForEachElementWithStatus( [&](const ShapeIndex& index, bool requires_pad) -> absl::Status { if (!requires_pad) { return absl::OkStatus(); } const Shape& subshape = ShapeUtil::GetSubshape(constant->shape(), index); TF_RET_CHECK(subshape.IsArray()); for (int64_t dimension = 0; dimension < subshape.rank(); ++dimension) { if (!subshape.is_dynamic_dimension(dimension)) { continue; } HloInstruction* dynamic_size = hlo->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>( constant->literal().GetDynamicSize(dimension, index)))); SetVisited(*dynamic_size); SetDynamicSize(padded_constant, index, dimension, dynamic_size); } return absl::OkStatus(); })); MarkAsChanged(); return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::HandleCustomCall( HloInstruction* hlo) { if (hlo->custom_call_target() == "PadToStatic") { for (int64_t i = 0; i < hlo->operand(0)->shape().rank(); ++i) { if (hlo->operand(0)->shape().is_dynamic_dimension(i)) { HloInstruction* dynamic_size = hlo->parent()->AddInstruction(HloInstruction::CreateGetTupleElement( ShapeUtil::MakeScalarShape(S32), hlo, i + 1)); ShapeIndex data_output = {0}; SetDynamicSize(hlo, data_output, i, dynamic_size); } } return absl::OkStatus(); } if (!CanInfer(hlo)) { return absl::OkStatus(); } if (custom_call_handler_) { TF_RETURN_IF_ERROR(custom_call_handler_(hlo, parent_)); } else { TF_RETURN_IF_ERROR(ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) -> absl::Status { if (hlo->custom_call_target() == "SliceToDynamic" || hlo->custom_call_target() == "Sharding" || (absl::StartsWith(hlo->custom_call_target(), "Resize") && (dimension == 0 || dimension == 3))) { SetDynamicSize(hlo, {}, dimension, dynamic_size); return absl::OkStatus(); } if (hlo->custom_call_target() == "DynamicReduceWindowSamePadding") { if (hlo->operand_count() > 2) { return Unimplemented( "DynamicReduceWindowSamePadding doesn't support variadic " "reduce window %s", hlo->ToString()); } return HandleDynamicWindowSamePadding(hlo, dynamic_size, operand_index, dimension); } if (hlo->custom_call_target() == "DynamicSelectAndScatterSamePadding") { if (operand_index == 1) { return absl::OkStatus(); } SetDynamicSize(hlo, {}, dimension, dynamic_size); return absl::OkStatus(); } if (hlo->custom_call_target() == "DynamicConvolutionInputGrad") { return HandleDynamicConvolutionInputGrad(hlo, operand_index, dimension); } if (hlo->custom_call_target() == "DynamicConvolutionKernelGrad") { return HandleDynamicConvolutionKernelGrad(hlo, operand_index, dimension); } if (hlo->custom_call_target() == "DynamicConvolutionForward") { return HandleDynamicConvolutionForward(hlo, operand_index, dimension, dynamic_size); } return Unimplemented( "CustomCall \"%s\" is not supported to have a dynamic dimension", hlo->custom_call_target()); })); } return InsertPadToStaticOnInstruction(hlo); } absl::Status DynamicDimensionInferenceVisitor::HandleSort(HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } return ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dynamic_dimension, int64_t operand_index, HloInstruction* dynamic_size) { HloSortInstruction* sort = Cast<HloSortInstruction>(hlo); if (sort->values_count() == 0) { SetDynamicSize(hlo, {}, dynamic_dimension, dynamic_size); } else { SetDynamicSize(hlo, {operand_index}, dynamic_dimension, dynamic_size); } return absl::OkStatus(); }); } absl::Status DynamicDimensionInferenceVisitor::HandlePad(HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } return ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) -> absl::Status { if (operand_index != 0) { return Unimplemented( "Dynamic dimension on padding value is not supported"); } const PaddingConfig_PaddingConfigDimension& padding_config = hlo->padding_config().dimensions(dimension); HloInstruction* dynamic_size_adjusted = dynamic_size; if (padding_config.interior_padding() != 0) { HloInstruction* one = hlo->parent()->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(1))); HloInstruction* zero = hlo->parent()->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(0))); HloInstruction* interior_padding = hlo->parent()->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>( padding_config.interior_padding()))); dynamic_size_adjusted = hlo->parent()->AddInstruction(HloInstruction::CreateBinary( dynamic_size_adjusted->shape(), HloOpcode::kSubtract, dynamic_size_adjusted, one)); dynamic_size_adjusted = hlo->parent()->AddInstruction(HloInstruction::CreateBinary( dynamic_size_adjusted->shape(), HloOpcode::kMaximum, dynamic_size_adjusted, zero)); dynamic_size_adjusted = hlo->parent()->AddInstruction(HloInstruction::CreateBinary( dynamic_size_adjusted->shape(), HloOpcode::kMultiply, dynamic_size_adjusted, interior_padding)); dynamic_size_adjusted = hlo->parent()->AddInstruction(HloInstruction::CreateBinary( dynamic_size_adjusted->shape(), HloOpcode::kAdd, dynamic_size_adjusted, dynamic_size)); } HloInstruction* adjustment = hlo->parent()->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>( padding_config.edge_padding_low() + padding_config.edge_padding_high()))); dynamic_size_adjusted = hlo->parent()->AddInstruction(HloInstruction::CreateBinary( dynamic_size_adjusted->shape(), HloOpcode::kAdd, dynamic_size_adjusted, adjustment)); SetDynamicSize(hlo, {}, dimension, dynamic_size_adjusted); return absl::OkStatus(); }); } absl::Status DynamicDimensionInferenceVisitor::HandleReduce( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } auto* reduce = Cast<HloReduceInstruction>(hlo); int64_t rank = -1; TF_RETURN_IF_ERROR(ShapeUtil::ForEachSubshapeWithStatus( reduce->shape(), [&](const Shape& subshape, const ShapeIndex& index) -> absl::Status { if (!subshape.IsArray()) { return absl::OkStatus(); } if (rank < 0) { rank = subshape.rank(); } else { TF_RET_CHECK(rank == subshape.rank()); } return absl::OkStatus(); })); TF_RET_CHECK(rank >= 0); absl::InlinedVector<HloInstruction*, 4> dynamic_sizes(rank, nullptr); TF_RETURN_IF_ERROR(ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) { int64_t operand_count = reduce->operand_count(); CHECK_EQ(operand_count % 2, 0); if (operand_index >= reduce->input_count()) { return absl::OkStatus(); } if (absl::c_count(reduce->dimensions(), dimension) != 0) { return absl::OkStatus(); } int64_t dimensions_not_reduced_count = 0; for (int64_t i = 0; i < operand->shape().rank(); ++i) { if (dimension == i) { dynamic_sizes[dimensions_not_reduced_count] = dynamic_size; return absl::OkStatus(); } if (!absl::c_linear_search(reduce->dimensions(), i)) { dimensions_not_reduced_count++; } } return absl::OkStatus(); })); ShapeUtil::ForEachSubshape( reduce->shape(), [&](const Shape& subshape, ShapeIndex shape_index) { if (!subshape.IsArray()) { return; } SetDynamicSizes(reduce, shape_index, dynamic_sizes); }); return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::HandleDot(HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } absl::InlinedVector<HloInstruction*, 4> dynamic_sizes(hlo->shape().rank(), nullptr); TF_RETURN_IF_ERROR(ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex operand_shape_index, int64_t operand_dimension, int64_t operand_index, HloInstruction* dynamic_size) -> absl::Status { HloInstruction* dot = hlo; const DotDimensionNumbers& dimension_numbers = dot->dot_dimension_numbers(); absl::flat_hash_map<int64_t, int64_t> result_dim_mapping; int64_t current_result_dims = 0; bool lhs = operand_index == 0; if (lhs) { for (int64_t i : dimension_numbers.lhs_batch_dimensions()) { result_dim_mapping[i] = current_result_dims++; } } else { for (int64_t i : dimension_numbers.rhs_batch_dimensions()) { result_dim_mapping[i] = current_result_dims++; } } for (int64_t i = 0; i < dot->operand(0)->shape().rank(); i++) { if (absl::c_linear_search( dimension_numbers.lhs_contracting_dimensions(), i)) { continue; } if (absl::c_linear_search(dimension_numbers.lhs_batch_dimensions(), i)) { continue; } if (lhs) { result_dim_mapping[i] = current_result_dims; } current_result_dims++; } for (int64_t i = 0; i < dot->operand(1)->shape().rank(); i++) { if (absl::c_linear_search( dimension_numbers.rhs_contracting_dimensions(), i)) { continue; } if (absl::c_linear_search(dimension_numbers.rhs_batch_dimensions(), i)) { continue; } if (!lhs) { result_dim_mapping[i] = current_result_dims; } current_result_dims++; } auto iter = result_dim_mapping.find(operand_dimension); if (iter != result_dim_mapping.end()) { dynamic_sizes[iter->second] = dynamic_size; } return absl::OkStatus(); })); SetDynamicSizes(hlo, {}, dynamic_sizes); return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::HandleTranspose( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } return ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) -> absl::Status { int64_t permuted_dim = -1; for (int64_t i = 0; i < hlo->dimensions().size(); ++i) { if (hlo->dimensions()[i] == dimension) { TF_RET_CHECK(permuted_dim == -1); permuted_dim = i; } } SetDynamicSize(hlo, {}, permuted_dim, dynamic_size); return absl::OkStatus(); }); } absl::Status DynamicDimensionInferenceVisitor::HandleConvolution( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } return ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) -> absl::Status { HloInstruction* conv = hlo; const ConvolutionDimensionNumbers& dimension_numbers = conv->convolution_dimension_numbers(); if (operand_index == 0) { if (dimension == dimension_numbers.input_batch_dimension()) { SetDynamicSize(conv, {}, dimension_numbers.output_batch_dimension(), dynamic_size); return absl::OkStatus(); } if (dimension == dimension_numbers.input_feature_dimension()) { return absl::OkStatus(); } } else { if (dimension == dimension_numbers.kernel_input_feature_dimension()) { return absl::OkStatus(); } } return Unimplemented("Dynamic Spatial Convolution is not supported: %s", conv->ToString()); }); } absl::Status DynamicDimensionInferenceVisitor::HandleConcatenate( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } int64_t static_size = 0; std::vector<HloInstruction*> dynamic_concat_dims; for (int64_t i = 0; i < hlo->operand_count(); ++i) { HloInstruction* concat_dim_size = nullptr; for (int64_t dimension = 0; dimension < hlo->operand(i)->shape().rank(); ++dimension) { if (dimension == hlo->concatenate_dimension()) { HloInstruction* dynamic_size = parent_->GetDynamicSize(hlo->mutable_operand(i), {}, dimension); concat_dim_size = dynamic_size; } } if (concat_dim_size == nullptr) { static_size += hlo->operand(i)->shape().dimensions(hlo->concatenate_dimension()); } else { dynamic_concat_dims.push_back(concat_dim_size); } } std::vector<HloInstruction*> dynamic_sizes(hlo->shape().rank(), nullptr); if (!dynamic_concat_dims.empty()) { HloInstruction* dim_size_total = hlo->parent()->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(static_size))); for (HloInstruction* dynamic_dim : dynamic_concat_dims) { dim_size_total = hlo->parent()->AddInstruction( HloInstruction::CreateBinary(dim_size_total->shape(), HloOpcode::kAdd, dim_size_total, dynamic_dim)); } dynamic_sizes[hlo->concatenate_dimension()] = dim_size_total; } TF_RETURN_IF_ERROR(ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) -> absl::Status { TF_RET_CHECK(index.empty()); int64_t concatenate_dimension = hlo->concatenate_dimension(); if (concatenate_dimension == dimension) { return absl::OkStatus(); } dynamic_sizes[dimension] = dynamic_size; return absl::OkStatus(); })); SetDynamicSizes(hlo, {}, dynamic_sizes); return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::HandleGetDimensionSize( HloInstruction* gds) { int64_t dim = gds->dimension(); TF_RET_CHECK(dim < gds->operand(0)->shape().rank()) << gds->ToString(); HloInstruction* operand = gds->mutable_operand(0); TF_RET_CHECK(dim < operand->shape().rank()); HloInstruction* replacement = parent_->GetDynamicSize(operand, {}, dim); HloComputation* computation = gds->parent(); if (replacement == nullptr && !gds->operand(0)->shape().is_dynamic_dimension(dim)) { TF_RET_CHECK(dim < gds->operand(0)->shape().rank()); int32_t size = gds->operand(0)->shape().dimensions(dim); replacement = computation->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(size)), gds->name()); } if (replacement != nullptr) { TF_RETURN_IF_ERROR(gds->ReplaceAllUsesWith(replacement)); parent_->ReplaceAllDynamicDimensionUsesWith(gds, replacement); MarkAsChanged(); } return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::HandleSetDimensionSize( HloInstruction* hlo) { bool dimension_is_static = false; const HloInstruction* size = hlo->operand(1); if (size->opcode() == HloOpcode::kConstant) { TF_RET_CHECK(size->shape().rank() == 0); if (size->literal().Get<int32_t>({}) == hlo->shape().dimensions(hlo->dimension()) && !hlo->shape().is_dynamic_dimension(hlo->dimension())) { dimension_is_static = true; } } if (!dimension_is_static) { SetDynamicSize(hlo, {}, hlo->dimension(), hlo->mutable_operand(1), false); } TF_RETURN_IF_ERROR(ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) -> absl::Status { TF_RET_CHECK(operand_index == 0); if (dimension != hlo->dimension()) { SetDynamicSize(hlo, index, dimension, dynamic_size, false); } return absl::OkStatus(); })); return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::HandleDynamicConvolutionForward( HloInstruction* hlo, int64_t operand_index, int64_t dimension, HloInstruction* dynamic_size) { if (!CanInfer(hlo)) { return absl::OkStatus(); } TF_RET_CHECK(operand_index == 0); const ConvolutionDimensionNumbers& dimension_numbers = hlo->convolution_dimension_numbers(); if (dimension == dimension_numbers.input_batch_dimension()) { SetDynamicSize(hlo, {}, dimension_numbers.output_batch_dimension(), dynamic_size); return absl::OkStatus(); } for (int64_t spatial_dim_index = 0; spatial_dim_index < dimension_numbers.input_spatial_dimensions_size(); ++spatial_dim_index) { int64_t input_spatial_dim = dimension_numbers.input_spatial_dimensions(spatial_dim_index); int64_t output_spatial_dim = dimension_numbers.output_spatial_dimensions(spatial_dim_index); if (dimension == input_spatial_dim) { WindowDimension window_dim = hlo->window().dimensions(spatial_dim_index); DynamicWindowDims dynamic_window_dims = GetWindowedOutputSize( dynamic_size, window_dim.size(), window_dim.window_dilation(), window_dim.stride(), hlo->padding_type()); TF_RET_CHECK(window_dim.base_dilation() == 1); SetDynamicSize(hlo, {}, output_spatial_dim, dynamic_window_dims.output_size); return absl::OkStatus(); } } return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::HandleDynamicWindowSamePadding( HloInstruction* hlo, HloInstruction* dynamic_size, int64_t operand_index, int64_t dimension) { if (!CanInfer(hlo)) { return absl::OkStatus(); } const Window& window = hlo->window(); const WindowDimension& window_dim = window.dimensions(dimension); if (!window_util::IsTrivialWindowDimension(window_dim)) { DynamicWindowDims dynamic_window_dims = GetWindowedOutputSize( dynamic_size, window_dim.size(), window_dim.window_dilation(), window_dim.stride(), PaddingType::PADDING_SAME); SetDynamicSize(hlo, {}, dimension, dynamic_window_dims.output_size); } else { SetDynamicSize(hlo, {}, dimension, dynamic_size); } return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::HandleDynamicConvolutionInputGrad( HloInstruction* hlo, int64_t operand_index, int64_t dimension) { if (!CanInfer(hlo)) { return absl::OkStatus(); } HloInstruction* input_sizes = hlo->mutable_operand(0); HloComputation* comp = hlo->parent(); TF_RET_CHECK(input_sizes->shape().rank() == 1) << hlo->ToString(); TF_RET_CHECK(input_sizes->shape().element_type() == S32) << hlo->ToString(); TF_RET_CHECK(input_sizes->shape().dimensions(0) == hlo->shape().dimensions_size()) << hlo->ToString(); HloInstruction* slice = comp->AddInstruction( HloInstruction::CreateSlice(ShapeUtil::MakeShape(S32, {1}), input_sizes, {dimension}, {dimension + 1}, {1})); HloInstruction* reshape = comp->AddInstruction( HloInstruction::CreateReshape(ShapeUtil::MakeScalarShape(S32), slice)); SetDynamicSize(hlo, {}, dimension, reshape); return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::HandleDynamicConvolutionKernelGrad( HloInstruction* hlo, int64_t operand_index, int64_t dimension) { return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::PassThroughDynamicDimension( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } ShapeTree<absl::InlinedVector<HloInstruction*, 2>> dynamic_sizes( hlo->shape()); TF_RETURN_IF_ERROR(ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) { const Shape& subshape = ShapeUtil::GetSubshape(hlo->shape(), index); auto* element = dynamic_sizes.mutable_element(index); element->resize(subshape.rank(), nullptr); (*element)[dimension] = dynamic_size; return absl::OkStatus(); })); dynamic_sizes.ForEachElement([&](const ShapeIndex& index, const auto& sizes) { if (sizes.empty()) { return; } SetDynamicSizes(hlo, index, sizes); }); return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::HandleDomain( HloInstruction* hlo) { return PassThroughDynamicDimension(hlo); } absl::Status DynamicDimensionInferenceVisitor::HandleAsyncStart( HloInstruction* hlo) { if (!HloInstruction::IsThreadIncluded(hlo->async_execution_thread(), parent_->execution_threads_)) { return absl::OkStatus(); } return DefaultAction(hlo); } absl::Status DynamicDimensionInferenceVisitor::HandleAsyncDone( HloInstruction* hlo) { if (!HloInstruction::IsThreadIncluded(hlo->async_execution_thread(), parent_->execution_threads_)) { return InsertPadToStaticOnInstruction(hlo); } return DefaultAction(hlo); } absl::Status DynamicDimensionInferenceVisitor::HandleElementwiseUnary( HloInstruction* hlo) { return PassThroughDynamicDimension(hlo); } absl::Status DynamicDimensionInferenceVisitor::HandleSelect( HloInstruction* hlo) { return HandleElementwiseNary(hlo); } absl::Status DynamicDimensionInferenceVisitor::HandleElementwiseNary( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } HloComputation* comp = hlo->parent(); absl::InlinedVector<absl::InlinedVector<HloInstruction*, 2>, 2> operand_sizes( hlo->shape().rank(), absl::InlinedVector<HloInstruction*, 2>(hlo->operand_count(), nullptr)); TF_RETURN_IF_ERROR(ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) -> absl::Status { TF_RET_CHECK(index.empty()); operand_sizes[dimension][operand_index] = dynamic_size; return absl::OkStatus(); })); absl::InlinedVector<HloInstruction*, 2> existing_sizes(hlo->shape().rank(), nullptr); for (int operand_index = 0; operand_index < hlo->operand_count(); ++operand_index) { for (int64_t dimension = 0; dimension < hlo->shape().rank(); ++dimension) { HloInstruction* dynamic_size = operand_sizes[dimension][operand_index]; if (dynamic_size == nullptr) { continue; } HloInstruction* existing_size = existing_sizes[dimension]; if (existing_size == nullptr) { existing_sizes[dimension] = dynamic_size; } else if (existing_sizes[dimension] != dynamic_size) { TF_RETURN_IF_ERROR( InsertShapeCheck(existing_size, dynamic_size, true)); auto one = comp->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::One(S32))); auto operand_needs_broadcast = comp->AddInstruction(HloInstruction::CreateCompare( ShapeUtil::MakeShape(PRED, {}), dynamic_size, existing_size, ComparisonDirection::kLt)); auto is_one = comp->AddInstruction(HloInstruction::CreateCompare( ShapeUtil::MakeShape(PRED, {}), dynamic_size, one, ComparisonDirection::kEq)); operand_needs_broadcast = comp->AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(PRED, {}), HloOpcode::kAnd, is_one, operand_needs_broadcast)); auto existing_needs_broadcast = comp->AddInstruction(HloInstruction::CreateCompare( ShapeUtil::MakeShape(PRED, {}), existing_size, dynamic_size, ComparisonDirection::kLt)); is_one = comp->AddInstruction(HloInstruction::CreateCompare( ShapeUtil::MakeShape(PRED, {}), existing_size, one, ComparisonDirection::kEq)); existing_needs_broadcast = comp->AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(PRED, {}), HloOpcode::kAnd, is_one, existing_needs_broadcast)); auto needs_broadcast = comp->AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(PRED, {}), HloOpcode::kOr, operand_needs_broadcast, existing_needs_broadcast)); auto max_size = comp->AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeScalarShape(S32), HloOpcode::kMaximum, dynamic_size, existing_size)); auto min_size = comp->AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeScalarShape(S32), HloOpcode::kMinimum, dynamic_size, existing_size)); auto select_size = comp->AddInstruction(HloInstruction::CreateTernary( ShapeUtil::MakeScalarShape(S32), HloOpcode::kSelect, needs_broadcast, max_size, min_size)); existing_sizes[dimension] = select_size; } } } SetDynamicSizes(hlo, {}, existing_sizes); return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::HandleElementwiseBinary( HloInstruction* hlo) { return HandleElementwiseNary(hlo); } absl::Status DynamicDimensionInferenceVisitor::HandleClamp( HloInstruction* hlo) { return PassThroughDynamicDimension(hlo); } absl::Status DynamicDimensionInferenceVisitor::HandleDynamicReshape( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } HloDynamicReshapeInstruction* dynamic_reshape = Cast<HloDynamicReshapeInstruction>(hlo); for (int64_t i = 0; i < hlo->shape().rank(); ++i) { if (hlo->shape().is_dynamic_dimension(i)) { SetDynamicSize(hlo, {}, i, dynamic_reshape->dim_sizes(i)); } } return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::HandleReshape( HloInstruction* const hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } VLOG(2) << "Handle reshape: " << hlo->ToString() << "\n"; absl::InlinedVector<HloInstruction*, 2> dynamic_sizes(hlo->shape().rank(), nullptr); using ReshapeGroup = std::pair<int64_t, int64_t>; using ReshapeGroupPair = std::pair<ReshapeGroup, ReshapeGroup>; auto is_reverse_reshape_group_pair = [&](const HloInstruction* op1, const ReshapeGroupPair& p1, const HloInstruction* op2, const ReshapeGroupPair& p2) -> bool { return ShapeUtil::EqualStructure( ShapeUtil::GetSubshape( op1->operand(0)->shape(), ShapeIndex(p1.first.first, p1.first.second)), ShapeUtil::GetSubshape( op2->operand(0)->shape(), ShapeIndex(p2.second.first, p2.second.second))) && ShapeUtil::EqualStructure( ShapeUtil::GetSubshape( op1->shape(), ShapeIndex(p1.second.first, p1.second.second)), ShapeUtil::GetSubshape( op2->operand(0)->shape(), ShapeIndex(p2.first.first, p2.first.second))); }; auto find_reshape_group_pair = [](HloInstruction* reshape, int64_t input_dynamic_dimension) { VLOG(2) << "Find reshape pair: " << reshape->ToString() << "\n"; auto common_factors = CommonFactors(reshape->operand(0)->shape().dimensions(), reshape->shape().dimensions()); ReshapeGroup input_dim = {-1, -1}, output_dim = {-1, -1}; bool found = false; for (int64_t i = 0; i < common_factors.size() - 1; ++i) { auto start = common_factors[i]; auto end = common_factors[i + 1]; if (input_dynamic_dimension >= start.first && input_dynamic_dimension < end.first) { input_dim.first = start.first; input_dim.second = end.first; output_dim.first = start.second; output_dim.second = end.second; VLOG(3) << "Found common_factor group pair: " << input_dim.first << "," << input_dim.second << "->" << output_dim.first << "," << output_dim.second << "\n"; found = true; break; } } CHECK(found); return ReshapeGroupPair(input_dim, output_dim); }; auto reshape_group_pair_needs_flatten = [](const ReshapeGroupPair& reshape_pair) { return reshape_pair.first.second - reshape_pair.first.first > 1 && reshape_pair.second.second - reshape_pair.second.first > 1; }; std::function<bool(HloInstruction*, const ReshapeGroupPair&, int64_t)> find_reverse_past_reshape = [&](HloInstruction* op, const ReshapeGroupPair reshape_pair, int64_t dynamic_dimension_size) { VLOG(2) << "Find reverse past reshape from " << op->ToString() << " for " << dynamic_dimension_size << "\n"; absl::InlinedVector<int64_t, 4> found_dims; for (int op_dim_index = 0; op_dim_index < op->shape().rank(); ++op_dim_index) { if (op->shape().dimensions(op_dim_index) == dynamic_dimension_size) { found_dims.push_back(op_dim_index); } } if (found_dims.empty()) { return false; } VLOG(3) << "Found " << found_dims.size() << "\n"; if (op->opcode() == HloOpcode::kReshape) { for (auto op_dim_index : found_dims) { auto orig_reshape_pair = find_reshape_group_pair(op, op_dim_index); if (is_reverse_reshape_group_pair(op, orig_reshape_pair, hlo, reshape_pair)) { TF_CHECK_OK(ForEachOperandDynamicDimension( op, [&](HloInstruction* operand, ShapeIndex index, int64_t op_dynamic_dimension, int64_t operand_index, HloInstruction* operand_dynamic_size) -> absl::Status { if (op_dynamic_dimension >= orig_reshape_pair.first.first && op_dynamic_dimension < orig_reshape_pair.first.second) { auto dynamic_size = parent_->GetDynamicSize(op, {}, op_dynamic_dimension); CHECK_NE(dynamic_size, nullptr); auto hlo_dimension_index = op_dynamic_dimension - orig_reshape_pair.first.first + reshape_pair.second.first; dynamic_sizes[hlo_dimension_index] = dynamic_size; } return absl::OkStatus(); })); return true; } } } for (auto operand : op->mutable_operands()) { if (find_reverse_past_reshape(operand, reshape_pair, dynamic_dimension_size)) { return true; } VLOG(3) << "Checking " << operand->ToString() << "\n"; } return false; }; absl::flat_hash_map<int64_t, ReshapeGroupPair> reshape_group_pairs; bool need_flatten_unflatten = hlo->inferred_dimension() != -1 && hlo->shape().dimensions(hlo->inferred_dimension()) == 1; TF_RETURN_IF_ERROR(ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t input_dynamic_dimension, int64_t operand_index, HloInstruction* operand_dynamic_size) -> absl::Status { auto reshape_pair = find_reshape_group_pair(hlo, input_dynamic_dimension); reshape_group_pairs[input_dynamic_dimension] = reshape_pair; if (reshape_group_pair_needs_flatten(reshape_pair)) { need_flatten_unflatten = true; } return absl::OkStatus(); })); if (need_flatten_unflatten) { if (hlo->inferred_dimension() != -1) { HloInstruction* operand = hlo->mutable_operand(0); HloComputation* comp = hlo->parent(); HloInstruction* dynamic_size = comp->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(1))); int64_t static_size = 1; for (int64_t i = 0; i < operand->shape().rank(); i++) { HloInstruction* dynamic_dim_size = parent_->GetDynamicSize(operand, {}, i); if (dynamic_dim_size == nullptr) { static_size *= operand->shape().dimensions(i); } else { dynamic_size = comp->AddInstruction(HloInstruction::CreateBinary( dynamic_size->shape(), HloOpcode::kMultiply, dynamic_size, dynamic_dim_size)); } } HloInstruction* static_size_hlo = comp->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(static_size))); dynamic_size = comp->AddInstruction(HloInstruction::CreateBinary( dynamic_size->shape(), HloOpcode::kMultiply, dynamic_size, static_size_hlo)); int64_t size_without_inferred_dim = ShapeUtil::ElementsIn(hlo->shape()) / hlo->shape().dimensions(hlo->inferred_dimension()); HloInstruction* size_without_inferred_dim_hlo = comp->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(size_without_inferred_dim))); dynamic_size = comp->AddInstruction(HloInstruction::CreateBinary( dynamic_size->shape(), HloOpcode::kDivide, dynamic_size, size_without_inferred_dim_hlo)); dynamic_sizes[hlo->inferred_dimension()] = dynamic_size; VLOG(3) << "Need to decompose a dynamic reshape to flatten-unflatten pair. " << comp->parent()->ToString(); SetDynamicSizes(hlo, {}, dynamic_sizes); return absl::OkStatus(); } return Internal( "Need inferred dimension to be set to " "flatten-unflatten pair. %s", hlo->ToString()); } TF_RETURN_IF_ERROR(ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t input_dynamic_dimension, int64_t operand_index, HloInstruction* operand_dynamic_size) -> absl::Status { HloInstruction* const reshape = hlo; if (reshape->shape().rank() == 0) { VLOG(0) << "Reshaping a dynamic dimension into a scalar, which has " "undefined behavior when input size is 0. The offending " "instruction is: " << reshape->ToString(); return absl::OkStatus(); } auto iter = reshape_group_pairs.find(input_dynamic_dimension); CHECK(iter != reshape_group_pairs.end()); ReshapeGroupPair reshape_group_pair = iter->second; auto output_dim_start = reshape_group_pair.second.first, output_dim_end = reshape_group_pair.second.second; int64_t output_dynamic_dimension = -1; if (operand->shape().dimensions(input_dynamic_dimension) == 1) { if (input_dynamic_dimension == 0) { output_dynamic_dimension = 0; } else if (input_dynamic_dimension == operand->shape().rank() - 1) { output_dynamic_dimension = reshape->shape().rank() - 1; } if (output_dynamic_dimension == -1) { return Unimplemented( "Dynamic degenerated dimension that's not most-minor nor " "most-major is not supported %s", reshape->ToString()); } } if (output_dynamic_dimension == -1 && output_dim_end - output_dim_start == 1) { output_dynamic_dimension = output_dim_start; } if (output_dynamic_dimension == -1 && output_dim_end - output_dim_start > 1) { output_dynamic_dimension = reshape->inferred_dimension(); if (output_dynamic_dimension == -1) { for (int64_t i = output_dim_start; i < output_dim_end; ++i) { if (reshape->shape().is_dynamic_dimension(i)) { output_dynamic_dimension = i; } } } if (output_dynamic_dimension == -1) { std::vector<int64_t> output_non_degenerated; for (int64_t i = output_dim_start; i < output_dim_end; ++i) { if (reshape->shape().dimensions(i) != 1) { output_non_degenerated.push_back(i); } } if (output_non_degenerated.size() == 1) { output_dynamic_dimension = output_non_degenerated[0]; } } if (output_dynamic_dimension == -1 && find_reverse_past_reshape( hlo->mutable_operand(0), reshape_group_pair, hlo->mutable_operand(0)->shape().dimensions( input_dynamic_dimension))) { return absl::OkStatus(); } if (output_dynamic_dimension == -1) { return InvalidArgument( "Reshape's input dynamic dimension is decomposed into " "multiple output dynamic dimensions, but the constraint is " "ambiguous and XLA can't infer the output dimension %s. ", hlo->ToString()); } } CHECK_NE(output_dynamic_dimension, -1); const int64_t input_dim_size = operand->shape().dimensions(input_dynamic_dimension); const int64_t output_dim_size = reshape->shape().dimensions(output_dynamic_dimension); VLOG(2) << "input_dim_size: " << input_dim_size << " output_dim_size: " << output_dim_size; if (input_dim_size == output_dim_size) { dynamic_sizes[output_dynamic_dimension] = operand_dynamic_size; } if (input_dim_size > output_dim_size) { TF_RET_CHECK(input_dim_size % output_dim_size == 0) << reshape->ToString(); const int64_t divisor = input_dim_size / output_dim_size; HloInstruction* divisor_hlo = hlo->parent()->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(divisor))); HloInstruction* new_dynamic_size = hlo->parent()->AddInstruction(HloInstruction::CreateBinary( operand_dynamic_size->shape(), HloOpcode::kDivide, operand_dynamic_size, divisor_hlo)); dynamic_sizes[output_dynamic_dimension] = new_dynamic_size; } if (input_dim_size < output_dim_size) { HloInstruction* output_dynamic_size = dynamic_sizes[output_dynamic_dimension]; if (output_dynamic_size == nullptr) { output_dynamic_size = hlo->parent()->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(output_dim_size))); } HloInstruction* divisor_hlo = hlo->parent()->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>( operand->shape().dimensions(input_dynamic_dimension)))); HloInstruction* new_dynamic_size = hlo->parent()->AddInstruction(HloInstruction::CreateBinary( output_dynamic_size->shape(), HloOpcode::kDivide, output_dynamic_size, divisor_hlo)); new_dynamic_size = hlo->parent()->AddInstruction(HloInstruction::CreateBinary( output_dynamic_size->shape(), HloOpcode::kMultiply, new_dynamic_size, operand_dynamic_size)); dynamic_sizes[output_dynamic_dimension] = new_dynamic_size; } return absl::OkStatus(); })); SetDynamicSizes(hlo, {}, dynamic_sizes); return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::HandleReduceWindow( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } ShapeTree<absl::InlinedVector<HloInstruction*, 2>> dynamic_sizes( hlo->shape()); TF_RETURN_IF_ERROR(ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) { auto* reduce_window = Cast<HloReduceWindowInstruction>(hlo); const WindowDimension& window_dim = reduce_window->window().dimensions(dimension); if (operand_index >= reduce_window->input_count()) { return absl::OkStatus(); } if (!window_util::IsTrivialWindowDimension(window_dim)) { DynamicWindowDims dynamic_window_dims = GetWindowedOutputSize( dynamic_size, window_dim.size(), window_dim.window_dilation(), window_dim.stride(), PaddingType::PADDING_VALID); dynamic_size = dynamic_window_dims.output_size; } ShapeUtil::ForEachSubshape( reduce_window->shape(), [&](const Shape& subshape, ShapeIndex reduce_window_result_index) { if (!ShapeUtil::IsLeafIndex(reduce_window->shape(), reduce_window_result_index)) { return; } auto* leaf_dynamic_sizes = dynamic_sizes.mutable_element(reduce_window_result_index); leaf_dynamic_sizes->resize(subshape.rank(), nullptr); (*leaf_dynamic_sizes)[dimension] = dynamic_size; }); return absl::OkStatus(); })); dynamic_sizes.ForEachElement( [&](const ShapeIndex& shape_index, const absl::InlinedVector<HloInstruction*, 2> sizes) { if (sizes.empty()) { return; } SetDynamicSizes(hlo, shape_index, sizes); }); return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::HandleSelectAndScatter( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } return ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) { if (operand_index == 1) { return absl::OkStatus(); } SetDynamicSize(hlo, {}, dimension, dynamic_size); return absl::OkStatus(); }); } absl::Status DynamicDimensionInferenceVisitor::HandleSlice( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } return ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex , int64_t dimension, int64_t , HloInstruction* dynamic_size) -> absl::Status { int64_t start = hlo->slice_starts(dimension); int64_t limit = hlo->slice_limits(dimension); int64_t stride = hlo->slice_strides(dimension); int64_t size = CeilOfRatio<int64_t>(limit - start, stride); if (size == 1) { TF_RET_CHECK(!hlo->shape().is_dynamic_dimension(dimension)); return absl::OkStatus(); } TF_RET_CHECK(hlo->shape().is_dynamic_dimension(dimension)); if (start != 0) { dynamic_size = hlo->AddInstruction(HloInstruction::CreateBinary( dynamic_size->shape(), HloOpcode::kSubtract, dynamic_size, hlo->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(start))))); } if (stride != 1) { dynamic_size = hlo->AddInstruction(HloInstruction::CreateBinary( dynamic_size->shape(), HloOpcode::kAdd, dynamic_size, hlo->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(stride - 1))))); dynamic_size = hlo->AddInstruction(HloInstruction::CreateBinary( dynamic_size->shape(), HloOpcode::kDivide, dynamic_size, hlo->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(stride))))); } SetDynamicSize(hlo, {}, dimension, dynamic_size); return absl::OkStatus(); }); } absl::Status DynamicDimensionInferenceVisitor::HandleDynamicSlice( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } return ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) -> absl::Status { if (hlo->shape().dimensions(dimension) == 1) { return absl::OkStatus(); } if (hlo->shape().dimensions(dimension) != hlo->operand(0)->shape().dimensions(dimension)) { return Unimplemented( "Dynamic dimension propagation on DynamicSlice where a partial " "dimension is selected %s", hlo->ToString()); } TF_RET_CHECK(operand_index == 0); TF_RET_CHECK(index.empty()); SetDynamicSize(hlo, {}, dimension, dynamic_size); return absl::OkStatus(); }); } absl::Status DynamicDimensionInferenceVisitor::HandleDynamicUpdateSlice( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } absl::InlinedVector<HloInstruction*, 2> output_dynamic_sizes( hlo->shape().rank(), nullptr); TF_RETURN_IF_ERROR(ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) -> absl::Status { TF_RET_CHECK(index.empty()); if (hlo->shape().dimensions(dimension) != hlo->operand(0)->shape().dimensions(dimension)) { return Unimplemented( "Dynamic dimension propagation on DynamicUpdateSlice where a " "partial dimension is selected %s", hlo->ToString()); } if (operand_index == 1 && hlo->operand(1)->shape().dimensions(dimension) < hlo->operand(0)->shape().dimensions(dimension)) { hlo->mutable_shape()->set_dynamic_dimension(dimension, false); return absl::OkStatus(); } output_dynamic_sizes[dimension] = dynamic_size; return absl::OkStatus(); })); SetDynamicSizes(hlo, {}, output_dynamic_sizes); return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::HandleReverse( HloInstruction* hlo) { return PassThroughDynamicDimension(hlo); } absl::Status DynamicDimensionInferenceVisitor::HandleGather( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } absl::InlinedVector<HloInstruction*, 2> output_dynamic_sizes( hlo->shape().rank(), nullptr); TF_RETURN_IF_ERROR(ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex , int64_t input_dynamic_dimension, int64_t operand_index, HloInstruction* dynamic_size) -> absl::Status { const GatherDimensionNumbers& gather_dims = hlo->gather_dimension_numbers(); if (operand_index == 0) { if (hlo->gather_slice_sizes()[input_dynamic_dimension] == 1) { return absl::OkStatus(); } if (hlo->gather_slice_sizes()[input_dynamic_dimension] == operand->shape().dimensions(input_dynamic_dimension)) { int64_t operand_dimension = 0; for (int64_t output_dimension : gather_dims.offset_dims()) { TF_RET_CHECK(output_dimension < hlo->shape().rank()); while (operand_dimension < operand->shape().rank() && absl::c_linear_search(gather_dims.collapsed_slice_dims(), operand_dimension)) { ++operand_dimension; } TF_RET_CHECK(operand_dimension < operand->shape().rank()); if (operand_dimension == input_dynamic_dimension) { output_dynamic_sizes[output_dimension] = dynamic_size; return absl::OkStatus(); } ++operand_dimension; } return Internal("Invalid instruction: %s", hlo->ToString()); } return Unimplemented( "Detects a dynamic dimension on the data input of gather, which " "is not supported: %s, %lld", hlo->ToString(), input_dynamic_dimension); } int64_t indices_rank = hlo->operand(1)->shape().rank(); if (gather_dims.index_vector_dim() == indices_rank) { ++indices_rank; } int64_t output_rank = hlo->shape().rank(); int64_t indices_dim = 0; for (int64_t output_dim = 0; output_dim < output_rank; ++output_dim) { if (!absl::c_linear_search(gather_dims.offset_dims(), output_dim)) { if (indices_dim == gather_dims.index_vector_dim()) { indices_dim++; } if (indices_dim++ == input_dynamic_dimension) { output_dynamic_sizes[output_dim] = dynamic_size; return absl::OkStatus(); } } } CHECK(indices_dim == indices_rank); return Unimplemented( "Detects a non-batch dynamic dimension of gather, " "which is not supported: %s", hlo->ToString()); })); SetDynamicSizes(hlo, {}, output_dynamic_sizes); return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::HandleConditional( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } std::vector<HloComputation*> new_branch_computations; std::vector<HloInstruction*> new_operands; ShapeTree<absl::flat_hash_map<int64_t, int64_t>> dynamic_output_mapping( hlo->shape()); bool need_rewrite = false; for (int64_t branch_index = 0; branch_index < hlo->branch_count(); ++branch_index) { std::vector<HloInstruction*> operands_to_add; absl::flat_hash_map<HloInstruction*, int64_t> dynamic_size_to_operand_id_index_map; const int64_t operand_index = branch_index + 1; int operand_count = hlo->operand(operand_index)->shape().tuple_shapes_size(); TF_RETURN_IF_ERROR(ForEachDynamicDimensionInOperand( hlo, operand_index, [&](HloInstruction*, ShapeIndex, int64_t, int64_t, HloInstruction* dynamic_size) -> absl::Status { TF_RET_CHECK(hlo->operand(operand_index)->shape().IsTuple()) << "Only tuple typed inputs can have dynamic dimension. Please " "file a bug against XLA team."; const HloInstruction* tuple_operand = hlo->operand(operand_index); for (int64_t i = 0; i < tuple_operand->operand_count(); ++i) { if (dynamic_size == tuple_operand->operand(i)) { dynamic_size_to_operand_id_index_map[dynamic_size] = i; return absl::OkStatus(); } } auto iter = dynamic_size_to_operand_id_index_map.find(dynamic_size); if (iter == dynamic_size_to_operand_id_index_map.end()) { operands_to_add.push_back(dynamic_size); dynamic_size_to_operand_id_index_map[dynamic_size] = operand_count++; } return absl::OkStatus(); })); HloInstruction* original_input = hlo->mutable_operand(operand_index); HloComputation* branch_computation = hlo->branch_computation(branch_index); HloComputation* new_computation = branch_computation; CallInliner::InlinedInstructionMap inline_map; HloInstruction* new_operand = hlo->mutable_operand(operand_index); Shape new_param_shape = branch_computation->parameter_instruction(0)->shape(); if (!operands_to_add.empty()) { TF_RET_CHECK(original_input->shape().IsTuple()); need_rewrite = true; new_operand = TupleUtil::AppendSuffix(original_input, operands_to_add); for (HloInstruction* operand : operands_to_add) { ShapeUtil::AppendShapeToTuple(operand->shape(), &new_param_shape); } TF_ASSIGN_OR_RETURN( std::tie(new_computation, inline_map), WidenComputation(branch_computation, new_param_shape)); } DynamicParameterBinding dynamic_parameter_binding; TF_RETURN_IF_ERROR(ForEachDynamicDimensionInOperand( hlo, operand_index, [&](HloInstruction*, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) { DynamicParameterBinding::DynamicSizeParameter dynamic_parameter{ 0, {dynamic_size_to_operand_id_index_map[dynamic_size]}}; DynamicParameterBinding::DynamicDimension dynamic_dimension{ 0, {index}, dimension}; TF_RETURN_IF_ERROR(dynamic_parameter_binding.Bind(dynamic_parameter, dynamic_dimension)); return absl::OkStatus(); })); VLOG(2) << "dynamic_parameter_binding for conditional branch" << dynamic_parameter_binding; for (auto [old_inst, new_inst] : inline_map) { parent_->CopyMapping( old_inst, new_inst, &inline_map); } TF_ASSIGN_OR_RETURN( bool changed, DynamicDimensionInferenceVisitor::Run( new_computation, dataflow_analysis_, dynamic_parameter_binding, parent_, custom_call_handler_, shape_check_mode_, assertion_generator_)); if (changed) { MarkAsChanged(); } new_branch_computations.push_back(new_computation); new_operands.push_back(new_operand); } int tuple_count = hlo->shape().tuple_shapes_size(); ShapeUtil::ForEachSubshape( hlo->shape(), [&](const Shape& subshape, const ShapeIndex& index) { if (!subshape.IsArray()) { return; } for (int64_t i = 0; i < subshape.rank(); ++i) { for (int64_t j = 0; j < new_branch_computations.size(); ++j) { HloInstruction* dynamic_size = parent_->GetDynamicSize( new_branch_computations[j]->root_instruction(), index, i); if (dynamic_size) { if (dynamic_output_mapping.element(index).contains(i)) { continue; } dynamic_output_mapping.mutable_element(index)->emplace( i, tuple_count++); } } } }); for (int64_t branch_index = 0; branch_index < hlo->branch_count(); ++branch_index) { std::vector<HloInstruction*> hlos_to_add_in_root; ShapeUtil::ForEachSubshape( hlo->shape(), [&](const Shape& subshape, const ShapeIndex& index) { if (!subshape.IsArray()) { return; } for (int64_t i = 0; i < subshape.rank(); ++i) { if (dynamic_output_mapping.element(index).contains(i)) { HloInstruction* dynamic_size = parent_->GetDynamicSize( new_branch_computations[branch_index]->root_instruction(), index, i); if (dynamic_size) { hlos_to_add_in_root.push_back(dynamic_size); } else { HloInstruction* constant_size = new_branch_computations[branch_index]->AddInstruction( HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>( subshape.dimensions(i)))); hlos_to_add_in_root.push_back(constant_size); } } } }); VLOG(2) << "hlos_to_add_in_root:" << hlos_to_add_in_root.size(); if (!hlos_to_add_in_root.empty()) { need_rewrite = true; HloInstruction* new_branch_root = TupleUtil::AppendSuffix( new_branch_computations[branch_index]->root_instruction(), hlos_to_add_in_root); new_branch_computations[branch_index]->set_root_instruction( new_branch_root, true); } } if (!need_rewrite) { return absl::OkStatus(); } HloInstruction* new_conditional = hlo->parent()->AddInstruction(HloInstruction::CreateConditional( new_branch_computations[0]->root_instruction()->shape(), hlo->mutable_operand(0), new_branch_computations, new_operands)); HloInstruction* new_conditional_extracted = TupleUtil::ExtractPrefix( new_conditional, hlo->shape().tuple_shapes_size()); dynamic_output_mapping.ForEachElement( [&](const ShapeIndex& index, const absl::flat_hash_map<int64_t, int64_t>& dim_to_output) { for (auto iter : dim_to_output) { int64_t dim = iter.first; int64_t output_index = iter.second; HloInstruction* dynamic_size = hlo->parent()->AddInstruction( HloInstruction::CreateGetTupleElement( ShapeUtil::MakeScalarShape(S32), new_conditional, output_index)); SetDynamicSize(new_conditional, index, dim, dynamic_size, false); SetDynamicSize(new_conditional_extracted, index, dim, dynamic_size, false); } }); TF_RETURN_IF_ERROR(hlo->ReplaceAllUsesWith(new_conditional_extracted)); TF_RETURN_IF_ERROR(hlo->parent()->RemoveInstruction(hlo)); SetVisited(*new_conditional); SetVisited(*new_conditional_extracted); MarkAsChanged(); return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::HandleMap(HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } return HandleElementwiseNary(hlo); } absl::Status DynamicDimensionInferenceVisitor::HandleScatter( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } return ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex dynamic_index, int64_t dimension, int64_t operand_index, HloInstruction* operand_dynamic_size) -> absl::Status { if (operand_index == 0) { SetDynamicSize(hlo, {}, dimension, operand_dynamic_size); return absl::OkStatus(); } const ScatterDimensionNumbers& scatter_dims = hlo->scatter_dimension_numbers(); if (operand_index == 2 && absl::c_linear_search(scatter_dims.update_window_dims(), dimension)) { std::vector<int64_t> update_window_dims_in_operand; for (int64_t i = 0; i < hlo->operand(0)->shape().rank(); ++i) { if (absl::c_linear_search(scatter_dims.inserted_window_dims(), i)) { continue; } update_window_dims_in_operand.push_back(i); } for (int64_t i = 0; i < scatter_dims.update_window_dims_size(); ++i) { if (scatter_dims.update_window_dims(i) == dimension) { const Shape& operand_shape = hlo->operand(0)->shape(); const Shape& update_shape = hlo->operand(2)->shape(); int64_t dim_in_operand = update_window_dims_in_operand[i]; if (operand_shape.dimensions(dim_in_operand) != update_shape.dimensions(dimension)) { return Unimplemented( "Dynamic dimension of update window dims that are not the " "same as corresponding operand dim is not supported: " "%s : %d : %d : %d", hlo->ToString(), i, update_shape.dimensions(dimension), operand_shape.dimensions(dim_in_operand)); } HloInstruction* base_dynamic_size = parent_->GetDynamicSize( hlo->mutable_operand(0), {}, dim_in_operand); if (base_dynamic_size == nullptr || !operand_shape.is_dynamic_dimension(dim_in_operand)) { return absl::OkStatus(); } if (base_dynamic_size != operand_dynamic_size) { return Unimplemented( "Dynamic dimension size of update window dims that are not " "the same as corresponding operand dim is not supported: " "%s.\n Dynamic dim size of base: %s, dynamic dim size of " "update: %s", hlo->ToString(), base_dynamic_size->ToString(), operand_dynamic_size->ToString()); } } } } return absl::OkStatus(); }); } absl::Status DynamicDimensionInferenceVisitor::HandleWhile( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } Shape original_shape = hlo->shape(); ShapeTree<absl::flat_hash_map<int64_t, int64_t>> dynamic_output_mapping( original_shape); std::vector<HloInstruction*> operands_to_add; const int original_tuple_count = original_shape.tuple_shapes_size(); int operand_count = original_tuple_count; DynamicParameterBinding binding_for_while; TF_RETURN_IF_ERROR(ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dim, int64_t operand_num, HloInstruction* dynamic_size) -> absl::Status { TF_RET_CHECK(operand_num == 0); operands_to_add.push_back(dynamic_size); dynamic_output_mapping.mutable_element(index)->emplace(dim, operand_count); DynamicParameterBinding::DynamicDimension dynamic_dimension{ 0, index, dim, }; DynamicParameterBinding::DynamicSizeParameter dynamic_size_param{ 0, {operand_count}, }; TF_RETURN_IF_ERROR( binding_for_while.Bind(dynamic_size_param, dynamic_dimension)); ++operand_count; return absl::OkStatus(); })); if (operands_to_add.empty()) { return absl::OkStatus(); } HloInstruction* old_tuple_operand = hlo->mutable_operand(0); HloInstruction* old_body_root = hlo->while_body()->root_instruction(); TF_ASSIGN_OR_RETURN(WhileUtil::MakeInstructionsLiveInResult result, WhileUtil::MakeInstructionsLiveIn(hlo, operands_to_add)); TF_RET_CHECK(result.replacement_instr->opcode() == HloOpcode::kTuple); HloInstruction* new_tuple_operand = result.new_while_instr->mutable_operand(0); parent_->CopyMapping(old_tuple_operand, new_tuple_operand); hlo = result.new_while_instr; SetVisited(*hlo); for (auto [old_inst, new_inst] : result.while_body_instruction_map) { parent_->CopyMapping( old_inst, new_inst, &result.while_body_instruction_map); } parent_->CopyMapping(old_body_root, hlo->while_body()->root_instruction(), &result.while_body_instruction_map); for (auto [old_inst, new_inst] : result.while_condition_instruction_map) { parent_->CopyMapping( old_inst, new_inst, &result.while_condition_instruction_map); } TF_RETURN_IF_ERROR(DynamicDimensionInferenceVisitor::Run( hlo->while_body(), dataflow_analysis_, binding_for_while, parent_, custom_call_handler_, shape_check_mode_, assertion_generator_) .status()); TF_RETURN_IF_ERROR(DynamicDimensionInferenceVisitor::Run( hlo->while_condition(), dataflow_analysis_, binding_for_while, parent_, custom_call_handler_, shape_check_mode_, assertion_generator_) .status()); HloInstruction* body_root = hlo->while_body()->root_instruction(); std::vector<HloInstruction*> new_root_operands(body_root->operand_count(), nullptr); for (int i = 0; i < original_tuple_count; ++i) { new_root_operands[i] = body_root->AddInstruction(HloInstruction::CreateGetTupleElement( body_root->shape().tuple_shapes(i), body_root, i)); } TF_RETURN_IF_ERROR(dynamic_output_mapping.ForEachElementWithStatus( [&](const ShapeIndex& index, const absl::flat_hash_map<int64_t, int64_t>& dim_to_size) -> absl::Status { for (auto [dimension, output_index] : dim_to_size) { TF_RET_CHECK(new_root_operands[output_index] == nullptr); HloInstruction* dynamic_size = parent_->GetDynamicSize(body_root, index, dimension); TF_RET_CHECK(dynamic_size != nullptr); new_root_operands[output_index] = dynamic_size; } return absl::OkStatus(); })); for (auto operand : new_root_operands) { TF_RET_CHECK(operand != nullptr); } HloInstruction* new_body_root = hlo->while_body()->AddInstruction( HloInstruction::CreateTuple(new_root_operands)); for (int i = 0; i < original_tuple_count; ++i) { TF_RETURN_IF_ERROR(ForEachDynamicDimension( body_root, [&](ShapeIndex index, int64_t dimension, HloInstruction* dynamic_size) -> absl::Status { SetDynamicSize(new_body_root, index, dimension, dynamic_size); if (index.empty() || index.front() != i) { return absl::OkStatus(); } index.pop_front(); SetDynamicSize(new_root_operands[i], index, dimension, dynamic_size); return absl::OkStatus(); })); } hlo->while_body()->set_root_instruction(new_body_root); MarkAsChanged(); return dynamic_output_mapping.ForEachElementWithStatus( [&](const ShapeIndex& index, const absl::flat_hash_map<int64_t, int64_t>& dim_to_size) -> absl::Status { for (auto [dimension, output_index] : dim_to_size) { HloInstruction* dynamic_size = hlo->AddInstruction( HloInstruction::CreateGetTupleElement(hlo, output_index)); SetDynamicSize(result.replacement_instr, index, dimension, dynamic_size); ShapeUtil::GetMutableSubshape(hlo->mutable_shape(), index) ->set_dynamic_dimension(dimension, false); TF_RET_CHECK(!index.empty()); HloInstruction* gte = result.replacement_instr->mutable_operand(index.front()); TF_RET_CHECK(gte->opcode() == HloOpcode::kGetTupleElement); TF_RET_CHECK(gte->operand(0) == hlo); ShapeUtil::GetMutableSubshape(gte->mutable_shape(), ShapeIndexView(index).subspan(1)) ->set_dynamic_dimension(dimension, false); } return absl::OkStatus(); }); } absl::Status DynamicDimensionInferenceVisitor::HandleParameter( HloInstruction* hlo) { if (hlo->parent()->IsEntryComputation()) { TF_RET_CHECK(param_bindings_.empty()); return InsertPadToStaticOnInstruction(hlo); } return param_bindings_.ForEachBinding( [&](const DynamicParameterBinding::DynamicSizeParameter& dynamic_size, const DynamicParameterBinding::DynamicDimension& dynamic_dimension) -> absl::Status { if (dynamic_dimension.parameter_num == hlo->parameter_number()) { SetDynamicSize( hlo, dynamic_dimension.parameter_index, dynamic_dimension.dimension, TupleUtil::AddGetTupleElements(HloPosition{ hlo->parent()->parameter_instruction( dynamic_size.parameter_num), dynamic_size.parameter_index, })); } return absl::OkStatus(); }); } absl::Status DynamicDimensionInferenceVisitor::HandleInfeed( HloInstruction* hlo) { return InsertPadToStaticOnInstruction(hlo); } absl::Status DynamicDimensionInferenceVisitor::ForEachDynamicDimension( HloInstruction* inst, const DynamicDimensionFn& fn) { auto iter = parent_->per_hlo_dynamic_dimensions_.find(inst); if (iter != parent_->per_hlo_dynamic_dimensions_.end()) { for (auto& dynamic_dimension : iter->second) { HloInstruction* dynamic_size = parent_->GetDynamicSize( dynamic_dimension.inst, dynamic_dimension.index, dynamic_dimension.dim); TF_RETURN_IF_ERROR( fn(dynamic_dimension.index, dynamic_dimension.dim, dynamic_size)); } } return absl::OkStatus(); } absl::StatusOr<bool> DynamicDimensionInferenceVisitor::RequiresPadToStatic( HloInstruction* instr, ShapeIndex shape_index) { TF_RET_CHECK(ShapeUtil::IsLeafIndex(instr->shape(), shape_index)) << instr->shape() << " @ " << shape_index; if (ShapeUtil::GetSubshape(instr->shape(), shape_index).is_static()) { return false; } auto uses = dataflow_analysis_.GetValueDefinedAt(instr, shape_index).GetUses(); for (const auto& use : uses) { if (use.instruction->opcode() == HloOpcode::kAsyncStart || use.instruction->opcode() == HloOpcode::kAsyncUpdate || use.instruction->opcode() == HloOpcode::kAsyncDone || use.instruction->opcode() == HloOpcode::kCall || use.instruction->opcode() == HloOpcode::kTuple || use.instruction->opcode() == HloOpcode::kGetTupleElement || use.instruction->opcode() == HloOpcode::kConditional) { continue; } if (use.instruction->opcode() == HloOpcode::kWhile) { TF_RET_CHECK(use.operand_number == 0); HloInstruction* root = use.instruction->while_body()->root_instruction(); if (parent_->HasDynamicDimension(root, use.operand_index)) { return true; } continue; } if (use.instruction->opcode() == HloOpcode::kSetDimensionSize) { TF_RET_CHECK(use.operand_number == 0); return true; } if (use.instruction->opcode() == HloOpcode::kGetDimensionSize) { return true; } if (use.instruction->opcode() != HloOpcode::kCustomCall || use.instruction->custom_call_target() != "PadToStatic") { if (parent_->op_supports_dynamism_handler_ == nullptr) { return true; } if (parent_->op_supports_dynamism_handler_(use.instruction) == OpDynamismSupport::kNoSupport) { return true; } } } return false; } absl::Status DynamicDimensionInferenceVisitor::InsertPadToStaticOnInstruction( HloInstruction* inst) { if (inst->shape().is_static()) { return absl::OkStatus(); } ShapeTree<bool> needs_pad(inst->shape(), false); bool any_needs_pad = false; TF_RETURN_IF_ERROR(ShapeUtil::ForEachSubshapeWithStatus( inst->shape(), [&](const Shape& subshape, const ShapeIndex& shape_index) { if (subshape.IsTuple()) { return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(bool do_pad, RequiresPadToStatic(inst, shape_index)); if (do_pad) { *needs_pad.mutable_element(shape_index) = true; any_needs_pad = true; } return absl::OkStatus(); })); if (!any_needs_pad) { return absl::OkStatus(); } auto users = inst->users(); ShapeTree<HloInstruction*> gtes = TupleUtil::DisassembleTupleInstruction(inst); ShapeTree<HloInstruction*> padded(inst->shape(), nullptr); TF_RETURN_IF_ERROR(ShapeUtil::ForEachSubshapePostOrderWithStatus( inst->shape(), [&](const Shape& subshape, const ShapeIndex& shape_index) -> absl::Status { HloInstruction* element = gtes.element(shape_index); SetVisited(*gtes.element(shape_index)); if (subshape.IsTuple()) { absl::InlinedVector<HloInstruction*, 2> children; ShapeIndex child_index = shape_index; for (int i = 0; i < subshape.tuple_shapes_size(); ++i) { child_index.push_back(i); children.push_back(padded.element(child_index)); child_index.pop_back(); } HloInstruction* tuple = element->AddInstruction(HloInstruction::CreateVariadic( subshape, HloOpcode::kTuple, children)); TF_CHECK_OK(ForEachOperandDynamicDimension( tuple, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) { index.push_front(operand_index); SetDynamicSize(tuple, index, dimension, dynamic_size); return absl::OkStatus(); })); *padded.mutable_element(shape_index) = tuple; return absl::OkStatus(); } if (needs_pad.element(shape_index)) { Shape data_output_shape = ShapeUtil::MakeStaticShape(element->shape()); Shape output_shape = ShapeUtil::MakeTupleShape({data_output_shape}); for (int64_t i = 0; i < element->shape().rank(); ++i) { ShapeUtil::AppendShapeToTuple(ShapeUtil::MakeScalarShape(S32), &output_shape); } HloInstruction* pad_to_static = inst->parent()->AddInstruction( HloInstruction::CreateCustomCall(output_shape, {element}, "PadToStatic"), absl::StrCat(element->name(), ".padded")); SetVisited(*pad_to_static); HloInstruction* data_output = inst->parent()->AddInstruction( HloInstruction::CreateGetTupleElement(data_output_shape, pad_to_static, 0), absl::StrCat(element->name(), ".data")); SetVisited(*data_output); for (int64_t i = 0; i < element->shape().rank(); ++i) { if (!element->shape().is_dynamic_dimension(i)) { continue; } HloInstruction* dynamic_size_output = inst->parent()->AddInstruction( HloInstruction::CreateGetTupleElement( output_shape.tuple_shapes(i + 1), pad_to_static, i + 1), absl::StrCat(element->name(), ".size")); SetVisited(*dynamic_size_output); SetDynamicSize(data_output, {}, i, dynamic_size_output, false); } *padded.mutable_element(shape_index) = data_output; } else { *padded.mutable_element(shape_index) = element; } return absl::OkStatus(); })); HloInstruction* result = padded.element({}); for (auto user : users) { for (int64_t i : user->OperandIndices(inst)) { TF_RETURN_IF_ERROR(user->ReplaceOperandWith(i, result)); } } if (inst->IsRoot()) { inst->parent()->set_root_instruction(result); } MarkAsChanged(); return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::InsertShapeCheck( HloInstruction* dim1, HloInstruction* dim2, bool support_implicit_broadcast) { switch (shape_check_mode_) { case DynamicDimensionInference::kIgnore: return absl::OkStatus(); case DynamicDimensionInference::kCompileTime: return InvalidArgument( "Fail to proof the equality of two dimensions at compile time: " "%s vs %s", dim1->ToString(), dim2->ToString()); case DynamicDimensionInference::kRuntime: { TF_ASSIGN_OR_RETURN( HloInstruction * assertion, MakeCompareHlo(Comparison::Direction::kEq, dim1, dim2)); if (shape_assertion_ == nullptr) { shape_assertion_ = assertion; } else { TF_ASSIGN_OR_RETURN( shape_assertion_, MakeBinaryHlo(HloOpcode::kAnd, shape_assertion_, assertion)); } return absl::OkStatus(); } default: LOG(FATAL) << "Unreachable"; } } absl::Status DynamicDimensionInferenceVisitor::ForEachDynamicDimensionInOperand( HloInstruction* inst, int64_t operand_index, OperandDynamicDimensionFn fn) { auto iter = parent_->per_hlo_dynamic_dimensions_.find(inst->operand(operand_index)); if (iter != parent_->per_hlo_dynamic_dimensions_.end()) { for (auto& dynamic_dimension : iter->second) { HloInstruction* dynamic_size = parent_->GetDynamicSize( dynamic_dimension.inst, dynamic_dimension.index, dynamic_dimension.dim); TF_RETURN_IF_ERROR(fn(dynamic_dimension.inst, dynamic_dimension.index, dynamic_dimension.dim, operand_index, dynamic_size)); } } return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::ForEachOperandDynamicDimension( HloInstruction* inst, OperandDynamicDimensionFn fn) { for (int64_t operand_index = 0; operand_index < inst->operand_count(); ++operand_index) { TF_RETURN_IF_ERROR( ForEachDynamicDimensionInOperand(inst, operand_index, fn)); } return absl::OkStatus(); } void DynamicDimensionInference::SetDynamicSize(HloInstruction* inst, const ShapeIndex& index, int64_t dim, HloInstruction* size) { CHECK_NE(inst, nullptr); CHECK_NE(size, nullptr); VLOG(1) << "Set dimension inst " << inst->ToString() << " index " << index.ToString() << "@" << dim << " to " << size->ToShortString(); const Shape& subshape = ShapeUtil::GetSubshape(inst->shape(), index); CHECK(!subshape.IsTuple()) << "Can't set a tuple shape to dynamic dimension"; CHECK(dim < subshape.rank() && dim >= 0) << "Asked to set invalid dynamic dimension. Shape: " << subshape.ToString() << ", Dimension: " << dim; DynamicDimension dynamic_dimension{inst, index, dim}; auto [it, inserted] = dynamic_mapping_.try_emplace(dynamic_dimension, size); if (!inserted) { CHECK_EQ(size, it->second) << "old: " << it->second->ToShortString() << ", new: " << size->ToShortString(); } auto iter = per_hlo_dynamic_dimensions_.try_emplace(inst); iter.first->second.emplace(dynamic_dimension); } void DynamicDimensionInference::CopyMapping( HloInstruction* from, HloInstruction* to, const absl::flat_hash_map<HloInstruction*, HloInstruction*>* dynamic_size_map) { auto iter = per_hlo_dynamic_dimensions_.find(from); if (iter != per_hlo_dynamic_dimensions_.end()) { for (auto& dynamic_dimension : iter->second) { HloInstruction* dynamic_size = GetDynamicSize(dynamic_dimension.inst, dynamic_dimension.index, dynamic_dimension.dim); if (dynamic_size_map != nullptr) { dynamic_size = dynamic_size_map->at(dynamic_size); } SetDynamicSize(to, dynamic_dimension.index, dynamic_dimension.dim, dynamic_size); } } } absl::StatusOr<DynamicDimensionInference> DynamicDimensionInference::Run( HloModule* module, OpSupportsDynamismHandler op_supports_dynamism_handler, CustomCallInferenceHandler custom_call_handler, ShapeCheckMode shape_check_mode, const AssertionGenerator& assertion_generator, const absl::flat_hash_set<absl::string_view>& execution_threads) { DynamicDimensionInference inference( module, std::move(op_supports_dynamism_handler), std::move(custom_call_handler), shape_check_mode, assertion_generator, execution_threads); TF_RETURN_IF_ERROR(inference.AnalyzeDynamicDimensions()); return std::move(inference); } std::string DynamicDimensionInference::ToString() const { std::vector<std::string> pieces; pieces.push_back("DynamicDimensionInference: "); for (const auto& mapping : dynamic_mapping_) { const DynamicDimension& dynamic_dimension = mapping.first; pieces.push_back(absl::StrFormat( " -- instruction %s at %s has dim %lld as dynamic" " dimension, which is represented by instruction %s", dynamic_dimension.inst->ToString(), dynamic_dimension.index.ToString(), dynamic_dimension.dim, mapping.second->ToString())); } return absl::StrJoin(pieces, "\n"); } DynamicDimensionInference::DynamicDimensionInference( HloModule* module, OpSupportsDynamismHandler op_supports_dynamism_handler, CustomCallInferenceHandler custom_call_handler, ShapeCheckMode shape_check_mode, AssertionGenerator assertion_generator, const absl::flat_hash_set<absl::string_view>& execution_threads) : module_(module), op_supports_dynamism_handler_(std::move(op_supports_dynamism_handler)), custom_call_handler_(std::move(custom_call_handler)), shape_check_mode_(shape_check_mode), assertion_generator_(assertion_generator), execution_threads_(execution_threads) {} absl::Status DynamicDimensionInference::AnalyzeDynamicDimensions() { TF_ASSIGN_OR_RETURN( std::unique_ptr<HloDataflowAnalysis> dataflow_analysis, HloDataflowAnalysis::Run(*module_, false, true, nullptr, nullptr, execution_threads_)); for (HloComputation* computation : module_->MakeComputationPostOrder()) { if (!HloInstruction::IsThreadIncluded(computation->execution_thread(), execution_threads_)) { continue; } TF_ASSIGN_OR_RETURN( bool changed, DynamicDimensionInferenceVisitor::Run( computation, *dataflow_analysis, {}, this, custom_call_handler_, shape_check_mode_, assertion_generator_)); changed_ |= changed; } return absl::OkStatus(); } void DynamicDimensionInference::ReplaceAllDynamicDimensionUsesWith( HloInstruction* replace, HloInstruction* with) { CHECK(Shape::Equal().IgnoreLayout()(replace->shape(), ShapeUtil::MakeScalarShape(S32))); CHECK(Shape::Equal().IgnoreLayout()(with->shape(), ShapeUtil::MakeScalarShape(S32))); for (auto& kv : dynamic_mapping_) { if (kv.second == replace) { kv.second = with; } } } absl::Status DynamicDimensionInference::ForwardDynamicSize( HloInstruction* inst, HloInstruction* new_inst, const ShapeIndex& index) { TF_RET_CHECK(ShapeUtil::Compatible(inst->shape(), new_inst->shape())); for (int64_t dim = 0; dim < inst->shape().rank(); ++dim) { DynamicDimension dynamic_dimension_new{new_inst, index, dim}; DynamicDimension dynamic_dimension{inst, index, dim}; auto iter = dynamic_mapping_.find(dynamic_dimension); if (iter != dynamic_mapping_.end()) { dynamic_mapping_.insert({dynamic_dimension_new, iter->second}); auto iter = per_hlo_dynamic_dimensions_.try_emplace(new_inst); iter.first->second.emplace(dynamic_dimension_new); } } return absl::OkStatus(); } bool DynamicDimensionInference::HasDynamicDimension( HloInstruction* inst, ShapeIndexView index) const { bool has_dynamic_dim = false; ShapeUtil::ForEachSubshape(inst->shape(), [&](const Shape& subshape, const ShapeIndex& subindex) { if (subshape.IsTuple()) { return; } if (ShapeIndexView(subindex).subspan(0, index.size()) != index) { return; } for (int64_t i = 0; i < subshape.dimensions_size(); ++i) { HloInstruction* operand_dynamic_size = GetDynamicSize(inst, subindex, i); if (operand_dynamic_size != nullptr) { has_dynamic_dim = true; } } }); return has_dynamic_dim; } Shape DynamicDimensionInference::GetDynamicShape(HloInstruction* inst) { Shape shape = inst->shape(); ShapeUtil::ForEachMutableSubshape( &shape, [&](Shape* subshape, const ShapeIndex& index) { if (!subshape->IsArray()) { return; } for (int64_t dimension = 0; dimension < subshape->rank(); ++dimension) { if (GetDynamicSize(inst, index, dimension) != nullptr) { subshape->set_dynamic_dimension(dimension, true); } } }); return shape; } HloInstruction* DynamicDimensionInference::GetDynamicSize( HloInstruction* inst, const ShapeIndex& index, int64_t dim) const { auto iter = dynamic_mapping_.find(DynamicDimension{inst, index, dim}); if (iter != dynamic_mapping_.end()) { return iter->second; } return nullptr; } const HloInstruction* DynamicDimensionInference::GetDynamicSize( const HloInstruction* inst, const ShapeIndex& index, int64_t dim) const { return GetDynamicSize(const_cast<HloInstruction*>(inst), index, dim); } std::vector<HloInstruction*> DynamicDimensionInference::GetDynamicSizes( HloInstruction* inst, const ShapeIndex& index) const { CHECK(ShapeUtil::IndexIsValid(inst->shape(), index)); const int64_t rank = ShapeUtil::GetSubshape(inst->shape(), index).rank(); std::vector<HloInstruction*> result(rank, nullptr); for (int64_t i = 0; i < rank; ++i) { result[i] = GetDynamicSize(inst, index, i); } return result; } bool DynamicDimensionInference::CanInfer(HloInstruction* hlo) { if (hlo->shape().is_static() && hlo->called_computations().empty() && hlo->opcode() != HloOpcode::kCustomCall) { return false; } bool ok = true; for (int64_t operand_index = 0; operand_index < hlo->operand_count(); ++operand_index) { ShapeUtil::ForEachSubshape( hlo->operand(operand_index)->shape(), [&](const Shape& subshape, const ShapeIndex& shape_index) { if (!subshape.IsArray()) { return; } for (int64_t dimension = 0; dimension < subshape.rank(); ++dimension) { bool shape_is_dynamic = subshape.is_dynamic_dimension(dimension); bool dynamic_size_recorded = GetDynamicSize(hlo->operand(operand_index), shape_index, dimension) != nullptr; if (shape_is_dynamic && !dynamic_size_recorded) { VLOG(2) << "cannot infer " << hlo->ToShortString() << " because operand " << operand_index << " (" << hlo->operand(operand_index)->ToShortString() << ")" << " subshape " << shape_index.ToString() << " is missing dynamic size for dimension " << dimension; ok = false; } CHECK(hlo->operand(operand_index)->opcode() == HloOpcode::kSetDimensionSize || hlo->operand(operand_index)->opcode() == HloOpcode::kCustomCall || !shape_is_dynamic || !dynamic_size_recorded); } }); } return ok; } }
#include "xla/service/dynamic_dimension_inference.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal.h" #include "xla/service/hlo_runner.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test_benchmark.h" namespace op = xla::testing::opcode_matchers; namespace xla { namespace { class DynamicDimensionInferenceTest : public HloTestBase { protected: DynamicDimensionInferenceTest() : HloTestBase() { module_ = CreateNewVerifiedModule(); } absl::Status RunInference( OpSupportsDynamismHandler op_supports_dynamism_handler = nullptr, DynamicDimensionInference::CustomCallInferenceHandler handler = nullptr, DynamicDimensionInference::ShapeCheckMode shape_check_mode = DynamicDimensionInference::ShapeCheckMode::kIgnore, const DynamicDimensionInference::AssertionGenerator& assertion_generator = nullptr) { TF_ASSIGN_OR_RETURN(DynamicDimensionInference inference, DynamicDimensionInference::Run( module_.get(), op_supports_dynamism_handler, handler, shape_check_mode, assertion_generator)); inference_ = std::make_unique<DynamicDimensionInference>(inference); return absl::OkStatus(); } HloComputation* GetAdd() { auto embedded_builder = HloComputation::Builder("add"); auto lhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "lhs")); auto rhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {}), "rhs")); embedded_builder.AddInstruction( HloInstruction::CreateBinary(lhs->shape(), HloOpcode::kAdd, lhs, rhs)); return module_->AddEmbeddedComputation(embedded_builder.Build()); } HloComputation* GetAddTuple() { auto embedded_builder = HloComputation::Builder("add"); auto lhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "lhs")); auto lhs_1 = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {}), "lhs.1")); auto rhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 2, ShapeUtil::MakeShape(F32, {}), "rhs")); auto rhs_1 = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 3, ShapeUtil::MakeShape(F32, {}), "rhs.1")); auto add = embedded_builder.AddInstruction( HloInstruction::CreateBinary(lhs->shape(), HloOpcode::kAdd, lhs, rhs)); auto add_1 = embedded_builder.AddInstruction(HloInstruction::CreateBinary( lhs->shape(), HloOpcode::kAdd, lhs_1, rhs_1)); embedded_builder.AddInstruction(HloInstruction::CreateTuple({add, add_1})); return module_->AddEmbeddedComputation(embedded_builder.Build()); } HloComputation* GetGe() { auto embedded_builder = HloComputation::Builder("ge"); auto lhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "lhs")); auto rhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {}), "rhs")); embedded_builder.AddInstruction(HloInstruction::CreateCompare( ShapeUtil::MakeShape(PRED, {}), lhs, rhs, ComparisonDirection::kGe)); return module_->AddEmbeddedComputation(embedded_builder.Build()); } std::unique_ptr<HloModule> module_; std::unique_ptr<DynamicDimensionInference> inference_; const Shape scalar_shape_ = ShapeUtil::MakeShape(S32, {}); }; TEST_F(DynamicDimensionInferenceTest, ParamTest) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}, {false, true, false}); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, input_shape, "param")); auto param2 = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "param")); auto result = builder.AddInstruction( HloInstruction::CreateSetDimensionSize(dynamic_shape, param, param2, 1)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(result, {}, 1), param2); EXPECT_EQ(inference_->GetDynamicSize(param, {}, 0), nullptr); EXPECT_EQ(inference_->GetDynamicSize(param2, {}, 0), nullptr); } TEST_F(DynamicDimensionInferenceTest, ElementwiseTest) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}, {false, true, false}); auto data_param = builder.AddInstruction( HloInstruction::CreateParameter(0, input_shape, "data_param")); auto size_param = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "size_param")); auto dynamic_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, data_param, size_param, 1)); auto* negate = builder.AddInstruction(HloInstruction::CreateUnary( dynamic_shape, HloOpcode::kNegate, dynamic_param)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(negate, {}, 1), size_param); } TEST_F(DynamicDimensionInferenceTest, ReduceTestI) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}); auto reduce_shape = ShapeUtil::MakeShape(F32, {2}, {true}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}, {false, true, false}); auto data_param = builder.AddInstruction( HloInstruction::CreateParameter(0, input_shape, "data_param")); auto size_param = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "size_param")); auto dynamic_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, data_param, size_param, 1)); auto negate = builder.AddInstruction(HloInstruction::CreateUnary( dynamic_shape, HloOpcode::kNegate, dynamic_param)); auto init = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0))); auto reduce = builder.AddInstruction(HloInstruction::CreateReduce( reduce_shape, negate, init, {0, 2}, GetAdd())); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(reduce, {}, 0), size_param); } TEST_F(DynamicDimensionInferenceTest, ReduceTestII) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}); auto reduce_shape = ShapeUtil::MakeShape(F32, {1, 2}, {false, true}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}, {false, false, true}); auto data_param = builder.AddInstruction( HloInstruction::CreateParameter(0, input_shape, "data_param")); auto size_param = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "size_param")); auto dynamic_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, data_param, size_param, 2)); auto negate = builder.AddInstruction(HloInstruction::CreateUnary( dynamic_shape, HloOpcode::kNegate, dynamic_param)); auto init = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0))); auto reduce = builder.AddInstruction( HloInstruction::CreateReduce(reduce_shape, negate, init, {1}, GetAdd())); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(reduce, {}, 1), size_param); EXPECT_EQ(inference_->GetDynamicSize(reduce, {}, 0), nullptr); } TEST_F(DynamicDimensionInferenceTest, VariadicReduce) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}); auto reduce_shape = ShapeUtil::MakeShape(F32, {1, 2}, {false, true}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}, {false, false, true}); auto data_param_1 = builder.AddInstruction( HloInstruction::CreateParameter(0, input_shape, "data_param")); auto data_param_2 = builder.AddInstruction( HloInstruction::CreateParameter(1, input_shape, "data_param.2")); auto size_param = builder.AddInstruction( HloInstruction::CreateParameter(2, scalar_shape_, "size_param")); auto data_param_dynamic_1 = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, data_param_1, size_param, 2)); auto data_param_dynamic_2 = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, data_param_2, size_param, 2)); auto dynamic_negate_1 = builder.AddInstruction(HloInstruction::CreateUnary( dynamic_shape, HloOpcode::kNegate, data_param_dynamic_1)); auto dynamic_negate_2 = builder.AddInstruction(HloInstruction::CreateUnary( dynamic_shape, HloOpcode::kNegate, data_param_dynamic_2)); auto init = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0))); auto reduce = builder.AddInstruction(HloInstruction::CreateReduce( ShapeUtil::MakeTupleShape({reduce_shape, reduce_shape}), {dynamic_negate_1, dynamic_negate_2}, {init, init}, {1}, GetAddTuple())); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(reduce, {0}, 1), size_param); EXPECT_EQ(inference_->GetDynamicSize(reduce, {1}, 1), size_param); EXPECT_EQ(inference_->GetDynamicSize(reduce, {0}, 0), nullptr); EXPECT_EQ(inference_->GetDynamicSize(reduce, {1}, 0), nullptr); } TEST_F(DynamicDimensionInferenceTest, DotTest) { auto builder = HloComputation::Builder(TestName()); constexpr int xdim = 3; constexpr int ydim = 2; constexpr int zdim = 1; auto xy_shape = ShapeUtil::MakeShape(F32, {xdim, ydim}); auto yz_shape = ShapeUtil::MakeShape(F32, {ydim, zdim}); auto xy_dynamic_shape = ShapeUtil::MakeShape(F32, {xdim, ydim}, {true, true}); auto yz_dynamic_shape = ShapeUtil::MakeShape(F32, {ydim, zdim}, {true, false}); auto xz_dynamic_shape = ShapeUtil::MakeShape(F32, {xdim, zdim}, {true, false}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, xy_shape, "A")); auto* b_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, yz_shape, "B")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 2, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, xy_shape.dimensions(), {true, false}), a_param, size_param, 0)); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( xy_dynamic_shape, a_param, size_param, 1)); b_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( yz_dynamic_shape, b_param, size_param, 0)); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto dot = builder.AddInstruction( HloInstruction::CreateDot(xz_dynamic_shape, a_param, b_param, dot_dnums, HloTestBase::DefaultPrecisionConfig(2))); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(dot, {}, 0), size_param); EXPECT_EQ(inference_->GetDynamicSize(dot, {}, 1), nullptr); } TEST_F(DynamicDimensionInferenceTest, DotTestBatch) { auto builder = HloComputation::Builder(TestName()); auto lhs_shape = ShapeUtil::MakeShape(F32, {4, 128, 2, 8}); auto rhs_shape = ShapeUtil::MakeShape(F32, {4, 128, 2, 8}); auto output_shape = ShapeUtil::MakeShape(F32, {4, 2, 128, 128}, {true, false, false, false}); auto lhs_shape_dynamic = ShapeUtil::MakeShape(F32, {4, 128, 2, 8}, {true, false, false, false}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, lhs_shape, "A")); auto* b_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, rhs_shape, "B")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 2, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( lhs_shape_dynamic, a_param, size_param, 0)); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(3); dot_dnums.add_rhs_contracting_dimensions(3); dot_dnums.add_lhs_batch_dimensions(0); dot_dnums.add_lhs_batch_dimensions(2); dot_dnums.add_rhs_batch_dimensions(0); dot_dnums.add_rhs_batch_dimensions(2); auto dot = builder.AddInstruction( HloInstruction::CreateDot(output_shape, a_param, b_param, dot_dnums, HloTestBase::DefaultPrecisionConfig(2))); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(dot, {}, 0), size_param); EXPECT_EQ(inference_->GetDynamicSize(dot, {}, 1), nullptr); EXPECT_EQ(inference_->GetDynamicSize(dot, {}, 2), nullptr); EXPECT_EQ(inference_->GetDynamicSize(dot, {}, 3), nullptr); } TEST_F(DynamicDimensionInferenceTest, DotTestMultiContracting) { auto builder = HloComputation::Builder(TestName()); auto lhs_shape = ShapeUtil::MakeShape(F32, {2, 2, 8, 64}); auto rhs_shape = ShapeUtil::MakeShape(F32, {2, 2, 512}); auto output_shape = ShapeUtil::MakeShape(F32, {8, 64, 512}); auto lhs_shape_dynamic = ShapeUtil::MakeShape(F32, {2, 2, 8, 64}, {true, true, false, false}); auto rhs_shape_dynamic = ShapeUtil::MakeShape(F32, {2, 2, 512}, {true, true, false}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, lhs_shape, "A")); auto* b_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, rhs_shape, "B")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 2, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, lhs_shape.dimensions(), {true, false, false, false}), a_param, size_param, 0)); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( lhs_shape_dynamic, a_param, size_param, 1)); b_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, rhs_shape.dimensions(), {true, false, false}), b_param, size_param, 0)); b_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( rhs_shape_dynamic, b_param, size_param, 1)); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(0); dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); dot_dnums.add_rhs_contracting_dimensions(1); auto dot = builder.AddInstruction( HloInstruction::CreateDot(output_shape, a_param, b_param, dot_dnums, HloTestBase::DefaultPrecisionConfig(2))); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(dot, {}, 0), nullptr); EXPECT_EQ(inference_->GetDynamicSize(dot, {}, 1), nullptr); EXPECT_EQ(inference_->GetDynamicSize(dot, {}, 2), nullptr); } TEST_F(DynamicDimensionInferenceTest, ConvolutionTest) { auto builder = HloComputation::Builder(TestName()); constexpr int xdim = 3; constexpr int ydim = 2; constexpr int zdim = 1; auto xy_shape = ShapeUtil::MakeShape(F32, {xdim, ydim}); auto yz_shape = ShapeUtil::MakeShape(F32, {ydim, zdim}); auto xy_shape_dynamic = ShapeUtil::MakeShape(F32, {xdim, ydim}, {true, true}); auto zx_shape_dynamic = ShapeUtil::MakeShape(F32, {zdim, xdim}, {false, true}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, xy_shape, "A")); auto* b_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, yz_shape, "B")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 2, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, xy_shape.dimensions(), {true, false}), a_param, size_param, 0)); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( xy_shape_dynamic, a_param, size_param, 1)); auto dnums = XlaBuilder::CreateDefaultConvDimensionNumbers(0); dnums.set_kernel_input_feature_dimension(0); dnums.set_kernel_output_feature_dimension(1); dnums.set_input_batch_dimension(0); dnums.set_output_batch_dimension(1); dnums.set_output_feature_dimension(0); Window window; auto* conv = builder.AddInstruction(HloInstruction::CreateConvolve( zx_shape_dynamic, a_param, b_param, 1, 1, window, dnums, HloTestBase::DefaultPrecisionConfig(2))); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(conv, {}, 1), size_param); EXPECT_EQ(inference_->GetDynamicSize(conv, {}, 0), nullptr); } TEST_F(DynamicDimensionInferenceTest, TransposeTest) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {1, 2, 3}); auto output_shape = ShapeUtil::MakeShape(F32, {3, 2, 1}, {true, true, true}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {1, 2, 3}, {true, true, true}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, input_shape, "A")); auto* size_param_1 = builder.AddInstruction(HloInstruction::CreateParameter( 1, scalar_shape_, "size_param")); auto* size_param_2 = builder.AddInstruction(HloInstruction::CreateParameter( 2, scalar_shape_, "size_param")); auto* size_param_3 = builder.AddInstruction(HloInstruction::CreateParameter( 3, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, {1, 2, 3}, {true, false, false}), a_param, size_param_1, 0)); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, {1, 2, 3}, {true, true, false}), a_param, size_param_2, 1)); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, a_param, size_param_3, 2)); auto* transpose = builder.AddInstruction( HloInstruction::CreateTranspose(output_shape, a_param, {2, 1, 0})); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(transpose, {}, 0), size_param_3); EXPECT_EQ(inference_->GetDynamicSize(transpose, {}, 1), size_param_2); EXPECT_EQ(inference_->GetDynamicSize(transpose, {}, 2), size_param_1); } TEST_F(DynamicDimensionInferenceTest, NonDescendingTransposeTest) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {1, 2, 3}); auto output_shape = ShapeUtil::MakeShape(F32, {3, 1, 2}, {true, true, true}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {1, 2, 3}, {true, true, true}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, input_shape, "A")); auto* size_param_1 = builder.AddInstruction(HloInstruction::CreateParameter( 1, scalar_shape_, "size_param")); auto* size_param_2 = builder.AddInstruction(HloInstruction::CreateParameter( 2, scalar_shape_, "size_param")); auto* size_param_3 = builder.AddInstruction(HloInstruction::CreateParameter( 3, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, {1, 2, 3}, {true, false, false}), a_param, size_param_1, 0)); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, {1, 2, 3}, {true, true, false}), a_param, size_param_2, 1)); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, a_param, size_param_3, 2)); auto* transpose = builder.AddInstruction( HloInstruction::CreateTranspose(output_shape, a_param, {2, 0, 1})); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(transpose, {}, 0), size_param_3); EXPECT_EQ(inference_->GetDynamicSize(transpose, {}, 1), size_param_1); EXPECT_EQ(inference_->GetDynamicSize(transpose, {}, 2), size_param_2); } TEST_F(DynamicDimensionInferenceTest, ReshapeTest) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {2, 3, 4, 5, 6}); auto output_shape = ShapeUtil::MakeShape( F32, {6, 4, 1, 5, 2, 3}, {false, true, false, true, false, false}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {2, 3, 4, 5, 6}, {false, false, true, true, false}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, input_shape, "A")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, {2, 3, 4, 5, 6}, {false, false, true, false, false}), a_param, size_param, 2)); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, a_param, size_param, 3)); auto* reshape = builder.AddInstruction( HloInstruction::CreateReshape(output_shape, a_param)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(reshape, {}, 0), nullptr); EXPECT_EQ(inference_->GetDynamicSize(reshape, {}, 1), size_param); EXPECT_EQ(inference_->GetDynamicSize(reshape, {}, 2), nullptr); EXPECT_EQ(inference_->GetDynamicSize(reshape, {}, 3), size_param); EXPECT_EQ(inference_->GetDynamicSize(reshape, {}, 4), nullptr); EXPECT_EQ(inference_->GetDynamicSize(reshape, {}, 5), nullptr); } TEST_F(DynamicDimensionInferenceTest, ReshapeInferredDimensionTest) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {4, 5}); auto output_shape = ShapeUtil::MakeShape(F32, {1, 4, 5}, {true, false, false}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {4, 5}, {true, false}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, input_shape, "A")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, a_param, size_param, 0)); auto* reshape = builder.AddInstruction(HloInstruction::CreateReshape( output_shape, a_param, 0)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_NE(inference_->GetDynamicSize(reshape, {}, 0), nullptr); } TEST_F(DynamicDimensionInferenceTest, ReshapeTestMajorDimension) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {32, 10, 4}); auto output_shape = ShapeUtil::MakeShape(F32, {320, 4}, {true, false}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {32, 10, 4}, {true, false, false}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, input_shape, "A")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, a_param, size_param, 0)); auto* reshape = builder.AddInstruction( HloInstruction::CreateReshape(output_shape, a_param)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); absl::Status status = RunInference(); EXPECT_NE(inference_->GetDynamicSize(reshape, {}, 0), nullptr); } TEST_F(DynamicDimensionInferenceTest, ReshapeIntoScalar) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {1}); auto output_shape = ShapeUtil::MakeShape(F32, {}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {1}, {true}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, input_shape, "A")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, a_param, size_param, 0)); builder.AddInstruction(HloInstruction::CreateReshape(output_shape, a_param)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_CHECK_OK(RunInference()); } TEST_F(DynamicDimensionInferenceTest, GatherTest) { const std::string hlo_text = R"( HloModule TensorFlowGatherV2 ENTRY main { operand = s32[20,10]{1,0} parameter(0) indices = s32[32,20] parameter(1) dynamic_size = s32[] parameter(2) indices_dynamic = s32[<=32,20] set-dimension-size(indices, dynamic_size), dimensions={0} ROOT gather = s32[<=32,20,10]{2,1,0} gather(%operand, %indices_dynamic), offset_dims={2}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=2, slice_sizes={1,10} } )"; TF_ASSERT_OK_AND_ASSIGN(module_, ParseAndReturnVerifiedModule(hlo_text)); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize( module_->entry_computation()->root_instruction(), {}, 0), module_->entry_computation()->parameter_instruction(2)); } TEST_F(DynamicDimensionInferenceTest, BroadcastTest) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {2}); auto output_shape = ShapeUtil::MakeShape(F32, {3, 2, 4}, {false, true, false}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {2}, {true}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, input_shape, "A")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, a_param, size_param, 0)); auto* broadcast = builder.AddInstruction( HloInstruction::CreateBroadcast(output_shape, a_param, {1})); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(broadcast, {}, 0), nullptr); EXPECT_EQ(inference_->GetDynamicSize(broadcast, {}, 1), size_param); EXPECT_EQ(inference_->GetDynamicSize(broadcast, {}, 2), nullptr); } TEST_F(DynamicDimensionInferenceTest, WhileTest) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {2, 4, 4}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {2, 4, 4}, {true, false, false}); auto tuple_shape = ShapeUtil::MakeTupleShape({input_shape, input_shape}); auto dynamic_tuple_shape = ShapeUtil::MakeTupleShape({dynamic_shape, dynamic_shape}); auto body_builder = HloComputation::Builder("body"); auto body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, dynamic_tuple_shape, "param")); auto gte_0 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(dynamic_shape, body_param, 0)); auto gte_1 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(dynamic_shape, body_param, 1)); auto add = body_builder.AddInstruction(HloInstruction::CreateBinary( dynamic_shape, HloOpcode::kAdd, gte_0, gte_1)); body_builder.AddInstruction(HloInstruction::CreateTuple({add, add})); HloComputation* body = module_->AddEmbeddedComputation(body_builder.Build()); auto cond_builder = HloComputation::Builder("condition"); cond_builder.AddInstruction( HloInstruction::CreateParameter(0, dynamic_tuple_shape, "param")); cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); HloComputation* condition = module_->AddEmbeddedComputation(cond_builder.Build()); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, tuple_shape, "A")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, scalar_shape_, "size_param")); auto* a_0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(input_shape, a_param, 0)); a_0 = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, a_0, size_param, 0)); auto* a_1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(input_shape, a_param, 0)); a_1 = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, a_1, size_param, 0)); a_param = builder.AddInstruction(HloInstruction::CreateTuple({a_0, a_1})); builder.AddInstruction(HloInstruction::CreateWhile(dynamic_tuple_shape, condition, body, a_param)); module_->AddEntryComputation(builder.Build()); TF_ASSERT_OK(RunInference()); HloInstruction* while_hlo = nullptr; for (HloInstruction* inst : module_->entry_computation()->instructions()) { if (inst->opcode() == HloOpcode::kWhile) { while_hlo = inst; } } ASSERT_NE(while_hlo, nullptr); EXPECT_EQ(while_hlo->shape().tuple_shapes_size(), 4); HloInstruction* add_inst = nullptr; for (HloInstruction* inst : while_hlo->while_body()->instructions()) { if (inst->opcode() == HloOpcode::kAdd) { add_inst = inst; } } EXPECT_NE(add_inst, nullptr); EXPECT_NE(inference_->GetDynamicSize(add_inst, {}, 0), nullptr); EXPECT_NE(inference_->GetDynamicSize( module_->entry_computation()->root_instruction(), {0}, 0), nullptr); EXPECT_NE(inference_->GetDynamicSize( module_->entry_computation()->root_instruction(), {1}, 0), nullptr); } TEST_F(DynamicDimensionInferenceTest, ConditionalInputTest) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {2, 4, 4}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {2, 4, 4}, {true, false, false}); auto output_shape = ShapeUtil::MakeShape(F32, {2, 2, 2}); auto tuple_shape_1 = ShapeUtil::MakeTupleShape({input_shape}); auto tuple_shape_2 = ShapeUtil::MakeTupleShape({input_shape, input_shape}); auto tuple_shape_3 = ShapeUtil::MakeTupleShape({input_shape, input_shape, input_shape}); auto tuple_shape_2_dynamic = ShapeUtil::MakeTupleShape({dynamic_shape, dynamic_shape}); auto tuple_shape_3_dynamic = ShapeUtil::MakeTupleShape({input_shape, dynamic_shape, dynamic_shape}); auto true_builder = HloComputation::Builder("true"); { auto true_param = true_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape_2_dynamic, "param")); auto gte_0 = true_builder.AddInstruction( HloInstruction::CreateGetTupleElement(dynamic_shape, true_param, 0)); auto gte_1 = true_builder.AddInstruction( HloInstruction::CreateGetTupleElement(dynamic_shape, true_param, 1)); auto add = true_builder.AddInstruction(HloInstruction::CreateBinary( dynamic_shape, HloOpcode::kAdd, gte_0, gte_1)); true_builder.AddInstruction(HloInstruction::CreateTuple({add})); } HloComputation* true_branch = module_->AddEmbeddedComputation(true_builder.Build()); auto false_builder = HloComputation::Builder("false"); { auto false_param = false_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape_3_dynamic, "param")); auto gte_0 = false_builder.AddInstruction( HloInstruction::CreateGetTupleElement(dynamic_shape, false_param, 1)); auto gte_1 = false_builder.AddInstruction( HloInstruction::CreateGetTupleElement(dynamic_shape, false_param, 2)); auto add = false_builder.AddInstruction(HloInstruction::CreateBinary( dynamic_shape, HloOpcode::kAdd, gte_0, gte_1)); false_builder.AddInstruction(HloInstruction::CreateTuple({add})); } HloComputation* false_branch = module_->AddEmbeddedComputation(false_builder.Build()); auto* pred_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeScalarShape(PRED), "pred")); auto* tuple_2_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, tuple_shape_2, "tuple_2_param")); auto* tuple_3_param = builder.AddInstruction(HloInstruction::CreateParameter( 2, tuple_shape_3, "tuple_3_param")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 3, scalar_shape_, "size_param")); auto* param_2_0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(input_shape, tuple_2_param, 0)); param_2_0 = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, param_2_0, size_param, 0)); auto* param_2_1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(input_shape, tuple_2_param, 1)); param_2_1 = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, param_2_1, size_param, 0)); tuple_2_param = builder.AddInstruction( HloInstruction::CreateTuple({param_2_0, param_2_1})); auto* param_3_0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(input_shape, tuple_3_param, 0)); auto* param_3_1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(input_shape, tuple_3_param, 1)); param_3_1 = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, param_3_1, size_param, 0)); auto* param_3_2 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(input_shape, tuple_3_param, 2)); param_3_2 = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, param_3_1, size_param, 0)); tuple_3_param = builder.AddInstruction( HloInstruction::CreateTuple({param_3_0, param_3_1, param_3_2})); builder.AddInstruction(HloInstruction::CreateConditional( tuple_shape_1, pred_param, tuple_2_param, true_branch, tuple_3_param, false_branch)); module_->AddEntryComputation(builder.Build()); TF_ASSERT_OK(RunInference()); HloInstruction* conditional_hlo = nullptr; for (HloInstruction* inst : module_->entry_computation()->instructions()) { if (inst->opcode() == HloOpcode::kConditional) { conditional_hlo = inst; } } ASSERT_NE(conditional_hlo, nullptr); EXPECT_EQ(conditional_hlo->shape().tuple_shapes_size(), 2); HloInstruction* add_true_branch = nullptr; for (HloInstruction* inst : conditional_hlo->true_computation()->instructions()) { if (inst->opcode() == HloOpcode::kAdd) { add_true_branch = inst; } } EXPECT_NE(add_true_branch, nullptr); EXPECT_NE(inference_->GetDynamicSize(add_true_branch, {}, 0), nullptr); HloInstruction* add_false_branch = nullptr; for (HloInstruction* inst : conditional_hlo->false_computation()->instructions()) { if (inst->opcode() == HloOpcode::kAdd) { add_false_branch = inst; } } EXPECT_NE(add_false_branch, nullptr); EXPECT_NE(inference_->GetDynamicSize(add_false_branch, {}, 0), nullptr); EXPECT_NE(inference_->GetDynamicSize(conditional_hlo, {0}, 0), nullptr); } TEST_F(DynamicDimensionInferenceTest, ReduceWindowBatchTest) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {2, 4, 4}); auto output_shape = ShapeUtil::MakeShape(F32, {2, 2, 2}, {true, false, false}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {2, 4, 4}, {true, false, false}); Window window; WindowDimension* batch_dim = window.add_dimensions(); batch_dim->set_size(1); batch_dim->set_stride(1); batch_dim->set_padding_low(0); batch_dim->set_padding_high(0); batch_dim->set_window_dilation(1); batch_dim->set_base_dilation(1); for (int64_t i = 0; i < 2; ++i) { WindowDimension* dim = window.add_dimensions(); dim->set_size(2); dim->set_stride(2); dim->set_padding_low(0); dim->set_padding_high(0); dim->set_window_dilation(1); dim->set_base_dilation(1); } auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, input_shape, "A")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, a_param, size_param, 0)); auto init = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0))); auto* reduce_window = builder.AddInstruction(HloInstruction::CreateReduceWindow( output_shape, a_param, init, window, GetAdd())); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(reduce_window, {}, 0), size_param); } TEST_F(DynamicDimensionInferenceTest, SelectAndScatterTest) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {2, 4, 4}); auto source_shape = ShapeUtil::MakeShape(F32, {2, 2, 2}); auto input_shape_dynamic = ShapeUtil::MakeShape(F32, {2, 4, 4}, {true, false, false}); auto source_shape_dynamic = ShapeUtil::MakeShape(F32, {2, 2, 2}, {true, false, false}); Window window; WindowDimension* batch_dim = window.add_dimensions(); batch_dim->set_size(1); batch_dim->set_stride(1); batch_dim->set_padding_low(0); batch_dim->set_padding_high(0); batch_dim->set_window_dilation(1); batch_dim->set_base_dilation(1); for (int64_t i = 0; i < 2; ++i) { WindowDimension* dim = window.add_dimensions(); dim->set_size(2); dim->set_stride(2); dim->set_padding_low(0); dim->set_padding_high(0); dim->set_window_dilation(1); dim->set_base_dilation(1); } auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, input_shape, "A")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, scalar_shape_, "size_param")); auto* source = builder.AddInstruction(HloInstruction::CreateParameter( 2, source_shape, "B")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( input_shape_dynamic, a_param, size_param, 0)); source = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( source_shape_dynamic, source, size_param, 0)); auto init = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0))); auto* sns = builder.AddInstruction(HloInstruction::CreateSelectAndScatter( input_shape_dynamic, a_param, GetGe(), window, source, init, GetAdd())); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(sns, {}, 0), size_param); } TEST_F(DynamicDimensionInferenceTest, ConcatTest) { auto builder = HloComputation::Builder(TestName()); auto data_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {5, 7}), "data_param_1")); auto data_param_2 = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {5, 8}), "data_param_2")); auto size_param = builder.AddInstruction( HloInstruction::CreateParameter(2, scalar_shape_, "size_param")); data_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, {5, 7}, {true, false}), data_param, size_param, 0)); data_param_2 = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, {5, 8}, {true, false}), data_param_2, size_param, 0)); auto* concat = builder.AddInstruction(HloInstruction::CreateConcatenate( ShapeUtil::MakeShape(F32, {5, 15}, {true, false}), {data_param, data_param_2}, 1)); module_->AddEntryComputation(builder.Build()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(concat, {}, 0), size_param); } TEST_F(DynamicDimensionInferenceTest, SliceTest) { auto builder = HloComputation::Builder(TestName()); auto dynamic_shape = ShapeUtil::MakeShape(F32, {5, 7}, {false, true}); auto data_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {5, 7}), "data_param")); auto size_param = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "size_param")); data_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, data_param, size_param, 1)); auto* slice = builder.AddInstruction(HloInstruction::CreateSlice( dynamic_shape, data_param, {0, 0}, {5, 7}, {1, 1})); module_->AddEntryComputation(builder.Build()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(slice, {}, 1), size_param); } TEST_F(DynamicDimensionInferenceTest, DynamicSliceTest) { auto builder = HloComputation::Builder(TestName()); auto data_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {5, 7}), "data_param")); auto size_param = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "size_param")); std::vector<HloInstruction*> params; for (int i = 0; i < 2; ++i) { params.push_back(builder.AddInstruction(HloInstruction::CreateParameter( i + 2, ShapeUtil::MakeShape(S32, {}), "slice_indices"))); } data_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, {5, 7}, {true, false}), data_param, size_param, 0)); auto* slice = builder.AddInstruction(HloInstruction::CreateDynamicSlice( ShapeUtil::MakeShape(F32, {5, 1}, {true, false}), data_param, params, {5, 1})); module_->AddEntryComputation(builder.Build()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(slice, {}, 0), size_param); } TEST_F(DynamicDimensionInferenceTest, SortTest) { auto builder = HloComputation::Builder(TestName()); auto dynamic_shape = ShapeUtil::MakeShape(F32, {5, 7}, {true, false}); auto data_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {5, 7}), "data_param")); auto size_param = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "size_param")); auto compare_builder = HloComputation::Builder("condition"); compare_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "param1")); compare_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {}), "param2")); compare_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); HloComputation* compare = module_->AddEmbeddedComputation(compare_builder.Build()); data_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, data_param, size_param, 0)); auto* sort = builder.AddInstruction( HloInstruction::CreateSort(dynamic_shape, 1, {data_param}, compare, false)); module_->AddEntryComputation(builder.Build()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(sort, {}, 0), size_param); } TEST_F(DynamicDimensionInferenceTest, MultiValueSortTest) { auto builder = HloComputation::Builder(TestName()); auto shape = ShapeUtil::MakeShape(F32, {5, 7}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {5, 7}, {true, false}); auto data_param = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "data_param")); auto size_param = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "size_param")); auto compare_builder = HloComputation::Builder("condition"); compare_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "param1")); compare_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {}), "param2")); compare_builder.AddInstruction(HloInstruction::CreateParameter( 2, ShapeUtil::MakeShape(F32, {}), "param3")); compare_builder.AddInstruction(HloInstruction::CreateParameter( 3, ShapeUtil::MakeShape(F32, {}), "param4")); compare_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); HloComputation* compare = module_->AddEmbeddedComputation(compare_builder.Build()); data_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, data_param, size_param, 0)); auto* sort = builder.AddInstruction(HloInstruction::CreateSort( ShapeUtil::MakeTupleShape({dynamic_shape, dynamic_shape}), 1, {data_param, data_param}, compare, false)); module_->AddEntryComputation(builder.Build()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(sort, {0}, 0), size_param); EXPECT_EQ(inference_->GetDynamicSize(sort, {1}, 0), size_param); } TEST_F(DynamicDimensionInferenceTest, DynamicSliceSingleElementTest) { auto builder = HloComputation::Builder(TestName()); auto data_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {5, 7}), "data_param")); auto* size_param = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "size_param")); std::vector<HloInstruction*> params; for (int i = 0; i < 2; ++i) { params.push_back(builder.AddInstruction(HloInstruction::CreateParameter( i + 2, ShapeUtil::MakeShape(S32, {}), "slice_indices"))); } data_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, {5, 7}, {true, false}), data_param, size_param, 0)); auto* slice = builder.AddInstruction(HloInstruction::CreateDynamicSlice( ShapeUtil::MakeShape(F32, {1, 1}), data_param, params, {1, 1})); module_->AddEntryComputation(builder.Build()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(slice, {}, 0), nullptr); } TEST_F(DynamicDimensionInferenceTest, InfersCustomOp) { auto builder = HloComputation::Builder(TestName()); auto data_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {5, 7}), "data_param")); auto* size_param = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "size_param")); data_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, {5, 7}, {true, false}), data_param, size_param, 0)); builder.AddInstruction(HloInstruction::CreateCustomCall( ShapeUtil::MakeShape(F32, {1, 1}), {data_param}, "MyCustomOp", "")); module_->AddEntryComputation(builder.Build()); bool handler_called = false; auto handler = [&](HloInstruction* hlo, DynamicDimensionInference* inference) { CHECK(inference != nullptr); CHECK(Cast<HloCustomCallInstruction>(hlo) != nullptr); handler_called = true; return absl::OkStatus(); }; TF_ASSERT_OK(RunInference(nullptr, handler)); EXPECT_TRUE(handler_called); } TEST_F(DynamicDimensionInferenceTest, DynamicReshapeOp) { auto builder = HloComputation::Builder(TestName()); auto input = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {9}), "data_input")); auto six = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(6))); auto dynamic_input = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, {9}, {true}), input, six, 0)); auto dynamic_size = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(S32, {}), "size_param")); auto three = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(3))); auto dynamic_reshape = builder.AddInstruction(HloInstruction::CreateDynamicReshape( ShapeUtil::MakeShape(F32, {3, 3}, {false, true}), dynamic_input, {three, dynamic_size})); module_->AddEntryComputation(builder.Build()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(dynamic_reshape, {}, 0), nullptr); EXPECT_EQ(inference_->GetDynamicSize(dynamic_reshape, {}, 1), dynamic_size); } TEST_F(DynamicDimensionInferenceTest, ReshapeOpWithMultipleDynamicDimensions) { auto builder = HloComputation::Builder(TestName()); auto input = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {9, 2}), "data_input")); auto six = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(6))); input = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, {9, 2}, {true, false}), input, six, 0)); auto one = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(1))); input = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, {9, 2}, {true, true}), input, one, 1)); auto dynamic_reshape = builder.AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(F32, {9, 1, 2}, {true, false, true}), input)); module_->AddEntryComputation(builder.Build()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(dynamic_reshape, {}, 0), six); EXPECT_EQ(inference_->GetDynamicSize(dynamic_reshape, {}, 1), nullptr); EXPECT_EQ(inference_->GetDynamicSize(dynamic_reshape, {}, 2), one); } TEST_F(DynamicDimensionInferenceTest, HandleMapInDynamicDimensionInference) { const char* module_str = R"( HloModule test_module %scatter-combiner.285 (p0.286: c128[], p1.287: c128[]) -> c128[] { %p0.286 = c128[] parameter(0) %p1.287 = c128[] parameter(1) ROOT %add.288 = c128[] add(c128[] %p0.286, c128[] %p1.287) } %while_body { %reshape.8 = s32[] parameter(4) %reshape.7 = c128[1]{0} parameter(3) %reduce = pred[] parameter(2) %concatenate = s32[1]{0} parameter(1) %slice.4 = s32[1]{0} slice(s32[1]{0} %concatenate), slice={[0 : 1]} %broadcast.7 = pred[1]{0} broadcast(pred[] %reduce), dimensions={} %param.1 = (s32[],c128[<=1]{0},s32[1]{0},c128[1]{0}) parameter(0) %get-tuple-element.2 = c128[<=1]{0} get-tuple-element((s32[],c128[<=1]{0},s32[1]{0},c128[1]{0}) %param.1), index=1 %dynamic-slice.2 = c128[1]{0} dynamic-slice(c128[<=1]{0} %get-tuple-element.2,s32[] %reshape.8), dynamic_slice_sizes={1} %map = c128[1]{0} map(c128[1]{0} %dynamic-slice.2,c128[1]{0} %reshape.7), dimensions={0}, to_apply=%scatter-combiner.285 %select = c128[1]{0} select(pred[1]{0} %broadcast.7,c128[1]{0} %map,c128[1]{0} %dynamic-slice.2) %reshape.9 = s32[] reshape(s32[1]{0} %slice.4) %dynamic-update-slice = c128[<=1]{0} dynamic-update-slice(c128[<=1]{0} %get-tuple-element.2,c128[1]{0} %select,s32[] %reshape.9) })"; TF_ASSERT_OK_AND_ASSIGN(module_, ParseAndReturnUnverifiedModule(module_str)); TF_ASSERT_OK(RunInference()); } TEST_F(DynamicDimensionInferenceTest, RuntimeShapeCheck) { const char* hlo = R"( HloModule module ENTRY computation { a = f32[20,20] parameter(0) a_size_1 = s32[] parameter(1) a_size_2 = s32[] parameter(2) a_dynamic_1 = f32[<=20,20] set-dimension-size(a, a_size_1), dimensions={0} a_dynamic_2 = f32[<=20,<=20] set-dimension-size(a_dynamic_1, a_size_2), dimensions={1} b = f32[20,20] parameter(3) b_size_1 = s32[] parameter(4) b_size_2 = s32[] parameter(5) b_dynamic_1 = f32[<=20,20] set-dimension-size(b, b_size_1), dimensions={0} b_dynamic_2 = f32[<=20,<=20] set-dimension-size(b_dynamic_1, b_size_2), dimensions={1} ROOT f = add(a_dynamic_2, b_dynamic_2) } )"; TF_ASSERT_OK_AND_ASSIGN(module_, ParseAndReturnVerifiedModule(hlo)); TF_ASSERT_OK(RunInference( nullptr, nullptr, DynamicDimensionInference::ShapeCheckMode::kRuntime, [&](HloInstruction* constraint) { constraint->parent()->AddInstruction(HloInstruction::CreateCustomCall( ShapeUtil::MakeTokenShape(), {constraint}, "__xla__assert", std::string{}, API_VERSION_STATUS_RETURNING)); })); absl::StatusOr<bool> filecheck_result = RunFileCheck(module_->ToString({}), R"( )"); TF_ASSERT_OK(filecheck_result.status()); EXPECT_TRUE(*filecheck_result); } TEST_F(DynamicDimensionInferenceTest, NestedControlFlow) { const char* hlo = R"( HloModule tfcompile.377, entry_computation_layout={(s32[], f32[250]{0}, pred[], pred[], s32[], pred[], s32[], pred[])->(f32[3]{0})} cond_2_Sum-reduction.17 { x.18 = f32[] parameter(0) y.19 = f32[] parameter(1) ROOT add.20 = f32[] add(x.18, y.19) } cond_2_cond_true_214__.21 { arg_tuple.22 = () parameter(0) constant.23 = s32[] constant(1) reshape.24 = s32[] reshape(constant.23) ROOT tuple.25 = (s32[]) tuple(constant.23) } cond_2_cond_false_215__.26 { arg_tuple.27 = () parameter(0) constant.28 = s32[] constant(0) reshape.29 = s32[] reshape(constant.28) ROOT tuple.30 = (s32[]) tuple(constant.28) } cond_2_true_195__.31 { arg_tuple.32 = (s32[], f32[250]{0}) parameter(0) get-tuple-element.33 = s32[] get-tuple-element(arg_tuple.32), index=0 constant.35 = s32[] constant(20) minimum.36 = s32[] minimum(get-tuple-element.33, constant.35) reshape.37 = s32[1]{0} reshape(minimum.36) concatenate.38 = s32[1]{0} concatenate(reshape.37), dimensions={0} slice.48 = s32[1]{0} slice(concatenate.38), slice={[0:1]} reshape.49 = s32[] reshape(reshape.37) constant.43 = s32[] constant(0) compare.50 = pred[] compare(minimum.36, constant.43), direction=LT constant.44 = s32[] constant(250) add.51 = s32[] add(constant.44, minimum.36) select.52 = s32[] select(compare.50, add.51, minimum.36) constant.45 = s32[1]{0} constant({0}) slice.46 = s32[1]{0} slice(constant.45), slice={[0:1]} reshape.47 = s32[] reshape(slice.46) subtract.53 = s32[] subtract(select.52, reshape.47) maximum.54 = s32[] maximum(subtract.53, constant.43) convert.55 = s32[] convert(maximum.54) get-tuple-element.34 = f32[250]{0} get-tuple-element(arg_tuple.32), index=1 constant.39 = f32[] constant(0) pad.40 = f32[500]{0} pad(get-tuple-element.34, constant.39), padding=0_250 constant.41 = s32[] constant(500) set-dimension-size.42 = f32[500]{0} set-dimension-size(pad.40, constant.41), dimensions={0} dynamic-slice.56 = f32[250]{0} dynamic-slice(set-dimension-size.42, reshape.47), dynamic_slice_sizes={250} reshape.57 = f32[250]{0} reshape(dynamic-slice.56) set-dimension-size.58 = f32[<=250]{0} set-dimension-size(dynamic-slice.56, maximum.54), dimensions={0} constant.59 = f32[] constant(1) broadcast.60 = f32[250]{0} broadcast(constant.59), dimensions={} compare.61 = pred[<=250]{0} compare(set-dimension-size.58, broadcast.60), direction=GE convert.62 = f32[<=250]{0} convert(compare.61) convert.63 = f32[<=250]{0} convert(convert.62) constant.64 = f32[] constant(0) convert.65 = f32[] convert(constant.64) reduce.66 = f32[] reduce(convert.62, constant.64), dimensions={0}, to_apply=cond_2_Sum-reduction.17 convert.67 = f32[] convert(reduce.66) reshape.73 = f32[] reshape(reduce.66) constant.68 = f32[] constant(6) compare.69 = pred[] compare(reduce.66, constant.68), direction=GE tuple.70 = () tuple() conditional.71 = (s32[]) conditional(compare.69, tuple.70, tuple.70), true_computation=cond_2_cond_true_214__.21, false_computation=cond_2_cond_false_215__.26 get-tuple-element.72 = s32[] get-tuple-element(conditional.71), index=0 reshape.74 = s32[] reshape(get-tuple-element.72) ROOT tuple.75 = (f32[], s32[]) tuple(reduce.66, get-tuple-element.72) } cond_2_false_196__.76 { arg_tuple.77 = (s32[], f32[250]{0}) parameter(0) constant.80 = f32[] constant(0) reshape.82 = f32[] reshape(constant.80) constant.81 = s32[] constant(0) reshape.83 = s32[] reshape(constant.81) ROOT tuple.84 = (f32[], s32[]) tuple(constant.80, constant.81) } cond_true_10__.85 { arg_tuple.86 = (pred[], pred[], pred[]) parameter(0) get-tuple-element.87 = pred[] get-tuple-element(arg_tuple.86), index=0 reshape.90 = pred[] reshape(get-tuple-element.87) ROOT tuple.91 = (pred[]) tuple(get-tuple-element.87) } cond_cond_true_16__.92 { arg_tuple.93 = (pred[], pred[]) parameter(0) get-tuple-element.94 = pred[] get-tuple-element(arg_tuple.93), index=0 reshape.96 = pred[] reshape(get-tuple-element.94) ROOT tuple.97 = (pred[]) tuple(get-tuple-element.94) } cond_cond_false_17__.98 { arg_tuple.99 = (pred[], pred[]) parameter(0) get-tuple-element.101 = pred[] get-tuple-element(arg_tuple.99), index=1 reshape.102 = pred[] reshape(get-tuple-element.101) ROOT tuple.103 = (pred[]) tuple(get-tuple-element.101) } cond_false_11__.104 { arg_tuple.105 = (pred[], pred[], pred[]) parameter(0) get-tuple-element.107 = pred[] get-tuple-element(arg_tuple.105), index=1 get-tuple-element.108 = pred[] get-tuple-element(arg_tuple.105), index=2 tuple.109 = (pred[], pred[]) tuple(get-tuple-element.107, get-tuple-element.108) conditional.110 = (pred[]) conditional(get-tuple-element.107, tuple.109, tuple.109), true_computation=cond_cond_true_16__.92, false_computation=cond_cond_false_17__.98 get-tuple-element.111 = pred[] get-tuple-element(conditional.110), index=0 reshape.112 = pred[] reshape(get-tuple-element.111) ROOT tuple.113 = (pred[]) tuple(get-tuple-element.111) } cond_1_map_while_cond_true_82__.114 { arg_tuple.115 = (f32[]) parameter(0) constant.117 = f32[] constant(0) reshape.118 = f32[] reshape(constant.117) ROOT tuple.119 = (f32[]) tuple(constant.117) } cond_1_map_while_cond_cond_true_91__.120 { constant.123 = f32[] constant(0.1) arg_tuple.121 = (f32[]) parameter(0) get-tuple-element.122 = f32[] get-tuple-element(arg_tuple.121), index=0 multiply.124 = f32[] multiply(constant.123, get-tuple-element.122) constant.125 = f32[] constant(0) add.126 = f32[] add(multiply.124, constant.125) constant.127 = f32[] constant(0.9) divide.128 = f32[] divide(add.126, constant.127) reshape.129 = f32[] reshape(divide.128) ROOT tuple.130 = (f32[]) tuple(divide.128) } cond_1_map_while_cond_cond_cond_true_106__.131 { constant.134 = f32[] constant(0.8) arg_tuple.132 = (f32[]) parameter(0) get-tuple-element.133 = f32[] get-tuple-element(arg_tuple.132), index=0 multiply.135 = f32[] multiply(constant.134, get-tuple-element.133) constant.136 = f32[] constant(-0.711) add.137 = f32[] add(multiply.135, constant.136) constant.138 = f32[] constant(0.09) divide.139 = f32[] divide(add.137, constant.138) reshape.140 = f32[] reshape(divide.139) ROOT tuple.141 = (f32[]) tuple(divide.139) } cond_1_map_while_cond_cond_cond_cond_true_121__.142 { constant.145 = f32[] constant(0.2) arg_tuple.143 = (f32[]) parameter(0) get-tuple-element.144 = f32[] get-tuple-element(arg_tuple.143), index=0 multiply.146 = f32[] multiply(constant.145, get-tuple-element.144) constant.147 = f32[] constant(-0.18) add.148 = f32[] add(multiply.146, constant.147) constant.149 = f32[] constant(0.02) divide.150 = f32[] divide(add.148, constant.149) reshape.151 = f32[] reshape(divide.150) ROOT tuple.152 = (f32[]) tuple(divide.150) } cond_1_map_while_cond_cond_cond_cond_cond_true_136__.153 { constant.156 = f32[] constant(0.1) arg_tuple.154 = (f32[]) parameter(0) get-tuple-element.155 = f32[] get-tuple-element(arg_tuple.154), index=0 multiply.157 = f32[] multiply(constant.156, get-tuple-element.155) constant.158 = f32[] constant(108.788) add.159 = f32[] add(multiply.157, constant.158) constant.160 = f32[] constant(98.99) divide.161 = f32[] divide(add.159, constant.160) reshape.162 = f32[] reshape(divide.161) ROOT tuple.163 = (f32[]) tuple(divide.161) } cond_1_map_while_cond_cond_cond_cond_cond_false_137__.164 { arg_tuple.165 = (f32[]) parameter(0) constant.167 = f32[] constant(1.2) reshape.168 = f32[] reshape(constant.167) ROOT tuple.169 = (f32[]) tuple(constant.167) } cond_1_map_while_cond_cond_cond_cond_false_122__.170 { arg_tuple.171 = (f32[]) parameter(0) get-tuple-element.172 = f32[] get-tuple-element(arg_tuple.171), index=0 constant.173 = f32[] constant(100) compare.174 = pred[] compare(get-tuple-element.172, constant.173), direction=LE tuple.175 = (f32[]) tuple(get-tuple-element.172) conditional.176 = (f32[]) conditional(compare.174, tuple.175, tuple.175), true_computation=cond_1_map_while_cond_cond_cond_cond_cond_true_136__.153, false_computation=cond_1_map_while_cond_cond_cond_cond_cond_false_137__.164 get-tuple-element.177 = f32[] get-tuple-element(conditional.176), index=0 reshape.178 = f32[] reshape(get-tuple-element.177) ROOT tuple.179 = (f32[]) tuple(get-tuple-element.177) } cond_1_map_while_cond_cond_cond_false_107__.180 { arg_tuple.181 = (f32[]) parameter(0) get-tuple-element.182 = f32[] get-tuple-element(arg_tuple.181), index=0 constant.183 = f32[] constant(1.01) compare.184 = pred[] compare(get-tuple-element.182, constant.183), direction=LE tuple.185 = (f32[]) tuple(get-tuple-element.182) conditional.186 = (f32[]) conditional(compare.184, tuple.185, tuple.185), true_computation=cond_1_map_while_cond_cond_cond_cond_true_121__.142, false_computation=cond_1_map_while_cond_cond_cond_cond_false_122__.170 get-tuple-element.187 = f32[] get-tuple-element(conditional.186), index=0 reshape.188 = f32[] reshape(get-tuple-element.187) ROOT tuple.189 = (f32[]) tuple(get-tuple-element.187) } cond_1_map_while_cond_cond_false_92__.190 { arg_tuple.191 = (f32[]) parameter(0) get-tuple-element.192 = f32[] get-tuple-element(arg_tuple.191), index=0 constant.193 = f32[] constant(0.99) compare.194 = pred[] compare(get-tuple-element.192, constant.193), direction=LE tuple.195 = (f32[]) tuple(get-tuple-element.192) conditional.196 = (f32[]) conditional(compare.194, tuple.195, tuple.195), true_computation=cond_1_map_while_cond_cond_cond_true_106__.131, false_computation=cond_1_map_while_cond_cond_cond_false_107__.180 get-tuple-element.197 = f32[] get-tuple-element(conditional.196), index=0 reshape.198 = f32[] reshape(get-tuple-element.197) ROOT tuple.199 = (f32[]) tuple(get-tuple-element.197) } cond_1_map_while_cond_false_83__.200 { arg_tuple.201 = (f32[]) parameter(0) get-tuple-element.202 = f32[] get-tuple-element(arg_tuple.201), index=0 constant.203 = f32[] constant(0.9) compare.204 = pred[] compare(get-tuple-element.202, constant.203), direction=LE tuple.205 = (f32[]) tuple(get-tuple-element.202) conditional.206 = (f32[]) conditional(compare.204, tuple.205, tuple.205), true_computation=cond_1_map_while_cond_cond_true_91__.120, false_computation=cond_1_map_while_cond_cond_false_92__.190 get-tuple-element.207 = f32[] get-tuple-element(conditional.206), index=0 reshape.208 = f32[] reshape(get-tuple-element.207) ROOT tuple.209 = (f32[]) tuple(get-tuple-element.207) } cond_1_map_while_body_59__.210 { arg_tuple.211 = (s32[], s32[], s32[], (f32[<=250]{0}, s32[]), s32[], (f32[<=250]{0}, s32[])) parameter(0) get-tuple-element.212 = s32[] get-tuple-element(arg_tuple.211), index=0 constant.218 = s32[] constant(1) add.219 = s32[] add(get-tuple-element.212, constant.218) reshape.239 = s32[] reshape(add.219) get-tuple-element.213 = s32[] get-tuple-element(arg_tuple.211), index=1 reshape.240 = s32[] reshape(get-tuple-element.213) get-tuple-element.214 = s32[] get-tuple-element(arg_tuple.211), index=2 constant.220 = s32[] constant(1) add.221 = s32[] add(get-tuple-element.214, constant.220) reshape.241 = s32[] reshape(add.221) get-tuple-element.216 = s32[] get-tuple-element(arg_tuple.211), index=4 reshape.242 = s32[] reshape(get-tuple-element.216) get-tuple-element.215 = (f32[<=250]{0}, s32[]) get-tuple-element(arg_tuple.211), index=3 get-tuple-element.235 = f32[<=250]{0} get-tuple-element(get-tuple-element.215), index=0 get-tuple-element.217 = (f32[<=250]{0}, s32[]) get-tuple-element(arg_tuple.211), index=5 get-tuple-element.223 = f32[<=250]{0} get-tuple-element(get-tuple-element.217), index=0 dynamic-slice.224 = f32[1]{0} dynamic-slice(get-tuple-element.223, get-tuple-element.214), dynamic_slice_sizes={1} reshape.225 = f32[] reshape(dynamic-slice.224) constant.226 = f32[] constant(0) compare.227 = pred[] compare(reshape.225, constant.226), direction=LE tuple.228 = (f32[]) tuple(reshape.225) conditional.229 = (f32[]) conditional(compare.227, tuple.228, tuple.228), true_computation=cond_1_map_while_cond_true_82__.114, false_computation=cond_1_map_while_cond_false_83__.200 get-tuple-element.230 = f32[] get-tuple-element(conditional.229), index=0 reshape.233 = f32[1]{0} reshape(get-tuple-element.230) dynamic-update-slice.236 = f32[<=250]{0} dynamic-update-slice(get-tuple-element.235, reshape.233, get-tuple-element.214) get-tuple-element.237 = s32[] get-tuple-element(get-tuple-element.215), index=1 tuple.238 = (f32[<=250]{0}, s32[]) tuple(dynamic-update-slice.236, get-tuple-element.237) ROOT tuple.243 = (s32[], s32[], s32[], (f32[<=250]{0}, s32[]), s32[], (f32[<=250]{0}, s32[])) tuple(add.219, get-tuple-element.213, add.221, tuple.238, get-tuple-element.216, get-tuple-element.217) } cond_wrapper.257 { inputs.258 = (s32[], s32[], s32[], (f32[<=250]{0}, s32[]), s32[], (f32[<=250]{0}, s32[])) parameter(0) get-tuple-element.0 = s32[] get-tuple-element(inputs.258), index=0 get-tuple-element.1 = s32[] get-tuple-element(inputs.258), index=1 compare.0 = pred[] compare(get-tuple-element.0, get-tuple-element.1), direction=LT get-tuple-element.2 = s32[] get-tuple-element(inputs.258), index=2 get-tuple-element.3 = s32[] get-tuple-element(inputs.258), index=4 compare.1 = pred[] compare(get-tuple-element.2, get-tuple-element.3), direction=LT and.0 = pred[] and(compare.0, compare.1) tuple.0 = (pred[]) tuple(and.0) ROOT get-tuple-element.260 = pred[] get-tuple-element(tuple.0), index=0 reshape.0 = pred[] reshape(and.0) } cond_1_Sum-reduction.261 { x.262 = f32[] parameter(0) y.263 = f32[] parameter(1) ROOT add.264 = f32[] add(x.262, y.263) } cond_1_true_36__.265 { arg_tuple.266 = (s32[], f32[250]{0}) parameter(0) get-tuple-element.267 = s32[] get-tuple-element(arg_tuple.266), index=0 reshape.269 = s32[1]{0} reshape(get-tuple-element.267) concatenate.270 = s32[1]{0} concatenate(reshape.269), dimensions={0} slice.280 = s32[1]{0} slice(concatenate.270), slice={[0:1]} reshape.281 = s32[] reshape(reshape.269) constant.275 = s32[] constant(0) compare.282 = pred[] compare(get-tuple-element.267, constant.275), direction=LT constant.276 = s32[] constant(250) add.283 = s32[] add(constant.276, get-tuple-element.267) select.284 = s32[] select(compare.282, add.283, get-tuple-element.267) constant.277 = s32[1]{0} constant({0}) slice.278 = s32[1]{0} slice(constant.277), slice={[0:1]} reshape.279 = s32[] reshape(slice.278) subtract.285 = s32[] subtract(select.284, reshape.279) maximum.286 = s32[] maximum(subtract.285, constant.275) convert.287 = s32[] convert(maximum.286) get-tuple-element.268 = f32[250]{0} get-tuple-element(arg_tuple.266), index=1 constant.271 = f32[] constant(0) pad.272 = f32[500]{0} pad(get-tuple-element.268, constant.271), padding=0_250 constant.273 = s32[] constant(500) set-dimension-size.274 = f32[500]{0} set-dimension-size(pad.272, constant.273), dimensions={0} dynamic-slice.288 = f32[250]{0} dynamic-slice(set-dimension-size.274, reshape.279), dynamic_slice_sizes={250} reshape.289 = f32[250]{0} reshape(dynamic-slice.288) set-dimension-size.290 = f32[<=250]{0} set-dimension-size(dynamic-slice.288, maximum.286), dimensions={0} get-dimension-size.291 = s32[] get-dimension-size(set-dimension-size.290), dimensions={0} convert.292 = s32[] convert(get-dimension-size.291) broadcast.293 = s32[1]{0} broadcast(get-dimension-size.291), dimensions={} concatenate.294 = s32[1]{0} concatenate(broadcast.293), dimensions={0} slice.295 = s32[1]{0} slice(concatenate.294), slice={[0:1]} reshape.296 = s32[] reshape(broadcast.293) constant.309 = s32[] constant(0) constant.310 = s32[] constant(0) constant.312 = f32[] constant(0) broadcast.313 = f32[250]{0} broadcast(constant.312), dimensions={} constant.302 = s32[] constant(0) broadcast.303 = s32[250]{0} broadcast(constant.302), dimensions={} set-dimension-size.304 = s32[<=250]{0} set-dimension-size(broadcast.303, get-dimension-size.291), dimensions={0} get-dimension-size.311 = s32[] get-dimension-size(set-dimension-size.304), dimensions={0} set-dimension-size.314 = f32[<=250]{0} set-dimension-size(broadcast.313, get-dimension-size.311), dimensions={0} constant.315 = s32[] constant(0) tuple.316 = (f32[<=250]{0}, s32[]) tuple(set-dimension-size.314, constant.315) constant.305 = s32[] constant(250) tuple.306 = (f32[<=250]{0}, s32[]) tuple(set-dimension-size.290, constant.305) tuple.317 = (s32[], s32[], s32[], (f32[<=250]{0}, s32[]), s32[], (f32[<=250]{0}, s32[])) tuple(constant.309, get-dimension-size.291, constant.310, tuple.316, get-dimension-size.291, tuple.306) while.318 = (s32[], s32[], s32[], (f32[<=250]{0}, s32[]), s32[], (f32[<=250]{0}, s32[])) while(tuple.317), condition=cond_wrapper.257, body=cond_1_map_while_body_59__.210 get-tuple-element.319 = s32[] get-tuple-element(while.318), index=0 get-tuple-element.320 = s32[] get-tuple-element(while.318), index=1 get-tuple-element.321 = s32[] get-tuple-element(while.318), index=2 get-tuple-element.322 = (f32[<=250]{0}, s32[]) get-tuple-element(while.318), index=3 get-tuple-element.323 = s32[] get-tuple-element(while.318), index=4 get-tuple-element.324 = (f32[<=250]{0}, s32[]) get-tuple-element(while.318), index=5 tuple.325 = (s32[], s32[], s32[], (f32[<=250]{0}, s32[]), s32[], (f32[<=250]{0}, s32[])) tuple(get-tuple-element.319, get-tuple-element.320, get-tuple-element.321, get-tuple-element.322, get-tuple-element.323, get-tuple-element.324) get-tuple-element.329 = (f32[<=250]{0}, s32[]) get-tuple-element(tuple.325), index=3 get-tuple-element.332 = f32[<=250]{0} get-tuple-element(get-tuple-element.329), index=0 convert.333 = f32[<=250]{0} convert(get-tuple-element.332) constant.334 = f32[] constant(0) convert.335 = f32[] convert(constant.334) reduce.336 = f32[] reduce(get-tuple-element.332, constant.334), dimensions={0}, to_apply=cond_1_Sum-reduction.261 convert.337 = f32[] convert(reduce.336) reshape.338 = f32[] reshape(reduce.336) ROOT tuple.339 = (f32[]) tuple(reduce.336) } cond_1_false_37__.340 { arg_tuple.341 = (s32[], f32[250]{0}) parameter(0) constant.344 = f32[] constant(0) reshape.345 = f32[] reshape(constant.344) ROOT tuple.346 = (f32[]) tuple(constant.344) } ENTRY tfcompile.377 { arg6.7 = s32[] parameter(6), parameter_replication={false} arg0.1 = s32[] parameter(0), parameter_replication={false} reshape.9 = s32[] reshape(arg0.1) arg1.2 = f32[250]{0} parameter(1), parameter_replication={false} reshape.10 = f32[250]{0} reshape(arg1.2) arg2.3 = pred[] parameter(2), parameter_replication={false} reshape.11 = pred[] reshape(arg2.3) arg3.4 = pred[] parameter(3), parameter_replication={false} reshape.12 = pred[] reshape(arg3.4) arg4.5 = s32[] parameter(4), parameter_replication={false} reshape.13 = s32[] reshape(arg4.5) arg5.6 = pred[] parameter(5), parameter_replication={false} reshape.14 = pred[] reshape(arg5.6) arg7.8 = pred[] parameter(7), parameter_replication={false} reshape.16 = pred[] reshape(arg7.8) tuple.1 = (s32[], f32[250]{0}) tuple(arg0.1, arg1.2) conditional.0 = (f32[], s32[]) conditional(arg2.3, tuple.1, tuple.1), true_computation=cond_2_true_195__.31, false_computation=cond_2_false_196__.76 get-tuple-element.4 = f32[] get-tuple-element(conditional.0), index=0 reshape.1 = f32[1]{0} reshape(get-tuple-element.4) get-tuple-element.5 = s32[] get-tuple-element(conditional.0), index=1 convert.0 = f32[] convert(get-tuple-element.5) reshape.2 = f32[1]{0} reshape(convert.0) tuple.2 = (pred[], pred[], pred[]) tuple(arg3.4, arg5.6, arg7.8) conditional.1 = (pred[]) conditional(arg3.4, tuple.2, tuple.2), true_computation=cond_true_10__.85, false_computation=cond_false_11__.104 get-tuple-element.6 = pred[] get-tuple-element(conditional.1), index=0 tuple.3 = (s32[], f32[250]{0}) tuple(arg4.5, arg1.2) conditional.2 = (f32[]) conditional(get-tuple-element.6, tuple.3, tuple.3), true_computation=cond_1_true_36__.265, false_computation=cond_1_false_37__.340 get-tuple-element.7 = f32[] get-tuple-element(conditional.2), index=0 reshape.3 = f32[1]{0} reshape(get-tuple-element.7) concatenate.0 = f32[3]{0} concatenate(reshape.1, reshape.2, reshape.3), dimensions={0} tuple.4 = (f32[3]{0}) tuple(concatenate.0) get-tuple-element.374 = f32[3]{0} get-tuple-element(tuple.4), index=0 reshape.375 = f32[3]{0} reshape(get-tuple-element.374) ROOT tuple.376 = (f32[3]{0}) tuple(get-tuple-element.374) reshape.4 = f32[3]{0} reshape(concatenate.0) } )"; TF_ASSERT_OK_AND_ASSIGN(module_, ParseAndReturnVerifiedModule(hlo)); TF_ASSERT_OK(RunInference()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/dynamic_dimension_inference.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/dynamic_dimension_inference_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
79bd5411-3f18-46a2-ad61-ae5728c586c1
cpp
tensorflow/tensorflow
call_inliner
third_party/xla/xla/service/call_inliner.cc
third_party/xla/xla/service/call_inliner_test.cc
#include "xla/service/call_inliner.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding_metadata.h" #include "xla/service/call_graph.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_domain_isolator.h" #include "xla/service/spmd/shardy/constants.h" #include "xla/status_macros.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class SubcomputationInsertionVisitor : public DfsHloVisitorWithDefault { public: explicit SubcomputationInsertionVisitor(HloInstruction* call) : call_(call), outer_(call->parent()) { CHECK_EQ(HloOpcode::kCall, call_->opcode()); } absl::Status DefaultAction(HloInstruction* hlo) override { std::vector<HloInstruction*> new_operands; for (HloInstruction* operand : hlo->operands()) { TF_ASSIGN_OR_RETURN(HloInstruction * new_operand, Resolve(operand)); new_operands.push_back(new_operand); } VLOG(1) << "Cloning HLO and adding to caller: " << hlo->ToString(); auto new_hlo = hlo->CloneWithNewOperands(hlo->shape(), new_operands); HloInstruction* new_hlo_pointer = outer_->AddInstruction(std::move(new_hlo)); TF_RETURN_IF_ERROR(NoteMapping(hlo, new_hlo_pointer)); for (HloInstruction* control_predecessor : hlo->control_predecessors()) { TF_ASSIGN_OR_RETURN(HloInstruction * new_control_predecessor, Resolve(control_predecessor)); TF_RETURN_IF_ERROR( new_control_predecessor->AddControlDependencyTo(new_hlo_pointer)); } return absl::OkStatus(); } absl::Status HandleParameter(HloInstruction* parameter) override { TF_RETURN_IF_ERROR(NoteMapping( parameter, call_->mutable_operand(parameter->parameter_number()))); return absl::OkStatus(); } absl::Status FinishVisit(HloInstruction* root) override { TF_ASSIGN_OR_RETURN(HloInstruction * new_root, Resolve(root)); VLOG(1) << "Replacing all uses of " << call_->ToString() << " with new root " << new_root->ToString(); return outer_->ReplaceInstruction(call_, new_root); } CallInliner::InlinedInstructionMap ConsumeInstructionMap() { return std::move(subcomputation_hlo_to_new_hlo_); } private: absl::StatusOr<HloInstruction*> Resolve(HloInstruction* subcomputation_hlo) { auto it = subcomputation_hlo_to_new_hlo_.find(subcomputation_hlo); if (it == subcomputation_hlo_to_new_hlo_.end()) { return NotFound( "Could not find mapping from subcomputation HLO %s to a cloned HLO.", subcomputation_hlo->ToString()); } return it->second; } absl::Status NoteMapping(HloInstruction* subcomputation_hlo, HloInstruction* new_hlo) { auto result = subcomputation_hlo_to_new_hlo_.insert( std::make_pair(subcomputation_hlo, new_hlo)); TF_RET_CHECK(result.second) << "A mapping for the subcomputation HLO is already present."; return absl::OkStatus(); } HloInstruction* call_; HloComputation* outer_; CallInliner::InlinedInstructionMap subcomputation_hlo_to_new_hlo_; }; bool InlineUnderShardy(HloInstruction* instruction) { return !(instruction->GetModule()->config().use_shardy_partitioner() && (absl::StrContains(instruction->to_apply()->name(), "shmap_body") || absl::StartsWith(instruction->to_apply()->name(), sdy::kManualComputationBodyFuncName.str()))); } } absl::StatusOr<CallInliner::InlinedInstructionMap> CallInliner::Inline(HloInstruction* call) { TF_RET_CHECK(call->opcode() == HloOpcode::kCall) << "Instruction was not a call op: " << call->opcode(); if (call->is_composite()) { FrontendAttributes frontend_attributes = call->frontend_attributes(); frontend_attributes.mutable_map()->erase("composite.name"); frontend_attributes.mutable_map()->erase("composite.attributes"); frontend_attributes.mutable_map()->erase("composite.version"); call->set_frontend_attributes(frontend_attributes); } const auto& callees = call->called_computations(); TF_RET_CHECK(callees.size() == 1); HloComputation* callee = callees[0]; if (call->has_frontend_attributes()) { const FrontendAttributes& call_attributes = call->frontend_attributes(); std::string has_fuse = call_attributes.map().contains("MUST_FUSE") ? "MUST_FUSE" : call_attributes.map().contains("MAXIMAL_FUSE") ? "MAXIMAL_FUSE" : ""; if (!has_fuse.empty()) { for (auto instruction : callee->instructions()) { if (instruction->IsFusible()) { FrontendAttributes frontend_attributes = instruction->frontend_attributes(); frontend_attributes.mutable_map()->insert( {has_fuse, call_attributes.map().at(has_fuse)}); instruction->set_frontend_attributes(frontend_attributes); } } } } SubcomputationInsertionVisitor visitor(call); TF_RETURN_IF_ERROR(callee->Accept(&visitor)); return visitor.ConsumeInstructionMap(); } bool CallInliner::IsInlineableCallOp(HloInstruction* instruction) const { return instruction->opcode() == HloOpcode::kCall && !instruction->has_backend_config() && !instruction->parent()->IsAsyncComputation() && InlineUnderShardy(instruction); } absl::StatusOr<bool> CallInliner::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { std::unique_ptr<CallGraph> call_graph = CallGraph::Build(module); bool did_mutate = false; TF_RETURN_IF_ERROR(call_graph->VisitNodes([&](const CallGraphNode& node) -> absl::Status { if (!HloInstruction::IsThreadIncluded( node.computation()->execution_thread(), execution_threads)) { return absl::OkStatus(); } VLOG(1) << "Visiting node: " << node.ToString(); for (HloInstruction* instruction : node.computation()->MakeInstructionPostOrder()) { if (IsInlineableCallOp(instruction)) { const auto& callees = instruction->called_computations(); TF_RET_CHECK(callees.size() == 1); if (!single_call_site_ || call_graph->GetNode(instruction->to_apply()) .caller_callsites() .size() == 1) { TF_ASSIGN_OR_RETURN(CallInliner::InlinedInstructionMap inline_map, Inline(instruction)); if (update_domain_) { HloDomainIsolator isolator( []() { return ShardingDomainCreator{}; }); for (const auto& [call_inst, inlined_inst] : inline_map) { TF_RETURN_IF_ERROR(isolator.UpdateDomains(inlined_inst).status()); } } did_mutate = true; } } } return absl::OkStatus(); })); if (did_mutate) { TF_RETURN_IF_ERROR(HloDCE().Run(module, execution_threads).status()); } return did_mutate; } }
#include "xla/service/call_inliner.h" #include <cstdint> #include <string> #include "absl/log/log.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal_util.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace op = xla::testing::opcode_matchers; namespace xla { namespace { using CallInlinerTest = HloTestBase; TEST_F(CallInlinerTest, ControlDependenciesAreCarriedToCaller) { HloComputation::Builder inner(TestName() + ".inner"); HloInstruction* zero = inner.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(24.0f))); HloInstruction* one = inner.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); TF_ASSERT_OK(zero->AddControlDependencyTo(one)); auto module = CreateNewVerifiedModule(); HloComputation* inner_computation = module->AddEmbeddedComputation(inner.Build()); HloComputation::Builder outer(TestName() + ".outer"); Shape r0f32 = ShapeUtil::MakeShape(F32, {}); outer.AddInstruction( HloInstruction::CreateCall(r0f32, {}, inner_computation)); auto computation = module->AddEntryComputation(outer.Build()); CallInliner call_inliner; TF_ASSERT_OK_AND_ASSIGN(bool mutated, call_inliner.Run(module.get())); ASSERT_TRUE(mutated); EXPECT_THAT(computation->root_instruction(), op::Constant()); EXPECT_EQ(computation->root_instruction()->literal().GetFirstElement<float>(), 42); ASSERT_EQ(1, computation->root_instruction()->control_predecessors().size()); auto prior = computation->root_instruction()->control_predecessors()[0]; EXPECT_THAT(prior, op::Constant()); EXPECT_EQ(prior->literal().GetFirstElement<float>(), 24); } TEST_F(CallInlinerTest, CallsWithinWhileBodiesAreInlined) { const Shape pred = ShapeUtil::MakeShape(PRED, {}); auto module = CreateNewVerifiedModule(); HloComputation::Builder just_false(TestName() + ".false"); just_false.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); HloComputation* false_computation = module->AddEmbeddedComputation(just_false.Build()); HloComputation::Builder call_false_builder(TestName() + ".call_false"); call_false_builder.AddInstruction( HloInstruction::CreateParameter(0, pred, "param")); call_false_builder.AddInstruction( HloInstruction::CreateCall(pred, {}, false_computation)); HloComputation* call_false = module->AddEmbeddedComputation(call_false_builder.Build()); HloComputation::Builder outer(TestName() + ".outer"); HloInstruction* init_value = outer.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); outer.AddInstruction( HloInstruction::CreateWhile(pred, call_false, call_false, init_value)); auto computation = module->AddEntryComputation(outer.Build()); CallInliner call_inliner; TF_ASSERT_OK_AND_ASSIGN(bool mutated, call_inliner.Run(module.get())); ASSERT_TRUE(mutated); EXPECT_THAT( computation->root_instruction()->while_condition()->root_instruction(), op::Constant()); EXPECT_THAT(computation->root_instruction()->while_body()->root_instruction(), op::Constant()); } TEST_F(CallInlinerTest, InlineWithoutRunningPass) { const Shape pred = ShapeUtil::MakeShape(PRED, {}); auto module = CreateNewVerifiedModule(); HloComputation::Builder just_false(TestName() + ".false"); auto* true_constant = just_false.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<bool>({true}))); auto* false_constant = just_false.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); TF_ASSERT_OK(false_constant->AddControlDependencyTo(true_constant)); HloComputation* false_computation = module->AddEmbeddedComputation(just_false.Build()); HloComputation::Builder call_false_builder(TestName() + ".call_false"); HloInstruction* call = call_false_builder.AddInstruction( HloInstruction::CreateCall(pred, {}, false_computation)); auto computation = module->AddEntryComputation(call_false_builder.Build()); TF_ASSERT_OK(CallInliner::Inline(call).status()); EXPECT_THAT(computation->root_instruction(), op::Constant()); EXPECT_THAT(computation->root_instruction()->control_successors(), ElementsAre(op::Constant())); } TEST_F(CallInlinerTest, InlineWithEmptyComputation) { const Shape pred = ShapeUtil::MakeShape(PRED, {}); auto module = CreateNewVerifiedModule(); Shape r0s32 = ShapeUtil::MakeShape(S32, {}); HloComputation::Builder empty(TestName() + ".empty"); empty.AddInstruction(HloInstruction::CreateParameter(0, r0s32, "A")); empty.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(0))); HloComputation* empty_computation = module->AddEmbeddedComputation(empty.Build()); HloComputation::Builder empty2(TestName() + ".empty"); empty2.AddInstruction(HloInstruction::CreateParameter(0, r0s32, "A")); empty2.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(0))); HloComputation* empty2_computation = module->AddEmbeddedComputation(empty2.Build()); HloComputation::Builder entry("entry"); auto zero = entry.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(0))); entry.AddInstruction( HloInstruction::CreateCall(r0s32, {zero}, empty_computation)); HloInstruction* call1 = entry.AddInstruction( HloInstruction::CreateCall(r0s32, {zero}, empty2_computation)); entry.AddInstruction( HloInstruction::CreateCall(r0s32, {call1}, empty_computation)); auto computation = module->AddEntryComputation(entry.Build()); CallInliner call_inliner; TF_ASSERT_OK_AND_ASSIGN(bool mutated, call_inliner.Run(module.get())); ASSERT_TRUE(mutated); EXPECT_THAT(computation->root_instruction(), op::Constant()); } TEST_F(CallInlinerTest, CallToOutfeedComputationIsInlined) { const Shape f32 = ShapeUtil::MakeShape(F32, {}); auto module = CreateNewVerifiedModule(); HloComputation::Builder outfeeder(TestName() + ".outfeeder"); auto value = outfeeder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0))); auto token = outfeeder.AddInstruction(HloInstruction::CreateToken()); outfeeder.AddInstruction( HloInstruction::CreateOutfeed(f32, value, token, "")); auto outfeed_computation = module->AddEmbeddedComputation(outfeeder.Build()); HloComputation::Builder outer(TestName() + ".outer"); outer.AddInstruction(HloInstruction::CreateCall( outfeed_computation->root_instruction()->shape(), {}, outfeed_computation)); module->AddEntryComputation(outer.Build()); CallInliner call_inliner; TF_ASSERT_OK_AND_ASSIGN(bool mutated, call_inliner.Run(module.get())); ASSERT_TRUE(mutated); } TEST_F(CallInlinerTest, InlineSingleUseCalleesOnly) { const absl::string_view hlo_string = R"( HloModule inline_module a { ROOT tuple = () tuple() } b { ROOT tuple.1 = () tuple() } ENTRY inline { a = () call(), to_apply=a b = () call(), to_apply=a c = () call(), to_apply=b ROOT tuple = ((), (), ()) tuple(a, b, c) })"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); CallInliner call_inliner(true); TF_ASSERT_OK_AND_ASSIGN(bool mutated, call_inliner.Run(module.get())); ASSERT_TRUE(mutated); ASSERT_EQ(module->entry_computation()->instruction_count(), 4); auto inst = module->entry_computation()->instructions().begin(); EXPECT_THAT(*inst, op::Call()); ++inst; EXPECT_THAT(*inst, op::Call()); ++inst; EXPECT_THAT(*inst, op::Tuple()); ++inst; EXPECT_THAT(*inst, op::Tuple()); } TEST_F(CallInlinerTest, InliningPerformedInsideSpecifiedThreadsOnly) { const std::string hlo_string = R"( HloModule inline_specified_threads_only %secondary_inner () -> u32[] { ROOT %co.2 = u32[] constant(2) }, execution_thread="secondary_thread" %secondary_outer () -> u32[] { %co.1 = u32[] constant(1) %call.1 = u32[] call(), to_apply=%secondary_inner ROOT %add.1 = add(%co.1, %call.1) }, execution_thread="secondary_thread" %main_inner () -> u32[] { %co.0 = u32[] constant(0) %async-start = ((), u32[], u32[]) call-start(), async_execution_thread="secondary_thread", to_apply=secondary_outer %async-done = u32[] call-done(((), u32[], u32[]) %async-start) ROOT %add.2 = add(%co.0, %async-done) } ENTRY %main_outer (p0: u32[]) -> u32[] { %p.0 = u32[] parameter(0) %call.0 = u32[] call(), to_apply=%main_inner ROOT %add.3 = add(%p.0, %call.0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(hlo_string)); auto module_clone = module->Clone(""); { VLOG(1) << "Module BEFORE CallInliner\n" << module->ToString(); CallInliner call_inliner; TF_ASSERT_OK_AND_ASSIGN(bool mutated, call_inliner.Run(module.get())); VLOG(1) << "Module AFTER CallInliner\n" << module->ToString(); EXPECT_TRUE(mutated); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Add(op::Parameter(0), op::Add(op::Constant(LiteralUtil::CreateR0<uint32_t>(0)), op::AsyncDone()))); EXPECT_THAT(module->entry_computation() ->root_instruction() ->operand(1) ->operand(1) ->async_wrapped_instruction() ->called_computations() .at(0) ->root_instruction(), op::Add(op::Constant(LiteralUtil::CreateR0<uint32_t>(1)), op::Constant(LiteralUtil::CreateR0<uint32_t>(2)))); } VLOG(1) << "Restricting CallInliner to the secondary thread."; { CallInliner call_inliner; TF_ASSERT_OK_AND_ASSIGN( bool mutated, call_inliner.Run(module_clone.get(), {"secondary_thread"})); VLOG(1) << "Module AFTER CallInliner\n" << module_clone->ToString(); EXPECT_TRUE(mutated); EXPECT_THAT(module_clone->entry_computation()->root_instruction(), op::Add(op::Parameter(0), op::Call())); EXPECT_THAT(module_clone->entry_computation() ->root_instruction() ->operand(1) ->called_computations() .at(0) ->root_instruction(), op::Add(op::Constant(LiteralUtil::CreateR0<uint32_t>(0)), op::AsyncDone())); EXPECT_THAT(module_clone->entry_computation() ->root_instruction() ->operand(1) ->called_computations() .at(0) ->root_instruction() ->operand(1) ->async_wrapped_instruction() ->called_computations() .at(0) ->root_instruction(), op::Add(op::Constant(LiteralUtil::CreateR0<uint32_t>(1)), op::Constant(LiteralUtil::CreateR0<uint32_t>(2)))); } } TEST_F(CallInlinerTest, InlineCompositeCall) { const absl::string_view hlo_string = R"( HloModule composite %add (lhs: f32[]) -> f32[] { %lhs = f32[] parameter(0) %rhs = f32[] constant(2) ROOT %add = f32[] add(f32[] %lhs, f32[] %rhs) } ENTRY %main () -> f32[] { %lhs = f32[] constant(42) ROOT %call = f32[] call(f32[] %lhs), to_apply=%add, is_composite=true, frontend_attributes={composite.attributes={n = 1 : i32, tensor = dense<1> : tensor<i32>},composite.name="foo.bar",composite.version="1"} })"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); CallInliner call_inliner(true); TF_ASSERT_OK_AND_ASSIGN(bool mutated, call_inliner.Run(module.get())); ASSERT_TRUE(mutated); ASSERT_EQ(module->entry_computation()->instruction_count(), 3); auto inst = module->entry_computation()->instructions().begin(); EXPECT_THAT(*inst, op::Constant()); ++inst; EXPECT_THAT(*inst, op::Constant()); ++inst; EXPECT_THAT(*inst, op::Add()); EXPECT_TRUE((*inst)->frontend_attributes().map().empty()); } TEST_F(CallInlinerTest, UseShardyMhloToHloShmapBodyNotInlined) { const char* const hloString = R"( HloModule jit_f, entry_computation_layout={(f32[8,8]{1,0})->f32[8,8]{1,0}} %prefix_shmap_body_suffix.4 (Arg_0.5: f32[1,8]) -> f32[1,8] { %Arg_0.5 = f32[1,8]{1,0} parameter(0) ROOT %add.6 = f32[1,8]{1,0} add(f32[1,8]{1,0} %Arg_0.5, f32[1,8]{1,0} %Arg_0.5), metadata={source_file="-" source_line=11} } ENTRY %main.10 (Arg_0.1: f32[8,8]) -> f32[8,8] { %Arg_0.1 = f32[8,8]{1,0} parameter(0) %custom-call.2 = f32[8,8]{1,0} custom-call(f32[8,8]{1,0} %Arg_0.1), custom_call_target="Sharding", sharding={devices=[8,1]<=[8]}, metadata={source_file="-" source_line=3} %custom-call.3 = f32[1,8]{1,0} custom-call(f32[8,8]{1,0} %custom-call.2), custom_call_target="SPMDFullToShardShape", sharding={manual}, metadata={source_file="-" source_line=4} %call.7 = f32[1,8]{1,0} call(f32[1,8]{1,0} %custom-call.3), to_apply=%prefix_shmap_body_suffix.4 %custom-call.8 = f32[1,8]{1,0} custom-call(f32[1,8]{1,0} %call.7), custom_call_target="Sharding", sharding={manual}, metadata={source_file="-" source_line=6} ROOT %custom-call.9 = f32[8,8]{1,0} custom-call(f32[1,8]{1,0} %custom-call.8), custom_call_target="SPMDShardToFullShape", sharding={devices=[8,1]<=[8]}, metadata={source_file="-" source_line=7} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hloString)); module->mutable_config().set_use_shardy_partitioner(true); TF_ASSERT_OK_AND_ASSIGN(bool changed, CallInliner().Run(module.get())); VLOG(1) << module->ToString(); EXPECT_FALSE(changed); HloInstruction* call = FindInstruction(module.get(), xla::HloOpcode::kCall); EXPECT_NE(call, nullptr); EXPECT_TRUE(call->has_to_apply()); EXPECT_EQ(call->to_apply()->name(), "prefix_shmap_body_suffix.4"); } TEST_F(CallInlinerTest, UseShardManualComputationBodyNotInlined) { const char* const hloString = R"( HloModule jit_f, entry_computation_layout={(f32[8,8]{1,0})->f32[8,8]{1,0}} %xla.sdy.manual_computation_body.4 (Arg_0.5: f32[1,8]) -> f32[1,8] { %Arg_0.5 = f32[1,8]{1,0} parameter(0) ROOT %add.6 = f32[1,8]{1,0} add(f32[1,8]{1,0} %Arg_0.5, f32[1,8]{1,0} %Arg_0.5), metadata={source_file="-" source_line=11} } ENTRY %main.10 (Arg_0.1: f32[8,8]) -> f32[8,8] { %Arg_0.1 = f32[8,8]{1,0} parameter(0) %custom-call.3 = f32[1,8]{1,0} custom-call(f32[8,8]{1,0} %Arg_0.1), custom_call_target="SPMDFullToShardShape", sharding={manual}, metadata={source_file="-" source_line=4} %call.7 = f32[1,8]{1,0} call(f32[1,8]{1,0} %custom-call.3), to_apply=%xla.sdy.manual_computation_body.4 ROOT %custom-call.9 = f32[8,8]{1,0} custom-call(f32[1,8]{1,0} %call.7), custom_call_target="SPMDShardToFullShape", sharding={devices=[8,1]<=[8]}, metadata={source_file="-" source_line=7} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hloString)); module->mutable_config().set_use_shardy_partitioner(true); TF_ASSERT_OK_AND_ASSIGN(bool changed, CallInliner().Run(module.get())); VLOG(1) << module->ToString(); EXPECT_FALSE(changed); HloInstruction* call = FindInstruction(module.get(), xla::HloOpcode::kCall); EXPECT_NE(call, nullptr); EXPECT_TRUE(call->has_to_apply()); EXPECT_EQ(call->to_apply()->name(), "xla.sdy.manual_computation_body.4"); } TEST_F(CallInlinerTest, UseShardManualComputationBodyInlined) { const char* const hloString = R"( HloModule jit_f, entry_computation_layout={(f32[8,8]{1,0})->f32[8,8]{1,0}} %prefix_xla.sdy.manual_computation_body.4 (Arg_0.5: f32[1,8]) -> f32[1,8] { %Arg_0.5 = f32[1,8]{1,0} parameter(0) ROOT %add.6 = f32[1,8]{1,0} add(f32[1,8]{1,0} %Arg_0.5, f32[1,8]{1,0} %Arg_0.5), metadata={source_file="-" source_line=11} } ENTRY %main.10 (Arg_0.1: f32[8,8]) -> f32[8,8] { %Arg_0.1 = f32[8,8]{1,0} parameter(0) %custom-call.3 = f32[1,8]{1,0} custom-call(f32[8,8]{1,0} %Arg_0.1), custom_call_target="SPMDFullToShardShape", sharding={manual}, metadata={source_file="-" source_line=4} %call.7 = f32[1,8]{1,0} call(f32[1,8]{1,0} %custom-call.3), to_apply=%prefix_xla.sdy.manual_computation_body.4 ROOT %custom-call.9 = f32[8,8]{1,0} custom-call(f32[1,8]{1,0} %call.7), custom_call_target="SPMDShardToFullShape", sharding={devices=[8,1]<=[8]}, metadata={source_file="-" source_line=7} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hloString)); module->mutable_config().set_use_shardy_partitioner(true); TF_ASSERT_OK_AND_ASSIGN(bool changed, CallInliner().Run(module.get())); VLOG(1) << module->ToString(); EXPECT_TRUE(changed); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/call_inliner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/call_inliner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
164bcdca-2f59-413e-98d0-a4c8cf57007b
cpp
tensorflow/tensorflow
reshape_decomposer
third_party/xla/xla/service/reshape_decomposer.cc
third_party/xla/xla/service/reshape_decomposer_test.cc
#include "xla/service/reshape_decomposer.h" #include "absl/status/status.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/service/hlo_creation_utils.h" namespace xla { namespace { class ReshapeDecomposerVisitor : public DfsHloRewriteVisitor { public: absl::Status HandleReshape(HloInstruction* reshape) override { HloInstruction* operand = reshape->mutable_operand(0); auto s = reshape->shape(); auto s0 = operand->shape(); if (ShapeUtil::ReshapeIsBitcast(s, s0)) { auto b = MakeBitcastHlo(operand, s, &operand->metadata()); return ReplaceInstruction(reshape, b); } else if (auto output_aligned_input_shape = ShapeUtil::AlignLayouts(s, s0)) { Shape new_input_shape = *output_aligned_input_shape; HloInstruction* copied_operand = MakeCopyHlo(operand, new_input_shape); VLOG(3) << "Decomposing reshape into reshape-bitcast and a physical " "transpose on the operand: " << copied_operand->ToString(); auto b = MakeBitcastHlo(copied_operand, s, &copied_operand->metadata()); TF_RETURN_IF_ERROR(ReplaceInstruction(reshape, b)); DCHECK(ShapeUtil::ReshapeIsBitcast(b->shape(), b->operand(0)->shape())); } else if (auto input_aligned_output_shape = ShapeUtil::AlignLayouts(s0, s)) { Shape new_output_shape = *input_aligned_output_shape; auto b = MakeBitcastHlo(operand, new_output_shape, &operand->metadata()); DCHECK(ShapeUtil::ReshapeIsBitcast(b->shape(), b->operand(0)->shape())); HloInstruction* copied_result = MakeCopyHlo(b, s); VLOG(3) << "Decomposing reshape into reshape-bitcast and a physical " "transposition on the result: " << copied_result->ToString(); TF_RETURN_IF_ERROR(ReplaceInstruction(reshape, copied_result)); } else { VLOG(3) << "Both input and output of reshape are not alignable, create " "two physical transposes"; auto s0_normalized = ShapeUtil::MakeShapeWithDescendingLayout( s0.element_type(), s0.dimensions()); auto c1 = MakeCopyHlo(reshape->mutable_operand(0), s0_normalized); auto s_normalized = ShapeUtil::MakeShapeWithDescendingLayout( s.element_type(), s.dimensions()); auto b = MakeBitcastHlo(c1, s_normalized, &c1->metadata()); DCHECK(ShapeUtil::ReshapeIsBitcast(b->shape(), b->operand(0)->shape())); auto c2 = MakeCopyHlo(b, s); TF_RETURN_IF_ERROR(ReplaceInstruction(reshape, c2)); } return absl::OkStatus(); } }; } absl::StatusOr<bool> ReshapeDecomposer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { return ReshapeDecomposerVisitor{}.RunOnModule(module, execution_threads); } }
#include "xla/service/reshape_decomposer.h" #include <memory> #include <optional> #include "xla/service/hlo_parser.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { class ReshapeDecomposerTest : public HloTestBase { public: void CheckReshapeDecomposer(const char* hlo, std::optional<absl::string_view> expected) { RunAndFilecheckHloRewrite( hlo, ReshapeDecomposer{}, expected, [&](HloModule* module) { EXPECT_TRUE(absl::c_all_of( module->entry_computation()->instructions(), [&](const HloInstruction* instr) { return instr->opcode() != HloOpcode::kReshape || ShapeUtil::ReshapeIsBitcast(instr->operand(0)->shape(), instr->shape()); })); }); } }; TEST_F(ReshapeDecomposerTest, IsBitcast) { const char* hlo = R"( HloModule Module ENTRY main { p = f32[8]{0} parameter(0) ROOT r = f32[4,2]{1,0} reshape(p) } )"; CheckReshapeDecomposer(hlo, R"( )"); } TEST_F(ReshapeDecomposerTest, AlignableOutput) { const char* hlo = R"( HloModule Module ENTRY main { p = f32[8,3]{1,0} parameter(0) ROOT r = f32[4,2,3]{0,1,2} reshape(p) } )"; CheckReshapeDecomposer(hlo, R"( )"); } TEST_F(ReshapeDecomposerTest, AlignableInput) { const char* hlo = R"( HloModule Module ENTRY main { p = f32[4,2,3]{0,1,2} parameter(0) ROOT r = f32[8,3]{1,0} reshape(p) } )"; CheckReshapeDecomposer(hlo, R"( )"); } TEST_F(ReshapeDecomposerTest, NotAlignable) { const char* hlo = R"( HloModule Module ENTRY main { p = f32[4,2,3,8]{0,2,1,3} parameter(0) ROOT r = f32[8,3,2,4]{0,2,1,3} reshape(p) } )"; CheckReshapeDecomposer(hlo, R"( )"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/reshape_decomposer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/reshape_decomposer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
872adbcd-9a42-46b0-9278-91c217a8afec
cpp
tensorflow/tensorflow
indexed_array_analysis
third_party/xla/xla/service/indexed_array_analysis.cc
third_party/xla/xla/service/indexed_array_analysis_test.cc
#include "xla/service/indexed_array_analysis.h" #include <algorithm> #include <numeric> #include <optional> #include <string> #include <utility> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/evaluator/hlo_evaluator.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/map_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using Analysis = IndexedArrayAnalysis; using UnknownArray = Analysis::UnknownArray; using ConstantArray = Analysis::ConstantArray; using ReshapedArray = Analysis::ReshapedArray; using ScalarIndexedArray = Analysis::ScalarIndexedArray; using absl::StrJoin; } std::string IndexedArrayAnalysis::ToString(Array* root, bool print_constants) { switch (root->kind()) { case Array::kUnknown: { auto* unknown_tensor = root->as<UnknownArray>(); return absl::StrCat("%", unknown_tensor->instruction().name()); } case Array::kConstant: { if (print_constants) { std::string contents = root->as<ConstantArray>()->literal()->ToString(); return absl::StrCat("(constant ", ShapeUtil::HumanString(root->shape()), " ", contents, ")"); } return absl::StrCat("(constant ", ShapeUtil::HumanString(root->shape()), ")"); } case Array::kReshaped: { ReshapedArray* reshaped_array = root->as<ReshapedArray>(); return absl::StrCat( "(reshape ", ToString(reshaped_array->operand(), print_constants), " to ", ShapeUtil::HumanString(reshaped_array->shape()), ")"); } case Array::kScalarIndexedConstant: case Array::kScalarIndexed: { auto* indexed_array = root->as<ScalarIndexedArray>(); std::string name = root->kind() == Array::kScalarIndexedConstant ? "scalar-indexed-const" : "scalar-indexed"; return absl::StrCat( "(", name, " ", ToString(indexed_array->source(), print_constants), " ", ToString(indexed_array->indices(), print_constants), " ", indexed_array->source_dim(), "->[", StrJoin(indexed_array->output_dims(), ","), "])"); } } } absl::StatusOr<Analysis::Array*> IndexedArrayAnalysis::GetArrayFor( const HloInstruction* instr) { auto it = cache_.find(instr); if (it != cache_.end()) { return it->second; } TF_RETURN_IF_ERROR(TraverseAndPopulateCache(instr)); return FindOrDie(cache_, instr); } absl::Status IndexedArrayAnalysis::TraverseAndPopulateCache( const HloInstruction* root) { absl::InlinedVector<const HloInstruction*, 4> stack; enum DfsState { kDiscovered, kVisited }; absl::flat_hash_map<const HloInstruction*, DfsState> dfs_state_map; stack.push_back(root); InsertOrDie(&dfs_state_map, root, kDiscovered); do { const HloInstruction* instr = stack.back(); if (cache_.contains(instr)) { stack.pop_back(); continue; } switch (FindOrDie(dfs_state_map, instr)) { case kDiscovered: { for (const HloInstruction* operand : instr->operands()) { if (!cache_.contains(operand)) { stack.push_back(operand); CHECK(!dfs_state_map.contains(operand) || dfs_state_map[operand] == kDiscovered); dfs_state_map[operand] = kDiscovered; } } dfs_state_map[instr] = kVisited; break; } case kVisited: stack.pop_back(); TF_ASSIGN_OR_RETURN(Array * array, ComputeArrayFor(instr)); InsertOrDie(&cache_, instr, array); break; } } while (!stack.empty()); return absl::OkStatus(); } absl::StatusOr<Analysis::Array*> IndexedArrayAnalysis::ComputeArrayFor( const HloInstruction* instr) { Array* computed_array; if (instr->IsElementwise() && instr->operand_count() == 1) { TF_ASSIGN_OR_RETURN( computed_array, ComputeArrayForElementwiseUnaryOp( instr->opcode(), FindOrDie(cache_, instr->operand(0)))); } else if (instr->IsElementwise() && instr->operand_count() == 2) { TF_ASSIGN_OR_RETURN( computed_array, ComputeArrayForElementwiseBinaryOp( instr->opcode(), FindOrDie(cache_, instr->operand(0)), FindOrDie(cache_, instr->operand(1)))); } else if (instr->opcode() == HloOpcode::kConstant) { TF_ASSIGN_OR_RETURN(computed_array, ComputeArrayForConstant(instr->literal())); } else if (instr->opcode() == HloOpcode::kGather) { TF_ASSIGN_OR_RETURN( computed_array, ComputeArrayForGather(instr->shape(), instr->gather_dimension_numbers(), instr->gather_slice_sizes(), FindOrDie(cache_, instr->operand(0)), FindOrDie(cache_, instr->operand(1)))); } else if (instr->opcode() == HloOpcode::kReshape) { TF_ASSIGN_OR_RETURN( computed_array, ComputeArrayForReshape(instr->shape(), FindOrDie(cache_, instr->operand(0)))); } else if (instr->opcode() == HloOpcode::kDot) { TF_ASSIGN_OR_RETURN( computed_array, ComputeArrayForDot(instr->shape(), instr->dot_dimension_numbers(), instr->precision_config(), FindOrDie(cache_, instr->operand(0)), FindOrDie(cache_, instr->operand(1)))); } else { computed_array = nullptr; } if (!computed_array) { computed_array = Construct<UnknownArray>(instr); } return computed_array; } absl::StatusOr<Analysis::Array*> IndexedArrayAnalysis::ComputeArrayForConstant( const Literal& literal) { return Construct<ConstantArray>(&literal); } absl::StatusOr<ScalarIndexedArray*> IndexedArrayAnalysis::FoldGatherOfGather( ScalarIndexedArray* source, Array* indices, int64_t source_dim, absl::Span<const int64_t> output_dims, Shape shape) { Array* a = source->source(); Array* x = source->indices(); Array* y = indices; enum class IndexComponent { Ungathered, GatheredFirst, GatheredSecond }; std::vector<IndexComponent> simulated_index(a->shape().dimensions_size(), IndexComponent::Ungathered); EraseAt(&simulated_index, source->source_dim()); for (int64_t gather_dim : source->output_dims()) { simulated_index.insert(simulated_index.begin() + gather_dim, IndexComponent::GatheredFirst); } EraseAt(&simulated_index, source_dim); for (int64_t output_dim : output_dims) { simulated_index.insert(simulated_index.begin() + output_dim, IndexComponent::GatheredSecond); } int64_t source_dim_for_index_array = FindIndex(source->output_dims(), source_dim); CHECK_NE(source_dim_for_index_array, source->output_dims().size()); std::vector<int64_t> output_dims_for_index_array; int64_t gathered_index_components_seen = 0; for (IndexComponent simulation_dim : simulated_index) { if (simulation_dim == IndexComponent::GatheredSecond) { output_dims_for_index_array.push_back(gathered_index_components_seen); } if (simulation_dim != IndexComponent::Ungathered) { gathered_index_components_seen++; } } std::vector<int64_t> dim_sizes_for_composed_index; std::vector<int64_t> output_dims_for_new_gather; for (int64_t i = 0, e = simulated_index.size(); i < e; i++) { if (simulated_index[i] != IndexComponent::Ungathered) { dim_sizes_for_composed_index.push_back(shape.dimensions(i)); output_dims_for_new_gather.push_back(i); } } Array* inner_indices = ConstructScalarIndexedArray( x, y, source_dim_for_index_array, output_dims_for_index_array, ShapeUtil::MakeShape(x->shape().element_type(), dim_sizes_for_composed_index)); return ConstructScalarIndexedArray(a, inner_indices, source->source_dim(), output_dims_for_new_gather, std::move(shape)); } absl::StatusOr<Analysis::Array*> IndexedArrayAnalysis::ComputeArrayForGather( const Shape& shape, const GatherDimensionNumbers& dim_numbers, absl::Span<const int64_t> slice_sizes, Array* source, Array* indices) { if (dim_numbers.index_vector_dim() != indices->shape().dimensions_size()) { VLOG(3) << "ComputeArrayForGather: indices are not scalar"; return nullptr; } CHECK_EQ(dim_numbers.start_index_map_size(), 1); if (dim_numbers.collapsed_slice_dims_size() != 1 || dim_numbers.collapsed_slice_dims(0) != dim_numbers.start_index_map(0)) { VLOG(3) << "ComputeArrayForGather: gather operations must elide " "start_index_map[0] and " "start_index_map[0] only"; return nullptr; } for (int64_t i = 0, e = source->shape().dimensions_size(); i < e; i++) { if (i != dim_numbers.collapsed_slice_dims(0) && source->shape().dimensions(i) != slice_sizes[i]) { VLOG(3) << "ComputeArrayForGather: slice_sizes[" << i << "] != source->shape().dimensions(" << i << ") -- " << source->shape().dimensions(i) << " vs. " << slice_sizes[i] << " with dim_numbers.collapsed_slice_dims(0) = " << dim_numbers.collapsed_slice_dims(0); return nullptr; } } int64_t source_dim = dim_numbers.start_index_map(0); std::vector<int64_t> output_dims; for (int64_t i = 0, e = shape.dimensions_size(); i < e; i++) { if (!absl::c_binary_search(dim_numbers.offset_dims(), i)) { output_dims.push_back(i); } } if (auto* indexed = dynamic_cast<ScalarIndexedArray*>(source)) { if (absl::c_linear_search(indexed->output_dims(), source_dim)) { return FoldGatherOfGather(indexed, indices, source_dim, output_dims, shape); } } else if (auto* constant = dynamic_cast<ConstantArray*>(source)) { return Construct<ScalarIndexedConstantArray>(constant, indices, source_dim, output_dims, shape); } return Construct<ScalarIndexedArray>(source, indices, source_dim, output_dims, shape); } namespace { int64_t FindSuffixWithProduct(absl::Span<const int64_t> values, int64_t product) { DCHECK(absl::c_all_of(values, [](int64_t value) { return value > 0; })); int64_t current_product = 1; int64_t i; for (i = values.size() - 1; i >= 0 && product > current_product; --i) { current_product *= values[i]; } if (product == current_product) { return i + 1; } return -1; } struct ReshapePassthroughDimPair { int64_t result_dim; int64_t operand_dim; }; std::vector<ReshapePassthroughDimPair> ComputeReshapePassthroughDimPairs( absl::Span<const int64_t> operand_shape, absl::Span<const int64_t> result_shape) { std::vector<ReshapePassthroughDimPair> result; int64_t result_subarray_size = 1; for (int64_t result_dim = result_shape.size() - 1; result_dim >= 0; --result_dim) { int64_t candidate_operand_dim = FindSuffixWithProduct(operand_shape, result_subarray_size); CHECK_NE(candidate_operand_dim, 0) << "result_dim = " << result_dim << ", result_subarray_size = " << result_subarray_size << ", result_shape = [" << StrJoin(result_shape, ",") << "]" << ", operand_shape = [" << StrJoin(operand_shape, ",") << "]"; if (candidate_operand_dim != -1 && result_shape[result_dim] == operand_shape[candidate_operand_dim - 1]) { result.push_back({result_dim, candidate_operand_dim - 1}); } result_subarray_size *= result_shape[result_dim]; } absl::c_reverse(result); if (VLOG_IS_ON(3)) { std::vector<std::string> result_strings; absl::c_transform(result, std::back_inserter(result_strings), [](ReshapePassthroughDimPair value) { return absl::StrCat(value.result_dim, "->", value.operand_dim); }); VLOG(3) << "For a reshape from [" << StrJoin(operand_shape, ",") << "] to [" << StrJoin(result_shape, ",") << "] passthrough indices are [" << StrJoin(result_strings, ",") << "] (legend: `result`->`operand`)"; } DCHECK(absl::c_is_sorted( result, [](ReshapePassthroughDimPair lhs, ReshapePassthroughDimPair rhs) { return lhs.result_dim < rhs.result_dim; })); DCHECK(absl::c_is_sorted( result, [](ReshapePassthroughDimPair lhs, ReshapePassthroughDimPair rhs) { return lhs.operand_dim < rhs.operand_dim; })); return result; } bool IsReshapePassthroughOperandDim( absl::Span<const ReshapePassthroughDimPair> passthrough_dims, int64_t dim) { return absl::c_any_of(passthrough_dims, [&](ReshapePassthroughDimPair passthrough_dim_pair) { return passthrough_dim_pair.operand_dim == dim; }); } int64_t MapPassthroughOperandDimToResultDim( absl::Span<const ReshapePassthroughDimPair> passthrough_dims, int64_t operand_dim) { auto it = absl::c_find_if( passthrough_dims, [&](ReshapePassthroughDimPair passthrough_dim_pair) { return passthrough_dim_pair.operand_dim == operand_dim; }); CHECK(it != passthrough_dims.end()); return it->result_dim; } int64_t FindSourcePositionForPassthroughResultDim( absl::Span<const int64_t> operand_shape, absl::Span<const int64_t> result_shape, int64_t source_passthrough_dim) { VLOG(3) << "FindSourcePositionForPassthroughResultDim([" << StrJoin(operand_shape, ",") << "], [" << StrJoin(result_shape, ",") << "], " << source_passthrough_dim << ")"; int64_t indexed_source_subarray_size = std::accumulate(operand_shape.begin() + source_passthrough_dim + 1, operand_shape.end(), 1LL, std::multiplies<int64_t>()); return FindSuffixWithProduct(result_shape, indexed_source_subarray_size); } Shape StripDegenerateDimensions(const Shape& shape) { DimensionVector new_dims; absl::c_copy_if(shape.dimensions(), std::back_inserter(new_dims), [](int64_t dim) { return dim != 1; }); return ShapeUtil::MakeShape(shape.element_type(), new_dims); } }; absl::StatusOr<ScalarIndexedArray*> IndexedArrayAnalysis::ReshapeToRemoveDegenerateDims( ScalarIndexedArray* operand) { const Shape& shape = operand->shape(); if (!ShapeUtil::HasDegenerateDimensions(shape)) { return operand; } const Shape& source_shape = operand->source()->shape(); DimensionVector new_source_shape_dims; for (int64_t i = 0, e = source_shape.dimensions_size(); i < e; i++) { if (i == operand->source_dim() || source_shape.dimensions(i) != 1) { new_source_shape_dims.push_back(source_shape.dimensions(i)); } } Shape new_source_shape = ShapeUtil::MakeShape(shape.element_type(), new_source_shape_dims); Shape new_indices_shape = StripDegenerateDimensions(operand->indices()->shape()); TF_ASSIGN_OR_RETURN( Array* const new_source, ComputeArrayForReshape(new_source_shape, operand->source())); TF_ASSIGN_OR_RETURN( Array* const new_indices, ComputeArrayForReshape(new_indices_shape, operand->indices())); DimensionVector new_output_dims; int64_t degenerate_dims_seen = 0; for (int64_t i = 0, e = shape.dimensions_size(); i < e; i++) { if (shape.dimensions(i) == 1) { degenerate_dims_seen++; } else if (absl::c_linear_search(operand->output_dims(), i)) { new_output_dims.push_back(i - degenerate_dims_seen); } } int64_t degenerate_dims_before_source_dim = std::count(source_shape.dimensions().begin(), source_shape.dimensions().begin() + operand->source_dim(), 1); int64_t new_source_dim = operand->source_dim() - degenerate_dims_before_source_dim; return ConstructScalarIndexedArray( new_source, new_indices, new_source_dim, InlinedVectorToVector(new_output_dims), StripDegenerateDimensions(operand->shape())); } absl::StatusOr<ScalarIndexedArray*> IndexedArrayAnalysis::ReshapeToAddDegenerateDims( ScalarIndexedArray* operand, absl::Span<const int64_t> degenerate_dims) { if (degenerate_dims.empty()) { return operand; } CHECK(!ShapeUtil::HasDegenerateDimensions(operand->shape())); DimensionVector new_output_dims = [&]() { absl::InlinedVector<bool, 6> output_dims_bitvector( operand->shape().dimensions_size()); for (int64_t output_dim : operand->output_dims()) { output_dims_bitvector[output_dim] = true; } for (int64_t degenerate_dim : degenerate_dims) { InsertAt(&output_dims_bitvector, degenerate_dim, false); } DimensionVector result; result.reserve(operand->output_dims().size()); for (int64_t i = 0, e = output_dims_bitvector.size(); i < e; i++) { if (output_dims_bitvector[i]) { result.push_back(i); } } return result; }(); DimensionVector new_result_shape_dims; absl::c_copy(operand->shape().dimensions(), std::back_inserter(new_result_shape_dims)); for (int64_t degenerate_dim : degenerate_dims) { InsertAt(&new_result_shape_dims, degenerate_dim, 1); } DimensionVector new_source_shape_dims = new_result_shape_dims; for (int64_t output_dim : new_output_dims) { EraseAt(&new_source_shape_dims, output_dim); } int64_t new_source_dim = [&]() { for (int i = 0, e = new_source_shape_dims.size(); i < e; i++) { int64_t non_degenerate_dims_seen = 0; if (non_degenerate_dims_seen == operand->source_dim()) { return i; } if (new_source_shape_dims[new_source_dim] != 1) { non_degenerate_dims_seen++; } } LOG(FATAL) << "Did not find source dim in " << ToString(operand); }(); int64_t source_dim_size = operand->source()->shape().dimensions(operand->source_dim()); InsertAt(&new_source_shape_dims, new_source_dim, source_dim_size); Shape new_source_shape = ShapeUtil::MakeShape(operand->shape().element_type(), new_source_shape_dims); Shape new_result_shape = ShapeUtil::MakeShape(operand->shape().element_type(), new_result_shape_dims); TF_ASSIGN_OR_RETURN( Array* const new_source, ComputeArrayForReshape(new_source_shape, operand->source())); return ConstructScalarIndexedArray( new_source, operand->indices(), new_source_dim, InlinedVectorToVector(new_output_dims), new_result_shape); } absl::StatusOr<ScalarIndexedArray*> IndexedArrayAnalysis::FoldReshapeOfGather( const Shape& shape, ScalarIndexedConstantArray* operand) { VLOG(3) << "FoldReshapeOfGather(" << ToString(operand) << ")"; TF_ASSIGN_OR_RETURN(ScalarIndexedArray* const operand_without_degenerate_dims, ReshapeToRemoveDegenerateDims(operand)); Shape output_shape_without_degenerate_dims = StripDegenerateDimensions(shape); TF_ASSIGN_OR_RETURN( ScalarIndexedArray* const folded_reshape_without_degenerate_dims, FoldReshapeOfGatherNoDegenerateDims( output_shape_without_degenerate_dims, operand_without_degenerate_dims->as<ScalarIndexedConstantArray>())); if (folded_reshape_without_degenerate_dims == nullptr) { return nullptr; } DimensionVector degenerate_result_dims; for (int64_t i = 0, e = shape.dimensions_size(); i < e; i++) { if (shape.dimensions(i) == 1) { degenerate_result_dims.push_back(i); } } return ReshapeToAddDegenerateDims(folded_reshape_without_degenerate_dims, degenerate_result_dims); } absl::StatusOr<ScalarIndexedArray*> IndexedArrayAnalysis::FoldReshapeOfGatherNoDegenerateDims( const Shape& shape, ScalarIndexedConstantArray* scalar_indexed) { VLOG(3) << "FoldReshapeOfGatherNoDegenerateDims(" << ToString(scalar_indexed) << ")"; CHECK(!ShapeUtil::HasDegenerateDimensions(shape)); CHECK(!ShapeUtil::HasDegenerateDimensions(scalar_indexed->shape())); std::vector<ReshapePassthroughDimPair> reshape_passthrough_dims = ComputeReshapePassthroughDimPairs( scalar_indexed->shape().dimensions(), shape.dimensions()); auto is_reshape_passthrough_operand_dim = [&](int64_t operand_dim) { return IsReshapePassthroughOperandDim(reshape_passthrough_dims, operand_dim); }; if (!absl::c_all_of(scalar_indexed->output_dims(), is_reshape_passthrough_operand_dim)) { VLOG(3) << "Not all output dims are passthrough dims " << ToString(scalar_indexed); return nullptr; } std::vector<int64_t> new_scalar_indexed_source_shape( shape.dimensions().begin(), shape.dimensions().end()); for (int64_t i = scalar_indexed->output_dims().size() - 1; i >= 0; i--) { int64_t output_dim = scalar_indexed->output_dims()[i]; int64_t output_dim_after_reshape = MapPassthroughOperandDimToResultDim( reshape_passthrough_dims, output_dim); EraseAt(&new_scalar_indexed_source_shape, output_dim_after_reshape); } const Shape& scalar_indexed_source_shape = scalar_indexed->source()->shape(); int64_t source_dim_for_new_scalar_indexed_node = FindSourcePositionForPassthroughResultDim( scalar_indexed_source_shape.dimensions(), new_scalar_indexed_source_shape, scalar_indexed->source_dim()); if (source_dim_for_new_scalar_indexed_node == -1) { VLOG(3) << "Could not compute the source dim for the new scalar indexed " "node: scalar_indexed_source_shape = [" << StrJoin(scalar_indexed_source_shape.dimensions(), ",") << "] and new_scalar_indexed_source_shape = [" << StrJoin(new_scalar_indexed_source_shape, ",") << "]"; return nullptr; } InsertAt( &new_scalar_indexed_source_shape, source_dim_for_new_scalar_indexed_node, scalar_indexed_source_shape.dimensions(scalar_indexed->source_dim())); CHECK_EQ(absl::c_accumulate(new_scalar_indexed_source_shape, 1LL, std::multiplies<int64_t>()), ShapeUtil::ElementsIn(scalar_indexed_source_shape)); CHECK(IsReshapePassthroughOperandDim( ComputeReshapePassthroughDimPairs( scalar_indexed_source_shape.dimensions(), new_scalar_indexed_source_shape), scalar_indexed->source_dim())); auto map_passthrough_operand_dim_to_result_dim = [&](int64_t result_dim) { return MapPassthroughOperandDimToResultDim(reshape_passthrough_dims, result_dim); }; std::vector<int64_t> output_dims_for_new_scalar_indexed_node; absl::c_transform(scalar_indexed->output_dims(), std::back_inserter(output_dims_for_new_scalar_indexed_node), map_passthrough_operand_dim_to_result_dim); TF_ASSIGN_OR_RETURN(const Literal* new_scalar_indexed_source_literal, TakeOwnership(scalar_indexed->literal().Reshape( new_scalar_indexed_source_shape))); TF_ASSIGN_OR_RETURN( Array * new_scalar_indexed_source, ComputeArrayForConstant(*new_scalar_indexed_source_literal)); return ConstructScalarIndexedArray( new_scalar_indexed_source, scalar_indexed->indices(), source_dim_for_new_scalar_indexed_node, output_dims_for_new_scalar_indexed_node, shape); } absl::StatusOr<Analysis::Array*> IndexedArrayAnalysis::ComputeArrayForReshape( const Shape& shape, Array* operand) { if (ShapeUtil::Compatible(operand->shape(), shape)) { return operand; } if (auto* scalar_indexed = dynamic_cast<ScalarIndexedConstantArray*>(operand)) { TF_ASSIGN_OR_RETURN(Analysis::Array * reshape_folded_into_gather, FoldReshapeOfGather(shape, scalar_indexed)); if (reshape_folded_into_gather) { return reshape_folded_into_gather; } } if (auto* constant_array = dynamic_cast<ConstantArray*>(operand)) { TF_ASSIGN_OR_RETURN( Literal* const new_literal, TakeOwnership(constant_array->literal()->Reshape(shape.dimensions()))); return Construct<ConstantArray>(new_literal); } return Construct<ReshapedArray>(operand, shape); } absl::StatusOr<Analysis::Array*> IndexedArrayAnalysis::ComputeArrayForElementwiseBinaryOp(HloOpcode opcode, Array* lhs, Array* rhs) { ScalarIndexedConstantArray* lhs_scalar_indexed_const = dynamic_cast<ScalarIndexedConstantArray*>(lhs); ScalarIndexedConstantArray* rhs_scalar_indexed_const = dynamic_cast<ScalarIndexedConstantArray*>(rhs); bool lhs_is_indexed; if (lhs_scalar_indexed_const && !rhs_scalar_indexed_const) { lhs_is_indexed = true; } else if (rhs_scalar_indexed_const && !lhs_scalar_indexed_const) { lhs_is_indexed = false; } else { return nullptr; } ScalarIndexedConstantArray* scalar_indexed_const = lhs_is_indexed ? lhs_scalar_indexed_const : rhs_scalar_indexed_const; UnknownArray* candidate_broadcast_array = dynamic_cast<UnknownArray*>(lhs_is_indexed ? rhs : lhs); if (!candidate_broadcast_array || candidate_broadcast_array->instruction().opcode() != HloOpcode::kBroadcast) { return nullptr; } const HloInstruction* broadcast_instr = &candidate_broadcast_array->instruction(); const HloInstruction* broadcast_const_operand = broadcast_instr->operand(0); if (broadcast_const_operand->opcode() != HloOpcode::kConstant) { return nullptr; } absl::Span<const int64_t> broadcast_dims = broadcast_instr->dimensions(); auto is_broadcasted_dim = [&](int64_t output_dim) { return absl::c_find(broadcast_dims, output_dim) == broadcast_dims.end(); }; if (!absl::c_all_of(scalar_indexed_const->output_dims(), is_broadcasted_dim)) { return nullptr; } enum class IndexComponent { Broadcasted, NotBroadcasted }; std::vector<IndexComponent> simulated_index( broadcast_instr->shape().dimensions_size(), IndexComponent::Broadcasted); for (int64_t broadcast_dim : broadcast_dims) { simulated_index[broadcast_dim] = IndexComponent::NotBroadcasted; } absl::Span<const int64_t> output_dims = scalar_indexed_const->output_dims(); for (int64_t i = output_dims.size() - 1; i >= 0; --i) { CHECK(simulated_index[output_dims[i]] == IndexComponent::Broadcasted); EraseAt(&simulated_index, output_dims[i]); } InsertAt(&simulated_index, scalar_indexed_const->source_dim(), IndexComponent::Broadcasted); std::vector<int64_t> new_inner_broadcast_dims; for (int64_t i = 0; i < simulated_index.size(); i++) { if (simulated_index[i] == IndexComponent::NotBroadcasted) { new_inner_broadcast_dims.push_back(i); } } TF_ASSIGN_OR_RETURN( Literal inner_broadcast_result, broadcast_const_operand->literal().Broadcast( scalar_indexed_const->source()->shape(), new_inner_broadcast_dims)); const Literal* literal_for_new_source; if (lhs_is_indexed) { TF_ASSIGN_OR_RETURN( literal_for_new_source, TakeOwnership(HloEvaluator{}.EvaluateElementwiseBinaryOp( opcode, scalar_indexed_const->literal(), inner_broadcast_result))); } else { TF_ASSIGN_OR_RETURN( literal_for_new_source, TakeOwnership(HloEvaluator{}.EvaluateElementwiseBinaryOp( opcode, inner_broadcast_result, scalar_indexed_const->literal()))); } ConstantArray* new_source = Construct<ConstantArray>(literal_for_new_source); return Construct<ScalarIndexedConstantArray>( new_source, scalar_indexed_const->indices(), scalar_indexed_const->source_dim(), std::vector<int64_t>(scalar_indexed_const->output_dims().begin(), scalar_indexed_const->output_dims().end()), scalar_indexed_const->shape()); } absl::StatusOr<Analysis::Array*> IndexedArrayAnalysis::ComputeArrayForElementwiseUnaryOp(HloOpcode opcode, Array* operand) { auto* scalar_indexed_const = dynamic_cast<ScalarIndexedConstantArray*>(operand); if (scalar_indexed_const == nullptr) { return nullptr; } TF_ASSIGN_OR_RETURN(Literal * literal_for_new_source, TakeOwnership(HloEvaluator{}.EvaluateElementwiseUnaryOp( opcode, scalar_indexed_const->literal()))); ConstantArray* new_source = Construct<ConstantArray>(literal_for_new_source); return Construct<ScalarIndexedConstantArray>( new_source, scalar_indexed_const->indices(), scalar_indexed_const->source_dim(), SpanToVector(scalar_indexed_const->output_dims()), scalar_indexed_const->shape()); } namespace { std::optional<int64_t> GetOnlyNonContractingNonBatchDim( int64_t rank, absl::Span<const int64_t> contracting_dims, absl::Span<const int64_t> batch_dims) { std::optional<int64_t> result; for (int64_t dim = 0; dim < rank; dim++) { if (!absl::c_linear_search(contracting_dims, dim) && !absl::c_linear_search(batch_dims, dim)) { if (result.has_value()) { return std::nullopt; } result = dim; } } return result; } bool CanFoldDotIntoIndexedArray( absl::string_view tag, Analysis::ScalarIndexedConstantArray* indexed_array, absl::Span<const int64_t> contracting_dims, absl::Span<const int64_t> batch_dims) { std::optional<int64_t> non_contracting_non_batch_dim = GetOnlyNonContractingNonBatchDim(indexed_array->shape().rank(), contracting_dims, batch_dims); if (!non_contracting_non_batch_dim.has_value()) { VLOG(3) << tag << ": multiple or no non-contracting non-batch dimensions"; return false; } if (indexed_array->output_dims().size() != 1 || indexed_array->output_dims()[0] != *non_contracting_non_batch_dim) { VLOG(3) << tag << ": output dims != the lhs non-contracting non-batch dim"; return false; } int64_t indexed_array_rank = indexed_array->shape().rank(); if (indexed_array->source_dim() < (indexed_array_rank - 2)) { VLOG(3) << tag << ": source dim is not in the low two dims, won't be able to form " "a matmul"; return false; } return true; } } absl::StatusOr<Analysis::Array*> IndexedArrayAnalysis::ComputeArrayForDotWithIndexedLhs( const Shape& shape, const DotDimensionNumbers& dim_numbers, const PrecisionConfig& precision_config, ScalarIndexedConstantArray* lhs, ConstantArray* rhs) { VLOG(3) << "ComputeArrayForDotWithIndexedLhs(" << ToString(lhs) << " " << ToString(rhs); if (!CanFoldDotIntoIndexedArray( "ComputeArrayForDotWithIndexedLhs", lhs, dim_numbers.lhs_contracting_dimensions(), dim_numbers.lhs_batch_dimensions())) { return nullptr; } int64_t lhs_rank = lhs->shape().rank(); DotDimensionNumbers new_dim_numbers = dim_numbers; new_dim_numbers.set_lhs_contracting_dimensions( 0, lhs->source_dim() == (lhs_rank - 1) ? (lhs_rank - 2) : (lhs_rank - 1)); TF_ASSIGN_OR_RETURN( Literal * literal_for_new_source, TakeOwnership(HloEvaluator{}.EvaluateDotOp( new_dim_numbers, precision_config, lhs->literal(), *rhs->literal()))); int64_t new_source_dim = dim_numbers.lhs_batch_dimensions_size() + dim_numbers.rhs_batch_dimensions_size(); ConstantArray* new_source = Construct<ConstantArray>(literal_for_new_source); return Construct<ScalarIndexedConstantArray>( new_source, lhs->indices(), new_source_dim, SpanToVector(lhs->output_dims()), shape); } absl::StatusOr<Analysis::Array*> IndexedArrayAnalysis::ComputeArrayForDotWithIndexedRhs( const Shape& shape, const DotDimensionNumbers& dim_numbers, const PrecisionConfig& precision_config, ConstantArray* lhs, ScalarIndexedConstantArray* rhs) { VLOG(3) << "ComputeArrayForDotWithIndexedRhs(" << ToString(lhs) << " " << ToString(rhs); if (!CanFoldDotIntoIndexedArray( "ComputeArrayForDotWithIndexedRhs", rhs, dim_numbers.rhs_contracting_dimensions(), dim_numbers.rhs_batch_dimensions())) { return nullptr; } int64_t rhs_rank = rhs->shape().rank(); DotDimensionNumbers new_dim_numbers = dim_numbers; new_dim_numbers.set_rhs_contracting_dimensions( 0, rhs->source_dim() == (rhs_rank - 1) ? (rhs_rank - 2) : (rhs_rank - 1)); TF_ASSIGN_OR_RETURN( Literal * literal_for_new_source, TakeOwnership(HloEvaluator{}.EvaluateDotOp( new_dim_numbers, precision_config, *lhs->literal(), rhs->literal()))); int64_t new_source_dim = dim_numbers.lhs_batch_dimensions_size() + dim_numbers.rhs_batch_dimensions_size() + 1; ConstantArray* new_source = Construct<ConstantArray>(literal_for_new_source); return Construct<ScalarIndexedConstantArray>( new_source, rhs->indices(), new_source_dim, SpanToVector(rhs->output_dims()), shape); } absl::StatusOr<Analysis::Array*> IndexedArrayAnalysis::ComputeArrayForDot( const Shape& shape, const DotDimensionNumbers& dim_numbers, const PrecisionConfig& precision_config, Array* lhs, Array* rhs) { VLOG(3) << "ComputeArrayForDot(" << ToString(lhs) << " " << ToString(rhs); if (auto* lhs_indexed_array = dynamic_cast<ScalarIndexedConstantArray*>(lhs)) { if (auto* rhs_constant = dynamic_cast<ConstantArray*>(rhs)) { return ComputeArrayForDotWithIndexedLhs(shape, dim_numbers, precision_config, lhs_indexed_array, rhs_constant); } } if (auto* rhs_indexed_array = dynamic_cast<ScalarIndexedConstantArray*>(rhs)) { if (auto* lhs_constant = dynamic_cast<ConstantArray*>(lhs)) { return ComputeArrayForDotWithIndexedRhs(shape, dim_numbers, precision_config, lhs_constant, rhs_indexed_array); } } return nullptr; } absl::StatusOr<bool> IndexedArrayAnalysisPrinterPass::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { if (!VLOG_IS_ON(2)) { return false; } IndexedArrayAnalysis analysis; for (auto* computation : module->MakeNonfusionComputations(execution_threads)) { for (auto* instr : computation->instructions()) { TF_ASSIGN_OR_RETURN(Analysis::Array * t, analysis.GetArrayFor(instr)); if (!dynamic_cast<UnknownArray*>(t) && !dynamic_cast<ConstantArray*>(t)) { VLOG(2) << instr->ToString() << " -> " << analysis.ToString(t); } } } return false; } }
#include "xla/service/indexed_array_analysis.h" #include <gtest/gtest.h> #include "absl/log/log.h" #include "absl/strings/ascii.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class IndexedArrayAnalysisTest : public HloTestBase { protected: void AssertArrayForRootExpressionIs(const std::string& hlo_text, const std::string& root_expression) { AssertArrayForRootExpressionIsImpl(hlo_text, root_expression, false); } void AssertArrayWithConstantsForRootExpressionIs( const std::string& hlo_text, const std::string& root_expression) { AssertArrayForRootExpressionIsImpl(hlo_text, root_expression, true); } private: std::string CanonicalizeWhitespace(const std::string& text) { std::string result; for (char c : text) { if (!absl::ascii_isspace(c)) { result.push_back(c); } else if (!result.empty() && result.back() != ' ') { result.push_back(' '); } } while (!result.empty() && result.back() == ' ') { result.pop_back(); } return result; } void AssertArrayForRootExpressionIsImpl(const std::string& hlo_text, const std::string& root_expression, bool print_constants) { IndexedArrayAnalysis indexed_tensor_analysis; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(IndexedArrayAnalysis::Array* const array_result, indexed_tensor_analysis.GetArrayFor( m->entry_computation()->root_instruction())); std::string string_result = CanonicalizeWhitespace( indexed_tensor_analysis.ToString(array_result, print_constants)); LOG(INFO) << string_result; ASSERT_EQ(string_result, CanonicalizeWhitespace(root_expression)); } }; TEST_F(IndexedArrayAnalysisTest, SimpleOneToOneGather) { std::string hlo_text = R"( HloModule SimpleGather ENTRY main { operand = s32[3,3] parameter(0) indices = s32[5] parameter(1) ROOT gather = s32[5,3] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1,3} } )"; AssertArrayForRootExpressionIs(hlo_text, "(scalar-indexed %operand %indices 0->[0])"); } TEST_F(IndexedArrayAnalysisTest, SimpleOneToOneConstantGather) { std::string hlo_text = R"( HloModule SimpleGather ENTRY main { operand = s32[3,3] constant({{1,2,3},{1,2,3},{1,2,3}}) indices = s32[5] parameter(0) ROOT gather = s32[5,3] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1,3} } )"; AssertArrayForRootExpressionIs( hlo_text, "(scalar-indexed-const (constant s32[3,3]) %indices 0->[0])"); } TEST_F(IndexedArrayAnalysisTest, GatherIsNotScalarIndexed0) { std::string hlo_text = R"( HloModule SimpleGather ENTRY main { operand = s32[3,3] constant({{1,2,3},{1,2,3},{1,2,3}}) indices = s32[5,2] parameter(0) ROOT gather = s32[5] gather(operand, indices), offset_dims={}, collapsed_slice_dims={0,1}, start_index_map={0,1}, index_vector_dim=1, slice_sizes={1,1} } )"; AssertArrayForRootExpressionIs(hlo_text, "%gather"); } TEST_F(IndexedArrayAnalysisTest, GatherIsNotScalarIndexed1) { std::string hlo_text = R"( HloModule SimpleGather ENTRY main { operand = s32[3,3,1] parameter(0) indices = s32[5] parameter(1) ROOT gather = s32[5,3] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0,2}, start_index_map={0}, index_vector_dim=1, slice_sizes={1,3,1} } )"; AssertArrayForRootExpressionIs(hlo_text, "%gather"); } TEST_F(IndexedArrayAnalysisTest, GatherIsNotScalarIndexed2) { std::string hlo_text = R"( HloModule SimpleGather ENTRY main { operand = s32[3,3,1] parameter(0) indices = s32[5] parameter(1) ROOT gather = s32[5,2,3] gather(operand, indices), offset_dims={1,2}, collapsed_slice_dims={2}, start_index_map={0}, index_vector_dim=1, slice_sizes={2,3,1} } )"; AssertArrayForRootExpressionIs(hlo_text, "%gather"); } TEST_F(IndexedArrayAnalysisTest, GatherIsNotScalarIndexed3) { std::string hlo_text = R"( HloModule SimpleGather ENTRY main { operand = s32[3,3] parameter(0) indices = s32[5] parameter(1) ROOT gather = s32[5,2] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1,2} } )"; AssertArrayForRootExpressionIs(hlo_text, "%gather"); } TEST_F(IndexedArrayAnalysisTest, GatherOfGather_OneToOne) { std::string hlo_text = R"( HloModule SimpleGather ENTRY main { operand = s32[3,3] constant({{1,2,3},{1,2,3},{1,2,3}}) indices_a = s32[5] parameter(0) indices_b = s32[2] parameter(1) gather_a = s32[5,3] gather(operand, indices_a), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1,3} ROOT gather_b = s32[2,3] gather(gather_a, indices_b), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1,3} } )"; AssertArrayForRootExpressionIs( hlo_text, "(scalar-indexed-const (constant s32[3,3]) (scalar-indexed %indices_a " "%indices_b 0->[0]) 0->[0])"); } TEST_F(IndexedArrayAnalysisTest, GatherOfGather_ManyToOneWithOneToOne) { std::string hlo_text = R"( HloModule SimpleGather ENTRY main { operand = s32[3,2] parameter(0) indices_a = s32[5,7] parameter(1) indices_b = s32[2] parameter(2) gather_a = s32[5,3,7] gather(operand, indices_a), offset_dims={1}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=2, slice_sizes={3,1} ROOT gather_b = s32[5,3,2] gather(gather_a, indices_b), offset_dims={0,1}, collapsed_slice_dims={2}, start_index_map={2}, index_vector_dim=1, slice_sizes={5,3,1} } )"; AssertArrayForRootExpressionIs(hlo_text, "(scalar-indexed %operand (scalar-indexed " "%indices_a %indices_b 1->[1]) 1->[0,2])"); } TEST_F(IndexedArrayAnalysisTest, GatherOfGather_OneToOneWithManyToOne) { std::string hlo_text = R"( HloModule SimpleGather ENTRY main { operand = s32[3,6] parameter(0) indices_a = s32[2] parameter(1) indices_b = s32[5,7] parameter(2) gather_a = s32[2,6] gather(operand, indices_a), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1,6} ROOT gather_b = s32[5,6,7] gather(gather_a, indices_b), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=2, slice_sizes={1,6} } )"; AssertArrayForRootExpressionIs(hlo_text, "(scalar-indexed %operand (scalar-indexed " "%indices_a %indices_b 0->[0,1]) 0->[0,2])"); } TEST_F(IndexedArrayAnalysisTest, GatherOfGather_ManyToOneWithManyToOne) { std::string hlo_text = R"( HloModule SimpleGather ENTRY main { operand = s32[3,2] parameter(0) indices_a = s32[5,7] parameter(1) indices_b = s32[4,8] parameter(2) gather_a = s32[5,3,7] gather(operand, indices_a), offset_dims={1}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=2, slice_sizes={3,1} ROOT gather_b = s32[4,5,3,8] gather(gather_a, indices_b), offset_dims={1,2}, collapsed_slice_dims={2}, start_index_map={2}, index_vector_dim=2, slice_sizes={5,3,1} } )"; AssertArrayForRootExpressionIs( hlo_text, "(scalar-indexed %operand (scalar-indexed %indices_a %indices_b " "1->[0,2]) 1->[0,1,3])"); } TEST_F(IndexedArrayAnalysisTest, ReshapeOfGather0) { std::string hlo_text = R"( HloModule ReshapeOfGather ENTRY main { operand = s32[3,4] constant({{1,2,3,4},{1,2,3,4},{1,2,3,4}}) indices = s32[5] parameter(0) gather = s32[5,4] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1,4} ROOT reshape = s32[5,2,2] reshape(gather) } )"; AssertArrayForRootExpressionIs( hlo_text, "(scalar-indexed-const (constant s32[3,2,2]) %indices 0->[0])"); } TEST_F(IndexedArrayAnalysisTest, ReshapeOfGather1) { std::string hlo_text = R"( HloModule ReshapeOfGather ENTRY main { operand = s32[3,4] constant({{1,2,3,4},{1,2,3,4},{1,2,3,4}}) indices = s32[5,7] parameter(0) gather = s32[5,4,7] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=2, slice_sizes={1,4} ROOT reshape = s32[5,2,2,7] reshape(gather) } )"; AssertArrayForRootExpressionIs( hlo_text, "(scalar-indexed-const (constant s32[3,2,2]) %indices 0->[0,3])"); } TEST_F(IndexedArrayAnalysisTest, ReshapeOfGather2) { std::string hlo_text = R"( HloModule ReshapeOfGather ENTRY main { operand = s32[3,2,6] constant({ {{1,2,3,4,5,6},{1,2,3,4,5,6}}, {{1,2,3,4,5,6},{1,2,3,4,5,6}}, {{1,2,3,4,5,6},{1,2,3,4,5,6}}}) indices = s32[5,7] parameter(0) gather = s32[5,2,6,7] gather(operand, indices), offset_dims={1,2}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=2, slice_sizes={1,2,6} ROOT reshape = s32[5,3,4,7] reshape(gather) } )"; AssertArrayForRootExpressionIs( hlo_text, "(scalar-indexed-const (constant s32[3,3,4]) %indices 0->[0,3])"); } TEST_F(IndexedArrayAnalysisTest, ReshapeOfGather3) { std::string hlo_text = R"( HloModule ReshapeOfGather ENTRY main { operand = s32[2,6] constant({ {1,2,3,4,5,6},{1,2,3,4,5,6}}) indices = s32[1] parameter(0) gather = s32[1,6] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1,6} ROOT reshape = s32[1,1,6] reshape(gather) } )"; const char* expected_root_expression = R"( (scalar-indexed-const (constant s32[2,1,1,6]) (reshape %indices to s32[]) 0->[]) )"; AssertArrayForRootExpressionIs(hlo_text, expected_root_expression); } TEST_F(IndexedArrayAnalysisTest, ReshapeOfGather4) { std::string hlo_text = R"( HloModule ReshapeOfGather ENTRY main { operand = s32[2,3]{1,0} constant({ { 1, 2, 3 }, { 1, 2, 3 } }) i.0 = s64[1,3]{1,0} parameter(0) g.0 = s32[1,3,3]{2,1,0} gather(operand, i.0), offset_dims={2}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=2, slice_sizes={1,3} i.1 = s64[1] parameter(1) g.1 = s32[1,1,3]{2,1,0} gather(g.0, i.1), offset_dims={0,2}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=1, slice_sizes={1,1,3} ROOT reshape = s32[1,3]{1,0} reshape(g.1) } )"; const char* expected_root_expression = R"( (scalar-indexed-const (constant s32[2,1,3]) (reshape (scalar-indexed %i.0 %i.1 1->[1]) to s64[]) 0->[]) )"; AssertArrayForRootExpressionIs(hlo_text, expected_root_expression); } TEST_F(IndexedArrayAnalysisTest, ReshapeOfGather5) { std::string hlo_text = R"( HloModule ReshapeOfGather ENTRY main { operand = s32[1,6] constant({{1,2,3,4,5,6}}) indices = s32[1] parameter(0) gather = s32[1,6] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1,6} ROOT reshape = s32[1,1,6] reshape(gather) } )"; const char* expected_root_expression = R"( (scalar-indexed-const (constant s32[1,1,1,6]) (reshape %indices to s32[]) 0->[]) )"; AssertArrayForRootExpressionIs(hlo_text, expected_root_expression); } TEST_F(IndexedArrayAnalysisTest, ReshapeOfGather6) { std::string hlo_text = R"( HloModule ReshapeOfGather ENTRY main { operand = s32[1,2,6] constant({{ {1,2,3,4,5,6},{1,2,3,4,5,6}}}) indices = s32[1] parameter(0) gather = s32[1,1,6] gather(operand, indices), offset_dims={1,2}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=1, slice_sizes={1,1,6} ROOT reshape = s32[1,1,1,6] reshape(gather) } )"; const char* expected_root_expression = R"( (scalar-indexed-const (constant s32[2,1,1,1,6] s32[2,1,1,1,6] { { { { { 1, 2, 3, 4, 5, 6 } } } }, { { { { 1, 2, 3, 4, 5, 6 } } } } }) (reshape %indices to s32[]) 0->[]) )"; AssertArrayWithConstantsForRootExpressionIs(hlo_text, expected_root_expression); } TEST_F(IndexedArrayAnalysisTest, ReshapeOfGather7) { std::string hlo_text = R"( HloModule ReshapeOfGather ENTRY main { operand = s32[2,6] constant({ {1,2,3,4,5,6},{1,2,3,4,5,6}}) indices = s32[1,5] parameter(0) gather = s32[1,5,6] gather(operand, indices), offset_dims={2}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=2, slice_sizes={1,6} ROOT reshape = s32[1,1,5,6] reshape(gather) } )"; const char* expected_root_expression = R"( (scalar-indexed-const (constant s32[2,1,1,6] s32[2,1,1,6] { { { { 1, 2, 3, 4, 5, 6 } } }, { { { 1, 2, 3, 4, 5, 6 } } } }) (reshape %indices to s32[5]) 0->[2]) )"; AssertArrayWithConstantsForRootExpressionIs(hlo_text, expected_root_expression); } TEST_F(IndexedArrayAnalysisTest, ReshapeOfGatherNoFold0) { std::string hlo_text = R"( HloModule ReshapeOfGather ENTRY main { operand = s32[3,4] constant({{1,2,3,4},{1,2,3,4},{1,2,3,4}}) indices = s32[5,6] parameter(0) gather = s32[5,4,6] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=2, slice_sizes={1,4} ROOT reshape = s32[5,2,2,2,3] reshape(gather) } )"; const char* expected_root_expression = R"( (reshape (scalar-indexed-const (constant s32[3,4]) %indices 0->[0,2]) to s32[5,2,2,2,3]) )"; AssertArrayForRootExpressionIs(hlo_text, expected_root_expression); } TEST_F(IndexedArrayAnalysisTest, ReshapeOfGatherNoFold1) { std::string hlo_text = R"( HloModule ReshapeOfGather ENTRY main { operand = s32[3,5,2] constant({ {{1,2},{3,4},{5,6},{7,8},{9,10}}, {{1,2},{3,4},{5,6},{7,8},{9,10}}, {{1,2},{3,4},{5,6},{7,8},{9,10}}}) indices = s32[7] parameter(0) gather = s32[3,2,7] gather(operand, indices), offset_dims={0,1}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=1, slice_sizes={3,1,2} ROOT reshape = s32[6,7] reshape(gather) } )"; const char* expected_root_expression = R"( (reshape (scalar-indexed-const (constant s32[3,5,2]) %indices 1->[2]) to s32[6,7]) )"; AssertArrayForRootExpressionIs(hlo_text, expected_root_expression); } TEST_F(IndexedArrayAnalysisTest, ReshapeOfGatherNoFold2) { std::string hlo_text = R"( HloModule ReshapeOfGather ENTRY main { operand = s32[3,4,1] constant({ {{1},{2},{3},{4}}, {{1},{2},{3},{4}}, {{1},{2},{3},{4}}}) indices = s32[5,6] parameter(0) gather = s32[5,4,6,1] gather(operand, indices), offset_dims={1,3}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=2, slice_sizes={1,4,1} ROOT reshape = s32[5,2,2,2,3,1] reshape(gather) } )"; const char* expected_root_expression = R"( (reshape (scalar-indexed-const (constant s32[3,4,1]) %indices 0->[0,2]) to s32[5,2,2,2,3,1]) )"; AssertArrayForRootExpressionIs(hlo_text, expected_root_expression); } TEST_F(IndexedArrayAnalysisTest, UnaryOpOfGather) { std::string hlo_text = R"( HloModule UnaryOpOfGather ENTRY main { operand = f32[3,4] constant({{1,2,3,4},{1,3,2,4},{4,3,2,1}}) indices = s32[5] parameter(0) gather = f32[5,4] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1,4} ROOT tanh = f32[5,4] tanh(gather) } )"; AssertArrayWithConstantsForRootExpressionIs(hlo_text, R"( (scalar-indexed-const (constant f32[3,4] f32[3,4] { { 0.761594176, 0.964027584, 0.995054781, 0.999329329 }, { 0.761594176, 0.995054781, 0.964027584, 0.999329329 }, { 0.999329329, 0.995054781, 0.964027584, 0.761594176 } }) %indices 0->[0]))"); } TEST_F(IndexedArrayAnalysisTest, AddBroadcastedScalarWithGather) { std::string hlo_text = R"( HloModule AddBroadcastedScalarWithGather ENTRY main { gather_operand = s32[3,4] constant({{1,2,3,4},{1,3,2,4},{4,3,2,1}}) constant = s32[] constant(5) constant_broadcasted = s32[5,4] broadcast(constant), dimensions={} indices = s32[5] parameter(0) gather = s32[5,4] gather(gather_operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1,4} ROOT add = s32[5,4] add(gather, constant_broadcasted) } )"; AssertArrayWithConstantsForRootExpressionIs(hlo_text, R"( (scalar-indexed-const (constant s32[3,4] s32[3,4] { { 6, 7, 8, 9 }, { 6, 8, 7, 9 }, { 9, 8, 7, 6 } }) %indices 0->[0]))"); } TEST_F(IndexedArrayAnalysisTest, SubtractBroadcastedScalarWithGather_GatherIsLhs) { std::string hlo_text = R"( HloModule SubtractBroadcastedScalarWithGather ENTRY main { gather_operand = s32[3,4] constant({{1,2,3,4},{1,3,2,4},{4,3,2,1}}) constant = s32[] constant(5) constant_broadcasted = s32[5,4] broadcast(constant), dimensions={} indices = s32[5] parameter(0) gather = s32[5,4] gather(gather_operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1,4} ROOT sub = s32[5,4] subtract(gather, constant_broadcasted) } )"; AssertArrayWithConstantsForRootExpressionIs(hlo_text, R"( (scalar-indexed-const (constant s32[3,4] s32[3,4] { { -4, -3, -2, -1 }, { -4, -2, -3, -1 }, { -1, -2, -3, -4 } }) %indices 0->[0]))"); } TEST_F(IndexedArrayAnalysisTest, SubtractBroadcastedScalarWithGather_GatherIsRhs) { std::string hlo_text = R"( HloModule SubtractBroadcastedScalarWithGather ENTRY main { gather_operand = s32[3,4] constant({{1,2,3,4},{1,3,2,4},{4,3,2,1}}) constant = s32[] constant(5) constant_broadcasted = s32[5,4] broadcast(constant), dimensions={} indices = s32[5] parameter(0) gather = s32[5,4] gather(gather_operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1,4} ROOT sub = s32[5,4] subtract(constant_broadcasted, gather) } )"; AssertArrayWithConstantsForRootExpressionIs(hlo_text, R"( (scalar-indexed-const (constant s32[3,4] s32[3,4] { { 4, 3, 2, 1 }, { 4, 2, 3, 1 }, { 1, 2, 3, 4 } }) %indices 0->[0]))"); } TEST_F(IndexedArrayAnalysisTest, AddBroadcastedVectorWithGather) { std::string hlo_text = R"( HloModule AddBroadcastedVectorWithGather ENTRY main { gather_operand = s32[3,4] constant({{1,2,3,4},{1,3,2,4},{4,3,2,1}}) constant_vect = s32[4] constant({10,11,12,13}) constant_broadcasted = s32[5,4] broadcast(constant_vect), dimensions={1} indices = s32[5] parameter(0) gather = s32[5,4] gather(gather_operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1,4} ROOT add = s32[5,4] add(gather, constant_broadcasted) } )"; AssertArrayWithConstantsForRootExpressionIs(hlo_text, R"( (scalar-indexed-const (constant s32[3,4] s32[3,4] { { 11, 13, 15, 17 }, { 11, 14, 14, 17 }, { 14, 14, 14, 14 } }) %indices 0->[0]))"); } TEST_F(IndexedArrayAnalysisTest, AddBroadcastedVectorWithGather_Negative) { std::string hlo_text = R"( HloModule AddBroadcastedVectorWithGather ENTRY main { gather_operand = s32[3,4] constant({{1,2,3,4},{1,3,2,4},{4,3,2,1}}) constant_vect = s32[5] constant({10,11,12,13,14}) constant_broadcasted = s32[5,4] broadcast(constant_vect), dimensions={0} indices = s32[5] parameter(0) gather = s32[5,4] gather(gather_operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1,4} ROOT add = s32[5,4] add(gather, constant_broadcasted) } )"; AssertArrayForRootExpressionIs(hlo_text, "%add"); } TEST_F(IndexedArrayAnalysisTest, RegularUnaryOp) { std::string hlo_text = R"( HloModule RegularUnaryOp ENTRY main { input = f32[100] parameter(0) ROOT tanh = f32[100] tanh(input) } )"; AssertArrayForRootExpressionIs(hlo_text, "%tanh"); } TEST_F(IndexedArrayAnalysisTest, RegularBinaryOp) { std::string hlo_text = R"( HloModule RegularUnaryOp ENTRY main { input0 = f32[100] parameter(0) input1 = f32[100] parameter(1) ROOT add = f32[100] add(input0, input1) } )"; AssertArrayForRootExpressionIs(hlo_text, "%add"); } TEST_F(IndexedArrayAnalysisTest, DotOpBasic_0) { std::string hlo_text = R"( HloModule DotOp ENTRY main { gather_operand = s32[3,4] constant({{1,2,3,4},{5,6,7,8},{9,10,11,12}}) dot_rhs_constant = s32[4,3] constant({{1,2,3},{4,5,6},{7,8,9},{10,11,12}}) indices = s32[5] parameter(0) dot_lhs = s32[5,4] gather(gather_operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1,4} ROOT dot = s32[5,3] dot(dot_lhs, dot_rhs_constant), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; AssertArrayWithConstantsForRootExpressionIs(hlo_text, R"( (scalar-indexed-const (constant s32[3,3] s32[3,3] { { 70, 80, 90 }, { 158, 184, 210 }, { 246, 288, 330 } }) %indices 0->[0]))"); } TEST_F(IndexedArrayAnalysisTest, DotOpBasic_1) { std::string hlo_text = R"( HloModule DotOp ENTRY main { gather_operand = s32[3,4] constant({{1,2,3,4},{5,6,7,8},{9,10,11,12}}) dot_rhs_constant = s32[3,3] constant({{1,2,3},{4,5,6},{7,8,9}}) indices = s32[5] parameter(0) dot_lhs = s32[3,5] gather(gather_operand, indices), offset_dims={0}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=1, slice_sizes={3,1} ROOT dot = s32[5,3] dot(dot_lhs, dot_rhs_constant), lhs_contracting_dims={0}, rhs_contracting_dims={0} } )"; AssertArrayWithConstantsForRootExpressionIs(hlo_text, R"( (scalar-indexed-const (constant s32[4,3] s32[4,3] { { 84, 99, 114 }, { 96, 114, 132 }, { 108, 129, 150 }, { 120, 144, 168 } }) %indices 0->[1]))"); } TEST_F(IndexedArrayAnalysisTest, DotOpBasic_2) { std::string hlo_text = R"( HloModule DotOp ENTRY main { gather_operand = s32[3,4] constant({{1,2,3,4},{5,6,7,8},{9,10,11,12}}) dot_lhs_constant = s32[4,3] constant({{1,2,3},{4,5,6},{7,8,9},{10,11,12}}) indices = s32[5] parameter(0) dot_rhs = s32[3,5] gather(gather_operand, indices), offset_dims={0}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=1, slice_sizes={3,1} ROOT dot = s32[4,5] dot(dot_lhs_constant, dot_rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; AssertArrayWithConstantsForRootExpressionIs(hlo_text, R"( (scalar-indexed-const (constant s32[4,4] s32[4,4] { { 38, 44, 50, 56 }, { 83, 98, 113, 128 }, { 128, 152, 176, 200 }, { 173, 206, 239, 272 } }) %indices 1->[1]) )"); } TEST_F(IndexedArrayAnalysisTest, DotOpBasic_3) { std::string hlo_text = R"( HloModule DotOp ENTRY main { gather_operand = s32[4,3] constant({{1,2,3},{4,5,6},{7,8,9},{10,11,12}}) dot_lhs_constant = s32[4,3] constant({{1,2,3},{4,5,6},{7,8,9},{10,11,12}}) indices = s32[5] parameter(0) dot_rhs = s32[5,3] gather(gather_operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1,3} ROOT dot = s32[4,5] dot(dot_lhs_constant, dot_rhs), lhs_contracting_dims={1}, rhs_contracting_dims={1} } )"; AssertArrayWithConstantsForRootExpressionIs(hlo_text, R"( (scalar-indexed-const (constant s32[4,4] s32[4,4] { { 14, 32, 50, 68 }, { 32, 77, 122, 167 }, { 50, 122, 194, 266 }, { 68, 167, 266, 365 } }) %indices 1->[0]) )"); } TEST_F(IndexedArrayAnalysisTest, DotOpWithBatch) { std::string hlo_text = R"( HloModule DotOp ENTRY main { gather_operand = s32[2,3,2] constant({{{1,2},{3,4},{5,6}},{{7,8},{9,10},{11,12}}}) dot_lhs_constant = s32[2,2,3] constant({{{1,2,3},{4,5,6}},{{7,8,9},{10,11,12}}}) indices = s32[4] parameter(0) dot_rhs = s32[2,3,4] gather(gather_operand, indices), offset_dims={0,1}, collapsed_slice_dims={2}, start_index_map={2}, index_vector_dim=1, slice_sizes={2,3,1} ROOT dot = s32[2,2,4] dot(dot_lhs_constant, dot_rhs), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; AssertArrayWithConstantsForRootExpressionIs(hlo_text, R"( (scalar-indexed-const (constant s32[2,2,2] s32[2,2,2] { { { 22, 28 }, { 49, 64 } }, { { 220, 244 }, { 301, 334 } } }) %indices 3->[2]) )"); } TEST_F(IndexedArrayAnalysisTest, DotOpNegative) { std::string hlo_text = R"( HloModule DotOp ENTRY main { gather_operand = s32[3,4] constant({{1,2,3,4},{5,6,7,8},{9,10,11,12}}) dot_rhs_constant = s32[2,3] constant({{1,2,3},{4,5,6}}) indices = s32[2] parameter(0) dot_lhs = s32[3,2] gather(gather_operand, indices), offset_dims={0}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=1, slice_sizes={3,1} ROOT dot = s32[3,3] dot(dot_lhs, dot_rhs_constant), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; AssertArrayWithConstantsForRootExpressionIs(hlo_text, "%dot"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/indexed_array_analysis.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/indexed_array_analysis_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0246551a-2064-4f3b-ad55-2a13cb8a1a45
cpp
tensorflow/tensorflow
all_gather_broadcast_reorder
third_party/xla/xla/service/all_gather_broadcast_reorder.cc
third_party/xla/xla/service/all_gather_broadcast_reorder_test.cc
#include "xla/service/all_gather_broadcast_reorder.h" #include <cstdint> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" namespace xla { absl::StatusOr<bool> AllGatherBroadcastReorder::Run( HloModule *module, const absl::flat_hash_set<absl::string_view> &execution_threads) { if (hlo_query::ContainsLayoutConstrainedCollective(*module, HloOpcode::kAllGather)) { VLOG(1) << "Skip AllGatherBroadcastReorder because the module contains " "all-gather with constrained layouts"; return false; } int64_t next_channel_id = hlo_query::NextChannelId(*module); bool changed = false; for (auto computation : module->computations(execution_threads)) { for (HloInstruction *inst : computation->MakeInstructionPostOrder()) { if (inst->opcode() != HloOpcode::kAllGather || !inst->shape().IsArray() || inst->operand(0)->opcode() != HloOpcode::kBroadcast) { continue; } HloAllGatherInstruction *ag = Cast<HloAllGatherInstruction>(inst); HloBroadcastInstruction *bcast = Cast<HloBroadcastInstruction>(inst->mutable_operand(0)); absl::flat_hash_set<int64_t> non_uniform_dims; non_uniform_dims.insert(bcast->dimensions().begin(), bcast->dimensions().end()); const bool all_gather_along_uniform_dim = non_uniform_dims.insert(ag->all_gather_dimension()).second; int64_t uniform_dim_size = 1; for (int64_t i = 0; i < ag->shape().rank(); ++i) { if (non_uniform_dims.count(i) == 0) { uniform_dim_size *= ag->shape().dimensions(i); } } if (uniform_dim_size == 1) { continue; } HloInstruction *replacement; const int64_t ag_dim = ag->all_gather_dimension(); if (!all_gather_along_uniform_dim) { VLOG(2) << "All-gather along non uniform dimension"; auto ag_dim_index = PositionInContainer(bcast->dimensions(), ag_dim); Shape new_ag_shape = bcast->operand(0)->shape(); new_ag_shape.set_dimensions(ag_dim_index, ag->shape().dimensions(ag_dim)); auto *new_ag = Cast<HloAllGatherInstruction>(computation->AddInstruction( ag->CloneWithNewOperands(new_ag_shape, bcast->operands()))); if (ag->channel_id()) { new_ag->set_channel_id(next_channel_id++); } new_ag->set_all_gather_dimension(ag_dim_index); replacement = computation->AddInstruction( bcast->CloneWithNewOperands(ag->shape(), {new_ag})); } else { VLOG(2) << "All-gather along uniform dimension"; HloInstruction *x = bcast->mutable_operand(0); std::vector<int64_t> shape_dims{1}; absl::Span<const int64_t> x_dims = x->shape().dimensions(); shape_dims.insert(shape_dims.end(), x_dims.begin(), x_dims.end()); Shape shape = ShapeUtil::MakeShape(x->shape().element_type(), shape_dims); HloInstruction *rs0 = computation->AddInstruction( HloInstruction::CreateReshape(shape, x)); const int64_t ag_factor = ag->shape().dimensions(ag_dim) / ag->operand(0)->shape().dimensions(ag_dim); shape.set_dimensions(0, ag_factor); auto *new_ag = Cast<HloAllGatherInstruction>(computation->AddInstruction( ag->CloneWithNewOperands(shape, {rs0}))); if (ag->channel_id()) { new_ag->set_channel_id(next_channel_id++); } new_ag->set_all_gather_dimension(0); std::vector<int64_t> bcast_shape_dims = SpanToVector(ag->shape().dimensions()); bcast_shape_dims[ag_dim] = ag_factor; bcast_shape_dims.insert(bcast_shape_dims.begin() + ag_dim + 1, ag->shape().dimensions(ag_dim) / ag_factor); Shape bcast_shape = ShapeUtil::MakeShape(x->shape().element_type(), bcast_shape_dims); std::vector<int64_t> bcast_dims; bcast_dims.push_back(ag_dim); for (int64_t d : bcast->dimensions()) { bcast_dims.push_back(d + (d > ag_dim)); } HloInstruction *bcast = computation->AddInstruction( HloInstruction::CreateBroadcast(bcast_shape, new_ag, bcast_dims)); replacement = computation->AddInstruction( HloInstruction::CreateReshape(ag->shape(), bcast)); } TF_RETURN_IF_ERROR(ag->ReplaceAllUsesWith(replacement)); TF_RETURN_IF_ERROR(computation->RemoveInstructionAndUnusedOperands(ag)); changed = true; } } return changed; } }
#include "xla/service/all_gather_broadcast_reorder.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace m = xla::testing::opcode_matchers; class AllGatherBroadcastReorderTest : public HloTestBase { public: enum class PassOutput { NoChange, NonUniformAGPattern, UniformAGPattern }; void RunPass(absl::string_view hlo_module, PassOutput expected_output) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_module)); auto changed = AllGatherBroadcastReorder().Run(module.get()); ASSERT_TRUE(changed.ok()); if (expected_output == PassOutput::NoChange) { EXPECT_FALSE(changed.value()); } else { EXPECT_TRUE(changed.value()); if (expected_output == PassOutput::NonUniformAGPattern) { EXPECT_THAT(module->entry_computation()->root_instruction(), m::Broadcast(m::AllGather(m::Parameter()))); } else { EXPECT_THAT( module->entry_computation()->root_instruction(), m::Reshape(m::Broadcast(m::AllGather(m::Reshape(m::Parameter()))))); } } } }; TEST_F(AllGatherBroadcastReorderTest, Simple_GatherAlongNonUniformDim) { absl::string_view hlo_string = R"( HloModule m ENTRY main { x = f32[128, 5] parameter(0) bc = f32[5, 4, 8, 128] broadcast(x), dimensions={3, 0} ROOT ag = f32[5, 4, 8, 256] all-gather(bc), dimensions={3}, replica_groups={{0, 1}} } )"; RunPass(hlo_string, PassOutput::NonUniformAGPattern); } TEST_F(AllGatherBroadcastReorderTest, Simple_GatherAlongUniformDim) { absl::string_view hlo_string = R"( HloModule m ENTRY main { x = f32[128, 5] parameter(0) bc = f32[5, 4, 8, 128] broadcast(x), dimensions={3, 0} ROOT ag = f32[5, 12, 8, 128] all-gather(bc), dimensions={1}, replica_groups={{0, 1, 2}} } )"; RunPass(hlo_string, PassOutput::UniformAGPattern); } TEST_F(AllGatherBroadcastReorderTest, Simple_GatherBroadcastScalar) { absl::string_view hlo_string = R"( HloModule m ENTRY main { x = f32[] parameter(0) bc = f32[4, 8] broadcast(x), dimensions={} ROOT ag = f32[12, 8] all-gather(bc), dimensions={0}, replica_groups={{0, 1, 2}} } )"; RunPass(hlo_string, PassOutput::UniformAGPattern); } TEST_F(AllGatherBroadcastReorderTest, T5Test) { absl::string_view hlo_string = R"( HloModule m ENTRY main { x = f32[128] parameter(0) bc = f32[1,4,84,128]{3,2,1,0} broadcast(x), dimensions={3} ROOT ag = f32[8,4,84,128]{3,2,1,0} all-gather(bc), channel_id=6, replica_groups={{0,1,2,3,4,5,6,7}}, dimensions={0}, use_global_device_ids=true } )"; RunPass(hlo_string, PassOutput::UniformAGPattern); } TEST_F(AllGatherBroadcastReorderTest, FailedMatch) { absl::string_view hlo_string = R"( HloModule m ENTRY main { x = f32[1,4,84,128] parameter(0) ROOT ag = f32[8,4,84,128]{3,2,1,0} all-gather(x), channel_id=6, replica_groups={{0,1,2,3,4,5,6,7}}, dimensions={0}, use_global_device_ids=true } )"; RunPass(hlo_string, PassOutput::NoChange); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/all_gather_broadcast_reorder.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/all_gather_broadcast_reorder_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9aa7f320-8708-44ab-8106-6d86e1782605
cpp
tensorflow/tensorflow
space_to_batch_converter
third_party/xla/xla/service/space_to_batch_converter.cc
third_party/xla/xla/service/space_to_batch_converter_test.cc
#include "xla/service/space_to_batch_converter.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <iterator> #include <map> #include <memory> #include <queue> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/algorithm.h" #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/pattern_matcher.h" #include "xla/service/shape_inference.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tsl/lib/core/bitmap.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" namespace xla { namespace { namespace m = match; constexpr int64_t kNumMappedDims = 3; class ConvolutionVisitor { public: absl::Status PerformSpaceToBatchOnConvolution(HloInstruction* convolution); struct ConvDetails { std::vector<int64_t> spatial_dimensions_to_split; int64_t inherent_low_padding, inherent_high_padding, stride, spatial_size, base_dilation_factor, halo_size, high_padding_for_conv, low_padding_for_conv, kernel_spatial_dim_size, input_dim_size; }; ConvDetails GetConvolutionDetails(HloInstruction* convolution, ConvolutionDimensionNumbers& dim_numbers); std::pair<std::vector<int64_t>, std::vector<int64_t>> GetSpatialDimsToSplit( HloInstruction* old_operand); bool IsForwardWindowDilatedConv(HloInstruction* convolution, ConvolutionDimensionNumbers& dim_numbers); bool CanPropagate(HloInstruction* consumer, HloInstruction* producer); bool IsBroadcastTree(HloInstruction* op, HloInstruction* consumer, std::vector<HloInstruction*>& instructions_to_transform); void RewriteBroadcastTree( HloInstruction* producer, std::vector<HloInstruction*>& instructions_to_transform); void PropagateOnBroadcast(HloInstruction* consumer, HloInstruction* producer); bool IsOpcodeNonPropagatable(HloInstruction* consumer); bool SupportedOpForPropagation(HloInstruction* consumer, HloInstruction* producer); bool SupportedDotForPropagation(HloInstruction* consumer, HloInstruction* producer); bool IsBroadcastPropagatable(HloInstruction* broadcast, HloInstruction* old_other_op); absl::StatusOr<bool> Propagate(HloInstruction* consumer, HloInstruction* producer); absl::StatusOr<std::pair<HloInstruction*, std::vector<int64_t>>> SplitSpace( HloInstruction* activations, ConvolutionDimensionNumbers& dim_numbers, int64_t& activations_batch_dim, int64_t high_padding, int64_t low_padding, int64_t spatial_split_size, int64_t num_splits, std::vector<int64_t>* spatial_dimensions_to_split, bool is_backprop = false, bool is_rhs = false); absl::StatusOr<HloInstruction*> PerformSplitSpace( HloInstruction* activations, absl::Span<const int64_t> spatial_dimensions_to_split, int64_t activations_batch_dim, int64_t spatial_split_size, int64_t num_splits); absl::StatusOr<HloInstruction*> TransposeAndMergeBatch( HloInstruction* activations, absl::Span<const int64_t> final_split_spatial_dim_positioning, int64_t activations_batch_dim, int64_t old_batch_size); absl::StatusOr<HloInstruction*> PadAndSplitSpace( HloInstruction* activations, absl::Span<const int64_t> spatial_dimensions_to_split, int64_t activations_batch_dim, int64_t high_padding, int64_t low_padding, int64_t spatial_split_size, int64_t num_splits); absl::StatusOr<HloInstruction*> PropagateOnConstant(HloInstruction* consumer, HloInstruction* producer); absl::Status PropagateOnConv(HloInstruction* convolution); absl::Status PropagateOnConcat(HloInstruction* concat); absl::Status PropagateOnReverse(HloInstruction* reverse); absl::Status PropagateOnPad(HloInstruction* pad); absl::Status PropagateOnSlice(HloInstruction* slice); absl::Status PropagateOnBackpropFilterConv(HloInstruction* convolution); bool IsConvSuitableForSpaceToBatch(HloInstruction* convolution); bool IsThisBackPropFilterConv(HloInstruction* convolution); absl::Status PropagateOnUsers(HloInstruction* old_conv); absl::StatusOr<HloInstruction*> SelectValidPortion( HloInstruction* new_instr, HloInstruction* old_instr, HloInstruction* select_val, int64_t new_batch_dim, absl::Span<const int64_t> new_space_dims, int64_t old_batch_dim, absl::Span<const int64_t> old_space_dims); struct SpaceNextToBatchDetails { HloInstruction* instr; std::vector<int64_t> transpose_dims; }; absl::StatusOr<SpaceNextToBatchDetails> BringSpaceNextToBatch( HloInstruction* activations, ConvolutionDimensionNumbers& dim_numbers, int64_t& activations_batch_dim, std::vector<int64_t>* spatial_dimensions_to_split, bool is_backprop = false, bool is_rhs = false); absl::StatusOr<HloInstruction*> ChangeSpatialSizeOnSpaceToBatchedShape( HloInstruction* activations, int64_t batch_dimension, int64_t old_batch_size, absl::Span<const int64_t> spatial_dimensions_to_split, int64_t new_spatial_dim_size, bool increase_spatial_size = false); absl::StatusOr<HloInstruction*> SplitAndTransposeMergedBatch( HloInstruction* activations, int64_t batch_dimension, int64_t old_batch_size, absl::Span<const int64_t> spatial_dimensions); absl::StatusOr<HloInstruction*> BatchToSpace(HloInstruction* old_instr); absl::StatusOr<HloInstruction*> HaloDuplicateWithSlice( HloInstruction* activations, absl::Span<const int64_t> spatial_dimensions_to_split, int64_t activations_batch_dim, int64_t low_padding, int64_t halo_size, HloInstruction* pad_val = nullptr); absl::StatusOr<bool> Run(); const bool changed() const { return changed_; } ~ConvolutionVisitor() = default; explicit ConvolutionVisitor(SpaceToBatchController ctrl, HloComputation* computation); int64_t GetFirstChosenSpatialDim(HloInstruction* convolution) { const int64_t dim_count = ctrl_.count_of_dimensions_to_convert; const int64_t end_point = convolution->convolution_dimension_numbers() .input_spatial_dimensions_size() - ctrl_.dimension_from_end_to_convert; return end_point - dim_count + 1; } std::vector<int64_t> GetChosenSpatialDims(HloInstruction* convolution) { const int64_t dim_count = ctrl_.count_of_dimensions_to_convert; const int64_t first_dim = GetFirstChosenSpatialDim(convolution); std::vector<int64_t> dims(dim_count); for (int i = 0; i < dim_count; ++i) { dims[i] = convolution->convolution_dimension_numbers().input_spatial_dimensions( first_dim + i); } return dims; } int64_t DimLookUp(absl::Span<const int64_t> permute_dims, int64_t id) { return permute_dims[id]; } int DimMapper(SpaceToBatchDimMap s) { return static_cast<int>(s); } int64_t ReverseDimLookUp(absl::Span<const int64_t> permute_dims, int64_t id) { return std::distance(permute_dims.begin(), absl::c_find(permute_dims, id)); } HloInstruction* DoesConvolutionFeedReduceWindowOrSelectAndScatter( HloInstruction* instr, int64_t depth); bool DoesConvolutionFeedUnpropagatableOp( HloInstruction* instr, int64_t depth = kUnpropagatableOpSearchDepth); bool IsSpaceToBatchedSpaceSizeSuitable(HloInstruction* instr); private: HloComputation* computation_; absl::flat_hash_set<HloInstruction*> convs_to_visit_; std::vector<HloInstruction*> conv_visitor_list_; HloInstructionSet non_propagatable_instrs_; absl::flat_hash_map<HloInstruction*, HloInstruction*> batch_to_space_map_; absl::flat_hash_map<HloInstruction*, HloInstruction*> old_to_new_instrs_; absl::flat_hash_map<HloInstruction*, std::vector<int64_t>> instr_to_dim_map_; absl::flat_hash_map<HloInstruction*, std::vector<int64_t>> instr_to_dim_permute_map_; absl::flat_hash_map<HloInstruction*, absl::flat_hash_set<HloInstruction*>> broadcast_map_; bool changed_ = false; static constexpr int64_t kReduceWindowSearchDepth = 10; static constexpr int64_t kUnpropagatableOpSearchDepth = 3; static constexpr int64_t kMultiplierOnSpaceForBaseDilation = 3; absl::flat_hash_map<std::pair<HloInstruction*, int64_t>, bool> unpropagatability_cache_; SpaceToBatchController ctrl_; }; ConvolutionVisitor::ConvolutionVisitor(SpaceToBatchController ctrl, HloComputation* computation) { ctrl_ = ctrl; computation_ = computation; for (HloInstruction* inst : computation->MakeInstructionPostOrder()) { if (inst->opcode() != HloOpcode::kConvolution) { continue; } auto convolution = inst; if (!IsConvSuitableForSpaceToBatch(convolution)) { VLOG(1) << "Conv not suitable for space-to-batch " << convolution->ToString(); continue; } VLOG(1) << "Conv added to space-to-batch worklist " << convolution->ToString(); convs_to_visit_.insert(convolution); conv_visitor_list_.push_back(convolution); } } std::pair<std::vector<int64_t>, std::vector<int64_t>> ConvolutionVisitor::GetSpatialDimsToSplit(HloInstruction* old_operand) { auto new_operand = old_to_new_instrs_[old_operand]; auto dim_map_val = instr_to_dim_map_[old_operand]; auto permute_dims = instr_to_dim_permute_map_[new_operand]; std::vector<int64_t> old_dims(ctrl_.count_of_dimensions_to_convert), new_dims(ctrl_.count_of_dimensions_to_convert); old_dims[0] = dim_map_val[DimMapper(SpaceToBatchDimMap::kSpace0)]; new_dims[0] = DimLookUp(permute_dims, old_dims[0]); for (int i = 1; i < ctrl_.count_of_dimensions_to_convert; ++i) { old_dims[i] = old_dims[0] + i; new_dims[i] = new_dims[0] + i; } return std::make_pair(old_dims, new_dims); } bool ConvolutionVisitor::IsForwardWindowDilatedConv( HloInstruction* convolution, ConvolutionDimensionNumbers& dim_numbers) { const int64_t window_dilation_factor = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .window_dilation(); if (window_dilation_factor == 1) { return false; } const int64_t output_spatial_dim = dim_numbers.output_spatial_dimensions( GetFirstChosenSpatialDim(convolution)); const int64_t kernel_spatial_dim = dim_numbers.kernel_spatial_dimensions( GetFirstChosenSpatialDim(convolution)); return convolution->operand(1)->shape().dimensions(kernel_spatial_dim) < convolution->shape().dimensions(output_spatial_dim); } bool ConvolutionVisitor::IsConvSuitableForSpaceToBatch( HloInstruction* convolution) { ConvolutionDimensionNumbers dim_numbers = convolution->convolution_dimension_numbers(); if (GetFirstChosenSpatialDim(convolution) < 0) { return false; } if (convolution->batch_group_count() != 1) { return false; } if (convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .window_dilation() != 1) { if (!IsForwardWindowDilatedConv(convolution, dim_numbers)) { return false; } } const ConvDetails c = GetConvolutionDetails(convolution, dim_numbers); const int64_t low_pad = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .padding_low(); if (c.base_dilation_factor != 1) { if (!ctrl_.enable_propagations_on_base_dilations) { return false; } if (c.stride != 1) { return false; } if (low_pad == 0) { if (c.kernel_spatial_dim_size != 1) { return false; } } else if (low_pad != c.base_dilation_factor - 1 && low_pad != c.base_dilation_factor) { return false; } } int64_t activations_batch_dim = dim_numbers.input_batch_dimension(); const int64_t old_batch_size = convolution->operand(0)->shape().dimensions(activations_batch_dim); if (old_batch_size > ctrl_.limit_on_batch_size) { return false; } VLOG(1) << "spatial size " << c.spatial_size << " halo size " << c.halo_size; if (c.halo_size > CeilOfRatio(c.spatial_size, ctrl_.number_of_splits)) { return false; } if (c.base_dilation_factor > 1 && c.inherent_low_padding == c.base_dilation_factor) { if (c.spatial_size < kMultiplierOnSpaceForBaseDilation * ctrl_.number_of_splits) { return false; } } VLOG(1) << "Legal space-to-batch convolution " << convolution->ToString(); return true; } bool ConvolutionVisitor::IsThisBackPropFilterConv(HloInstruction* convolution) { auto activations = convolution->mutable_operand(0); auto kernel = convolution->mutable_operand(1); auto dim_numbers = convolution->convolution_dimension_numbers(); if (!old_to_new_instrs_.contains(kernel) && !old_to_new_instrs_.contains(activations)) { return false; } if (old_to_new_instrs_.contains(kernel)) { auto dim_map_val_op_0 = instr_to_dim_map_[kernel]; const int64_t old_batch_dim = dim_map_val_op_0[DimMapper(SpaceToBatchDimMap::kBatch)]; if (convolution->convolution_dimension_numbers() .kernel_input_feature_dimension() != old_batch_dim) { return false; } } if (old_to_new_instrs_.contains(activations)) { auto dim_map_val_op_0 = instr_to_dim_map_[activations]; const int64_t old_batch_dim = dim_map_val_op_0[DimMapper(SpaceToBatchDimMap::kBatch)]; if (dim_numbers.input_feature_dimension() != old_batch_dim) { return false; } } return true; } absl::StatusOr<HloInstruction*> ConvolutionVisitor::HaloDuplicateWithSlice( HloInstruction* activations, absl::Span<const int64_t> spatial_dimensions_to_split, int64_t activations_batch_dim, int64_t low_padding, int64_t halo_size, HloInstruction* pad_val) { const int64_t spatial_dim_count = spatial_dimensions_to_split.size(); const int64_t additional_batch_size = IPow<int64_t>(ctrl_.number_of_splits, spatial_dim_count); const int64_t original_batch_size = activations->shape().dimensions(activations_batch_dim) / additional_batch_size; const int64_t spatial_split_size = activations->shape().dimensions(spatial_dimensions_to_split[0]); const int64_t batch_size = ctrl_.number_of_splits; TF_ASSIGN_OR_RETURN( activations, SplitAndTransposeMergedBatch( activations, activations_batch_dim, original_batch_size, spatial_dimensions_to_split)); const int64_t rank = activations->shape().rank(); VLOG(1) << "In HaloDuplicateWithSlice with activations " << activations->ToString() << " batch_size " << batch_size << " spatial_split_size " << spatial_split_size << " low_padding " << low_padding << " halo size " << halo_size; CHECK_LE(std::abs(halo_size - low_padding), spatial_split_size); for (int64_t i = 0; i < spatial_dimensions_to_split.size(); ++i) { int64_t spatial_dimension_to_split = activations_batch_dim + 2 * (i + 1); int64_t remapped_batch_dimension = spatial_dimension_to_split - 1; HloInstruction* first_slice = nullptr; std::vector<int64_t> strides(rank, 1); HloInstruction* padding = pad_val == nullptr ? activations->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(activations->shape().element_type()))) : pad_val; if (low_padding > 0) { std::vector<int64_t> start_indices(rank, 0), end_indices(activations->shape().dimensions().begin(), activations->shape().dimensions().end()); start_indices[spatial_dimension_to_split] = spatial_split_size - low_padding; end_indices[remapped_batch_dimension] = batch_size - 1; end_indices[spatial_dimension_to_split] = spatial_split_size; TF_ASSIGN_OR_RETURN(first_slice, MakeSliceHlo(activations, start_indices, end_indices, strides, &activations->metadata(), &activations->frontend_attributes())); VLOG(1) << "first slice " << first_slice->ToString(); PaddingConfig padding_config = MakeNoPaddingConfig(first_slice->shape().dimensions_size()); padding_config.mutable_dimensions(remapped_batch_dimension) ->set_edge_padding_low(1); TF_ASSIGN_OR_RETURN(first_slice, MakePadHlo(first_slice, padding, padding_config, &first_slice->metadata(), &first_slice->frontend_attributes())); } HloInstruction* halo_region = nullptr; if (halo_size - low_padding > 0) { std::vector<int64_t> start_indices_halo(rank, 0), end_indices_halo(activations->shape().dimensions().begin(), activations->shape().dimensions().end()); start_indices_halo[remapped_batch_dimension] = 1; end_indices_halo[spatial_dimension_to_split] = halo_size - low_padding; TF_ASSIGN_OR_RETURN( halo_region, MakeSliceHlo(activations, start_indices_halo, end_indices_halo, strides, &activations->metadata(), &activations->frontend_attributes())); VLOG(1) << "halo_region " << halo_region->ToString(); PaddingConfig padding_config_halo = MakeNoPaddingConfig(halo_region->shape().dimensions_size()); padding_config_halo.mutable_dimensions(remapped_batch_dimension) ->set_edge_padding_high(1); TF_ASSIGN_OR_RETURN(halo_region, MakePadHlo(halo_region, padding, padding_config_halo, &halo_region->metadata(), &halo_region->frontend_attributes())); } if ((halo_size == 0 && low_padding != 0) || low_padding < 0) { std::vector<int64_t> start_indices_activations_cut(rank, 0), end_indices_activations_cut(activations->shape().dimensions().begin(), activations->shape().dimensions().end()); if (low_padding > 0) { end_indices_activations_cut[spatial_dimension_to_split] = spatial_split_size - low_padding; } else { start_indices_activations_cut[spatial_dimension_to_split] = 0 - low_padding; end_indices_activations_cut[spatial_dimension_to_split] = spatial_split_size; } TF_ASSIGN_OR_RETURN( activations, MakeSliceHlo(activations, start_indices_activations_cut, end_indices_activations_cut, strides, &activations->metadata(), &activations->frontend_attributes())); } if (first_slice != nullptr) { TF_ASSIGN_OR_RETURN( activations, MakeConcatHlo({first_slice, activations}, spatial_dimension_to_split, &activations->metadata(), &activations->frontend_attributes())); } if (halo_region != nullptr) { TF_ASSIGN_OR_RETURN( activations, MakeConcatHlo({activations, halo_region}, spatial_dimension_to_split, &activations->metadata(), &activations->frontend_attributes())); } } TF_ASSIGN_OR_RETURN( activations, TransposeAndMergeBatch( activations, spatial_dimensions_to_split, activations_batch_dim, original_batch_size)); VLOG(1) << "HaloDuplicated activations " << activations->ToString(); return activations; } absl::StatusOr<ConvolutionVisitor::SpaceNextToBatchDetails> ConvolutionVisitor::BringSpaceNextToBatch( HloInstruction* activations, ConvolutionDimensionNumbers& dim_numbers, int64_t& activations_batch_dim, std::vector<int64_t>* spatial_dimensions_to_split, bool is_backprop, bool is_rhs) { for (int64_t i = 1; i < spatial_dimensions_to_split->size(); ++i) { CHECK_EQ(spatial_dimensions_to_split->at(i), spatial_dimensions_to_split->at(i - 1) + 1) << "Spatial dimensions are not contiguous"; } int64_t spatial_dimension_to_split = spatial_dimensions_to_split->at(0); std::vector<int64_t> transpose_dims(activations->shape().rank()); if (spatial_dimension_to_split == activations_batch_dim + 1) { absl::c_iota(transpose_dims, 0); } else { ConvolutionDimensionNumbers new_dim_numbers = dim_numbers; int64_t pushed_counter = 0; int64_t new_batch_dim, new_spatial_dim; int64_t dim_counter = 0; if (is_rhs) { CHECK(is_backprop); for (int i = 0; i < activations->shape().rank(); ++i) { if (i == activations_batch_dim) { continue; } if (i == spatial_dimension_to_split) { transpose_dims[dim_counter++] = activations_batch_dim; new_batch_dim = pushed_counter; pushed_counter++; new_spatial_dim = pushed_counter; } if (i == dim_numbers.kernel_output_feature_dimension()) { new_dim_numbers.set_kernel_output_feature_dimension(pushed_counter); } else { auto it = absl::c_find(dim_numbers.kernel_spatial_dimensions(), i); if (it != dim_numbers.kernel_spatial_dimensions().end()) { int64_t j = it - dim_numbers.kernel_spatial_dimensions().begin(); new_dim_numbers.set_kernel_spatial_dimensions(j, pushed_counter); } } transpose_dims[dim_counter++] = i; pushed_counter++; } activations_batch_dim = new_batch_dim; spatial_dimension_to_split = new_spatial_dim; TF_ASSIGN_OR_RETURN(activations, MakeTransposeHlo(activations, transpose_dims)); new_dim_numbers.set_kernel_input_feature_dimension(activations_batch_dim); } else { for (int i = 0; i < activations->shape().rank(); ++i) { if (i == activations_batch_dim) { continue; } if (i == spatial_dimension_to_split) { transpose_dims[dim_counter++] = activations_batch_dim; new_batch_dim = pushed_counter; pushed_counter++; new_spatial_dim = pushed_counter; } if (is_backprop && i == dim_numbers.input_batch_dimension()) { new_dim_numbers.set_input_batch_dimension(pushed_counter); } else if (i == dim_numbers.input_feature_dimension()) { new_dim_numbers.set_input_feature_dimension(pushed_counter); } else { auto it = absl::c_find(dim_numbers.input_spatial_dimensions(), i); if (it != dim_numbers.input_spatial_dimensions().end()) { int64_t j = it - dim_numbers.input_spatial_dimensions().begin(); new_dim_numbers.set_input_spatial_dimensions(j, pushed_counter); } } transpose_dims[dim_counter++] = i; pushed_counter++; } activations_batch_dim = new_batch_dim; spatial_dimension_to_split = new_spatial_dim; TF_ASSIGN_OR_RETURN(activations, MakeTransposeHlo(activations, transpose_dims)); if (is_backprop) { new_dim_numbers.set_input_feature_dimension(activations_batch_dim); } else { new_dim_numbers.set_input_batch_dimension(activations_batch_dim); } } dim_numbers = new_dim_numbers; } for (int64_t i = 0; i < spatial_dimensions_to_split->size(); ++i) { (*spatial_dimensions_to_split)[i] = spatial_dimension_to_split + i; } return SpaceNextToBatchDetails{activations, transpose_dims}; } absl::StatusOr<HloInstruction*> ConvolutionVisitor::SplitAndTransposeMergedBatch( HloInstruction* activations, int64_t batch_dimension, int64_t old_batch_size, absl::Span<const int64_t> spatial_dimensions) { CHECK_EQ(batch_dimension + 1, spatial_dimensions[0]); std::vector<int64_t> new_dimensions(activations->shape().dimensions().begin(), activations->shape().dimensions().end()); const int64_t new_batch_size = activations->shape().dimensions(batch_dimension); VLOG(3) << "Decreasing the spatial size while propagating new_batch_size " << new_batch_size << " old_batch_size " << old_batch_size; new_dimensions[batch_dimension] = old_batch_size; const int64_t spatial_dim_count = spatial_dimensions.size(); for (int64_t i = 0; i < spatial_dim_count; ++i) { new_dimensions.insert(new_dimensions.begin() + spatial_dimensions[0], ctrl_.number_of_splits); } TF_ASSIGN_OR_RETURN(HloInstruction * batch_split_activations, MakeReshapeHlo(new_dimensions, activations)); if (spatial_dim_count > 1) { std::vector<int64_t> transpose_dims(new_dimensions.size()); absl::c_iota(transpose_dims, 0); std::vector<int64_t> trans_dims(new_dimensions.size()); absl::c_iota(trans_dims, 0); int64_t start_batch_dim_position = batch_dimension + 1; int64_t start_space_dim_position = batch_dimension + 2; for (int i = 0; i < spatial_dim_count; ++i) { transpose_dims[start_batch_dim_position + 2 * i] = batch_dimension + spatial_dim_count - i; transpose_dims[start_space_dim_position + 2 * i] = batch_dimension + spatial_dim_count + 1 + i; } TF_ASSIGN_OR_RETURN( batch_split_activations, MakeTransposeHlo(batch_split_activations, transpose_dims)); } return batch_split_activations; } absl::StatusOr<HloInstruction*> ConvolutionVisitor::ChangeSpatialSizeOnSpaceToBatchedShape( HloInstruction* activations, int64_t batch_dimension, int64_t old_batch_size, absl::Span<const int64_t> spatial_dimensions, int64_t new_spatial_dim_size, bool increase_spatial_size) { CHECK_EQ(batch_dimension + 1, spatial_dimensions[0]); std::vector<int64_t> new_dimensions(activations->shape().dimensions().begin(), activations->shape().dimensions().end()); const int64_t spatial_dim_count = spatial_dimensions.size(); const int64_t spatial_dim_size = activations->shape().dimensions(spatial_dimensions[0]); const int64_t reshaped_space_size = spatial_dim_size * ctrl_.number_of_splits; TF_ASSIGN_OR_RETURN( HloInstruction * batch_split_activations, SplitAndTransposeMergedBatch(activations, batch_dimension, old_batch_size, spatial_dimensions)); std::vector<int64_t> batch_space_collapse_reshape_dims( batch_split_activations->shape().dimensions().begin(), batch_split_activations->shape().dimensions().end()); batch_space_collapse_reshape_dims.erase( batch_space_collapse_reshape_dims.begin() + spatial_dimensions[0], batch_space_collapse_reshape_dims.begin() + spatial_dimensions[0] + spatial_dim_count); for (auto spatial_dimension : spatial_dimensions) { batch_space_collapse_reshape_dims[spatial_dimension] = reshaped_space_size; } TF_ASSIGN_OR_RETURN(HloInstruction * batch_space_collapsed_reshape, MakeReshapeHlo(batch_space_collapse_reshape_dims, batch_split_activations)); VLOG(3) << "First reshape done"; const int64_t rank = activations->shape().rank(); if (increase_spatial_size) { PaddingConfig padding_config = MakeNoPaddingConfig( batch_space_collapsed_reshape->shape().dimensions_size()); for (auto spatial_dimension : spatial_dimensions) { padding_config.mutable_dimensions(spatial_dimension) ->set_edge_padding_high(new_spatial_dim_size * ctrl_.number_of_splits - reshaped_space_size); padding_config.mutable_dimensions(spatial_dimension) ->set_edge_padding_low(0); } HloInstruction* padding = activations->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::Zero( batch_space_collapsed_reshape->shape().element_type()))); TF_ASSIGN_OR_RETURN( batch_space_collapsed_reshape, MakePadHlo(batch_space_collapsed_reshape, padding, padding_config, &batch_space_collapsed_reshape->metadata(), &batch_space_collapsed_reshape->frontend_attributes())); } else { std::vector<int64_t> start_indices(rank, 0), end_indices(batch_space_collapsed_reshape->shape().dimensions().begin(), batch_space_collapsed_reshape->shape().dimensions().end()), strides(rank, 1); for (auto spatial_dimension : spatial_dimensions) { end_indices[spatial_dimension] = new_spatial_dim_size * ctrl_.number_of_splits; } TF_ASSIGN_OR_RETURN( batch_space_collapsed_reshape, MakeSliceHlo(batch_space_collapsed_reshape, start_indices, end_indices, strides, &batch_space_collapsed_reshape->metadata(), &batch_space_collapsed_reshape->frontend_attributes())); } TF_ASSIGN_OR_RETURN( HloInstruction * activations_new, PerformSplitSpace(batch_space_collapsed_reshape, spatial_dimensions, batch_dimension, new_spatial_dim_size, ctrl_.number_of_splits)); VLOG(3) << "Size decreased activations " << activations_new->ToString(); return activations_new; } absl::StatusOr<bool> ConvolutionVisitor::Run() { for (auto conv : conv_visitor_list_) { if (ctrl_.disable_starting_on_small_chains && DoesConvolutionFeedUnpropagatableOp(conv)) { VLOG(1) << "Giving up on conv " << conv->ToString() << " because it feeds an unpropagatable op"; convs_to_visit_.erase(conv); } if (convs_to_visit_.count(conv) > 0) { TF_CHECK_OK(PerformSpaceToBatchOnConvolution(conv)); changed_ = true; } } conv_visitor_list_.clear(); convs_to_visit_.clear(); for (auto instr : non_propagatable_instrs_) { if (instr->opcode() == HloOpcode::kConvolution) { VLOG(1) << "Instr " << instr->ToString(); } if (instr->opcode() == HloOpcode::kConvolution && !IsConvSuitableForSpaceToBatch(instr)) { HloInstruction* producer = nullptr; if (old_to_new_instrs_.contains(instr->mutable_operand(0))) { producer = instr->mutable_operand(0); } else if (old_to_new_instrs_.contains(instr->mutable_operand(1))) { producer = instr->mutable_operand(1); } if (producer) { if (CanPropagate(instr, producer)) { bool needs_further_propagation; TF_ASSIGN_OR_RETURN(needs_further_propagation, Propagate(instr, producer)); TF_CHECK_OK(computation_->ReplaceInstruction( instr, old_to_new_instrs_[instr])); continue; } } } VLOG(1) << "Could not eventually propagate through " << instr->ToString(); absl::flat_hash_map<int64_t, HloInstruction*> operand_map; for (int64_t i = 0; i < instr->operand_count(); ++i) { if (old_to_new_instrs_.count(instr->mutable_operand(i))) { TF_ASSIGN_OR_RETURN(operand_map[i], BatchToSpace(instr->mutable_operand(i))); } } for (auto entry : operand_map) { TF_CHECK_OK(instr->ReplaceOperandWith(entry.first, entry.second)); } } non_propagatable_instrs_.clear(); return changed_; } bool IsTrivialElementwise(HloInstruction* hlo) { if (hlo->opcode() == HloOpcode::kFusion || hlo->opcode() == HloOpcode::kRng || hlo->opcode() == HloOpcode::kCopy || hlo->opcode() == HloOpcode::kConstant || hlo->opcode() == HloOpcode::kIota || hlo->opcode() == HloOpcode::kMap) { return false; } return hlo->IsElementwise(); } bool ConvolutionVisitor::CanPropagate(HloInstruction* consumer, HloInstruction* producer) { if (IsTrivialElementwise(consumer)) { VLOG(2) << "Doing propagation check on elementwise op: " << consumer->ToString(); HloInstruction* pivot_operand = nullptr; for (int64_t i = 0; i < consumer->operand_count(); ++i) { auto old_producer = consumer->mutable_operand(i); std::vector<HloInstruction*> to_transform; const bool broadcast_or_constant = (old_producer->opcode() == HloOpcode::kConstant) || (old_producer->opcode() == HloOpcode::kBroadcast && IsBroadcastPropagatable(old_producer, producer)) || (consumer->IsElementwiseBinary() && old_producer->opcode() == HloOpcode::kBroadcast && IsBroadcastTree(old_producer, producer, to_transform)); if (!old_to_new_instrs_.contains(old_producer) && !broadcast_or_constant) { VLOG(1) << "Cannot propagate on elementwise op " << consumer->ToString() << " because operand " << old_producer->ToString() << " isn't ready "; return false; } else { if (broadcast_or_constant) { VLOG(2) << "Skipping on " << old_producer->ToString(); continue; } CHECK(old_to_new_instrs_.contains(old_producer)); CHECK(instr_to_dim_map_.contains(old_producer)); if (pivot_operand == nullptr) { pivot_operand = old_producer; VLOG(2) << "Elementwise op: pivot " << old_producer->ToString(); } else { if (instr_to_dim_map_[pivot_operand] [DimMapper(SpaceToBatchDimMap::kBatch)] != instr_to_dim_map_[old_producer] [DimMapper(SpaceToBatchDimMap::kBatch)] || instr_to_dim_map_[pivot_operand] [DimMapper(SpaceToBatchDimMap::kSpace0)] != instr_to_dim_map_[old_producer] [DimMapper(SpaceToBatchDimMap::kSpace0)]) { VLOG(2) << "Elementwise op: checking for shape equivalence " << consumer->ToString() << " failed due to changed batch space ordering "; return false; } auto pivot_new_instr = old_to_new_instrs_[pivot_operand]; auto pivot_permute_dims = instr_to_dim_permute_map_[pivot_new_instr]; auto new_instr = old_to_new_instrs_[old_producer]; auto permute_dims = instr_to_dim_permute_map_[new_instr]; for (int j = 0; j < pivot_permute_dims.size(); ++j) { if (pivot_permute_dims[j] != permute_dims[j]) { VLOG(2) << "Elementwise op: checking for shape equivalence " << consumer->ToString() << " failed due to permuted dimensions "; return false; } if (pivot_new_instr->shape().dimensions(j) != new_instr->shape().dimensions(j)) { if (!((consumer->IsElementwiseBinary() || consumer->opcode() == HloOpcode::kSelect) && j == instr_to_dim_map_[pivot_operand][DimMapper( SpaceToBatchDimMap::kSpace0)])) { VLOG(2) << "Elementwise op: checking for shape equivalence " << consumer->ToString() << " failed due to changed shape sizes "; return false; } } } } } } } if (consumer->opcode() == HloOpcode::kConcatenate) { for (int64_t i = 0; i < consumer->operand_count(); ++i) { if (!instr_to_dim_map_.contains(consumer->mutable_operand(i))) { return false; } } auto pivot_operand = consumer->mutable_operand(0); auto pivot_new_instr = old_to_new_instrs_[pivot_operand]; auto pivot_permute_dims = instr_to_dim_permute_map_[pivot_new_instr]; for (int64_t i = 1; i < consumer->operand_count(); ++i) { auto new_instr = old_to_new_instrs_[consumer->mutable_operand(i)]; auto permute_dims = instr_to_dim_permute_map_[new_instr]; for (int j = 0; j < pivot_permute_dims.size(); ++j) { if (pivot_permute_dims[j] != permute_dims[j]) { VLOG(2) << "Concat op: checking for shape equivalence " << consumer->ToString() << " failed due to permuted dimensions "; return false; } if (pivot_new_instr->shape().dimensions(j) != new_instr->shape().dimensions(j)) { VLOG(2) << "Concat op: checking for shape equivalence " << consumer->ToString() << " failed due to changed shape sizes "; return false; } } } return true; } if (consumer->opcode() == HloOpcode::kConvolution) { if (!ConsumeFuel("space-to-batch-converter", [&] { return "Skipping space-to-batch propagation because fuel over\n"; })) { return false; } auto are_conv_dims_compatible = [&](const ConvolutionDimensionNumbers dim_numbers, std::vector<int64_t>& dim_map, bool check_lhs) { if (check_lhs) { if (dim_numbers.input_spatial_dimensions( GetFirstChosenSpatialDim(consumer)) != dim_map[DimMapper(SpaceToBatchDimMap::kSpace0)]) { return false; } for (int i = 0; i < dim_numbers.input_spatial_dimensions().size(); ++i) { if (dim_numbers.input_spatial_dimensions(i) == dim_map[DimMapper(SpaceToBatchDimMap::kBatch)] || dim_numbers.input_spatial_dimensions(i) == dim_map[DimMapper(SpaceToBatchDimMap::kFeature)]) { return false; } } } else { if (dim_numbers.kernel_spatial_dimensions( GetFirstChosenSpatialDim(consumer)) != dim_map[DimMapper(SpaceToBatchDimMap::kSpace0)]) { return false; } for (int i = 0; i < dim_numbers.kernel_spatial_dimensions().size(); ++i) { if (dim_numbers.kernel_spatial_dimensions(i) == dim_map[DimMapper(SpaceToBatchDimMap::kBatch)] || dim_numbers.kernel_spatial_dimensions(i) == dim_map[DimMapper(SpaceToBatchDimMap::kFeature)]) { return false; } } } return true; }; VLOG(1) << "Checking if conv is supported for propagation " << consumer->ToString(); bool found_good_non_window_dilated_conv = true; if (IsConvSuitableForSpaceToBatch(consumer)) { if (!old_to_new_instrs_.contains(consumer->mutable_operand(0))) { found_good_non_window_dilated_conv = false; } ConvolutionDimensionNumbers dim_numbers = consumer->convolution_dimension_numbers(); ConvDetails c = GetConvolutionDetails(consumer, dim_numbers); auto retval = GetSpatialDimsToSplit(consumer->mutable_operand(0)); std::vector<int64_t> new_spatial_dims = retval.second; auto new_activations = old_to_new_instrs_[consumer->mutable_operand(0)]; if (new_activations->shape().dimensions(retval.second[0]) < c.inherent_low_padding) { return false; } auto dim_map_val_op_0 = instr_to_dim_map_[consumer->mutable_operand(0)]; if (!are_conv_dims_compatible(consumer->convolution_dimension_numbers(), dim_map_val_op_0, true)) { found_good_non_window_dilated_conv = false; } if (consumer->convolution_dimension_numbers().input_batch_dimension() != dim_map_val_op_0[DimMapper(SpaceToBatchDimMap::kBatch)]) { found_good_non_window_dilated_conv = false; } if (found_good_non_window_dilated_conv) { return true; } } if (!ctrl_.enable_propagations_on_window_dilations) { return false; } if (!IsThisBackPropFilterConv(consumer)) { return false; } if (GetFirstChosenSpatialDim(consumer) < 0) { return false; } if (consumer->window() .dimensions(GetFirstChosenSpatialDim(consumer)) .stride() != 1) { return false; } if (consumer->feature_group_count() != 1) { return false; } VLOG(2) << "Checking for backprop filter conv propagatability"; CHECK_EQ(consumer->operand_count(), 2); auto activations = consumer->mutable_operand(0); auto kernel = consumer->mutable_operand(1); auto win_dims = consumer->window().dimensions(GetFirstChosenSpatialDim(consumer)); const int64_t rhs_dilation = win_dims.window_dilation(); const int64_t lhs_dilation = win_dims.base_dilation(); if (lhs_dilation != 1) { return false; } if (rhs_dilation == 1 && !ctrl_.enable_propagations_on_trivial_window_dilations) { if (!old_to_new_instrs_.contains(kernel) || !old_to_new_instrs_.contains(activations)) { return false; } } if (!old_to_new_instrs_.contains(kernel)) { const int64_t rhs_batch = kernel->shape().dimensions(consumer->convolution_dimension_numbers() .kernel_input_feature_dimension()); auto dim_map_val_op_0 = instr_to_dim_map_[activations]; const int64_t old_batch_dim = dim_map_val_op_0[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = dim_map_val_op_0[DimMapper(SpaceToBatchDimMap::kSpace0)]; auto first_operand = old_to_new_instrs_[activations]; auto permute_dims_first_operand = instr_to_dim_permute_map_[first_operand]; const int64_t new_batch_dim = DimLookUp(permute_dims_first_operand, old_batch_dim); const int64_t new_space_dim = DimLookUp(permute_dims_first_operand, old_space_dim); const int64_t lhs_batch = first_operand->shape().dimensions(new_batch_dim); if (first_operand->shape().dimensions(new_space_dim) % rhs_dilation != 0) { return false; } if (rhs_batch * ctrl_.number_of_splits != lhs_batch) { return false; } if (!are_conv_dims_compatible(consumer->convolution_dimension_numbers(), dim_map_val_op_0, true)) { return false; } VLOG(2) << "Backprop filter conv ready for propagation: activations ready, " " kernel will be space-to-batched"; return true; } if (!old_to_new_instrs_.contains(activations)) { const int64_t lhs_batch = activations->shape().dimensions( consumer->convolution_dimension_numbers().input_feature_dimension()); auto dim_map_val_op_1 = instr_to_dim_map_[consumer->mutable_operand(1)]; const int64_t old_batch_dim = dim_map_val_op_1[DimMapper(SpaceToBatchDimMap::kBatch)]; auto second_operand = old_to_new_instrs_[kernel]; auto permute_dims_second_operand = instr_to_dim_permute_map_[second_operand]; const int64_t new_batch_dim = DimLookUp(permute_dims_second_operand, old_batch_dim); const int64_t rhs_batch = second_operand->shape().dimensions(new_batch_dim); if (rhs_batch != ctrl_.number_of_splits * lhs_batch) { return false; } if (!are_conv_dims_compatible(consumer->convolution_dimension_numbers(), dim_map_val_op_1, false)) { return false; } VLOG(2) << "Backprop filter conv ready for propagation: kernel ready, " " activations will be space-to-batched"; return true; } auto first_operand = old_to_new_instrs_[activations]; auto dim_map_val_op_0 = instr_to_dim_map_[activations]; auto second_operand = old_to_new_instrs_[kernel]; auto dim_map_val_op_1 = instr_to_dim_map_[kernel]; auto permute_dims_first_operand = instr_to_dim_permute_map_[first_operand]; auto permute_dims_second_operand = instr_to_dim_permute_map_[second_operand]; const int64_t new_batch_dim_operand_0 = DimLookUp(permute_dims_first_operand, dim_map_val_op_0[DimMapper(SpaceToBatchDimMap::kBatch)]); const int64_t new_space_dim_operand_0 = DimLookUp(permute_dims_first_operand, dim_map_val_op_0[DimMapper(SpaceToBatchDimMap::kSpace0)]); const int64_t new_batch_dim_operand_1 = DimLookUp(permute_dims_second_operand, dim_map_val_op_1[DimMapper(SpaceToBatchDimMap::kBatch)]); const int64_t new_space_dim_operand_1 = DimLookUp(permute_dims_second_operand, dim_map_val_op_1[DimMapper(SpaceToBatchDimMap::kSpace0)]); if (first_operand->shape().dimensions(new_batch_dim_operand_0) != second_operand->shape().dimensions(new_batch_dim_operand_1)) { VLOG(2) << "Backprop filter conv not ready for propagation because batch " "dimensions don't line up"; return false; } if (first_operand->shape().dimensions(new_space_dim_operand_0) > rhs_dilation * second_operand->shape().dimensions(new_space_dim_operand_1)) { VLOG(2) << "Backprop filter conv not ready for propagation because of " "dilation factor mismatch"; return false; } if (!are_conv_dims_compatible(consumer->convolution_dimension_numbers(), dim_map_val_op_0, true)) { return false; } if (!are_conv_dims_compatible(consumer->convolution_dimension_numbers(), dim_map_val_op_1, false)) { return false; } VLOG(2) << "Backprop filter conv ready for propagation"; return true; } if (consumer->opcode() == HloOpcode::kReduceWindow || consumer->opcode() == HloOpcode::kReduce) { for (int64_t i = 0; i < consumer->operand_count(); ++i) { auto old_producer = consumer->mutable_operand(i); if (i == 0 && !old_to_new_instrs_.contains(old_producer)) { return false; } } if (consumer->opcode() == HloOpcode::kReduceWindow) { return IsSpaceToBatchedSpaceSizeSuitable(consumer); } } if (consumer->opcode() == HloOpcode::kSelectAndScatter) { for (int64_t i = 0; i < consumer->operand_count(); ++i) { auto old_producer = consumer->mutable_operand(i); if (i < 2 && !old_to_new_instrs_.contains(old_producer)) { return false; } } auto first_operand = old_to_new_instrs_[consumer->mutable_operand(0)]; auto dim_map_val_op_0 = instr_to_dim_map_[consumer->mutable_operand(0)]; auto second_operand = old_to_new_instrs_[consumer->mutable_operand(1)]; auto permute_dims_first_operand = instr_to_dim_permute_map_[first_operand]; auto permute_dims_second_operand = instr_to_dim_permute_map_[second_operand]; if (permute_dims_first_operand != permute_dims_second_operand) { VLOG(2) << "Can't propagate through select and scatter due to " "permutation mismatch"; return false; } const int64_t old_batch_dim = dim_map_val_op_0[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = dim_map_val_op_0[DimMapper(SpaceToBatchDimMap::kSpace0)]; const int64_t new_batch_dim = DimLookUp(permute_dims_first_operand, old_batch_dim); const int64_t new_space_dim = DimLookUp(permute_dims_first_operand, old_space_dim); if (first_operand->shape().dimensions(new_batch_dim) != second_operand->shape().dimensions(new_batch_dim)) { VLOG(2) << "Can't propagate through select and scatter due to dim mismatch"; return false; } const int64_t stride = consumer->window().dimensions(old_space_dim).stride(); const int64_t pad_high = consumer->window().dimensions(old_space_dim).padding_high(); const int64_t pad_low = consumer->window().dimensions(old_space_dim).padding_low(); if ((first_operand->shape().dimensions(new_space_dim) + pad_high + pad_low) / stride != second_operand->shape().dimensions(new_space_dim)) { VLOG(2) << "Can't propagate through select and scatter due to stride " "mismatch"; return false; } return IsSpaceToBatchedSpaceSizeSuitable(consumer); } return true; } void ConvolutionVisitor::PropagateOnBroadcast(HloInstruction* consumer, HloInstruction* producer) { auto new_producer = old_to_new_instrs_[producer]; auto permute_dims = instr_to_dim_permute_map_[new_producer]; auto dim_map_val = instr_to_dim_map_[producer]; const int64_t old_batch_dim = dim_map_val[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = dim_map_val[DimMapper(SpaceToBatchDimMap::kSpace0)]; auto orig_broadcast_dims = consumer->dimensions(); bool batch_is_broadcasted = absl::c_linear_search(orig_broadcast_dims, old_batch_dim); const int64_t new_batch_dim = DimLookUp(permute_dims, old_batch_dim); const int64_t new_space_dim = DimLookUp(permute_dims, old_space_dim); bool map_found = broadcast_map_.contains(consumer); if (map_found) { for (auto previous_broadcast : broadcast_map_[consumer]) { if (ShapeUtil::CompatibleIgnoringElementType(previous_broadcast->shape(), new_producer->shape())) { return; } } } std::vector<int64_t> final_shape_dims( new_producer->shape().dimensions().begin(), new_producer->shape().dimensions().end()); if (batch_is_broadcasted) { final_shape_dims[new_batch_dim] = producer->shape().dimensions(old_batch_dim); final_shape_dims[new_space_dim] *= ctrl_.number_of_splits; } std::vector<int64_t> broadcast_dims; const auto& dimensions = consumer->dimensions(); broadcast_dims.reserve(dimensions.size()); for (auto j : dimensions) { broadcast_dims.push_back(DimLookUp(permute_dims, j)); } auto new_broadcast = MakeBroadcastHlo( consumer->mutable_operand(0), broadcast_dims, final_shape_dims, &consumer->metadata(), &consumer->frontend_attributes()); VLOG(1) << "Created broadcast " << new_broadcast->ToString(); if (batch_is_broadcasted) { new_broadcast = MakeReshapeHlo(new_producer->shape().dimensions(), new_broadcast) .value(); VLOG(2) << "Created reshape of broadcast " << new_broadcast->ToString(); } if (!map_found) { absl::flat_hash_set<HloInstruction*> set_of_broadcasts; broadcast_map_[consumer] = set_of_broadcasts; } broadcast_map_[consumer].insert(new_broadcast); } void ConvolutionVisitor::RewriteBroadcastTree( HloInstruction* producer, std::vector<HloInstruction*>& instructions_to_transform) { CHECK(old_to_new_instrs_.contains(producer)); for (auto instr : instructions_to_transform) { if (instr->opcode() == HloOpcode::kBroadcast) { PropagateOnBroadcast(instr, producer); } else if (IsTrivialElementwise(instr)) { Propagate(instr, instr->mutable_operand(0)).value(); } else { LOG(FATAL) << "Unsupported opcode in RewriteBroadcastTree"; } } } bool ConvolutionVisitor::IsBroadcastTree( HloInstruction* op, HloInstruction* consumer, std::vector<HloInstruction*>& instructions_to_transform) { if (op->opcode() == HloOpcode::kBroadcast) { if (IsBroadcastPropagatable(op, consumer)) { instructions_to_transform.push_back(op); return true; } else { return false; } } if (Match(op, m::ConstantScalar())) { return true; } if (!IsTrivialElementwise(op)) { return false; } for (int64_t i = 0; i < op->operand_count(); ++i) { if (!IsBroadcastTree(op->mutable_operand(i), consumer, instructions_to_transform)) { return false; } } instructions_to_transform.push_back(op); return true; } bool ConvolutionVisitor::IsBroadcastPropagatable(HloInstruction* broadcast, HloInstruction* old_other_op) { CHECK_EQ(broadcast->opcode(), HloOpcode::kBroadcast); CHECK(instr_to_dim_map_.contains(old_other_op)); auto result = instr_to_dim_map_[old_other_op]; const int64_t space_dim = result[DimMapper(SpaceToBatchDimMap::kSpace0)]; auto broadcast_dims = broadcast->dimensions(); return !absl::c_linear_search(broadcast_dims, space_dim); } bool ConvolutionVisitor::IsOpcodeNonPropagatable(HloInstruction* consumer) { switch (consumer->opcode()) { case HloOpcode::kCustomCall: return true; default: return false; } } bool ConvolutionVisitor::SupportedDotForPropagation(HloInstruction* consumer, HloInstruction* producer) { if (consumer->opcode() != HloOpcode::kDot) { return false; } auto operand = consumer->mutable_operand(0); if (operand != producer || !instr_to_dim_map_.contains(operand)) { return false; } const auto& dnums = consumer->dot_dimension_numbers(); const auto& contracting_dims = dnums.lhs_contracting_dimensions(); const auto& batch_dims = dnums.lhs_batch_dimensions(); auto result = instr_to_dim_map_[operand]; const int64_t old_batch_dim = result[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = result[DimMapper(SpaceToBatchDimMap::kSpace0)]; const int64_t old_feature_dim = result[DimMapper(SpaceToBatchDimMap::kFeature)]; if (consumer->operand(1)->shape().rank() == batch_dims.size() + contracting_dims.size()) { return false; } bool found = false; for (auto dim : batch_dims) { if (dim == old_batch_dim || dim == old_space_dim) { return false; } if (dim == old_feature_dim) { found = true; } } if (!found) { return false; } for (auto dim : contracting_dims) { if (dim == old_batch_dim || dim == old_space_dim) { return false; } } return true; } bool ConvolutionVisitor::SupportedOpForPropagation(HloInstruction* consumer, HloInstruction* producer) { if (IsOpcodeNonPropagatable(consumer)) { return false; } if (IsTrivialElementwise(consumer)) { for (int64_t i = 0; i < consumer->operand_count(); ++i) { if (consumer->operand(i)->opcode() == HloOpcode::kBroadcast) { if (!IsBroadcastPropagatable(consumer->mutable_operand(i), producer)) { VLOG(2) << "Could not propagate through broadcast"; return false; } } } return true; } if (consumer->opcode() == HloOpcode::kConvolution) { return true; } if (consumer->opcode() == HloOpcode::kConcatenate) { HloInstruction* pivot_operand = nullptr; for (int64_t i = 0; i < consumer->operand_count(); ++i) { if (instr_to_dim_map_.contains(consumer->mutable_operand(i))) { pivot_operand = consumer->mutable_operand(i); break; } } if (pivot_operand == nullptr) { VLOG(1) << "Concat: Dim map not found on any operand"; return false; } auto result = instr_to_dim_map_[pivot_operand]; const int64_t old_batch_dim = result[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = result[DimMapper(SpaceToBatchDimMap::kSpace0)]; if (consumer->concatenate_dimension() == old_batch_dim || consumer->concatenate_dimension() == old_space_dim) { return false; } return true; } if (consumer->opcode() == HloOpcode::kReverse) { auto operand_0 = consumer->mutable_operand(0); if (!instr_to_dim_map_.contains(operand_0)) { return false; } auto result = instr_to_dim_map_[operand_0]; const int64_t old_batch_dim = result[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = result[DimMapper(SpaceToBatchDimMap::kSpace0)]; for (auto dim : consumer->dimensions()) { if (dim == old_batch_dim || dim == old_space_dim) { return false; } } return true; } if (consumer->opcode() == HloOpcode::kTranspose) { return true; } if (consumer->opcode() == HloOpcode::kPad) { auto operand_0 = consumer->mutable_operand(0); if (!instr_to_dim_map_.contains(operand_0)) { return false; } auto result = instr_to_dim_map_[operand_0]; const int64_t old_batch_dim = result[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = result[DimMapper(SpaceToBatchDimMap::kSpace0)]; auto does_dim_have_padding = [](PaddingConfig padding_config, int64_t dim) { return padding_config.dimensions(dim).edge_padding_low() != 0 || padding_config.dimensions(dim).edge_padding_high() != 0 || padding_config.dimensions(dim).interior_padding() != 0; }; if (does_dim_have_padding(consumer->padding_config(), old_batch_dim) || does_dim_have_padding(consumer->padding_config(), old_space_dim)) { return false; } return true; } if (consumer->opcode() == HloOpcode::kSlice) { auto operand = consumer->mutable_operand(0); if (!instr_to_dim_map_.contains(operand)) { return false; } auto result = instr_to_dim_map_[operand]; const int64_t old_batch_dim = result[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = result[DimMapper(SpaceToBatchDimMap::kSpace0)]; if (consumer->shape().dimensions(old_batch_dim) != operand->shape().dimensions(old_batch_dim)) { return false; } if (consumer->shape().dimensions(old_space_dim) != operand->shape().dimensions(old_space_dim)) { return false; } return true; } if (SupportedDotForPropagation(consumer, producer)) { return true; } if (consumer->opcode() == HloOpcode::kReduce) { if (consumer->shape().IsTuple()) { return false; } auto reduce_dims = consumer->dimensions(); auto result = instr_to_dim_map_[consumer->mutable_operand(0)]; const int64_t batch_dim = result[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t space_dim = result[DimMapper(SpaceToBatchDimMap::kSpace0)]; if (!absl::c_linear_search(reduce_dims, batch_dim) && !absl::c_linear_search(reduce_dims, space_dim)) { return true; } return absl::c_linear_search(reduce_dims, batch_dim) && absl::c_linear_search(reduce_dims, space_dim); } if (consumer->opcode() == HloOpcode::kReduceWindow && consumer->shape().IsTuple()) { return false; } if (consumer->opcode() == HloOpcode::kReduceWindow || consumer->opcode() == HloOpcode::kSelectAndScatter) { auto first_operand = consumer->mutable_operand(0); auto window = consumer->window(); if (instr_to_dim_map_.count(first_operand) <= 0) { VLOG(1) << "Dim map not found on windowed operand. Window dim count " << window.dimensions().size(); return false; } auto result = instr_to_dim_map_[first_operand]; const int64_t old_batch_dim = result[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = result[DimMapper(SpaceToBatchDimMap::kSpace0)]; if (window.dimensions(old_batch_dim).size() != 1) { return false; } if (window.dimensions(old_space_dim).padding_low() != 0) { return false; } if (window.dimensions(old_space_dim).base_dilation() != 1 || window.dimensions(old_space_dim).window_dilation() != 1) { return false; } if (window.dimensions(old_batch_dim).base_dilation() != 1 || window.dimensions(old_batch_dim).window_dilation() != 1) { return false; } if (window.dimensions(old_space_dim).padding_high() > window.dimensions(old_space_dim).size()) { return false; } if (old_to_new_instrs_.count(first_operand) <= 0) { return false; } auto new_operand = old_to_new_instrs_[first_operand]; auto permute_dims = instr_to_dim_permute_map_[new_operand]; if (consumer->opcode() == HloOpcode::kSelectAndScatter) { const int64_t new_space_dim = DimLookUp(permute_dims, old_space_dim); if (new_operand->shape().dimensions(new_space_dim) % window.dimensions(old_space_dim).stride() != 0) { return false; } if (!ShapeUtil::ElementIsFloating(consumer->shape())) { return false; } auto scatter_comp = consumer->scatter(); if (!Match(scatter_comp->root_instruction(), m::AddAnyOrder(m::Parameter(0), m::Parameter(1)))) { return false; } auto select_comp = consumer->select(); if (!Match(select_comp->root_instruction(), m::Compare(m::Parameter(0), m::Parameter(1)) .WithComparisonDirection(ComparisonDirection::kGe)) && !Match(select_comp->root_instruction(), m::Compare(m::Parameter(1), m::Parameter(0)) .WithComparisonDirection(ComparisonDirection::kGe))) { return false; } if (consumer->window().dimensions(old_space_dim).padding_low() != 0) { return false; } } return true; } return false; } absl::StatusOr<bool> ConvolutionVisitor::Propagate(HloInstruction* consumer, HloInstruction* producer) { auto computation = consumer->parent(); if (IsTrivialElementwise(consumer)) { auto dim_map_val = instr_to_dim_map_[producer]; auto new_consumer = computation->AddInstruction(consumer->Clone()); bool is_pivot_producer_modified = false; if (consumer->IsElementwiseBinary() || consumer->opcode() == HloOpcode::kSelect) { int64_t pivot_operand_number = -1; HloInstruction* pivot_operand = nullptr; for (int i = 0; i < consumer->operand_count(); ++i) { if (consumer->operand(i)->opcode() == HloOpcode::kBroadcast) { continue; } auto operand = consumer->mutable_operand(i); if (old_to_new_instrs_.contains(operand)) { if (pivot_operand_number == -1 || old_to_new_instrs_[pivot_operand]->shape().dimensions() < old_to_new_instrs_[operand]->shape().dimensions()) { is_pivot_producer_modified = true; pivot_operand_number = i; pivot_operand = consumer->mutable_operand(pivot_operand_number); } } } if (pivot_operand_number != -1) { producer = pivot_operand; } } for (int64_t i = 0; i < consumer->operand_count(); ++i) { std::vector<HloInstruction*> instructions_to_transform; if (consumer->operand(i)->opcode() == HloOpcode::kBroadcast) { auto broadcast = consumer->mutable_operand(i); PropagateOnBroadcast(broadcast, producer); HloInstruction* new_broadcast = nullptr; auto new_producer = old_to_new_instrs_[producer]; for (auto previous_broadcast : broadcast_map_[broadcast]) { if (ShapeUtil::CompatibleIgnoringElementType( previous_broadcast->shape(), new_producer->shape())) { new_broadcast = previous_broadcast; break; } } CHECK_NE(new_broadcast, nullptr); TF_CHECK_OK( new_consumer->ReplaceOperandWithDifferentShape(i, new_broadcast)); } else if (old_to_new_instrs_.contains(consumer->mutable_operand(i))) { HloInstruction* operand_to_use = nullptr; auto result = instr_to_dim_map_[producer]; const int64_t old_batch_dim = result[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = result[DimMapper(SpaceToBatchDimMap::kSpace0)]; const int64_t old_batch_size = producer->shape().dimensions(old_batch_dim); HloInstruction* new_instr = old_to_new_instrs_[consumer->mutable_operand(i)]; HloInstruction* pivot_new_instr = old_to_new_instrs_[producer]; auto permute_dims = instr_to_dim_permute_map_[new_instr]; const int64_t batch_dim = DimLookUp(permute_dims, old_batch_dim); const int64_t space_dim = DimLookUp(permute_dims, old_space_dim); const int64_t batch_size = new_instr->shape().dimensions(batch_dim); if (new_instr->shape().dimensions(space_dim) != pivot_new_instr->shape().dimensions(space_dim)) { CHECK_EQ(batch_dim + 1, space_dim); std::vector<int64_t> new_dimensions( new_instr->shape().dimensions().begin(), new_instr->shape().dimensions().end()); new_dimensions[space_dim] *= (batch_size / old_batch_size); new_dimensions[batch_dim] = old_batch_size; TF_ASSIGN_OR_RETURN(HloInstruction * reshape, MakeReshapeHlo(new_dimensions, new_instr)); const int64_t pivot_space_size = pivot_new_instr->shape().dimensions(space_dim) * batch_size / old_batch_size; CHECK(pivot_space_size > new_dimensions[space_dim] || !is_pivot_producer_modified); PaddingConfig padding_config = MakeNoPaddingConfig(reshape->shape().dimensions_size()); padding_config.mutable_dimensions(space_dim)->set_edge_padding_high( pivot_space_size - new_dimensions[space_dim]); padding_config.mutable_dimensions(space_dim)->set_edge_padding_low(0); HloInstruction* padding = consumer->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(reshape->shape().element_type()))); TF_ASSIGN_OR_RETURN( HloInstruction * padded_operand, MakePadHlo(reshape, padding, padding_config, &reshape->metadata(), &reshape->frontend_attributes())); TF_ASSIGN_OR_RETURN( operand_to_use, MakeReshapeHlo(pivot_new_instr->shape().dimensions(), padded_operand)); } else { operand_to_use = old_to_new_instrs_[consumer->mutable_operand(i)]; } TF_CHECK_OK( new_consumer->ReplaceOperandWithDifferentShape(i, operand_to_use)); } else if (consumer->IsElementwiseBinary() && consumer->mutable_operand(i)->opcode() == HloOpcode::kBroadcast && IsBroadcastTree(consumer->mutable_operand(i), producer, instructions_to_transform)) { RewriteBroadcastTree(producer, instructions_to_transform); TF_CHECK_OK(new_consumer->ReplaceOperandWithDifferentShape( i, old_to_new_instrs_[consumer->mutable_operand(i)])); } else if (consumer->operand(i)->opcode() == HloOpcode::kConstant) { TF_ASSIGN_OR_RETURN( auto new_constant, PropagateOnConstant(consumer->mutable_operand(i), producer)); TF_CHECK_OK( new_consumer->ReplaceOperandWithDifferentShape(i, new_constant)); } } auto old_type = new_consumer->mutable_shape()->element_type(); *(new_consumer->mutable_shape()) = old_to_new_instrs_[producer]->shape(); new_consumer->mutable_shape()->set_element_type(old_type); old_to_new_instrs_[consumer] = new_consumer; instr_to_dim_map_[consumer] = std::vector<int64_t>(dim_map_val); CHECK(instr_to_dim_permute_map_.contains(old_to_new_instrs_[producer])); instr_to_dim_permute_map_[new_consumer] = std::vector<int64_t>( instr_to_dim_permute_map_[old_to_new_instrs_[producer]]); VLOG(2) << " new_consumer " << new_consumer->ToString() << " old_to_new_instrs_[producer] " << old_to_new_instrs_[producer]->ToString() << " permute dims " << instr_to_dim_permute_map_.count(new_consumer); return true; } if (consumer->opcode() == HloOpcode::kConvolution) { if (IsConvSuitableForSpaceToBatch(consumer)) { TF_CHECK_OK(PropagateOnConv(consumer)); return true; } else { TF_CHECK_OK(PropagateOnBackpropFilterConv(consumer)); return false; } } if (consumer->opcode() == HloOpcode::kConcatenate) { TF_CHECK_OK(PropagateOnConcat(consumer)); return true; } if (consumer->opcode() == HloOpcode::kReverse) { TF_CHECK_OK(PropagateOnReverse(consumer)); return true; } if (consumer->opcode() == HloOpcode::kDot) { auto dim_map_val = instr_to_dim_map_[producer]; const int64_t old_batch_dim = dim_map_val[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = dim_map_val[DimMapper(SpaceToBatchDimMap::kSpace0)]; int64_t new_batch_dim = -1; int64_t new_space_dim = -1; int64_t outer = 0; for (int64_t i = 0; i < producer->shape().rank(); ++i) { if (absl::c_linear_search( consumer->dot_dimension_numbers().lhs_batch_dimensions(), i) || absl::c_linear_search( consumer->dot_dimension_numbers().lhs_contracting_dimensions(), i)) { continue; } if (i == old_batch_dim) { new_batch_dim = outer + consumer->dot_dimension_numbers().lhs_batch_dimensions_size(); } if (i == old_space_dim) { new_batch_dim = outer + consumer->dot_dimension_numbers().lhs_batch_dimensions_size(); } ++outer; } std::vector<int64_t> dim_map(kNumMappedDims); dim_map[DimMapper(SpaceToBatchDimMap::kBatch)] = new_batch_dim; dim_map[DimMapper(SpaceToBatchDimMap::kSpace0)] = new_space_dim; dim_map[DimMapper(SpaceToBatchDimMap::kFeature)] = consumer->shape().rank() - 1; instr_to_dim_map_[consumer] = dim_map; auto new_consumer = computation->AddInstruction(consumer->Clone()); new_consumer->mutable_shape()->mutable_dimensions()[new_batch_dim] = producer->shape().dimensions(old_batch_dim); new_consumer->mutable_shape()->mutable_dimensions()[new_space_dim] = producer->shape().dimensions(old_space_dim); old_to_new_instrs_[consumer] = new_consumer; return true; } if (consumer->opcode() == HloOpcode::kPad) { TF_CHECK_OK(PropagateOnPad(consumer)); return true; } if (consumer->opcode() == HloOpcode::kSlice) { TF_CHECK_OK(PropagateOnSlice(consumer)); return true; } if (consumer->opcode() == HloOpcode::kReduce) { auto reduce_dims = consumer->dimensions(); auto dim_map_val = instr_to_dim_map_[consumer->mutable_operand(0)]; auto first_operand = old_to_new_instrs_[consumer->mutable_operand(0)]; auto permute_dims = instr_to_dim_permute_map_[first_operand]; const int64_t old_batch_dim = dim_map_val[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t space_dim = dim_map_val[DimMapper(SpaceToBatchDimMap::kSpace0)]; const int64_t new_batch_dim = DimLookUp(permute_dims, old_batch_dim); const int64_t new_space_dim = DimLookUp(permute_dims, space_dim); std::vector<int64_t> changed_dims(consumer->dimensions().size()); if (!absl::c_linear_search(reduce_dims, old_batch_dim) && !absl::c_linear_search(reduce_dims, space_dim)) { for (int64_t i = 0; i < consumer->dimensions().size(); ++i) { changed_dims[i] = DimLookUp(permute_dims, consumer->dimensions(i)); } int64_t new_output_batch_dim = new_batch_dim; int64_t new_output_space_dim = new_space_dim; for (int64_t i = 0; i < consumer->dimensions().size(); ++i) { if (changed_dims[i] < new_batch_dim) { new_output_batch_dim--; } if (changed_dims[i] < new_space_dim) { new_output_space_dim--; } } int64_t old_output_batch_dim = old_batch_dim; int64_t old_output_space_dim = space_dim; for (int64_t i = 0; i < consumer->dimensions().size(); ++i) { if (reduce_dims[i] < old_batch_dim) { old_output_batch_dim--; } if (reduce_dims[i] < space_dim) { old_output_space_dim--; } } HloInstruction* new_consumer = nullptr; TF_ASSIGN_OR_RETURN( new_consumer, MakeReduceHlo(first_operand, consumer->mutable_operand(1), changed_dims, consumer->called_computations()[0])); VLOG(3) << " new_output_batch_dim " << new_output_batch_dim << " size " << first_operand->shape().dimensions(new_batch_dim) << " new_output_space_dim " << new_output_space_dim << " size " << first_operand->shape().dimensions(new_space_dim); std::vector<int64_t> dim_map(kNumMappedDims); dim_map[DimMapper(SpaceToBatchDimMap::kBatch)] = old_output_batch_dim; dim_map[DimMapper(SpaceToBatchDimMap::kSpace0)] = old_output_space_dim; dim_map[DimMapper(SpaceToBatchDimMap::kFeature)] = -1; instr_to_dim_map_[consumer] = dim_map; const int64_t rank = first_operand->shape().rank(); const int64_t output_rank = new_consumer->shape().rank(); std::vector<int64_t> old_reduce_output_to_input(output_rank); int dim_number_to_assign_old = 0; for (int64_t i = 0; i < rank; ++i) { if (auto it = absl::c_find(reduce_dims, i); it != reduce_dims.end()) { continue; } old_reduce_output_to_input[dim_number_to_assign_old++] = i; } std::vector<int64_t> new_reduce_output_to_input(output_rank); int dim_number_to_assign_new = 0; for (int64_t i = 0; i < rank; ++i) { if (auto it = absl::c_find(changed_dims, i); it != changed_dims.end()) { continue; } new_reduce_output_to_input[dim_number_to_assign_new++] = i; } std::vector<int64_t> new_permute_dims(output_rank); for (int64_t i = 0; i < output_rank; ++i) { new_permute_dims[i] = std::distance( new_reduce_output_to_input.begin(), absl::c_find( new_reduce_output_to_input, DimLookUp(permute_dims, old_reduce_output_to_input[i]))); } instr_to_dim_permute_map_[new_consumer] = new_permute_dims; old_to_new_instrs_[consumer] = new_consumer; return true; } HloInstruction* new_consumer = computation->AddInstruction(consumer->Clone()); auto retval = GetSpatialDimsToSplit(consumer->mutable_operand(0)); std::vector<int64_t> old_spatial_dims = retval.first; std::vector<int64_t> new_spatial_dims = retval.second; TF_ASSIGN_OR_RETURN( first_operand, SelectValidPortion(first_operand, consumer->mutable_operand(0), consumer->mutable_operand(1), new_batch_dim, new_spatial_dims, old_batch_dim, old_spatial_dims)); for (int64_t i = 0; i < new_consumer->dimensions().size(); ++i) { changed_dims[i] = DimLookUp(permute_dims, new_consumer->dimensions(i)); } *(new_consumer->mutable_dimensions()) = changed_dims; TF_CHECK_OK( new_consumer->ReplaceOperandWithDifferentShape(0, first_operand)); old_to_new_instrs_[consumer] = new_consumer; instr_to_dim_map_[consumer] = std::vector<int64_t>(dim_map_val); return false; } if (consumer->opcode() == HloOpcode::kTranspose) { auto first_operand = old_to_new_instrs_[consumer->mutable_operand(0)]; auto new_consumer = computation->AddInstruction(first_operand->Clone()); old_to_new_instrs_[consumer] = new_consumer; auto dim_map_val = instr_to_dim_map_[consumer->mutable_operand(0)]; const int64_t old_batch_dim = dim_map_val[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = dim_map_val[DimMapper(SpaceToBatchDimMap::kSpace0)]; const int64_t old_feature_dim = dim_map_val[DimMapper(SpaceToBatchDimMap::kFeature)]; int64_t new_batch_dim, new_space_dim, new_feature_dim; std::vector<int64_t> new_dimensions(consumer->dimensions().size()); for (int64_t ctr = 0; ctr < consumer->dimensions().size(); ++ctr) { int64_t dim = consumer->dimensions(ctr); if (dim == old_batch_dim) { new_batch_dim = ctr; } if (dim == old_space_dim) { new_space_dim = ctr; } if (dim == old_feature_dim) { new_feature_dim = ctr; } } std::vector<int64_t> dim_map(kNumMappedDims); dim_map[DimMapper(SpaceToBatchDimMap::kBatch)] = new_batch_dim; dim_map[DimMapper(SpaceToBatchDimMap::kFeature)] = new_feature_dim; dim_map[DimMapper(SpaceToBatchDimMap::kSpace0)] = new_space_dim; instr_to_dim_map_[consumer] = dim_map; std::vector<int64_t> new_permute_dims(consumer->dimensions().size()); auto permute_dims = instr_to_dim_permute_map_[first_operand]; for (int64_t i = 0; i < consumer->dimensions().size(); ++i) { new_permute_dims[i] = DimLookUp(permute_dims, consumer->dimensions(i)); } instr_to_dim_permute_map_[new_consumer] = new_permute_dims; return true; } if (consumer->opcode() == HloOpcode::kReduceWindow || consumer->opcode() == HloOpcode::kSelectAndScatter) { bool is_select_and_scatter = consumer->opcode() == HloOpcode::kSelectAndScatter; auto first_operand = old_to_new_instrs_[consumer->mutable_operand(0)]; auto init_val = is_select_and_scatter ? consumer->mutable_operand(2) : consumer->mutable_operand(1); auto dim_map_val = instr_to_dim_map_[consumer->mutable_operand(0)]; auto retval = GetSpatialDimsToSplit(consumer->mutable_operand(0)); std::vector<int64_t> old_spatial_dims = retval.first; std::vector<int64_t> new_spatial_dims = retval.second; const int64_t old_batch_dim = dim_map_val[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = old_spatial_dims[0]; auto permute_dims = instr_to_dim_permute_map_[first_operand]; const int64_t new_batch_dim = DimLookUp(permute_dims, old_batch_dim); const int64_t new_space_dim = new_spatial_dims[0]; auto new_shape = first_operand->shape(); auto old_shape = consumer->mutable_operand(0)->shape(); const int64_t new_space_size = new_shape.dimensions(new_space_dim); const int64_t stride = consumer->window().dimensions(old_space_dim).stride(); auto pad_val = is_select_and_scatter ? consumer->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::MinValue( consumer->operand(2)->shape().element_type()))) : init_val; TF_ASSIGN_OR_RETURN( first_operand, SelectValidPortion(first_operand, consumer->mutable_operand(0), pad_val, new_batch_dim, new_spatial_dims, old_batch_dim, old_spatial_dims)); const int64_t extra_space = new_space_size % stride; if (extra_space) { CHECK_EQ(consumer->opcode(), HloOpcode::kReduceWindow); const int64_t old_batch_size = old_shape.dimensions(old_batch_dim); const int64_t old_space_size = old_shape.dimensions(old_space_dim); if ((new_space_size - extra_space) * old_batch_size * ctrl_.number_of_splits >= old_batch_size * old_space_size) { TF_ASSIGN_OR_RETURN( first_operand, ChangeSpatialSizeOnSpaceToBatchedShape( first_operand, new_batch_dim, old_batch_size, new_spatial_dims, new_space_size - extra_space)); } else { TF_ASSIGN_OR_RETURN( first_operand, ChangeSpatialSizeOnSpaceToBatchedShape( first_operand, new_batch_dim, old_batch_size, new_spatial_dims, new_space_size + stride - extra_space, true)); } } const int64_t window_size = consumer->window().dimensions(old_space_dim).size(); const int64_t last_overlap_point = ((new_space_size - 1) / stride) * stride; VLOG(1) << "last_overlap_point " << last_overlap_point << " window_size " << window_size << " new_space_size " << new_space_size; const int64_t halo_size = last_overlap_point + window_size - new_space_size; if (halo_size > 0) { TF_ASSIGN_OR_RETURN( first_operand, HaloDuplicateWithSlice(first_operand, new_spatial_dims, new_batch_dim, 0, halo_size, init_val)); } Window new_win; for (int64_t i = 0; i < consumer->window().dimensions().size(); ++i) { auto dim = ReverseDimLookUp(permute_dims, i); new_win.add_dimensions(); new_win.mutable_dimensions(i)->set_stride( consumer->window().dimensions(dim).stride()); new_win.mutable_dimensions(i)->set_size( consumer->window().dimensions(dim).size()); if (i == old_space_dim) { new_win.mutable_dimensions(i)->set_padding_high(0); new_win.mutable_dimensions(i)->set_padding_low(0); } else { new_win.mutable_dimensions(i)->set_padding_high( consumer->window().dimensions(dim).padding_high()); new_win.mutable_dimensions(i)->set_padding_low( consumer->window().dimensions(dim).padding_low()); } new_win.mutable_dimensions(i)->set_window_dilation( consumer->window().dimensions(dim).window_dilation()); new_win.mutable_dimensions(i)->set_base_dilation( consumer->window().dimensions(dim).base_dilation()); new_win.mutable_dimensions(i)->set_window_reversal( consumer->window().dimensions(dim).window_reversal()); } new_shape = first_operand->shape(); HloInstruction* new_consumer = nullptr; if (is_select_and_scatter) { auto second_operand = old_to_new_instrs_[consumer->mutable_operand(1)]; auto select_comp = consumer->select(); auto scatter_comp = consumer->scatter(); TF_ASSIGN_OR_RETURN( auto new_select_and_scatter_shape, ShapeInference::InferSelectAndScatterShape( new_shape, select_comp->ComputeProgramShape(), new_win, second_operand->shape(), init_val->shape(), scatter_comp->ComputeProgramShape())); new_consumer = computation_->AddInstruction( HloInstruction::CreateSelectAndScatter( new_select_and_scatter_shape, first_operand, select_comp, new_win, second_operand, init_val, scatter_comp), &consumer->metadata(), &consumer->frontend_attributes()); TF_CHECK_OK( new_consumer->ReplaceOperandWithDifferentShape(0, first_operand)); TF_CHECK_OK( new_consumer->ReplaceOperandWithDifferentShape(1, second_operand)); VLOG(2) << "New select and scatter " << new_consumer->ToString(); if (halo_size > 0) { const int64_t rank = new_consumer->shape().rank(); const int64_t batch_size = new_consumer->shape().dimensions(new_batch_dim); std::vector<int64_t> start_indices(rank, 0), end_indices(new_consumer->shape().dimensions().begin(), new_consumer->shape().dimensions().end()), strides(rank, 1); start_indices[new_space_dim] = new_space_size; end_indices[new_space_dim] = new_space_size + halo_size; end_indices[new_batch_dim] = batch_size - 1; TF_ASSIGN_OR_RETURN( HloInstruction * bottom, MakeSliceHlo(new_consumer, start_indices, end_indices, strides, &consumer->metadata(), &consumer->frontend_attributes())); std::vector<int64_t> start_indices_top(rank, 0), end_indices_top(new_consumer->shape().dimensions().begin(), new_consumer->shape().dimensions().end()); end_indices_top[new_space_dim] = halo_size; start_indices_top[new_batch_dim] = 1; TF_ASSIGN_OR_RETURN( HloInstruction * top, MakeSliceHlo(new_consumer, start_indices_top, end_indices_top, strides, &consumer->metadata(), &consumer->frontend_attributes())); HloInstruction* default_fill = MakeBroadcastHlo( init_val, {}, top->shape().dimensions(), &init_val->metadata(), &init_val->frontend_attributes()); TF_ASSIGN_OR_RETURN( HloInstruction * bottom_compare, MakeCompareHlo(ComparisonDirection::kNe, bottom, default_fill, &bottom->metadata(), &bottom->frontend_attributes())); TF_ASSIGN_OR_RETURN( HloInstruction * bottom_taken, MakeSelectHlo(bottom_compare, bottom, default_fill, nullptr, &bottom_compare->metadata(), &bottom_compare->frontend_attributes())); TF_ASSIGN_OR_RETURN( HloInstruction * top_compare, MakeCompareHlo(ComparisonDirection::kNe, top, default_fill, &top->metadata(), &top->frontend_attributes())); TF_ASSIGN_OR_RETURN(HloInstruction * top_taken, MakeSelectHlo(top_compare, top, bottom_taken, nullptr, &top_compare->metadata(), &top_compare->frontend_attributes())); TF_ASSIGN_OR_RETURN(HloInstruction * both_compare, MakeBinaryHlo(HloOpcode::kAnd, top_compare, bottom_compare, &consumer->metadata(), &consumer->frontend_attributes())); TF_ASSIGN_OR_RETURN( HloInstruction * both_added, MakeBinaryHlo(HloOpcode::kAdd, top, bottom, &consumer->metadata(), &consumer->frontend_attributes())); TF_ASSIGN_OR_RETURN( HloInstruction * final_selection, MakeSelectHlo(both_compare, both_added, top_taken, nullptr, &both_compare->metadata(), &both_compare->frontend_attributes())); PaddingConfig padding_config = MakeNoPaddingConfig(final_selection->shape().dimensions_size()); padding_config.mutable_dimensions(new_batch_dim) ->set_edge_padding_low(1); padding_config.mutable_dimensions(new_space_dim) ->set_edge_padding_high(new_space_size); HloInstruction* padding = computation_->AddInstruction( HloInstruction::CreateConstant( LiteralUtil::Zero(final_selection->shape().element_type())), &consumer->metadata(), &consumer->frontend_attributes()); TF_ASSIGN_OR_RETURN( final_selection, MakePadHlo(final_selection, padding, padding_config, &final_selection->metadata(), &final_selection->frontend_attributes())); tsl::core::Bitmap b(batch_size * (new_space_size + halo_size)); for (int k = 0; k < batch_size * (new_space_size + halo_size); ++k) { const int64_t space_index = k % (new_space_size + halo_size); const int64_t batch_index = (k / (new_space_size + halo_size)); if (batch_index < 1 || space_index >= halo_size) { b.set(k); } else { b.clear(k); } } auto arg_literal = LiteralUtil::CreateR1(b); VLOG(4) << "Slice mask created: arg literal " << arg_literal.ToString(); HloInstruction* slice_mask = computation_->AddInstruction( HloInstruction::CreateConstant(std::move(arg_literal)), &consumer->metadata(), &consumer->frontend_attributes()); std::vector<int64_t> slice_mask_reshape_dims(2); slice_mask_reshape_dims[0] = batch_size; slice_mask_reshape_dims[1] = (new_space_size + halo_size); TF_ASSIGN_OR_RETURN( HloInstruction * slice_mask_reshaped, MakeReshapeHlo(slice_mask_reshape_dims, slice_mask)); HloInstruction* shape_mask = MakeBroadcastHlo( slice_mask_reshaped, {new_batch_dim, new_space_dim}, final_selection->shape().dimensions(), &slice_mask->metadata(), &slice_mask->frontend_attributes()); TF_ASSIGN_OR_RETURN( new_consumer, MakeSelectHlo(shape_mask, new_consumer, final_selection, nullptr, &shape_mask->metadata(), &shape_mask->frontend_attributes())); } auto previous_shape = old_to_new_instrs_[consumer->mutable_operand(0)]->shape(); std::vector<int64_t> start_indices(previous_shape.rank(), 0), end_indices(previous_shape.dimensions().begin(), previous_shape.dimensions().end()), strides(previous_shape.rank(), 1); TF_ASSIGN_OR_RETURN(new_consumer, MakeSliceHlo(new_consumer, start_indices, end_indices, strides, &consumer->metadata(), &consumer->frontend_attributes())); } else { auto reduce_comp = consumer->to_apply(); TF_ASSIGN_OR_RETURN(auto new_reduce_window_shape, ShapeInference::InferReduceWindowShape( new_shape, init_val->shape(), new_win)); new_consumer = computation_->AddInstruction( HloInstruction::CreateReduceWindow(new_reduce_window_shape, first_operand, init_val, new_win, reduce_comp), &consumer->metadata(), &consumer->frontend_attributes()); TF_CHECK_OK( new_consumer->ReplaceOperandWithDifferentShape(0, first_operand)); VLOG(1) << "New reduce window " << new_consumer->ToString(); } old_to_new_instrs_[consumer] = new_consumer; instr_to_dim_map_[consumer] = std::vector<int64_t>(dim_map_val); instr_to_dim_permute_map_[new_consumer] = std::vector<int64_t>( instr_to_dim_permute_map_[old_to_new_instrs_[consumer->mutable_operand( 0)]]); return true; } LOG(FATAL) << "Trying to propagate through an unsupported instruction " << consumer->ToString(); return true; } absl::StatusOr<HloInstruction*> ConvolutionVisitor::SelectValidPortion( HloInstruction* new_instr, HloInstruction* old_instr, HloInstruction* select_val, int64_t new_batch_dim, absl::Span<const int64_t> new_space_dims, int64_t old_batch_dim, absl::Span<const int64_t> old_space_dims) { auto new_shape = new_instr->shape(); auto old_shape = old_instr->shape(); VLOG(1) << "In SelectValidPortion new_batch_dim " << new_batch_dim << " new_space_dim " << new_space_dims[0] << " old_batch_dim " << old_batch_dim << " old_space_dim " << old_space_dims[0]; const int64_t new_batch_size = new_shape.dimensions(new_batch_dim); const int64_t new_space_size = new_shape.dimensions(new_space_dims[0]); const int64_t old_batch_size = old_shape.dimensions(old_batch_dim); const int64_t old_space_size = old_shape.dimensions(old_space_dims[0]); CHECK_EQ(new_batch_size % old_batch_size, 0) << " New batch size " << new_batch_size << " old batch size " << old_batch_size; const int64_t num_splits = ctrl_.number_of_splits; const int64_t spatial_dim_count = new_space_dims.size(); std::vector<int64_t> bounds(2 + spatial_dim_count, new_space_size); bounds[0] = old_batch_size; bounds[1] = IPow<int64_t>(num_splits, spatial_dim_count); const int64_t total_new_space = IPow<int64_t>(new_space_size, spatial_dim_count); tsl::core::Bitmap b(new_batch_size * total_new_space); for (int k = 0; k < new_batch_size * total_new_space; ++k) { auto radix = ToMixedRadix(k, bounds); bool out_of_bounds = false; int64_t batch_residue = 1; for (int i = 0; i < spatial_dim_count; ++i) { const int64_t space_index = radix[2 + i]; const int64_t batch_index = (radix[1] / batch_residue) % num_splits; batch_residue *= num_splits; if (batch_index * new_space_size + space_index >= old_space_size) { out_of_bounds = true; } } if (!out_of_bounds) { b.set(k); } else { b.clear(k); } } auto arg_literal = LiteralUtil::CreateR1(b); VLOG(4) << "Slice mask created: arg literal " << arg_literal.ToString(); HloInstruction* slice_mask = computation_->AddInstruction( HloInstruction::CreateConstant(std::move(arg_literal)), &old_instr->metadata(), &old_instr->frontend_attributes()); std::vector<int64_t> slice_mask_reshape_dims(1 + spatial_dim_count, new_space_size); slice_mask_reshape_dims[0] = new_batch_size; TF_ASSIGN_OR_RETURN(HloInstruction * slice_mask_reshaped, MakeReshapeHlo(slice_mask_reshape_dims, slice_mask)); std::vector<int64_t> broadcast_dims(new_space_dims.begin(), new_space_dims.end()); broadcast_dims.insert(broadcast_dims.begin(), new_batch_dim); HloInstruction* shape_mask = MakeBroadcastHlo( slice_mask_reshaped, broadcast_dims, new_instr->shape().dimensions(), &slice_mask_reshaped->metadata(), &slice_mask_reshaped->frontend_attributes()); VLOG(1) << "Shape mask made " << shape_mask->ToString(); HloInstruction* zeroes = MakeBroadcastHlo( select_val, {}, new_instr->shape().dimensions(), &select_val->metadata(), &select_val->frontend_attributes()); TF_ASSIGN_OR_RETURN(new_instr, MakeSelectHlo(shape_mask, new_instr, zeroes, nullptr, &shape_mask->metadata(), &shape_mask->frontend_attributes())); return new_instr; } absl::StatusOr<HloInstruction*> ConvolutionVisitor::BatchToSpace( HloInstruction* old_instr) { if (batch_to_space_map_.count(old_instr)) { CHECK_NE(batch_to_space_map_[old_instr], nullptr); return batch_to_space_map_[old_instr]; } auto result = instr_to_dim_map_[old_instr]; const int64_t old_batch_dim = result[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = result[DimMapper(SpaceToBatchDimMap::kSpace0)]; const int64_t old_batch_size = old_instr->shape().dimensions(old_batch_dim); CHECK(old_to_new_instrs_.contains(old_instr)); auto new_instr = old_to_new_instrs_[old_instr]; VLOG(2) << "old_batch_dim " << old_batch_dim << " old_space_dim " << old_space_dim << " old_instr " << old_instr->ToString() << "\n new_instr " << new_instr->ToString() << " permute dims " << instr_to_dim_permute_map_.count(new_instr) << " old_batch_size " << old_batch_size; CHECK(instr_to_dim_permute_map_.contains(new_instr)); auto permute_dims = instr_to_dim_permute_map_[new_instr]; const int64_t batch_dim = DimLookUp(permute_dims, old_batch_dim); const int64_t space_dim = DimLookUp(permute_dims, old_space_dim); const int64_t spatial_dim_size = new_instr->shape().dimensions(space_dim); std::vector<int64_t> split_spatial_dimensions( ctrl_.count_of_dimensions_to_convert); absl::c_iota(split_spatial_dimensions, space_dim); TF_ASSIGN_OR_RETURN(new_instr, SplitAndTransposeMergedBatch( new_instr, batch_dim, old_batch_size, split_spatial_dimensions)); std::vector<int64_t> new_dimensions(new_instr->shape().dimensions().begin(), new_instr->shape().dimensions().end()); new_dimensions.erase(new_dimensions.begin() + split_spatial_dimensions[0], new_dimensions.begin() + split_spatial_dimensions[0] + ctrl_.count_of_dimensions_to_convert); for (auto spatial_dimension : split_spatial_dimensions) { new_dimensions[spatial_dimension] = spatial_dim_size * ctrl_.number_of_splits; } TF_ASSIGN_OR_RETURN(HloInstruction * reshape, MakeReshapeHlo(new_dimensions, new_instr)); VLOG(1) << "Batch to space reshape " << reshape->ToString(); const int64_t rank = old_instr->shape().rank(); std::vector<int64_t> start_indices(rank, 0), end_indices(new_dimensions.begin(), new_dimensions.end()), strides(rank, 1); for (auto spatial_dimension : split_spatial_dimensions) { end_indices[spatial_dimension] = old_instr->shape().dimensions(old_space_dim); } TF_ASSIGN_OR_RETURN( HloInstruction * output_slice, MakeSliceHlo(reshape, start_indices, end_indices, strides, &reshape->metadata(), &reshape->frontend_attributes())); VLOG(1) << "Batch to space slice " << output_slice->ToString(); std::vector<int64_t> transpose_dims(permute_dims); TF_ASSIGN_OR_RETURN(HloInstruction * output_transpose, MakeTransposeHlo(output_slice, transpose_dims)); old_instr->SetupDerivedInstruction(output_transpose); batch_to_space_map_[old_instr] = output_transpose; return output_transpose; } absl::Status ConvolutionVisitor::PropagateOnUsers(HloInstruction* old_conv) { std::queue<std::pair<HloInstruction*, HloInstruction*>> propagation_worklist; if (old_conv->user_count() == 0) { TF_ASSIGN_OR_RETURN(HloInstruction * batch_to_space, BatchToSpace(old_conv)); VLOG(1) << "Replacing the root instruction to " << batch_to_space->ToString(); TF_CHECK_OK(computation_->ReplaceInstruction(old_conv, batch_to_space)); VLOG(1) << "Replacement successful"; return absl::OkStatus(); } int64_t iteration_count = 0; propagation_worklist.push( std::make_pair(old_conv, old_conv->mutable_operand(0))); while (!propagation_worklist.empty()) { auto top = propagation_worklist.front(); auto node = top.first; auto parent = top.second; VLOG(1) << "Traversing for propagation operating on " << node->ToString(); propagation_worklist.pop(); if (old_to_new_instrs_.count(node) > 0 && iteration_count != 0) { continue; } bool needs_further_propagation = true; if (iteration_count != 0) { TF_ASSIGN_OR_RETURN(needs_further_propagation, Propagate(node, parent)); } iteration_count++; if (node->parent()->root_instruction() == node) { if (!needs_further_propagation) { VLOG(1) << "Replacing the root instruction to " << old_to_new_instrs_[node]->ToString(); TF_CHECK_OK( computation_->ReplaceInstruction(node, old_to_new_instrs_[node])); continue; } TF_ASSIGN_OR_RETURN(HloInstruction * batch_to_space, BatchToSpace(node)); VLOG(1) << "Replacing the root instruction to " << batch_to_space->ToString(); TF_CHECK_OK(computation_->ReplaceInstruction(node, batch_to_space)); } else { if (!needs_further_propagation) { TF_CHECK_OK( computation_->ReplaceInstruction(node, old_to_new_instrs_[node])); continue; } HloInstructionSet unsupported_users; for (auto user : node->users()) { if (!SupportedOpForPropagation(user, node)) { VLOG(1) << "Unsupported op found " << user->ToString(); unsupported_users.insert(user); continue; } if (CanPropagate(user, node)) { non_propagatable_instrs_.erase(user); propagation_worklist.push(std::make_pair(user, node)); } else { non_propagatable_instrs_.insert(user); } } if (!unsupported_users.empty()) { TF_ASSIGN_OR_RETURN(HloInstruction * batch_to_space, BatchToSpace(node)); for (auto user : unsupported_users) { for (int64_t i = 0; i < user->operand_count(); ++i) { if (user->operand(i) == node) { TF_CHECK_OK(user->ReplaceOperandWith(i, batch_to_space)); } } } } } } return absl::OkStatus(); } absl::Status ConvolutionVisitor::PropagateOnConv(HloInstruction* convolution) { auto activations_old = convolution->mutable_operand(0); CHECK(old_to_new_instrs_.contains(activations_old)); auto activations_new = old_to_new_instrs_[activations_old]; auto permute_dims = instr_to_dim_permute_map_[activations_new]; auto original_conv_dims = convolution->convolution_dimension_numbers(); auto old_new_dims = GetSpatialDimsToSplit(activations_old); std::vector<int64_t> old_spatial_dims = old_new_dims.first; std::vector<int64_t> new_spatial_dims = old_new_dims.second; auto permuted_conv_dims_numbers = original_conv_dims; int64_t activations_batch_dim = DimLookUp(permute_dims, original_conv_dims.input_batch_dimension()); int64_t activations_feature_dim = DimLookUp(permute_dims, original_conv_dims.input_feature_dimension()); permuted_conv_dims_numbers.set_input_batch_dimension(activations_batch_dim); permuted_conv_dims_numbers.set_input_feature_dimension( activations_feature_dim); for (int64_t i = 0; i < original_conv_dims.input_spatial_dimensions_size(); ++i) { permuted_conv_dims_numbers.set_input_spatial_dimensions( i, DimLookUp(permute_dims, original_conv_dims.input_spatial_dimensions(i))); } const int64_t old_batch_dim = original_conv_dims.input_batch_dimension(); const int64_t old_batch_size = activations_old->shape().dimensions(old_batch_dim); ConvDetails c = GetConvolutionDetails(convolution, permuted_conv_dims_numbers); VLOG(1) << "Propagating on conv activations_batch_dim " << activations_batch_dim << " spatial_dimension_to_split " << c.spatial_dimensions_to_split[0] << " old_batch_size " << old_batch_size; TF_ASSIGN_OR_RETURN( auto retval, BringSpaceNextToBatch(activations_new, permuted_conv_dims_numbers, activations_batch_dim, &new_spatial_dims)); activations_new = retval.instr; std::vector<int64_t> trans_dims = retval.transpose_dims; CHECK(!trans_dims.empty()); auto select_val = computation_->AddInstruction( HloInstruction::CreateConstant( LiteralUtil::Zero(activations_new->shape().element_type())), &convolution->metadata(), &convolution->frontend_attributes()); TF_ASSIGN_OR_RETURN( activations_new, SelectValidPortion(activations_new, activations_old, select_val, activations_batch_dim, new_spatial_dims, old_batch_dim, old_spatial_dims)); auto new_dim_numbers = permuted_conv_dims_numbers; const int64_t num_splits = ctrl_.number_of_splits; const int64_t output_offsets = convolution->shape().dimensions( permuted_conv_dims_numbers.output_spatial_dimensions( GetFirstChosenSpatialDim(convolution))); const int64_t output_offsets_per_split = CeilOfRatio(output_offsets, num_splits); int64_t spatial_split_size = CeilOfRatio(output_offsets_per_split, c.base_dilation_factor) * c.stride; VLOG(1) << "spatial size " << c.spatial_size << " halo size " << c.halo_size << " spatial_split_size " << spatial_split_size; while (spatial_split_size * num_splits + c.halo_size - c.spatial_size < 0 || spatial_split_size < c.halo_size - c.inherent_low_padding) { spatial_split_size += c.stride; } VLOG(1) << "Modified spatial_split_size " << spatial_split_size; const int64_t new_space_size = activations_new->shape().dimensions(new_spatial_dims[0]); int64_t slice_size = spatial_split_size + c.halo_size; if (spatial_split_size > new_space_size) { TF_ASSIGN_OR_RETURN( activations_new, ChangeSpatialSizeOnSpaceToBatchedShape( activations_new, activations_batch_dim, old_batch_size, new_spatial_dims, spatial_split_size, true)); } else { if (spatial_split_size < new_space_size) { VLOG(3) << "Decreasing the spatial size while propagating spatial_split_size " << spatial_split_size << " new_space_size " << new_space_size; if (new_space_size % c.stride != 0 || c.base_dilation_factor != 1) { TF_ASSIGN_OR_RETURN( activations_new, ChangeSpatialSizeOnSpaceToBatchedShape( activations_new, activations_batch_dim, old_batch_size, new_spatial_dims, spatial_split_size)); } else { const int64_t additional_space_present = spatial_split_size % c.stride; spatial_split_size = new_space_size; slice_size = spatial_split_size + std::max(c.kernel_spatial_dim_size - c.stride - additional_space_present, static_cast<int64_t>(0)); } } } TF_ASSIGN_OR_RETURN( activations_new, HaloDuplicateWithSlice( activations_new, new_spatial_dims, activations_batch_dim, c.base_dilation_factor != 1 && c.inherent_low_padding != 0 ? (c.inherent_low_padding == c.base_dilation_factor ? 1 : 0) : c.inherent_low_padding, slice_size - spatial_split_size)); const int64_t rank = (convolution->shape().rank()); std::vector<int64_t> transpose_dims(rank); int dim_count = 0; std::map<int64_t, int64_t> dim_translator; for (int j = 0; j < permuted_conv_dims_numbers.output_spatial_dimensions_size(); ++j) { if (j == GetFirstChosenSpatialDim(convolution)) { dim_translator[permuted_conv_dims_numbers.output_batch_dimension()] = dim_count; new_dim_numbers.set_output_batch_dimension(dim_count++); } dim_translator[permuted_conv_dims_numbers.output_spatial_dimensions(j)] = dim_count; new_dim_numbers.set_output_spatial_dimensions(j, dim_count); dim_count++; } dim_translator[permuted_conv_dims_numbers.output_feature_dimension()] = dim_count; new_dim_numbers.set_output_feature_dimension(dim_count); int p = 0; for (const auto& entry : dim_translator) { transpose_dims[p] = entry.second; p++; } auto new_window = convolution->window(); const int64_t first_dim = GetFirstChosenSpatialDim(convolution); for (int i = 0; i < ctrl_.count_of_dimensions_to_convert; ++i) { new_window.mutable_dimensions(first_dim + i) ->set_padding_high(c.high_padding_for_conv); new_window.mutable_dimensions(first_dim + i) ->set_padding_low(c.low_padding_for_conv); } TF_ASSIGN_OR_RETURN( HloInstruction * new_conv, MakeConvolveHlo( activations_new, convolution->mutable_operand(1), convolution->feature_group_count(), convolution->batch_group_count(), new_window, new_dim_numbers, convolution->precision_config(), convolution->shape().element_type())); convolution->SetupDerivedInstruction(new_conv); old_to_new_instrs_[convolution] = new_conv; VLOG(1) << "Space-to-batched convolution " << new_conv->ToString(); std::vector<int64_t> dim_map(kNumMappedDims); dim_map[DimMapper(SpaceToBatchDimMap::kBatch)] = original_conv_dims.output_batch_dimension(); dim_map[DimMapper(SpaceToBatchDimMap::kFeature)] = original_conv_dims.output_feature_dimension(); dim_map[DimMapper(SpaceToBatchDimMap::kSpace0)] = original_conv_dims.output_spatial_dimensions( GetFirstChosenSpatialDim(convolution)); instr_to_dim_map_[convolution] = dim_map; instr_to_dim_permute_map_[new_conv] = std::vector<int64_t>(transpose_dims); convs_to_visit_.erase(convolution); return absl::OkStatus(); } absl::Status ConvolutionVisitor::PropagateOnConcat(HloInstruction* concat) { auto first_operand = old_to_new_instrs_[concat->mutable_operand(0)]; auto permute_dims = instr_to_dim_permute_map_[first_operand]; const int64_t new_concat_dim = DimLookUp(permute_dims, concat->concatenate_dimension()); std::vector<HloInstruction*> new_operands(concat->operand_count()); for (int64_t i = 0; i < concat->operand_count(); ++i) { new_operands[i] = old_to_new_instrs_[concat->mutable_operand(i)]; } TF_ASSIGN_OR_RETURN( HloInstruction * new_concat, MakeConcatHlo(new_operands, new_concat_dim, &concat->metadata(), &concat->frontend_attributes())); old_to_new_instrs_[concat] = new_concat; instr_to_dim_map_[concat] = std::vector<int64_t>(instr_to_dim_map_[concat->mutable_operand(0)]); instr_to_dim_permute_map_[new_concat] = std::vector<int64_t>(instr_to_dim_permute_map_[first_operand]); return absl::OkStatus(); } absl::Status ConvolutionVisitor::PropagateOnReverse(HloInstruction* reverse) { auto first_operand = old_to_new_instrs_[reverse->mutable_operand(0)]; auto permute_dims = instr_to_dim_permute_map_[first_operand]; std::vector<int64_t> new_reverse_dimensions(reverse->dimensions().size()); int dim_count = 0; for (auto dim : reverse->dimensions()) { new_reverse_dimensions[dim_count++] = DimLookUp(permute_dims, dim); } TF_ASSIGN_OR_RETURN(HloInstruction * new_reverse, MakeReverseHlo(first_operand, new_reverse_dimensions)); old_to_new_instrs_[reverse] = new_reverse; instr_to_dim_map_[reverse] = std::vector<int64_t>(instr_to_dim_map_[reverse->mutable_operand(0)]); instr_to_dim_permute_map_[new_reverse] = std::vector<int64_t>(instr_to_dim_permute_map_[first_operand]); return absl::OkStatus(); } absl::Status ConvolutionVisitor::PropagateOnPad(HloInstruction* pad) { auto first_operand = old_to_new_instrs_[pad->mutable_operand(0)]; auto permute_dims = instr_to_dim_permute_map_[first_operand]; PaddingConfig padding_config; for (int i = 0; i < pad->shape().rank(); ++i) { auto dimension = padding_config.add_dimensions(); const int64_t old_dim = ReverseDimLookUp(permute_dims, i); auto old_padding = pad->padding_config().dimensions(old_dim); dimension->set_edge_padding_low(old_padding.edge_padding_low()); dimension->set_edge_padding_high(old_padding.edge_padding_high()); dimension->set_interior_padding(old_padding.interior_padding()); } HloInstruction* padding = pad->mutable_operand(1); TF_ASSIGN_OR_RETURN(auto new_pad, MakePadHlo(first_operand, padding, padding_config, &first_operand->metadata(), &first_operand->frontend_attributes())); old_to_new_instrs_[pad] = new_pad; instr_to_dim_map_[pad] = std::vector<int64_t>(instr_to_dim_map_[pad->mutable_operand(0)]); instr_to_dim_permute_map_[new_pad] = std::vector<int64_t>(instr_to_dim_permute_map_[first_operand]); return absl::OkStatus(); } absl::Status ConvolutionVisitor::PropagateOnSlice(HloInstruction* slice) { auto operand = old_to_new_instrs_[slice->mutable_operand(0)]; auto permute_dims = instr_to_dim_permute_map_[operand]; DimensionVector starts(slice->shape().rank()); DimensionVector limits(slice->shape().rank()); DimensionVector strides(slice->shape().rank()); for (int i = 0; i < slice->shape().rank(); ++i) { const int64_t old_dim = ReverseDimLookUp(permute_dims, i); if (slice->shape().dimensions(old_dim) == slice->operand(0)->shape().dimensions(old_dim)) { starts[i] = 0; strides[i] = 1; limits[i] = operand->shape().dimensions(i); continue; } starts[i] = slice->slice_starts(old_dim); strides[i] = slice->slice_strides(old_dim); limits[i] = slice->slice_limits(old_dim); } TF_ASSIGN_OR_RETURN( auto new_slice, MakeSliceHlo(operand, starts, limits, strides, &operand->metadata(), &operand->frontend_attributes())); old_to_new_instrs_[slice] = new_slice; instr_to_dim_map_[slice] = std::vector<int64_t>(instr_to_dim_map_[slice->mutable_operand(0)]); instr_to_dim_permute_map_[new_slice] = std::vector<int64_t>(instr_to_dim_permute_map_[operand]); return absl::OkStatus(); } absl::StatusOr<HloInstruction*> ConvolutionVisitor::TransposeAndMergeBatch( HloInstruction* activations, absl::Span<const int64_t> final_split_spatial_dim_positioning, int64_t activations_batch_dim, int64_t old_batch_size) { const int64_t spatial_dim_count = final_split_spatial_dim_positioning.size(); if (final_split_spatial_dim_positioning.size() > 1) { int64_t start_batch_dim_position = activations_batch_dim + 1; int64_t start_space_dim_position = start_batch_dim_position + spatial_dim_count; std::vector<int64_t> trans_dims(activations->shape().dimensions_size()); absl::c_iota(trans_dims, 0); for (int i = 0; i < spatial_dim_count; ++i) { trans_dims[start_batch_dim_position + i] = start_batch_dim_position + (spatial_dim_count - 1 - i) * 2; trans_dims[start_space_dim_position + i] = start_batch_dim_position + i * 2 + 1; } TF_ASSIGN_OR_RETURN(activations, MakeTransposeHlo(activations, trans_dims)); } std::vector<int64_t> batch_collapse_reshape_dims( activations->shape().dimensions().begin(), activations->shape().dimensions().end()); const int64_t collapsed_batch_size = old_batch_size * IPow<int64_t>(ctrl_.number_of_splits, spatial_dim_count); batch_collapse_reshape_dims.erase( batch_collapse_reshape_dims.begin() + activations_batch_dim, batch_collapse_reshape_dims.begin() + activations_batch_dim + spatial_dim_count); batch_collapse_reshape_dims[activations_batch_dim] = collapsed_batch_size; TF_ASSIGN_OR_RETURN(HloInstruction * batch_collapsed_reshape, MakeReshapeHlo(batch_collapse_reshape_dims, activations)); return batch_collapsed_reshape; } absl::StatusOr<HloInstruction*> ConvolutionVisitor::PerformSplitSpace( HloInstruction* activations, absl::Span<const int64_t> spatial_dimensions_to_split, int64_t activations_batch_dim, int64_t spatial_split_size, int64_t num_splits) { const int64_t old_batch_size = activations->shape().dimensions(activations_batch_dim); std::vector<int64_t> reshape_dimensions( activations->shape().dimensions().begin(), activations->shape().dimensions().end()); for (auto spatial_dimension_to_split : spatial_dimensions_to_split) { reshape_dimensions[spatial_dimension_to_split] = spatial_split_size; } int counter = 0; for (auto spatial_dimension_to_split : spatial_dimensions_to_split) { reshape_dimensions.insert( reshape_dimensions.begin() + (spatial_dimension_to_split + counter), num_splits); counter++; } TF_ASSIGN_OR_RETURN(HloInstruction * batch_increased_reshape, MakeReshapeHlo(reshape_dimensions, activations)); return TransposeAndMergeBatch( batch_increased_reshape, spatial_dimensions_to_split, activations_batch_dim, old_batch_size); } absl::StatusOr<HloInstruction*> ConvolutionVisitor::PadAndSplitSpace( HloInstruction* activations, absl::Span<const int64_t> spatial_dimensions_to_split, int64_t activations_batch_dim, int64_t high_padding, int64_t low_padding, int64_t spatial_split_size, int64_t num_splits) { const int64_t old_batch_size = activations->shape().dimensions(activations_batch_dim); if (high_padding || low_padding) { PaddingConfig padding_config = MakeNoPaddingConfig(activations->shape().dimensions_size()); for (auto spatial_dimension_to_split : spatial_dimensions_to_split) { padding_config.mutable_dimensions(spatial_dimension_to_split) ->set_edge_padding_high(high_padding); padding_config.mutable_dimensions(spatial_dimension_to_split) ->set_edge_padding_low(low_padding); } HloInstruction* padding = computation_->AddInstruction( HloInstruction::CreateConstant( LiteralUtil::Zero(activations->shape().element_type())), &activations->metadata(), &activations->frontend_attributes()); TF_ASSIGN_OR_RETURN(activations, MakePadHlo(activations, padding, padding_config, &activations->metadata(), &activations->frontend_attributes())); } VLOG(1) << "Initial padded activations shape " << activations->shape().ToString() << " old_batch_size " << old_batch_size << " activations_batch_dim " << activations_batch_dim; return PerformSplitSpace(activations, spatial_dimensions_to_split, activations_batch_dim, spatial_split_size, num_splits); } absl::StatusOr<std::pair<HloInstruction*, std::vector<int64_t>>> ConvolutionVisitor::SplitSpace( HloInstruction* activations, ConvolutionDimensionNumbers& dim_numbers, int64_t& activations_batch_dim, int64_t high_padding, int64_t low_padding, int64_t spatial_split_size, int64_t num_splits, std::vector<int64_t>* spatial_dimensions_to_split, bool is_backprop, bool is_rhs) { TF_ASSIGN_OR_RETURN( auto retval, BringSpaceNextToBatch(activations, dim_numbers, activations_batch_dim, spatial_dimensions_to_split, is_backprop, is_rhs)); activations = retval.instr; std::vector<int64_t> transpose_dims = retval.transpose_dims; TF_ASSIGN_OR_RETURN( auto new_activations, PadAndSplitSpace(activations, *spatial_dimensions_to_split, activations_batch_dim, high_padding, low_padding, spatial_split_size, num_splits)); return std::make_pair(new_activations, transpose_dims); } absl::StatusOr<HloInstruction*> ConvolutionVisitor::PropagateOnConstant( HloInstruction* consumer, HloInstruction* producer) { CHECK(old_to_new_instrs_.contains(producer)); HloInstruction* new_producer = old_to_new_instrs_[producer]; auto prod_transpose_dims = instr_to_dim_permute_map_[new_producer]; std::vector<int64_t> reversed_transpose_dims(prod_transpose_dims.size()); for (int64_t i = 0; i < prod_transpose_dims.size(); ++i) { reversed_transpose_dims[i] = ReverseDimLookUp(prod_transpose_dims, i); } TF_ASSIGN_OR_RETURN(consumer, MakeTransposeHlo(consumer, reversed_transpose_dims)); auto retval = GetSpatialDimsToSplit(producer); std::vector<int64_t> old_spatial_dims = retval.first; std::vector<int64_t> new_spatial_dims = retval.second; auto dim_map = instr_to_dim_map_[producer]; const int64_t old_batch_dim = dim_map[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = old_spatial_dims[0]; const int64_t new_batch_dim = DimLookUp(prod_transpose_dims, old_batch_dim); const int64_t new_space_dim = new_spatial_dims[0]; const int64_t old_batch_size = producer->shape().dimensions(old_batch_dim); const int64_t new_batch_size = old_batch_size * ctrl_.number_of_splits; const int64_t high_padding = (new_batch_size * new_producer->shape().dimensions(new_space_dim) - old_batch_size * producer->shape().dimensions(old_space_dim)) / old_batch_size; auto new_consumer = PadAndSplitSpace( consumer, new_spatial_dims, new_batch_dim, high_padding, 0, new_producer->shape().dimensions(new_space_dim), ctrl_.number_of_splits); return new_consumer; } absl::Status ConvolutionVisitor::PropagateOnBackpropFilterConv( HloInstruction* convolution) { auto activations_old = convolution->mutable_operand(0); const int64_t rhs_dilation = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .window_dilation(); auto original_conv_dims = convolution->convolution_dimension_numbers(); std::vector<int64_t> old_split_spatial_dims( ctrl_.dimension_from_end_to_convert), old_split_kernel_spatial_dims(ctrl_.dimension_from_end_to_convert); for (int i = 0; i < ctrl_.dimension_from_end_to_convert; ++i) { old_split_spatial_dims[i] = original_conv_dims.input_spatial_dimensions( GetFirstChosenSpatialDim(convolution) + i); old_split_kernel_spatial_dims[i] = original_conv_dims.kernel_spatial_dimensions( GetFirstChosenSpatialDim(convolution) + i); } auto kernel_old = convolution->mutable_operand(1); const int64_t old_kernel_split_dim_size = kernel_old->shape().dimensions(old_split_kernel_spatial_dims[0]); int64_t old_split_dim_size = activations_old->shape().dimensions(old_split_spatial_dims[0]); int64_t old_batch_dim = original_conv_dims.input_feature_dimension(); int64_t kernel_old_batch_dim = original_conv_dims.kernel_input_feature_dimension(); const int64_t old_batch_size = activations_old->shape().dimensions(old_batch_dim); CHECK(old_to_new_instrs_.contains(kernel_old) || old_to_new_instrs_.contains(activations_old)); HloInstruction* activations_new = nullptr; HloInstruction* kernel_new = nullptr; bool activations_locally_space_to_batched = false; bool kernel_locally_space_to_batched = false; std::vector<int64_t> permute_dims_kernel, permute_dims; if (old_to_new_instrs_.contains(activations_old)) { activations_new = old_to_new_instrs_[activations_old]; permute_dims = instr_to_dim_permute_map_[activations_new]; } if (old_to_new_instrs_.contains(kernel_old)) { kernel_new = old_to_new_instrs_[kernel_old]; permute_dims_kernel = instr_to_dim_permute_map_[kernel_new]; } if (!old_to_new_instrs_.contains(activations_old)) { kernel_new = old_to_new_instrs_[kernel_old]; permute_dims_kernel = instr_to_dim_permute_map_[kernel_new]; VLOG(1) << "Space-to-batching activations to enable space-to-depth"; const int64_t new_kernel_space_dim = DimLookUp(permute_dims_kernel, old_split_kernel_spatial_dims[0]); const int64_t new_kernel_split_dim_size = kernel_new->shape().dimensions(new_kernel_space_dim); const int64_t needed_spatial_size = rhs_dilation * new_kernel_split_dim_size; const int64_t pad_size = needed_spatial_size * ctrl_.number_of_splits - old_split_dim_size; ConvolutionDimensionNumbers tmp_dim_numbers; tmp_dim_numbers = original_conv_dims; TF_ASSIGN_OR_RETURN( auto retval, SplitSpace(activations_old, tmp_dim_numbers, old_batch_dim, pad_size, 0, needed_spatial_size, ctrl_.number_of_splits, &old_split_spatial_dims, true)); activations_new = retval.first; std::vector<int64_t> reversed_transpose_dims(retval.second.size()); for (int64_t i = 0; i < retval.second.size(); ++i) { reversed_transpose_dims[i] = ReverseDimLookUp(retval.second, i); } permute_dims = reversed_transpose_dims; VLOG(3) << "New Activations " << retval.first->ToString(); activations_locally_space_to_batched = true; } else if (!old_to_new_instrs_.contains(kernel_old)) { activations_new = old_to_new_instrs_[activations_old]; permute_dims = instr_to_dim_permute_map_[activations_new]; VLOG(1) << "Space-to-batching kernel to enable space-to-depth"; const int64_t new_space_dim = DimLookUp(permute_dims, old_split_spatial_dims[0]); const int64_t new_split_dim_size = activations_new->shape().dimensions(new_space_dim); const int64_t needed_spatial_size = CeilOfRatio(new_split_dim_size, rhs_dilation); int64_t old_kernel_split_dim_size = kernel_old->shape().dimensions(old_split_kernel_spatial_dims[0]); const int64_t pad_size = needed_spatial_size * ctrl_.number_of_splits - old_kernel_split_dim_size; ConvolutionDimensionNumbers tmp_dim_numbers; tmp_dim_numbers = original_conv_dims; TF_ASSIGN_OR_RETURN( auto retval, SplitSpace(kernel_old, tmp_dim_numbers, kernel_old_batch_dim, pad_size, 0, needed_spatial_size, ctrl_.number_of_splits, &old_split_kernel_spatial_dims, true, true)); kernel_new = retval.first; std::vector<int64_t> reversed_transpose_dims(retval.second.size()); for (int64_t i = 0; i < retval.second.size(); ++i) { reversed_transpose_dims[i] = ReverseDimLookUp(retval.second, i); } permute_dims_kernel = reversed_transpose_dims; VLOG(3) << "New kernel " << retval.first->ToString(); kernel_locally_space_to_batched = true; } CHECK_NE(activations_new, nullptr); CHECK_NE(kernel_new, nullptr); const int64_t new_spatial_dimension = activations_new->shape().dimensions_size(); auto permuted_conv_dims_numbers = original_conv_dims; int64_t activations_batch_dim = DimLookUp(permute_dims, original_conv_dims.input_feature_dimension()); int64_t activations_feature_dim = DimLookUp(permute_dims, original_conv_dims.input_batch_dimension()); const int64_t previous_spatial_dim_count = original_conv_dims.input_spatial_dimensions_size(); for (int64_t i = 0; i < previous_spatial_dim_count; ++i) { permuted_conv_dims_numbers.set_input_spatial_dimensions( i, DimLookUp(permute_dims, original_conv_dims.input_spatial_dimensions(i))); permuted_conv_dims_numbers.set_kernel_spatial_dimensions( i, DimLookUp(permute_dims_kernel, original_conv_dims.kernel_spatial_dimensions(i))); } permuted_conv_dims_numbers.add_input_spatial_dimensions( new_spatial_dimension); permuted_conv_dims_numbers.add_kernel_spatial_dimensions( new_spatial_dimension); permuted_conv_dims_numbers.add_output_spatial_dimensions( new_spatial_dimension); const int64_t previous_chosen_spatial_dim_in_output = permuted_conv_dims_numbers.output_spatial_dimensions( GetFirstChosenSpatialDim(convolution)); permuted_conv_dims_numbers.set_output_spatial_dimensions( GetFirstChosenSpatialDim(convolution), new_spatial_dimension); permuted_conv_dims_numbers.set_output_spatial_dimensions( previous_spatial_dim_count, previous_chosen_spatial_dim_in_output); const int64_t kernel_input_feature_dim = DimLookUp( permute_dims_kernel, original_conv_dims.kernel_input_feature_dimension()); const int64_t kernel_output_feature_dim = DimLookUp(permute_dims_kernel, original_conv_dims.kernel_output_feature_dimension()); permuted_conv_dims_numbers.set_kernel_input_feature_dimension( kernel_input_feature_dim); permuted_conv_dims_numbers.set_kernel_output_feature_dimension( kernel_output_feature_dim); std::vector<int64_t> spatial_dimensions_to_split( ctrl_.count_of_dimensions_to_convert); const int64_t first_dim_to_split = GetFirstChosenSpatialDim(convolution); for (int64_t i = 0; i < ctrl_.count_of_dimensions_to_convert; ++i) { spatial_dimensions_to_split[i] = permuted_conv_dims_numbers.input_spatial_dimensions(first_dim_to_split + i); } const int64_t kernel_spatial_dimension_to_split = permuted_conv_dims_numbers.kernel_spatial_dimensions( GetFirstChosenSpatialDim(convolution)); int64_t new_split_dim_size = activations_new->shape().dimensions(spatial_dimensions_to_split[0]); const int64_t kernel_new_split_dim_size = kernel_new->shape().dimensions(kernel_spatial_dimension_to_split); permuted_conv_dims_numbers.set_input_batch_dimension(activations_feature_dim); permuted_conv_dims_numbers.set_input_feature_dimension(activations_batch_dim); VLOG(1) << "Propagating on conv activations_batch_dim " << activations_batch_dim << " spatial_dimension_to_split " << spatial_dimensions_to_split[0] << " old_batch_size " << old_batch_size << " new_split_dim_size " << new_split_dim_size; TF_ASSIGN_OR_RETURN( auto retval, BringSpaceNextToBatch(activations_new, permuted_conv_dims_numbers, activations_batch_dim, &spatial_dimensions_to_split, true)); int64_t spatial_dimension_to_split = spatial_dimensions_to_split[0]; std::vector<int64_t> transpose_dims = retval.transpose_dims; CHECK(!transpose_dims.empty()); activations_new = retval.instr; VLOG(1) << "Activations_new post BringSpaceNextToBatch " << activations_new->ToString(); VLOG(1) << "activations_batch_dim " << activations_batch_dim << " activations_feature_dim " << activations_feature_dim; const int64_t expected_split_dim_size = rhs_dilation * kernel_new_split_dim_size; if (new_split_dim_size != expected_split_dim_size) { CHECK_LT(new_split_dim_size, expected_split_dim_size); new_split_dim_size = expected_split_dim_size; TF_ASSIGN_OR_RETURN( activations_new, ChangeSpatialSizeOnSpaceToBatchedShape( activations_new, activations_batch_dim, old_batch_size, spatial_dimensions_to_split, new_split_dim_size, true)); } spatial_dimension_to_split = spatial_dimensions_to_split[0]; auto select_val = computation_->AddInstruction( HloInstruction::CreateConstant( LiteralUtil::Zero(activations_new->shape().element_type())), &activations_new->metadata(), &activations_new->frontend_attributes()); if (!activations_locally_space_to_batched) { TF_ASSIGN_OR_RETURN( activations_new, SelectValidPortion(activations_new, activations_old, select_val, activations_batch_dim, spatial_dimensions_to_split, old_batch_dim, old_split_spatial_dims)); } if (!kernel_locally_space_to_batched) { VLOG(3) << "Selecting the valid kernel area"; std::vector<int64_t> new_kernel_split_spatial_dims( ctrl_.dimension_from_end_to_convert); new_kernel_split_spatial_dims[0] = kernel_spatial_dimension_to_split; TF_ASSIGN_OR_RETURN( kernel_new, SelectValidPortion(kernel_new, kernel_old, select_val, kernel_input_feature_dim, new_kernel_split_spatial_dims, original_conv_dims.kernel_input_feature_dimension(), old_split_kernel_spatial_dims)); } auto new_dim_numbers = permuted_conv_dims_numbers; VLOG(2) << "New dim numbers " << new_dim_numbers.DebugString(); const int64_t inherent_low_padding = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .padding_low(); const int64_t inherent_high_padding = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .padding_high(); std::vector<HloInstruction*> activations_chunks; for (int64_t i = 0; i < inherent_low_padding; ++i) { HloInstruction* activations_to_use = nullptr; if (i == 0) { activations_to_use = activations_new; } else { activations_to_use = activations_chunks.back(); } TF_ASSIGN_OR_RETURN( HloInstruction * activations_slice, HaloDuplicateWithSlice(activations_to_use, spatial_dimensions_to_split, activations_batch_dim, 1, 0)); activations_chunks.push_back(activations_slice); } absl::c_reverse(activations_chunks); const int64_t expanded_kernel = old_kernel_split_dim_size * rhs_dilation - (rhs_dilation - 1); const int64_t overlap_count = old_split_dim_size - expanded_kernel + 1 + (inherent_low_padding < 0 ? inherent_low_padding : 0) + (inherent_high_padding < 0 ? inherent_high_padding : 0); VLOG(1) << "overlap_count " << overlap_count << " inherent_low_padding " << inherent_low_padding << " inherent_high_padding " << inherent_high_padding; const int64_t total_overlap_count = overlap_count + (inherent_low_padding > 0 ? inherent_low_padding : 0) + (inherent_high_padding > 0 ? inherent_high_padding : 0); for (int64_t i = 0; i < overlap_count; ++i) { HloInstruction* activations_to_use = nullptr; HloInstruction* activations_slice = nullptr; if (i == 0) { activations_to_use = activations_new; if (inherent_low_padding < 0) { TF_ASSIGN_OR_RETURN( activations_slice, HaloDuplicateWithSlice( activations_to_use, spatial_dimensions_to_split, activations_batch_dim, inherent_low_padding, 0)); } else { activations_slice = activations_to_use; } } else { activations_to_use = activations_chunks.back(); TF_ASSIGN_OR_RETURN(activations_slice, HaloDuplicateWithSlice( activations_to_use, spatial_dimensions_to_split, activations_batch_dim, -1, 0)); } activations_chunks.push_back(activations_slice); } int64_t high_padding_to_materialize = 0; if (inherent_high_padding > 0) { high_padding_to_materialize = std::max(total_overlap_count - (std::max(overlap_count, static_cast<int64_t>(0)) + std::max(inherent_low_padding, static_cast<int64_t>(0))), static_cast<int64_t>(0)); } for (int64_t i = 0; i < high_padding_to_materialize; ++i) { HloInstruction* activations_to_use = nullptr; activations_to_use = activations_chunks.back(); TF_ASSIGN_OR_RETURN( HloInstruction * activations_slice, HaloDuplicateWithSlice(activations_to_use, spatial_dimensions_to_split, activations_batch_dim, -1, 0)); activations_chunks.push_back(activations_slice); } for (int64_t i = 0; i < activations_chunks.size(); ++i) { std::vector<int64_t> input_sizes( activations_chunks[i]->shape().dimensions().begin(), activations_chunks[i]->shape().dimensions().end()); input_sizes.push_back(1); TF_ASSIGN_OR_RETURN(activations_chunks[i], MakeReshapeHlo(input_sizes, activations_chunks[i])); VLOG(1) << "new_spatial_dimension " << new_spatial_dimension << " slice " << activations_chunks[i]->ToString(); } TF_ASSIGN_OR_RETURN( activations_new, MakeConcatHlo(absl::MakeSpan(activations_chunks), new_spatial_dimension, &activations_old->metadata(), &activations_old->frontend_attributes())); std::vector<int64_t> kernel_sizes(kernel_new->shape().dimensions().begin(), kernel_new->shape().dimensions().end()); kernel_sizes.push_back(1); TF_ASSIGN_OR_RETURN(kernel_new, MakeReshapeHlo(kernel_sizes, kernel_new)); auto new_window = convolution->window(); new_window.mutable_dimensions(GetFirstChosenSpatialDim(convolution)) ->set_padding_high(-(rhs_dilation - 1)); new_window.mutable_dimensions(GetFirstChosenSpatialDim(convolution)) ->set_padding_low(0); new_window.mutable_dimensions(GetFirstChosenSpatialDim(convolution)) ->set_size(CeilOfRatio(new_split_dim_size, rhs_dilation)); auto window_dim = new_window.add_dimensions(); window_dim->set_base_dilation(1); window_dim->set_size(1); int64_t stride = 1; if (inherent_low_padding > total_overlap_count) { stride = activations_chunks.size(); } window_dim->set_stride(stride); window_dim->set_padding_low(0); window_dim->set_padding_high(0); window_dim->set_window_reversal(false); window_dim->set_window_dilation(1); TF_ASSIGN_OR_RETURN( HloInstruction * new_conv, MakeConvolveHlo( activations_new, kernel_new, convolution->feature_group_count(), convolution->batch_group_count(), new_window, new_dim_numbers, convolution->precision_config(), convolution->shape().element_type())); convolution->SetupDerivedInstruction(new_conv); VLOG(2) << "New backprop filter convolution " << new_conv->ToString(); std::vector<int64_t> output_sizes(new_conv->shape().dimensions().begin(), new_conv->shape().dimensions().end()); output_sizes.erase(output_sizes.begin() + new_dim_numbers.output_spatial_dimensions( GetFirstChosenSpatialDim(convolution))); TF_ASSIGN_OR_RETURN(new_conv, MakeReshapeHlo(output_sizes, new_conv)); old_to_new_instrs_[convolution] = new_conv; VLOG(1) << "Space-to-featured convolution " << new_conv->ToString(); std::vector<int64_t> dim_map(kNumMappedDims); dim_map[DimMapper(SpaceToBatchDimMap::kBatch)] = original_conv_dims.output_batch_dimension(); dim_map[DimMapper(SpaceToBatchDimMap::kFeature)] = original_conv_dims.output_feature_dimension(); dim_map[DimMapper(SpaceToBatchDimMap::kSpace0)] = original_conv_dims.output_spatial_dimensions( GetFirstChosenSpatialDim(convolution)); instr_to_dim_map_[convolution] = dim_map; std::vector<int64_t> trans_dims(convolution->shape().dimensions_size()); absl::c_iota(trans_dims, 0); instr_to_dim_permute_map_[new_conv] = trans_dims; return absl::OkStatus(); } HloInstruction* ConvolutionVisitor::DoesConvolutionFeedReduceWindowOrSelectAndScatter( HloInstruction* instr, int64_t depth = kReduceWindowSearchDepth) { if (depth == 0) { return nullptr; } for (auto user : instr->users()) { if (user->opcode() == HloOpcode::kReduceWindow || user->opcode() == HloOpcode::kSelectAndScatter) { return user; } if (user->opcode() == HloOpcode::kConvolution || user->opcode() == HloOpcode::kPad || user->opcode() == HloOpcode::kTranspose || user->opcode() == HloOpcode::kDot) { continue; } auto ret = DoesConvolutionFeedReduceWindowOrSelectAndScatter(user, depth - 1); if (ret != nullptr) { return ret; } } return nullptr; } bool ConvolutionVisitor::DoesConvolutionFeedUnpropagatableOp( HloInstruction* instr, int64_t depth) { auto key = std::make_pair(instr, depth); if (unpropagatability_cache_.contains(key)) { return unpropagatability_cache_[key]; } if (depth == 0 || instr->user_count() == 0) { unpropagatability_cache_[key] = false; return false; } for (auto user : instr->users()) { if (IsOpcodeNonPropagatable(user)) { unpropagatability_cache_[key] = true; return true; } int64_t depth_to_use = depth; if (user->opcode() == HloOpcode::kConvolution || user->opcode() == HloOpcode::kDot) { depth_to_use--; } if (DoesConvolutionFeedUnpropagatableOp(user, depth_to_use)) { unpropagatability_cache_[key] = true; return true; } } unpropagatability_cache_[key] = false; return false; } bool ConvolutionVisitor::IsSpaceToBatchedSpaceSizeSuitable( HloInstruction* instr) { CHECK(instr->opcode() == HloOpcode::kSelectAndScatter || instr->opcode() == HloOpcode::kReduceWindow); auto old_producer = instr->mutable_operand(0); auto dim_map_val_op = instr_to_dim_map_[old_producer]; const int64_t old_space_dim = dim_map_val_op[DimMapper(SpaceToBatchDimMap::kSpace0)]; auto first_operand = old_to_new_instrs_[old_producer]; auto permute_dims_first_operand = instr_to_dim_permute_map_[first_operand]; const int64_t new_space_dim = DimLookUp(permute_dims_first_operand, old_space_dim); const int64_t window_size = instr->window().dimensions(old_space_dim).size(); if (first_operand->shape().dimensions(new_space_dim) < window_size) { return false; } return true; } ConvolutionVisitor::ConvDetails ConvolutionVisitor::GetConvolutionDetails( HloInstruction* convolution, ConvolutionDimensionNumbers& dim_numbers) { auto activations = convolution->mutable_operand(0); auto kernel = convolution->mutable_operand(1); const auto& kernel_shape = kernel->shape(); const int64_t kernel_spatial_dim = dim_numbers.kernel_spatial_dimensions( GetFirstChosenSpatialDim(convolution)); int64_t kernel_spatial_dim_size = kernel_shape.dimensions(kernel_spatial_dim); if (IsForwardWindowDilatedConv(convolution, dim_numbers)) { const int64_t window_dilation_factor = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .window_dilation(); kernel_spatial_dim_size = (kernel_spatial_dim_size - 1) * (window_dilation_factor - 1) + kernel_spatial_dim_size; } std::vector<int64_t> spatial_dimensions_to_split = GetChosenSpatialDims(convolution); const int64_t spatial_dimension_to_split = spatial_dimensions_to_split[0]; const int64_t input_dim_size = activations->shape().dimensions(spatial_dimension_to_split); const int64_t inherent_low_padding = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .padding_low(); const int64_t inherent_high_padding = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .padding_high(); const int64_t stride = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .stride(); const int64_t base_dilation_factor = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .base_dilation(); bool is_base_dilated = base_dilation_factor > 1; const int64_t spatial_size = input_dim_size + (is_base_dilated ? 0 : inherent_low_padding) + inherent_high_padding; const int64_t last_overlap = base_dilation_factor == inherent_low_padding ? kernel_spatial_dim_size : kernel_spatial_dim_size - 1; const int64_t halo_size = is_base_dilated ? last_overlap / base_dilation_factor : kernel_spatial_dim_size - 1; const int64_t high_padding_for_base_dilation = inherent_low_padding == 0 ? base_dilation_factor - 1 : last_overlap % base_dilation_factor; const int64_t high_padding_for_conv = is_base_dilated ? high_padding_for_base_dilation : 0; const int64_t low_padding_for_conv = is_base_dilated && (base_dilation_factor != inherent_low_padding) ? inherent_low_padding : 0; return ConvDetails{spatial_dimensions_to_split, inherent_low_padding, inherent_high_padding, stride, spatial_size, base_dilation_factor, halo_size, high_padding_for_conv, low_padding_for_conv, kernel_spatial_dim_size, input_dim_size}; } absl::Status ConvolutionVisitor::PerformSpaceToBatchOnConvolution( HloInstruction* convolution) { if (!ConsumeFuel("space-to-batch-converter", [&] { return "Skipping space-to-batch propagation because fuel over\n"; })) { return absl::OkStatus(); } VLOG(1) << "Handling conv " << convolution->ToString(); ConvolutionDimensionNumbers dim_numbers = convolution->convolution_dimension_numbers(); ConvDetails c = GetConvolutionDetails(convolution, dim_numbers); int64_t activations_batch_dim = dim_numbers.input_batch_dimension(); auto activations = convolution->mutable_operand(0); VLOG(1) << "spatial size " << c.spatial_size; if (c.spatial_size < 2 * ctrl_.number_of_splits) { return absl::OkStatus(); } auto original_conv = convolution; const int64_t output_spatial_dim = dim_numbers.output_spatial_dimensions( GetFirstChosenSpatialDim(convolution)); const int64_t output_offsets = convolution->shape().dimensions(output_spatial_dim); const int64_t output_offsets_per_split = CeilOfRatio(output_offsets, ctrl_.number_of_splits); int64_t spatial_split_size = CeilOfRatio(output_offsets_per_split, c.base_dilation_factor) * c.stride; while (spatial_split_size * ctrl_.number_of_splits - c.spatial_size < 0) { spatial_split_size += c.stride; } auto reduce_window_or_select_and_scatter = DoesConvolutionFeedReduceWindowOrSelectAndScatter(convolution); if (reduce_window_or_select_and_scatter != nullptr && reduce_window_or_select_and_scatter->shape().IsArray() && reduce_window_or_select_and_scatter->shape().rank() == convolution->shape().rank()) { VLOG(2) << "DoesConvolutionFeedReduceWindowOrSelectAndScatter returned true"; const int64_t win_stride = std::max(reduce_window_or_select_and_scatter->window() .dimensions(output_spatial_dim) .stride(), static_cast<int64_t>(1)); CHECK_NE(win_stride, 0) << "Bad op " << reduce_window_or_select_and_scatter->ToString(); CHECK_NE(c.stride, 0) << "Bad op " << convolution->ToString(); while ((spatial_split_size / c.stride) % win_stride != 0) { spatial_split_size += c.stride; } } const int64_t slice_size = spatial_split_size + c.halo_size; const int64_t low_pad_to_handle_base_dilation = (c.base_dilation_factor > 1 && c.base_dilation_factor == c.inherent_low_padding) ? 1 : 0; int64_t pad_size = spatial_split_size * ctrl_.number_of_splits - c.spatial_size; bool handle_low_pad_in_first_reshape = false; if (pad_size > low_pad_to_handle_base_dilation) { pad_size -= low_pad_to_handle_base_dilation; handle_low_pad_in_first_reshape = true; } VLOG(1) << "spatial_split_size " << spatial_split_size << " stride " << c.stride << " slice_size " << slice_size; VLOG(1) << "spatial_dimension_to_split " << c.spatial_dimensions_to_split[0] << " num_splits " << ctrl_.number_of_splits << " kernel_spatial_dim_size " << c.kernel_spatial_dim_size; std::vector<int64_t> spatial_dimensions_to_split = c.spatial_dimensions_to_split; TF_ASSIGN_OR_RETURN( auto retval, SplitSpace( activations, dim_numbers, activations_batch_dim, c.inherent_high_padding + pad_size, c.base_dilation_factor == 1 ? c.inherent_low_padding : handle_low_pad_in_first_reshape ? low_pad_to_handle_base_dilation : 0, spatial_split_size, ctrl_.number_of_splits, &spatial_dimensions_to_split)); HloInstruction* batch_increased_reshape = retval.first; convolution->SetupDerivedInstruction(batch_increased_reshape); VLOG(1) << "First reshape done " << batch_increased_reshape->ToString(); TF_ASSIGN_OR_RETURN( activations, HaloDuplicateWithSlice( batch_increased_reshape, spatial_dimensions_to_split, activations_batch_dim, handle_low_pad_in_first_reshape ? 0 : low_pad_to_handle_base_dilation, c.halo_size)); VLOG(1) << "Batch merge done " << activations->ToString(); auto new_dim_numbers = dim_numbers; const int64_t rank = convolution->shape().rank(); std::vector<int64_t> transpose_dims(rank); int dim_count = 0; std::map<int64_t, int64_t> dim_translator; for (int j = 0; j < dim_numbers.output_spatial_dimensions_size(); ++j) { if (j == GetFirstChosenSpatialDim(convolution)) { dim_translator[dim_numbers.output_batch_dimension()] = dim_count; new_dim_numbers.set_output_batch_dimension(dim_count++); } dim_translator[dim_numbers.output_spatial_dimensions(j)] = dim_count; new_dim_numbers.set_output_spatial_dimensions(j, dim_count); dim_count++; } dim_translator[dim_numbers.output_feature_dimension()] = dim_count; new_dim_numbers.set_output_feature_dimension(dim_count); int p = 0; for (const auto& entry : dim_translator) { transpose_dims[p] = entry.second; p++; } VLOG(1) << "New dim numbers " << new_dim_numbers.DebugString() << " batch dim " << new_dim_numbers.input_batch_dimension(); auto new_window = convolution->window(); const int64_t first_dim = GetFirstChosenSpatialDim(convolution); for (int i = 0; i < ctrl_.count_of_dimensions_to_convert; ++i) { new_window.mutable_dimensions(first_dim + i) ->set_padding_high(c.high_padding_for_conv); new_window.mutable_dimensions(first_dim + i) ->set_padding_low(c.low_padding_for_conv); } TF_ASSIGN_OR_RETURN( HloInstruction * new_conv, MakeConvolveHlo( activations, convolution->mutable_operand(1), convolution->feature_group_count(), convolution->batch_group_count(), new_window, new_dim_numbers, convolution->precision_config(), convolution->shape().element_type(), &convolution->metadata(), &convolution->frontend_attributes())); convolution->SetupDerivedInstruction(new_conv); batch_to_space_map_[convolution->mutable_operand(0)] = convolution->mutable_operand(0); VLOG(1) << "Space-to-batched convolution " << new_conv->ToString(); std::vector<int64_t> new_output_split_spatial_dims( ctrl_.count_of_dimensions_to_convert), old_output_split_spatial_dims(ctrl_.count_of_dimensions_to_convert); for (int i = 0; i < ctrl_.count_of_dimensions_to_convert; ++i) { old_output_split_spatial_dims[i] = dim_numbers.output_spatial_dimensions(first_dim + i); new_output_split_spatial_dims[i] = new_dim_numbers.output_spatial_dimensions(first_dim + i); } const int64_t output_batch_dim = new_dim_numbers.output_batch_dimension(); auto select_val = computation_->AddInstruction( HloInstruction::CreateConstant( LiteralUtil::Zero(new_conv->shape().element_type())), &convolution->metadata(), &convolution->frontend_attributes()); TF_ASSIGN_OR_RETURN( new_conv, SelectValidPortion(new_conv, original_conv, select_val, output_batch_dim, new_output_split_spatial_dims, dim_numbers.output_batch_dimension(), old_output_split_spatial_dims)); old_to_new_instrs_[original_conv] = new_conv; std::vector<int64_t> dim_map(kNumMappedDims); dim_map[DimMapper(SpaceToBatchDimMap::kBatch)] = dim_numbers.output_batch_dimension(); dim_map[DimMapper(SpaceToBatchDimMap::kFeature)] = dim_numbers.output_feature_dimension(); dim_map[DimMapper(SpaceToBatchDimMap::kSpace0)] = dim_numbers.output_spatial_dimensions( GetFirstChosenSpatialDim(convolution)); instr_to_dim_map_[original_conv] = dim_map; instr_to_dim_permute_map_[new_conv] = std::vector<int64_t>(transpose_dims); if (non_propagatable_instrs_.count(convolution) > 0) { non_propagatable_instrs_.erase(convolution); } TF_CHECK_OK(PropagateOnUsers(original_conv)); return absl::OkStatus(); } } absl::StatusOr<bool> SpaceToBatchConverter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { XLA_VLOG_LINES( 2, "SpaceToBatchConverter::Run(), before:\n" + module->ToString()); bool changed = false; for (auto* comp : module->MakeNonfusionComputations(execution_threads)) { ConvolutionVisitor visitor(ctrl_, comp); if (visitor.Run().value()) { changed = true; } VLOG(1) << "Done operating on computation"; } XLA_VLOG_LINES(2, "SpaceToBatchConverter::Run(), after:\n" + module->ToString()); return changed; } }
#include "xla/service/space_to_batch_converter.h" #include <memory> #include <string> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/types.h" namespace xla { namespace { using SpaceToBatchConverterTest = HloTestBase; namespace op = testing::opcode_matchers; TEST_F(SpaceToBatchConverterTest, SimpleBatch1) { std::string hlo_string = R"( HloModule module ENTRY computation { %p0 = bf16[1,258,258,32] parameter(0) %p1 = bf16[3,3,32,32] parameter(1) ROOT %convolution = bf16[1,256,256,32] convolution(%p0, %p1), window={size=3x3}, dim_labels=b01f_01io->b01f } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Transpose()); EXPECT_THAT(root->operand(0), op::Slice()); auto reshape = root->operand(0)->operand(0); EXPECT_THAT(reshape, op::Reshape()); auto previous_reshape = reshape->operand(0); EXPECT_THAT(previous_reshape, op::Reshape()); EXPECT_THAT(previous_reshape->operand(0)->operand(1), op::Convolution()); const int64_t batch_dim = previous_reshape->operand(0) ->operand(1) ->convolution_dimension_numbers() .output_batch_dimension(); EXPECT_GT(previous_reshape->operand(0)->shape().dimensions(batch_dim), 1); } TEST_F(SpaceToBatchConverterTest, SimpleBatch1ConvXpose) { std::string hlo_string = R"( HloModule module ENTRY computation { %p0 = bf16[1,258,258,32] parameter(0) %p1 = bf16[3,3,32,32] parameter(1) %convolution = bf16[1,256,256,32] convolution(%p0, %p1), window={size=3x3}, dim_labels=b01f_01io->b01f ROOT tr = bf16[1,256,256,32] transpose(%convolution), dimensions={0,2,1,3} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Transpose()); EXPECT_THAT(root->operand(0), op::Slice()); auto reshape = root->operand(0)->operand(0); EXPECT_THAT(reshape, op::Reshape()); auto previous_reshape = reshape->operand(0); EXPECT_THAT(previous_reshape, op::Reshape()); EXPECT_THAT(previous_reshape->operand(0), op::Select()); EXPECT_THAT(previous_reshape->operand(0)->operand(1), op::Convolution()); } TEST_F(SpaceToBatchConverterTest, SimpleBatch1WithReduceWindow) { std::string hlo_string = R"( HloModule module adder (lhs: bf16[], rhs: bf16[]) -> bf16[] { lhs = bf16[] parameter(0) rhs = bf16[] parameter(1) ROOT add = bf16[] add(lhs, rhs) } ENTRY computation { %p0 = bf16[1,258,258,32] parameter(0) %p1 = bf16[3,3,32,32] parameter(1) %convolution = bf16[1,256,256,32] convolution(%p0, %p1), window={size=3x3}, dim_labels=b01f_01io->b01f %constant = bf16[3] constant({1.0, 2.0, 3.0}) %tuple = (bf16[1,256,256,32], bf16[3])tuple(%convolution, %constant) ROOT %gte = bf16[1,256,256,32] get-tuple-element(%tuple), index=0 %gte2 = bf16[3]get-tuple-element(%tuple), index=1 %init = bf16[] constant(1.0) %reduce-window = bf16[3] reduce-window(bf16[3] %gte2, bf16[] %init), window={size=1}, to_apply=%adder } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); } TEST_F(SpaceToBatchConverterTest, SimpleBatch2) { std::string hlo_string = R"( HloModule module ENTRY computation { %p0 = bf16[2,258,258,32] parameter(0) %p1 = bf16[3,3,32,32] parameter(1) ROOT %convolution = bf16[2,256,256,32] convolution(%p0, %p1), window={size=3x3}, dim_labels=b01f_01io->b01f } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 1}); ASSERT_FALSE(converter.Run(module.get()).value()); } TEST_F(SpaceToBatchConverterTest, UnpropagatableOp) { std::string hlo_string = R"( HloModule module ENTRY comp { %reduce-window = bf16[1,76,76,64]{3,2,1,0} parameter(0) %convert.13 = bf16[3,3,64,64]{3,2,1,0} parameter(1) %convolution.1 = bf16[64,76,76,1]{0,2,1,3} convolution( %reduce-window, %convert.13), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->f01b ROOT custom-call.5079 = bf16[64,152,152,1]{0,2,1,3} custom-call(%convolution.1), custom_call_target="ResizeNearest" } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 1}); ASSERT_FALSE(converter.Run(module.get()).value()); } TEST_F(SpaceToBatchConverterTest, Batch1WithStrideAndPad) { std::string hlo_string = R"( HloModule module ENTRY computation { %p0 = bf16[1,224,224,3]{3,2,1,0} parameter(0) %p1 = bf16[7,7,3,64]{3,2,1,0} parameter(1) ROOT %convolution.3 = bf16[1,112,112,64]{3,2,1,0} convolution(%p0, %p1), window={size=7x7 stride=2x2 pad=3_3x3_3}, dim_labels=b01f_01io->b01f } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 4}); ASSERT_TRUE(converter.Run(module.get()).value()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Transpose()); EXPECT_THAT(root->operand(0), op::Slice()); auto reshape = root->operand(0)->operand(0); EXPECT_THAT(reshape, op::Reshape()); auto previous_reshape = reshape->operand(0); EXPECT_THAT(previous_reshape, op::Reshape()); EXPECT_THAT(previous_reshape->operand(0)->operand(1), op::Convolution()); const int64_t batch_dim = previous_reshape->operand(0) ->operand(1) ->convolution_dimension_numbers() .output_batch_dimension(); EXPECT_GT(previous_reshape->operand(0)->shape().dimensions(batch_dim), 4); } TEST_F(SpaceToBatchConverterTest, Batch1WithBaseDilation) { std::string hlo_string = R"( HloModule module ENTRY computation { %p2 = bf16[1,28,28,128]{3,0,2,1} parameter(0) %p3 = bf16[1,1,512,128]{3,2,1,0} parameter(1) ROOT %c = bf16[1,56,56,512]{3,0,2,1} convolution(%p2, %p3), window={size=1x1 pad=0_1x0_1 lhs_dilate=2x2 rhs_reversal=1x1}, dim_labels=b01f_01oi->b01f } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Transpose()); EXPECT_THAT(root->operand(0), op::Slice()); auto reshape = root->operand(0)->operand(0); EXPECT_THAT(reshape, op::Reshape()); auto previous_reshape = reshape->operand(0); EXPECT_THAT(previous_reshape, op::Reshape()); EXPECT_THAT(previous_reshape->operand(0)->operand(1), op::Convolution()); const int64_t batch_dim = previous_reshape->operand(0) ->operand(1) ->convolution_dimension_numbers() .output_batch_dimension(); EXPECT_GT(previous_reshape->operand(0)->shape().dimensions(batch_dim), 4); } TEST_F(SpaceToBatchConverterTest, PropagateThroughDot) { std::string hlo_string = R"( HloModule module ENTRY computation { %p0 = bf16[1,258,258,32] parameter(0) %p1 = bf16[3,3,32,32] parameter(1) %convolution = bf16[1,256,256,32] convolution(%p0, %p1), window={size=3x3}, dim_labels=b01f_01io->b01f %p2 = bf16[32,32] parameter(2) ROOT %dot.5010 = bf16[1,256,256,32] dot(%convolution, %p2), lhs_contracting_dims={3}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); } TEST_F(SpaceToBatchConverterTest, PropagateOnTrivialReduce) { std::string hlo_string = R"( HloModule module %region_1.37 (Arg_0.38: f32[], Arg_1.39: f32[]) -> f32[] { %Arg_0.38 = f32[] parameter(0) %Arg_1.39 = f32[] parameter(1) ROOT %add.40 = f32[] add(f32[] %Arg_0.38, f32[] %Arg_1.39) } ENTRY computation { %p0 = bf16[7,320,800,3]{3,2,1,0} parameter(0) %p1 = bf16[3,3,3,32]{3,2,1,0} parameter(1) %c = f32[7,160,400,32]{3,2,1,0} convolution( %p0, %p1), window={size=3x3 stride=2x2 pad=0_1x0_1}, dim_labels=b01f_01io->b01f %constant.5 = f32[] constant(0) ROOT %reduce.41 = f32[7,160,400]{2,1,0} reduce(%c, %constant.5), dimensions={3}, to_apply=%region_1.37 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Transpose()); EXPECT_THAT(root->operand(0)->operand(0)->operand(0)->operand(0), op::Reduce()); auto new_reduce = root->operand(0)->operand(0)->operand(0)->operand(0); EXPECT_EQ(new_reduce->shape().dimensions(1), 7 * 8); } TEST_F(SpaceToBatchConverterTest, DoNotPropagateOnTupleReduce) { std::string hlo_string = R"( HloModule module %minmax_func.2717 { %lhs_value.2718 = f32[] parameter(0) %rhs_value.2720 = f32[] parameter(2) %compare.2722 = pred[] compare(f32[] %lhs_value.2718, f32[] %rhs_value.2720), direction=GE %select.2723 = f32[] select(pred[] %compare.2722, f32[] %lhs_value.2718, f32[] %rhs_value.2720) %compare.2725 = pred[] compare(f32[] %lhs_value.2718, f32[] %rhs_value.2720), direction=EQ %lhs_index.2719 = f32[] parameter(1) %rhs_index.2721 = f32[] parameter(3) %minimum.2726 = f32[] minimum(f32[] %lhs_index.2719, f32[] %rhs_index.2721) %select.2724 = f32[] select(pred[] %compare.2722, f32[] %lhs_index.2719, f32[] %rhs_index.2721) %select.2727 = f32[] select(pred[] %compare.2725, f32[] %minimum.2726, f32[] %select.2724) ROOT %tuple.4 = (f32[], f32[]) tuple(f32[] %select.2723, f32[] %select.2727) } ENTRY computation { %p0 = bf16[7,320,800,3]{3,2,1,0} parameter(0) %p1 = bf16[3,3,3,32]{3,2,1,0} parameter(1) %c = f32[7,160,400,32]{3,2,1,0} convolution( %p0, %p1), window={size=3x3 stride=2x2 pad=0_1x0_1}, dim_labels=b01f_01io->b01f %constant.5 = f32[] constant(0) %constant.6 = f32[] constant(1) ROOT %reduce.36 = (f32[7,160,400]{2,1,0}, f32[7,160,400]{2,1,0}) reduce(%c, %c, %constant.5, %constant.6), dimensions={3}, to_apply=%minmax_func.2717 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Reduce()); } TEST_F(SpaceToBatchConverterTest, ReduceDegenerateDim) { std::string hlo_string = R"( HloModule module %region_42.4982 { %Arg_0.38 = f32[] parameter(0) %Arg_1.39 = f32[] parameter(1) ROOT %add.40 = f32[] add(f32[] %Arg_0.38, f32[] %Arg_1.39) } ENTRY computation { %p0 = f32[2,1,84,84,3]{4,3,2,1,0} parameter(0) %p1 = f32[3,3,3,3,32]{4,3,2,1,0} parameter(1) %constant.10559 = f32[] constant(0) %convolution.98 = f32[2,1,84,84,32]{4,3,2,1,0} convolution(%p0, %p1), window={size=3x3x3 pad=1_1x1_1x1_1}, dim_labels=b012f_012io->b012f ROOT %reduce.2606 = f32[2,84,84]{2,1,0} reduce(f32[2,1,84,84,32]{4,3,2,1,0} %convolution.98, f32[] %constant.10559), dimensions={1,4}, to_apply=%region_42.4982 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Transpose()); EXPECT_THAT(root->operand(0), op::Slice()); } TEST_F(SpaceToBatchConverterTest, PropagateOnReduce) { std::string hlo_string = R"( HloModule xla_computation_unknown.14 region_0.134 { Arg_0.135 = f32[] parameter(0) Arg_1.136 = f32[] parameter(1) ROOT add.137 = f32[] add(Arg_0.135, Arg_1.136) } ENTRY main.140 { p0 = bf16[1,512,32,128]{3,2,1,0} parameter(0) p1 = f32[3,3,128,128]{3,2,1,0} parameter(1) %convolution.755 = f32[1,512,32,128]{3,2,1,0} convolution(p0, p1), window={size=3x3 pad=1_1x1_1 rhs_reversal=1x1}, dim_labels=b01f_01oi->b01f %constant.19458 = f32[] constant(0) ROOT %reduce.1354 = f32[128]{0} reduce(%convolution.755, %constant.19458), dimensions={0,1,2}, to_apply=%region_0.134 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Reduce()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/space_to_batch_converter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/space_to_batch_converter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b5a9efe7-04e9-4757-ada9-15a588372915
cpp
tensorflow/tensorflow
host_offload_utils
tensorflow/core/profiler/utils/host_offload_utils.cc
third_party/xla/xla/service/host_offload_utils_test.cc
#include "tensorflow/core/profiler/utils/host_offload_utils.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <optional> #include <queue> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/log.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "xla/tsl/profiler/utils/timespan.h" #include "tensorflow/core/profiler/utils/trace_utils.h" #include "tensorflow/core/profiler/utils/xplane_builder.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_visitor.h" namespace tensorflow { namespace profiler { bool HostOffloadEventProcessor::IsHostOffloadOpName( const XEventVisitor& event) const { static constexpr absl::string_view keywords[] = {"copy-start", "copy-done", "dynamic-slice-start", "dynamic-slice-done", "dynamic-update-slice-start", "dynamic-update-slice-done"}; for (const auto& keyword : keywords) { if (absl::StrContains(event.DisplayName(), keyword) && absl::StrContains(event.Name(), host_memory_label_)) { return true; } } return false; } std::string HostOffloadEventProcessor::GetOffloadInstructionID( absl::string_view op_name) const { std::vector<std::string> op_name_vec = absl::StrSplit(op_name, '.'); if (op_name_vec.size() < 2) { return "0"; } return op_name_vec.back(); } std::string HostOffloadEventProcessor::GetOffloadInstructionName( absl::string_view op_name) const { std::string display_id = GetOffloadInstructionID(op_name); size_t startPos = op_name.find("-start"); size_t donePos = op_name.find("-done"); absl::string_view display_opname; if (startPos != absl::string_view::npos) { display_opname = op_name.substr(0, startPos); } else if (donePos != absl::string_view::npos) { display_opname = op_name.substr(0, donePos); } else { LOG(WARNING) << "Invalid op name: " << op_name; display_opname = op_name; } return absl::StrCat("offload-", display_opname, ".", display_id); } void HostOffloadEventProcessor::ProcessHostOffloadOpEvent( const XEventVisitor& event, std::optional<int64_t> group_id) { std::string display_opname = GetOffloadInstructionName(event.DisplayName()); auto [iter, inserted] = seen_events_.try_emplace(display_opname); std::queue<const XEventVisitor*>& events = iter->second; if (absl::StrContains(event.DisplayName(), "-start")) { events.push(&event); return; } else if (absl::StrContains(event.DisplayName(), "-done")) { if (events.empty()) { LOG(INFO) << "No corresponding start event found for " << event.DisplayName(); return; } const XEventVisitor* start_event = events.front(); events.pop(); tsl::profiler::Timespan event_span = tsl::profiler::Timespan::FromEndPoints( start_event->GetTimespan().begin_ps(), event.GetTimespan().end_ps()); int line_builder_index = -1; uint64_t minimum_end_time_frontier = event_span.begin_ps(); for (int i = 0; i < host_offload_op_line_builders_.size(); ++i) { if (host_offload_op_line_builders_[i].event_end_time_frontier_ns <= minimum_end_time_frontier) { line_builder_index = i; minimum_end_time_frontier = host_offload_op_line_builders_[i].event_end_time_frontier_ns; } } constexpr int kMaxHostOffloadOpLinesSize = kThreadIdHostOffloadOpEnd - kThreadIdHostOffloadOpStart + 1; if (line_builder_index == -1) { if (host_offload_op_line_builders_.size() < kMaxHostOffloadOpLinesSize) { XLineBuilder lb = plane_builder_->GetOrCreateLine( kThreadIdHostOffloadOpStart + host_offload_op_line_builders_.size()); lb.SetName(absl::StrFormat("%s row %d", kHostOffloadOpLineName, host_offload_op_line_builders_.size())); lb.SetTimestampNs(start_timestamp_ns_); host_offload_op_line_builders_.push_back( {std::move(lb), event_span.end_ps()}); } line_builder_index = host_offload_op_line_builders_.size() - 1; } host_offload_op_line_builders_[line_builder_index] .event_end_time_frontier_ns = std::max(host_offload_op_line_builders_[line_builder_index] .event_end_time_frontier_ns, event_span.end_ps()); XEventMetadata* host_offload_copy_metadata = plane_builder_->CreateEventMetadata(); host_offload_copy_metadata->set_display_name(display_opname); XEventBuilder event_builder = host_offload_op_line_builders_[line_builder_index] .line_builder.AddEvent(*host_offload_copy_metadata); event_builder.SetTimespan(event_span); const XStatMetadata& async_stat = *plane_builder_->GetOrCreateStatMetadata( GetStatTypeStr(StatType::kIsAsync)); event_builder.AddStatValue(async_stat, 1); } } } }
#include "xla/service/host_offload_utils.h" #include <string> #include <vector> #include <gtest/gtest.h> #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace host_offload_utils { namespace { class HostOffloadUtilsTest : public HloTestBase {}; TEST_F(HostOffloadUtilsTest, SimpleGetSuccessorsGetPredecessorsTest) { const std::string& hlo_string = R"( HloModule my_module ENTRY main { data_param = f32[1,2048,2048] parameter(0) index_param = s32[] parameter(1) constant_f32_0 = f32[] constant(0) constant_s32_0 = s32[] constant(0) broadcast = f32[2,2048,2048] broadcast(constant_f32_0), dimensions={} offload_custom_call = f32[1,2048,2048] custom-call(data_param), custom_call_target="MoveToHost" dynamic_update_slice = f32[2,2048,2048] dynamic-update-slice(broadcast, offload_custom_call, index_param, constant_s32_0, constant_s32_0) dynamic_slice = f32[1,2048,2048] dynamic-slice(dynamic_update_slice, index_param, constant_s32_0, constant_s32_0), dynamic_slice_sizes={1,2048,2048} ROOT load_custom_call = f32[1,2048,2048] custom-call(dynamic_slice), custom_call_target="MoveToDevice" } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* data_param = FindInstruction(module.get(), "data_param"); ASSERT_NE(data_param, nullptr); HloInstruction* offload_custom_call = FindInstruction(module.get(), "offload_custom_call"); ASSERT_NE(offload_custom_call, nullptr); TF_ASSERT_OK_AND_ASSIGN( std::vector<InstructionAndShapeIndex> succ, GetSuccessors(InstructionAndShapeIndex(data_param, {}))); std::vector<InstructionAndShapeIndex> expected_succ = { InstructionAndShapeIndex(offload_custom_call, {})}; EXPECT_EQ(succ, expected_succ); std::vector<InstructionAndShapeIndex> pred = GetPredecessors(InstructionAndShapeIndex(offload_custom_call, {})); std::vector<InstructionAndShapeIndex> expected_pred = { InstructionAndShapeIndex(data_param, {})}; EXPECT_EQ(pred, expected_pred); } TEST_F(HostOffloadUtilsTest, ComputationGetSuccessorsGetPredecessorsTest) { const std::string& hlo_string = R"( HloModule my_module other_computation { param_0 = f32[2048] parameter(0) param_1 = f32[2048] parameter(1) ROOT tuple = (f32[2048], f32[2048]) tuple(param_0, param_1) } ENTRY main { data_param = f32[2048] parameter(0) other_param = f32[2048] parameter(1) offload_custom_call = f32[2048] custom-call(data_param), custom_call_target="MoveToHost" call = (f32[2048], f32[2048]) call(offload_custom_call, other_param), to_apply=other_computation gte_0 = f32[2048] get-tuple-element(call), index=0 gte_1 = f32[2048] get-tuple-element(call), index=1 ROOT load_custom_call = f32[2048] custom-call(gte_0), custom_call_target="MoveToDevice" } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* call = FindInstruction(module.get(), "call"); ASSERT_NE(call, nullptr); HloInstruction* gte_0 = FindInstruction(module.get(), "gte_0"); ASSERT_NE(gte_0, nullptr); HloInstruction* tuple = FindInstruction(module.get(), "tuple"); ASSERT_NE(tuple, nullptr); TF_ASSERT_OK_AND_ASSIGN(std::vector<InstructionAndShapeIndex> succ, GetSuccessors(InstructionAndShapeIndex(call, {0}))); std::vector<InstructionAndShapeIndex> expected_succ = { InstructionAndShapeIndex(gte_0, {})}; EXPECT_EQ(succ, expected_succ); std::vector<InstructionAndShapeIndex> pred = GetPredecessors(InstructionAndShapeIndex(call, {0})); std::vector<InstructionAndShapeIndex> expected_pred = { InstructionAndShapeIndex(tuple, {0})}; EXPECT_EQ(pred, expected_pred); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/utils/host_offload_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/host_offload_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
824e9a92-d73e-40d9-bb47-186cbd4b9da5
cpp
tensorflow/tensorflow
host_memory_transfer_asyncifier
third_party/xla/xla/service/host_memory_transfer_asyncifier.cc
third_party/xla/xla/service/host_memory_transfer_asyncifier_test.cc
#include "xla/service/host_memory_transfer_asyncifier.h" #include <cstdint> #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class HostMemoryTransferAsyncifierVisitor : public DfsHloVisitorWithDefault { public: explicit HostMemoryTransferAsyncifierVisitor(int64_t host_memory_space_color) : kHostMemorySpaceColor(host_memory_space_color) {} bool Changed() const { return changed_; } absl::Status DefaultAction(HloInstruction* hlo_instruction) override { return absl::OkStatus(); } absl::Status HandleDynamicSlice(HloInstruction* dynamic_slice) override { HloInstruction* dynamic_slice_operand = dynamic_slice->mutable_operand(0); if (!dynamic_slice->shape().has_layout()) { return InternalStrCat(dynamic_slice->name(), " does not have a layout."); } if (!dynamic_slice_operand->shape().has_layout()) { return InternalStrCat(dynamic_slice->name(), "'s operand, ", dynamic_slice_operand->name(), ", does not have a layout."); } VLOG(3) << absl::StreamFormat( "\"%s\" from S(%d) to S(%d)", dynamic_slice->name(), dynamic_slice_operand->shape().layout().memory_space(), dynamic_slice->shape().layout().memory_space()); if (dynamic_slice_operand->shape().layout().memory_space() != kHostMemorySpaceColor) { return absl::OkStatus(); } if (dynamic_slice->shape().layout().memory_space() != xla::Layout::kDefaultMemorySpace) { return absl::OkStatus(); } const Shape context_shape = ShapeUtil::MakeScalarShape(U32); const Shape transfer_bytes_shape = ShapeUtil::MakeScalarShape(S32); TF_ASSIGN_OR_RETURN( HloInstruction * async_done, dynamic_slice->parent()->CreateAsyncInstructions( dynamic_slice, {context_shape, transfer_bytes_shape})); VLOG(1) << "DynamicSlice \"" << dynamic_slice->ToString() << "\" is slicing from host memory. Converting to async " << async_done->ToString(); MarkAsChanged(); return absl::OkStatus(); } absl::Status HandleDynamicUpdateSlice( HloInstruction* dynamic_update_slice) override { HloInstruction* dynamic_update_slice_operand = dynamic_update_slice->mutable_operand(0); HloInstruction* dynamic_update_slice_update = dynamic_update_slice->mutable_operand(1); if (!dynamic_update_slice->shape().has_layout()) { return InternalStrCat(dynamic_update_slice->name(), " does not have a layout."); } if (!dynamic_update_slice_operand->shape().has_layout()) { return InternalStrCat(dynamic_update_slice->name(), "'s operand, ", dynamic_update_slice_operand->name(), ", does not have a layout."); } if (!dynamic_update_slice_update->shape().has_layout()) { return InternalStrCat(dynamic_update_slice->name(), "'s update, ", dynamic_update_slice_update->name(), ", does not have a layout."); } if (dynamic_update_slice_update->shape().layout().memory_space() != xla::Layout::kDefaultMemorySpace) { return absl::OkStatus(); } if (dynamic_update_slice->shape().layout().memory_space() != kHostMemorySpaceColor) { return absl::OkStatus(); } if (dynamic_update_slice_operand->shape().layout().memory_space() != dynamic_update_slice->shape().layout().memory_space()) { return InternalStrCat( "Unexpected that ", dynamic_update_slice_operand->name(), "'s memory space is not the same as the dynamic-update-slice."); } const Shape context_shape = ShapeUtil::MakeScalarShape(U32); TF_ASSIGN_OR_RETURN(HloInstruction * async_done, dynamic_update_slice->parent()->CreateAsyncInstructions( dynamic_update_slice, {context_shape})); VLOG(1) << "DynamicUpdateSlice \"" << dynamic_update_slice->ToString() << "\" is slicing into host memory space. Converting to async " << async_done->ToString(); MarkAsChanged(); return absl::OkStatus(); } absl::Status HandleCopy(HloInstruction* copy) override { HloInstruction* operand = copy->mutable_operand(0); if (!operand->shape().has_layout()) { return InternalStrCat(operand->name(), " does not have a layout."); } if (!copy->shape().has_layout()) { return InternalStrCat(copy->name(), " does not have a layout."); } const auto copy_src_memory_space = operand->shape().layout().memory_space(); const auto copy_dst_memory_space = copy->shape().layout().memory_space(); if (!((copy_src_memory_space == kHostMemorySpaceColor && copy_dst_memory_space == xla::Layout::kDefaultMemorySpace) || (copy_src_memory_space == xla::Layout::kDefaultMemorySpace && copy_dst_memory_space == kHostMemorySpaceColor))) { VLOG(2) << "Skipping copy because it is not a copy between device memory and " "host memory: " << copy->ToString(); return absl::OkStatus(); } const Shape context_shape = ShapeUtil::MakeScalarShape(U32); TF_ASSIGN_OR_RETURN( HloInstruction * async_done, copy->parent()->CreateAsyncInstructions(copy, {context_shape})); VLOG(1) << "Copy \"" << copy->name() << "\" is between device and host memory space. Converting to async " << async_done->ToString(); MarkAsChanged(); return absl::OkStatus(); } private: const int64_t kHostMemorySpaceColor; bool changed_ = false; void MarkAsChanged() { changed_ = true; } }; } absl::StatusOr<bool> HostMemoryTransferAsyncifier::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { HostMemoryTransferAsyncifierVisitor visitor(kHostMemorySpaceColor); for (HloComputation* computation : module->MakeNonfusionComputations()) { TF_RETURN_IF_ERROR(computation->Accept(&visitor)); } return visitor.Changed(); } }
#include "xla/service/host_memory_transfer_asyncifier.h" #include <cstdint> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace m = ::xla::match; class HostMemoryTransferAsyncifierTest : public HloTestBase { protected: absl::StatusOr<bool> RunAsyncifier(absl::string_view hlo_string) { TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSIGN_OR_RETURN(bool changed, RunAsyncifier(module.get())); return changed; } absl::StatusOr<bool> RunAsyncifier(HloModule* module) { TF_EXPECT_OK(verifier().Run(module).status()); if (module->has_schedule()) { return absl::InternalError("Expected a non-scheduled module"); } HostMemoryTransferAsyncifier asyncifier(kHostMemorySpaceColor); return asyncifier.Run(module); } private: static constexpr int64_t kHostMemorySpaceColor{5}; }; TEST_F(HostMemoryTransferAsyncifierTest, DynamicUpdateSliceFromHostToHost) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { host_operand = f32[32,1,1]{2,1,0:T(2,128)S(5)} parameter(0) host_update = f32[1,1,1]{2,1,0:T(2,128)S(5)} parameter(1) constant_0 = s32[] constant(0) ROOT dynamic-update-slice = f32[32,1,1]{2,1,0:T(2,128)S(5)} dynamic-update-slice(host_operand, host_update, constant_0, constant_0, constant_0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::DynamicUpdateSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, DynamicUpdateSliceFromDeviceToDevice) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { operand = f32[32,1,1]{2,1,0:T(2,128)} parameter(0) update = f32[1,1,1]{2,1,0:T(2,128)} parameter(1) constant_0 = s32[] constant(0) ROOT dynamic-update-slice = f32[32,1,1]{2,1,0:T(2,128)} dynamic-update-slice(operand, update, constant_0, constant_0, constant_0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::DynamicUpdateSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, DynamicUpdateSliceFromHostToDevice) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { operand = f32[32,1,1]{2,1,0:T(2,128)} parameter(0) host_update = f32[1,1,1]{2,1,0:T(2,128)S(5)} parameter(1) constant_0 = s32[] constant(0) ROOT dynamic-update-slice = f32[32,1,1]{2,1,0:T(2,128)} dynamic-update-slice(operand, host_update, constant_0, constant_0, constant_0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::DynamicUpdateSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, DynamicUpdateSliceFromDeviceToHost) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { host_operand = f32[32,1,1]{2,1,0:T(2,128)S(5)} parameter(0) update = f32[1,1,1]{2,1,0:T(2,128)} parameter(1) constant_0 = s32[] constant(0) ROOT dynamic-update-slice = f32[32,1,1]{2,1,0:T(2,128)S(5)} dynamic-update-slice(host_operand, update, constant_0, constant_0, constant_0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_TRUE(changed); HloInstruction* dynamic_update_slice_start; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Op() .WithOpcode(HloOpcode::kAsyncDone) .WithOperand(0, m::Op(&dynamic_update_slice_start) .WithOpcode(HloOpcode::kAsyncStart)))); ASSERT_EQ(dynamic_update_slice_start->called_computations().size(), 1); HloComputation* async_dynamic_slice_computation = dynamic_update_slice_start->called_computations().at(0); EXPECT_THAT(async_dynamic_slice_computation->root_instruction(), GmockMatch(m::DynamicUpdateSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, DynamicSliceFromHostToHost) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { host_memory = f32[32,1,1]{2,1,0:T(2,128)S(5)} parameter(0) constant_0 = s32[] constant(0) ROOT dynamic-slice = f32[1,1,1]{2,1,0:T(2,128)S(5)} dynamic-slice(host_memory, constant_0, constant_0, constant_0), dynamic_slice_sizes={1,1,1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::DynamicSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, DynamicSliceFromDeviceToDevice) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { device = f32[32,1,1]{2,1,0:T(2,128)} parameter(0) constant_0 = s32[] constant(0) ROOT dynamic-slice = f32[1,1,1]{2,1,0:T(2,128)} dynamic-slice(device, constant_0, constant_0, constant_0), dynamic_slice_sizes={1,1,1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::DynamicSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, DynamicSliceFromDeviceToHost) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { device = f32[32,1,1]{2,1,0:T(2,128)} parameter(0) constant_0 = s32[] constant(0) ROOT dynamic-slice = f32[1,1,1]{2,1,0:T(2,128)S(5)} dynamic-slice(device, constant_0, constant_0, constant_0), dynamic_slice_sizes={1,1,1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::DynamicSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, DynamicSliceFromHostToDevice) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { host_memory = f32[32,1,1]{2,1,0:T(2,128)S(5)} parameter(0) constant_0 = s32[] constant(0) ROOT dynamic-slice = f32[1,1,1]{2,1,0:T(2,128)} dynamic-slice(host_memory, constant_0, constant_0, constant_0), dynamic_slice_sizes={1,1,1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_TRUE(changed); HloInstruction* dynamic_slice_start; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Op() .WithOpcode(HloOpcode::kAsyncDone) .WithOperand(0, m::Op(&dynamic_slice_start) .WithOpcode(HloOpcode::kAsyncStart)))); ASSERT_EQ(dynamic_slice_start->called_computations().size(), 1); HloComputation* async_dynamic_slice_computation = dynamic_slice_start->called_computations().at(0); EXPECT_THAT(async_dynamic_slice_computation->root_instruction(), GmockMatch(m::DynamicSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, CopyFromHostToHost) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { host_memory = f32[32,1,1]{2,1,0:T(2,128)S(5)} parameter(0) ROOT copy = f32[32,1,1]{2,1,0:T(2,128)S(5)} copy(host_memory) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Copy())); } TEST_F(HostMemoryTransferAsyncifierTest, CopyFromDeviceToDevice) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { device = f32[32,1,1]{2,1,0:T(2,128)} parameter(0) ROOT copy = f32[32,1,1]{2,1,0:T(2,128)} copy(device) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Copy())); } TEST_F(HostMemoryTransferAsyncifierTest, DISABLED_CopyFromDeviceToHost) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { device = f32[32,1,1]{2,1,0:T(2,128)} parameter(0) ROOT copy = f32[32,1,1]{2,1,0:T(2,128)S(5)} copy(device) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_TRUE(changed); HloInstruction* copy_start; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Op() .WithOpcode(HloOpcode::kAsyncDone) .WithOperand( 0, m::Op(&copy_start).WithOpcode(HloOpcode::kAsyncStart)))); ASSERT_EQ(copy_start->called_computations().size(), 1); HloComputation* async_copy_computation = copy_start->called_computations().at(0); EXPECT_THAT(async_copy_computation->root_instruction(), GmockMatch(m::Copy())); } TEST_F(HostMemoryTransferAsyncifierTest, OldCopyFromDeviceToHost) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { device = f32[32,1,1]{2,1,0:T(2,128)} parameter(0) ROOT copy = f32[32,1,1]{2,1,0:T(2,128)S(5)} copy(device) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_TRUE(changed); HloInstruction* copy_start; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Op() .WithOpcode(HloOpcode::kCopyDone) .WithOperand( 0, m::Op(&copy_start).WithOpcode(HloOpcode::kCopyStart)))); } TEST_F(HostMemoryTransferAsyncifierTest, DISABLED_CopyFromHostToDevice) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { host_memory = f32[32,1,1]{2,1,0:T(2,128)S(5)} parameter(0) ROOT copy = f32[32,1,1]{2,1,0:T(2,128)} copy(host_memory) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_TRUE(changed); HloInstruction* copy_start; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Op() .WithOpcode(HloOpcode::kAsyncDone) .WithOperand( 0, m::Op(&copy_start).WithOpcode(HloOpcode::kAsyncStart)))); ASSERT_EQ(copy_start->called_computations().size(), 1); HloComputation* async_copy_computation = copy_start->called_computations().at(0); EXPECT_THAT(async_copy_computation->root_instruction(), GmockMatch(m::Copy())); } TEST_F(HostMemoryTransferAsyncifierTest, OldCopyFromHostToDevice) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { host_memory = f32[32,1,1]{2,1,0:T(2,128)S(5)} parameter(0) ROOT copy = f32[32,1,1]{2,1,0:T(2,128)} copy(host_memory) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_TRUE(changed); HloInstruction* copy_start; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Op() .WithOpcode(HloOpcode::kCopyDone) .WithOperand( 0, m::Op(&copy_start).WithOpcode(HloOpcode::kCopyStart)))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/host_memory_transfer_asyncifier.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/host_memory_transfer_asyncifier_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8d39f7fb-274f-498c-acfb-4154cac83495
cpp
tensorflow/tensorflow
stream_pool
third_party/xla/xla/service/stream_pool.cc
third_party/xla/xla/service/stream_pool_test.cc
#include "xla/service/stream_pool.h" #include <memory> #include <utility> #include "absl/strings/str_format.h" namespace xla { StreamPool::Ptr StreamPool::BorrowStream(se::StreamPriority priority) { std::unique_ptr<se::Stream> stream; { absl::MutexLock lock(&mu_); if (streams_with_pri_.find(priority) == streams_with_pri_.end()) { stream = nullptr; } else { while (!streams_with_pri_[priority].empty() && !stream) { stream = std::move(streams_with_pri_[priority].back()); streams_with_pri_[priority].pop_back(); if (stream->ok()) { VLOG(1) << absl::StrFormat( "StreamPool reusing existing stream (%p) with priority: %s", stream.get(), se::StreamPriorityToString(priority)); } else { VLOG(1) << absl::StrFormat( "Stream (%p) was not ok, deleting with : %s", stream.get(), se::StreamPriorityToString(priority)); stream = nullptr; } } } } if (!stream) { stream = executor_->CreateStream(priority).value(); stream->set_name(absl::StrFormat("%s pool stream", se::StreamPriorityToString(priority))); VLOG(1) << absl::StrFormat("Created new stream (%p) with priority = %s", stream.get(), se::StreamPriorityToString(priority)); } PtrDeleter deleter = {this}; return Ptr(stream.release(), deleter); } void StreamPool::ReturnStream(se::Stream* stream) { if (stream->ok()) { VLOG(1) << absl::StrFormat("StreamPool returning ok stream (%p)", stream); absl::MutexLock lock(&mu_); auto priority = std::get<se::StreamPriority>(stream->priority()); streams_with_pri_[priority].emplace_back(stream); } else { VLOG(1) << absl::StrFormat("StreamPool deleting !ok stream (%p)", stream); delete stream; } } }
#include "xla/service/stream_pool.h" #include <memory> #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream_executor.h" #include "xla/test_helpers.h" namespace xla { namespace { class StreamPoolTest : public ::testing::Test { protected: se::StreamExecutor* NewStreamExecutor() { se::Platform* platform = se::PlatformManager::PlatformWithName("Host").value(); return platform->ExecutorForDevice(0).value(); } }; TEST_F(StreamPoolTest, EmptyPool) { se::StreamExecutor* executor = NewStreamExecutor(); StreamPool pool(executor); } TEST_F(StreamPoolTest, OneStreamPool) { se::StreamExecutor* executor = NewStreamExecutor(); StreamPool pool(executor); StreamPool::Ptr stream1 = pool.BorrowStream(); se::Stream* stream1_ptr = stream1.get(); EXPECT_TRUE(stream1->ok()); stream1 = nullptr; StreamPool::Ptr stream2 = pool.BorrowStream(); se::Stream* stream2_ptr = stream2.get(); EXPECT_TRUE(stream2->ok()); stream2 = nullptr; EXPECT_EQ(stream1_ptr, stream2_ptr); } TEST_F(StreamPoolTest, TwoStreamPool) { se::StreamExecutor* executor = NewStreamExecutor(); StreamPool pool(executor); StreamPool::Ptr stream1 = pool.BorrowStream(); se::Stream* stream1_ptr = stream1.get(); EXPECT_TRUE(stream1->ok()); StreamPool::Ptr stream2 = pool.BorrowStream(); se::Stream* stream2_ptr = stream2.get(); EXPECT_TRUE(stream2->ok()); EXPECT_NE(stream1_ptr, stream2_ptr); stream1 = nullptr; StreamPool::Ptr stream3 = pool.BorrowStream(); se::Stream* stream3_ptr = stream3.get(); EXPECT_TRUE(stream3->ok()); EXPECT_EQ(stream1_ptr, stream3_ptr); EXPECT_NE(stream2_ptr, stream3_ptr); stream2 = nullptr; StreamPool::Ptr stream4 = pool.BorrowStream(); se::Stream* stream4_ptr = stream4.get(); EXPECT_TRUE(stream4->ok()); EXPECT_EQ(stream2_ptr, stream4_ptr); EXPECT_NE(stream3_ptr, stream4_ptr); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/stream_pool.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/stream_pool_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3896e059-52e8-44fa-aa37-6d162956acdf
cpp
tensorflow/tensorflow
hlo_rematerialization
third_party/xla/xla/service/hlo_rematerialization.cc
third_party/xla/xla/service/hlo_rematerialization_test.cc
#include "xla/service/hlo_rematerialization.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <iterator> #include <limits> #include <memory> #include <optional> #include <set> #include <string> #include <string_view> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/layout_util.h" #include "xla/map_util.h" #include "xla/service/call_graph.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/hlo_dce.h" #include "xla/service/logical_buffer.h" #include "xla/service/tuple_points_to_analysis.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/numbers.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using ::tsl::strings::HumanReadableNumBytes; bool IsRematerializable(const HloInstruction* instruction) { if (instruction->opcode() == HloOpcode::kCopy) { if (LayoutUtil::Equal(instruction->shape().layout(), instruction->operand(0)->shape().layout())) { return false; } } if (auto collective = DynCast<HloCollectiveInstruction>(instruction)) { return !collective->constrain_layout(); } switch (instruction->opcode()) { case HloOpcode::kCall: case HloOpcode::kConstant: case HloOpcode::kConditional: case HloOpcode::kCustomCall: case HloOpcode::kParameter: case HloOpcode::kWhile: return false; default: return !instruction->HasSideEffect(); } } bool CanBeRematerialized( const HloInstruction* instruction, absl::flat_hash_map<const HloInstruction*, bool>* rematerializable_map) { auto it = rematerializable_map->find(instruction); if (it != rematerializable_map->end()) { return it->second; } bool rematerializable = IsRematerializable(instruction); (*rematerializable_map)[instruction] = rematerializable; return rematerializable; } bool IsSupportedIndirectUser(const HloInstruction* instruction) { return instruction->opcode() == HloOpcode::kBitcast || instruction->opcode() == HloOpcode::kGetTupleElement; } using BufferId = int64_t; using BufferIdList = absl::InlinedVector<BufferId, 3>; struct RematStrategy { enum { kRecompute, kCompress, kHostOffload, } kind; Shape compact_shape; }; struct Item { HloInstruction* instruction; bool placed = false; bool denylisted = false; BufferIdList buffers_defined; BufferIdList buffers_output; BufferIdList buffers_used; bool is_skip_node = false; private: friend class InstructionList; Item* next = nullptr; Item* prev = nullptr; Item* prev_skip_node = nullptr; Item* next_skip_node = nullptr; int64_t position; }; struct ItemUse { Item* user; int64_t operand_number; std::optional<int64_t> index; ItemUse(Item* user, int64_t op_num, std::optional<int64_t> index) : user(user), operand_number(op_num), index(index) {} bool operator==(const ItemUse& other) const { return user == other.user && operand_number == other.operand_number && index == other.index; } }; using ItemList = absl::InlinedVector<Item*, 3>; using UsesList = absl::InlinedVector<ItemUse, 3>; class InstructionList { public: explicit InstructionList(const HloInstructionSequence& order) { int64_t position = 0; Item* last = nullptr; last_skip_node_ = nullptr; first_skip_node_ = nullptr; for (HloInstruction* inst : order.instructions()) { Item* item = new Item; item->next = nullptr; item->prev = last; if (last == nullptr) { first_ = item; } else { last->next = item; } last = item; item->instruction = inst; item->position = position; position++; item_map_[inst] = item; } } ~InstructionList() { for (Item* item = first_; item != nullptr;) { Item* next = item->next; delete item; item = next; } } size_t size() const { return item_map_.size(); } Item* first() const { return first_; } Item* next(Item* item) const { return item->next; } const Item* next(const Item* item) const { return item->next; } Item* prev(Item* item) const { return item->prev; } const Item* prev(const Item* item) const { return item->prev; } Item* first_skip_node() const { return first_skip_node_; } Item* next_skip_node(Item* item) const { return item->next_skip_node; } Item* CreateItem(HloInstruction* inst) { Item* item = new Item; item->instruction = inst; CHECK(item_map_.insert({inst, item}).second) << "inserting inst twice " << inst->name(); return item; } Item* GetItem(const HloInstruction* inst) const { auto iter = item_map_.find(inst); CHECK(iter != item_map_.end()) << "Did not find " << inst->name(); return iter->second; } void InsertBeforeInstructions(Item* to_insert, absl::Span<Item* const> before_instructions) { VLOG(3) << "InsertBeforeInstructions: " << to_insert->instruction->name() << " before {" << absl::StrJoin(before_instructions, ", ", [](std::string* out, Item* item) { absl::StrAppend(out, item->instruction->name()); }) << "}"; CHECK(!before_instructions.empty()); Item* min_position_item = nullptr; for (Item* item : before_instructions) { if (min_position_item == nullptr || item->position < min_position_item->position) { min_position_item = item; } } while (min_position_item->prev != nullptr && min_position_item->position == min_position_item->prev->position) { min_position_item = min_position_item->prev; } while (!absl::c_linear_search(before_instructions, min_position_item)) { min_position_item = min_position_item->next; } return InsertBefore(to_insert, min_position_item); } void PromoteNodesToSkip(absl::FunctionRef<bool(Item*)> should_promote) { int64_t count = 0; for (auto* item = first(); item != nullptr; item = next(item)) { if (should_promote(item)) { count += 1; if (first_skip_node_ == nullptr) { first_skip_node_ = item; } item->is_skip_node = true; item->prev_skip_node = last_skip_node_; if (last_skip_node_ != nullptr) { last_skip_node_->next_skip_node = item; } last_skip_node_ = item; } } VLOG(1) << " Rematerialization has " << count << " items in express lane"; } void InsertAfterInstructions(Item* to_insert, absl::Span<Item* const> after_instructions) { VLOG(3) << "InsertAfterInstructions: " << to_insert->instruction->name() << " after {" << absl::StrJoin(after_instructions, ", ", [](std::string* out, Item* item) { absl::StrAppend(out, item->instruction->name()); }) << "}"; CHECK(!after_instructions.empty()); Item* max_position_item = nullptr; for (Item* item : after_instructions) { if (max_position_item == nullptr || item->position > max_position_item->position) { max_position_item = item; } } CHECK(max_position_item->next != nullptr); InsertBeforeInstructions(to_insert, {max_position_item->next}); } void Denylist(const HloInstruction* inst) { GetItem(inst)->denylisted = true; } private: void InsertBefore(Item* item, Item* before) { VLOG(3) << "InsertBefore: " << item->instruction->name() << " before " << before->instruction->name(); item->is_skip_node = true; Item* cursor = before; while (cursor != nullptr && !cursor->is_skip_node) { cursor = cursor->next; } CHECK(cursor == nullptr || cursor->is_skip_node); if (cursor == nullptr) { item->prev_skip_node = last_skip_node_; item->next_skip_node = nullptr; last_skip_node_ = item; } else { CHECK(cursor->is_skip_node); item->prev_skip_node = cursor->prev_skip_node; if (item->prev_skip_node != nullptr) { item->prev_skip_node->next_skip_node = item; } item->next_skip_node = cursor; cursor->prev_skip_node = item; } if (first_skip_node_ == cursor) { first_skip_node_ = item; } item->prev = before->prev; item->next = before; before->prev = item; if (item->prev != nullptr) { item->prev->next = item; } else { first_ = item; } item->position = before->position; } Item* first_; Item* first_skip_node_; Item* last_skip_node_; absl::flat_hash_map<const HloInstruction*, Item*> item_map_; }; UsesList GetUsers(const InstructionList& instruction_list, const LogicalBuffer* logical_buffer, const TuplePointsToAnalysis& points_to_analysis, bool* has_indirect_users) { UsesList users; *has_indirect_users = false; for (const BufferAlias& buffer_alias : points_to_analysis.GetBufferAliases(*logical_buffer)) { for (const HloInstruction* user : buffer_alias.instruction()->users()) { if (points_to_analysis.DoesNotUseOperandBuffer( buffer_alias.instruction(), buffer_alias.index(), user)) { continue; } if (buffer_alias.instruction() != logical_buffer->instruction() && !IsSupportedIndirectUser(buffer_alias.instruction())) { *has_indirect_users = true; } Item* user_item = instruction_list.GetItem(user); std::optional<int64_t> user_index = logical_buffer->index().size() != 1 ? std::nullopt : std::make_optional(logical_buffer->index().back()); for (int64_t op_idx : user->OperandIndices(buffer_alias.instruction())) { if (!absl::c_linear_search( users, ItemUse{user_item, static_cast<int>(op_idx), user_index})) { users.push_back( ItemUse{user_item, static_cast<int>(op_idx), user_index}); } } } } return users; } class MemoryUsageTracker { public: MemoryUsageTracker(const HloRematerialization::Options& options, const HloComputation* computation, const TuplePointsToAnalysis& points_to_analysis, const InstructionList& instruction_list); absl::Status BeginInstruction(Item* item); int64_t RematerializationCost(const std::vector<Item*>& items, int64_t memory_reduced, int64_t memory_limit_bytes) const { bool zero_cost_move = true; for (auto* item : items) { auto* instruction = item->instruction; if (absl::c_any_of( instruction->users(), [this](const HloInstruction* inst) { return IsPlaced(inst); })) { zero_cost_move = false; break; } } if (zero_cost_move) { return 0; } CHECK_GT(memory_reduced, 0); return memory_limit_bytes / memory_reduced; } absl::Status EndInstruction(); int64_t MemoryReducedIfCompressed(const Item* item, const Shape& compact_shape) const; int64_t MemoryReducedIfRematerialized( absl::Span<const Item* const> items) const; absl::Status AddCompressInstructions(Item* original_item, Item* compressed_item, Item* uncompressed_item); absl::Status AddRematerializedInstruction(Item* original_item, Item* remat_item, absl::Span<Item*> indirect_users); std::tuple<UsesList, UsesList> GetPlacedAndUnplacedUsers( const UsesList& uses) const; public: absl::Status AddHostOffloadCopyInstructions(Item* original_item, Item* copy_start_to_host_item, Item* copy_done_to_host_item, Item* copy_start_to_device_item, Item* copy_done_to_device_item); int64_t BytesUsedByBuffers(const Item* item, bool only_count_unplaced_users) const; std::optional<int64_t> GetCostOfCompression(const Item* candidate_item, int64_t memory_limit_bytes, int64_t peak_memory_bytes); std::optional<int64_t> GetCostOfHostOffload(const Item* candidate_item, int64_t memory_limit_bytes) const; std::optional<int64_t> GetCostOfRecompute( const std::vector<Item*>& candidate_items, int64_t memory_limit_bytes) const; std::tuple<std::vector<Item*>, RematStrategy, int> PickRematerializationCandidates( const InstructionList& instruction_list, int64_t memory_limit_bytes, absl::flat_hash_map<const HloInstruction*, bool>* rematerializable_map, int min_block_size, int max_block_size, int64_t peak_memory_bytes); bool IsPlaced(const HloInstruction* instruction) const { return instruction_list_.GetItem(instruction)->placed; } bool HasUnplacedUsers(Item* item) const; UsesList GetItemUses(Item* item) const; bool IsInProgressItem(Item* item) const { return item == in_progress_item_; } int64_t memory_usage() const { return memory_usage_; } int64_t AllocatedSize(Item* item) const { int64_t size = 0; for (auto buffer_id : item->buffers_defined) { size += AllocatedSize(buffer_id); } return size; } const HloComputation* computation() const { return computation_; } const HloRematerialization::Options& options() const { return options_; } bool Check() const; std::string ToString() const; private: struct Buffer { const BufferId id; Item* defining_instruction; const int64_t size; Shape shape; bool live_out; bool has_indirect_uses; ShapeIndex index; UsesList users; int64_t unfinished_user_count; std::string ToString() const { return absl::StrCat("Buffer ", id, " (defined by ", defining_instruction->instruction->name(), ", size ", size, " bytes)"); } }; void CountAllocatedMemory(Item* item); absl::Status CountFreedMemory(Item* item); void ReplaceUsesInUsersOfBuffer(Buffer& buffer, BufferId old_id) const; absl::StatusOr<const Shape*> GetCompactShape(const HloInstruction* hlo); Buffer& CreateBufferFromLogicalBuffer( const LogicalBuffer* logical_buffer, const TuplePointsToAnalysis& points_to_analysis, bool live_out) { bool has_indirect_uses = false; UsesList users = GetUsers(instruction_list_, logical_buffer, points_to_analysis, &has_indirect_uses); return NewBuffer(instruction_list_.GetItem(logical_buffer->instruction()), logical_buffer->shape(), logical_buffer->index(), std::move(users), live_out, has_indirect_uses); } Buffer& RematerializeBuffer(const Buffer& original_buffer, Item* remat_item, UsesList&& rematerialized_uses) { CHECK(original_buffer.defining_instruction->placed) << original_buffer.defining_instruction->instruction->name(); CHECK(!original_buffer.has_indirect_uses) << original_buffer.ToString(); CHECK(!original_buffer.live_out) << original_buffer.ToString(); for (ItemUse& use : rematerialized_uses) { CHECK(!use.user->placed) << use.user->instruction->name(); } return NewBuffer(remat_item, original_buffer.shape, original_buffer.index, std::move(rematerialized_uses), false, false); } int64_t AllocatedSize(BufferId buffer_id) const { const Buffer& buffer = buffers_.at(buffer_id); HloInstruction* inst = buffer.defining_instruction->instruction; HloOpcode def_opcode = inst->opcode(); if (buffer.live_out || def_opcode == HloOpcode::kParameter) { return 0; } else { if (options_.host_memory_offload_config && buffer.shape.has_layout() && buffer.shape.layout().memory_space() == options_.host_memory_offload_config->host_memory_space) { return 0; } return buffer.size; } } bool IsFinished(Item* item) const { return item->placed && item != in_progress_item_; } bool IsInUse(BufferId buffer_id) const { if (in_progress_item_ == nullptr) { return false; } const BufferIdList& in_progress_uses = in_progress_item_->buffers_used; return absl::c_linear_search(in_progress_uses, buffer_id); } bool IsCurrentlyLive(BufferId buffer_id) const { const Buffer& buffer = buffers_[buffer_id]; return (buffer.defining_instruction->placed && buffer.unfinished_user_count > 0); } bool IsInstructionCurrentlyLive(const Item* instruction) const { if (!IsPlaced(instruction->instruction)) { return false; } for (const HloInstruction* user : instruction->instruction->users()) { if (!IsPlaced(user)) { return true; } } return false; } Buffer& NewBuffer(Item* defining_instruction, const Shape& shape, const ShapeIndex& index, UsesList&& uses, bool live_out, bool has_indirect_uses) { int buffer_id = buffers_.size(); auto get_num_of_unique_users = [](const UsesList& uses) -> int64_t { absl::flat_hash_set<Item*> users_set; for (const ItemUse& use : uses) { users_set.insert(use.user); } return users_set.size(); }; buffers_.push_back(Buffer{buffer_id, defining_instruction, options_.hlo_cost_analysis.GetShapeSize(shape), shape, live_out, has_indirect_uses, index, uses, get_num_of_unique_users(uses)}); return buffers_.back(); } const HloRematerialization::Options& options_; const HloComputation* computation_; const InstructionList& instruction_list_; absl::flat_hash_map<const HloInstruction*, Shape> compact_shape_; int64_t memory_usage_ = 0; Item* in_progress_item_ = nullptr; std::vector<Buffer> buffers_; }; MemoryUsageTracker::MemoryUsageTracker( const HloRematerialization::Options& options, const HloComputation* computation, const TuplePointsToAnalysis& points_to_analysis, const InstructionList& instruction_list) : options_(options), computation_(computation), instruction_list_(instruction_list) { PointsToSet::BufferSet live_out_set = points_to_analysis.GetPointsToSet(computation_->root_instruction()) .CreateFlattenedSet(); absl::flat_hash_map<const LogicalBuffer*, BufferId> logical_buffer_to_buffer_id; for (auto* item = instruction_list_.first(); item != nullptr; item = instruction_list_.next(item)) { const HloInstruction* const instruction = item->instruction; for (const LogicalBuffer* logical_buffer : points_to_analysis.GetBuffersDefinedByInstruction(instruction)) { Buffer* buffer; if (instruction->opcode() == HloOpcode::kWhile) { const PointsToSet& operand_points_to = points_to_analysis.GetPointsToSet(instruction->operand(0)); CHECK_EQ(operand_points_to.element(logical_buffer->index()).size(), 1); const LogicalBuffer* source_logical_buffer = operand_points_to.element(logical_buffer->index())[0]; buffer = &buffers_.at(logical_buffer_to_buffer_id.at(source_logical_buffer)); buffer->has_indirect_uses = true; buffer->live_out = buffer->live_out || ContainsKey(live_out_set, logical_buffer); bool unused; for (ItemUse& user_item : GetUsers(instruction_list_, logical_buffer, points_to_analysis, &unused)) { auto existing_user_it = absl::c_find_if( buffer->users, [&](const ItemUse& use) { return user_item.user == use.user; }); if (existing_user_it == buffer->users.end()) { buffer->unfinished_user_count++; user_item.user->buffers_used.push_back(buffer->id); buffer->users.push_back(user_item); } } } else { buffer = &CreateBufferFromLogicalBuffer( logical_buffer, points_to_analysis, ContainsKey(live_out_set, logical_buffer)); item->buffers_defined.push_back(buffer->id); for (ItemUse& user : buffer->users) { if (!absl::c_linear_search(user.user->buffers_used, buffer->id)) { user.user->buffers_used.push_back(buffer->id); } } } logical_buffer_to_buffer_id[logical_buffer] = buffer->id; } for (const LogicalBuffer* logical_buffer : points_to_analysis.GetPointsToSet(instruction).CreateFlattenedSet()) { item->buffers_output.push_back( logical_buffer_to_buffer_id[logical_buffer]); } } XLA_VLOG_LINES(10, ToString()); DCHECK(Check()); } void MemoryUsageTracker::CountAllocatedMemory(Item* item) { for (BufferId buffer_id : item->buffers_defined) { VLOG(3) << " Buffer " << buffers_.at(buffer_id).ToString() << " is now live."; memory_usage_ += AllocatedSize(buffer_id); } } absl::Status MemoryUsageTracker::CountFreedMemory(Item* item) { for (BufferId buffer_id : item->buffers_used) { Buffer& buffer = buffers_.at(buffer_id); buffer.unfinished_user_count--; TF_RET_CHECK(buffer.unfinished_user_count >= 0) << buffer.ToString() << " has negative unfinished user count."; if (buffer.unfinished_user_count == 0) { VLOG(3) << " " << buffer.ToString() << " is now dead."; memory_usage_ -= AllocatedSize(buffer_id); } } for (BufferId buffer_id : item->buffers_defined) { const Buffer& buffer = buffers_.at(buffer_id); if (buffer.unfinished_user_count == 0) { VLOG(3) << " " << buffer.ToString() << " is immediately dead."; memory_usage_ -= AllocatedSize(buffer_id); } } return absl::OkStatus(); } absl::Status MemoryUsageTracker::BeginInstruction(Item* item) { const HloInstruction* instruction = item->instruction; VLOG(3) << "BeginInstruction " << instruction->name(); TF_RET_CHECK(in_progress_item_ == nullptr); in_progress_item_ = item; item->placed = true; CountAllocatedMemory(item); VLOG(3) << " memory usage = " << memory_usage_; VLOG(10) << ToString(); if (VLOG_IS_ON(1)) { DCHECK(Check()); } return absl::OkStatus(); } absl::Status MemoryUsageTracker::EndInstruction() { TF_RET_CHECK(in_progress_item_ != nullptr); VLOG(3) << "EndInstruction " << in_progress_item_->instruction->name(); TF_RETURN_IF_ERROR(CountFreedMemory(in_progress_item_)); in_progress_item_ = nullptr; VLOG(3) << " memory usage = " << memory_usage_; VLOG(10) << ToString(); if (VLOG_IS_ON(1)) { DCHECK(Check()); } return absl::OkStatus(); } int64_t MemoryUsageTracker::MemoryReducedIfCompressed( const Item* item, const Shape& compact_shape) const { CHECK_NE(in_progress_item_, nullptr); if (!item->placed || item == in_progress_item_) { return 0; } int64_t memory_reduced = 0; CHECK_EQ(item->buffers_output.size(), 1); BufferId buffer_id = item->buffers_output[0]; if (IsCurrentlyLive(buffer_id) && !IsInUse(buffer_id) && IsInstructionCurrentlyLive(item)) { const Buffer& buffer = buffers_.at(buffer_id); memory_reduced += buffer.size; int64_t compact_shape_size = options_.hlo_cost_analysis.GetShapeSize(compact_shape); memory_reduced -= compact_shape_size; } return memory_reduced; } int64_t MemoryUsageTracker::MemoryReducedIfRematerialized( absl::Span<const Item* const> items) const { CHECK_NE(in_progress_item_, nullptr); int64_t memory_reduced = 0; absl::flat_hash_set<const Item*> remat_candidates; for (const Item* item : items) { if (!item->placed || item == in_progress_item_) { LOG(WARNING) << "Unplaced item or in progress item being checked for " "rematerialization."; return 0; } for (BufferId buffer_id : item->buffers_defined) { const Buffer& buffer = buffers_.at(buffer_id); if (buffer.has_indirect_uses || buffer.live_out || buffer.index.size() > 1) { return 0; } if (IsInUse(buffer_id)) { return 0; } if (IsCurrentlyLive(buffer_id)) { memory_reduced += AllocatedSize(buffer_id); } } for (BufferId buffer_id : item->buffers_used) { if (!IsCurrentlyLive(buffer_id)) { Item* defining_instruction = buffers_.at(buffer_id).defining_instruction; if (!remat_candidates.contains(defining_instruction)) { memory_reduced -= AllocatedSize(buffer_id); } } } remat_candidates.insert(item); } return memory_reduced; } std::tuple<UsesList, UsesList> MemoryUsageTracker::GetPlacedAndUnplacedUsers( const UsesList& uses) const { UsesList placed_users, unplaced_users; for (const ItemUse& use : uses) { if (use.user->placed) { DCHECK(IsFinished(use.user)) << use.user->instruction->name(); placed_users.push_back(use); } else { unplaced_users.push_back(use); } } return {placed_users, unplaced_users}; } void MemoryUsageTracker::ReplaceUsesInUsersOfBuffer(Buffer& buffer, BufferId old_id) const { for (ItemUse& use : buffer.users) { BufferIdList& buffers_used = use.user->buffers_used; absl::c_replace(buffers_used, old_id, buffer.id); } } absl::Status MemoryUsageTracker::AddCompressInstructions( Item* original_item, Item* compressed_item, Item* uncompressed_item) { CHECK(original_item->placed) << "Compressing instruction, but the original is not yet placed."; CHECK_EQ(original_item->buffers_output.size(), 1) << "Only compressing items which have a single output buffer"; memory_usage_ -= options_.hlo_cost_analysis.GetShapeSize( original_item->instruction->shape()); memory_usage_ += options_.hlo_cost_analysis.GetShapeSize( compressed_item->instruction->shape()); BufferId original_buffer_id = original_item->buffers_output[0]; Buffer& original_buffer = buffers_.at(original_buffer_id); auto [placed_users, unplaced_users] = GetPlacedAndUnplacedUsers(original_buffer.users); original_buffer.users = std::move(placed_users); original_buffer.unfinished_user_count = 0; original_buffer.users.push_back(ItemUse{compressed_item, 0, std::nullopt}); ShapeIndex copied_index = original_buffer.index; Buffer& compressed_buffer = NewBuffer(compressed_item, compressed_item->instruction->shape(), copied_index, {ItemUse{uncompressed_item, 0, std::nullopt}}, false, false); compressed_item->buffers_used = original_item->buffers_output; compressed_item->buffers_output = {compressed_buffer.id}; compressed_item->buffers_defined.push_back(compressed_buffer.id); Buffer& uncompressed_buffer = NewBuffer(uncompressed_item, uncompressed_item->instruction->shape(), copied_index, std::move(unplaced_users), false, false); uncompressed_item->buffers_used = {compressed_item->buffers_output[0]}; uncompressed_item->buffers_output = {uncompressed_buffer.id}; uncompressed_item->buffers_defined = {uncompressed_buffer.id}; ReplaceUsesInUsersOfBuffer(uncompressed_buffer, original_buffer_id); return absl::OkStatus(); } absl::Status MemoryUsageTracker::AddRematerializedInstruction( Item* original_item, Item* remat_item, absl::Span<Item*> indirect_users) { VLOG(3) << "AddRematerializedInstruction: original_instruction = " << original_item->instruction->name() << ", remat_instruction = " << remat_item->instruction->name(); TF_RET_CHECK(in_progress_item_ != nullptr); TF_RET_CHECK(original_item->placed) << original_item->instruction->name(); TF_RET_CHECK(!remat_item->placed) << remat_item->instruction->name(); remat_item->buffers_used = original_item->buffers_used; for (BufferId buffer_id : original_item->buffers_used) { Buffer& buffer = buffers_.at(buffer_id); if (buffer.unfinished_user_count == 0) { memory_usage_ += AllocatedSize(buffer.id); } buffer.unfinished_user_count++; absl::InlinedVector<ItemUse, 2> filtered_users; std::copy_if(buffer.users.begin(), buffer.users.end(), std::back_inserter(filtered_users), [&](const ItemUse& iu) { return iu.user == original_item; }); for (ItemUse& u : filtered_users) { buffer.users.push_back(ItemUse{remat_item, u.operand_number, u.index}); } } const absl::flat_hash_set<Item*> indirect_users_set(indirect_users.begin(), indirect_users.end()); for (BufferId old_buffer_id : original_item->buffers_defined) { Buffer& old_buffer = buffers_.at(old_buffer_id); UsesList placed_users; UsesList unplaced_users; for (ItemUse& user : old_buffer.users) { if (user.user->placed) { placed_users.push_back(user); } else { if (!IsSupportedIndirectUser(user.user->instruction) || indirect_users_set.contains(user.user)) { unplaced_users.push_back(user); } else { CHECK(user.user->buffers_defined.empty()) << "Buffers defined expected to be empty for use passthrough " "instructions"; user.user->buffers_output.clear(); user.user->buffers_used.clear(); } } } old_buffer.users = std::move(placed_users); old_buffer.unfinished_user_count = 0; memory_usage_ -= AllocatedSize(old_buffer.id); Buffer& new_buffer = RematerializeBuffer(old_buffer, remat_item, std::move(unplaced_users)); remat_item->buffers_defined.push_back(new_buffer.id); remat_item->buffers_output.push_back(new_buffer.id); auto update_buffers = [old_buffer_id, new_buffer_id = new_buffer.id]( BufferIdList& to_update) { std::replace(to_update.begin(), to_update.end(), old_buffer_id, new_buffer_id); }; for (ItemUse& user : new_buffer.users) { update_buffers(user.user->buffers_used); update_buffers(user.user->buffers_output); } } for (Item* indirect_user : indirect_users) { const Item* source_item = instruction_list_.GetItem(indirect_user->instruction->operand(0)); switch (indirect_user->instruction->opcode()) { case HloOpcode::kBitcast: { if (IsSupportedIndirectUser(source_item->instruction)) { indirect_user->buffers_used = source_item->buffers_output; indirect_user->buffers_output = source_item->buffers_output; } else { indirect_user->buffers_used = source_item->buffers_defined; indirect_user->buffers_output = source_item->buffers_defined; } break; } case HloOpcode::kGetTupleElement: { const HloGetTupleElementInstruction* gte = Cast<HloGetTupleElementInstruction>(indirect_user->instruction); for (BufferId buffer_id : source_item->buffers_defined) { const Buffer& def_buffer = buffers_.at(buffer_id); if (def_buffer.index == ShapeIndex{gte->tuple_index()}) { indirect_user->buffers_output.push_back(buffer_id); } if (def_buffer.index.empty()) { indirect_user->buffers_used.push_back(buffer_id); } } break; } default: { LOG(FATAL) << "Unsupported indirect instruction with opcode " << indirect_user->instruction->opcode(); break; } } for (BufferId buffer_id : indirect_user->buffers_used) { Buffer& buffer = buffers_.at(buffer_id); buffer.unfinished_user_count++; buffer.users.push_back(ItemUse{indirect_user, 0, std::nullopt}); } } VLOG(3) << " memory usage = " << memory_usage_; XLA_VLOG_LINES(10, ToString()); DCHECK(Check()); return absl::OkStatus(); } absl::Status MemoryUsageTracker::AddHostOffloadCopyInstructions( Item* original_item, Item* copy_start_to_host_item, Item* copy_done_to_host_item, Item* copy_start_to_device_item, Item* copy_done_to_device_item) { CHECK_EQ(original_item->buffers_defined.size(), 1); CHECK_EQ(original_item->buffers_output.size(), 1); BufferId original_buffer_id = original_item->buffers_output[0]; Buffer& original_buffer = buffers_.at(original_buffer_id); auto [placed_users, unplaced_users] = GetPlacedAndUnplacedUsers(original_buffer.users); original_buffer.users = std::move(placed_users); original_buffer.users.emplace_back(copy_start_to_host_item, 0, std::nullopt); original_buffer.unfinished_user_count = 1; CHECK_EQ(copy_start_to_host_item->instruction->shape().tuple_shapes_size(), 3) << "copy_start_to_host_item's shape is " << copy_start_to_host_item->instruction->shape().ToString(); CHECK_EQ(copy_start_to_device_item->instruction->shape().tuple_shapes_size(), 3) << "copy_start_to_device_item's shape is " << copy_start_to_device_item->instruction->shape().ToString(); BufferId copy_start_to_host_device_buffer_id = NewBuffer(copy_start_to_host_item, copy_start_to_host_item->instruction->shape().tuple_shapes(1), ShapeIndex(), UsesList{ItemUse{copy_done_to_host_item, 0, std::nullopt}}, false, false) .id; BufferId copy_start_to_host_context_buffer_id = NewBuffer(copy_start_to_host_item, copy_start_to_host_item->instruction->shape().tuple_shapes(2), ShapeIndex(), UsesList{ItemUse{copy_done_to_host_item, 0, std::nullopt}}, false, false) .id; BufferId copy_start_to_device_device_buffer_id = NewBuffer(copy_start_to_device_item, copy_start_to_device_item->instruction->shape().tuple_shapes(0), ShapeIndex(), UsesList{ItemUse{copy_done_to_device_item, 0, std::nullopt}}, false, false) .id; BufferId copy_start_to_device_context_buffer_id = NewBuffer(copy_start_to_device_item, copy_start_to_device_item->instruction->shape().tuple_shapes(2), ShapeIndex(), UsesList{ItemUse{copy_done_to_device_item, 0, std::nullopt}}, false, false) .id; BufferId copy_done_to_device_buffer_id = NewBuffer(copy_done_to_device_item, copy_done_to_device_item->instruction->shape(), ShapeIndex(), std::move(unplaced_users), false, false) .id; copy_start_to_host_item->buffers_used = original_item->buffers_output; copy_start_to_host_item->buffers_output = { copy_start_to_host_device_buffer_id, copy_start_to_host_context_buffer_id}; copy_start_to_host_item->buffers_defined = { copy_start_to_host_device_buffer_id, copy_start_to_host_context_buffer_id}; copy_done_to_host_item->buffers_used = copy_start_to_host_item->buffers_output; copy_done_to_host_item->buffers_output = {}; copy_done_to_host_item->buffers_defined = {}; copy_start_to_device_item->buffers_used = copy_done_to_host_item->buffers_output; copy_start_to_device_item->buffers_output = { copy_start_to_device_device_buffer_id, copy_start_to_device_context_buffer_id}; copy_start_to_device_item->buffers_defined = { copy_start_to_device_device_buffer_id, copy_start_to_device_context_buffer_id}; copy_done_to_device_item->buffers_used = copy_start_to_device_item->buffers_output; copy_done_to_device_item->buffers_output = {copy_done_to_device_buffer_id}; copy_done_to_device_item->buffers_defined = {copy_done_to_device_buffer_id}; Buffer& copy_done_to_device_buffer = buffers_.at(copy_done_to_device_buffer_id); ReplaceUsesInUsersOfBuffer(copy_done_to_device_buffer, original_buffer_id); if (copy_start_to_host_item->placed) { CountAllocatedMemory(copy_start_to_host_item); TF_RETURN_IF_ERROR(CountFreedMemory(copy_start_to_host_item)); if (copy_done_to_host_item->placed) { CountAllocatedMemory(copy_done_to_host_item); TF_RETURN_IF_ERROR(CountFreedMemory(copy_done_to_host_item)); if (copy_start_to_device_item->placed) { CountAllocatedMemory(copy_start_to_device_item); TF_RETURN_IF_ERROR(CountFreedMemory(copy_start_to_device_item)); if (copy_done_to_device_item->placed) { CountAllocatedMemory(copy_done_to_device_item); TF_RETURN_IF_ERROR(CountFreedMemory(copy_done_to_device_item)); } } } } return absl::OkStatus(); } std::string MemoryUsageTracker::ToString() const { std::string output = absl::StrCat("MemoryUsageTracker for ", computation_->name(), "\n"); absl::StrAppend(&output, "Memory usage: ", HumanReadableNumBytes(memory_usage()), " (", memory_usage(), " bytes)"); for (auto* item = instruction_list_.first(); item != nullptr; item = instruction_list_.next(item)) { const HloInstruction* instruction = item->instruction; absl::string_view inprogress = item == in_progress_item_ ? " in-progress" : ""; absl::string_view placed = item->placed ? " placed" : ""; absl::StrAppend(&output, " ", instruction->name(), inprogress, placed, "\n Defines:\n"); for (BufferId buffer_id : item->buffers_defined) { const Buffer& buffer = buffers_[buffer_id]; absl::string_view live = IsCurrentlyLive(buffer_id) ? " live" : ""; absl::StrAppend(&output, " ", buffer.ToString(), live, ", ", buffer.unfinished_user_count, " unfinished uses\n"); } absl::StrAppend(&output, " Outputs:\n"); for (BufferId buffer_id : item->buffers_output) { absl::StrAppend(&output, " ", buffers_[buffer_id].ToString(), "\n"); } absl::StrAppend(&output, " Uses:\n"); for (BufferId buffer_id : item->buffers_used) { absl::StrAppend(&output, " ", buffers_[buffer_id].ToString(), "\n"); } } return output; } absl::StatusOr<const Shape*> MemoryUsageTracker::GetCompactShape( const HloInstruction* hlo) { auto it = compact_shape_.find(hlo); if (it != compact_shape_.end()) { return &it->second; } const Shape& original_shape = hlo->shape(); TF_ASSIGN_OR_RETURN(Shape min_shape, options_.compact_shape_function(original_shape)); return &compact_shape_.emplace(hlo, min_shape).first->second; } bool MemoryUsageTracker::Check() const { auto elements_are_unique = [](const BufferIdList& vec) { return vec.size() == std::set<BufferId>(vec.begin(), vec.end()).size(); }; for (auto* instruction : computation_->instructions()) { const BufferIdList& defined_buffers = instruction_list_.GetItem(instruction)->buffers_defined; CHECK(elements_are_unique(defined_buffers)) << "Instruction " << instruction->name() << " does not have unique defined buffers: " << absl::StrJoin(defined_buffers, ", ", [this](std::string* out, BufferId buffer_id) { absl::StrAppend(out, buffers_.at(buffer_id).ToString()); }); for (const Buffer& buffer : buffers_) { if (buffer.defining_instruction->instruction == instruction) { CHECK(absl::c_linear_search(defined_buffers, buffer.id)) << "Instruction " << instruction->name() << " defined buffers is missing: " << buffer.ToString(); } } } for (auto* instruction : computation_->instructions()) { const BufferIdList& used_buffers = instruction_list_.GetItem(instruction)->buffers_used; CHECK(elements_are_unique(used_buffers)) << "Instruction " << instruction->name() << " does not have unique used buffers: " << absl::StrJoin(used_buffers, ", ", [this](std::string* out, BufferId buffer_id) { absl::StrAppend(out, buffers_.at(buffer_id).ToString()); }); } for (const Buffer& buffer : buffers_) { int64_t unfinished_uses = 0; absl::flat_hash_set<Item*> already_counted_user; for (const ItemUse& user : buffer.users) { const BufferIdList& used_buffers = user.user->buffers_used; CHECK(absl::c_linear_search(used_buffers, buffer.id)) << "Instruction " << user.user->instruction->name() << " used buffers is missing " << buffer.ToString(); if (!IsFinished(user.user) && already_counted_user.insert(user.user).second) { unfinished_uses++; } } CHECK_EQ(buffer.unfinished_user_count, unfinished_uses) << "Incorrect unplaced use count for " << buffer.ToString(); } return true; } std::vector<Item*> GetInitialBlock(const InstructionList& instruction_list, const MemoryUsageTracker& tracker, Item* start_item, int min_block_size) { std::vector<Item*> item_block; Item* curr_item = start_item; for (int i = 0; i < min_block_size; ++i) { if (curr_item == nullptr || !curr_item->placed || tracker.IsInProgressItem(curr_item)) { break; } item_block.push_back(curr_item); curr_item = instruction_list.next(curr_item); } return item_block; } bool AnyDenylistedOrNonRematerializable( const std::vector<Item*>& block, absl::flat_hash_map<const HloInstruction*, bool>* rematerializable_map) { for (auto* item : block) { if (item->denylisted) { return true; } if (!CanBeRematerialized(item->instruction, rematerializable_map)) { return true; } } return false; } int64_t MemoryUsageTracker::BytesUsedByBuffers( const Item* item, bool only_count_unplaced_users) const { int64_t bytes_used_by_buffers = 0; for (const auto& buffer_id : item->buffers_defined) { VLOG(3) << " buffer " << buffer_id << "'s users are " << absl::StrJoin(buffers_.at(buffer_id).users, ", ", [](std::string* str, const auto& use) { str->append(use.user->instruction->name()); }); for (const auto& use : buffers_.at(buffer_id).users) { if (!only_count_unplaced_users || !use.user->placed) { bytes_used_by_buffers += AllocatedSize(buffer_id); break; } } } return bytes_used_by_buffers; } std::optional<int64_t> MemoryUsageTracker::GetCostOfCompression( const Item* candidate_item, int64_t memory_limit_bytes, int64_t peak_memory_bytes) { CHECK(candidate_item != nullptr); if (candidate_item->buffers_output.size() != 1) { HloInstruction* candidate_instruction = candidate_item->instruction; VLOG(2) << " " << candidate_instruction->name() << " has more than one output buffer; cannot offload to host."; return {}; } const Buffer& output_buffer = buffers_.at(candidate_item->buffers_output[0]); if (!candidate_item->placed || candidate_item == in_progress_item_ || output_buffer.live_out) { return {}; } const Shape& original_shape = candidate_item->instruction->shape(); if (!original_shape.IsArray()) { return {}; } const Shape* compact_shape = GetCompactShape(candidate_item->instruction).value(); const int64_t memory_reduced = MemoryReducedIfCompressed(candidate_item, *compact_shape); const int64_t size = options_.hlo_cost_analysis.GetShapeSize( candidate_item->instruction->shape()); const int64_t reduced_size = options_.hlo_cost_analysis.GetShapeSize(*compact_shape); if (memory_reduced > 0 && size + reduced_size < peak_memory_bytes) { return memory_limit_bytes / memory_reduced; } else { return {}; } } std::optional<int64_t> MemoryUsageTracker::GetCostOfHostOffload( const Item* candidate_item, int64_t memory_limit_bytes) const { CHECK(candidate_item != nullptr); HloInstruction* candidate_instruction = candidate_item->instruction; VLOG(2) << "Considering host offload as an option for remat. looking at instr " << candidate_instruction->name(); if (candidate_item->buffers_output.size() != 1) { VLOG(2) << " " << candidate_instruction->name() << " has more than one output buffer; cannot offload to host."; return {}; } for (auto buffer_id : candidate_item->buffers_defined) { for (auto use : buffers_.at(buffer_id).users) { if (use.user->instruction->opcode() == HloOpcode::kBitcast) { VLOG(3) << " " << candidate_item->instruction->name() << " has a user which is a bitcast instruction(" << use.user->instruction->name() << "); cannot offload " "to host."; return {}; } else if (use.user->instruction->opcode() == HloOpcode::kTuple) { VLOG(3) << " " << candidate_item->instruction->name() << " has a user which is a tuple instruction(" << use.user->instruction->name() << "); cannot offload " "to host."; return {}; } } } const Buffer& output_buffer = buffers_.at(candidate_item->buffers_output[0]); if (!candidate_item->placed || candidate_item == in_progress_item_ || output_buffer.live_out) { VLOG(2) << " " << candidate_instruction->name() << " is not yet placed, is in progress, or is \"live_out\"; cannot " "offload to host."; return {}; } const bool current_instruction_uses_this_item = [&]() { if (in_progress_item_ == nullptr) { return false; } const auto& output_buffer_ids = candidate_item->buffers_output; for (const auto& output_buffer_id : output_buffer_ids) { const Buffer& output_buffer = buffers_.at(output_buffer_id); for (const auto& use : output_buffer.users) { if (use.user == in_progress_item_) { return true; } } } return false; }(); if (current_instruction_uses_this_item) { VLOG(2) << " " << candidate_instruction->name() << " is used by the current instruction in mem tracker (" << in_progress_item_->instruction->name() << "); cannot offload to host."; return {}; } const int64_t bytes_used_by_buffers = BytesUsedByBuffers(candidate_item, true); if (bytes_used_by_buffers == 0) { VLOG(2) << " " << candidate_instruction->name() << " consumes no memory; no point in offloading."; return {}; } const auto [placed_uses, unplaced_uses] = GetPlacedAndUnplacedUsers(output_buffer.users); const Item* last_placed_user = nullptr; const Item* first_unplaced_user = nullptr; for (const auto* item = instruction_list_.first(); item != nullptr; item = instruction_list_.next(item)) { if (absl::c_find_if(placed_uses, [&](const auto& use) { return use.user == item; }) != placed_uses.end()) { last_placed_user = item; } if (first_unplaced_user == nullptr && absl::c_find_if(unplaced_uses, [&](const auto& use) { return use.user == item; }) != unplaced_uses.end()) { first_unplaced_user = item; break; } } if (last_placed_user == nullptr) { VLOG(3) << " " << candidate_instruction->name() << " has no placed users, starting search at self."; last_placed_user = candidate_item; } CHECK(first_unplaced_user != nullptr) << "Didn't find any unplaced user for instruction \"" << candidate_instruction->name() << "\". There must be a " "bug in how we calculate how much memory this item uses."; float time_spent_before_next_use = 0.0; for (auto* item = last_placed_user; item != first_unplaced_user; item = instruction_list_.next(item)) { time_spent_before_next_use += std::max( 0.0f, options_.hlo_cost_analysis.optimal_seconds(*item->instruction)); } if (time_spent_before_next_use <= 0.0) { return {}; } const float time_spent_on_copies = bytes_used_by_buffers / options_.host_memory_offload_config ->bandwidth_to_host_bytes_per_second + bytes_used_by_buffers / options_.host_memory_offload_config ->bandwidth_from_host_bytes_per_second; if (time_spent_before_next_use < time_spent_on_copies) { return {}; } VLOG(3) << " " << candidate_instruction->name() << " has enough time (" << time_spent_before_next_use << ") between itself and next use. The memcpy out and back will take " << time_spent_on_copies << "s"; return memory_limit_bytes / bytes_used_by_buffers; } std::optional<int64_t> MemoryUsageTracker::GetCostOfRecompute( const std::vector<Item*>& candidate_items, int64_t memory_limit_bytes) const { for (auto* item : candidate_items) { HloInstruction* candidate = item->instruction; if (std::any_of( candidate->control_successors().begin(), candidate->control_successors().end(), [this](const HloInstruction* inst) { return IsPlaced(inst); })) { return {}; } } VLOG(5) << "Block contains:"; for (auto* hlo : candidate_items) { VLOG(5) << hlo->instruction->name(); } const int64_t memory_reduced = MemoryReducedIfRematerialized(candidate_items); if (memory_reduced <= 0) { return {}; } return RematerializationCost(candidate_items, memory_reduced, memory_limit_bytes); } std::tuple<std::vector<Item*>, RematStrategy, int> MemoryUsageTracker::PickRematerializationCandidates( const InstructionList& instruction_list, int64_t memory_limit_bytes, absl::flat_hash_map<const HloInstruction*, bool>* rematerializable_map, int min_block_size, int max_block_size, int64_t peak_memory_bytes) { std::vector<Item*> best_items; int64_t best_cost = std::numeric_limits<int64_t>::max(); RematStrategy best_strategy; int effort = 0; VLOG(5) << "Picking candidate block with size in [" << min_block_size << ", " << max_block_size << "]"; for (auto* start_item = instruction_list.first_skip_node(); start_item != nullptr; start_item = instruction_list.next_skip_node(start_item)) { std::vector<Item*> block = GetInitialBlock(instruction_list, *this, start_item, min_block_size); if (block.size() < min_block_size) { break; } if (AnyDenylistedOrNonRematerializable(block, rematerializable_map)) { continue; } if (options_.remat_mode_config.compress && block.size() == 1) { auto cost = GetCostOfCompression(block[0], memory_limit_bytes, peak_memory_bytes); ++effort; if (cost && *cost < best_cost) { VLOG(1) << "Found new best cost; from " << best_cost << " to " << *cost << " with strategy kCompress on block of size " << block.size(); best_strategy.kind = RematStrategy::kCompress; best_strategy.compact_shape = *GetCompactShape(block[0]->instruction).value(); best_items = block; best_cost = *cost; } } if (options_.remat_mode_config.host_offload && block.size() == 1) { auto cost = GetCostOfHostOffload(block[0], memory_limit_bytes); ++effort; if (cost && *cost < best_cost) { VLOG(1) << "Found new best cost; from " << best_cost << " to " << *cost << " with strategy kHostOffload on block of size " << block.size(); best_strategy.kind = RematStrategy::kHostOffload; best_items = block; best_cost = *cost; } } if (!options_.remat_mode_config.recompute) { continue; } while (block.size() <= max_block_size) { auto cost = GetCostOfRecompute(block, memory_limit_bytes); ++effort; if (cost && *cost < best_cost) { VLOG(1) << "Found new best cost; from " << best_cost << " to " << *cost << " with strategy kRecompute on block of size " << block.size(); best_strategy.kind = RematStrategy::kRecompute; best_items = block; best_cost = *cost; } auto* last_item = block[block.size() - 1]; auto* next_item = instruction_list.next(last_item); if (next_item == nullptr || next_item->denylisted || !next_item->placed || next_item == in_progress_item_ || !CanBeRematerialized(next_item->instruction, rematerializable_map)) { break; } block.push_back(next_item); } } return {best_items, best_strategy, effort}; } bool MemoryUsageTracker::HasUnplacedUsers(Item* item) const { for (BufferId buffer_id : item->buffers_defined) { const Buffer& buffer = buffers_.at(buffer_id); for (const ItemUse& user : buffer.users) { if (!user.user->placed) { return true; } } } return false; } UsesList MemoryUsageTracker::GetItemUses(Item* item) const { UsesList combined_users; for (BufferId buffer_id : item->buffers_defined) { const Buffer& buffer = buffers_.at(buffer_id); for (const ItemUse& user : buffer.users) { combined_users.push_back(user); } } return combined_users; } absl::StatusOr<int64_t> RematerializeInstructions( MemoryUsageTracker* memory_tracker, std::vector<Item*>* best_items, absl::flat_hash_set<const HloInstruction*>* remat_move_instructions, InstructionList* instruction_list, HloSchedule* schedule, HloRematerialization* rematerialization) { int64_t net_instructions_added = 0; std::vector<std::string> instruction_names(best_items->size()); for (int i = best_items->size() - 1; i >= 0; --i) { Item* best_item = (*best_items)[i]; HloInstruction* best = best_item->instruction; instruction_names[i] = best->name(); HloComputation* computation = best->parent(); if (!memory_tracker->HasUnplacedUsers(best_item)) { continue; } HloCloneContext context(computation->parent()); HloInstruction* remat = computation->AddInstruction(best->Clone("remat", &context)); for (auto& cloned_computation_pair : context.cloned_computations()) { if (!schedule->is_computation_scheduled(cloned_computation_pair.first)) { continue; } HloInstructionSequence& sequence = schedule->GetOrCreateSequence(cloned_computation_pair.second); HloInstructionSequence& old_sequence = schedule->GetOrCreateSequence(cloned_computation_pair.first); for (HloInstruction* instr : old_sequence.instructions()) { sequence.push_back(instr); } } if (DynCast<HloChannelInstruction>(best) && DynCast<HloChannelInstruction>(best)->channel_id()) { remat->set_channel_id(rematerialization->NextChannelId()); } TF_RETURN_IF_ERROR(remat->CopyAllControlDepsFrom(best)); Item* remat_item = instruction_list->CreateItem(remat); absl::InlinedVector<Item*, 4> indirect_users; absl::flat_hash_map<int64_t, HloInstruction*> gte_cache; for (auto& user : memory_tracker->GetItemUses(best_item)) { if (!memory_tracker->IsPlaced(user.user->instruction)) { VLOG(2) << " Replacing use of " << best->name() << " in " << user.user->instruction->name() << " with " << remat->name(); HloInstruction* remat_use = remat; HloInstruction* const user_operand = user.user->instruction->mutable_operand(user.operand_number); if (remat_use == user_operand) { continue; } if (user.index && remat_use->shape() != user_operand->shape()) { auto cached_gte = gte_cache.find(*user.index); if (cached_gte == gte_cache.end()) { remat_use = computation->AddInstruction( HloInstruction::CreateGetTupleElement( ShapeUtil::GetTupleElementShape(remat_use->shape(), *user.index), remat_use, *user.index), "gte.remat"); indirect_users.push_back(instruction_list->CreateItem(remat_use)); gte_cache[*user.index] = remat_use; } else { remat_use = cached_gte->second; } } if (user_operand->shape() != remat_use->shape()) { remat_use = computation->AddInstruction( HloInstruction::CreateBitcast(user_operand->shape(), remat_use), "bitcast.remat"); indirect_users.push_back(instruction_list->CreateItem(remat_use)); } TF_RETURN_IF_ERROR(user.user->instruction->ReplaceOperandWith( user.operand_number, remat_use)); } } TF_RETURN_IF_ERROR(memory_tracker->AddRematerializedInstruction( best_item, remat_item, absl::MakeSpan(indirect_users))); ItemList place_before; const absl::flat_hash_set<Item*> indirect_users_set(indirect_users.begin(), indirect_users.end()); for (auto user : remat->users()) { if (!indirect_users_set.contains(instruction_list->GetItem(user))) { place_before.push_back(instruction_list->GetItem(user)); } } for (auto* indirect_user : indirect_users) { for (auto user : indirect_user->instruction->users()) { if (!indirect_users_set.contains(instruction_list->GetItem(user))) { place_before.push_back(instruction_list->GetItem(user)); } } } for (auto* operand : remat->operands()) { for (auto* operand_user : operand->users()) { if (operand_user != remat) { Item* operand_user_item = instruction_list->GetItem(operand_user); if (!operand_user_item->placed) { place_before.push_back(operand_user_item); } } } } for (auto successor : remat->control_successors()) { Item* successor_item = instruction_list->GetItem(successor); CHECK(!successor_item->placed) << successor_item->instruction->name(); place_before.push_back(successor_item); } instruction_list->InsertBeforeInstructions(remat_item, place_before); for (auto* bitcast : indirect_users) { instruction_list->InsertBeforeInstructions(bitcast, place_before); } std::function<bool(HloInstruction*)> uses_empty = [&](HloInstruction* i) { for (auto* u : i->users()) { if (!IsSupportedIndirectUser(u) || !uses_empty(u)) { return false; } } return true; }; if (uses_empty(best)) { VLOG(2) << best->name() << " is now dead"; if (ContainsKey(*remat_move_instructions, best)) { instruction_list->Denylist(remat); } remat_move_instructions->insert(remat); net_instructions_added += indirect_users.size(); } else { net_instructions_added += indirect_users.size() + 1; } for (auto* indirect_user : indirect_users) { instruction_list->Denylist(indirect_user->instruction); } if (HloDataflowAnalysis::IsAsynchronousOperationStart(best->opcode()) || HloDataflowAnalysis::IsAsynchronousOperationDone(best->opcode())) { VLOG(2) << "The old instruction " << best->name() << " is an async op. Removing to maintain one start to one done " "invariant to keep the HLO valid."; TF_RETURN_IF_ERROR(best->DropAllControlDeps()); TF_RETURN_IF_ERROR(computation->RemoveInstruction(best)); } } return net_instructions_added; } absl::StatusOr<int64_t> CompressInstruction(MemoryUsageTracker* memory_tracker, Item* best_item, const Shape& compact_shape, InstructionList* instruction_list) { HloInstruction* best = best_item->instruction; VLOG(5) << "Transposing instruction " << best->name() << " (saving " << HumanReadableNumBytes(memory_tracker->MemoryReducedIfCompressed( best_item, compact_shape)) << ") to" << compact_shape.ToString(true); HloComputation* computation = best->parent(); HloInstruction* compressed = computation->AddInstruction( HloInstruction::CreateUnary(compact_shape, HloOpcode::kCopy, best), absl::StrCat(best->name(), ".remat_compressed")); HloInstruction* uncompressed = computation->AddInstruction( HloInstruction::CreateUnary(best->shape(), HloOpcode::kCopy, compressed), absl::StrCat(best->name(), ".remat_uncompressed")); Item* compressed_item = instruction_list->CreateItem(compressed); compressed_item->placed = true; Item* uncompressed_item = instruction_list->CreateItem(uncompressed); std::vector<HloInstruction*> best_users_copy = best->users(); for (HloInstruction* user : best_users_copy) { if (!memory_tracker->IsPlaced(user)) { VLOG(5) << " Replacing use of " << best->name() << " in " << user->name() << " with " << uncompressed->name(); TF_RETURN_IF_ERROR(best->ReplaceUseWith(user, uncompressed)); } } TF_RETURN_IF_ERROR(memory_tracker->AddCompressInstructions( best_item, compressed_item, uncompressed_item)); ItemList place_before; for (auto user : uncompressed->users()) { place_before.push_back(instruction_list->GetItem(user)); } instruction_list->Denylist(compressed_item->instruction); instruction_list->Denylist(uncompressed_item->instruction); instruction_list->InsertBeforeInstructions(uncompressed_item, place_before); instruction_list->InsertAfterInstructions(compressed_item, {best_item}); return 2; } absl::StatusOr<int64_t> OffloadInstruction(MemoryUsageTracker* memory_tracker, Item* best_item, InstructionList* instruction_list) { HloInstruction* best_instruction = best_item->instruction; HloComputation* computation = best_instruction->parent(); VLOG(2) << "Best_instruction's users: " << absl::StrJoin(best_instruction->users(), ", ", [](std::string* str, const auto* x) { return str->append(x->name()); }); Shape instruction_shape_device = best_instruction->shape(); Shape instruction_shape_host = best_instruction->shape(); instruction_shape_host.mutable_layout()->set_memory_space( memory_tracker->options().host_memory_offload_config->host_memory_space); Shape context_shape = ShapeUtil::MakeShape(U32, {}); HloInstruction* copy_start_to_host = computation->AddInstruction(HloInstruction::CreateCopyStart( ShapeUtil::MakeTupleShape({instruction_shape_host, instruction_shape_device, context_shape}), best_instruction)); HloInstruction* copy_done_to_host = computation->AddInstruction(HloInstruction::CreateUnary( instruction_shape_host, HloOpcode::kCopyDone, copy_start_to_host)); HloInstruction* copy_start_to_device = computation->AddInstruction(HloInstruction::CreateCopyStart( ShapeUtil::MakeTupleShape({instruction_shape_device, instruction_shape_host, context_shape}), copy_done_to_host)); HloInstruction* copy_done_to_device = computation->AddInstruction( HloInstruction::CreateUnary(instruction_shape_device, HloOpcode::kCopyDone, copy_start_to_device)); VLOG(3) << "Created copy_start_to_host instr: " << copy_start_to_host->ToString(); VLOG(3) << "Created copy_done_to_host instr: " << copy_done_to_host->ToString(); VLOG(3) << "Created copy_start_to_device instr: " << copy_start_to_device->ToString(); VLOG(3) << "Created copy_done_to_device instr: " << copy_done_to_device->ToString(); TF_RETURN_IF_ERROR( copy_start_to_host->Visit(&memory_tracker->options().hlo_cost_analysis)); TF_RETURN_IF_ERROR( copy_done_to_host->Visit(&memory_tracker->options().hlo_cost_analysis)); TF_RETURN_IF_ERROR(copy_start_to_device->Visit( &memory_tracker->options().hlo_cost_analysis)); TF_RETURN_IF_ERROR( copy_done_to_device->Visit(&memory_tracker->options().hlo_cost_analysis)); Item* copy_start_to_host_item = instruction_list->CreateItem(copy_start_to_host); Item* copy_done_to_host_item = instruction_list->CreateItem(copy_done_to_host); Item* copy_start_to_device_item = instruction_list->CreateItem(copy_start_to_device); Item* copy_done_to_device_item = instruction_list->CreateItem(copy_done_to_device); instruction_list->Denylist(copy_start_to_host); instruction_list->Denylist(copy_done_to_host); instruction_list->Denylist(copy_start_to_device); instruction_list->Denylist(copy_done_to_device); Item* place_before{nullptr}; { ItemList place_before_list; for (auto user : best_instruction->users()) { if (user == copy_start_to_host) { continue; } auto item_of_user = instruction_list->GetItem(user); if (item_of_user->placed) { continue; } place_before_list.push_back(item_of_user); } CHECK(!place_before_list.empty()) << "Have nothing to place this before!"; for (auto* item = instruction_list->first(); item != nullptr; item = instruction_list->next(item)) { if (absl::c_linear_search(place_before_list, item)) { place_before = item; break; } } } CHECK_NE(place_before, nullptr) << "Could not find an item to place this before."; auto get_first_item_after_compute_time = [&](Item* start_item, Item* end_item, auto successor_func, float time_spent_on_copy) { float time_so_far = 0.0; auto* current_item = start_item; while (time_so_far < time_spent_on_copy) { auto next_item = successor_func(current_item); if (next_item == end_item) { LOG(WARNING) << "Didn't find enough computation before end of window"; break; } current_item = next_item; CHECK_NE(current_item, nullptr) << "current_item is null"; CHECK_NE(current_item->instruction, nullptr) << "current_item's instruction is null"; time_so_far += std::max( 0.0f, memory_tracker->options().hlo_cost_analysis.optimal_seconds( *current_item->instruction)); } return current_item; }; const int64_t bytes_used_by_buffers = memory_tracker->BytesUsedByBuffers( best_item, false); const float copy_to_host_time_seconds = bytes_used_by_buffers / memory_tracker->options() .host_memory_offload_config->bandwidth_to_host_bytes_per_second; const float copy_from_host_time_seconds = bytes_used_by_buffers / memory_tracker->options() .host_memory_offload_config->bandwidth_from_host_bytes_per_second; VLOG(2) << "Item uses " << bytes_used_by_buffers << "B and will take " << copy_to_host_time_seconds << "s to copy to host and " << copy_from_host_time_seconds << "s to copy from host."; VLOG(2) << "Inserting " << copy_start_to_host_item->instruction->name() << " immediately after " << best_item->instruction->name(); instruction_list->InsertAfterInstructions(copy_start_to_host_item, {best_item}); VLOG(2) << "Inserting " << copy_done_to_device_item->instruction->name() << " immediately before " << place_before->instruction->name(); instruction_list->InsertBeforeInstructions(copy_done_to_device_item, {place_before}); auto first_item_after_to_host_copy = get_first_item_after_compute_time( copy_start_to_host_item, copy_done_to_device_item, [&instruction_list](Item* item) { return instruction_list->next(item); }, copy_to_host_time_seconds); VLOG(2) << "Inserting " << copy_done_to_host_item->instruction->name() << " immediately after " << first_item_after_to_host_copy->instruction->name(); instruction_list->InsertAfterInstructions(copy_done_to_host_item, {first_item_after_to_host_copy}); auto first_item_before_from_host_copy = get_first_item_after_compute_time( copy_done_to_device_item, copy_done_to_host_item, [&instruction_list](Item* item) { return instruction_list->prev(item); }, copy_from_host_time_seconds); VLOG(2) << "Inserting " << copy_start_to_device_item->instruction->name() << " immediately before " << first_item_before_from_host_copy->instruction->name(); instruction_list->InsertBeforeInstructions( copy_start_to_device_item, {first_item_before_from_host_copy}); { auto item = instruction_list->first(); while (item != nullptr) { if (item == copy_start_to_host_item || item == copy_done_to_host_item || item == copy_start_to_device_item || item == copy_done_to_device_item) { item->placed = true; } else if (memory_tracker->IsInProgressItem(item)) { break; } item = instruction_list->next(item); } } std::vector<HloInstruction*> best_users_copy = best_instruction->users(); for (HloInstruction* user : best_users_copy) { if (!memory_tracker->IsPlaced(user)) { VLOG(3) << " Replacing use of " << best_instruction->name() << " in " << user->name() << " with " << copy_done_to_device->name(); TF_RETURN_IF_ERROR( best_instruction->ReplaceUseWith(user, copy_done_to_device)); } else { VLOG(3) << user->name() << " is placed, not going to update"; } } TF_RETURN_IF_ERROR(memory_tracker->AddHostOffloadCopyInstructions( best_item, copy_start_to_host_item, copy_done_to_host_item, copy_start_to_device_item, copy_done_to_device_item)); return 4; } struct InstructionsAdded { int remat_count; int net_instructions_added; int effort; }; absl::StatusOr<InstructionsAdded> RematerializeBestBlock( int min_block_size, int max_block_size, MemoryUsageTracker* memory_tracker, InstructionList* instruction_list, HloSchedule* schedule, int64_t memory_limit_bytes, absl::flat_hash_map<const HloInstruction*, bool>* rematerializable_map, absl::flat_hash_set<const HloInstruction*>* remat_move_instructions, HloRematerialization* rematerialization) { CHECK(min_block_size > 0) << "Negative block size."; std::vector<Item*> best_items; RematStrategy best_strategy; int effort; std::tie(best_items, best_strategy, effort) = memory_tracker->PickRematerializationCandidates( *instruction_list, memory_limit_bytes, rematerializable_map, min_block_size, max_block_size, rematerialization->ComputationPeakMemory( memory_tracker->computation())); InstructionsAdded num_instructions_added; num_instructions_added.remat_count = best_items.size(); num_instructions_added.effort = effort; if (best_items.empty()) { num_instructions_added.net_instructions_added = 0; return num_instructions_added; } if (best_strategy.kind == RematStrategy::kCompress) { CHECK(best_items.size() == 1) << "More than one instruction compressed simultaneously."; HloInstruction* best = best_items[0]->instruction; VLOG(1) << "Remat via compression: " << best->name() << " (saving " << HumanReadableNumBytes(memory_tracker->MemoryReducedIfCompressed( best_items[0], best_strategy.compact_shape)) << ")"; TF_ASSIGN_OR_RETURN( num_instructions_added.net_instructions_added, CompressInstruction(memory_tracker, best_items[0], best_strategy.compact_shape, instruction_list)); } else if (best_strategy.kind == RematStrategy::kHostOffload) { CHECK_EQ(best_items.size(), 1) << "More than one buffer offloaded simultaneously."; VLOG(1) << "Remat via offload: " << best_items[0]->instruction->name(); TF_ASSIGN_OR_RETURN( num_instructions_added.net_instructions_added, OffloadInstruction(memory_tracker, best_items[0], instruction_list)); VLOG(4) << "Offload done, hlo computation:\n" << memory_tracker->computation()->ToString(); VLOG(6) << "Memory tracker:\n" << memory_tracker->ToString(); } else { CHECK_EQ(best_strategy.kind, RematStrategy::kRecompute) << "Expecting strategy to be Recompute"; VLOG(1) << "Remat via recomputation: {" << absl::StrJoin(best_items, ", ", [](std::string* out, Item* item) { absl::StrAppend(out, item->instruction->name()); }) << '}'; TF_ASSIGN_OR_RETURN( num_instructions_added.net_instructions_added, RematerializeInstructions(memory_tracker, &best_items, remat_move_instructions, instruction_list, schedule, rematerialization)); } return num_instructions_added; } } absl::StatusOr<int64_t> HloRematerialization::ComputePeakMemory( const HloComputation* computation, const HloInstructionSequence& order, const absl::flat_hash_set<absl::string_view>& execution_threads) const { InstructionList instruction_list(order); MemoryUsageTracker tracker(options_, computation, *points_to_analysis_, instruction_list); int64_t peak_memory = tracker.memory_usage(); for (auto* item = instruction_list.first(); item != nullptr; item = instruction_list.next(item)) { const HloInstruction* instruction = item->instruction; TF_RETURN_IF_ERROR(tracker.BeginInstruction(item)); TF_ASSIGN_OR_RETURN( int64_t callee_usage, CalledComputationsMemoryUsage(instruction, execution_threads)); peak_memory = std::max<int64_t>(peak_memory, tracker.memory_usage() + callee_usage); TF_RETURN_IF_ERROR(tracker.EndInstruction()); } VLOG(1) << "Peak memory for " << computation->name() << ": " << HumanReadableNumBytes(peak_memory); return peak_memory; } absl::StatusOr<int64_t> HloRematerialization::CalledComputationsMemoryUsage( const HloInstruction* instruction, const absl::flat_hash_set<absl::string_view>& execution_threads) const { const CallSite* callsite = call_graph_->GetNode(instruction->parent()).GetCallSite(instruction); if (callsite == nullptr || callsite->context() == CallContext::kEmbedded) { return 0; } int64_t callee_usage = 0; for (const HloComputation* computation : callsite->called_computations()) { if (!HloInstruction::IsThreadIncluded(computation->execution_thread(), execution_threads)) { continue; } TF_RET_CHECK(ContainsKey(computation_peak_memory_, computation)); callee_usage += computation_peak_memory_.at(computation); } return callee_usage; } absl::StatusOr<bool> HloRematerialization::RematerializeComputation( HloComputation* computation, HloSchedule* schedule, int64_t memory_limit_bytes, int64_t min_remat_size, const absl::flat_hash_set<absl::string_view>& execution_threads) { const auto peak_memory_usage = computation_peak_memory_.at(computation); if (peak_memory_usage <= memory_limit_bytes) { VLOG(1) << "Asked to rematerialize computation of size " << peak_memory_usage << " but it already fits within the given memory limit (" << memory_limit_bytes << ")"; return false; } VLOG(1) << "Rematerializing computation " << computation->name() << " with limit " << HumanReadableNumBytes(memory_limit_bytes); VLOG(1) << "peak memory usage is " << HumanReadableNumBytes(peak_memory_usage); CHECK(!ContainsKey(rematerialized_computations_, computation)); InstructionList instruction_list(schedule->sequence(computation)); MemoryUsageTracker memory_tracker(options_, computation, *points_to_analysis_, instruction_list); instruction_list.PromoteNodesToSkip([&](Item* item) { return memory_tracker.AllocatedSize(item) >= min_remat_size; }); bool changed = false; absl::flat_hash_set<const HloInstruction*> remat_move_instructions; absl::flat_hash_map<const HloInstruction*, bool> rematerializable_map; int64_t peak_memory = memory_tracker.memory_usage(); int64_t remat_count = 0; int64_t net_instructions_added = 0; const CallGraphNode& call_graph_node = call_graph_->GetNode(computation); int64_t instruction_index = 0; for (auto* item = instruction_list.first(); item != nullptr; item = instruction_list.next(item)) { const HloInstruction* instruction = item->instruction; TF_ASSIGN_OR_RETURN( int64_t callee_usage, CalledComputationsMemoryUsage(instruction, execution_threads)); TF_RETURN_IF_ERROR(memory_tracker.BeginInstruction(item)); VLOG(2) << "Program point at " << instruction->name() << ", memory usage = " << memory_tracker.memory_usage() << ", callee usage = " << callee_usage << ", [" << instruction_index << "/" << instruction_list.size() << "]"; instruction_index++; int min_block_size = 1; int max_block_size = 1; if (memory_tracker.AllocatedSize(item) + callee_usage > 0) { bool is_first_phase = true; int64_t first_phase_effort = 0; int64_t second_phase_effort = 0; while (memory_tracker.memory_usage() + callee_usage > memory_limit_bytes) { VLOG(2) << "Over memory limit at instruction " << instruction->name() << ", using " << HumanReadableNumBytes(memory_tracker.memory_usage() + callee_usage) << ", limit is " << HumanReadableNumBytes(memory_limit_bytes); TF_ASSIGN_OR_RETURN( InstructionsAdded instructions_added, RematerializeBestBlock(min_block_size, max_block_size, &memory_tracker, &instruction_list, schedule, memory_limit_bytes, &rematerializable_map, &remat_move_instructions, this)); net_instructions_added += instructions_added.net_instructions_added; remat_count += instructions_added.remat_count; if (is_first_phase) { first_phase_effort += instructions_added.effort; } else { second_phase_effort += instructions_added.effort; } if (instructions_added.net_instructions_added > 0) { VLOG(1) << "memory_usage after rematerialization = " << HumanReadableNumBytes(memory_tracker.memory_usage()); } if (instructions_added.remat_count == 0) { min_block_size = max_block_size + 1; max_block_size = 2 * max_block_size; is_first_phase = false; } else { max_rematerialized_block_size_ = std::max(max_rematerialized_block_size_, max_block_size); changed = true; min_block_size = 1; max_block_size = 1; } if (max_block_size > options_.block_size_limit || second_phase_effort > options_.block_rematerialization_factor * first_phase_effort) { break; } } } const CallSite* callsite = call_graph_node.GetCallSite(instruction); if (callsite != nullptr && callsite->context() == CallContext::kControlFlow && memory_tracker.memory_usage() + callee_usage > memory_limit_bytes) { VLOG(1) << "Memory usage still over the limit (" << (memory_tracker.memory_usage() + callee_usage) << " > " << memory_limit_bytes << "). Rematerializing computations called by " << instruction->name(); for (HloComputation* called_computation : callsite->called_computations()) { if (!ContainsKey(rematerialized_computations_, called_computation) && HloInstruction::IsThreadIncluded( called_computation->execution_thread(), execution_threads)) { int64_t subcomputation_memory_limit_bytes = std::max<int64_t>( 0, memory_limit_bytes - memory_tracker.memory_usage()); TF_ASSIGN_OR_RETURN( bool subcomputation_changed, RematerializeComputation(called_computation, schedule, subcomputation_memory_limit_bytes, min_remat_size, execution_threads)); changed |= subcomputation_changed; } } TF_ASSIGN_OR_RETURN(callee_usage, CalledComputationsMemoryUsage( instruction, execution_threads)); } peak_memory = std::max<int64_t>( peak_memory, memory_tracker.memory_usage() + callee_usage); VLOG(3) << "peak memory usage = " << HumanReadableNumBytes(peak_memory); TF_RETURN_IF_ERROR(memory_tracker.EndInstruction()); } for (auto* instruction : computation->instructions()) { CHECK(memory_tracker.IsPlaced(instruction)) << instruction->name(); } VLOG(1) << "In computation " << computation->name() << " rematerialized " << remat_count << " instructions; " << net_instructions_added << " net instructions added"; VLOG(1) << " peak memory usage now " << HumanReadableNumBytes(peak_memory) << " (was " << HumanReadableNumBytes(computation_peak_memory_.at(computation)) << ")"; computation_peak_memory_.at(computation) = peak_memory; HloInstructionSequence& sequence = schedule->GetOrCreateSequence(computation); sequence.clear(); for (auto* item = instruction_list.first(); item != nullptr; item = instruction_list.next(item)) { HloInstruction* instruction = item->instruction; sequence.push_back(instruction); } rematerialized_computations_.insert(computation); instructions_rematerialized_ += remat_count; net_instructions_added_ += net_instructions_added; return changed; } absl::StatusOr<bool> HloRematerialization::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { if (options_.remat_mode_config.host_offload) { CHECK(options_.host_memory_offload_config.has_value()) << "Host memory config is required when host memory offload strategy " "is specified"; } VLOG(1) << "HloRematerialization() with memory limit of " << HumanReadableNumBytes(options_.memory_limit_bytes); if (!options_.remat_mode_config.compress && !options_.remat_mode_config.recompute && !options_.remat_mode_config.host_offload) { VLOG(1) << "All rematerialization strategies are disabled. Skipping."; return false; } VLOG(2) << "HloRemat mode: compress: " << options_.remat_mode_config.compress << ", host_offload: " << options_.remat_mode_config.host_offload << ", recompute: " << options_.remat_mode_config.recompute; XLA_VLOG_LINES(3, "Before HloRematerialization:\n" + module->ToString()); computation_peak_memory_.clear(); rematerialized_computations_.clear(); instructions_rematerialized_ = 0; net_instructions_added_ = 0; TF_RET_CHECK(module->has_schedule()); TF_ASSIGN_OR_RETURN(points_to_analysis_, TuplePointsToAnalysis::Run(module)); next_channel_id_ = hlo_query::NextChannelId(*module); int64_t module_output_size = 0; ShapeUtil::ForEachSubshape( module->result_shape(), [&module_output_size, this](const Shape& subshape, const ShapeIndex& output_index) { module_output_size += options_.hlo_cost_analysis.GetShapeSize(subshape); }); int64_t adjusted_memory_limit_bytes = std::max<int64_t>(0, options_.memory_limit_bytes - module_output_size); VLOG(1) << "Adjusted memory limit accounting for output (" << HumanReadableNumBytes(module_output_size) << "): " << HumanReadableNumBytes(adjusted_memory_limit_bytes); call_graph_ = CallGraph::Build(module); int64_t total_async_peak_memory = 0; if (!options_.async_computation_parallelism.empty()) { absl::flat_hash_set<std::string_view> async_threads; for (const auto& [computation, _] : options_.async_computation_parallelism) { async_threads.insert(computation->execution_thread()); } TF_RETURN_IF_ERROR(call_graph_->VisitNodes( [this, module, &async_threads](const CallGraphNode& node) -> absl::Status { auto callee_thread = node.computation()->execution_thread(); if (node.context() == CallContext::kControlFlow && HloInstruction::IsThreadIncluded(callee_thread, async_threads)) { TF_ASSIGN_OR_RETURN(computation_peak_memory_[node.computation()], ComputePeakMemory(node.computation(), module->schedule().sequence( node.computation()), {callee_thread})); } return absl::OkStatus(); }, false)); int64_t async_peak_memory = 0; for (const auto [entry_computation, parallel_threads] : options_.async_computation_parallelism) { const int64_t peak_memory = computation_peak_memory_.at(entry_computation); const int64_t parallel_peak_memory = peak_memory * parallel_threads; async_peak_memory = std::max(async_peak_memory, parallel_peak_memory); } adjusted_memory_limit_bytes = std::max<int64_t>(0, adjusted_memory_limit_bytes - async_peak_memory); total_async_peak_memory += async_peak_memory; VLOG(1) << "Adjusted memory limit accounting for async computations (" << HumanReadableNumBytes(async_peak_memory) << "): " << HumanReadableNumBytes(adjusted_memory_limit_bytes); computation_peak_memory_.clear(); } TF_RETURN_IF_ERROR(call_graph_->VisitNodes( [this, module, &execution_threads](const CallGraphNode& node) -> absl::Status { if (node.context() == CallContext::kControlFlow && HloInstruction::IsThreadIncluded( node.computation()->execution_thread(), execution_threads)) { TF_ASSIGN_OR_RETURN( computation_peak_memory_[node.computation()], ComputePeakMemory(node.computation(), module->schedule().sequence(node.computation()), execution_threads)); } return absl::OkStatus(); }, false)); const int64_t before_peak_memory = computation_peak_memory_.at(module->entry_computation()) + module_output_size + total_async_peak_memory; VLOG(1) << "Peak memory usage of module (before): " << HumanReadableNumBytes(before_peak_memory); for (auto* computation : module->MakeComputationPostOrder(execution_threads)) { TF_RETURN_IF_ERROR(computation->Accept(&options_.hlo_cost_analysis)); } TF_ASSIGN_OR_RETURN( bool changed, RematerializeComputation(module->entry_computation(), &module->schedule(), adjusted_memory_limit_bytes, options_.min_remat_size, execution_threads)); HloSchedule saved_schedule = module->schedule(); module->clear_schedule(); TF_ASSIGN_OR_RETURN(bool dead_code_removed, HloDCE().Run(module)); changed |= dead_code_removed; TF_RETURN_IF_ERROR(saved_schedule.Update(execution_threads)); TF_RETURN_IF_ERROR(module->set_schedule(std::move(saved_schedule))); VLOG(1) << "Rematerialized " << instructions_rematerialized_ << " instructions in module " << module->name() << "; " << net_instructions_added_ << " net instructions added"; const int64_t current_peak_memory = computation_peak_memory_.at(module->entry_computation()) + module_output_size + total_async_peak_memory; VLOG(1) << "Peak memory usage of module now " << HumanReadableNumBytes(current_peak_memory) << " (" << current_peak_memory << " bytes), was " << HumanReadableNumBytes(before_peak_memory) << " (" << before_peak_memory << " bytes)"; const int64_t reduced_peak_memory = before_peak_memory - current_peak_memory; VLOG(1) << "Reduced peak memory by " << HumanReadableNumBytes(reduced_peak_memory) << " (" << reduced_peak_memory << " bytes)"; sizes_.before_bytes = before_peak_memory; sizes_.after_bytes = current_peak_memory; XLA_VLOG_LINES(5, "After HloRematerialization:\n" + module->ToString()); if (current_peak_memory > options_.memory_limit_bytes) { LOG(WARNING) << absl::StrFormat( "Can't reduce memory use below %s (%d bytes) by rematerialization; " "only reduced to %s (%d bytes), down from %s (%d bytes) originally", HumanReadableNumBytes(options_.memory_limit_bytes), options_.memory_limit_bytes, HumanReadableNumBytes(current_peak_memory), current_peak_memory, HumanReadableNumBytes(before_peak_memory), before_peak_memory); } return changed; } }
#include "xla/service/hlo_rematerialization.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <string> #include <gmock/gmock.h> #include "absl/container/flat_hash_set.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/layout.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_memory_scheduler.h" #include "xla/service/hlo_rematerialization_test_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; using ::testing::_; class AsyncRematerializationTest : public RematerializationTestBase { protected: absl::StatusOr<bool> RunHloRematerialization( int64_t memory_limit_bytes, HloModule* module, const absl::flat_hash_map<HloComputation*, int64_t>& async_computation_parallelism, int64_t min_remat_size = 0) { TF_EXPECT_OK(verifier().Run(module).status()); if (!module->has_schedule()) { HloMemoryScheduler scheduler( [](const BufferValue& buffer) { return ByteSizeOf(buffer.shape()); }, ComputationSchedulerToModuleScheduler(DefaultMemoryScheduler)); TF_EXPECT_OK(scheduler.Run(module).status()); } HloRematerialization::RematerializationModeConfig config( true, true, false); auto shape_size_func = [](const Shape& shape) { return ByteSizeOf(shape); }; HloCostAnalysis cost_analysis(shape_size_func); HloRematerialization::Options options( cost_analysis, config, memory_limit_bytes, 1, 1, min_remat_size, nullptr, std::nullopt, async_computation_parallelism); HloRematerialization::RematerializationSizes sizes; HloRematerialization remat(options, sizes); return remat.Run(module, {HloInstruction::kMainExecutionThread}); } static constexpr int64_t kNumParallelThreads = 16; }; TEST_F(AsyncRematerializationTest, AsyncComputation) { constexpr std::string_view hlo = R"( HloModule async, is_scheduled=true %offload_computation { %param = f32[1]{0} parameter(0) %reshape = f32[] reshape(f32[1]{0} %param) %broadcast = f32[1024]{0} broadcast(f32[] %reshape), dimensions={} %negate = f32[1024]{0} negate(f32[1024]{0} %broadcast) %concatenate = f32[2048]{0} concatenate(f32[1024]{0} %negate, f32[1024]{0} %negate), dimensions={0} %slice = f32[1]{0} slice(f32[2048]{0} %concatenate), slice={[0:1]} %concatenate.1 = f32[1025]{0} concatenate(f32[1024]{0} %broadcast, f32[1]{0} %slice), dimensions={0} ROOT %slice.1 = f32[1]{0} slice(f32[1025]{0} %concatenate.1), slice={[0:1]} } %main_computation { %param = f32[1]{0} parameter(0) %reshape = f32[] reshape(f32[1]{0} %param) %broadcast = f32[1024]{0} broadcast(f32[] %reshape), dimensions={} %negate = f32[1024]{0} negate(f32[1024]{0} %broadcast) %concatenate = f32[2048]{0} concatenate(f32[1024]{0} %negate, f32[1024]{0} %negate), dimensions={0} %slice = f32[1]{0} slice(f32[2048]{0} %concatenate), slice={[0:1]} %concatenate.1 = f32[1025]{0} concatenate(f32[1024]{0} %broadcast, f32[1]{0} %slice), dimensions={0} ROOT %slice.1 = f32[1]{0} slice(f32[1025]{0} %concatenate.1), slice={[0:1]} } ENTRY %main { %param = f32[1]{0} parameter(0) %call-start = ((f32[1]{0}), f32[1]{0}, s32[]) call-start(f32[1]{0} %param), to_apply=%offload_computation, async_execution_thread="offload" %call-done = f32[1]{0} call-done(((f32[1]{0}), f32[1]{0}, s32[]) %call-start) ROOT %call = f32[1]{0} call(f32[1]{0} %call-done), to_apply=%main_computation } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo)); HloInstruction* call_start = FindInstruction(module.get(), "call-start"); TF_ASSERT_OK_AND_ASSIGN( bool changed, RunHloRematerialization( kNumParallelThreads * 16 * 1024 + 14 * 1024, module.get(), {{call_start->async_wrapped_computation(), kNumParallelThreads}})); EXPECT_TRUE(changed); } class RecomputeAndCompressHloRematerializationTest : public RematerializationTestBase { protected: absl::StatusOr<bool> RunHloRematerialization(int64_t memory_limit_bytes, HloModule* module, int64_t min_remat_size = 0) { TF_EXPECT_OK(verifier().Run(module).status()); if (!module->has_schedule()) { HloMemoryScheduler scheduler( [](const BufferValue& buffer) { return ByteSizeOf(buffer.shape()); }, ComputationSchedulerToModuleScheduler(DefaultMemoryScheduler)); TF_EXPECT_OK(scheduler.Run(module).status()); } for (const HloComputation* computation : module->computations()) { before_computation_names_.insert(computation->name()); for (const HloInstruction* instruction : computation->instructions()) { before_instruction_names_.insert(instruction->name()); } } HloRematerialization::RematerializationModeConfig config( true, true, false); auto shape_size_func = [](const Shape& shape) { return ByteSizeOf(shape); }; HloCostAnalysis cost_analysis(shape_size_func); HloRematerialization::Options options( cost_analysis, config, memory_limit_bytes, 1, 1, min_remat_size, nullptr, std::nullopt, {}); HloRematerialization::RematerializationSizes sizes; HloRematerialization remat(options, sizes); absl::StatusOr<bool> result = remat.Run(module); for (const HloComputation* computation : module->computations()) { if (!before_computation_names_.contains(computation->name())) { continue; } for (const HloInstruction* instruction : computation->instructions()) { after_instruction_names_.insert(instruction->name()); } } return result; } void CheckForRematInInstructionNames(absl::string_view test_case_name) { constexpr const absl::string_view kRematInstructionNameMustContain = ".remat"; for (const auto& instruction_name : after_instruction_names_) { if (!before_instruction_names_.contains(instruction_name)) { EXPECT_TRUE(absl::StrContains(instruction_name, kRematInstructionNameMustContain)) << "[" << test_case_name << "] Instruction \"" << instruction_name << "\" must contain \"" << kRematInstructionNameMustContain << "\""; } } } private: absl::flat_hash_set<absl::string_view> before_computation_names_; absl::flat_hash_set<absl::string_view> before_instruction_names_; absl::flat_hash_set<absl::string_view> after_instruction_names_; }; TEST_F(RecomputeAndCompressHloRematerializationTest, SingleComputation) { auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(MakeRematerializableComputation()); const HloInstruction* slice = computation->root_instruction(); ASSERT_THAT(slice, op::Slice(op::Concatenate(op::Broadcast(_), _))); const HloInstruction* concat = slice->operand(0); const HloInstruction* bcast = concat->operand(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 14 * 1024, module.get())); EXPECT_TRUE(changed); EXPECT_EQ(computation->root_instruction(), slice); const HloInstruction* remat_bcast = concat->operand(0); EXPECT_THAT(remat_bcast, op::Broadcast(::testing::Ne(bcast))); EXPECT_EQ(module->schedule() .sequence(computation) .instructions()[computation->instruction_count() - 2], concat); EXPECT_EQ(module->schedule() .sequence(computation) .instructions()[computation->instruction_count() - 3], remat_bcast); CheckForRematInInstructionNames( ::testing::UnitTest::GetInstance()->current_test_info()->name()); } TEST_F(RecomputeAndCompressHloRematerializationTest, SingleComputationNoWorthRemat) { auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(MakeRematerializableComputation()); const HloInstruction* slice = computation->root_instruction(); ASSERT_THAT(slice, op::Slice(op::Concatenate(op::Broadcast(_), _))); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 14 * 1024, module.get(), 14 * 1024)); EXPECT_FALSE(changed); } TEST_F(RecomputeAndCompressHloRematerializationTest, SingleComputationNoRematerialization) { auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(MakeRematerializableComputation()); EXPECT_EQ(computation->instruction_count(), 8); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 20 * 1024, module.get())); EXPECT_FALSE(changed); EXPECT_EQ(computation->instruction_count(), 8); } TEST_F(RecomputeAndCompressHloRematerializationTest, RematerializeAroundWhile) { auto module = CreateNewVerifiedModule(); auto cond_builder = HloComputation::Builder(TestName() + ".cond"); cond_builder.AddInstruction( HloInstruction::CreateParameter(0, vec1_shape_, "param")); cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(true))); HloComputation* while_cond = module->AddEmbeddedComputation(cond_builder.Build()); HloComputation* body_computation = module->AddEmbeddedComputation( MakeRematerializableComputation(".body")); HloComputation* entry_computation = module->AddEntryComputation(MakeRematerializableWhileComputation( while_cond, body_computation)); EXPECT_EQ(entry_computation->instruction_count(), 7); EXPECT_EQ(body_computation->instruction_count(), 8); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 17 * 1024, module.get())); EXPECT_TRUE(changed); EXPECT_EQ(entry_computation->instruction_count(), 8); EXPECT_EQ(body_computation->instruction_count(), 8); CheckForRematInInstructionNames( ::testing::UnitTest::GetInstance()->current_test_info()->name()); } TEST_F(RecomputeAndCompressHloRematerializationTest, RematerializeEntryAndWhileBody) { auto module = CreateNewVerifiedModule(); auto cond_builder = HloComputation::Builder(TestName() + ".cond"); cond_builder.AddInstruction( HloInstruction::CreateParameter(0, vec1_shape_, "param")); cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(true))); HloComputation* while_cond = module->AddEmbeddedComputation(cond_builder.Build()); HloComputation* body_computation = module->AddEmbeddedComputation( MakeRematerializableComputation(".body")); HloComputation* entry_computation = module->AddEntryComputation(MakeRematerializableWhileComputation( while_cond, body_computation)); EXPECT_EQ(entry_computation->instruction_count(), 7); EXPECT_EQ(body_computation->instruction_count(), 8); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 15 * 1024, module.get())); EXPECT_TRUE(changed); EXPECT_EQ(entry_computation->instruction_count(), 9); EXPECT_EQ(body_computation->instruction_count(), 9); CheckForRematInInstructionNames( ::testing::UnitTest::GetInstance()->current_test_info()->name()); } TEST_F(RecomputeAndCompressHloRematerializationTest, RematerializeNestedComputations) { auto module = CreateNewVerifiedModule(); auto cond_builder = HloComputation::Builder(TestName() + ".cond"); cond_builder.AddInstruction( HloInstruction::CreateParameter(0, vec1_shape_, "param")); cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(true))); HloComputation* while_cond = module->AddEmbeddedComputation(cond_builder.Build()); HloComputation* while_cond_copy = module->AddEmbeddedComputation(while_cond->Clone()); HloComputation* inner_computation = module->AddEmbeddedComputation( MakeRematerializableComputation(".inner")); HloComputation* middle_computation = module->AddEmbeddedComputation(MakeRematerializableWhileComputation( while_cond, inner_computation, ".middle")); HloComputation* entry_computation = module->AddEntryComputation(MakeRematerializableWhileComputation( while_cond_copy, middle_computation)); EXPECT_EQ(entry_computation->instruction_count(), 7); EXPECT_EQ(middle_computation->instruction_count(), 7); EXPECT_EQ(inner_computation->instruction_count(), 8); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 13 * 1024, module.get())); EXPECT_TRUE(changed); EXPECT_EQ(entry_computation->instruction_count(), 9); EXPECT_EQ(middle_computation->instruction_count(), 9); EXPECT_EQ(inner_computation->instruction_count(), 9); CheckForRematInInstructionNames( ::testing::UnitTest::GetInstance()->current_test_info()->name()); } TEST_F(RecomputeAndCompressHloRematerializationTest, RngNotRematerialized) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param")); auto rng = builder.AddInstruction(HloInstruction::CreateRng( vec1024_shape_, RandomDistribution::RNG_UNIFORM, {param, param})); auto tanh = builder.AddInstruction( HloInstruction::CreateUnary(vec1024_shape_, HloOpcode::kTanh, rng)); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(vec1024_shape_, HloOpcode::kExp, rng)); auto add_0 = builder.AddInstruction( HloInstruction::CreateBinary(vec1024_shape_, HloOpcode::kAdd, rng, tanh)); auto add_1 = builder.AddInstruction(HloInstruction::CreateBinary( vec1024_shape_, HloOpcode::kAdd, rng, builder.AddInstruction(HloInstruction::CreateBinary( vec1024_shape_, HloOpcode::kAdd, exp, add_0)))); builder.AddInstruction(HloInstruction::CreateBinary( vec1024_shape_, HloOpcode::kAdd, rng, builder.AddInstruction(HloInstruction::CreateBinary( vec1024_shape_, HloOpcode::kAdd, tanh, add_1)))); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); auto count_rngs = [](const HloComputation* computation) { int64_t rng_count = 0; for (auto* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kRng) { ++rng_count; } } return rng_count; }; ASSERT_EQ(count_rngs(entry_computation), 1); const int64_t original_instruction_count = entry_computation->instruction_count(); TF_ASSERT_OK_AND_ASSIGN( bool changed, RunHloRematerialization( 4 * ByteSizeOf(vec1024_shape_), module.get())); EXPECT_TRUE(changed); EXPECT_EQ(count_rngs(entry_computation), 1); EXPECT_GT(entry_computation->instruction_count(), original_instruction_count); CheckForRematInInstructionNames( ::testing::UnitTest::GetInstance()->current_test_info()->name()); } TEST_F(RecomputeAndCompressHloRematerializationTest, InstructionRematerializedMultipleTimes) { auto module = CreateNewVerifiedModule(); HloComputation* subcomputation = nullptr; { auto builder = HloComputation::Builder(TestName() + ".subcomputation"); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, vec1024_shape_, "param")); auto concat = builder.AddInstruction(HloInstruction::CreateConcatenate( ShapeUtil::MakeShape(xla::F32, {2048}), {param, param}, 0)); builder.AddInstruction(HloInstruction::CreateSlice( vec1024_shape_, concat, {0}, {1024}, {1})); subcomputation = module->AddEmbeddedComputation(builder.Build()); } auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param")); auto bcast = builder.AddInstruction( HloInstruction::CreateBroadcast(vec1024_shape_, param, {})); auto add_1 = builder.AddInstruction(HloInstruction::CreateBinary( vec1024_shape_, HloOpcode::kAdd, bcast, bcast)); auto call_1 = builder.AddInstruction( HloInstruction::CreateCall(vec1024_shape_, {add_1}, subcomputation)); auto add_2 = builder.AddInstruction(HloInstruction::CreateBinary( vec1024_shape_, HloOpcode::kAdd, bcast, call_1)); auto call_2 = builder.AddInstruction( HloInstruction::CreateCall(vec1024_shape_, {add_2}, subcomputation)); auto add_3 = builder.AddInstruction(HloInstruction::CreateBinary( vec1024_shape_, HloOpcode::kAdd, bcast, call_2)); auto call_3 = builder.AddInstruction( HloInstruction::CreateCall(vec1024_shape_, {add_3}, subcomputation)); auto add_4 = builder.AddInstruction(HloInstruction::CreateBinary( vec1024_shape_, HloOpcode::kAdd, bcast, call_3)); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); auto count_broadcasts = [](const HloComputation* computation) { int64_t bcast_count = 0; for (auto* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kBroadcast) { bcast_count++; } } return bcast_count; }; EXPECT_EQ(count_broadcasts(entry_computation), 1); EXPECT_EQ(entry_computation->instruction_count(), 9); EXPECT_EQ(add_2->operand(0), bcast); EXPECT_EQ(add_3->operand(0), bcast); EXPECT_EQ(add_4->operand(0), bcast); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 22 * 1024, module.get())); EXPECT_TRUE(changed); EXPECT_EQ(count_broadcasts(entry_computation), 4); EXPECT_EQ(entry_computation->instruction_count(), 12); EXPECT_NE(add_2->operand(0), bcast); EXPECT_THAT(add_2->operand(0), op::Broadcast(param)); EXPECT_NE(add_3->operand(0), bcast); EXPECT_THAT(add_3->operand(0), op::Broadcast(param)); EXPECT_NE(add_4->operand(0), bcast); EXPECT_THAT(add_4->operand(0), op::Broadcast(param)); CheckForRematInInstructionNames( ::testing::UnitTest::GetInstance()->current_test_info()->name()); } TEST_F(RecomputeAndCompressHloRematerializationTest, CopyNotRematerialized) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, vec1024_shape_, "param")); auto copy = builder.AddInstruction( HloInstruction::CreateUnary(vec1024_shape_, HloOpcode::kCopy, param)); auto negate_a_1 = builder.AddInstruction( HloInstruction::CreateUnary(vec1024_shape_, HloOpcode::kNegate, copy)); auto negate_a_2 = builder.AddInstruction(HloInstruction::CreateUnary( vec1024_shape_, HloOpcode::kNegate, negate_a_1)); auto negate_b_1 = builder.AddInstruction( HloInstruction::CreateUnary(vec1024_shape_, HloOpcode::kNegate, copy)); auto negate_b_2 = builder.AddInstruction(HloInstruction::CreateUnary( vec1024_shape_, HloOpcode::kNegate, negate_b_1)); builder.AddInstruction(HloInstruction::CreateTuple({negate_a_2, negate_b_2})); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 1 * 1024, module.get())); auto count_copies = [](const HloComputation* computation) { int64_t copy_count = 0; for (auto* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kCopy) { copy_count++; } } return copy_count; }; EXPECT_TRUE(changed); EXPECT_EQ(count_copies(entry_computation), 1); CheckForRematInInstructionNames( ::testing::UnitTest::GetInstance()->current_test_info()->name()); } TEST_F(RecomputeAndCompressHloRematerializationTest, ThroughBitcastRemat) { const std::string& hlo_string = R"( HloModule fusion, is_scheduled=true ENTRY %mycomp (param: f32[1]) -> f32[1] { %param = f32[1]{0} parameter(0) %reshape = f32[] reshape(f32[1]{0} %param) %broadcast = f32[1024,1]{1,0} broadcast(f32[] %reshape), dimensions={} %bitcast = f32[1024]{0} bitcast(f32[1024,1]{1,0} %broadcast) %negate = f32[1024,1]{1,0} negate(f32[1024,1]{1,0} %broadcast) %concatenate = f32[2048,1]{1,0} concatenate(f32[1024,1]{1,0} %negate, f32[1024,1]{1,0} %negate), dimensions={0} %slice = f32[1,1]{1,0} slice(f32[2048,1]{1,0} %concatenate), slice={[0:1], [0:1]} %bitcast.1 = f32[1]{0} bitcast(f32[1,1]{1,0} %slice) %concatenate.1 = f32[1025]{0} concatenate(f32[1024]{0} %bitcast, f32[1]{0} %bitcast.1), dimensions={0} ROOT %slice.1 = f32[1]{0} slice(f32[1025]{0} %concatenate.1), slice={[0:1]} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto* computation = module->entry_computation(); const HloInstruction* slice = computation->root_instruction(); ASSERT_THAT(slice, op::Slice(op::Concatenate(op::Bitcast(op::Broadcast(_)), _))); const HloInstruction* concat = slice->operand(0); const HloInstruction* bcast = concat->operand(0)->operand(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 14 * 1024, module.get())); EXPECT_TRUE(changed); EXPECT_EQ(computation->root_instruction(), slice); const HloInstruction* remat_bitcast = concat->operand(0); const HloInstruction* remat_broadcast = remat_bitcast->operand(0); EXPECT_THAT(remat_broadcast, op::Broadcast(::testing::Ne(bcast))); EXPECT_EQ(module->schedule() .sequence(computation) .instructions()[computation->instruction_count() - 2], concat); EXPECT_EQ(module->schedule() .sequence(computation) .instructions()[computation->instruction_count() - 3], remat_bitcast); EXPECT_EQ(module->schedule() .sequence(computation) .instructions()[computation->instruction_count() - 4], remat_broadcast); CheckForRematInInstructionNames( ::testing::UnitTest::GetInstance()->current_test_info()->name()); } TEST_F(RecomputeAndCompressHloRematerializationTest, ThroughBitcastRematInfiniteLoop) { const std::string& hlo_string = R"( HloModule fusion, is_scheduled=true ENTRY %mycomp (param: f32[1]) -> f32[1024] { %param = f32[1]{0} parameter(0) %reshape = f32[] reshape(f32[1]{0} %param) %broadcast = f32[1024,1]{1,0} broadcast(f32[] %reshape), dimensions={} %bitcast = f32[1024]{0} bitcast(f32[1024,1]{1,0} %broadcast) %broadcast2 = f32[1024,1]{1,0} broadcast(f32[] %reshape), dimensions={} %bitcast2 = f32[1024]{0} bitcast(f32[1024,1]{1,0} %broadcast2) ROOT %add = f32[1024]{0} add(f32[1024]{0} %bitcast, f32[1024]{0} %bitcast2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto* computation = module->entry_computation(); const HloInstruction* add = computation->root_instruction(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 1024, module.get())); ASSERT_THAT(add, op::Add(op::Bitcast(op::Broadcast(_)), op::Bitcast(op::Broadcast(_)))); EXPECT_TRUE(changed); CheckForRematInInstructionNames( ::testing::UnitTest::GetInstance()->current_test_info()->name()); } TEST_F(RecomputeAndCompressHloRematerializationTest, RematTupleShape) { const std::string& hlo_string = R"( HloModule fusion, is_scheduled=true %add_mul_comp { %p0 = f32[] parameter(0) %p1 = f32[] parameter(1) %x = f32[1024]{0} broadcast(f32[] %p0), dimensions={} %y = f32[1024]{0} broadcast(f32[] %p1), dimensions={} %add = f32[1024] add(%x, %y) %mul = f32[1024] multiply(%x, %y) ROOT %out = (f32[1024], f32[1024]) tuple(%add, %mul) } ENTRY %entry { %param.0 = f32[] parameter(0) %param.1 = f32[] parameter(1) %fus = (f32[1024]{0}, f32[1024]{0}) fusion(%param.0, %param.1), kind=kLoop, calls=%add_mul_comp %gte.1 = f32[1024]{0} get-tuple-element(%fus), index=0 %add = f32[1024]{0} add(f32[1024]{0} %gte.1, f32[1024]{0} %gte.1) %broadcast.1 = f32[1024]{0} broadcast(f32[] %param.0), dimensions={} %mul = f32[1024]{0} multiply(f32[1024]{0} %add, f32[1024]{0} %broadcast.1) %gte.2 = f32[1024]{0} get-tuple-element(%fus), index=1 ROOT %add.2 = f32[1024]{0} add(f32[1024]{0} %mul, f32[1024]{0} %gte.2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); const HloComputation* computation = module->entry_computation(); const HloInstruction* add = computation->root_instruction(); ASSERT_THAT(add, op::Add(op::Multiply(), op::GetTupleElement(op::Fusion()))); const HloInstruction* fusion = add->operand(0)->operand(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 11 * 1024, module.get())); EXPECT_TRUE(changed); ASSERT_THAT( add, op::Add(op::Multiply(), AllOf(op::Fusion(), ::testing::Ne(fusion)))); CheckForRematInInstructionNames( ::testing::UnitTest::GetInstance()->current_test_info()->name()); } TEST_F(RecomputeAndCompressHloRematerializationTest, RematTupleShapeDoubleUse) { const std::string& hlo_string = R"( HloModule fusion, is_scheduled=true %add_mul_comp { %p0 = f32[] parameter(0) %p1 = f32[] parameter(1) %x = f32[1024]{0} broadcast(f32[] %p0), dimensions={} %y = f32[1024]{0} broadcast(f32[] %p1), dimensions={} %add = f32[1024] add(%x, %y) %mul = f32[1024] multiply(%x, %y) ROOT %out = (f32[1024], f32[1024]) tuple(%add, %mul) } ENTRY %entry { %param.0 = f32[] parameter(0) %param.1 = f32[] parameter(1) %fus = (f32[1024]{0}, f32[1024]{0}) fusion(%param.0, %param.1), kind=kLoop, calls=%add_mul_comp %gte.1 = f32[1024]{0} get-tuple-element(%fus), index=0 %add = f32[1024]{0} add(f32[1024]{0} %gte.1, f32[1024]{0} %gte.1) %broadcast.1 = f32[1024]{0} broadcast(f32[] %param.0), dimensions={} %mul = f32[1024]{0} multiply(f32[1024]{0} %add, f32[1024]{0} %broadcast.1) %gte.2 = f32[1024]{0} get-tuple-element(%fus), index=1 %gte.3 = f32[1024]{0} get-tuple-element(%fus), index=0 %add.2 = f32[1024]{0} add(f32[1024]{0} %mul, f32[1024]{0} %gte.2) ROOT %mul.2 = f32[1024]{0} multiply(f32[1024]{0} %add.2, f32[1024]{0} %gte.3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); const HloComputation* computation = module->entry_computation(); const HloInstruction* add = computation->root_instruction(); ASSERT_THAT(add, op::Multiply(op::Add(op::Multiply(), op::GetTupleElement(op::Fusion())), op::GetTupleElement(op::Fusion()))); const HloInstruction* fusion = add->operand(0)->operand(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 11 * 1024, module.get())); EXPECT_TRUE(changed); ASSERT_THAT( add, op::Multiply( op::Add(op::Multiply(), op::GetTupleElement(AllOf( op::Fusion(), ::testing::Ne(fusion)))), op::GetTupleElement(AllOf(op::Fusion(), ::testing::Ne(fusion))))); EXPECT_EQ(add->operand(0)->operand(1)->operand(0), add->operand(1)->operand(0)); CheckForRematInInstructionNames( ::testing::UnitTest::GetInstance()->current_test_info()->name()); } TEST_F(RecomputeAndCompressHloRematerializationTest, RematTupleShapeThroughBitcasts) { const std::string& hlo_string = R"( HloModule fusion, is_scheduled=true %add_mul_comp { %p0 = f32[] parameter(0) %p1 = f32[] parameter(1) %x = f32[1024]{0} broadcast(f32[] %p0), dimensions={} %y = f32[1024]{0} broadcast(f32[] %p1), dimensions={} %add = f32[1024] add(%x, %y) %mul = f32[1024] multiply(%x, %y) ROOT %out = (f32[1024], f32[1024]) tuple(%add, %mul) } ENTRY %entry { %param.0 = f32[] parameter(0) %param.1 = f32[] parameter(1) %fus = (f32[1024]{0}, f32[1024]{0}) fusion(%param.0, %param.1), kind=kLoop, calls=%add_mul_comp %gte.1 = f32[1024]{0} get-tuple-element(%fus), index=0 %add = f32[1024]{0} add(f32[1024]{0} %gte.1, f32[1024]{0} %gte.1) %broadcast.1 = f32[1024]{0} broadcast(f32[] %param.0), dimensions={} %mul = f32[1024]{0} multiply(f32[1024]{0} %add, f32[1024]{0} %broadcast.1) %gte.2 = f32[1024]{0} get-tuple-element(%fus), index=1 %bc.1 = f32[1024,1]{0,1} bitcast(%mul) %bc.2 = f32[1024,1]{0,1} bitcast(%gte.2) ROOT %add.2 = f32[1024,1]{0,1} add(f32[1024,1]{0,1} %bc.1, f32[1024,1]{0,1} %bc.2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); const HloComputation* computation = module->entry_computation(); const HloInstruction* add = computation->root_instruction(); ASSERT_THAT(add, op::Add(op::Bitcast(op::Multiply()), op::Bitcast(op::GetTupleElement(op::Fusion())))); const HloInstruction* fusion = add->operand(0)->operand(0)->operand(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 11 * 1024, module.get())); EXPECT_TRUE(changed); ASSERT_THAT(add, op::Add(op::Bitcast(op::Multiply()), op::Bitcast(AllOf(op::Fusion(), ::testing::Ne(fusion))))); CheckForRematInInstructionNames( ::testing::UnitTest::GetInstance()->current_test_info()->name()); } TEST_F(RecomputeAndCompressHloRematerializationTest, RematThroughTuple) { const std::string& hlo_string = R"( HloModule fusion, is_scheduled=true %add_mul_comp { %p0 = f32[] parameter(0) %p1 = f32[] parameter(1) %x = f32[1024]{0} broadcast(f32[] %p0), dimensions={} %y = f32[1024]{0} broadcast(f32[] %p1), dimensions={} %add = f32[1024] add(%x, %y) %mul = f32[1024] multiply(%x, %y) ROOT %out = (f32[1024], f32[1024]) tuple(%add, %mul) } ENTRY %entry { %param.0 = f32[] parameter(0) %param.1 = f32[] parameter(1) %fus = (f32[1024]{0}, f32[1024]{0}) fusion(%param.0, %param.1), kind=kLoop, calls=%add_mul_comp %gte.1 = f32[1024]{0} get-tuple-element(%fus), index=0 %gte.3 = f32[1024]{0} get-tuple-element(%fus), index=1 %add = f32[1024]{0} add(f32[1024]{0} %gte.1, f32[1024]{0} %gte.3) %broadcast.1 = f32[1024]{0} broadcast(f32[] %param.0), dimensions={} %mul = f32[1024]{0} multiply(f32[1024]{0} %add, f32[1024]{0} %broadcast.1) %tpl = (f32[1024]{0}, f32[1024]{0}) tuple(%gte.1, %add) %bc.1 = f32[1024,1]{0,1} bitcast(%mul) %gte.2 = f32[1024]{0} get-tuple-element(%tpl), index=0 ROOT %add.2 = f32[1024]{0} add(f32[1024]{0} %gte.2, f32[1024]{0} %add) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); const HloComputation* computation = module->entry_computation(); const HloInstruction* add = computation->root_instruction(); ASSERT_THAT(add, op::Add(op::GetTupleElement( op::Tuple(op::GetTupleElement(op::Fusion()), _)), op::Add())); const HloInstruction* tuple = add->operand(0)->operand(0); const HloInstruction* fusion = tuple->operand(0)->operand(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 11 * 1024, module.get())); EXPECT_TRUE(changed); ASSERT_THAT(add, op::Add(AllOf(op::Fusion(), ::testing::Ne(tuple), ::testing::Ne(fusion)), op::Add())); CheckForRematInInstructionNames( ::testing::UnitTest::GetInstance()->current_test_info()->name()); } TEST_F(RecomputeAndCompressHloRematerializationTest, AllGatherChannelId) { const std::string& hlo_string = R"( HloModule fusion, is_scheduled=true ENTRY %mycomp (param: f32[1]) -> f32[1] { %param = f32[1]{0} parameter(0) %reshape = f32[] reshape(f32[1]{0} %param) %broadcast = f32[256,1]{1,0} broadcast(f32[] %reshape), dimensions={} %ag = f32[1024,1]{1,0} all-gather(f32[256,1]{1,0} %broadcast), dimensions={0}, channel_id=1, replica_groups={{0,1,2,3}}, use_global_device_ids=true %bitcast = f32[1024]{0} bitcast(f32[1024,1]{1,0} %ag) %negate = f32[1024,1]{1,0} negate(f32[1024,1]{1,0} %ag) %concatenate = f32[2048,1]{1,0} concatenate(f32[1024,1]{1,0} %negate, f32[1024,1]{1,0} %negate), dimensions={0} %slice = f32[1,1]{1,0} slice(f32[2048,1]{1,0} %concatenate), slice={[0:1], [0:1]} %bitcast.1 = f32[1]{0} bitcast(f32[1,1]{1,0} %slice) %concatenate.1 = f32[1025]{0} concatenate(f32[1024]{0} %bitcast, f32[1]{0} %bitcast.1), dimensions={0} ROOT %slice.1 = f32[1]{0} slice(f32[1025]{0} %concatenate.1), slice={[0:1]} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto* computation = module->entry_computation(); const HloInstruction* slice = computation->root_instruction(); ASSERT_THAT(slice, op::Slice(op::Concatenate( op::Bitcast(op::AllGather(op::Broadcast(_))), _))); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 14 * 1024, module.get())); EXPECT_TRUE(changed); EXPECT_EQ(computation->root_instruction(), slice); const HloInstruction* original_ag = FindInstruction(module.get(), "ag"); const HloInstruction* remat_ag = FindInstruction(module.get(), "ag.remat"); EXPECT_NE(remat_ag, nullptr); EXPECT_TRUE(original_ag->channel_id().has_value()); EXPECT_TRUE(remat_ag->channel_id().has_value()); EXPECT_EQ(*remat_ag->channel_id(), *original_ag->channel_id() + 1); CheckForRematInInstructionNames( ::testing::UnitTest::GetInstance()->current_test_info()->name()); } TEST_F(RecomputeAndCompressHloRematerializationTest, RematTupleArgFusion) { const std::string& hlo_string = R"( HloModule fusion, is_scheduled=true %add_mul_comp { %p0 = f32[] parameter(0) %p1 = f32[] parameter(1) %x = f32[1024]{0} broadcast(f32[] %p0), dimensions={} %y = f32[1024]{0} broadcast(f32[] %p1), dimensions={} %add = f32[1024] add(%x, %y) %mul = f32[1024] multiply(%x, %y) ROOT %out = (f32[1024], f32[1024]) tuple(%add, %mul) } %add_comp { %p0 = f32[] parameter(0) %p1 = f32[] parameter(1) ROOT %add = add(%p0, %p1) } %add_tuple_comp { %p = (f32[1024]{0}, f32[1024]{0}) parameter(0) %p0 = get-tuple-element(%p), index=0 %p1 = get-tuple-element(%p), index=1 ROOT %add = add(%p0, %p1) } ENTRY %entry { %param.0 = f32[] parameter(0) %param.1 = f32[] parameter(1) %fus = (f32[1024]{0}, f32[1024]{0}) fusion(%param.0, %param.1), kind=kLoop, calls=%add_mul_comp %gte.1 = f32[1024]{0} get-tuple-element(%fus), index=0 %gte.3 = f32[1024]{0} get-tuple-element(%fus), index=1 %add.0 = f32[1024]{0} add(f32[1024]{0} %gte.1, f32[1024]{0} %gte.3) %broadcast.1 = f32[1024]{0} broadcast(f32[] %param.0), dimensions={} %add.1 = f32[1024]{0} add(f32[1024]{0} %add.0, f32[1024]{0} %broadcast.1) %c = f32[] constant(0) %reduce = f32[] reduce(%add.1, %c), dimensions={0}, to_apply=add_comp %fus.1 = f32[1024]{0} fusion(%fus), kind=kLoop, calls=%add_tuple_comp ROOT %tuple = tuple(%reduce, %fus.1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); const HloComputation* computation = module->entry_computation(); const HloInstruction* root = computation->root_instruction(); ASSERT_THAT(root, op::Tuple(op::Reduce(), op::Fusion(op::Fusion()))); const HloInstruction* fusion1 = root->operand(1); const HloInstruction* fusion0 = fusion1->operand(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 11 * 1024, module.get())); EXPECT_TRUE(changed); ASSERT_THAT( root, op::Tuple(op::Reduce(), op::Fusion(AllOf(op::Fusion(), ::testing::Ne(fusion0))))); CheckForRematInInstructionNames( ::testing::UnitTest::GetInstance()->current_test_info()->name()); } TEST_F(RecomputeAndCompressHloRematerializationTest, RematFusionUpdateSchedule) { const std::string& hlo_string = R"( HloModule fusion, is_scheduled=true %custom_call_comp { %p = f32[1024]{0} parameter(0) ROOT %n = f32[1024]{0} negate(p) } %add_mul_comp { %p0 = f32[] parameter(0) %p1 = f32[] parameter(1) %x = f32[1024]{0} broadcast(f32[] %p0), dimensions={} %y = f32[1024]{0} broadcast(f32[] %p1), dimensions={} %add = f32[1024] add(%x, %y) %mul = f32[1024] multiply(%x, %y) %c = f32[1024] custom-call(%mul), custom_call_target="SomeCall", called_computations={custom_call_comp} ROOT %out = (f32[1024], f32[1024]) tuple(%add, %c) } ENTRY %entry { %param.0 = f32[] parameter(0) %param.1 = f32[] parameter(1) %fus = (f32[1024]{0}, f32[1024]{0}) fusion(%param.0, %param.1), kind=kLoop, calls=%add_mul_comp %gte.1 = f32[1024]{0} get-tuple-element(%fus), index=0 %add = f32[1024]{0} add(f32[1024]{0} %gte.1, f32[1024]{0} %gte.1) %broadcast.1 = f32[1024]{0} broadcast(f32[] %param.0), dimensions={} %mul = f32[1024]{0} multiply(f32[1024]{0} %add, f32[1024]{0} %broadcast.1) %gte.2 = f32[1024]{0} get-tuple-element(%fus), index=1 %gte.3 = f32[1024]{0} get-tuple-element(%fus), index=0 %add.2 = f32[1024]{0} add(f32[1024]{0} %mul, f32[1024]{0} %gte.2) ROOT %mul.2 = f32[1024]{0} multiply(f32[1024]{0} %add.2, f32[1024]{0} %gte.3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); const HloComputation* computation = module->entry_computation(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 11 * 1024, module.get())); EXPECT_TRUE(changed); XLA_VLOG_LINES(1, module->ToString()); const HloInstruction* add = computation->root_instruction(); const HloInstruction* fusion = add->operand(0)->operand(0); ASSERT_THAT( add, op::Multiply( op::Add(op::Multiply(), op::GetTupleElement(AllOf( op::Fusion(), ::testing::Ne(fusion)))), op::GetTupleElement(AllOf(op::Fusion(), ::testing::Ne(fusion))))); const HloInstruction* fusion0 = add->operand(0)->operand(1)->operand(0); const HloInstruction* fusion1 = add->operand(1)->operand(0); auto it = std::find_if(fusion0->fused_instructions().begin(), fusion0->fused_instructions().end(), [](const HloInstruction* instr) { return instr->opcode() == HloOpcode::kCustomCall; }); ASSERT_NE(it, fusion0->fused_instructions().end()); auto it2 = std::find_if(fusion1->fused_instructions().begin(), fusion1->fused_instructions().end(), [](const HloInstruction* instr) { return instr->opcode() == HloOpcode::kCustomCall; }); ASSERT_NE(it2, fusion1->fused_instructions().end()); EXPECT_TRUE(module->schedule().is_computation_scheduled( (*it)->called_computations()[0])); EXPECT_TRUE(module->schedule().is_computation_scheduled( (*it2)->called_computations()[0])); CheckForRematInInstructionNames( ::testing::UnitTest::GetInstance()->current_test_info()->name()); } class CompressingRematerializationTest : public RematerializationTestBase { protected: static int64_t ShapeSizePadMinorTo64(const Shape& shape) { if (shape.IsTuple()) { return 4; } Shape descending_shape = ShapeUtil::MakeShapeWithDescendingLayoutAndSamePhysicalLayout(shape); int64_t size = ShapeUtil::ByteSizeOfPrimitiveType(descending_shape.element_type()); for (int64_t i = 0; i < descending_shape.rank(); ++i) { int64_t dim = descending_shape.dimensions(i); if (i == descending_shape.rank() - 1) { dim = RoundUpTo<int64_t>(dim, 64); } size *= dim; } return size; } static absl::StatusOr<Shape> ChooseCompactLayoutForShape(const Shape& shape) { if (shape.rank() != 2) { return shape; } Shape result = shape; Layout layout = result.layout(); int64_t most_minor_index = layout.minor_to_major()[0]; int64_t second_minor_index = layout.minor_to_major()[1]; int64_t most_minor = result.dimensions(most_minor_index); int64_t second_minor = result.dimensions(second_minor_index); if (most_minor < second_minor) { Layout new_layout = layout; new_layout.set_minor_to_major(0, second_minor_index); new_layout.set_minor_to_major(1, most_minor_index); *result.mutable_layout() = new_layout; } return result; } absl::StatusOr<bool> RunHloRematerialization(int64_t memory_limit_bytes, HloModule* module, int64_t min_remat_size = 0) { TF_EXPECT_OK(verifier().Run(module).status()); HloRematerialization::RematerializationModeConfig config( false, true, false); auto shape_size_func = [](const Shape& shape) { return ShapeSizePadMinorTo64(shape); }; HloCostAnalysis cost_analysis(shape_size_func); HloRematerialization::Options options( cost_analysis, config, memory_limit_bytes, 1, 1, min_remat_size, ChooseCompactLayoutForShape, std::nullopt, {}); HloRematerialization::RematerializationSizes sizes; HloRematerialization remat(options, sizes); return remat.Run(module); } }; TEST_F(CompressingRematerializationTest, OnlyRematBigBuffer) { const std::string& hlo_string = R"( HloModule fusion, is_scheduled=true %add_float { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(f32[] %x, f32[] %y) } ENTRY %entry { %param.0 = f32[] parameter(0) %constant = f32[] constant(0) %broadcast.0 = f32[64,2]{1,0} broadcast(f32[] %param.0), dimensions={} %broadcast.1 = f32[10,2]{1,0} broadcast(f32[] %param.0), dimensions={} %negate = f32[64,2]{1,0} negate(f32[64,2]{1,0} broadcast.0) %reduce.0 = f32[] reduce(f32[64,2]{1,0} %negate, f32[] %constant), dimensions={1, 0}, to_apply=%add_float %reduce.1 = f32[] reduce(f32[64,2]{1,0} %broadcast.0, f32[] %constant), dimensions={1, 0}, to_apply=%add_float %reduce.2 = f32[] reduce(f32[10,2]{1,0} %broadcast.1, f32[] %constant), dimensions={1, 0}, to_apply=%add_float %add = f32[] add(f32[] %reduce.0, f32[] %reduce.1) ROOT %add.2 = f32[] add(f32[] %add, f32[] %reduce.2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 30 * 1024, module.get(), 10 * 1024)); EXPECT_TRUE(changed); HloInstruction* broadcast = module->entry_computation()->GetInstructionWithName("broadcast.0"); HloInstruction* broadcast_2 = module->entry_computation()->GetInstructionWithName("broadcast.1"); HloInstruction* reduce = module->entry_computation()->GetInstructionWithName("reduce.1"); HloInstruction* reduce_2 = module->entry_computation()->GetInstructionWithName("reduce.2"); EXPECT_THAT(reduce, op::Reduce(op::Copy(op::Copy(broadcast)), op::Constant())); EXPECT_THAT(reduce_2, op::Reduce(broadcast_2, op::Constant())); } TEST_F(CompressingRematerializationTest, SingleRemat) { const std::string& hlo_string = R"( HloModule fusion, is_scheduled=true %add_float { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(f32[] %x, f32[] %y) } ENTRY %entry { %param.0 = f32[] parameter(0) %constant = f32[] constant(0) %broadcast.0 = f32[64,2]{1,0} broadcast(f32[] %param.0), dimensions={} %negate = f32[64,2]{1,0} negate(f32[64,2]{1,0} broadcast.0) %reduce.0 = f32[] reduce(f32[64,2]{1,0} %negate, f32[] %constant), dimensions={1, 0}, to_apply=%add_float %reduce.1 = f32[] reduce(f32[64,2]{1,0} %broadcast.0, f32[] %constant), dimensions={1, 0}, to_apply=%add_float %add = f32[] add(f32[] %reduce.0, f32[] %reduce.1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 30 * 1024, module.get())); EXPECT_TRUE(changed); HloInstruction* broadcast = module->entry_computation()->GetInstructionWithName("broadcast.0"); HloInstruction* reduce = module->entry_computation()->GetInstructionWithName("reduce.1"); EXPECT_THAT(reduce, op::Reduce(op::Copy(op::Copy(broadcast)), op::Constant())); } TEST_F(CompressingRematerializationTest, AvoidPathologicalCompress) { const std::string& hlo_string = R"( HloModule fusion, is_scheduled=true %add_float { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(f32[] %x, f32[] %y) } ENTRY %entry { %param.0 = f32[] parameter(0) %constant = f32[] constant(0) %broadcast.0 = f32[63,60]{1,0} broadcast(f32[] %param.0), dimensions={} %broadcast.1 = f32[16,64]{1,0} broadcast(f32[] %param.0), dimensions={} %reduce.0 = f32[] reduce(%broadcast.1, f32[] %constant), dimensions={1, 0}, to_apply=%add_float %reduce.1 = f32[] reduce(%broadcast.0, f32[] %constant), dimensions={1, 0}, to_apply=%add_float %add = f32[] add(f32[] %reduce.0, f32[] %reduce.1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 16 * 1024, module.get())); EXPECT_FALSE(changed); HloInstruction* broadcast = module->entry_computation()->GetInstructionWithName("broadcast.0"); HloInstruction* reduce = module->entry_computation()->GetInstructionWithName("reduce.1"); EXPECT_THAT(reduce, op::Reduce(broadcast, op::Constant())); } TEST_F(CompressingRematerializationTest, AllUsersUseSameCopy) { const std::string& hlo_string = R"( HloModule fusion, is_scheduled=true %add_float { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(f32[] %x, f32[] %y) } ENTRY %entry { %param.0 = f32[] parameter(0) %constant = f32[] constant(0) %broadcast.0 = f32[64,2]{1,0} broadcast(f32[] %param.0), dimensions={} %negate = f32[64,2]{1,0} negate(f32[64,2]{1,0} broadcast.0) %reduce.0 = f32[] reduce(f32[64,2]{1,0} %negate, f32[] %constant), dimensions={1, 0}, to_apply=%add_float %reduce.1 = f32[] reduce(f32[64,2]{1,0} %negate, f32[] %constant), dimensions={1, 0}, to_apply=%add_float %reduce.2 = f32[] reduce(f32[64,2]{1,0} %broadcast.0, f32[] %constant), dimensions={1, 0}, to_apply=%add_float %add = f32[] add(f32[] %reduce.0, f32[] %reduce.1) %reduce.3 = f32[] reduce(f32[64,2]{1,0} %broadcast.0, f32[] %constant), dimensions={1, 0}, to_apply=%add_float %add.2 = f32[] add(f32[] %reduce.2, f32[] %reduce.3) ROOT %tuple = (f32[], f32[]) tuple (f32[] add, f32[] add.2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 30 * 1024, module.get())); EXPECT_TRUE(changed); HloInstruction* broadcast = module->entry_computation()->GetInstructionWithName("broadcast.0"); HloInstruction* reduce_2 = module->entry_computation()->GetInstructionWithName("reduce.2"); HloInstruction* reduce_3 = module->entry_computation()->GetInstructionWithName("reduce.3"); EXPECT_THAT(reduce_2, op::Reduce(op::Copy(op::Copy(broadcast)), op::Constant())); EXPECT_THAT(reduce_3, op::Reduce(op::Copy(op::Copy(broadcast)), op::Constant())); } class OffloadingRematerializationTest : public RematerializationTestBase { protected: absl::StatusOr<bool> RunHloRematerialization(int64_t memory_limit_bytes, HloModule* module, int64_t min_remat_size = 0) { TF_EXPECT_OK(verifier().Run(module).status()); if (!module->has_schedule()) { HloMemoryScheduler scheduler( [](const BufferValue& buffer) { return ByteSizeOf(buffer.shape()); }, ComputationSchedulerToModuleScheduler(DefaultMemoryScheduler)); TF_EXPECT_OK(scheduler.Run(module).status()); } HloCostAnalysis::Options hlo_cost_analysis_options; hlo_cost_analysis_options.shape_size = [](const Shape& shape) { return ByteSizeOf(shape); }; hlo_cost_analysis_options.set_flops_per_second(flops_per_second_); hlo_cost_analysis_options.set_transcendentals_per_second( transcendentals_per_second_); HloCostAnalysis cost_analysis(hlo_cost_analysis_options); HloRematerialization::RematerializationModeConfig config( false, false, true); HloRematerialization::HostMemoryOffloadConfig host_memory_offload_config( kHostMemorySpaceColor, copy_to_host_speed_, copy_from_host_speed_); HloRematerialization::Options options( cost_analysis, config, memory_limit_bytes, 1, 1, min_remat_size, nullptr, host_memory_offload_config, {}); HloRematerialization::RematerializationSizes sizes; HloRematerialization remat(options, sizes); return remat.Run(module); } void SetCopyToHostSpeed(float val) { copy_to_host_speed_ = val; } void SetCopyFromHostSpeed(float val) { copy_from_host_speed_ = val; } void SetFlopsPerSecond(float val) { flops_per_second_ = val; } void SetTranscendentalsPerSecond(float val) { transcendentals_per_second_ = val; } static constexpr const int64_t kHostMemorySpaceColor{5}; private: float copy_to_host_speed_{1.0f}; float copy_from_host_speed_{1.0f}; float flops_per_second_{1.0f}; float transcendentals_per_second_{1.0f}; }; TEST_F(OffloadingRematerializationTest, BasicSuccessfulHostOffload) { const std::string& hlo_string = R"( HloModule MyModule, is_scheduled=true, entry_computation_layout={(f32[1024]{0}, f32[1024]{0})->f32[1024]{0}} ENTRY MyModule { param_0 = f32[1024]{0} parameter(0) param_1 = f32[1024]{0} parameter(1) res_3 = f32[1024]{0} add(param_0, param_1) res_4 = f32[1024]{0} tanh(res_3) res_5 = f32[1024]{0} tanh(res_4) res_6 = f32[1024]{0} tanh(res_5) res_7 = f32[1024]{0} add(res_6, res_6) res_8 = f32[1024]{0} add(res_7, res_5) res_9 = f32[1024]{0} add(res_8, res_4) res_10 = f32[1024]{0} add(res_9, res_3) ROOT res_11 = f32[1024]{0} tanh(res_10) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); SetCopyToHostSpeed(4.0 * 1024); SetCopyFromHostSpeed(4.0 * 1024); SetFlopsPerSecond(2 * 1024); SetTranscendentalsPerSecond(2 * 1024); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 10 * 1024, module.get())); ASSERT_TRUE(changed); ASSERT_TRUE(module->has_schedule()); auto res_3_matcher = op::Add(op::Parameter(), op::Parameter()); auto res_3_rematted_matcher = op::AsyncCopy( xla::Layout::kDefaultMemorySpace, kHostMemorySpaceColor, op::AsyncCopy(kHostMemorySpaceColor, xla::Layout::kDefaultMemorySpace, res_3_matcher)); auto res_4_matcher = op::Tanh(res_3_matcher); auto res_4_rematted_matcher = op::AsyncCopy( xla::Layout::kDefaultMemorySpace, kHostMemorySpaceColor, op::AsyncCopy(kHostMemorySpaceColor, xla::Layout::kDefaultMemorySpace, res_4_matcher)); auto res_5_matcher = op::Tanh(res_4_matcher); auto res_6_matcher = op::Tanh(res_5_matcher); auto res_7_matcher = op::Add(res_6_matcher, res_6_matcher); auto res_8_matcher = op::Add(res_7_matcher, res_5_matcher); auto res_9_matcher = op::Add(res_8_matcher, res_4_rematted_matcher); auto res_10_matcher = op::Add(res_9_matcher, res_3_rematted_matcher); const auto instruction_sequence = module->schedule().sequence(module->entry_computation()); ASSERT_THAT(instruction_sequence.instructions().back(), op::Tanh(res_10_matcher)); } TEST_F(OffloadingRematerializationTest, SkipOffloadWhenBitcastIsInvolved) { const std::string& hlo_string = R"( HloModule MyModule, is_scheduled=true, entry_computation_layout={(f32[1024]{0}, f32[1024]{0})->f32[1024]{0}} ENTRY MyModule { param_0 = f32[1024]{0} parameter(0) param_1 = f32[1024]{0} parameter(1) res_3 = f32[1024]{0} add(param_0, param_1) bitcast = f32[1024]{0} bitcast(res_3) res_4 = f32[1024]{0} tanh(res_3) res_5 = f32[1024]{0} tanh(res_4) res_6 = f32[1024]{0} tanh(res_5) res_7 = f32[1024]{0} add(res_6, res_6) res_8 = f32[1024]{0} add(res_7, res_5) res_9 = f32[1024]{0} add(res_8, res_4) res_10 = f32[1024]{0} add(res_9, bitcast) ROOT res_11 = f32[1024]{0} tanh(res_10) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); SetCopyToHostSpeed(4.0 * 1024); SetCopyFromHostSpeed(4.0 * 1024); SetFlopsPerSecond(2 * 1024); SetTranscendentalsPerSecond(2 * 1024); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 10 * 1024, module.get())); ASSERT_TRUE(changed); ASSERT_TRUE(module->has_schedule()); auto res_3_matcher = op::Add(op::Parameter(), op::Parameter()); auto res_4_matcher = op::Tanh(res_3_matcher); auto res_4_rematted_matcher = op::AsyncCopy( xla::Layout::kDefaultMemorySpace, kHostMemorySpaceColor, op::AsyncCopy(kHostMemorySpaceColor, xla::Layout::kDefaultMemorySpace, res_4_matcher)); auto res_5_matcher = op::Tanh(res_4_matcher); auto res_6_matcher = op::Tanh(res_5_matcher); auto res_7_matcher = op::Add(res_6_matcher, res_6_matcher); auto res_8_matcher = op::Add(res_7_matcher, res_5_matcher); auto res_9_matcher = op::Add(res_8_matcher, res_4_rematted_matcher); auto res_10_matcher = op::Add(res_9_matcher, op::Bitcast(res_3_matcher)); const auto instruction_sequence = module->schedule().sequence(module->entry_computation()); ASSERT_THAT(instruction_sequence.instructions().back(), op::Tanh(res_10_matcher)); } class IndirectUseTest : public RecomputeAndCompressHloRematerializationTest, public ::testing::WithParamInterface<bool> {}; TEST_P(IndirectUseTest, IndirectUseRematerialized) { const bool indirectly_used = GetParam(); auto module = CreateNewVerifiedModule(); HloComputation* subcomputation = nullptr; { auto builder = HloComputation::Builder(TestName() + ".subcomputation"); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, vec1024_shape_, "param")); auto concat = builder.AddInstruction(HloInstruction::CreateConcatenate( ShapeUtil::MakeShape(xla::F32, {2048}), {param, param}, 0)); builder.AddInstruction(HloInstruction::CreateSlice( vec1024_shape_, concat, {0}, {1024}, {1})); subcomputation = module->AddEmbeddedComputation(builder.Build()); } auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param")); auto bcast = builder.AddInstruction( HloInstruction::CreateBroadcast(vec1024_shape_, param, {})); auto add_1 = builder.AddInstruction(HloInstruction::CreateBinary( vec1024_shape_, HloOpcode::kAdd, bcast, bcast)); auto call_1 = builder.AddInstruction( HloInstruction::CreateCall(vec1024_shape_, {add_1}, subcomputation)); auto add_2 = builder.AddInstruction(HloInstruction::CreateBinary( vec1024_shape_, HloOpcode::kAdd, bcast, call_1)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({bcast, add_2})); auto gte = builder.AddInstruction(HloInstruction::CreateGetTupleElement( vec1024_shape_, tuple, indirectly_used ? 0 : 1)); builder.AddInstruction( HloInstruction::CreateUnary(vec1024_shape_, HloOpcode::kNegate, gte)); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(entry_computation->instruction_count(), 8); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloRematerialization( 22 * 1024, module.get())); if (indirectly_used) { EXPECT_TRUE(changed); EXPECT_EQ(entry_computation->instruction_count(), 3); } else { EXPECT_TRUE(changed); EXPECT_EQ(entry_computation->instruction_count(), 9); } CheckForRematInInstructionNames( ::testing::UnitTest::GetInstance()->current_test_info()->name()); } INSTANTIATE_TEST_SUITE_P(IndirectUseTestInstantiation, IndirectUseTest, ::testing::Values(true, false)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_rematerialization.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_rematerialization_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4c6920cc-3aba-4b4e-867d-febd43cab405
cpp
tensorflow/tensorflow
llvm_compiler
third_party/xla/xla/service/llvm_compiler.cc
third_party/xla/xla/tests/llvm_compiler_test.cc
#include "xla/service/llvm_compiler.h" #include <memory> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_module_group.h" #include "xla/service/executable.h" #include "xla/service/stream_pool.h" #include "tsl/platform/denormal.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/scoped_annotation.h" #ifdef __FAST_MATH__ #error "Don't build XLA with -ffast-math" #endif namespace xla { absl::StatusOr<std::vector<std::unique_ptr<Executable>>> LLVMCompiler::Compile( std::unique_ptr<HloModuleGroup> module_group, std::vector<std::vector<se::StreamExecutor*>> stream_execs, const CompileOptions& options) { tsl::port::ScopedDontFlushDenormal dont_flush_denormals; std::vector<std::unique_ptr<Executable>> result; std::vector<std::unique_ptr<HloModule>> modules = module_group->ConsumeModules(); for (size_t i = 0; i < modules.size(); i++) { tsl::profiler::ScopedAnnotation annotation{[&] { return absl::StrFormat("XlaCompile:#module=%s,program_id=%d#", modules[i]->name(), modules[i]->unique_id()); }}; TF_ASSIGN_OR_RETURN(modules[i], RunHloPasses(std::move(modules[i]), stream_execs[i][0], options)); TF_ASSIGN_OR_RETURN( std::unique_ptr<Executable> executable, RunBackend(std::move(modules[i]), stream_execs[i][0], options)); result.push_back(std::move(executable)); } return std::move(result); } }
#include "xla/service/llvm_compiler.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "llvm/IR/Module.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module_group.h" #include "xla/literal_util.h" #include "xla/service/backend.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/stream_executor.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/casts.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace xla { namespace { using LLVMCompilerTest = HloTestBase; const char* const kHloText = R"( HloModule Add ENTRY main { constant.0 = f32[] constant(42.0) constant.1 = f32[] constant(43.0) ROOT add.0 = f32[] add(constant.0, constant.1) } )"; TEST_F(LLVMCompilerTest, HooksTest) { int pre_opt_hook_call_count = 0; int post_opt_hook_call_count = 0; auto pre_opt_hook = [&pre_opt_hook_call_count](const llvm::Module&) { ++pre_opt_hook_call_count; return absl::OkStatus(); }; auto post_opt_hook = [&post_opt_hook_call_count](const llvm::Module&) { ++post_opt_hook_call_count; return absl::OkStatus(); }; auto hlo_module = ParseAndReturnVerifiedModule(kHloText).value(); LLVMCompiler* compiler = tensorflow::down_cast<xla::LLVMCompiler*>(backend().compiler()); compiler->SetPreOptimizationHook(pre_opt_hook); compiler->SetPostOptimizationHook(post_opt_hook); ASSERT_TRUE(compiler ->RunBackend(std::move(hlo_module), backend().default_stream_executor(), nullptr) .ok()); EXPECT_EQ(1, pre_opt_hook_call_count); EXPECT_EQ(1, post_opt_hook_call_count); } TEST_F(LLVMCompilerTest, DISABLED_MultiModuleCompilation) { auto hlo_module = ParseAndReturnVerifiedModule(kHloText).value(); auto hlo_module2 = ParseAndReturnVerifiedModule(kHloText).value(); std::vector<std::unique_ptr<HloModule>> modules; modules.push_back(std::move(hlo_module)); modules.push_back(std::move(hlo_module2)); auto module_group = std::make_unique<HloModuleGroup>("test_module_group", std::move(modules)); std::vector<std::vector<se::StreamExecutor*>> executors; executors.push_back({backend().default_stream_executor()}); executors.push_back({backend().default_stream_executor()}); EXPECT_IS_OK(backend().compiler()->Compile(std::move(module_group), std::move(executors), backend().memory_allocator())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/llvm_compiler.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tests/llvm_compiler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
134981e1-f110-441e-b364-4076f0bc05ec
cpp
tensorflow/tensorflow
gpu_p2p_pipeliner
third_party/xla/xla/service/gpu/gpu_p2p_pipeliner.cc
third_party/xla/xla/service/gpu/gpu_p2p_pipeliner_test.cc
#include "xla/service/gpu/gpu_p2p_pipeliner.h" #include <cstdint> #include <functional> #include <string> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/pass/hlo_pass_pipeline.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/collective_pipeliner.h" #include "xla/service/hlo_parser.h" #include "xla/util.h" namespace xla { namespace gpu { namespace { bool ShouldPipeline(const HloInstruction* instr) { if (!HloPredicateIsOp<HloOpcode::kRecvDone, HloOpcode::kSendDone>(instr)) { return false; } auto it = instr->frontend_attributes().map().find(kSendRecvPipelineAttr); if (it == instr->frontend_attributes().map().end()) { return false; } auto allowed_predecessor = [&]() { return instr->opcode() == HloOpcode::kRecvDone && instr->control_predecessors().size() == 1 && instr->control_predecessors()[0]->opcode() == HloOpcode::kSend; }; if (!instr->control_successors().empty() || (!instr->control_predecessors().empty() && !allowed_predecessor())) { return false; } bool is_pipelined = (instr->user_count() == 1 && instr->parent() != nullptr && instr->users()[0] == instr->parent()->root_instruction()); return !is_pipelined; } bool ShouldAllowLoopVariantParameterInChain(const HloInstruction* instr) { CHECK(instr->opcode() == HloOpcode::kGetTupleElement && instr->operand(0)->opcode() == HloOpcode::kParameter); return true; } absl::Status PostprocessP2PImpl( HloInstruction* instr, std::function<std::string(std::vector<ReplicaGroup>&)> transformer) { if (!HloPredicateIsOp<HloOpcode::kRecvDone, HloOpcode::kSendDone>(instr)) { return Internal("Expected SendDone/RecvDone as the pipelined collective"); } instr = instr->mutable_operand(0); if (!HloPredicateIsOp<HloOpcode::kRecv, HloOpcode::kSend>(instr)) { return Internal("Expected Send/Recv as the SendDone/RecvDone operand"); } auto validation_it = instr->frontend_attributes().map().find(kSendRecvValidationAttr); if (validation_it == instr->frontend_attributes().map().end() || validation_it->second == "invalid") { return absl::OkStatus(); } auto statusor_bounds = ParseReplicaGroupsOnly(validation_it->second); if (!statusor_bounds.ok()) { return statusor_bounds.status(); } std::string validation_attr = transformer(statusor_bounds.value()); xla::FrontendAttributes attributes = instr->frontend_attributes(); (*attributes.mutable_map())[kSendRecvValidationAttr] = validation_attr; instr->set_frontend_attributes(attributes); return absl::OkStatus(); } absl::Status PostprocessPeeledP2P(HloInstruction* instr) { auto transform_bounds = [&](std::vector<ReplicaGroup>& replica_groups) { std::vector<std::pair<int64_t, int64_t>> bounds; bounds.reserve(replica_groups.size()); bool all_invalid = true; for (const auto& replica_group : replica_groups) { int64_t lower_bound = replica_group.replica_ids(0); int64_t upper_bound = replica_group.replica_ids(1); if (lower_bound <= 0 && upper_bound >= 0) { all_invalid = false; bounds.push_back({0, 0}); } else { bounds.push_back({1, 0}); } } std::string validation_attr; if (all_invalid) { validation_attr = "invalid"; } else { validation_attr = "{" + absl::StrJoin(bounds, ",", absl::PairFormatter( [](std::string* out, int64_t value) { absl::StrAppend(out, "{", value); }, ",", [](std::string* out, int64_t value) { absl::StrAppend(out, value, "}"); })) + "}"; } return validation_attr; }; return PostprocessP2PImpl(instr, transform_bounds); }; absl::Status PostprocessRotatedP2P(HloInstruction* instr) { auto transform_bounds = [&](std::vector<ReplicaGroup>& replica_groups) { std::vector<std::pair<int64_t, int64_t>> bounds; bounds.reserve(replica_groups.size()); bool all_invalid = true; for (const auto& replica_group : replica_groups) { int64_t lower_bound = replica_group.replica_ids(0); int64_t upper_bound = replica_group.replica_ids(1); if (lower_bound <= upper_bound) { if (lower_bound >= 1) { --lower_bound; } if (upper_bound >= 1) { --upper_bound; } if (lower_bound <= upper_bound) { all_invalid = false; bounds.push_back({lower_bound, upper_bound}); } else { bounds.push_back({1, 0}); } } else { bounds.push_back({lower_bound, upper_bound}); } } std::string validation_attr; if (all_invalid) { validation_attr = "invalid"; } else { validation_attr = "{" + absl::StrJoin(bounds, ",", absl::PairFormatter( [](std::string* out, int64_t value) { absl::StrAppend(out, "{", value); }, ",", [](std::string* out, int64_t value) { absl::StrAppend(out, value, "}"); })) + "}"; } return validation_attr; }; return PostprocessP2PImpl(instr, transform_bounds); } } void AddP2PPipeliner(HloPassPipeline& pipeline) { CollectivePipeliner::Config config{ 0, INT64_MAX, true, false, true, CollectivePipeliner::PipeliningDirection::kBackward, ShouldPipeline, HloPredicateTrue, HloPredicateTrue, ShouldAllowLoopVariantParameterInChain, true, PostprocessPeeledP2P, PostprocessRotatedP2P}; pipeline.AddPass<CollectivePipeliner>(config); } } }
#include "xla/service/gpu/gpu_p2p_pipeliner.h" #include <cstdint> #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/pass/hlo_pass_pipeline.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "xla/service/hlo_verifier.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" namespace xla { namespace gpu { namespace { class GpuP2PPipelinerTest : public HloTestBase { public: GpuP2PPipelinerTest() { const int64_t kNumReplicas = 1; const int64_t kNumComputations = 4; config_ = GetModuleConfigForTest(kNumReplicas, kNumComputations); } absl::StatusOr<bool> RunOptimizer(HloModule* module) { HloPassPipeline pipeline("optimizer"); pipeline.AddPass<HloVerifier>(false, false); AddP2PPipeliner(pipeline); pipeline.AddPass<HloVerifier>(false, false); return pipeline.Run(module); } protected: HloModuleConfig config_; }; TEST_F(GpuP2PPipelinerTest, TransformRecvSendBackwardsWithMetaDataPostProcessing) { const char* kHloStr = R"( HloModule module cond { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(param), index=0 ub = u32[] constant(10) ROOT result = pred[] compare(count, ub), direction=LT } body { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(param), index=0 send-data = get-tuple-element(param), index=1 after-all.0 = token[] after-all() recv.0 = (u32[2], u32[], token[]) recv(after-all.0), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1,0}}", _xla_send_recv_pipeline="0", _xla_send_recv_validation="{{1,7}}" } after-all.0.s = token[] after-all() send.0 = (u32[2], u32[], token[]) send(send-data, after-all.0.s), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1,0}}", _xla_send_recv_pipeline="0", _xla_send_recv_validation="{{1,7}}" } recv-done.0 = (u32[2], token[]) recv-done(recv.0), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" }, control-predecessors={send.0} recv-data = u32[2] get-tuple-element(recv-done.0), index=0 c1 = u32[] constant(1) new_count = u32[] add(count, c1) r = u32[2] broadcast(c1), dimensions={} s = u32[2] add(r, recv-data) send-done.0 = token[] send-done(send.0), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } ROOT result = (u32[], u32[2]) tuple(new_count, s) } ENTRY test_computation { c0 = u32[] constant(0) c1 = u32[] constant(1) r = u32[] replica-id() a = u32[] add(c1, r) init = u32[2] broadcast(a), dimensions={} while_init = (u32[], u32[2]) tuple(c0, init) while_result = (u32[], u32[2]) while(while_init), body=body, condition=cond ROOT result = u32[2] get-tuple-element(while_result), index=1 })"; auto module = ParseAndReturnUnverifiedModule(kHloStr, config_).value(); EXPECT_TRUE(RunOptimizer(module.get()).value()); XLA_VLOG_LINES(10, module->ToString()); auto while_op = FindInstruction(module.get(), "while"); EXPECT_EQ(while_op->opcode(), HloOpcode::kWhile); EXPECT_EQ(while_op->shape().tuple_shapes().size(), 5); auto recv1 = DynCast<HloRecvInstruction>(FindInstruction(module.get(), "recv.1")); EXPECT_NE(recv1, nullptr); auto recv2 = DynCast<HloRecvInstruction>(FindInstruction(module.get(), "recv.2")); EXPECT_NE(recv2, nullptr); EXPECT_EQ(recv1->channel_id(), recv2->channel_id()); auto send1 = DynCast<HloSendInstruction>(FindInstruction(module.get(), "send.1")); EXPECT_NE(send1, nullptr); auto send2 = DynCast<HloSendInstruction>(FindInstruction(module.get(), "send.2")); EXPECT_NE(send2, nullptr); EXPECT_EQ(send1->channel_id(), send2->channel_id()); const char* kPeeledAttr = "_xla_send_recv_validation=\"invalid\""; const char* kRotatedAttr = "_xla_send_recv_validation={{0,6}}"; EXPECT_THAT(send1->ToString(), ::testing::HasSubstr(kPeeledAttr)); EXPECT_THAT(recv1->ToString(), ::testing::HasSubstr(kPeeledAttr)); EXPECT_THAT(send2->ToString(), ::testing::HasSubstr(kRotatedAttr)); EXPECT_THAT(recv2->ToString(), ::testing::HasSubstr(kRotatedAttr)); } TEST_F(GpuP2PPipelinerTest, SendRecvForwardCycle) { const char* kHloStr = R"( HloModule test while_body { inputs = (u32[], f32[2,2], f32[2,2]) parameter(0) iter = u32[] get-tuple-element(inputs), index=0 iter_increment = u32[] constant(1) next_iter = u32[] add(iter, iter_increment) weights = f32[2,2] get-tuple-element(inputs), index=2 partition-id = u32[] partition-id() zero = u32[] constant(0) compare = pred[] compare(partition-id, zero), direction=EQ broadcast = pred[2,2] broadcast(compare), dimensions={} data = f32[2,2] get-tuple-element(inputs), index=1 after-all = token[] after-all() send = (f32[2,2], u32[], token[]) send(data, after-all), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0", _xla_send_recv_source_target_pairs="{{3,0}}", _xla_send_recv_validation="{{3,10}}" } recv = (f32[2,2], u32[], token[]) recv(after-all), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0", _xla_send_recv_source_target_pairs="{{3,0}}", _xla_send_recv_validation="{{3,10}}" } recv-done = (f32[2,2], token[]) recv-done(recv), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"}, control-predecessors={send} recv-done-data = f32[2,2] get-tuple-element(recv-done), index=0 after-all.1 = token[] after-all() send.1 = (f32[2,2], u32[], token[]) send(data, after-all.1), channel_id=2, frontend_attributes={ _xla_send_recv_pipeline="1", _xla_send_recv_source_target_pairs="{{0,1},{1,2},{2,3}}", _xla_send_recv_validation="{{0,7},{1,8},{2,9}}" } recv.1 = (f32[2,2], u32[], token[]) recv(after-all.1), channel_id=2, frontend_attributes={ _xla_send_recv_pipeline="1", _xla_send_recv_source_target_pairs="{{0,1},{1,2},{2,3}}", _xla_send_recv_validation="{{0,7},{1,8},{2,9}}" } recv-done.1 = (f32[2,2], token[]) recv-done(recv.1), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1"}, control-predecessors={send.1} recv-done-1-data = f32[2,2] get-tuple-element(recv-done.1), index=0 select = f32[2,2] select(broadcast, recv-done-data, recv-done-1-data) matmul = f32[2,2] dot(weights, select), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT result = (u32[], f32[2,2], f32[2,2]) tuple(next_iter, matmul, weights) send-done = token[] send-done(send), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"} send-done.1 = token[] send-done(send.1), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1"} } while_cond { inputs = (u32[], f32[2,2], f32[2,2]) parameter(0) iter = u32[] get-tuple-element(inputs), index=0 max_iter = u32[] constant(3) ROOT compare = pred[] compare(iter, max_iter), direction=LT } ENTRY test_computation { start_iter = u32[] constant(0) input_data = f32[2,2] parameter(0) input_weights = f32[2,2] parameter(1) input = (u32[], f32[2,2], f32[2,2]) tuple(start_iter, input_data, input_weights) while_result = (u32[], f32[2,2], f32[2,2]) while(input), condition=while_cond, body=while_body ROOT data_out = f32[2,2] get-tuple-element(while_result), index=1 } )"; auto module = ParseAndReturnUnverifiedModule(kHloStr, config_).value(); EXPECT_TRUE(RunOptimizer(module.get()).value()); EXPECT_TRUE(RunFileCheck(module->ToString(), R"( CHECK: %[[RECV_BWD_START:.*]] = {{.*}} after-all() CHECK: %[[RECV_BWD:.*]] = {{.*}} recv(token[] %[[RECV_BWD_START:.*]]), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0",_xla_send_recv_source_target_pairs={{[{][{]}}3,0{{[}][}]}},_xla_send_recv_validation={{[{][{]}}2,9{{[}][}]}}} CHECK: %[[RECV_DONE_BWD:.*]] = {{.*}} recv-done({{.*}} %[[RECV_BWD:.*]]), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: %[[RECV_FWD_START:.*]] = {{.*}} after-all() CHECK: %[[RECV_FWD:.*]] = {{.*}} recv(token[] %[[RECV_FWD_START:.*]]), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1",_xla_send_recv_source_target_pairs={{[{][{]}}0,1},{1,2},{2,3{{[}][}]}},_xla_send_recv_validation={{[{][{]}}0,6},{0,7},{1,8{{[}][}]}}} CHECK: %[[RECV_DONE_FWD:.*]] = {{.*}} recv-done((f32[2,2]{1,0}, u32[], token[]) %[[RECV_FWD:.*]]), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1"} CHECK: %[[SEND_BWD:.*]] = {{.*}} send({{.*}} %[[RECV_BWD_START:.*]]), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0",_xla_send_recv_source_target_pairs={{[{][{]}}3,0{{[}][}]}},_xla_send_recv_validation={{[{][{]}}2,9{{[}][}]}}} CHECK: %[[SEND_DONE_BWD:.*]] = {{.*}} send-done({{.*}} %[[SEND_BWD:.*]]), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: %[[SEND_FWD:.*]] = {{.*}} send({{.*}} %[[RECV_FWD_START:.*]]), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1",_xla_send_recv_source_target_pairs={{[{][{]}}0,1},{1,2},{2,3{{[}][}]}},_xla_send_recv_validation={{[{][{]}}0,6},{0,7},{1,8{{[}][}]}}} CHECK: %[[SEND_DONE_FWD:.*]] = {{.*}} send-done({{.*}} %[[SEND_FWD:.*]]), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1"} CHECK: %[[WHILE_COND:.*]] (cond_param: {{.*}} CHECK-NEXT: %[[COND_PARAM:.*]] = {{.*}} parameter(0) CHECK: %[[CURRENT_ITER:.*]] = {{.*}} get-tuple-element({{.*}} %[[COND_PARAM:.*]]), index=0 CHECK: %[[TWO:.*]] = {{.*}} constant(2) CHECK: ROOT %[[COMPARE:.*]] = pred[] compare({{.*}} %[[CURRENT_ITER:.*]], {{.*}} %[[TWO:.*]]), direction=LT CHECK: ENTRY %[[TEST_COMPUTATION:.*]] (input_data: {{.*}} CHECK: %[[RECV_BWD_DUMMY_START:.*]] = {{.*}} after-all() CHECK: %[[RECV_BWD_DUMMY:.*]] = {{.*}} recv(token[] %[[RECV_BWD_DUMMY_START:.*]]), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0",_xla_send_recv_source_target_pairs={{[{][{]}}3,0{{[}][}]}},_xla_send_recv_validation="invalid"} CHECK: %[[RECV_DONE_BWD_DUMMY:.*]] = {{.*}} recv-done({{.*}} %[[RECV_BWD_DUMMY:.*]]), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: %[[RECV_FWD_FIRST_ITER_START:.*]] = {{.*}} after-all() CHECK: %[[RECV_FWD_FIRST_ITER:.*]] = {{.*}} recv(token[] %[[RECV_FWD_FIRST_ITER_START:.*]]), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1",_xla_send_recv_source_target_pairs={{[{][{]}}0,1},{1,2},{2,3{{[}][}]}},_xla_send_recv_validation={{[{][{]}}0,0},{1,0},{1,0{{[}][}]}}} CHECK: %[[RECV_DONE_FWD_FIRST_ITER:.*]] = {{.*}} recv-done({{.*}} %[[RECV_FWD_FIRST_ITER:.*]]), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1"} CHECK: %[[SEND_BWD_DUMMY:.*]] = {{.*}} send({{.*}} %[[RECV_DUMMY_START:.*]]), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0",_xla_send_recv_source_target_pairs={{[{][{]}}3,0{{[}][}]}},_xla_send_recv_validation="invalid"} CHECK: %[[SEND_DONE_BWD_DUMMY:.*]] = {{.*}} send-done({{.*}} %[[SEND_BWD_DUMMY:.*]]), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: %[[SEND_FWD_FIRST_ITER:.*]] = {{.*}} send({{.*}} %[[RECV_FWD_FIRST_ITER_START:.*]]), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1",_xla_send_recv_source_target_pairs={{[{][{]}}0,1},{1,2},{2,3{{[}][}]}},_xla_send_recv_validation={{[{][{]}}0,0},{1,0},{1,0{{[}][}]}}} CHECK: %[[SEND_DONE_FWD_FIRST_ITER:.*]] = {{.*}} send-done({{.*}} %[[SEND_FWD_FIRST_ITER:.*]]), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1"} CHECK: %[[START_LOOP_FROM_ITER_ONE:.*]] = u32[] constant(1) CHECK: %[[LOOP_INPUT:.*]] = {{.*}} tuple({{.*}} %[[START_LOOP_FROM_ITER_ONE:.*]]) CHECK: %[[WHILE:.*]] = {{.*}} while({{.*}} %[[LOOP_INPUT:.*]]), {{.*}} )") .value()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/gpu_p2p_pipeliner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/gpu_p2p_pipeliner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
25f2c367-30d8-42b1-ae1a-153d697a43ab
cpp
tensorflow/tensorflow
gpu_float_support
third_party/xla/xla/service/gpu/gpu_float_support.cc
third_party/xla/xla/service/gpu/gpu_float_support_test.cc
#include "xla/service/gpu/gpu_float_support.h" #include <utility> #include <variant> #include "absl/log/check.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/float_support.h" #include "xla/service/gpu/fusions/triton/triton_support.h" #include "xla/stream_executor/device_description.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { bool GpuFloatSupport::SupportsMixedPrecisions(const HloInstruction& hlo) const { if (FloatSupport::SupportsMixedPrecisions(hlo)) return true; switch (hlo.opcode()) { case HloOpcode::kDot: { CHECK_GE(hlo.operand_count(), HloDotInstruction::kOperands); const PrimitiveType lhs_type = hlo.operand(0)->shape().element_type(); const PrimitiveType rhs_type = hlo.operand(1)->shape().element_type(); const PrimitiveType result_type = hlo.shape().element_type(); return (lhs_type == F16 && rhs_type == F16 && result_type == F32) || (lhs_type == BF16 && rhs_type == BF16 && result_type == F32); } default: return false; } } bool GpuFloatSupport::IsSupported(const HloInstruction& hlo) const { switch (hlo.opcode()) { case HloOpcode::kAllReduce: case HloOpcode::kAllReduceStart: case HloOpcode::kAllReduceDone: case HloOpcode::kReduceScatter: case HloOpcode::kDot: using TypeAndCC = std::pair< PrimitiveType, stream_executor::CudaComputeCapability::CudaComputeCapabilities>; for (auto [type, cc] : {TypeAndCC(F8E4M3FN, se::CudaComputeCapability::AMPERE), TypeAndCC(F8E5M2, se::CudaComputeCapability::HOPPER)}) { if (LowPrecisionType() == type) { auto* cuda_compute_capability = std::get_if<se::CudaComputeCapability>(&compute_capability_); return cuda_compute_capability && cuda_compute_capability->IsAtLeast(cc) && IsTritonFusedComputation(*hlo.parent()); } } return LowPrecisionType() == BF16; case HloOpcode::kAllGather: case HloOpcode::kAllToAll: case HloOpcode::kBroadcast: case HloOpcode::kCollectivePermute: case HloOpcode::kConcatenate: case HloOpcode::kCopy: case HloOpcode::kDynamicSlice: case HloOpcode::kDynamicUpdateSlice: case HloOpcode::kGather: case HloOpcode::kPad: case HloOpcode::kReshape: case HloOpcode::kReverse: case HloOpcode::kScatter: case HloOpcode::kSelect: case HloOpcode::kSelectAndScatter: case HloOpcode::kSlice: case HloOpcode::kTranspose: case HloOpcode::kBitcast: return true; case HloOpcode::kAdd: case HloOpcode::kSubtract: case HloOpcode::kMultiply: { if (LowPrecisionType() == BF16) { auto* cuda_compute_capability = std::get_if<se::CudaComputeCapability>(&compute_capability_); return cuda_compute_capability != nullptr && cuda_compute_capability->IsAtLeastHopper(); } return false; } default: return false; } } } }
#include "xla/service/gpu/gpu_float_support.h" #include <memory> #include <string> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/float_normalization.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/hlo_verifier.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" namespace xla::gpu { namespace { class FloatSupportTest : public HloTestBase { protected: FloatSupportTest() : HloTestBase(false, true) {} bool Normalize(HloModule* module, se::GpuComputeCapability cc, PrimitiveType low_precision_type, PrimitiveType high_precision_type) { GpuFloatSupport float_support(cc, low_precision_type, high_precision_type); FloatNormalization normalization(&float_support); absl::StatusOr<bool> result = normalization.Run(module); EXPECT_IS_OK(result.status()); HloVerifier verifier(false, true); EXPECT_IS_OK(verifier.Run(module).status()); return result.value(); } std::unique_ptr<HloComputation> CreateComputation(PrimitiveType lhs_type, PrimitiveType rhs_type, PrimitiveType result_type) { auto builder = HloComputation::Builder(TestName()); Shape lhs_shape = ShapeUtil::MakeShape(lhs_type, {3, 3}); Shape rhs_shape = ShapeUtil::MakeShape(rhs_type, {3, 3}); Shape result_shape = ShapeUtil::MakeShape(result_type, {3, 3}); HloInstruction* a = builder.AddInstruction( HloInstruction::CreateParameter(0, lhs_shape, "a")); HloInstruction* b = builder.AddInstruction( HloInstruction::CreateParameter(1, rhs_shape, "b")); PrecisionConfig precision_config; DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(1); builder.AddInstruction(HloInstruction::CreateDot( result_shape, a, b, dot_dnums, precision_config)); return builder.Build(); } void TestDotConversion(PrimitiveType lhs_type, PrimitiveType rhs_type, PrimitiveType result_type, se::GpuComputeCapability cc, bool should_convert_lhs, bool should_convert_rhs, PrimitiveType low_precision_type, PrimitiveType high_precision_type = F16) { auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation( CreateComputation(lhs_type, rhs_type, result_type)); EXPECT_EQ( Normalize(module.get(), cc, low_precision_type, high_precision_type), should_convert_lhs || should_convert_rhs); EXPECT_EQ(computation->root_instruction()->opcode(), HloOpcode::kDot); EXPECT_EQ(computation->root_instruction()->operand(0)->opcode() == HloOpcode::kConvert, should_convert_lhs); EXPECT_EQ(computation->root_instruction()->operand(1)->opcode() == HloOpcode::kConvert, should_convert_rhs); } void TestTritonFusedDot(PrimitiveType lhs_type, PrimitiveType rhs_type, PrimitiveType result_type, se::GpuComputeCapability cc, bool should_convert_lhs, bool should_convert_rhs, PrimitiveType low_precision_type, PrimitiveType high_precision_type = F16) { auto module = CreateNewVerifiedModule(); auto computation = module->AddComputationAndUnifyNamesAndIds( CreateComputation(lhs_type, rhs_type, result_type), false); Shape lhs_shape = ShapeUtil::MakeShape(lhs_type, {3, 3}); Shape rhs_shape = ShapeUtil::MakeShape(rhs_type, {3, 3}); Shape result_shape = ShapeUtil::MakeShape(result_type, {3, 3}); auto builder = HloComputation::Builder("main"); HloInstruction* a = builder.AddInstruction( HloInstruction::CreateParameter(0, lhs_shape, "a")); HloInstruction* b = builder.AddInstruction( HloInstruction::CreateParameter(1, rhs_shape, "b")); HloInstruction* fusion = builder.AddInstruction(HloInstruction::CreateFusion( result_shape, HloInstruction::FusionKind::kCustom, {a, b}, computation)); GpuBackendConfig config; config.mutable_fusion_backend_config()->set_kind( std::string(kTritonGemmFusionKind)); CHECK_OK(fusion->set_backend_config(config)); module->AddEntryComputation(builder.Build()); EXPECT_EQ( Normalize(module.get(), cc, low_precision_type, high_precision_type), should_convert_lhs || should_convert_rhs); EXPECT_EQ(computation->root_instruction()->opcode(), HloOpcode::kDot); EXPECT_EQ(computation->root_instruction()->operand(0)->opcode() == HloOpcode::kConvert, should_convert_lhs); EXPECT_EQ(computation->root_instruction()->operand(1)->opcode() == HloOpcode::kConvert, should_convert_rhs); } }; TEST_F(FloatSupportTest, ShouldAlwaysConvertFp8Dot) { TestDotConversion(F8E4M3FN, F8E4M3FN, F16, se::CudaComputeCapability::Hopper(), true, true, F8E4M3FN); TestDotConversion(F8E4M3FN, F8E4M3FN, F32, se::CudaComputeCapability::Hopper(), true, true, F8E4M3FN); TestDotConversion(F8E4M3FN, F8E4M3FN, F16, se::CudaComputeCapability::Ampere(), true, true, F8E4M3FN); TestDotConversion(F8E4M3FN, F8E4M3FN, F32, se::CudaComputeCapability::Hopper(), true, true, F8E4M3FN); TestDotConversion(F8E5M2, F8E5M2, F16, se::CudaComputeCapability::Ampere(), true, true, F8E5M2); TestDotConversion(F8E5M2, F8E5M2, F32, se::CudaComputeCapability::Ampere(), true, true, F8E5M2); TestDotConversion(F8E5M2, F8E4M3FN, F16, se::CudaComputeCapability::Hopper(), true, false, F8E5M2); TestDotConversion(F8E5M2, F8E4M3FN, F32, se::CudaComputeCapability::Hopper(), true, false, F8E5M2); TestDotConversion(F8E5M2, F16, F16, se::CudaComputeCapability::Hopper(), true, false, F8E5M2); TestDotConversion(F8E5M2, F16, F32, se::CudaComputeCapability::Hopper(), true, false, F8E5M2); } TEST_F(FloatSupportTest, ShouldConverTritonUnsupportedFp8Dot) { TestTritonFusedDot(F8E4M3FN, F8E4M3FN, F16, se::CudaComputeCapability::Hopper(), true, true, F8E4M3FN); TestTritonFusedDot(F8E4M3FN, F8E4M3FN, F32, se::CudaComputeCapability::Hopper(), false, false, F8E4M3FN); TestTritonFusedDot(F8E4M3FN, F8E4M3FN, F16, se::CudaComputeCapability::Ampere(), true, true, F8E4M3FN); TestTritonFusedDot(F8E4M3FN, F8E4M3FN, F32, se::CudaComputeCapability::Hopper(), false, false, F8E4M3FN); TestTritonFusedDot(F8E5M2, F8E5M2, F16, se::CudaComputeCapability::Ampere(), true, true, F8E5M2); TestTritonFusedDot(F8E5M2, F8E5M2, F32, se::CudaComputeCapability::Ampere(), true, true, F8E5M2); TestTritonFusedDot(F8E5M2, F8E4M3FN, F16, se::CudaComputeCapability::Hopper(), true, false, F8E5M2); TestTritonFusedDot(F8E5M2, F8E4M3FN, F32, se::CudaComputeCapability::Hopper(), false, false, F8E5M2); TestTritonFusedDot(F8E5M2, F16, F16, se::CudaComputeCapability::Hopper(), true, false, F8E5M2); TestTritonFusedDot(F8E5M2, F16, F32, se::CudaComputeCapability::Hopper(), true, false, F8E5M2); } TEST_F(FloatSupportTest, ShouldKeepBf16OnAmpere) { TestDotConversion(BF16, BF16, F32, se::CudaComputeCapability::Ampere(), false, false, BF16); } TEST_F(FloatSupportTest, ShouldKeepBf16OnHopper) { TestDotConversion(BF16, BF16, F32, se::CudaComputeCapability::Hopper(), false, false, BF16); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/gpu_float_support.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/gpu_float_support_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
914cb876-e268-4338-974a-bdc42eb9ee1a
cpp
tensorflow/tensorflow
triton_tiling_propagation
third_party/xla/xla/service/gpu/triton_tiling_propagation.cc
third_party/xla/xla/service/gpu/triton_tiling_propagation_test.cc
#include "xla/service/gpu/triton_tiling_propagation.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <iterator> #include <list> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/layout.h" #include "xla/permutation_util.h" #include "xla/service/gpu/fusions/triton/triton_support.h" #include "xla/service/gpu/fusions/triton/triton_support_legacy.h" #include "xla/service/instruction_fusion.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { namespace { absl::flat_hash_map<int, TensorIterationSpec::DimIterationSpec> FilterTrivialDims( const absl::flat_hash_map<int, TensorIterationSpec::DimIterationSpec>& dim_iter_specs) { absl::flat_hash_map<int, TensorIterationSpec::DimIterationSpec> non_trivial_dim_iteration_specs; for (const auto& [dim, dim_spec] : dim_iter_specs) { if (dim_spec.size() == 1 && dim_spec[0].count == 1) { continue; } non_trivial_dim_iteration_specs[dim] = dim_spec; } return non_trivial_dim_iteration_specs; } } const TensorIterationSpec::DimIterationSpec* TensorIterationSpec::Find( const int dimension) const { if (auto it = dim_iteration_specs_.find(dimension); it != dim_iteration_specs_.end()) { return &it->second; } return nullptr; } std::vector<int> TensorIterationSpec::GetDimensions() const { std::vector<int> result; result.reserve(dim_iteration_specs_.size()); for (const auto& [dim, _] : dim_iteration_specs_) { result.push_back(dim); } return result; } bool TensorIterationSpec::IsPhysicallyEquivalent( const TensorIterationSpec& other) const { const absl::flat_hash_map<int, DimIterationSpec> non_trivial_dim_iteration_specs = FilterTrivialDims(dim_iteration_specs_); const absl::flat_hash_map<int, DimIterationSpec> other_non_trivial_dim_iteration_specs = FilterTrivialDims(other.dim_iteration_specs_); if (non_trivial_dim_iteration_specs.size() != other_non_trivial_dim_iteration_specs.size()) { return false; } for (const auto& pair : non_trivial_dim_iteration_specs) { int dimension = pair.first; const DimIterationSpec& dim_iter_spec = pair.second; auto other_it = other_non_trivial_dim_iteration_specs.find(dimension); if (other_it == other_non_trivial_dim_iteration_specs.end()) { return false; } const DimIterationSpec& other_dim_iter_spec = other_it->second; if (dim_iter_spec.size() != other_dim_iter_spec.size()) { return false; } for (size_t i = 0; i < dim_iter_spec.size(); i++) { if (!dim_iter_spec[i].IsPhysicallyEquivalent(other_dim_iter_spec[i])) { return false; } } } return true; } std::string TensorIterationSpec::IterationSpecFragment::ToString() const { return absl::StrCat("{stride=", stride, ", count=", count, ", slice_start=", slice_start, ", sliced_count=", sliced_count, ", subfragments=[", absl::StrJoin(subfragments, ", "), "]}"); } std::string TensorIterationSpec::ToString() const { return absl::StrCat( "{", absl::StrJoin(dim_iteration_specs_, ", ", [&](std::string* s, const auto& kv) { absl::StrAppend( s, kv.first, ": ", "[", absl::StrJoin(kv.second, ", ", [&](std::string* ss, const auto& v) { absl::StrAppend(ss, v.ToString()); }), "]"); }), "}"); } namespace triton_fusion { using Fragment = DimensionOrder::Fragment; using Fragments = DimensionOrder::Fragments; using FragmentOrders = DimensionOrder::FragmentOrders; DimensionOrder DimensionOrder::FromDotOperandOrOutput( const HloInstruction& hlo, const int split_k_dimension_index) { DimensionOrder dim_order; dim_order.tensor_fragments_order_.reserve(hlo.shape().rank()); for (const int i : hlo.shape().layout().minor_to_major()) { int target_dim_number = i; if (i == split_k_dimension_index) { CHECK(!dim_order.tensor_fragments_order_.empty()) << "The split-K batch dimension has be preceded by the contracting " "dimension it originates from by construction."; target_dim_number = dim_order.tensor_fragments_order_.back().dst_dim_number(); } dim_order.dim_fragments_orders_[target_dim_number].push_back( dim_order.tensor_fragments_order_.size()); dim_order.tensor_fragments_order_.push_back( Fragment{target_dim_number, hlo.shape().dimensions(i)}); } return dim_order; } std::string DimensionOrder::Fragment::ToString() const { return absl::StrCat(dst_dim_number_, ":", count_, ":", slice_start_, "-", sliced_count_); } std::string DimensionOrder::ToString() const { std::string ret = absl::StrJoin(tensor_fragments_order_, " - ", [](std::string* out, const Fragment& f) { absl::StrAppend(out, f.ToString(), " "); }); absl::StrAppend(&ret, "|"); for (const auto& [dim, fragments] : dim_fragments_orders_) { absl::StrAppend(&ret, dim, ":", absl::StrJoin(fragments, ","), " "); } return ret; } TensorIterationSpec DimensionOrder::ToTensorIterationSpec() const { const Fragments& dim_fragments = TensorFragmentsOrder(); TensorIterationSpec tensor_spec; int64_t accumulated_stride = 1; int last_dim = -1; for (int dim_order_index = 0; dim_order_index < dim_fragments.size(); ++dim_order_index) { const DimensionOrder::Fragment& fragment = dim_fragments[dim_order_index]; VLOG(6) << fragment.ToString(); TensorIterationSpec::DimIterationSpec& dim_spec = tensor_spec[fragment.dst_dim_number()]; if (last_dim == fragment.dst_dim_number()) { if (!dim_spec.empty() && !dim_spec.back().subfragments.empty() && dim_spec.back().subfragments.back() == 1) { dim_spec.back().subfragments.pop_back(); } if (fragment.full_count() > 1) { CHECK(!dim_spec.empty()); CHECK(!dim_spec.back().is_sliced()) << "Only the major-most fragment can have an offset."; dim_spec.back().slice_start = fragment.slice_start() * dim_spec.back().count; dim_spec.back().sliced_count = fragment.sliced_count() * dim_spec.back().count; dim_spec.back().count *= fragment.full_count(); dim_spec.back().subfragments.push_back(fragment.sliced_count()); } } else { dim_spec.push_back(TensorIterationSpec::IterationSpecFragment{ accumulated_stride, fragment.full_count(), fragment.slice_start(), fragment.sliced_count(), {fragment.sliced_count()}}); } accumulated_stride *= fragment.full_count(); last_dim = fragment.dst_dim_number(); } for (int dim_idx : tensor_spec.GetDimensions()) { TensorIterationSpec::DimIterationSpec& dim_spec = tensor_spec[dim_idx]; if (dim_spec.size() <= 1) continue; TensorIterationSpec::DimIterationSpec filtered_dim_spec; absl::c_copy_if(dim_spec, std::back_inserter(filtered_dim_spec), [](const TensorIterationSpec::IterationSpecFragment& f) { return f.count != 1; }); tensor_spec[dim_idx] = filtered_dim_spec; } tensor_spec.RemoveEmptyDimensions(); return tensor_spec; } namespace { std::optional<int> LogicalIndexOfLabeledDimension( const Shape& shape, const DimensionOrder& dim_order, const int label) { auto fragment_it = dim_order.TensorFragmentsOrder().cbegin(); for (int dim : shape.layout().minor_to_major()) { const int64_t dim_size = shape.dimensions()[dim]; int64_t fragments_size = 1; while (fragments_size < dim_size) { fragments_size *= fragment_it->full_count(); if (fragment_it->dst_dim_number() == label) { return dim; } ++fragment_it; } } return std::nullopt; } using Int64OrError = std::variant<int64_t, FusionDecision>; Int64OrError CombineSplitDimMajorPartSizeReqs(int64_t a, int64_t b) { if (a == b || b == kNoSplitRequirement) { return a; } if (a == kNoSplitRequirement) { return b; } return FusionDecision::Forbid("Conflicting splits of splittable dimension"); } } DotRequirementsOrError CombineDotRequirements( DotRequirements a, DotRequirementsOrError b_or_error) { if (std::holds_alternative<FusionDecision>(b_or_error)) { return b_or_error; } const DotRequirements& b = std::get<DotRequirements>(b_or_error); Int64OrError combined_size_req = CombineSplitDimMajorPartSizeReqs(a.splittable_dimension_major_part_size, b.splittable_dimension_major_part_size); if (std::holds_alternative<FusionDecision>(combined_size_req)) { return std::get<FusionDecision>(combined_size_req); } return DotRequirements(std::get<int64_t>(combined_size_req)); } namespace { DotRequirementsOrError GetRequirementsIfSupportedOrder( const DimensionOrder& order, const DotProperties& properties) { VLOG(8) << order.ToString(); int64_t split_dim_major_part = kNoSplitRequirement; const Fragments& tensor_dim_fragments = order.TensorFragmentsOrder(); for (const auto& [dim_index, dim_fragments] : order.DimFragmentsOrders()) { CHECK(!dim_fragments.empty()); for (int i = 0; i < dim_fragments.size() - 1; ++i) { if (tensor_dim_fragments[dim_fragments[i]].is_sliced()) { return FusionDecision::Forbid("Sliced non-major-most fragment."); } } int group_counter = 0; int last_seen_group_last_fragment_index = -1; auto fragment_it = dim_fragments.cbegin(); while (true) { if (fragment_it == dim_fragments.cend()) { break; } int64_t grouped_size = tensor_dim_fragments[*fragment_it].full_count(); while ((fragment_it + 1) != dim_fragments.cend() && *(fragment_it + 1) == *fragment_it + 1) { ++fragment_it; grouped_size *= tensor_dim_fragments[*fragment_it].full_count(); } if (grouped_size == 1) { ++fragment_it; continue; } if (last_seen_group_last_fragment_index > *fragment_it) { return FusionDecision::Forbid("Transpose within a dimension."); } ++group_counter; if (group_counter > 1) { const int splittable_dimension_index = properties.splittable_dimension_index; if (dim_index == splittable_dimension_index) { if (group_counter == 2) { if (split_dim_major_part != kNoSplitRequirement && split_dim_major_part != grouped_size) { return FusionDecision::Forbid( "Conflicting splits of splittable dimension"); } split_dim_major_part = grouped_size; } else if (group_counter > 2) { return FusionDecision::Forbid( "2nd split of a splittable dimension."); } } else { return FusionDecision::Forbid("Unsupported split of a dimension."); } } last_seen_group_last_fragment_index = *fragment_it; ++fragment_it; } } return DotRequirements(split_dim_major_part); } DotRequirementsOrError GetRequirementsIfSupportedOrders( const HloInstruction& hlo, const DimOrderMap& dim_orders, const DotProperties& properties) { const DotRequirements empty_requirements(kNoSplitRequirement); auto get_requirements = [&](const HloInstruction& instr) -> DotRequirementsOrError { if (auto it = dim_orders.find(&instr); it != dim_orders.end()) { return GetRequirementsIfSupportedOrder(it->second, properties); } return empty_requirements; }; DotRequirements requirements = empty_requirements; for (const HloInstruction* operand : hlo.operands()) { DotRequirementsOrError requirements_or_error = CombineDotRequirements(requirements, get_requirements(*operand)); if (std::holds_alternative<FusionDecision>(requirements_or_error)) { return requirements_or_error; } requirements = std::get<DotRequirements>(requirements_or_error); } return CombineDotRequirements(requirements, get_requirements(hlo)); } DimOrderMap GetPropagatedDimOrdersForElementwise( const HloInstruction& hlo, TransformDirection direction, const DimensionOrder& src_dim_order) { if (direction == TransformDirection::kOutputToInput) { DimOrderMap map; for (const HloInstruction* operand : hlo.operands()) { map.insert({operand, src_dim_order}); } return map; } return {{&hlo, src_dim_order}}; } const HloInstruction& GetSourceHlo(const HloInstruction& hlo, TransformDirection direction) { CHECK_GE(hlo.operand_count(), 1); if (direction == TransformDirection::kOutputToInput) { return hlo; } return *hlo.operand(0); } using ConstInstructionVector = absl::InlinedVector<const HloInstruction*, 2>; ConstInstructionVector GetDestHlos(const HloInstruction& hlo, TransformDirection direction) { if (direction == TransformDirection::kInputToOutput) { return {&hlo}; } ConstInstructionVector hlos; hlos.reserve(hlo.operands().size()); for (const HloInstruction* operand : hlo.operands()) { hlos.push_back(operand); } return hlos; } const HloInstruction& GetDestHlo(const HloInstruction& hlo, TransformDirection direction) { CHECK_EQ(hlo.operand_count(), 1); if (direction == TransformDirection::kInputToOutput) { return hlo; } return *hlo.operand(0); } DimOrderMapOrError GetPropagatedDimOrdersForBitcast( const HloInstruction& hlo, const TransformDirection direction, const DimensionOrder& src_dim_order, const DotProperties& properties) { const HloInstruction& dst = GetDestHlo(hlo, direction); const Shape& dst_shape = dst.shape(); const Fragments& src_fragments_order = src_dim_order.TensorFragmentsOrder(); DimOrderMap dst_dim_orders; DimensionOrder& dst_dim_order = dst_dim_orders.insert({&dst, DimensionOrder()}).first->second; Fragments& dst_fragments_order = dst_dim_order.TensorFragmentsOrder(); int64_t dst_remaining_size = 1; absl::flat_hash_map<const Fragment*, std::vector<int>> src_to_dst; auto dst_dim_it = dst_shape.layout().minor_to_major().cbegin(); const auto dst_dim_end = dst_shape.layout().minor_to_major().cend(); for (auto src_dim = src_fragments_order.cbegin(); src_dim != src_fragments_order.cend(); ++src_dim) { auto add_new_fragment = [&](const Fragment& fragment) { dst_fragments_order.push_back(fragment); src_to_dst[&*src_dim].push_back(dst_fragments_order.size() - 1); }; if (dst_remaining_size >= src_dim->full_count()) { if (dst_remaining_size % src_dim->full_count()) { return FusionDecision::Forbid("Unsupported bitcast"); } add_new_fragment(*src_dim); dst_remaining_size /= src_dim->full_count(); } else { int64_t src_remaining_size = src_dim->full_count(); if (dst_remaining_size > 1) { if (src_remaining_size % dst_remaining_size || (src_dim->is_sliced())) { return FusionDecision::Forbid("Unsupported bitcast"); } add_new_fragment( Fragment{src_dim->dst_dim_number(), dst_remaining_size}); src_remaining_size /= dst_remaining_size; dst_remaining_size = 1; } while (src_remaining_size > 1) { CHECK(dst_dim_it != dst_dim_end); int64_t dst_dim_size = dst_shape.dimensions(*dst_dim_it); int64_t new_fragment_size = dst_dim_size; if (dst_dim_size > src_remaining_size) { if (dst_dim_size % src_remaining_size) { return FusionDecision::Forbid("Unsupported bitcast"); } dst_remaining_size = dst_dim_size / src_remaining_size; new_fragment_size = src_remaining_size; } if (src_dim->is_sliced()) { return FusionDecision::Forbid("Unsupported bitcast"); } add_new_fragment( Fragment{src_dim->dst_dim_number(), new_fragment_size}); src_remaining_size /= new_fragment_size; ++dst_dim_it; } } } CHECK_EQ(dst_remaining_size, 1); while (dst_dim_it != dst_dim_end) { if (dst_shape.dimensions(*dst_dim_it) != 1) { return FusionDecision::Forbid("Unsupported bitcast"); } if (!dst_fragments_order.empty()) { dst_fragments_order.push_back( Fragment{dst_fragments_order.back().dst_dim_number(), 1}); src_to_dst[&src_fragments_order.back()].push_back( dst_fragments_order.size() - 1); } ++dst_dim_it; } FragmentOrders& dst_dim_fragment_orders = dst_dim_order.DimFragmentsOrders(); for (const auto& [dim_index, dim_sequence] : src_dim_order.DimFragmentsOrders()) { std::vector<int>& dst = dst_dim_fragment_orders[dim_index]; dst.reserve(dim_sequence.size()); for (const int src : dim_sequence) { std::copy(src_to_dst[&src_fragments_order[src]].cbegin(), src_to_dst[&src_fragments_order[src]].cend(), std::back_inserter(dst)); } } return dst_dim_orders; } DimOrderMapOrError GetPropagatedDimOrdersForDimAlteringOp( const HloInstruction& hlo, const TransformDirection direction, const DimensionOrder& src_dim_order, const DotProperties& properties) { std::list<Fragment> new_fragments; const HloInstruction& src = GetSourceHlo(hlo, direction); Fragments src_fragments_order = src_dim_order.TensorFragmentsOrder(); if (hlo.opcode() == HloOpcode::kSlice && ShapeUtil::IsEffectiveScalar(hlo.shape())) { return FusionDecision::Forbid("Slice to scalar is not implemented yet."); } std::vector<std::vector<Fragment*>> src_physical; src_physical.reserve(src.shape().rank()); if (src_fragments_order.size() < src.shape().rank()) { return FusionDecision::Forbid( "Cannot propagate further from trivial sized tensor"); } auto src_fragment_it = src_fragments_order.begin(); for (int64_t dim_index : src.shape().layout().minor_to_major()) { const int64_t dim_size = src.shape().dimensions(dim_index); int64_t subdim_size_accumulator = 1; std::vector<Fragment*> subdim_group; do { CHECK(src_fragment_it != src_fragments_order.end()); subdim_size_accumulator *= src_fragment_it->full_count(); subdim_group.push_back(&*src_fragment_it); ++src_fragment_it; } while (subdim_size_accumulator < dim_size); CHECK_EQ(subdim_size_accumulator, dim_size); src_physical.push_back(subdim_group); } std::vector<std::vector<Fragment*>> src_logical; src_logical.resize(src_physical.size()); for (int i = 0; i < src_physical.size(); ++i) { src_logical[src.shape().layout().minor_to_major(i)] = src_physical[i]; } DimOrderMap dst_dim_orders; int64_t concat_accumulated_size = 0; for (const HloInstruction* dst : GetDestHlos(hlo, direction)) { DimensionOrder& dst_dim_order = dst_dim_orders.insert({dst, DimensionOrder()}).first->second; std::vector<std::vector<Fragment*>> dst_logical; if (hlo.opcode() == HloOpcode::kTranspose) { const auto* transpose = Cast<HloTransposeInstruction>(&hlo); std::vector<int64_t> permutation(transpose->dimensions().cbegin(), transpose->dimensions().cend()); if (direction == TransformDirection::kInputToOutput) { permutation = InversePermutation(permutation); } dst_logical.resize(permutation.size()); for (int i = 0; i < permutation.size(); ++i) { dst_logical[permutation[i]] = src_logical[i]; } } else if (hlo.opcode() == HloOpcode::kBroadcast) { const auto* broadcast = Cast<HloBroadcastInstruction>(&hlo); dst_logical.resize(broadcast->dimensions().size()); for (int i = 0; i < broadcast->dimensions().size(); ++i) { dst_logical[i] = src_logical[broadcast->dimensions()[i]]; } } else if (hlo.opcode() == HloOpcode::kReduce) { if (dst != &hlo && hlo.operand_index(dst) == 1) { continue; } const auto* reduce = Cast<HloReduceInstruction>(&hlo); dst_logical.resize(src_logical.size() + reduce->dimensions().size()); if (reduce->dimensions().size() != 1) { return FusionDecision::Forbid("Unsupported reduction."); } else if (reduce->dimensions().front() != reduce->operand(0)->shape().rank() - 1) { return FusionDecision::Forbid("Only row reductions are supported."); } } else if (hlo.opcode() == HloOpcode::kConcatenate) { dst_logical.resize(src_logical.size()); for (int i = 0; i < src_logical.size(); ++i) { if (i == hlo.concatenate_dimension()) { if (src_logical[i].size() != 1 || src_logical[i][0]->is_sliced()) { return FusionDecision::Forbid("Unsupported concatenation."); } const Fragment& src_fragment = *src_logical[i][0]; Fragment& dst_fragment = new_fragments.emplace_back( src_fragment.dst_dim_number(), dst->shape().dimensions(i)); dst_fragment.set_slice(-concat_accumulated_size, dst->shape().dimensions(i)); concat_accumulated_size += dst->shape().dimensions(i); dst_logical[i].push_back(&dst_fragment); } else { dst_logical[i] = src_logical[i]; } } } else if (hlo.opcode() == HloOpcode::kCopy) { CHECK(ShapeUtil::SameDimensions(src.shape(), dst->shape())); dst_logical = src_logical; } else if (hlo.opcode() == HloOpcode::kPad) { if (dst != &hlo && hlo.operand_index(dst) == 1) { continue; } const auto* pad = Cast<HloPadInstruction>(&hlo); dst_logical.resize(src_logical.size()); for (int i = 0; i < src_logical.size(); ++i) { const int padding = pad->padding_config().dimensions(i).edge_padding_high(); CHECK_EQ(pad->padding_config().dimensions(i).edge_padding_low(), 0); CHECK_EQ(pad->padding_config().dimensions(i).interior_padding(), 0); if (padding == 0) { dst_logical[i] = src_logical[i]; } else { const std::vector<Fragment*>& fragments = src_logical[i]; CHECK_GE(fragments.size(), 2); CHECK(absl::c_all_of(fragments, [&](const Fragment* fragment) { return fragment->dst_dim_number() == fragments.front()->dst_dim_number(); })); std::vector<Fragment*> non_trivial_fragments; absl::c_copy_if(fragments, std::back_inserter(non_trivial_fragments), [](const Fragment* fragment) { return fragment->full_count() > 1; }); CHECK_EQ(non_trivial_fragments.size(), 2); new_fragments.emplace_back( non_trivial_fragments[0]->dst_dim_number(), non_trivial_fragments[0]->full_count() * non_trivial_fragments[1]->full_count() - padding); dst_logical[i] = {&new_fragments.back()}; } } } else if (hlo.opcode() == HloOpcode::kSlice) { const auto slice = Cast<HloSliceInstruction>(&hlo); dst_logical.resize(src_logical.size()); for (int dim = 0; dim < src_logical.size(); ++dim) { dst_logical[dim] = src_logical[dim]; if (slice->slice_limits(dim) - slice->slice_starts(dim) != dst->shape().dimensions(dim)) { if (dst_logical[dim].size() > 1) { return FusionDecision::Forbid("Slicing of fragmented dimension."); } auto fragment = dst_logical[dim].front(); fragment->set_count(dst->shape().dimensions(dim)); fragment->set_slice( fragment->slice_start() + slice->slice_starts(dim), fragment->sliced_count()); } } } else if (hlo.opcode() == HloOpcode::kDynamicSlice) { if (dst != &hlo && hlo.operand_index(dst) >= 1) { continue; } const auto dynamic_slice = Cast<HloDynamicSliceInstruction>(&hlo); dst_logical.resize(src_logical.size()); for (int dim = 0; dim < src_logical.size(); ++dim) { dst_logical[dim] = src_logical[dim]; if (dynamic_slice->slice_sizes(dim) != dst->shape().dimensions(dim)) { if (dst_logical[dim].size() > 1) { return FusionDecision::Forbid("Slicing of fragmented dimension."); } auto fragment = dst_logical[dim].front(); fragment->set_count(dst->shape().dimensions(dim)); fragment->set_slice(fragment->slice_start(), dst->shape().dimensions(dim)); } } } else { return FusionDecision::Forbid("Function called on a wrong instruction."); } absl::flat_hash_map<const Fragment*, int> src_to_dst; Fragments& dst_fragments_order = dst_dim_order.TensorFragmentsOrder(); FragmentOrders& dst_dim_fragments_order = dst_dim_order.DimFragmentsOrders(); absl::flat_hash_set<int> dim_numbers_present_in_dst; for (const int64_t dim_idx : dst->shape().layout().minor_to_major()) { for (const Fragment* subdim : dst_logical[dim_idx]) { dst_fragments_order.push_back(*subdim); src_to_dst[subdim] = dst_fragments_order.size() - 1; dim_numbers_present_in_dst.insert(subdim->dst_dim_number()); } } for (const auto& [dim_index, dim_sequence] : src_dim_order.DimFragmentsOrders()) { for (const int fragment_number : dim_sequence) { const auto it = src_to_dst.find(&src_fragments_order[fragment_number]); if (it == src_to_dst.cend()) { if (hlo.opcode() == HloOpcode::kBroadcast && src_fragments_order[fragment_number].full_count() > 1 && dim_numbers_present_in_dst.contains(dim_index)) { return FusionDecision::Forbid("Unsupported broadcast"); } continue; } dst_dim_fragments_order[dim_index].push_back(it->second); } } } return dst_dim_orders; } DimOrderMapOrError GetPropagatedDimOrders(const HloInstruction& hlo, const TransformDirection direction, const DimensionOrder& src_dim_order, const DotProperties& properties) { VLOG(7) << "Analyzing " << hlo.ToString(); if (hlo.opcode() != HloOpcode::kParameter && direction == TransformDirection::kOutputToInput && absl::c_any_of(hlo.users(), [](const HloInstruction* user) { return (user->opcode() == HloOpcode::kConcatenate || user->opcode() == HloOpcode::kDynamicSlice); })) { return FusionDecision::Forbid( "No fusion into concatenations or dynamic slice."); } if (hlo.opcode() == HloOpcode::kParameter || hlo_query::IsScalarConstant(&hlo)) { CHECK(direction == TransformDirection::kOutputToInput); return DimOrderMap{}; } else if (hlo.opcode() == HloOpcode::kTranspose || hlo.opcode() == HloOpcode::kCopy) { return GetPropagatedDimOrdersForDimAlteringOp(hlo, direction, src_dim_order, properties); } else if (hlo.opcode() == HloOpcode::kBroadcast) { if (direction != TransformDirection::kOutputToInput) { return FusionDecision::Forbid("Unsupported broadcast direction."); } return GetPropagatedDimOrdersForDimAlteringOp(hlo, direction, src_dim_order, properties); } else if (hlo.opcode() == HloOpcode::kPad) { if (direction != TransformDirection::kOutputToInput) { return FusionDecision::Forbid("Unsupported pad direction."); } return GetPropagatedDimOrdersForDimAlteringOp(hlo, direction, src_dim_order, properties); } else if (hlo.operand_count() > 0 && legacy_triton::IsTritonSupportedElementwiseUpToFloatNormalization( hlo.opcode(), hlo.operand(0)->shape().element_type())) { return GetPropagatedDimOrdersForElementwise(hlo, direction, src_dim_order); } else if (hlo.opcode() == HloOpcode::kBitcast) { return GetPropagatedDimOrdersForBitcast(hlo, direction, src_dim_order, properties); } else if (hlo.opcode() == HloOpcode::kSlice) { if (direction != TransformDirection::kOutputToInput) { return FusionDecision::Forbid("Unsupported slice direction."); } return GetPropagatedDimOrdersForDimAlteringOp(hlo, direction, src_dim_order, properties); } else if (hlo.opcode() == HloOpcode::kDynamicSlice && direction == TransformDirection::kOutputToInput) { if (CodegenDecision decision = legacy_triton::IsTritonSupportedDynamicSlice( *Cast<HloDynamicSliceInstruction>(&hlo)); !decision.CanFuse()) { return decision; } return GetPropagatedDimOrdersForDimAlteringOp(hlo, direction, src_dim_order, properties); } else if (hlo.opcode() == HloOpcode::kReshape) { if (!ShapeUtil::ReshapeIsBitcast(hlo.operand(0)->shape(), hlo.shape())) { return FusionDecision::Forbid("Non-bitcast reshape."); } return GetPropagatedDimOrdersForBitcast(hlo, direction, src_dim_order, properties); } else if (hlo.opcode() == HloOpcode::kConcatenate && direction == TransformDirection::kOutputToInput) { int64_t noncontracting_dim_label = properties.noncontracting_dimension; const FragmentOrders& src_dim_fragments_orders = src_dim_order.DimFragmentsOrders(); auto noncontracting_dim_fragment_order_it = src_dim_fragments_orders.find(noncontracting_dim_label); if (noncontracting_dim_fragment_order_it != src_dim_fragments_orders.end()) { if (noncontracting_dim_fragment_order_it->second.size() > 1) { return FusionDecision::Forbid( "Concatenations on split non-contracting dimensions are " "unsupported."); } } auto dim = LogicalIndexOfLabeledDimension(hlo.shape(), src_dim_order, noncontracting_dim_label); if (!dim.has_value() || dim.value() != hlo.concatenate_dimension()) { return FusionDecision::Forbid("Unsupported concatenation."); } if (absl::c_any_of(hlo.operands(), [&hlo](const HloInstruction* operand) { constexpr int kMinConcatFragmentSize = 64; return operand->shape().dimensions(hlo.concatenate_dimension()) % kMinConcatFragmentSize != 0; })) { return FusionDecision::Forbid( "At least one operand of concatenation can not be perfectly tiled."); } return GetPropagatedDimOrdersForDimAlteringOp(hlo, direction, src_dim_order, properties); } return FusionDecision::Forbid("Unimplemented instruction."); } int64_t InputMinusOutputBytes(const HloInstruction& hlo) { CHECK(!hlo.shape().IsTuple()); int64_t input_size = 0; for (const HloInstruction* operand : hlo.operands()) { CHECK(!operand->shape().IsTuple()); input_size += ShapeUtil::ByteSizeOf(operand->shape()); } return input_size - ShapeUtil::ByteSizeOf(hlo.shape()); } bool CanNotBeFusedIntoAUser(const HloInstruction& hlo) { return hlo.IsRoot() || (hlo.user_count() == 1 && hlo.users()[0]->IsRoot() && hlo.users()[0]->opcode() == HloOpcode::kTuple); } constexpr int kIoToleranceBytes = 1024; bool IsInputWorthFusing(const HloInstruction& hlo) { if (InputMinusOutputBytes(hlo) <= kIoToleranceBytes) { return true; } if (hlo.user_count() > 1) { return false; } if (hlo.opcode() == HloOpcode::kSlice && hlo_query::AllOperandsAreParametersOrConstants(hlo)) { return true; } return hlo_query::AllOperandsAreParametersOrConstantsWithSingleUser(hlo); } bool IsOutputWorthFusing(const HloInstruction& hlo) { return CanNotBeFusedIntoAUser(hlo) || InputMinusOutputBytes(hlo) >= -kIoToleranceBytes; } FusionDecision IsConversionWorthFusing(const HloInstruction& input, se::GpuComputeCapability gpu_version) { if (ShapeUtil::ByteSizeOf(input.operand(0)->shape()) > ShapeUtil::ByteSizeOf(input.shape())) { return FusionDecision::Forbid("Narrowing conversion."); } return FusionDecision::Allow(); } } DimOrdersAndReqsOrError GetPropagatedDimOrdersAndRequirements( const HloInstruction& hlo, const DimensionOrder& src_dim_order, TransformDirection direction, const DotProperties& properties) { DimOrderMapOrError propagated_dim_orders_or_error = GetPropagatedDimOrders(hlo, direction, src_dim_order, properties); if (std::holds_alternative<FusionDecision>(propagated_dim_orders_or_error)) { return std::get<FusionDecision>(propagated_dim_orders_or_error); } DimOrderMap propagated_dim_orders = std::move(std::get<DimOrderMap>(propagated_dim_orders_or_error)); DotRequirementsOrError requirements_or_error = GetRequirementsIfSupportedOrders(hlo, propagated_dim_orders, properties); if (std::holds_alternative<FusionDecision>(requirements_or_error)) { return std::get<FusionDecision>(requirements_or_error); } return DimOrdersAndReqs{propagated_dim_orders, std::get<DotRequirements>(requirements_or_error)}; } DimOrdersAndReqsOrError GetPropagatedDimOrdersAndRequirementsIfProfitablyFusible( const HloInstruction& hlo, TransformDirection transform_direction, const std::optional<int>& src_operand_index, const DimensionOrder& src_dim_order, const se::GpuComputeCapability& gpu_version, const DotProperties& properties) { CHECK_EQ(transform_direction == TransformDirection::kInputToOutput, src_operand_index.has_value()); if (hlo.opcode() == HloOpcode::kTuple || hlo.opcode() == HloOpcode::kGetTupleElement) { return FusionDecision::Forbid("Unsupported instruction."); } if (hlo.opcode() == HloOpcode::kReduce || hlo.opcode() == HloOpcode::kAllReduce || hlo.opcode() == HloOpcode::kAllReduceStart || hlo.opcode() == HloOpcode::kAllReduceDone) { return FusionDecision::Forbid("Reductions are not fused yet."); } if (hlo.opcode() == HloOpcode::kPad) { return FusionDecision::Forbid("Pads are not fused yet."); } if (auto decision = legacy_triton::IsTritonSupportedInstruction(hlo, gpu_version); !decision.CanFuse()) { return decision; } DimOrdersAndReqsOrError result_or_error = GetPropagatedDimOrdersAndRequirements(hlo, src_dim_order, transform_direction, properties); if (std::holds_alternative<FusionDecision>(result_or_error)) { VLOG(5) << "Not fusing " << hlo.ToString() << " to the output due to the decision: " << std::get<FusionDecision>(result_or_error).Explain(); return result_or_error; } DimOrdersAndReqs dim_orders_and_requirements = std::move(std::get<DimOrdersAndReqs>(result_or_error)); int fusion_level = hlo.GetModule()->config().debug_options().xla_gpu_triton_fusion_level(); if (transform_direction == TransformDirection::kOutputToInput) { if (fusion_level < 2) { if (hlo.opcode() == HloOpcode::kConvert) { if (FusionDecision decision = IsConversionWorthFusing(hlo, gpu_version); !decision) { return decision; } } else if (hlo.IsElementwise() && hlo.opcode() != HloOpcode::kCopy) { return FusionDecision::Forbid("Ignored elementwise operation"); } } else { bool accepted = false; if (hlo.IsElementwise() && hlo.operand_count() == 2) { for (const HloInstruction* operand : hlo.operands()) { if (operand->opcode() == HloOpcode::kBroadcast && (operand->operand(0)->opcode() == HloOpcode::kParameter || operand->operand(0)->opcode() == HloOpcode::kConstant) && std::holds_alternative<DimOrdersAndReqs>( GetPropagatedDimOrdersAndRequirementsIfProfitablyFusible( *operand, TransformDirection::kOutputToInput, std::nullopt, dim_orders_and_requirements.dim_orders.at(operand), gpu_version, properties))) { accepted = true; break; } } } if (!accepted && !IsInputWorthFusing(hlo)) { return FusionDecision::Forbid( "Not obviously profitable to fuse as input."); } } } else { if (fusion_level < 2) { return FusionDecision::Forbid( "Skipping fusing outputs at low fusion levels."); } for (int i = 0; i < hlo.operand_count(); ++i) { const HloInstruction* operand = hlo.operand(i); if (i == *src_operand_index) { continue; } if ((operand->opcode() == HloOpcode::kBroadcast && ShapeUtil::IsScalar(operand->operand(0)->shape())) || operand->opcode() == HloOpcode::kParameter) { continue; } return FusionDecision::Forbid( "Has multiple inputs - not properly analyzed yet."); } if (!IsOutputWorthFusing(hlo)) { return FusionDecision::Forbid( "Not obviously profitable to fuse as output."); } } return dim_orders_and_requirements; } } } }
#include "xla/service/gpu/triton_tiling_propagation.h" #include <vector> #include <gtest/gtest.h> #include "xla/tests/hlo_test_base.h" namespace xla::gpu { namespace { using TritonTilingPropagationTest = HloTestBase; using triton_fusion::DimensionOrder; DimensionOrder FromFragments(DimensionOrder::Fragments fragments) { DimensionOrder dim_order; DimensionOrder::Fragments& tensor_fragments_order = dim_order.TensorFragmentsOrder(); DimensionOrder::FragmentOrders& dim_fragments_orders = dim_order.DimFragmentsOrders(); for (const DimensionOrder::Fragment& fragment : fragments) { tensor_fragments_order.push_back(fragment); dim_fragments_orders[fragment.dst_dim_number()].push_back( tensor_fragments_order.size()); } return dim_order; } TEST_F( TritonTilingPropagationTest, DimensionOrdersRemainPhysicallyEquivalentAfterInsertingTrivialDimensions) { DimensionOrder::Fragment fragment_1(0, 97); DimensionOrder::Fragment fragment_2(0, 1); DimensionOrder dimension_order_1 = FromFragments({fragment_1, fragment_2}); DimensionOrder::Fragment fragment_3(0, 97); DimensionOrder::Fragment fragment_4(1, 1); DimensionOrder dimension_order_2 = FromFragments({fragment_3, fragment_4}); EXPECT_TRUE(dimension_order_1.IsPhysicallyEquivalent(dimension_order_2)); } TEST_F( TritonTilingPropagationTest, IterationSpecsRemainPhysicallyEquivalentAfterInsertingTrivialDimensions) { TensorIterationSpec::IterationSpecFragment fragment_1 = { 1, 97, 0, 97, {97}}; TensorIterationSpec spec_1; spec_1[0].push_back(fragment_1); TensorIterationSpec::IterationSpecFragment fragment_2 = { 1, 97, 0, 97, {97}}; TensorIterationSpec::IterationSpecFragment fragment_3 = { 97, 1, 0, 1, {1}}; TensorIterationSpec spec_2; spec_2[0].push_back(fragment_2); spec_2[1].push_back(fragment_3); EXPECT_TRUE(spec_1.IsPhysicallyEquivalent(spec_2)); } TEST_F(TritonTilingPropagationTest, DimensionsShouldNotBeRemovedByToTensorIterationSpec) { DimensionOrder::Fragment fragment_0(0, 97); DimensionOrder::Fragment fragment_1(1, 1); DimensionOrder dimension_order = FromFragments({fragment_0, fragment_1}); TensorIterationSpec spec = dimension_order.ToTensorIterationSpec(); const TensorIterationSpec::DimIterationSpec* dim_spec_0 = spec.Find(0); EXPECT_NE(dim_spec_0, nullptr); EXPECT_EQ(dim_spec_0->size(), 1); EXPECT_EQ(dim_spec_0->at(0).count, 97); const TensorIterationSpec::DimIterationSpec* dim_spec_1 = spec.Find(1); EXPECT_NE(dim_spec_1, nullptr); EXPECT_EQ(dim_spec_1->size(), 1); EXPECT_EQ(dim_spec_1->at(0).count, 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/triton_tiling_propagation.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/triton_tiling_propagation_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
22010223-07c7-4dc2-819a-01d14addc9b5
cpp
tensorflow/tensorflow
ir_emission_utils
third_party/xla/xla/service/cpu/ir_emission_utils.cc
third_party/xla/xla/service/cpu/ir_emission_utils_test.cc
#include "xla/service/cpu/ir_emission_utils.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/layout_util.h" #include "xla/service/cpu/cpu_runtime.h" #include "xla/shape_util.h" #include "xla/window_util.h" namespace xla { namespace cpu { int64_t GetMinimumAlignmentForArray( const Shape& shape, const TargetMachineFeatures& target_machine_features) { CHECK(LayoutUtil::IsDenseArray(shape)); int64_t allocation_size_bytes = ShapeUtil::ElementsIn(shape) * ShapeUtil::ByteSizeOfPrimitiveType(shape.element_type()); return target_machine_features.minimum_alignment_for_allocation( allocation_size_bytes); } bool PotentiallyImplementedAsEigenConvolution( const HloInstruction& convolution, const TargetMachineFeatures& target_machine_features) { const Shape& input_shape = convolution.operand(0)->shape(); const Shape& kernel_shape = convolution.operand(1)->shape(); const Shape& output_shape = convolution.shape(); auto is_aligned = [&](const Shape& shape) { return GetMinimumAlignmentForArray(shape, target_machine_features) >= TargetMachineFeatures::kEigenExpectedTensorAlignment; }; if (!is_aligned(input_shape) || !is_aligned(kernel_shape) || !is_aligned(output_shape)) { return false; } if (ShapeUtil::IsZeroElementArray(input_shape) || ShapeUtil::IsZeroElementArray(kernel_shape)) { return false; } CHECK( ShapeUtil::SameElementTypeIgnoringFpPrecision(input_shape, kernel_shape)); PrimitiveType primitive_type = input_shape.element_type(); if (primitive_type != F16 && primitive_type != F32) { return false; } if (window_util::HasWindowReversal(convolution.window())) { return false; } const ConvolutionDimensionNumbers& dnums = convolution.convolution_dimension_numbers(); const int64_t num_spatial_dims = dnums.output_spatial_dimensions_size(); if (num_spatial_dims < 1 || num_spatial_dims > 3) { return false; } for (int64_t i = 0; i < num_spatial_dims; ++i) { if (dnums.input_spatial_dimensions(i) != i + 1) { return false; } if (dnums.kernel_spatial_dimensions(i) != i) { return false; } if (dnums.output_spatial_dimensions(i) != i + 1) { return false; } } return dnums.input_batch_dimension() == 0 && dnums.input_feature_dimension() == input_shape.dimensions_size() - 1 && dnums.output_batch_dimension() == 0 && dnums.output_feature_dimension() == output_shape.dimensions_size() - 1 && dnums.kernel_input_feature_dimension() == kernel_shape.dimensions_size() - 2 && dnums.kernel_output_feature_dimension() == kernel_shape.dimensions_size() - 1; } } }
#include "xla/service/cpu/ir_emission_utils.h" #include <memory> #include "xla/service/cpu/target_machine_features_fake.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { using IrEmitterTest = HloTestBase; TEST_F(IrEmitterTest, ConvWithZeroSizedKernelNotImplementedAsEigen) { const char* const hlo_string = R"( HloModule ModuleWithConv ENTRY Conv { input = f32[32,50,28,28]{3,2,1,0} parameter(0) kernel = f32[50,0,5,5]{3,2,1,0} parameter(1) ROOT convolution = f32[32,0,24,24]{3,2,1,0} convolution(input, kernel), window={size=5x5}, dim_labels=bf01_io01->bf01 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloComputation* entry_computation = module->entry_computation(); HloInstruction* conv_instr = entry_computation->root_instruction(); cpu::TargetMachineFeaturesWithFakeAlignmentLogic target_machine_features( [](int64_t shape_size) { return cpu::TargetMachineFeatures::kEigenExpectedTensorAlignment; }); EXPECT_FALSE(cpu::PotentiallyImplementedAsEigenConvolution( *conv_instr, target_machine_features)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/cpu/ir_emission_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/cpu/ir_emission_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
90d52628-50f5-4b95-b9ab-5399df301b62
cpp
tensorflow/tensorflow
fusion_deduplication_cache
third_party/xla/xla/service/gpu/fusion_deduplication_cache.cc
third_party/xla/xla/service/gpu/fusion_deduplication_cache_test.cc
#include "xla/service/gpu/fusion_deduplication_cache.h" #include <cstddef> #include <cstdint> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/hash/hash.h" #include "xla/hlo/ir/dfs_hlo_visitor.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/shape_util.h" namespace xla { namespace gpu { namespace { class HloInstructionPtrHash { public: size_t operator()(const HloInstruction* instr) const { return absl::HashOf(*instr); } }; class HloInstructionPtrEq { public: size_t operator()(const HloInstruction* instr1, const HloInstruction* instr2) const { auto operands_eq = [](const HloInstruction* a, const HloInstruction* b) { if (a == b) return true; return ShapeUtil::Equal(a->shape(), b->shape()); }; auto eq_computations = [](const HloComputation* a, const HloComputation* b) { return *a == *b; }; return instr1->Identical(*instr2, operands_eq, eq_computations); } }; } FusionDeduplicationCache FusionDeduplicationCache::Create( const HloModule& module) { absl::flat_hash_map<const HloInstruction*, InstructionId, HloInstructionPtrHash, HloInstructionPtrEq> deduplicated_id_map; absl::flat_hash_map<const HloInstruction*, InstructionId> instruction_id_map; int64_t instruction_count = module.instruction_count(); deduplicated_id_map.reserve(instruction_count); instruction_id_map.reserve(instruction_count); int64_t next_id = 0; for (const HloComputation* computation : module.computations()) { for (const HloInstruction* instruction : computation->instructions()) { auto it = deduplicated_id_map.emplace(instruction, next_id); if (it.second) { ++next_id; } instruction_id_map[instruction] = it.first->second; } } return FusionDeduplicationCache(next_id, std::move(instruction_id_map)); } FusionDeduplicationCache::InstructionId FusionDeduplicationCache::GetInstructionId(const HloInstruction& instruction) { return instruction_id_map_.at(&instruction); } FusionDeduplicationCache::FusionId FusionDeduplicationCache::GetFusionId( const HloInstruction& producer, const HloInstruction& consumer, int64_t consumer_operand_index) { FusionDeduplicationCache::FusionId fusion_id{GetInstructionId(producer), GetInstructionId(consumer), consumer_operand_index}; if (fusion_id_map_.emplace(fusion_id, next_id_).second) { ++next_id_; } return fusion_id; } FusionDeduplicationCache::FusionId FusionDeduplicationCache::GetFusionId( const HloInstruction& producer, const HloInstruction& consumer) { return GetFusionId(producer, consumer, consumer.operand_index(&producer)); } void FusionDeduplicationCache::UpdateFusedInstructionId( const HloInstruction& fusion_instruction, const HloInstruction& original_producer, const HloInstruction& original_consumer, int64_t consumer_operand_index) { instruction_id_map_[&fusion_instruction] = fusion_id_map_.at(GetFusionId( original_producer, original_consumer, consumer_operand_index)); } } }
#include "xla/service/gpu/fusion_deduplication_cache.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { HloInstruction* Fuse(HloInstruction* producer, HloInstruction* consumer) { HloComputation* computation = consumer->parent(); HloInstruction* fusion_instruction = consumer; if (consumer->opcode() != HloOpcode::kFusion) { fusion_instruction = computation->AddInstruction(HloInstruction::CreateFusion( consumer->shape(), HloInstruction::FusionKind::kLoop, consumer)); TF_CHECK_OK(computation->ReplaceInstruction(consumer, fusion_instruction)); } if (producer->opcode() == HloOpcode::kFusion) { fusion_instruction->MergeFusionInstruction(producer); } else { fusion_instruction->FuseInstruction(producer); } if (producer->user_count() == 0) { TF_CHECK_OK(computation->RemoveInstruction(producer)); } return fusion_instruction; } using FusionDeduplicationCacheTest = HloTestBase; TEST_F(FusionDeduplicationCacheTest, IdenticalInstructions_EqualId) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) add1 = f32[8] add(p0, p1) ROOT add2 = f32[8] add(add1, p1) })")); FusionDeduplicationCache cache = FusionDeduplicationCache::Create(*module); const HloInstruction* add2 = module->entry_computation()->root_instruction(); const HloInstruction* add1 = add2->operand(0); EXPECT_EQ(cache.GetInstructionId(*add1), cache.GetInstructionId(*add2)); } TEST_F(FusionDeduplicationCacheTest, IdenticalInstructionsInDifferentComputations_EqualId) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module computation.1 { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ROOT add1 = f32[8] add(p0, p1) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ROOT add2 = f32[8] add(p0, p0) })")); FusionDeduplicationCache cache = FusionDeduplicationCache::Create(*module); const HloInstruction* add1 = module->GetComputationWithName("computation.1")->root_instruction(); const HloInstruction* add2 = module->entry_computation()->root_instruction(); EXPECT_EQ(cache.GetInstructionId(*add1), cache.GetInstructionId(*add2)); } TEST_F(FusionDeduplicationCacheTest, IdenticalFusionInstructions_EqualId) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) log1 = f32[8] log(p0) add1 = f32[8] add(log1, p1) log2 = f32[8] log(add1) ROOT add2 = f32[8] add(log2, p0) })")); HloComputation* entry_computation = module->entry_computation(); auto* add1 = entry_computation->GetInstructionWithName("add1"); auto* add2 = entry_computation->GetInstructionWithName("add2"); auto* log1 = entry_computation->GetInstructionWithName("log1"); auto* log2 = entry_computation->GetInstructionWithName("log2"); FusionDeduplicationCache cache = FusionDeduplicationCache::Create(*module); EXPECT_EQ(cache.GetInstructionId(*add1), cache.GetInstructionId(*add2)); EXPECT_EQ(cache.GetInstructionId(*log1), cache.GetInstructionId(*log2)); EXPECT_NE(cache.GetInstructionId(*add1), cache.GetInstructionId(*log1)); EXPECT_EQ(cache.GetFusionId(*log1, *add1), cache.GetFusionId(*log2, *add2)); HloInstruction* fusion1 = Fuse(log1, add1); cache.UpdateFusedInstructionId(*fusion1, *log1, *add1, 0); HloInstruction* fusion2 = Fuse(log2, add2); cache.UpdateFusedInstructionId(*fusion2, *log2, *add2, 0); EXPECT_EQ(cache.GetInstructionId(*fusion1), cache.GetInstructionId(*fusion2)); } TEST_F(FusionDeduplicationCacheTest, DifferentConsumerOperandIndex_DifferentId) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) log1 = f32[8] log(p0) add1 = f32[8] add(log1, p1) log2 = f32[8] log(add1) ROOT add2 = f32[8] add(p0, log2) })")); HloComputation* entry_computation = module->entry_computation(); auto* add1 = entry_computation->GetInstructionWithName("add1"); auto* add2 = entry_computation->GetInstructionWithName("add2"); auto* log1 = entry_computation->GetInstructionWithName("log1"); auto* log2 = entry_computation->GetInstructionWithName("log2"); FusionDeduplicationCache cache = FusionDeduplicationCache::Create(*module); EXPECT_NE(cache.GetFusionId(*log1, *add1), cache.GetFusionId(*log2, *add2)); HloInstruction* fusion1 = Fuse(log1, add1); cache.UpdateFusedInstructionId(*fusion1, *log1, *add1, 0); HloInstruction* fusion2 = Fuse(log2, add2); cache.UpdateFusedInstructionId(*fusion2, *log2, *add2, 1); EXPECT_NE(cache.GetInstructionId(*fusion1), cache.GetInstructionId(*fusion2)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/fusion_deduplication_cache.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/fusion_deduplication_cache_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bea3fc56-baf4-4f52-a00f-73076a7b90ad
cpp
tensorflow/tensorflow
fusion_process_dump
third_party/xla/xla/service/gpu/fusion_process_dump.cc
third_party/xla/xla/service/gpu/fusion_process_dump_test.cc
#include "xla/service/gpu/fusion_process_dump.h" #include <string> #include <string_view> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/fusion_process_dump.pb.h" #include "xla/stream_executor/device_description.h" #include "xla/tools/hlo_module_loader.h" #include "xla/util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/path.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { HloInstruction* AddFusionInstruction(HloInstruction* producer, HloInstruction* consumer, HloComputation* computation, std::string_view fusion_name) { if (consumer->opcode() == HloOpcode::kFusion) { return consumer; } auto kind = HloInstruction::FusionKind::kLoop; auto fusion_instruction = computation->AddInstruction( HloInstruction::CreateFusion(consumer->shape(), kind, consumer), fusion_name); TF_CHECK_OK(computation->ReplaceInstruction(consumer, fusion_instruction)); return fusion_instruction; } HloInstruction* Fuse(HloInstruction* producer, HloInstruction* consumer, HloComputation* computation, std::string_view fusion_name) { HloInstruction* fusion_instruction = AddFusionInstruction(producer, consumer, computation, fusion_name); if (producer->opcode() == HloOpcode::kFusion) { fusion_instruction->MergeFusionInstruction(producer); } else { fusion_instruction->FuseInstruction(producer); } if (producer->user_count() == 0) { TF_CHECK_OK(computation->RemoveInstruction(producer)); } return fusion_instruction; } absl::string_view GetProducerName(const FusionStep& step) { if (step.has_fusion()) { return step.fusion().producer_name(); } if (step.has_update_priority()) { return step.update_priority().producer_name(); } if (step.has_producer_ineligible()) { return step.producer_ineligible().producer_name(); } LOG(FATAL) << "Producer name not found in the current step."; } } absl::StatusOr<FusionProcessDump> FusionProcessDump::LoadFromFile( const std::string& path) { std::string format = std::string(tsl::io::Extension(path)); std::string data; TF_RETURN_IF_ERROR(tsl::ReadFileToString(tsl::Env::Default(), path, &data)); return FusionProcessDump::LoadFromData(data, format); } absl::StatusOr<FusionProcessDump> FusionProcessDump::LoadFromData( const std::string& data, absl::string_view format) { FusionProcessDumpProto fusion_process_dump_proto; if (format == "txt" || format == "pbtxt") { if (!tsl::protobuf::TextFormat::ParseFromString( data, &fusion_process_dump_proto)) { return InvalidArgument("Failed to parse input as HLO protobuf text"); } } else if (format == "pb") { if (!fusion_process_dump_proto.ParseFromString(data)) { return InvalidArgument("Failed to parse input as HLO protobuf binary"); } } else { return InvalidArgument( "Invalid format from file extension: '%s'. Expected: txt, pb, or pbtxt", format); } return FusionProcessDump::LoadFromProto(fusion_process_dump_proto); } absl::StatusOr<FusionProcessDump> FusionProcessDump::LoadFromProto( const FusionProcessDumpProto& fusion_process_dump_proto) { TF_ASSIGN_OR_RETURN( auto module, LoadModuleFromData(fusion_process_dump_proto.hlo_module_before_fusion(), "txt")); se::DeviceDescription gpu_device_info( fusion_process_dump_proto.gpu_device_info()); absl::flat_hash_map<std::string, HloComputation*> instruction_name_to_computation_map; for (HloComputation* computation : module->MakeNonfusionComputations()) { for (HloInstruction* instr : computation->instructions()) { instruction_name_to_computation_map[instr->name()] = computation; } } return FusionProcessDump(std::move(fusion_process_dump_proto), std::move(module), std::move(gpu_device_info), std::move(instruction_name_to_computation_map)); } HloComputation* FusionProcessDump::GetCurrentComputation() { return instruction_name_to_computation_map_.at( GetProducerName(CurrentStep())); } HloInstruction* FusionProcessDump::GetInstructionWithName( absl::string_view name) { return instruction_name_to_computation_map_[name]->GetInstructionWithName( name); } HloInstruction* FusionProcessDump::GetProducer() { return GetInstructionWithName(GetProducerName(CurrentStep())); } absl::InlinedVector<HloInstruction*, 2> FusionProcessDump::GetConsumers() { auto& step = CurrentStep(); if (step.has_fusion()) { return {GetInstructionWithName(step.fusion().consumer_name())}; } if (step.has_update_priority()) { absl::InlinedVector<HloInstruction*, 2> consumers; for (const auto& consumer_name : step.update_priority().consumer_names()) { consumers.push_back(GetInstructionWithName(consumer_name)); } return consumers; } return {}; } const FusionStep& FusionProcessDump::CurrentStep() { CHECK(HasNext()); return fusion_process_dump_proto_.fusion_steps(current_step_idx_); } bool FusionProcessDump::HasNext() { return current_step_idx_ < fusion_process_dump_proto_.fusion_steps_size(); } void FusionProcessDump::Advance() { auto step = CurrentStep(); if (step.has_fusion()) { const auto& fusion_step = step.fusion(); auto* computation = GetCurrentComputation(); HloInstruction* producer = computation->GetInstructionWithName(fusion_step.producer_name()); HloInstruction* consumer = computation->GetInstructionWithName(fusion_step.consumer_name()); HloInstruction* fusion = Fuse(producer, consumer, computation, fusion_step.fusion_name()); instruction_name_to_computation_map_[fusion->name()] = computation; last_fusion_ = fusion; } ++current_step_idx_; } } }
#include "xla/service/gpu/fusion_process_dump.h" #include <string> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/fusion_process_dump.pb.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace m = ::xla::match; namespace xla { namespace gpu { namespace { using FusionProcessDumpTest = HloTestBase; void AddFusion(FusionProcessDumpProto& dump_proto, const std::string& fusion_name, const std::string& producer_name, const std::string& consumer_name) { auto step = dump_proto.add_fusion_steps(); auto fusion_step = step->mutable_fusion(); fusion_step->set_fusion_name(fusion_name); fusion_step->set_producer_name(producer_name); fusion_step->set_consumer_name(consumer_name); } TEST_F(FusionProcessDumpTest, MultipleFusionSteps) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY main { p0 = f32[] parameter(0) p1 = f32[] parameter(1) add = f32[] add(p0, p1) subtract = f32[] subtract(p0, p1) abs = f32[] abs(subtract) ROOT multiply = f32[] multiply(add, abs) })")); FusionProcessDumpProto dump_proto; *dump_proto.mutable_gpu_device_info() = TestGpuDeviceInfo::RTXA6000DeviceInfo().ToGpuProto(); dump_proto.set_hlo_module_before_fusion( module->ToString(HloPrintOptions::ShortParsable())); AddFusion(dump_proto, "fusion.1", "subtract", "abs"); AddFusion(dump_proto, "fusion.2", "fusion.1", "multiply"); AddFusion(dump_proto, "fusion.2", "add", "fusion.2"); TF_ASSERT_OK_AND_ASSIGN(auto fusion_process_dump, FusionProcessDump::LoadFromProto(dump_proto)); fusion_process_dump.Advance(); fusion_process_dump.Advance(); fusion_process_dump.Advance(); EXPECT_FALSE(fusion_process_dump.HasNext()); auto root = fusion_process_dump.module()->entry_computation()->root_instruction(); EXPECT_EQ(root->name(), "fusion.2"); ASSERT_THAT(root, GmockMatch(m::Fusion(m::Parameter(), m::Parameter()))); EXPECT_THAT(root->fused_expression_root(), GmockMatch(m::Multiply( m::Add(m::Parameter(), m::Parameter()), m::Abs(m::Subtract(m::Parameter(), m::Parameter()))))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/fusion_process_dump.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/fusion_process_dump_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1559345f-112d-4a23-82b6-d268bfab2164
cpp
tensorflow/tensorflow
kernel_reuse_cache
third_party/xla/xla/service/gpu/kernel_reuse_cache.cc
third_party/xla/xla/service/gpu/kernel_reuse_cache_test.cc
#include "xla/service/gpu/kernel_reuse_cache.h" #include <functional> #include <string> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/executable.pb.h" #include "xla/service/gpu/kernel_arguments.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/status_macros.h" #include "xla/stream_executor/launch_dim.h" #include "xla/util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { namespace gpu { namespace { std::string GetArgumentFingerprint( absl::Span<const KernelArgument> kernel_arguments) { return absl::StrJoin( kernel_arguments, ",", [](std::string* s, const KernelArgument& arg) { if (arg.first_with_same_slice().has_value()) { absl::StrAppend(s, "=", arg.first_with_same_slice().value()); return; } absl::StrAppend(s, arg.alignment()); if (arg.aliased()) { absl::StrAppend(s, "a"); } if (arg.written()) { absl::StrAppend(s, "w"); } }); } } std::string GetComputationFingerprint( const HloComputation* fused_computation, absl::Span<const KernelArgument> kernel_arguments, absl::string_view discriminator) { auto print_options = HloPrintOptions::Fingerprint() .set_print_only_essential_constants(false) .set_print_operand_shape(false); return absl::StrCat(discriminator, "(", GetArgumentFingerprint(kernel_arguments), ")", fused_computation->ToString(print_options)); } absl::Status KernelReuseCache::Load(const CompilationCacheProto& proto) { for (const auto& [name, entry] : proto.entries()) { std::optional<se::ClusterDim> cluster_dim; if (entry.has_cluster_dim()) { cluster_dim = se::ClusterDim{entry.cluster_dim().x(), entry.cluster_dim().y(), entry.cluster_dim().z()}; } TF_RET_CHECK( cache_ .insert( {entry.fingerprint(), Entry{name, LaunchDimensions{ entry.launch_dimensions().num_blocks(), entry.launch_dimensions().num_threads_per_block()}, cluster_dim, entry.shmem_bytes(), entry.binary()}}) .second); } return absl::OkStatus(); } CompilationCacheProto KernelReuseCache::Export() const { CompilationCacheProto proto; for (const auto& [fingerprint, cache_entry] : cache_) { if (!hits_.contains(fingerprint)) { VLOG(5) << "Not exporting unused " << cache_entry.kernel_name; continue; } auto [it, inserted] = proto.mutable_entries()->emplace( cache_entry.kernel_name, CompilationCacheEntryProto{}); CHECK(inserted) << cache_entry.kernel_name; CompilationCacheEntryProto& proto_entry = it->second; proto_entry.set_fingerprint(fingerprint); LaunchDimensionsProto launch_dimensions_proto; launch_dimensions_proto.set_num_blocks( cache_entry.launch_dimensions.num_blocks()); launch_dimensions_proto.set_num_threads_per_block( cache_entry.launch_dimensions.num_threads_per_block()); *proto_entry.mutable_launch_dimensions() = launch_dimensions_proto; if (cache_entry.cluster_dim.has_value()) { ClusterDimProto cluster_dim_proto; cluster_dim_proto.set_x(cache_entry.cluster_dim->x); cluster_dim_proto.set_y(cache_entry.cluster_dim->y); cluster_dim_proto.set_z(cache_entry.cluster_dim->z); *proto_entry.mutable_cluster_dim() = cluster_dim_proto; } proto_entry.set_shmem_bytes(cache_entry.shmem_bytes); proto_entry.set_binary(cache_entry.binary); } return proto; } absl::Status UpdateDiskKernelCache( absl::string_view path, const bool do_append, const CompilationCacheProto& current_cache, absl::Span<const KernelReuseCache::NamedBinary> binaries_to_cache) { CompilationCacheProto disk_cache; if (do_append) { std::string serialized; TF_RETURN_IF_ERROR(tsl::ReadFileToString(tsl::Env::Default(), std::string(path), &serialized)); if (!disk_cache.ParseFromString(std::string(serialized))) { return Internal("Failed to parse serialized CompilationCacheProto."); } } auto entries = disk_cache.mutable_entries(); int stored_kernel_count = 0; for (const auto& [name, binary] : binaries_to_cache) { auto it_current = current_cache.entries().find(name); TF_RET_CHECK(it_current != current_cache.entries().end()); auto [it_disk, inserted] = entries->insert({name, it_current->second}); TF_RET_CHECK(inserted); TF_RET_CHECK(!binary.empty()); it_disk->second.set_binary(reinterpret_cast<const char*>(binary.data()), binary.size()); VLOG(5) << "Cached kernel: " << name << ": " << binary.size(); ++stored_kernel_count; } if (stored_kernel_count > 0) { TF_RETURN_IF_ERROR(tsl::WriteStringToFile(tsl::Env::Default(), std::string(path), disk_cache.SerializeAsString())); VLOG(2) << "Stored " << stored_kernel_count << " / " << binaries_to_cache.size() << " kernels in the cache file."; } return absl::OkStatus(); } std::pair<absl::StatusOr<const KernelReuseCache::Entry*>, bool> KernelReuseCache::GetWithStatus( const HloComputation* fused_computation, absl::Span<const KernelArgument> kernel_arguments, absl::string_view discriminator, const std::function<absl::StatusOr<KernelReuseCache::Entry>()>& generator) { std::string fingerprint = GetComputationFingerprint( fused_computation, kernel_arguments, discriminator); VLOG(4) << "Fingerprint: "; XLA_VLOG_LINES(4, fingerprint); return GetWithStatus(std::move(fingerprint), generator); } std::pair<absl::StatusOr<const KernelReuseCache::Entry*>, bool> KernelReuseCache::GetWithStatus( std::string fingerprint, const std::function<absl::StatusOr<KernelReuseCache::Entry>()>& generator) { hits_.insert(fingerprint); auto it = cache_.find(fingerprint); if (it != cache_.end()) { return {&it->second, true}; } absl::StatusOr<Entry> entry = generator(); if (entry.ok()) { it = cache_.insert({std::move(fingerprint), std::move(entry.value())}).first; return {&it->second, false}; } return {entry.status(), false}; } } }
#include "xla/service/gpu/kernel_reuse_cache.h" #include <gtest/gtest.h> #include "absl/log/check.h" #include "xla/service/gpu/executable.pb.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" namespace xla { namespace gpu { namespace { using KernelReuseTest = ::testing::Test; TEST_F(KernelReuseTest, ExportAndLoadWork) { KernelReuseCache cache; EXPECT_TRUE(cache.IsEmpty()); auto [result, was_cached] = cache.GetWithStatus( "fingerprint", []() { return KernelReuseCache::Entry{}; }); TF_EXPECT_OK(result); EXPECT_NE(result.value(), nullptr); EXPECT_FALSE(was_cached); EXPECT_FALSE(cache.IsEmpty()); const CompilationCacheProto proto = cache.Export(); cache.Clear(); EXPECT_TRUE(cache.IsEmpty()); TF_EXPECT_OK(cache.Load(proto)); EXPECT_FALSE(cache.IsEmpty()); } TEST_F(KernelReuseTest, UpdatingDiskKernelCacheWorks) { std::string cache_file_path; CHECK(tsl::Env::Default()->LocalTempFilename(&cache_file_path)); { const CompilationCacheProto proto = [](std::string kernel_name) { KernelReuseCache cache; auto [result, was_cached] = cache.GetWithStatus("fingerprint", [&]() { return KernelReuseCache::Entry{.kernel_name = kernel_name}; }); return cache.Export(); }("k1"); TF_EXPECT_OK(UpdateDiskKernelCache(cache_file_path, false, proto, {{.name = "k1", .binary = {5, 6}}})); } { const CompilationCacheProto proto = [](std::string kernel_name) { KernelReuseCache cache; auto [result, was_cached] = cache.GetWithStatus("fingerprint", [&]() { return KernelReuseCache::Entry{.kernel_name = kernel_name}; }); return cache.Export(); }("k2"); TF_EXPECT_OK(UpdateDiskKernelCache(cache_file_path, true, proto, {{.name = "k2", .binary = {7, 8}}})); } std::string serialized; TF_EXPECT_OK( tsl::ReadFileToString(tsl::Env::Default(), cache_file_path, &serialized)); CompilationCacheProto proto; EXPECT_TRUE(proto.ParseFromString(std::string(serialized))); EXPECT_EQ(proto.entries_size(), 2); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/kernel_reuse_cache.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/kernel_reuse_cache_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b0dfb30d-f1d3-464d-99a2-1da73dd33128
cpp
tensorflow/tensorflow
gpu_spmd_pipeline
third_party/xla/xla/service/gpu/gpu_spmd_pipeline.cc
third_party/xla/xla/service/gpu/gpu_spmd_pipeline_test.cc
#include "xla/service/gpu/gpu_spmd_pipeline.h" #include <cstdint> #include <optional> #include "absl/functional/function_ref.h" #include "absl/log/check.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/pass/hlo_pass_fix.h" #include "xla/hlo/pass/hlo_pass_pipeline.h" #include "xla/hlo/transforms/hlo_constant_splitter.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/conditional_simplifier.h" #include "xla/service/gather_expander.h" #include "xla/service/gpu/transforms/algebraic_simplifier.h" #include "xla/service/hlo_constant_folding.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_module_config.h" #include "xla/service/reshape_mover.h" #include "xla/service/scatter_expander.h" #include "xla/service/sharding_propagation.h" #include "xla/service/sort_simplifier.h" #include "xla/service/spmd/collective_permute_motion.h" #include "xla/service/spmd/shardy/shardy_xla_pass.h" #include "xla/service/spmd/stateful_rng_spmd_partitioner.h" #include "xla/service/tuple_simplifier.h" #include "xla/service/while_loop_constant_sinking.h" #include "xla/service/while_loop_simplifier.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { void AddSPMDPasses( const HloModule* hlo_module, const AlgebraicSimplifierOptions& layout_insensitive_algsimp_opts, const se::GpuComputeCapability& compute_capability, HloPassPipeline& spmd_pipeline, std::optional<const absl::FunctionRef<void(HloPassPipeline&)>> auto_sharding_func) { const int64_t num_partitions = hlo_module->config().num_partitions(); CHECK_GE(num_partitions, 1); HloPassPipeline& spmd_simplify = spmd_pipeline.AddPass<HloPassFix<HloPassPipeline>>("spmd-simplify"); spmd_simplify.AddPass<GpuAlgebraicSimplifier>(layout_insensitive_algsimp_opts, compute_capability); spmd_simplify.AddPass<SortSimplifier>(); spmd_simplify.AddPass<TupleSimplifier>(); spmd_simplify.AddPass<ScatterExpander>( ScatterExpander::kEliminateSimpleScatters); spmd_simplify.AddPass<GatherExpander>( GatherExpander::kEliminateSimpleGathers); spmd_simplify.AddPass<WhileLoopConstantSinking>(); spmd_simplify.AddPass<WhileLoopSimplifier>(); ReshapeMoverOptions reshape_mover_options; reshape_mover_options.reshape_of_1d_broadcast_is_cheap = true; spmd_simplify.AddPass<ReshapeMover>(reshape_mover_options); spmd_simplify.AddPass<HloPassFix<GpuAlgebraicSimplifier>>( layout_insensitive_algsimp_opts, compute_capability); spmd_simplify.AddPass<HloConstantFolding>(); spmd_simplify.AddPass<ConditionalSimplifier>(); const HloModuleConfig& config = hlo_module->config(); if (config.use_shardy_partitioner()) { spmd_pipeline.AddPass<sdy::ShardyXLA>(); } else { spmd_pipeline.AddPass<HloConstantSplitter>(); spmd_simplify.AddPass<HloDCE>(); if (auto_sharding_func.has_value()) { (*auto_sharding_func)(spmd_pipeline); } spmd_pipeline.AddPass<ShardingPropagation>( true, false, config.allow_spmd_sharding_propagation_to_output()); } spmd_pipeline.AddPass<spmd::StatefulRngSpmdPartitioner>( num_partitions, hlo_module->config().replica_count(), hlo_module->config() .debug_options() .xla_gpu_threshold_for_windowed_einsum_mib(), hlo_module->config() .debug_options() .xla_gpu_multi_streamed_windowed_einsum(), true, true); spmd_pipeline.AddPass<CollectivePermuteMotion>(); } } }
#include "xla/service/gpu/gpu_spmd_pipeline.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/log/log.h" #include "xla/client/executable_build_options.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/pass/hlo_pass_pipeline.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { class GpuSpmdPartitioningTest : public HloTestBase, public ::testing::WithParamInterface<bool> { public: absl::StatusOr<std::unique_ptr<HloModule>> PartitionComputation( const char* hlo_module, int64_t num_devices) { HloModuleConfig config = GetModuleConfigForTest( 1, num_devices); config.set_num_partitions(num_devices); config.set_use_shardy_partitioner(UseShardy()); TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule(hlo_module, config)); HloPassPipeline spmd_pipeline("spmd-partitioner"); se::CudaComputeCapability ampere(8, 0); AlgebraicSimplifierOptions alg_simplifier_options; AddSPMDPasses(module.get(), alg_simplifier_options, ampere, spmd_pipeline, std::nullopt); TF_RETURN_IF_ERROR(spmd_pipeline.Run(module.get()).status()); XLA_VLOG_LINES(10, module->ToString()); return module; } protected: bool UseShardy() const { return GetParam(); } DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = HloTestBase::GetDebugOptionsForTest(); return debug_options; } }; TEST_P(GpuSpmdPartitioningTest, DotWithEntryComputationLayout) { const char* const kHloModule = R"( HloModule module, entry_computation_layout={(f32[8,16]{0,1}, f32[16,24]{1,0}) ->f32[8,24]{1,0}} ENTRY main { %p0 = f32[8,16] parameter(0), sharding={devices=[1,8]<=[8]} %p1 = f32[16,24] parameter(1), sharding={devices=[8,1]<=[8]} ROOT %dot = f32[8,24] dot(%p0, %p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(kHloModule, 8)); EXPECT_EQ(module->config().entry_computation_layout().parameter_shape(0), ShapeUtil::MakeShapeWithDenseLayout(F32, {8, 2}, {0, 1})); EXPECT_EQ(module->config().entry_computation_layout().parameter_shape(1), ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 24}, {1, 0})); EXPECT_EQ(module->config().entry_computation_layout().result_shape(), ShapeUtil::MakeShapeWithDenseLayout(F32, {8, 24}, {1, 0})); } std::string TestParamToString( const ::testing::TestParamInfo<bool>& param_info) { return param_info.param ? "Shardy" : "GSPMD"; } INSTANTIATE_TEST_SUITE_P(All, GpuSpmdPartitioningTest, ::testing::Values(true, false), TestParamToString); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/gpu_spmd_pipeline.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/gpu_spmd_pipeline_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7dde5b77-37ca-4936-8496-28e66a591fb5
cpp
tensorflow/tensorflow
buffer_comparator
third_party/xla/xla/service/gpu/buffer_comparator.cc
third_party/xla/xla/service/gpu/buffer_comparator_test.cc
#include "xla/service/gpu/buffer_comparator.h" #include <algorithm> #include <cmath> #include <cstdint> #include <string_view> #include <type_traits> #include <vector> #include "Eigen/Core" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_handle.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/stream_executor/typed_kernel_factory.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/ml_dtypes.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { template <typename ElementT> using ComparisonKernelT = se::TypedKernel<se::DeviceMemory<ElementT>, se::DeviceMemory<ElementT>, float, uint64_t, se::DeviceMemory<uint64_t>>; struct ComparisonParams { double relative_tol = 0.1; bool verbose = true; const Shape* shape = nullptr; se::Stream* stream = nullptr; se::DeviceMemoryBase current{}; se::DeviceMemoryBase expected{}; }; template <typename ElementT> static absl::StatusOr<bool> DeviceCompare(std::string_view kernel_name, void* kernel_symbol, const ComparisonParams& params) { se::StreamExecutor* executor = params.stream->parent(); se::DeviceMemoryHandle out(executor, executor->AllocateScalar<uint64_t>()); TF_RETURN_IF_ERROR( params.stream->MemZero(out.memory_ptr(), sizeof(uint64_t))); if (params.current.size() != params.expected.size()) { return Internal("Mismatched buffer size: %d bytes vs. %d bytes", params.current.size(), params.expected.size()); } se::DeviceMemory<ElementT> current_typed(params.current); se::DeviceMemory<ElementT> expected_typed(params.expected); uint64_t buffer_size = current_typed.ElementCount(); TF_ASSIGN_OR_RETURN( ComparisonKernelT<ElementT> comparison_kernel, (se::TypedKernelFactory< se::DeviceMemory<ElementT>, se::DeviceMemory<ElementT>, float, uint64_t, se::DeviceMemory<uint64_t>>::Create(executor, kernel_name, kernel_symbol))); const se::DeviceDescription& gpu_device_info = executor->GetDeviceDescription(); LaunchDimensions dim = CalculateLaunchDimensions(*params.shape, gpu_device_info); se::DeviceMemory<uint64_t> as_uint64(out.memory()); TF_RETURN_IF_ERROR(params.stream->ThenLaunch( dim.thread_counts_per_block(), dim.block_counts(), comparison_kernel, current_typed, expected_typed, static_cast<float>(params.relative_tol), buffer_size, as_uint64)); uint64_t result = -1; CHECK_EQ(out.memory().size(), sizeof(result)); TF_RETURN_IF_ERROR( params.stream->Memcpy(&result, out.memory(), sizeof(result))); TF_RETURN_IF_ERROR(params.stream->BlockHostUntilDone()); return result == 0; } template <typename ElementType, typename ComparisonType> static absl::StatusOr<bool> HostCompare(const ComparisonParams& params) { int64_t n = params.current.size() / sizeof(ElementType); std::vector<ElementType> host_current(n), host_expected(n); TF_RETURN_IF_ERROR(params.stream->Memcpy(host_current.data(), params.current, params.current.size())); TF_RETURN_IF_ERROR(params.stream->Memcpy( host_expected.data(), params.expected, params.expected.size())); TF_RETURN_IF_ERROR(params.stream->BlockHostUntilDone()); const auto canonicalize = [](ComparisonType a) -> ComparisonType { if (std::is_same<ElementType, Eigen::half>::value && a) { constexpr ComparisonType kMaxFp16Value = 65505; if (std::isnan(a)) { return a; } return std::max(-kMaxFp16Value, std::min(a, kMaxFp16Value)); } return a; }; int differences_seen = 0; for (int64_t i = 0; i < n && differences_seen < 10; ++i) { auto current_value = static_cast<ComparisonType>(host_current[i]); auto expected_value = static_cast<ComparisonType>(host_expected[i]); ComparisonType current_value_canonical = canonicalize(current_value); ComparisonType expected_value_canonical = canonicalize(expected_value); if (std::isnan(current_value_canonical) && std::isnan(expected_value_canonical)) { continue; } if (std::isinf(current_value_canonical) && std::isinf(expected_value_canonical) && current_value_canonical == expected_value_canonical) { continue; } if (std::isfinite(current_value_canonical) != std::isfinite(expected_value_canonical) || !(std::abs(current_value_canonical - expected_value_canonical) / (std::max(std::abs(current_value_canonical), std::abs(expected_value_canonical)) + 1) < params.relative_tol)) { if (!params.verbose) return false; ++differences_seen; LOG(ERROR) << "Difference at " << i << ": " << current_value << ", expected " << expected_value; } } return differences_seen == 0; } template <typename ElementT, typename ComparisonT> static absl::StatusOr<bool> CompareEqualParameterized( std::string_view kernel_name, void* kernel_symbol, const ComparisonParams& params) { XLA_SCOPED_LOGGING_TIMER("BufferComparator::CompareEqual"); TF_ASSIGN_OR_RETURN( bool result, DeviceCompare<ElementT>(kernel_name, kernel_symbol, params)); if (result) { return true; } TF_ASSIGN_OR_RETURN(bool host_return, (HostCompare<ElementT, ComparisonT>(params))); CHECK_EQ(host_return, result) << "Host comparison succeeded even though GPU comparison failed."; return false; } absl::StatusOr<bool> BufferComparator::CompareEqual( se::Stream* stream, se::DeviceMemoryBase current, se::DeviceMemoryBase expected) const { ComparisonParams params{relative_tol_, verbose_, &shape_, stream, current, expected}; switch (shape_.element_type()) { #if GOOGLE_CUDA case xla::F8E4M3FN: return CompareEqualParameterized<tsl::float8_e4m3fn, float>( "fp8_e4m3fn_comparison", buffer_comparator::fp8_e4m3fn_comparison(), params); case xla::F8E5M2: return CompareEqualParameterized<tsl::float8_e5m2, float>( "fp8_e5m2_comparison", buffer_comparator::fp8_e5m2_comparison(), params); #endif #if TENSORFLOW_USE_ROCM && TF_ROCM_VERSION >= 60200 case xla::F8E4M3FNUZ: return CompareEqualParameterized<tsl::float8_e4m3fnuz, float>( "fp8_e4m3fnuz_comparison", buffer_comparator::fp8_e4m3fnuz_comparison(), params); case xla::F8E5M2FNUZ: return CompareEqualParameterized<tsl::float8_e5m2fnuz, float>( "fp8_e5m2fnuz_comparison", buffer_comparator::fp8_e5m2fnuz_comparison(), params); #endif case xla::F16: return CompareEqualParameterized<Eigen::half, float>( "fp16_comparison", buffer_comparator::fp16_comparison(), params); case xla::BF16: return CompareEqualParameterized<Eigen::bfloat16, float>( "bf16_comparison", buffer_comparator::bf16_comparison(), params); case xla::F32: return CompareEqualParameterized<float, float>( "fp32_comparison", buffer_comparator::fp32_comparison(), params); case xla::F64: return CompareEqualParameterized<double, double>( "fp64_comparison", buffer_comparator::fp64_comparison(), params); case xla::S8: return CompareEqualParameterized<int8_t, float>( "int8_comparison", buffer_comparator::int8_comparison(), params); case xla::S32: return CompareEqualParameterized<int32_t, float>( "int32_comparison", buffer_comparator::int32_comparison(), params); default: return Unimplemented("Unimplemented element type"); } } BufferComparator::BufferComparator(const Shape& shape, double tolerance, bool verbose) : shape_(shape), relative_tol_(tolerance), verbose_(verbose) { auto double_dim_size = [&]() { int64_t prev_zero_dim_size = shape_.dimensions(0); shape_.set_dimensions(0, prev_zero_dim_size * 2); }; if (shape_.element_type() == PrimitiveType::C64) { shape_.set_element_type(PrimitiveType::F32); double_dim_size(); } else if (shape_.element_type() == PrimitiveType::C128) { shape_.set_element_type(PrimitiveType::F64); double_dim_size(); } } } }
#include "xla/service/gpu/buffer_comparator.h" #include <cmath> #include <complex> #include <cstdint> #include <limits> #include <vector> #include "xla/primitive_util.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/service/hlo_module_config.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_handle.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream.h" #include "xla/types.h" #include "tsl/platform/ml_dtypes.h" #include "tsl/platform/status.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { constexpr double kDefaultTolerance = 0.1; class BufferComparatorTest : public testing::Test { protected: BufferComparatorTest() #if GOOGLE_CUDA : platform_(se::PlatformManager::PlatformWithName("CUDA").value()), #elif TENSORFLOW_USE_ROCM : platform_(se::PlatformManager::PlatformWithName("ROCM").value()), #endif stream_exec_(platform_->ExecutorForDevice(0).value()) { } template <typename ElementType> bool CompareEqualBuffers(const std::vector<ElementType>& current, const std::vector<ElementType>& expected, double tolerance) { auto stream = stream_exec_->CreateStream().value(); se::DeviceMemoryHandle current_buffer( stream_exec_, stream_exec_->AllocateArray<ElementType>(current.size())); se::DeviceMemoryHandle expected_buffer( stream_exec_, stream_exec_->AllocateArray<ElementType>(expected.size())); TF_CHECK_OK(stream->Memcpy(current_buffer.memory_ptr(), current.data(), current_buffer.memory().size())); TF_CHECK_OK(stream->Memcpy(expected_buffer.memory_ptr(), expected.data(), expected_buffer.memory().size())); TF_CHECK_OK(stream->BlockHostUntilDone()); BufferComparator comparator( ShapeUtil::MakeShape( primitive_util::NativeToPrimitiveType<ElementType>(), {static_cast<int64_t>(current.size())}), tolerance); return comparator .CompareEqual(stream.get(), current_buffer.memory(), expected_buffer.memory()) .value(); } template <typename ElementType> bool CompareEqualFloatBuffers(const std::vector<float>& lhs_float, const std::vector<float>& rhs_float, double tolerance = kDefaultTolerance) { std::vector<ElementType> lhs(lhs_float.begin(), lhs_float.end()); std::vector<ElementType> rhs(rhs_float.begin(), rhs_float.end()); return CompareEqualBuffers(lhs, rhs, tolerance); } template <typename ElementType> bool CompareEqualComplex(const std::vector<std::complex<ElementType>>& lhs, const std::vector<std::complex<ElementType>>& rhs) { return CompareEqualBuffers<std::complex<ElementType>>(lhs, rhs, kDefaultTolerance); } se::Platform* platform_; se::StreamExecutor* stream_exec_; }; TEST_F(BufferComparatorTest, TestComplex) { EXPECT_FALSE( CompareEqualComplex<float>({{0.1, 0.2}, {2, 3}}, {{0.1, 0.2}, {6, 7}})); EXPECT_TRUE(CompareEqualComplex<float>({{0.1, 0.2}, {2, 3}}, {{0.1, 0.2}, {2.2, 3.3}})); EXPECT_TRUE( CompareEqualComplex<float>({{0.1, 0.2}, {2, 3}}, {{0.1, 0.2}, {2, 3}})); EXPECT_FALSE( CompareEqualComplex<float>({{0.1, 0.2}, {2, 3}}, {{0.1, 0.2}, {6, 3}})); EXPECT_FALSE( CompareEqualComplex<float>({{0.1, 0.2}, {2, 3}}, {{0.1, 0.2}, {6, 7}})); EXPECT_FALSE( CompareEqualComplex<float>({{0.1, 0.2}, {2, 3}}, {{0.1, 6}, {2, 3}})); EXPECT_TRUE(CompareEqualComplex<double>({{0.1, 0.2}, {2, 3}}, {{0.1, 0.2}, {2.2, 3.3}})); EXPECT_FALSE( CompareEqualComplex<double>({{0.1, 0.2}, {2, 3}}, {{0.1, 0.2}, {2, 7}})); } TEST_F(BufferComparatorTest, TestNaNs) { EXPECT_TRUE( CompareEqualFloatBuffers<Eigen::half>({std::nanf("")}, {std::nanf("")})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({std::nanf("")}, {std::nanf("1234")})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({std::nanf("")}, {1.})); EXPECT_TRUE( CompareEqualFloatBuffers<float>({std::nanf("")}, {std::nanf("")})); EXPECT_TRUE( CompareEqualFloatBuffers<float>({std::nanf("")}, {std::nanf("1234")})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({std::nanf("")}, {1.})); EXPECT_TRUE( CompareEqualFloatBuffers<double>({std::nanf("")}, {std::nanf("")})); EXPECT_TRUE( CompareEqualFloatBuffers<double>({std::nanf("")}, {std::nanf("1234")})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({std::nanf("")}, {1.})); } TEST_F(BufferComparatorTest, TestInfs) { const auto inf = std::numeric_limits<float>::infinity(); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({inf}, {std::nanf("")})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({inf}, {inf})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({inf}, {65504})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({-inf}, {-65504})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({inf}, {-65504})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({-inf}, {65504})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({inf}, {-20})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({-inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({-inf}, {-20})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({inf}, {std::nanf("")})); EXPECT_TRUE(CompareEqualFloatBuffers<float>({inf}, {inf})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({inf}, {65504})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({-inf}, {-65504})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({inf}, {-65504})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({-inf}, {65504})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({inf}, {-20})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({-inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({-inf}, {-20})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({inf}, {std::nanf("")})); EXPECT_TRUE(CompareEqualFloatBuffers<double>({inf}, {inf})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({inf}, {65504})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({-inf}, {-65504})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({inf}, {-65504})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({-inf}, {65504})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({inf}, {-20})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({-inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({-inf}, {-20})); #if GOOGLE_CUDA EXPECT_TRUE( CompareEqualFloatBuffers<tsl::float8_e4m3fn>({inf}, {std::nanf("")})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({inf}, {inf})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({inf}, {-inf})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({inf}, {448})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({inf}, {-448})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({inf}, {-20})); EXPECT_FALSE( CompareEqualFloatBuffers<tsl::float8_e5m2>({inf}, {std::nanf("")})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>({inf}, {inf})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({inf}, {-inf})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({inf}, {57344})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({-inf}, {-57344})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({inf}, {-20})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({-inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({-inf}, {-20})); #endif } TEST_F(BufferComparatorTest, TestNumbers) { EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({20}, {20.1})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({20}, {23.0})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({20}, {23.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({20}, {26.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({0}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({0.9}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({9}, {10})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({10}, {9})); EXPECT_TRUE(CompareEqualFloatBuffers<float>({20}, {20.1})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({20}, {23.0})); EXPECT_TRUE(CompareEqualFloatBuffers<float>({20}, {23.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<float>({20}, {26.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<float>({0}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<float>({0.9}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<float>({9}, {10})); EXPECT_TRUE(CompareEqualFloatBuffers<float>({10}, {9})); EXPECT_TRUE(CompareEqualFloatBuffers<double>({20}, {20.1})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({20}, {23.0})); EXPECT_TRUE(CompareEqualFloatBuffers<double>({20}, {23.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<double>({20}, {26.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<double>({0}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<double>({0.9}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<double>({9}, {10})); EXPECT_TRUE(CompareEqualFloatBuffers<double>({10}, {9})); EXPECT_TRUE(CompareEqualFloatBuffers<int8_t>({100}, {101})); EXPECT_FALSE(CompareEqualFloatBuffers<int8_t>({100}, {120})); EXPECT_TRUE(CompareEqualFloatBuffers<int8_t>({100}, {120}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<int8_t>({90}, {120}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<int8_t>({0}, {10})); EXPECT_TRUE(CompareEqualFloatBuffers<int8_t>({9}, {10})); EXPECT_TRUE(CompareEqualFloatBuffers<int8_t>({90}, {100})); EXPECT_TRUE(CompareEqualFloatBuffers<int8_t>({100}, {90})); EXPECT_FALSE(CompareEqualFloatBuffers<int8_t>({-128}, {127})); #if GOOGLE_CUDA EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({20}, {20.1})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({20}, {23.0})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({20}, {23.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({20}, {26.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({0}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({0.9}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({9}, {10})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({9}, {10})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>({20}, {20.1})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({20}, {23.0})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>({20}, {23.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({20}, {30.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({0}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>({0.9}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>({11}, {12})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>({12}, {11})); #endif const double tol = 0.001; EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({0.9}, {1}, tol)); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({0.9}, {0.901}, tol)); EXPECT_FALSE(CompareEqualFloatBuffers<float>({10}, {10.1}, tol)); EXPECT_TRUE(CompareEqualFloatBuffers<float>({10}, {10.01}, tol)); EXPECT_FALSE(CompareEqualFloatBuffers<int8_t>({100}, {101}, tol)); EXPECT_FALSE(CompareEqualFloatBuffers<double>({20}, {20.1}, tol)); EXPECT_TRUE(CompareEqualFloatBuffers<double>({20}, {20.01}, tol)); } TEST_F(BufferComparatorTest, TestMultiple) { { EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>( {20, 30, 40, 50, 60}, {20.1, 30.1, 40.1, 50.1, 60.1})); std::vector<float> lhs(200); std::vector<float> rhs(200); for (int i = 0; i < 200; i++) { EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>(lhs, rhs)) << "should be the same at index " << i; lhs[i] = 3; rhs[i] = 5; EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>(lhs, rhs)) << "should be the different at index " << i; lhs[i] = 0; rhs[i] = 0; } } { EXPECT_TRUE(CompareEqualFloatBuffers<float>( {20, 30, 40, 50, 60}, {20.1, 30.1, 40.1, 50.1, 60.1})); std::vector<float> lhs(200); std::vector<float> rhs(200); for (int i = 0; i < 200; i++) { EXPECT_TRUE(CompareEqualFloatBuffers<float>(lhs, rhs)) << "should be the same at index " << i; lhs[i] = 3; rhs[i] = 5; EXPECT_FALSE(CompareEqualFloatBuffers<float>(lhs, rhs)) << "should be the different at index " << i; lhs[i] = 0; rhs[i] = 0; } } { EXPECT_TRUE(CompareEqualFloatBuffers<double>( {20, 30, 40, 50, 60}, {20.1, 30.1, 40.1, 50.1, 60.1})); std::vector<float> lhs(200); std::vector<float> rhs(200); for (int i = 0; i < 200; i++) { EXPECT_TRUE(CompareEqualFloatBuffers<double>(lhs, rhs)) << "should be the same at index " << i; lhs[i] = 3; rhs[i] = 5; EXPECT_FALSE(CompareEqualFloatBuffers<double>(lhs, rhs)) << "should be the different at index " << i; lhs[i] = 0; rhs[i] = 0; } } { EXPECT_TRUE(CompareEqualFloatBuffers<int8_t>({20, 30, 40, 50, 60}, {21, 31, 41, 51, 61})); std::vector<float> lhs(200); std::vector<float> rhs(200); for (int i = 0; i < 200; i++) { EXPECT_TRUE(CompareEqualFloatBuffers<int8_t>(lhs, rhs)) << "should be the same at index " << i; lhs[i] = 3; rhs[i] = 5; EXPECT_FALSE(CompareEqualFloatBuffers<int8_t>(lhs, rhs)) << "should be the different at index " << i; lhs[i] = 0; rhs[i] = 0; } } #if GOOGLE_CUDA { EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>( {20, 30, 40, 50, 60}, {20.1, 30.1, 40.1, 50.1, 60.1})); std::vector<float> lhs(200); std::vector<float> rhs(200); for (int i = 0; i < 200; i++) { EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>(lhs, rhs)) << "should be the same at index " << i; lhs[i] = 3; rhs[i] = 5; EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>(lhs, rhs)) << "should be the different at index " << i; lhs[i] = 0; rhs[i] = 0; } } { EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>( {20, 30, 40, 50, 60}, {20.1, 30.1, 40.1, 50.1, 60.1})); std::vector<float> lhs(200); std::vector<float> rhs(200); for (int i = 0; i < 200; i++) { EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>(lhs, rhs)) << "should be the same at index " << i; lhs[i] = 3; rhs[i] = 5; EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>(lhs, rhs)) << "should be the different at index " << i; lhs[i] = 0; rhs[i] = 0; } } #endif } TEST_F(BufferComparatorTest, BF16) { const int element_count = 3123; int64_t rng_state = 0; auto stream = stream_exec_->CreateStream().value(); se::DeviceMemoryHandle lhs( stream_exec_, stream_exec_->AllocateArray<Eigen::bfloat16>(element_count)); InitializeBuffer(stream.get(), BF16, &rng_state, lhs.memory()); se::DeviceMemoryHandle rhs( stream_exec_, stream_exec_->AllocateArray<Eigen::bfloat16>(element_count)); InitializeBuffer(stream.get(), BF16, &rng_state, rhs.memory()); BufferComparator comparator(ShapeUtil::MakeShape(BF16, {element_count})); EXPECT_FALSE(comparator.CompareEqual(stream.get(), lhs.memory(), rhs.memory()) .value()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/buffer_comparator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/buffer_comparator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5befe34d-a742-4dd8-8eb2-5fbb362c43ee
cpp
tensorflow/tensorflow
gpu_fusible
third_party/xla/xla/service/gpu/gpu_fusible.cc
third_party/xla/xla/service/gpu/gpu_fusible_test.cc
#include "xla/service/gpu/gpu_fusible.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <optional> #include <stack> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/synchronization/mutex.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/permutation_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/reduction_utils.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/instruction_fusion.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" namespace xla { namespace gpu { namespace { bool HasAnyTiledTransposeRoot(const HloComputation& computation) { return absl::c_any_of(GetFusionRoots(computation), [&](const HloInstruction* instr) { return GetDescriptionForTiledTransposeEmitter( FindNonTrivialHero(*instr)) .has_value(); }); } const Shape& GetElementShape(const HloFusionAnalysis& analysis) { const Shape* shape = &analysis.fusion_root(0).shape(); while (shape->IsTuple()) { shape = &shape->tuple_shapes(0); } return *shape; } int ComputeMaxUnrollFactor(int64_t num_elements) { constexpr int kMaxUnrollFactor = 4; for (int i = kMaxUnrollFactor; i > 1; i /= 2) { if (num_elements % i == 0) { return i; } } return 1; } } bool IfFusedReadsElementsMultipleTimes(const HloInstruction& instr) { CHECK_NE(instr.opcode(), HloOpcode::kFusion) << "`instr` has to be unfused."; if (instr.opcode() == HloOpcode::kGather || instr.opcode() == HloOpcode::kBroadcast) { return ShapeUtil::ElementsIn(instr.shape()) > ShapeUtil::ElementsIn(instr.operand(0)->shape()); } if (instr.opcode() == HloOpcode::kReduceWindow) { for (const auto& dim : instr.window().dimensions()) { if (dim.size() > dim.stride()) { return true; } } } return false; } bool IsExpensiveToRepeat(const HloInstruction& instr) { CHECK_NE(instr.opcode(), HloOpcode::kFusion) << "`instr` has to be unfused."; constexpr int kMaxInputsPerOutput = 10; if (instr.opcode() == HloOpcode::kReduce && !IsReductionFromOrToContiguousDimensions(instr)) { int64_t reduction_ratio = ShapeUtil::ElementsIn(instr.operand(0)->shape()) / ShapeUtil::ElementsIn(instr.shape()); if (reduction_ratio > kMaxInputsPerOutput) return true; } if (instr.opcode() == HloOpcode::kReduceWindow) { int64_t reduction_ratio = 1; for (const auto& dim : instr.window().dimensions()) reduction_ratio *= dim.size(); if (reduction_ratio > kMaxInputsPerOutput) return true; } return false; } bool IsPhysicallyTransposing(const HloInstruction& instr) { if (instr.opcode() == HloOpcode::kFusion) { for (const HloInstruction* fused_instr : instr.fused_instructions()) { if (IsPhysicallyTransposing(*fused_instr)) { return true; } } } return instr.opcode() == HloOpcode::kCopy || (instr.opcode() == HloOpcode::kTranspose && !ShapeUtil::TransposeIsBitcast(instr.operand(0)->shape(), instr.shape(), instr.dimensions())); } namespace { std::pair<int64_t, int64_t> MostMinorNonTrivialDimension(const Shape& shape) { int64_t position_of_first_non_trivial_dim = 0; for (int64_t dim : shape.layout().minor_to_major()) { if (shape.dimensions()[dim] > 1) { return {dim, position_of_first_non_trivial_dim}; } ++position_of_first_non_trivial_dim; } return {-1, position_of_first_non_trivial_dim}; } } bool TransposesMinorDimension(const HloInstruction* instr) { switch (instr->opcode()) { case HloOpcode::kFusion: return absl::c_any_of(instr->fused_instructions(), TransposesMinorDimension); case HloOpcode::kCopy: { int64_t first_non_trivial_operand_dim = MostMinorNonTrivialDimension(instr->operand(0)->shape()).first; int64_t first_non_trivial_output_dim = MostMinorNonTrivialDimension(instr->shape()).first; return first_non_trivial_operand_dim != first_non_trivial_output_dim; } case HloOpcode::kTranspose: { auto position_in_minor_to_major = InversePermutation( instr->operand(0)->shape().layout().minor_to_major()); int64_t position_of_first_non_trivial_dim = MostMinorNonTrivialDimension(instr->operand(0)->shape()).second; for (int64_t output_dim : instr->shape().layout().minor_to_major()) { if (instr->shape().dimensions()[output_dim] == 1) { continue; } int64_t operand_dim = instr->dimensions().at(output_dim); return position_in_minor_to_major[operand_dim] > position_of_first_non_trivial_dim; } return false; } default: return false; } } bool IsReduceInputFusion(const HloInstruction& instr) { return instr.opcode() == HloOpcode::kFusion && absl::c_any_of(GetFusionRoots(*instr.called_computations()[0]), [](const HloInstruction* root) { return IsRealReductionHero(*root, FindNonTrivialHero(*root)); }); } bool IsInputFusibleReduction(const HloInstruction& instr) { return IsReduceInputFusion(instr) || IsReductionFromOrToContiguousDimensions(instr); } bool IsNestableVariadicReduction(const HloInstruction& instr) { return instr.shape().IsTuple() && ((instr.opcode() == HloOpcode::kReduce && !IsReductionFromOrToContiguousDimensions(instr)) || (instr.opcode() == HloOpcode::kFusion && instr.fusion_kind() == HloInstruction::FusionKind::kLoop && instr.fused_expression_root()->opcode() == HloOpcode::kReduce)); } bool IsInputFusibleTranspose(const HloInstruction& instr) { if (instr.opcode() == HloOpcode::kBitcast || instr.IsCustomFusion()) { return false; } if (instr.opcode() == HloOpcode::kFusion) { return HasAnyTiledTransposeRoot(*instr.fused_instructions_computation()); } return GetDescriptionForTiledTransposeEmitter(instr).has_value(); } const HloInstruction* GetRealHeroForMultiOutputFusion( const HloInstruction& instr) { if (instr.opcode() != HloOpcode::kFusion) { return &instr; } auto fused_expression_root = instr.fused_expression_root(); if (!instr.IsMultiOutputFusion()) { const auto& hero = FindNonTrivialHero(*fused_expression_root); if (IsRealReductionHero(*fused_expression_root, hero) || GetDescriptionForTiledTransposeEmitter(hero).has_value()) { return &hero; } return fused_expression_root; } for (auto* inst : fused_expression_root->mutable_operands()) { const auto& hero = FindNonTrivialHero(*inst); if (IsRealReductionHero(*inst, hero) || GetDescriptionForTiledTransposeEmitter(hero).has_value()) { return &hero; } } return fused_expression_root->operands()[0]; } FusionDecision FusionHeroesAreCompatible(const HloInstruction* hero1, const HloInstruction* hero2) { auto hero1_is_unnested_reduce = IsReductionFromOrToContiguousDimensions(*hero1); auto tiled_transpose_hero1 = GetDescriptionForTiledTransposeEmitter(*hero1); bool hero1_is_unnested_transpose = tiled_transpose_hero1.has_value(); bool hero2_is_unnested_reduce = IsReductionFromOrToContiguousDimensions(*hero2); auto tiled_transpose_hero2 = GetDescriptionForTiledTransposeEmitter(*hero2); bool hero2_is_unnested_transpose = tiled_transpose_hero2.has_value(); if (hero1_is_unnested_reduce && hero2_is_unnested_reduce && !AreReductionsMultiOutputFusionCompatible(hero2, hero1)) { return FusionDecision::Forbid("tiled reductions with different shapes"); } else if (hero1_is_unnested_transpose && hero2_is_unnested_transpose && !tiled_transpose_hero1->IsEquivalent(*tiled_transpose_hero2)) { return FusionDecision::Forbid("tiled transposes with different shapes"); } else if ((hero1_is_unnested_transpose && hero2_is_unnested_reduce) || (hero1_is_unnested_reduce && hero2_is_unnested_transpose)) { return FusionDecision::Forbid("MOF-fusion of a transpose and a reduction"); } if (hero1_is_unnested_transpose || hero2_is_unnested_transpose) { auto check_path_of_intermediate_ops = [](HloInstruction* param) { if (param->user_count() != 1) { return false; } HloInstruction* hlo = param->users()[0]; while (hlo->user_count() > 0) { if (!IsIntermediate(hlo)) { return false; } hlo = hlo->users()[0]; } return true; }; HloInstruction* fusion1 = hero1->parent()->FusionInstruction(); HloInstruction* fusion2 = hero2->parent()->FusionInstruction(); if (fusion1 != nullptr && fusion2 != nullptr) { if (hero1_is_unnested_transpose && fusion2->IsUserOf(fusion1)) { int64_t operand_idx = fusion2->operand_index(fusion1); auto hlo = fusion2->fused_parameter(operand_idx); if (!check_path_of_intermediate_ops(hlo)) { return FusionDecision::Forbid("tiled transpose would become untiled"); } } else if (hero2_is_unnested_transpose && fusion1->IsUserOf(fusion2)) { int64_t operand_idx = fusion1->operand_index(fusion2); auto hlo = fusion1->fused_parameter(operand_idx); if (!check_path_of_intermediate_ops(hlo)) { return FusionDecision::Forbid("tiled transpose would become untiled"); } } } } return FusionDecision::Allow(); } FusionDecision ShapesCompatibleForMultiOutputFusion( const HloInstruction& instr1, const HloInstruction& instr2) { auto get_loop_shape = [&](const HloInstruction* element_instr) { const auto& hero = element_instr->parent()->IsFusionComputation() ? FindNonTrivialHero(*element_instr) : *element_instr; if (IsReductionFromOrToContiguousDimensions(*element_instr) || GetDescriptionForTiledTransposeEmitter(hero).has_value()) { return hero.operand(0)->shape(); } return element_instr->shape(); }; const HloInstruction* hero1 = GetRealHeroForMultiOutputFusion(instr1); const HloInstruction* hero2 = GetRealHeroForMultiOutputFusion(instr2); if (auto compatible = FusionHeroesAreCompatible(hero1, hero2); !compatible) { return compatible; } const Shape& l1 = get_loop_shape(hero1); const Shape& l2 = get_loop_shape(hero2); bool accept_unequal_shape = !l1.IsTuple() && !l2.IsTuple(); if (!ShapeUtil::EqualIgnoringElementType(l1, l2) && (!accept_unequal_shape || !ShapeUtil::IsReshapeOrTransposeBitcast(l1, l2, true))) { return FusionDecision::Forbid("different loop shapes"); } return FusionDecision::Allow(); } bool IsInputFusibleScatter(const HloInstruction& instr) { if (instr.opcode() == HloOpcode::kScatter || (instr.opcode() == HloOpcode::kFusion && instr.fusion_kind() == HloInstruction::FusionKind::kInput && instr.fused_expression_root()->opcode() == HloOpcode::kScatter)) { return true; } return false; } bool IsInputFusible(const HloInstruction& instr) { return instr.IsFusible() && (IsInputFusibleReduction(instr) || IsInputFusibleScatter(instr) || IsInputFusibleTranspose(instr)); } bool IsUniversallyLoopFusible(const HloInstruction& instr) { if (instr.IsElementwise() && instr.operand_count() > 0 && instr.opcode() != HloOpcode::kCopy) { return true; } switch (instr.opcode()) { case HloOpcode::kCopy: return !GetDescriptionForTiledTransposeEmitter(instr).has_value(); case HloOpcode::kFusion: return instr.fusion_kind() == HloInstruction::FusionKind::kLoop; case HloOpcode::kBitcast: case HloOpcode::kBroadcast: case HloOpcode::kConcatenate: case HloOpcode::kDynamicSlice: case HloOpcode::kDynamicUpdateSlice: case HloOpcode::kGather: case HloOpcode::kPad: case HloOpcode::kReduceWindow: case HloOpcode::kReshape: case HloOpcode::kReverse: case HloOpcode::kSlice: case HloOpcode::kTranspose: return true; default: return false; } } bool IsLoopFusibleAsConsumer(const HloInstruction& instr) { if (!instr.IsFusible()) return false; if (instr.opcode() == HloOpcode::kBitcast) return false; if (instr.opcode() == HloOpcode::kReduce) return true; if (!IsInputFusible(instr) && instr.opcode() == HloOpcode::kFusion && instr.fusion_kind() == HloInstruction::FusionKind::kInput) { return true; } return IsUniversallyLoopFusible(instr); } bool IsLoopFusibleAsProducer(const HloInstruction& instr) { if (!instr.IsFusible()) return false; switch (instr.opcode()) { case HloOpcode::kIota: case HloOpcode::kConstant: return true; case HloOpcode::kReduce: return !instr.shape().IsTuple(); default: return IsUniversallyLoopFusible(instr); } } static bool AllSatisfy(const HloInstruction& instr, const HloPredicate& predicate) { if (instr.opcode() != HloOpcode::kFusion) { return predicate(&instr); } return absl::c_all_of( instr.fused_instructions(), [&](const HloInstruction* i) { return i->opcode() == HloOpcode::kParameter || predicate(i); }); } FusionDecision CanEmitInputFusedScatter(const HloInstruction& producer, const HloInstruction& consumer) { if (IsInputFusibleScatter(producer)) { return FusionDecision::Forbid("do not fuse into the output of scatter"); } if (!IsInputFusibleScatter(consumer)) { return FusionDecision::Allow(); } const HloInstruction* inplace_operand; if (consumer.opcode() == HloOpcode::kFusion) { const HloInstruction* scatter = consumer.fused_expression_root(); CHECK_EQ(scatter->opcode(), HloOpcode::kScatter); CHECK_EQ(scatter->operand(0)->opcode(), HloOpcode::kParameter); inplace_operand = consumer.operand(scatter->operand(0)->parameter_number()); } else { inplace_operand = consumer.operand(0); } if (inplace_operand == &producer) { return FusionDecision::Forbid( "do not fuse into the in-place operand of scatter"); } if (absl::c_linear_search(producer.operands(), inplace_operand)) { return FusionDecision::Forbid( "Producer uses the in-place operand of a scatter"); } return FusionDecision::Allow(); } FusionDecision IsProducerConsumerFusible(const HloInstruction& producer, const HloInstruction& consumer) { if (!IsLoopFusibleAsProducer(producer) && !IsInputFusibleTranspose(producer)) { return FusionDecision::Forbid("the producer is not loop-fusible"); } if (IsInputFusibleReduction(producer)) { if (!producer.GetModule() ->config() .debug_options() .xla_gpu_enable_reduction_epilogue_fusion()) { return FusionDecision::Forbid( "Reduction epilogue fusion is not enabled."); } const HloInstruction& reduce_hero = producer.opcode() == HloOpcode::kFusion ? FindNonTrivialHero(*producer.fused_expression_root()) : producer; if (!ReductionIsRaceFree( reduce_hero.GetModule()->config(), GetReductionKindAndContiguousComponents(reduce_hero))) { return FusionDecision::Forbid( "Reduction output fusion only works for race free reductions"); } if (!AllSatisfy(consumer, [](const HloInstruction* hlo) { return IsIntermediate(hlo, 1); })) { return FusionDecision::Forbid( "Reductions from/to continuous dims epilogue not fusible"); } if (producer.user_count() > 1) { return FusionDecision::Forbid( "reduction output fusion only works for single user"); } } if (auto can_fuse = CanEmitInputFusedScatter(producer, consumer); !can_fuse) { return can_fuse; } if (!IsInputFusible(consumer) && !IsLoopFusibleAsConsumer(consumer)) { return FusionDecision::Forbid( "the consumer is not input-fusible and not loop-fusible"); } if (producer.IsMultiOutputFusion()) { return FusionDecision::Forbid( "the producer is not fusible as it is a multi-output fusion"); } if (producer.opcode() == HloOpcode::kConstant && (!ShapeUtil::IsEffectiveScalar(producer.shape()) || consumer.opcode() != HloOpcode::kFusion)) { return FusionDecision::Forbid("not fusing constant"); } return InstructionFusion::ShouldFuseInPlaceOp(&producer, &consumer); } FusionDecision IsProducerMultiOutputFusible(const HloInstruction& producer) { if (producer.IsMultiOutputFusion()) { return FusionDecision::Forbid("Producer is a multi-output fusion"); } if (!HloDataflowAnalysis::GetInPlaceInputOutputPairs(&producer).empty()) { return FusionDecision::Forbid("In-place operations are present"); } if (!IsLoopFusibleAsProducer(producer)) { return FusionDecision::Forbid("producer is not loop-fusible"); } if (IsPhysicallyTransposing(producer)) { return FusionDecision::Forbid("producer is physically transposing"); } return FusionDecision::Allow(); } static int64_t SharedMemoryUsageNoCache(const HloInstruction& instr) { if (instr.opcode() == HloOpcode::kFusion) { int64_t sum = 0; for (const HloInstruction* hlo : instr.fused_instructions_computation()->instructions()) { sum += SharedMemoryUsageNoCache(*hlo); } return sum; } else if (instr.opcode() == HloOpcode::kReduce && IsReductionFromOrToContiguousDimensions(instr)) { ReductionDimensions reduction_info = GetReductionKindAndContiguousComponents(instr); int64_t primitive_size = ShapeUtil::ByteSizeOfPrimitiveType( instr.operand(0)->shape().element_type()); int num_variadic = instr.shape().IsTuple() ? instr.shape().tuple_shapes_size() : 1; if (reduction_info.is_row_reduction) { return 32 * primitive_size * num_variadic; } else { return 4 * 32 * 33 * primitive_size * num_variadic; } } else if (auto tr = GetDescriptionForTiledTransposeEmitter(instr)) { int64_t primitive_size = ShapeUtil::ByteSizeOfPrimitiveType(instr.shape().element_type()); int64_t bytes_required = 32 * 33 * primitive_size; if (tr->permutation.back() == tr->permutation.size() - 1) { bytes_required *= tr->dimensions.back(); } return bytes_required; } return 0; } int64_t FusionInfoCache::GetSharedMemoryUsage(const HloInstruction& instr) { { absl::MutexLock lock(&mutex_); auto it = shared_memory_usage_.find(&instr); if (it != shared_memory_usage_.end()) { return it->second; } } int64_t shared_memory_usage = SharedMemoryUsageNoCache(instr); absl::MutexLock lock(&mutex_); shared_memory_usage_.emplace(&instr, shared_memory_usage); return shared_memory_usage; } int64_t SharedMemoryUsage(const HloInstruction& instr, FusionInfoCache* cache) { if (!cache) { return SharedMemoryUsageNoCache(instr); } return cache->GetSharedMemoryUsage(instr); } constexpr int64_t kMaxUnnestedReductionOutputsPerFusion = 8; static int64_t NumUnnestedReductionsNoCache(const HloInstruction& instr) { if (instr.opcode() == HloOpcode::kReduce && IsReductionFromOrToContiguousDimensions(instr)) { return 1; } if (instr.opcode() == HloOpcode::kFusion) { int64_t sum = 0; for (const HloInstruction* hlo : instr.fused_instructions_computation()->instructions()) { sum += NumUnnestedReductionsNoCache(*hlo); } return sum; } return 0; } int64_t FusionInfoCache::GetNumUnnestedReductions(const HloInstruction& instr) { { absl::MutexLock lock(&mutex_); auto it = num_unnested_reductions_.find(&instr); if (it != num_unnested_reductions_.end()) { return it->second; } } int64_t num_unnested_reductions = NumUnnestedReductionsNoCache(instr); absl::MutexLock lock(&mutex_); num_unnested_reductions_.emplace(&instr, num_unnested_reductions); return num_unnested_reductions; } static int64_t NumUnnestedReductions(const HloInstruction& instr, FusionInfoCache* cache) { if (!cache) { return NumUnnestedReductionsNoCache(instr); } return cache->GetNumUnnestedReductions(instr); } FusionDecision FusionFitsInBudget(const HloInstruction& instr1, const HloInstruction& instr2, const se::DeviceDescription& device_info, bool is_consumer_producer_fusion, FusionInfoCache* cache ) { if (SharedMemoryUsage(instr1, cache) + SharedMemoryUsage(instr2, cache) > device_info.shared_memory_per_block()) { return FusionDecision::Forbid( "shared memory usage would be over the budget of ") << device_info.shared_memory_per_block() << "B"; } if (NumUnnestedReductions(instr1, cache) + NumUnnestedReductions(instr2, cache) > kMaxUnnestedReductionOutputsPerFusion) { return FusionDecision::Forbid("over ") << kMaxUnnestedReductionOutputsPerFusion << " unnested reductions in fusion"; } int64_t num_output_buffers = ShapeUtil::SubshapeCount(instr1.shape()) + ShapeUtil::SubshapeCount(instr2.shape()); if (instr1.operand_count() + instr2.operand_count() - 1 + num_output_buffers <= MaxOperandsAndOutputsPerFusion()) { return FusionDecision::Allow(); } else { VLOG(5) << "Operand count of " << "(" << instr1.ToString() << " ) = " << instr1.operand_count() << " and ( " << instr2.ToString() << " ) = " << instr2.operand_count() << " and num_output_buffers = " << num_output_buffers << " is bigger than the bound of " << MaxOperandsAndOutputsPerFusion(); } absl::flat_hash_set<const HloInstruction*> operands(instr1.operands().begin(), instr1.operands().end()); operands.insert(instr2.operands().begin(), instr2.operands().end()); operands.erase(&instr1); operands.erase(&instr2); if (is_consumer_producer_fusion && operands.size() <= instr1.operands().size()) { return FusionDecision::Allow(); } if (operands.size() + num_output_buffers > MaxOperandsAndOutputsPerFusion()) { return FusionDecision::Forbid( "Number of operands and output buffers is larger than allowed budget " "per fusion"); } return FusionDecision::Allow(); } bool CreatesHeavyComputation(const HloInstruction& producer, const HloInstruction& consumer) { auto producer_is_heavy = [&](const HloInstruction& instr) { if (producer.opcode() != HloOpcode::kFusion) { return IsExpensiveToRepeat(producer); } for (const auto& instr : producer.fused_instructions()) { if (IsExpensiveToRepeat(*instr)) { return true; } } return false; }; if (!producer_is_heavy(producer)) { return false; } if (consumer.opcode() != HloOpcode::kFusion) { return IfFusedReadsElementsMultipleTimes(consumer); } for (const HloInstruction* operand : consumer.operands()) { if (operand != &producer) { continue; } const HloInstruction* root = consumer.fused_instructions_computation()->parameter_instruction( consumer.operand_index(operand)); std::stack<const HloInstruction*> dfs; dfs.push(root); absl::flat_hash_set<const HloInstruction*> visited; while (!dfs.empty()) { const HloInstruction* cur = dfs.top(); dfs.pop(); if (!visited.insert(cur).second) { continue; } if (IfFusedReadsElementsMultipleTimes(*cur)) { return true; } for (const auto& user : cur->users()) { if (visited.contains(user)) { continue; } dfs.push(user); } } } return false; } bool IsFusibleAsMultiOutputFusionRoot(const HloInstruction& instr) { return instr.IsFusible() && !instr.IsCustomFusion() && (IsInputFusibleReduction(instr) || IsInputFusibleTranspose(instr) || instr.IsLoopFusion() || instr.IsElementwise()); } HloInstruction::FusionKind ChooseFusionKind(const HloInstruction& producer, const HloInstruction& consumer) { return (IsInputFusible(consumer) || IsInputFusible(producer)) ? HloInstruction::FusionKind::kInput : HloInstruction::FusionKind::kLoop; } bool IsConsumerTheOnlyNonRootUser(const HloInstruction& instr, const HloInstruction& consumer) { return absl::c_all_of(instr.users(), [&](const HloInstruction* user) { if (user->opcode() == HloOpcode::kGetTupleElement) { return IsConsumerTheOnlyNonRootUser(*user, consumer); } return user == &consumer || user == user->parent()->root_instruction(); }); } size_t GetInstrCountOfFusible(const HloInstruction& instr) { return instr.opcode() == HloOpcode::kFusion ? instr.fused_instruction_count() : 1; } absl::InlinedVector<const HloInstruction*, 2> GetOutputsOfFusible( const HloInstruction& instr) { if (instr.opcode() != HloOpcode::kFusion) { return {&instr}; } HloInstruction* root = instr.fused_expression_root(); if (root->opcode() != HloOpcode::kTuple) { return {root}; } else { auto v = root->operands(); return absl::InlinedVector<const HloInstruction*, 2>(v.begin(), v.end()); } } size_t GetOutputSizeOfFusible(const HloInstruction& instr) { if (!instr.IsMultiOutputFusion()) { return 1; } const HloInstruction* root = instr.fused_expression_root(); return ShapeUtil::TupleElementCount(root->shape()); } static void GetFusionRootsRec(const HloInstruction* root, std::vector<const HloInstruction*>& out) { if (root->opcode() == HloOpcode::kGetTupleElement && root->operand(0)->opcode() == HloOpcode::kTuple) { return GetFusionRootsRec(root->operand(0)->operand(root->tuple_index()), out); } else if (root->opcode() == HloOpcode::kGetTupleElement) { out.push_back(root->operand(0)); } else if (root->opcode() == HloOpcode::kTuple) { for (int i = 0; i < root->operand_count(); i++) { GetFusionRootsRec(root->operand(i), out); } } else { out.push_back(root); } } std::vector<const HloInstruction*> GetFusionRoots( const HloComputation& computation) { std::vector<const HloInstruction*> out; GetFusionRootsRec(computation.root_instruction(), out); return out; } bool IsGenericTritonFusion(const HloInstruction& instr) { return instr.opcode() == HloOpcode::kFusion && instr.fusion_kind() == HloInstruction::FusionKind::kCustom && instr.backend_config<GpuBackendConfig>().ok() && instr.backend_config<GpuBackendConfig>() ->fusion_backend_config() .kind() == kTritonFusionKind; } bool MayPreventVectorization(const HloFusionAdaptor& fusion) { static constexpr int kMaxConcatArgumentsForUnrolling = 10; return HloAnyOf(fusion, [&](auto node) { switch (node.opcode()) { case HloOpcode::kReduceWindow: case HloOpcode::kSort: case HloOpcode::kDot: case HloOpcode::kSin: case HloOpcode::kCos: case HloOpcode::kTan: case HloOpcode::kPower: case HloOpcode::kAtan2: return true; case HloOpcode::kConcatenate: return node.instruction().operand_count() > kMaxConcatArgumentsForUnrolling; case HloOpcode::kReduce: return node.instruction().shape().tuple_shapes_size() > 1; default: return false; } }); } std::vector<HloComputation*> GetFusibleComputations( const HloModule& module, const absl::flat_hash_set<absl::string_view>& execution_threads) { auto result = module.MakeComputationPostOrder(execution_threads); absl::flat_hash_set<const HloComputation*> computations_not_to_fuse; for (const auto* computation : result) { for (const auto* instr : computation->instructions()) { if (HloInstruction::MightHaveCalledComputations(instr->opcode()) && instr->opcode() != HloOpcode::kWhile && instr->opcode() != HloOpcode::kConditional && instr->opcode() != HloOpcode::kFusion) { for (auto* called : instr->called_computations()) { computations_not_to_fuse.insert(called); } } } } result.erase( std::remove_if(result.begin(), result.end(), [&](HloComputation* computation) { return computation->IsFusionComputation() || computations_not_to_fuse.contains(computation); }), result.end()); return result; } LaunchDimensionsConfig ComputeLoopFusionConfig( const HloFusionAnalysis& analysis) { return ComputeLoopFusionConfig(analysis, GetElementShape(analysis)); } LaunchDimensionsConfig ComputeLoopFusionConfig( const HloFusionAnalysis& analysis, const Shape& element_shape) { int unroll_factor = 1; int64_t num_elements = ShapeUtil::ElementsIn(element_shape); int64_t n_threads_max = analysis.device_info().threads_per_core_limit() * analysis.device_info().core_count(); if (num_elements >= n_threads_max && !MayPreventVectorization(analysis.fusion())) { unroll_factor = ComputeMaxUnrollFactor(num_elements); } CHECK(absl::has_single_bit(static_cast<uint64_t>(unroll_factor))); unroll_factor = std::max( unroll_factor, CeilOfRatio(8, analysis.input_output_info().smallest_output_dtype_bits)); CHECK(absl::has_single_bit(static_cast<uint64_t>(unroll_factor))); VLOG(2) << "Unroll factor: " << unroll_factor; LaunchDimensionsConfig launch_config{unroll_factor}; return launch_config; } } }
#include "xla/service/gpu/gpu_fusible.h" #include <memory> #include <vector> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { using ::testing::ElementsAre; using GpuFusibleTest = HloTestBase; const char kModulePrefix[] = R"( HloModule test_module scalar_add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) })"; TEST_F(GpuFusibleTest, IsPhysicallyTransposing_ElementwiseProducer) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY entry { p0 = f32[2,2,2]{2,1,0} parameter(0) c0 = f32[] constant(0) exp = f32[2,2,2]{2,1,0} exponential(p0) ROOT reduce = f32[2,2]{1,0} reduce(exp, c0), dimensions={2}, to_apply=scalar_add })")) .value(); SCOPED_TRACE(module->ToString()); const HloInstruction* exp = module->entry_computation()->root_instruction()->operand(0); ASSERT_EQ(exp->opcode(), HloOpcode::kExp); EXPECT_FALSE(IsPhysicallyTransposing(*exp)); } TEST_F(GpuFusibleTest, IsPhysicallyTransposing_MixedLayoutProducer) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( mixed_input_layouts_computation { p0.1 = f16[128,1024,32,32]{1,3,2,0} parameter(0) p1.1 = f16[128,1024,32,32]{3,2,1,0} parameter(1) copy = f16[128,1024,32,32]{1,3,2,0} copy(p1.1) c0 = f16[] constant(0) broadcast = f16[128,1024,32,32]{1,3,2,0} broadcast(c0), dimensions={} greater-than = pred[128,1024,32,32]{1,3,2,0} compare(copy, broadcast), direction=GT ROOT root = f16[128,1024,32,32]{1,3,2,0} select(greater-than, p0.1, broadcast) } fused_reduce { p0.2 = f16[128,1024,32,32]{1,3,2,0} parameter(0) convert = f32[128,1024,32,32]{1,3,2,0} convert(p0.2) c0.2 = f32[] constant(0) ROOT reduce = f32[1024]{0} reduce(convert, c0.2), dimensions={0,2,3}, to_apply=scalar_add } ENTRY entry { p0 = f16[128,1024,32,32]{1,3,2,0} parameter(0) p1 = f16[128,1024,32,32]{3,2,1,0} parameter(1) loop_fusion = f16[128,1024,32,32]{1,3,2,0} fusion(p0, p1), kind=kLoop, calls=mixed_input_layouts_computation reduce_fusion = f32[1024]{0} fusion(loop_fusion), kind=kInput, calls=fused_reduce ROOT root = (f32[1024]{0}, f16[128,1024,32,32]{1,3,2,0}) tuple(reduce_fusion, loop_fusion) })")) .value(); SCOPED_TRACE(module->ToString()); const HloInstruction* loop_fusion = module->entry_computation()->root_instruction()->operand(1); ASSERT_EQ(loop_fusion->fused_expression_root()->opcode(), HloOpcode::kSelect); EXPECT_TRUE(IsPhysicallyTransposing(*loop_fusion)); } TEST_F(GpuFusibleTest, IsPhysicallyTransposing_MixedLayoutProducerWithTrivialDim) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( mixed_input_layouts_computation { p0.1 = f16[128,1,32,32]{1,3,2,0} parameter(0) p1.1 = f16[128,1,32,32]{3,2,1,0} parameter(1) bitcast = f16[128,1,32,32]{1,3,2,0} bitcast(p1.1) c0 = f16[] constant(0) broadcast = f16[128,1,32,32]{1,3,2,0} broadcast(c0), dimensions={} greater-than = pred[128,1,32,32]{1,3,2,0} compare(bitcast, broadcast), direction=GT ROOT root = f16[128,1,32,32]{1,3,2,0} select(greater-than, p0.1, broadcast) } fused_reduce { p0.2 = f16[128,1,32,32]{1,3,2,0} parameter(0) convert = f32[128,1,32,32]{1,3,2,0} convert(p0.2) c0.2 = f32[] constant(0) ROOT reduce = f32[1]{0} reduce(convert, c0.2), dimensions={0,2,3}, to_apply=scalar_add } ENTRY entry { p0 = f16[128,1,32,32]{1,3,2,0} parameter(0) p1 = f16[128,1,32,32]{3,2,1,0} parameter(1) loop_fusion = f16[128,1,32,32]{1,3,2,0} fusion(p0, p1), kind=kLoop, calls=mixed_input_layouts_computation reduce_fusion = f32[1]{0} fusion(loop_fusion), kind=kInput, calls=fused_reduce ROOT root = (f32[1]{0}, f16[128,1,32,32]{1,3,2,0}) tuple(reduce_fusion, loop_fusion) })")) .value(); SCOPED_TRACE(module->ToString()); const HloInstruction* loop_fusion = module->entry_computation()->root_instruction()->operand(1); ASSERT_EQ(loop_fusion->fused_expression_root()->opcode(), HloOpcode::kSelect); EXPECT_FALSE(IsPhysicallyTransposing(*loop_fusion)); } TEST_F(GpuFusibleTest, IsPhysicallyTransposing_CopyProducer) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_reduce { p0.1 = f32[128,1024,32,32]{1,3,2,0} parameter(0) c0.1 = f32[] constant(0) ROOT reduce = f32[1024]{0} reduce(p0.1, c0.1), dimensions={0,2,3}, to_apply=scalar_add } ENTRY entry { p0 = f16[128,1024,32,32]{3,2,1,0} parameter(0) copy = f32[128,1024,32,32]{1,3,2,0} copy(p0) ROOT reduce_fusion = f32[1024]{0} fusion(copy), kind=kInput, calls=fused_reduce })")) .value(); SCOPED_TRACE(module->ToString()); const HloInstruction* copy = module->entry_computation()->root_instruction()->operand(0); ASSERT_EQ(copy->opcode(), HloOpcode::kCopy); EXPECT_TRUE(IsPhysicallyTransposing(*copy)); } TEST_F(GpuFusibleTest, IsPhysicallyTransposing_PhysicalTranspose) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_reduce { p0.1 = f32[1024,128,32,32]{3,2,1,0} parameter(0) c0.1 = f32[] constant(0) ROOT reduce = f32[1024]{0} reduce(p0.1, c0.1), dimensions={1,2,3}, to_apply=scalar_add } ENTRY entry { p0 = f16[128,1024,32,32]{3,2,1,0} parameter(0) copy = f32[1024,128,32,32]{3,2,1,0} transpose(p0), dimensions={1,0,2,3} ROOT reduce_fusion = f32[1024]{0} fusion(copy), kind=kInput, calls=fused_reduce })")) .value(); SCOPED_TRACE(module->ToString()); const HloInstruction* transpose = module->entry_computation()->root_instruction()->operand(0); ASSERT_EQ(transpose->opcode(), HloOpcode::kTranspose); EXPECT_TRUE(IsPhysicallyTransposing(*transpose)); } TEST_F(GpuFusibleTest, IsPhysicallyTransposing_LayoutChangingFusionProducer) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( layout_changing_computation { p0.1 = f16[128,1024,32,32]{3,2,1,0} parameter(0) p1.1 = f16[128,1024,32,32]{3,2,1,0} parameter(1) c0 = f16[] constant(0) broadcast = f16[128,1024,32,32]{3,2,1,0} broadcast(c0), dimensions={} greater-than = pred[128,1024,32,32]{3,2,1,0} compare(p1.1, broadcast), direction=GT select = f16[128,1024,32,32]{3,2,1,0} select(greater-than, p0.1, broadcast) ROOT root = f16[128,1024,32,32]{1,3,2,0} copy(select) } fused_reduce { p0.2 = f16[128,1024,32,32]{1,3,2,0} parameter(0) convert = f32[128,1024,32,32]{1,3,2,0} convert(p0.2) c0.2 = f32[] constant(0) ROOT reduce = f32[1024]{0} reduce(convert, c0.2), dimensions={0,2,3}, to_apply=scalar_add } ENTRY entry { p0 = f16[128,1024,32,32]{3,2,1,0} parameter(0) p1 = f16[128,1024,32,32]{3,2,1,0} parameter(1) loop_fusion = f16[128,1024,32,32]{1,3,2,0} fusion(p0, p1), kind=kLoop, calls=layout_changing_computation ROOT reduce_fusion = f32[1024]{0} fusion(loop_fusion), kind=kInput, calls=fused_reduce })")) .value(); SCOPED_TRACE(module->ToString()); const HloInstruction* loop_fusion = module->entry_computation()->root_instruction()->operand(0); ASSERT_EQ(loop_fusion->fused_expression_root()->opcode(), HloOpcode::kCopy); EXPECT_TRUE(IsPhysicallyTransposing(*loop_fusion)); } TEST_F(GpuFusibleTest, IsPhysicallyTransposing_ConsiderMaximumTrueRanksParamsOnly) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( broadcasting_computation { p0.1 = f32[128,1024,32,32]{1,3,2,0} parameter(0) p1.1 = f32[1,128,1,1]{3,2,1,0} parameter(1) reshape = f32[128]{0} reshape(p1.1) broadcast = f32[128,1024,32,32]{1,3,2,0} broadcast(reshape), dimensions={0} ROOT add = f32[128,1024,32,32]{1,3,2,0} add(p0.1, broadcast) } ENTRY entry { p0 = f32[128,1024,32,32]{1,3,2,0} parameter(0) p1 = f32[1,128,1,1]{3,2,1,0} parameter(1) loop_fusion = f32[128,1024,32,32]{1,3,2,0} fusion(p0, p1), kind=kLoop, calls=broadcasting_computation c0.2 = f32[] constant(0) ROOT reduce = f32[1024]{0} reduce(loop_fusion, c0.2), dimensions={0,2,3}, to_apply=scalar_add })")) .value(); SCOPED_TRACE(module->ToString()); const HloInstruction* loop_fusion = module->entry_computation()->root_instruction()->operand(0); ASSERT_EQ(loop_fusion->fused_expression_root()->opcode(), HloOpcode::kAdd); EXPECT_FALSE(IsPhysicallyTransposing(*loop_fusion)); } TEST_F(GpuFusibleTest, TransposesMinorDimension) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY entry { default_layout = f32[10,20,30,40]{3,2,1,0} parameter(0) non_default_layout = f32[10,20,30,40]{1,2,3,0} parameter(1) transpose_minor_default = f32[10,20,40,30]{3,2,1,0} transpose(default_layout), dimensions={0,1,3,2} no_transpose_minor_default = f32[10,20,40,30]{2,3,1,0} transpose(default_layout), dimensions={0,1,3,2} transpose_major_default = f32[10,30,20,40]{3,2,1,0} transpose(default_layout), dimensions={0,2,1,3} transpose_minor_non_default = f32[10,30,20,40]{1,2,3,0} transpose(non_default_layout), dimensions={0,2,1,3} no_transpose_minor_non_default = f32[10,20,40,30]{1,2,0,3} transpose(non_default_layout), dimensions={0,1,3,2} transpose_major_non_default = f32[10,20,40,30]{1,2,3,0} transpose(non_default_layout), dimensions={0,1,3,2} ROOT r = tuple(transpose_minor_default, no_transpose_minor_default, transpose_major_default, transpose_minor_non_default, no_transpose_minor_non_default, transpose_major_non_default) })")); auto* tuple = (*module)->entry_computation()->root_instruction(); EXPECT_TRUE(TransposesMinorDimension(tuple->operand(0))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(1))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(2))); EXPECT_TRUE(TransposesMinorDimension(tuple->operand(3))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(4))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(5))); } TEST_F(GpuFusibleTest, TransposesMinorDimensionSkipTrivialDimensions) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY entry { default_layout = f32[10,20,1,1]{3,2,1,0} parameter(0) non_default_layout = f32[10,20,1,1]{1,2,3,0} parameter(1) transpose_minor_default = f32[10,20,1,1]{3,2,1,0} transpose(default_layout), dimensions={0,1,3,2} transpose_nontrivial_minor_default = f32[10,1,20,1]{3,2,1,0} transpose(default_layout), dimensions={0,2,1,3} no_transpose_minor_default = f32[10,20,1,1]{2,3,1,0} transpose(default_layout), dimensions={0,1,3,2} transpose_one_major_default = f32[1,20,10,1]{3,2,1,0} transpose(default_layout), dimensions={2,1,0,3} transpose_two_major_default = f32[20,10,1,1]{3,2,1,0} transpose(default_layout), dimensions={1,0,2,3} transpose_minor_non_default = f32[10,1,20,1]{1,2,3,0} transpose(non_default_layout), dimensions={0,2,1,3} no_transpose_minor_non_default = f32[10,20,1,1]{1,2,0,3} transpose(non_default_layout), dimensions={0,1,3,2} transpose_major_non_default = f32[10,20,1,1]{1,2,3,0} transpose(non_default_layout), dimensions={0,1,3,2} ROOT r = tuple(transpose_minor_default, transpose_nontrivial_minor_default, no_transpose_minor_default, transpose_one_major_default, transpose_two_major_default, transpose_minor_non_default, no_transpose_minor_non_default, transpose_major_non_default) })")); auto* tuple = (*module)->entry_computation()->root_instruction(); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(0))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(1))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(2))); EXPECT_TRUE(TransposesMinorDimension(tuple->operand(3))); EXPECT_TRUE(TransposesMinorDimension(tuple->operand(4))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(5))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(6))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(7))); } TEST_F(GpuFusibleTest, CopyTransposesMinorDimension) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY entry { default_layout = f32[10,20,30,40]{3,2,1,0} parameter(0) non_default_layout = f32[10,20,30,40]{1,2,3,0} parameter(1) copy_transpose_minor_default = f32[10,20,30,40]{2,3,1,0} copy(default_layout) copy_no_transpose_minor_default = f32[10,20,30,40]{3,2,1,0} copy(default_layout) copy_transpose_minor_non_default = f32[10,20,30,40]{2,1,3,0} copy(non_default_layout) copy_no_transpose_minor_non_default = f32[10,20,30,40]{1,2,3,0} copy(non_default_layout) ROOT r = tuple(copy_transpose_minor_default, copy_no_transpose_minor_default, copy_transpose_minor_non_default, copy_no_transpose_minor_non_default) })")); auto* tuple = (*module)->entry_computation()->root_instruction(); EXPECT_TRUE(TransposesMinorDimension(tuple->operand(0))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(1))); EXPECT_TRUE(TransposesMinorDimension(tuple->operand(2))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(3))); } TEST_F(GpuFusibleTest, CopyTransposesMinorDimensionSkipTrivialDimensions) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY entry { default_layout = f32[10,20,1,1]{3,2,1,0} parameter(0) non_default_layout = f32[10,20,1,1]{1,2,3,0} parameter(1) copy_transpose_minor_default = f32[10,20,1,1]{2,3,1,0} copy(default_layout) copy_no_transpose_minor_default = f32[10,20,1,1]{3,2,1,0} copy(default_layout) copy_transpose_minor_non_default = f32[10,20,1,1]{2,0,3,1} copy(non_default_layout) copy_no_transpose_minor_non_default = f32[10,20,1,1]{1,2,3,0} copy(non_default_layout) ROOT r = tuple(copy_transpose_minor_default, copy_no_transpose_minor_default, copy_transpose_minor_non_default, copy_no_transpose_minor_non_default) })")); auto* tuple = (*module)->entry_computation()->root_instruction(); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(0))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(1))); EXPECT_TRUE(TransposesMinorDimension(tuple->operand(2))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(3))); } TEST_F(GpuFusibleTest, IsReduceInputFusion_ReductionToVector) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY entry { c0 = f32[] parameter(0) p1 = f32[128,512,28,28]{3,2,1,0} parameter(1) ROOT reduce = f32[512]{0} reduce(p1, c0), dimensions={0,2,3}, to_apply=scalar_add })")) .value(); SCOPED_TRACE(module->ToString()); const HloInstruction* reduce = module->entry_computation()->root_instruction(); ASSERT_EQ(reduce->opcode(), HloOpcode::kReduce); EXPECT_FALSE(IsReduceInputFusion(*reduce)); EXPECT_TRUE(IsInputFusibleReduction(*reduce)); } TEST_F(GpuFusibleTest, IsReduceInputFusion_ElementalReduction) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY entry { c0 = f32[] parameter(0) p1 = f32[8,512,5,16,1,1]{5,4,3,2,1,0} parameter(1) ROOT reduce = f32[512,5,1,1]{3,2,1,0} reduce(p1, c0), dimensions={3,0}, to_apply=scalar_add })")) .value(); SCOPED_TRACE(module->ToString()); const HloInstruction* reduce = module->entry_computation()->root_instruction(); ASSERT_EQ(reduce->opcode(), HloOpcode::kReduce); EXPECT_FALSE(IsReduceInputFusion(*reduce)); EXPECT_FALSE(IsInputFusibleReduction(*reduce)); } TEST_F(GpuFusibleTest, IsReduceInputFusion_SingleOutputInputReduceFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_reduction { c0 = f32[] constant(0) p1 = f32[128,512,28,28]{3,2,1,0} parameter(0) ROOT reduce = f32[128,512]{1,0} reduce(p1, c0), dimensions={2,3}, to_apply=scalar_add } ENTRY entry { p0 = f32[128,512,28,28]{3,2,1,0} parameter(0) ROOT fusion = f32[128,512]{1,0} fusion(p0), kind=kInput, calls=fused_reduction })")) .value(); const HloInstruction* reduce = module->entry_computation()->root_instruction(); ASSERT_EQ(reduce->opcode(), HloOpcode::kFusion); EXPECT_TRUE(IsReduceInputFusion(*reduce)); EXPECT_TRUE(IsInputFusibleReduction(*reduce)); } TEST_F(GpuFusibleTest, IsReduceInputFusion_SingleOutputLoopReduceFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_reduction { c0 = f32[] constant(0) p1 = f32[8,512,5,16,1,1]{5,4,3,2,1,0} parameter(0) ROOT reduce = f32[8,5,1,1]{3,2,1,0} reduce(p1, c0), dimensions={1,3}, to_apply=scalar_add } ENTRY entry { p0 = f32[8,512,5,16,1,1]{5,4,3,2,1,0} parameter(0) ROOT fusion = f32[8,5,1,1]{3,2,1,0} fusion(p0), kind=kLoop, calls=fused_reduction })")) .value(); const HloInstruction* reduce = module->entry_computation()->root_instruction(); ASSERT_EQ(reduce->opcode(), HloOpcode::kFusion); EXPECT_FALSE(IsReduceInputFusion(*reduce)); EXPECT_FALSE(IsInputFusibleReduction(*reduce)); } TEST_F(GpuFusibleTest, IsReduceInputFusion_MultiOutputInputReduceFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_reduction { c0 = f32[] constant(0) p1 = f32[128,512,28,28]{3,2,1,0} parameter(0) reduce.0 = f32[128,512]{1,0} reduce(p1, c0), dimensions={2,3}, to_apply=scalar_add reduce.1 = f32[128,512]{1,0} reduce(p1, c0), dimensions={2,3}, to_apply=scalar_add ROOT root = (f32[128,512]{1,0}, f32[128,512]{1,0}) tuple(reduce.0, reduce.1) } ENTRY entry { p0 = f32[128,512,28,28]{3,2,1,0} parameter(0) ROOT fusion = (f32[128,512]{1,0}, f32[128,512]{1,0}) fusion(p0), kind=kInput, calls=fused_reduction })")) .value(); const HloInstruction* reduce = module->entry_computation()->root_instruction(); ASSERT_EQ(reduce->opcode(), HloOpcode::kFusion); EXPECT_TRUE(IsReduceInputFusion(*reduce)); EXPECT_TRUE(IsInputFusibleReduction(*reduce)); } TEST_F(GpuFusibleTest, IsReduceInputFusion_MultiOutputInputReduceFusionWithExtraOutputs) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_reduction { c0 = f32[] constant(0) p1 = f32[128,512,28,28]{3,2,1,0} parameter(0) reduce = f32[128,512]{1,0} reduce(p1, c0), dimensions={2,3}, to_apply=scalar_add mul = f32[128,512,28,28]{3,2,1,0} multiply(p1, p1) ROOT root = (f32[128,512]{1,0}, f32[128,512,28,28]{3,2,1,0}) tuple(reduce, mul) } ENTRY entry { p0 = f32[128,512,28,28]{3,2,1,0} parameter(0) ROOT fusion = (f32[128,512]{1,0}, f32[128,512,28,28]{3,2,1,0}) fusion(p0), kind=kInput, calls=fused_reduction })")) .value(); const HloInstruction* reduce = module->entry_computation()->root_instruction(); ASSERT_EQ(reduce->opcode(), HloOpcode::kFusion); EXPECT_TRUE(IsReduceInputFusion(*reduce)); EXPECT_TRUE(IsInputFusibleReduction(*reduce)); } TEST_F(GpuFusibleTest, IsReduceInputFusion_MultiOutputLoopReduceFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_reduction { c0 = f32[] constant(0) p1 = f32[128,512,28,28]{3,2,1,0} parameter(0) reduce.0 = f32[512,28]{1,0} reduce(p1, c0), dimensions={0,2}, to_apply=scalar_add reduce.1 = f32[512,28]{1,0} reduce(p1, c0), dimensions={0,2}, to_apply=scalar_add ROOT root = (f32[512,28]{1,0}, f32[512,28]{1,0}) tuple(reduce.0, reduce.1) } ENTRY entry { p0 = f32[128,512,28,28]{3,2,1,0} parameter(0) ROOT fusion = (f32[512,28]{1,0}, f32[512,28]{1,0}) fusion(p0), kind=kLoop, calls=fused_reduction })")) .value(); const HloInstruction* reduce = module->entry_computation()->root_instruction(); ASSERT_EQ(reduce->opcode(), HloOpcode::kFusion); EXPECT_FALSE(IsReduceInputFusion(*reduce)); EXPECT_FALSE(IsInputFusibleReduction(*reduce)); } TEST_F(GpuFusibleTest, IsReduceInputFusion_MultiOutputLoopFusionReduceAndElementwiseOp) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_reduction { c0 = f32[] constant(0) p1 = f32[128,512,28,28]{3,2,1,0} parameter(0) reduce = f32[512,28]{1,0} reduce(p1, c0), dimensions={0,2}, to_apply=scalar_add mul = f32[128,512,28,28]{3,2,1,0} multiply(p1, p1) ROOT root = (f32[512,28]{1,0}, f32[128,512,28,28]{3,2,1,0}) tuple(reduce, mul) } ENTRY entry { p0 = f32[128,512,28,28]{3,2,1,0} parameter(0) ROOT fusion = (f32[512,28]{1,0}, f32[128,512,28,28]{3,2,1,0}) fusion(p0), kind=kLoop, calls=fused_reduction })")) .value(); const HloInstruction* reduce = module->entry_computation()->root_instruction(); ASSERT_EQ(reduce->opcode(), HloOpcode::kFusion); EXPECT_FALSE(IsReduceInputFusion(*reduce)); EXPECT_FALSE(IsInputFusibleReduction(*reduce)); } TEST_F(GpuFusibleTest, CustomFusionIsNotFusibleAsConsumer) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( triton_fusion { p = s32[20,3] parameter(0) ROOT neg = s32[20,3] negate(p) } ENTRY e { p = s32[20,3] parameter(0) ROOT r = s32[20,3] fusion(p), kind=kCustom, calls=triton_fusion })")); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_FALSE(IsFusibleAsMultiOutputFusionRoot(*root)); } TEST_F(GpuFusibleTest, FusionHeroesAreCompatible_TransposeFusionCompatible) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[64,32]{1,0} parameter(0) neg = f32[64,32]{1,0} negate(p0.1) ROOT transpose = f32[32,64]{1,0} transpose(neg), dimensions={1,0} } fused_computation_2 { p0.2 = f32[32,64]{1,0} parameter(0) neg = f32[32,64]{1,0} negate(p0.2) ROOT add = f32[32,64]{1,0} add(neg, neg) } ENTRY entry { p0 = f32[64,32]{1,0} parameter(0) fusion.1 = f32[32,64]{1,0} fusion(p0), kind=kLoop, calls=fused_computation_1 ROOT fusion.2 = f32[32,64]{1,0} fusion(fusion.1), kind=kLoop, calls=fused_computation_2 })")) .value(); const HloInstruction* fusion_1 = module->entry_computation()->root_instruction(); const HloInstruction* fusion_2 = fusion_1->operand(0); EXPECT_TRUE(FusionHeroesAreCompatible(fusion_1->fused_expression_root(), fusion_2->fused_expression_root())); EXPECT_TRUE(FusionHeroesAreCompatible(fusion_2->fused_expression_root(), fusion_1->fused_expression_root())); } TEST_F(GpuFusibleTest, FusionHeroesAreCompatible_TransposeFusionNotCompatible) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[64,32]{1,0} parameter(0) neg = f32[64,32]{1,0} negate(p0.1) bc = f32[1,64,32]{2,1,0} bitcast(neg) transpose = f32[1,32,64]{2,1,0} transpose(bc), dimensions={0,2,1} ROOT bc2 = f32[32,64]{1,0} bitcast(transpose) } fused_computation_2 { p0.2 = f32[32,64]{1,0} parameter(0) broadcast = f32[32,64,4]{2,1,0} broadcast(p0.2), dimensions={0,1} ROOT add = f32[32,64,4]{2,1,0} add(broadcast, broadcast) } ENTRY entry { p0 = f32[64,32]{1,0} parameter(0) fusion.1 = f32[32,64]{1,0} fusion(p0), kind=kLoop, calls=fused_computation_1 ROOT fusion.2 = f32[32,64,4]{2,1,0} fusion(fusion.1), kind=kLoop, calls=fused_computation_2 })")) .value(); const HloInstruction* fusion_1 = module->entry_computation()->root_instruction(); const HloInstruction* fusion_2 = fusion_1->operand(0); EXPECT_FALSE( FusionHeroesAreCompatible(fusion_1->fused_expression_root(), fusion_2->fused_expression_root()->operand(0))); EXPECT_FALSE( FusionHeroesAreCompatible(fusion_2->fused_expression_root()->operand(0), fusion_1->fused_expression_root())); } TEST_F(GpuFusibleTest, ShapesCompatibleForMultiOutputFusion_LoopFusions) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[6400]{0} parameter(0) ROOT mul = f32[6400]{0} multiply(p0.1, p0.1) } fused_computation_2 { p0.2 = f32[6400]{0} parameter(0) const.2 = f32[] constant(1) broadcast = f32[6400]{0} broadcast(const.2), dimensions={} ROOT div = f32[6400]{0} divide(p0.2, broadcast) } ENTRY entry { p0 = f32[6400]{0} parameter(0) fusion.1 = f32[6400]{0} fusion(p0), kind=kLoop, calls=fused_computation_1 fusion.2 = f32[6400]{0} fusion(p0), kind=kLoop, calls=fused_computation_2 ROOT root = (f32[6400]{0}, f32[6400]{0}) tuple(fusion.1, fusion.2) })")) .value(); const HloInstruction* fusion_1 = module->entry_computation()->root_instruction()->operand(0); const HloInstruction* fusion_2 = module->entry_computation()->root_instruction()->operand(1); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*fusion_1, *fusion_2)); } TEST_F(GpuFusibleTest, ShapesCompatibleForMultiOutputFusion_IgnoreFpPrecision) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[6400]{0} parameter(0) ROOT mul = f32[6400]{0} multiply(p0.1, p0.1) } fused_computation_2 { p0.2 = f32[6400]{0} parameter(0) ROOT convert = f16[6400]{0} convert(p0.2) } ENTRY entry { p0 = f32[6400]{0} parameter(0) fusion.1 = f32[6400]{0} fusion(p0), kind=kLoop, calls=fused_computation_1 fusion.2 = f16[6400]{0} fusion(p0), kind=kLoop, calls=fused_computation_2 ROOT root = (f32[6400]{0}, f16[6400]{0}) tuple(fusion.1, fusion.2) })")) .value(); const HloInstruction* fusion_1 = module->entry_computation()->root_instruction()->operand(0); const HloInstruction* fusion_2 = module->entry_computation()->root_instruction()->operand(1); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*fusion_1, *fusion_2)); } TEST_F(GpuFusibleTest, ShapesCompatibleForMultiOutputFusion_BitcastCompatible) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[6400]{0} parameter(0) ROOT mul = f32[6400]{0} multiply(p0.1, p0.1) } fused_computation_2 { p0.2 = f32[6400]{0} parameter(0) bitcast = f32[1,6400]{1,0} bitcast(p0.2) ROOT convert = f16[1,6400]{1,0} convert(bitcast) } ENTRY entry { p0 = f32[6400]{0} parameter(0) fusion.1 = f32[6400]{0} fusion(p0), kind=kLoop, calls=fused_computation_1 fusion.2 = f16[1,6400]{1,0} fusion(p0), kind=kLoop, calls=fused_computation_2 ROOT root = (f32[6400]{0}, f16[1,6400]{1,0}) tuple(fusion.1, fusion.2) })")) .value(); const HloInstruction* fusion_1 = module->entry_computation()->root_instruction()->operand(0); const HloInstruction* fusion_2 = module->entry_computation()->root_instruction()->operand(1); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*fusion_1, *fusion_2)); } TEST_F(GpuFusibleTest, ShapesCompatibleForMultiOutputFusion_Reduce) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[6400]{0} parameter(0) ROOT mul = f32[6400]{0} multiply(p0.1, p0.1) } ENTRY entry { p0 = f32[6400]{0} parameter(0) fusion.1 = f32[6400]{0} fusion(p0), kind=kLoop, calls=fused_computation_1 const.2 = f32[] constant(0) reduce = f32[] reduce(p0, const.2), dimensions={0}, to_apply=scalar_add ROOT root = (f32[6400]{0}, f32[]) tuple(fusion.1, reduce) })")) .value(); const HloInstruction* fusion = module->entry_computation()->root_instruction()->operand(0); const HloInstruction* reduce = module->entry_computation()->root_instruction()->operand(1); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*fusion, *reduce)); } TEST_F(GpuFusibleTest, ShapesCompatibleForMultiOutputFusion_Elementwise) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[6400]{0} parameter(0) ROOT mul = f32[6400]{0} multiply(p0.1, p0.1) } ENTRY entry { p0 = f32[6400]{0} parameter(0) fusion.1 = f32[6400]{0} fusion(p0), kind=kLoop, calls=fused_computation_1 const.2 = f32[] constant(1) broadcast = f32[6400]{0} broadcast(const.2), dimensions={} div = f32[6400]{0} divide(p0, broadcast) ROOT root = (f32[6400]{0}, f32[6400]{0}) tuple(fusion.1, div) })")) .value(); const HloInstruction* fusion = module->entry_computation()->root_instruction()->operand(0); const HloInstruction* div = module->entry_computation()->root_instruction()->operand(1); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*fusion, *div)); } TEST_F(GpuFusibleTest, ShapesCompatibleForMultiOutputFusion_MultiOutputLoopFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} parameter(0) mul = f32[8,1,5,16,1,1]{5,4,3,2,1,0} multiply(p0.1, p0.1) exp = f32[8,1,5,16,1,1]{5,4,3,2,1,0} exponential(p0.1) ROOT tuple = (f32[8,1,5,16,1,1]{5,4,3,2,1,0}, f32[8,1,5,16,1,1]{5,4,3,2,1,0}) tuple(mul, exp) } fused_computation_2 { p0.2 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} parameter(0) const.2 = f32[] constant(0) broadcast = f32[8,1,5,16,1,1]{5,4,3,2,1,0} broadcast(const.2), dimensions={} ROOT add = f32[8,1,5,16,1,1]{5,4,3,2,1,0} add(p0.2, broadcast) } ENTRY entry { p0 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} parameter(0) fusion.1 = (f32[8,1,5,16,1,1]{5,4,3,2,1,0}, f32[8,1,5,16,1,1]{5,4,3,2,1,0}) fusion(p0), kind=kLoop, calls=fused_computation_1 fusion.2 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} fusion(p0), kind=kLoop, calls=fused_computation_2 gte0 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} get-tuple-element(fusion.1), index=0 gte1 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} get-tuple-element(fusion.1), index=1 ROOT root = (f32[8,1,5,16,1,1]{5,4,3,2,1,0}, f32[8,1,5,16,1,1]{5,4,3,2,1,0}, f32[8,1,5,16,1,1]{5,4,3,2,1,0}) tuple(gte0, gte1, fusion.2) })")) .value(); const HloInstruction* fusion_1 = module->entry_computation()->root_instruction()->operand(0)->operand(0); const HloInstruction* fusion_2 = module->entry_computation()->root_instruction()->operand(2); EXPECT_NE(fusion_1, fusion_2); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*fusion_1, *fusion_2)); } TEST_F(GpuFusibleTest, ShapesCompatibleForMultiOutputFusion_DifferentElementType) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} parameter(0) mul = f32[8,1,5,16,1,1]{5,4,3,2,1,0} multiply(p0.1, p0.1) exp = f32[8,1,5,16,1,1]{5,4,3,2,1,0} exponential(p0.1) ROOT tuple = (f32[8,1,5,16,1,1]{5,4,3,2,1,0}, f32[8,1,5,16,1,1]{5,4,3,2,1,0}) tuple(mul, exp) } fused_computation_2 { p0.2 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} parameter(0) const.2 = f32[] constant(0) broadcast = f32[8,1,5,16,1,1]{5,4,3,2,1,0} broadcast(const.2), dimensions={} add = f32[8,1,5,16,1,1]{5,4,3,2,1,0} add(p0.2, broadcast) ROOT convert = s32[8,1,5,16,1,1]{5,4,3,2,1,0} convert(add) } ENTRY entry { p0 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} parameter(0) fusion.1 = (f32[8,1,5,16,1,1]{5,4,3,2,1,0}, f32[8,1,5,16,1,1]{5,4,3,2,1,0}) fusion(p0), kind=kLoop, calls=fused_computation_1 fusion.2 = s32[8,1,5,16,1,1]{5,4,3,2,1,0} fusion(p0), kind=kLoop, calls=fused_computation_2 gte0 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} get-tuple-element(fusion.1), index=0 gte1 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} get-tuple-element(fusion.1), index=1 ROOT root = (f32[8,1,5,16,1,1]{5,4,3,2,1,0}, f32[8,1,5,16,1,1]{5,4,3,2,1,0}, s32[8,1,5,16,1,1]{5,4,3,2,1,0}) tuple(gte0, gte1, fusion.2) })")) .value(); const HloInstruction* fusion_1 = module->entry_computation()->root_instruction()->operand(0)->operand(0); const HloInstruction* fusion_2 = module->entry_computation()->root_instruction()->operand(2); EXPECT_NE(fusion_1, fusion_2); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*fusion_1, *fusion_2)); } TEST_F(GpuFusibleTest, ShapesCompatibleForMultiOutputFusion_UnfusedOps) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY reduce { p0 = f32[32,32,32]{2,1,0} parameter(0) c0 = f32[] constant(0) exp = f32[32,32,32]{2,1,0} exponential(p0) reduce = f32[32,32]{1,0} reduce(exp, c0), dimensions={2}, to_apply=scalar_add ROOT root = (f32[32,32]{1,0}, f32[32,32,32]{2,1,0}) tuple(reduce, exp) })")) .value(); const HloInstruction* reduce = module->entry_computation()->root_instruction()->operand(0); const HloInstruction* exp = module->entry_computation()->root_instruction()->operand(1); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*reduce, *exp)); } TEST_F(GpuFusibleTest, ShapesCompatibleForMultiOutputFusion_DifferentLayouts) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY reduce { p0 = f32[2,2,2]{2,1,0} parameter(0) p1 = f32[2,2,2]{0,1,2} parameter(1) c0 = f32[] constant(0) exp = f32[2,2,2]{2,1,0} exponential(p0) reduce = f32[2,2]{0,1} reduce(p1, c0), dimensions={2}, to_apply=scalar_add ROOT root = (f32[2,2]{0,1}, f32[2,2,2]{2,1,0}) tuple(reduce, exp) })")) .value(); const HloInstruction* reduce = module->entry_computation()->root_instruction()->operand(0); const HloInstruction* exp = module->entry_computation()->root_instruction()->operand(1); EXPECT_FALSE(ShapesCompatibleForMultiOutputFusion(*reduce, *exp)); } TEST_F( GpuFusibleTest, ShapesCompatibleForMultiOutputFusion_SiblingTransposeFusionsNotCompatible) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_021_transpose { param_0 = f32[20,20,20]{2,1,0} parameter(0) transpose = f32[20,20,20]{2,1,0} transpose(param_0), dimensions={0,2,1} ROOT bitcast = f32[8000]{0} bitcast(transpose) } fused_220_transpose { param_0 = f32[20,20,20]{2,1,0} parameter(0) transpose = f32[20,20,20]{2,1,0} transpose(param_0), dimensions={2,1,0} ROOT bitcast = f32[8000]{0} bitcast(transpose) } ENTRY reduce { p0 = f32[20,20,20]{2,1,0} parameter(0) fusion = f32[8000]{0} fusion(p0), kind=kInput, calls=fused_021_transpose fusion.1 = f32[8000]{0} fusion(p0), kind=kInput, calls=fused_220_transpose ROOT root = (f32[8000]{0}, f32[8000]{0}) tuple(fusion, fusion.1) })")) .value(); const HloInstruction* fusion_1 = module->entry_computation()->root_instruction()->operand(0); const HloInstruction* fusion_2 = module->entry_computation()->root_instruction()->operand(1); EXPECT_FALSE( FusionHeroesAreCompatible(fusion_1->fused_expression_root()->operand(0), fusion_2->fused_expression_root()->operand(0))); EXPECT_FALSE(ShapesCompatibleForMultiOutputFusion(*fusion_1, *fusion_2)); } TEST_F(GpuFusibleTest, ShapesCompatibleForMultiOutputFusion_SiblingTransposeFusionsCompatible) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_1230_transpose { param_0 = f32[1,20,20]{2,1,0} parameter(0) bitcast.1 = f32[20,2,2,5]{3,2,1,0} bitcast(param_0) transpose = f32[2,2,5,20]{3,2,1,0} transpose(bitcast.1), dimensions={1,2,3,0} ROOT bitcast.2 = f32[400]{0} bitcast(transpose) } fused_021_transpose { param_0 = f32[1,20,20]{2,1,0} parameter(0) transpose = f32[1,20,20]{2,1,0} transpose(param_0), dimensions={0,2,1} ROOT bitcast = f32[400]{0} bitcast(transpose) } ENTRY reduce { p0 = f32[1,20,20]{2,1,0} parameter(0) fusion = f32[400]{0} fusion(p0), kind=kInput, calls=fused_1230_transpose fusion.1 = f32[400]{0} fusion(p0), kind=kInput, calls=fused_021_transpose ROOT root = (f32[400]{0}, f32[400]{0}) tuple(fusion, fusion.1) })")) .value(); const HloInstruction* fusion_1 = module->entry_computation()->root_instruction()->operand(0); const HloInstruction* fusion_2 = module->entry_computation()->root_instruction()->operand(1); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*fusion_1, *fusion_2)); } TEST_F(GpuFusibleTest, ShapesCompatibleForMultiOutputFusion_MultiOutputReduceFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_select { p1.1 = f32[2,2,2]{2,1,0} parameter(1) c0 = f32[] constant(0) broadcast = f32[2,2,2]{2,1,0} broadcast(f32[] c0), dimensions={} greater-than = pred[2,2,2]{2,1,0} compare(f32[2,2,2]{2,1,0} p1.1, f32[2,2,2]{2,1,0} broadcast), direction=GT p0.1 = f32[2,2,2]{2,1,0} parameter(0) ROOT select = f32[2,2,2]{2,1,0} select(pred[2,2,2]{2,1,0} greater-than, f32[2,2,2]{2,1,0} p0.1, f32[2,2,2]{2,1,0} broadcast) } fused_reduce { p0.2 = f32[2,2,2]{2,1,0} parameter(0) c1 = f32[] constant(0) r1 = f32[2,2]{1,0} reduce(p0.2, c1), dimensions={2}, to_apply=scalar_add mul = f32[2,2,2]{2,1,0} multiply(p0.2, p0.2) r2 = f32[2,2]{1,0} reduce(mul, c1), dimensions={2}, to_apply=scalar_add ROOT tuple = (f32[2,2]{1,0}, f32[2,2]{1,0}) tuple(r1, r2) } ENTRY reduce { p0 = f32[2,2,2]{2,1,0} parameter(0) p1 = f32[2,2,2]{2,1,0} parameter(1) select = f32[2,2,2]{2,1,0} fusion(p0, p1), kind=kLoop, calls=fused_select fusion = (f32[2,2]{1,0}, f32[2,2]{1,0}) fusion(select), kind=kInput, calls=fused_reduce gte0 = f32[2,2]{1,0} get-tuple-element(fusion), index=0 gte1 = f32[2,2]{1,0} get-tuple-element(fusion), index=1 ROOT root = (f32[2,2]{1,0}, f32[2,2]{1,0}, f32[2,2,2]{2,1,0}) tuple(gte1, gte1, select) })")) .value(); const HloInstruction* fusion_1 = module->entry_computation()->root_instruction()->operand(0)->operand(0); const HloInstruction* fusion_2 = module->entry_computation()->root_instruction()->operand(1)->operand(0); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*fusion_1, *fusion_2)); } TEST_F(GpuFusibleTest, ShapesCompatibleForMultiOutputFusion_ReduceFusions) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_reduce_1 { p0.1 = f32[2,2,2]{2,1,0} parameter(0) c0 = f32[] constant(0) ROOT reduce = f32[2,2]{1,0} reduce(f32[2,2,2]{2,1,0} p0.1, f32[] c0), dimensions={0}, to_apply=scalar_add } fused_reduce_2 { p0.2 = f32[2,2,2]{2,1,0} parameter(0) mul = f32[2,2,2]{2,1,0} multiply(f32[2,2,2]{2,1,0} p0.2, f32[2,2,2]{2,1,0} p0.2) c1 = f32[] constant(0) ROOT reduce = f32[2,2]{1,0} reduce(f32[2,2,2]{2,1,0} mul, f32[] c1), dimensions={0}, to_apply=scalar_add } ENTRY reduce { p0 = f32[2,2,2]{2,1,0} parameter(0) p1 = f32[2,2,2]{2,1,0} parameter(1) reduce_1 = f32[2,2]{1,0} fusion(p0), kind=kLoop, calls=fused_reduce_1 reduce_2 = f32[2,2]{1,0} fusion(p1), kind=kLoop, calls=fused_reduce_2 ROOT root = (f32[2,2]{1,0}, f32[2,2]{1,0}) tuple(reduce_1, reduce_2) })")) .value(); const HloInstruction* fusion_1 = module->entry_computation()->root_instruction()->operand(0); const HloInstruction* fusion_2 = module->entry_computation()->root_instruction()->operand(1); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*fusion_1, *fusion_2)); } TEST_F(GpuFusibleTest, ShapesCompatibleForMultiOutputFusion_DifferentReduceDimensions) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_reduce_1 { p0.1 = f32[32,32,32]{2,1,0} parameter(0) c0 = f32[] constant(0) ROOT reduce = f32[32,32]{1,0} reduce(f32[32,32,32]{2,1,0} p0.1, f32[] c0), dimensions={0}, to_apply=scalar_add } fused_reduce_2 { p0.2 = f32[32,32,32]{2,1,0} parameter(0) mul = f32[32,32,32]{2,1,0} multiply(f32[32,32,32]{2,1,0} p0.2, f32[32,32,32]{2,1,0} p0.2) c1 = f32[] constant(0) ROOT reduce = f32[32,32]{1,0} reduce(f32[32,32,32]{2,1,0} mul, f32[] c1), dimensions={2}, to_apply=scalar_add } ENTRY reduce { p0 = f32[32,32,32]{2,1,0} parameter(0) p1 = f32[32,32,32]{2,1,0} parameter(1) reduce_1 = f32[32,32]{1,0} fusion(p0), kind=kLoop, calls=fused_reduce_1 reduce_2 = f32[32,32]{1,0} fusion(p1), kind=kLoop, calls=fused_reduce_2 ROOT root = (f32[32,32]{1,0}, f32[32,32]{1,0}) tuple(reduce_1, reduce_2) })")) .value(); const HloInstruction* fusion_1 = module->entry_computation()->root_instruction()->operand(0); const HloInstruction* fusion_2 = module->entry_computation()->root_instruction()->operand(1); EXPECT_FALSE(ShapesCompatibleForMultiOutputFusion(*fusion_1, *fusion_2)); } TEST_F(GpuFusibleTest, ShapesCompatibleForMultiOutputFusion_NoReductionToVector) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_element_wise { p0.1 = f32[32,32,32]{2,1,0} parameter(0) p1.1 = f32[32,32,32]{2,1,0} parameter(1) ROOT add = f32[32,32,32]{2,1,0} add(p0.1, p1.1) } fused_reduce { p0.2 = f32[32,32,32]{2,1,0} parameter(0) mul = f32[32,32,32]{2,1,0} multiply(f32[32,32,32]{2,1,0} p0.2, f32[32,32,32]{2,1,0} p0.2) broadcast = f32[32,32,32,32]{3,2,1,0} broadcast(mul), dimensions={3,2,1} c1 = f32[] constant(0) ROOT reduce = f32[32,32]{1,0} reduce(f32[32,32,32,32]{3,2,1,0} broadcast, f32[] c1), dimensions={1,3}, to_apply=scalar_add } ENTRY reduce { p0 = f32[32,32,32]{2,1,0} parameter(0) p1 = f32[32,32,32]{2,1,0} parameter(1) element_wise = f32[32,32,32]{2,1,0} fusion(p0, p1), kind=kLoop, calls=fused_element_wise fusion = f32[32,32]{1,0} fusion(element_wise), kind=kLoop, calls=fused_reduce ROOT root = (f32[32,32]{1,0}, f32[32,32,32]{2,1,0}) tuple(fusion, element_wise) })")) .value(); const HloInstruction* fusion_1 = module->entry_computation()->root_instruction()->operand(0); const HloInstruction* fusion_2 = module->entry_computation()->root_instruction()->operand(1); EXPECT_FALSE(ShapesCompatibleForMultiOutputFusion(*fusion_1, *fusion_2)); } TEST_F(GpuFusibleTest, IsFusibleAsMultiOutputFusionRoot) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) })") .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_TRUE(IsFusibleAsMultiOutputFusionRoot(*root)); } TEST_F(GpuFusibleTest, ScatterIsNotFusibleAsMultiOutputFusionRoot) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module add { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY Scatter { p0 = s32[3,3] parameter(0) operand = s32[3,3] add(p0, p0) p1 = s32[2] parameter(1) indices = s32[2] add(p1, p1) p2 = s32[2,3] parameter(2) updates = s32[2,3] add(p2, p2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=add, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 })") .value(); const HloInstruction* scatter_inst = module->entry_computation()->root_instruction(); EXPECT_FALSE(IsFusibleAsMultiOutputFusionRoot(*scatter_inst)); } TEST_F(GpuFusibleTest, ProducerConsumerFusionElementwiseAndReduce) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY reduce { p0 = f32[32,32,32]{2,1,0} parameter(0) c0 = f32[] constant(0) exp = f32[32,32,32]{2,1,0} exponential(p0) reduce = f32[32,32]{1,0} reduce(exp, c0), dimensions={2}, to_apply=scalar_add ROOT root = (f32[32,32]{1,0}, f32[32,32,32]{2,1,0}) tuple(reduce, exp) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* consumer = root->operand(0); const HloInstruction* producer = root->operand(1); EXPECT_TRUE(IsProducerMultiOutputFusible(*producer)); EXPECT_TRUE(IsFusibleAsMultiOutputFusionRoot(*consumer)); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*producer, *consumer)); } TEST_F(GpuFusibleTest, ProducerConsumerFusionTransposeAndLoopFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_add { p0.1 = f32[32,31,30]{2,1,0} parameter(0) p1.1 = f32[32,31,30]{2,1,0} parameter(1) neg = f32[32,31,30]{2,1,0} negate(p0.1) ROOT add = f32[32,31,30]{2,1,0} add(neg, p1.1) } ENTRY reduce { p0 = f32[32,31,30]{2,1,0} parameter(0) p1 = f32[32,30,31]{2,1,0} parameter(1) transpose = f32[32,31,30]{2,1,0} transpose(p1), dimensions={0,2,1} ROOT add = f32[32,31,30]{2,1,0} fusion(p0, transpose), kind=kLoop, calls=fused_add })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* consumer = root; const HloInstruction* producer = root->operand(1); EXPECT_TRUE(IsProducerConsumerFusible(*producer, *consumer)); } TEST_F(GpuFusibleTest, ProducerConsumerFusionReduceAndLoopFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_add { p0.1 = f32[32,31,30]{2,1,0} parameter(0) p1.1 = f32[32,31,30]{2,1,0} parameter(1) neg = f32[32,31,30]{2,1,0} negate(p0.1) ROOT add = f32[32,31,30]{2,1,0} add(neg, p1.1) } ENTRY reduce { p0 = f32[32,31,30]{2,1,0} parameter(0) p1 = f32[32,31,30,29]{3,2,1,0} parameter(1) c0 = f32[] constant(0.0) reduce = f32[32,31,30]{2,1,0} reduce(p1, c0), dimensions={3}, to_apply=scalar_add ROOT add = f32[32,31,30]{2,1,0} fusion(p0, reduce), kind=kLoop, calls=fused_add })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* consumer = root; const HloInstruction* producer = root->operand(1); EXPECT_TRUE(IsProducerConsumerFusible(*producer, *consumer)); } TEST_F(GpuFusibleTest, ProducerConsumerFusionLoopFusionAndReduce) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_add { p0.1 = f32[32,32,32]{2,1,0} parameter(0) p1.1 = f32[32,32,32]{2,1,0} parameter(1) ROOT add = f32[32,32,32]{2,1,0} add(p0.1, p1.1) } ENTRY reduce { p0 = f32[32,32,32]{2,1,0} parameter(0) p1 = f32[32,32,32]{2,1,0} parameter(1) c0 = f32[] constant(0) add = f32[32,32,32]{2,1,0} fusion(p0, p1), kind=kLoop, calls=fused_add reduce = f32[32,32]{1,0} reduce(add, c0), dimensions={2}, to_apply=scalar_add ROOT root = (f32[32,32]{1,0}, f32[32,32,32]{2,1,0}) tuple(reduce, add) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* consumer = root->operand(0); const HloInstruction* producer = root->operand(1); EXPECT_TRUE(IsProducerMultiOutputFusible(*producer)); EXPECT_TRUE(IsFusibleAsMultiOutputFusionRoot(*consumer)); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*producer, *consumer)); } TEST_F(GpuFusibleTest, ProducerConsumerFusionLoopFusionAndReduceFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_select { p1.1 = f32[32,32,32]{2,1,0} parameter(1) c0 = f32[] constant(0) broadcast = f32[32,32,32]{2,1,0} broadcast(f32[] c0), dimensions={} greater-than = pred[32,32,32]{2,1,0} compare(f32[32,32,32]{2,1,0} p1.1, f32[32,32,32]{2,1,0} broadcast), direction=GT p0.1 = f32[32,32,32]{2,1,0} parameter(0) ROOT select = f32[32,32,32]{2,1,0} select(pred[32,32,32]{2,1,0} greater-than, f32[32,32,32]{2,1,0} p0.1, f32[32,32,32]{2,1,0} broadcast) } fused_reduce { p0.2 = f32[32,32,32]{2,1,0} parameter(0) c1 = f32[] constant(0) r1 = f32[32,32]{1,0} reduce(p0.2, c1), dimensions={2}, to_apply=scalar_add mul = f32[32,32,32]{2,1,0} multiply(p0.2, p0.2) r2 = f32[32,32]{1,0} reduce(mul, c1), dimensions={2}, to_apply=scalar_add ROOT tuple = (f32[32,32]{1,0}, f32[32,32]{1,0}) tuple(r1, r2) } ENTRY reduce { p0 = f32[32,32,32]{2,1,0} parameter(0) p1 = f32[32,32,32]{2,1,0} parameter(1) select = f32[32,32,32]{2,1,0} fusion(p0, p1), kind=kLoop, calls=fused_select fusion = (f32[32,32]{1,0}, f32[32,32]{1,0}) fusion(select), kind=kInput, calls=fused_reduce ROOT root = ((f32[32,32]{1,0}, f32[32,32]{1,0}), f32[32,32,32]{2,1,0}) tuple(fusion, select) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* consumer = root->operand(0); const HloInstruction* producer = root->operand(1); EXPECT_TRUE(IsProducerMultiOutputFusible(*producer)); EXPECT_TRUE(IsFusibleAsMultiOutputFusionRoot(*consumer)); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*producer, *consumer)); } TEST_F(GpuFusibleTest, ProducerConsumerFusionDoNotFuseLoopReduceFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_element_wise { p0.1 = f32[2,2,2]{2,1,0} parameter(0) p1.1 = f32[2,2,2]{2,1,0} parameter(1) ROOT root = f32[2,2,2]{2,1,0} add(p0.1, p1.1) } fused_reduce { p0.2 = f32[2,2,2]{2,1,0} parameter(0) mul = f32[2,2,2]{2,1,0} multiply(f32[2,2,2]{2,1,0} p0.2, f32[2,2,2]{2,1,0} p0.2) broadcast = f32[2,2,2,2]{3,2,1,0} broadcast(mul), dimensions={3,2,1} c1 = f32[] constant(0) ROOT reduce = f32[2,2]{1,0} reduce(f32[2,2,2,2]{3,2,1,0} broadcast, f32[] c1), dimensions={1,3}, to_apply=scalar_add } ENTRY reduce { p0 = f32[2,2,2]{2,1,0} parameter(0) p1 = f32[2,2,2]{2,1,0} parameter(1) element_wise = f32[2,2,2]{2,1,0} fusion(p0, p1), kind=kLoop, calls=fused_element_wise fusion = f32[2,2]{1,0} fusion(element_wise), kind=kLoop, calls=fused_reduce ROOT root = (f32[2,2]{1,0}, f32[2,2,2]{2,1,0}) tuple(fusion, element_wise) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* consumer = root->operand(0); const HloInstruction* producer = root->operand(1); EXPECT_TRUE(IsProducerMultiOutputFusible(*producer)); EXPECT_TRUE(IsFusibleAsMultiOutputFusionRoot(*consumer)); EXPECT_FALSE(ShapesCompatibleForMultiOutputFusion(*producer, *consumer)); } TEST_F(GpuFusibleTest, ProducerConsumerFusionReduceUnfriendlyLoopFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( mixed_input_layouts_computation { p0.1 = f16[128,1024,32,32]{1,3,2,0} parameter(0) p1.1 = f16[128,1024,33,33]{3,2,1,0} parameter(1) copy = f16[128,1024,33,33]{1,3,2,0} copy(p1.1) slice = f16[128,1024,32,32]{1,3,2,0} slice(copy), slice={[0:128],[0:1024],[0:32],[0:32]} c0 = f16[] constant(0) broadcast = f16[128,1024,32,32]{1,3,2,0} broadcast(c0), dimensions={} greater-than = pred[128,1024,32,32]{1,3,2,0} compare(slice, broadcast), direction=GT ROOT root = f16[128,1024,32,32]{1,3,2,0} select(greater-than, p0.1, broadcast) } fused_reduce { p0.2 = f16[128,1024,32,32]{1,3,2,0} parameter(0) convert = f32[128,1024,32,32]{1,3,2,0} convert(p0.2) c0.2 = f32[] constant(0) ROOT reduce = f32[1024]{0} reduce(convert, c0.2), dimensions={0,2,3}, to_apply=scalar_add } ENTRY reduce { p0 = f16[128,1024,32,32]{1,3,2,0} parameter(0) p1 = f16[128,1024,33,33]{3,2,1,0} parameter(1) loop_fusion = f16[128,1024,32,32]{1,3,2,0} fusion(p0, p1), kind=kLoop, calls=mixed_input_layouts_computation reduce_fusion = f32[1024]{0} fusion(loop_fusion), kind=kInput, calls=fused_reduce ROOT root = (f32[1024]{0}, f16[128,1024,32,32]{1,3,2,0}) tuple(reduce_fusion, loop_fusion) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* consumer = root->operand(0); const HloInstruction* producer = root->operand(1); EXPECT_FALSE(IsProducerMultiOutputFusible(*producer)); EXPECT_TRUE(IsFusibleAsMultiOutputFusionRoot(*consumer)); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*producer, *consumer)); } TEST_F(GpuFusibleTest, ProducerConsumerFusionInPlaceOperation) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( %fusion { %param_0 = s32[4,4]{1,0} parameter(0) %copy = s32[4,4]{0,1} copy(%param_0) ROOT %transpose = s32[4,4]{1,0} transpose(%copy), dimensions={1,0} } ENTRY %main { %param_0 = s32[4,4]{1,0} parameter(0) %constant_0 = s32[] constant(0) %constant_1 = s32[] constant(1) %constant_1x1_1 = s32[1,1] constant({ {1} }) %updated = s32[4,4]{1,0} dynamic-update-slice(%param_0, %constant_1x1_1, %constant_1, %constant_0) %transpose = s32[4,4]{0,1} fusion(%updated), kind=kLoop, calls=fusion ROOT %tuple = tuple(%updated, %transpose) })")) .value(); const HloInstruction* tuple = module->entry_computation()->root_instruction(); EXPECT_EQ(tuple->opcode(), HloOpcode::kTuple); const HloInstruction* dus = tuple->operand(0); EXPECT_EQ(dus->opcode(), HloOpcode::kDynamicUpdateSlice); const HloInstruction* transpose = tuple->operand(1); EXPECT_EQ(transpose->opcode(), HloOpcode::kFusion); EXPECT_FALSE(IsProducerMultiOutputFusible(*dus)); EXPECT_TRUE(IsFusibleAsMultiOutputFusionRoot(*transpose)); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*dus, *transpose)); } TEST_F(GpuFusibleTest, NonscalarConstantsNotFused) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY BroadcastIntoReduce { constant = f32[16] constant({0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}) broadcast = f32[16,16,16,16]{3,2,1,0} broadcast(constant), dimensions={0} constant.1 = f32[] constant(0) reduce = f32[] reduce(broadcast, constant.1), dimensions={0,1,2,3}, to_apply=add ROOT root = (f32[], f32[], f32[16,16,16,16], f32[16]) tuple(reduce, constant.1, broadcast, constant) })") .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* consumer = root->operand(0); const HloInstruction* producer = root->operand(1); const HloInstruction* consumer2 = root->operand(2); const HloInstruction* producer2 = root->operand(3); EXPECT_FALSE( static_cast<bool>(IsProducerConsumerFusible(*producer, *consumer))); EXPECT_FALSE( static_cast<bool>(IsProducerConsumerFusible(*producer2, *consumer2))); } TEST_F(GpuFusibleTest, FuseLayoutChangingOpWithElementwise) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY entry { p0 = f32[16,16,16,16]{3,2,1,0} parameter(0) copy = f32[16,16,16,16]{0,1,2,3} copy(p0) ROOT add = f32[16,16,16,16]{0,1,2,3} add(copy, copy) })") .value(); const HloInstruction* consumer = module->entry_computation()->root_instruction(); const HloInstruction* producer = consumer->operand(0); EXPECT_TRUE( static_cast<bool>(IsProducerConsumerFusible(*producer, *consumer))); } TEST_F(GpuFusibleTest, FuseReduceWithUnaryElementwise) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY main.12 { Arg_0.1 = f32[2048]{0} parameter(0) constant.4 = f32[] constant(0.0) reduce.10 = f32[] reduce(Arg_0.1, constant.4), dimensions={0}, to_apply=scalar_add ROOT exp = f32[] exponential(reduce.10) })")) .value(); const HloInstruction* consumer = module->entry_computation()->root_instruction(); const HloInstruction* producer = consumer->operand(0); EXPECT_TRUE( static_cast<bool>(IsProducerConsumerFusible(*producer, *consumer))); } TEST_F(GpuFusibleTest, DoNotFuseReduceWithRacesWithUnaryElementwise) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY main.12 { Arg_0.1 = f32[196608]{0} parameter(0) constant.4 = f32[] constant(0.0) reduce.10 = f32[] reduce(Arg_0.1, constant.4), dimensions={0}, to_apply=scalar_add ROOT exp = f32[] exponential(reduce.10) })")) .value(); const HloInstruction* consumer = module->entry_computation()->root_instruction(); const HloInstruction* producer = consumer->operand(0); EXPECT_FALSE( static_cast<bool>(IsProducerConsumerFusible(*producer, *consumer))); } TEST_F(GpuFusibleTest, CreatesHeavyComputation_NonfusionInstr) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY entry { p_0 = f32[20,50] parameter(0) constant_1 = f32[] constant(1) reduce-window_1 = f32[21,41] reduce-window(p_0, constant_1), window={size=20x10 pad=0_20x0_0}, to_apply=scalar_add constant_2 = f32[] constant(2) reduce-window_2 = f32[21,41] reduce-window(p_0, constant_2), window={size=20x10 pad=0_20x0_0}, to_apply=scalar_add ROOT root = (f32[21,41], f32[21,41]) tuple(reduce-window_1, reduce-window_2) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* producer = root->operand(0); const HloInstruction* consumer = root->operand(1); EXPECT_TRUE(CreatesHeavyComputation(*producer, *consumer)); } TEST_F(GpuFusibleTest, DoesNotCreateHeavyComputation_NonfusionInstr) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY entry { p_0 = f32[3,5] parameter(0) constant = f32[] constant(1) broadcast = f32[3, 5] broadcast(f32[] constant), dimensions={} scaled_p_0 = f32[3,5] multiply(f32[3, 5] broadcast, f32[3,5]{1, 0} p_0) p_1 = f32[2,5] parameter(1) reduce-window = f32[3,5] reduce-window(p_1, constant), window={size=2x1 pad=0_2x0_0}, to_apply=scalar_add ROOT root = (f32[3,5], f32[3,5]) tuple(reduce-window, scaled_p_0) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* producer = root->operand(0); const HloInstruction* consumer = root->operand(1); EXPECT_FALSE(CreatesHeavyComputation(*producer, *consumer)); } TEST_F(GpuFusibleTest, DoesNotCreateHeavyComputation_NonoverlappingReduceWindows) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY entry { p_0 = f32[2,5] parameter(0) constant_1 = f32[] constant(1) reduce-window_1 = f32[3,5] reduce-window(p_0, constant_1), window={size=2x1 pad=0_2x0_0}, to_apply=scalar_add constant_2 = f32[] constant(2) reduce-window_2 = f32[2,3] reduce-window(p_0, constant_2), window={size=2x1 pad=0_2x0_0 stride=2x2}, to_apply=scalar_add ROOT root = (f32[3,5], f32[2,3]) tuple(reduce-window_1, reduce-window_2) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* producer = root->operand(0); const HloInstruction* consumer = root->operand(1); EXPECT_FALSE(CreatesHeavyComputation(*producer, *consumer)); } TEST_F(GpuFusibleTest, CreatesHeavyComputation_ReduceWindowGather) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY entry { p0 = s32[512,512,2] parameter(0) p1 = f32[1,1,512,512] parameter(1) constant_1 = f32[] constant(0) reduce-window.1 = reduce-window(p1, constant_1), window={size=1x1x16x16 stride=1x1x16x16}, to_apply=scalar_add ROOT ret = gather(reduce-window.1, p0), offset_dims={0,1,2,3}, collapsed_slice_dims={}, start_index_map={1,2}, index_vector_dim=2, slice_sizes={1,1,1,1} })")) .value(); auto gather = module->entry_computation()->root_instruction(); auto reduce_window = gather->operand(0); EXPECT_EQ(gather->opcode(), HloOpcode::kGather); EXPECT_EQ(reduce_window->opcode(), HloOpcode::kReduceWindow); EXPECT_FALSE(IfFusedReadsElementsMultipleTimes(*reduce_window)); EXPECT_TRUE(IsExpensiveToRepeat(*reduce_window)); EXPECT_TRUE(IfFusedReadsElementsMultipleTimes(*gather)); EXPECT_TRUE(CreatesHeavyComputation(*reduce_window, *gather)); } TEST_F(GpuFusibleTest, CreatesHeavyComputation_FusionInstr) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_producer { operand = f32[20,20] parameter(0) constant = f32[] constant(1) ROOT reduce-window = f32[11,11] reduce-window(operand, constant), window={size=20x20 pad=0_10x0_10}, to_apply=scalar_add } fused_consumer { operand_0 = f32[11,11] parameter(0) operand_1 = f32[11,11] parameter(1) constant = f32[] constant(1) reduce-window = f32[11,11] reduce-window(operand_1, constant), window={size=2x2 pad=0_1x0_1}, to_apply=scalar_add ROOT scaled_operand_1 = f32[11,11] multiply(f32[11,11] operand_0, f32[11,11] reduce-window) } ENTRY entry { p0 = f32[20,20] parameter(0) p1 = f32[11,11] parameter(1) producer = f32[11,11] fusion(p0), kind=kLoop, calls=fused_producer consumer = f32[11,11] fusion(p1, producer), kind=kLoop, calls=fused_consumer ROOT root = (f32[11,11], f32[11,11]) tuple(producer, consumer) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* producer = root->operand(0); const HloInstruction* consumer = root->operand(1); EXPECT_TRUE(CreatesHeavyComputation(*producer, *consumer)); } TEST_F(GpuFusibleTest, DoesNotCreateHeavyComputation_FusionInstr) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_producer { p_0 = f32[2,2] parameter(0) constant = f32[] constant(1) ROOT reduce-window = f32[2,2] reduce-window(p_0, constant), window={size=2x2 pad=0_1x0_1}, to_apply=scalar_add } fused_consumer { p_0 = f32[2,2] parameter(0) p_1 = f32[2,2] parameter(1) constant = f32[] constant(1) reduce-window = f32[2,2] reduce-window(p_1, constant), window={size=2x2 pad=0_1x0_1}, to_apply=scalar_add ROOT scaled_p_1 = f32[2,2] multiply(f32[2, 2] p_0, f32[2,2] reduce-window) } ENTRY entry { p_0 = f32[2,2] parameter(0) producer = f32[2,2] fusion(p_0), kind=kLoop, calls=fused_producer consumer = f32[2,2] fusion(producer, p_0), kind=kLoop, calls=fused_consumer ROOT root = (f32[2,2], f32[2,2]) tuple(producer, consumer) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* producer = root->operand(0); const HloInstruction* consumer = root->operand(1); EXPECT_FALSE(CreatesHeavyComputation(*producer, *consumer)); } TEST_F(GpuFusibleTest, ChooseFusionKind) { auto module = ParseAndReturnVerifiedModule(R"( HloModule module ENTRY computation { p = f32[1,5000,6000]{2,1,0} parameter(0) c = f32[1,6000,5000]{2,1,0} transpose(p), dimensions={0,2,1} ROOT r = f32[300,20,5000]{2,1,0} reshape(c) } )") .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* producer = root->operand(0); EXPECT_EQ(ChooseFusionKind(*producer, *root), HloInstruction::FusionKind::kInput); } TEST_F(GpuFusibleTest, GetFusionRoots1) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module fusion { p0 = s32[] parameter(0) custom-call = (bf16[], s32[]) custom-call(p0), custom_call_target="my_custom_call" get-tuple-element.0 = bf16[] get-tuple-element(custom-call), index=0 get-tuple-element.1 = s32[] get-tuple-element(custom-call), index=1 ROOT tuple = (bf16[], s32[], s32[]) tuple(get-tuple-element.0, get-tuple-element.1, p0) } ENTRY entry{ p0 = s32[] parameter(0) ROOT fusion = (bf16[], s32[], s32[]) fusion(p0), kind=kCustom, calls=fusion } )") .value(); auto called_computations = module->entry_computation()->root_instruction()->called_computations(); ASSERT_EQ(called_computations.size(), 1); auto fusion = called_computations.front(); auto roots = GetFusionRoots(*fusion); auto custom_call = fusion->root_instruction()->operand(0)->operand(0); auto parameter = fusion->root_instruction()->operand(2); std::vector<const HloInstruction*> expected_roots{custom_call, custom_call, parameter}; EXPECT_EQ(roots, expected_roots); } TEST_F(GpuFusibleTest, GetFusionRoots2) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module fusion { p0 = s32[] parameter(0) custom-call.1 = bf16[] custom-call(p0), custom_call_target="my_custom_call1" custom-call.2 = bf16[] custom-call(p0), custom_call_target="my_custom_call2" ROOT tuple = (bf16[], bf16[], s32[]) tuple(custom-call.1, custom-call.2, p0) } ENTRY entry{ p0 = s32[] parameter(0) ROOT fusion = (bf16[], bf16[], s32[]) fusion(p0), kind=kCustom, calls=fusion } )") .value(); auto called_computations = module->entry_computation()->root_instruction()->called_computations(); ASSERT_EQ(called_computations.size(), 1); auto fusion = called_computations.front(); auto roots = GetFusionRoots(*fusion); auto custom_call1 = fusion->root_instruction()->operand(0); auto custom_call2 = fusion->root_instruction()->operand(1); auto parameter = fusion->root_instruction()->operand(2); std::vector<const HloInstruction*> expected_roots{custom_call1, custom_call2, parameter}; EXPECT_EQ(roots, expected_roots); } TEST_F(GpuFusibleTest, GetFusionRoots3) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module fusion { p0 = s32[] parameter(0) custom-call = (bf16[], s32[]) custom-call(p0), custom_call_target="my_custom_call" get-tuple-element.0 = bf16[] get-tuple-element(custom-call), index=0 custom-call.2 = bf16[] custom-call(p0), custom_call_target="my_custom_call2" get-tuple-element.1 = s32[] get-tuple-element(custom-call), index=1 ROOT tuple = (bf16[], bf16[], s32[], s32[]) tuple(get-tuple-element.0, custom-call.2, get-tuple-element.1, p0) } ENTRY entry{ p0 = s32[] parameter(0) ROOT fusion = (bf16[], bf16[], s32[], s32[]) fusion(p0), kind=kCustom, calls=fusion } )") .value(); auto called_computations = module->entry_computation()->root_instruction()->called_computations(); ASSERT_EQ(called_computations.size(), 1); auto fusion = called_computations.front(); auto roots = GetFusionRoots(*fusion); auto custom_call1 = fusion->root_instruction()->operand(0)->operand(0); auto custom_call2 = fusion->root_instruction()->operand(1); auto parameter = fusion->root_instruction()->operand(3); std::vector<const HloInstruction*> expected_roots{custom_call1, custom_call2, custom_call1, parameter}; EXPECT_EQ(roots, expected_roots); } TEST_F(GpuFusibleTest, GetFusionRootsWithGTEMakeTupleSequence) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module fusion { p0 = s32[] parameter(0) p1 = s32[32] parameter(1) custom-call = (bf16[], s32[], u32[]) custom-call(p1), custom_call_target="my_custom_call" get-tuple-element.0 = bf16[] get-tuple-element(custom-call), index=0 get-tuple-element.1 = s32[] get-tuple-element(custom-call), index=1 bitcast = s32[1] bitcast(get-tuple-element.1) dynamic-update-slice = s32[32] dynamic-update-slice(p1, bitcast, p0) get-tuple-element.2 = u32[] get-tuple-element(custom-call), index=2 ROOT tuple = (bf16[], s32[32], u32[]) tuple(get-tuple-element.0, dynamic-update-slice, get-tuple-element.2) } ENTRY entry{ p0 = s32[] parameter(0) bitcast = s32[32] bitcast(p0) ROOT fusion = (bf16[], s32[32], u32[]) fusion(p0, bitcast), kind=kCustom, calls=fusion } )") .value(); auto called_computations = module->entry_computation()->root_instruction()->called_computations(); ASSERT_EQ(called_computations.size(), 1); auto fusion = called_computations.front(); auto roots = GetFusionRoots(*fusion); auto custom_call = fusion->root_instruction()->operand(0)->operand(0); auto dus = fusion->root_instruction()->operand(1); std::vector<const HloInstruction*> expected_result{custom_call, dus, custom_call}; EXPECT_EQ(roots, expected_result); } TEST_F(GpuFusibleTest, GetFusionRootsWithMakeTupleGTESequence) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module fusion { p0 = s32[] parameter(0) p1 = s32[32] parameter(1) custom-call = (bf16[], s32[], u32[]) custom-call(p1), custom_call_target="my_custom_call" get-tuple-element.0 = bf16[] get-tuple-element(custom-call), index=0 get-tuple-element.1 = s32[] get-tuple-element(custom-call), index=1 bitcast = s32[1] bitcast(get-tuple-element.1) dynamic-update-slice = s32[32] dynamic-update-slice(p1, bitcast, p0) get-tuple-element.2 = u32[] get-tuple-element(custom-call), index=2 tuple = (bf16[], s32[32], u32[]) tuple(get-tuple-element.0, dynamic-update-slice, get-tuple-element.2) get-tuple-element.3 = bf16[] get-tuple-element(tuple), index=0 get-tuple-element.4 = u32[] get-tuple-element(tuple), index=2 ROOT tuple2 = (bf16[], s32[32], u32[]) tuple(get-tuple-element.3, dynamic-update-slice, get-tuple-element.4) } ENTRY entry{ p0 = s32[] parameter(0) bitcast = s32[32] bitcast(p0) ROOT fusion = (bf16[], s32[32], u32[]) fusion(p0, bitcast), kind=kCustom, calls=fusion } )") .value(); auto called_computations = module->entry_computation()->root_instruction()->called_computations(); ASSERT_EQ(called_computations.size(), 1); auto fusion = called_computations.front(); auto roots = GetFusionRoots(*fusion); auto tuple_inst = fusion->root_instruction()->operand(0)->operand(0); auto custom_call = tuple_inst->operand(0)->operand(0); auto dus = fusion->root_instruction()->operand(1); std::vector<const HloInstruction*> expected_result{custom_call, dus, custom_call}; EXPECT_EQ(roots, expected_result); } TEST_F(GpuFusibleTest, GetFusionRootsWithTupleMultipleSameOperands) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module fusion { p1 = s32[32] parameter(0) add0 = s32[32] add(p1, p1) ROOT _ = (s32[32], s32[32]) tuple(add0, add0) } ENTRY entry { p0 = s32[32] parameter(0) ROOT fusion = (s32[32], s32[32]) fusion(p0), kind=kCustom, calls=fusion } )") .value(); auto called_computations = module->entry_computation()->root_instruction()->called_computations(); ASSERT_EQ(called_computations.size(), 1); auto fusion = called_computations.front(); auto roots = GetFusionRoots(*fusion); auto add0 = fusion->root_instruction()->operand(0); EXPECT_THAT(GetFusionRoots(*fusion), ElementsAre(add0, add0)); } TEST_F(GpuFusibleTest, GetFusibleComputations) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_reduce { p0 = f32[128,1024] parameter(0) c0 = f32[] constant(0) ROOT reduce = f32[128]{0} reduce(p0, c0), dimensions={1}, to_apply=scalar_add } body_a { p0 = f32[128,1024] parameter(0) ROOT reduce_fusion = f32[128] fusion(p0), kind=kInput, calls=fused_reduce } body_b { p0 = f32[128,1024] parameter(0) c0 = f32[] constant(0) ROOT bc = f32[128] broadcast(c0), dimensions={} } ENTRY main { p0 = s32[] parameter(0) p1 = f32[128,1024] parameter(1) ROOT conditional = f32[128] conditional(p0, p1, p1), branch_computations={body_a, body_b} })")) .value(); auto fusible = GetFusibleComputations(*module, {}); EXPECT_THAT(fusible, ElementsAre(module->GetComputationWithName("body_a"), module->GetComputationWithName("body_b"), module->entry_computation())); } TEST_F(GpuFusibleTest, GetSharedMemoryUsage) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( wrapped_transpose { p0 = f32[128,1024,2]{2,1,0} parameter(0) ROOT transpose = f32[1024,128,2]{2,1,0} transpose(p0), dimensions={1,0,2} } ENTRY main { p = f32[128,1024,2] parameter(0) ROOT res = f32[1024,128,2]{2,1,0} fusion(p), kind=kInput, calls=wrapped_transpose })")) .value(); auto& debug_options = module->mutable_config().mutable_debug_options(); debug_options.set_xla_gpu_mlir_emitter_level(3); FusionInfoCache cache; auto fusion = module->entry_computation()->root_instruction(); EXPECT_EQ(cache.GetSharedMemoryUsage(*fusion), 32 * 33 * 2 * 4); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/gpu_fusible.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/gpu_fusible_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c987cf9e-49f9-4548-8911-f4a481f0a4b8
cpp
tensorflow/tensorflow
buffer_allocations
third_party/xla/xla/service/gpu/buffer_allocations.cc
third_party/xla/xla/backends/cpu/runtime/buffer_allocations_test.cc
#include "xla/service/gpu/buffer_allocations.h" #include <cstdint> #include <set> #include "absl/status/status.h" #include "absl/types/span.h" #include "xla/service/buffer_assignment.h" #include "xla/stream_executor/device_memory.h" #include "tsl/platform/logging.h" namespace xla { namespace gpu { absl::Status BufferAllocations::TearDown( const std::set<se::DeviceMemoryBase>& live_addresses, absl::Span<const BufferAllocation> allocations) { absl::Status status; const int64_t num_buffers = allocations.size(); for (BufferAllocation::Index i = 0; i < num_buffers; ++i) { const BufferAllocation& allocation = allocations[i]; se::DeviceMemoryBase buffer_address = GetDeviceAddress(allocation.index()); if ((allocation.maybe_live_out() && !live_addresses.count(buffer_address)) || allocation.IsPreallocatedTempBuffer()) { auto dealloc_result = memory_allocator_->Deallocate(device_ordinal_, buffer_address); if (!dealloc_result.ok() && status.ok()) { status = dealloc_result; } } } return status; } se::DeviceMemoryBase BufferAllocations::GetDeviceAddress( BufferAllocation::Index buffer_index) const { CHECK_GE(buffer_index, 0); CHECK_LT(buffer_index, buffers_.size()); return buffers_[buffer_index]; } se::DeviceMemoryBase& BufferAllocations::GetMutableDeviceAddress( BufferAllocation::Index buffer_index) { CHECK_GE(buffer_index, 0); CHECK_LT(buffer_index, buffers_.size()); return buffers_[buffer_index]; } se::DeviceMemoryBase BufferAllocations::GetDeviceAddress( const BufferAllocation::Slice& buffer_slice) const { int64_t index = buffer_slice.index(); se::DeviceMemoryBase base = GetDeviceAddress(index); int64_t offset = buffer_slice.offset(); CHECK_LE(buffer_slice.offset(), base.size()) << "slice offset " << offset << " must be smaller than buffer #" << index << " size " << base.size(); int64_t extent = offset + buffer_slice.size(); CHECK_LE(extent, base.size()) << "slice extent " << extent << " must be smaller than buffer #" << index << " size " << base.size(); return base.GetByteSlice(buffer_slice.offset(), buffer_slice.size()); } } }
#include "xla/backends/cpu/runtime/buffer_allocations.h" #include <cstddef> #include <vector> #include "xla/service/buffer_assignment.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/stream_executor/device_memory.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { TEST(BufferAllocationsTest, GetDeviceAddress) { std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> data = {1.0, 2.0, 3.0, 4.0}; size_t size_in_bytes = data.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(data.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation alloc(0, size_in_bytes, 0); BufferAllocation::Slice slice(&alloc, 2 * sizeof(float), sizeof(float)); TF_ASSERT_OK_AND_ASSIGN(se::DeviceMemoryBase alloc_mem, allocations.GetDeviceAddress(0)); EXPECT_EQ(alloc_mem.opaque(), &data[0]); TF_ASSERT_OK_AND_ASSIGN(se::DeviceMemoryBase slice_mem, allocations.GetDeviceAddress(slice)); EXPECT_EQ(slice_mem.opaque(), &data[2]); } TEST(BufferAllocationsTest, GetDeviceAddressUnchecked) { std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> data = {1.0, 2.0, 3.0, 4.0}; size_t size_in_bytes = data.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(data.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation alloc(0, size_in_bytes, 0); BufferAllocation::Slice slice(&alloc, 2 * sizeof(float), sizeof(float)); se::DeviceMemoryBase alloc_mem = allocations.GetDeviceAddressUnchecked(0); EXPECT_EQ(alloc_mem.opaque(), &data[0]); se::DeviceMemoryBase slice_mem = allocations.GetDeviceAddressUnchecked(slice); EXPECT_EQ(slice_mem.opaque(), &data[2]); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/buffer_allocations.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/buffer_allocations_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9a2dfbbc-53b8-4988-9ab6-73c85b8aa912
cpp
tensorflow/tensorflow
cudnn_support_utils
third_party/xla/xla/service/gpu/cudnn_support_utils.cc
third_party/xla/xla/service/gpu/cudnn_support_utils_test.cc
#include "xla/service/gpu/cudnn_support_utils.h" #include <cstdint> #include <vector> #include "xla/hlo/ir/hlo_instructions.h" #include "xla/primitive_util.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" #include "xla/window_util.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { absl::StatusOr<bool> CudnnSupportsOptimizedIntegerConvolution( const se::CudaComputeCapability& compute_capability, HloCustomCallInstruction& conv, int vector_size) { TF_ASSIGN_OR_RETURN(auto kind, GetCudnnConvKind(&conv)); const Shape& input_shape = conv.operand(0)->shape(); const Shape& kernel_shape = conv.operand(1)->shape(); const Shape& result_shape = conv.shape().tuple_shapes(0); const auto& dnums = conv.convolution_dimension_numbers(); if (vector_size != 4 && vector_size != 32) { VLOG(3) << "Unsupported vector size for integer convolution: " << vector_size; return false; } if ((vector_size == 32 && !compute_capability.IsAtLeast(7, 5)) || !compute_capability.IsAtLeast(6, 1)) { VLOG(3) << "Compute capability " << compute_capability.ToString() << " is not sufficent for int8x" << vector_size << " vectorization."; return false; } if (kind != CudnnConvKind::kForward && kind != CudnnConvKind::kForwardActivation) { VLOG(3) << "Convolution kind is not forward or foward-activation: " << conv.ToString(); return false; } if (!primitive_util::IsIntegralType(input_shape.element_type()) || !primitive_util::IsIntegralType(kernel_shape.element_type())) { VLOG(3) << "Convolution does not accept integer inputs/weights: " << conv.ToString(); return false; } if (dnums.input_spatial_dimensions().size() != 2 || dnums.kernel_spatial_dimensions().size() != 2 || dnums.output_spatial_dimensions().size() != 2) { VLOG(3) << "Convolution is not 2D: " << conv.ToString(); return false; } if (vector_size == 32 && !primitive_util::IsIntegralType(result_shape.element_type())) { VLOG(3) << "int8x32 convolutions only support integer output: " << conv.ToString(); return false; } if (vector_size == 32) { int64_t W = input_shape.dimensions(dnums.input_spatial_dimensions()[0]); int64_t H = input_shape.dimensions(dnums.input_spatial_dimensions()[1]); int64_t R = kernel_shape.dimensions(dnums.kernel_spatial_dimensions()[0]); int64_t S = kernel_shape.dimensions(dnums.kernel_spatial_dimensions()[1]); const int64_t dilationW = conv.window().dimensions()[0].base_dilation(); const int64_t dilationH = conv.window().dimensions()[1].base_dilation(); if ((W <= (R - 1) * dilationW) || (H <= (S - 1) * dilationH)) { VLOG(3) << "Conv spatial filter/input dimensions are too small for " "vecotrized int8x32 convolution: " << conv.ToString(); return false; } } if (window_util::HasDilation(conv.window())) { VLOG(3) << "Vectorized integer convolutions do not support dilation: " << conv.ToString(); return false; } return true; } absl::StatusOr<CudnnReorderTransposeConfig> CudnnInferTransposeForFilterReordering( const Shape& shape, const ConvolutionDimensionNumbers& dimension_numbers) { if (shape.rank() != 4 && shape.rank() != 5) { return Internal("Filter shape has unexpected rank."); } const int64_t dO = dimension_numbers.kernel_output_feature_dimension(); const int64_t dI = dimension_numbers.kernel_input_feature_dimension(); const int64_t dH = dimension_numbers.kernel_spatial_dimensions().at(0); const int64_t dW = dimension_numbers.kernel_spatial_dimensions().at(1); bool revectorize = shape.rank() == 5; const int64_t dZ = revectorize ? 10 - dO - dI - dH - dW : -1; const int64_t vsize = revectorize ? shape.dimensions(dZ) : 1; if (shape.dimensions(dO) % 32 != 0 || shape.dimensions(dI) % (32 / vsize) != 0 || (revectorize && vsize != 4 && vsize != 32)) { return Internal("Filter shape is not vectorizable."); } std::vector<int64_t> output = { shape.dimensions(dO), shape.dimensions(dI) / (32 / vsize), shape.dimensions(dH), shape.dimensions(dW), 32}; Shape output_shape = ShapeUtil::MakeShape(shape.element_type(), output); auto calc_index = [&](int dim) { bool split_v = vsize == 32; return (revectorize ? (dI < dim ? 2 - split_v : 0) + (dZ < dim ? 1 + split_v : 0) : (dI < dim ? 3 : 0)) + (dO < dim ? 3 : 0) + (dH < dim) + (dW < dim); }; int idx_O = calc_index(dO); int idx_I = calc_index(dI); int idx_H = calc_index(dH); int idx_W = calc_index(dW); int idx_Y = vsize == 32 ? calc_index(dZ) : idx_I + 1; int idx_Z = vsize == 4 ? calc_index(dZ) : vsize == 32 ? idx_Y + 1 : idx_I + 2; std::vector<int64_t> dims(8); dims[idx_O] = shape.dimensions(dO) / 8; dims[idx_O + 1] = 4; dims[idx_O + 2] = 2; dims[idx_I] = shape.dimensions(dI) / (32 / vsize); dims[idx_Y] = 8; dims[idx_Z] = 4; dims[idx_H] = shape.dimensions(dH); dims[idx_W] = shape.dimensions(dW); Shape split_shape = ShapeUtil::MakeShape(shape.element_type(), dims); std::vector<int64_t> permutation = {idx_I, idx_H, idx_W, idx_O, idx_O + 2, idx_Y, idx_O + 1, idx_Z}; return CudnnReorderTransposeConfig{split_shape, output_shape, permutation}; } absl::StatusOr<CudnnReorderTransposeConfig> CudnnInferTransposeForBiasReordering(const Shape& shape) { if (shape.rank() != 1) { return Internal("Bias shape has unexpected rank."); } if (shape.dimensions(0) % 32 != 0) { return Internal("Bias shape is not vectorizable."); } std::vector<int64_t> dims = {shape.dimensions(0) / 32, 4, 2, 4}; Shape split_shape = ShapeUtil::MakeShape(shape.element_type(), dims); std::vector<int64_t> permutation = {0, 2, 1, 3}; return CudnnReorderTransposeConfig{split_shape, shape, permutation}; } bool IsWorkspaceAllocationRoot(const HloInstruction& root) { return root.IsRoot() && root.opcode() == HloOpcode::kTuple && root.operand_count() == 2 && root.operand(1)->IsCustomCall(kWorkspaceAllocationCustomCallTarget) && root.operand(1)->operand_count() == 0; } } }
#include "xla/service/gpu/cudnn_support_utils.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <tuple> #include <vector> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::tsl::testing::IsOkAndHolds; class CudnnSupportUtilsTest : public HloTestBase { public: absl::StatusOr<HloCustomCallInstruction*> GetCustomCall( xla::VerifiedHloModule* module, absl::string_view target) { HloCustomCallInstruction* call = nullptr; for (HloComputation* comp : module->MakeNonfusionComputations()) { for (HloInstruction* inst : comp->instructions()) { if (inst->IsCustomCall(target)) { VLOG(1) << inst->ToString(); if (call != nullptr) { return tsl::errors::FailedPrecondition( "Found more than one custom call."); } call = Cast<HloCustomCallInstruction>(inst); } } } if (call == nullptr) { return tsl::errors::FailedPrecondition( "Did not find any matching custom call."); } return call; } }; TEST_F(CudnnSupportUtilsTest, CudnnSupportsOptimizedIntegerConvolutionCheckVectorSize) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[8,10,10,128] parameter(0) filter = s8[2,2,128,128] parameter(1) ROOT result = (s8[8,10,10,128], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); HloCustomCallInstruction* conv; TF_ASSERT_OK_AND_ASSIGN(conv, GetCustomCall(module.get(), "__cudnn$convForward")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 4), IsOkAndHolds(true)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(true)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 7), IsOkAndHolds(false)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 1), IsOkAndHolds(false)); } TEST_F(CudnnSupportUtilsTest, CudnnSupportsOptimizedIntegerConvolutionCheckComputeCapability) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[8,10,10,128] parameter(0) filter = s8[2,2,128,128] parameter(1) ROOT result = (s8[8,10,10,128], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); HloCustomCallInstruction* conv; TF_ASSERT_OK_AND_ASSIGN(conv, GetCustomCall(module.get(), "__cudnn$convForward")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({6, 0}, *conv, 4), IsOkAndHolds(false)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({6, 1}, *conv, 4), IsOkAndHolds(true)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 4}, *conv, 32), IsOkAndHolds(false)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(true)); } TEST_F(CudnnSupportUtilsTest, CudnnSupportsOptimizedIntegerConvolutionCheckKind) { auto moduleFwd = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[32,10,10,64] parameter(0) filter = s8[2,2,64,128] parameter(1) ROOT result = (s8[32,10,10,128], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); HloCustomCallInstruction* conv; TF_ASSERT_OK_AND_ASSIGN( conv, GetCustomCall(moduleFwd.get(), "__cudnn$convForward")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(true)); auto moduleBwdFilter = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = f16[10,20,30,41] parameter(0) output = f16[10,20,30,40] parameter(1) result = (f16[2,2,41,40], u8[0]) custom-call(input, output), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convBackwardFilter" ROOT gte = f16[2,2,41,40] get-tuple-element(result), index=0 })") .value(); TF_ASSERT_OK_AND_ASSIGN( conv, GetCustomCall(moduleBwdFilter.get(), "__cudnn$convBackwardFilter")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(false)); auto moduleBwdInput = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { output = f16[10,20,30,40] parameter(0) filter = f16[2,2,41,40] parameter(1) result = (f16[10,20,30,41], u8[0]) custom-call(output, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convBackwardInput" ROOT gte = f16[10,20,30,41] get-tuple-element(result), index=0 })") .value(); TF_ASSERT_OK_AND_ASSIGN( conv, GetCustomCall(moduleBwdInput.get(), "__cudnn$convBackwardInput")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(false)); } TEST_F(CudnnSupportUtilsTest, CudnnSupportsOptimizedVectorizedIntegerConvolutionCheckTypes) { auto moduleS8InOut = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[32,10,10,64] parameter(0) filter = s8[2,2,64,128] parameter(1) ROOT result = (s8[32,10,10,128], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); HloCustomCallInstruction* conv; TF_ASSERT_OK_AND_ASSIGN( conv, GetCustomCall(moduleS8InOut.get(), "__cudnn$convForward")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 4), IsOkAndHolds(true)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(true)); auto moduleS8InF32Out = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[32,10,10,64] parameter(0) filter = s8[2,2,64,128] parameter(1) ROOT result = (f32[32,10,10,128], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN( conv, GetCustomCall(moduleS8InF32Out.get(), "__cudnn$convForward")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 4), IsOkAndHolds(true)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(false)); auto moduleF32InF32Out = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = f32[32,10,10,64] parameter(0) filter = f32[2,2,64,128] parameter(1) ROOT result = (f32[32,10,10,128], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN( conv, GetCustomCall(moduleF32InF32Out.get(), "__cudnn$convForward")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 4), IsOkAndHolds(false)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(false)); } TEST_F(CudnnSupportUtilsTest, CudnnSupportsOptimizedVectorizedIntegerConvolutionCheckDims) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[32,10,10,10,64] parameter(0) filter = s8[2,2,2,64,128] parameter(1) ROOT result = (s8[32,10,10,10,128], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b012f_012io->b012f, custom_call_target="__cudnn$convForward" })") .value(); HloCustomCallInstruction* conv; TF_ASSERT_OK_AND_ASSIGN(conv, GetCustomCall(module.get(), "__cudnn$convForward")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 4), IsOkAndHolds(false)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(false)); } TEST_F(CudnnSupportUtilsTest, CudnnSupportsOptimizedVectorizedIntegerConvolutionCheckDilation) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[32,10,10,64] parameter(0) filter = s8[2,2,64,128] parameter(1) ROOT result = (s8[32,20,20,128], u8[0]) custom-call(input, filter), window={size=2x2 rhs_dilate=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); HloCustomCallInstruction* conv; TF_ASSERT_OK_AND_ASSIGN(conv, GetCustomCall(module.get(), "__cudnn$convForward")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 4), IsOkAndHolds(false)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(false)); } TEST_F(CudnnSupportUtilsTest, CudnnSupportsOptimizedVectorizedIntegerConvolutionCheckAlgo1Dims) { auto moduleFilterCoversInput = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[32,2,2,64] parameter(0) filter = s8[3,3,64,128] parameter(1) ROOT result = (s8[32,2,2,128], u8[0]) custom-call(input, filter), window={size=3x3}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); HloCustomCallInstruction* conv; TF_ASSERT_OK_AND_ASSIGN(conv, GetCustomCall(moduleFilterCoversInput.get(), "__cudnn$convForward")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 4), IsOkAndHolds(true)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(false)); auto moduleFilterAlmostCoversInput = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[32,3,3,64] parameter(0) filter = s8[3,3,64,128] parameter(1) ROOT result = (s8[32,3,3,128], u8[0]) custom-call(input, filter), window={size=3x3}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN(conv, GetCustomCall(moduleFilterAlmostCoversInput.get(), "__cudnn$convForward")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 4), IsOkAndHolds(true)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(true)); } class ReorderFilterRank4Test : public ::testing::TestWithParam<std::string> {}; TEST_P(ReorderFilterRank4Test, InferTransposeRank4) { auto input_dims = GetParam(); size_t dI = input_dims.find('i'); size_t dO = input_dims.find('o'); size_t dH = input_dims.find('0'); size_t dW = input_dims.find('1'); ConvolutionDimensionNumbers dnums; dnums.set_kernel_input_feature_dimension(dI); dnums.set_kernel_output_feature_dimension(dO); dnums.add_kernel_spatial_dimensions(dH); dnums.add_kernel_spatial_dimensions(dW); int64_t shape_dims[4] = {0, 0, 0, 0}; shape_dims[dI] = 224; shape_dims[dO] = 96; shape_dims[dH] = 5; shape_dims[dW] = 3; Shape shape = ShapeUtil::MakeShape(U8, absl::MakeSpan(shape_dims)); auto input = HloInstruction::CreateParameter(0, shape, "input"); auto filter = HloInstruction::CreateParameter(1, shape, "filter"); TF_ASSERT_OK_AND_ASSIGN(CudnnReorderTransposeConfig inferred_config, CudnnInferTransposeForFilterReordering(shape, dnums)); EXPECT_THAT(inferred_config.result_shape.dimensions(), ::testing::ElementsAre(96, 7, 5, 3, 32)); Shape reshaped = ShapeUtil::PermuteDimensions( inferred_config.permutation, inferred_config.transpose_shape); EXPECT_THAT(reshaped.dimensions(), ::testing::ElementsAre(7, 5, 3, 12, 2, 8, 4, 4)); EXPECT_EQ(inferred_config.permutation[6], inferred_config.permutation[4] - 1); EXPECT_EQ(inferred_config.permutation[7], inferred_config.permutation[5] + 1); } std::vector<std::string> GeneratePermutations(std::string input_dims) { std::sort(input_dims.begin(), input_dims.end()); std::vector<std::string> permutations; do { permutations.push_back(input_dims); } while (std::next_permutation(input_dims.begin(), input_dims.end())); return permutations; } INSTANTIATE_TEST_SUITE_P(ReorderTestSuite, ReorderFilterRank4Test, ::testing::ValuesIn(GeneratePermutations("01io"))); class ReorderFilterRank5Test : public ::testing::TestWithParam<std::tuple<std::string, int>> {}; TEST_P(ReorderFilterRank5Test, InferTransposeRank5) { auto [input_dims, vsize] = GetParam(); size_t dI = input_dims.find('i'); size_t dO = input_dims.find('o'); size_t dH = input_dims.find('0'); size_t dW = input_dims.find('1'); ConvolutionDimensionNumbers dnums; dnums.set_kernel_input_feature_dimension(dI); dnums.set_kernel_output_feature_dimension(dO); dnums.add_kernel_spatial_dimensions(dH); dnums.add_kernel_spatial_dimensions(dW); int64_t shape_dims[5] = {vsize, vsize, vsize, vsize, vsize}; shape_dims[dI] = 224 / vsize; shape_dims[dO] = 96; shape_dims[dH] = 5; shape_dims[dW] = 3; Shape shape = ShapeUtil::MakeShape(U8, absl::MakeSpan(shape_dims)); auto input = HloInstruction::CreateParameter(0, shape, "input"); auto filter = HloInstruction::CreateParameter(1, shape, "filter"); TF_ASSERT_OK_AND_ASSIGN(CudnnReorderTransposeConfig inferred_config, CudnnInferTransposeForFilterReordering(shape, dnums)); EXPECT_THAT(inferred_config.result_shape.dimensions(), ::testing::ElementsAre(96, 7, 5, 3, 32)); Shape reshaped = ShapeUtil::PermuteDimensions( inferred_config.permutation, inferred_config.transpose_shape); EXPECT_THAT(reshaped.dimensions(), ::testing::ElementsAre(7, 5, 3, 12, 2, 8, 4, 4)); EXPECT_EQ(inferred_config.permutation[6], inferred_config.permutation[4] - 1); } INSTANTIATE_TEST_SUITE_P( ReorderTestSuite, ReorderFilterRank5Test, ::testing::Combine(::testing::ValuesIn(GeneratePermutations("01?io")), ::testing::Values(4, 32))); class ReorderBiasTest : public ::testing::Test {}; TEST_F(ReorderBiasTest, InferTranspose) { Shape shape = ShapeUtil::MakeShape(U8, {96}); auto bias = HloInstruction::CreateParameter(2, shape, "bias"); Shape unused = ShapeUtil::MakeNil(); auto input = HloInstruction::CreateParameter(0, unused, "input"); auto filter = HloInstruction::CreateParameter(1, unused, "filter"); TF_ASSERT_OK_AND_ASSIGN(CudnnReorderTransposeConfig inferred_config, CudnnInferTransposeForBiasReordering(shape)); Shape reshaped = ShapeUtil::PermuteDimensions( inferred_config.permutation, inferred_config.transpose_shape); EXPECT_THAT(reshaped.dimensions(), ::testing::ElementsAre(3, 2, 4, 4)); EXPECT_EQ(inferred_config.permutation[2], 1); EXPECT_EQ(inferred_config.permutation[3], 3); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/cudnn_support_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/cudnn_support_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
351b5a0b-c4a1-46de-8a0c-dd47539046d9
cpp
tensorflow/tensorflow
split_k_gemm_rewriter
third_party/xla/xla/service/gpu/split_k_gemm_rewriter.cc
third_party/xla/xla/service/gpu/split_k_gemm_rewriter_test.cc
#include "xla/service/gpu/split_k_gemm_rewriter.h" #include <cmath> #include <cstdint> #include <iterator> #include <stack> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/layout.h" #include "xla/literal_util.h" #include "xla/service/gpu/fusions/triton/triton_support_legacy.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/triton_fusion_analysis.h" #include "xla/service/gpu/triton_tiling_propagation.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { bool HasDivisibleSuffixAllowingSplit(const absl::Span<int64_t const> span, const int64_t divisor) { CHECK_GE(divisor, 1); int64_t product = 1; for (auto it = span.crbegin(); it != span.crend(); ++it) { product *= *it; if (product % divisor == 0) { return true; } if (divisor % product != 0) { return false; } } return false; } namespace { void CopyIncrementingAboveThreshold( const tsl::protobuf::RepeatedField<int64_t>& source, tsl::protobuf::RepeatedField<int64_t>& destination, const int threshold) { destination.Reserve(source.size()); for (int64_t x : source) { if (x >= threshold) { ++x; } destination.Add(x); } } void CopyIncrementingAboveThreshold(absl::Span<const int64_t> source, DimensionVector& destination, const int threshold) { destination.reserve(source.size()); for (int64_t x : source) { if (x >= threshold) { ++x; } destination.push_back(x); } } absl::Status UncompilableMatmul(absl::string_view explanation) { absl::Status s = absl::CancelledError(explanation); s.SetPayload(kUncompilableFusion, absl::Cord(explanation)); return s; } absl::StatusOr<HloInstruction*> MakeSparseMetaOperand( HloDotInstruction& dot, const TritonGemmConfig& config) { CHECK_EQ(dot.sparse_operands(), 1); CHECK_EQ(dot.sparsity().front().index(), 0); HloInstruction* meta = dot.mutable_operand(2); const Shape& shape = meta->shape(); if (shape.dimensions().back() % config.split_k != 0) { return UncompilableMatmul("Sparsity metadata has incorrect shape."); } std::vector<int64_t> dimensions(shape.dimensions().begin(), shape.dimensions().end() - 1); dimensions.push_back(config.split_k); dimensions.push_back(shape.dimensions().back() / config.split_k); Shape new_shape = ShapeUtil::MakeShapeWithDescendingLayout( shape.element_type(), dimensions); return MakeBitcastHlo(meta, new_shape); } } absl::StatusOr<HloInstruction*> MakeSplitKOperand( HloInstruction& dot, const TritonFusionAnalysis& analysis, const TritonGemmConfig& config, const int64_t contracting_dim_idx, const int operand_number) { HloInstruction* operand = dot.mutable_operand(operand_number); const int64_t k = operand->shape().dimensions(contracting_dim_idx); const bool need_padding = k % config.split_k != 0; TritonFusionAnalysis::Scope scope = (operand_number == 0) ? TritonFusionAnalysis::Scope::LHS : TritonFusionAnalysis::Scope::RHS; auto check_if_supported = [&](const HloInstruction& hlo, bool check_divisibility) { const TensorIterationSpec::DimIterationSpec* spec = analysis.IterSpec(scope, &hlo, contracting_dim_idx); if (spec == nullptr) { return absl::OkStatus(); } if (spec->size() != 1) { return UncompilableMatmul("Unsupported case."); } const TensorIterationSpec::IterationSpecFragment& fragment = spec->at(0); if (fragment.is_sliced()) { return UncompilableMatmul( "Sliced contracting dimension is not supported yet."); } if (check_divisibility && !HasDivisibleSuffixAllowingSplit( fragment.subfragments, config.split_k)) { return UncompilableMatmul("Contracting dimension is too fragmented."); } if (config.split_k > ceil(1.0 * fragment.count / config.block_k)) { return UncompilableMatmul( "Too small divisible part of the contracting dimension."); } return absl::OkStatus(); }; TF_RETURN_IF_ERROR( check_if_supported(*operand, !need_padding)); for (const HloInstruction* param : analysis.ScopeParameters(scope)) { TF_RETURN_IF_ERROR( check_if_supported(*param, !need_padding)); } if (need_padding) { HloInstruction* const zero = dot.parent()->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(operand->shape().element_type()))); PaddingConfig padding_config = MakeNoPaddingConfig(operand->shape().rank()); padding_config.mutable_dimensions(contracting_dim_idx) ->set_edge_padding_high(config.split_k - k % config.split_k); TF_ASSIGN_OR_RETURN(HloInstruction * pad, MakePadHlo(operand, zero, padding_config)); *pad->mutable_shape()->mutable_layout() = operand->shape().layout(); operand = pad; } CHECK_GE(operand->shape().dimensions(contracting_dim_idx), config.split_k); const Shape& shape = operand->shape(); Shape new_shape(shape.element_type(), {}, {}, {}); for (int i = 0; i < shape.rank(); ++i) { const int64_t dimension_size = shape.dimensions(i); if (i == contracting_dim_idx) { new_shape.add_dimensions(config.split_k); new_shape.add_dimensions(dimension_size / config.split_k); } else { new_shape.add_dimensions(dimension_size); } } Layout* new_layout = new_shape.mutable_layout(); for (int64_t logical_dim_idx : shape.layout().minor_to_major()) { if (logical_dim_idx >= contracting_dim_idx) { new_layout->add_minor_to_major(logical_dim_idx + 1); } if (logical_dim_idx <= contracting_dim_idx) { new_layout->add_minor_to_major(logical_dim_idx); } } return MakeBitcastHlo(operand, new_shape); } absl::Status MakeDotComputationSplitKBatch( HloComputation* computation, const TritonGemmConfig& config, bool disable_reduced_precision_reduction) { HloDotInstruction* dot = Cast<HloDotInstruction>( hlo_query::GetFirstInstructionWithOpcode(*computation, HloOpcode::kDot)); TF_ASSIGN_OR_RETURN(const auto analysis, TritonFusionAnalysis::Execute(*computation)); const DotDimensionNumbers& old_dim_numbers = dot->dot_dimension_numbers(); DotDimensionNumbers new_dim_numbers; TF_ASSIGN_OR_RETURN(const int64_t lhs_contracting_idx, ContractingDimensionIndex(*dot, 0)); CopyIncrementingAboveThreshold( old_dim_numbers.lhs_contracting_dimensions(), *new_dim_numbers.mutable_lhs_contracting_dimensions(), lhs_contracting_idx); new_dim_numbers.mutable_lhs_batch_dimensions()->Add(lhs_contracting_idx); CopyIncrementingAboveThreshold( old_dim_numbers.lhs_batch_dimensions(), *new_dim_numbers.mutable_lhs_batch_dimensions(), lhs_contracting_idx); TF_ASSIGN_OR_RETURN(const int64_t rhs_contracting_idx, ContractingDimensionIndex(*dot, 1)); CopyIncrementingAboveThreshold( old_dim_numbers.rhs_contracting_dimensions(), *new_dim_numbers.mutable_rhs_contracting_dimensions(), rhs_contracting_idx); new_dim_numbers.mutable_rhs_batch_dimensions()->Add(rhs_contracting_idx); CopyIncrementingAboveThreshold( old_dim_numbers.rhs_batch_dimensions(), *new_dim_numbers.mutable_rhs_batch_dimensions(), rhs_contracting_idx); if (dot->sparse_operands()) { if (dot->sparsity().size() != 1 || dot->sparsity().front().index() != 0) { return UncompilableMatmul("Sparsity is only supported on left operand."); } } std::stack<HloInstruction*> to_process; absl::flat_hash_set<HloInstruction*> to_process_set; HloInstruction* current = dot; do { to_process.push(current); CHECK(to_process_set.insert(current).second); if (current->users().empty()) { break; } CHECK_EQ(current->user_count(), 1); current = current->users()[0]; if (!legacy_triton::IsDistributiveOverAddition(*current)) { return Cancelled("Operation non-distributive over addition after dot."); } } while (true); bool did_pad = false; while (!to_process.empty()) { HloInstruction* current = to_process.top(); to_process.pop(); HloInstruction* expanded; if (current == dot) { TF_ASSIGN_OR_RETURN( HloInstruction * lhs, MakeSplitKOperand(*dot, analysis, config, lhs_contracting_idx, 0)); TF_ASSIGN_OR_RETURN( HloInstruction * rhs, MakeSplitKOperand(*dot, analysis, config, rhs_contracting_idx, 1)); if (lhs->operand(0)->opcode() == HloOpcode::kPad) { CHECK_EQ(rhs->operand(0)->opcode(), HloOpcode::kPad); did_pad = true; } std::vector<SparsityDescriptor> sparsity(dot->sparsity().begin(), dot->sparsity().end()); std::vector<HloInstruction*> sparse_meta(sparsity.size()); for (int i = 0; i < sparsity.size(); ++i) { sparsity[i].set_dimension(sparsity[i].dimension() + 1); TF_ASSIGN_OR_RETURN(sparse_meta[i], MakeSparseMetaOperand(*dot, config)); } expanded = MakeDotHlo(lhs, rhs, new_dim_numbers, dot->precision_config(), dot->shape().element_type(), sparsity, sparse_meta) .value(); expanded->mutable_shape()->mutable_layout()->clear_minor_to_major(); CopyIncrementingAboveThreshold(dot->shape().layout().minor_to_major(), *expanded->mutable_shape() ->mutable_layout() ->mutable_minor_to_major(), 0); expanded->mutable_shape()->mutable_layout()->add_minor_to_major(0); dot->SetupDerivedInstruction(expanded); } else { expanded = computation->AddInstruction(current->CloneWithNewShape( ShapeUtil::PrependMajorDimension(config.split_k, current->shape()))); if (expanded->opcode() == HloOpcode::kTranspose) { const auto* old_transpose = Cast<HloTransposeInstruction>(current); auto* new_transpose = Cast<HloTransposeInstruction>(expanded); new_transpose->mutable_dimensions()->clear(); new_transpose->mutable_dimensions()->reserve( new_transpose->shape().rank()); new_transpose->mutable_dimensions()->push_back(0); for (const int64_t dim : old_transpose->dimensions()) { new_transpose->mutable_dimensions()->push_back(dim + 1); } } } TF_RETURN_IF_ERROR(current->ReplaceAllUsesWithDifferentShape(expanded)); TF_RETURN_IF_ERROR(computation->RemoveInstruction(current)); if (current == dot) { continue; } for (int i = 0; i < expanded->operands().size(); ++i) { HloInstruction* operand = expanded->mutable_operand(i); if (!to_process_set.contains(operand)) { std::vector<int64_t> broadcast_dimensions(operand->shape().rank()); absl::c_iota(broadcast_dimensions, 1); TF_RETURN_IF_ERROR(expanded->ReplaceOperandWithDifferentShape( i, MakeBroadcastHlo(operand, broadcast_dimensions, ShapeUtil::PrependMajorDimension( config.split_k, operand->shape())))); } } } if (disable_reduced_precision_reduction) { PrimitiveType output_type = computation->root_instruction()->shape().element_type(); PrimitiveType accumulator_type = output_type == PrimitiveType::F64 ? PrimitiveType::F64 : PrimitiveType::F32; computation->root_instruction()->mutable_shape()->set_element_type( accumulator_type); } if (did_pad) { TF_RETURN_IF_ERROR( TritonFusionAnalysis::Execute(*computation, config.split_k).status()); } return absl::OkStatus(); } absl::Status MakeDotSplitKBatch(HloInstruction* dot_fusion, const TritonGemmConfig& config) { CHECK_EQ(dot_fusion->opcode(), HloOpcode::kFusion); if (dot_fusion->shape().IsTuple()) { return Unimplemented("Tuple output is not supported with split-K yet."); } const bool disable_reduced_precision_reduction = dot_fusion->GetModule() ->config() .debug_options() .xla_gpu_triton_gemm_disable_reduced_precision_reduction(); const PrimitiveType output_type = dot_fusion->shape().element_type(); const Layout output_layout = dot_fusion->shape().layout(); TF_RETURN_IF_ERROR(MakeDotComputationSplitKBatch( dot_fusion->fused_instructions_computation(), config, disable_reduced_precision_reduction)); const HloInstruction* root = dot_fusion->fused_expression_root(); *dot_fusion->mutable_shape() = root->shape(); HloInstruction* zero = dot_fusion->parent()->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(root->shape().element_type()))); TF_ASSIGN_OR_RETURN(HloInstruction * reduce, MakeReduceHlo(dot_fusion, zero, {0}, HloOpcode::kAdd, &dot_fusion->metadata())); *reduce->mutable_shape()->mutable_layout() = output_layout; if (dot_fusion->IsRoot()) { dot_fusion->parent()->set_root_instruction(reduce, true); } else { TF_RETURN_IF_ERROR(dot_fusion->ReplaceAllUsesWithDifferentShape(reduce)); } if (disable_reduced_precision_reduction) { HloInstruction* convert = MakeConvertToHlo(reduce, output_type); if (reduce->IsRoot()) { reduce->parent()->set_root_instruction(convert, true); } else { TF_RETURN_IF_ERROR(reduce->ReplaceAllUsesWithDifferentShape(convert)); } } return absl::OkStatus(); } } }
#include "xla/service/gpu/split_k_gemm_rewriter.h" #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/triton_fusion_analysis.h" #include "xla/service/hlo_verifier.h" #include "xla/service/layout_assignment.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; using ::testing::FieldsAre; namespace m = ::xla::match; TEST(HasDivisibleSuffixAllowingSplitTest, AllTests) { EXPECT_TRUE(HasDivisibleSuffixAllowingSplit({1}, 1)); EXPECT_TRUE(HasDivisibleSuffixAllowingSplit({2}, 2)); EXPECT_TRUE(HasDivisibleSuffixAllowingSplit({2, 2}, 2)); EXPECT_TRUE(HasDivisibleSuffixAllowingSplit({3, 2}, 6)); EXPECT_TRUE(HasDivisibleSuffixAllowingSplit({2, 3, 2}, 6)); EXPECT_TRUE(HasDivisibleSuffixAllowingSplit({15, 2}, 6)); EXPECT_TRUE(HasDivisibleSuffixAllowingSplit({3, 15, 2}, 6)); EXPECT_FALSE(HasDivisibleSuffixAllowingSplit({}, 1)); EXPECT_FALSE(HasDivisibleSuffixAllowingSplit({1}, 2)); EXPECT_FALSE(HasDivisibleSuffixAllowingSplit({3}, 2)); EXPECT_FALSE(HasDivisibleSuffixAllowingSplit({2, 3}, 2)); } using SplitKTest = HloTestBase; TEST_F(SplitKTest, MakeSplitK) { const std::string hlo_text = R"( HloModule t triton_gemm_dot { parameter_0 = s8[3,128,5,32]{3,2,1,0} parameter(0) bitcast.1 = s8[3,5,32,128]{2,1,3,0} bitcast(parameter_0) copy.1 = s8[3,5,32,128]{3,2,1,0} copy(bitcast.1) reshape.5 = s8[480,128]{1,0} reshape(copy.1) convert.8 = bf16[480,128]{1,0} convert(reshape.5) parameter_1 = bf16[16,128]{1,0} parameter(1) ROOT dot.0 = bf16[480,16]{1,0} dot(convert.8, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[3,128,5,32]{3,2,1,0} parameter(0) p1 = bf16[16,128]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm", metadata={op_name="foo"} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 16, 16, 4, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kReduce); EXPECT_EQ(root->metadata().op_name(), "foo"); } TEST_F(SplitKTest, MakeSplitKWithOutputFusion) { const std::string hlo_text = R"( HloModule t triton_gemm_dot { p0 = f16[480,128]{1,0} parameter(0) p1 = f16[16,128]{1,0} parameter(1) d = f16[480,16]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={1} c = bf16[] constant(123) n = bf16[] negate(c) bc = bf16[480,16]{1,0} broadcast(n) cv = bf16[480,16]{1,0} convert(d) ROOT a = bf16[480,16]{1,0} multiply(bc, cv) } ENTRY e { p0 = f16[480,128]{1,0} parameter(0) p1 = f16[16,128]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 16, 16, 4, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); EXPECT_EQ(module->entry_computation()->root_instruction()->opcode(), HloOpcode::kReduce); } TEST_F(SplitKTest, PreventSplitKWithNonDistributiveOperations) { const std::string hlo_text = R"( HloModule t triton_gemm_dot { p0 = f16[480,128]{1,0} parameter(0) p1 = f16[16,128]{1,0} parameter(1) d = f16[480,16]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={1} c = f32[480,16]{1,0} convert(d) ROOT s = f32[480,16]{1,0} tanh(c) } ENTRY e { p0 = f16[480,128]{1,0} parameter(0) p1 = f16[16,128]{1,0} parameter(1) ROOT fusion = f32[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 16, 16, 4, 1, 4); EXPECT_THAT(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config), tsl::testing::StatusIs( tsl::error::CANCELLED, absl::StrFormat( "Operation non-distributive over addition after dot."))); } TEST_F(SplitKTest, MakeSplitKWithNonDivisibleDimensionSize) { constexpr absl::string_view kHloText = R"( t { c1 = s32[] constant(1) bc1 = s32[31]{0} broadcast(c1), dimensions={} p0 = s32[31]{0} parameter(0) cmp = pred[31]{0} compare(bc1, p0), direction=EQ cvt = f32[31]{0} convert(cmp) bc2 = f32[17,31]{1,0} broadcast(cvt), dimensions={1} c0 = f32[] constant(0) bc0 = f32[17,16]{1,0} broadcast(c0), dimensions={} ROOT dot = f32[31,16]{1,0} dot(bc2, bc0), lhs_contracting_dims={0}, rhs_contracting_dims={0} } ENTRY e { p0 = s32[31]{0} parameter(0) ROOT r = f32[31,16]{1,0} fusion(p0), kind=kCustom, calls=t, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TritonGemmConfig config(16, 16, 16, 2, 1, 2); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); } TEST_F(SplitKTest, AvoidSplitKWithSlicedContractingDimension) { const std::string hlo_text = R"( t { p0 = f16[32,1234] parameter(0) s0 = f16[32,256] slice(p0), slice={[0:32], [41:297]} p1 = f16[256,768] parameter(1) ROOT d = f16[32,768] dot(s0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = f16[32,1234] parameter(0) p1 = f16[256,768] parameter(1) ROOT r = f16[32,768] fusion(p0, p1), kind=kCustom, calls=t, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 16, 16, 2, 1, 2); EXPECT_THAT(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config), tsl::testing::StatusIs( tsl::error::CANCELLED, absl::StrFormat( "Sliced contracting dimension is not supported yet."))); } TEST_F(SplitKTest, MakeSplitKWithNonStandardOutputLayout) { const std::string kHloText = R"( HloModule t triton_gemm_dot { parameter_0 = s8[3,128,5,32]{3,2,1,0} parameter(0) bitcast.1 = s8[3,5,32,128]{2,1,3,0} bitcast(parameter_0) copy.1 = s8[3,5,32,128]{3,2,1,0} copy(bitcast.1) reshape.5 = s8[480,128]{1,0} reshape(copy.1) convert.8 = bf16[480,128]{1,0} convert(reshape.5) parameter_1 = bf16[16,128]{1,0} parameter(1) ROOT dot.0 = bf16[480,16]{0,1} dot(convert.8, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[3,128,5,32]{3,2,1,0} parameter(0) p1 = bf16[16,128]{1,0} parameter(1) ROOT fusion = bf16[480,16]{0,1} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TritonGemmConfig config(16, 16, 16, 4, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); EXPECT_EQ(module->entry_computation()->root_instruction()->opcode(), HloOpcode::kReduce); EXPECT_EQ(module->entry_computation()->root_instruction()->shape().layout(), Layout({0, 1})); } TEST_F(SplitKTest, MakeSplitKWithExistingBatchDim) { const std::string hlo_text = R"( HloModule m triton_gemm_dot.24 { parameter_1 = bf16[1,1,800,5,128]{4,3,2,1,0} parameter(1) bitcast.3 = bf16[800,5,128]{2,1,0} bitcast(parameter_1) convert.3 = f32[800,5,128]{2,1,0} convert(bitcast.3) parameter_0 = f32[1,5,700,800]{3,2,1,0} parameter(0) bitcast.2 = f32[5,700,800]{2,1,0} bitcast(parameter_0) ROOT dot.26 = f32[5,128,700]{2,1,0} dot(convert.3, bitcast.2), lhs_batch_dims={1}, lhs_contracting_dims={0}, rhs_batch_dims={0}, rhs_contracting_dims={2} } ENTRY e { tmp_3 = f32[1,5,700,800]{3,2,1,0} parameter(0) tmp_0 = bf16[1,1,800,5,128]{4,3,2,1,0} parameter(1) ROOT triton_gemm_dot.24 = f32[5,128,700]{2,1,0} fusion(tmp_3, tmp_0), kind=kCustom, calls=triton_gemm_dot.24, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(32, 64, 64, 8, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); EXPECT_EQ(module->entry_computation()->root_instruction()->opcode(), HloOpcode::kReduce); } TEST_F(SplitKTest, SupportsIndivisible) { constexpr absl::string_view kHloText = R"( HloModule t triton_gemm_dot { parameter_0 = s8[3,129,5,32]{3,2,1,0} parameter(0) bitcast.1 = s8[3,5,32,129]{2,1,3,0} bitcast(parameter_0) copy.1 = s8[3,5,32,129]{3,2,1,0} copy(bitcast.1) reshape.5 = s8[480,129]{1,0} reshape(copy.1) convert.8 = bf16[480,129]{1,0} convert(reshape.5) parameter_1 = bf16[16,129]{1,0} parameter(1) ROOT dot.0 = bf16[480,16]{1,0} dot(convert.8, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[3,129,5,32]{3,2,1,0} parameter(0) p1 = bf16[16,129]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TritonGemmConfig config(16, 16, 16, 4, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); } TEST_F(SplitKTest, SupportsIndivisibleSimpleSplitK4) { constexpr absl::string_view kHloText = R"( HloModule t triton_gemm_dot { parameter_0 = s8[480,129]{1,0} parameter(0) convert_0 = bf16[480,129]{1,0} convert(parameter_0) parameter_1 = bf16[16,129]{1,0} parameter(1) ROOT dot.0 = bf16[480,16]{1,0} dot(convert_0, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[480,129]{1,0} parameter(0) p1 = bf16[16,129]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TritonGemmConfig config(16, 16, 16, 4, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); } TEST_F(SplitKTest, SupportsIndivisibleWithCustomLayout) { constexpr absl::string_view kHloText = R"( HloModule t triton_gemm_dot { parameter_0 = s8[480,129]{0,1} parameter(0) convert_0 = bf16[480,129]{0,1} convert(parameter_0) parameter_1 = bf16[16,129]{0,1} parameter(1) ROOT dot.0 = bf16[480,16]{1,0} dot(convert_0, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[480,129]{0,1} parameter(0) p1 = bf16[16,129]{0,1} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); constexpr TritonGemmConfig kConfig(16, 16, 16, 4, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), kConfig)); TF_EXPECT_OK(HloVerifier(true, true, LayoutAssignment::InstructionCanChangeLayout) .Run(module.get()) .status()); } TEST_F(SplitKTest, SupportsIndivisibleSimpleSplitK16) { constexpr absl::string_view kHloText = R"( HloModule t triton_gemm_dot { parameter_0 = s8[480,255]{1,0} parameter(0) convert_0 = bf16[480,255]{1,0} convert(parameter_0) parameter_1 = bf16[16,255]{1,0} parameter(1) ROOT dot.0 = bf16[480,16]{1,0} dot(convert_0, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[480,255]{1,0} parameter(0) p1 = bf16[16,255]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TritonGemmConfig config(16, 16, 16, 16, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); } TEST_F(SplitKTest, SupportsIndivisibleWithTranspose) { constexpr absl::string_view kHloText = R"( HloModule t triton_gemm_dot { parameter_0 = s8[480,255]{1,0} parameter(0) convert_0 = bf16[480,255]{1,0} convert(parameter_0) transpose_0 = bf16[255,480]{1,0} transpose(convert_0), dimensions={1,0} parameter_1 = bf16[16,255]{1,0} parameter(1) ROOT dot.0 = bf16[480,16]{1,0} dot(transpose_0, parameter_1), lhs_contracting_dims={0}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[480,255]{1,0} parameter(0) p1 = bf16[16,255]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TritonGemmConfig config(16, 16, 16, 16, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); } TEST_F(SplitKTest, SupportIndivisibleWithBroadcast) { constexpr absl::string_view kHloText = R"( HloModule t triton_gemm_dot { parameter_0 = s8[] parameter(0) convert_0 = bf16[] convert(parameter_0) broadcast_0 = bf16[480,255]{1,0} broadcast(convert_0) parameter_1 = bf16[16,255]{1,0} parameter(1) ROOT dot.0 = bf16[480,16]{1,0} dot(broadcast_0, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[] parameter(0) p1 = bf16[16,255]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TritonGemmConfig config(16, 16, 16, 16, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); } TEST_F(SplitKTest, SupportsIndivisibleWithBitcast) { constexpr absl::string_view kHloText = R"( HloModule t triton_gemm_dot { parameter_0 = s8[3,5,480,17]{3,0,1,2} parameter(0) convert_0 = bf16[3,5,480,17]{3,0,1,2} convert(parameter_0) bitcast_0 = bf16[480,255]{1,0} bitcast(convert_0) parameter_1 = bf16[16,255]{1,0} parameter(1) ROOT dot.0 = bf16[480,16]{1,0} dot(bitcast_0, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[3,5,480,17]{3,0,1,2} parameter(0) p1 = bf16[16,255]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TritonGemmConfig config(16, 16, 16, 16, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); } TEST_F(SplitKTest, SkipSmallK) { const std::string hlo_text = R"( HloModule t triton_gemm_dot { parameter_0 = s8[3,64,5,32]{3,2,1,0} parameter(0) bitcast.1 = s8[3,5,32,64]{2,1,3,0} bitcast(parameter_0) copy.1 = s8[3,5,32,64]{3,2,1,0} copy(bitcast.1) reshape.5 = s8[480,64]{1,0} reshape(copy.1) convert.8 = bf16[480,64]{1,0} convert(reshape.5) parameter_1 = bf16[16,64]{1,0} parameter(1) ROOT dot.0 = bf16[480,16]{1,0} dot(convert.8, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[3,64,5,32]{3,2,1,0} parameter(0) p1 = bf16[16,64]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 16, 128, 4, 1, 4); EXPECT_THAT(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config), tsl::testing::StatusIs( tsl::error::CANCELLED, "Too small divisible part of the contracting dimension.")); } TEST_F(SplitKTest, FragmentedKSupported) { const std::string hlo_text = R"( HloModule t triton_gemm_dot { p0 = f16[7,2,16,4,20] parameter(0) t0 = f16[2,16,4,20,7] transpose(p0), dimensions={1,2,3,4,0} b0 = f16[2560,7] bitcast(t0) a1 = f16[2560,5] parameter(1) ROOT r = f16[7,5] dot(b0, a1), lhs_contracting_dims={0}, rhs_contracting_dims={0} } ENTRY e { p0 = f16[7,2,16,4,20] parameter(0) p1 = f16[2560,5] parameter(1) ROOT fusion = f16[7,5] fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(32, 32, 16, 1, 1, 4); config.split_k = 5; EXPECT_THAT( MakeDotSplitKBatch(module->entry_computation()->root_instruction(), config), tsl::testing::StatusIs(tsl::error::CANCELLED, "Contracting dimension is too fragmented.")); config.split_k = 8; TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kReduce); const HloComputation* dot_computation = module->entry_computation() ->root_instruction() ->operand(0) ->called_computations()[0]; const HloInstruction* p0 = dot_computation->parameter_instruction(0); TF_ASSERT_OK_AND_ASSIGN( const auto analysis, TritonFusionAnalysis::Execute(*dot_computation, config.split_k)); EXPECT_EQ(dot_computation->root_instruction()->shape(), ShapeUtil::MakeShapeWithDescendingLayout(F16, {8, 7, 5})); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 1), ElementsAre(FieldsAre(1, 2560, 0, 2560, ElementsAre(20, 4, 4, 4, 2)))); } TEST_F(SplitKTest, FragmentedKUnsupported) { const std::string hlo_text = R"( HloModule t triton_gemm_dot { p0 = f32[3,128,77] parameter(0) b0 = f32[384,77] bitcast(p0) a1 = f32[384,25] parameter(1) ROOT r = f32[77,25] dot(b0, a1), lhs_contracting_dims={0}, rhs_contracting_dims={0} } ENTRY e { p0 = f32[3,128,77] parameter(0) p1 = f32[384,25] parameter(1) ROOT fusion = f32[77,25] fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 16, 16, 4, 1, 4); EXPECT_THAT( MakeDotSplitKBatch(module->entry_computation()->root_instruction(), config), tsl::testing::StatusIs(tsl::error::CANCELLED, "Contracting dimension is too fragmented.")); } TEST_F(SplitKTest, MakeSplitKWithNonDefaultOutputLayout) { const std::string kHloText = R"( triton_gemm_dot.4842_computation { parameter_0 = bf16[96,96]{1,0} parameter(0) parameter_1 = bf16[96,7]{1,0} parameter(1) dot.0 = bf16[96,7]{0,1} dot(parameter_0, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT bitcast.2 = bf16[7,3,32]{2,1,0} bitcast(dot.0) } ENTRY e { parameter_0.91 = bf16[96,96]{1,0} parameter(0) parameter_1.86 = bf16[96,7]{1,0} parameter(1) ROOT triton_gemm_dot.4842 = bf16[7,3,32]{2,1,0} fusion(parameter_0.91, parameter_1.86), kind=kCustom, calls=triton_gemm_dot.4842_computation })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TritonGemmConfig config(16, 16, 16, 2, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); EXPECT_EQ(module->entry_computation()->root_instruction()->opcode(), HloOpcode::kReduce); const HloComputation* dot_computation = module->entry_computation() ->root_instruction() ->operand(0) ->called_computations()[0]; TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); } TEST_F(SplitKTest, SparseDotWithLhsSparseOperandIsRewritten) { const std::string hlo_text = R"( HloModule test triton_gemm { lhs = f16[2,5,1600] parameter(0) rhs = f16[2,3200,10] parameter(1) meta = u16[2,5,200] parameter(2) ROOT dot = f32[2,5,10] dot(lhs, rhs, meta), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1}, sparsity=L.2@2:4 } ENTRY e { lhs = f16[2,5,1600] parameter(0) rhs = f16[2,3200,10] parameter(1) meta = u16[2,5,200] parameter(2) ROOT fusion = f32[2,5,10] fusion(lhs, rhs, meta), kind=kCustom, calls=triton_gemm, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 16, 16, 4, 1, 1); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kReduce); HloInstruction* dot = module->GetComputationWithName("triton_gemm")->root_instruction(); EXPECT_EQ(dot->operand(0)->shape(), ShapeUtil::MakeShapeWithDescendingLayout(F16, {2, 5, 4, 400})); EXPECT_EQ(dot->operand(1)->shape(), ShapeUtil::MakeShapeWithDescendingLayout(F16, {2, 4, 800, 10})); EXPECT_EQ(dot->operand(2)->shape(), ShapeUtil::MakeShapeWithDescendingLayout(U16, {2, 5, 4, 50})); } TEST_F(SplitKTest, SparseDotWithRhsSparseOperandTriggersError) { const std::string hlo_text = R"( HloModule test triton_gemm { lhs = f16[2,5,3200] parameter(0) rhs = f16[2,1600,10] parameter(1) meta = u16[2,200,10] parameter(2) ROOT dot = f32[2,5,10] dot(lhs, rhs, meta), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1}, sparsity=R.1@2:4 } ENTRY e { lhs = f16[2,5,3200] parameter(0) rhs = f16[2,1600,10] parameter(1) meta = u16[2,200,10] parameter(2) ROOT fusion = f32[2,5,10] fusion(lhs, rhs, meta), kind=kCustom, calls=triton_gemm, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 16, 16, 4, 1, 1); auto result = MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config); EXPECT_FALSE(result.ok()); } class SplitKTestWithMorePreciseReduction : public HloTestBase, public ::testing::WithParamInterface<int> { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = HloTestBase::GetDebugOptionsForTest(); debug_options.set_xla_gpu_triton_gemm_disable_reduced_precision_reduction( true); return debug_options; } }; TEST_F(SplitKTestWithMorePreciseReduction, MakeSplitK) { constexpr absl::string_view kHloText = R"( HloModule t triton_gemm_dot { parameter_0 = s8[3,128,5,32]{3,2,1,0} parameter(0) bitcast.1 = s8[3,5,32,128]{2,1,3,0} bitcast(parameter_0) copy.1 = s8[3,5,32,128]{3,2,1,0} copy(bitcast.1) reshape.5 = s8[480,128]{1,0} reshape(copy.1) convert.8 = bf16[480,128]{1,0} convert(reshape.5) parameter_1 = bf16[16,128]{1,0} parameter(1) ROOT dot.0 = bf16[480,16]{1,0} dot(convert.8, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[3,128,5,32]{3,2,1,0} parameter(0) p1 = bf16[16,128]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TritonGemmConfig config(16, 16, 16, 4, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Convert(m::Reduce(m::Fusion(), m::Constant())))); } TEST_F(SplitKTestWithMorePreciseReduction, MakeSplitKWithOutputFusion) { const std::string hlo_text = R"( HloModule t triton_gemm_dot { p0 = f16[480,128]{1,0} parameter(0) p1 = f16[16,128]{1,0} parameter(1) d = f16[480,16]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={1} c = bf16[] constant(123) n = bf16[] negate(c) bc = bf16[480,16]{1,0} broadcast(n) cv = bf16[480,16]{1,0} convert(d) ROOT a = bf16[480,16]{1,0} multiply(bc, cv) } ENTRY e { p0 = f16[480,128]{1,0} parameter(0) p1 = f16[16,128]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 16, 16, 4, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Convert(m::Reduce(m::Fusion(), m::Constant())))); } TEST_F(SplitKTest, MakeSplitKWithTransposeAfterDot) { const std::string hlo_text = R"( triton_gemm_dot { p0 = f16[8,288,288]{2,1,0} parameter(0) p1 = f16[8,288,32]{2,0,1} parameter(1) d = f16[8,288,32]{2,1,0} dot(p0, p1), lhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_batch_dims={0}, rhs_contracting_dims={1} ROOT t = f16[288,8,32]{2,1,0} transpose(d), dimensions={1,0,2} } ENTRY e { p0 = f16[8,288,288]{2,1,0} parameter(0) p1 = f16[8,288,32]{2,0,1} parameter(1) ROOT fusion = f16[288,8,32]{2,1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 128, 32, 8, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); const auto* transpose = Cast<HloTransposeInstruction>(module->entry_computation() ->root_instruction() ->operand(0) ->fused_instructions_computation() ->root_instruction()); EXPECT_THAT(transpose->dimensions(), ElementsAre(0, 2, 1, 3)); } TEST_F(SplitKTest, MakeSplitKWithTrivialDimension) { const std::string hlo_text = R"( triton_gemm_dot { parameter_0 = f32[1001,1]{1,0} parameter(0) parameter_1 = f32[1001,2048]{1,0} parameter(1) ROOT dot = f32[1,2048]{1,0} dot(parameter_0, parameter_1), lhs_contracting_dims={0}, rhs_contracting_dims={0} } ENTRY %entry_computation { p0 = f32[1001,1]{1,0} parameter(0) p1 = f32[1001,2048]{1,0} parameter(1) ROOT fusion = f32[1,2048]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 128, 64, 4, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Reduce(m::Fusion(), m::Constant()))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/split_k_gemm_rewriter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/split_k_gemm_rewriter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9c586ff2-998f-46bb-8cd1-365898f411cf
cpp
tensorflow/tensorflow
triton_fusion_analysis
third_party/xla/xla/service/gpu/triton_fusion_analysis.cc
third_party/xla/xla/service/gpu/triton_fusion_analysis_test.cc
#include "xla/service/gpu/triton_fusion_analysis.h" #include <cstdint> #include <memory> #include <optional> #include <queue> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/gpu/cudnn_support_utils.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/triton_tiling_propagation.h" #include "xla/service/instruction_fusion.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tools/hlo_decomposer.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using triton_fusion::DimOrdersAndReqs; using triton_fusion::DimOrdersAndReqsOrError; using triton_fusion::DotRequirements; using triton_fusion::FusionContext; using triton_fusion::GetPropagatedDimOrdersAndRequirements; using triton_fusion::kNoSplitRequirement; using triton_fusion::TransformDirection; } namespace triton_fusion { absl::StatusOr<FusionContext> FusionContext::FromDotOperand( const HloInstruction& dot, const int operand_number, const int split_k) { const int num_split_k_batch_dims = split_k > 1; int split_k_dimension_index = kNoDimensionIndex; TF_ASSIGN_OR_RETURN(int contracting_dimension_index, ContractingDimensionIndex(dot, operand_number)); TF_ASSIGN_OR_RETURN(int non_contracting_dimension_index, NonContractingDimensionIndex(dot, operand_number)); if (split_k > 1) { split_k_dimension_index = contracting_dimension_index - 1; } int splittable_dimension_index = kNoDimensionIndex; if (operand_number == 0 && dot.dot_dimension_numbers().lhs_batch_dimensions_size() - num_split_k_batch_dims == 0) { splittable_dimension_index = non_contracting_dimension_index; } FusionContext context(DotProperties{non_contracting_dimension_index, splittable_dimension_index}, DotRequirements(kNoSplitRequirement)); context.dim_orders_[dot.operand(operand_number)] = DimensionOrder::FromDotOperandOrOutput(*dot.operand(operand_number), split_k_dimension_index); return context; } FusionContext FusionContext::FromDotOutput( const HloInstruction& dot, const int split_k, DotRequirements requirements) { int splittable_dimension_index = kNoDimensionIndex; if (requirements.splittable_dimension_major_part_size > 1) { splittable_dimension_index = (split_k > 1) ? 1 : 0; } FusionContext context(DotProperties{-1, splittable_dimension_index}, std::move(requirements)); context.dim_orders_[&dot] = DimensionOrder::FromDotOperandOrOutput(dot); return context; } namespace { int64_t NumAddedParameters(const HloInstruction& hlo) { if (hlo.opcode() == HloOpcode::kConstant && !ShapeUtil::IsScalar(hlo.shape())) { return 0; } return hlo.operand_count() - 1; } } bool FusionContext::CombineDimOrdersAndReqs(const DimOrdersAndReqs& update) { for (const auto& [key, value] : update.dim_orders) { auto it = dim_orders_.find(key); if (it != dim_orders_.cend() && !it->second.IsPhysicallyEquivalent(value)) { return false; } } DotRequirementsOrError requirements_or_error = CombineDotRequirements(requirements_, update.requirements); if (std::holds_alternative<FusionDecision>(requirements_or_error)) { return false; } requirements_ = std::move(std::get<DotRequirements>(requirements_or_error)); dim_orders_.insert(update.dim_orders.begin(), update.dim_orders.end()); return true; } absl::Status FusionContext::PropagateDimensionOrdersToParameters( const HloInstruction& origin, ConstHloInstructionSet& parameters, ConstHloInstructionMap<TensorIterationSpec>& iter_specs) { absl::flat_hash_set<const HloInstruction*> visited; std::queue<const HloInstruction*> to_process; visited.insert(&origin); to_process.push(&origin); while (!to_process.empty()) { const HloInstruction* hlo = to_process.front(); to_process.pop(); if (hlo->opcode() == HloOpcode::kParameter) { if (!parameters.insert(hlo).second) { return FailedPrecondition( "A parameter is read differently by different users. hlo: %s", hlo->ToString()); } VLOG(5) << hlo->ToString(); } DimOrdersAndReqsOrError result = GetPropagatedDimOrdersAndRequirements( *hlo, dim_orders_.at(hlo), TransformDirection::kOutputToInput, properties_); if (!std::holds_alternative<DimOrdersAndReqs>(result)) { return FailedPrecondition( "Can not propagate dim orders and requirements."); } if (!CombineDimOrdersAndReqs(std::get<DimOrdersAndReqs>(result))) { return FailedPrecondition("Can not combine dim orders and requirements."); } iter_specs[hlo] = dim_orders_.at(hlo).ToTensorIterationSpec(); for (const HloInstruction* operand : hlo->operands()) { if (!visited.insert(operand).second) { continue; } if (operand->opcode() == HloOpcode::kDot) { continue; } to_process.push(operand); } } return absl::OkStatus(); } } absl::StatusOr<TritonFusionAnalysis> TritonFusionAnalysis::Execute( const HloComputation& computation, const int split_k) { VLOG(5) << computation.ToString(HloPrintOptions::ShortParsable()); TritonFusionAnalysis analysis; const HloInstruction* dot = hlo_query::GetFirstInstructionWithOpcode(computation, HloOpcode::kDot); TF_RET_CHECK(dot != nullptr); TF_RETURN_IF_ERROR(analysis.ExecuteForDotFusion(*dot, split_k)); return analysis; } absl::StatusOr<TritonFusionAnalysis> TritonFusionAnalysis::Execute( const HloDotInstruction& dot, int split_k) { TritonFusionAnalysis analysis; TF_RETURN_IF_ERROR(analysis.ExecuteForDotFusion(dot, split_k)); return analysis; } absl::Status TritonFusionAnalysis::ExecuteForProducerConsumer( const HloInstruction& producer, const HloInstruction& consumer, int split_k) { std::unique_ptr<HloModule> new_module = ExtractProducerConsumerIntoNewModule(producer, consumer); auto* new_producer = new_module->entry_computation()->GetInstructionWithName(producer.name()); auto* new_consumer = new_module->entry_computation()->GetInstructionWithName(consumer.name()); std::unique_ptr<HloInstruction> fusion_instruction_holder; HloInstruction* fusion_instruction; if (new_consumer->opcode() == HloOpcode::kFusion) { fusion_instruction = new_consumer; } else { fusion_instruction_holder = HloInstruction::CreateFusion( new_consumer->shape(), new_producer->fusion_kind(), new_consumer); fusion_instruction = fusion_instruction_holder.get(); } if (new_producer->opcode() == HloOpcode::kFusion) { fusion_instruction->MergeFusionInstruction(new_producer); } else { fusion_instruction->FuseInstruction(new_producer); } auto* fused_computation = fusion_instruction->fused_instructions_computation(); return Execute(*fused_computation, split_k).status(); } bool TritonFusionAnalysis::IsBatchDimMinorForInt4Parameter( const HloInstruction& dot, Scope scope) const { CHECK(scope == Scope::LHS || scope == Scope::RHS); const auto& dims = dot.dot_dimension_numbers(); const auto& batch_dims = (scope == Scope::LHS) ? dims.lhs_batch_dimensions() : dims.rhs_batch_dimensions(); if (batch_dims.empty()) return true; int32_t batch_dim = batch_dims.Get(0); CHECK_EQ(batch_dims.size(), 1); const auto& params = parameters_.at(scope); for (const auto& param : params) { if (param->shape().element_type() != S4) continue; const auto* strides = IterSpec(scope, param, batch_dim); if (strides == nullptr) continue; if (strides->front().stride == 1) return false; } return true; } absl::Status TritonFusionAnalysis::ExecuteForDotFusion( const HloInstruction& dot, const int split_k) { DotRequirements lhs_requirements(kNoSplitRequirement); for (const Scope scope : {Scope::LHS, Scope::RHS, Scope::META}) { const int operand_number = static_cast<int>(scope); if (dot.operand_count() < operand_number + 1) { continue; } TF_ASSIGN_OR_RETURN(auto context, FusionContext::FromDotOperand( dot, operand_number, split_k)); TF_RETURN_IF_ERROR(context.PropagateDimensionOrdersToParameters( *dot.operand(operand_number), parameters_[scope], iter_specs_[scope])); if (scope == Scope::LHS) { lhs_requirements = context.requirements(); } } auto context = FusionContext::FromDotOutput(dot, split_k, lhs_requirements); const HloInstruction* output = &dot; while (!output->IsRoot()) { TF_RET_CHECK(output->user_count() == 1); const HloInstruction* input = output; if (IsWorkspaceAllocationRoot(*output->users()[0])) { break; } output = output->users()[0]; DimOrdersAndReqsOrError result = GetPropagatedDimOrdersAndRequirements( *output, context.dim_orders().at(input), TransformDirection::kInputToOutput, context.dot_properties()); if (std::holds_alternative<FusionDecision>(result)) { auto decision = std::get<FusionDecision>(result); return FailedPrecondition("Failed to propagate tiling with error: %s", decision.Explain()); } TF_RET_CHECK( context.CombineDimOrdersAndReqs(std::get<DimOrdersAndReqs>(result))); } TF_RET_CHECK( iter_specs_[Scope::OUTPUT] .insert( {output, context.dim_orders().at(output).ToTensorIterationSpec()}) .second); parameters_[Scope::OUTPUT] = {}; if (output != &dot) { TF_RETURN_IF_ERROR(context.PropagateDimensionOrdersToParameters( *output, parameters_[Scope::OUTPUT], iter_specs_[Scope::OUTPUT])); } return absl::OkStatus(); } std::optional<TritonFusionAnalysis::Scope> TritonFusionAnalysis::QueryInstructionScope(const HloInstruction& hlo) const { for (const Scope& scope : {Scope::LHS, Scope::RHS, Scope::OUTPUT}) { if (iter_specs_.at(scope).count(&hlo) > 0) { return scope; } } LOG(WARNING) << "No scope for hlo: " << hlo.ToString(); return std::nullopt; } const TensorIterationSpec::DimIterationSpec* TritonFusionAnalysis::IterSpec( const TritonFusionAnalysis::Scope scope, const HloInstruction* hlo, const int dimension) const { auto hlo_spec = iter_specs_.at(scope).find(hlo); if (hlo_spec != iter_specs_.at(scope).cend()) { return hlo_spec->second.Find(dimension); } return nullptr; } namespace { std::string IterationSpecByInstructionMapToString( const TritonFusionAnalysis::IterationSpecByInstructionMap& m) { return absl::StrCat("IterSpec{", absl::StrJoin(m, ", ", [&](std::string* s, const auto& kv) { absl::StrAppend(s, kv.first->name(), ": ", kv.second.ToString()); }), "}"); } std::string ScopeToString(TritonFusionAnalysis::Scope s) { switch (s) { case TritonFusionAnalysis::Scope::LHS: return "LHS"; case TritonFusionAnalysis::Scope::RHS: return "RHS"; case TritonFusionAnalysis::Scope::META: return "META"; case TritonFusionAnalysis::Scope::OUTPUT: return "OUTPUT"; } } } std::string TritonFusionAnalysis::ToString() const { return absl::StrCat( "TritonFusionAnalysis{\n", absl::StrJoin(iter_specs_, ",\n", [&](std::string* s, const auto& kv) { absl::StrAppend( s, ScopeToString(kv.first), ": ", IterationSpecByInstructionMapToString(kv.second)); }), "\n}"); } } }
#include "xla/service/gpu/triton_fusion_analysis.h" #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/transforms/gemm_fusion.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; using ::testing::FieldsAre; using TritonDotAnalysisTest = HloTestBase; TEST_F(TritonDotAnalysisTest, QueryingOutputScopeParametersAlwaysWorks) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( triton_dot { p0 = f32[8,8] parameter(0) ROOT dot = f32[8,8] dot(p0, p0), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = f32[8,8] parameter(0) ROOT r = f32[8,8] fusion(p0), kind=kCustom, calls=triton_dot })")); TF_ASSERT_OK_AND_ASSIGN( const auto analysis, TritonFusionAnalysis::Execute(*module->entry_computation() ->root_instruction() ->called_computations()[0])); EXPECT_TRUE( analysis.ScopeParameters(TritonFusionAnalysis::Scope::OUTPUT).empty()); } TEST_F(TritonDotAnalysisTest, NopBitcasts) { const std::string hlo_text = R"( HloModule t triton_dot { param_0.1 = s8[48,4]{1,0} parameter(0) bitcast.18 = s8[1,48,4]{2,1,0} bitcast(param_0.1) bitcast.19 = s8[48,4]{1,0} bitcast(bitcast.18) convert.4 = bf16[48,4]{1,0} convert(bitcast.19) param_1.1 = bf16[4,3]{1,0} parameter(1) ROOT dot = bf16[48,3]{1,0} dot(convert.4, param_1.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = s8[48,4]{1,0} parameter(0) p1 = bf16[4,3]{1,0} parameter(1) custom-call = bf16[48,3]{1,0} custom-call(p0, p1), custom_call_target="__triton", called_computations={triton_dot} ROOT bitcast.2 = bf16[1,8,6,3]{3,2,1,0} bitcast(custom-call) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); const HloComputation* dot_computation = module->entry_computation() ->root_instruction() ->operand(0) ->called_computations()[0]; const HloInstruction* p0 = dot_computation->parameter_instruction(0); const HloInstruction* p1 = dot_computation->parameter_instruction(1); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::LHS).begin(), p0); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::RHS).begin(), p1); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 0), ElementsAre(FieldsAre(4, 48, 0, 48, ElementsAre(48)))); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 1), ElementsAre(FieldsAre(1, 4, 0, 4, ElementsAre(4)))); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 0), ElementsAre(FieldsAre(3, 4, 0, 4, ElementsAre(4)))); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 1), ElementsAre(FieldsAre(1, 3, 0, 3, ElementsAre(3)))); } TEST_F(TritonDotAnalysisTest, DoNotRemoveTrivialDimensionForDot) { const std::string hlo_text = R"( HloModule t, is_scheduled=true triton_dot { param_0.1 = f32[137,115]{1,0} parameter(0) param_1.1 = f32[1,115]{1,0} parameter(1) ROOT dot = f32[137,1]{1,0} dot(param_0.1, param_1.1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = f32[137,115]{1,0} parameter(0) p1 = f32[1,115]{1,0} parameter(1) ROOT custom-call = f32[137,1]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_dot, backend_config={"fusion_backend_config": {kind: "__triton_gemm", triton_gemm_config: {"block_m":16,"block_n":64,"block_k":32, "split_k":1,"num_stages":1,"num_warps":2, "num_ctas":1}}} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); const HloComputation* dot_computation = module->entry_computation()->root_instruction()->called_computations()[0]; const HloInstruction* p0 = dot_computation->parameter_instruction(0); const HloInstruction* p1 = dot_computation->parameter_instruction(1); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::LHS).begin(), p0); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::RHS).begin(), p1); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 0), ElementsAre(FieldsAre(115, 137, 0, 137, ElementsAre(137)))); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 1), ElementsAre(FieldsAre(1, 115, 0, 115, ElementsAre(115)))); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 0), ElementsAre(FieldsAre(115, 1, 0, 1, ElementsAre(1)))); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 1), ElementsAre(FieldsAre(1, 115, 0, 115, ElementsAre(115)))); } TEST_F(TritonDotAnalysisTest, Merge) { const std::string hlo_text = R"( HloModule t triton_dot { param_0.1 = s8[1,8,6,4]{3,2,1,0} parameter(0) bitcast.18 = s8[48,4]{1,0} bitcast(param_0.1) convert.4 = bf16[48,4]{1,0} convert(bitcast.18) param_1.1 = bf16[4,3]{1,0} parameter(1) ROOT dot = bf16[48,3]{1,0} dot(convert.4, param_1.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = s8[1,8,6,4]{3,2,1,0} parameter(0) p1 = bf16[4,3]{1,0} parameter(1) custom-call = bf16[48,3]{1,0} custom-call(p0, p1), custom_call_target="__triton", called_computations={triton_dot} ROOT bitcast.2 = bf16[1,8,6,3]{3,2,1,0} bitcast(custom-call) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); const HloComputation* dot_computation = module->entry_computation() ->root_instruction() ->operand(0) ->called_computations()[0]; const HloInstruction* p0 = dot_computation->parameter_instruction(0); const HloInstruction* p1 = dot_computation->parameter_instruction(1); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::LHS).begin(), p0); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::RHS).begin(), p1); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 0), ElementsAre(FieldsAre(4, 6 * 8, 0, 6 * 8, ElementsAre(6, 8)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 1), ElementsAre(FieldsAre(1, 4, 0, 4, ElementsAre(4)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 0), ElementsAre(FieldsAre(3, 4, 0, 4, ElementsAre(4)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 1), ElementsAre(FieldsAre(1, 3, 0, 3, ElementsAre(3)))); } TEST_F(TritonDotAnalysisTest, Split) { const std::string hlo_text = R"( HloModule t triton_dot { %parameter_1 = f32[24000,2]{1,0} parameter(1) %convert.15 = f16[24000,2]{1,0} convert(%parameter_1) %parameter_0 = f16[4]{0} parameter(0) %bitcast.45 = f16[2,2]{1,0} bitcast(%parameter_0) ROOT %dot.26 = f16[24000,2]{1,0} dot(%convert.15, %bitcast.45), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = f16[4]{0} parameter(0) p1 = f32[24000,2]{1,0} parameter(1) ROOT r = f16[24000,2]{1,0} custom-call(p0, p1), custom_call_target="__triton", called_computations={triton_dot} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); const HloComputation* dot_computation = module->entry_computation()->root_instruction()->called_computations()[0]; const HloInstruction* p0 = dot_computation->parameter_instruction(0); const HloInstruction* p1 = dot_computation->parameter_instruction(1); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::LHS).begin(), p1); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::RHS).begin(), p0); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p1, 0), ElementsAre(FieldsAre(2, 24000, 0, 24000, ElementsAre(24000)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p1, 1), ElementsAre(FieldsAre(1, 2, 0, 2, ElementsAre(2)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p0, 0), ElementsAre(FieldsAre(2, 2, 0, 2, ElementsAre(2)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p0, 1), ElementsAre(FieldsAre(1, 2, 0, 2, ElementsAre(2)))); } TEST_F(TritonDotAnalysisTest, TransposeMerge) { const std::string hlo_text = R"( HloModule t triton_dot { param_0.1 = s8[1,4,8,6]{3,2,1,0} parameter(0) transpose.3 = s8[1,8,6,4]{3,2,1,0} transpose(param_0.1), dimensions={0,2,3,1} bitcast.18 = s8[48,4]{1,0} bitcast(transpose.3) convert.4 = bf16[48,4]{1,0} convert(bitcast.18) param_1.1 = bf16[4,3]{1,0} parameter(1) ROOT dot = bf16[48,3]{1,0} dot(convert.4, param_1.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = s8[1,4,8,6]{3,2,1,0} parameter(0) p1 = bf16[4,3]{1,0} parameter(1) custom-call = bf16[48,3]{1,0} custom-call(p0, p1), custom_call_target="__triton", called_computations={triton_dot} ROOT bitcast.2 = bf16[1,8,6,3]{3,2,1,0} bitcast(custom-call) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); const HloComputation* dot_computation = module->entry_computation() ->root_instruction() ->operand(0) ->called_computations()[0]; const HloInstruction* p0 = dot_computation->parameter_instruction(0); const HloInstruction* p1 = dot_computation->parameter_instruction(1); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::LHS).begin(), p0); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::RHS).begin(), p1); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 0), ElementsAre(FieldsAre(1, 8 * 6, 0, 8 * 6, ElementsAre(6, 8)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 1), ElementsAre(FieldsAre(8 * 6, 4, 0, 4, ElementsAre(4)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 0), ElementsAre(FieldsAre(3, 4, 0, 4, ElementsAre(4)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 1), ElementsAre(FieldsAre(1, 3, 0, 3, ElementsAre(3)))); } TEST_F(TritonDotAnalysisTest, CopyMerge) { const std::string hlo_text = R"( HloModule t triton_dot { param_0.1 = s8[1,4,8,6]{3,2,1,0} parameter(0) bitcast.99 = s8[1,8,6,4]{2,1,3,0} bitcast(param_0.1) copy.3 = s8[1,8,6,4]{3,2,1,0} copy(bitcast.99) bitcast.18 = s8[48,4]{1,0} bitcast(copy.3) convert.4 = bf16[48,4]{1,0} convert(bitcast.18) param_1.1 = bf16[4,3]{1,0} parameter(1) ROOT dot = bf16[48,3]{1,0} dot(convert.4, param_1.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = s8[1,4,8,6]{3,2,1,0} parameter(0) p1 = bf16[4,3]{1,0} parameter(1) custom-call = bf16[48,3]{1,0} custom-call(p0, p1), custom_call_target="__triton", called_computations={triton_dot} ROOT bitcast.2 = bf16[1,8,6,3]{3,2,1,0} bitcast(custom-call) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); const HloComputation* dot_computation = module->entry_computation() ->root_instruction() ->operand(0) ->called_computations()[0]; const HloInstruction* p0 = dot_computation->parameter_instruction(0); const HloInstruction* p1 = dot_computation->parameter_instruction(1); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::LHS).begin(), p0); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::RHS).begin(), p1); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 0), ElementsAre(FieldsAre(1, 8 * 6, 0, 8 * 6, ElementsAre(6, 8)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 1), ElementsAre(FieldsAre(8 * 6, 4, 0, 4, ElementsAre(4)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 0), ElementsAre(FieldsAre(3, 4, 0, 4, ElementsAre(4)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 1), ElementsAre(FieldsAre(1, 3, 0, 3, ElementsAre(3)))); } TEST_F(TritonDotAnalysisTest, TransposeMergeNCN) { const std::string hlo_text = R"( HloModule t triton_dot { param_0.1 = bf16[3,4,8,1]{3,2,1,0} parameter(0) transpose.3 = bf16[3,8,1,4]{3,2,1,0} transpose(param_0.1), dimensions={0,2,3,1} bitcast.18 = bf16[24,4]{1,0} bitcast(transpose.3) param_1.1 = bf16[4,3]{1,0} parameter(1) ROOT dot = bf16[24,3]{1,0} dot(bitcast.18, param_1.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = bf16[3,4,8,1]{3,2,1,0} parameter(0) p1 = bf16[4,3]{1,0} parameter(1) custom-call = bf16[24,3]{1,0} custom-call(p0, p1), custom_call_target="__triton", called_computations={triton_dot} ROOT bitcast.2 = bf16[3,8,1,3]{3,2,1,0} bitcast(custom-call) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); const HloComputation* dot_computation = module->entry_computation() ->root_instruction() ->operand(0) ->called_computations()[0]; const HloInstruction* p0 = dot_computation->parameter_instruction(0); const HloInstruction* p1 = dot_computation->parameter_instruction(1); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::LHS).begin(), p0); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::RHS).begin(), p1); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 0), ElementsAre(FieldsAre(1, 8, 0, 8, ElementsAre(8)), FieldsAre(4 * 8, 3, 0, 3, ElementsAre(3)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 1), ElementsAre(FieldsAre(8, 4, 0, 4, ElementsAre(4)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 0), ElementsAre(FieldsAre(3, 4, 0, 4, ElementsAre(4)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 1), ElementsAre(FieldsAre(1, 3, 0, 3, ElementsAre(3)))); } TEST_F(TritonDotAnalysisTest, TransposeOutput) { const std::string hlo_text = R"( HloModule t triton_dot { p0 = bf16[24,4]{1,0} parameter(0) p1 = bf16[4,3]{1,0} parameter(1) dot = bf16[24,3]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} bc = bf16[12,2,3]{2,1,0} bitcast(dot) ROOT t = bf16[3,12,2]{2,1,0} transpose(bc), dimensions={2,0,1} } ENTRY e { p0 = bf16[24,4]{1,0} parameter(0) p1 = bf16[4,3]{1,0} parameter(1) ROOT r = bf16[3,12,2]{2,1,0} fusion(p0, p1), kind=kCustom, calls=triton_dot })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); const HloComputation* dot_computation = module->entry_computation()->root_instruction()->called_computations()[0]; const HloInstruction* dot_output = dot_computation->root_instruction(); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::OUTPUT, dot_output, 0), ElementsAre(FieldsAre(1, 24, 0, 24, ElementsAre(2, 12)))); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::OUTPUT, dot_output, 1), ElementsAre(FieldsAre(24, 3, 0, 3, ElementsAre(3)))); } TEST_F(TritonDotAnalysisTest, OutputParameterIsHandled) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( HloModule t triton_dot { p0 = bf16[24,4]{1,0} parameter(0) p1 = bf16[4,3]{1,0} parameter(1) dot = bf16[24,3]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} p2 = f16[3,24]{1,0} parameter(2) p2t = f16[24,3]{1,0} transpose(p2), dimensions={1,0} p2tc = bf16[24,3]{1,0} convert(p2t) ROOT r = bf16[24,3]{1,0} divide(p2tc, dot) } ENTRY e { p0 = bf16[24,4]{1,0} parameter(0) p1 = bf16[4,3]{1,0} parameter(1) p2 = f16[3,24]{1,0} parameter(2) ROOT r = bf16[24,3]{1,0} fusion(p0, p1, p2), kind=kCustom, calls=triton_dot })")); const HloComputation* dot_computation = module->entry_computation()->root_instruction()->called_computations()[0]; const HloInstruction* output_param = dot_computation->parameter_instruction(2); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_EQ( analysis.IterSpec(TritonFusionAnalysis::Scope::OUTPUT, output_param, 0) ->size(), 1); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::OUTPUT, output_param, 0), ElementsAre(FieldsAre(1, 24, 0, 24, ElementsAre(24)))); EXPECT_EQ( analysis.IterSpec(TritonFusionAnalysis::Scope::OUTPUT, output_param, 1) ->size(), 1); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::OUTPUT, output_param, 1), ElementsAre(FieldsAre(24, 3, 0, 3, ElementsAre(3)))); } TEST_F(TritonDotAnalysisTest, InputBroadcastFromScalarIsHandled) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( HloModule t triton_dot { p0 = bf16[24,4]{1,0} parameter(0) p1 = bf16[] parameter(1) p1b = bf16[4,3] broadcast(p1) ROOT dot = bf16[24,3]{1,0} dot(p0, p1b), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = bf16[24,4]{1,0} parameter(0) p1 = bf16[] parameter(1) ROOT r = bf16[24,3]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_dot })")); const HloComputation* dot_computation = module->entry_computation()->root_instruction()->called_computations()[0]; const HloInstruction* scalar = dot_computation->parameter_instruction(1); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_EQ(analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, scalar, 0), nullptr); EXPECT_EQ(analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, scalar, 1), nullptr); } TEST_F(TritonDotAnalysisTest, InputBroadcastFromVectorIsHandled) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( HloModule t triton_dot { p0 = bf16[24,4]{1,0} parameter(0) p1 = bf16[4] parameter(1) p1b = bf16[4,3] broadcast(p1), dimensions={0} ROOT dot = bf16[24,3]{1,0} dot(p0, p1b), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = bf16[24,4]{1,0} parameter(0) p1 = bf16[4] parameter(1) ROOT r = bf16[24,3]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_dot })")); const HloComputation* dot_computation = module->entry_computation()->root_instruction()->called_computations()[0]; const HloInstruction* vector = dot_computation->parameter_instruction(1); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_EQ( analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, vector, 0)->size(), 1); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, vector, 0), ElementsAre(FieldsAre(1, 4, 0, 4, ElementsAre(4)))); } TEST_F(TritonDotAnalysisTest, OutputBroadcastIsNotAccepted) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( HloModule t ENTRY e { p0 = f16[2,35] parameter(0) p0c = bf16[2,35] convert(p0) p1 = bf16[35,2] parameter(1) dot = bf16[2,2] dot(p0c, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT bc = bf16[2,2,100] broadcast(dot), dimensions={0,1} })")); EXPECT_TRUE(GemmFusion(se::CudaComputeCapability{ se::CudaComputeCapability::AMPERE, 0}) .Run(module.get()) .value()); EXPECT_EQ(module->entry_computation()->root_instruction()->opcode(), HloOpcode::kBroadcast); } TEST_F(TritonDotAnalysisTest, DegenerateSplitFragmentIsHandled) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( triton_gemm_r { Arg_0.1 = s8[30,913,8,21]{3,2,1,0} parameter(0) bitcast.6 = s8[30,8,21,913]{2,1,3,0} bitcast(Arg_0.1) copy.7 = s8[30,8,21,913]{3,2,1,0} copy(bitcast.6) bitcast.8 = s8[5040,913]{1,0} bitcast(copy.7) convert.9 = bf16[5040,913]{1,0} convert(bitcast.8) bitcast.32 = bf16[58,913]{1,0} parameter(1) dot.33 = bf16[5040,58]{1,0} dot(convert.9, bitcast.32), lhs_contracting_dims={1}, rhs_contracting_dims={1} bitcast.34 = bf16[30,8,21,58]{3,2,1,0} bitcast(dot.33) copy.35 = bf16[30,8,21,58]{2,1,3,0} copy(bitcast.34) ROOT bitcast.41 = bf16[30,1,58,8,21]{4,3,2,1,0} bitcast(copy.35) } ENTRY e { Arg_0.1 = s8[30,913,8,21]{3,2,1,0} parameter(0) Arg_1.2 = bf16[58,913]{1,0} parameter(1) ROOT r = bf16[30,1,58,8,21]{4,3,2,1,0} fusion(Arg_0.1, Arg_1.2), kind=kCustom, calls=triton_gemm_r, backend_config={kind: "__triton_gemm"} })")); const HloComputation* dot_computation = module->entry_computation()->root_instruction()->called_computations()[0]; TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::OUTPUT, dot_computation->root_instruction(), 0), ElementsAre(FieldsAre(1, 8 * 21, 0, 8 * 21, ElementsAre(21, 8)), FieldsAre(8 * 21 * 58, 30, 0, 30, ElementsAre(30)))); } TEST_F(TritonDotAnalysisTest, HandlesFurtherPropagationFromTrivialSizedTensorGracefully) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( triton_gemm_r { a = f32[3,3]{1,0} parameter(0) constant = f32[1,1]{1,0} constant({ {0} }) broadcast = f32[1,1]{1,0} broadcast(constant), dimensions={0,1} reshape = f32[] reshape(broadcast) broadcast2 = f32[3,3]{1,0} broadcast(reshape), dimensions={} ROOT dot = f32[3,3]{1,0} dot(a, broadcast2), lhs_contracting_dims={0}, rhs_contracting_dims={0} } ENTRY e { a = f32[3,3]{1,0} parameter(0) ROOT dot = f32[3,3]{1,0} fusion(a), kind=kCustom, calls=triton_gemm_r, backend_config={kind: "__triton_gemm"} } )")); const HloComputation* dot_computation = module->entry_computation()->root_instruction()->called_computations()[0]; absl::StatusOr<TritonFusionAnalysis> analysis = TritonFusionAnalysis::Execute(*dot_computation); (void)analysis; } TEST_F(TritonDotAnalysisTest, DynamicSliceIsSupported) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( triton_gemm { dot_lhs = f32[2,18]{1,0} parameter(0) dynamic_slice_input = f32[96,2]{1,0} parameter(1) start_index0 = s32[] parameter(2) start_index1 = s32[] parameter(3) dynamic_slice = f32[64,2]{1,0} dynamic-slice(dynamic_slice_input, start_index0, start_index1), dynamic_slice_sizes={64,2} ROOT dot = f32[18,64]{1,0} dot(dot_lhs, dynamic_slice), lhs_contracting_dims={0}, rhs_contracting_dims={1} } ENTRY e { dot_lhs = f32[2,18]{1,0} parameter(0) dynamic_slice_input = f32[96,2]{1,0} parameter(1) start_index0 = s32[] parameter(2) start_index1 = s32[] parameter(3) ROOT triton_gemm_d = f32[18,64]{1,0} fusion(dot_lhs, dynamic_slice_input, start_index0, start_index1), kind=kCustom, calls=triton_gemm, backend_config={"kind":"__triton_gemm"} } )")); const HloComputation* dot_computation = module->entry_computation()->root_instruction()->called_computations()[0]; TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); const HloInstruction* p0 = dot_computation->parameter_instruction(0); const HloInstruction* p1 = dot_computation->parameter_instruction(1); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::LHS).begin(), p0); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::RHS).begin(), p1); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 0), ElementsAre(FieldsAre(18, 2, 0, 2, ElementsAre(2)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 1), ElementsAre(FieldsAre(1, 18, 0, 18, ElementsAre(18)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 0), ElementsAre(FieldsAre(2, 96, 0, 96, ElementsAre(96)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 1), ElementsAre(FieldsAre(1, 2, 0, 2, ElementsAre(2)))); } TEST_F(TritonDotAnalysisTest, SparseDot) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( triton_gemm { lhs = bf16[5,16] parameter(0) rhs = bf16[32,10] parameter(1) meta = u16[5,2] parameter(2) ROOT dot = f32[5,10] dot(lhs, rhs, meta), lhs_contracting_dims={1}, rhs_contracting_dims={0}, sparsity=L.1@2:4 } ENTRY main { lhs = bf16[5,16] parameter(0) rhs = bf16[32,10] parameter(1) meta = u16[5,2] parameter(2) ROOT out = f32[5,10] fusion(lhs, rhs, meta), kind=kCustom, calls=triton_gemm, backend_config={kind:"__triton_gemm"} } )")); const HloComputation* dot_computation = module->entry_computation()->root_instruction()->called_computations()[0]; TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::META, dot_computation->parameter_instruction(2), 0), ::testing::SizeIs(1)); } TEST_F(TritonDotAnalysisTest, QueryScopeAlwaysWorks) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( triton_gemm_r { Arg_0.1 = s8[30,913,8,21]{3,2,1,0} parameter(0) bitcast.6 = s8[30,8,21,913]{2,1,3,0} bitcast(Arg_0.1) copy.7 = s8[30,8,21,913]{3,2,1,0} copy(bitcast.6) bitcast.8 = s8[5040,913]{1,0} bitcast(copy.7) convert.9 = bf16[5040,913]{1,0} convert(bitcast.8) bitcast.32 = bf16[58,913]{1,0} parameter(1) dot.33 = bf16[5040,58]{1,0} dot(convert.9, bitcast.32), lhs_contracting_dims={1}, rhs_contracting_dims={1} bitcast.34 = bf16[30,8,21,58]{3,2,1,0} bitcast(dot.33) copy.35 = bf16[30,8,21,58]{2,1,3,0} copy(bitcast.34) ROOT bitcast.41 = bf16[30,1,58,8,21]{4,3,2,1,0} bitcast(copy.35) } ENTRY e { Arg_0.1 = s8[30,913,8,21]{3,2,1,0} parameter(0) Arg_1.2 = bf16[58,913]{1,0} parameter(1) ROOT r = bf16[30,1,58,8,21]{4,3,2,1,0} fusion(Arg_0.1, Arg_1.2), kind=kCustom, calls=triton_gemm_r, backend_config={kind: "__triton_gemm"} })")); const HloComputation* dot_computation = module->entry_computation()->root_instruction()->called_computations()[0]; TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); for (const auto& hlo : dot_computation->instructions()) { if (hlo->opcode() != HloOpcode::kDot) { EXPECT_TRUE(analysis.QueryInstructionScope(*hlo).has_value()); } } } TEST_F(TritonDotAnalysisTest, PadWithTrivialDimension) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( HloModule t triton_gemm_dot { parameter_0 = f32[1001,1]{1,0} parameter(0) constant = f32[] constant(0) pad = f32[1004,1]{1,0} pad(parameter_0, constant), padding=0_3x0_0 bitcast = f32[4,251,1]{2,1,0} bitcast(pad) parameter_1 = f32[4,251,2048]{2,1,0} parameter(1) ROOT dot = f32[4,1,2048]{2,1,0} dot(bitcast, parameter_1), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} })")); const HloComputation* dot_computation = *module->computations().begin(); TF_ASSERT_OK_AND_ASSIGN( TritonFusionAnalysis analysis, TritonFusionAnalysis::Execute(*dot_computation, 4)); const HloInstruction* p0 = dot_computation->parameter_instruction(0); const HloInstruction* p1 = dot_computation->parameter_instruction(1); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::LHS).begin(), p0); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::RHS).begin(), p1); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 1), ElementsAre(FieldsAre(1, 1001, 0, 1001, ElementsAre(1001)))); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 2), ElementsAre(FieldsAre(1, 1, 0, 1, ElementsAre(1)))); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 1), ElementsAre(FieldsAre(2048, 1004, 0, 1004, ElementsAre(251, 4)))); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 2), ElementsAre(FieldsAre(1, 2048, 0, 2048, ElementsAre(2048)))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/triton_fusion_analysis.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/triton_fusion_analysis_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
873af691-a7ed-4983-a8cd-f970eb8fa7af
cpp
tensorflow/tensorflow
gpu_latency_hiding_scheduler
third_party/xla/xla/service/gpu/gpu_latency_hiding_scheduler.cc
third_party/xla/xla/service/gpu/gpu_latency_hiding_scheduler_test.cc
#include "xla/service/gpu/gpu_latency_hiding_scheduler.h" #include <cstdint> #include <tuple> #include <utility> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/latency_hiding_scheduler.h" #include "xla/shape.h" #include "xla/shape_util.h" namespace xla { namespace gpu { namespace { static constexpr int64_t kCostlyAllReduceThreshold = 30 * 1024 * 1024; static constexpr int64_t kCostlyAllReduceMultiplier = 4; bool IsNopInstruction(const HloInstruction& hlo) { HloOpcode op = hlo.opcode(); return op == HloOpcode::kGetTupleElement || op == HloOpcode::kBitcast || op == HloOpcode::kConstant || op == HloOpcode::kParameter || op == HloOpcode::kTuple || op == HloOpcode::kPartitionId || op == HloOpcode::kReplicaId || hlo.IsEffectiveBitcast() || op == HloOpcode::kOptimizationBarrier; } bool IsAsyncComputeOp(const HloInstruction& hlo) { return (hlo.opcode() == HloOpcode::kAsyncStart || hlo.opcode() == HloOpcode::kAsyncDone) && !hlo_query::IsCollectiveCommunicationOp(hlo.async_wrapped_opcode()) && hlo.async_execution_thread() != hlo.parent()->execution_thread(); } int64_t GetPipelineStream(const HloInstruction& start) { auto it = start.frontend_attributes().map().find(kSendRecvPipelineAttr); if (it != start.frontend_attributes().map().end() && it->second == "1") { return 1; } return 0; } std::pair<GpuResourceType, ResourceUsageType> GetP2PResourceAndUsage( const HloInstruction& instr, const CanonicalAsyncOp& op) { ResourceUsageType usage = op.outer == HloOpcode::kAsyncStart ? ResourceUsageType::kResourceRelease : ResourceUsageType::kResourceOccupy; int64_t pipeline = GetPipelineStream(instr); HloOpcode opcode = op.inner; GpuResourceType resource; if (pipeline == 0) { resource = opcode == HloOpcode::kSend ? GpuResourceType::kGpuAsyncStreamSend0 : GpuResourceType::kGpuAsyncStreamRecv0; } else { resource = opcode == HloOpcode::kSend ? GpuResourceType::kGpuAsyncStreamSend1 : GpuResourceType::kGpuAsyncStreamRecv1; } return {resource, usage}; } bool IsGpuAsyncStart(const HloInstruction& hlo) { return (hlo_query::IsAsyncCollectiveStartOp(&hlo, true) && !IsSyncCollective(&hlo)) || IsAsyncComputeOp(hlo); } bool IsGpuAsyncDone(const HloInstruction& hlo) { return (hlo_query::IsAsyncCollectiveDoneOp(&hlo, true) && !IsSyncCollective(hlo.operand(0))) || IsAsyncComputeOp(hlo); } bool IsAsyncPair(const HloInstruction& from, const HloInstruction& target) { return IsGpuAsyncStart(from) && IsGpuAsyncDone(target); } } int64_t GetSizeOfShape(const Shape& shape, int pointer_size) { int64_t size = ShapeUtil::ByteSizeOf(shape, pointer_size); if (shape.IsTuple() || shape.is_static()) { return size; } int64_t metadata_size = sizeof(int32_t) * shape.dimensions_size(); return size + metadata_size; } CanonicalAsyncOp GpuGetCanonicalAsyncOp(const HloInstruction& hlo) { switch (hlo.opcode()) { case HloOpcode::kSend: return {HloOpcode::kAsyncStart, HloOpcode::kSend}; case HloOpcode::kSendDone: return {HloOpcode::kAsyncDone, HloOpcode::kSend}; case HloOpcode::kRecv: return {HloOpcode::kAsyncStart, HloOpcode::kRecv}; case HloOpcode::kRecvDone: return {HloOpcode::kAsyncDone, HloOpcode::kRecv}; default: return DefaultGetCanonicalAsyncOp(hlo); } } GpuAsyncTrackerBase::GpuAsyncTrackerBase(const SchedulerConfig& config, GetCanonicalAsyncOpFunc func) : AsyncTracker(config, func) {} bool GpuAsyncTrackerBase::IsSupportedAsyncDone( const HloInstruction& hlo) const { return IsGpuAsyncDone(hlo); } bool GpuAsyncTrackerBase::IsSupportedAsyncStart( const HloInstruction& hlo) const { return IsGpuAsyncStart(hlo); } void GpuAsyncTrackerBase::PostProcessScheduleGraph( HloScheduleGraph* schedule_graph, const LatencyEstimator* latency_estimator) const { for (auto inst : schedule_graph->GetOriginalInstrList()) { if (inst->opcode() == HloOpcode::kRecv) { if (inst->frontend_attributes().map().count(kSendRecvPipelineAttr) > 0) { HloGraphNode& node = schedule_graph->GetNode(inst); node.SetForceEarly(true); VLOG(5) << "Setting force early for instruction: " << inst->ToString(); } } if (inst->has_backend_config()) { auto gpu_config = inst->backend_config<GpuBackendConfig>(); if (gpu_config.ok()) { HloGraphNode& node = schedule_graph->GetNode(inst); node.SetForceDelay(gpu_config->force_earliest_schedule()); VLOG(5) << "Setting force delay for instruction: " << inst->ToString(); } } } } GpuAsyncTracker::GpuAsyncTracker(const SchedulerConfig& config) : GpuAsyncTrackerBase(config) {} ResourcesVector GpuAsyncTracker::GetResourcesFromInstruction( const HloInstruction& instr) const { CanonicalAsyncOp op = GetCanonicalAsyncOp(instr); if (op.outer == HloOpcode::kAsyncStart || op.outer == HloOpcode::kAsyncDone) { ResourceUsageType usage; GpuResourceType resource; if (op.inner == HloOpcode::kSend || op.inner == HloOpcode::kRecv) { std::tie(resource, usage) = GetP2PResourceAndUsage(instr, op); } else { usage = op.outer == HloOpcode::kAsyncStart ? ResourceUsageType::kResourceRelease : ResourceUsageType::kResourceOccupy; resource = hlo_query::IsCollectiveCommunicationOp(op.inner) ? GpuResourceType::kGpuAsyncStreamCollectives : GpuResourceType::kGpuAsyncStreamComputes; } return {std::make_pair( GetFirstTargetDefinedResource() + static_cast<int64_t>(resource), usage)}; } return GpuAsyncTrackerBase::GetResourcesFromInstruction(instr); } int64_t GpuAsyncTracker::GetNumTargetDefinedResources() const { return static_cast<int64_t>(GpuResourceType::kNumTargetResources); }; int64_t GpuAsyncTracker::GetNumAvailableResources(int64_t resource_type) const { const int64_t first_target_resource = GetFirstTargetDefinedResource(); if (resource_type < first_target_resource) { return GpuAsyncTrackerBase::GetNumAvailableResources(resource_type); } CHECK_LT(resource_type, first_target_resource + static_cast<int64_t>(GpuResourceType::kNumTargetResources)); if ((resource_type - first_target_resource) == static_cast<int64_t>(GpuResourceType::kGpuAsyncStreamComputes)) { return 2; } return 1; } absl::string_view GpuAsyncTracker::GetResourceName( int64_t resource_type) const { const int64_t first_target_resource = GetFirstTargetDefinedResource(); if (resource_type < first_target_resource) { return GpuAsyncTrackerBase::GetResourceName(resource_type); } CHECK_LE(resource_type, first_target_resource + GetNumTargetDefinedResources()); switch (static_cast<GpuResourceType>(resource_type - first_target_resource)) { case GpuResourceType::kGpuAsyncStreamSend0: return "kGpuAsyncStreamSend0"; case GpuResourceType::kGpuAsyncStreamSend1: return "kGpuAsyncStreamSend1"; case GpuResourceType::kGpuAsyncStreamRecv0: return "kGpuAsyncStreamRecv0"; case GpuResourceType::kGpuAsyncStreamRecv1: return "kGpuAsyncStreamRecv1"; case GpuResourceType::kGpuAsyncStreamCollectives: return "kGpuAsyncStreamCollectives"; case GpuResourceType::kGpuAsyncStreamComputes: return "kGpuAsyncStreamComputes"; default: return "kUnsupportedResource"; } } ResourceHazardType GpuAsyncTracker::GetResourceHazardType( int64_t resource_type) const { const int64_t first_target_resource = GetFirstTargetDefinedResource(); if (resource_type < first_target_resource) { return GpuAsyncTrackerBase::GetResourceHazardType(resource_type); } CHECK_LE(resource_type, first_target_resource + GetNumTargetDefinedResources()); return ResourceHazardType::kUnshareable; } int64_t GpuAsyncTracker::GetNumResourcesPerInstruction( int64_t resource_type, const HloInstruction& instr) const { int64_t num_resources = GpuAsyncTrackerBase::GetNumResourcesPerInstruction(resource_type, instr); if (num_resources <= 0 || instr.opcode() != HloOpcode::kWhile) { return num_resources; } int64_t first_p2p_resource = GetFirstTargetDefinedResource() + static_cast<int64_t>(GpuResourceType::kGpuAsyncStreamSend0); if (resource_type < first_p2p_resource || resource_type > first_p2p_resource + 4) { return num_resources; } auto find_instruction_for_pipeline = [&](HloOpcode opcode, int64_t pipeline) { for (auto user1 : instr.users()) { if (user1->opcode() == HloOpcode::kGetTupleElement) { for (auto user2 : user1->users()) { if (user2->opcode() == opcode) { if (GetPipelineStream(*user2) == pipeline) { return true; } } } } } return false; }; bool found; if (resource_type == first_p2p_resource) { found = find_instruction_for_pipeline(HloOpcode::kSendDone, 0); } else if (resource_type == first_p2p_resource + 1) { found = find_instruction_for_pipeline(HloOpcode::kSendDone, 1); } else if (resource_type == first_p2p_resource + 2) { found = find_instruction_for_pipeline(HloOpcode::kRecvDone, 0); } else { found = find_instruction_for_pipeline(HloOpcode::kRecvDone, 1); } return num_resources - (found ? 1 : 0); } GpuLatencyEstimator::GpuLatencyEstimator(int64_t pointer_size, GetCanonicalAsyncOpFunc func) : ApproximateLatencyEstimator(func), pointer_size_(pointer_size) {} ApproximateLatencyEstimator::TimeCost GpuLatencyEstimator::NodeCost( const HloInstruction* instr) const { if (IsNopInstruction(*instr)) { return 0.0; } if (instr->opcode() == HloOpcode::kCustomCall) { if (IsCublasGemm(*instr) || IsCustomCallToDnnConvolution(*instr)) { return ApproximateLatencyEstimator::kMediumCost; } return ApproximateLatencyEstimator::kMediumCost; } return ApproximateLatencyEstimator::NodeCost(instr); } ApproximateLatencyEstimator::TimeCost GpuLatencyEstimator::GetLatencyBetween( const HloGraphNode& from, const HloGraphNode& to) const { if (IsAsyncPair(from, to)) { if (from.GetInstr().opcode() == HloOpcode::kRecv) { return ApproximateLatencyEstimator::kLowLatency; } else if (from.GetInstr().opcode() == HloOpcode::kSend) { return ApproximateLatencyEstimator::kHighLatency * 10; } bool enable_approx_collectives = from.GetInstr() .GetModule() ->config() .debug_options() .xla_gpu_enable_approx_costly_collectives(); bool is_all_reduce = from.GetInstr().opcode() == HloOpcode::kAllReduceStart; bool collective_size_exceeds_threshold = GetSizeOfShape(from.GetInstr().shape(), pointer_size_) > kCostlyAllReduceThreshold; if (enable_approx_collectives && is_all_reduce && collective_size_exceeds_threshold) { return ApproximateLatencyEstimator::kHighLatency * kCostlyAllReduceMultiplier; } return ApproximateLatencyEstimator::kHighLatency; } return ApproximateLatencyEstimator::kLowLatency; } void GPUProfileStatisticsAggregator::HandleMissingInstructionCost( const HloInstruction& instruction) { if (!IsNopInstruction(instruction) && instruction.opcode() != HloOpcode::kWhile) { missing_instructions_.insert(&instruction); } } void GPUProfileStatisticsAggregator::HandleFoundInstructionCost( const HloInstruction& instruction) { found_instructions_count_++; } void GPUProfileStatisticsAggregator::HandleMissingInstructionLatency( const HloInstruction& from, const HloInstruction& to) { if (IsAsyncPair(from, to)) { missing_instructions_.insert(&from); } } void GPUProfileStatisticsAggregator::HandleFoundInstructionLatency( const HloInstruction& from, const HloInstruction& to) { found_instructions_count_++; } } }
#include "xla/service/gpu/gpu_latency_hiding_scheduler.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/gpu_hlo_schedule.h" #include "xla/service/hlo_module_config.h" #include "xla/service/profile_guided_latency_estimator.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { using ::testing::Property; using ::testing::UnorderedElementsAre; using ::tsl::testing::StatusIs; class GpuLatencyHidingSchedulerBaseTest : public HloTestBase { protected: absl::StatusOr<HloModule*> ScheduleModule(HloModule* module) { auto& test_backend = backend(); const auto& gpu_device_info = test_backend.default_stream_executor()->GetDeviceDescription(); HloModuleConfig config(module->config()); DebugOptions dboptions(config.debug_options()); dboptions.set_xla_gpu_enable_pgle_accuracy_checker(true); config.set_debug_options(dboptions); module->set_config(config); TF_RETURN_IF_ERROR( ScheduleGpuModule(module, 8, gpu_device_info) .status()); return module; } HloModuleConfig GetModuleConfig(absl::string_view fdo_profile) { HloModuleConfig config; DebugOptions debug_options = GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_latency_hiding_scheduler(true); debug_options.set_xla_gpu_lhs_enable_gpu_async_tracker(true); config.set_debug_options(debug_options); *config.mutable_fdo_profile() = fdo_profile; return config; } }; TEST_F(GpuLatencyHidingSchedulerBaseTest, GPUProfileStatisticsAggregatorDoesNotCountMissingNoops) { GPUProfileStatisticsAggregator aggregator; ProfileStatisticsAggregator::Statistics before_stats = aggregator.GetStats(); ASSERT_EQ(before_stats.missing_instructions.size(), 0); ASSERT_EQ(before_stats.found_instructions_count, 0); absl::string_view kFdoProfile = ""; absl::string_view kHloModule = R"( HloModule m ENTRY main { parameter0 = f32[] parameter(0) parameter1 = f32[32] parameter(1) const0 = f32[] constant(42) bitcast0 = f32[2,16] bitcast(parameter1) partition-id0 = u32[] partition-id() replica-id0 = u32[] replica-id() tuple0 = (f32[], f32[2,16], u32[], u32[]) tuple(parameter0, bitcast0, partition-id0, replica-id0) opt-barrier = (f32[], f32[2,16], u32[], u32[]) opt-barrier(tuple0) ROOT _ = get-tuple-element(opt-barrier), index=0 } )"; auto config = GetModuleConfig(kFdoProfile); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloModule, config)); for (const HloInstruction* instr : module->entry_computation()->instructions()) { aggregator.HandleMissingInstructionCost(*instr); ProfileStatisticsAggregator::Statistics after_stats = aggregator.GetStats(); EXPECT_EQ(after_stats.missing_instructions.size(), 0); EXPECT_EQ(after_stats.found_instructions_count, 0); } } TEST_F(GpuLatencyHidingSchedulerBaseTest, GPUProfileStatisticsAggregatorCountsMissingInstruction) { GPUProfileStatisticsAggregator aggregator; ProfileStatisticsAggregator::Statistics before_stats = aggregator.GetStats(); ASSERT_EQ(before_stats.missing_instructions.size(), 0); ASSERT_EQ(before_stats.found_instructions_count, 0); absl::string_view kFdoProfile = R"pb( costs { name: "dot0" cost_us: 100.0 } )pb"; absl::string_view kHloModule = R"( HloModule m ENTRY main { parameter0 = f32[] parameter(0) parameter1 = f32[32] parameter(1) const0 = f32[] constant(42) add0 = f32[] add(parameter0, const0) bitcast0 = f32[2,16] bitcast(parameter1) tuple0 = (f32[], f32[2,16]) tuple(add0, bitcast0) ROOT _ = get-tuple-element(tuple0), index=0 } )"; auto config = GetModuleConfig(kFdoProfile); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloModule, config)); for (const HloInstruction* instr : module->entry_computation()->instructions()) { aggregator.HandleMissingInstructionCost(*instr); } ProfileStatisticsAggregator::Statistics after_stats = aggregator.GetStats(); EXPECT_EQ(after_stats.missing_instructions.size(), 1); EXPECT_EQ((*after_stats.missing_instructions.begin())->opcode(), HloOpcode::kAdd); EXPECT_EQ(after_stats.found_instructions_count, 0); } TEST_F(GpuLatencyHidingSchedulerBaseTest, GPUProfileStatisticsAggregatorCountsMissingAsyncPairs) { GPUProfileStatisticsAggregator aggregator; ProfileStatisticsAggregator::Statistics before_stats = aggregator.GetStats(); ASSERT_EQ(before_stats.missing_instructions.size(), 0); ASSERT_EQ(before_stats.found_instructions_count, 0); absl::string_view kFdoProfile = ""; absl::string_view kHloModule = R"( HloModule m reduce { x = f32[] parameter(0) y = f32[] parameter(1) ROOT _ = f32[] add(x, y) } ENTRY main { p0 = f32[] parameter(0) p1 = f32[2] parameter(1) ar_0 = f32[] all-reduce-start(p0), to_apply=reduce ar_1 = f32[] all-reduce-done(ar_0) rs_0 = ((f32[2]), f32[1]) reduce-scatter-start(p1), to_apply=reduce, dimensions={0} rs_1 = f32[1] reduce-scatter-done(rs_0) ag_0 = (f32[2], f32[4]) all-gather-start(p1), replica_groups={{0,1}}, dimensions={0} ag_1 = f32[4] all-gather-done(ag_0) ROOT _ = (f32[], f32[1], f32[4]) tuple(ar_1, rs_1, ag_1) } )"; auto config = GetModuleConfig(kFdoProfile); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloModule, config)); for (const HloInstruction* instr : module->entry_computation()->instructions()) { for (const HloInstruction* user : instr->users()) { aggregator.HandleMissingInstructionLatency(*instr, *user); } } ProfileStatisticsAggregator::Statistics after_stats = aggregator.GetStats(); EXPECT_EQ(after_stats.found_instructions_count, 0); EXPECT_EQ(after_stats.missing_instructions.size(), 3); EXPECT_THAT( after_stats.missing_instructions, UnorderedElementsAre( Property(&HloInstruction::opcode, HloOpcode::kAllReduceStart), Property(&HloInstruction::opcode, HloOpcode::kAsyncStart), Property(&HloInstruction::opcode, HloOpcode::kAllGatherStart))); } TEST_F(GpuLatencyHidingSchedulerBaseTest, ScheduleGpuModuleErrorsOutOnMissingInstrucitonsForAWhileLoopBody) { absl::string_view kFdoProfile = R"pb( costs { name: "dot0" cost_us: 100.0 } )pb"; absl::string_view kHloModule = R"( HloModule m loop_body { p = (u32[], f32[1]) parameter(0) t0 = u32[] get-tuple-element(p), index=0 t1 = f32[1] get-tuple-element(p), index=1 add0 = f32[1] add(t1, t1) ROOT _ = (u32[],f32[1]) tuple(t0,t1) } loop_cond { p1 = (u32[], f32[1]) parameter(0) count = u32[] get-tuple-element(p1), index=0 ub = u32[] constant(2) ROOT _ = pred[] compare(count, ub), direction=LT } ENTRY main { p2 = f32[1] parameter(0) ind = u32[] constant(1) t = (u32[],f32[1]) tuple(ind,p2) w = (u32[],f32[1]) while(t), body=loop_body, condition=loop_cond ROOT _ = f32[1] get-tuple-element(w), index=1 } )"; auto config = GetModuleConfig(kFdoProfile); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule, config)); EXPECT_THAT(ScheduleModule(module.get()), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST_F(GpuLatencyHidingSchedulerBaseTest, ScheduleGpuModuleErrorsOutOnMissingInstrucitonsForAnEntryComputation) { absl::string_view kFdoProfile = R"pb( costs { name: "dot0" cost_us: 100.0 } )pb"; absl::string_view kHloModule = R"( HloModule m ENTRY main { p0 = f32[1] parameter(0) ROOT add0 = f32[1] add(p0,p0) } )"; auto config = GetModuleConfig(kFdoProfile); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule, config)); EXPECT_THAT(ScheduleModule(module.get()), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST_F(GpuLatencyHidingSchedulerBaseTest, ScheduleGpuModulePassesOnFullFDOProfile) { absl::string_view kFdoProfile = R"pb( costs { name: "add0" cost_us: 100.0 } )pb"; absl::string_view kHloModule = R"( HloModule m ENTRY main { p0 = f32[1] parameter(0) ROOT add0 = f32[1] add(p0,p0) } )"; auto config = GetModuleConfig(kFdoProfile); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule, config)); TF_EXPECT_OK(ScheduleModule(module.get())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/gpu_latency_hiding_scheduler.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/gpu_latency_hiding_scheduler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ae38afae-cea4-480b-bc81-c353972f7926
cpp
tensorflow/tensorflow
reduction_utils
third_party/xla/xla/service/gpu/reduction_utils.cc
third_party/xla/xla/service/gpu/reduction_utils_test.cc
#include "xla/service/gpu/reduction_utils.h" #include <algorithm> #include <array> #include <atomic> #include <cstdint> #include <ostream> #include "absl/algorithm/container.h" #include "absl/base/const_init.h" #include "absl/strings/str_join.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout_util.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/semantic_version.h" #include "xla/util.h" #include "tsl/platform/logging.h" #ifdef GOOGLE_CUDA #include "xla/service/gpu/gpu_asm_opts_util.h" #include "xla/stream_executor/cuda/cuda_asm_compiler.h" #endif namespace xla { namespace gpu { namespace { Vector3 PartitionShapeByMiddleDimensions( const Shape& shape, absl::Span<const int64_t> dims_middle) { CHECK(LayoutUtil::AreDimensionsConsecutive(shape.layout(), dims_middle)); Vector3 values = {1, 1, 1}; enum Segment { kMajor = 0, kMiddle = 1, kMinor = 2 }; Segment cur_segment = kMinor; for (int64_t cur_dim : LayoutUtil::MinorToMajor(shape)) { if (cur_segment != kMajor) { bool cur_dim_in_middle = absl::c_linear_search(dims_middle, cur_dim); if (cur_segment == kMinor) { if (cur_dim_in_middle) { cur_segment = kMiddle; } } else if (cur_segment == kMiddle) { if (!cur_dim_in_middle) { cur_segment = kMajor; } } } values[cur_segment] *= shape.dimensions(cur_dim); } return values; } } int64_t MinThreadsXRowReduction(const HloModuleConfig& hlo_module_config) { #ifdef GOOGLE_CUDA static absl::Mutex mutex(absl::kConstInit); static std::atomic<bool*> use_reduced_thread_count_atomic = nullptr; bool* use_reduced_thread_count = use_reduced_thread_count_atomic.load(std::memory_order_acquire); if (use_reduced_thread_count == nullptr) { absl::MutexLock lock(&mutex); use_reduced_thread_count = use_reduced_thread_count_atomic.load(std::memory_order_relaxed); if (use_reduced_thread_count == nullptr) { auto ptxas_config = PtxOptsFromDebugOptions(hlo_module_config.debug_options()); auto ptxas_version_tuple = se::GetAsmCompilerVersion(ptxas_config.preferred_cuda_dir); use_reduced_thread_count = new bool(false); if (!ptxas_version_tuple.ok() || ptxas_version_tuple.value() < stream_executor::SemanticVersion{12, 2, 0}) { *use_reduced_thread_count = true; } use_reduced_thread_count_atomic.store(use_reduced_thread_count, std::memory_order_release); } } if (*use_reduced_thread_count) { return 512; } #endif return 1024; } Vector3 GetReductionTiling(const ReductionDimensions& reduction_dimensions) { if (reduction_dimensions.is_row_reduction) { int64_t tile_z = std::min(reduction_dimensions.dimensions[0], BatchedReductionRaceFreeBound()); return {tile_z, 1, 16}; } return {1, 128, 1}; } int64_t ReductionDimensionRaceFreeBound( const HloModuleConfig& hlo_module_config, const ReductionDimensions& reduction_dimensions) { Vector3 reduction_tiling = GetReductionTiling(reduction_dimensions); if (reduction_dimensions.is_row_reduction) { return MinThreadsXRowReduction(hlo_module_config) * reduction_tiling[2]; } return WarpSize() * reduction_tiling[1]; } bool IsUnnestedReductionFasterThanElemental( const ReductionDimensions& reduction_dimensions) { if (reduction_dimensions.is_row_reduction) { return (reduction_dimensions.dimensions[2] >= WarpSize()) || ((WarpSize() % reduction_dimensions.dimensions[2]) == 0); } int64_t major_size = reduction_dimensions.dimensions[1]; int64_t minor_size = reduction_dimensions.dimensions[2]; bool prefer_elemental_emitter = (major_size < WarpSize()) || (major_size < 2 * WarpSize() && minor_size < WarpSize()) || (major_size < 4 * WarpSize() && minor_size < 8) || (major_size < 8 * WarpSize() && minor_size < 3); return !prefer_elemental_emitter; } bool IsReductionFromOrToContiguousDimensions(const HloInstruction& reduce) { if (reduce.opcode() != HloOpcode::kReduce) { return false; } const Shape& operand_shape = reduce.operand(0)->shape(); absl::Span<const int64_t> dims_to_reduce = reduce.dimensions(); DimensionVector dims_to_keep; for (int64_t dim = 0; dim < operand_shape.dimensions().size(); ++dim) { if (!absl::c_linear_search(dims_to_reduce, dim)) { dims_to_keep.push_back(dim); } } return (LayoutUtil::AreDimensionsConsecutive(operand_shape.layout(), dims_to_keep) || LayoutUtil::AreDimensionsConsecutive(operand_shape.layout(), dims_to_reduce)) && IsUnnestedReductionFasterThanElemental( GetReductionKindAndContiguousComponents(reduce)); } bool ReductionIsRaceFree(const HloModuleConfig& hlo_module_config, const ReductionDimensions& reduction_dimensions) { if (reduction_dimensions.is_row_reduction) { return reduction_dimensions.dimensions[2] <= ReductionDimensionRaceFreeBound(hlo_module_config, reduction_dimensions) && reduction_dimensions.dimensions[0] <= BatchedReductionRaceFreeBound(); } return reduction_dimensions.dimensions[1] <= ReductionDimensionRaceFreeBound(hlo_module_config, reduction_dimensions); } std::ostream& operator<<(std::ostream& os, const ReductionDimensions& reduction_dimensions) { bool is_row_reduction = reduction_dimensions.is_row_reduction; os << (is_row_reduction ? "row " : "column ") << "reduction [" << absl::StrJoin(reduction_dimensions.dimensions, ",") << "] -> [" << reduction_dimensions.dimensions[0] << ", " << reduction_dimensions .dimensions[is_row_reduction ? ReductionDimensions::kRowKeptDimension : ReductionDimensions::kColMinorKeptDimension] << "]"; return os; } ReductionDimensions GetReductionKindAndContiguousComponents( const HloInstruction& reduce) { Shape input_shape = reduce.operand(0)->shape(); absl::Span<const int64_t> dims_to_reduce = reduce.dimensions(); DimensionVector dims_to_keep; for (int64_t dim = 0; dim < input_shape.rank(); ++dim) { if (!absl::c_linear_search(dims_to_reduce, dim)) { dims_to_keep.push_back(dim); } } if (dims_to_keep.empty()) { return {true, {1, 1, ShapeUtil::ElementsIn(input_shape)}}; } if (LayoutUtil::AreDimensionsConsecutive(input_shape.layout(), dims_to_keep)) { Vector3 shape_partition = PartitionShapeByMiddleDimensions(input_shape, dims_to_keep); if (shape_partition[1] == 1) { return {true, {1, 1, shape_partition[0] * shape_partition[2]}}; } if (shape_partition[2] == 1) { return {false, {1, shape_partition[0], shape_partition[1]}}; } return {true, shape_partition}; } Vector3 shape_partition = PartitionShapeByMiddleDimensions(input_shape, dims_to_reduce); if (shape_partition[2] == 1) { return {true, {1, shape_partition[0], shape_partition[1]}}; } return {false, shape_partition}; } bool IsRealReductionHero(const HloInstruction& root, const HloInstruction& hero) { if (!IsReductionFromOrToContiguousDimensions(hero)) { return false; } return &root == &hero || ReductionIsRaceFree(hero.GetModule()->config(), GetReductionKindAndContiguousComponents(hero)); } bool AreReductionsMultiOutputFusionCompatible( const HloInstruction* reduce_hero, const HloInstruction* first_reduce) { return GetReductionKindAndContiguousComponents(*reduce_hero) == GetReductionKindAndContiguousComponents(*first_reduce); } } }
#include "xla/service/gpu/reduction_utils.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; using ReductionUtilsTest = HloTestBase; const char kModulePrefix[] = R"( HloModule test_module scalar_add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) })"; TEST_F(ReductionUtilsTest, ReductionsAreMultioutputFusionCompatible) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_sibling1 { p_0 = f32[32,64]{1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(p_0, constant), dimensions={1}, to_apply=scalar_add } fused_sibling2 { p_0 = f32[32,64]{1,0} parameter(0) neg = f32[32,64]{1,0} negate(p_0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(neg, constant), dimensions={1}, to_apply=scalar_add } ENTRY entry { p_0 = f32[32,64]{1,0} parameter(0) fusion1 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling1 fusion2 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling2 ROOT root = (f32[32]{0}, f32[32]{0}) tuple(fusion1, fusion2) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion1 = root->operand(0); const HloInstruction* fusion2 = root->operand(1); EXPECT_TRUE(AreReductionsMultiOutputFusionCompatible( fusion1->fused_expression_root(), fusion2->fused_expression_root())); } TEST_F(ReductionUtilsTest, ReductionsWithSameCanonicalizedDimsAreMultioutputFusionCompatible) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_sibling1 { p_0 = f32[32,64]{1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(p_0, constant), dimensions={1}, to_apply=scalar_add } fused_sibling2 { p_0 = f32[32,64]{1,0} parameter(0) bitcast = f32[32,8,8]{2,1,0} bitcast(p_0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(bitcast, constant), dimensions={1,2}, to_apply=scalar_add } ENTRY entry { p_0 = f32[32,64]{1,0} parameter(0) fusion1 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling1 fusion2 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling2 ROOT root = (f32[32]{0}, f32[32]{0}) tuple(fusion1, fusion2) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion1 = root->operand(0); const HloInstruction* fusion2 = root->operand(1); EXPECT_TRUE(AreReductionsMultiOutputFusionCompatible( fusion1->fused_expression_root(), fusion2->fused_expression_root())); } TEST_F(ReductionUtilsTest, ReductionsAreNotMultioutputFusionCompatible_DifferentOperandShapes) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_sibling1 { p_0 = f32[32,64]{1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(p_0, constant), dimensions={1}, to_apply=scalar_add } fused_sibling2 { p_0 = f32[64,32]{1,0} parameter(0) neg = f32[64,32]{1,0} negate(p_0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(neg, constant), dimensions={0}, to_apply=scalar_add } ENTRY entry { p_0 = f32[32,64]{1,0} parameter(0) p_1 = f32[64,32]{1,0} parameter(1) fusion1 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling1 fusion2 = f32[32]{0} fusion(p_1), kind=kInput, calls=fused_sibling2 ROOT root = (f32[32]{0}, f32[32]{0}) tuple(fusion1, fusion2) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion1 = root->operand(0); const HloInstruction* fusion2 = root->operand(1); EXPECT_FALSE(AreReductionsMultiOutputFusionCompatible( fusion1->fused_expression_root(), fusion2->fused_expression_root())); } TEST_F(ReductionUtilsTest, ReductionsAreNotMultioutputFusionCompatible_DifferentOutputShapes) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_sibling1 { p_0 = f32[32,64]{1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(p_0, constant), dimensions={1}, to_apply=scalar_add } fused_sibling2 { p_0 = f32[64,32]{1,0} parameter(0) neg = f32[64,32]{1,0} negate(p_0) constant = f32[] constant(0) ROOT reduce = f32[64]{0} reduce(neg, constant), dimensions={1}, to_apply=scalar_add } ENTRY entry { p_0 = f32[32,64]{1,0} parameter(0) p_1 = f32[64,32]{1,0} parameter(1) fusion1 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling1 fusion2 = f32[64]{0} fusion(p_1), kind=kInput, calls=fused_sibling2 ROOT root = (f32[32]{0}, f32[64]{0}) tuple(fusion1, fusion2) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion1 = root->operand(0); const HloInstruction* fusion2 = root->operand(1); EXPECT_FALSE(AreReductionsMultiOutputFusionCompatible( fusion1->fused_expression_root(), fusion2->fused_expression_root())); } TEST_F(ReductionUtilsTest, ReductionsAreNotMultioutputFusionCompatible_DifferentReduceDimensions) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_sibling1 { p_0 = f32[32,32]{1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(p_0, constant), dimensions={0}, to_apply=scalar_add } fused_sibling2 { p_0 = f32[32,32]{1,0} parameter(0) neg = f32[32,32]{1,0} negate(p_0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(neg, constant), dimensions={1}, to_apply=scalar_add } ENTRY entry { p_0 = f32[32,32]{1,0} parameter(0) fusion1 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling1 fusion2 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling2 ROOT root = (f32[32]{0}, f32[32]{0}) tuple(fusion1, fusion2) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion1 = root->operand(0); const HloInstruction* fusion2 = root->operand(1); EXPECT_FALSE(AreReductionsMultiOutputFusionCompatible( fusion1->fused_expression_root(), fusion2->fused_expression_root())); } TEST(ReductionDimensionsTest, GetOutputShape) { ReductionDimensions row_reduction{true, {1, 2, 3}}; ReductionDimensions col_reduction{false, {1, 2, 3}}; EXPECT_THAT(row_reduction.GetOutputShape(), ElementsAre(2)); EXPECT_THAT(col_reduction.GetOutputShape(), ElementsAre(1, 3)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/reduction_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/reduction_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
757b4fb9-3ffb-4887-8a6f-740c46156148
cpp
tensorflow/tensorflow
runtime_intrinsics
third_party/xla/xla/service/gpu/runtime_intrinsics.cc
third_party/xla/xla/service/gpu/runtime_intrinsics_test.cc
#include "xla/service/gpu/runtime_intrinsics.h" #include <cstdint> #include <string> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/ascii.h" #include "absl/strings/string_view.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/custom_call_status.h" #include "xla/service/custom_call_target_registry.h" #include "xla/service/platform_util.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_finder.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { std::string GetGpuPlatformName() { return absl::AsciiStrToUpper( PlatformUtil::CanonicalPlatformName("gpu").value()); } absl::Status AssertOnGpu(void* stream_handle, void* buffer, absl::string_view error_msg) { TF_ASSIGN_OR_RETURN( se::Platform * platform, se::PlatformManager::PlatformWithName(GetGpuPlatformName())); TF_ASSIGN_OR_RETURN(se::Stream * stream, stream_executor::FindStream(platform, stream_handle)); if (!stream) { return Internal("Stream not found for: %p", stream_handle); } int8_t expected = false; int64_t byte_size = sizeof(int8_t); CHECK_EQ(byte_size, ShapeUtil::ByteSizeOfPrimitiveType(PrimitiveType::PRED)); TF_RETURN_IF_ERROR(stream->Memcpy( &expected, se::DeviceMemoryBase{buffer, static_cast<uint64_t>(byte_size)}, byte_size)); TF_RETURN_IF_ERROR(stream->BlockHostUntilDone()); if (!static_cast<bool>(expected)) { return Internal("%s", error_msg); } return absl::OkStatus(); } void AssertionCustomCall(void* stream_handle, void** buffers, const char* opaque, int opaque_len, XlaCustomCallStatus* status) { absl::Status s = AssertOnGpu(stream_handle, buffers[0], absl::string_view{opaque, static_cast<uint64_t>(opaque_len)}); if (!s.ok()) { auto msg = s.message(); XlaCustomCallStatusSetFailure(status, msg.data(), msg.size()); } } void NopReturnTokenCustomCall(void* stream_handle, void** buffers, const char* opaque, int opaque_len, XlaCustomCallStatus* status) { VLOG(1) << "NopReturnTokenCustomCall called."; } } XLA_REGISTER_CUSTOM_CALL_TARGET_WITH_SYM( std::string(kXlaGpuAssertCustomCallTag), AssertionCustomCall, GetGpuPlatformName()); XLA_REGISTER_CUSTOM_CALL_TARGET_WITH_SYM( std::string(kNopReturnTokenCustomCallTarget), NopReturnTokenCustomCall, GetGpuPlatformName()); }
#include <memory> #include <utility> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using RuntimeIntrinsicsTest = HloTestBase; TEST_F(RuntimeIntrinsicsTest, NopReturnTokenWorks) { constexpr absl::string_view kHloText = R"( HloModule m ENTRY e { constant = u32[2]{0} constant({0, 1}) ROOT nop_return_token = token[] custom-call(constant), custom_call_target="NopReturnToken", custom_call_has_side_effect=true })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, GetOptimizedModule(kHloText)); EXPECT_EQ(module->entry_computation()->instruction_count(), 2); EXPECT_TRUE(Run(std::move(module), false)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/runtime_intrinsics.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/runtime_intrinsics_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7606cb75-ccae-4f79-b2f0-741f5d1073cb
cpp
tensorflow/tensorflow
ir_emitter
third_party/xla/xla/service/cpu/ir_emitter.cc
third_party/xla/xla/service/cpu/ir_emitter_test.cc
#include "xla/service/cpu/ir_emitter.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <cstddef> #include <iterator> #include <limits> #include <map> #include <memory> #include <optional> #include <string> #include <string_view> #include <type_traits> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/cleanup/cleanup.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/meta/type_traits.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/FMF.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicsX86.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Value.h" #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout_util.h" #include "xla/literal_util.h" #include "xla/map_util.h" #include "xla/primitive_util.h" #include "xla/service/buffer_assignment.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/cpu/backend_config.pb.h" #include "xla/service/cpu/cpu_options.h" #include "xla/service/cpu/cpu_runtime.h" #include "xla/service/cpu/dot_op_emitter.h" #include "xla/service/cpu/elemental_math_emitter.h" #include "xla/service/cpu/ir_emission_utils.h" #include "xla/service/cpu/ir_function.h" #include "xla/service/cpu/onednn_config.pb.h" #include "xla/service/cpu/parallel_loop_emitter.h" #include "xla/service/elemental_ir_emitter.h" #include "xla/service/hlo_module_config.h" #include "xla/service/llvm_ir/buffer_assignment_util.h" #include "xla/service/llvm_ir/dynamic_update_slice_util.h" #include "xla/service/llvm_ir/ir_array.h" #include "xla/service/llvm_ir/llvm_loop.h" #include "xla/service/llvm_ir/llvm_type_conversion_util.h" #include "xla/service/llvm_ir/llvm_util.h" #include "xla/service/llvm_ir/loop_emitter.h" #include "xla/service/llvm_ir/tuple_ops.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tsl/lib/math/math_util.h" #include "xla/util.h" #include "xla/window_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) #include "xla/service/cpu/onednn_memory_util.h" #endif namespace xla { namespace { using llvm_ir::IrName; using llvm_ir::SetToFirstInsertPoint; } namespace cpu { class IrEmitter::CpuElementalIrEmitter : public ElementalIrEmitter { public: CpuElementalIrEmitter(const HloModuleConfig& module_config, IrEmitter* ir_emitter, llvm::Module* module) : ElementalIrEmitter( module, ir_emitter->b(), Options{true}), hlo_module_config_(module_config), ir_emitter_(ir_emitter) {} protected: absl::StatusOr<llvm::Value*> EmitAtan2(PrimitiveType prim_type, llvm::Value* lhs, llvm::Value* rhs, absl::string_view) override { return xla::cpu::EmitAtan2(module(), *b(), prim_type, lhs, rhs); } absl::StatusOr<llvm::Value*> EmitTanh(PrimitiveType prim_type, llvm::Value* value) override { return xla::cpu::EmitTanh(module(), *b(), prim_type, value); } absl::StatusOr<llvm::Value*> EmitErf(PrimitiveType prim_type, llvm::Value* value) override { return xla::cpu::EmitErf(module(), *b(), prim_type, value); } absl::StatusOr<std::vector<llvm::Value*>> EmitThreadLocalCall( const HloComputation& callee, absl::Span<llvm::Value* const> parameters, absl::string_view name, bool is_reducer) override { return ir_emitter_->EmitThreadLocalCall(callee, parameters, name, is_reducer); } bool fast_min_max() override { return hlo_module_config_.debug_options().xla_cpu_enable_fast_min_max(); } const HloModuleConfig& hlo_module_config_; IrEmitter* ir_emitter_; }; IrEmitter::IrEmitter(mlir::MLIRContext* mlir_context, const HloModule& hlo_module, const BufferAssignment& assignment, llvm::Module* llvm_module, absl::flat_hash_map<const HloInstruction*, int64_t> instruction_to_profile_idx, absl::flat_hash_map<const HloComputation*, int64_t> computation_to_profile_idx, absl::flat_hash_map<const HloComputation*, bool> computation_transitively_contains_custom_call, const TargetMachineFeatures* target_machine_features, bool emit_code_for_msan) : assignment_(assignment), module_(llvm_module), arch_type_(llvm::Triple(llvm_module->getTargetTriple()).getArch()), main_builder_(llvm_module->getContext()), current_builder_(&main_builder_), mlir_context_(mlir_context), instruction_to_profile_idx_(std::move(instruction_to_profile_idx)), computation_to_profile_idx_(std::move(computation_to_profile_idx)), computation_transitively_contains_custom_call_( std::move(computation_transitively_contains_custom_call)), alias_analysis_(hlo_module, assignment, &llvm_module->getContext()), hlo_module_config_(hlo_module.config()), is_top_level_computation_(false), target_machine_features_(*target_machine_features), emit_code_for_msan_(emit_code_for_msan) { b()->setFastMathFlags(llvm_ir::GetCpuFastMathFlags(hlo_module_config_)); absl::Status s = GatherComputationsByAllocationType( &hlo_module, &thread_local_computations_, &global_computations_); absl::c_sort(thread_local_computations_); absl::c_sort(global_computations_); TF_CHECK_OK(s) << "Should have failed buffer assignment."; } IrEmitter::~IrEmitter() { if (!compute_function_.empty()) { LOG(WARNING) << "Compute function stack is not empty: " << compute_function_.size(); } }; void IrEmitter::EmitThreadLocalFunctionEpilogue(HloComputation* computation) { llvm::Argument* out_parameter = compute_function()->result_arg(); llvm_ir::IrArray root_value = GetIrArrayFor(computation->root_instruction()); const Shape& return_shape = computation->root_instruction()->shape(); if (ShapeUtil::IsScalar(return_shape)) { llvm::Value* ret_value = Load(root_value.GetBasePointeeType(), root_value.GetBasePointer(), "load_ret_value"); Store(ret_value, out_parameter); } else { CHECK(return_shape.IsTuple()); llvm::Type* tuple_type = llvm_ir::ShapeToIrType(return_shape, module_); for (int i = 0; i < return_shape.tuple_shapes_size(); i++) { const Shape& element_shape = return_shape.tuple_shapes(i); llvm::Value* destination = llvm_ir::EmitGetTupleElement( element_shape, i, MinimumAlignmentForShape(element_shape), out_parameter, tuple_type, b()); llvm::Value* source = llvm_ir::EmitGetTupleElement( element_shape, i, MinimumAlignmentForShape(element_shape), root_value.GetBasePointer(), root_value.GetBasePointeeType(), b()); Store(Load(IrShapeType(element_shape), source), destination); } } } absl::StatusOr<llvm::Function*> IrEmitter::EmitComputation( HloComputation* computation, absl::string_view function_name_prefix, bool is_top_level_computation, absl::Span<HloInstruction* const> instruction_order, bool allow_reassociation, absl::Span<const llvm::Attribute::AttrKind> function_attributes) { std::string function_name = name_uniquer_.GetUniqueName(function_name_prefix); VLOG(2) << "Emitting IR for CPU function [" << function_name_prefix << "]"; is_top_level_computation_ = is_top_level_computation; allow_reassociation_ = allow_reassociation; num_dynamic_loop_bounds_ = 0; auto backend_config_or = computation->root_instruction()->backend_config<BackendConfig>(); if (backend_config_or.ok() && !backend_config_or->outer_dimension_partitions().empty()) { num_dynamic_loop_bounds_ = backend_config_or->outer_dimension_partitions().size(); } if (computation->root_instruction()->opcode() != HloOpcode::kOutfeed) { TF_ASSIGN_OR_RETURN( computation_root_allocation_, assignment_.GetUniqueTopLevelSlice(computation->root_instruction())); } bool has_thread_local_param = false; for (const HloInstruction* param : computation->parameter_instructions()) { TF_ASSIGN_OR_RETURN(BufferAllocation::Slice param_slice, assignment_.GetUniqueTopLevelSlice(param)); has_thread_local_param |= param_slice.allocation()->is_thread_local(); computation_parameter_allocations_[param_slice.allocation()->index()] = param->parameter_number(); } InitializeIrFunction(function_name); bool use_rdtscp = arch_type_ == llvm::Triple::ArchType::x86 || arch_type_ == llvm::Triple::ArchType::x86_64; profiling_state_ = ProfilingState(use_rdtscp); tracing_state_.set_enabled( computation->parent()->config().cpu_traceme_enabled()); llvm::IRBuilderBase::FastMathFlagGuard guard(*b()); llvm::FastMathFlags flags = b()->getFastMathFlags(); flags.setAllowReassoc(flags.allowReassoc() || allow_reassociation); b()->setFastMathFlags(flags); TF_RETURN_IF_ERROR(computation->AcceptOrdered(this, instruction_order)); llvm::Function* ir_function = compute_function()->function(); for (llvm::Attribute::AttrKind attr : function_attributes) { ir_function->addFnAttr(attr); } InsertOrDie(&emitted_functions_, ComputationToEmit{computation, allow_reassociation}, ir_function); const BufferAllocation* root_allocation = computation_root_allocation_.allocation(); if (root_allocation && (root_allocation->is_thread_local() || (root_allocation->is_constant() && has_thread_local_param))) { EmitThreadLocalFunctionEpilogue(computation); } PopComputeFunction(); computation_root_allocation_ = BufferAllocation::Slice(); computation_parameter_allocations_.clear(); return ir_function; } void IrEmitter::InitializeIrFunction(const std::string& function_name) { llvm::Function::LinkageTypes linkage = is_top_level_computation_ ? llvm::GlobalValue::ExternalLinkage : llvm::GlobalValue::InternalLinkage; compute_function_.emplace(function_name, linkage, hlo_module_config_, module_, b(), num_dynamic_loop_bounds_); } absl::Status IrEmitter::HandleBitcast(HloInstruction* bitcast) { VLOG(2) << "HandleBitcast: " << bitcast->ToString(); emitted_value_[bitcast] = GetEmittedValueFor(bitcast->operand(0)); return absl::OkStatus(); } llvm::Constant* IrEmitter::EmitGlobalForLiteral(const Literal& literal) { llvm::Constant* initializer = llvm_ir::ConvertLiteralToIrConstant(literal, module_); llvm::GlobalVariable* result_global = new llvm::GlobalVariable( *module_, initializer->getType(), true, llvm::GlobalValue::PrivateLinkage, initializer, ""); result_global->setAlignment( llvm::Align(MinimumAlignmentForShape(literal.shape()))); result_global->setUnnamedAddr(llvm::GlobalVariable::UnnamedAddr::Global); return result_global; } absl::Status IrEmitter::EmitConstantGlobals() { for (const BufferAllocation& allocation : assignment_.Allocations()) { if (!allocation.is_constant()) { continue; } const Literal& literal = llvm_ir::LiteralForConstantAllocation(allocation); llvm::Constant* global_for_const; auto it = emitted_literals_.find(LayoutSensitiveLiteralWrapper{literal}); if (it != emitted_literals_.end()) { global_for_const = it->second; } else { global_for_const = EmitGlobalForLiteral(literal); InsertOrDie(&emitted_literals_, LayoutSensitiveLiteralWrapper{literal}, global_for_const); } InsertOrDie(&constant_buffer_to_global_, allocation.index(), global_for_const); } return absl::OkStatus(); } absl::Status IrEmitter::HandleConstant(HloInstruction* constant) { VLOG(2) << "HandleConstant: " << constant->ToString(); return EmitTargetAddressForOp(constant); } absl::Status IrEmitter::HandleCopy(HloInstruction* copy) { if (copy->shape().IsTuple() || (copy->shape().IsArray() && LayoutUtil::Equal(copy->operand(0)->shape().layout(), copy->shape().layout()))) { TF_RETURN_IF_ERROR(EmitTargetAddressForOp(copy)); return EmitMemcpy(*(copy->operand(0)), *copy); } else if (copy->shape().IsArray()) { return DefaultAction(copy); } return Unimplemented("unsupported operand type %s for copy instruction", PrimitiveType_Name(copy->shape().element_type())); } int MinimumAlignmentForPrimitiveType(PrimitiveType primitive_type) { int64_t byte_size = ShapeUtil::ByteSizeOfPrimitiveType(primitive_type); DCHECK_GE(byte_size, 0); DCHECK_LE(byte_size, 16); return std::min(int64_t{8}, byte_size); } int IrEmitter::MinimumAlignmentForPrimitiveType(PrimitiveType primitive_type) { return ::xla::cpu::MinimumAlignmentForPrimitiveType(primitive_type); } int64_t IrEmitter::ByteSizeOf(const Shape& shape) const { return llvm_ir::ByteSizeOf(shape, module_->getDataLayout()); } int IrEmitter::MinimumAlignmentForShape(const Shape& shape) { if (ShapeUtil::IsScalar(shape)) { return MinimumAlignmentForPrimitiveType(shape.element_type()); } int64_t buffer_size = ByteSizeOf(shape); DCHECK_GE(buffer_size, 0); DCHECK_LE(buffer_size, SIZE_MAX); return target_machine_features_.minimum_alignment_for_allocation(buffer_size); } void IrEmitter::AttachAlignmentMetadataForLoad(llvm::LoadInst* load, const Shape& shape) { int alignment = MinimumAlignmentForShape(shape); if (alignment > 1) { llvm_ir::SetAlignmentMetadataForLoad(load, alignment); } } void IrEmitter::AttachAlignmentMetadataForLoad(llvm::LoadInst* load, int64_t buffer_size) { int alignment = target_machine_features_.minimum_alignment_for_allocation(buffer_size); if (alignment > 1) { llvm_ir::SetAlignmentMetadataForLoad(load, alignment); } } void IrEmitter::AttachDereferenceableMetadataForLoad(llvm::LoadInst* load, const Shape& shape) { AttachDereferenceableMetadataForLoad(load, ByteSizeOf(shape)); } void IrEmitter::AttachDereferenceableMetadataForLoad(llvm::LoadInst* load, int64_t buffer_size) { if (buffer_size > 0) { llvm_ir::SetDereferenceableMetadataForLoad(load, buffer_size); } } void IrEmitter::AttachInvariantLoadMetadataForLoad(llvm::LoadInst* load) const { AttachInvariantLoadMetadataForLoad(load, hlo_module_config_); } void IrEmitter::AttachInvariantLoadMetadataForLoad( llvm::LoadInst* load, const HloModuleConfig& config) { if (config.debug_options().xla_llvm_enable_invariant_load_metadata()) { load->setMetadata(llvm::LLVMContext::MD_invariant_load, llvm::MDNode::get(load->getContext(), {})); } } absl::Status IrEmitter::HandleGetTupleElement( HloInstruction* get_tuple_element) { const HloInstruction* operand = get_tuple_element->operand(0); const Shape& shape = get_tuple_element->shape(); emitted_value_[get_tuple_element] = llvm_ir::EmitGetTupleElement( shape, get_tuple_element->tuple_index(), MinimumAlignmentForShape(shape), GetEmittedValueFor(operand), IrShapeType(operand->shape()), b()); return absl::OkStatus(); } absl::Status IrEmitter::HandleSelect(HloInstruction* select) { auto pred = select->operand(0); TF_RET_CHECK(pred->shape().element_type() == PRED); return DefaultAction(select); } absl::Status IrEmitter::HandleInfeed(HloInstruction* instruction) { HloInfeedInstruction* infeed = Cast<HloInfeedInstruction>(instruction); VLOG(2) << "HandleInfeed: " << infeed->ToString(); const Shape& data_shape = infeed->infeed_shape(); DCHECK(ShapeUtil::Equal(data_shape, ShapeUtil::GetTupleElementShape(infeed->shape(), 0))); TF_RETURN_IF_ERROR(EmitTargetAddressForOp(infeed)); TF_ASSIGN_OR_RETURN(BufferAllocation::Slice data_slice, assignment_.GetUniqueSlice(infeed, {0})); llvm::Value* data_address = EmitBufferPointer(data_slice, data_shape); llvm::Type* data_type = IrShapeType(data_shape); TF_ASSIGN_OR_RETURN(BufferAllocation::Slice token_slice, assignment_.GetUniqueSlice(infeed, {1})); llvm::Value* token_address = EmitBufferPointer( token_slice, ShapeUtil::GetTupleElementShape(infeed->shape(), 1)); llvm_ir::EmitTuple(GetIrArrayFor(infeed), {data_address, token_address}, b()); if (data_shape.IsTuple()) { TF_RET_CHECK(!ShapeUtil::IsNestedTuple(data_shape)); std::vector<llvm::Value*> tuple_element_addresses; for (int i = 0; i < data_shape.tuple_shapes_size(); ++i) { TF_ASSIGN_OR_RETURN(BufferAllocation::Slice buffer, assignment_.GetUniqueSlice(infeed, {0, i})); const Shape& tuple_element_shape = ShapeUtil::GetTupleElementShape(data_shape, i); llvm::Value* tuple_element_address = EmitBufferPointer(buffer, tuple_element_shape); TF_RETURN_IF_ERROR(EmitXfeedTransfer( XfeedKind::kInfeed, tuple_element_shape, tuple_element_address)); tuple_element_addresses.push_back(tuple_element_address); } llvm_ir::EmitTuple(llvm_ir::IrArray(data_address, data_type, data_shape), tuple_element_addresses, b()); } else { TF_RETURN_IF_ERROR( EmitXfeedTransfer(XfeedKind::kInfeed, data_shape, data_address)); } return absl::OkStatus(); } absl::Status IrEmitter::EmitXfeedTransfer(XfeedKind kind, const Shape& shape, llvm::Value* program_buffer_address) { int64_t length = ByteSizeOf(shape); if (length < 0 || length > std::numeric_limits<int32_t>::max()) { return InvalidArgument( "xfeed (infeed or outfeed) buffer length %d is outside the valid " "size range", length); } int32_t length_32 = static_cast<int32_t>(length); int32_t shape_length; TF_ASSIGN_OR_RETURN( llvm::Value * shape_ptr, llvm_ir::EncodeSelfDescribingShapeConstant(shape, &shape_length, b())); const char* acquire_func_name = kind == XfeedKind::kInfeed ? runtime::kAcquireInfeedBufferForDequeueSymbolName : runtime::kAcquireOutfeedBufferForPopulationSymbolName; llvm::Value* acquired_pointer = EmitCallToFunc( acquire_func_name, {GetExecutableRunOptionsArgument(), b()->getInt32(length_32), shape_ptr, b()->getInt32(shape_length)}, b()->getPtrTy()); if (kind == XfeedKind::kInfeed) { MemCpy(program_buffer_address, llvm::Align(1), acquired_pointer, llvm::Align(1), length_32); } else { MemCpy(acquired_pointer, llvm::Align(1), program_buffer_address, llvm::Align(1), length_32); if (emit_code_for_msan_) { const llvm::DataLayout& dl = module_->getDataLayout(); llvm::Type* intptr_type = b()->getIntPtrTy(dl); EmitCallToFunc( "__msan_unpoison", {acquired_pointer, llvm::ConstantInt::get(intptr_type, length)}, b()->getVoidTy()); } } const char* release_func_name = kind == XfeedKind::kInfeed ? runtime::kReleaseInfeedBufferAfterDequeueSymbolName : runtime::kReleaseOutfeedBufferAfterPopulationSymbolName; EmitCallToFunc(release_func_name, {GetExecutableRunOptionsArgument(), b()->getInt32(length_32), acquired_pointer, shape_ptr, b()->getInt32(shape_length)}, b()->getVoidTy()); return absl::OkStatus(); } absl::Status IrEmitter::HandleOutfeed(HloInstruction* outfeed) { TF_RETURN_IF_ERROR(EmitTargetAddressForOp(outfeed)); HloInstruction* operand = outfeed->operands()[0]; const Shape& operand_shape = operand->shape(); llvm::Value* value = GetEmittedValueFor(operand); if (!operand_shape.IsTuple()) { return EmitXfeedTransfer(XfeedKind::kOutfeed, operand_shape, value); } TF_RET_CHECK(!ShapeUtil::IsNestedTuple(operand_shape)); for (int i = 0; i < operand_shape.tuple_shapes_size(); ++i) { const Shape& tuple_element_shape = ShapeUtil::GetTupleElementShape(operand_shape, i); llvm::Value* tuple_element = llvm_ir::EmitGetTupleElement( tuple_element_shape, i, MinimumAlignmentForShape(tuple_element_shape), value, IrShapeType(operand_shape), b()); TF_RETURN_IF_ERROR(EmitXfeedTransfer(XfeedKind::kOutfeed, tuple_element_shape, tuple_element)); } return absl::OkStatus(); } absl::Status IrEmitter::HandleSort(HloInstruction* hlo) { const HloSortInstruction* sort = Cast<HloSortInstruction>(hlo); TF_RETURN_IF_ERROR(EmitTargetAddressForOp(sort)); Shape keys_shape = sort->keys()->shape(); PrimitiveType keys_type = keys_shape.element_type(); if (!primitive_util::IsArrayType(keys_type)) { return Unimplemented("Element type %s not supported in the Sort op on CPU.", PrimitiveType_Name(keys_type)); } std::vector<llvm::Value*> destination_addresses(sort->operand_count()); for (int64_t i = 0; i < sort->operand_count(); ++i) { ShapeIndex shape_index = sort->values_count() > 0 ? ShapeIndex({i}) : ShapeIndex({}); const HloInstruction* operand = sort->operand(i); TF_RET_CHECK( LayoutUtil::LayoutsInShapesEqual(keys_shape, operand->shape())); TF_RET_CHECK(LayoutUtil::LayoutsInShapesEqual( keys_shape, ShapeUtil::GetSubshape(sort->shape(), shape_index))); auto destination_buffer = GetAllocationSlice(*sort, shape_index); destination_addresses[i] = EmitBufferPointer(destination_buffer, operand->shape()); auto source_address = GetAllocationSlice(*operand); if (destination_buffer != source_address) { int64_t primitive_type_size = ShapeUtil::ByteSizeOfPrimitiveType(operand->shape().element_type()); auto source_buffer = GetEmittedValueFor(operand); int64_t size = ByteSizeOf(operand->shape()); MemCpy(destination_addresses[i], llvm::Align(primitive_type_size), source_buffer, llvm::Align(primitive_type_size), size); } } Shape normalized_keys_shape = ShapeUtil::MakeShapeWithDescendingLayoutAndSamePhysicalLayout(keys_shape); auto logical_to_physical = LayoutUtil::MakeLogicalToPhysical(keys_shape.layout()); TF_RET_CHECK(sort->sort_dimension() < logical_to_physical.size()); int64_t physical_dimension_to_sort = logical_to_physical[sort->sort_dimension()]; int64_t sort_dimension_elements = normalized_keys_shape.dimensions(physical_dimension_to_sort); int64_t higher_dimensions = 1; for (int64_t i = 0; i < physical_dimension_to_sort; ++i) { higher_dimensions *= normalized_keys_shape.dimensions(i); } int64_t lower_dimensions = 1; for (int64_t i = normalized_keys_shape.rank() - 1; i > physical_dimension_to_sort; --i) { lower_dimensions *= normalized_keys_shape.dimensions(i); } CHECK(absl::c_binary_search(thread_local_computations_, sort->to_apply())); llvm::Value* values = llvm_ir::EmitAllocaAtFunctionEntryWithCount( b()->getPtrTy(), b()->getInt32(sort->operand_count()), "cc_values_alloca", b()); llvm::Value* sizes = llvm_ir::EmitAllocaAtFunctionEntryWithCount( b()->getInt32Ty(), b()->getInt32(sort->operand_count()), "cc_sizes_alloca", b()); for (int64_t i = 0; i < sort->operand_count(); ++i) { llvm::Value* slot_in_values_alloca = ConstInBoundsGEP1_32(b()->getPtrTy(), values, i); Store(destination_addresses[i], slot_in_values_alloca); llvm::Value* slot_in_sizes_alloca = ConstInBoundsGEP1_32(b()->getInt32Ty(), sizes, i); llvm::Value* size = b()->getInt32(ShapeUtil::ByteSizeOfPrimitiveType( sort->operand(i)->shape().element_type())); Store(size, slot_in_sizes_alloca); } auto less_than_function = FindOrDie(emitted_functions_, ComputationToEmit{sort->to_apply(), allow_reassociation_}); EmitCallToFunc( runtime::kKeyValueSortSymbolName, {b()->getInt64(higher_dimensions), b()->getInt64(sort_dimension_elements), b()->getInt64(lower_dimensions), values, b()->getInt32(sort->operand_count()), sizes, b()->getInt1(sort->is_stable()), GetExecutableRunOptionsArgument(), GetProfileCountersArgument(), less_than_function}, b()->getVoidTy()); if (sort->values_count() > 0) { llvm_ir::EmitTuple(GetIrArrayFor(sort), destination_addresses, b()); } return absl::OkStatus(); } absl::Status IrEmitter::HandleTuple(HloInstruction* tuple) { TF_RETURN_IF_ERROR(EmitTargetAddressForOp(tuple)); llvm::SmallVector<llvm::Value*> base_ptrs; for (auto operand : tuple->operands()) { base_ptrs.push_back(GetEmittedValueFor(operand)); } llvm_ir::EmitTuple(GetIrArrayFor(tuple), base_ptrs, b()); return absl::OkStatus(); } absl::Status IrEmitter::HandleReduceWindow(HloInstruction* reduce_window) { bool saved_allow_reassociation = allow_reassociation_; allow_reassociation_ = true; absl::Status status = DefaultAction(reduce_window); allow_reassociation_ = saved_allow_reassociation; return status; } absl::Status IrEmitter::HandleSelectAndScatter( HloInstruction* select_and_scatter) { CHECK_EQ(select_and_scatter->operand_count(), 3); const auto operand = select_and_scatter->operand(0); const auto source = select_and_scatter->operand(1); return HandleSelectAndScatter(select_and_scatter, GetIrArrayFor(operand), GetIrArrayFor(source), GetIrArrayFor(select_and_scatter)); } absl::Status IrEmitter::HandleSelectAndScatter( HloInstruction* select_and_scatter, const llvm_ir::IrArray& operand_array, const llvm_ir::IrArray& source_array, const llvm_ir::IrArray& output_array) { CHECK_EQ(select_and_scatter->operand_count(), 3); const auto operand = select_and_scatter->operand(0); const auto source = select_and_scatter->operand(1); const auto init_value = select_and_scatter->operand(2); const Window& window = select_and_scatter->window(); PrimitiveType operand_element_type = operand->shape().element_type(); const int64_t rank = operand->shape().rank(); CHECK_EQ(rank, source->shape().rank()); CHECK_EQ(rank, window.dimensions_size()); if (window_util::HasDilation(window)) { return Unimplemented( "Dilation for SelectAndScatter is not implemented on CPU. "); } TF_RETURN_IF_ERROR(EmitTargetElementLoop( select_and_scatter, IrName(select_and_scatter, "init"), [this, init_value](const llvm_ir::IrArray::Index& target_index) { llvm::Value* init_value_addr = GetEmittedValueFor(init_value); return Load(IrShapeType(init_value->shape()), init_value_addr); }, std::optional<llvm_ir::IrArray>(output_array))); llvm_ir::ForLoopNest source_loops(IrName(select_and_scatter), b()); const llvm_ir::IrArray::Index source_index = source_loops.AddLoopsForShape(source->shape(), "source"); SetToFirstInsertPoint(source_loops.GetInnerLoopBodyBasicBlock(), b()); llvm::AllocaInst* selected_value_address = llvm_ir::EmitAllocaAtFunctionEntry( llvm_ir::PrimitiveTypeToIrType(operand_element_type, module_), "selected_value_address", b(), MinimumAlignmentForPrimitiveType(operand_element_type)); llvm::AllocaInst* selected_index_address = llvm_ir::EmitAllocaAtFunctionEntryWithCount( b()->getInt64Ty(), b()->getInt32(rank), "selected_index_address", b()); llvm::AllocaInst* initialized_flag_address = llvm_ir::EmitAllocaAtFunctionEntry(b()->getInt1Ty(), "initialized_flag_address", b()); Store(b()->getInt1(false), initialized_flag_address); llvm_ir::ForLoopNest window_loops(IrName(select_and_scatter, "window"), b()); llvm::SmallVector<int64_t> window_size; for (const auto& dim : window.dimensions()) { window_size.push_back(dim.size()); } const llvm_ir::IrArray::Index window_index = window_loops.AddLoopsForShape( ShapeUtil::MakeShape(operand_element_type, window_size), "window"); SetToFirstInsertPoint(window_loops.GetInnerLoopBodyBasicBlock(), b()); llvm::SmallVector<llvm::Value*> operand_multi_index(source_index.size()); llvm::Value* in_bounds_condition = b()->getTrue(); for (int64_t i = 0; i < rank; ++i) { llvm::Value* strided_index = NSWMul(source_index[i], b()->getInt64(window.dimensions(i).stride())); operand_multi_index[i] = NSWSub(NSWAdd(strided_index, window_index[i]), b()->getInt64(window.dimensions(i).padding_low())); llvm::Value* index_condition = ICmpULT(operand_multi_index[i], b()->getInt64(ShapeUtil::GetDimension(operand->shape(), i))); in_bounds_condition = And(in_bounds_condition, index_condition); } CHECK(in_bounds_condition != nullptr); llvm_ir::LlvmIfData if_in_bounds = llvm_ir::EmitIfThenElse(in_bounds_condition, "in-bounds", b()); SetToFirstInsertPoint(if_in_bounds.true_block, b()); llvm_ir::LlvmIfData if_initialized = llvm_ir::EmitIfThenElse(Load(initialized_flag_address->getAllocatedType(), initialized_flag_address), "initialized", b()); SetToFirstInsertPoint(if_initialized.false_block, b()); const auto save_operand_index = [&](const llvm_ir::IrArray::Index& operand_index) { for (int64_t i = 0; i < rank; ++i) { llvm::Value* selected_index_address_slot = InBoundsGEP(selected_index_address->getAllocatedType(), selected_index_address, {b()->getInt32(i)}); Store(operand_index[i], selected_index_address_slot); } }; llvm_ir::IrArray::Index operand_index( operand_multi_index, operand_array.GetShape(), b()->getInt64Ty()); llvm::Value* operand_data = operand_array.EmitReadArrayElement(operand_index, b()); Store(operand_data, selected_value_address); save_operand_index(operand_index); Store(b()->getInt1(true), initialized_flag_address); SetToFirstInsertPoint(if_initialized.true_block, b()); llvm::Value* operand_address = operand_array.EmitArrayElementAddress(operand_index, b()); llvm::Value* operand_element = Load(operand_array.GetElementLlvmType(), operand_address); llvm::Value* result = EmitScalarReturningThreadLocalCall( *select_and_scatter->select(), {Load(selected_value_address->getAllocatedType(), selected_value_address), operand_element}, "select_function"); llvm::Value* cond = ICmpNE( result, llvm::ConstantInt::get(llvm_ir::PrimitiveTypeToIrType(PRED, module_), 0), "boolean_predicate"); llvm_ir::LlvmIfData if_select_lhs = llvm_ir::EmitIfThenElse(cond, "if-select-lhs", b()); SetToFirstInsertPoint(if_select_lhs.false_block, b()); Store(Load(operand_array.GetElementLlvmType(), operand_address), selected_value_address); save_operand_index(operand_index); SetToFirstInsertPoint(window_loops.GetOuterLoopExitBasicBlock(), b()); llvm::SmallVector<llvm::Value*> selected_multi_index; for (int64_t i = 0; i < rank; ++i) { const std::vector<llvm::Value*> gep_index = {b()->getInt32(i)}; llvm::Value* selected_index_address_slot = InBoundsGEP(selected_index_address->getAllocatedType(), selected_index_address, gep_index); llvm::Type* type = llvm::GetElementPtrInst::getIndexedType( selected_index_address->getAllocatedType(), gep_index); selected_multi_index.push_back(Load(type, selected_index_address_slot)); } llvm::Value* source_value = source_array.EmitReadArrayElement(source_index, b()); llvm_ir::IrArray::Index selected_index( selected_multi_index, output_array.GetShape(), source_index.GetType()); llvm::Value* output_value = output_array.EmitReadArrayElement(selected_index, b()); llvm::Value* scatter_value = EmitScalarReturningThreadLocalCall( *select_and_scatter->scatter(), {output_value, source_value}, "scatter_function"); output_array.EmitWriteArrayElement(selected_index, scatter_value, b()); SetToFirstInsertPoint(source_loops.GetOuterLoopExitBasicBlock(), b()); return absl::OkStatus(); } absl::Status IrEmitter::HandleDot(HloInstruction* dot) { auto lhs = dot->operand(0); auto rhs = dot->operand(1); TF_RETURN_IF_ERROR(ElementTypesSameAndSupported( *dot, {lhs, rhs}, {PRED, S8, U8, S16, U16, S32, U32, S64, U64, F16, F32, F64, C64, C128})); const DotDimensionNumbers& dnums = dot->dot_dimension_numbers(); if (dnums.lhs_contracting_dimensions_size() != 1) { return Unimplemented( "Dot with multiple contracting dimensions not implemented."); } llvm_ir::IrArray lhs_array(GetIrArrayFor(lhs)); llvm_ir::IrArray rhs_array(GetIrArrayFor(rhs)); TF_RETURN_IF_ERROR(EmitTargetAddressForOp(dot)); llvm_ir::IrArray target_array = GetIrArrayFor(dot); VLOG(2) << "HandleDot: "; VLOG(2) << " lhs operand: " << llvm_ir::DumpToString(lhs_array.GetBasePointer()); VLOG(2) << " rhs operand: " << llvm_ir::DumpToString(rhs_array.GetBasePointer()); VLOG(2) << " target: " << llvm_ir::DumpToString(target_array.GetBasePointer()); return EmitDotOperation(*dot, target_array, lhs_array, rhs_array, nullptr, GetExecutableRunOptionsArgument(), b(), hlo_module_config_, target_machine_features_); } absl::Status IrEmitter::HandleConvolution(HloInstruction* convolution) { auto lhs = convolution->operand(0); auto rhs = convolution->operand(1); TF_RETURN_IF_ERROR(ElementTypesSameAndSupported( *convolution, {lhs, rhs}, {PRED, S8, U8, S16, U16, S32, U32, S64, U64, F16, F32, F64, C64, C128})); if (PotentiallyImplementedAsEigenConvolution(*convolution, target_machine_features_)) { const Shape& lhs_shape = lhs->shape(); const Shape& rhs_shape = rhs->shape(); const Shape& convolution_shape = convolution->shape(); if (LayoutUtil::IsMonotonicWithDim0Major(lhs_shape.layout()) && LayoutUtil::IsMonotonicWithDim0Major(rhs_shape.layout()) && LayoutUtil::IsMonotonicWithDim0Major(convolution_shape.layout())) { bool one_dim_convolution = lhs_shape.dimensions_size() == 3; llvm::Value* lhs_address = GetEmittedValueFor(lhs); llvm::Value* rhs_address = GetEmittedValueFor(rhs); TF_RETURN_IF_ERROR(EmitTargetAddressForOp(convolution)); const ConvolutionDimensionNumbers& dnums = convolution->convolution_dimension_numbers(); absl::InlinedVector<int64_t, 2> input_dims; absl::InlinedVector<int64_t, 2> kernel_dims; absl::InlinedVector<int64_t, 2> output_dims; if (one_dim_convolution) { input_dims.push_back(1); kernel_dims.push_back(1); output_dims.push_back(1); } const Shape& input_shape = convolution->operand(0)->shape(); int64_t input_batch = input_shape.dimensions(dnums.input_batch_dimension()); for (int d : dnums.input_spatial_dimensions()) { input_dims.push_back(input_shape.dimensions(d)); } int64_t input_channels = input_shape.dimensions(dnums.input_feature_dimension()); const Shape& kernel_shape = convolution->operand(1)->shape(); for (int d : dnums.kernel_spatial_dimensions()) { kernel_dims.push_back(kernel_shape.dimensions(d)); } int64_t kernel_channels = kernel_shape.dimensions(dnums.kernel_input_feature_dimension()); int64_t kernel_filters = kernel_shape.dimensions(dnums.kernel_output_feature_dimension()); const Shape& convolution_shape = convolution->shape(); for (int d : dnums.output_spatial_dimensions()) { output_dims.push_back(convolution_shape.dimensions(d)); } const Window& window = convolution->window(); absl::InlinedVector<int64_t, 2> strides; absl::InlinedVector<std::pair<int64_t, int64_t>, 2> padding; absl::InlinedVector<int64_t, 2> base_dilation; absl::InlinedVector<int64_t, 2> window_dilation; if (one_dim_convolution) { strides.push_back(1); padding.push_back({0, 0}); base_dilation.push_back(1); window_dilation.push_back(1); } for (const auto& d : window.dimensions()) { strides.push_back(d.stride()); padding.push_back({d.padding_low(), d.padding_high()}); base_dilation.push_back(d.base_dilation()); window_dilation.push_back(d.window_dilation()); } PrimitiveType primitive_type = lhs->shape().element_type(); bool multi_threaded = hlo_module_config_.debug_options().xla_cpu_multi_thread_eigen(); bool use_mkl_dnn = hlo_module_config_.debug_options().xla_cpu_use_mkl_dnn() && convolution->feature_group_count() == 1; bool use_acl = hlo_module_config_.debug_options().xla_cpu_use_acl(); auto valid_num_dims = [](absl::Span<const int64_t> xs) { return xs.size() >= 2 && xs.size() <= 3; }; TF_RET_CHECK(valid_num_dims(input_dims)) << input_dims.size(); TF_RET_CHECK(valid_num_dims(kernel_dims)); TF_RET_CHECK(valid_num_dims(output_dims)); TF_RET_CHECK(valid_num_dims(strides)); TF_RET_CHECK(padding.size() >= 2 && padding.size() <= 3); TF_RET_CHECK(valid_num_dims(base_dilation)); TF_RET_CHECK(valid_num_dims(window_dilation)); const char* fn_name; if (input_dims.size() == 2) { fn_name = primitive_type == F16 ? (multi_threaded ? runtime::kEigenConv2DF16SymbolName : runtime::kEigenSingleThreadedConv2DF16SymbolName) : (multi_threaded ? (use_mkl_dnn ? runtime::kMKLConv2DF32SymbolName : (use_acl ? runtime::kACLConv2DF32SymbolName : runtime::kEigenConv2DF32SymbolName)) : runtime::kEigenSingleThreadedConv2DF32SymbolName); } else if (input_dims.size() == 3) { fn_name = primitive_type == F16 ? (multi_threaded ? runtime::kEigenConv3DF16SymbolName : runtime::kEigenSingleThreadedConv3DF16SymbolName) : (multi_threaded ? runtime::kEigenConv3DF32SymbolName : runtime::kEigenSingleThreadedConv3DF32SymbolName); } else { LOG(FATAL) << "Invalid number of dimensions " << input_dims.size(); } if (!multi_threaded && use_mkl_dnn) { LOG(WARNING) << "Using Eigen instead of MKL-DNN for single-threaded " "convolution."; } std::vector<llvm::Value*> args = { GetExecutableRunOptionsArgument(), GetEmittedValueFor(convolution), lhs_address, rhs_address, b()->getInt64(input_batch), }; for (int64_t d : input_dims) { args.push_back(b()->getInt64(d)); } args.push_back(b()->getInt64(input_channels)); for (int64_t d : kernel_dims) { args.push_back(b()->getInt64(d)); } args.push_back(b()->getInt64(kernel_channels)); args.push_back(b()->getInt64(kernel_filters)); for (int64_t d : output_dims) { args.push_back(b()->getInt64(d)); } for (int64_t d : strides) { args.push_back(b()->getInt64(d)); } for (const auto& p : padding) { args.push_back(b()->getInt64(p.first)); args.push_back(b()->getInt64(p.second)); } for (int64_t d : base_dilation) { args.push_back(b()->getInt64(d)); } for (int64_t d : window_dilation) { args.push_back(b()->getInt64(d)); } args.push_back(b()->getInt64(convolution->feature_group_count())); VLOG(1) << "Ir emitter emitted Convolution to runtime:" << fn_name; EmitCallToFunc(fn_name, args, b()->getVoidTy(), true, true); return absl::OkStatus(); } } return DefaultAction(convolution); } absl::Status IrEmitter::HandleFft(HloInstruction* fft) { auto operand = fft->operand(0); TF_RETURN_IF_ERROR(ElementTypesSameAndSupported( *fft, {operand}, {F32, F64, C64, C128})); TF_RET_CHECK(LayoutUtil::IsMonotonicWithDim0Major(operand->shape().layout())); TF_RET_CHECK(LayoutUtil::IsMonotonicWithDim0Major(fft->shape().layout())); VLOG(3) << "operand=" << ShapeUtil::HumanStringWithLayout(operand->shape()); VLOG(3) << "fft=" << ShapeUtil::HumanStringWithLayout(fft->shape()); llvm::Value* operand_address = GetEmittedValueFor(operand); TF_RETURN_IF_ERROR(EmitTargetAddressForOp(fft)); const std::vector<int64_t>& fft_length = fft->fft_length(); const int fft_rank = fft_length.size(); absl::InlinedVector<int64_t, 4> operand_shape_flat(fft_rank + 1); int64_t input_batch = 1; int64_t input_batch_length = fft->shape().dimensions_size() - fft_rank; for (int i = 0; i < input_batch_length; i++) { input_batch *= operand->shape().dimensions(i); } operand_shape_flat[0] = input_batch; for (int i = 0; i < fft_rank; ++i) { operand_shape_flat[i + 1] = operand->shape().dimensions(i + input_batch_length); } bool multi_threaded_eigen = hlo_module_config_.debug_options().xla_cpu_multi_thread_eigen(); const char* fn_name = multi_threaded_eigen ? runtime::kDuccFftSymbolName : runtime::kDuccSingleThreadedFftSymbolName; auto* fft_lengths = EmitGlobalForLiteral(LiteralUtil::CreateR1<int64_t>(fft_length)); auto* input_shape = EmitGlobalForLiteral(LiteralUtil::CreateR1<int64_t>(operand_shape_flat)); EmitCallToFunc(fn_name, {GetExecutableRunOptionsArgument(), GetEmittedValueFor(fft), operand_address, b()->getInt32(fft->fft_type()), b()->getInt32(operand->shape().element_type() == F64 || operand->shape().element_type() == C128), b()->getInt32(fft_rank), input_shape, fft_lengths}, b()->getVoidTy(), true, false, true); return absl::OkStatus(); } absl::Status IrEmitter::HandleAllReduceSingleReplica(HloInstruction* crs) { TF_RETURN_IF_ERROR(EmitTargetAddressForOp(crs)); if (crs->operand_count() == 1) { return EmitMemcpy(*crs->operand(0), *crs); } std::vector<llvm::Value*> operand_ptrs; for (int64_t i = 0; i < crs->operand_count(); ++i) { llvm::Value* in_ptr = GetEmittedValueFor(crs->operand(i)); TF_ASSIGN_OR_RETURN(const BufferAllocation::Slice out_slice, assignment_.GetUniqueSlice(crs, {i})); const Shape& operand_shape = crs->operand(i)->shape(); CHECK(operand_shape.IsArray()) << "Operands to all-reduce must be arrays: " << crs->ToString(); operand_ptrs.push_back(EmitBufferPointer(out_slice, operand_shape)); MemCpy(operand_ptrs.back(), llvm::Align(1), in_ptr, llvm::Align(1), ShapeUtil::ByteSizeOf(operand_shape)); } llvm_ir::EmitTuple(GetIrArrayFor(crs), operand_ptrs, b()); return absl::OkStatus(); } static bool DataTypeIsSupportedByReduceScatter(PrimitiveType datatype) { switch (datatype) { case PRED: case S8: case U8: case S16: case U16: case S32: case U32: case S64: case U64: case F16: case F32: case F64: case C64: case C128: return true; default: return false; } } absl::Status IrEmitter::HandleAllReduceMultipleReplica(HloInstruction* crs) { CHECK_GE(crs->operand_count(), 1); PrimitiveType datatype = crs->operand(0)->shape().element_type(); TF_RETURN_IF_ERROR(EmitTargetAddressForOp(crs)); if (!DataTypeIsSupportedByReduceScatter(datatype)) { return Unimplemented("AllReduce for datatype '%s' is not supported", primitive_util::LowercasePrimitiveTypeName(datatype)); } if (!MatchReductionComputation(crs->to_apply()).has_value()) { return Unimplemented("AllReduce for computation '%s' is not supported", crs->to_apply()->ToString()); } std::string replica_groups = ReplicaGroupsToString(crs->replica_groups()); int32_t replica_groups_size = replica_groups.size(); llvm::Value* replica_groups_v = b()->CreateGlobalStringPtr(replica_groups); bool is_tuple = crs->operand_count() > 1; std::vector<llvm::Value*> input_buffer_ptrs; std::vector<llvm::Value*> output_buffer_ptrs; if (is_tuple) { CHECK(crs->shape().IsTuple()); for (int64_t i = 0; i < crs->operand_count(); i++) { const HloInstruction* op = crs->operand(i); TF_ASSIGN_OR_RETURN(const BufferAllocation::Slice out_slice, assignment_.GetUniqueSlice(crs, {i})); const Shape& operand_shape = crs->operand(i)->shape(); CHECK(operand_shape.IsArray()) << "Operands to all-reduce must be arrays: " << crs->ToString(); output_buffer_ptrs.push_back(EmitBufferPointer(out_slice, operand_shape)); input_buffer_ptrs.push_back(GetEmittedValueFor(op)); } } else { Shape shape = crs->operand(0)->shape(); TF_ASSIGN_OR_RETURN(BufferAllocation::Slice input_slice, assignment_.GetUniqueSlice(crs->operand(0), {})); TF_ASSIGN_OR_RETURN(BufferAllocation::Slice output_slice, assignment_.GetUniqueSlice(crs, {})); input_buffer_ptrs.push_back(EmitBufferPointer(input_slice, shape)); output_buffer_ptrs.push_back(EmitBufferPointer(output_slice, shape)); } llvm::Value* input_buffers = EncodeArrayFunctionArguments(input_buffer_ptrs, "input_buffers", b()); llvm::Value* output_buffers = EncodeArrayFunctionArguments(output_buffer_ptrs, "output_buffers", b()); int32_t shape_length; TF_ASSIGN_OR_RETURN(llvm::Value * shape_ptr, llvm_ir::EncodeSelfDescribingShapeConstant( crs->shape(), &shape_length, b())); bool use_global_device_ids = Cast<HloAllReduceInstruction>(crs)->use_global_device_ids(); EmitCallToFunc( runtime::kAllReduceSymbolName, {GetExecutableRunOptionsArgument(), replica_groups_v, b()->getInt32(replica_groups_size), b()->getInt32(static_cast<int32_t>(crs->channel_id().has_value())), b()->getInt32(static_cast<int32_t>(use_global_device_ids)), b()->getInt64(crs->channel_id().has_value() ? *crs->channel_id() : crs->GetModule()->unique_id()), b()->getInt32( static_cast<int32_t>(*MatchReductionComputation(crs->to_apply()))), shape_ptr, b()->getInt32(shape_length), b()->getInt32(crs->operand_count()), input_buffers, output_buffers}, b()->getVoidTy()); return absl::OkStatus(); } absl::Status IrEmitter::HandleAllReduce(HloInstruction* crs) { if (hlo_module_config_.replica_count() == 1 && hlo_module_config_.num_partitions() == 1) { return HandleAllReduceSingleReplica(crs); } return HandleAllReduceMultipleReplica(crs); } absl::Status IrEmitter::HandleReduceScatter(HloInstruction* rs) { CHECK_EQ(rs->operand_count(), 1); PrimitiveType datatype = rs->operand(0)->shape().element_type(); TF_RETURN_IF_ERROR(EmitTargetAddressForOp(rs)); if (!DataTypeIsSupportedByReduceScatter(datatype)) { return Unimplemented("ReduceScatter for datatype '%s' is not supported", primitive_util::LowercasePrimitiveTypeName(datatype)); } if (!MatchReductionComputation(rs->to_apply()).has_value()) { return Unimplemented("ReduceScatter for computation '%s' is not supported", rs->to_apply()->ToString()); } std::string replica_groups = ReplicaGroupsToString(rs->replica_groups()); int32_t replica_groups_size = replica_groups.size(); llvm::Value* replica_groups_v = b()->CreateGlobalStringPtr(replica_groups); Shape shape = rs->operand(0)->shape(); TF_ASSIGN_OR_RETURN(BufferAllocation::Slice input_slice, assignment_.GetUniqueSlice(rs->operand(0), {})); TF_ASSIGN_OR_RETURN(BufferAllocation::Slice output_slice, assignment_.GetUniqueSlice(rs, {})); llvm::Value* input_buffer = EmitBufferPointer(input_slice, shape); llvm::Value* output_buffer = EmitBufferPointer(output_slice, shape); bool use_global_device_ids = Cast<HloReduceScatterInstruction>(rs)->use_global_device_ids(); EmitCallToFunc( runtime::kReduceScatterSymbolName, {GetExecutableRunOptionsArgument(), replica_groups_v, b()->getInt32(replica_groups_size), b()->getInt32(static_cast<int32_t>(rs->channel_id().has_value())), b()->getInt32(static_cast<int32_t>(use_global_device_ids)), b()->getInt64(rs->channel_id().has_value() ? *rs->channel_id() : rs->GetModule()->unique_id()), b()->getInt32( static_cast<int32_t>(*MatchReductionComputation(rs->to_apply()))), b()->getInt32(static_cast<int32_t>(datatype)), b()->getInt64(ShapeUtil::ElementsIn(rs->shape())), input_buffer, output_buffer}, b()->getVoidTy()); return absl::OkStatus(); } absl::Status IrEmitter::HandleAllToAll(HloInstruction* instruction) { auto* instr = Cast<HloAllToAllInstruction>(instruction); TF_RETURN_IF_ERROR(EmitTargetAddressForOp(instruction)); CHECK(!instr->split_dimension() && instr->shape().IsTuple()) << "Only tuple AllToAll is supported"; std::string replica_groups = ReplicaGroupsToString(instruction->replica_groups()); int32_t replica_groups_size = replica_groups.size(); llvm::Value* replica_groups_v = b()->CreateGlobalStringPtr(replica_groups); int64_t buffer_size = -1; std::vector<llvm::Value*> input_buffer_ptrs; std::vector<llvm::Value*> output_buffer_ptrs; for (int64_t i = 0; i < instruction->operand_count(); i++) { const HloInstruction* op = instruction->operand(i); TF_ASSIGN_OR_RETURN(const BufferAllocation::Slice out_slice, assignment_.GetUniqueSlice(instruction, {i})); const Shape& operand_shape = instruction->operand(i)->shape(); CHECK(operand_shape.IsArray()) << "Operands to all-to-all must be arrays: " << instruction->ToString(); output_buffer_ptrs.push_back(EmitBufferPointer(out_slice, operand_shape)); input_buffer_ptrs.push_back(GetEmittedValueFor(op)); CHECK(buffer_size == -1 || buffer_size == out_slice.size()); buffer_size = out_slice.size(); } llvm::Value* input_buffers = EncodeArrayFunctionArguments(input_buffer_ptrs, "input_buffers", b()); llvm::Value* output_buffers = EncodeArrayFunctionArguments(output_buffer_ptrs, "output_buffers", b()); EmitCallToFunc( runtime::kAllToAllSymbolName, { GetExecutableRunOptionsArgument(), b()->getInt32( static_cast<int32_t>(instruction->channel_id().has_value())), b()->getInt64(instruction->channel_id().has_value() ? *instruction->channel_id() : instruction->GetModule()->unique_id()), replica_groups_v, b()->getInt32(replica_groups_size), b()->getInt32(instruction->operand_count()), b()->getInt64(buffer_size), input_buffers, output_buffers, }, b()->getVoidTy()); llvm_ir::EmitTuple(GetIrArrayFor(instruction), output_buffer_ptrs, b()); return absl::OkStatus(); } absl::Status IrEmitter::HandleAllGather(HloInstruction* instruction) { TF_RETURN_IF_ERROR(EmitTargetAddressForOp(instruction)); std::string replica_groups = ReplicaGroupsToString(instruction->replica_groups()); int32_t replica_groups_size = replica_groups.size(); llvm::Value* replica_groups_v = b()->CreateGlobalStringPtr(replica_groups); std::vector<llvm::Value*> input_buffer_ptrs; std::vector<llvm::Value*> output_buffer_ptrs; const HloInstruction* op = instruction->operand(0); TF_ASSIGN_OR_RETURN(const BufferAllocation::Slice in_slice, assignment_.GetUniqueSlice(op, {})); TF_ASSIGN_OR_RETURN(const BufferAllocation::Slice out_slice, assignment_.GetUniqueSlice(instruction, {})); const Shape& operand_shape = op->shape(); CHECK(op->shape().IsArray()) << "Operand to all-gather must be arrays: " << instruction->ToString(); llvm::Value* output_buffer = EmitBufferPointer(out_slice, operand_shape); llvm::Value* input_buffer = GetEmittedValueFor(op); int64_t buffer_size = in_slice.size(); bool use_global_device_ids = Cast<HloAllGatherInstruction>(instruction)->use_global_device_ids(); EmitCallToFunc( runtime::kAllGatherSymbolName, { GetExecutableRunOptionsArgument(), b()->getInt32( static_cast<int32_t>(instruction->channel_id().has_value())), b()->getInt32(static_cast<int32_t>(use_global_device_ids)), b()->getInt64(instruction->channel_id().has_value() ? *instruction->channel_id() : instruction->GetModule()->unique_id()), replica_groups_v, b()->getInt32(replica_groups_size), b()->getInt64(buffer_size), input_buffer, output_buffer, }, b()->getVoidTy()); llvm_ir::EmitTuple(GetIrArrayFor(instruction), output_buffer_ptrs, b()); return absl::OkStatus(); } absl::Status IrEmitter::HandleCollectivePermute(HloInstruction* crs) { auto* instr = Cast<HloCollectivePermuteInstruction>(crs); TF_RETURN_IF_ERROR(EmitTargetAddressForOp(instr)); std::string source_target_pairs = absl::StrJoin( instr->source_target_pairs(), ",", absl::PairFormatter("=")); llvm::Value* source_target_pairs_v = b()->CreateGlobalStringPtr(source_target_pairs); Shape shape = crs->operand(0)->shape(); TF_ASSIGN_OR_RETURN(BufferAllocation::Slice input_slice, assignment_.GetUniqueSlice(crs->operand(0), {})); llvm::Value* input_buffer = EmitBufferPointer(input_slice, shape); TF_ASSIGN_OR_RETURN(BufferAllocation::Slice output_slice, assignment_.GetUniqueSlice(crs, {})); llvm::Value* output_buffer = EmitBufferPointer(output_slice, shape); EmitCallToFunc( runtime::kCollectivePermuteSymbolName, {GetExecutableRunOptionsArgument(), b()->getInt32(static_cast<int32_t>(crs->channel_id().has_value())), b()->getInt64(crs->channel_id().has_value() ? *crs->channel_id() : crs->GetModule()->unique_id()), b()->getInt32(ShapeUtil::ByteSizeOf(shape)), input_buffer, output_buffer, source_target_pairs_v, b()->getInt32(source_target_pairs.size())}, b()->getVoidTy()); return absl::OkStatus(); } absl::Status IrEmitter::HandlePartitionId(HloInstruction* hlo) { TF_RETURN_IF_ERROR(EmitTargetAddressForOp(hlo)); TF_ASSIGN_OR_RETURN(BufferAllocation::Slice output_slice, assignment_.GetUniqueSlice(hlo, {})); llvm::Value* output_buffer = EmitBufferPointer(output_slice, hlo->shape()); EmitCallToFunc(runtime::kPartitionIdSymbolName, {GetExecutableRunOptionsArgument(), output_buffer}, b()->getVoidTy()); return absl::OkStatus(); } absl::Status IrEmitter::HandleReplicaId(HloInstruction* hlo) { TF_RETURN_IF_ERROR(EmitTargetAddressForOp(hlo)); TF_ASSIGN_OR_RETURN(BufferAllocation::Slice output_slice, assignment_.GetUniqueSlice(hlo, {})); llvm::Value* output_buffer = EmitBufferPointer(output_slice, hlo->shape()); EmitCallToFunc(runtime::kReplicaIdSymbolName, {GetExecutableRunOptionsArgument(), output_buffer}, b()->getVoidTy()); return absl::OkStatus(); } absl::Status IrEmitter::HandleParameter(HloInstruction* parameter) { VLOG(2) << "HandleParameter: " << parameter->ToString(); return EmitTargetAddressForOp(parameter); } static bool ReductionPreservesLayout(const HloInstruction& reduce) { DCHECK_EQ(reduce.opcode(), HloOpcode::kReduce); absl::flat_hash_map<int64_t, int64_t> unreduced_dim_map; absl::flat_hash_set<int64_t> reduced_dims(reduce.dimensions().begin(), reduce.dimensions().end()); const Shape& operand_shape = reduce.operand(0)->shape(); const Shape& result_shape = reduce.shape(); int64_t delta = 0; for (int64_t i = 0; i < operand_shape.dimensions_size(); i++) { if (reduced_dims.contains(i)) { delta++; } else { InsertOrDie(&unreduced_dim_map, i, i - delta); } } int64_t result_dim_idx = 0; for (int64_t operand_dim_idx = 0; operand_dim_idx < operand_shape.dimensions_size(); operand_dim_idx++) { int64_t operand_dim = operand_shape.layout().minor_to_major(operand_dim_idx); if (!reduced_dims.contains(operand_dim)) { if (FindOrDie(unreduced_dim_map, operand_dim) != result_shape.layout().minor_to_major(result_dim_idx++)) { return false; } } } CHECK_EQ(result_dim_idx, result_shape.dimensions_size()); return true; } IrEmitter::ReductionGenerator IrEmitter::MatchReductionGenerator( HloComputation* function, std::string* failure_reason) const { CHECK_EQ(function->num_parameters(), 2); auto root_instruction = function->root_instruction(); CHECK(ShapeUtil::IsScalar(root_instruction->shape())); if (root_instruction->operand_count() != 2) { *failure_reason = "root instruction is not a binary operation"; return nullptr; } const Shape& root_shape = root_instruction->shape(); if (ShapeUtil::ElementIsComplex(root_shape)) { *failure_reason = "complex values not supported"; return nullptr; } bool root_is_floating_point = ShapeUtil::ElementIsFloating(root_shape); bool root_is_integral = ShapeUtil::ElementIsIntegral(root_shape); bool root_is_signed = ShapeUtil::ElementIsSigned(root_shape); auto lhs = root_instruction->operand(0); auto rhs = root_instruction->operand(1); auto param_0 = function->parameter_instruction(0); auto param_1 = function->parameter_instruction(1); if (!(lhs == param_0 && rhs == param_1) && !(rhs == param_0 && lhs == param_1)) { *failure_reason = "root instruction is not a binary operation on the incoming arguments"; return nullptr; } CHECK(ShapeUtil::IsScalar(lhs->shape()) && ShapeUtil::IsScalar(rhs->shape())); switch (root_instruction->opcode()) { default: *failure_reason = "did not recognize root instruction opcode"; return nullptr; case HloOpcode::kAdd: return [root_is_integral](llvm::IRBuilder<>* b, llvm::Value* lhs, llvm::Value* rhs) { return root_is_integral ? b->CreateAdd(lhs, rhs) : b->CreateFAdd(lhs, rhs); }; case HloOpcode::kMultiply: return [root_is_integral](llvm::IRBuilder<>* b, llvm::Value* lhs, llvm::Value* rhs) { return root_is_integral ? b->CreateMul(lhs, rhs) : b->CreateFMul(lhs, rhs); }; case HloOpcode::kAnd: return [](llvm::IRBuilder<>* b, llvm::Value* lhs, llvm::Value* rhs) { return b->CreateAnd(lhs, rhs); }; case HloOpcode::kOr: return [](llvm::IRBuilder<>* b, llvm::Value* lhs, llvm::Value* rhs) { return b->CreateOr(lhs, rhs); }; case HloOpcode::kXor: return [](llvm::IRBuilder<>* b, llvm::Value* lhs, llvm::Value* rhs) { return b->CreateXor(lhs, rhs); }; case HloOpcode::kMaximum: return [root_is_floating_point, root_is_signed, this]( llvm::IRBuilder<>* b, llvm::Value* lhs, llvm::Value* rhs) -> llvm::Value* { if (root_is_floating_point) { return llvm_ir::EmitFloatMax( lhs, rhs, b, hlo_module_config_.debug_options().xla_cpu_enable_fast_min_max()); } return b->CreateSelect( b->CreateICmp(root_is_signed ? llvm::ICmpInst::ICMP_SGE : llvm::ICmpInst::ICMP_UGE, lhs, rhs), lhs, rhs); }; case HloOpcode::kMinimum: return [root_is_floating_point, root_is_signed, this]( llvm::IRBuilder<>* b, llvm::Value* lhs, llvm::Value* rhs) -> llvm::Value* { if (root_is_floating_point) { return llvm_ir::EmitFloatMin( lhs, rhs, b, hlo_module_config_.debug_options().xla_cpu_enable_fast_min_max()); } return b->CreateSelect( b->CreateICmp(root_is_signed ? llvm::ICmpInst::ICMP_SLE : llvm::ICmpInst::ICMP_ULE, lhs, rhs), lhs, rhs); }; } } IrEmitter::ShardedVectorType IrEmitter::CreateShardedVectorType( PrimitiveType element_type, unsigned element_count) { int vector_register_size_in_elements = target_machine_features_.vector_register_byte_size( *compute_function()->function()) / ShapeUtil::ByteSizeOfPrimitiveType(element_type); ShardedVectorType sharded_vector_type; llvm::Type* element_ir_type = llvm_ir::PrimitiveTypeToIrType(element_type, module_); for (int i = 0, e = 1 + Log2Ceiling(element_count); i < e; i++) { const unsigned current_size_fragment = 1u << i; if (!(element_count & current_size_fragment)) { continue; } if (current_size_fragment == 1) { sharded_vector_type.push_back(element_ir_type); continue; } if (current_size_fragment >= vector_register_size_in_elements) { auto vector_type = llvm::VectorType::get( element_ir_type, vector_register_size_in_elements, false); sharded_vector_type.insert( sharded_vector_type.end(), current_size_fragment / vector_register_size_in_elements, vector_type); CHECK_EQ(current_size_fragment % vector_register_size_in_elements, 0); continue; } sharded_vector_type.push_back( llvm::VectorType::get(element_ir_type, current_size_fragment, false)); } return sharded_vector_type; } absl::StatusOr<IrEmitter::ShardedVector> IrEmitter::EmitInnerLoopForVectorizedReduction( const ReductionGenerator& reduction_generator, const llvm_ir::IrArray::Index& output_index, const ShardedVectorType& accumulator_type, HloInstruction* init_value, HloInstruction* arg, absl::Span<const int64_t> dimensions, llvm::Align element_alignment) { ShardedVector accumulator; accumulator.reserve(accumulator_type.size()); for (auto accumulator_shard_type : accumulator_type) { accumulator.push_back(llvm_ir::EmitAllocaAtFunctionEntry( accumulator_shard_type, "accumulator", b(), 0)); } llvm::Value* init_value_ssa = Load(IrShapeType(init_value->shape()), GetEmittedValueFor(init_value)); for (llvm::Value* accumulator_shard : accumulator) { llvm::Value* initial_value; auto shard_type = llvm::cast<llvm::AllocaInst>(accumulator_shard)->getAllocatedType(); if (auto vector_type = llvm::dyn_cast<llvm::VectorType>(shard_type)) { initial_value = VectorSplat(vector_type->getElementCount(), init_value_ssa); } else { initial_value = init_value_ssa; } AlignedStore(initial_value, accumulator_shard, element_alignment); } llvm_ir::ForLoopNest reduction_loop_nest(IrName(arg, "vectorized_inner"), b()); std::vector<llvm::Value*> input_multi_index = reduction_loop_nest.AddLoopsForShapeOnDimensions(arg->shape(), dimensions, "reduction_dim"); SetToFirstInsertPoint(reduction_loop_nest.GetInnerLoopBodyBasicBlock(), b()); llvm_ir::IrArray arg_array(GetIrArrayFor(arg)); llvm_ir::IrArray::Index::const_iterator it = output_index.begin(); for (auto& i : input_multi_index) { if (i == nullptr) { i = *it++; } } CHECK(output_index.end() == it); llvm_ir::IrArray::Index input_index(input_multi_index, arg->shape(), b()->getInt64Ty()); llvm::Value* input_address = arg_array.EmitArrayElementAddress(input_index, b()); for (int i = 0; i < accumulator.size(); i++) { auto alloca = llvm::cast<llvm::AllocaInst>(accumulator[i]); auto current_accumulator_value = AlignedLoad( alloca->getAllocatedType(), accumulator[i], element_alignment); auto addend = AlignedLoad(alloca->getAllocatedType(), input_address, element_alignment); arg_array.AnnotateLoadStoreInstructionWithMetadata(addend); auto reduced_result = reduction_generator(b(), current_accumulator_value, addend); AlignedStore(reduced_result, accumulator[i], element_alignment); if (i != (accumulator.size() - 1)) { input_address = ConstInBoundsGEP1_32(reduced_result->getType(), input_address, 1); } } SetToFirstInsertPoint(reduction_loop_nest.GetOuterLoopExitBasicBlock(), b()); ShardedVector result_ssa; result_ssa.reserve(accumulator.size()); for (auto accumulator_shard : accumulator) { auto alloca = llvm::cast<llvm::AllocaInst>(accumulator_shard); result_ssa.push_back(AlignedLoad(alloca->getAllocatedType(), accumulator_shard, element_alignment)); } return result_ssa; } void IrEmitter::EmitShardedVectorStore( llvm::Value* store_address, const std::vector<llvm::Value*>& value_to_store, llvm::Align alignment, const llvm_ir::IrArray& containing_array) { for (int i = 0; i < value_to_store.size(); i++) { auto store_instruction = AlignedStore(value_to_store[i], store_address, alignment); containing_array.AnnotateLoadStoreInstructionWithMetadata( store_instruction); if (i != (value_to_store.size() - 1)) { store_address = ConstInBoundsGEP1_32(value_to_store[i]->getType(), store_address, 1); } } } absl::StatusOr<bool> IrEmitter::EmitVectorizedReduce( HloInstruction* reduce, HloInstruction* arg, HloInstruction* init_value, absl::Span<const int64_t> dimensions, HloComputation* function, std::string* failure_reason) { if (!reduce->shape().IsArray()) { *failure_reason = "vectorization of variadic reduce not implemented"; return false; } if (!ReductionPreservesLayout(*reduce)) { return false; } ReductionGenerator reduction_generator = MatchReductionGenerator(function, failure_reason); if (!reduction_generator) { return false; } int vector_register_size_in_elements = target_machine_features_.vector_register_byte_size( *compute_function()->function()) / ShapeUtil::ByteSizeOfPrimitiveType(reduce->shape().element_type()); if (vector_register_size_in_elements == 0) { return false; } int vectorization_factor_in_bytes = target_machine_features_.vectorization_factor_in_bytes(); const int vectorization_factor = vectorization_factor_in_bytes / ShapeUtil::ByteSizeOfPrimitiveType(reduce->shape().element_type()); bool is_reduction_over_minor_dimension = absl::c_linear_search( dimensions, LayoutUtil::Minor(arg->shape().layout(), 0)); llvm::Align element_alignment(tsl::MathUtil::GCD<unsigned>( ShapeUtil::ByteSizeOfPrimitiveType(reduce->shape().element_type()), MinimumAlignmentForPrimitiveType(reduce->shape().element_type()))); if (is_reduction_over_minor_dimension) { *failure_reason = "reduction over minor dimension not implemented"; return false; } CHECK(!reduce->shape().IsTuple()); TF_RETURN_IF_ERROR(EmitTargetAddressForOp(reduce)); llvm_ir::ForLoopNest loop_nest(IrName(reduce), b()); std::vector<llvm::Value*> array_multi_index( reduce->shape().dimensions_size()); for (int i = LayoutUtil::MinorToMajor(reduce->shape()).size() - 1; i > 0; --i) { int64_t dimension = LayoutUtil::Minor(reduce->shape().layout(), i); int64_t start_index = 0; int64_t end_index = reduce->shape().dimensions(dimension); std::unique_ptr<llvm_ir::ForLoop> loop = loop_nest.AddLoop( start_index, end_index, absl::StrFormat("dim.%d", dimension)); array_multi_index[dimension] = loop->GetIndVarValue(); } int64_t innermost_dimension = LayoutUtil::Minor(reduce->shape().layout(), 0); int64_t innermost_dimension_size = reduce->shape().dimensions(innermost_dimension); if (llvm::BasicBlock* innermost_body_bb = loop_nest.GetInnerLoopBodyBasicBlock()) { SetToFirstInsertPoint(innermost_body_bb, b()); } auto outermost_loop_exit_block = loop_nest.GetOuterLoopExitBasicBlock(); if (innermost_dimension_size >= vectorization_factor) { int64_t start_index = 0; int64_t end_index = (innermost_dimension_size / vectorization_factor) * vectorization_factor; std::unique_ptr<llvm_ir::ForLoop> loop = loop_nest.AddLoop(start_index, end_index, vectorization_factor, absl::StrFormat("dim.%d", innermost_dimension)); array_multi_index[innermost_dimension] = loop->GetIndVarValue(); SetToFirstInsertPoint(loop->GetBodyBasicBlock(), b()); ShardedVectorType vector_type = CreateShardedVectorType( reduce->shape().element_type(), vectorization_factor); llvm_ir::IrArray::Index array_index(array_multi_index, reduce->shape(), b()->getInt64Ty()); TF_ASSIGN_OR_RETURN(std::vector<llvm::Value*> accumulator, EmitInnerLoopForVectorizedReduction( reduction_generator, array_index, vector_type, init_value, arg, dimensions, element_alignment)); llvm_ir::IrArray target_array = GetIrArrayFor(reduce); llvm::Value* output_address = target_array.EmitArrayElementAddress(array_index, b()); EmitShardedVectorStore(output_address, accumulator, element_alignment, target_array); if (auto exit_terminator = loop->GetExitBasicBlock()->getTerminator()) { CHECK_GT(LayoutUtil::MinorToMajor(reduce->shape()).size(), 1); b()->SetInsertPoint(exit_terminator); } else { CHECK_EQ(LayoutUtil::MinorToMajor(reduce->shape()).size(), 1); b()->SetInsertPoint(loop->GetExitBasicBlock()); } } if (innermost_dimension_size % vectorization_factor) { array_multi_index[innermost_dimension] = b()->getInt64(innermost_dimension_size - (innermost_dimension_size % vectorization_factor)); ShardedVectorType vector_type = CreateShardedVectorType( reduce->shape().element_type(), innermost_dimension_size % vectorization_factor); llvm_ir::IrArray::Index array_index(array_multi_index, reduce->shape(), b()->getInt64Ty()); llvm::IRBuilderBase::FastMathFlagGuard guard(*b()); llvm::FastMathFlags flags = b()->getFastMathFlags(); flags.setAllowReassoc(true); b()->setFastMathFlags(flags); TF_ASSIGN_OR_RETURN(std::vector<llvm::Value*> accumulator, EmitInnerLoopForVectorizedReduction( reduction_generator, array_index, vector_type, init_value, arg, dimensions, element_alignment)); llvm_ir::IrArray target_array = GetIrArrayFor(reduce); llvm::Value* output_address = target_array.EmitArrayElementAddress(array_index, b()); EmitShardedVectorStore(output_address, accumulator, element_alignment, target_array); } if (outermost_loop_exit_block) { b()->SetInsertPoint(outermost_loop_exit_block); } return true; } absl::Status IrEmitter::HandleReduce(HloInstruction* reduce) { auto arg = reduce->mutable_operand(0); auto init_value = reduce->mutable_operand(1); absl::Span<const int64_t> dimensions(reduce->dimensions()); HloComputation* function = reduce->to_apply(); bool saved_allow_reassociation = allow_reassociation_; allow_reassociation_ = true; auto cleanup = absl::MakeCleanup([saved_allow_reassociation, this]() { allow_reassociation_ = saved_allow_reassociation; }); if (!options::VectorizedReduceDisabled(hlo_module_config_)) { std::string vectorization_failure_reason; TF_ASSIGN_OR_RETURN( bool vectorization_successful, EmitVectorizedReduce(reduce, arg, init_value, dimensions, function, &vectorization_failure_reason)); if (vectorization_successful) { VLOG(1) << "Successfully vectorized reduction " << reduce->ToString() << "\n"; return absl::OkStatus(); } else { VLOG(1) << "Could not vectorize reduction " << reduce->ToString() << ": " << vectorization_failure_reason; } } return DefaultAction(reduce); } absl::Status IrEmitter::HandleSend(HloInstruction* send) { return Unimplemented("Send is not implemented on CPU."); } absl::Status IrEmitter::HandleSendDone(HloInstruction* send_done) { return Unimplemented("Send-done is not implemented on CPU."); } absl::Status IrEmitter::HandleScatter(HloInstruction*) { return Unimplemented("Scatter is not implemented on CPUs."); } absl::Status IrEmitter::HandleSlice(HloInstruction* slice) { VLOG(2) << "HandleSlice: " << slice->ToString(); auto operand = slice->operand(0); if (ShouldEmitParallelLoopFor(*slice)) { return DefaultAction(slice); } if (!LayoutUtil::Equal(operand->shape().layout(), slice->shape().layout())) { return DefaultAction(slice); } TF_RETURN_IF_ERROR(EmitTargetAddressForOp(slice)); if (ShapeUtil::IsZeroElementArray(slice->shape())) { return absl::OkStatus(); } const Layout& layout = operand->shape().layout(); const int64_t num_dims = operand->shape().dimensions_size(); absl::flat_hash_set<int64_t> inner_dims; for (int64_t dim : LayoutUtil::MinorToMajor(layout)) { if (operand->shape().dimensions(dim) != slice->shape().dimensions(dim)) { break; } inner_dims.insert(dim); } const bool is_trivial_copy = (inner_dims.size() == num_dims); if (is_trivial_copy) { if (ShapeUtil::IsEffectiveScalar(slice->shape())) { return DefaultAction(slice); } else { return EmitMemcpy(*slice, *operand); } } const Shape logical_element_shape = ShapeUtil::FilterDimensions( [&inner_dims](int64_t dim) { return inner_dims.contains(dim); }, operand->shape()); const int64_t primitive_elements_per_logical_element = ShapeUtil::ElementsIn(logical_element_shape); const int64_t memcpy_dim = LayoutUtil::Minor(layout, inner_dims.size()); const bool memcpy_is_contiguous = slice->slice_strides(memcpy_dim) == 1; const int64_t memcpy_logical_elements = memcpy_is_contiguous ? slice->slice_limits(memcpy_dim) - slice->slice_starts(memcpy_dim) : 1; llvm::SmallVector<int64_t> outer_dims; for (int64_t i = 0; i < num_dims - inner_dims.size() - 1; ++i) { outer_dims.push_back(LayoutUtil::Major(layout, i)); } if (!memcpy_is_contiguous) { outer_dims.push_back(memcpy_dim); } llvm_ir::IrArray target_array = GetIrArrayFor(slice); const int64_t num_outer_loops = outer_dims.size(); llvm_ir::ForLoopNest loops(IrName(slice), b()); std::vector<llvm::Value*> target_multi_index = loops.AddLoopsForShapeOnDimensions(slice->shape(), outer_dims, "slice"); std::replace(target_multi_index.begin(), target_multi_index.end(), static_cast<llvm::Value*>(nullptr), static_cast<llvm::Value*>(b()->getInt64(0))); llvm_ir::IrArray::Index target_index(target_multi_index, slice->shape(), b()->getInt64Ty()); if (num_outer_loops > 0) { SetToFirstInsertPoint(loops.GetInnerLoopBodyBasicBlock(), b()); } llvm_ir::IrArray source_array = GetIrArrayFor(operand); const llvm_ir::IrArray::Index source_index = target_index.SourceIndexOfSlice( operand->shape(), slice->slice_starts(), slice->slice_strides(), b()); llvm::Value* memcpy_dest = target_array.EmitArrayElementAddress(target_index, b(), "slice.dest"); llvm::Value* memcpy_source = source_array.EmitArrayElementAddress(source_index, b(), "slice.source"); const int64_t memcpy_elements = primitive_elements_per_logical_element * memcpy_logical_elements; EmitTransferElements(memcpy_dest, memcpy_source, memcpy_elements, slice->shape().element_type(), target_array, source_array); if (VLOG_IS_ON(2)) { const int64_t memcpy_bytes = ShapeUtil::ByteSizeOf(logical_element_shape) * memcpy_elements; VLOG(2) << " emitted copy of " << memcpy_bytes << " bytes inside " << num_outer_loops << " loops"; } if (num_outer_loops > 0) { SetToFirstInsertPoint(loops.GetOuterLoopExitBasicBlock(), b()); } return absl::OkStatus(); } absl::Status IrEmitter::HandleDynamicSlice(HloInstruction* dynamic_slice) { if (ShapeUtil::IsScalar(dynamic_slice->shape())) { TF_RETURN_IF_ERROR(EmitTargetAddressForOp(dynamic_slice)); return EmitMemcpy(*dynamic_slice->operand(0), *dynamic_slice); } return DefaultAction(dynamic_slice); } absl::Status IrEmitter::HandleDynamicUpdateSlice( HloInstruction* dynamic_update_slice) { auto update = dynamic_update_slice->operand(1); if (ShapeUtil::IsScalar(dynamic_update_slice->shape())) { TF_RETURN_IF_ERROR(EmitTargetAddressForOp(dynamic_update_slice)); return EmitMemcpy(*update, *dynamic_update_slice); } else if (llvm_ir::CanUpdateDynamicSliceInPlace(dynamic_update_slice, assignment_)) { TF_RETURN_IF_ERROR(EmitTargetAddressForOp(dynamic_update_slice)); auto operands = GetIrArraysForOperandsOf(dynamic_update_slice); return llvm_ir::EmitDynamicUpdateSliceInPlace( operands, GetIrArrayFor(dynamic_update_slice), IrName(dynamic_update_slice, "in_place"), b()); } return DefaultAction(dynamic_update_slice); } absl::Status IrEmitter::HandleRecv(HloInstruction* recv) { return Unimplemented("Recv is not implemented on CPU."); } absl::Status IrEmitter::HandleRecvDone(HloInstruction* recv_done) { return Unimplemented("Recv-done is not implemented on CPU."); } absl::Status IrEmitter::HandlePad(HloInstruction* pad) { CHECK_EQ(pad->operand_count(), 2); const auto operand = pad->operand(0); const auto padding_value = pad->operand(1); TF_RETURN_IF_ERROR(EmitTargetAddressForOp(pad)); return HandlePad(pad, GetIrArrayFor(operand), GetIrArrayFor(padding_value), GetIrArrayFor(pad)); } absl::Status IrEmitter::HandlePad(HloInstruction* pad, const llvm_ir::IrArray& operand_array, const llvm_ir::IrArray& padding_value_array, const llvm_ir::IrArray& output_array) { CHECK_EQ(pad->operand_count(), 2); for (auto& padding_dimension : pad->padding_config().dimensions()) { if (padding_dimension.edge_padding_low() < 0 || padding_dimension.edge_padding_high() < 0) { return InternalStrCat( "Encountered negative padding in IrEmitter on CPU. " "This should have been eliminated at the HLO level. ", pad->ToString()); } } const HloInstruction* padding_value = pad->operand(1); const auto index_type = b()->getInt64Ty(); const auto index = llvm_ir::IrArray::Index(index_type); llvm::Value* padding_value_addr = padding_value_array.EmitArrayElementAddress( index, b(), "padding_value_addr", true, nullptr); const llvm_ir::ElementGenerator element_generator = [this, padding_value, padding_value_addr](const llvm_ir::IrArray::Index& target_index) { return b()->CreateLoad(IrShapeType(padding_value->shape()), padding_value_addr); }; TF_RETURN_IF_ERROR(EmitTargetElementLoop( pad, "initialize", element_generator, std::optional<const llvm_ir::IrArray>(output_array))); llvm_ir::ForLoopNest loops(IrName(pad, "assign"), b()); const HloInstruction* operand = pad->operand(0); const llvm_ir::IrArray::Index operand_index = loops.AddLoopsForShape(operand->shape(), "operand"); SetToFirstInsertPoint(loops.GetInnerLoopBodyBasicBlock(), b()); llvm::Value* operand_data = operand_array.EmitReadArrayElement(operand_index, b()); const PaddingConfig& padding_config = pad->padding_config(); std::vector<llvm::Value*> output_multi_index; for (size_t i = 0; i < operand_index.size(); ++i) { llvm::Value* offset = Mul(operand_index[i], b()->getInt64(padding_config.dimensions(i).interior_padding() + 1)); llvm::Value* index = Add( offset, b()->getInt64(padding_config.dimensions(i).edge_padding_low())); output_multi_index.push_back(index); } llvm_ir::IrArray::Index output_index( output_multi_index, output_array.GetShape(), operand_index.GetType()); output_array.EmitWriteArrayElement(output_index, operand_data, b()); SetToFirstInsertPoint(loops.GetOuterLoopExitBasicBlock(), b()); return absl::OkStatus(); } absl::Status IrEmitter::HandleFusion(HloInstruction* fusion) { auto* root = fusion->fused_expression_root(); if (llvm_ir::CanEmitFusedDynamicUpdateSliceInPlace(fusion, assignment_)) { VLOG(3) << "HandleFusion FusedDynamicUpdateSliceInPlace"; CpuElementalIrEmitter elemental_emitter(hlo_module_config_, this, module_); FusedIrEmitter fused_emitter(elemental_emitter); BindFusionArguments(fusion, &fused_emitter); TF_RETURN_IF_ERROR(EmitTargetAddressForOp(fusion)); return llvm_ir::EmitFusedDynamicUpdateSliceInPlace( fusion, GetIrArrayFor(fusion), &fused_emitter, b()); } else if (fusion->IsLoopFusion()) { VLOG(3) << "HandleFusion kLoop"; CpuElementalIrEmitter elemental_emitter(hlo_module_config_, this, module_); FusedIrEmitter fused_emitter(elemental_emitter); BindFusionArguments(fusion, &fused_emitter); TF_ASSIGN_OR_RETURN(auto generator, fused_emitter.GetGenerator( *fusion->fused_expression_root())); return EmitTargetElementLoop(fusion, "kLoop_fusion", generator, std::nullopt); } else if (fusion->IsOutputFusion()) { VLOG(3) << "HandleFusion kOutput"; int64_t dot_op_index = root->operand(0)->opcode() == HloOpcode::kDot ? 0 : 1; const HloInstruction* dot = root->operand(dot_op_index); CHECK_EQ(dot->opcode(), HloOpcode::kDot) << dot->ToString() << " " << fusion->fused_instructions_computation()->ToString(); int64_t dot_lhs_param_number = dot->operand(0)->parameter_number(); int64_t dot_rhs_param_number = dot->operand(1)->parameter_number(); int64_t addend_param_number = root->operand(1 - dot_op_index)->parameter_number(); Shape target_shape = fusion->shape(); TF_RETURN_IF_ERROR(EmitTargetAddressForOp(fusion)); llvm_ir::IrArray target_array = GetIrArrayFor(fusion); llvm_ir::IrArray lhs_array( GetIrArrayFor(fusion->operand(dot_lhs_param_number))); llvm_ir::IrArray rhs_array( GetIrArrayFor(fusion->operand(dot_rhs_param_number))); llvm_ir::IrArray addend_array( GetIrArrayFor(fusion->operand(addend_param_number))); TF_RETURN_IF_ERROR( EmitDotOperation(*dot, target_array, lhs_array, rhs_array, &addend_array, GetExecutableRunOptionsArgument(), b(), hlo_module_config_, target_machine_features_)); return absl::OkStatus(); } else { return Unimplemented("Fusion kind not implemented on CPU"); } } absl::Status IrEmitter::HandleCall(HloInstruction* call) { HloComputation* computation = call->to_apply(); llvm::Function* call_ir_function = FindOrDie( emitted_functions_, ComputationToEmit{computation, allow_reassociation_}); TF_RETURN_IF_ERROR(EmitTargetAddressForOp(call)); auto backend_config_or = computation->root_instruction()->backend_config<BackendConfig>(); if (backend_config_or.ok() && !backend_config_or->outer_dimension_partitions().empty()) { std::vector<llvm::Value*> call_args = GetArrayFunctionCallArguments( {}, b(), computation->name(), emitted_value_[call], GetExecutableRunOptionsArgument(), GetBufferTableArgument(), GetStatusArgument(), GetProfileCountersArgument()); HloInstruction* root = computation->root_instruction(); TF_RETURN_IF_ERROR(EmitCallToParallelForkJoin( call_args, root->shape(), backend_config_or->outer_dimension_partitions(), b(), call_ir_function, computation->name())); if (ComputationTransitivelyContainsCustomCall(computation)) { EmitEarlyReturnIfErrorStatus(); } } else { EmitGlobalCall(*computation, computation->name()); } return absl::OkStatus(); } absl::Status IrEmitter::EmitSliceToDynamic( const HloInstruction* hlo, absl::Span<const llvm_ir::IrArray> source_arrays, const llvm_ir::IrArray& target_array) { std::vector<llvm::Value*> dynamic_dims; int32_t raw_data_size = ShapeUtil::ByteSizeOf(ShapeUtil::MakeStaticShape(hlo->shape())); llvm::Value* dest_buffer = target_array.GetBasePointer(); for (int64_t i = 1; i < hlo->operand_count(); ++i) { const int64_t dim_index = i - 1; llvm::Value* source_buffer = source_arrays[i].GetBasePointer(); llvm::LoadInst* dyn_dim_size = Load(IrShapeType(hlo->operand(i)->shape()), source_buffer, "dyn_dim_size"); llvm::Value* metadata = b()->CreateConstInBoundsGEP1_32( b()->getInt8Ty(), dest_buffer, raw_data_size + dim_index * sizeof(int32_t)); b()->CreateStore(dyn_dim_size, metadata); dynamic_dims.push_back(b()->CreateIntCast(dyn_dim_size, b()->getInt64Ty(), true, "i64_dyn_dim_size")); } auto loop_body_emitter = [&](const llvm_ir::IrArray::Index& array_index) -> absl::Status { llvm::Value* source_element = source_arrays[0].EmitReadArrayElement(array_index, b()); llvm::Value* linear_index = array_index.Linearize(dynamic_dims, b()); llvm_ir::IrArray::Index dest_index(linear_index, target_array.GetShape(), b()); target_array.EmitWriteArrayElement(dest_index, source_element, b()); return absl::OkStatus(); }; return llvm_ir::LoopEmitter(loop_body_emitter, target_array.GetShape(), dynamic_dims, b()) .EmitLoop(IrName(hlo)); } absl::Status IrEmitter::HandleSliceToDynamic(HloInstruction* hlo) { TF_RETURN_IF_ERROR(EmitTargetAddressForOp(hlo)); llvm_ir::IrArray target_array = GetIrArrayFor(hlo); std::vector<llvm_ir::IrArray> source_arrays; source_arrays.reserve(hlo->operand_count()); for (auto operand : hlo->operands()) { source_arrays.push_back(GetIrArrayFor(operand)); } return EmitSliceToDynamic(hlo, source_arrays, target_array); } absl::Status IrEmitter::HandlePadToStatic(HloInstruction* hlo) { TF_RETURN_IF_ERROR(EmitTargetAddressForOp(hlo)); TF_ASSIGN_OR_RETURN(BufferAllocation::Slice data_slice, assignment_.GetUniqueSlice(hlo, {0})); std::vector<llvm::Value*> dynamic_dims; std::vector<llvm::Value*> tuple_operand_ptrs; const Shape& data_shape = ShapeUtil::GetSubshape(hlo->shape(), {0}); const Shape& input_shape = hlo->operand(0)->shape(); llvm::Value* data_address = EmitBufferPointer(data_slice, data_shape); llvm::Type* data_type = IrShapeType(data_shape); llvm_ir::IrArray data_array(data_address, data_type, data_shape); llvm::Value* source_buffer = GetEmittedValueFor(hlo->operand(0)); int64_t raw_data_size = ShapeUtil::ByteSizeOf(ShapeUtil::MakeStaticShape(input_shape)); tuple_operand_ptrs.push_back(data_array.GetBasePointer()); for (int i = 1; i < hlo->shape().tuple_shapes_size(); ++i) { const Shape& dim_shape = ShapeUtil::GetSubshape(hlo->shape(), {i}); TF_RET_CHECK(Shape::Equal()(dim_shape, ShapeUtil::MakeScalarShape(S32))); TF_ASSIGN_OR_RETURN(BufferAllocation::Slice dim_size_slice, assignment_.GetUniqueSlice(hlo, {i})); llvm::Value* dest_dim_size_address = EmitBufferPointer(dim_size_slice, data_shape); const int64_t dim_index = i - 1; llvm::Value* metadata = b()->CreateConstInBoundsGEP1_32( b()->getInt8Ty(), source_buffer, raw_data_size + dim_index * sizeof(int32_t)); llvm::Value* dyn_dim_size = b()->CreateLoad(b()->getInt32Ty(), metadata, "dyn_dim_size"); b()->CreateStore(dyn_dim_size, dest_dim_size_address); dynamic_dims.push_back(b()->CreateIntCast(dyn_dim_size, b()->getInt64Ty(), true, "i64_dyn_dim_size")); tuple_operand_ptrs.push_back(dest_dim_size_address); } auto loop_body_emitter = [&](const llvm_ir::IrArray::Index& array_index) -> absl::Status { llvm::Value* linear_index = array_index.Linearize(dynamic_dims, b()); llvm_ir::IrArray::Index source_index(linear_index, input_shape, b()); llvm::Value* source_element = GetIrArrayFor(hlo->operand(0)).EmitReadArrayElement(source_index, b()); data_array.EmitWriteArrayElement(array_index, source_element, b()); return absl::OkStatus(); }; TF_RETURN_IF_ERROR( llvm_ir::LoopEmitter(loop_body_emitter, input_shape, dynamic_dims, b()) .EmitLoop(IrName(hlo))); llvm_ir::EmitTuple(GetIrArrayFor(hlo), tuple_operand_ptrs, b()); return absl::OkStatus(); } absl::Status IrEmitter::HandleTopK(HloInstruction* hlo) { TF_RETURN_IF_ERROR(EmitTargetAddressForOp(hlo)); const HloInstruction* input = hlo->operand(0); const int64_t k = hlo->shape().tuple_shapes(0).dimensions().back(); const bool has_batch = hlo->shape().tuple_shapes(0).dimensions_size() == 2; TF_RET_CHECK(input->shape().element_type() == F32) << hlo->ToString(); TF_RET_CHECK(LayoutUtil::IsMonotonicWithDim0Major( hlo->shape().tuple_shapes(0).layout())) << hlo->ToString(); TF_RET_CHECK(LayoutUtil::IsMonotonicWithDim0Major( hlo->shape().tuple_shapes(1).layout())) << hlo->ToString(); TF_RET_CHECK( LayoutUtil::IsMonotonicWithDim0Major(hlo->operand(0)->shape().layout())) << hlo->ToString(); TF_ASSIGN_OR_RETURN(const BufferAllocation::Slice values_slice, assignment_.GetUniqueSlice(hlo->operand(0), {})); TF_ASSIGN_OR_RETURN(const BufferAllocation::Slice out_values_slice, assignment_.GetUniqueSlice(hlo, {0})); TF_ASSIGN_OR_RETURN(const BufferAllocation::Slice out_indices_slice, assignment_.GetUniqueSlice(hlo, {1})); llvm::Value* values_ptr = EmitBufferPointer(values_slice, hlo->operand(0)->shape()); llvm::Value* out_values_ptr = EmitBufferPointer(out_values_slice, hlo->shape().tuple_shapes(0)); llvm::Value* out_indices_ptr = EmitBufferPointer(out_indices_slice, hlo->shape().tuple_shapes(1)); EmitCallToFunc( runtime::kTopKF32SymbolName, {b()->getInt64(has_batch ? input->shape().dimensions(0) : 1), b()->getInt64(input->shape().dimensions().back()), b()->getInt64(k), values_ptr, out_values_ptr, out_indices_ptr}, b()->getVoidTy()); llvm_ir::EmitTuple(GetIrArrayFor(hlo), {out_values_ptr, out_indices_ptr}, b()); return absl::OkStatus(); } #if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) std::vector<StackAlloca> IrEmitter::EmitOneDnnOperandsAlloca( HloInstruction* custom_call, llvm::Value*& args_val, int& arg_indx) { std::vector<StackAlloca> operands_stack_alloca; const int num_operands = custom_call->operand_count(); operands_stack_alloca.reserve(num_operands); for (int i = 0; i < num_operands; ++i) { llvm_ir::IrArray ir_array(GetIrArrayFor(custom_call->operand(i))); StackAlloca stack_alloca = GetAllocaAndEmitMemrefInfo(*b(), ir_array); args_val = b()->CreateInsertValue(args_val, stack_alloca.value, arg_indx++); operands_stack_alloca.push_back(std::move(stack_alloca)); } return operands_stack_alloca; } absl::Status IrEmitter::HandleOneDnnMatMulCalls( HloInstruction* custom_call, std::string runtime_symbol_name) { const int nargs_offset = 3; const int num_operands = custom_call->operand_count(); const int nargs = nargs_offset + num_operands; int arg_indx = 0; llvm::Type* i64_type = b()->getInt64Ty(); llvm::Type* ptr_type = b()->getPtrTy(); llvm::ArrayType* ptr_array_type = llvm::ArrayType::get(ptr_type, nargs); llvm::Value* args_val = llvm::UndefValue::get(ptr_array_type); llvm::Value* nargs_val = b()->getInt64(nargs); llvm::Value* nargs_ptr = llvm_ir::EmitAllocaAtFunctionEntry(i64_type, "nargs", b()); b()->CreateLifetimeStart(nargs_ptr, b()->getInt64(-1)); b()->CreateStore(nargs_val, nargs_ptr); args_val = b()->CreateInsertValue(args_val, nargs_ptr, arg_indx++); llvm::Value* run_opts_val = GetExecutableRunOptionsArgument(); args_val = b()->CreateInsertValue(args_val, run_opts_val, arg_indx++); auto typed_custom_call = Cast<HloCustomCallInstruction>(custom_call); auto backend_config = typed_custom_call->backend_config<BackendConfig>(); OneDnnMatMulConfig matmul_config; matmul_config.CopyFrom(backend_config->onednn_matmul_config()); std::string str_config; matmul_config.SerializeToString(&str_config); llvm::Value* matmul_config_val = b()->CreateGlobalStringPtr(llvm_ir::AsStringRef(str_config)); args_val = b()->CreateInsertValue(args_val, matmul_config_val, arg_indx++); auto operands_stack_alloca = EmitOneDnnOperandsAlloca(custom_call, args_val, arg_indx); TF_RET_CHECK(nargs == arg_indx) << "Number of arguments don't equal the last argument index."; llvm::Value* args_ptr = llvm_ir::EmitAllocaAtFunctionEntry(ptr_array_type, "matmul.args", b()); b()->CreateLifetimeStart(args_ptr, b()->getInt64(-1)); b()->CreateStore(args_val, args_ptr); TF_RETURN_IF_ERROR(EmitTargetAddressForOp(custom_call)); StackAlloca result_stack_alloca; StackAlloca scratch_stack_alloca; std::vector<llvm::Value*> fn_call_args; fn_call_args.reserve(3); const bool use_scratchpad = custom_call->shape().IsTuple(); if (use_scratchpad) { llvm::Value* result_slice_ptr; llvm::Value* scratch_slice_ptr; llvm_ir::IrArray result_array; llvm_ir::IrArray scratch_array; TF_ASSIGN_OR_RETURN(const BufferAllocation::Slice result_slice, assignment_.GetUniqueSlice(custom_call, {0})); const Shape& result_shape = custom_call->shape().tuple_shapes(0); result_slice_ptr = EmitBufferPointer(result_slice, result_shape); llvm::Type* ir_type = IrShapeType(result_shape); result_array = llvm_ir::IrArray(result_slice_ptr, ir_type, result_shape); result_stack_alloca = GetAllocaAndEmitMemrefInfo(*b(), result_array); fn_call_args.push_back(result_stack_alloca.value); TF_ASSIGN_OR_RETURN(const BufferAllocation::Slice scratch_slice, assignment_.GetUniqueSlice(custom_call, {1})); const Shape& scratch_shape = custom_call->shape().tuple_shapes(1); scratch_slice_ptr = EmitBufferPointer(scratch_slice, scratch_shape); llvm::Type* scratch_type = IrShapeType(scratch_shape); scratch_array = llvm_ir::IrArray(scratch_slice_ptr, scratch_type, scratch_shape); scratch_stack_alloca = GetAllocaAndEmitMemrefInfo(*b(), scratch_array); fn_call_args.push_back(scratch_stack_alloca.value); llvm_ir::EmitTuple(GetIrArrayFor(custom_call), {result_slice_ptr, scratch_slice_ptr}, b()); } else { llvm_ir::IrArray result_array; result_array = GetIrArrayFor(custom_call); result_stack_alloca = GetAllocaAndEmitMemrefInfo(*b(), result_array); fn_call_args.push_back(result_stack_alloca.value); fn_call_args.push_back(llvm::ConstantPointerNull::get(b()->getPtrTy())); } fn_call_args.push_back(args_ptr); EmitCallToFunc(std::move(runtime_symbol_name), fn_call_args, b()->getVoidTy()); b()->CreateLifetimeEnd(nargs_ptr, b()->getInt64(-1)); b()->CreateLifetimeEnd(args_ptr, b()->getInt64(-1)); for (auto& alloca : operands_stack_alloca) { alloca.EmitLifetimeEnd(); } result_stack_alloca.EmitLifetimeEnd(); if (use_scratchpad) { scratch_stack_alloca.EmitLifetimeEnd(); } return absl::OkStatus(); } absl::Status IrEmitter::HandleOneDnnConvolution(HloInstruction* custom_call) { const int nargs_offset = 3; const int num_operands = custom_call->operand_count(); const int nargs = nargs_offset + num_operands; int arg_indx = 0; llvm::Type* i64_type = b()->getInt64Ty(); llvm::Type* ptr_type = b()->getPtrTy(); llvm::ArrayType* ptr_array_type = llvm::ArrayType::get(ptr_type, nargs); llvm::Value* args_val = llvm::UndefValue::get(ptr_array_type); llvm::Value* nargs_val = b()->getInt64(nargs); llvm::Value* nargs_ptr = llvm_ir::EmitAllocaAtFunctionEntry(i64_type, "nargs", b()); b()->CreateLifetimeStart(nargs_ptr, b()->getInt64(-1)); b()->CreateStore(nargs_val, nargs_ptr); args_val = b()->CreateInsertValue(args_val, nargs_ptr, arg_indx++); llvm::Value* run_opts_val = GetExecutableRunOptionsArgument(); args_val = b()->CreateInsertValue(args_val, run_opts_val, arg_indx++); auto typed_custom_call = Cast<HloCustomCallInstruction>(custom_call); auto backend_config = typed_custom_call->backend_config<BackendConfig>(); OneDnnConvolutionConfig conv_config; conv_config.CopyFrom(backend_config->onednn_conv_config()); std::string str_config; conv_config.SerializeToString(&str_config); llvm::Value* conv_config_val = b()->CreateGlobalStringPtr(llvm_ir::AsStringRef(str_config)); args_val = b()->CreateInsertValue(args_val, conv_config_val, arg_indx++); auto operands_stack_alloca = EmitOneDnnOperandsAlloca(custom_call, args_val, arg_indx); TF_RET_CHECK(nargs == arg_indx) << "Number of arguments don't equal the last argument index."; llvm::Value* args_ptr = llvm_ir::EmitAllocaAtFunctionEntry( ptr_array_type, "convolution.args", b()); b()->CreateLifetimeStart(args_ptr, b()->getInt64(-1)); b()->CreateStore(args_val, args_ptr); TF_RETURN_IF_ERROR(EmitTargetAddressForOp(custom_call)); llvm_ir::IrArray result_array = GetIrArrayFor(custom_call); auto result_stack_alloca = GetAllocaAndEmitMemrefInfo(*b(), result_array); EmitCallToFunc(runtime::kOneDnnConvolutionSymbolName, {result_stack_alloca.value, args_ptr}, b()->getVoidTy()); b()->CreateLifetimeEnd(nargs_ptr, b()->getInt64(-1)); for (int i = 0; i < num_operands; ++i) { operands_stack_alloca[i].EmitLifetimeEnd(); } b()->CreateLifetimeEnd(args_ptr, b()->getInt64(-1)); result_stack_alloca.EmitLifetimeEnd(); return absl::OkStatus(); } absl::Status IrEmitter::HandleOneDnnLayerNorm(HloInstruction* custom_call) { const int nargs_offset = 3; const int num_operands = custom_call->operand_count(); const int nargs = nargs_offset + num_operands; int arg_indx = 0; llvm::Type* i64_type = b()->getInt64Ty(); llvm::Type* ptr_type = b()->getPtrTy(); llvm::ArrayType* ptr_array_type = llvm::ArrayType::get(ptr_type, nargs); llvm::Value* args_val = llvm::UndefValue::get(ptr_array_type); llvm::Value* nargs_val = b()->getInt64(nargs); llvm::Value* nargs_ptr = llvm_ir::EmitAllocaAtFunctionEntry(i64_type, "nargs", b()); b()->CreateLifetimeStart(nargs_ptr, b()->getInt64(-1)); b()->CreateStore(nargs_val, nargs_ptr); args_val = b()->CreateInsertValue(args_val, nargs_ptr, arg_indx++); llvm::Value* run_opts_val = GetExecutableRunOptionsArgument(); args_val = b()->CreateInsertValue(args_val, run_opts_val, arg_indx++); auto typed_custom_call = Cast<HloCustomCallInstruction>(custom_call); auto backend_config = typed_custom_call->backend_config<BackendConfig>(); OneDnnNormConfig ln_config; ln_config.CopyFrom(backend_config->onednn_layer_norm_config()); std::string str_config; ln_config.SerializeToString(&str_config); llvm::Value* ln_config_val = b()->CreateGlobalStringPtr(llvm_ir::AsStringRef(str_config)); args_val = b()->CreateInsertValue(args_val, ln_config_val, arg_indx++); auto operands_stack_alloca = EmitOneDnnOperandsAlloca(custom_call, args_val, arg_indx); TF_RET_CHECK(nargs == arg_indx) << "Number of arguments don't equal the last argument index."; llvm::Value* args_ptr = llvm_ir::EmitAllocaAtFunctionEntry(ptr_array_type, "layernorm.args", b()); b()->CreateLifetimeStart(args_ptr, b()->getInt64(-1)); b()->CreateStore(args_val, args_ptr); TF_RETURN_IF_ERROR(EmitTargetAddressForOp(custom_call)); llvm_ir::IrArray result_array = GetIrArrayFor(custom_call); auto result_stack_alloca = GetAllocaAndEmitMemrefInfo(*b(), result_array); EmitCallToFunc(runtime::kOneDnnLayerNormSymbolName, {result_stack_alloca.value, args_ptr}, b()->getVoidTy()); b()->CreateLifetimeEnd(nargs_ptr, b()->getInt64(-1)); for (int i = 0; i < num_operands; ++i) { operands_stack_alloca[i].EmitLifetimeEnd(); } b()->CreateLifetimeEnd(args_ptr, b()->getInt64(-1)); result_stack_alloca.EmitLifetimeEnd(); return absl::OkStatus(); } absl::Status IrEmitter::HandleOneDnnSoftmax(HloInstruction* custom_call) { auto typed_custom_call = Cast<HloCustomCallInstruction>(custom_call); auto backend_config = typed_custom_call->backend_config<BackendConfig>(); OneDnnSoftmaxConfig softmax_config; softmax_config.CopyFrom(backend_config->onednn_softmax_config()); std::string str_config; softmax_config.SerializeToString(&str_config); llvm::Value* softmax_config_val = b()->CreateGlobalStringPtr(llvm_ir::AsStringRef(str_config)); auto input = custom_call->operand(0); llvm_ir::IrArray input_array(GetIrArrayFor(input)); auto input_stack_alloca = GetAllocaAndEmitMemrefInfo(*b(), input_array); TF_RETURN_IF_ERROR(EmitTargetAddressForOp(custom_call)); llvm_ir::IrArray result_array = GetIrArrayFor(custom_call); auto result_stack_alloca = GetAllocaAndEmitMemrefInfo(*b(), result_array); EmitCallToFunc(runtime::kOneDnnSoftmaxSymbolName, {GetExecutableRunOptionsArgument(), input_stack_alloca.value, result_stack_alloca.value, softmax_config_val}, b()->getVoidTy()); input_stack_alloca.EmitLifetimeEnd(); result_stack_alloca.EmitLifetimeEnd(); return absl::OkStatus(); } #endif absl::Status IrEmitter::HandleCustomCall(HloInstruction* custom_call) { if (custom_call->custom_call_target() == "PadToStatic") { return HandlePadToStatic(custom_call); } if (custom_call->custom_call_target() == "SliceToDynamic") { return HandleSliceToDynamic(custom_call); } if (custom_call->custom_call_target() == "TopK") { return HandleTopK(custom_call); } #if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) if (custom_call->custom_call_target() == "__onednn$matmul") { return HandleOneDnnMatMulCalls(custom_call, runtime::kOneDnnMatMulSymbolName); } if (custom_call->custom_call_target() == "__onednn$softmax") { return HandleOneDnnSoftmax(custom_call); } if (custom_call->custom_call_target() == "__onednn$layernorm") { return HandleOneDnnLayerNorm(custom_call); } if (custom_call->custom_call_target() == "__onednn$convolution") { return HandleOneDnnConvolution(custom_call); } if (custom_call->custom_call_target() == "__onednn$matmul_reorder") { return HandleOneDnnMatMulCalls(custom_call, runtime::kOneDnnMatMulReorderSymbolName); } #endif absl::Span<HloInstruction* const> operands(custom_call->operands()); auto typed_custom_call = Cast<HloCustomCallInstruction>(custom_call); auto is_typed_ffi = typed_custom_call->api_version() == CustomCallApiVersion::API_VERSION_TYPED_FFI; std::vector<llvm::Value*> operand_values; operand_values.reserve(operands.size()); for (int64_t i = 0; i < operands.size(); ++i) { HloInstruction* operand = operands[i]; if (is_typed_ffi) { TF_RETURN_IF_ERROR(ShapeUtil::ForEachSubshapeWithStatus( operand->shape(), [&](const Shape& shape, const ShapeIndex& index) { if (!shape.IsArray()) { return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(BufferAllocation::Slice slice, assignment_.GetUniqueSlice(operand, index)); operand_values.push_back(EmitBufferPointer(slice, shape)); return absl::OkStatus(); })); } else { operand_values.push_back(GetEmittedValueFor(operand)); } } llvm::AllocaInst* operands_alloca = llvm_ir::EmitAllocaAtFunctionEntryWithCount( b()->getPtrTy(), b()->getInt32(operand_values.size()), "cc_operands_alloca", b()); if (emit_code_for_msan_) { const llvm::DataLayout& dl = module_->getDataLayout(); llvm::Type* intptr_type = b()->getIntPtrTy(dl); EmitCallToFunc("__msan_unpoison", {operands_alloca, llvm::ConstantInt::get( intptr_type, *operands_alloca->getAllocationSize(dl))}, b()->getVoidTy()); } for (int64_t i = 0; i < operand_values.size(); ++i) { llvm::Value* slot_in_operands_alloca = InBoundsGEP(operands_alloca->getAllocatedType(), operands_alloca, {b()->getInt64(i)}); Store(operand_values[i], slot_in_operands_alloca); } TF_RETURN_IF_ERROR(EmitTargetAddressForOp(custom_call)); std::vector<llvm::Value*> tuple_ptrs; if (custom_call->shape().IsTuple()) { for (int i = 0; i < ShapeUtil::TupleElementCount(custom_call->shape()); ++i) { const Shape& elem_shape = ShapeUtil::GetTupleElementShape(custom_call->shape(), i); if (!is_typed_ffi) { TF_RET_CHECK(!elem_shape.IsTuple()) << "Nested tuples not implemented"; } TF_ASSIGN_OR_RETURN(const BufferAllocation::Slice slice, assignment_.GetUniqueSlice(custom_call, {i})); tuple_ptrs.push_back(EmitBufferPointer(slice, elem_shape)); } llvm_ir::EmitTuple(GetIrArrayFor(custom_call), tuple_ptrs, b()); } auto* output_address = GetEmittedValueFor(custom_call); switch (typed_custom_call->api_version()) { case CustomCallApiVersion::API_VERSION_ORIGINAL: EmitCallToFunc(custom_call->custom_call_target(), {output_address, operands_alloca}, b()->getVoidTy()); break; case CustomCallApiVersion::API_VERSION_STATUS_RETURNING: EmitCallToFunc(custom_call->custom_call_target(), {output_address, operands_alloca, GetStatusArgument()}, b()->getVoidTy()); EmitEarlyReturnIfErrorStatus(); break; case CustomCallApiVersion::API_VERSION_STATUS_RETURNING_UNIFIED: { absl::string_view opaque = typed_custom_call->opaque(); EmitCallToFunc(custom_call->custom_call_target(), {output_address, operands_alloca, b()->CreateGlobalStringPtr(llvm_ir::AsStringRef(opaque)), b()->getInt64(opaque.size()), GetStatusArgument()}, b()->getVoidTy()); EmitEarlyReturnIfErrorStatus(); break; } case CustomCallApiVersion::API_VERSION_TYPED_FFI: { std::vector<llvm::Value*> buffer_ptrs; if (custom_call->shape().IsTuple()) { buffer_ptrs.reserve(ShapeUtil::TupleElementCount(custom_call->shape())); } TF_RETURN_IF_ERROR(ShapeUtil::ForEachSubshapeWithStatus( custom_call->shape(), [&](const Shape& shape, const ShapeIndex& index) { if (!shape.IsArray()) { return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(BufferAllocation::Slice slice, assignment_.GetUniqueSlice(custom_call, index)); buffer_ptrs.push_back(EmitBufferPointer(slice, shape)); return absl::OkStatus(); })); llvm::AllocaInst* results_alloca = llvm_ir::EmitAllocaAtFunctionEntryWithCount( b()->getPtrTy(), b()->getInt32(buffer_ptrs.size()), "ffi_results_alloca", b()); if (emit_code_for_msan_) { const llvm::DataLayout& dl = module_->getDataLayout(); llvm::Type* intptr_type = b()->getIntPtrTy(dl); EmitCallToFunc( "__msan_unpoison", {results_alloca, llvm::ConstantInt::get(intptr_type, *results_alloca->getAllocationSize(dl))}, b()->getVoidTy()); } for (int i = 0; i < buffer_ptrs.size(); ++i) { llvm::Value* tuple_slot_in_results_alloca = InBoundsGEP(results_alloca->getAllocatedType(), results_alloca, {b()->getInt64(i)}); Store(buffer_ptrs[i], tuple_slot_in_results_alloca); } EmitCallToFfi(typed_custom_call, results_alloca, operands_alloca); EmitEarlyReturnIfErrorStatus(); break; } default: return Internal( "Unknown custom-call API version enum value: %d (%s)", typed_custom_call->api_version(), CustomCallApiVersion_Name(typed_custom_call->api_version())); } return absl::OkStatus(); } absl::Status IrEmitter::HandleWhile(HloInstruction* xla_while) { HloComputation* condition = xla_while->while_condition(); TF_RET_CHECK(ShapeUtil::IsScalar(condition->root_instruction()->shape()) && condition->root_instruction()->shape().element_type() == PRED) << "While condition computation must return bool; got: " << ShapeUtil::HumanString(condition->root_instruction()->shape()); TF_RETURN_IF_ERROR(ShapeUtil::ForEachSubshapeWithStatus( xla_while->shape(), [this, &xla_while](const Shape& , const ShapeIndex& index) -> absl::Status { auto check = [this](const HloInstruction* a, const HloInstruction* b, const ShapeIndex& index) -> absl::Status { const BufferAllocation::Slice slice_a = assignment_.GetUniqueSlice(a, index).value(); const BufferAllocation::Slice slice_b = assignment_.GetUniqueSlice(b, index).value(); if (slice_a != slice_b) { return Internal( "instruction %s %s does not share slice with " "instruction %s %s", a->ToString(), slice_a.ToString(), b->ToString(), slice_b.ToString()); } return absl::OkStatus(); }; TF_RETURN_IF_ERROR(check(xla_while, xla_while->operand(0), index)); TF_RETURN_IF_ERROR(check( xla_while, xla_while->while_condition()->parameter_instruction(0), index)); TF_RETURN_IF_ERROR( check(xla_while, xla_while->while_body()->parameter_instruction(0), index)); TF_RETURN_IF_ERROR(check( xla_while, xla_while->while_body()->root_instruction(), index)); return absl::OkStatus(); })); const HloInstruction* init = xla_while->operand(0); emitted_value_[xla_while] = GetEmittedValueFor(init); llvm::BasicBlock* header_bb = llvm::BasicBlock::Create( module_->getContext(), IrName(xla_while, "header"), compute_function()->function()); Br(header_bb); b()->SetInsertPoint(header_bb); EmitGlobalCall(*xla_while->while_condition(), IrName(xla_while, "cond")); llvm::Value* while_predicate = ICmpNE( Load(IrShapeType( xla_while->while_condition()->root_instruction()->shape()), GetBufferForGlobalCallReturnValue(*xla_while->while_condition())), llvm::ConstantInt::get(llvm_ir::PrimitiveTypeToIrType(PRED, module_), 0)); llvm::BasicBlock* body_bb = llvm::BasicBlock::Create(module_->getContext(), IrName(xla_while, "body"), compute_function()->function()); llvm::BasicBlock* exit_bb = llvm::BasicBlock::Create( module_->getContext(), IrName(xla_while, "exit")); CondBr(while_predicate, body_bb, exit_bb); b()->SetInsertPoint(body_bb); EmitGlobalCall(*xla_while->while_body(), IrName(xla_while, "body")); Br(header_bb); llvm::Function* llvm_fn = compute_function()->function(); llvm_fn->insert(llvm_fn->end(), exit_bb); b()->SetInsertPoint(exit_bb); return absl::OkStatus(); } absl::Status IrEmitter::EmitFastConcatenate( const HloInstruction* instr, absl::Span<const llvm_ir::IrArray> source_arrays, const llvm_ir::IrArray& target_array) { return ::xla::cpu::EmitFastConcatenate(instr, source_arrays, target_array, module_, *b()); } absl::Status EmitFastConcatenate( const HloInstruction* instr, absl::Span<const llvm_ir::IrArray> source_arrays, const llvm_ir::IrArray& target_array, llvm::Module* module, llvm::IRBuilder<>& b) { auto* concatenate = Cast<HloConcatenateInstruction>(instr); const Shape& output_shape = concatenate->shape(); int64_t concat_dim = concatenate->concatenate_dimension(); const Layout& output_layout = output_shape.layout(); auto output_min2maj = LayoutUtil::MinorToMajor(output_layout); auto concat_dim_layout_itr = absl::c_find(output_min2maj, concat_dim); std::vector<int64_t> inner_dims(output_min2maj.begin(), concat_dim_layout_itr); std::vector<int64_t> outer_dims(std::next(concat_dim_layout_itr), output_min2maj.end()); llvm_ir::ForLoopNest loops(IrName(concatenate), &b); std::vector<llvm::Value*> target_multi_index = loops.AddLoopsForShapeOnDimensions(output_shape, outer_dims, "concat"); absl::c_replace(target_multi_index, static_cast<llvm::Value*>(nullptr), static_cast<llvm::Value*>(b.getInt64(0))); llvm_ir::IrArray::Index target_index(target_multi_index, output_shape, b.getInt64Ty()); if (!outer_dims.empty()) { SetToFirstInsertPoint(loops.GetInnerLoopBodyBasicBlock(), &b); } PrimitiveType primitive_type = output_shape.element_type(); unsigned primitive_type_size = ShapeUtil::ByteSizeOfPrimitiveType(primitive_type); llvm::Value* target_region_begin = target_array.EmitArrayElementAddress(target_index, &b, "target_region"); int64_t byte_offset_into_target_region = 0; int64_t inner_dims_product = absl::c_accumulate( inner_dims, int64_t{1}, [&](int64_t product, int64_t inner_dim) { return product * output_shape.dimensions(inner_dim); }); for (int64_t i = 0; i < source_arrays.size(); ++i) { const Shape& input_shape = concatenate->operand(i)->shape(); const llvm_ir::IrArray& source_array = source_arrays[i]; llvm_ir::IrArray::Index source_index(target_multi_index, input_shape, b.getInt64Ty()); llvm::Value* copy_source_address = source_array.EmitArrayElementAddress(source_index, &b, "src_addr"); llvm::Value* copy_target_address = b.CreateGEP(b.getInt8Ty(), target_region_begin, b.getInt64(byte_offset_into_target_region)); ::xla::cpu::EmitTransferElements( copy_target_address, copy_source_address, inner_dims_product * input_shape.dimensions(concat_dim), primitive_type, target_array, source_array, module, b); byte_offset_into_target_region += inner_dims_product * input_shape.dimensions(concat_dim) * primitive_type_size; } if (!outer_dims.empty()) { SetToFirstInsertPoint(loops.GetOuterLoopExitBasicBlock(), &b); } return absl::OkStatus(); } llvm::Value* IrEmitter::EmitPrintf(absl::string_view fmt, absl::Span<llvm::Value* const> arguments) { std::vector<llvm::Value*> call_args; call_args.push_back(b()->CreateGlobalStringPtr(llvm_ir::AsStringRef(fmt))); absl::c_copy(arguments, std::back_inserter(call_args)); return b()->CreateCall( b()->GetInsertBlock()->getParent()->getParent()->getOrInsertFunction( "printf", llvm::FunctionType::get(b()->getInt32Ty(), {b()->getPtrTy()}, true)), call_args); } llvm::Value* IrEmitter::EmitPrintfToStderr( absl::string_view fmt, absl::Span<llvm::Value* const> arguments) { std::vector<llvm::Value*> call_args; call_args.push_back(b()->CreateGlobalStringPtr(llvm_ir::AsStringRef(fmt))); absl::c_copy(arguments, std::back_inserter(call_args)); return b()->CreateCall( b()->GetInsertBlock()->getParent()->getParent()->getOrInsertFunction( runtime::kPrintfToStderrSymbolName, llvm::FunctionType::get(b()->getInt32Ty(), {b()->getPtrTy()}, true)), call_args); } llvm::Value* IrEmitter::EmitCallToFunc( std::string func_name, const std::vector<llvm::Value*>& arguments, llvm::Type* return_type, bool does_not_throw, bool only_accesses_arg_memory, bool only_accesses_inaccessible_mem_or_arg_mem) { std::vector<llvm::Type*> types; types.reserve(arguments.size()); absl::c_transform(arguments, std::back_inserter(types), [&](llvm::Value* val) { return val->getType(); }); llvm::FunctionType* func_type = llvm::FunctionType::get(return_type, types, false); auto func = llvm::dyn_cast<llvm::Function>( module_->getOrInsertFunction(func_name, func_type).getCallee()); func->setCallingConv(llvm::CallingConv::C); if (does_not_throw) { func->setDoesNotThrow(); } if (only_accesses_arg_memory) { func->setOnlyAccessesArgMemory(); } if (only_accesses_inaccessible_mem_or_arg_mem) { func->setOnlyAccessesInaccessibleMemOrArgMem(); } return b()->CreateCall(func, arguments); } template <typename T> static const Shape& GetShape(T&& arg) { if constexpr (std::is_convertible_v<absl::remove_cvref_t<decltype(arg)>, Shape>) { return arg; } else { return arg->shape(); } }; struct EncodedInfo { llvm::AllocaInst* alloca; int64_t size; }; template <typename Args> static EncodedInfo StoreEncodedTypes(std::string_view alloca_name, const Args& args, llvm::IRBuilder<>& ir) { int64_t total_elements = 0; for (int64_t i = 0; i < args.size(); ++i) { total_elements += ShapeUtil::GetLeafCount(GetShape(args[i])); } llvm::AllocaInst* types_alloca = llvm_ir::EmitAllocaAtFunctionEntryWithCount( ir.getInt32Ty(), ir.getInt64(total_elements), alloca_name, &ir); int64_t element_id = 0; auto store_type = [&](const Shape& shape, const ShapeIndex& index) { if (shape.IsTuple()) { return; } llvm::Value* slot_in_types_alloca = ir.CreateConstInBoundsGEP1_32( ir.getInt32Ty(), types_alloca, element_id++); ir.CreateStore(ir.getInt32(shape.element_type()), slot_in_types_alloca); }; for (int64_t i = 0; i < args.size(); ++i) { ShapeUtil::ForEachSubshape(GetShape(args[i]), store_type); } CHECK_EQ(element_id, total_elements); return {types_alloca, total_elements}; }; template <typename Args> static EncodedInfo StoreEncodedShapes(std::string_view alloca_name, const Args& args, llvm::IRBuilder<>& ir) { int64_t total_dims = 0; int64_t total_dim_counts = 0; for (int64_t i = 0; i < args.size(); ++i) { ShapeUtil::ForEachSubshape( GetShape(args[i]), [&](const Shape& shape, const ShapeIndex& index) { if (!shape.IsArray()) { return; } total_dims += shape.dimensions().size(); ++total_dim_counts; }); } int64_t shapes_encoding_size = total_dim_counts + total_dims; llvm::AllocaInst* shapes_alloca = llvm_ir::EmitAllocaAtFunctionEntryWithCount( ir.getInt64Ty(), ir.getInt64(shapes_encoding_size), alloca_name, &ir); int64_t slot_id = 0; auto store_shape = [&](const Shape& shape, const ShapeIndex& index) { if (!shape.IsArray()) { return; } llvm::Value* alloca_slot = ir.CreateConstInBoundsGEP1_64( ir.getInt64Ty(), shapes_alloca, slot_id++); ir.CreateStore(ir.getInt64(shape.dimensions().size()), alloca_slot); for (int64_t dim : shape.dimensions()) { alloca_slot = ir.CreateConstInBoundsGEP1_64(ir.getInt64Ty(), shapes_alloca, slot_id++); ir.CreateStore(ir.getInt64(dim), alloca_slot); } }; for (int64_t i = 0; i < args.size(); ++i) { ShapeUtil::ForEachSubshape(GetShape(args[i]), store_shape); } CHECK_EQ(slot_id, shapes_encoding_size); return {shapes_alloca, shapes_encoding_size}; }; llvm::Value* IrEmitter::EmitCallToFfi(HloCustomCallInstruction* custom_call, llvm::AllocaInst* results_alloca, llvm::AllocaInst* operands_alloca) { const auto& operands = absl::MakeSpan(custom_call->operands()); const auto& shape = custom_call->shape(); const auto& result_shapes = shape.IsTuple() ? shape.tuple_shapes() : std::vector<Shape>({shape}); EncodedInfo operand_types_encoded = StoreEncodedTypes("operands_types", operands, *b()); EncodedInfo operand_shapes_encoded = StoreEncodedShapes("operands_shapes", operands, *b()); EncodedInfo result_types_encoded = StoreEncodedTypes("results_types", result_shapes, *b()); EncodedInfo result_shapes_encoded = StoreEncodedShapes("results_shapes", result_shapes, *b()); const absl::string_view target = custom_call->custom_call_target(); const absl::string_view opaque = custom_call->opaque(); const auto target_ref = llvm_ir::AsStringRef(target); const auto opaque_ref = llvm_ir::AsStringRef(opaque); std::vector<llvm::Value*> arguments = { GetExecutableRunOptionsArgument(), b()->CreateGlobalStringPtr(target_ref), b()->getInt64(target.size()), results_alloca, operands_alloca, b()->CreateGlobalStringPtr(opaque_ref), b()->getInt64(opaque.size()), GetStatusArgument(), operand_types_encoded.alloca, b()->getInt64(operand_types_encoded.size), operand_shapes_encoded.alloca, result_types_encoded.alloca, b()->getInt64(result_types_encoded.size), result_shapes_encoded.alloca, }; return EmitCallToFunc(runtime::kHandleFfiCallSymbolName, arguments, b()->getVoidTy(), false, true); } void IrEmitter::EmitTransferElements(llvm::Value* target, llvm::Value* source, int64_t element_count, PrimitiveType primitive_type, const llvm_ir::IrArray& target_array, const llvm_ir::IrArray& source_array) { ::xla::cpu::EmitTransferElements(target, source, element_count, primitive_type, target_array, source_array, module_, *b()); } void EmitTransferElements(llvm::Value* target, llvm::Value* source, int64_t element_count, PrimitiveType primitive_type, const llvm_ir::IrArray& target_array, const llvm_ir::IrArray& source_array, llvm::Module* module, llvm::IRBuilder<>& b) { unsigned primitive_type_size = ShapeUtil::ByteSizeOfPrimitiveType(primitive_type); llvm::Align element_alignment(tsl::MathUtil::GCD<unsigned>( primitive_type_size, ::xla::cpu::MinimumAlignmentForPrimitiveType(primitive_type))); llvm::Type* primitive_llvm_type = llvm_ir::PrimitiveTypeToIrType(primitive_type, module); if (element_count == 1) { auto* load_instruction = b.CreateAlignedLoad(primitive_llvm_type, source, element_alignment); source_array.AnnotateLoadStoreInstructionWithMetadata(load_instruction); auto* store_instruction = b.CreateAlignedStore(load_instruction, target, element_alignment); target_array.AnnotateLoadStoreInstructionWithMetadata(store_instruction); } else { auto* memcpy_instruction = b.CreateMemCpy( target, llvm::Align(element_alignment), source, llvm::Align(element_alignment), element_count * primitive_type_size); std::map<int, llvm::MDNode*> merged_metadata = llvm_ir::MergeMetadata(&module->getContext(), source_array.metadata(), target_array.metadata()); for (const auto& kind_md_pair : merged_metadata) { memcpy_instruction->setMetadata(kind_md_pair.first, kind_md_pair.second); } } } absl::Status IrEmitter::CanDoFastConcatenate( const HloInstruction* instr) const { if (ShouldEmitParallelLoopFor(*instr)) { return absl::Status( absl::StatusCode::kFailedPrecondition, "Cannot generate memcpy-based concat for the parallel CPU backend"); } const auto* concatenate = Cast<HloConcatenateInstruction>(instr); const Shape& output_shape = concatenate->shape(); for (auto* op : concatenate->operands()) { if (!LayoutUtil::Equal(op->shape().layout(), output_shape.layout())) { return absl::Status(absl::StatusCode::kFailedPrecondition, "Operand has mismatching layouts"); } } return absl::OkStatus(); } absl::Status IrEmitter::HandleConcatenate(HloInstruction* concatenate) { absl::Status fast_impl_reason = CanDoFastConcatenate(concatenate); if (fast_impl_reason.ok()) { TF_RETURN_IF_ERROR(EmitTargetAddressForOp(concatenate)); llvm_ir::IrArray target_array = GetIrArrayFor(concatenate); std::vector<llvm_ir::IrArray> source_arrays; source_arrays.reserve(concatenate->operands().size()); for (HloInstruction* operand : concatenate->operands()) { source_arrays.emplace_back(GetIrArrayFor(operand)); } TF_RETURN_IF_ERROR(::xla::cpu::EmitFastConcatenate( concatenate, source_arrays, target_array, module_, *b())); VLOG(1) << "Emitted fast concatenate for " << concatenate->ToString(); return absl::OkStatus(); } VLOG(1) << "Could not emit fast concatenate for " << concatenate->ToString() << ": " << fast_impl_reason.message(); return DefaultAction(concatenate); } absl::Status IrEmitter::HandleConditional(HloInstruction* conditional) { auto branch_index = conditional->operand(0); int num_branches = conditional->branch_count(); TF_RET_CHECK(ShapeUtil::IsScalar(branch_index->shape()) && (branch_index->shape().element_type() == PRED || branch_index->shape().element_type() == S32)) << "Branch index on a conditional must be scalar bool or int32_t; got: " << ShapeUtil::HumanString(branch_index->shape()); for (int b = 0; b < num_branches; ++b) { HloComputation* br_computation = conditional->branch_computation(b); TF_RET_CHECK(ShapeUtil::Equal(conditional->shape(), br_computation->root_instruction()->shape())) << "Shape of conditional should be same as the shape of the " << b << "th branch computation; got: " << ShapeUtil::HumanString(conditional->shape()) << " and " << ShapeUtil::HumanString(br_computation->root_instruction()->shape()); } TF_RETURN_IF_ERROR(EmitTargetAddressForOp(conditional)); if (branch_index->shape().element_type() == PRED) { llvm::LoadInst* pred_value = Load( GetIrArrayFor(branch_index).GetBasePointeeType(), GetIrArrayFor(branch_index).GetBasePointer(), "load_predicate_value"); llvm::Value* pred_cond = ICmpNE(pred_value, llvm::ConstantInt::get( llvm_ir::PrimitiveTypeToIrType(PRED, module_), 0), "boolean_predicate"); llvm_ir::LlvmIfData if_data = llvm_ir::EmitIfThenElse(pred_cond, "conditional", b()); SetToFirstInsertPoint(if_data.true_block, b()); EmitGlobalCall(*conditional->branch_computation(0), IrName(conditional, "_true")); SetToFirstInsertPoint(if_data.false_block, b()); EmitGlobalCall(*conditional->branch_computation(1), IrName(conditional, "_false")); SetToFirstInsertPoint(if_data.after_block, b()); return absl::OkStatus(); } llvm::LoadInst* branch_index_value = Load( GetIrArrayFor(branch_index).GetBasePointeeType(), GetIrArrayFor(branch_index).GetBasePointer(), "load_branch_index_value"); auto case_block = b()->GetInsertBlock(); llvm::BasicBlock* after_block; if (case_block->getTerminator() == nullptr) { after_block = llvm_ir::CreateBasicBlock(nullptr, "case-after", b()); b()->SetInsertPoint(case_block); b()->CreateBr(after_block); } else { after_block = case_block->splitBasicBlock(b()->GetInsertPoint(), "case-after"); } case_block->getTerminator()->eraseFromParent(); auto default_block = llvm_ir::CreateBasicBlock(nullptr, "case-default", b()); b()->SetInsertPoint(default_block); EmitGlobalCall(*conditional->branch_computation(num_branches - 1), IrName(conditional, "_default")); b()->CreateBr(after_block); b()->SetInsertPoint(case_block); llvm::SwitchInst* case_inst = b()->CreateSwitch(branch_index_value, default_block, num_branches - 1); for (int br = 0; br < num_branches - 1; ++br) { auto branch_block = llvm_ir::CreateBasicBlock( nullptr, absl::StrCat("case-branch", br), b()); b()->SetInsertPoint(branch_block); EmitGlobalCall(*conditional->branch_computation(br), IrName(conditional, absl::StrCat("_branch", br))); b()->CreateBr(after_block); case_inst->addCase(b()->getInt32(br), branch_block); } SetToFirstInsertPoint(after_block, b()); return absl::OkStatus(); } absl::Status IrEmitter::HandleAfterAll(HloInstruction* after_all) { TF_RET_CHECK(ByteSizeOf(after_all->shape()) == 0); TF_RETURN_IF_ERROR(EmitTargetAddressForOp(after_all)); return absl::OkStatus(); } absl::Status IrEmitter::HandleBatchNormGrad(HloInstruction* batch_norm_grad) { return Unimplemented("BatchNormGrad should be rewritten for CPU."); } absl::Status IrEmitter::HandleBatchNormTraining( HloInstruction* batch_norm_training) { return Unimplemented("BatchNormTraining should be rewritten for CPU."); } absl::Status IrEmitter::HandleGetDimensionSize(HloInstruction* get_size) { return Unimplemented("GetDimensionSize should be rewritten for CPU."); } absl::Status IrEmitter::HandleSetDimensionSize(HloInstruction* set_size) { return Unimplemented("SetDimensionSize should be rewritten for CPU."); } absl::Status IrEmitter::HandleAddDependency(HloInstruction* add_dependency) { emitted_value_[add_dependency] = GetEmittedValueFor(add_dependency->operand(0)); return absl::OkStatus(); } absl::Status IrEmitter::HandleRng(HloInstruction* rng) { return Unimplemented("Rng should be expanded for CPU."); } absl::Status IrEmitter::HandleRngBitGenerator(HloInstruction* rng) { return Unimplemented("RngBitGenerator should be expanded for CPU."); } absl::Status IrEmitter::HandleRngGetAndUpdateState(HloInstruction* rng_state) { VLOG(2) << "RngGetAndUpdateState: " << rng_state->ToString(); llvm::Value* old_state = llvm_ir::RngGetAndUpdateState( Cast<HloRngGetAndUpdateStateInstruction>(rng_state)->delta(), module_, b()); TF_RETURN_IF_ERROR(EmitTargetAddressForOp(rng_state)); llvm::Value* address = GetEmittedValueFor(rng_state); llvm::StoreInst* store = Store(old_state, address); store->setAlignment(llvm::Align(IrEmitter::MinimumAlignmentForPrimitiveType( rng_state->shape().element_type()))); return absl::OkStatus(); } absl::Status IrEmitter::HandleStochasticConvert(HloInstruction* instruction) { return Unimplemented("StochasticConvert should be decomposed for CPU."); } absl::Status IrEmitter::FinishVisit(HloInstruction* root) { VLOG(2) << "FinishVisit root: " << root->ToString(); if (root->opcode() == HloOpcode::kOutfeed) { VLOG(2) << " outfeed with value: " << llvm_ir::DumpToString(GetEmittedValueFor(root->operand(0))); } else { VLOG(2) << " value: " << llvm_ir::DumpToString(GetEmittedValueFor(root)); } auto record_complete_computation = [&](llvm::Value* prof_counter) { if (prof_counter) { profiling_state_.RecordCompleteComputation(b(), prof_counter); } }; record_complete_computation(GetProfileCounterFor(*root->parent())); return absl::OkStatus(); } template <typename T> llvm::Value* IrEmitter::GetProfileCounterCommon( const T& hlo, const absl::flat_hash_map<const T*, int64_t>& profile_index_map) { auto it = profile_index_map.find(&hlo); if (it == profile_index_map.end()) { return nullptr; } int64_t prof_counter_idx = it->second; std::string counter_name = IrName("prof_counter", hlo.name()); return GEP(b()->getInt64Ty(), GetProfileCountersArgument(), b()->getInt64(prof_counter_idx), counter_name); } llvm::Value* IrEmitter::GetProfileCounterFor( const HloInstruction& instruction) { return GetProfileCounterCommon<HloInstruction>(instruction, instruction_to_profile_idx_); } llvm::Value* IrEmitter::GetProfileCounterFor( const HloComputation& computation) { return GetProfileCounterCommon<HloComputation>(computation, computation_to_profile_idx_); } void IrEmitter::ProfilingState::UpdateProfileCounter(llvm::IRBuilder<>* b, llvm::Value* prof_counter, llvm::Value* cycle_end, llvm::Value* cycle_start) { auto* cycle_diff = b->CreateSub(cycle_end, cycle_start); llvm::LoadInst* old_cycle_count = b->CreateLoad( llvm::cast<llvm::GetElementPtrInst>(prof_counter)->getSourceElementType(), prof_counter, "old_cycle_count"); auto* new_cycle_count = b->CreateAdd(cycle_diff, old_cycle_count, "new_cycle_count"); b->CreateStore(new_cycle_count, prof_counter); } llvm::Value* IrEmitter::ProfilingState::ReadCycleCounter(llvm::IRBuilder<>* b) { llvm::Module* module = b->GetInsertBlock()->getModule(); if (!use_rdtscp_) { llvm::Function* func_llvm_readcyclecounter = llvm::Intrinsic::getDeclaration(module, llvm::Intrinsic::readcyclecounter); return b->CreateCall(func_llvm_readcyclecounter); } llvm::Function* func_llvm_x86_rdtscp = llvm::Intrinsic::getDeclaration(module, llvm::Intrinsic::x86_rdtscp); llvm::Value* rdtscp_call = b->CreateCall(func_llvm_x86_rdtscp); return b->CreateExtractValue(rdtscp_call, {0}); } void IrEmitter::ProfilingState::RecordCycleStart(llvm::IRBuilder<>* b, HloInstruction* hlo) { auto* cycle_start = ReadCycleCounter(b); cycle_start->setName(IrName(hlo, "cycle_start")); cycle_starts_[hlo] = cycle_start; if (first_read_cycle_start_ == nullptr) { first_read_cycle_start_ = cycle_start; } } void IrEmitter::ProfilingState::RecordCycleDelta(llvm::IRBuilder<>* b, HloInstruction* hlo, llvm::Value* prof_counter) { auto* cycle_end = ReadCycleCounter(b); cycle_end->setName(IrName(hlo, "cycle_end")); auto* cycle_start = cycle_starts_[hlo]; UpdateProfileCounter(b, prof_counter, cycle_end, cycle_start); last_read_cycle_end_ = cycle_end; } void IrEmitter::ProfilingState::RecordCompleteComputation( llvm::IRBuilder<>* b, llvm::Value* prof_counter) { if (last_read_cycle_end_ && first_read_cycle_start_) { UpdateProfileCounter(b, prof_counter, last_read_cycle_end_, first_read_cycle_start_); } } void IrEmitter::TracingState::EmitTracingStart(llvm::IRBuilder<>* b, HloInstruction* hlo, llvm::Value* run_options) { if (!enabled_) { return; } llvm::Type* void_ptr_type = b->getPtrTy(); llvm::FunctionType* fn_type = llvm::FunctionType::get( b->getInt64Ty(), {void_ptr_type, void_ptr_type, void_ptr_type, b->getInt64Ty()}, false); llvm::Function* function = b->GetInsertBlock()->getParent(); llvm::Module* module = function->getParent(); const char* fn_name = runtime::kTracingStartSymbolName; llvm::FunctionCallee trace_func = module->getOrInsertFunction(fn_name, fn_type); if (auto* fn = llvm::dyn_cast<llvm::Function>(trace_func.getCallee())) { fn->setCallingConv(llvm::CallingConv::C); fn->setDoesNotThrow(); fn->setOnlyAccessesArgMemory(); } auto* hlo_name = b->CreateGlobalStringPtr(hlo->name()); auto* hlo_module = b->CreateGlobalStringPtr(hlo->GetModule()->name()); auto* program_id = b->getInt64(hlo->GetModule()->unique_id()); auto* activity_id = b->CreateCall( trace_func, {run_options, hlo_name, hlo_module, program_id}); activity_id->setName(IrName(hlo, "activity_id")); activity_ids_[hlo] = activity_id; } void IrEmitter::TracingState::EmitTracingEnd(llvm::IRBuilder<>* b, HloInstruction* hlo, llvm::Value* run_options) { if (!enabled_) { return; } llvm::FunctionType* fn_type = llvm::FunctionType::get(b->getVoidTy(), {b->getPtrTy(), b->getInt64Ty()}, false); llvm::Function* function = b->GetInsertBlock()->getParent(); llvm::Module* module = function->getParent(); const char* fn_name = runtime::kTracingEndSymbolName; llvm::FunctionCallee trace_func = module->getOrInsertFunction(fn_name, fn_type); if (auto* fn = llvm::dyn_cast<llvm::Function>(trace_func.getCallee())) { fn->setCallingConv(llvm::CallingConv::C); fn->setDoesNotThrow(); fn->setOnlyAccessesArgMemory(); } auto* activity_id = activity_ids_.at(hlo); b->CreateCall(trace_func, {run_options, activity_id}); } namespace { bool IsHloVeryCheap(const HloInstruction* hlo) { return hlo->opcode() == HloOpcode::kBitcast || hlo->opcode() == HloOpcode::kTuple || hlo->opcode() == HloOpcode::kGetTupleElement || hlo->opcode() == HloOpcode::kParameter || hlo->opcode() == HloOpcode::kConstant || hlo->opcode() == HloOpcode::kReplicaId; } } absl::Status IrEmitter::Preprocess(HloInstruction* hlo) { VLOG(3) << "Visiting: " << hlo->ToString(); if (instruction_to_profile_idx_.count(hlo) || (hlo_module_config_.cpu_traceme_enabled() && !IsHloVeryCheap(hlo) && hlo->parent()->IsEntryComputation())) { tracing_state_.EmitTracingStart(b(), hlo, GetExecutableRunOptionsArgument()); profiling_state_.RecordCycleStart(b(), hlo); } return absl::OkStatus(); } absl::Status IrEmitter::Postprocess(HloInstruction* hlo) { if (auto* prof_counter = GetProfileCounterFor(*hlo)) { profiling_state_.RecordCycleDelta(b(), hlo, prof_counter); } if (instruction_to_profile_idx_.count(hlo) || (hlo_module_config_.cpu_traceme_enabled() && !IsHloVeryCheap(hlo) && hlo->parent()->IsEntryComputation())) { tracing_state_.EmitTracingEnd(b(), hlo, GetExecutableRunOptionsArgument()); } return absl::OkStatus(); } llvm_ir::IrArray IrEmitter::GetIrArrayFor(const HloInstruction* hlo) { llvm::Value* value_for_op = GetEmittedValueFor(hlo); llvm::Type* ir_type = IrShapeType(hlo->shape()); llvm_ir::IrArray array(value_for_op, ir_type, hlo->shape()); AddAliasingInformationToIrArray(*hlo, &array); return array; } std::vector<llvm_ir::IrArray> IrEmitter::GetIrArraysForOperandsOf( const HloInstruction* hlo) { std::vector<llvm_ir::IrArray> arrays; std::transform( hlo->operands().begin(), hlo->operands().end(), std::back_inserter(arrays), [&](const HloInstruction* operand) { return GetIrArrayFor(operand); }); return arrays; } llvm::Value* IrEmitter::GetEmittedValueFor(const HloInstruction* hlo) { auto it = emitted_value_.find(hlo); if (it == emitted_value_.end()) { LOG(FATAL) << "could not find emitted value for: " << hlo->ToString(); } return it->second; } llvm::Type* IrEmitter::IrShapeType(const Shape& shape) { return llvm_ir::ShapeToIrType(shape, module_); } llvm::Value* IrEmitter::GetProfileCountersArgument() { return compute_function()->profile_counters_arg(); } llvm::Value* IrEmitter::GetStatusArgument() { return compute_function()->status_arg(); } llvm::Value* IrEmitter::GetBufferTableArgument() { return compute_function()->buffer_table_arg(); } llvm::Value* IrEmitter::GetExecutableRunOptionsArgument() { return compute_function()->exec_run_options_arg(); } llvm::BasicBlock* IrEmitter::GetReturnBlock() { return compute_function()->return_block(); } void IrEmitter::EmitEarlyReturnIfErrorStatus() { llvm::Value* succeeded = EmitCallToFunc(runtime::kStatusIsSuccessSymbolName, {GetStatusArgument()}, b()->getInt1Ty(), true, true); llvm_ir::EmitEarlyReturn(succeeded, b(), GetReturnBlock()); } llvm::Value* IrEmitter::EmitThreadLocalBufferPointer( const BufferAllocation::Slice& slice, const Shape& target_shape) { const BufferAllocation& allocation = *slice.allocation(); llvm::Value* tempbuf_address = [&]() -> llvm::Value* { auto param_it = computation_parameter_allocations_.find(slice.allocation()->index()); if (param_it != computation_parameter_allocations_.end()) { int64_t param_number = param_it->second; llvm::Value* params = compute_function()->parameters_arg(); llvm::Value* param_address_offset = llvm_ir::EmitBufferIndexingGEP( params, b()->getPtrTy(), param_number, b()); llvm::LoadInst* param_address_untyped = Load(b()->getPtrTy(), param_address_offset); if (!target_shape.IsOpaque()) { AttachAlignmentMetadataForLoad(param_address_untyped, target_shape); AttachDereferenceableMetadataForLoad(param_address_untyped, target_shape); } return param_address_untyped; } const auto& assigned_buffers = allocation.assigned_buffers(); CHECK_EQ(1, assigned_buffers.size()); const Shape& shape = assigned_buffers.begin()->first->shape(); std::pair<llvm::Function*, BufferAllocation::Slice> key = { compute_function()->function(), slice}; auto buf_it = thread_local_buffers_.find(key); if (buf_it == thread_local_buffers_.end()) { llvm::Value* buffer = llvm_ir::EmitAllocaAtFunctionEntry( IrShapeType(shape), absl::StrCat("thread_local", slice.ToString()), b(), MinimumAlignmentForShape(target_shape)); auto it_inserted_pair = thread_local_buffers_.insert({key, buffer}); CHECK(it_inserted_pair.second); buf_it = it_inserted_pair.first; } return buf_it->second; }(); return tempbuf_address; } llvm::Value* IrEmitter::EmitGlobalBufferPointer( const BufferAllocation::Slice& slice, const Shape& target_shape) { const BufferAllocation& allocation = *slice.allocation(); llvm::Value* tempbuf_address_ptr = llvm_ir::EmitBufferIndexingGEP( GetBufferTableArgument(), b()->getPtrTy(), slice.index(), b()); llvm::LoadInst* tempbuf_address_base = Load(b()->getPtrTy(), tempbuf_address_ptr); AttachInvariantLoadMetadataForLoad(tempbuf_address_base); AttachAlignmentMetadataForLoad(tempbuf_address_base, allocation.size()); AttachDereferenceableMetadataForLoad(tempbuf_address_base, allocation.size()); llvm::Value* tempbuf_address_untyped = tempbuf_address_base; if (slice.offset() > 0) { tempbuf_address_untyped = InBoundsGEP( b()->getInt8Ty(), tempbuf_address_base, b()->getInt64(slice.offset())); } return tempbuf_address_untyped; } llvm::Value* IrEmitter::EmitBufferPointer(const BufferAllocation::Slice& slice, const Shape& target_shape) { if (slice.allocation()->is_thread_local()) { return EmitThreadLocalBufferPointer(slice, target_shape); } else if (slice.allocation()->is_constant()) { return FindOrDie(constant_buffer_to_global_, slice.allocation()->index()); } else { return EmitGlobalBufferPointer(slice, target_shape); } } absl::Status IrEmitter::EmitTargetAddressForOp(const HloInstruction* op) { const Shape& target_shape = op->shape(); TF_ASSIGN_OR_RETURN(const BufferAllocation::Slice slice, assignment_.GetUniqueTopLevelSlice(op)); llvm::Value* addr = EmitBufferPointer(slice, target_shape); addr->setName(IrName(op)); emitted_value_[op] = addr; return absl::OkStatus(); } absl::Status IrEmitter::EmitTargetElementLoop( const HloInstruction* target_op, absl::string_view desc, const llvm_ir::ElementGenerator& element_generator, std::optional<llvm_ir::IrArray> result_array_opt) { VLOG(2) << "EmitTargetElementLoop: " << target_op->ToString(); llvm_ir::IrArray target_array; if (result_array_opt.has_value()) { target_array = result_array_opt.value(); } else { TF_RETURN_IF_ERROR(EmitTargetAddressForOp(target_op)); target_array = GetIrArrayFor(target_op); } const Shape& target_shape = target_op->shape(); if (target_shape.IsTuple() && (target_op->opcode() == HloOpcode::kFusion || target_op->opcode() == HloOpcode::kReduce || target_op->opcode() == HloOpcode::kReduceWindow)) { TF_RET_CHECK(num_dynamic_loop_bounds_ == 0); std::vector<llvm_ir::IrArray> output_arrays; for (int64_t i = 0; i < ShapeUtil::TupleElementCount(target_shape); ++i) { TF_ASSIGN_OR_RETURN(BufferAllocation::Slice slice, assignment_.GetUniqueSlice(target_op, {i})); const Shape& element_shape = ShapeUtil::GetSubshape(target_shape, {i}); llvm::Value* op_target_address = EmitBufferPointer(slice, element_shape); llvm::Type* op_target_type = IrShapeType(element_shape); output_arrays.push_back( llvm_ir::IrArray(op_target_address, op_target_type, element_shape)); } TF_RETURN_IF_ERROR( llvm_ir::LoopEmitter(element_generator, output_arrays, b()) .EmitLoop(IrName(target_op, desc))); std::vector<llvm::Value*> tuple_operand_ptrs; tuple_operand_ptrs.reserve(output_arrays.size()); for (int64_t i = 0; i < output_arrays.size(); ++i) { tuple_operand_ptrs.push_back(output_arrays[i].GetBasePointer()); } llvm_ir::EmitTuple(target_array, tuple_operand_ptrs, b()); } else { if (ShouldEmitParallelLoopFor(*target_op)) { std::vector<std::pair<llvm::Value*, llvm::Value*>> dynamic_loop_bounds = compute_function()->GetDynamicLoopBounds(); TF_RETURN_IF_ERROR(ParallelLoopEmitter(element_generator, target_array, &dynamic_loop_bounds, b()) .EmitLoop(IrName(target_op, desc))); } else { TF_RETURN_IF_ERROR( llvm_ir::LoopEmitter(element_generator, target_array, b()) .EmitLoop(IrName(target_op, desc))); } } return absl::OkStatus(); } absl::Status IrEmitter::EmitMemcpy(const HloInstruction& source, const HloInstruction& destination) { llvm::Value* source_value = GetEmittedValueFor(&source); llvm::Value* destination_value = GetEmittedValueFor(&destination); int64_t source_size = ByteSizeOf(source.shape()); MemCpy(destination_value, llvm::Align(1), source_value, llvm::Align(1), source_size); return absl::OkStatus(); } absl::Status IrEmitter::ElementTypesSameAndSupported( const HloInstruction& instruction, absl::Span<const HloInstruction* const> operands, absl::Span<const PrimitiveType> supported_types) { for (auto operand : operands) { TF_RET_CHECK( ShapeUtil::SameElementType(operands[0]->shape(), operand->shape())); } TF_RET_CHECK(!operands.empty()); PrimitiveType primitive_type = operands[0]->shape().element_type(); if (!absl::c_linear_search(supported_types, primitive_type)) { return Unimplemented("unsupported operand type %s in op %s", PrimitiveType_Name(primitive_type), HloOpcodeString(instruction.opcode())); } return absl::OkStatus(); } absl::Status IrEmitter::DefaultAction(HloInstruction* hlo) { ElementalIrEmitter::HloToElementGeneratorMap operand_to_generator; for (const HloInstruction* operand : hlo->operands()) { operand_to_generator[operand] = [=](const llvm_ir::IrArray::Index& index) { return GetIrArrayFor(operand).EmitReadArrayElement(index, b()); }; } CpuElementalIrEmitter elemental_emitter(hlo_module_config_, this, module_); return EmitTargetElementLoop( hlo, "elemental_loop", elemental_emitter.MakeElementGenerator(hlo, operand_to_generator), std::nullopt); } llvm::Value* IrEmitter::EmitScalarReturningThreadLocalCall( const HloComputation& callee, absl::Span<llvm::Value* const> parameters, absl::string_view name) { std::vector<llvm::Value*> return_value = EmitThreadLocalCall(callee, parameters, name, false); CHECK_EQ(return_value.size(), 1); return return_value[0]; } std::vector<llvm::Value*> IrEmitter::EmitThreadLocalCall( const HloComputation& callee, absl::Span<llvm::Value* const> parameters, absl::string_view name, bool is_reducer, bool in_compute_function) { CHECK(absl::c_binary_search(thread_local_computations_, &callee)); const Shape& return_shape = callee.root_instruction()->shape(); bool is_scalar_return = ShapeUtil::IsScalar(return_shape); bool is_tuple_of_scalars_return = return_shape.IsTuple() && absl::c_all_of(return_shape.tuple_shapes(), [&](const Shape& shape) { return ShapeUtil::IsScalar(shape); }); CHECK(is_scalar_return || is_tuple_of_scalars_return); std::vector<llvm::Value*> parameter_addrs; for (llvm::Value* parameter : parameters) { CHECK(!parameter->getType()->isPointerTy()); llvm::Value* parameter_addr = llvm_ir::EmitAllocaAtFunctionEntry( parameter->getType(), "arg_addr", b()); Store(parameter, parameter_addr); parameter_addrs.push_back(parameter_addr); } llvm::Type* return_value_buffer_type = llvm_ir::ShapeToIrType(return_shape, module_); std::string retval_alloca_name = absl::StrCat(name, "_return_value_addr"); int retval_alignment = is_scalar_return ? MinimumAlignmentForPrimitiveType(return_shape.element_type()) : 0; llvm::AllocaInst* return_value_buffer = llvm_ir::EmitAllocaAtFunctionEntry( return_value_buffer_type, retval_alloca_name, b(), retval_alignment); std::vector<llvm::Value*> allocas_for_returned_scalars; if (is_scalar_return) { allocas_for_returned_scalars.push_back(return_value_buffer); } else { constexpr int max_tuple_size = 1000; CHECK_LT(return_shape.tuple_shapes_size(), max_tuple_size) << "Multivalue function can not return more than 1000 elements to avoid" << " stack smashing"; allocas_for_returned_scalars = llvm_ir::EmitTupleAllocasAtFunctionEntry(return_shape, b()); llvm_ir::IrArray tuple_array(return_value_buffer, return_value_buffer_type, return_shape); EmitTuple(tuple_array, allocas_for_returned_scalars, b()); } llvm::Value* null_ptr = llvm::Constant::getNullValue(b()->getPtrTy()); Call( FindOrDie(emitted_functions_, ComputationToEmit{&callee, allow_reassociation_ || is_reducer}), GetArrayFunctionCallArguments( parameter_addrs, b(), name, return_value_buffer, in_compute_function ? GetExecutableRunOptionsArgument() : null_ptr, null_ptr, in_compute_function ? GetStatusArgument() : null_ptr, in_compute_function ? GetProfileCountersArgument() : null_ptr)); if (ComputationTransitivelyContainsCustomCall(&callee)) { DCHECK(!in_compute_function) << "Custom call inside nested computations " "are not supported by Thunks runtime"; EmitEarlyReturnIfErrorStatus(); } std::vector<llvm::Value*> returned_scalars; returned_scalars.reserve(allocas_for_returned_scalars.size()); for (llvm::Value* addr : allocas_for_returned_scalars) { returned_scalars.push_back( Load(llvm::cast<llvm::AllocaInst>(addr)->getAllocatedType(), addr)); } return returned_scalars; } void IrEmitter::EmitGlobalCall(const HloComputation& callee, absl::string_view name) { CHECK(absl::c_binary_search(global_computations_, &callee)); Call(FindOrDie(emitted_functions_, ComputationToEmit{&callee, allow_reassociation_}), GetArrayFunctionCallArguments( {}, b(), name, llvm::Constant::getNullValue(b()->getPtrTy()), GetExecutableRunOptionsArgument(), GetBufferTableArgument(), GetStatusArgument(), GetProfileCountersArgument())); if (ComputationTransitivelyContainsCustomCall(&callee)) { EmitEarlyReturnIfErrorStatus(); } } llvm::Value* IrEmitter::GetBufferForGlobalCallReturnValue( const HloComputation& callee) { const HloInstruction* root_inst = callee.root_instruction(); if (root_inst->opcode() == HloOpcode::kOutfeed) { return llvm::Constant::getNullValue(b()->getPtrTy()); } const BufferAllocation::Slice root_buffer = assignment_.GetUniqueTopLevelSlice(root_inst).value(); return EmitBufferPointer(root_buffer, root_inst->shape()); } void IrEmitter::BindFusionArguments(const HloInstruction* fusion, FusedIrEmitter* fused_emitter) { for (int i = 0; i < fusion->operand_count(); i++) { const HloInstruction* operand = fusion->operand(i); fused_emitter->BindGenerator( *fusion->fused_parameter(i), [this, operand](llvm_ir::IrArray::Index index) { return GetIrArrayFor(operand).EmitReadArrayElement(index, b()); }); } } } }
#include "xla/service/cpu/ir_emitter.h" #include <cstdint> #include <memory> #include <utility> #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/Support/Casting.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/buffer_assignment.h" #include "xla/service/cpu/ir_function.h" #include "xla/service/cpu/target_machine_features_fake.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_ordering.h" #include "xla/service/hlo_parser.h" #include "xla/service/logical_buffer.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { using IrEmitterTest = HloTestBase; static std::pair<llvm::Function*, llvm::BasicBlock*> CreateFunction( llvm::LLVMContext& context, llvm::Module* module, llvm::IRBuilder<>* b) { llvm::PointerType* ptrtype = llvm::PointerType::getUnqual(context); llvm::FunctionType* ftype = llvm::FunctionType::get(ptrtype, ptrtype, false); llvm::Function* function = llvm::dyn_cast<llvm::Function>( module->getOrInsertFunction("func2", ftype).getCallee()); llvm::BasicBlock* return_block = llvm::BasicBlock::Create(context, "", function); b->SetInsertPoint(return_block); [[maybe_unused]] llvm::ReturnInst* ret = b->CreateRet( llvm::ConstantPointerNull::get(llvm::PointerType::getUnqual(context))); return std::make_pair(function, return_block); } TEST_F(IrEmitterTest, ComputeFuncStack) { llvm::LLVMContext context; auto module = std::make_unique<llvm::Module>("test", context); const char* hlo_text = R"( HloModule m ENTRY main { ROOT %zero = f32[] constant(0) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo, ParseAndReturnUnverifiedModule(hlo_text)); const HloInstruction* zero = FindInstruction(hlo.get(), "zero"); ASSERT_NE(zero, nullptr); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<BufferAssignment> buffer_assignment, BufferAssigner::Run( hlo.get(), std::make_unique<DependencyHloOrdering>(hlo.get()), backend().compiler()->BufferSizeBytesFunction(), [](LogicalBuffer::Color) { return 1; })); TargetMachineFeaturesWithFakeAlignmentLogic target_machine( [](int64_t size) { return 1; }); IrEmitter ir_emitter(nullptr, *hlo, *buffer_assignment, module.get(), {}, {}, {}, &target_machine, false); llvm::IRBuilder<>* b = ir_emitter.b(); ASSERT_NE(b, nullptr); const std::pair<llvm::Function*, llvm::BasicBlock*> fb = CreateFunction(context, module.get(), b); llvm::Function* function = fb.first; llvm::BasicBlock* return_block = fb.second; ASSERT_NE(function, nullptr); ASSERT_NE(return_block, nullptr); const auto funcname = "func1"; const auto linkagetype = llvm::GlobalValue::LinkageTypes::ExternalLinkage; const HloModuleConfig module_config; ir_emitter.PushComputeFunction(funcname, linkagetype, module_config, module.get(), 0); ASSERT_EQ(ir_emitter.compute_function()->function()->getName().str(), funcname); ir_emitter.PushComputeFunction(b, module.get(), 0, function, nullptr, return_block); ASSERT_EQ(ir_emitter.compute_function()->function(), function); ir_emitter.PopComputeFunction(); ASSERT_EQ(ir_emitter.compute_function()->function()->getName().str(), funcname); ir_emitter.PopComputeFunction(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/cpu/ir_emitter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/cpu/ir_emitter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
94482255-ec7d-455f-8827-0a005b4924b8
cpp
tensorflow/tensorflow
execution_stream_assignment
third_party/xla/xla/service/gpu/execution_stream_assignment.cc
third_party/xla/xla/service/gpu/execution_stream_assignment_test.cc
#include "xla/service/gpu/execution_stream_assignment.h" #include <deque> #include <memory> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/call_graph.h" #include "xla/service/gpu/runtime/thunk.h" namespace xla::gpu { ExecutionStreamAssignment::ExecutionStreamAssignment( const HloModule* module, ExecutionStreamAssignmentOptions options) { std::unique_ptr<CallGraph> call_graph = CallGraph::Build(module); ExecutionStreamId next_stream_id = ExecutionStreamId(1); struct Pending { Pending(HloComputation* node, ExecutionStreamId stream_id) : node(node), stream_id(stream_id) {} HloComputation* node; ExecutionStreamId stream_id; }; std::deque<Pending> queue; queue.emplace_back(module->entry_computation(), ExecutionStreamId(0)); auto enqueue_called_computations = [&](const CallSite& callsite, ExecutionStreamId stream) { if (GetInstructionCallContext(callsite.instruction()->opcode()) == CallContext::kEmbedded) { return; } for (HloComputation* computation : callsite.called_computations()) { queue.emplace_back(computation, stream); } }; auto assign_async_execution_streams = [&](HloInstruction* instruction, ExecutionStreamId source_stream_id) { AsyncExecutionStreamIds streams; streams.source_stream_id = source_stream_id; streams.destination_stream_id = next_stream_id; CHECK(async_instructions_.try_emplace(instruction, streams).second); next_stream_id++; if (next_stream_id.value() > options.number_of_execution_streams) { next_stream_id = ExecutionStreamId(1); } }; while (!queue.empty()) { Pending pending = queue.front(); queue.pop_front(); for (HloInstruction* instruction : pending.node->instructions()) { if (instruction->IsAsynchronous()) continue; if (instruction->opcode() == HloOpcode::kCopyStart) { assign_async_execution_streams(instruction, pending.stream_id); } else { CHECK(sync_instructions_.try_emplace(instruction, pending.stream_id) .second); } } for (const CallSite& callsite : call_graph->GetNode(pending.node).callsites()) { if (callsite.instruction()->IsAsynchronous()) { CHECK_EQ(callsite.instruction()->opcode(), HloOpcode::kAsyncStart); enqueue_called_computations(callsite, next_stream_id); assign_async_execution_streams(callsite.instruction(), pending.stream_id); } else { enqueue_called_computations(callsite, pending.stream_id); } } for (HloInstruction* instruction : pending.node->instructions()) { if (!instruction->IsAsynchronous()) continue; if (instruction->opcode() == HloOpcode::kAsyncStart) { CHECK(async_instructions_.find(instruction) != async_instructions_.end()); } else { HloInstruction* async_start = Cast<HloAsyncInstruction>(instruction)->async_chain_start(); AsyncExecutionStreamIds async_start_streams = async_instructions_.at(async_start); CHECK(async_instructions_.try_emplace(instruction, async_start_streams) .second); } } } } namespace { absl::Status StreamNotFoundError(const HloInstruction* instruction) { return absl::NotFoundError(absl::StrCat( "No ExecutionStreamId found for ", instruction->ToString(), "; this may happen if the Computation is not reachable from the module's " "entrypoint, or if it's only reachable through a embedded calls.")); } } absl::StatusOr<ExecutionStreamId> ExecutionStreamAssignment::GetSyncExecutionStreamId( const HloInstruction* instruction) const { CHECK(!instruction->IsAsynchronous()); auto stream = sync_instructions_.find(instruction); if (stream == sync_instructions_.end()) { return StreamNotFoundError(instruction); } return stream->second; } absl::StatusOr<ExecutionStreamAssignment::AsyncExecutionStreamIds> ExecutionStreamAssignment::GetAsyncExecutionStreamIds( const HloInstruction* instruction) const { CHECK(instruction->IsAsynchronous() || instruction->opcode() == HloOpcode::kCopyStart); auto streams = async_instructions_.find(instruction); if (streams == async_instructions_.end()) { return StreamNotFoundError(instruction); } return streams->second; } }
#include "xla/service/gpu/execution_stream_assignment.h" #include <memory> #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; using AsyncExecutionStreamIds = ::xla::gpu::ExecutionStreamAssignment::AsyncExecutionStreamIds; namespace xla::gpu { namespace { class ExecutionStreamAssignmentTest : public HloTestBase { protected: void ExpectExecutionStreamForSyncInstructions( const ExecutionStreamAssignment& assignment, HloComputation* computation, ExecutionStreamId stream) const { for (const HloInstruction* instruction : computation->instructions()) { if (instruction->IsAsynchronous()) continue; EXPECT_THAT(assignment.GetSyncExecutionStreamId(instruction), IsOkAndHolds(stream)); } } }; TEST_F(ExecutionStreamAssignmentTest, AsyncFusion) { const char* kModuleStr = R"( HloModule m leaf1 { p0 = f32[2,2] parameter(0) ROOT add = f32[2,2] add(p0, p0) } leaf2 { p0 = f32[2,2] parameter(0) ROOT add = f32[2,2] add(p0, p0) } leaf3 { p0 = f32[2,2] parameter(0) ROOT add = f32[2,2] add(p0, p0) } ENTRY entry { p0 = f32[2,2] parameter(0) start1 = ((f32[2,2]), f32[2,2], s32[]) fusion-start(p0), kind=kLoop, calls=leaf1 start2 = ((f32[2,2]), f32[2,2], s32[]) fusion-start(p0), kind=kLoop, calls=leaf2 start3 = ((f32[2,2]), f32[2,2], s32[]) fusion-start(p0), kind=kLoop, calls=leaf3 update1 = ((f32[2,2]), f32[2,2], s32[]) fusion-update(start1) update2 = ((f32[2,2]), f32[2,2], s32[]) fusion-update(start2) update3 = ((f32[2,2]), f32[2,2], s32[]) fusion-update(start3) done1 = f32[2,2] fusion-done(update1) done2 = f32[2,2] fusion-done(update2) done3 = f32[2,2] fusion-done(update3) ROOT done = f32[2,2] custom-call(done1, done2, done3), custom_call_target="target" } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr)); ExecutionStreamAssignment assignment( module.get(), ExecutionStreamAssignmentOptions{2}); ExpectExecutionStreamForSyncInstructions( assignment, FindComputation(module.get(), "entry"), ExecutionStreamId(0)); for (std::string_view instruction : {"start1", "update1", "done1"}) { EXPECT_THAT(assignment.GetAsyncExecutionStreamIds(Cast<HloAsyncInstruction>( FindInstruction(module.get(), instruction))), IsOkAndHolds(AsyncExecutionStreamIds{ ExecutionStreamId(0), ExecutionStreamId(1)})); } for (std::string_view instruction : {"start2", "update2", "done2"}) { EXPECT_THAT(assignment.GetAsyncExecutionStreamIds(Cast<HloAsyncInstruction>( FindInstruction(module.get(), instruction))), IsOkAndHolds(AsyncExecutionStreamIds{ ExecutionStreamId(0), ExecutionStreamId(2)})); } for (std::string_view instruction : {"start3", "update3", "done3"}) { EXPECT_THAT(assignment.GetAsyncExecutionStreamIds(Cast<HloAsyncInstruction>( FindInstruction(module.get(), instruction))), IsOkAndHolds(AsyncExecutionStreamIds{ ExecutionStreamId(0), ExecutionStreamId(1)})); } ExpectExecutionStreamForSyncInstructions( assignment, Cast<HloAsyncInstruction>(FindInstruction(module.get(), "start1")) ->async_wrapped_computation(), ExecutionStreamId(1)); ExpectExecutionStreamForSyncInstructions( assignment, Cast<HloAsyncInstruction>(FindInstruction(module.get(), "start2")) ->async_wrapped_computation(), ExecutionStreamId(2)); } TEST_F(ExecutionStreamAssignmentTest, CopyStartStreamIdTest) { const char* const hlo_copy_start_string = R"( HloModule Module ENTRY CopyStartAndCopyDone { p0 = f32[2,3]{1,0:S(1)} parameter(0) copy-start = (f32[2,3]{1,0:S(2)}, f32[2,3]{1,0:S(1)}, u32[]) copy-start(p0) ROOT copy-done = f32[2,3]{1,0:S(2)} copy-done(copy-start) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_copy_start_string)); ExecutionStreamAssignment assignment(module.get()); for (std::string_view instruction : {"copy-start"}) { EXPECT_THAT( assignment.GetAsyncExecutionStreamIds(Cast<HloCopyStartInstruction>( FindInstruction(module.get(), instruction))), IsOkAndHolds(AsyncExecutionStreamIds{ ExecutionStreamId(0), ExecutionStreamId(1)})); } } TEST_F(ExecutionStreamAssignmentTest, FusionComputations) { const char* kModuleStr = R"( HloModule m reduce { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { p0 = f32[4] parameter(0) c0 = f32[] constant(0) ROOT reduce = f32[] reduce(p0, c0), dimensions={0}, to_apply=reduce } ENTRY entry { p0 = f32[4] parameter(0) ROOT done = f32[] fusion(p0), kind=kLoop, calls=fusion } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr)); ExecutionStreamAssignment assignment(module.get()); ExpectExecutionStreamForSyncInstructions( assignment, FindComputation(module.get(), "entry"), ExecutionStreamId(0)); for (std::string_view computation : {"reduce", "fusion"}) { for (const HloInstruction* instruction : FindComputation(module.get(), computation)->instructions()) { EXPECT_THAT(assignment.GetSyncExecutionStreamId(instruction), StatusIs(absl::StatusCode::kNotFound)); } } } TEST_F(ExecutionStreamAssignmentTest, UnreachableComputation) { const char* kModuleStr = R"( HloModule m unreachable { p0 = f32[2,2] parameter(0) ROOT add = f32[2,2] add(p0, p0) } ENTRY entry { p0 = f32[2,2] parameter(0) ROOT add = f32[2,2] add(p0, p0) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr)); ExecutionStreamAssignment assignment(module.get()); ExpectExecutionStreamForSyncInstructions( assignment, FindComputation(module.get(), "entry"), ExecutionStreamId(0)); for (const HloInstruction* instruction : FindComputation(module.get(), "unreachable")->instructions()) { EXPECT_THAT(assignment.GetSyncExecutionStreamId(instruction), StatusIs(absl::StatusCode::kNotFound)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/execution_stream_assignment.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/execution_stream_assignment_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2e67453e-51a6-4245-90a4-4e34db3316cd
cpp
tensorflow/tensorflow
hlo_algorithm_denylist
third_party/xla/xla/service/gpu/hlo_algorithm_denylist.cc
third_party/xla/xla/service/gpu/hlo_algorithm_denylist_test.cc
#include "xla/service/gpu/hlo_algorithm_denylist.h" #include <optional> #include <string> #include <tuple> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/strings/str_cat.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/backend_config.h" #include "xla/service/gpu/autotuning/gpu_autotuning.pb.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/stream_executor/dnn.h" #include "tsl/platform/env.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/status.h" namespace xla { namespace gpu { constexpr char kDefaultDenylist[] = R"pb( entries { hlo: "(f32[512,512,7,7]{3,2,1,0}, u8[0]{0}) custom-call(f32[512,512,7,7]{3,2,1,0}, f32[512,512,3,3]{3,2,1,0}, f32[512]{0}), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\"" backend_config { operation_queue_id: 0 wait_on_operation_queues: [] cudnn_conv_backend_config: { activation_mode: kNone conv_result_scale: 1 side_input_scale: 0 leakyrelu_alpha: 0 }, force_earliest_schedule: false } cc { major: 7 } cudnn_version { major: 9 } algos { id: 14 } } entries { hlo: "(f32[512,512,7,7]{3,2,1,0}, u8[0]{0}) custom-call(f32[512,512,7,7]{3,2,1,0}, f32[512,512,3,3]{3,2,1,0}, f32[512]{0}), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\"" backend_config { operation_queue_id: 0 wait_on_operation_queues: [] cudnn_conv_backend_config: { activation_mode: kNone conv_result_scale: 1 side_input_scale: 0 leakyrelu_alpha: 0 }, force_earliest_schedule: false } cc { major: 7 } cudnn_version { major: 9 minor: 1 patch: 1 } algos { id: 14 } } entries { hlo: "(f32[27,256,32,32]{3,2,1,0}, u8[0]{0}) custom-call(f32[27,256,32,32]{3,2,1,0}, f32[256,256,3,3]{3,2,1,0}, f32[256]{0}, f32[27,256,32,32]{3,2,1,0}), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\"" backend_config { operation_queue_id: 0 wait_on_operation_queues: [] cudnn_conv_backend_config: { activation_mode: kNone conv_result_scale: 1 side_input_scale: 1, leakyrelu_alpha: 0 }, force_earliest_schedule: false } cc { major: 7 } cudnn_version { major: 9 } algos { id: 14 } } entries { hlo: "(f32[27,256,32,32]{3,2,1,0}, u8[0]{0}) custom-call(f32[27,256,32,32]{3,2,1,0}, f32[256,256,3,3]{3,2,1,0}, f32[256]{0}, f32[27,256,32,32]{3,2,1,0}), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\"" backend_config { operation_queue_id: 0 wait_on_operation_queues: [] cudnn_conv_backend_config: { activation_mode: kNone conv_result_scale: 1 side_input_scale: 1 leakyrelu_alpha: 0 }, force_earliest_schedule: false } cc { major: 7 minor: 5 } cudnn_version { major: 9 } algos { id: 14 } } entries { hlo: "(f32[27,256,32,32]{3,2,1,0}, u8[0]{0}) custom-call(f32[27,256,32,32]{3,2,1,0}, f32[256,256,3,3]{3,2,1,0}, f32[256]{0}, f32[27,256,32,32]{3,2,1,0}), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\"" backend_config { operation_queue_id: 0 wait_on_operation_queues: [] cudnn_conv_backend_config: { activation_mode: kNone conv_result_scale: 1 side_input_scale: 1 leakyrelu_alpha: 0 }, force_earliest_schedule: false } cc { major: 7 } cudnn_version { major: 9 minor: 1 patch: 1 } algos { id: 14 } } entries { hlo: "(f32[27,256,32,32]{3,2,1,0}, u8[0]{0}) custom-call(f32[27,256,32,32]{3,2,1,0}, f32[256,256,3,3]{3,2,1,0}, f32[256]{0}, f32[27,256,32,32]{3,2,1,0}), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\"" backend_config { operation_queue_id: 0 wait_on_operation_queues: [] cudnn_conv_backend_config: { activation_mode: kNone conv_result_scale: 1 side_input_scale: 1 leakyrelu_alpha: 0 }, force_earliest_schedule: false } cc { major: 7 minor: 5 } cudnn_version { major: 9 minor: 1 patch: 1 } algos { id: 14 } } )pb"; std::vector<stream_executor::dnn::AlgorithmDesc> GetDisabledConvAlgorithms( ComputeCapability cc, CudnnVersion cudnn_version, const std::string& blas_version, const std::string& hlo) { using MapType = absl::flat_hash_map< std::tuple<std::string, int, int, int, int, int, std::string>, std::vector<stream_executor::dnn::AlgorithmDesc>>; static MapType* denylist = [] { auto* list = new MapType(); AlgorithmDenylist proto; auto process_denylist = [list](const AlgorithmDenylist& proto) { for (const auto& entry : proto.entries()) { for (const auto& algo : entry.algos()) { (*list)[std::make_tuple(HloStringWithGpuBackendConfig( entry.hlo(), entry.backend_config()), entry.cc().major(), entry.cc().minor(), entry.cudnn_version().major(), entry.cudnn_version().minor(), entry.cudnn_version().patch(), entry.blas_version())] .emplace_back(algo.id(), algo.tensor_ops(), std::nullopt); } } }; std::string file_path = GetDebugOptionsFromFlags().xla_gpu_algorithm_denylist_path(); if (!file_path.empty()) { TF_CHECK_OK(tsl::ReadTextProto(tsl::Env::Default(), file_path, &proto)); process_denylist(proto); } CHECK(tsl::protobuf::TextFormat::ParseFromString( std::string(kDefaultDenylist), &proto)); process_denylist(proto); return list; }(); std::vector<stream_executor::dnn::AlgorithmDesc> algorithms; auto add_matching_disabled_algorithms_to_result = [&](const auto& key) { auto iter = denylist->find(key); if (iter != denylist->end()) { algorithms.insert(algorithms.end(), iter->second.begin(), iter->second.end()); } }; auto key = std::make_tuple(hlo, cc.major(), cc.minor(), cudnn_version.major(), cudnn_version.minor(), cudnn_version.patch(), blas_version); add_matching_disabled_algorithms_to_result(key); std::get<6>(key) = std::string{}; add_matching_disabled_algorithms_to_result(key); return algorithms; } std::string HloStringWithGpuBackendConfig(const std::string& hlo, GpuBackendConfig config) { BackendConfigWrapper backend_config(config); return absl::StrCat(hlo, ", backend_config=", backend_config.GetRawString()); } } }
#include "xla/service/gpu/hlo_algorithm_denylist.h" #include <cstdlib> #include <string> #include "absl/strings/str_cat.h" #include "xla/stream_executor/dnn.h" #include "xla/tests/test_utils.h" #include "tsl/platform/env.h" #include "tsl/platform/path.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { class DenylistTest : public testing::Test { protected: DenylistTest() { std::string existing_xla_flags; const char* env = std::getenv("XLA_FLAGS"); if (env != nullptr) { existing_xla_flags = absl::StrCat(env, " "); } tsl::setenv( "XLA_FLAGS", absl::StrCat( existing_xla_flags, "--xla_gpu_algorithm_denylist_path=", tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "service", "gpu", "data", "hlo_algorithm_denylist.pbtxt")) .data(), 1); config_ = ParseTextProto<GpuBackendConfig>( "operation_queue_id: 0 wait_on_operation_queues: [] " "cudnn_conv_backend_config: { activation_mode: kNone " "conv_result_scale: 1 side_input_scale: 0 leakyrelu_alpha: 0} " "force_earliest_schedule: false") .value(); } GpuBackendConfig config_; }; TEST_F(DenylistTest, DefaultTest) { ComputeCapability cc; cc.set_major(7); cc.set_minor(0); CudnnVersion cudnn_version; cudnn_version.set_major(7); cudnn_version.set_minor(6); cudnn_version.set_patch(2); auto list = GetDisabledConvAlgorithms( cc, cudnn_version, "9000", HloStringWithGpuBackendConfig( R"((f16[256,112,112,64]{3,2,1,0}, u8[0]{0}) custom-call(f16[256,224,224,4]{3,2,1,0}, f16[7,7,4,64]{2,1,0,3}), window={size=7x7 stride=2x2 pad=3_3x3_3}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward")", config_)); EXPECT_THAT(list, testing::UnorderedElementsAre( stream_executor::dnn::AlgorithmDesc{0, true}, stream_executor::dnn::AlgorithmDesc{0, false}, stream_executor::dnn::AlgorithmDesc{1, true}, stream_executor::dnn::AlgorithmDesc{1, false}, stream_executor::dnn::AlgorithmDesc{42, true}, stream_executor::dnn::AlgorithmDesc{42, false})); } TEST_F(DenylistTest, NegativeTest) { ComputeCapability cc; cc.set_major(7); cc.set_minor(0); CudnnVersion cudnn_version; cudnn_version.set_major(7); cudnn_version.set_minor(6); cudnn_version.set_minor(2); auto list = GetDisabledConvAlgorithms(cc, cudnn_version, "9000", R"(invalid hlo)"); EXPECT_THAT(list, testing::IsEmpty()); } TEST_F(DenylistTest, NoBlasVersionSet) { ComputeCapability cc; cc.set_major(7); cc.set_minor(0); CudnnVersion cudnn_version; cudnn_version.set_major(7); cudnn_version.set_minor(6); cudnn_version.set_patch(2); auto list = GetDisabledConvAlgorithms( cc, cudnn_version, "120301", HloStringWithGpuBackendConfig( R"((f16[256,112,112,64]{3,2,1,0}, u8[0]{0}) custom-call(f16[256,224,224,4]{3,2,1,0}, f16[7,7,4,64]{2,1,0,3}), window={size=7x7 stride=2x2 pad=3_3x3_3}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward")", config_)); EXPECT_THAT(list, testing::UnorderedElementsAre( stream_executor::dnn::AlgorithmDesc{42, true}, stream_executor::dnn::AlgorithmDesc{42, false})); } TEST_F(DenylistTest, EntryFromHardcodedList) { ComputeCapability cc; cc.set_major(7); cc.set_minor(0); CudnnVersion cudnn_version; cudnn_version.set_major(9); cudnn_version.set_minor(0); cudnn_version.set_patch(0); auto list = GetDisabledConvAlgorithms( cc, cudnn_version, "9000", HloStringWithGpuBackendConfig( R"((f32[512,512,7,7]{3,2,1,0}, u8[0]{0}) custom-call(f32[512,512,7,7]{3,2,1,0}, f32[512,512,3,3]{3,2,1,0}, f32[512]{0}), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_oi01->bf01, custom_call_target="__cudnn$convBiasActivationForward")", config_)); EXPECT_THAT(list, testing::ElementsAre( stream_executor::dnn::AlgorithmDesc{14, false})); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/hlo_algorithm_denylist.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/hlo_algorithm_denylist_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0147930e-0d97-4677-8292-daa6da3d7261
cpp
tensorflow/tensorflow
matmul_utils
third_party/xla/xla/service/gpu/matmul_utils.cc
third_party/xla/xla/service/gpu/matmul_utils_test.cc
#include "xla/service/gpu/matmul_utils.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/primitive_util.h" #include "xla/service/algorithm_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/blas.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/gpu/gpu_blas_lt.h" #include "xla/stream_executor/numeric_options.h" #include "xla/stream_executor/stream_executor.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { absl::StatusOr<std::vector<int64_t>> GetNonContractingDims( const Shape& shape, absl::Span<const int64_t> batch_dims, absl::Span<const int64_t> contracting_dims) { std::vector<int64_t> non_contracting_dims; for (int64_t dim = 0; dim < shape.rank(); ++dim) { bool is_batch = absl::c_count(batch_dims, dim) != 0; bool is_contracting = absl::c_count(contracting_dims, dim) != 0; TF_RET_CHECK(!(is_batch && is_contracting)); if (!(is_batch || is_contracting)) non_contracting_dims.push_back(dim); } TF_RET_CHECK(batch_dims.size() + contracting_dims.size() + non_contracting_dims.size() == shape.rank()); return non_contracting_dims; } const tsl::protobuf::RepeatedField<int64_t>& BatchDimensionsForOperand( const HloInstruction& dot, const int operand_number) { const DotDimensionNumbers& dimension_numbers = dot.dot_dimension_numbers(); if (operand_number == 0) { return dimension_numbers.lhs_batch_dimensions(); } return dimension_numbers.rhs_batch_dimensions(); } absl::StatusOr<int64_t> ContractingDimensionIndex(const HloInstruction& dot, const int operand_number) { const DotDimensionNumbers& dimension_numbers = dot.dot_dimension_numbers(); if (operand_number == 0) { TF_RET_CHECK(dimension_numbers.lhs_contracting_dimensions().size() == 1); return dimension_numbers.lhs_contracting_dimensions(0); } TF_RET_CHECK(dimension_numbers.rhs_contracting_dimensions().size() == 1); return dimension_numbers.rhs_contracting_dimensions(0); } absl::StatusOr<int64_t> NonContractingDimensionIndex(const HloInstruction& dot, const int operand_number) { TF_ASSIGN_OR_RETURN(int64_t contracting_dim, ContractingDimensionIndex(dot, operand_number)); TF_ASSIGN_OR_RETURN( std::vector<int64_t> non_contracting_dims, GetNonContractingDims(dot.operand(operand_number)->shape(), BatchDimensionsForOperand(dot, operand_number), {contracting_dim})); TF_RET_CHECK(non_contracting_dims.size() == 1); return non_contracting_dims.front(); } absl::StatusOr<Shape> GetBatchRowColumnShape( const Shape& shape, absl::Span<const int64_t> batch_dims, absl::Span<const int64_t> row_dims, absl::Span<const int64_t> col_dims) { TF_RET_CHECK(shape.has_layout()); std::vector<int64_t> minor_to_major; for (size_t i = 0; i < shape.rank();) { auto check_physically_sequential = [&](absl::Span<const int64_t> dims) -> absl::Status { for (auto it = dims.rbegin(); it != dims.rend(); ++it) { if (*it != shape.layout().minor_to_major()[i++]) return InvalidArgument("dims not physically_sequential"); } return absl::OkStatus(); }; int64_t dim = shape.layout().minor_to_major()[i]; if (!row_dims.empty() && dim == row_dims.back()) { minor_to_major.push_back(1); TF_RETURN_IF_ERROR(check_physically_sequential(row_dims)); } else if (!col_dims.empty() && dim == col_dims.back()) { minor_to_major.push_back(2); TF_RETURN_IF_ERROR(check_physically_sequential(col_dims)); } else if (!batch_dims.empty() && (dim == batch_dims.back())) { minor_to_major.push_back(0); TF_RETURN_IF_ERROR(check_physically_sequential(batch_dims)); } else { return InvalidArgument("dims not physically sequential"); } } if (col_dims.empty()) minor_to_major.push_back(2); if (row_dims.empty()) minor_to_major.push_back(1); if (batch_dims.empty()) minor_to_major.push_back(0); auto dim_size = [&](absl::Span<const int64_t> dims) { return absl::c_accumulate(dims, 1, [&](int64_t size, int64_t dim) { return size * shape.dimensions(dim); }); }; return ShapeUtil::MakeShapeWithDenseLayout( shape.element_type(), {dim_size(batch_dims), dim_size(row_dims), dim_size(col_dims)}, minor_to_major); } absl::StatusOr<MatrixLayout> MatrixLayout::For(const Shape& shape) { TF_RET_CHECK(shape.rank() == 3); TF_RET_CHECK(shape.has_layout()); int64_t batch_size = shape.dimensions(0); int64_t num_rows = shape.dimensions(1); int64_t num_cols = shape.dimensions(2); Order order{Order::kRowMajor}; int64_t leading_dim_stride = num_cols; int64_t batch_stride = num_rows * num_cols; absl::Span<const int64_t> minor_to_major = shape.layout().minor_to_major(); switch (64 * minor_to_major[2] + 8 * minor_to_major[1] + minor_to_major[0]) { case 012: break; case 021: order = Order::kColumnMajor; leading_dim_stride = num_rows; break; case 0102: leading_dim_stride = batch_size * num_cols; batch_stride = num_cols; break; case 0201: order = Order::kColumnMajor; leading_dim_stride = batch_size * num_rows; batch_stride = num_rows; break; default: return Unimplemented("batch in most minor dimension"); } if (batch_size == 1) { batch_stride = 0; } return MatrixLayout{se::gpu::MatrixLayout{shape.element_type(), num_rows, num_cols, order, batch_size, leading_dim_stride, batch_stride}}; } absl::StatusOr<MatrixLayout> MatrixLayout::For( const Shape& shape, absl::Span<const int64_t> batch_dims, absl::Span<const int64_t> row_dims, absl::Span<const int64_t> col_dims) { TF_ASSIGN_OR_RETURN( Shape batch_row_col_shape, GetBatchRowColumnShape(shape, batch_dims, row_dims, col_dims)); return MatrixLayout::For(batch_row_col_shape); } absl::StatusOr<MatrixLayout> MatrixLayout::For( const Shape& shape, size_t lhs_num_batch_dims, size_t lhs_num_row_dims, size_t rhs_num_batch_dims, size_t rhs_num_col_dims) { size_t num_batch_dims = std::max(lhs_num_batch_dims, rhs_num_batch_dims); TF_RET_CHECK(shape.rank() == num_batch_dims + lhs_num_row_dims + rhs_num_col_dims); std::vector<int64_t> dims(shape.rank()); absl::c_iota(dims, 0); auto batch_dims = absl::Span<const int64_t>(dims).first(num_batch_dims); auto row_dims = absl::Span<const int64_t>(dims).subspan(num_batch_dims, lhs_num_row_dims); auto col_dims = absl::Span<const int64_t>(dims).last(rhs_num_col_dims); return MatrixLayout::For(shape, batch_dims, row_dims, col_dims); } namespace { std::vector<int64_t> NormalizedRelativeOrder(absl::Span<const int64_t> dims) { std::vector<int64_t> indices(dims.size()); absl::c_iota(indices, 0); absl::c_sort(indices, [&](int64_t a, int64_t b) { return dims[a] < dims[b]; }); return indices; } } absl::StatusOr<bool> CanFoldTransposeOperandIntoDot(const HloInstruction& dot, int64_t operand_idx) { if (Cast<HloDotInstruction>(&dot)->sparse_operands()) { return false; } TF_RET_CHECK(dot.opcode() == HloOpcode::kDot); TF_RET_CHECK(dot.operand_count() > operand_idx); const HloInstruction& transpose = *dot.operand(operand_idx); TF_RET_CHECK(transpose.opcode() == HloOpcode::kTranspose); const DotDimensionNumbers& dot_dims = dot.dot_dimension_numbers(); auto transposed = [&](const auto& dims) { std::vector<int64_t> transposed_dims; transposed_dims.reserve(dims.size()); for (int64_t dim : dims) { transposed_dims.push_back(transpose.dimensions(dim)); } return transposed_dims; }; auto batch_dims = (operand_idx == 0) ? dot_dims.lhs_batch_dimensions() : dot_dims.rhs_batch_dimensions(); auto contracting_dims = (operand_idx == 0) ? dot_dims.lhs_contracting_dimensions() : dot_dims.rhs_contracting_dimensions(); TF_ASSIGN_OR_RETURN( std::vector<int64_t> non_contracting_dims, GetNonContractingDims(transpose.shape(), batch_dims, contracting_dims)); auto transposed_non_contracting_dims = transposed(non_contracting_dims); if (NormalizedRelativeOrder(non_contracting_dims) != NormalizedRelativeOrder(transposed_non_contracting_dims)) { return false; } return MatrixLayout::For(transpose.operand(0)->shape(), transposed(batch_dims), transposed(contracting_dims), transposed_non_contracting_dims) .ok(); } absl::StatusOr<GemmConfig> GemmConfig::For( const Shape& lhs_shape, absl::Span<const int64_t> lhs_batch_dims, absl::Span<const int64_t> lhs_contracting_dims, const Shape& rhs_shape, absl::Span<const int64_t> rhs_batch_dims, absl::Span<const int64_t> rhs_contracting_dims, const Shape& output_shape, double alpha_real, double alpha_imag, double beta, PrecisionConfig::Algorithm precision_algorithm, std::optional<int64_t> algorithm, int64_t compute_precision, bool grad_x, bool grad_y) { return GemmConfig::For(lhs_shape, lhs_batch_dims, lhs_contracting_dims, rhs_shape, rhs_batch_dims, rhs_contracting_dims, output_shape, nullptr, output_shape, alpha_real, alpha_imag, beta, precision_algorithm, algorithm, compute_precision, grad_x, grad_y); } absl::StatusOr<GemmConfig> GemmConfig::For( const Shape& lhs_shape, absl::Span<const int64_t> lhs_batch_dims, absl::Span<const int64_t> lhs_contracting_dims, const Shape& rhs_shape, absl::Span<const int64_t> rhs_batch_dims, absl::Span<const int64_t> rhs_contracting_dims, const Shape& c_shape, const Shape* bias_shape_ptr, const Shape& output_shape, double alpha_real, double alpha_imag, double beta, PrecisionConfig::Algorithm precision_algorithm, std::optional<int64_t> algorithm, int64_t compute_precision, bool grad_x, bool grad_y) { absl::Span<const int64_t> lhs_col_dims = lhs_contracting_dims; TF_ASSIGN_OR_RETURN( std::vector<int64_t> lhs_row_dims, GetNonContractingDims(lhs_shape, lhs_batch_dims, lhs_col_dims)); TF_ASSIGN_OR_RETURN( MatrixLayout lhs_layout, MatrixLayout::For(lhs_shape, lhs_batch_dims, lhs_row_dims, lhs_col_dims)); absl::Span<const int64_t> rhs_row_dims = rhs_contracting_dims; TF_ASSIGN_OR_RETURN( std::vector<int64_t> rhs_col_dims, GetNonContractingDims(rhs_shape, rhs_batch_dims, rhs_row_dims)); TF_ASSIGN_OR_RETURN( MatrixLayout rhs_layout, MatrixLayout::For(rhs_shape, rhs_batch_dims, rhs_row_dims, rhs_col_dims)); int64_t num_batch_dims = std::max(lhs_batch_dims.size(), rhs_batch_dims.size()); TF_RET_CHECK(output_shape.rank() == num_batch_dims + lhs_row_dims.size() + rhs_col_dims.size()); std::vector<int64_t> output_dims(output_shape.rank()); absl::c_iota(output_dims, 0); auto output_batch_dims = absl::Span<const int64_t>(output_dims).first(num_batch_dims); auto output_row_dims = absl::Span<const int64_t>(output_dims) .subspan(num_batch_dims, lhs_row_dims.size()); auto output_col_dims = absl::Span<const int64_t>(output_dims).last(rhs_col_dims.size()); TF_ASSIGN_OR_RETURN(MatrixLayout output_layout, MatrixLayout::For(output_shape, output_batch_dims, output_row_dims, output_col_dims)); Shape c_matrix_shape = c_shape; if (primitive_util::IsF8Type(lhs_shape.element_type()) && primitive_util::IsF8Type(output_shape.element_type()) && beta == 0.0) { #if GOOGLE_CUDA c_matrix_shape.set_element_type( bias_shape_ptr != nullptr ? bias_shape_ptr->element_type() : BF16); #endif } TF_ASSIGN_OR_RETURN(MatrixLayout c_layout, MatrixLayout::For(c_matrix_shape, output_batch_dims, output_row_dims, output_col_dims)); if (lhs_shape.element_type() != F8E4M3FN && lhs_shape.element_type() != F8E5M2) { TF_RET_CHECK(lhs_layout.num_cols == rhs_layout.num_rows); TF_RET_CHECK(output_layout.num_rows == lhs_layout.num_rows); TF_RET_CHECK(output_layout.num_cols == rhs_layout.num_cols); } TF_RET_CHECK(c_layout.num_rows == output_layout.num_rows); TF_RET_CHECK(c_layout.num_cols == output_layout.num_cols); TF_RET_CHECK((lhs_layout.batch_size == output_layout.batch_size) || (lhs_layout.batch_size == 1)); TF_RET_CHECK((rhs_layout.batch_size == output_layout.batch_size) || (rhs_layout.batch_size == 1)); switch (output_shape.element_type()) { case F8E4M3FN: case F8E5M2: case F8E4M3FNUZ: case F8E5M2FNUZ: case F16: case BF16: case F32: case F64: TF_RET_CHECK(alpha_imag == 0); break; case C64: case C128: break; case S32: TF_RET_CHECK(alpha_imag == 0); if (lhs_layout.dtype != PrimitiveType::S8 || rhs_layout.dtype != PrimitiveType::S8) { return Internal( "For int32 gemm output only int8 input is supported, got input: " "%s, %s", primitive_util::LowercasePrimitiveTypeName(lhs_layout.dtype), primitive_util::LowercasePrimitiveTypeName(rhs_layout.dtype)); } break; default: return Internal("Unexpected GEMM datatype: %s", primitive_util::LowercasePrimitiveTypeName( output_shape.element_type())); } return GemmConfig{lhs_layout, rhs_layout, c_layout, output_layout, {alpha_real, alpha_imag}, beta, compute_precision, precision_algorithm, algorithm, grad_x, grad_y}; } namespace { bool IsTf32Allowed(PrecisionConfig::Algorithm algorithm, int64_t compute_precision) { if (algorithm == PrecisionConfig::ALG_UNSET) { return compute_precision <= 1; } return algorithm_util::HasTf32InputType(algorithm); } } absl::StatusOr<GemmConfig> GemmConfig::For( const HloInstruction* gemm) { TF_ASSIGN_OR_RETURN(GpuBackendConfig gpu_config, gemm->backend_config<GpuBackendConfig>()); return For(gemm, gpu_config.gemm_backend_config()); } absl::StatusOr<GemmConfig> GemmConfig::For( const HloInstruction* gemm, const GemmBackendConfig& config) { std::optional<int64_t> algorithm; if (config.algorithm_case() != GemmBackendConfig::ALGORITHM_NOT_SET) { algorithm = config.selected_algorithm(); } else { algorithm = se::blas::kDefaultAlgorithm; } const Shape& lhs_shape = gemm->operand(0)->shape(); const Shape& rhs_shape = gemm->operand(1)->shape(); const DotDimensionNumbers& dot_dims = config.dot_dimension_numbers(); const Shape& output_shape = gemm->shape().IsTuple() ? gemm->shape().tuple_shapes(0) : gemm->shape(); bool has_matrix_bias = config.beta() != 0.; Shape c_shape = has_matrix_bias ? gemm->operand(2)->shape() : output_shape; std::optional<Shape> vector_bias_shape; TF_ASSIGN_OR_RETURN( bool has_vector_bias, xla::gpu::gpublas_lt::EpilogueAddsVectorBias(config.epilogue())); if (has_vector_bias) { int vector_bias_index = has_matrix_bias ? 3 : 2; if (primitive_util::IsF8Type(lhs_shape.element_type())) { vector_bias_index += 2; } vector_bias_shape = gemm->operand(vector_bias_index)->shape(); } auto attributes = gemm->frontend_attributes().map(); bool grad_x = (attributes["grad_x"] == "true"); bool grad_y = (attributes["grad_y"] == "true"); int64_t precision = se::blas::kDefaultComputePrecision; for (auto operand_precision : config.precision_config().operand_precision()) { precision = std::max(precision, static_cast<int64_t>(operand_precision)); } const PrecisionConfig::Algorithm precision_algorithm = config.precision_config().algorithm(); return GemmConfig::For( lhs_shape, dot_dims.lhs_batch_dimensions(), dot_dims.lhs_contracting_dimensions(), rhs_shape, dot_dims.rhs_batch_dimensions(), dot_dims.rhs_contracting_dimensions(), c_shape, vector_bias_shape ? &vector_bias_shape.value() : nullptr, output_shape, config.alpha_real(), config.alpha_imag(), config.beta(), precision_algorithm, algorithm, precision, grad_x, grad_y); } absl::StatusOr<GemmConfig::DescriptorsTuple> GemmConfig::GetMatrixDescriptors( se::DeviceMemoryBase lhs_buf, se::DeviceMemoryBase rhs_buf, se::DeviceMemoryBase out_buf) const { auto create_matrix_desc = [](const se::gpu::MatrixLayout& layout, se::DeviceMemoryBase data) -> absl::StatusOr<se::gpu::MatrixDescriptor> { TF_ASSIGN_OR_RETURN(se::blas::DataType type, se::gpu::AsBlasDataType(layout.dtype)); return se::gpu::MatrixDescriptor{ data, layout.leading_dim_stride, layout.batch_stride, type, (layout.order == se::gpu::MatrixLayout::Order::kColumnMajor ? se::blas::Transpose::kNoTranspose : se::blas::Transpose::kTranspose)}; }; se::gpu::MatrixLayout lhs = lhs_layout, rhs = rhs_layout, out = output_layout; bool must_swap_operands = MakeOutputColumnMajor(lhs, rhs, out); if (must_swap_operands) { std::swap(lhs_buf, rhs_buf); } TF_ASSIGN_OR_RETURN(se::gpu::OutputMatrixDescriptor out_desc, create_matrix_desc(out, out_buf)); out_desc.batch_size = out.batch_size; out_desc.m = out.num_rows; out_desc.n = out.num_cols; out_desc.k = lhs.num_cols; TF_ASSIGN_OR_RETURN(out_desc.compute_type, se::gpu::GetBlasComputationType( PrecisionConfig::ALG_UNSET, lhs.dtype, out.dtype, se::blas::kDefaultComputePrecision)); TF_ASSIGN_OR_RETURN(se::gpu::MatrixDescriptor lhs_desc, create_matrix_desc(lhs, lhs_buf)); TF_ASSIGN_OR_RETURN(se::gpu::MatrixDescriptor rhs_desc, create_matrix_desc(rhs, rhs_buf)); return DescriptorsTuple{lhs_desc, rhs_desc, out_desc, must_swap_operands}; } namespace { template <typename Scale, typename Input, typename Output> absl::Status DoGemmWithAlgorithm(const se::gpu::MatrixDescriptor& lhs, const se::gpu::MatrixDescriptor& rhs, const se::gpu::OutputMatrixDescriptor& output, se::DeviceMemoryBase workspace, Scale alpha, Scale beta, se::Stream* stream, PrecisionConfig::Algorithm precision_algorithm, se::blas::AlgorithmType algorithm, se::blas::ComputePrecision compute_precision, const se::NumericOptions& numeric_options, se::blas::ProfileResult* profile_result, se::blas::CallContext context) { CHECK(output.transpose == se::blas::Transpose::kNoTranspose); PrimitiveType lhs_type = primitive_util::NativeToPrimitiveType<Input>(); PrimitiveType output_type = primitive_util::NativeToPrimitiveType<Output>(); TF_ASSIGN_OR_RETURN( se::blas::ComputationType computation_type, se::gpu::GetBlasComputationType(precision_algorithm, lhs_type, output_type, compute_precision)); se::DeviceMemory<Output> output_data(output.data); auto* blas = stream->parent()->AsBlas(); if (blas == nullptr) { return absl::InternalError("No Blas support for stream"); } se::blas::BlasSupport::ScopedWorkspace scoped_workspace(blas, &workspace); if (output.batch_size != 1) { return blas->BlasGemmStridedBatchedWithAlgorithm( stream, lhs.transpose, rhs.transpose, output.m, output.n, output.k, alpha, lhs.cast<Input>(), lhs.leading_dim_stride, lhs.batch_stride, rhs.cast<Input>(), rhs.leading_dim_stride, rhs.batch_stride, beta, &output_data, output.leading_dim_stride, output.batch_stride, output.batch_size, computation_type, algorithm, numeric_options, profile_result, context); } else { return blas->BlasGemmWithAlgorithm( stream, lhs.transpose, rhs.transpose, output.m, output.n, output.k, alpha, lhs.cast<Input>(), lhs.leading_dim_stride, rhs.cast<Input>(), rhs.leading_dim_stride, beta, &output_data, output.leading_dim_stride, computation_type, algorithm, numeric_options, profile_result, context); } } template <typename Scale, typename Input, typename Output> absl::Status DoGemm(const se::gpu::MatrixDescriptor& lhs, const se::gpu::MatrixDescriptor& rhs, const se::gpu::OutputMatrixDescriptor& output, se::DeviceMemoryBase workspace, Scale alpha, Scale beta, se::Stream* stream, PrecisionConfig::Algorithm precision_algorithm, std::optional<se::blas::AlgorithmType> algorithm, se::blas::ComputePrecision compute_precision, const se::NumericOptions& numeric_options, se::blas::ProfileResult* profile_result, se::blas::CallContext context) { CHECK(output.transpose == se::blas::Transpose::kNoTranspose); se::DeviceMemory<Output> output_data(output.data); auto* blas = stream->parent()->AsBlas(); if (blas == nullptr) { return absl::InternalError("No Blas support for stream"); } if (algorithm) { return DoGemmWithAlgorithm<Scale, Input, Output>( lhs, rhs, output, workspace, alpha, beta, stream, precision_algorithm, *algorithm, compute_precision, numeric_options, profile_result, context); } se::blas::BlasSupport::ScopedWorkspace scoped_workspace(blas, &workspace); if (output.batch_size != 1) { return blas->BlasGemmStridedBatched( stream, lhs.transpose, rhs.transpose, output.m, output.n, output.k, alpha, lhs.cast<Input>(), lhs.leading_dim_stride, lhs.batch_stride, rhs.cast<Input>(), rhs.leading_dim_stride, rhs.batch_stride, beta, &output_data, output.leading_dim_stride, output.batch_stride, output.batch_size, numeric_options, context); } return blas->BlasGemm(stream, lhs.transpose, rhs.transpose, output.m, output.n, output.k, alpha, lhs.cast<Input>(), lhs.leading_dim_stride, rhs.cast<Input>(), rhs.leading_dim_stride, beta, &output_data, output.leading_dim_stride, numeric_options, context); } } absl::Status RunGemm(const GemmConfig& config, se::DeviceMemoryBase lhs_buffer, se::DeviceMemoryBase rhs_buffer, se::DeviceMemoryBase output_buffer, se::DeviceMemoryBase workspace_buffer, bool deterministic_ops, se::Stream* stream, std::optional<se::blas::AlgorithmType> algorithm, se::blas::ProfileResult* profile_result) { VLOG(2) << "Executing a GemmThunk"; TF_ASSIGN_OR_RETURN( GemmConfig::DescriptorsTuple desc, config.GetMatrixDescriptors(lhs_buffer, rhs_buffer, output_buffer)); se::NumericOptions numeric_options{ deterministic_ops, IsTf32Allowed(config.precision_algorithm, config.compute_precision)}; if (!algorithm) algorithm = config.algorithm; se::blas::CallContext context = se::blas::CallContext::kNone; if (config.grad_x) { context = desc.operands_swapped ? se::blas::CallContext::kBackpropInput2 : se::blas::CallContext::kBackpropInput1; } if (config.grad_y) { context = desc.operands_swapped ? se::blas::CallContext::kBackpropInput1 : se::blas::CallContext::kBackpropInput2; } std::tuple operand_types{config.lhs_layout.dtype, config.rhs_layout.dtype, config.output_layout.dtype}; if (config.alpha.real() == 0.0 && config.alpha.imag() == 0.0 && config.beta == 0.0) { return stream->MemZero(&output_buffer, output_buffer.size()); } #define TYPED_GEMM(SCALENTYPE, ATYPE, BTYPE, CTYPE) \ if (operand_types == std::make_tuple(ATYPE, BTYPE, CTYPE)) { \ using NativeScaleType = \ primitive_util::PrimitiveTypeToNative<SCALENTYPE>::type; \ using NativeAType = primitive_util::PrimitiveTypeToNative<ATYPE>::type; \ using NativeCType = primitive_util::PrimitiveTypeToNative<CTYPE>::type; \ return DoGemm<NativeScaleType, NativeAType, NativeCType>( \ desc.lhs, desc.rhs, desc.output, workspace_buffer, \ static_cast<NativeScaleType>(config.alpha.real()), \ static_cast<NativeScaleType>(config.beta), stream, \ config.precision_algorithm, algorithm, config.compute_precision, \ numeric_options, profile_result, context); \ } #define TYPED_GEMM_COMPLEX(SCALENTYPE, ATYPE, BTYPE, CTYPE) \ if (operand_types == std::make_tuple(ATYPE, BTYPE, CTYPE)) { \ using NativeScaleType = \ primitive_util::PrimitiveTypeToNative<SCALENTYPE>::type; \ using NativeAType = primitive_util::PrimitiveTypeToNative<ATYPE>::type; \ using NativeCType = primitive_util::PrimitiveTypeToNative<CTYPE>::type; \ return DoGemm<NativeScaleType, NativeAType, NativeCType>( \ desc.lhs, desc.rhs, desc.output, workspace_buffer, \ static_cast<NativeScaleType>(config.alpha), \ static_cast<NativeScaleType>(config.beta), stream, \ config.precision_algorithm, algorithm, config.compute_precision, \ numeric_options, profile_result, context); \ } if (config.output_layout.dtype == S32) { if (!algorithm) algorithm = se::blas::kDefaultGemmAlgo; return DoGemmWithAlgorithm<int32_t, int8_t, int32_t>( desc.lhs, desc.rhs, desc.output, workspace_buffer, static_cast<int32_t>(config.alpha.real()), static_cast<int32_t>(config.beta), stream, PrecisionConfig::ALG_UNSET, *algorithm, se::blas::kDefaultComputePrecision, numeric_options, profile_result, context); } TYPED_GEMM(F32, BF16, BF16, BF16) TYPED_GEMM(F32, F16, F16, F16) TYPED_GEMM(F32, S8, S8, F32) TYPED_GEMM(F32, BF16, BF16, F32) TYPED_GEMM(F32, F16, F16, F32) TYPED_GEMM(F32, F32, F32, F32) TYPED_GEMM(F64, F64, F64, F64) TYPED_GEMM_COMPLEX(C64, C64, C64, C64) TYPED_GEMM_COMPLEX(C128, C128, C128, C128) #undef TYPED_GEMM #undef TYPED_GEMM_COMPLEX return Internal( "Unexpected GEMM dtype: %s %s %s", primitive_util::LowercasePrimitiveTypeName(config.lhs_layout.dtype), primitive_util::LowercasePrimitiveTypeName(config.rhs_layout.dtype), primitive_util::LowercasePrimitiveTypeName(config.output_layout.dtype)); } namespace gpublas_lt { absl::StatusOr<bool> EpilogueAddsVectorBias( GemmBackendConfig_Epilogue epilogue) { switch (epilogue) { case GemmBackendConfig::DEFAULT: case GemmBackendConfig::RELU: case GemmBackendConfig::GELU: case GemmBackendConfig::GELU_AUX: return false; case GemmBackendConfig::BIAS: case GemmBackendConfig::BIAS_RELU: case GemmBackendConfig::BIAS_GELU: case GemmBackendConfig::BIAS_GELU_AUX: return true; default: return Internal("Unknown Epilogue."); } } absl::StatusOr<bool> EpilogueHasAuxiliaryOutput( GemmBackendConfig_Epilogue epilogue) { switch (epilogue) { case GemmBackendConfig::DEFAULT: case GemmBackendConfig::RELU: case GemmBackendConfig::GELU: case GemmBackendConfig::BIAS: case GemmBackendConfig::BIAS_RELU: case GemmBackendConfig::BIAS_GELU: return false; case GemmBackendConfig::GELU_AUX: case GemmBackendConfig::BIAS_GELU_AUX: return true; default: return Internal("Unknown Epilogue."); } } absl::StatusOr<se::gpu::BlasLt::Epilogue> AsBlasLtEpilogue( GemmBackendConfig_Epilogue epilogue) { switch (epilogue) { case GemmBackendConfig::DEFAULT: return se::gpu::BlasLt::Epilogue::kDefault; case GemmBackendConfig::RELU: return se::gpu::BlasLt::Epilogue::kReLU; case GemmBackendConfig::GELU: return se::gpu::BlasLt::Epilogue::kGELU; case GemmBackendConfig::GELU_AUX: return se::gpu::BlasLt::Epilogue::kGELUWithAux; case GemmBackendConfig::BIAS: return se::gpu::BlasLt::Epilogue::kBias; case GemmBackendConfig::BIAS_RELU: return se::gpu::BlasLt::Epilogue::kBiasThenReLU; case GemmBackendConfig::BIAS_GELU: return se::gpu::BlasLt::Epilogue::kBiasThenGELU; case GemmBackendConfig::BIAS_GELU_AUX: return se::gpu::BlasLt::Epilogue::kBiasThenGELUWithAux; default: return Internal("unexpected epilogue value"); } } } absl::StatusOr<TritonGemmConfig> TritonGemmConfig::FromProto( const AutotuneResult::TritonGemmKey& proto) { TF_RET_CHECK(proto.block_m() > 0); TF_RET_CHECK(proto.block_n() > 0); TF_RET_CHECK(proto.block_k() > 0); TF_RET_CHECK(proto.split_k() > 0); TF_RET_CHECK(proto.num_stages() > 0); TF_RET_CHECK(proto.num_warps() > 0); TF_RET_CHECK(proto.num_ctas() > 0); return TritonGemmConfig(proto.block_m(), proto.block_n(), proto.block_k(), proto.split_k(), proto.num_stages(), proto.num_warps(), proto.num_ctas()); } AutotuneResult::TritonGemmKey TritonGemmConfig::ToProto() const { AutotuneResult::TritonGemmKey key; key.set_block_m(block_m); key.set_block_n(block_n); key.set_block_k(block_k); key.set_split_k(split_k); key.set_num_stages(num_stages); key.set_num_warps(num_warps); key.set_num_ctas(num_ctas); return key; } std::string TritonGemmConfig::ToString() const { return absl::StrCat("{block_m:", block_m, ",block_n:", block_n, ",block_k:", block_k, ",split_k:", split_k, ",num_stages:", num_stages, ",num_warps:", num_warps, ",num_ctas:", num_ctas, "}"); } absl::StatusOr<bool> IsMatrixMultiplicationTooSmallForRewriting( const HloInstruction& dot, int64_t threshold) { CHECK_EQ(dot.opcode(), HloOpcode::kDot); const Shape& lhs_shape = dot.operand(0)->shape(); const Shape& rhs_shape = dot.operand(1)->shape(); const DotDimensionNumbers& dot_dims = dot.dot_dimension_numbers(); int64_t contracting_size = 1; for (int64_t dim : dot_dims.lhs_contracting_dimensions()) { contracting_size *= lhs_shape.dimensions(dim); } TF_ASSIGN_OR_RETURN( std::vector<int64_t> lhs_non_contracting_dims, GetNonContractingDims(lhs_shape, dot_dims.lhs_batch_dimensions(), dot_dims.lhs_contracting_dimensions())); int64_t lhs_non_contracting_size = 1; for (int64_t dim : lhs_non_contracting_dims) { lhs_non_contracting_size *= lhs_shape.dimensions(dim); } TF_ASSIGN_OR_RETURN( std::vector<int64_t> rhs_non_contracting_dims, GetNonContractingDims(rhs_shape, dot_dims.rhs_batch_dimensions(), dot_dims.rhs_contracting_dimensions())); int64_t rhs_non_contracting_size = 1; for (int64_t dim : rhs_non_contracting_dims) { rhs_non_contracting_size *= rhs_shape.dimensions(dim); } return (rhs_non_contracting_size + lhs_non_contracting_size) * contracting_size < threshold; } bool IsDotSupportedByClassicalEmitters(const HloInstruction& dot) { if (!algorithm_util::IsSupportedByElementalIrEmitter( dot.precision_config().algorithm())) { return false; } switch (dot.shape().element_type()) { case F16: case F32: case BF16: return true; default: return false; } } } }
#include "xla/service/gpu/matmul_utils.h" #include <cstdint> #include <memory> #include <vector> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; using ::tsl::testing::IsOkAndHolds; TEST(GetNonContractingDimsTest, Valid) { Shape shape = ParseShape("f32[1,2,3,4,5,6]").value(); EXPECT_THAT(GetNonContractingDims(shape, {4}, {1, 5}), IsOkAndHolds(ElementsAre(0, 2, 3))); } using CanFoldTransposeOperandIntoDotTest = HloTestBase; TEST_F(CanFoldTransposeOperandIntoDotTest, ArgTransposeFoldGemm) { const char* hlo_text = R"( HloModule ArgTransposeFoldGemm ENTRY AddDotsFunc { x = f32[3,2] parameter(0) y = f32[3,4] parameter(1) x_transposed = f32[2,3] transpose(x), dimensions={1, 0} ROOT dot_a = f32[2,4] dot(x_transposed, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(CanFoldTransposeOperandIntoDot(*dot, 0), IsOkAndHolds(true)); } TEST_F(CanFoldTransposeOperandIntoDotTest, BatchedArgRowColTransposeFoldGemm) { const char* hlo_text = R"( HloModule BatchedArgRowColTransposeFoldGemm ENTRY AddDotsFunc { x = f32[5,3,2] parameter(0) y = f32[5,3,4] parameter(1) x_transposed = f32[5,2,3] transpose(x), dimensions={0, 2, 1} ROOT dot_a = f32[5,2,4] dot(x_transposed, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(CanFoldTransposeOperandIntoDot(*dot, 0), IsOkAndHolds(true)); } TEST_F(CanFoldTransposeOperandIntoDotTest, BatchRowTransposeFoldGemm) { const char* hlo_text = R"( HloModule BatchRowTransposeFoldCheck ENTRY AddDotsFunc { x = f32[2,5,3] parameter(0) y = f32[5,3,4] parameter(1) x_transposed = f32[5,2,3] transpose(x), dimensions={1, 0, 2} ROOT dot_a = f32[5,2,4] dot(x_transposed, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(CanFoldTransposeOperandIntoDot(*dot, 0), IsOkAndHolds(true)); } TEST_F(CanFoldTransposeOperandIntoDotTest, BatchFromMinorDimTransposeDoesntFold) { const char* hlo_text = R"( HloModule BatchFromMinorDimTransposeDoesntFold ENTRY AddDotsFunc { x = f32[3,2,5] parameter(0) y = f32[5,3,4] parameter(1) x_transposed = f32[5,2,3] transpose(x), dimensions={2, 1, 0} ROOT dot_a = f32[5,2,4] dot(x_transposed, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(CanFoldTransposeOperandIntoDot(*dot, 0), IsOkAndHolds(false)); } TEST_F(CanFoldTransposeOperandIntoDotTest, TransposedNonContractingDimsDontFold) { const char* hlo_text = R"( HloModule TransposedNonContractingDimsDontFold ENTRY AddDotsFunc { x = f32[5,3,4]{2,1,0} parameter(1) y = f32[5,2,6,3]{3,1,2,0} parameter(0) y_transposed = f32[5,6,2,3]{3,2,1,0} transpose(y), dimensions={0, 2, 1, 3} ROOT dot_a = f32[5,4,6,2]{3,2,1,0} dot(x, y_transposed), lhs_contracting_dims={1}, rhs_contracting_dims={3}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(CanFoldTransposeOperandIntoDot(*dot, 1), IsOkAndHolds(false)); } struct GetBatchRowColumnShapeTestParams { absl::string_view shape; std::vector<int64_t> batch_dims; std::vector<int64_t> row_dims; std::vector<int64_t> col_dims; absl::string_view expected_shape; }; using GetBatchRowColumnShapeTest = ::testing::TestWithParam<GetBatchRowColumnShapeTestParams>; TEST_P(GetBatchRowColumnShapeTest, ValidShape) { const GetBatchRowColumnShapeTestParams& params = GetParam(); Shape shape = ParseShape(params.shape).value(); EXPECT_THAT(GetBatchRowColumnShape(shape, params.batch_dims, params.row_dims, params.col_dims), IsOkAndHolds(ParseShape(params.expected_shape).value())); } INSTANTIATE_TEST_SUITE_P( GetBatchRowColumnShapeTests, GetBatchRowColumnShapeTest, ::testing::ValuesIn<GetBatchRowColumnShapeTestParams>({ {"f32[3,4]{1,0}", {}, {0}, {1}, "f32[1,3,4]{2,1,0}"}, {"f32[3,4]{0,1}", {}, {0}, {1}, "f32[1,3,4]{1,2,0}"}, {"f32[3,4]{1,0}", {}, {1}, {0}, "f32[1,4,3]{1,2,0}"}, {"f32[3,4,5]{2,1,0}", {0}, {1}, {2}, "f32[3,4,5]{2,1,0}"}, {"f32[3,4,5]{2,1,0}", {2}, {1}, {0}, "f32[5,4,3]{0,1,2}"}, {"f32[3,4,5,6,7,8]{5,2,4,1,3,0}", {0, 3}, {1, 4}, {2, 5}, "f32[18,28,40]{2,1,0}"}, })); TEST(GetBatchRowColumnShapeTest, BatchRowsColsInterleaved) { Shape shape = ParseShape("f32[3,4,5,6,7,8]{5,4,3,2,1,0}").value(); auto result = GetBatchRowColumnShape(shape, {0, 3}, {1, 4}, {2, 5}); EXPECT_FALSE(result.ok()); } TEST(GetBatchRowColumnShapeTest, WrongPhysicalOrder) { Shape shape = ParseShape("f32[3,4,5,6]{3,2,0,1}").value(); auto result = GetBatchRowColumnShape(shape, {0, 1}, {2}, {3}); EXPECT_FALSE(result.ok()); } using Order = MatrixLayout::Order; struct GetMatrixLayoutTestParams { absl::string_view shape; int64_t batch_size; int64_t num_rows; int64_t num_cols; Order order; int64_t leading_dim_stride; int64_t batch_stride; }; using GetMatrixLayoutTest = ::testing::TestWithParam<GetMatrixLayoutTestParams>; TEST_P(GetMatrixLayoutTest, ValidShape) { const GetMatrixLayoutTestParams& params = GetParam(); Shape shape = ParseShape(params.shape).value(); MatrixLayout result = MatrixLayout::For(shape).value(); EXPECT_EQ(result.batch_size, params.batch_size); EXPECT_EQ(result.num_rows, params.num_rows); EXPECT_EQ(result.num_cols, params.num_cols); EXPECT_EQ(result.order, params.order); EXPECT_EQ(result.leading_dim_stride, params.leading_dim_stride); EXPECT_EQ(result.batch_stride, params.batch_stride); } INSTANTIATE_TEST_SUITE_P( GetMatrixLayoutTests, GetMatrixLayoutTest, ::testing::ValuesIn<GetMatrixLayoutTestParams>({ {"f32[3,4,5]{2,1,0}", 3, 4, 5, Order::kRowMajor, 5, 20}, {"f32[3,4,5]{1,2,0}", 3, 4, 5, Order::kColumnMajor, 4, 20}, {"f32[3,4,5]{2,0,1}", 3, 4, 5, Order::kRowMajor, 15, 5}, {"f32[3,4,5]{1,0,2}", 3, 4, 5, Order::kColumnMajor, 12, 4}, })); TEST(GetMatrixLayoutTest, BatchInMostMinorPhysicalDimension) { Shape shape = ParseShape("f32[3,4,5]{0,2,1}").value(); EXPECT_FALSE(MatrixLayout::For(shape).ok()); } using GetMatrixSizeRewriteThresholdTest = HloTestBase; TEST_F(GetMatrixSizeRewriteThresholdTest, MatMulTooSmallForRewrite) { const char* hlo_text = R"( HloModule DotFuncModule ENTRY DotFunc { x = f32[100,30,3] parameter(0) y = f32[100,3,3] parameter(1) ROOT dot = f32[100,30,3] dot(x, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(IsMatrixMultiplicationTooSmallForRewriting(*dot, 100), IsOkAndHolds(true)); } TEST_F(GetMatrixSizeRewriteThresholdTest, MatMulSupportedByClassicalEmitters) { const char* hlo_text = R"( HloModule DotFuncModule ENTRY DotFunc { x = f32[100,30,3] parameter(0) y = f32[100,3,3] parameter(1) ROOT dot = f32[100,30,3] dot(x, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_TRUE(IsDotSupportedByClassicalEmitters(*dot)); } TEST_F(GetMatrixSizeRewriteThresholdTest, MatMulUnsupportedByClassicalEmitters) { const char* hlo_text = R"( HloModule DotFuncModule ENTRY DotFunc { x = s8[100,30,3] parameter(0) y = s8[100,3,3] parameter(1) ROOT dot = s32[100,30,3] dot(x, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_FALSE(IsDotSupportedByClassicalEmitters(*dot)); } TEST_F(GetMatrixSizeRewriteThresholdTest, MatMulLeftLargeEnoughForRewrite) { const char* hlo_text = R"( HloModule DotFuncModule ENTRY DotFunc { x = f32[50,2] parameter(0) y = f32[2,2] parameter(1) ROOT dot = f32[50,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(IsMatrixMultiplicationTooSmallForRewriting(*dot, 100), IsOkAndHolds(false)); } TEST_F(GetMatrixSizeRewriteThresholdTest, MatMulRightLargeEnoughForRewrite) { const char* hlo_text = R"( HloModule DotFuncModule ENTRY DotFunc { x = f32[2,2] parameter(0) y = f32[2,50] parameter(1) ROOT dot = f32[2,50] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(IsMatrixMultiplicationTooSmallForRewriting(*dot, 100), IsOkAndHolds(false)); } TEST_F(GetMatrixSizeRewriteThresholdTest, MatMulTogetherLargeEnoughForRewrite) { const char* hlo_text = R"( HloModule DotFuncModule ENTRY DotFunc { x = f32[4,16] parameter(0) y = f32[16,4] parameter(1) ROOT dot = f32[4,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(IsMatrixMultiplicationTooSmallForRewriting(*dot, 100), IsOkAndHolds(false)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/matmul_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/matmul_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5e5b458c-749f-4599-ab52-44f385a4c5f4
cpp
tensorflow/tensorflow
stream_executor_util
third_party/xla/xla/service/gpu/stream_executor_util.cc
third_party/xla/xla/service/gpu/stream_executor_util_test.cc
#include "xla/service/gpu/stream_executor_util.h" #include <cstdint> #include <iterator> #include <limits> #include <map> #include <memory> #include <optional> #include <random> #include <sstream> #include <string_view> #include <tuple> #include <type_traits> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/const_init.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "Eigen/Core" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/primitive_util.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/hlo_module_config.h" #include "xla/shape_util.h" #include "xla/stream_executor/data_type.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/kernel_spec.h" #include "xla/stream_executor/launch_dim.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/typed_kernel_factory.h" #include "xla/tsl/protobuf/dnn.pb.h" #include "xla/tsl/util/proto/proto_utils.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/ml_dtypes.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { absl::StatusOr<se::dnn::VersionInfo> GetDnnVersionInfo( stream_executor::StreamExecutor* stream_exec) { if (!stream_exec) { return absl::InvalidArgumentError("StreamExecutor is null"); } stream_executor::dnn::DnnSupport* dnn = stream_exec->AsDnn(); if (!dnn) { return absl::FailedPreconditionError( "DNN library initialization failed. Look at the errors above for more " "details."); } return dnn->GetVersion(); } se::dnn::VersionInfo GetDnnVersionInfoOrDefault( stream_executor::StreamExecutor* stream_exec, se::dnn::VersionInfo fallback_version) { return GetDnnVersionInfo(stream_exec).value_or(fallback_version); } namespace { using se::dnn::DataLayout; using se::dnn::DataLayoutString; using se::dnn::FilterLayout; using se::dnn::FilterLayoutString; int64_t FindMissingDnum(absl::Span<const int64_t> vals) { for (int i = 0; i < vals.size(); i++) { if (!absl::c_linear_search(vals, i)) { return i; } } return vals.size(); } absl::StatusOr<Layout> DataLayoutToXlaLayout( DataLayout data_layout, int64_t batch_dimension, int64_t feature_dimension, absl::Span<int64_t const> spatial_dimensions) { std::vector<int64_t> layout; switch (data_layout) { case DataLayout::kBatchDepthYX: layout.push_back(batch_dimension); layout.push_back(feature_dimension); layout.insert(layout.end(), spatial_dimensions.begin(), spatial_dimensions.end()); break; case DataLayout::kBatchDepthYX4: case DataLayout::kBatchDepthYX32: layout.push_back(batch_dimension); layout.push_back(feature_dimension); layout.insert(layout.end(), spatial_dimensions.begin(), spatial_dimensions.end()); layout.push_back(FindMissingDnum(layout)); break; case DataLayout::kBatchYXDepth: layout.push_back(batch_dimension); layout.insert(layout.end(), spatial_dimensions.begin(), spatial_dimensions.end()); layout.push_back(feature_dimension); break; default: return Internal("Invalid layout %s", DataLayoutString(data_layout)); } return LayoutUtil::MakeLayoutFromMajorToMinor(layout); } } absl::StatusOr<std::tuple<Layout, Layout, Layout>> StreamExecutorConvLayoutsToXlaLayouts(const ConvolutionDimensionNumbers& dnums, DataLayout input, FilterLayout filter, DataLayout output) { TF_ASSIGN_OR_RETURN( Layout input_layout, DataLayoutToXlaLayout(input, dnums.input_batch_dimension(), dnums.input_feature_dimension(), dnums.input_spatial_dimensions())); TF_ASSIGN_OR_RETURN( Layout output_layout, DataLayoutToXlaLayout(input, dnums.output_batch_dimension(), dnums.output_feature_dimension(), dnums.output_spatial_dimensions())); std::vector<int64_t> filter_layout; switch (filter) { case FilterLayout::kOutputInputYX: filter_layout.push_back(dnums.kernel_output_feature_dimension()); filter_layout.push_back(dnums.kernel_input_feature_dimension()); filter_layout.insert(filter_layout.end(), dnums.kernel_spatial_dimensions().begin(), dnums.kernel_spatial_dimensions().end()); break; case FilterLayout::kOutputInputYX4: filter_layout.push_back(dnums.kernel_output_feature_dimension()); filter_layout.push_back(dnums.kernel_input_feature_dimension()); filter_layout.insert(filter_layout.end(), dnums.kernel_spatial_dimensions().begin(), dnums.kernel_spatial_dimensions().end()); filter_layout.push_back(FindMissingDnum(filter_layout)); break; case FilterLayout::kOutputYXInput: filter_layout.push_back(dnums.kernel_output_feature_dimension()); filter_layout.insert(filter_layout.end(), dnums.kernel_spatial_dimensions().begin(), dnums.kernel_spatial_dimensions().end()); filter_layout.push_back(dnums.kernel_input_feature_dimension()); break; default: return Internal("Invalid filter layout %s for conv with dnums %s,", FilterLayoutString(filter), ConvolutionDimensionNumbersToString(dnums)); } return std::make_tuple(input_layout, LayoutUtil::MakeLayoutFromMajorToMinor(filter_layout), output_layout); } absl::StatusOr<std::tuple<DataLayout, FilterLayout, DataLayout>> XlaConvShapesToStreamExecutorLayouts(const ConvolutionDimensionNumbers& dnums, const Shape& input, const Shape& filter, const Shape& output) { CHECK(input.has_layout()); CHECK(filter.has_layout()); CHECK(output.has_layout()); Layout nchw_input, nchw_filter, nchw_output; std::tie(nchw_input, nchw_filter, nchw_output) = StreamExecutorConvLayoutsToXlaLayouts(dnums, DataLayout::kBatchDepthYX, FilterLayout::kOutputInputYX, DataLayout::kBatchDepthYX) .value(); Layout nchw_vect_input, nchw_vect_filter, nchw_vect_output; std::tie(nchw_vect_input, nchw_vect_filter, nchw_vect_output) = StreamExecutorConvLayoutsToXlaLayouts(dnums, DataLayout::kBatchDepthYX4, FilterLayout::kOutputInputYX4, DataLayout::kBatchDepthYX4) .value(); Layout nhwc_input, nhwc_filter, nhwc_output; std::tie(nhwc_input, nhwc_filter, nhwc_output) = StreamExecutorConvLayoutsToXlaLayouts(dnums, DataLayout::kBatchYXDepth, FilterLayout::kOutputYXInput, DataLayout::kBatchYXDepth) .value(); DataLayout input_layout; if (LayoutUtil::Equal(input.layout(), nchw_input)) { input_layout = DataLayout::kBatchDepthYX; } else if (LayoutUtil::Equal(input.layout(), nchw_vect_input)) { int64_t vect_size = input.dimensions(input.layout().minor_to_major(0)); if (vect_size == 4) { input_layout = DataLayout::kBatchDepthYX4; } else if (vect_size == 32) { input_layout = DataLayout::kBatchDepthYX32; } else { return Internal( "Invalid input shape %s for conv with dnums %s. Most-minor dim " "should be 4 or 32, but was %d.", ShapeUtil::HumanStringWithLayout(input), ConvolutionDimensionNumbersToString(dnums), vect_size); } } else if (LayoutUtil::Equal(input.layout(), nhwc_input)) { input_layout = DataLayout::kBatchYXDepth; } else { return Internal( "Invalid input layout %s for conv with dnums %s; expected one of (%s, " "%s, %s)", LayoutUtil::HumanString(input.layout()), ConvolutionDimensionNumbersToString(dnums), nchw_input.ToString(), nchw_vect_input.ToString(), nhwc_input.ToString()); } FilterLayout filter_layout; if (LayoutUtil::Equal(filter.layout(), nchw_filter)) { filter_layout = FilterLayout::kOutputInputYX; } else if (LayoutUtil::Equal(filter.layout(), nchw_vect_filter)) { int64_t vect_size = filter.dimensions(filter.layout().minor_to_major(0)); if (vect_size == 4) { filter_layout = FilterLayout::kOutputInputYX4; } else if (vect_size == 32) { filter_layout = FilterLayout::kOutputInputYX32; } else { return Internal( "Invalid filter shape %s for conv with dnums %s. Most-minor dim " "should be 4 or 32, but was %d.", ShapeUtil::HumanStringWithLayout(filter), ConvolutionDimensionNumbersToString(dnums), vect_size); } } else if (LayoutUtil::Equal(filter.layout(), nhwc_filter)) { filter_layout = FilterLayout::kOutputYXInput; } else { return Internal( "Invalid filter layout %s for conv with dnums %s, expected one of (%s, " "%s, %s)", LayoutUtil::HumanString(filter.layout()), ConvolutionDimensionNumbersToString(dnums), nchw_filter.ToString(), nchw_vect_filter.ToString(), nhwc_filter.ToString()); } DataLayout output_layout; if (LayoutUtil::Equal(output.layout(), nchw_output)) { output_layout = DataLayout::kBatchDepthYX; } else if (LayoutUtil::Equal(output.layout(), nchw_vect_output)) { int64_t vect_size = output.dimensions(output.layout().minor_to_major(0)); if (vect_size == 4) { output_layout = DataLayout::kBatchDepthYX4; } else if (vect_size == 32) { output_layout = DataLayout::kBatchDepthYX32; } else { return Internal( "Invalid output shape %s for conv with dnums %s. Most-minor dim " "should be 4 or 32, but was %d.", ShapeUtil::HumanStringWithLayout(output), ConvolutionDimensionNumbersToString(dnums), vect_size); } } else if (LayoutUtil::Equal(output.layout(), nhwc_output)) { output_layout = DataLayout::kBatchYXDepth; } else { return Internal("Invalid output layout %s for conv with dnums %s", LayoutUtil::HumanString(output.layout()), ConvolutionDimensionNumbersToString(dnums)); } return std::make_tuple(input_layout, filter_layout, output_layout); } static std::optional<int64_t> FindVectorizedDim(int64_t rank, int64_t d0, int64_t d1, absl::Span<const int64_t> ds) { for (int64_t i = 0; i < rank; i++) { if (i == d0 || i == d1 || absl::c_linear_search(ds, i)) { continue; } return i; } return std::nullopt; } std::tuple<std::optional<int64_t>, std::optional<int64_t>, std::optional<int64_t>> FindVectorizedFeatureDims(const ConvolutionDimensionNumbers& dnums, const Shape& input, const Shape& filter, const Shape& output) { return { FindVectorizedDim(input.dimensions_size(), dnums.input_batch_dimension(), dnums.input_feature_dimension(), dnums.input_spatial_dimensions()), FindVectorizedDim(filter.dimensions_size(), dnums.kernel_input_feature_dimension(), dnums.kernel_output_feature_dimension(), dnums.kernel_spatial_dimensions()), FindVectorizedDim( output.dimensions_size(), dnums.output_batch_dimension(), dnums.output_feature_dimension(), dnums.output_spatial_dimensions()), }; } absl::Mutex& GetGpuMutex(const se::StreamExecutor* stream_exec) { static absl::Mutex mu(absl::kConstInit); static auto* mutexes = new std::map<std::pair<const se::Platform*, int64_t>, absl::Mutex>(); absl::MutexLock global_lock(&mu); auto it = mutexes ->emplace(std::piecewise_construct, std::make_tuple(stream_exec->GetPlatform(), stream_exec->device_ordinal()), std::make_tuple()) .first; return it->second; } absl::StatusOr<std::unique_ptr<se::Kernel>> CreateKernel( absl::string_view kernel_name, uint64_t num_args, absl::string_view ptx, absl::Span<const uint8_t> cubin_data, se::StreamExecutor* stream_exec, uint32_t shared_mem_bytes) { se::MultiKernelLoaderSpec loader_spec(num_args); loader_spec.AddCudaPtxInMemory(ptx, kernel_name); if (!cubin_data.empty()) { loader_spec.AddCudaCubinInMemory(cubin_data, kernel_name); } TF_ASSIGN_OR_RETURN(std::unique_ptr<se::Kernel> kernel, stream_exec->LoadKernel(loader_spec)); se::KernelMetadata m; m.set_shared_memory_bytes(shared_mem_bytes); kernel->set_metadata(m); return kernel; } absl::Status ExecuteKernelOnStream(const se::Kernel& kernel, absl::Span<const se::DeviceMemoryBase> args, const LaunchDimensions& dims, se::Stream* stream) { TF_ASSIGN_OR_RETURN( std::unique_ptr<se::KernelArgsPackedArrayBase> kernel_args, se::PackKernelArgs(args, kernel.metadata())); return stream->Launch(dims.thread_counts_per_block(), dims.block_counts(), kernel, *kernel_args); } absl::Status ExecuteKernelOnStream(const se::Kernel& kernel, absl::Span<const se::DeviceMemoryBase> args, const LaunchDimensions& dims, const se::ClusterDim& cluster_dim, se::Stream* stream) { TF_ASSIGN_OR_RETURN( std::unique_ptr<se::KernelArgsPackedArrayBase> kernel_args, se::PackKernelArgs(args, kernel.metadata())); return stream->Launch(dims.thread_counts_per_block(), dims.block_counts(), cluster_dim, kernel, *kernel_args); } template <typename T, typename Generator> typename std::enable_if<std::is_integral<T>::value, T>::type static UniformDistribution(T lhs, T rhs, Generator* gen) = delete; template <typename T, typename Generator> typename std::enable_if<std::is_floating_point<T>::value, T>::type static UniformDistribution(T lhs, T rhs, Generator* gen) { return std::uniform_real_distribution<T>(lhs, rhs)(*gen); } namespace repeat_buffer_kernel { void* kernel(); } template <typename T> static void InitializeTypedBuffer(se::Stream* stream, se::DeviceMemoryBase buffer, int64_t* rng_state) { constexpr int host_buffer_size = 10069; static std::vector<T>* host_buffer = [&] { auto* ret = new std::vector<T>(host_buffer_size); std::mt19937 gen; for (auto& element : *ret) { constexpr bool kIsIntegral = std::numeric_limits<T>::is_integer; constexpr bool kIsLowRange = !kIsIntegral && std::numeric_limits<T>::max_exponent <= std::numeric_limits<Eigen::half>::max_exponent; using RandomType = typename std::conditional<std::is_same_v<T, double>, double, float>::type; auto upper_bound = RandomType(kIsLowRange ? 0.1 : 1.0); auto rand_val = UniformDistribution(RandomType(0), upper_bound, &gen); element = T(kIsIntegral ? rand_val + 0.5 : rand_val); } return ret; }(); CHECK_EQ(0, buffer.size() % sizeof(T)); int64_t elements_to_fill = buffer.size() / sizeof(T); int64_t host_index = *rng_state; CHECK_LT(host_index, host_buffer_size); *rng_state = (*rng_state + elements_to_fill) % host_buffer_size; int64_t first_size = std::min<int64_t>(host_buffer_size - host_index, elements_to_fill); TF_CHECK_OK(stream->Memcpy(&buffer, host_buffer->data() + host_index, first_size * sizeof(T))); elements_to_fill -= first_size; if (elements_to_fill == 0) { return; } int64_t second_size = std::min<int64_t>(host_index, elements_to_fill); CHECK_LE(first_size + second_size, host_buffer_size); se::DeviceMemoryBase mem = buffer.GetByteSlice(first_size * sizeof(T), second_size * sizeof(T)); TF_CHECK_OK(stream->Memcpy(&mem, host_buffer->data(), mem.size())); elements_to_fill -= second_size; if (elements_to_fill == 0) { return; } #ifdef GOOGLE_CUDA CHECK_EQ(elements_to_fill, buffer.size() / sizeof(T) - host_buffer_size); se::StreamExecutor* executor = stream->parent(); auto kernel = se::TypedKernelFactory<se::DeviceMemoryBase, int64_t, int64_t>::Create( executor, "RepeatBufferKernel", repeat_buffer_kernel::kernel()); if (!kernel.ok()) { LOG(FATAL) << "Could not create RepeatBufferKernel: " << kernel.status(); } constexpr int64_t host_buffer_bytes = host_buffer_size * sizeof(T); constexpr int threads_per_block = 256; constexpr int blocks_per_grid = (host_buffer_bytes + threads_per_block - 1) / threads_per_block; TF_CHECK_OK(stream->ThenLaunch(se::ThreadDim(threads_per_block, 1, 1), se::BlockDim(blocks_per_grid, 1, 1), *kernel, buffer, host_buffer_bytes, static_cast<int64_t>(buffer.size()))); #endif } void InitializeBuffer(se::Stream* stream, PrimitiveType buffer_type, int64_t* rng_state, se::DeviceMemoryBase buffer) { return primitive_util::PrimitiveTypeSwitch<void>( [&](auto primitive_type_constant) -> void { if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant) || primitive_util::IsIntegralType(primitive_type_constant)) { using NativeT = typename primitive_util::PrimitiveTypeToNative< primitive_type_constant>::type; return InitializeTypedBuffer<NativeT>(stream, buffer, rng_state); } if constexpr (primitive_util::IsComplexType(primitive_type_constant)) { using NativeT = typename primitive_util::PrimitiveTypeToNative< primitive_type_constant>::type; return InitializeTypedBuffer<typename NativeT::value_type>( stream, buffer, rng_state); } if constexpr (primitive_type_constant == PRED) { return InitializeTypedBuffer<int8_t>(stream, buffer, rng_state); } LOG(FATAL) << "Unexpected type: " << primitive_util::LowercasePrimitiveTypeName(buffer_type); }, buffer_type); } absl::StatusOr<se::dnn::ConvolutionKind> GetDNNConvKindFromCudnnConvKind( CudnnConvKind kind) { switch (kind) { case CudnnConvKind::kBackwardFilter: return se::dnn::BACKWARD_FILTER; case CudnnConvKind::kBackwardInput: return se::dnn::BACKWARD_DATA; case CudnnConvKind::kForward: return se::dnn::FORWARD; case CudnnConvKind::kForwardActivation: return se::dnn::FORWARD_BIAS_ACTIVATION; case CudnnConvKind::kForwardGraph: return se::dnn::FORWARD_GRAPH; default: break; } return Internal("Unexpected convolution kind"); } absl::StatusOr<se::dnn::NormKind> GetDNNNormKindFromCudnnNormKind( CudnnNormKind kind) { switch (kind) { case CudnnNormKind::kLayerForwardInfer: return se::dnn::LAYER_FWD_INFER; case CudnnNormKind::kLayerForwardTrain: return se::dnn::LAYER_FWD_TRAIN; case CudnnNormKind::kLayerBackward: return se::dnn::LAYER_BWD; default: return Internal("Unexpected norm kind"); } } absl::StatusOr<se::dnn::FMHAMaskKind> GetDNNFmhaMaskKindFromCudnnFmhaMaskKind( CudnnfMHAMaskKind kind) { switch (kind) { case CudnnfMHAMaskKind::kNoMask: return se::dnn::NO_MASK; case CudnnfMHAMaskKind::kPadding: return se::dnn::PADDING; case CudnnfMHAMaskKind::kCausal: return se::dnn::CAUSAL; case CudnnfMHAMaskKind::kPaddingCausal: return se::dnn::PADDING_CAUSAL; case CudnnfMHAMaskKind::kAlibi: return se::dnn::ALIBI; default: return Internal("Unexpected fmha mask kind"); } } absl::StatusOr<se::dnn::DataType> GetDNNDataTypeFromPrimitiveType( PrimitiveType type) { switch (type) { case F16: return se::dnn::ToDataType<Eigen::half>::value; case F32: return se::dnn::ToDataType<float>::value; case F64: return se::dnn::ToDataType<double>::value; case S8: return se::dnn::ToDataType<int8_t>::value; case S32: return se::dnn::ToDataType<int32_t>::value; case BF16: return se::dnn::ToDataType<Eigen::bfloat16>::value; case F8E4M3FN: return se::dnn::ToDataType<tsl::float8_e4m3fn>::value; case F8E5M2: return se::dnn::ToDataType<tsl::float8_e5m2>::value; default: break; } return Internal("Unsupported datatype"); } bool RequireDeterminism(const HloModuleConfig& config) { return config.debug_options().xla_gpu_deterministic_ops() || config.debug_options().xla_gpu_exclude_nondeterministic_ops(); } namespace { std::vector<AutotuneResult> KeepNonFailures( absl::Span<AutotuneResult const> profile_results) { std::vector<AutotuneResult> filtered_results; absl::c_copy_if(profile_results, std::back_inserter(filtered_results), [](const AutotuneResult& r) { return !r.has_failure() || r.failure().kind() == AutotuneResult::WRONG_RESULT; }); return filtered_results; } absl::Status AllAlgorithmsFailedInternalError( std::optional<std::string_view> instr_str, absl::Span<AutotuneResult const> profile_results) { std::ostringstream msg; if (instr_str.has_value()) { msg << "All algorithms tried for " << instr_str.value() << " failed. Falling back to default algorithm. Per-algorithm " "errors:"; } else { msg << "All algorithms failed. Falling back to the default algorithm. " << "Per-algorithm errors:"; } for (const auto& result : profile_results) { msg << "\n " << result.failure().msg(); } return Internal("%s", msg.str()); } absl::Status NoAlgorithmSuppliedInternalError( std::optional<std::string_view> instr_str) { std::ostringstream msg; if (instr_str.has_value()) { msg << "There are no algorithm candidates for computing: \n " << instr_str.value() << "\nThis likely means that the instruction shape is not supported by " "the target GPU library."; } else { msg << "There are no algorithm candidates for computing the instruction.\n" "This likely means that the instruction shape is not supported by " "the target GPU library."; } return Internal("%s", msg.str()); } void SortAutotuningResultsByRunTime(std::vector<AutotuneResult>& results) { absl::c_sort(results, [](const AutotuneResult& lhs, const AutotuneResult& rhs) { return tsl::proto_utils::FromDurationProto(lhs.run_time()) < tsl::proto_utils::FromDurationProto(rhs.run_time()); }); } absl::Span<AutotuneResult const> TopResultsWithinMeasurementError( std::vector<AutotuneResult>& results_sorted_by_runtime) { constexpr absl::Duration kMeasurementError = absl::Microseconds(4); absl::Duration min_time = tsl::proto_utils::FromDurationProto( results_sorted_by_runtime.front().run_time()); absl::Duration limit_time = min_time + kMeasurementError; auto limit_time_it = absl::c_find_if( results_sorted_by_runtime, [limit_time](const AutotuneResult& x) { return tsl::proto_utils::FromDurationProto(x.run_time()) > limit_time; }); return absl::MakeSpan(&*results_sorted_by_runtime.begin(), &*limit_time_it); } } absl::StatusOr<AutotuneResult> PickBestResult( absl::Span<AutotuneResult const> profile_results, std::optional<std::string_view> instr_str, HloModuleConfig hlo_module_config) { if (profile_results.empty()) { return NoAlgorithmSuppliedInternalError(instr_str); } std::vector<AutotuneResult> filtered_results = KeepNonFailures(profile_results); if (filtered_results.empty()) { return AllAlgorithmsFailedInternalError(instr_str, profile_results); } if (RequireDeterminism(hlo_module_config)) { return *filtered_results.begin(); } SortAutotuningResultsByRunTime(filtered_results); auto top_within_error = TopResultsWithinMeasurementError(filtered_results); return *absl::c_min_element(top_within_error, [](const AutotuneResult& lhs, const AutotuneResult& rhs) { return lhs.scratch_bytes() < rhs.scratch_bytes(); }); } } }
#include "xla/service/gpu/stream_executor_util.h" #include <cstdint> #include <vector> #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "absl/time/time.h" #include "xla/autotuning.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/tsl/util/proto/proto_utils.h" namespace xla::gpu { namespace { struct Result { int64_t run_time_ns; int64_t scratch_bytes; bool operator==(const Result& other) const { return other.run_time_ns == run_time_ns && other.scratch_bytes == scratch_bytes; }; explicit operator AutotuneResult() const { AutotuneResult result; *result.mutable_run_time() = tsl::proto_utils::ToDurationProto(absl::Nanoseconds(run_time_ns)); result.set_scratch_bytes(scratch_bytes); return result; } }; static Result ATRToResult(AutotuneResult atr) { return Result{.run_time_ns = absl::ToInt64Nanoseconds( tsl::proto_utils::FromDurationProto(atr.run_time())), .scratch_bytes = atr.scratch_bytes()}; } std::vector<AutotuneResult> Results(const std::vector<Result>& stats) { std::vector<AutotuneResult> results; for (const auto& s : stats) results.push_back(AutotuneResult(s)); return results; } TEST(StreamExecutorTest, PickBestResult) { absl::StatusOr<AutotuneResult> atr; atr = PickBestResult(Results({{9000, 0}, {1000, 0}, {16000, 0}}), "", {}); EXPECT_EQ(ATRToResult(atr.value()), Result({1000, 0})); atr = PickBestResult(Results({{4700, 0}, {4600, 0}, {4500, 0}}), "", {}); EXPECT_EQ(ATRToResult(atr.value()), Result({4500, 0})); atr = PickBestResult(Results({{4700, 0}, {4600, 2}, {4500, 1}}), "", {}); EXPECT_EQ(ATRToResult(atr.value()), Result({4700, 0})); atr = PickBestResult(Results({{5000, 1}, {6000, 0}, {7500, 0}}), "", {}); EXPECT_EQ(ATRToResult(atr.value()), Result({6000, 0})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/stream_executor_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/stream_executor_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
adb8539d-0c2b-41c4-b736-da697e10d787
cpp
tensorflow/tensorflow
gpu_compiler
third_party/xla/xla/service/gpu/gpu_compiler.cc
third_party/xla/xla/service/gpu/gpu_compiler_test.cc
#include "xla/service/gpu/gpu_compiler.h" #include <algorithm> #include <array> #include <cstdint> #include <functional> #include <memory> #include <new> #include <optional> #include <string> #include <string_view> #include <utility> #include <variant> #include <vector> #include "absl/base/call_once.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "absl/types/variant.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringRef.h" #include "llvm/AsmParser/Parser.h" #include "llvm/Bitcode/BitcodeReader.h" #include "llvm/Bitcode/BitcodeWriter.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Error.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/SplitModule.h" #include "mlir/IR/Diagnostics.h" #include "mlir/IR/DialectRegistry.h" #include "mlir/Support/LLVM.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_module_group.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/pass/hlo_pass_fix.h" #include "xla/hlo/pass/hlo_pass_pipeline.h" #include "xla/maybe_owning.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/all_gather_broadcast_reorder.h" #include "xla/service/all_gather_combiner.h" #include "xla/service/all_reduce_combiner.h" #include "xla/service/all_reduce_contiguous.h" #include "xla/service/all_reduce_folder.h" #include "xla/service/all_reduce_promotion.h" #include "xla/service/all_reduce_reassociate.h" #include "xla/service/async_collective_creator.h" #include "xla/service/batched_gather_scatter_normalizer.h" #include "xla/service/batchnorm_expander.h" #include "xla/service/bitcast_dtypes_expander.h" #include "xla/service/broadcast_canonicalizer.h" #include "xla/service/buffer_assignment.h" #include "xla/service/call_inliner.h" #include "xla/service/collective_permute_decomposer.h" #include "xla/service/collective_pipeliner.h" #include "xla/service/collective_quantizer.h" #include "xla/service/collectives_schedule_linearizer.h" #include "xla/service/comparison_expander.h" #include "xla/service/compiler.h" #include "xla/service/conditional_canonicalizer.h" #include "xla/service/conditional_simplifier.h" #include "xla/service/convert_memory_placement_to_internal_annotations.h" #include "xla/service/convert_mover.h" #include "xla/service/convolution_4d_expander.h" #include "xla/service/convolution_pred_expander.h" #include "xla/service/copy_insertion.h" #include "xla/service/cpu_gpu_shape_verifier.h" #include "xla/service/dot_decomposer.h" #include "xla/service/dot_merger.h" #include "xla/service/dump.h" #include "xla/service/dynamic_dimension_inference.h" #include "xla/service/dynamic_dimension_simplifier.h" #include "xla/service/dynamic_index_splitter.h" #include "xla/service/dynamic_padder.h" #include "xla/service/eigh_expander.h" #include "xla/service/executable.h" #include "xla/service/export_hlo.h" #include "xla/service/flatten_call_graph.h" #include "xla/service/float_normalization.h" #include "xla/service/float_support.h" #include "xla/service/gather_expander.h" #include "xla/service/gather_simplifier.h" #include "xla/service/gpu/autotuning/autotuner_util.h" #include "xla/service/gpu/autotuning/custom_kernel_fusion_autotuner.h" #include "xla/service/gpu/compile_module_to_llvm_ir.h" #include "xla/service/gpu/conv_layout_normalization.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/gpu/execution_stream_assignment.h" #include "xla/service/gpu/fusion_pipeline.h" #include "xla/service/gpu/fusions/triton/triton_support.h" #include "xla/service/gpu/gpu_executable.h" #include "xla/service/gpu/gpu_float_support.h" #include "xla/service/gpu/gpu_hlo_schedule.h" #include "xla/service/gpu/gpu_latency_hiding_scheduler.h" #include "xla/service/gpu/gpu_p2p_pipeliner.h" #include "xla/service/gpu/gpu_spmd_pipeline.h" #include "xla/service/gpu/hlo_fusion_stats.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/ir_emitter_context.h" #include "xla/service/gpu/ir_emitter_unnested.h" #include "xla/service/gpu/kernel_reuse_cache.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/metrics.h" #include "xla/service/gpu/model/gpu_cost_model_stats_collection.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/gpu/prepare_hlo_for_ir_emitting_pipeline.h" #include "xla/service/gpu/reduction_utils.h" #include "xla/service/gpu/runtime_intrinsics.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/service/gpu/transforms/algebraic_simplifier.h" #include "xla/service/gpu/transforms/algorithm_checker.h" #include "xla/service/gpu/transforms/all_gather_optimizer.h" #include "xla/service/gpu/transforms/all_reduce_blueconnect.h" #include "xla/service/gpu/transforms/all_reduce_splitter.h" #include "xla/service/gpu/transforms/async_collective_annotator.h" #include "xla/service/gpu/transforms/async_wrapper.h" #include "xla/service/gpu/transforms/collective_permute_cycle_decomposer.h" #include "xla/service/gpu/transforms/collective_permute_valid_iteration_annotator.h" #include "xla/service/gpu/transforms/command_buffer_scheduling.h" #include "xla/service/gpu/transforms/conv_rewriter.h" #include "xla/service/gpu/transforms/convert_async_collectives_to_sync.h" #include "xla/service/gpu/transforms/cudnn_custom_call_converter.h" #include "xla/service/gpu/transforms/custom_kernel_fusion_rewriter.h" #include "xla/service/gpu/transforms/dot_dimension_sorter.h" #include "xla/service/gpu/transforms/dot_operand_converter.h" #include "xla/service/gpu/transforms/double_buffer_loop_unrolling.h" #include "xla/service/gpu/transforms/dynamic_slice_fusion_rewriter.h" #include "xla/service/gpu/transforms/fusion_block_level_rewriter.h" #include "xla/service/gpu/transforms/fusion_wrapper.h" #include "xla/service/gpu/transforms/gemm_broadcast_folding_rewriter.h" #include "xla/service/gpu/transforms/gemm_fusion.h" #include "xla/service/gpu/transforms/gemm_rewriter.h" #include "xla/service/gpu/transforms/gemv_rewriter.h" #include "xla/service/gpu/transforms/layout_assignment.h" #include "xla/service/gpu/transforms/move_copy_to_users.h" #include "xla/service/gpu/transforms/pipelined_p2p_rewriter.h" #include "xla/service/gpu/transforms/reduce_scatter_creator.h" #include "xla/service/gpu/transforms/reduction_degenerate_dim_remover.h" #include "xla/service/gpu/transforms/reduction_dimension_grouper.h" #include "xla/service/gpu/transforms/reduction_layout_normalizer.h" #include "xla/service/gpu/transforms/reduction_splitter.h" #include "xla/service/gpu/transforms/rename_fusions.h" #include "xla/service/gpu/transforms/sanitize_constant_names.h" #include "xla/service/gpu/transforms/scatter_expander.h" #include "xla/service/gpu/transforms/scatter_slice_simplifier.h" #include "xla/service/gpu/transforms/softmax_rewriter_triton.h" #include "xla/service/gpu/transforms/stream_attribute_annotator.h" #include "xla/service/gpu/transforms/stream_attribute_async_wrapper.h" #include "xla/service/gpu/transforms/topk_specializer.h" #include "xla/service/gpu/transforms/topk_splitter.h" #include "xla/service/gpu/transforms/transpose_dimension_grouper.h" #include "xla/service/gpu/transforms/tree_reduction_rewriter.h" #include "xla/service/gpu/transforms/triton_fusion_numerics_verifier.h" #include "xla/service/gpu/transforms/windowed_einsum_handler.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_computation_deduplicator.h" #include "xla/service/hlo_constant_folding.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_cse.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_rematerialization.h" #include "xla/service/hlo_verifier.h" #include "xla/service/host_memory_transfer_asyncifier.h" #include "xla/service/host_offload_legalize.h" #include "xla/service/host_offloader.h" #include "xla/service/layout_assignment.h" #include "xla/service/layout_normalization.h" #include "xla/service/llvm_ir/llvm_util.h" #include "xla/service/logistic_expander.h" #include "xla/service/operand_upcaster.h" #include "xla/service/optimization_barrier_expander.h" #include "xla/service/optimize_input_output_buffer_alias.h" #include "xla/service/qr_expander.h" #include "xla/service/real_imag_expander.h" #include "xla/service/reduce_decomposer.h" #include "xla/service/reduce_scatter_combiner.h" #include "xla/service/reduce_scatter_reassociate.h" #include "xla/service/reduce_window_rewriter.h" #include "xla/service/reshape_decomposer.h" #include "xla/service/reshape_mover.h" #include "xla/service/result_caster.h" #include "xla/service/rng_bit_generator_expander.h" #include "xla/service/rng_expander.h" #include "xla/service/scatter_expander.h" #include "xla/service/scatter_simplifier.h" #include "xla/service/sharding_remover.h" #include "xla/service/simplify_fp_conversions.h" #include "xla/service/slice_sinker.h" #include "xla/service/slow_operation_alarm.h" #include "xla/service/sort_simplifier.h" #include "xla/service/stable_sort_expander.h" #include "xla/service/stochastic_convert_decomposer.h" #include "xla/service/sub_byte_normalization.h" #include "xla/service/topk_rewriter.h" #include "xla/service/transpose_folding.h" #include "xla/service/tuple_simplifier.h" #include "xla/service/while_loop_all_reduce_code_motion.h" #include "xla/service/while_loop_constant_sinking.h" #include "xla/service/while_loop_simplifier.h" #include "xla/service/while_loop_trip_count_annotator.h" #include "xla/service/zero_sized_hlo_elimination.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_description.pb.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/semantic_version.h" #include "xla/stream_executor/stream_executor.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/blocking_counter.h" #include "tsl/platform/casts.h" #include "tsl/platform/cpu_info.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/numbers.h" #include "tsl/platform/path.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tsl/profiler/lib/scoped_annotation.h" #include "tsl/profiler/lib/traceme.h" #ifdef PLATFORM_GOOGLE #include "xla/hlo/experimental/auto_sharding/auto_sharding.h" #endif namespace xla { namespace gpu { namespace { using MaybeOwningThreadPool = MaybeOwning<tsl::thread::ThreadPool>; MaybeOwningThreadPool CreateMaybeOwningThreadPool( int parallelism, tsl::thread::ThreadPool* default_thread_pool, int default_parallelism) { CHECK_GE(parallelism, 0); CHECK_GE(default_parallelism, 1); CHECK(default_thread_pool == nullptr || default_thread_pool->CurrentThreadId() == -1); auto create_thread_pool = [&](int num_threads) { CHECK_GE(num_threads, 1); return std::make_unique<tsl::thread::ThreadPool>(tsl::Env::Default(), "", num_threads); }; switch (parallelism) { case 0: if (default_thread_pool == nullptr && default_parallelism > 1) { return MaybeOwningThreadPool(create_thread_pool(default_parallelism)); } return MaybeOwningThreadPool(default_thread_pool); case 1: return MaybeOwningThreadPool(nullptr); default: return MaybeOwningThreadPool(create_thread_pool(parallelism)); } } absl::StatusOr<AutotuneConfig> GetAutotuneConfig( se::StreamExecutor* stream_exec, const DebugOptions& debug_options, const GpuCompiler::CompileOptions& options, const Compiler::TargetConfig& gpu_target_config) { if (stream_exec) { return AutotuneConfig{DeviceConfig{stream_exec, options.device_allocator}, debug_options}; } return AutotuneConfig{DevicelessConfig{gpu_target_config.device_description}, debug_options}; } se::GpuComputeCapability GetGpuVersion(const se::StreamExecutor* stream_exec) { return stream_exec->GetDeviceDescription().gpu_compute_capability(); } class GpuThunkAotCompilationResult : public AotCompilationResult { public: static absl::StatusOr<std::unique_ptr<GpuThunkAotCompilationResult>> FromModule(const HloModule* hlo_module, const BufferAssignment* buffer_assignment, std::string_view asm_text, absl::Span<const uint8_t> binary, const BinaryMap& dnn_compiled_graphs) { CompilationResultProto proto; *proto.mutable_hlo_module_with_config() = hlo_module->ToProtoWithConfig(); *proto.mutable_buffer_assignment() = buffer_assignment->ToProto(); proto.set_asm_text(std::string(asm_text)); proto.set_binary(binary.data(), binary.size()); proto.mutable_dnn_compiled_graphs()->insert(dnn_compiled_graphs.cbegin(), dnn_compiled_graphs.cend()); return std::unique_ptr<GpuThunkAotCompilationResult>( new GpuThunkAotCompilationResult(hlo_module->Clone(), std::move(proto))); } static absl::StatusOr<std::unique_ptr<GpuThunkAotCompilationResult>> FromString(const std::string& serialized) { CompilationResultProto proto; if (!proto.ParseFromString(serialized)) { return Internal( "Failed to parse serialized GpuThunkAotCompilationResult."); } TF_ASSIGN_OR_RETURN( std::unique_ptr<HloModule> module, HloModule::CreateFromProtoWithConfig(proto.hlo_module_with_config())); return std::unique_ptr<GpuThunkAotCompilationResult>( new GpuThunkAotCompilationResult(std::move(module), std::move(proto))); } absl::StatusOr<std::string> SerializeAsString() const override { return proto_.SerializeAsString(); } absl::StatusOr<std::unique_ptr<Executable>> LoadExecutable( Compiler* compiler, const se::StreamExecutor* stream_exec) const override; const HloModule* optimized_module() const override { return module_.get(); } std::unique_ptr<HloModule> consume_optimized_module() override { return std::move(module_); } private: GpuThunkAotCompilationResult(std::unique_ptr<HloModule> module, CompilationResultProto proto) : module_(std::move(module)), proto_(std::move(proto)) {} std::unique_ptr<HloModule> module_; CompilationResultProto proto_; }; } absl::StatusOr<std::unique_ptr<Executable>> GpuThunkAotCompilationResult::LoadExecutable( Compiler* compiler, const se::StreamExecutor* stream_exec) const { TF_ASSIGN_OR_RETURN( std::unique_ptr<HloModule> hlo_module, HloModule::CreateFromProtoWithConfig(proto_.hlo_module_with_config())); TF_ASSIGN_OR_RETURN( std::unique_ptr<BufferAssignment> buffer_assignment, BufferAssignment::FromProto(proto_.buffer_assignment(), hlo_module.get(), compiler->BufferSizeBytesFunction(), nullptr)); ExecutionStreamAssignment execution_stream_assignment(hlo_module.get()); std::vector<uint8_t> binary(proto_.binary().begin(), proto_.binary().end()); TF_ASSIGN_OR_RETURN( se::Platform * platform, se::PlatformManager::PlatformWithId(compiler->PlatformId())); std::string platform_name = platform->Name(); const se::DeviceDescription& gpu_device_info = stream_exec->GetDeviceDescription(); mlir::DialectRegistry registry; auto mlir_context = std::make_unique<mlir::MLIRContext>(registry); llvm::LLVMContext llvm_context; auto* gpu_compiler = dynamic_cast<GpuCompiler*>(compiler); if (gpu_compiler == nullptr) { return Internal("Compiler is not a GpuCompiler."); } auto llvm_module = std::make_unique<llvm::Module>("", llvm_context); llvm_module->setTargetTriple(gpu_compiler->target_triple()); llvm_module->setDataLayout(gpu_compiler->data_layout()); IrEmitterContext ir_emitter_context( hlo_module.get(), buffer_assignment.get(), &execution_stream_assignment, platform_name, gpu_device_info, mlir_context.get(), llvm_module.get(), nullptr, false); absl::string_view cache_file_path = hlo_module->config().debug_options().xla_gpu_kernel_cache_file(); if (!cache_file_path.empty() && hlo_module->config() .debug_options() .xla_gpu_enable_llvm_module_compilation_parallelism()) { TF_RETURN_IF_ERROR(LoadCache(ir_emitter_context, cache_file_path)); } auto ir_emitter = IrEmitterUnnested::Create(&ir_emitter_context); TF_RETURN_IF_ERROR( ir_emitter->EmitHloComputation(hlo_module->entry_computation())); std::vector<GpuExecutable::ConstantInfo> constants = std::move(ir_emitter_context.constants()); TF_ASSIGN_OR_RETURN(auto output_info, GetOutputInfo(*hlo_module, *buffer_assignment)); const Shape& output_shape = hlo_module->result_shape(); int64_t debug_buffer_assignment_show_max = hlo_module->config() .debug_options() .xla_debug_buffer_assignment_show_max(); TF_ASSIGN_OR_RETURN( std::unique_ptr<GpuExecutable> executable, GpuExecutable::Create(GpuExecutable::Params{ proto_.asm_text(), binary, BinaryMap(proto_.dnn_compiled_graphs().cbegin(), proto_.dnn_compiled_graphs().cend()), gpu_device_info.gpu_compute_capability(), ir_emitter->ConsumeThunkSequence(), std::move(constants), std::move(output_info), std::move(hlo_module->name()), std::move(output_shape), std::nullopt, std::move(buffer_assignment), debug_buffer_assignment_show_max, std::move(hlo_module), true})); return executable; } GpuCompiler::GpuCompiler(se::Platform::Id platform_id, const char* target_triple, const char* data_layout) : platform_id_(platform_id), target_triple_(target_triple), data_layout_(data_layout), pointer_size_(llvm::DataLayout(data_layout) .getPointerSize(0 )) {} namespace { void AddHloVerifier(HloPassPipeline* pipeline, bool verify_unique_channel_ids = false, HloVerifierOpts&& opts = {}, bool debug_only = false) { opts.verify_unique_channel_ids = verify_unique_channel_ids; std::unique_ptr<TargetVerifierMetadata> verifier_metadata = std::make_unique<CpuGpuVerifierMetadata>(std::move(opts)); if (debug_only) { pipeline->AddInvariantCheckerDebug<HloVerifier>( std::move(verifier_metadata), "hlo verifier (debug)"); } else { pipeline->AddInvariantChecker<HloVerifier>(std::move(verifier_metadata), "hlo verifier"); } } void CheckNotScheduled(HloModule* hlo_module) { if (hlo_module->has_schedule() && !hlo_module->config().debug_options().xla_disable_all_hlo_passes()) { LOG(WARNING) << "\nThe current HLO module " << hlo_module->name() << " is scheduled and optimized. \n" << "It is not expected to run optimization passes again.\n" "Use a test method like RunAndCompareNoHloPasses() or " << "the xla_disable_all_hlo_passes flag."; } } void LogDebugOptions(HloModule* hlo_module) { XLA_VLOG_LINES( 1, absl::StrFormat("GpuCompilationEnvironment of hlo_module %s:\n%s", hlo_module->name(), hlo_module->config().debug_options().DebugString())); } AlgebraicSimplifierOptions LayoutInsensitiveAlgebraicSimplifierOptions( const HloModuleConfig& hlo_module_config, const Compiler::TargetConfig& gpu_target_config, AlgebraicSimplifierOptions opts_from_compiler) { AlgebraicSimplifierOptions layout_insensitive_algsimp_opts = opts_from_compiler; layout_insensitive_algsimp_opts.set_conv_is_lowerable_callback( ConvRewriter::ConvIsLowerable); layout_insensitive_algsimp_opts.set_enable_dot_strength_reduction( hlo_module_config.debug_options() .xla_gpu_enable_dot_strength_reduction()); layout_insensitive_algsimp_opts.set_supports_non_canonical_dots(false); layout_insensitive_algsimp_opts.set_minmax_propagate_nan( !hlo_module_config.debug_options().xla_gpu_enable_fast_min_max()); layout_insensitive_algsimp_opts .set_unconditionally_simplify_reduce_of_transpose_or_reshape(true); if (gpu_target_config.platform_name == "ROCM") { layout_insensitive_algsimp_opts.set_enable_conv_operand_swap(false); } layout_insensitive_algsimp_opts .set_enable_unconditional_reduce_of_concat_replacement(false); return layout_insensitive_algsimp_opts; } absl::Status RunPreSPMDPartitionerPasses(HloModule* hlo_module) { HloPassPipeline pre_spmd_pipeline("pre-spmd-partitioner"); pre_spmd_pipeline.AddPass<BatchedGatherScatterNormalizer>(); pre_spmd_pipeline.AddPass<CuDnnCustomCallConverter>(); pre_spmd_pipeline.AddPass<ConvertMemoryPlacementToInternalAnnotations>(); pre_spmd_pipeline.AddPass<CallInliner>(); pre_spmd_pipeline.AddPass<ZeroSizedHloElimination>(); pre_spmd_pipeline.AddPass<ConditionalCanonicalizer>(); pre_spmd_pipeline.AddPass<TopkDecomposer>([&](const HloInstruction* instr) { return instr->opcode() == HloOpcode::kTopK; }); pre_spmd_pipeline.AddPass<TopkRewriter>( [](const HloSortInstruction*, int64_t) { return true; }); return pre_spmd_pipeline.Run(hlo_module).status(); } absl::Status RunSPMDPasses( HloModule* hlo_module, const Compiler::TargetConfig& gpu_target_config, const AlgebraicSimplifierOptions& layout_insensitive_algsimp_opts) { bool auto_sharding = hlo_module->config().use_auto_spmd_partitioning(); #ifndef PLATFORM_GOOGLE if (auto_sharding) { LOG(ERROR) << "GPU autosharding is not yet available in open source."; } #endif const int64_t num_partitions = hlo_module->config().num_partitions(); if (num_partitions > 1) { if (!hlo_module->config().use_spmd_partitioning()) { return InvalidArgument( "num_partitions=%d but SPMD partitioning not enabled.", num_partitions); } HloPassPipeline spmd_pipeline("spmd-partitioner"); AddSPMDPasses( hlo_module, layout_insensitive_algsimp_opts, gpu_target_config.device_description.gpu_compute_capability(), spmd_pipeline, #ifdef PLATFORM_GOOGLE [&](HloPassPipeline& pipeline) { if (auto_sharding) { AutoShardingOption option; option.enable = true; if (!hlo_module->config() .auto_spmd_partitioning_mesh_shape() .empty()) { option.device_mesh_shape = hlo_module->config().auto_spmd_partitioning_mesh_shape(); } else { option.device_mesh_shape = { gpu_target_config.device_description.core_count(), 1}; } if (!hlo_module->config() .auto_spmd_partitioning_mesh_ids() .empty()) { option.device_mesh_ids = hlo_module->config().auto_spmd_partitioning_mesh_ids(); } option.memory_budget_per_device = hlo_module->config() .debug_options() .xla_gpu_auto_spmd_partitioning_memory_budget_gb() * 1024 * 1024 * 1024; option.memory_budget_ratio = hlo_module->config() .debug_options() .xla_gpu_auto_spmd_partitioning_memory_budget_ratio(); spmd_pipeline.AddPass<AutoSharding>(option); } }); #else std::nullopt); #endif if (hlo_module->config() .debug_options() .xla_gpu_unsafe_pipelined_loop_annotator()) { spmd_pipeline.AddPass<WhileLoopTripCountAnnotator>(); spmd_pipeline.AddPass<CollectivePermuteValidIterationAnnotator>(); } return spmd_pipeline.Run(hlo_module).status(); } else { HloPassPipeline sharding_removal_pipeline("sharding-removal"); sharding_removal_pipeline.AddPass<ShardingRemover>(); sharding_removal_pipeline.AddPass<HloDCE>(); return sharding_removal_pipeline.Run(hlo_module).status(); } } absl::Status RunOptimizationPasses( HloModule* hlo_module, const Compiler::TargetConfig& gpu_target_config, const AlgebraicSimplifierOptions& layout_insensitive_algsimp_opts) { const DebugOptions& debug_options = hlo_module->config().debug_options(); HloPassPipeline pipeline("optimization"); AddHloVerifier(&pipeline, !debug_options.xla_experimental_ignore_channel_id()); if (debug_options.xla_gpu_multi_streamed_windowed_einsum()) { pipeline.AddPass<WindowedEinsumHandler>(); } pipeline.AddPass<TopKSplitter>(); pipeline.AddPass<TopkSpecializer>(); pipeline.AddPass<TopkDecomposer>(); HloPredicate upcaster_filter = [&](const HloInstruction* instr) { const auto* cuda_cc = std::get_if<se::CudaComputeCapability>( &gpu_target_config.device_description.gpu_compute_capability()); if (cuda_cc != nullptr && !cuda_cc->IsAtLeast(se::CudaComputeCapability::VOLTA)) { return true; } return !gpu::IsMatrixMultiplication(*instr); }; pipeline.AddPass<DotDimensionSorter>(); pipeline.AddPass<DotDecomposer>(); pipeline.AddPass<ResultCaster>(upcaster_filter); pipeline.AddPass<OperandUpcaster>(upcaster_filter); pipeline.AddPass<DotOperandConverter>(); pipeline.AddPass<SubByteNormalization>( SubByteNormalization::SET_ELEMENT_SIZE); pipeline.AddPass<RngExpander>(); pipeline.AddPass<RngBitGeneratorExpander>(RandomAlgorithm::RNG_PHILOX); pipeline.AddPass<ComparisonExpander>(std::array{std::make_pair(BF16, F32)}); pipeline.AddPass<ZeroSizedHloElimination>(); if (RequireDeterminism(hlo_module->config())) { pipeline.AddPass<ScatterExpander>( ScatterExpander::kEliminateIndeterministicScatters); } pipeline.AddPass<GpuScatterExpander>(); pipeline.AddPass<QrExpander>(); pipeline.AddPass<EighExpander>(); pipeline.AddPass<DynamicIndexSplitter>(); pipeline.AddPass<CallInliner>(); pipeline.AddPass<StochasticConvertDecomposer>(); pipeline.AddPass<Convolution4DExpander>(); pipeline.AddPass<ConvolutionPredExpander>(); pipeline.AddPass<StableSortExpander>(); pipeline.AddPass<BatchNormExpander>( true, true, true); pipeline.AddPass<LogisticExpander>(); pipeline.AddPass<ConditionalCanonicalizer>(); pipeline.AddPass<DynamicDimensionSimplifier>(); if (debug_options.xla_reduce_window_rewrite_base_length() != 0) { pipeline.AddPass<HloPassFix<ReduceWindowRewriter>>( debug_options.xla_reduce_window_rewrite_base_length()); } DynamicPadderOptions dynamic_padder_options; switch (debug_options.xla_gpu_shape_checks()) { case DebugOptions::IGNORE: dynamic_padder_options.shape_check_mode = DynamicDimensionInference::ShapeCheckMode::kIgnore; break; case DebugOptions::RUNTIME: { dynamic_padder_options.shape_check_mode = DynamicDimensionInference::ShapeCheckMode::kRuntime; dynamic_padder_options.assertion_generator = [&](HloInstruction* inst) { auto created = Cast<HloCustomCallInstruction>( inst->parent()->AddInstruction(HloInstruction::CreateCustomCall( ShapeUtil::MakeTokenShape(), {inst}, kXlaGpuAssertCustomCallTag, "Buffers have different size at runtime", API_VERSION_STATUS_RETURNING))); created->set_custom_call_has_side_effect(true); }; break; } case DebugOptions::COMPILE_TIME: dynamic_padder_options.shape_check_mode = DynamicDimensionInference::ShapeCheckMode::kCompileTime; break; default: LOG(FATAL) << "Unreachable"; } pipeline.AddPass<DynamicPadder>(dynamic_padder_options); se::GpuComputeCapability gpu_version = gpu_target_config.device_description.gpu_compute_capability(); [&, &pipeline = pipeline.AddPass<HloPassFix<HloPassPipeline>>("simplification")] { AddHloVerifier(&pipeline, !debug_options.xla_experimental_ignore_channel_id(), HloVerifierOpts{}, true); pipeline.AddPass<ZeroSizedHloElimination>(); pipeline.AddPass<GatherSimplifier>(); pipeline.AddPass<GatherExpander>(GatherExpander::kEliminateSimpleGathers); pipeline.AddPass<ScatterSimplifier>(); pipeline.AddPass<ScatterExpander>( ScatterExpander::kEliminateSimpleScatters); pipeline.AddPass<ScatterSliceSimplifier>(); pipeline.AddPass<GpuAlgebraicSimplifier>(layout_insensitive_algsimp_opts, gpu_version); pipeline.AddPass<BitcastDtypesExpander>(); pipeline.AddPass<DotDimensionSorter>(); pipeline.AddPass<DotDecomposer>(); pipeline.AddPass<DotMerger>( int64_t{ debug_options.xla_gpu_dot_merger_threshold_mb()} << 20); pipeline.AddPass<SortSimplifier>(); pipeline.AddPass<TupleSimplifier>(); pipeline.AddPass<WhileLoopConstantSinking>(); pipeline.AddPass<WhileLoopSimplifier>(); pipeline.AddPass<SliceSinker>(); ReshapeMoverOptions reshape_mover_options; reshape_mover_options.reshape_of_1d_broadcast_is_cheap = true; pipeline.AddPass<ReshapeMover>(reshape_mover_options); pipeline.AddPass<HloConstantFolding>(); pipeline.AddPass<ConditionalSimplifier>(); pipeline.AddPass<RealImagExpander>(); pipeline.AddPass<TransposeFolding>(CanFoldTransposeOperandIntoDot); pipeline.AddPass<HloCSE>(false); pipeline.AddPass<HloDCE>(); }(); [&, &pipeline = pipeline.AddPass<HloPassFix<HloPassPipeline>>("simplification-2")] { pipeline.AddPass<ConvertMover>(); pipeline.AddPass<GpuAlgebraicSimplifier>(layout_insensitive_algsimp_opts, gpu_version); }(); pipeline.AddPass<HloComputationDeduplicator>( false); return pipeline.Run(hlo_module).status(); } absl::Status AddCollectivePipelinerPasses( const DebugOptions& debug_options, HloPassPipeline& collectives_pipeline) { if (debug_options.xla_gpu_enable_pipelined_collectives() || debug_options.xla_gpu_enable_pipelined_all_reduce()) { CollectivePipeliner::Config config{ 0, INT64_MAX, true, false, true, CollectivePipeliner::PipeliningDirection::kForward, HloPredicateIsOp<HloOpcode::kAllReduce>, HloPredicateTrue, HloPredicateFalse}; collectives_pipeline.AddPass<CollectivePipeliner>(config); } if (debug_options.xla_gpu_enable_pipelined_collectives() || debug_options.xla_gpu_enable_pipelined_all_gather()) { CollectivePipeliner::Config config{ 0, INT64_MAX, true, false, true, CollectivePipeliner::PipeliningDirection::kBackward, HloPredicateIsOp<HloOpcode::kAllGather>, HloPredicateTrue, HloPredicateFalse, HloPredicateFalse, false, std::nullopt, std::nullopt, true, }; collectives_pipeline.AddPass<CollectivePipeliner>(config); } if (debug_options.xla_gpu_enable_pipelined_collectives() || debug_options.xla_gpu_enable_pipelined_reduce_scatter()) { CollectivePipeliner::Config config{ 0, INT64_MAX, true, false, true, CollectivePipeliner::PipeliningDirection::kForward, HloPredicateIsOp<HloOpcode::kReduceScatter>, HloPredicateTrue, HloPredicateFalse}; collectives_pipeline.AddPass<CollectivePipeliner>(config); } return absl::OkStatus(); } absl::Status RunPostLayoutCollectivePipelinerPasses(HloModule* hlo_module) { const DebugOptions& debug_options = hlo_module->config().debug_options(); HloPassPipeline collectives_pipeline("collective-pipeliner-optimizations"); if (debug_options.xla_gpu_run_post_layout_collective_pipeliner()) { TF_RETURN_IF_ERROR( AddCollectivePipelinerPasses(debug_options, collectives_pipeline)); collectives_pipeline.AddPass<WhileLoopTripCountAnnotator>(); collectives_pipeline.AddPass<FlattenCallGraph>(); } return collectives_pipeline.Run(hlo_module).status(); } absl::Status RunCollectiveOptimizationPasses( HloModule* hlo_module, const AlgebraicSimplifierOptions& layout_insensitive_algsimp_opts, se::GpuComputeCapability gpu_version) { const DebugOptions& debug_options = hlo_module->config().debug_options(); HloPassPipeline collectives_pipeline("collective-optimizations"); collectives_pipeline.AddPass<AllReduceFolder>(); collectives_pipeline.AddPass<AllReduceSplitter>(); collectives_pipeline.AddPass<AllGatherOptimizer>(); collectives_pipeline.AddPass<AllReduceReassociate>( debug_options.xla_gpu_enable_reassociation_for_converted_ar()); collectives_pipeline.AddPass<ReduceScatterReassociate>(); collectives_pipeline.AddPass<WhileLoopAllReduceCodeMotion>( debug_options .xla_gpu_enable_while_loop_reduce_scatter_code_motion()); if (!debug_options.xla_gpu_run_post_layout_collective_pipeliner()) { TF_RETURN_IF_ERROR( AddCollectivePipelinerPasses(debug_options, collectives_pipeline)); } collectives_pipeline.AddPass<ReduceScatterCreator>(); collectives_pipeline.AddPass<CollectivePermuteCycleDecomposer>( hlo_module->config() .debug_options() .xla_gpu_collective_permute_decomposer_threshold()); collectives_pipeline.AddPass<CollectivePermuteDecomposer>( hlo_module->config() .debug_options() .xla_gpu_collective_permute_decomposer_threshold()); if (hlo_module->config() .debug_options() .xla_gpu_enable_pipelined_collectives() || hlo_module->config().debug_options().xla_gpu_enable_pipelined_p2p()) { AddP2PPipeliner(collectives_pipeline); } collectives_pipeline.AddPass<GpuAlgebraicSimplifier>( layout_insensitive_algsimp_opts, gpu_version); collectives_pipeline.AddPass<AllGatherBroadcastReorder>(); const std::pair<PrimitiveType, PrimitiveType> ar_promoted_types[] = { {U16, U32}, {S16, S32}}; collectives_pipeline.AddPass<AllReducePromotion>(ar_promoted_types); collectives_pipeline.AddPass<HloDCE>(); collectives_pipeline.AddPass<CollectiveQuantizer>(); collectives_pipeline.AddPass<HloDCE>(); collectives_pipeline.AddPass<WhileLoopTripCountAnnotator>(); return collectives_pipeline.Run(hlo_module).status(); } absl::Status RunLayoutAssignmentPasses(HloModule* hlo_module, se::GpuComputeCapability gpu_version, se::dnn::VersionInfo dnn_version) { HloPassPipeline pipeline("layout assignment"); pipeline.AddPass<FlattenCallGraph>(); ChannelLayoutConstraints layout_constraints; pipeline.AddPass<GpuLayoutAssignment>( hlo_module->mutable_entry_computation_layout(), gpu_version, dnn_version, &layout_constraints); pipeline.AddPass<SubByteNormalization>( SubByteNormalization::SET_ELEMENT_SIZE); pipeline.AddPass<OptimizeInputOutputBufferAlias>(true); pipeline.AddPass<HostOffloadLegalize>( static_cast<int64_t>(stream_executor::MemoryType::kHost), true); return pipeline.Run(hlo_module).status(); } absl::Status RunFusionPasses(HloModule* hlo_module, const Compiler::TargetConfig& gpu_target_config, tsl::thread::ThreadPool* thread_pool, HloCostAnalysis::ShapeSizeFunction shape_size_fn) { const se::DeviceDescription& gpu_device_info = gpu_target_config.device_description; TF_RETURN_IF_ERROR(FusionPipeline(hlo_module->config().debug_options(), shape_size_fn, thread_pool, gpu_device_info) .Run(hlo_module) .status()); if (hlo_module->config().debug_options().xla_gpu_collect_cost_model_stats()) { GpuHloCostAnalysis::Options cost_analysis_options{ shape_size_fn, {}, {}, true}; HloPassPipeline post_fusion_analysis("post_fusion_analysis"); post_fusion_analysis.AddPass<GpuCostModelStatsCollection>( gpu_device_info, cost_analysis_options); TF_RETURN_IF_ERROR(post_fusion_analysis.Run(hlo_module).status()); } TF_RETURN_IF_ERROR( HorizontalFusionPipeline(gpu_device_info).Run(hlo_module).status()); if (VLOG_IS_ON(2)) { HloFusionStatsVisitor stats; TF_RETURN_IF_ERROR(hlo_module->entry_computation()->Accept(&stats)); VLOG(2) << stats.ToString(); } return absl::OkStatus(); } void AddDoubleBufferingPasses(const DebugOptions& opts, HloPassPipeline& pipeline) { std::optional<DoubleBufferLoopUnrolling::UnrollStrategy> unroll_strategy = std::nullopt; if (opts.xla_gpu_enable_while_loop_double_buffering()) { unroll_strategy = DoubleBufferLoopUnrolling::UnrollStrategy::kDoubleBuffer; } if (opts.xla_gpu_enable_while_loop_unrolling() == DebugOptions::WHILE_LOOP_UNROLLING_DOUBLE_BUFFER) { unroll_strategy = DoubleBufferLoopUnrolling::UnrollStrategy::kDoubleBuffer; } if (opts.xla_gpu_enable_while_loop_unrolling() == DebugOptions::WHILE_LOOP_UNROLLING_FULL_UNROLL) { LOG_IF(WARNING, unroll_strategy != std::nullopt) << "Overriding double buffering set via " "`xla_gpu_enable_while_loop_double_buffering` flag."; unroll_strategy = DoubleBufferLoopUnrolling::UnrollStrategy::kFullUnroll; } if (opts.xla_gpu_enable_while_loop_unrolling() == DebugOptions::WHILE_LOOP_UNROLLING_AUTO_UNROLL && opts.xla_gpu_enable_heuristic_pass_configuration() && !opts.xla_gpu_enable_while_loop_double_buffering()) { unroll_strategy = DoubleBufferLoopUnrolling::UnrollStrategy::kAuto; } if (unroll_strategy != std::nullopt) { pipeline.AddPass<WhileLoopSimplifier>(); pipeline.AddPass<DoubleBufferLoopUnrolling>(*unroll_strategy); pipeline.AddPass<TupleSimplifier>(); pipeline.AddPass<HloDCE>(); } } absl::Status RunPostFusionPasses( HloModule* hlo_module, std::function<absl::Status(HloPassPipeline*, const DebugOptions&)> add_custom_kernel_replacement_passes) { const DebugOptions& opts = hlo_module->config().debug_options(); HloPassPipeline pipeline("post-fusion optimization"); pipeline.AddPass<RenameFusions>(); pipeline.AddPass<AllGatherCombiner>( opts.xla_gpu_all_gather_combine_threshold_bytes(), 256, opts.xla_gpu_enable_all_gather_combine_by_dim()); pipeline.AddPass<AllReduceCombiner>( opts.xla_gpu_all_reduce_combine_threshold_bytes(), 256); pipeline.AddPass<ReduceScatterCombiner>( opts.xla_gpu_reduce_scatter_combine_threshold_bytes(), 256, opts.xla_gpu_enable_reduce_scatter_combine_by_dim()); pipeline.AddPass<AllReduceContiguous>(); TF_RETURN_IF_ERROR(add_custom_kernel_replacement_passes(&pipeline, opts)); int32_t blueconnect_num_devices_per_host = hlo_module->config() .debug_options() .xla_gpu_all_reduce_blueconnect_num_devices_per_host(); if (blueconnect_num_devices_per_host > 0) { pipeline.AddPass<AllReduceBlueConnect>(blueconnect_num_devices_per_host); } AddDoubleBufferingPasses(opts, pipeline); return pipeline.Run(hlo_module).status(); } absl::Status RunPostFusionCollectiveOptimizationPasses(HloModule* hlo_module) { HloPassPipeline pipeline("post-fusion-collectives optimization"); AsyncCollectiveCreator::CollectiveCreatorConfig config; config.convert_all_reduce = HloPredicateTrue; config.convert_collective_broadcast = HloPredicateTrue; config.convert_collective_permute = HloPredicateTrue; config.convert_all_gather = HloPredicateTrue; config.convert_reduce_scatter = HloPredicateTrue; config.convert_all_to_all = HloPredicateTrue; pipeline.AddPass<AsyncCollectiveCreator>(std::move(config)); absl::flat_hash_set<DebugOptions::CollectiveOpType> disabled_async_ops; for (auto collective_op_type : hlo_module->config() .debug_options() .xla_gpu_disable_async_collectives()) { disabled_async_ops.insert( static_cast<DebugOptions::CollectiveOpType>(collective_op_type)); } auto convert_to_async = [&disabled_async_ops](const HloInstruction* inst) { switch (inst->opcode()) { case HloOpcode::kAllReduceStart: return !disabled_async_ops.contains(DebugOptions::ALLREDUCE); case HloOpcode::kCollectivePermuteStart: return !disabled_async_ops.contains(DebugOptions::COLLECTIVEPERMUTE); case HloOpcode::kAllGatherStart: return !disabled_async_ops.contains(DebugOptions::ALLGATHER); case HloOpcode::kAsyncStart: { auto async_inst = Cast<HloAsyncInstruction>(inst); switch (async_inst->async_wrapped_opcode()) { case HloOpcode::kCollectiveBroadcast: return !disabled_async_ops.contains( DebugOptions::COLLECTIVEBROADCAST); case HloOpcode::kReduceScatter: return !disabled_async_ops.contains(DebugOptions::REDUCESCATTER); case HloOpcode::kAllToAll: return !disabled_async_ops.contains(DebugOptions::ALLTOALL); default: return false; } } default: return false; } }; pipeline.AddPass<AsyncCollectiveAnnotator>(convert_to_async); return pipeline.Run(hlo_module).status(); } absl::Status RunPostFusionSimplificationPasses( HloModule* hlo_module, const AlgebraicSimplifierOptions& layout_insensitive_algsimp_opts, se::GpuComputeCapability gpu_version) { HloPassPipeline pipeline("post-fusion-simplification-pipeline optimization"); AlgebraicSimplifierOptions options = layout_insensitive_algsimp_opts; options.set_is_layout_sensitive(true); pipeline.AddPass<GpuAlgebraicSimplifier>(options, gpu_version); pipeline.AddPass<HloComputationDeduplicator>( true); if (hlo_module->config() .debug_options() .xla_gpu_multi_streamed_windowed_einsum()) { pipeline.AddPass<StreamAttributeAnnotator>(); pipeline.AddPass<StreamAttributeAsyncWrapper>(); } return pipeline.Run(hlo_module).status(); } absl::Status RunPostFusionVerificationPasses( HloModule* hlo_module, se::StreamExecutor* stream_exec, const GpuCompiler::CompileOptions& options, const Compiler::TargetConfig& gpu_target_config) { HloPassPipeline pipeline("post-fusion-verification-pipeline optimization"); if (hlo_module->config() .debug_options() .xla_gpu_verify_triton_fusion_numerics()) { TF_ASSIGN_OR_RETURN( AutotuneConfig autotune_config, GetAutotuneConfig(stream_exec, hlo_module->config().debug_options(), options, gpu_target_config)); pipeline.AddPass<TritonFusionNumericsVerifier>(autotune_config); } return pipeline.Run(hlo_module).status(); } absl::Status RunLayoutNormalizationPasses( HloModule* hlo_module, const se::GpuComputeCapability& gpu_version) { HloPassPipeline layout_normalization_pipeline("layout normalization"); const DebugOptions& debug_options = hlo_module->config().debug_options(); AlgebraicSimplifierOptions opts = GpuCompiler::GetAlgebraicSimplifierOptions(hlo_module->config()); opts.set_supports_non_canonical_dots(false); opts.set_is_layout_sensitive(true); opts.set_enable_conv_operand_swap(false); opts.set_minmax_propagate_nan(!debug_options.xla_gpu_enable_fast_min_max()); opts.set_enable_unconditional_reduce_of_concat_replacement(false); layout_normalization_pipeline.AddPass<ReshapeDecomposer>(); layout_normalization_pipeline.AddPass<HloPassFix<MoveCopyToUsers>>(); layout_normalization_pipeline.AddPass<LayoutNormalization>( &NormalizeLayoutForGpuCustomCalls); layout_normalization_pipeline.AddPass<HloPassFix<GpuAlgebraicSimplifier>>( opts, gpu_version); layout_normalization_pipeline.AddPass<BroadcastCanonicalizer>(); layout_normalization_pipeline.AddPass<ScatterSimplifier>(); return layout_normalization_pipeline.Run(hlo_module).status(); } absl::Status RunAsyncDotPasses(HloModule* hlo_module) { HloPassPipeline pipeline("async-wrapper"); const DebugOptions& debug_options = hlo_module->config().debug_options(); if (debug_options.xla_gpu_async_dot()) { pipeline.AddPass<AsyncWrapper>([](HloInstruction* instruction) { if (IsCublasGemm(*instruction)) { return true; } if (instruction->called_computations().size() == 1 && IsTritonFusedComputation( *instruction->called_computations().front())) { return true; } return false; }); } return pipeline.Run(hlo_module).status(); } absl::Status RunDynamicSliceFusionPasses(HloModule* hlo_module, se::Platform::Id platform_id) { if (hlo_module->config() .debug_options() .xla_gpu_enable_dynamic_slice_fusion()) { HloPassPipeline pipeline("dynamic-slice"); TF_ASSIGN_OR_RETURN(se::Platform * platform, se::PlatformManager::PlatformWithId(platform_id)); pipeline.AddPass<DynamicSliceFusionRewriter>(platform->Name()); TF_RETURN_IF_ERROR(pipeline.Run(hlo_module).status()); } return absl::OkStatus(); } } absl::Status GpuCompiler::RunCollectiveScheduleLinearizerPasses( HloModule* hlo_module, se::StreamExecutor* stream_exec) { HloPassPipeline pipeline("collective-schedule-linearizer"); pipeline.AddPass<CollectivesScheduleLinearizer>( [this, stream_exec](const HloModule* module) { return RequiresCollectiveScheduleLinearizer(module, stream_exec); }); return pipeline.Run(hlo_module).status(); } absl::Status GpuCompiler::OptimizeHloModule( HloModule* hlo_module, se::StreamExecutor* stream_exec, const CompileOptions& options, const TargetConfig& gpu_target_config) { tsl::profiler::TraceMe traceme("GpuCompiler::OptimizeHloModule"); CheckNotScheduled(hlo_module); LogDebugOptions(hlo_module); MaybeOwningThreadPool thread_pool = CreateMaybeOwningThreadPool( hlo_module->config() .debug_options() .xla_gpu_force_compilation_parallelism(), options.thread_pool, tsl::port::MaxParallelism()); AlgebraicSimplifierOptions layout_insensitive_algsimp_opts = LayoutInsensitiveAlgebraicSimplifierOptions( hlo_module->config(), gpu_target_config, GetAlgebraicSimplifierOptions(hlo_module->config())); TF_RETURN_IF_ERROR(RunPreSPMDPartitionerPasses(hlo_module)); TF_RETURN_IF_ERROR(RunSPMDPasses(hlo_module, gpu_target_config, layout_insensitive_algsimp_opts)); TF_RETURN_IF_ERROR(RunOptimizationPasses(hlo_module, gpu_target_config, layout_insensitive_algsimp_opts)); se::GpuComputeCapability gpu_version = gpu_target_config.device_description.gpu_compute_capability(); TF_RETURN_IF_ERROR(RunCollectiveOptimizationPasses( hlo_module, layout_insensitive_algsimp_opts, gpu_version)); se::dnn::VersionInfo dnn_version = gpu_target_config.dnn_version_info; if (stream_exec != nullptr) { gpu_version = GetGpuVersion(stream_exec); TF_ASSIGN_OR_RETURN(dnn_version, GetDnnVersionInfo(stream_exec)); } TF_RETURN_IF_ERROR(OptimizeHloConvolutionCanonicalization( hlo_module, gpu_version, dnn_version, options.device_allocator, gpu_target_config.device_description.runtime_version())); TF_RETURN_IF_ERROR( RunLayoutAssignmentPasses(hlo_module, gpu_version, dnn_version)); TF_RETURN_IF_ERROR(RunLayoutNormalizationPasses(hlo_module, gpu_version)); TF_RETURN_IF_ERROR(OptimizeHloPostLayoutAssignment( hlo_module, stream_exec, options, gpu_target_config, thread_pool.get_mutable())); TF_RETURN_IF_ERROR(RunPostLayoutCollectivePipelinerPasses(hlo_module)); TF_RETURN_IF_ERROR(RunDynamicSliceFusionPasses(hlo_module, PlatformId())); TF_RETURN_IF_ERROR(RunFusionPasses(hlo_module, gpu_target_config, thread_pool.get_mutable(), ShapeSizeBytesFunction())); TF_RETURN_IF_ERROR(RunPostFusionPasses( hlo_module, [this](HloPassPipeline* pipeline, const DebugOptions& debug_options) { return AddCustomKernelReplacementPasses(pipeline, debug_options); })); TF_RETURN_IF_ERROR(RunPostFusionCollectiveOptimizationPasses(hlo_module)); TF_RETURN_IF_ERROR(RunPostFusionSimplificationPasses( hlo_module, layout_insensitive_algsimp_opts, gpu_version)); TF_RETURN_IF_ERROR(RunPostFusionVerificationPasses( hlo_module, stream_exec, options, gpu_target_config)); TF_RETURN_IF_ERROR( RunCollectiveScheduleLinearizerPasses(hlo_module, stream_exec)); TF_RETURN_IF_ERROR(RunAsyncDotPasses(hlo_module)); return absl::OkStatus(); } AlgebraicSimplifierOptions GpuCompiler::GetAlgebraicSimplifierOptions( const HloModuleConfig& config) { AlgebraicSimplifierOptions opts; opts.set_enable_dot_strength_reduction( config.debug_options().xla_gpu_enable_dot_strength_reduction()); return opts; } absl::Status GpuCompiler::PrepareHloModuleForIrEmitting(HloModule* hlo_module) { return PrepareHloModuleForIrEmittingPipeline(*hlo_module, GetCanShareBuffer()) .Run(hlo_module) .status(); } namespace { void AddGemmRewriterPasses(HloPassPipeline& pipeline, const DebugOptions& debug_options, const se::GpuComputeCapability gpu_version, const se::SemanticVersion& toolkit_version) { GemmRewriterOptions::BiasMode bias_mode = GemmRewriterOptions::BiasMode::kBias; if (debug_options.xla_gpu_async_dot()) { bias_mode = GemmRewriterOptions::BiasMode::kNoBias; } pipeline.AddPass<GemmRewriter>( gpu_version, toolkit_version, GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only, bias_mode}); pipeline.AddPass<GemmRewriter>( gpu_version, toolkit_version, GemmRewriterOptions{GemmRewriterOptions::DType::kNonFp8Only, bias_mode}); } } absl::Status GpuCompiler::OptimizeHloPostLayoutAssignment( HloModule* hlo_module, se::StreamExecutor* stream_exec, const CompileOptions& options, const TargetConfig& gpu_target_config, tsl::thread::ThreadPool* thread_pool) { const DebugOptions& debug_options = hlo_module->config().debug_options(); const se::GpuComputeCapability gpu_version = gpu_target_config.device_description.gpu_compute_capability(); const AlgebraicSimplifierOptions simplifier_options = [&] { AlgebraicSimplifierOptions opts = GetAlgebraicSimplifierOptions(hlo_module->config()); opts.set_supports_non_canonical_dots(false); opts.set_is_layout_sensitive(true); opts.set_enable_conv_operand_swap(false); opts.set_minmax_propagate_nan(!debug_options.xla_gpu_enable_fast_min_max()); opts.set_enable_unconditional_reduce_of_concat_replacement(false); return opts; }(); TF_ASSIGN_OR_RETURN(AutotuneConfig autotune_config, GetAutotuneConfig(stream_exec, debug_options, options, gpu_target_config)); const GpuFloatSupport bf16_support(gpu_version, BF16); const GpuFloatSupport f8e5m2_support(gpu_version, F8E5M2, F16); const GpuFloatSupport f8e4m3_support(gpu_version, F8E4M3, F16); const GpuFloatSupport f8e4m3fn_support(gpu_version, F8E4M3FN, F16); const FloatSupport f8e4m3b11fnuz_support(F8E4M3B11FNUZ, F16); const GpuFloatSupport f8e5m2fnuz_support(gpu_version, F8E5M2FNUZ, F16); const GpuFloatSupport f8e4m3fnuz_support(gpu_version, F8E4M3FNUZ, F16); const GpuFloatSupport f8e3m4_support(gpu_version, F8E3M4, F16); auto add_float_normalization = [&](HloPassPipeline& pipeline) { auto& sub_pipeline = pipeline.AddPass<HloPassPipeline>("float_normalization"); sub_pipeline.AddPass<FloatNormalization>(&bf16_support); sub_pipeline.AddPass<FloatNormalization>(&f8e5m2_support); sub_pipeline.AddPass<FloatNormalization>(&f8e4m3_support); sub_pipeline.AddPass<FloatNormalization>(&f8e4m3fn_support); sub_pipeline.AddPass<FloatNormalization>(&f8e4m3b11fnuz_support); sub_pipeline.AddPass<FloatNormalization>(&f8e5m2fnuz_support); sub_pipeline.AddPass<FloatNormalization>(&f8e4m3fnuz_support); sub_pipeline.AddPass<FloatNormalization>(&f8e3m4_support); if (debug_options.xla_allow_excess_precision()) { sub_pipeline.AddPass<SimplifyFPConversions>(); } }; { HloPassPipeline pipeline("hlo normalization"); pipeline.AddPass<HloPassFix<GpuAlgebraicSimplifier>>(simplifier_options, gpu_version); pipeline.AddPass<TransposeFolding>(CanFoldTransposeOperandIntoDot, TransposeFolding::NeverFoldTranspose); pipeline.AddPass<ReshapeDecomposer>(); pipeline.AddPass<ReduceDecomposer>([&](const HloInstruction* r) { return IsReductionFromOrToContiguousDimensions(*r); }); if (debug_options.xla_gpu_enable_custom_fusions()) { pipeline.AddPass<SimplifyFPConversions>(); pipeline.AddPass<CustomKernelFusionRewriter>( &gpu_target_config.device_description); pipeline.AddPass<CustomKernelFusionAutotuner>(autotune_config); } se::GpuComputeCapability gpu_version = gpu_target_config.device_description.gpu_compute_capability(); pipeline.AddPass<AlgorithmChecker>(gpu_version); const auto* cuda_cc = std::get_if<se::CudaComputeCapability>(&gpu_version); const auto* rocm_cc = std::get_if<se::RocmComputeCapability>(&gpu_version); if (debug_options.xla_gpu_enable_triton_gemm() && (cuda_cc != nullptr && cuda_cc->IsAtLeast(se::CudaComputeCapability::AMPERE))) { pipeline.AddPass<GemvRewriter>(); pipeline.AddPass<GemmFusion>(gpu_version); } else if (cuda_cc != nullptr && cuda_cc->major == se::CudaComputeCapability::VOLTA) { pipeline.AddPass<SimplifyFPConversions>(); pipeline.AddPass<CustomKernelFusionRewriter>( &gpu_target_config.device_description); pipeline.AddPass<CustomKernelFusionAutotuner>(autotune_config); } AddGemmRewriterPasses( pipeline, debug_options, gpu_version, gpu_target_config.device_description.runtime_version()); pipeline.AddPass<GemmBroadcastFoldingRewriter>(); pipeline.AddPass<LayoutNormalization>(&NormalizeLayoutForGpuCustomCalls); pipeline.AddPass<HloPassFix<GpuAlgebraicSimplifier>>(simplifier_options, gpu_version); pipeline.AddPass<ScatterSimplifier>(); pipeline.AddPass<BroadcastCanonicalizer>(); pipeline.AddPass<TransposeDimensionGrouper>(); pipeline.AddPass<ReductionDegenerateDimRemover>(); pipeline.AddPass<ReductionLayoutNormalizer>(); if (debug_options .xla_gpu_experimental_enable_triton_softmax_priority_fusion() && ((cuda_cc != nullptr && cuda_cc->IsAtLeast(se::CudaComputeCapability::AMPERE)) || rocm_cc != nullptr)) { add_float_normalization(pipeline); pipeline.AddPass<HloPassFix<GpuAlgebraicSimplifier>>(simplifier_options, gpu_version); pipeline.AddPass<HloCSE>(true); pipeline.AddPass<HloConstantFolding>(); pipeline.AddPass<HloDCE>(); pipeline.AddPass<SoftmaxRewriterTriton>( gpu_target_config.device_description, ShapeSizeBytesFunction(), true); } pipeline.AddPass<ReductionDimensionGrouper>(); bool ignore_small_reduce_dims = !debug_options.xla_gpu_enable_priority_fusion(); pipeline.AddPass<HloPassFix<ReductionSplitter>>(ignore_small_reduce_dims); pipeline.AddPass<HloPassFix<TreeReductionRewriter>>(gpu_version); pipeline.AddPass<SubByteNormalization>( SubByteNormalization::SET_ELEMENT_SIZE); TF_RETURN_IF_ERROR(pipeline.Run(hlo_module).status()); } HloPassPipeline pipeline("post-layout_assignment"); AddHloVerifier(&pipeline, !debug_options.xla_experimental_ignore_channel_id(), HloVerifierOpts{} .MakeLayoutSensitive() .WithInstructionCanChangeLayout( LayoutAssignment::InstructionCanChangeLayout) .VerifyBroadcastDimensionsOrder() .VerifyReshapeIsBitcast(), true); add_float_normalization(pipeline); TF_RETURN_IF_ERROR(AddGemmFusionAutotuningPasses( &pipeline, hlo_module, autotune_config, thread_pool, options.key_value_store, gpu_target_config.device_description.runtime_version())); pipeline.AddPass<CallInliner>(); AddGemmRewriterPasses(pipeline, debug_options, gpu_version, gpu_target_config.device_description.runtime_version()); pipeline.AddPass<GemmBroadcastFoldingRewriter>(); pipeline.AddPass<HostOffloader>( static_cast<int64_t>(stream_executor::MemoryType::kHost)); TF_RETURN_IF_ERROR( AddConvAndGemmAutotuningPasses(&pipeline, gpu_version, options, hlo_module, autotune_config, thread_pool)); add_float_normalization(pipeline); pipeline.AddPass<TupleSimplifier>(); pipeline.AddPass<HloPassFix<GpuAlgebraicSimplifier>>(simplifier_options, gpu_version); if (debug_options.xla_allow_excess_precision()) { pipeline.AddPass<SimplifyFPConversions>(); } pipeline.AddPass<HloCSE>(true); pipeline.AddPass<HostMemoryTransferAsyncifier>( static_cast<int64_t>(stream_executor::MemoryType::kHost)); #ifdef NDEBUG HloVerifierOpts opts = HloVerifierOpts{} .MakeLayoutSensitive() .WithInstructionCanChangeLayout( LayoutAssignment::InstructionCanChangeLayout) .VerifyBroadcastDimensionsOrder() .VerifyReshapeIsBitcast(); opts.verify_unique_channel_ids = !debug_options.xla_experimental_ignore_channel_id(); pipeline.AddPass<HloVerifier>( std::make_unique<DefaultVerifierMetadata>(std::move(opts)), "end-of-post-layout_assignment"); #endif TF_RETURN_IF_ERROR(pipeline.Run(hlo_module).status()); return absl::OkStatus(); } absl::StatusOr<Compiler::TargetConfig> GpuCompiler::GetTargetConfig( const Compiler::CompileOptions& options, const DebugOptions& debug_opts, se::StreamExecutor* executor) { if (options.target_config.has_value()) { return *options.target_config; } if (!debug_opts.xla_gpu_target_config_filename().empty()) { std::string gpu_target_config_string; TF_RETURN_IF_ERROR(tsl::ReadFileToString( tsl::Env::Default(), debug_opts.xla_gpu_target_config_filename(), &gpu_target_config_string)); stream_executor::GpuTargetConfigProto gpu_target_config_proto; if (!tsl::protobuf::TextFormat::ParseFromString(gpu_target_config_string, &gpu_target_config_proto)) { return absl::FailedPreconditionError( "Failed to parse GpuTargetConfigProto"); } return Compiler::TargetConfig{gpu_target_config_proto}; } if (executor) { Compiler::TargetConfig target_config = Compiler::TargetConfig{executor}; int64_t device_memory_size = target_config.device_description.device_memory_size(); if (device_memory_size == -1) { return absl::FailedPreconditionError( "When running on an NVIDIA simulation device, you must use " "--xla_gpu_target_config_filename to pass in target information. " "The target config from StreamExecutor is inaccurate."); } return target_config; } return absl::InternalError( "Either GPU has to be attached, or --xla_gpu_target_config_filename " "has to be specified to specify the target to compile for."); } absl::StatusOr<std::unique_ptr<HloModule>> GpuCompiler::RunHloPasses( std::unique_ptr<HloModule> module, se::StreamExecutor* stream_exec, const CompileOptions& options) { const DebugOptions debug_opts = module->config().debug_options(); TF_RETURN_IF_ERROR(LoadAutotuneResultsFromFile(debug_opts)); bool is_deviceless = options.target_config.has_value() || !debug_opts.xla_gpu_target_config_filename().empty(); TF_ASSIGN_OR_RETURN(TargetConfig gpu_target_config, GetTargetConfig(options, debug_opts, stream_exec)); const std::optional<std::string> unoptimized_fingerprint = MaybeUploadUnoptimizedGpuSymbols(module.get(), gpu_target_config.ToProto()); XLA_SCOPED_LOGGING_TIMER_IF( absl::StrCat("GpuCompiler::RunHloPasses for ", module->name()), !options.is_autotuning_compilation); uint64_t start_usecs = tsl::Env::Default()->NowMicros(); tsl::profiler::TraceMe activity( [&] { return absl::StrCat("HLO Transforms:", module->name()); }, tsl::profiler::TraceMeLevel::kInfo); TF_RETURN_IF_ERROR(OptimizeHloModule(module.get(), is_deviceless ? nullptr : stream_exec, options, gpu_target_config)); TF_RETURN_IF_ERROR(PrepareHloModuleForIrEmitting(module.get())); if (module->config() .debug_options() .xla_gpu_experimental_enable_fusion_block_level_rewriter()) { HloPassPipeline pipeline("fusion-block-level-rewriter-pipeline"); pipeline.AddPass<FusionBlockLevelRewriter>( gpu_target_config.device_description, ShapeSizeBytesFunction()); TF_RETURN_IF_ERROR(pipeline.Run(module.get()).status()); } uint64_t end_usecs = tsl::Env::Default()->NowMicros(); RecordHloPassesDuration(end_usecs - start_usecs); DumpHloModuleMetadataIfEnabled({module.get()}); AutotuneResults autotune_results; TF_ASSIGN_OR_RETURN( AutotuneConfig autotune_config, GetAutotuneConfig(stream_exec, debug_opts, options, gpu_target_config)); if (!is_deviceless) { TF_RETURN_IF_ERROR( AutotunerUtil::SerializeAutotuneResults(&autotune_results)); TF_RETURN_IF_ERROR(SerializeAutotuneResultsToFile(debug_opts)); } const std::optional<std::string> optimized_fingerprint = MaybeUploadOptimizedGpuSymbols(module.get(), autotune_results); if (unoptimized_fingerprint.has_value() && optimized_fingerprint.has_value()) { MaybeUploadGpuSymbolMapping(*unoptimized_fingerprint, *optimized_fingerprint); } if (DumpingEnabledForHloModule(*module)) { TF_ASSIGN_OR_RETURN( std::string autotune_results, AutotunerUtil::SerializeAutotuneResults(true)); DumpToFileInDirOrStdout(*module, "", "autotune_results.pbtxt", autotune_results); } return std::move(module); } namespace { absl::Status RunPostSchedulingCopyInsertion( HloModule* module, const HloDataflowAnalysis::CanShareBuffer& can_share_buffer) { constexpr int64_t kRegionBasedLiveRangeAnalysisLimit = -1; const int64_t kUseRegionBasedLiveRangeAnalysis = module->config() .debug_options() .xla_gpu_copy_insertion_use_region_analysis() ? kRegionBasedLiveRangeAnalysisLimit : 0; CopyInsertion copy_insertion(can_share_buffer, kUseRegionBasedLiveRangeAnalysis); TF_RETURN_IF_ERROR(copy_insertion.RemoveUnnecessaryCopies(module)); HloSchedule saved_schedule = module->schedule(); module->clear_schedule(); TF_RETURN_IF_ERROR( copy_insertion.CopyInsertion::AddSpecialCaseCopies(module)); TF_RETURN_IF_ERROR(HloDCE().Run(module).status()); TF_RETURN_IF_ERROR(saved_schedule.Update()); TF_RETURN_IF_ERROR(module->set_schedule(std::move(saved_schedule))); return absl::OkStatus(); } } using OutputInfoMap = absl::flat_hash_map<ShapeIndex, GpuExecutable::OutputInfo>; static void NullDiagnosticHandler(const llvm::DiagnosticInfo* diag_info, void* context) { std::string error_string; llvm::raw_string_ostream string_printer(error_string); llvm::DiagnosticPrinterRawOStream diagnostic_printer(string_printer); diag_info->print(diagnostic_printer); VLOG(5) << error_string; } namespace { std::unique_ptr<llvm::Module> CopyToContext(const llvm::Module& module, llvm::LLVMContext& context) { llvm::SmallString<0> bitcode; llvm::raw_svector_ostream bitcode_ostream(bitcode); llvm::WriteBitcodeToFile(module, bitcode_ostream); llvm::Expected<std::unique_ptr<llvm::Module>> new_module = llvm::parseBitcodeFile( llvm::MemoryBufferRef(llvm::StringRef(bitcode.data(), bitcode.size()), "split_module"), context); CHECK(new_module) << "Failed to parse bitcode " << llvm::toString(new_module.takeError()); return std::move(new_module.get()); } } absl::StatusOr<GpuCompiler::BackendCompileResult> GpuCompiler::CompileSingleModule(const HloModuleConfig& module_config, se::GpuComputeCapability gpu_version, const HloModule* debug_module, llvm::Module* llvm_module, bool relocatable, const CompileOptions& options, std::optional<int> shard_number) { { XLA_SCOPED_LOGGING_TIMER_IF( absl::StrCat( "GpuCompiler::RunBackend - Running LLVM verifier for ", (debug_module != nullptr ? debug_module->name() : "(unknown)")), VLOG_IS_ON(4) && !options.is_autotuning_compilation); llvm_module->getContext().setDiagnosticHandlerCallBack( NullDiagnosticHandler, nullptr); std::string err; llvm::raw_string_ostream err_stream(err); TF_RET_CHECK(!llvm::verifyModule(*llvm_module, &err_stream)) << "Invalid LLVM IR before optimizations:\n" << err_stream.str() << "\nThis probably indicates a bug in the HLO -> LLVM IR " "lowering. Rerun with --xla_dump_to to get the IR" << (debug_module ? absl::StrCat(" and looks for files with name containing: *", FilenameFor(*debug_module, "", ""), "*") : "."); } TF_ASSIGN_OR_RETURN( BackendCompileResult result, CompileTargetBinary(module_config, llvm_module, gpu_version, relocatable, debug_module, options)); const bool should_dump = DumpingEnabledForHloModule( debug_module ? debug_module->name() : "", module_config.debug_options()); if (should_dump) { if (debug_module) { llvm_ir::DumpIrIfEnabled( *debug_module, *llvm_module, true, shard_number.has_value() ? std::to_string(*shard_number) : ""); } else { LOG(ERROR) << "Dumping is not implemented since the file name cannot be " "inferred. Please implement (potentially MLIR) module -> " "filename heuristic."; } } if (user_post_optimization_hook_) { user_post_optimization_hook_(*llvm_module); } if (should_dump) { absl::string_view ptx = result.asm_text; if (debug_module) { DumpToFileInDirOrStdout(*debug_module, "", shard_number.has_value() ? (std::to_string(*shard_number) + ".ptx") : "ptx", ptx); } else { LOG(ERROR) << "Dumping is not implemented since the file name cannot be " "inferred. Please implement (potentially MLIR) module -> " "filename heuristic."; } } return result; } namespace { int CountFunctions(const llvm::Module& module) { int num_functions = 0; for (const llvm::Function& func : module.functions()) { if (!func.isDeclaration() && func.getLinkage() == llvm::GlobalValue::LinkageTypes::ExternalLinkage) { ++num_functions; } } return num_functions; } std::string SingleFunctionName(const llvm::Module& module) { std::string name; for (const llvm::Function& func : module.functions()) { if (!func.isDeclaration() && func.getLinkage() == llvm::GlobalValue::LinkageTypes::ExternalLinkage) { if (name.empty()) { name = func.getName().str(); } else { return ""; } } } return name; } } absl::StatusOr<GpuCompiler::BackendCompileResult> GpuCompiler::CompileAndLink( const HloModuleConfig& module_config, CompileModuleResults& compile_module_results, se::GpuComputeCapability gpu_version, se::StreamExecutor* stream_exec, const CompileOptions& options, const HloModule* debug_module) { llvm::Module* llvm_module = &*compile_module_results.llvm_module; bool force_module_split = module_config.debug_options().xla_llvm_force_inline_before_split(); if (force_module_split) { for (llvm::Function& func : llvm_module->functions()) { if (func.getNumUses() > 0 && !func.isDeclaration()) { VLOG(4) << absl::StrFormat("Inlining function %s with %d users.\n", func.getName().str(), func.getNumUses()); std::vector<llvm::CallInst*> calls_to_inline; for (auto* user : func.users()) { if (auto* call = llvm::dyn_cast<llvm::CallInst>(user)) { calls_to_inline.push_back(call); } } for (auto* call_to_inline : calls_to_inline) { llvm::InlineFunctionInfo inline_function_info; if (!llvm::InlineFunction(*call_to_inline, inline_function_info) .isSuccess()) { return absl::InternalError("Can not inline function " + func.getName().str()); }; } } } } llvm::DenseMap<llvm::StringRef, llvm::Constant*> const_initializer_map; llvm::Module& module_with_constants = (compile_module_results.llvm_module_constants == nullptr) ? *llvm_module : *compile_module_results.llvm_module_constants; for (llvm::GlobalVariable& gv : module_with_constants.globals()) { if (gv.hasName() && gv.isConstant() && gv.hasInitializer() && gv.hasExternalLinkage()) { llvm::Constant* initializer = gv.getInitializer(); unsigned int num_elements = 0; if (auto* caz = llvm::dyn_cast<llvm::ConstantAggregateZero>(initializer)) { num_elements = caz->getElementCount().getFixedValue(); } else if (auto* cds = llvm::dyn_cast<llvm::ConstantDataSequential>( initializer)) { num_elements = cds->getNumElements(); } if (num_elements > 0) { const_initializer_map[gv.getName()] = initializer; } } } llvm_ir::DumpIrIfEnabled(*debug_module, *llvm_module, false, "inlined"); absl::string_view cache_path = module_config.debug_options().xla_gpu_kernel_cache_file(); const bool use_cache = !cache_path.empty(); struct NamedModule { std::string name; std::unique_ptr<llvm::Module> module; }; std::vector<NamedModule> llvm_modules; MaybeOwningThreadPool thread_pool = CreateMaybeOwningThreadPool( module_config.debug_options() .xla_gpu_force_compilation_parallelism(), options.thread_pool, 1); int num_modules = CountFunctions(*llvm_module); if (thread_pool.get() != nullptr && !use_cache) { num_modules = std::max(1, std::min(thread_pool->NumThreads(), num_modules)); } if (compile_module_results.llvm_module_constants != nullptr) { llvm_modules.reserve(num_modules + 1); llvm_modules.push_back( {"", std::move(compile_module_results.llvm_module_constants)}); } else { llvm_modules.reserve(num_modules); } int single_function_module_count = 0; llvm::SplitModule( *llvm_module, num_modules, [&](std::unique_ptr<llvm::Module> module) { for (llvm::GlobalVariable& gv : module->globals()) { if (gv.hasName() && gv.isConstant() && !gv.hasInitializer() && const_initializer_map.count(gv.getName()) != 0) { gv.setInitializer(const_initializer_map[gv.getName()]); gv.setLinkage(llvm::GlobalValue::InternalLinkage); } } const std::string name = SingleFunctionName(*module); if (!name.empty()) { ++single_function_module_count; } llvm_modules.push_back({name, std::move(module)}); }, true, true); VLOG(2) << "Single-function cacheable modules: " << single_function_module_count << " / " << llvm_modules.size(); struct NamedCompileResult { std::string name; absl::StatusOr<BackendCompileResult> result; }; std::vector<NamedCompileResult> compile_results(llvm_modules.size()); if (thread_pool.get() != nullptr) { tsl::BlockingCounter counter(llvm_modules.size()); for (int i = 0; i < llvm_modules.size(); ++i) { thread_pool.get_mutable()->Schedule( [&compile_results, i, &llvm_modules, &counter, this, &module_config, &gpu_version, &debug_module, &options] { llvm::LLVMContext new_context; std::unique_ptr<llvm::Module> new_module = CopyToContext(*llvm_modules.at(i).module, new_context); compile_results.at(i) = { llvm_modules.at(i).name, CompileSingleModule(module_config, gpu_version, debug_module, new_module.get(), true, options, i)}; counter.DecrementCount(); }); } counter.Wait(); } else { for (int i = 0; i < llvm_modules.size(); ++i) { compile_results.at(i) = { llvm_modules.at(i).name, CompileSingleModule(module_config, gpu_version, debug_module, &*llvm_modules.at(i).module, true, options, i)}; } } std::string ptx_snippets; std::vector<std::vector<uint8_t>> binaries_to_link; binaries_to_link.reserve(compile_results.size()); std::vector<KernelReuseCache::NamedBinary> binaries_to_cache; binaries_to_cache.reserve(single_function_module_count); for (const auto& [name, maybe_result] : compile_results) { TF_ASSIGN_OR_RETURN(auto result, maybe_result); if (result.binary.empty()) { continue; } ptx_snippets += result.asm_text; ptx_snippets += "\n"; binaries_to_link.push_back(result.binary); if (!name.empty()) { binaries_to_cache.push_back({name, result.binary}); } } if (use_cache) { std::string resolved_path; if (!tsl::io::ResolveTestPrefixes(cache_path, resolved_path)) { return FailedPrecondition("File path can not be resolved: %s", cache_path); } const CompilationCacheProto& current_cache = compile_module_results.kernel_compilation_cache; const bool cache_file_exists = tsl::Env::Default()->FileExists(resolved_path).ok(); if (cache_file_exists) { int loaded_kernel_count = 0; for (const auto& [name, entry] : current_cache.entries()) { if (llvm_module->getFunction(name) != nullptr) { VLOG(5) << "Using the just compiled kernel for " << name; TF_RET_CHECK(entry.binary().empty()) << name << " is a just compiled kernel and is not expected to have a " "binary yet."; continue; } const uint8_t* binary = reinterpret_cast<const uint8_t*>(entry.binary().data()); binaries_to_link.push_back( std::vector<uint8_t>(binary, binary + entry.binary().size())); VLOG(5) << "Using " << name << " from cache: " << entry.binary().size(); ++loaded_kernel_count; } VLOG(2) << "Using " << loaded_kernel_count << " / " << current_cache.entries_size() << " cached kernels."; } if (!binaries_to_cache.empty()) { TF_RETURN_IF_ERROR( UpdateDiskKernelCache(resolved_path, cache_file_exists, current_cache, binaries_to_cache)); } } auto maybe_backend_result = LinkModules(gpu_version, stream_exec, std::move(binaries_to_link), module_config.debug_options()); if (!maybe_backend_result.ok()) { LOG(ERROR) << "The CUDA linking API did not work. Please use XLA_FLAGS=" "--xla_gpu_enable_llvm_module_compilation_parallelism=false " "to bypass it, but expect to get longer compilation time due " "to the lack of multi-threading. Original error: " << maybe_backend_result.status(); return maybe_backend_result.status(); } VLOG(4) << "Binary size after linking [B]: " << maybe_backend_result->size(); compile_module_results.kernel_compilation_cache.Clear(); return BackendCompileResult{ptx_snippets, std::move(*maybe_backend_result)}; } absl::StatusOr<GpuCompiler::CompileResultWithMetadata> GpuCompiler::CompileToBackendResult( HloModule* module, llvm::LLVMContext* llvm_context, se::StreamExecutor* executor, const CompileOptions& options, const se::DeviceDescription& gpu_device_info) { tsl::profiler::TraceMe traceme("GpuCompiler::CompileToBackendResult"); TF_RETURN_IF_ERROR(RunPreSchedulingPasses(module, executor)); TF_ASSIGN_OR_RETURN( ScheduleMetadata schedule_metadata, ScheduleGpuModule(module, pointer_size_, gpu_device_info)); TF_RETURN_IF_ERROR(RunPostSchedulingPipelines( module, schedule_metadata.scheduler_mem_limit, gpu_device_info)); TF_ASSIGN_OR_RETURN(se::Platform * platform, se::PlatformManager::PlatformWithId(PlatformId())); bool can_use_link_modules = (executor != nullptr); if (can_use_link_modules) { TF_ASSIGN_OR_RETURN(can_use_link_modules, CanUseLinkModules(module->config())); } const bool split_modules = can_use_link_modules && module->config() .debug_options() .xla_gpu_enable_llvm_module_compilation_parallelism(); const bool use_cache = split_modules && !module->config().debug_options().xla_gpu_kernel_cache_file().empty(); TF_ASSIGN_OR_RETURN( CompileModuleResults compile_module_results, CompileModuleToLlvmIr(module, llvm_context, target_triple_, data_layout_, platform->Name(), platform->id(), gpu_device_info, GetCanShareBuffer(), BufferSizeBytesFunction(), use_cache)); if (user_pre_optimization_hook_) { user_pre_optimization_hook_(*compile_module_results.llvm_module); if (compile_module_results.llvm_module_constants != nullptr) { user_pre_optimization_hook_( *compile_module_results.llvm_module_constants); } } llvm_ir::DumpIrIfEnabled(*module, *compile_module_results.llvm_module, false); if (compile_module_results.llvm_module_constants != nullptr) { llvm_ir::DumpIrIfEnabled(*module, *compile_module_results.llvm_module_constants, false, "constants"); } BackendCompileResult backend_result; if (split_modules) { TF_ASSIGN_OR_RETURN(backend_result, CompileAndLink(module->config(), compile_module_results, gpu_device_info.gpu_compute_capability(), executor, options, module)); } else { CHECK(compile_module_results.llvm_module_constants == nullptr); TF_ASSIGN_OR_RETURN( backend_result, CompileSingleModule(module->config(), gpu_device_info.gpu_compute_capability(), module, &*compile_module_results.llvm_module, false, options, std::nullopt)); } RecordXlaDeviceBinarySize(backend_result.binary.size()); if (DumpingEnabledForHloModule(*module)) { DumpToFileInDirOrStdout( *module, "", "thunk_sequence.txt", compile_module_results.executable->ToString(0)); } return CompileResultWithMetadata{std::move(backend_result), std::move(compile_module_results)}; } absl::StatusOr<std::unique_ptr<Executable>> GpuCompiler::RunBackend( std::unique_ptr<HloModule> module, se::StreamExecutor* stream_exec, const CompileOptions& options) { tsl::profiler::ScopedAnnotation backend_annotation{[&] { return absl::StrFormat("XlaCompileBackend:#module=%s,program_id=%d#", module->name(), module->unique_id()); }}; BinaryMap dnn_compiled_graphs; if (stream_exec) { TF_RETURN_IF_ERROR(RunCudnnCompilerPasses(module.get(), stream_exec, &dnn_compiled_graphs)); } const DebugOptions& debug_opts = module->config().debug_options(); TF_ASSIGN_OR_RETURN(TargetConfig gpu_target_config, GetTargetConfig(options, debug_opts, stream_exec)); if (DumpingEnabledForHloModule(*module)) { std::string textproto; tsl::protobuf::TextFormat::PrintToString(gpu_target_config.ToProto(), &textproto); DumpToFileInDirOrStdout(*module, "", "gpu_target_config.pbtxt", textproto); } if (!options.is_autotuning_compilation) { VLOG(1) << "Starting to compile HLO module " << module->name(); } XLA_SCOPED_LOGGING_TIMER_IF( absl::StrCat("GpuCompiler::RunBackend for ", module->name()), !options.is_autotuning_compilation); std::string slow_compilation_msg = absl::StrCat("Compiling module ", module->name()); auto slow_compile_alarm = SlowCompilationAlarm(slow_compilation_msg); if (options.is_autotuning_compilation) { if (module->config().debug_options().xla_embed_ir_in_executable()) { LOG(WARNING) << "Doing autotuning compilations with " "xla_embed_ir_in_executable wastes memory!"; } } llvm::LLVMContext llvm_context; const se::DeviceDescription& gpu_device_info = gpu_target_config.device_description; if (module->config().hlo_profiling_enabled() || VLOG_IS_ON(1)) { HloCostAnalysis::Options cost_analysis_options{ShapeSizeBytesFunction()}; cost_analysis_options.set_bytes_per_second( gpu_device_info.memory_bandwidth()); GpuHloCostAnalysis cost_analysis(cost_analysis_options, gpu_device_info); TF_RETURN_IF_ERROR(module->entry_computation()->Accept(&cost_analysis)); if (!options.is_autotuning_compilation) { VLOG(1) << "HLO memory read+written: " << tsl::strings::HumanReadableNumBytes( cost_analysis.bytes_accessed()); } if (module->config().hlo_profiling_enabled()) { LOG(ERROR) << "--xla_hlo_profile for GPU is unsupported."; } } TF_ASSIGN_OR_RETURN( CompileResultWithMetadata res, CompileToBackendResult(module.get(), &llvm_context, stream_exec, options, gpu_device_info)); if (DumpingEnabledForHloModule(*module)) { DumpToFileInDirOrStdout( *module, "", "thunk_sequence.txt", res.compile_module_results.executable->ToString(0)); } bool embed_ir_in_executable = module->config().debug_options().xla_embed_ir_in_executable(); int64_t debug_buffer_assignment_show_max = module->config().debug_options().xla_debug_buffer_assignment_show_max(); tsl::profiler::ScopedAnnotation annotation([&] { return absl::StrFormat("XlaCreateGpuExecutable:#module=%s#", module->name()); }); TF_ASSIGN_OR_RETURN( auto gpu_executable, GpuExecutable::Create(GpuExecutable::Params{ (options.is_autotuning_compilation && !res.backend_result.binary.empty()) ? std::string() : std::move(res.backend_result.asm_text), std::move(res.backend_result.binary), std::move(dnn_compiled_graphs), gpu_device_info.gpu_compute_capability(), std::move(res.compile_module_results.executable), std::move(res.compile_module_results.constants), std::move(res.compile_module_results.output_info), std::move(res.compile_module_results.module_name), std::move(res.compile_module_results.output_shape), (res.compile_module_results.use_original_allocations ? std::optional<std::vector<BufferAllocation>>() : std::move(res.compile_module_results.allocations)), std::move(res.compile_module_results.buffer_assignment), debug_buffer_assignment_show_max, options.is_autotuning_compilation ? std::unique_ptr<HloModule>() : std::move(module), !options.is_autotuning_compilation})); if (embed_ir_in_executable) { std::string ir_module_string_before_opt = llvm_ir::DumpToString(res.compile_module_results.llvm_module.get()); gpu_executable->set_ir_module_string(ir_module_string_before_opt); DCHECK_NE("", ir_module_string_before_opt); } IncrementCompiledProgramsCount(); if (!options.is_autotuning_compilation && gpu_executable->has_module()) { auto hlo_proto = std::make_unique<HloProto>(); *hlo_proto->mutable_buffer_assignment() = gpu_executable->buffer_assignment()->ToProto(); gpu_executable->set_hlo_proto(std::move(hlo_proto)); gpu_executable->set_debug_info( gpu_executable->buffer_assignment()->GetStats().ToString()); } return static_cast<std::unique_ptr<Executable>>(std::move(gpu_executable)); } absl::StatusOr<std::vector<std::unique_ptr<AotCompilationResult>>> GpuCompiler::CompileAheadOfTime(std::unique_ptr<HloModuleGroup> module_group, const AotCompilationOptions& options) { CHECK_EQ(options.PlatformId(), PlatformId()); std::vector<std::unique_ptr<HloModule>> modules = module_group->ConsumeModules(); std::vector<std::unique_ptr<HloModule>> optimized_modules; optimized_modules.reserve(modules.size()); for (std::unique_ptr<HloModule>& module : modules) { if (!module->has_schedule()) { tsl::profiler::ScopedAnnotation annotation{[&] { return absl::StrFormat("XlaCompile:#module=%s,program_id=%d#", module->name(), module->unique_id()); }}; CompileOptions compile_options; compile_options.device_allocator = options.device_allocator(); compile_options.target_config = options.target_config(); TF_ASSIGN_OR_RETURN( std::unique_ptr<HloModule> optimized_module, RunHloPasses(std::move(module), options.executor(), compile_options)); optimized_modules.push_back(std::move(optimized_module)); } else { optimized_modules.push_back(std::move(module)); } } modules = std::move(optimized_modules); std::vector<std::unique_ptr<AotCompilationResult>> results; const std::optional<Compiler::TargetConfig>& target_config = options.target_config(); CHECK(target_config.has_value() || options.executor() != nullptr); const se::DeviceDescription& gpu_device_info = target_config.has_value() ? target_config->device_description : options.executor()->GetDeviceDescription(); for (const std::unique_ptr<HloModule>& module : modules) { llvm::LLVMContext llvm_context; TF_ASSIGN_OR_RETURN( CompileResultWithMetadata res, CompileToBackendResult(module.get(), &llvm_context, options.executor(), {options.device_allocator()}, gpu_device_info)); TF_ASSIGN_OR_RETURN( results.emplace_back(), GpuThunkAotCompilationResult::FromModule( module.get(), res.compile_module_results.buffer_assignment.get(), res.backend_result.asm_text, res.backend_result.binary, res.backend_result.dnn_compiled_graphs)); } return std::move(results); } HloCostAnalysis::ShapeSizeFunction GpuCompiler::ShapeSizeBytesFunction() const { return [pointer_size = pointer_size_](const Shape& shape) { return GetSizeOfShape(shape, pointer_size); }; } absl::StatusOr<std::unique_ptr<AotCompilationResult>> GpuCompiler::Export( Executable* executable) const { auto* gpu_executable = tensorflow::down_cast<GpuExecutable*>(executable); if (!gpu_executable) return Internal("GpuExecutable is null"); return GpuThunkAotCompilationResult::FromModule( &gpu_executable->module(), gpu_executable->buffer_assignment(), gpu_executable->text(), gpu_executable->binary(), gpu_executable->dnn_compiled_graphs()); } absl::Status GpuCompiler::RunPreSchedulingPasses( HloModule* module, se::StreamExecutor* stream_exec) { HloPassPipeline pipeline("pre-scheduling-passes"); pipeline.AddPass<FusionWrapper>(); return pipeline.Run(module).status(); } HloCostAnalysis::Options CreateHloAnalysisOpts( const HloModule& module, const se::DeviceDescription& gpu_device_info, ShapeSizeFn shape_size_fn) { HloCostAnalysis::Options hlo_cost_analysis_options; hlo_cost_analysis_options.shape_size = shape_size_fn; std::optional<HloRematerialization::HostMemoryOffloadConfig> offloading_config = std::nullopt; if (module.config().debug_options().xla_gpu_enable_host_memory_offloading()) { constexpr float kGiga = 1e+9; constexpr float kFma = 2; float flops_per_sec = gpu_device_info.core_count() * gpu_device_info.fpus_per_core() * gpu_device_info.clock_rate_ghz() * kGiga * kFma; int64_t host_memory_space_color = static_cast<int64_t>(se::MemoryType::kHost); hlo_cost_analysis_options.set_flops_per_second(flops_per_sec); hlo_cost_analysis_options.set_transcendentals_per_second(flops_per_sec); offloading_config = std::make_optional<HloRematerialization::HostMemoryOffloadConfig>( host_memory_space_color, gpu_device_info.memory_bandwidth(), gpu_device_info.memory_bandwidth()); } return hlo_cost_analysis_options; } HloRematerialization::Options CreateRematOpts( const HloModule& module, const se::DeviceDescription& gpu_device_info, HloCostAnalysis& hlo_cost_analysis, int64_t scheduler_mem_limit) { bool enable_offloading = module.config().debug_options().xla_gpu_enable_host_memory_offloading(); std::optional<HloRematerialization::HostMemoryOffloadConfig> offloading_config = std::nullopt; if (enable_offloading) { int64_t host_memory_space_color = static_cast<int64_t>(se::MemoryType::kHost); offloading_config = std::make_optional<HloRematerialization::HostMemoryOffloadConfig>( host_memory_space_color, gpu_device_info.memory_bandwidth(), gpu_device_info.memory_bandwidth()); } HloRematerialization::RematerializationModeConfig rematerialization_mode_config(true, true, enable_offloading); HloRematerialization::Options options( hlo_cost_analysis, rematerialization_mode_config, scheduler_mem_limit, 1, 1, 0, nullptr, offloading_config); return options; } absl::Status GpuCompiler::RunPostSchedulingPipelines( HloModule* module, int64_t scheduler_mem_limit, const se::DeviceDescription& gpu_device_info) const { TF_RETURN_IF_ERROR( RunPostSchedulingCopyInsertion(module, GetCanShareBuffer())); HloPassPipeline main_pipeline("post-scheduling-passes"); HloPredicate is_nop = HloPredicateIsOp<HloOpcode::kParameter, HloOpcode::kConstant, HloOpcode::kBitcast, HloOpcode::kGetTupleElement>; { HloPassPipeline& pipeline = main_pipeline.AddPass<HloPassPipeline>("async-to-sync-converter"); if (module->config() .debug_options() .xla_gpu_enable_pipelined_collectives() || module->config().debug_options().xla_gpu_enable_pipelined_p2p()) { pipeline.AddPass<PipelinedP2PRewriter>(); } pipeline.AddPass<GpuConvertAsyncCollectivesToSync>(is_nop); } HloRematerialization::RematerializationSizes sizes; HloCostAnalysis::Options hlo_cost_analysis_opts = CreateHloAnalysisOpts(*module, gpu_device_info, ShapeSizeBytesFunction()); HloCostAnalysis hlo_cost_analysis(hlo_cost_analysis_opts); HloRematerialization::Options remat_opts = CreateRematOpts( *module, gpu_device_info, hlo_cost_analysis, scheduler_mem_limit); { HloPassPipeline& pipeline = main_pipeline.AddPass<HloPassPipeline>("remat-pipeline"); pipeline.AddPass<HloRematerialization>(remat_opts, sizes); pipeline.AddPass<StreamAttributeAnnotator>(); pipeline.AddPass<OptimizationBarrierExpander>(); } { HloPassPipeline& pipeline = main_pipeline.AddPass<HloPassPipeline>("fusion-wrapper"); pipeline.AddPass<FusionWrapper>(); } { HloPassPipeline& pipeline = main_pipeline.AddPass<HloPassPipeline>("command-buffer-scheduling"); pipeline.AddPass<CommandBufferScheduling>(gpu_device_info); pipeline.AddPass<SanitizeConstantNames>(); } if (module->config().debug_options().xla_gpu_enable_pgle_accuracy_checker()) { AddHloVerifier( &main_pipeline, module->config().debug_options().xla_experimental_ignore_channel_id(), HloVerifierOpts{}.VerifyInstructionNameUnchanged()); } return main_pipeline.Run(module).status(); } absl::Status GpuCompiler::LoadAutotuneResultsFromFile( const DebugOptions& debug_options) { if (absl::string_view file_path = debug_options.xla_gpu_load_autotune_results_from(); !file_path.empty()) { static absl::once_flag once; absl::Status status = absl::OkStatus(); absl::call_once(once, [&file_path, &status] { status = AutotunerUtil::LoadAutotuneResultsFromFile(file_path); }); TF_RETURN_IF_ERROR(status); } return absl::OkStatus(); } absl::Status GpuCompiler::SerializeAutotuneResultsToFile( const DebugOptions& debug_options) { if (absl::string_view file_path = debug_options.xla_gpu_dump_autotune_results_to(); !file_path.empty()) { TF_RETURN_IF_ERROR( AutotunerUtil::SerializeAutotuneResultsToFile(file_path)); } return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<AotCompilationResult>> GpuCompiler::LoadAotCompilationResult( const std::string& serialized_aot_result) { return LoadAotCompilationResultStatic(serialized_aot_result); } absl::StatusOr<std::unique_ptr<AotCompilationResult>> GpuCompiler::LoadAotCompilationResultStatic( const std::string& serialized_aot_result) { return GpuThunkAotCompilationResult::FromString(serialized_aot_result); } } }
#include "xla/service/gpu/gpu_compiler.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <limits> #include <memory> #include <string> #include <utility> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "xla/autotune_results.pb.h" #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_module_group.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/service/compiler.h" #include "xla/service/executable.h" #include "xla/service/gpu/autotuning/autotuner_util.h" #include "xla/service/gpu/gpu_hlo_schedule.h" #include "xla/service/gpu/metrics.h" #include "xla/service/hlo_module_config.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/service/xla_debug_info_manager.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/verified_hlo_module.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/casts.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; using ::testing::IsEmpty; using ::testing::Not; using ::testing::TempDir; class GpuCompilerTest : public HloTestBase { public: absl::Status Schedule(HloModule* module) { auto compiler = backend().compiler(); const se::DeviceDescription& gpu_device_info = backend().default_stream_executor()->GetDeviceDescription(); TF_RETURN_IF_ERROR(ScheduleGpuModule(module, 4, gpu_device_info).status()); return tensorflow::down_cast<GpuCompiler*>(compiler) ->RunPostSchedulingPipelines(module, 4 * 1024 * 1024, gpu_device_info); } const stream_executor::GpuComputeCapability& GpuComputeComp() { return backend() .default_stream_executor() ->GetDeviceDescription() .gpu_compute_capability(); } }; TEST_F(GpuCompilerTest, CompiledProgramsCount) { const char* hlo_text = R"( HloModule test ENTRY main { p = f32[10]{0} parameter(0) ROOT neg = f32[10]{0} negate(p) } )"; auto module = ParseAndReturnVerifiedModule(hlo_text).value(); ResetCompiledProgramsCountForTesting(); std::unique_ptr<Executable> executable = backend() .compiler() ->RunBackend(std::move(module), backend().default_stream_executor(), {nullptr, nullptr, {}, false}) .value(); EXPECT_EQ(GetCompiledProgramsCount(), 1); } TEST_F(GpuCompilerTest, GenerateDebugInfoForNonAutotuningCompilations) { const char* hlo_text = R"( HloModule test ENTRY main { p = f32[10]{0} parameter(0) ROOT neg = f32[10]{0} negate(p) } )"; auto module = ParseAndReturnVerifiedModule(hlo_text).value(); std::unique_ptr<Executable> executable = backend() .compiler() ->RunBackend(std::move(module), backend().default_stream_executor(), {nullptr, nullptr, {}, false}) .value(); EXPECT_TRUE(XlaDebugInfoManager::Get()->TracksModule( executable->module().unique_id())); } TEST_F(GpuCompilerTest, DoesNotGenerateDebugInfoForAutotuningCompilations) { const char* hlo_text = R"( HloModule test ENTRY main { p = f32[10]{0} parameter(0) ROOT neg = f32[10]{0} negate(p) } )"; auto module = ParseAndReturnVerifiedModule(hlo_text).value(); int module_id = module->unique_id(); std::unique_ptr<Executable> executable = backend() .compiler() ->RunBackend(std::move(module), backend().default_stream_executor(), {nullptr, nullptr, {}, true}) .value(); EXPECT_FALSE(XlaDebugInfoManager::Get()->TracksModule(module_id)); } TEST_F(GpuCompilerTest, CopyInsertionFusion) { const char* hlo_text = R"( HloModule cluster ENTRY main { cst = f32[1]{0} constant({0}) ROOT tuple_out = (f32[1]{0}, f32[1]{0}, f32[1]{0}, f32[1]{0}) tuple(cst, cst, cst, cst) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{0, 0})); auto module = ParseAndReturnVerifiedModule(hlo_text).value(); std::unique_ptr<HloModule> compiled_module = backend() .compiler() ->RunHloPasses(module->Clone(), backend().default_stream_executor(), nullptr) .value(); VLOG(2) << compiled_module->ToString(); size_t total_fusion_instrs = 0; for (const HloInstruction* instr : compiled_module->entry_computation()->instructions()) { if (instr->opcode() == HloOpcode::kFusion) { ++total_fusion_instrs; } } EXPECT_EQ(total_fusion_instrs, 1); const HloInstruction* entry_root = compiled_module->entry_computation()->root_instruction(); EXPECT_THAT( entry_root, GmockMatch(m::Tuple( m::GetTupleElement(m::Fusion()), m::GetTupleElement(m::Fusion()), m::GetTupleElement(m::Fusion()), m::GetTupleElement(m::Fusion())))); } TEST_F(GpuCompilerTest, CanRunScheduledModules) { HloModuleConfig config; DebugOptions debug_options = GetDebugOptionsForTest(); debug_options.set_xla_disable_all_hlo_passes(true); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(R"( HloModule m, is_scheduled=true w { p = s8[] parameter(0) ROOT n = s8[] negate(p) } ENTRY e { p = s8[] parameter(0) ROOT _ = s8[] fusion(p), kind=kLoop, calls=w })", config)); EXPECT_TRUE(Run(std::move(module), true)); } TEST_F(GpuCompilerTest, NonFusedInstructionsAreWrapped) { HloModuleConfig config; DebugOptions debug_options = GetDebugOptionsForTest(); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(R"( HloModule m ENTRY e { p = f32[2,4,4] parameter(0) ROOT _ = f32[2,4,4]{2,1,0} transpose(p), dimensions={0,2,1} })", config)); config.set_debug_options(debug_options); std::unique_ptr<Executable> executable = backend() .compiler() ->RunBackend(std::move(module), backend().default_stream_executor(), {nullptr, nullptr, {}, false}) .value(); HloModule& compiled_module = executable->module(); const HloInstruction* entry_root = compiled_module.entry_computation()->root_instruction(); EXPECT_THAT(entry_root, GmockMatch(m::Fusion())); } class PersistedAutotuningTest : public HloTestBase { protected: static constexpr absl::string_view kHloText = R"( HloModule t ENTRY e { p0 = f16[1,16,17,3] parameter(0) p1 = s8[16,17,3] parameter(1) cp1 = f16[16,17,3] convert(p1) ROOT _ = f16[1,16,16] dot(p0, cp1), lhs_contracting_dims={2,3}, rhs_contracting_dims={1,2} })"; std::string GetUniqueTempFilePath(absl::string_view suffix) { std::string filename = TempDir(); CHECK(tsl::Env::Default()->CreateUniqueFileName(&filename, std::string(suffix))); return filename; } std::string ExpectToReadNonEmptyFile(absl::string_view file_path) { std::string str; tsl::Env* env = tsl::Env::Default(); TF_EXPECT_OK(tsl::ReadFileToString(env, std::string(file_path), &str)); EXPECT_THAT(str, Not(IsEmpty())); return str; } DebugOptions GetDebugOptionsForTest() override { DebugOptions options = HloTestBase::GetDebugOptionsForTest(); options.set_xla_gpu_dump_autotune_results_to( xla_gpu_dump_autotune_results_to_); options.set_xla_gpu_load_autotune_results_from( xla_gpu_load_autotune_results_from_); return options; } std::string xla_gpu_dump_autotune_results_to_; std::string xla_gpu_load_autotune_results_from_; }; TEST_F(PersistedAutotuningTest, WriteResultsOnEachCompilation) { constexpr absl::string_view kInvalidTextProto = "Invalid!"; xla_gpu_dump_autotune_results_to_ = GetUniqueTempFilePath(".txt"); TF_EXPECT_OK(GetOptimizedModule(kHloText).status()); { std::string autotune_results_str = ExpectToReadNonEmptyFile(xla_gpu_dump_autotune_results_to_); AutotuneResults results; EXPECT_TRUE(tsl::protobuf::TextFormat::ParseFromString(autotune_results_str, &results)); } tsl::Env* env = tsl::Env::Default(); TF_EXPECT_OK(tsl::WriteStringToFile(env, xla_gpu_dump_autotune_results_to_, kInvalidTextProto)); TF_EXPECT_OK(GetOptimizedModule(kHloText).status()); { std::string autotune_results_str = ExpectToReadNonEmptyFile(xla_gpu_dump_autotune_results_to_); AutotuneResults results; EXPECT_TRUE(tsl::protobuf::TextFormat::ParseFromString(autotune_results_str, &results)); } } int64_t CountCopies(const HloComputation& computation) { int64_t count = 0; for (const auto& instruction : computation.instructions()) { if (instruction->opcode() == HloOpcode::kCopy) { count++; } } return count; } int64_t CountCopies(const HloModule& module) { int64_t count = 0; for (const auto& computation : module.computations()) { count += CountCopies(*computation); } return count; } TEST_F(GpuCompilerTest, RemovesUnnecessaryCopyAfterScheduling) { const absl::string_view hlo_string = R"( HloModule all_gather_overlapping condition { input_tuple = (f32[1,128], f32[2,128], pred[]) parameter(0) ROOT cond = pred[] get-tuple-element(input_tuple), index=2 } body { input_tuple = (f32[1,128], f32[2,128], pred[]) parameter(0) param_0 = f32[1,128] get-tuple-element(input_tuple), index=0 param_1 = f32[2,128] get-tuple-element(input_tuple), index=1 cond = pred[] get-tuple-element(input_tuple), index=2 c0 = f32[] constant(0) splat_c0 = f32[1,128] broadcast(c0), dimensions={} add = f32[1,128] add(splat_c0, param_0) all-gather-start = (f32[1,128], f32[2,128]) all-gather-start(add), channel_id=1337, replica_groups={{0,1}}, dimensions={0}, use_global_device_ids=true c1_s32 = s32[] constant(1) c0_s32 = s32[] constant(0) dynamic-slice = f32[1,128] dynamic-slice(param_1, c1_s32, c0_s32), dynamic_slice_sizes={1,128} all-gather-done = f32[2,128] all-gather-done(all-gather-start) ROOT output_tuple = (f32[1,128], f32[2,128], pred[]) tuple(dynamic-slice, all-gather-done, cond) } ENTRY main { param_0 = f32[1,128] parameter(0) param_1 = f32[2,128] parameter(1) param_2 = pred[] parameter(2) tuple = (f32[1,128], f32[2,128], pred[]) tuple(param_0, param_1, param_2) ROOT while = (f32[1,128], f32[2,128], pred[]) while(tuple), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, GetOptimizedModule(hlo_string)); EXPECT_EQ(CountCopies(*module), 7); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* while_op = root->operand(0)->operand(0); EXPECT_EQ(while_op->while_body()->root_instruction()->operand(1)->opcode(), HloOpcode::kCopy); TF_ASSERT_OK(Schedule(module.get())); EXPECT_EQ(CountCopies(*module), 4); module->entry_computation()->root_instruction(); while_op = root->operand(0)->operand(0); EXPECT_EQ(while_op->while_body()->root_instruction()->operand(1)->opcode(), HloOpcode::kAllGatherDone); } TEST_F(GpuCompilerTest, GemmFusionIsNoOpWhenGemmFusionAutotunerFallsBackToCublas) { auto cc = backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability(); if (!cc.IsAtLeastAmpere()) { GTEST_SKIP() << "Autotuning results have only been generated for Ampere " << "and Hopper GPUs"; } const absl::string_view hlo_string = R"( HloModule test ENTRY main { param_0 = bf16[3,32,1024,4,1024]{4,3,2,1,0} parameter(0) param_1 = bf16[4,3,32,1024]{3,2,1,0} parameter(1) param_2 = s32[] parameter(2) constant_0 = s32[] constant(0) dynamic-slice_0 = bf16[1,3,32,1024]{3,2,1,0} dynamic-slice(param_1, param_2, constant_0, constant_0, constant_0), dynamic_slice_sizes={1,3,32,1024} reshape_0 = bf16[3,32,1024]{2,1,0} reshape(dynamic-slice_0) broadcast_0 = bf16[3,32,1024,4,1024]{2,1,4,3,0} broadcast(reshape_0), dimensions={0,1,2} add_0 = bf16[3,32,1024,4,1024]{4,3,2,1,0} add(param_0, broadcast_0) transpose_0 = bf16[3,4,1024,32,1024]{2,1,4,3,0} transpose(add_0), dimensions={0,3,4,1,2} slice_0 = bf16[1,4,1024,32,1024]{4,3,2,1,0} slice(transpose_0), slice={[0:1], [0:4], [0:1024], [0:32], [0:1024]} reshape_1 = bf16[4,1024,32,1024]{3,2,1,0} reshape(slice_0) copy_0 = bf16[4,1024,32,1024]{3,2,1,0} copy(reshape_1) constant_1 = bf16[] constant(0.08838) broadcast_1 = bf16[4,1024,32,1024]{3,2,1,0} broadcast(constant_1), dimensions={} multiply_0 = bf16[4,1024,32,1024]{3,2,1,0} multiply(copy_0, broadcast_1) slice_1 = bf16[1,4,1024,32,1024]{4,3,2,1,0} slice(transpose_0), slice={[1:2], [0:4], [0:1024], [0:32], [0:1024]} reshape_2 = bf16[4,1024,32,1024]{3,2,1,0} reshape(slice_1) copy_1 = bf16[4,1024,32,1024]{3,2,1,0} copy(reshape_2) ROOT dot_0 = bf16[4,32,1024,1024]{3,2,1,0} dot(multiply_0, copy_1), lhs_batch_dims={0,2}, lhs_contracting_dims={3}, rhs_batch_dims={0,2}, rhs_contracting_dims={3} } )"; HloModuleConfig config; DebugOptions triton_enabled_debug_options = GetDebugOptionsForTest(); triton_enabled_debug_options.set_xla_gpu_enable_dynamic_slice_fusion(false); triton_enabled_debug_options .set_xla_gpu_require_complete_aot_autotune_results(true); config.set_debug_options(triton_enabled_debug_options); config.set_replica_count(1); config.set_num_partitions(1); std::string path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "service", "gpu", "gpu_compiler_test_autotune_db.textproto"); TF_EXPECT_OK(AutotunerUtil::LoadAutotuneResultsFromFile(path)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string, config)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> triton_enabled_module, GetOptimizedModule(std::move(module))); AutotunerUtil::ClearAutotuneResults(); DebugOptions triton_disabled_debug_options = GetDebugOptionsForTest(); triton_disabled_debug_options.set_xla_gpu_enable_dynamic_slice_fusion(false); triton_disabled_debug_options.set_xla_gpu_enable_triton_gemm(false); config.set_debug_options(triton_disabled_debug_options); TF_ASSERT_OK_AND_ASSIGN(module, ParseAndReturnVerifiedModule(hlo_string, config)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> triton_disabled_module, GetOptimizedModule(std::move(module))); const HloInstruction* root = triton_enabled_module->entry_computation()->root_instruction(); const HloInstruction* custom_op = root->operand(0)->operand(0); EXPECT_TRUE(custom_op->IsCustomCall("__cublas$gemm")); EXPECT_EQ(triton_enabled_module->computation_count(), triton_disabled_module->computation_count()); } class FloatNormalizationTest : public GpuCompilerTest, public ::testing::WithParamInterface< std::pair<PrimitiveType, PrimitiveType>> {}; INSTANTIATE_TEST_SUITE_P( Fp8s, FloatNormalizationTest, ::testing::Values( std::make_pair(PrimitiveType::F8E4M3FN, PrimitiveType::F8E4M3FN), std::make_pair(PrimitiveType::F8E5M2, PrimitiveType::F8E4M3FN), std::make_pair(PrimitiveType::F8E4M3FN, PrimitiveType::F8E5M2), std::make_pair(PrimitiveType::F8E5M2, PrimitiveType::F8E5M2))); TEST_P(FloatNormalizationTest, Fp8Normalization) { const PrimitiveType lhs_type = GetParam().first; const PrimitiveType rhs_type = GetParam().second; const std::string lhs_name = primitive_util::LowercasePrimitiveTypeName(lhs_type); const std::string rhs_name = primitive_util::LowercasePrimitiveTypeName(rhs_type); const std::string module_str = absl::Substitute(R"( HloModule sch ENTRY main { parameter = $0[1600,1600]{1,0} parameter(0) parameter.1 = $1[1600,1600]{1,0} parameter(1) neg = $1[1600,1600]{1,0} negate(parameter.1) dot = f16[1600,1600]{1,0} dot(parameter,neg), lhs_contracting_dims={1}, rhs_contracting_dims={0} constant = f16[] constant(0) broadcast = f16[1600,1600]{1,0} broadcast(constant), dimensions={} ROOT maximum = f16[1600,1600]{1,0} maximum(dot,broadcast) })", lhs_name, rhs_name); auto optimize_module = [&](bool enable_triton, bool enable_blas, bool enable_blas_fallback) -> absl::StatusOr<std::unique_ptr<HloModule>> { HloModuleConfig config; DebugOptions debug_options = GetDebugOptionsForTest(); debug_options.set_xla_gpu_cublas_fallback(enable_blas_fallback); debug_options.set_xla_gpu_enable_triton_gemm(enable_triton); if (!enable_blas) { debug_options.add_xla_disable_hlo_passes("cublas-gemm-rewriter"); } config.set_debug_options(debug_options); config.set_num_partitions(1); TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str, config)); return GetOptimizedModule(std::move(module)); }; auto cc = backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability(); const std::string triton_keep_types = absl::Substitute( R"(CHECK: fusion($0{{[^)]*}}, $1{{[^)]*}}){{.*}}"kind":"__triton_gemm")", lhs_name, rhs_name); const std::string cublaslt_keep_types = absl::Substitute( R"(CHECK: custom-call($0{{[^)]*}}, $1{{[^)]*}}){{.*}}custom_call_target="__cublas$$lt$$matmul$$f8")", lhs_name, rhs_name); const std::string cublas_convert_to_f16 = R"(CHECK: custom-call(f16{{[^)]*}}, f16{{[^)]*}}){{.*}}custom_call_target="__cublas$gemm")"; const std::string fallback_convert_to_f16 = R"(CHECK: dot(f16{{[^)]*}}, f16{{[^)]*}}))"; { TF_ASSERT_OK_AND_ASSIGN(auto optimized_module_no_fallback, optimize_module(true, true, false)); const std::string triton_expected_check = (cc.IsAtLeastHopper() || (cc.IsAtLeastAmpere() && lhs_type == F8E5M2 && rhs_type == F8E5M2)) ? triton_keep_types : cublas_convert_to_f16; TF_ASSERT_OK_AND_ASSIGN( bool filecheck_matched, RunFileCheck(optimized_module_no_fallback->ToString(), triton_expected_check)); EXPECT_TRUE(filecheck_matched); } { TF_ASSERT_OK_AND_ASSIGN(auto optimized_module_no_triton, optimize_module(false, true, true)); const std::string blas_expected_check = (cc.IsAtLeastHopper() && !(lhs_type == F8E5M2 && rhs_type == F8E5M2)) ? cublaslt_keep_types : cublas_convert_to_f16; TF_ASSERT_OK_AND_ASSIGN(bool filecheck_matched, RunFileCheck(optimized_module_no_triton->ToString(), blas_expected_check)); EXPECT_TRUE(filecheck_matched); } { TF_ASSERT_OK_AND_ASSIGN(auto optimized_module_nothing, optimize_module(false, false, false)); TF_ASSERT_OK_AND_ASSIGN(bool filecheck_matched, RunFileCheck(optimized_module_nothing->ToString(), fallback_convert_to_f16)); EXPECT_TRUE(filecheck_matched); } } TEST_F(GpuCompilerTest, CollectivePermuteDecompositionAndPipelining) { const char* kModuleStr = R"( HloModule cp cond { param = (u32[], f32[1, 1024, 1024]) parameter(0) count = get-tuple-element(%param), index=0 ub = u32[] constant(11) ROOT result = pred[] compare(count, ub), direction=LT } body { param = (u32[], f32[1, 1024, 1024]) parameter(0) count = get-tuple-element(%param), index=0 send-data = get-tuple-element(%param), index=1 recv-data = f32[1, 1024, 1024] collective-permute(send-data), source_target_pairs={{0,1}, {1,2}, {2,3}, {3,4}}, channel_id=1 c1 = u32[] constant(1) new_count = u32[] add(count, c1) replica = u32[] replica-id() c10 = u32[] constant(10) sum = u32[] add(replica, c10) sum2 = u32[] add(sum, count) conv = f32[] convert(sum2) p = f32[1, 1024, 1024] broadcast(conv), dimensions={} b = f32[1, 1024, 1024] add(p, recv-data) c = f32[1, 1024, 1024] multiply(b, b) d = f32[1, 1024, 1024] tan(c) s = f32[1, 1024, 1024] dot(c, d), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} ROOT result = (u32[], f32[1, 1024, 1024]) tuple(new_count, s) } ENTRY test_computation { c0 = u32[] constant(0) f0 = f32[] constant(0.0) init = f32[1, 1024, 1024] broadcast(f0), dimensions={} while_init = (u32[], f32[1, 1024, 1024]) tuple(c0, init) while_result = (u32[], f32[1, 1024, 1024]) while(while_init), body=body, condition=cond ROOT result = f32[1, 1024, 1024] get-tuple-element(while_result), index=1 } )"; const char* kExpected = R"( CHECK: recv-done CHECK-SAME: channel_id=[[CHANNEL_ID:[0-9]+]] CHECK-SAME: frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: send-done CHECK-SAME: channel_id=[[CHANNEL_ID]] CHECK-SAME: frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: %[[CUSTOM_CALL:.*]] = custom-call CHECK: %[[AFTER_ALL:.*]] = after-all CHECK: %[[RESULT_RECV:.*]] = recv(%[[AFTER_ALL]]) CHECK-SAME: channel_id=[[CHANNEL_ID]] CHECK-SAME: frontend_attributes={_xla_send_recv_pipeline="0", CHECK-SAME{LITERAL}: _xla_send_recv_source_target_pairs={{0,1},{1,2},{2,3},{3,4}}}, CHECK-SAME: control-predecessors={%[[CUSTOM_CALL]]} CHECK: %[[RESULT_SEND:.*]] = send(%[[SOME_SEND_ARG:.*]], %[[AFTER_ALL]]) CHECK-SAME: channel_id=1 CHECK-SAME: frontend_attributes={_xla_send_recv_pipeline="0", CHECK-SAME{LITERAL}: _xla_send_recv_source_target_pairs={{0,1},{1,2},{2,3},{3,4}}}, CHECK-SAME: control-predecessors={%[[RESULT_RECV]]} CHECK: ROOT CHECK-SAME: %[[RESULT_RECV]] CHECK: ENTRY CHECK: %[[ENTRY_AFTER_ALL:.*]] = after-all CHECK: %[[ENTRY_RECV:.*]] = recv(%[[ENTRY_AFTER_ALL]]) CHECK-SAME: channel_id=[[CHANNEL_ID]] CHECK-SAME: frontend_attributes={_xla_send_recv_pipeline="0", CHECK-SAME{LITERAL}: _xla_send_recv_source_target_pairs={{0,1},{1,2},{2,3},{3,4}}} CHECK: %[[ENTRY_SEND:.*]] = send(%[[SOME_SEND_ARG:.*]], %[[ENTRY_AFTER_ALL]]) CHECK-SAME: channel_id=1 CHECK-SAME: frontend_attributes={_xla_send_recv_pipeline="0", CHECK-SAME{LITERAL}: _xla_send_recv_source_target_pairs={{0,1},{1,2},{2,3},{3,4}}}, CHECK-SAME: control-predecessors={%[[ENTRY_RECV]]} CHECK: %[[WHILE_INIT:.*]] = tuple CHECK-SAME: %[[ENTRY_SEND]] CHECK: while(%[[WHILE_INIT]]) CHECK: recv-done CHECK-SAME: channel_id=[[CHANNEL_ID]] CHECK-SAME: frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: send-done CHECK-SAME: channel_id=[[CHANNEL_ID]] CHECK-SAME: frontend_attributes={_xla_send_recv_pipeline="0"} )"; HloModuleConfig config; DebugOptions debug_options = GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_latency_hiding_scheduler(true); debug_options.set_xla_gpu_collective_permute_decomposer_threshold(1); debug_options.set_xla_gpu_enable_pipelined_p2p(true); debug_options.set_xla_gpu_enable_triton_gemm(false); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> optimized_module, GetOptimizedModule(std::move(module))); TF_ASSERT_OK(Schedule(optimized_module.get())); HloPrintOptions options; options.set_print_operand_shape(false); options.set_print_result_shape(false); TF_ASSERT_OK_AND_ASSIGN( bool filecheck_matched, RunFileCheck(optimized_module->ToString(options), kExpected)); EXPECT_TRUE(filecheck_matched); } class KernelCacheTest : public HloTestBase { public: void SetUp() override { CHECK(tsl::Env::Default()->LocalTempFilename(&cache_file_name_)); HloModuleConfig config; config.set_debug_options(GetDebugOptionsForTest()); TF_ASSERT_OK_AND_ASSIGN(bool can_use_link_modules, dynamic_cast<GpuCompiler*>(backend().compiler()) ->CanUseLinkModules(config)); if (!can_use_link_modules) { GTEST_SKIP() << "Caching compiled kernels requires support of linking."; } } DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = HloTestBase::GetDebugOptionsForTest(); debug_options.set_xla_gpu_kernel_cache_file(cache_file_name_); debug_options.set_xla_gpu_enable_llvm_module_compilation_parallelism(true); return debug_options; } bool CacheFileExists() { if (!tsl::Env::Default()->FileExists(cache_file_name_).ok()) { return false; } return true; } int CacheEntryCount() { if (!CacheFileExists()) { return 0; } std::string serialized; TF_EXPECT_OK(tsl::ReadFileToString(tsl::Env::Default(), cache_file_name_, &serialized)); CompilationCacheProto proto; EXPECT_TRUE(proto.ParseFromString(std::string(serialized))); return proto.entries_size(); } std::string cache_file_name_; static constexpr absl::string_view kHloText = R"( ENTRY e { p = s8[] parameter(0) c = s8[] constant(8) ROOT _ = s8[] add(p, c) })"; }; TEST_F(KernelCacheTest, CacheIsGenerated) { EXPECT_FALSE(CacheFileExists()); EXPECT_TRUE(Run(kHloText, false)); EXPECT_EQ(CacheEntryCount(), 1); EXPECT_TRUE(Run(kHloText, false)); EXPECT_EQ(CacheEntryCount(), 1); } TEST_F(KernelCacheTest, NoCacheIsGeneratedWithoutCompiledKernels) { EXPECT_FALSE(CacheFileExists()); EXPECT_TRUE(Run(R"( ENTRY e { a = f32[5,5] parameter(0) ROOT _ = f32[5,5] custom-call(a, a), custom_call_target="__cublas$gemm", backend_config="{ \"gemm_backend_config\": {\"alpha_real\":1,\"beta\":0,\"dot_dimension_numbers\":{\"lhs_contracting_dimensions\":[\"1\"],\"rhs_contracting_dimensions\":[\"0\"],\"lhs_batch_dimensions\":[],\"rhs_batch_dimensions\":[]},\"alpha_imag\":0,\"precision_config\":{\"operand_precision\":[\"DEFAULT\",\"DEFAULT\"]},\"epilogue\":\"DEFAULT\"}}" })", false)); EXPECT_FALSE(CacheFileExists()); } TEST_F(KernelCacheTest, CacheGrowsWithNewKernels) { EXPECT_FALSE(CacheFileExists()); EXPECT_TRUE(Run(kHloText, false)); EXPECT_EQ(CacheEntryCount(), 1); EXPECT_TRUE(Run(R"( ENTRY e { p = s8[] parameter(0) ROOT _ = s8[] multiply(p, p) })", false)); EXPECT_EQ(CacheEntryCount(), 2); } TEST_F(KernelCacheTest, AllKernelsAreCachedBecauseSplitModuleUsesRoundRobin) { EXPECT_FALSE(CacheFileExists()); EXPECT_TRUE(Run(R"( ENTRY e { p = s8[] parameter(0) n = s8[] negate(p) a = s8[] add(n, n) s = s8[] subtract(p, a) ROOT _ = s8[] multiply(s, p) })", false)); EXPECT_EQ(CacheEntryCount(), 4); } TEST_F(KernelCacheTest, CachingWorksWithLoadedExecutables) { const std::string kHloAdd1 = R"( add1 { p = s32[] parameter(0) c = s32[] constant(1) ROOT a = s32[] add(p, c) } ENTRY e { p = s32[] parameter(0) ROOT r = s32[] fusion(p), kind=kLoop, calls=add1 })"; const std::string kHloAdd2 = R"( add2 { p = s32[] parameter(0) c = s32[] constant(2) ROOT a = s32[] add(p, c) } ENTRY e { p = s32[] parameter(0) ROOT r = s32[] fusion(p), kind=kLoop, calls=add2 })"; TF_ASSERT_OK_AND_ASSIGN(se::Platform * platform, se::PlatformManager::PlatformWithName("cuda")); TF_ASSERT_OK_AND_ASSIGN(se::StreamExecutor * stream_exec, platform->ExecutorForDevice(0)); Compiler* compiler = backend().compiler(); AotCompilationOptions aot_options(compiler->PlatformId()); aot_options.set_executor(stream_exec); auto test = [this, &compiler, &aot_options](absl::string_view hlo, int input, int expected_result) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); auto module_group = std::make_unique<HloModuleGroup>(std::move(module)); TF_ASSERT_OK_AND_ASSIGN( std::vector<std::unique_ptr<AotCompilationResult>> aot_results, compiler->CompileAheadOfTime(std::move(module_group), aot_options)); TF_ASSERT_OK_AND_ASSIGN(std::string serialized_aot_result, aot_results[0]->SerializeAsString()); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<AotCompilationResult> aot_result, compiler->LoadAotCompilationResult(serialized_aot_result)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<Executable> executable, aot_result->LoadExecutable(compiler, aot_options.executor())); const xla::Literal literal_input = xla::LiteralUtil::CreateR0<int32_t>(input); const xla::Literal literal_expected_result = xla::LiteralUtil::CreateR0<int32_t>(expected_result); TF_ASSERT_OK_AND_ASSIGN(Literal result, GetHloRunner().value()->ExecuteWithExecutable( executable.get(), {&literal_input})); EXPECT_TRUE(LiteralTestUtil::Equal(result, literal_expected_result)); }; test(kHloAdd1, 1, 2); test(kHloAdd2, 1, 3); test(kHloAdd2, 1, 3); } class KernelCacheTestSingleThreaded : public KernelCacheTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = KernelCacheTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_force_compilation_parallelism(1); return debug_options; } }; TEST_F(KernelCacheTestSingleThreaded, CacheIsGenerated) { EXPECT_FALSE(CacheFileExists()); EXPECT_TRUE(Run(kHloText, false)); EXPECT_EQ(CacheEntryCount(), 1); EXPECT_TRUE(Run(kHloText, false)); EXPECT_EQ(CacheEntryCount(), 1); } class NoKernelCacheTest : public KernelCacheTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = KernelCacheTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_llvm_module_compilation_parallelism(false); return debug_options; } }; TEST_F(NoKernelCacheTest, NoCacheWithoutCompilationParallelism) { EXPECT_TRUE(Run(kHloText, false)); EXPECT_FALSE(CacheFileExists()); } TEST_F(GpuCompilerTest, TestFlag_xla_gpu_unsafe_pipelined_loop_annotator) { const char* hlo = R"( HloModule test, entry_computation_layout={()->(s32[], s32[])} %Body (param: (s32[], s32[])) -> (s32[], s32[]) { %param = (s32[], s32[]) parameter(0) %i = s32[] get-tuple-element((s32[], s32[]) %param), index=1 %one = s32[] constant(1) %i_plus_one = s32[] add(s32[] %i, s32[] %one) %permute = s32[] collective-permute(%i_plus_one), channel_id=1, source_target_pairs={{0,1},{1,2},{2,3},{3,0}} ROOT %tuple = (s32[], s32[]) tuple(s32[] %permute, s32[] %i_plus_one) } %Cond (param.1: (s32[], s32[])) -> pred[] { %param.1 = (s32[], s32[]) parameter(0) %i.1 = s32[] get-tuple-element((s32[], s32[]) %param.1), index=1 %trip_count = s32[] constant(10) ROOT %done = pred[] compare(s32[] %i.1, s32[] %trip_count), direction=LT } ENTRY %test () -> (s32[], s32[]) { %i_start = s32[] constant(0) %p_start = s32[] constant(0) %initial_tuple = (s32[], s32[]) tuple(s32[] %i_start, s32[] %p_start) ROOT %while = (s32[], s32[]) while((s32[], s32[]) %initial_tuple), condition=%Cond, body=%Body, frontend_attributes={is_pipelined_while_loop="true"} })"; const char* kExpected = R"( )"; DebugOptions debug_options; HloModuleConfig config; debug_options.set_xla_gpu_unsafe_pipelined_loop_annotator(true); config.set_debug_options(debug_options); config.set_num_partitions(4); config.set_use_spmd_partitioning(true); TF_ASSERT_OK_AND_ASSIGN(auto unoptimized_module, ParseAndReturnVerifiedModule(hlo, config)); TF_ASSERT_OK_AND_ASSIGN(auto optimized_module, GetOptimizedModule(std::move(unoptimized_module))); HloPrintOptions options; options.set_print_operand_shape(false); options.set_print_result_shape(false); TF_ASSERT_OK_AND_ASSIGN( bool filecheck_matched, RunFileCheck(optimized_module->ToString(options), kExpected)); EXPECT_TRUE(filecheck_matched); } using GpuCompilerPassTest = GpuCompilerTest; TEST_F(GpuCompilerPassTest, GpuCompilerRunsTritonGemmRewriterByDefaultFromAmpere) { if (std::holds_alternative<se::RocmComputeCapability>(GpuComputeComp())) { GTEST_SKIP() << "TritonGemmRewriter disabled for ROCm until autotuner " << "is included."; } auto cc = backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability(); bool is_rocm = std::holds_alternative<stream_executor::RocmComputeCapability>( backend() .default_stream_executor() ->GetDeviceDescription() .gpu_compute_capability()); bool expect_triton_gemm_rewriter_has_run = cc.IsAtLeastAmpere() || is_rocm; constexpr absl::string_view constant_module = R"( HloModule noop ENTRY main { ROOT constant = f32[] constant(0) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(constant_module)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> optimized_module, GetOptimizedModule(std::move(module))); const HloModuleMetadataProto& module_metadata = optimized_module->metadata()->proto(); bool triton_gemm_rewriter_has_run = false; for (const HloPassMetadata& pass_metadata : module_metadata.pass_metadata()) { triton_gemm_rewriter_has_run |= pass_metadata.pass_name() == "triton-gemm-rewriter"; } EXPECT_EQ(triton_gemm_rewriter_has_run, expect_triton_gemm_rewriter_has_run); } TEST_F(GpuCompilerPassTest, GpuCompilerRunsCustomKernelFusionByDefaultFromVolta) { auto cc = backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability(); bool expect_custom_kernel_fusion_rewriter_has_run = cc.major == se::CudaComputeCapability::VOLTA; constexpr absl::string_view constant_module = R"( HloModule noop ENTRY main { ROOT constant = f32[] constant(0) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(constant_module)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> optimized_module, GetOptimizedModule(std::move(module))); const HloModuleMetadataProto& module_metadata = optimized_module->metadata()->proto(); bool custom_kernel_fusion_rewriter_has_run = false; for (const HloPassMetadata& pass_metadata : module_metadata.pass_metadata()) { custom_kernel_fusion_rewriter_has_run |= pass_metadata.pass_name() == "custom-kernel-fusion-rewriter"; } EXPECT_EQ(custom_kernel_fusion_rewriter_has_run, expect_custom_kernel_fusion_rewriter_has_run); } struct PassRunIndex { int first_run = std::numeric_limits<int>::max(); int last_run = std::numeric_limits<int>::min(); }; void VerifyPassOrder( const absl::flat_hash_map<std::string, PassRunIndex>& passes, absl::string_view before, absl::string_view after) { ASSERT_TRUE(passes.contains(before)) << "Expected pass did not run: " << before; ASSERT_TRUE(passes.contains(after)) << "Expected pass did not run: " << after; EXPECT_LT(passes.at(before).last_run, passes.at(after).first_run) << "Pass " << before << " ran after " << after; } absl::flat_hash_map<std::string, PassRunIndex> GatherPassOrderInformation( const HloModule& module) { absl::flat_hash_map<std::string, PassRunIndex> passes; int run_index = 0; for (const HloPassMetadata& pass_metadata : module.metadata().proto().pass_metadata()) { auto& pass = passes[pass_metadata.pass_name()]; pass.first_run = std::min(pass.first_run, run_index); pass.last_run = std::max(pass.last_run, run_index); ++run_index; } return passes; } TEST_F(GpuCompilerPassTest, PassesAreRunInCorrectOrder) { constexpr absl::string_view constant_module = R"( ENTRY main { ROOT constant = f32[] constant(0) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(constant_module)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> optimized_module, GetOptimizedModule(std::move(module))); absl::flat_hash_map<std::string, PassRunIndex> passes = GatherPassOrderInformation(*optimized_module); VerifyPassOrder(passes, "layout-assignment", "priority-fusion"); VerifyPassOrder(passes, "layout-assignment", "layout_normalization"); VerifyPassOrder(passes, "host-offload-legalize", "layout_normalization"); } TEST_F(GpuCompilerPassTest, FusionBlockLevelRewriterRunsAfterAllFusionPasses) { auto cc = backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability(); if (!cc.IsAtLeastAmpere()) { GTEST_SKIP() << "FusionBlockLevelRewriter requires Ampere+ to run."; } constexpr absl::string_view constant_module = R"( ENTRY main { ROOT constant = f32[] constant(0) })"; HloModuleConfig config; DebugOptions debug_options = GetDebugOptionsForTest(); debug_options.set_xla_gpu_experimental_enable_fusion_block_level_rewriter( true); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(constant_module, config)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> optimized_module, GetOptimizedModule(std::move(module))); absl::flat_hash_map<std::string, PassRunIndex> passes = GatherPassOrderInformation(*optimized_module); absl::string_view kFusionBlockLevelRewriterName = "fusion-block-level-rewriter"; for (const auto& [pass_name, _] : passes) { if (pass_name != kFusionBlockLevelRewriterName && absl::StrContains(pass_name, "fusion")) { VerifyPassOrder(passes, pass_name, kFusionBlockLevelRewriterName); VLOG(2) << "Verified pass order: " << pass_name << " -> " << kFusionBlockLevelRewriterName; } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/gpu_compiler.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/gpu_compiler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea